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Abstract—The propagator and the complete sets of in- and out-solutions of the wave equation, together with
the Bogoliubov coefficients relating these solutions are obtained for the vector W-boson (with the gyromagnetic
ratio g = 2) in a constant electromagnetic field. When only the electric field is present, the Bogoliubov coeffi-
cients are independent of the boson polarization and are the same as for the scalar boson. For the collinear elec-
tric and magnetic fields, the Bogoliubov coefficients for states with the boson spin perpendicular to the field are
again the same as in the scalar case. For the W– spin parallel (antiparallel) to the magnetic field, the Bogoliubov
coefficients and the one-loop contributions to the imaginary part of the Lagrange function are obtained from the
corresponding expressions for the scalar case by the substitution m2  m2 + 2eH (m2  m2 – 2eH). For the
gyromagnetic ratio g = 2, the vector boson interaction with the constant electromagnetic field is described by
the functions that can be expected by comparing the scalar and Dirac particle wave functions in the constant
electromagnetic field. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Vector bosons occupy an intermediate place
between low-spin particles (with the spins 0 and 1/2)
and higher-spin particles. They can therefore share
some of the problems encountered in considering
higher-spin particle interactions with a strong electro-
magnetic field. The most conspicuous feature of the
vector boson interaction in the case of g = 2 is the
appearance of tachyonic modes in the overcritical mag-
netic field. The ways to deal with this problem in the
framework of non-abelian theories are analyzed in [1].
But are there any others? According to [2], problems in
treating the pair production of the electric field by diag-
onalizing the Hamiltonian precisely occur for g = 2.
This is surprising in view of a successful calculation of
the Lagrange function of the constant field in the one-
loop approximation [3]. We calculate the pair produc-
tion by the constant field using the Bogoliubov coeffi-
cients (which contain all the information about this pro-
cess); as expected, the results obtained are in agreement
with those in [3] and [4].

2. VECTOR BOSON 
IN THE CONSTANT ELECTRIC FIELD

We assume ηµν = diag(–1, 1, 1, 1) and set e = |e |. The
wave function of the W– boson (with g = 2) in a source-
free space (where ∂µFµν = 0) satisfies the equation [1, 5]

(1)–DσDσ m2+( )ψµ 2ieFµνψ
ν– 0=
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and the constraint

(2)

With the vector potential chosen such that A3 = –Et and
A1 = A2 = A0 = 0, it follows from (1) that ψ1 and ψ2 sat-
isfy the same equation as in scalar case,

(3)

For ψ3 and ψ0, it follows from (1) that

(4)

Introducing ψ± = ψ0 ± ψ3, we rewrite Eqs. (4) as

(5)

which can be obtained from (3) by the substitution
m2  m2 . We see that the vector boson wave
function can be obtained from the corresponding scalar
boson wave function by simple rules.

We now do this. We let +ψp denote the positive-fre-
quency in-solution for the (negatively charged) scalar
boson. The subscript p = (p1, p2, p3) is dropped in what
follows. Then [6]

(6)

where Dν(τ) is the parabolic cylinder function [7] and

Dµψµ 0, Dµ ∂µ ieAµ.+= =

–D2 m2+( )ψ1 2, 0.=

–D2 m2+( )ψ3 2ieEψ0– 0,=

–D2 m2+( )ψ0 2ieEψ3– 0.=

–D2 m2 2ieE+−+( )ψ± 0,=

2ieE+−

ψ+ Dν τ( ) ip x⋅( ),exp∝

ν iλ
2
-----

1
2
---,–=
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(7)

For the vector boson, we obtain

(8)

where

and

(9)

The function Dν ± 1(τ) is obtained from Dν(τ) in Eqs. (6)
and (7) by the substitution

m2  m2 .

Arbitrary coefficients c1, c2, and c± ≡ +c± determine the
polarization of the vector boson. They are not indepen-
dent because of constraint (2),

(10)

For the negative-frequency in-solution (for the scalar
boson), we have

(11)

instead of (6). The star denotes the complex conjuga-
tion. Similarly to (8), the parabolic cylinder functions
entering –ψ± are obtained from [Dν(τ)]* in (11) by the
substitution

m2  m2 ,

τ 2eE i
π
4
---– 

  t
p3

eE
------– 

  ,exp–=

λ
m2 p1

2 p2
2+ +

eE
------------------------------.=

ψ+

ψ0

ψ1

ψ2

ψ3

=

=  

c+Dν 1+ τ( ) c–Dν 1– τ( )+

c1Dν τ( )

c2Dν τ( )

c+Dν 1+ τ( ) c–Dν 1– τ( )–

ip x⋅( ),exp

ψ1 ψ1
+ , ψ2 ψ2

+ ,= =

ψ0 ψ0
+≡ 1

2
--- ψ+

+ ψ–
++( ),=

ψ3 ψ3
+≡ 1

2
--- ψ+

+ ψ–
+–( ),=

ψ±
+ 2c±Dν 1± ip x⋅( ).exp=

2ieE+−

c1 p1 c2 p2 2eEeiπ/4 1 ν+( ) c+ + c+ ––[ ]+ + 0.=

ψ– Dν τ( )[ ] ∗ ip x⋅( )exp∝

2ieE+−
JOURNAL OF EXPERIMENTAL 
and therefore,

(12)

(We have c± = –c± in (12) and similarly in other cases.)
The constraint takes the form

(13)

Nothing prevents us from assuming that c1 and c2 in
(12) are the same as in (8).

The negative-frequency out-solution is obtained
from the positive-frequency in-solution by changing
the sign of τ in the parabolic cylinder functions in (8),

(14)

see (112a). The constraint is given by

(15)

Similarly, the positive-frequency out-solution can
be found from –ψ in (12) by changing the sign of τ*,

(16)

The corresponding constraint is

(17)

For the scalar boson, the in- and out-solutions are
related by [6]

(18)

ψ–

c+Dν∗ 1– τ∗( ) c–Dν∗ 1+ τ∗( )+

c1Dν∗ τ∗( )

c2Dν∗ τ∗( )

c+Dν∗ 1– τ∗( ) c–Dν∗ 1+ τ∗( )–

ip x⋅( ).exp=

c1 p1 c2 p2 2eEe iπ/4– c– + ν–c–+[ ]+ + 0.=

ψ–

c+Dν 1+ –τ( ) c–Dν 1– –τ( )+

c1Dν –τ( )

c2Dν –τ( )

c+Dν 1+ –τ( ) c–Dν 1– –τ( )–

ip x⋅( ),exp=

c–
± c+ ±,–=

c1 p1 c2 p2 2eEeiπ/4 c–
– 1 ν+( )–c+–[ ]+ + 0.=

ψ+  = 

c+Dν∗ 1– –τ∗( ) c–Dν∗ 1+ –τ∗( )+

c1Dν∗ –τ∗( )

c2Dν∗ –τ∗( )

c+Dν∗ 1– –τ∗( ) c–Dν∗ 1+ –τ∗( )–

ip x⋅( ).exp

c1 p1 c2 p2 2eEe–iπ/4 ν +c– c+
++[ ]–+ 0.=

ψ+ n c1n ψ+
n c2n ψ–

n,+=

ψ– n c2n
* ψ+

n c1n
* ψ–

n,+=
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VECTOR BOSON IN THE CONSTANT ELECTROMAGNETIC FIELD 199
The subscript n indicates a set of quantum numbers;
here, n = p. By a straightforward calculation similar to
the one in the scalar case, we find that Eqs. (18) also
hold for the vector boson and that

(19)

These relations guarantee that the wave functions ±ψ
and ±ψ are normalized in the same manner and that any
constraint can be obtained from any other use of (19).

As seen from (18), the Bogoliubov coefficients c1n

and c2n do not depend on the boson polarization in the
constant electric field. The imaginary part of the
Lagrange function is therefore given by 3ImLspin0 in
agreement with [3, 4].

3. VECTOR BOSON IN THE CONSTANT 
ELECTROMAGNETIC FIELD

We now add a collinear constant magnetic field to
the constant electric field. For A2 = Hx1, we obtain from
Eq. (1) that

(20)

Introducing

(21)

we rewrite Eqs. (20) as

(22)

and therefore,  can be obtained from the scalar
boson wave function by the substitutions

We can therefore write

(23)

c1n
2π

Γ 1 iλ–( )/2( )
------------------------------- π

4
--- λ i–( )– ,exp=

c2n –
π
2
--- λ i+( ) ,exp=

c1n
2 c2n

2– 1.=

c+
–

i
ν
--- c+ – – c– –

i
ν
--- c–

–,–= = =

c+
+ –i 1 ν+( ) c+ + – c– + i 1 ν+( ) c–

+.= = =

–D2 m2+( )ψ1 2ieHψ2– 0,=

–D2 m2+( )ψ2 2ieHψ1+ 0.=

ψ̃1 ψ1 iψ2, ψ̃2– ψ1 iψ2,+= =

ψ1
1
2
--- ψ̃1 ψ̃2+( ), ψ2

i
2
--- ψ̃1 ψ̃2–( ),= =

–D2 m2 2eH+ +( )ψ̃1 0,=

–D2 m2 2eH–+( )ψ̃2 0,=

ψ̃1 2,

m2 m2 2eH .±

ψ̃1 2c1Dn 1– ζ( ), ψ̃2 2c2Dn 1+ ζ( ),∝∝

ζ 2eH x1
p2

eH
-------+ 

  .=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Instead of (8), we thus have

(24)

and similarly for the other ψ functions. Here,

(25)

The constraints can be obtained from the previous
ones by the substitution

(26)

We note that Dµψµ is proportional to the scalar wave
function

(which is dropped in the expressions similar to (10)
with modification (26), or in (116)). Equations (67) and
(98) were used to obtain the constraints. It follows from
the derivation that the presence of c1 in the right-hand
side of (26) is due to the assumption that Dn – 1(ζ) is not
zero in (24), i.e., n ≥ 1.

Using (24) and (26), we can build three polarization
states ψ(i, x), i = 1, 2, 3, see Section 7. For these states,
the respective minimum values of n in (25) are –1, 0, 1.
Thus the Bogoliubov coefficients depend on all the four
quantum numbers (n = p2, p3, n, i) through the mini-
mum value of n.

Because

it is easy to show that in agreement with [4],

(27)

The factors outside the braces give the statistical weight
of the “correcting” states, see Eqs. (3.6) and (3.7) in [6].

The Bogoliubov coefficients allow finding the tran-
sition probability from any initial to any final state

ψ+ p2 p3n

c+Dν 1+ τ( ) c–Dν 1– τ( )+[ ] Dn ζ( )

c1Dn 1– ζ( ) c2Dn 1+ ζ( )+[ ] Dν τ( )

i c1Dn 1– ζ( ) c2Dn 1+ ζ( )–[ ] Dν τ( )

c+Dν 1+ τ( ) c–Dν 1– τ( )–[ ] Dn ζ( )

=

× i p2x2 p3x3+( )( ),exp

ν iλ
2
-----

1
2
---, λ–

m2 eH 2n 1+( )+
eE

-----------------------------------------.= =

c1 p1 c2 p2 –i 2eH 1 n+( )c2 c1–[ ] .+

Dn ζ( )Dν τ( ) i p2x2 p3x3+( )[ ]exp

2ImL 1 c2n
2+( ),ln

n

∑=

Im2Lspin1 2 3ImLspin0×=

+ 1 –πm2 eH–
eE

------------------- 
 exp+ln





– 1 –πm2 eH+
eE

-------------------- 
 exp+ln



 α

π
---EHVT .
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(with arbitrary occupation numbers) [6]. For example,
if the initial state is a vacuum, we have

(28)

for the cell with the set of quantum numbers n = p2, p3,

n, i. The term  gives the probability for the
production of k pairs, k = 0, 1, 2, …. The events occur-
ring in cells with different quantum numbers are inde-
pendent.

4. THE FREE-VECTOR BOSON PROPAGATOR

The wave functions of a free-vector boson with the
momentum pµ = (p0, 0, 0, p3) can be written as

(29)

These solutions satisfy wave equation (1) and con-
straint (2) with the external field switched off. Sum-
ming ψµ(i, x)ψν*(i, x') over polarizations, we find

(30)

If we use helicity states instead of linear polarization
states (29) (cf. §16 in [8]), we obtain the same result
(30). In general, we must replace the matrix in the right-
hand side of (30) by ηµν + pµpν/m2. This case differs
from the scalar particle case only by the presence of this
matrix in the expression for the propagator (which is

c1n
2– 1 wn wn

2 wn
3 …+ + + +{ } 1,=

wn

c2n
2

c1n
2

------------,=

c1n
2– wn

k

ψµ i x,( )
uµ i( )

2 p0
--------------- i p · x( ),exp=

ηµν diag 1– 1 1 1, , ,( ), µ 0 1 2 3,, , ,= =

u 1( )

0

1

0

0

, u 2( )

0

0

1

0

, u 3( )
1
m
----

p3

0

0

p0

.= = =

ψµ
i x,( )ψν∗

i x',( )
i 1=

3

∑ 1

2 p0
-----------=

×

p3
2

m2
------ 0 0

p3 p0

m2
-----------

0 1 0 0

0 0 1 0

p3 p0

m2
----------- 0 0

p0( )2

m2
------------

i p x x'–( )[ ] .exp
JOURNAL OF EXPERIMENTAL 
similar to (51)). The vector boson propagator can there-
fore be obtained from the scalar one

(31)

considered as a unit matrix over discrete indices, by act-
ing on it with the differential operator

(32)

Because the scalar boson propagator satisfies the
equation

(33)

we have

(34)

for the vector boson. We note that the right-hand side is
not simply given by δ4(x – x'). The complication is due
to the existence of constraints. This prevents us from
using the well-known methods of constructing propa-
gators of scalar and spinor particles in an external field
[9, 10]. An elegant way to circumvent this difficulty
was given by Vanyashin and Terentyev [3].

5. THE VECTOR BOSON PROPAGATOR
IN THE CONSTANT MAGNETIC FIELD

To write the propagator, we need the complete set of
orthonormalized solutions. The orthonormalization is
performed by expressing the vector current as [5]

(35)

We note that our expression for Dµ in (35) coincides
with that in [5]; although our ηµν has a different sign,
we also replace e  –e, using the fact that e = |e | and
assuming that W– is a particle by analogy with the elec-
tron.

Gspin0 x x',( )
1

2π( )4
------------- d4 p

ip x x'–( )[ ]exp

p2 m2 iε–+
-------------------------------------∫=

=  
1

4π( )2
------------- sd

s2
----- ism2– i x x'–( )2

4s
--------------------+ ,exp

0

∞

∫

Gµν x x',( )

=  ηµν 1

m2
------ ∂2

∂xµ∂xν
-----------------– 

  Gspin0 x x',( ).

–∂µ∂µ m2+( )Gspin0 x x',( ) δ4 x x'–( ),=

–∂σ∂σ m2+( )Gµν x x',( )

=  ηµν 1

m2
------ ∂2

∂xµ∂xν
-----------------– 

  δ4 x x'–( )

Jµ i ψν* Dµψν Dνψµ–( ){–=

– Dµ
*ψν

* Dν
*ψµ

*–( )ψν } ,

Dµ ∂µ ieAµ.+=
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In the space without a field, the expression for Jµ can
be written similarly to the scalar case up to divergence
terms (see §15 in [8]). It is remarkable that with con-
straint (2), the same is true in the presence of a field.
Indeed,

(36)

The last term in the right-hand side vanishes because
of Eq. (2) for the boson with g = 2. Similarly,

(37)

and therefore,

(38)

To normalize the wave functions, we need only J0.
Straightforward calculations show that the divergence
terms do not contribute to J0 for the fields considered
here. We then have

(39)

For orthonormalization, we use the expression

(40)

Our vector potentials are such that A0(x) = 0. It then fol-
lows that D0 = ∂/∂t and

(41)

where the sum over k runs from 1 to 3.

The positive-frequency solution of wave equation (1)
with Aµ(x) = δµ2Hx1 is given by

(42)

The elements of this column correspond to µ = 0, 1, 2, 3,

–ψν*Dνψµ ∂ν ψν*ψµ( )– ψµDν
*ψν*.+=

Dν
*ψµ

*( )ψν ∂ν ψνψµ
*( ) ψµ

*Dνψ
ν–=

=  ∂ν ψνψµ
*( ),

Jµ i ψν*Dµψν{–=

– Dν
*ψµ

*( )ψν ∂ν ψν*ψµ ψνψµ
*–[ ]– } .

J0 J0– i ψν*D0ψν D0
*ψν

*( )ψν–{ } .= =

J0 ψ' ψ,( ) i ψ'ν*D0ψν D0
*ψν'*( )ψν–{ } .=

J0 ψ' ψ,( ) i ψk'*∂tψk ψ'0*∂tψ
0–{ } ,=

↔ ↔

ψp2 p3 n, ,
µ

c0Dn ζ( )

c1Dn 1– ζ( ) c2Dn 1+ ζ( )+

i c1Dn 1– ζ( ) c2Dn 1+ ζ( )–[ ]
c3Dn ζ( )

=

× i p2x2 p3x3 p0t–+( )[ ] .exp

ζ 2eH x1
p2

eH
-------+ 

  ,=

p0 m2 p3
2 eH 2n 1+( )+ + .=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The coefficients c determining the boson polarization
satisfy the constraint

(43)

For states with the polarizations c' and c, Eqs. (41)
and (42) imply that

(44)

Integrating over x1, we find

(45)

Using the orthonormalization conditions

(46)

and constraint (43), we find the positive-frequency
polarization states

(47)

where

(48)

–i p0c0 i p3c3 2eH n 1+( )c2 c1–[ ]+ + 0.=

J0 ψ' ψ,( ) 2 p0 2c1'*c1Dn 1–
2 ζ( ){=

+ 2c2'*c2Dn 1+
2 ζ( ) c3'*c3 c'0*c0–( )Dn

2 ζ( )+ } .

x1J0 ψ' ψ,( )d

∞–

∞

∫ 2 p0n! π
eH
-------=

× 2
n
---c1'*c1 2 n 1+( )c2'*c2 c3'*c3 c'0*c0–+ +

 
 
 

,

x1Dn
2 ζ( )d

∞–

∞

∫ n! π
eH
-------.=

x1J0 ψ± i x,( ) ψ± j x,( ),( )d∫ δij,±=

i j, 1 2 3,, ,=

ψµ 1 x,( ) N 1( )

n 1+( ) 2eH p0Dn ζ( )

im⊥
2 Dn 1+ ζ( )

m⊥
2 Dn 1+ ζ( )

n 1+( ) 2eH p3Dn ζ( )

=

× i p2x2 p3x3 p0t–+( )[ ] ,exp

µ 0 1 2 3, m⊥
2, , , m2 eH 2n 1+( ),+= =

p0 m2 p3
2 eH 2n 1+( )+ + ,=

N 1( ) n1N0, N0
eH
π

------- 
 

1/4 1

2 p0 n!
---------------------,= =

n1
1

2 n 1+( )m⊥
2 m2 eHn+( )

------------------------------------------------------------,=
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(49)

(50)

We separatare the scalar wave function normalization
factor N0 from the normalization factors N(i) because
we concentrate our attention on the differences from
the scalar case. We also note that

which vanishes for n = 0. For the state ψ(3, x) only the
values n = 1, 2, 3, … are therefore possible. The same
follows from the fact that constraint (43) cannot be sat-
isfied because it does not involve c1 for n = 0.

We now construct the vector boson propagator. We
start from the expression (which is a special case of a
more general result derived in Section 6, see Eqs. (80)
and (81))

(51)

In what follows, we let En denote the previous quan-
tity p0 and use the relations

(52)

ψ 2 x,( ) n2N0

p3Dn ζ( )

0

0

p0Dn ζ( )

i p2x2 p3x3 p0t–+( )[ ] ,exp=

n2
1

m⊥
2

-----------,=

ψ 3 x,( ) n3N0=

×

2eH p0Dn ζ( )

i – m2 eHn+( )Dn 1– ζ( ) eHDn 1+ ζ( )+[ ]

m2 eHn+( )Dn 1– ζ( ) eHDn 1+ ζ( )+

2eH p3Dn ζ( )

× i p2x2 p3x3 p0t–+( )[ ] ,exp

n3
n

2m2 m2 eHn+( )
--------------------------------------.=

N 3( ) Γ 1/2– n( ),∝

Gµν x x',( ) i
p2d

2π
--------

∞–

∞

∫
p3d

2π
--------

∞–

∞

∫=

×
ψµ

+ i x,( )+ψ*ν
i x',( ), t t'>

ψµ
– i x,( )–ψ*ν

i x',( ), t t'.<



i 1=

3

∑
n 1–=

∞

∑

–
1

2πi
-------- p0 i p0 t t'–( )–[ ]exp

p0 En– ie+( ) p0 En ie–+( )
------------------------------------------------------------------d

∞–

∞

∫

=  
1

2En

---------
iEn t t'–( )–[ ] , t t'>exp

iEn t t'–( )[ ] , t t',<exp



1

i En
2 p0( )2

–( )
------------------------------- s is En

2 p0
2–( )–[ ]expd

0

∞

∫=
JOURNAL OF EXPERIMENTAL
to rewrite (51) as (with p0 = –p0)

(53)

We note that the lower line in the right-hand side of (52)
is obtained from the upper line by the substitution
t  t ', which does not change anything, because the
right-hand side can be written as

The form of the left-hand side that is explicitly symmet-
ric in t and t' is

(54)

We first obtain the scalar particle propagator in the
proper-time representation [10]. We replace aµν(x, x')
by Dn(ζ)Dn(ζ') in (53). Using the formula

(55)

we then find

(56)

Subsequent integration over p2 gives

Gµν x x',( ) i
eH
π

-------
d p2

2π
--------

p3d
2π
-------- p0d

2π
--------

∞–

∞

∫
∞–

∞

∫
∞–

∞

∫
n 1–=

∞

∑=

× saµν x x',( ) 1
n!
----- –is m⊥

2 p3
2 p0

2–+( )[expd

0

∞

∫

+ i p2 x2 x2'–( ) p3 x3 x3'–( ) p0 t t'–( )–+[ ] ] ,

m⊥
2 m2 eH 2n 1+( ).+=

     

2En( ) 1– –iEn t t'–[ ] .exp

s –isEn
2[ ] p0d

2π
-------- is p0

2 i p0 t t'–( )–[ ]exp

∞–

∞

∫expd

0

∞

∫

=  
eiπ/4

2 π
---------- sd

s
------

0

∞

∫ isEn
2 i

t t'–( )2

4s
-----------------–– .exp

Dn ζ( ) 2
π
---eζ2/4 yyne y

2/2– ζy
nπ
2

------– 
  ,cosd

0

∞

∫=

Dn ζ( )Dn ζ'( )
n!

---------------------------- –iτ 2n 1+( )[ ]exp
n 0=

∞

∑ 2 2τsin( )–1/2=

× –i
π
4
--- i

ζ ζ '–( )2

8 τtan
------------------- i

ζ ζ '+( )2

8 τcot
--------------------–+ ,exp

τ eHs, ζ' 2eH x1'
p2

eH
-------+ 

  .= =

p2d
2π
--------

∞–

∞

∫
Dn ζ( )Dn ζ'( )

n!
---------------------------- –iτ 2n 1+( ) i p2z2+[ ]exp

n 0=

∞

∑
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(57)

Using

(58)

we find [6, 9–11]

(59)

We now show how to obtain aµν(x, x') in (53) and
how to turn it into a differential matrix that gives the
vector boson propagator when inserted in the integrand
in (59). As a preliminary step, we write two formulas
directly related to (56):

(60)

(61)

We see that the expressions in (60) and (61) differ from
the scalar case only by the factors e2iτ and e–2iτ.

We now return to aµν(x, x'). As seen from (51) and
(53),

(62)

=  i
eH
π

------- 4 τsin( ) 1––

× –i
eHz2 x1 x1'+( )

2
--------------------------------- i

eH z1
2 z2

2+( )
4 τtan

---------------------------+ ,exp

zµ xµ xµ' .–=

p3d
2π
--------

∞–

∞

∫ p0d
2π
--------

∞–

∞

∫
× i p3z3 p0z0–( ) is p3

2 p0
2–( )–[ ]exp

=  
1

4πs
--------- i

z3
2 z0

2–
4s

-------------- ,exp

Gspin0 x x',( )
eH

4π( )2
------------- sd

s eHs( )sin
-------------------------

0

∞

∫=

× i
eHz2 x1 x1'+( )

2
---------------------------------–exp

× ism2– i
z3

2 z0
2–

4s
-------------- i

z1
2 z2

2+( )eH
4 eHs( )tan
---------------------------+ + .exp

Dn 1+ ζ( )Dn 1+ ζ'( )
n 1+( )!

---------------------------------------- i– τ 2n 1+( )[ ]exp
n 1–=

∞

∑

=  2iτ( )
Dn ζ( )Dn ζ'( )

n!
---------------------------- iτ 2n 1+( )–[ ] ,exp

n 0=

∞

∑exp

Dn 1– ζ( )Dn 1– ζ'( )
n 1–( )!

--------------------------------------- iτ 2n 1+( )–[ ]exp
n 1=

∞

∑

=  2iτ–( )
Dn ζ( )Dn ζ'( )

n!
---------------------------- iτ 2n 1+( )–[ ] .exp

n 0=

∞

∑exp

aµν x x',( ) ψµ i x,( )ψν* i x',( ).
i 1=

3

∑∝
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Taking, e.g., a11(x, x'), we see from (49) that ψ1(2, x) =
0, i.e., the term with i = 2 does not contribute to a11(x,
x'). In accordance with (47), the contribution of the term
with i = 1 is

(63)

The term with i = 3 gives

(64)

We now have a11(x, x') as the sum of (63) and (64):

(65)

Next, we note that

(66)

i.e., the undesirable factor 1/(m2 + eHn) contained in 

and  in (63) and (64) disappears in the sum in Eq. (65).

In what follows, we use the relations

(67)

see Eqs. (8.2.15–16) in [7]. We also write the sum and
the difference of these expressions:

(68)

n1
2m⊥

4 Dn 1+ ζ( )Dn 1+ ζ'( ),

n1
2 1

2 n 1+( )m⊥
2 m2 eHn+( )

--------------------------------------------------------.=

n3
2 m2 eHn+( )Dn 1– ζ( )– eHDn 1+ ζ( )+[ ]

× m2 eHn+( )Dn 1– ζ'( )– eHDn 1+ ζ'( )+[ ] ,

n3
2 n

2m2 m2 eHn+( )
--------------------------------------.=

a11 x x',( )
1

2 m2 eHn+( )
-------------------------------=

×
m⊥

2

n 1+
------------ eH( )2n

m2
-----------------+

 
 
 

Dn 1+ ζ( )Dn 1+ ζ'( )

+
n m2 eHn+( )

2m2
-------------------------------Dn 1– ζ( )Dn 1– ζ'( )

–
eHn

2m2
---------- Dn 1+ ζ( )Dn 1– ζ'( ) Dn 1– ζ( )Dn 1+ ζ'( )+[ ] .

1

m2 eHn+
-----------------------

m⊥
2

n 1+
------------ eH( )2n

m2
-----------------+

 
 
  1

n 1+
------------

eH

m2
-------,+=

n1
2

n3
2

ζd
d ζ

2
---+ 

  Dn ζ( ) nDn 1– ζ( ),=

ζd
d ζ

2
---– 

  Dn ζ( ) –Dn 1+ ζ( ),=

2 ζd
d

Dn ζ( ) nDn 1– ζ( ) Dn 1+ ζ( ),–=

ζ Dn ζ( ) nDn 1– ζ( ) Dn 1+ ζ( ).+=
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It is then easy to verify that

(69)

The first term in the right-hand side of (69) is involved
in Eq. (60) and the second term is used in (61); the nec-
essary factor n! comes from N0 see Eq. (48). The third
term can be written as

(70)

In a similar manner, we find the other components

It is easy to verify that the differential operator Aµν(x, x')
corresponding to aµν(x, x') is given by

(71)

In our case,

(72)

The nonzero components Bµν are

(73)

The difference of Bµν from ηµν is due to the interaction
of the boson magnetic moment with the magnetic field.
We can say that Bµν with µ, ν = 1, 2 are “dressed” by the
magnetic field.

Thus,

(74)

a11 x x',( )
Dn 1+ ζ( )Dn 1+ ζ'( )

2 n 1+( )
----------------------------------------

n
2
---Dn 1– ζ( )Dn 1– ζ'( )+=

+
2eH

m2
---------- ∂2

∂ζ∂ζ '
-------------Dn ζ( )Dn ζ'( ).

1

m2
------ ∂2

∂x1∂x1'
-----------------Dn ζ( )Dn ζ'( ).

aµν x x',( ) a
νµ* x' x,( ).=

Aµν Bµν Cµν, Cµν+
1

m2
------Πµ x( )Πν* x'( ),= =

Πµ x( ) i
xµ∂
∂

eAµ x( ),+–=

Πµ
* x'( ) i

x'µ∂
∂

eAµ x'( ).+=

Aµ x( ) δµ2Hx1, Π0 x( ) i
t∂

∂
,= =

Π0* x'( ) i
t'∂

∂
– .=

B11 B22 τ , B21cos B12– τ ,sin= = = =

B33 B00– 1.= =

Gµν x x',( )
eH

4π( )2
------------- sd

s eHs( )sin
------------------------- ism2–( )Aµνexp

0

∞

∫=

×
ieHz2 x1 x1'+( )

2
-----------------------------------–exp

×
i z3

2 z0
2–( )

4s
---------------------

i
4
--- z1

2
z2

2+( )eH eHs( )cot+ ,exp

zµ xµ xµ' .–=
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It is somewhat surprizing that this representation does
not coincide with the Vanyashin–Terentyev representa-
tion [3] with the electric field switched off. Possibly,
these are two different representations for the same
propagator, and it would be interesting to verify this
hypothesis.

6. THE VECTOR BOSON PROPAGATOR
IN THE CONSTANT ELECTRIC FIELD

We first give the generalization of (51) for the case
where the external field can create pairs [12, 6]. For this
purpose, we write

(75)

where T is the chronological ordering operator and

(76)

As usual, an and bn are the particle and antiparticle
destruction operators in a state with the quantum num-
bers n:

(77)

For t > t ', it follows from (75) and (77) that

(78)

In our case, the Bogoliubov transformations have the
form (cf. Eq (18)) [6]

(79)

The first equation in (79) implies that

Inserting  from this relationship into (78) and
using the commutation relation

G x x',( )abs i 0out T Ψ x( )Ψ† x'( )( ) 0in〈 〉=

=  0out 0in〈 〉 G x x',( ),

Ψ x( ) an  out ψ 
+

 n x ( ) b n  out
+

 ψ 
–

 n x ( )+  [ ] , 

n

 ∑  =  

Ψ

 

†

 

x

 

( )

 

a

 

n   in
†

 ψ * + n x ( ) b n  in ψ * – n x ( )+  [ ] . 

n

 ∑  =

Ψ† x'( ) 0in| 〉 ψ*+ k x'( )ak  in
†

 0 in | 〉 , 

k

 ∑  =

0

 

out

 

〈 |Ψ

 

x

 

( ) 0out〈 | an  out ψ 
+

 n x ( ). 

n

 ∑  =

G x x',( )abs i ψ+
n x( ) ψ*  + k x '( ) 0 out a n out a k   in

†
 0 in , 

n k

 

,

 ∑  =  

t t

 

'.

 

>

an  out
†

 c 1 n * a n  in
†

 c 2 n b n  in ,+=  

b

 

n  out c 2 n * a n  in
†

 c 1 n b n  in .+=

ak   out
†

 0 in | 〉 c 1 k * a k  in
†

 0 in | 〉 .=

ak  in
†

 0 in | 〉

ak  out a n   out
†

 ,[ ] δ kn ,=
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we then obtain

(80)

Similarly, for t < t ', we find

(81)

If the external field does not create pairs, the expres-
sions obtained become those in (51).

In terms of the states +ψ' and +ψ in (8), the transition
current (41) becomes

(82)

where we used Eq. (8.2.11) in [7] (and its complex con-
jugate):

(83)

(84)

The constraint is given in (10). Using Eqs. (82), (8), and
(10), we find the +ψ polarization states

(85)

(86)

G x x',( )abs 0out 0in〈 〉 i ψ+
n x( ) ψ*  + n x '( )

1
 

c
 

1
 

n
 *

------, 

n

 ∑  =  

t t

 

'.

 

>

G x x',( )abs 0out 0in〈 〉 i ψ– n x( ) ψ– *n x'( )
1

c1n
*

------,
n

∑=

t t'.<

J0 ψ+ ' ψ+,( ) 2eEeπλ/4=

× c1
'*c1 c2

'*c2 2i c'*
+ – c+ + c'*

+ + c+ ––( )+ +[ ] ,

Dν∗ 1+ τ∗( )
td

d
Dν 1– τ( ) 2eE

πλ
4

------ 
 exp=

↔

=  –Dν∗ 1– τ∗( )
td

d
Dν 1+ τ( ) Dν∗ τ∗( )i

td
d

Dν τ( ).=

↔ ↔

ψ+ 1 x,( ) N 1( )

p2
eE
2

------eiπ/4 Dν 1+ τ( ) νDν 1– τ( )–[ ]

0

m⊥
2 Dν τ( )

p2
eE
2

------eiπ/4 Dν 1+ τ( ) νDν 1– τ( )+[ ]

=

× ip x⋅[ ] ,exp

N i( ) niN0, N 1( ) n1N0,= =

n1
1

m⊥
2 m2 p1

2+( )
------------------------------, N0 2eE( ) 1/4– πλ

8
------– 

  ,exp= =

ψ+ 2 x,( ) N 2( )

Dν 1+ τ( ) 1 ν+( )Dν 1– τ( )+

0

0

Dν 1+ τ( ) 1 ν+( )Dν 1– τ( )–

=

× ip x⋅( ),exp
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(87)

The +ψ polarization states can be obtained from
these ones using Eqs. (19) (see also (16)):

(88)

(89)

(90)

n2
eE

2m⊥
2

----------, m⊥
2 m2 p1

2 p2
2,+ += =

ψ+ 3 x,( ) N 3( )

p1
eE
2

------eiπ/4 Dν 1+ τ( ) νDν 1– τ( )–[ ]

m2 p1
2+( )Dν τ( )

p1 p2Dν τ( )

p1
eE
2

------eiπ/4 Dν 1+ τ( ) νDν 1– τ( )+[ ]

=

× ip x⋅( ),exp

n3
1

m2 m2 p1
2+( )

----------------------------------.=

ψ+ 1 x,( ) N 1( )=

×

p2
eE
2

------e iπ/4– 1 ν+( )Dν∗ 1– τ– ∗( ) Dν∗ 1+ τ∗–( )+[ ]

0

m⊥
2 Dν∗ τ∗–( )

p2
eE
2

------e iπ/4– 1 ν+( )Dν∗ 1– τ– ∗( ) Dν∗ 1+ τ∗–( )–[ ]

× ip x⋅( ),exp

ψ+ 2 x,( ) N 2( )=

×

i 1 ν+( ) –Dν∗ 1– τ∗–( )
1
ν
---Dν∗ 1+ τ∗–( )+

0

0

i 1 ν+( ) –Dν∗ 1– τ∗–( )
1
ν
---Dν∗ 1+ τ∗–( )–

× ip x⋅( ),exp

ψ+ 3 x,( ) N 3( )=

×

p1
eE
2

------e iπ/4– 1 ν+( )Dν∗ 1– τ– ∗( ) Dν∗ 1+ τ∗–( )+[ ]

m2 p1
2+( )Dν∗ τ∗–( )

p1 p2Dν∗ τ∗–( )

p1
eE
2

------e iπ/4– 1 ν+( )Dν∗ 1– τ– ∗( ) Dν∗ 1+ τ∗–( )–[ ]

× ip x⋅( ).exp
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In Eqs. (85)–(90), the states ψ(i, x) are characterized by
p1, p2, p3, and i; ν and λ are given in (7).

We note that the transition current J0(+ψ', +ψ)
expressed in terms of +c has the same form as J0(+ψ',
+ψ) expressed in terms of +c, see Eq. (82). A similar
statement is true for the negative-frequency states.
Because ν + 1 = –ν* in accordance with Eq. (7), it fol-
lows from (19) that

(90a)

Therefore,

(91)

and

(91a)

As previously, we focus our attention on the differ-
ences from the scalar case in expressions similar to
(53). The proper time representation of the scalar parti-
cle propagator is given by [12]

(92)

This can be derived similarly to the magnetic case, but
with the role of Eq. (52) played by the relation [12, 6]

(93)

c+ '*–   c + + c '* + – c + + =

=  

 

c

 

–

 

'*

 

–   c –
+ c '* – – c – + .=

J0 ψ+ i x,( ) ψ+ j x,( ),( )

=  J0 ψ+ i x,( ) ψ+ j x,( ),( ) δi j, ,∝

J0 ψ– i x,( ) ψ– j x,( ),( )

=  J0 ψ– i x,( ) ψ– j x,( ),( ) J0 ψ+ i x,( ) ψ+ j x,( ),( ).–=

G x x',( )spin0
eE

4π( )2
------------- i

2
---eE t t'+( )z3exp=

× sd
s eEs( )sinh
--------------------------- –ism2 i

4s
----- z1

2 z2
2+( )+exp

0

∞

∫

+
i
4
---eE z3

2 z0
2–( )coth eEs( ) .

2
θd

2θsinh
---------------------

0

∞

∫

× i2κθ–
i
8
--- T T '+( )2

θcoth
--------------------- T T '–( )2

θtanh
---------------------+–

 
 
 

exp

=  Γ iκ 1
2
---+ 

 

×
D–iκ 1/2( )– χ( )D–iκ 1/2( )– χ'–( ), T T '>
D–iκ 1/2( )– –χ( )D–iκ 1/2( )– χ'( ), T T ',<



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where

(94)

The lower line in the right-hand side of (93) can be
obtained from the upper line by the substitution T 
T '. As seen from the left-hand side of (93), this does not
change the value of (93), cf. the remark after Eq. (53).

By analogy with the magnetic case, we expect the
appearance of the factors e±2θ in the integrand of (93),
cf. Eqs. (73) and (60), (61). To make the insertion pos-
sible, we must rotate the integration contour clockwise
by a certain angle. This is in line with the Vanyashin–
Terentyev approach [3]. After the substitution κ 
κ + i, it then follows from (93) that

(95)

Similarly, substituting κ  κ – i in (93), we obtain

(96)

The integration over p3 contained in the sum over n
in Eqs. (80) and (81) gives

(97)

θ eEs, T 2eE t
p3

eE
------– 

  ,= =

T ' 2eE t'
p3

eE
------– 

  , χ τ∗– eiπ/4T ,= = =

χ' eiπ/4T ', κ λ
2
---

m⊥
2

2eE
----------.= = =

     

2
θd

2θsinh
---------------------

C

∫

× –i2κθ 2θ i
8
--- T T '+( )2

θcoth
--------------------- T T '–( )2

θtanh
---------------------+–+

 
 
 

exp

=  Γ iκ 1
2
---– 

  D–iκ 1/2( )+ χ( )D–iκ 1/2( )+ χ'–( ), T T '>
D–iκ 1/2( )+ χ–( )D–iκ 1/2( )+ χ'( ), T T '.<




2
θd

2θsinh
---------------------

0

∞

∫

× –i2κθ 2θ i
8
--- T T '+( )2

θcoth
--------------------- T T '–( )2

θtanh
---------------------+––

 
 
 

exp

=  Γ iκ 3
2
---+ 

  D–iκ 3/2( )– χ( )D–iκ 3/2( )– χ'–( ), T T '>
D–iκ 3/2( )– χ–( )D–iκ 3/2( )– χ'( ), T T '.<




p3d
2π
--------

∞–

∞

∫ i p3z3
i
8
--- T T '+( ) θtanh–exp

=  
1
2
---e iπ/4– eE θcoth

π
---------------------

iz3
2eE

4 θtanh
-----------------

ieEz3 t t'+( )
2

-----------------------------+
 
 
 
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where T and T ' are functions of p3, see (94). Further cal-
culations leading to (92) are similar to those in the mag-
netic case.

We now consider the differences from the scalar
case. We first rewrite relations (67) and (68) between
the parabolic cylinder functions for the present case as

(98)

(99)

The other necessary relations are obtained from these
by the substitution τ'*  –τ*.

Because

(100)

we can write the propagator as

(101)

The scalar particle propagator can be obtained from
the right-hand side of (101) if we replace aµν(x, x') with
expression (93). As an example, we now calculate a33(x,
x'). For t > t ', we have

(102)

The first term in the sum is

(103)

where we used the second equation in (99) and the one
obtained from it by the substitution τ'*  –τ*. Similarly,

(104)

τ'∗d
d τ'∗

2
------+ 

  Dν∗ τ'∗( ) ν∗ Dν∗ 1– τ'∗( ),=

τ'∗d
d τ'∗

2
------– 

  Dν∗ τ'∗( ) –Dν∗ 1+ τ'∗( ),=

2
τ'∗d
d

Dν∗ τ'∗( ) ν∗ Dν∗ 1– τ'∗( ) Dν∗ 1+ τ'∗( ),–=

τ'∗ Dν∗ τ'∗( ) ν∗ Dν∗ 1– τ'∗( ) Dν∗ 1+ τ'∗( ).+=

c1n
2π

Γ –iκ 1/2+( )
------------------------------ –

πκ
2

------ iπ
4
-----+ ,exp=

i
c1n*
------N0

2 3iπ/4[ ]exp

2 πeE
----------------------------Γ iκ 1

2
---+ 

  ,=

Gµν x x',( )
3iπ/4[ ]exp

2 πeE
----------------------------=

× p3d

2π( )3
-------------aµν x x',( ) ip x x'–( )⋅[ ] .exp∫

a33 x x',( ) ψ+ 3 i x,( ) ψ3
+

∗ i x',( ).
i 1=

3

∑∝

ψ+ 3 1 x,( ) ψ3
+

∗ 1 x',( )
ieE
2

--------– τ∗∝

× Dν∗ τ∗–( )τ'∗ Dν∗ τ'∗( )
p2

2

m⊥
2 m2 p1

2+( )
------------------------------,

ψ+ 3 3 x,( ) ψ3
+
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ieE
2

--------τ∗∝
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2

m2 m2 p1
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Adding (103) and (104), we obtain

(105)

The expression in the square brackets can be simplified
as

(106)

The undesirable factor (m2 + )
–1

 involved in (103)
and (104) disappears in sum (105). The first term in the
right-hand side of (106) gives the following contribu-
tion to (105):

(107)

This already has the desired form. We now rewrite the
contribution of the second term in the right-hand side of
(106) to (105) in the initial form (i.e., before using the
second equation in (99)),

(108)

This expression still contains the undesirable factor

1/ . But we must take the contribution from the term
with i = 2 in (102) into account:

(109)

–
ieE
2

--------τ∗ Dν∗ τ∗–( )τ'∗ Dν∗ τ'∗( )

×
p2

2

m⊥
2 m2 p1

2+( )
------------------------------

p1
2

m2 m2 p1
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------------------------------+ .

1

m2 p1
2+

------------------
p2

2

m⊥
2

-------
p1

2

m2
------+

 
 
  1

m2
------

1

m⊥
2

-------.–=

p1
2

–
ieE

2m2
---------τ∗ Dν∗ τ∗–( )τ'∗ Dν∗ τ'∗( )

1

m2
------=

× p3 eEt–( ) p3 eEt'–( )Dν∗ τ∗–( )Dν∗ τ'∗( ).

ieE

2m⊥
2

---------- – 1 ν+( )2Dν∗ 1– τ∗–( )Dν∗ 1– τ'∗( )[

+ 1 ν+( )Dν∗ 1+ τ∗–( )Dν∗ 1– τ'∗( )

+ 1 ν+( )Dν∗ 1– τ∗–( )Dν∗ 1+ τ'∗( )

– Dν 1+ τ∗–( )Dν∗ 1+ τ'∗( ) ] .

m⊥
2

ψ+ 3 2 x,( ) ψ3
+

∗ 2 x',( )
ieE

2m⊥
2

---------- 1 ν+( )∝

× –Dν∗ 1– τ∗–( )Dν∗ 1+ τ'∗( )
1
ν
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SICS      Vol. 93      No. 2      2001



208 NIKISHOV
It is easy to see that in the sum of (108) and (109), the
undesirable terms are cancelled and the unpleasant
denominator

disappears:

(110)

Thus, a33(x, x ')) is given by the sum of expressions
(107) and (110). The first term in the right-hand side of
(110) is used in (96) and the second term in (95). In the
same manner, we find all the other aµν(x, x ') compo-
nents. Similar to the magnetic case, 

(111)

where Aµν is given by (71), but the vector potential is

The nonzero Bµν components are

(112)

We see that the electric field dresses Bµν with µ, ν = 3, 0.

Proceeding to the case where t < t ', we note that in
accordance with (19),

(112a)

This implies that –ψ(–ψ) is obtained from +ψ(+ψ) by
changing the sign of the arguments in the parabolic cyl-
inder functions and the sign of ψ0 and ψ3. The overall
change of sign of ψ(2, x) does not affect the corre-
sponding term in (102). In ψ(1, x) and ψ(3, x), changing
the sign of ψ0 and ψ3 and of the arguments τ* and τ'* is
equivalent to changing the sign of only the D-function
arguments τ* and τ'* if ψ0 and ψ3 are expressed through
the left-hand sides of (99). As expected, it now follows
from (93)–(96) that Gµν(x, x ') retains the same form
(111) for t < t '.

m⊥
2 ieE 1 2ν+( )–=

108( ) 109( )+

=  
1
2
--- 1 ν+( )Dν∗ 1– τ∗–( )Dν∗ 1– τ'∗( )-

+
1
ν
---Dν∗ 1+ τ∗–( )Dν∗ 1+ τ'∗( ) .

Gµν x x',( ) eE

4π( )2
-------------=

× sd
s eEs( )sinh
---------------------------Aµν ieE

2
--------z3 t t'+( )exp

C

∫

× –ism2 i
4s
----- z1

2 z2
2

+( ) i
4s
----- z3

2 z0
2–( )eE eEs( )coth+ + ,exp

Aµ x( ) δµ3Et.–=

B11 B22 1, B33 B00– 2eEs( ),cosh= = = =

B30 B03– 2eEs( ).sinh= =

c– ± c+
±, c–

±– c+ ±.–= =
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7. THE VECTOR BOSON PROPAGATOR
IN THE CONSTANT ELECTROMAGNETIC FIELD

After we have considered the magnetic and electric
fields separately, the construction of the vector boson
propagator in both fields meets no new problems. We
take the vector potential in the form

(113)

The transition current between the states +ψ' and +ψ is

(114)

Taking Eq. (84) into account and integrating over x1, we
obtain

(115)

The constraint is given by

(116)

Using (115) and (116), we find the +ψ polarization
states (in what follows, the factor exp[i(p2x2 + p3x3)] is
omitted for brevity):

(117)

Aµ x( ) δµ2Hx1 δµ3Et.–=

J0 ψ+ ' ψ+,( )

=  2 c1
'*c1Dn 1–

2 ζ( ) c2
'*c2Dn 1+

2 ζ( )+[ ] Dν∗ τ∗( )i
td

d
Dν τ( )





– c–
'*c+Dν∗ 1– τ∗( )i

td
d

Dν 1+ τ( )

↔

↔

+ c+'*c–Dν∗ 1+ τ∗( )i
td

d
Dν 1– τ( ) Dn

2 ζ( )




.
↔

x1J0 ψ+ ' ψ+,( )d

∞–

∞

∫ n! 2πE
H

----------2eπκ/2=

× 1
n
---c1

'*c1 1 n+( )c2
'*c2 i c–'*c+ c+

'*c––( )+ + .

2eH 1 n+( )c2 c1–[ ]

+ 2eEe iπ/4– c+ – 1 ν+( )   c + + –  [ ] 0.=

ψ+ 1 x,( ) N 1( )=

×

1 n+( ) e2EHeiπ/4 Dν 1+ τ( ) νDν 1– τ( )–[ ] Dn ζ( )

im⊥
2 Dν τ( )Dn 1+ ζ( )

m⊥
2 Dν τ( )Dn 1+ ζ( )

1 n+( ) e2EHeiπ/4 Dν 1+ τ( ) νDν 1– τ( )+[ ] Dn ζ( )

,
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(118)

(119)

N i( ) niN0, N0
H

2πE
---------- 

 
1/4e πκ/4–

n!
------------,= =

n1
1

2m⊥
2 m2 eHn+( ) 1 n+( )

------------------------------------------------------------,=

ψ+ 2 x,( ) N 2( )=

×

Dν 1+ τ( ) 1 ν+( )Dν 1– τ( )+[ ] Dn ζ( )

0

0

Dν 1+ τ( ) 1 ν+( )Dν 1– τ( )–[ ] Dn ζ( )

,

n2
eE

2m⊥
2

----------,=
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(120)

(121)

To obtain the polarization states of +ψ (or of –ψ and
–ψ), we again use Eq. (19) (cf. Eqs. (88)–(90) and (47)–
(50)). We then obtain

ψ+ 3 x,( ) N 3( )=

×

e2EH Dν 1+ τ( ) νDν 1– τ( )–[ ] Dn ζ( )

eiπ/4Dν τ( ) – m2 eHn+( )Dn 1– ζ( ) eHDn 1+ ζ( )+[ ]

e i– π/4Dν τ( ) m2 eHn+( )Dn 1– ζ( ) eHDn 1+ ζ( )+[ ]

e2EH Dν 1+ τ( ) νDν 1– τ( )+[ ] Dn ζ( )

,

n3
n

2m2 m2 eHn+( )
--------------------------------------.=
(122)ψ+ 1 x,( ) N 1( )

1 n+( ) e2EHe i– π/4 1 ν+( )Dν∗ 1– τ∗–( ) Dν∗ 1+ τ∗–( )+[ ] Dn ζ( )

im⊥
2 Dν∗ τ∗–( )Dn 1+ ζ( )

m⊥
2 Dν∗ τ∗–( )Dn 1+ ζ( )

1 n+( ) e2EHe i– π/4 1 ν+( )Dν∗ 1– τ∗–( ) Dν∗ 1+ τ∗–( )–[ ] Dn ζ( )

,=
(123)

(124)

The first and the fourth lines in the right-hand sides of
(122) and (124) can be written in a more compact form
using relations that can be obtained from (99) by the
substitution τ'*  –τ*.

Further calculations are quite similar to those in
Sections 5 and 6. The result was of course evident in
advance: Aµν is now given by (71) with the vector poten-
tial (113) and all the nonzero Bµν are “dressed”, see

ψ+ 2 x,( ) N 2( )=

×

i 1 ν+( ) D– ν∗ 1– τ∗–( )
1
ν
---Dν∗ 1+ τ∗–( )+ Dn ζ( )

0

0

i 1 ν+( ) D– ν∗ 1– τ∗–( )
1
ν
---Dν∗ 1+ τ∗–( )– Dn ζ( )

,

ψ+
3 x,( ) N 3( )=

×

i e2EH– ν∗ D– ν∗ 1– τ∗–( ) Dν∗ 1+ τ∗–( )+[ ] Dn ζ( )

eiπ/4Dν∗ τ∗–( ) – m2 eHn+( )Dn 1– ζ( ) eHDn 1+ ζ( )+[ ]

e i– π/4Dν∗ τ∗–( ) m2 eHn+( )Dn 1– ζ( ) eHDn 1+ ζ( )+[ ]

i e2EH– ν∗ D– ν∗ 1– τ∗–( ) Dν∗ 1+ τ∗–( )–[ ] Dn ζ( )

.

Eqs. (73) and (112). The scalar particle propagator is
given by

(125)

This expression agrees with the calculations by Ritus
[10, 11]. The overall phase factor e–iπ/2 is involved in his
formulas because of a different definition of the propa-
gator. We also note that Eq. (125) is symmetric in t and
t' and that

Therefore,

Gspin0 x x',( )
e2EH

4π( )2
------------- sd

eEs( )sinh eHs( )sin
------------------------------------------------

0

∞

∫=

× –ism2 i
4
--- z1

2 z2
2+( )eHcot eHs( )[+





exp

+ z3
2 z0

2–( )eE eEs( )coth ]

+
i
2
--- eEz3 t t'+( ) eHz2 x1 x1'+( )–[ ]





,

zµ xµ xµ' .–=

Gspin0 x x' e, ,( ) Gspin0 x' x e–, ,( ).=
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NUCLEI, PARTICLES, 
AND THEIR INTERACTION

  
Physical Properties of Scalar and Spinor Field States 
with the Rindler–Milne (Hyperbolic) Symmetry¶
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Abstract—It is shown that right and left combinations of the positive- and negative-frequency hyperbolically
symmetric solutions of the Klein–Fock–Gordon equation possess an everywhere timelike current density vector
with a definite Lorentz-invariant sign of the charge density, and similar combinations of solutions to the Dirac
equation possess the energy-momentum tensor with everywhere real eigenvalues and a definite Lorentz-invari-
ant sign of the energy density. These right and left modes, just as their ±-frequency components, are eigenfunc-
tions of the Lorentz boost generator with the eigenvalue κ. The sign of the charge (energy) density coincides
with the sign of κ for the right scalar (spinor) modes and is opposite to it for the left modes. It is then reasonable
to assume that the particles (antiparticles) are precisely described by the right modes with κ > 0 (κ < 0) and by
the left modes with κ < 0 (κ > 0). © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Three complete sets of solutions of the Klein–Fock–
Gordon (KFG) and Dirac equations are usually consid-
ered in relation to the Unruh effect [1]. One of these
solution sets is the usual planewave set and the other
two are the sets of field modes with a hyperbolic sym-
metry. The hyperbolically symmetric modes radically
differ from the planewave modes by singularities
occurring on the light cone. As a result, the correspond-
ing charge and energy densities oscillate with increas-
ing the frequency at Compton distances near the cone
and become infinite on the cone. It is not surprising that
the charge density of the scalar field and the energy
density of the spinor field can have either sign near the
singularity. This means that these modes contain both
particles and antiparticles near the light cone. It is then
difficult to distinguish the hyperbolically symmetric
field state created by external sources on the light cone
from the state created by the measuring device itself.
Nevertheless, there exist right and left states with
hyperbolic symmetry for which the charge density of
the scalar field and the energy density of the spinor field
possess an everywhere definite Lorentz-invariant sign.

2. PLANE WAVES WITH DEFINITE MOMENTUM 
AND FREQUENCY

For scalar plane waves

(1)
ϕ p

±( ) x( )
1

2E
----------- i pz Et+−( )[ ] ,exp=

E m2 p2+ , xα t z,( ),= =

¶This article was submitted by the author in English.
1063-7761/01/9302- $21.00 © 20211
the current densities (x) = (±1, p/E) are timelike
vectors. The signs of the charge densities coincide with
the frequency signs. The energy–momentum tensor tαβ
has the components

(2)

with .

For spinor plane waves with definite momentum and
frequency and with the double spin projection s,

(3)

(the bispinors  are given in (41) in the chiral rep-
resentation in the transposed form), the current densities

 = (1, p/E) are timelike vectors with positive
time components. The energy–momentum tensor tαβ
corresponding to (3) has the components

(4)

where  _ 0.

A superposition of the scalar positive- (negative-) fre-
quency plane waves, unlike the partial waves them-
selves, does not possess a definite positive (negative)
charge density in general. Thus, if

(5)

the charge density may not be everywhere positive
because of oscillations of the integrand in the represen-
tation

j p
±( )α

t00
±( ) t33

±( ) t03
±( ), , E p2/E p,+−, ,=

t00
±( ) 0>sgn

χ ps
±( ) x( ) ϕp

±( ) x( ) mus
±( ) θ( ),=

us
ω( ) θ( )us'

ω'( ) θ( ) 2ωδωω'δss'=

us
±( ) θ( )

j ps
±( )α x( )

t00
±( ) t33

±( ) t03
±( ), , E± p± 2/E – p,, ,=

t00
±( )sgn

φ x( ) pcpϕ p
+( ) x( ),d∫=
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(6)

However, the total charge of the packet is positive and
time-independent,

(7)

Similarly, a superposition of the spinor positive-
(negative-) frequency plane waves does not possess an
everywhere positive (negative) energy density in gen-
eral. Thus, the positive-frequency wave packet

(8)

has the energy density

(9)

that may not be everywhere positive, but the total
energy of the packet is positive and conserved,

(10)

The negative charge (energy) density for a positive-
frequency scalar (spinor) wave packet can occur
because the packet is nonstationary (cannot be repre-
sented as exp(–iEt)f(z), E > 0). Expressions (6) and (9)
imply that the time-averaged values of the charge and
energy densities are equal to zero at any point in space.
This means that charge and energy come from infinity and
go to infinity. In a finite region of space ∆z, they can there-
fore reach perceptible values ∆Q and ∆% only for a finite
time interval ∆t. In addition, each of the quantities

and

can also be negative. This indicates the appearance of
the antiparticle in this space–time region.

3. POSITIVE- AND NEGATIVE-FREQUENCY 
SCALAR WAVES WITH HYPERBOLIC 

SYMMETRY

These scalar waves are defined by the integral repre-
sentation [2]

(11)

j0 x( ) iφ∗ x( )∂tφ x( )
p p' E E'+( )dd

2E2E'
----------------------------------∫∫= =

× i p' p–( )z E' E–( )t–[ ]{ } cp*cp' .exp

↔

Q z j0 x( )d∫ 2π p cp
2.d∫= =

χs x( ) pcpχ ps
+( ) x( )d∫=

t00 x( )
1
2
---iχs

+ x( )∂tχs x( )
1
2
--- p p' E E'+( )dd

2E2E'
----------------------------------∫∫= =

× i p' p–( )z E' E–( )t–[ ]{ } mus
+( )+ θ( )us

+( ) θ'( )cp*cp'exp

↔

% zt00 x( )d∫ 2π p cp
2E p( ).d∫= =

∆Q t( ) z j0 x( )d

∆z

∫=

∆% t( ) zt00 x( )d

∆z

∫=

φκ
±( ) x( )

1
2
--- θ i pz Et+−( ) iκθ+−[ ] ,expd

∞–

∞

∫=

p m θ, Esinh m θ,cosh= =
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where θ =  is the rapidity. In the right and
left sectors of the Minkowski plane, these functions can
be represented by the Macdonald function of a real
argument,

(12)

and in the future and past sectors by the Macdonald
function of an imaginary argument,

(13)

Using the Rindler metric

in the R and L sectors and the Milne metric

in the F and P sectors, we can write

where z' and t' are space and time coordinates in the

Rindler or Milne spaces, see [3]. It is essential that 
includes plane waves with unlimited energy. 

The scalar waves have the following properties.

(a) (x) are analytical and finite functions in the
lower/upper half-planes of the complex variables x+ =
t + z and x– = t – z.

(b) The hyperbolic symmetry implies that  are
eigenfunctions of the Lorentz boost operator: under the
transformation

(14)

the variables ζ and τ remain invariant, while the cyclic
variables v and w go to v ' = v  – α and w ' = w – α,
where α =  is the rapidity corresponding to
the Lorentz transformation velocity β. Then

(15)

and therefore, eiακ is an eigenvalue of the Lorentz boost

operator  or ; κ is an eigenvalue of the
Lorentz boost generator i(t∂z + z∂t) = i∂v or i∂w and is
interpreted as the frequency for a Rindler observer or
the momentum for a Milne observer.

p/E( )arctanh

πκ/2± iκv–( )Kiκ ζ( ),exp

πκ/2+− iκv–( )Kiκ ζ( ),exp

ζ m z2 t2– , v t/z( ),arctanh= =

iκw–( )Kiκ iτ±( ), iκw–( )Kiκ iτ+−( ),expexp

τ m t2 z2– , w z/t( ).arctanh= =

ds2 dz'2 az'( )2dt'2–=

ds2 at'( )2dz'2 dt'2–=

ζ mz', v± at',±= =

τ mt', w± az',±= =

φκ
±( )

φκ
±( )

φκ
±( )

z t z', z βt–

1 β2–
------------------, t'

t βz–

1 β2–
------------------,= =

βarctanh

φκ
±( ) z t,( ) φκ

±( ) z' t',( ) eiακ φκ
±( ) z t,( ),=

e
α∂v–

e
α∂w–
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(c)  and  are related by complex conjugation
accompanied by changing the sign of κ,

(16)

The complex conjugation is equivalent to time reflec-
tion. The last property is equivalent to space reflection.

(d) As a striking property of , we note that
although the current density vectors corresponding to

the plane wave components of  are everywhere

timelike, the current densities  corresponding to

 themselves are not timelike vectors in the entire
Minkowski space: there are space–time regions inside
the light cone where the current densities are spacelike.

The current density jα for the Minkowski observer is
related to the current density Jα for Rindler or Milne
observers (more exactly, for local Lorentz observers
momentarily comoving to them) by the Lorentz trans-
formation

(17)

For the Rindler observer with β = t/z in the R sector,
we have

(18)

For the L sector, we must replace e±πκ  – . The
current density vector is timelike.

For the Milne observer with β = z/t, we have

(19)

The current density squared

(20)

can have either sign when τ = m  ! 1, but is
negative for τ * 1.

Thus, inside the light cone at invariant distances less
than the Compton length from the cone, there are

spacetime regions where the current densities  are

spacelike vectors and the charge density , κ > 0, is

negative, while , κ > 0, is positive. Because the cur-
rent densities are timelike vectors for the real particles,

we can relate the spacelike current density  to anti-

φκ
+( ) φκ

–( )

φκ
+( )* x( ) φ κ–

–( ) x( ), φ κ–
±( ) z t,( ) φκ

±( ) z t,–( ).= =

φκ
±( )

φκ
±( )

jκ
±( )α

φκ
±( )

j0 J0 βJ3+

1 β2–
--------------------, j3 J3 βJ0+

1 β2–
--------------------.= =

Jκ
±( )0 2mκe πκ±

ζ
---------------------Kiκ

2 ζ( ), J ±( )3 0.= =

e πκ+−

Jκ
±( )0 π

t2 z2–
------------------,±=

Jκ
±( )3 t

2mκ
τ

----------- Kiκ iτ( ) 2.sgn–=

jκ
±( )( )2 π2

t2 z2–
-------------- 1

4κ2

π2
-------- Kiκ iτ( ) 4– 

 –=

t2 z2–

jκ
±( )α

jκ
±( )0

jκ
–( )0

jκ
+( )
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particles of the virtual pairs created in regions with a
very high energy concentration. The total charge of the

 state on any spacelike surface in Minkowski space
is positive and is equal to the charge on this surface
entirely situated in the P, L + R or F sector. But the
charge density j0 for this state with κ > 0 is positive only
in R sector, is negative in the L sector, and can have
either sign in the P and F sectors.

Thus, unlike the sign of the total charge, the sign of
the charge density is not well defined by the frequency

sign of the  states. This situation occurs in external
field problems due to a possible pair creation by the
external field, or in problems of forming wave packets
with a high energy density. The appearance of a nega-
tive charge density in the P, F, and L sectors for the pos-

itive-frequency state  is a consequence of the
hyperbolic symmetry of the state. The hyperbolic sym-
metry divides Minkowski space into spacelike and
timelike subspaces with the Rindler and Milne metrics.
These metrics have singularities on the light cone
(which is their common boundary) and can be consid-
ered as a limiting case of a global nonsingular smooth
metric of the space with a nonzero external field near
the light cone. The pair creation by this field is then pos-
sible and the appearance of a negative charge density in

the positive-frequency state  after switching the
field off can be understood.

The states  and  possess, respectively, the
positive and negative total charge but do not possess an
everywhere positive and negative charge density. This
means that both the particle and the antiparticle can be
detected in any of these states.

4. RIGHT AND LEFT SCALAR MODES

In each of the R and L sectors,  and  differ
only by factors. According to Unruh [1], one can find
remarkable right and left combinations

(21)

such that  = 0 in the L sector and  = 0 in the R sec-
tor. In these combinations,

(22)

For κ < 0, we have  = i . The set

 possesses the same hyperbolic symmetry as the

set , but the striking property of these functions is

that the corresponding current densities  and 

φκ
+( )

φκ
+( )

φκ
+( )

φκ
+( )

φκ
+( ) φκ

–( )

φκ
+( ) φκ

–( )

φκ
R ακφκ

+( ) βκφκ
–( ), φκ

L+ βκφκ
+( ) ακφκ

–( ),+= =

φκ
R φκ

L

βκ ακe πκ– , ακ–
eπκ/2

2 πκsinh
-------------------------,= =

ακ
2 βκ

2– εκ κ .sgn≡=

πκsinh π κsinh

φκ
R L,

φκ
±( )

jκ
Rα jκ

Lα
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are timelike vectors in the entire spacetime region
where they are nonzero. The Lorentz transformation
(17) again relates the current density jα for the
Minkowski observer to the current density Jα for the
Rindler or Milne observers.

For the Rindler observer with β = t/z, we have

(23)

The current density vector is then timelike.

For the Milne observer with β = z/t, we have

(24)

The Lorentz invariant current density squared is non-
positive,

(25)

for all real κ and τ ≥ 0 [4]. The current density vector is
timelike.

It is interesting to note that in the R sector, the cur-

rent density squared  tends to infinity as ζ  0,
but in the P or F sectors, it is finite at τ = 0:

. (26)

The state ( ) describes a wave with hyperbolic
symmetry and charge density that is only positive for
κ > 0 (κ < 0) or only negative for κ < 0 (κ > 0). We can
then say that the respective state describes the particle

or the antiparticle. In other words, the state 
describes the particle or the antiparticle with the sign of
κ that is opposite to the sign used in describing for the

 state [4].

We note that complex conjugation (time reflection)

of the functions  is equivalent to changing the sign
of κ, while the space reflection is equivalent to chang-
ing the sign of κ and replacing R  L:

(27)

Jκ
R0 4mκ π κsinh

ζ
-------------------------------- Kiκ ζ( ) 2, Jκ

R3 0.= =

Jκ
R L0, κ t( )πsgn

t2 z2–
-----------------------,±=

Jκ
R L3, κ t( )π2κsgn

t2 z2– πκsinh
------------------------------------ Jiκ τ( ) 2.–=

jκ
R L,( )2 π2

t2 z2–
--------------–=

× 1
πκ

πκsinh
----------------- 

 
2

Jiκ τ( ) 4– 0,≤

jκ
R( )2

jκ
R( )2

τ 0→
π2m2

1 κ2+
--------------– …+=

φκ
R φκ

L

φκ
L

φκ
R

φκ
R L,

φκ
R* x( ) φ–κ

R x( ), φκ
L* x( ) φ κ–

L x( );= =

φκ
R z t,–( ) iφ κ–

L z t,( ).=
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In the R sector, where κ is interpreted as energy by the

Rindler observer and  = 0, particles are described by

the functions , κ > 0, and antiparticles by the com-

plex conjugate functions, i.e., by , κ < 0. In the F or
P sectors, where κ is interpreted as momentum by the
Milne observer, particles with the momentum κ are

described by the functions , κ > 0, and , κ < 0,
while antiparticles with the same momenta are described

by the complex conjugate functions  and .

The completeness of the sets  and  is
expressed by

(28)

(29)

It is interesting to note that the analytical properties

of the functions  and  in each of the variables u
and v  are similar to the properties of the Pauli–Jordan
function ∆(x) in x2. Indeed, ∆(x) is also equal to the sum
of the positive-frequency and negative-frequency func-
tions ∆±(x), which are boundary values of some func-
tion F(x2) that is analytical in the complex plane of x2

cut along the real negative semi-axis x2 < 0:

It follows that ∆(x) differs from zero only for x2 < 0 and
is equal to the jump of F(x2) on the cut.

The solution of the Cauchy problem and the normal-
ization condition are given by

(30)

φκ
L

φκ
R

φκ
R

φκ
R φκ

R

φ κ–
R φ κ–

L

φκ
±( ) φκ

R L,

∆ ±( ) x x'–( ) i
κd

2π2
--------φκ

±( ) x( )φκ
±( )* x'( )

∞–

∞

∫±=

=  
i±

2π
------K0 m y2( ) if y2 0,>

=  
1
4
--- ε y0( )J0 m y2( ) iN0 m y2( )+−[ ]

if y2 0 y,< x x',–=

∆ y( ) ∆ ±( ) y( )
±
∑=

=  i
κd

2π2
--------εκ φκ

R x( )φκ
R* x'( ) φκ

L x( )φκ
L* x'( )–[ ]

∞–

∞

∫

=  
1
2
---ε y0( )θ y2–( )J0 m y2( ).

φκ
R φκ

L

∆ ±( ) x( ) F x2 iε x0sgn±( ), ε +0.±=

φ y( ) σα∆ y x–( )∂αφ x( ),d

S

∫=

i σαφκ
ω( )*∂αφκ '

ω'( )d

S

∫ 2π2ωδ κ κ'–( )δωω' ,=

↔

↔
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where S is a spacelike surface in Minkowski space or

in any of the P, L + R, F sectors. For the functions 

and , a, a' ∈  R, L, the right-hand side of the nor-
malization condition is 2π2εκεaδ(κ – κ')δaa', where εR =
–εL = 1. In accordance with the normalization condi-
tion, all the states have the same magnitude of the con-
served total charge; the sign of the charge coincides

with the frequency sign for the  states and with the

sign of the product εκεa for the  states, a ∈  R, L.

An arbitrary solution of the KFG equation can be
represented by the expansions

(31)

(32)

As an example, we consider

It then follows that

(33)

(34)

The spectra are given by (with g1 = 2π2/E1)

(35)

φκ
a

φκ '
a'

φκ
±( )

φκ
a

φ x( )
pd

2E
-----------

∞–

∞

∫=

× cp i pz Et–( )[ ] d p* i pz Et+( )[ ]exp+exp

=  
κd

2π2
-------- aκφκ

+( ) x( ) bκ*φκ
–( ) x( )+[ ]

∞–

∞

∫

=  
κd

2π2
-------- rκφκ

R x( ) lκ
*φκ

L x( )+[ ] .

∞–

∞

∫

φ x( )
1

2E1

------------- i p1z E1t–( )[ ] ,exp=

cp δ p p1–( ), d p 0.= =

aκ  = 
2π
2E1

-------------e
iκθ1, bκ  = 0, θ1 = p1/E1( ),arctanh

rκ εκ
π πκ/2 iκθ1+( )exp

E1 πκsinh( )∗
-----------------------------------------------,=

lκ* εκ
π πκ/2– iκθ1+( )exp

E1 πκsinh( )∗
---------------------------------------------------.=

rκ
2 g1e2πκ

e2πκ 1–
------------------, κ 0, j0 0;>>=

g1

e2π κ 1–
--------------------, κ 0, j0 0,<<
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(36)

There are no reasons to associate these spectra with
thermodynamic ones, especially for a uniformly mov-
ing Milne observer, for whom κ is not the energy but
the momentum, and all the more so for a Minkowski
observer, for whom κ is an eigenvalue of the Lorentz
boost generator and is odd under space and time reflec-
tions. We have

(37)

(38)

(39)

where |βκ/ακ|2 is the probability to find any nonzero
number of pairs and |ακ|–2 is the probability to find no

pairs in the state , κ > 0, etc., cf. [5]. This interpre-
tation follows from the none-one-particle consideration
of the wave equation solutions and does not require
transition to the secondary quantization, although it is
confirmed by it [6].

We note that the modes (x) with κ = 0 are not
defined by Eq. (21) because the coefficients ακ and βκ
are infinite at κ = 0. The term with κ = 0 in expansions
(32) of an arbitrary solution of the KFG equation is nev-
ertheless finite and can be defined as the κ  0 limit
of

A similar remark applies to the term with κ = 0 in
expansion (29).

5. DIRAC EQUATION SOLUTIONS
WITH THE HYPERBOLIC SYMMETRY

Solutions  of the Dirac equation in the Rindler

or Milne space are related to solutions  of this equa-
tion in Minkowski space by the Lorentz transformation

(40)

lκ
2 g1

e2πκ 1–
------------------, κ 0, j0 0;<>=

g1e2π κ

e2π κ 1–
--------------------, κ 0, j0 0.><

φκ
+( ) εκ ακ*φκ

R βκ*φκ
L–( ),=

φκ
–( ) εκ ακ*φκ

L βκ*φκ
R–( ),=

ακ
2 e2πκ

e2πκ 1–
------------------, βκ

2 1

e2πκ 1–
------------------, κ 0,>= =

ακ
2 1

e2π κ 1–
--------------------, βκ

2 e2π κ

e2π κ 1–
--------------------, κ 0,<= =

φκ
+( )

φκ
R L,

rκφκ
R lκ*φκ

L aκφκ
+( ) bκ*φκ

–( )+ κ 0→≡+ a0φ0
+( ) b0

*φ0
–( ).+=

ψκ s
±( )

χκ s
±( )

ψκ s
±( ) x( ) e

αα 3/2–
χκ s

±( ) x( ), α β ,arctanh= =

α3 diag σ3 σ3–,( ),=
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where β = t/z or z/t for the Rindler or the Milne space
respectively. We use the chiral representation

(41)

where s = ±1 are the eigenvalues of the matrix

This representation defines the bispinor 

( ) as an analytical function in the lower (upper)
half-plane of the respective complex variable x+ = t + z
and x– = t – z.

Bispinor components of ψκs and χκs can be
expressed through the Macdonald functions with the
indices iκ ± 1/2. For example, in the R and F sectors,

 can be represented by the respective expression

(42)

In other sectors, these functions can be obtained using
the symmetry relations

(43)

where

(44)

The functions  with the opposite spin direction
can be obtained from (42) by transposing the first row
elements with the fourth row and the third row elements
with the second row.

χκ s
±( ) x( )

1
2
--- θ i pz Et+−( ) iκθ+−[ ] us

±( ) θ( ),expd

∞–

∞

∫=

p m θ, Esinh m θ,cosh= =

ũ1
±( ) θ( ) e±θ/2 0 e θ/2+−± 0, , ,( ),=

ũ 1–
±( ) θ( ) 0 e θ/2+−± 0 e θ/2±, , ,( ),=

Σ3 diag σ3 σ3,( ).=

χκ s
+( ) x( )

χκ s
–( ) x( )

ψκ 1
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πκ/2± iπ/4 iκv–±( )

Kiκ 1/2– ζ( )

0

–iKiκ 1/2+ ζ( )

0 
 
 
 
 
 

exp

and iκw–( )

Kiκ 1/2– iτ±( )

0

i± Kiκ 1/2+ iτ±( )

0 
 
 
 
 
 

.exp

ψκ s
±( ) t z,( ) α3ψκ s

+−( ) t z–,–( )=

=  βψ κ s–
±( ) t z–,( )± βψκ s

±( )* t z,–( ),±=

α3
σ3 0

0 σ3– 
 
 

, β 0 1

1 0 
 
 

.= =

ψκ 1–
±( )
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The orthogonality and normalization condition for

 is

(45)

This involves an oriented surface element dσα = nαdσ,
where dσ is the invariant surface measure and nα is the

timelike normal to the surface. Because  are solu-
tions of the covariant Dirac equation with the coordi-
nate-dependent metric gαβ and the matrices γα (see, e.g.,
§ 3.8 in [3]), the normalization condition for these func-
tions also contains γα(x) and it is convenient to choose
the spacelike integration surface S entirely in one of the
P, L + R or F subspaces with either the Milne or the Rin-
dler metric. For a constant t' surface S, the surface ele-
ment reduces to

and γ = |g33| is the determinant of the space metric.

Because the Rindler and Milne spaces and the cor-
responding metrics only represent nonstandard coordi-

nate forms of the flat space–time, the solutions 

must be related to the solutions  of the usual Dirac
equation in Minkowski space by a Lorentz transforma-
tion. These solutions satisfy the same symmetry rela-
tions (43) and orthogonality and normalization condi-
tion (45) with the standard γ matrices. For a constant t
surface S, the surface element becomes dσ0 = dz and the
right-hand side of (45) immediately follows when one

uses integral representation (41) for  and performs
the integration over z first.

In representation (42), the functions  differ from

 by the factors ev /2 and e–v /2 of the first and the third
bispinor elements in the R sector and by ew/2 and e–w/2 in
the F sector.

Under Lorentz transformation (14), the functions

 go to

(46)

The eigenvalues are again independent of the frequency
sign. The current densities jα and Jα for the
Minkowski and Rindler or Milne observers are again
related by (17).

ψκ s
±( )

σαψκ s
ω( ) x( )γα x( )ψκ 's'

ω'( ) x( )d

S

∫

=  
2π2

m
--------δωω'δss'δ κ κ'–( ).

ψκ s
±( )

dσ0 dz' γn0, n0 g00–= =

ψκ s
±( )

χκ s
±( )

χκ s
±( )

χκ s
±( )

ψκ s
±( )

χκ s
±( )

χκ s
±( ) x'( ) iακ αα 3/2–( )χκ s

±( ) x( ),exp=

α βarctanh , α3 diag σ3 σ3–,( ).= =
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For the Rindler observer with β = t/z, we have in the
R sector:

(47)

For the L sector, we must replace e±πκ  .
For the Milne observer with β = z/t, we have

(48)

The current density is a timelike vector and its time
component is positive (a well known fact for the spinor

field). But the striking feature of  is that the eigen-
values of the corresponding energy-momentum tensor

 are not everywhere real. There are some places
inside the light cone where these eigenvalues are com-
plex conjugate.

The energy–momentum tensors tαβ and Tαβ for the
Minkowski and Rindler or Milne observers are related
by the Lorentz transformation

(49)

For the Rindler observer with β = t/z in the R sector, we
have

(50)

For the L sector, we replace e±πκ  – .
For the Milne observer with β = z/t, we have

(51)

The eigenvalues (invariants) of the energy–momen-
tum tensor,

(52)

are real and have opposite signs in the Rindler space,
while in the Milne space, they are complex conjugate
for τ ! 1, when the momentum density (energy flux) is

Jκ
±( )0 2e πκ± Kiκ 1/2– ζ( ) 2, Jκ

±( )3 0.= =

e πκ+−
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±( )0 Kiκ 1/2– iτ( ) 2 Kiκ 1/2+ iτ( ) 2,+=
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tαβ
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t00 γ2 T00 2βT03 β2T33+–( ),=
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±( ) T03
±( ), ,

=  
2mκe πκ±

ζ
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ζ
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ζ

∞

∫ 0, ,
 
 
 

.

e πκ+−

T00
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τ
-------- τd

τ
-----A τ( )

τ

∞

∫ π
κ
---+

 
 
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,±=

T33
±( ) mκ

τ
--------A τ( ), T03

±( )± mπκ
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λ1 2,
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4
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greater than half the sum of the energy density and the
pressure:

(53)

As τ  0, R(τ) oscillates with a finite amplitude and
an increasing frequency.

6. RIGHT AND LEFT SPINOR MODES

In the spinor case, the right and left superpositions
of the positive- and negative-frequency modes are
defined as in the scalar case, but the Dirac scalar prod-
uct leads to different Bogoliubov coefficients,

(54)

Evidently, the right and left modes satisfy the orthogo-
nality and normalization conditions

(55)

where a, a' ∈  L, R and S is a spacelike surface as in (30)
or (45).

The modes  and  form two complete sets of
Dirac equation solutions and any other solution χ(x)
can be decomposed into the corresponding integrals

(56)

where summation over s is assumed.
For example, for the positive-frequency plane wave

solution with s = 1,

(57)

we have

(58)

λ1 2, τ( ) R τ( )
τ
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πmκ

τ2 πκcosh
------------------------ …, τ  ! 1.+±≈

χκ s
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–( ),+=
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--------------------------,= =

ακ
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2+ 1.=

σαχκ s
a x( )γαχκ 's'

α' x( )d

S

∫ 2π2

m
--------δaa'δss'δ κ κ'–( ),=
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L R,

χ x( )
κd

2π2
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∞–
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κd
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∞–

∞
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χ p11
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1

2E1

------------- i p1z E1t–( )[ ] u1
+( ) θ1( ),exp=

θ1
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E1
-----,arctanh=

aκ 1
2π
2E1
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(59)

For the spectra of the right and left modes, we then
obtain (with g1 = 2π2/E1)

(60)

For the negative-frequency plane wave solution, the
coefficients in expansions (56) are

(61)

(62)

The spectra for the left and right modes then coincide
with the respective expressions in (60).

Although these spectra resemble the thermal distri-
bution of the Fermi-particle gas, this similarity seems to
be artificial for the same reasons as in the scalar case.
Moreover, decompositions (56) of the plane wave in the

hyperbolic modes  or  and the inverse expan-
sions of these modes in plane waves in Eqs. (41) and
(54) confirm the completeness of these three sets and
the absence of the loss of information or purity of
states. We see that the hyperbolic symmetry and a defi-
nite frequency sign preserve the good analytical prop-
erties of the modes but lead to an indefinite sign of their
charge density or energy density.

The “thermal” spectra appear when one preserves
the hyperbolic symmetry of modes and requires the
definiteness of the charge density or energy density
signs in the entire Minkowski space. This can only be
achieved at the expense of loosing good analytical
properties of the modes and essentially consists in the
transition from the boundary value of an analytical
function on the cut to its jump on this cut. We have

(63)

(64)

where  and  are the respective probabilities to
find no pairs (one pair) and one pair (no pairs) in the

state , κ > 0 (κ < 0). This interpretation follows
from the none-one-particle analysis of wave equation

rκ 1

π πκ/2 iκθ1+[ ]exp

E1 πκcosh
-----------------------------------------------,=

lκ 1
* iπ –πκ/2 iκθ1+[ ]exp–

E1 πκcosh
-------------------------------------------------------.=

rκ 1
2 g1e2πκ

e2πκ 1+
------------------, lκ 1

2 g1

e2πκ 1+
------------------.= =

aκ 1 0, bκ 1
* 2π

2E1

-------------e
iκθ1–

,= =

rκ 1

iπ πκ/2 iκθ1––[ ]exp–
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-------------------------------------------------------,=

lκ 1
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----------------------------------------------.=
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R βκ*χκ s
L , χκ s

–( )+ βκ*χκ s
R ακ*χκ s

L ,+= =
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2 e2πκ

e2πκ 1+
------------------, βκ

2 1

e2πκ 1+
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2 βκ

2
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solutions and does not require the transition to the sec-
ondary quantization, although it is confirmed by it [5, 6].

For the Rindler observer with β = t/z, we have

(65)

and for Milne observer with β = z/t,

(66)

The energy density is greater than the pressure. As
τ  0, we have

similarly to the energy–momentum tensor of electro-
magnetic waves.

It is interesting to note that in the R sector, the eigen-

value  tend to infinity as ζ  0, while in the P or
F sectors, they are finite at τ = 0,

(67)

The sgn t00 is relativistically invariant in only two
cases:

1) the eigenvalues λ1 and λ2 are real and have oppo-
site signs,

(68)

2) the eigenvalues are real, have the same sign, and
the energy density is greater than the pressure in mag-
nitude:

(69)

We note that  is relativistically invari-
ant only if λ1 and λ2 are real, i.e., if (λ1 – λ2)2 > 0. Then,
if λ1, 2 are complex or if they are real and have the same

sign, but  < 0, the sgn t00 can be changed
by a Lorentz transformation.

The tensor  possesses the first property in the R
sector and either the first or the second property
depending on the value of τ in the F and P sectors.
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λ1λ2 T03
2 T00T33 0,<–=

λ1 λ2–( )2 T00 T33+( )2 4T03
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In the F and P sectors, the eigenvalues  and  are
real because of the inequality

(70)

Inequalities (70) and (25) that are essential in this paper
were not found in the mathematical literature.

7. CONCLUSION

Hyperbolic symmetry of scalar and spinor field
states requires plane waves with unlimited frequencies
to participate in the corresponding superpositions. For
the scalar field, field states with the quantum number κ
that are formed as superpositions and are analytic in the
coordinates x± = t ± z do not possess an everywhere
timelike current density, while for the spinor field, they
do not possess the energy–momentum tensor with
everywhere real eigenvalues. This means that these
states describe both particles and antiparticles. Never-
theless, it is possible to construct hyperbolically sym-
metric right and left states that are not analytic in x± but
possess an everywhere timelike current density and the
energy–momentum tensor with everywhere real eigen-
values. Precisely these states describe the particle or the
antiparticle.

This implies that the charge densities  and 

for the scalar particle (antiparticle) states  and the

energy densities  and  for the spinor particle

(antiparticle) states  are everywhere positive (nega-
tive) for κ > 0 (κ < 0) and are equal to zero in the L sec-
tor. This assertion remains valid after replacing R 
L and changing the sign of κ.

It is known [7] that if a wave packet is formed from
plane waves and is localized in a region of the order of
or less than the Compton wave length, it must contain
both positive and negative frequencies. The superposi-

tions  and  do not contradict this assertion
because each of them is localized in a region of the
order of the Compton length only for |t | & m–1, while
for |t | @ m–1, each superposition consists of two waves
that propagate along the light cone boundaries z = ±t,
exponentially decaying outside the cone for ζ =

m  @ 1 and oscillating and falling off only as τ–1

inside the cone for τ = m  @ 1. Therefore, these
two waves remain coherently connected in a single
wave packet with the width ≈2|t |.

In the well-known review [8], Pauli made the fol-
lowing remark about energy density in the Dirac elec-
tron field theory: “The concept of the energy density
seems to be more problematic in this theory than that of

λ1
R λ2

R

τd
τ
----- Jiκ 1/2+ τ( ) 2 Jiκ 1/2+ τ( ) 2 0.>–

0

τ

∫

jκ
R0 Jκ

R0

φκ
R

tκ 00
R Tκ 00

R

χκ s
R

φκ
+( ) χκ s

+( )

z2 t2–

t2 z2–
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the volume integrated total energy. The energy density
is no longer positive definite for the theory of holes, in
contradistinction to the case for the theories discussed
in §§1 and 2. This is also shown in the c number theory;
even if limitation is made to wave packets in which the
partial waves all have the same sign of the frequency in
the phase expi(k · x – k0x0) the energy density (as dis-
tinguished from the total energy) cannot be made posi-
tive definite.” I do not know whether Pauli had some
example of such a wave packet. In any case, each of the

modes  can serve as a specific illustration of his
remark. The energy density for each of these modes can
accept both signs near the light cone owing to singular-
ities on the cone related to the hyperbolic symmetry of

the modes. On the other hand, each of the modes 
is an example of such a superposition of positive- and
negative-frequency spinor plane waves with a sign-def-
inite energy density in the entire Minkowski space.

It is interesting that the scalar eigenfunctions of the
Lorentz boost operator appear in the analysis of the
photon wave function localized near the photon propa-
gation plane in 3 + 1-space [9]. However, a scalar prod-
uct different from (30) is used in this analysis.
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APPENDIX

The integral  defined in [4] by Eq. (14), being
the integral of a total differential, does not actually
depend on the form of the spacelike surface over which
it extends, but depends only on the parameters mt and ζ
fixing the coordinates of the left boundary of this sur-
face. Namely, the z coordinate of the left boundary is

equal to , while the right boundary is at
infinity. When the left boundary tends to zero at a fixed
ratio mt/ζ, we obtain the result (20) from [4] without
any uncertainties related to the factor exp[i(κ –
κ') ], which eventually turns into 1 at
fixed mt/ζ and κ = κ'. Thus, the normalization integral
(20) in [4] is correct for any spacelike surface lying in
the R sector with the left boundary at zero—not at z =
|t | as was assumed in [4].

Similarly, expression (28) for the normalization

integral  in [4] is correct for any spacelike surface
lying in the L sector with the right boundary at zero,
rather than at z = –|t | as was assumed in [4].

The integral  defined by Eqs. (22) and (23) in [4]
is justified for any spacelike surface lying inside the F

χκ s
±( )

χκ s
R L,

Jκκ '
R

t2 ζ2/m2+

mt/ζ( )arcsinh

Jκκ '
L

Jκκ '
F
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sector with the boundaries at the points defined by fixed

values of mt and τ = m . The z coordinates of the
left and right boundaries of this surface are then given

by z1, 2 = . As t tends to infinity at fixed τ,
we obtain the result (25) from [4] without any ambigu-
ity related to the factor inside the parentheses in Eq. (23)
in [4], which turns into π at fixed τ and κ = κ'. Thus,
normalization integral (25) in [4] is correct for any
spacelike integration surface lying in the F sector and
having the boundaries at z1, 2 =  but not at z1, 2 = ,
as was understood in [4]. A similar comment applies to

the integral .

On any spacelike surface entirely lying in the P, L +
R or F sectors with the left and right boundaries at infin-

ities, each of the states  has the same conserved
total charge

(71)

t2 z2–

t2 τ2/m2–+−

∞+− t+−

Jκκ '
P

φκ
±( )

Qκ
±( ) QκP

±( ) QκL
±( ) QκR

±( )+ QκF
±( )

 _ 0.= = =
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Therefore, the factor 1/2 in the right-hand sides of
Eqs. (34) and (35) in [4] must be replaced by 1.
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Abstract—The inverse scattering transform method is used to solve the model that describes the evolution of
light pulses in an optical system that includes a set of media with different nonlinear optical properties. As a
physical example, we analyze a model composed of the systems of equations that describe the resonant inter-
action of a very short light pulse with an energy transition of the medium and the ensuing propagation of the
light field in an optical fiber. The constant boundary value of one of the fields is shown to result in an asymptotic
quasi-radiative solution of the model. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An analysis of soliton generation in nonlinear
optics, including that in terms of completely integrable
models [1], has been the subject of many theoretical
papers (see, e.g., [2, 3]). To faithfully describe an exper-
imental situation often requires solving an initial value–
boundary value problem for systems of nonlinear evo-
lution equations. In practice, this problem can currently
be solved only in terms of completely integrable mod-
els. Therefore, finding and solving completely integra-
ble models is of both theoretical and practical interest.

In this paper, we consider an integrable model com-
posed of two or more models that describe the evolution
of fields on nonoverlapping, joined intervals. We call
such models composite to distinguish them from mod-
els combining integrable models on coincident inter-
vals. The latter include, for example, a combination of
the integrable system of Maxwell–Bloch equations for
a two-level medium and the integrable nonlinear
Schrödinger equation (NSE) for an infinite medium [3].

As far as we know, composite models of this kind
and peculiarities of the pulse generation in them have
not yet been studied. At the same time, the existence of
such models is determined by actual physical situa-
tions. The experimental facilities used to generate very
short optical pulses usually include different nonlinear
and linear media. In some media, a pulse is generated;
in other media, it is amplified; in still other media, the
pulse is compressed and takes a shape convenient for
subsequent applications, etc. An example of such a sys-
tem can be a two-level laser amplifier supplemented
with a nonlinear medium in the form of an optical fiber.
Studies of composite models and the associated initial
value–boundary value problems can reveal qualita-
tively new generation regimes under actual physical
conditions.

A modified nonlinear Schrödinger equation
(MNSE) with differential nonlinearity [4] is commonly
1063-7761/01/9302- $21.00 © 0221
used to analyze the propagation of very short light
pulses in optical fibers. Stable soliton-like field pulses
in such a medium result from the balance between dis-
persion and nonlinearity. In most studies of soliton
effects in optical fibers, additional nonlinear interac-
tions were taken into account as perturbations (see, e.g.,
[5]). At the same time, some combinations of nonlinear
effects can be described in terms of integrable models
that combine simpler integrable models in an infinite
medium [3].

The example of a composite model analyzed here
describes the propagation of very short pulses of a light
(main) field in an optical fiber with allowance for the
interaction with additional fields in a nonlinear reso-
nant medium of finite length without invoking the per-
turbation theory. In an actual experiment, such a
scheme can be used to study the generation of very
short pulses in a resonant medium, which are subse-
quently injected into an optical fiber that serves to
transmit information by means of these pulses. The
model includes the MNSE and the system of reduced
Maxwell equations that describes the resonant interac-
tion of three light wave packets with a two-level
medium. This integrable model is associated with a
spectral problem related to the Wadati–Konno–
Ichikawa (WKI) problem [6].

In general, to describe the generation of solitons and
other wave packets in nonlinear optical problems in
finite or semi-infinite media, an initial value–boundary
value problem with nonzero fields at the boundaries
should be solved. Such boundary conditions often cor-
respond to more realistic and more easily realizable
experimental conditions than the physical conditions
for which a soliton “classical version” of the inverse
scattering transform method (ISTM) was constructed
[1]. Accordingly, determining the type and form of the
solution associated with boundary conditions of this
kind is important for applications. These boundary con-
2001 MAIK “Nauka/Interperiodica”
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ditions can qualitatively change the generation condi-
tions for optical solitons, breathers, and other types of
solutions. At the same time, as was noted above, such a
problem could be solved in practice only in terms of
integrable models. In this case, solving the initial
value–boundary value problem generally runs into seri-
ous mathematical difficulties. However, papers have
recently appeared in which methods were developed
for solving such problems for a number of models inte-
grable by using the ISTM based on the solution of the
Riemann–Hilbert problem [1]. Noteworthy are [7, 8], in
which boundary value problems for the sine-Gordon
equation, the NSE, and others were investigated. In par-
ticular, Kiselev [9] suggested a formal method of solv-
ing the Goursat problem for the system of Maxwell–
Bloch equations for a two-level medium. Previously,
the initial value–boundary value problem for the same
system was considered by Gabitov et al. [10], who ana-
lyzed self-similar asymptotics. Fokas [11] proposed a
new approach to using the Riemann–Hilbert problem to
solve the initial value–boundary value problem on a
finite interval. In [8], the Raman scattering model,
which is related to the Maxwell–Bloch model for a sin-
gle-frequency transition, with averaging over fre-
quency mixing was solved in terms of the ISTM for a
finite interval. The form and properties of the asymp-
totic solution generated by simple, but nontrivial
boundary conditions have been discussed in several
recent papers [12–14]. Isolated soliton-like solutions
with variable parameters were found in [12–14], in
which the Raman scattering model was solved for non-
zero boundary values of the Stokes field and pumping.
In [15], we proved for the same model that as the effec-
tive length of a nonlinear medium increased, the total
contribution of these poles led to a quasi-self-similar,
nonsoliton solution. The result proven theoretically for
slowly changing boundary conditions is confirmed by
numerical simulations [15].

In this paper, we use the version of ISTM based on
the solution of the Riemann–Hilbert problem associ-
ated with the WKI spectral problem to solve the new
integrable model. For simple, but nontrivial initial
value–boundary value problems, we theoretically ana-
lyze the generation and dynamics of very short light
pulses. The integrable model studied here also differs
significantly from those considered, for example, in the
review [3] in a nontrivial dependence of the scattering
coefficient on one of the variables. In particular, this
dependence can give rise to an infinite number of mov-
ing poles in the complex plane associated with soliton-
like solutions.

In our physical example of two different nonlinear
media, the boundary conditions for the second medium
are determined by the field evolution in the first
medium. This initial value–boundary value problem is
generally unsolvable. However, an asymptotic solution
can be found in terms of the new integrable model con-
sidered here. In this paper, we develop an approach that
allows the field evolution in composite models to be
JOURNAL OF EXPERIMENTAL 
asymptotically described for this kind of boundary con-
ditions. It has been proven that for a sufficiently large
effective length of the resonant medium, the solution
reduces to a system of integral equations that asymptot-
ically coincide with the equations describing the quasi-
radiative solution of MNSE. This solution is determined
only by the continuum of the problem (Imλ2 = 0) and can
be expressed in terms of one of the Painleve transcen-
dents [1]. Explicit asymptotics of the quasi-radiative
solution for the MNSE were found by Kitaev and Varta-
nian [16]. Our results also provide the answer to the
question of the form of the asymptotic solution for the
problem of light interaction with a two-level medium
under conditions of degenerate two-frequency reso-
nance and weak excitation of the medium.

The paper was structured as follows. The general
structure of composite integrable models is described in
Section 2. The physical situations that lead to the com-
posite model analyzed below are considered in Section 3.
The method of model solution based on the Riemann–
Hilbert problem is described in Section 4, and the
dependence of scattering data on variable is derived in
Section 5. In Section 6, we show, for simple initial
value–boundary value problems, that the approximate
quasi-radiative solution of MNSE describing the pulse
dynamics in an optical fiber can be generated by the
boundary conditions for an additional field in the reso-
nant medium. The results and their possible generaliza-
tion are discussed in the final section.

2. COMPOSITE INTEGRABLE MODELS

Let us describe the structure of an integrable model
composed of N × M integrable models (some of them
may coincide). Let the composite integrable model be
represented as a compatibility condition for the follow-
ing linear systems of equations:

(1)

(2)

Here, θ(z) is the step function:

τ∂
∂ ψ τ z; λ,( )

=  β j j 1+, τ( )L j τ z; λ,( )ψ τ z; λ,( ) +ψ,≡
j 1=

M

∑

z∂
∂ ψ τ z; λ,( )

=  α i i 1+, z( )Ai τ z; λ,( )ψ τ z; λ,( ) !ψ,≡
i 1=

N

∑

β j j 1+, τ( ) θ τ τ j–( )θ –τ τ j 1++( )[ ]β̃ j τ( ), τ j 1+ τ j,>=

α i i 1+, z( ) θ z zi–( )θ –z zi 1++( )[ ]α̃ i z( ), zi 1+ zi.>=

θ z( )
0, z 0<
1, z 0;≥




=
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 and  are smooth functions that do not

become zero and infinite; αi, i + 1(z)/  and

βi, i + 1(τ)/  are the projectors:

etc.; Lj, Ai, +, and ! are matrix operators.
The compatibility condition for these linear systems

is

(3)

Multiplying (3) by  yields

(4)

Thus, the evolution in the square [zi, zi + 1], [τj, τj + 1] is
described by the system of equations with the Lax rep-
resentation as linear systems:

We do not known the ISTM apparatus for the spectral
problem (1) in the case of several intervals [τj, τj + 1]. In
this paper, we study an example of a composite model
with the Lax representation (1) and (2) for one semi-
infinite interval [τ1 = 0, τ2 = ∞) and two different media
on intervals [z1 = 0, z2] and [z2, z3 = ∞]. The problem for
a finite or semi-infinite interval [τ1, τ2] corresponding to
a nonzero projector β12(τ) was solved, as noted in the
Introduction, for simple, but nontrivial initial-boundary
conditions for one interval [z1, z2](see, e.g., [8, 11]).

Note that here, the composite model including dif-
ferent models integrable on different intervals is
assumed to be integrable in advance. This assumption
generally imposes additional constraints on the physi-
cal parameters.

3. A PHYSICAL EXAMPLE 
OF A COMPOSITE MODEL

3.1. Statement of the Problem

Let us consider a composite model that includes a
model for the resonant interaction of the main field with
an additional field in a two-level medium on interval
[z0 = 0, z1) and a model describing the evolution of the
main field in a Kerr medium on a semi-infinite interval
z ≥ z1. The field interaction in the resonant medium is
assumed to generate pulses, which subsequently prop-

β̃i τ( ) α̃ i z( )

α̃ i z( )

β̃i τ( )

α i i 1+,
2 z( )/α̃ i

2 z( ) α i i 1+, z( )/α̃ i z( )=

z∂
∂ β j j 1+, τ( )L j
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M

∑ τ∂
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i 1=

N

∑–

+ β j j 1+, τ( )L j

j 1=

M

∑ α i i 1+, z( )Ai

i 1=

N

∑, 0.=

ai i 1+, β j j 1+, α̃ i
1– β̃ j

1–

β̃ j τ( )
z∂
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L j α̃ i z( )
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Ai β̃ j τ( )L j α̃ i z( )Ai,[ ]+– 0,=

z zi zi 1+,[ ] , τ τ j τ j 1+,[ ] .∈∈

∂τψ β̃jL jψ, ∂zψ α̃ iAiψ.= =
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agate through the Kerr medium. The initial-boundary
conditions in the simplest case are as follows: the
amplitude of the initial “additional” field in the reso-
nant medium is nonzero, and the initial main field is
zero. The pulse generation in this problem can be trig-
gered by an arbitrarily small seed of the main field at
the z = 0 boundary.

3.2. A Model of the Two-Wave Interaction
in a Resonant Medium

Let us first consider examples of the resonant field
interaction with a two-level medium and the physical
conditions that lead to the following system of evolu-
tion equations:

(5)

(6)

(the bar denotes a complex conjugate) and then to the
system composed of model (5), (6), and MNSE.

3.3. Light Propagation under Conditions 
of a Degenerate Two-Photon Interaction

The coherent interaction of a very short pulse with a
two-photon-absorbing medium was considered in sev-
eral papers, beginning with [17] (see also the review
[3]). The effect of self-induced transparency was ana-
lyzed in terms of the system of Maxwell–Bloch equa-
tions with allowance for the change in level populations
and for the nonlinear Stark effect. However, a signifi-
cant (of the order of unity) change in level populations
requires intense light fields. At the same time, for appli-
cations, for example, in microelectronics, it is impor-
tant to find conditions for the existence of self-induced
transparency for relatively weak fields that do not
destroy the optical medium.

In this section, we derive the self-consistent integra-
ble model of self-induced transparency that corre-
sponds to weak excitation of the medium. The exist-
ence of multisoliton solutions for this model proves the
possibility of observing self-induced transparency in
this limiting case for much weaker (by orders of mag-
nitude) fields than in the model noted above [17].

The general system of equations for the field and a
two-level medium (with levels 1 and 2) under condi-
tions of degenerate two-photon resonance was derived
from the Schrödinger and wave equations in [17, 18].
The polarizability dynamics of the medium is described
by the equation

(7)

Here, R3 is the difference between the upper- and lower-
level populations, R = iR1 + R2 (R1 and R2 are the reac-
tive and active polarization components of the
medium), and E is the field amplitude. The Bloch vec-

∂τq1 2q1q2– iνq1,+=
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tor components are normalized to unity; i.e., the follow-
ing equality holds:

(8)

Twice the field carrier frequency ω is assumed to be
equal to the transition frequency ω12 of the medium.
The standard derivation of the equations for a two-fre-
quency interaction with a two-level medium involves
an adiabatic elimination of the intermediate-level occu-
pation probability amplitude (see, e.g., [17, 19]). This
procedure leads to the following form of the coeffi-
cients:

Here, qmn is the dipole moment between transition lev-
els m = 1, 2 and intermediate levels n, and ωnm is the
corresponding transition frequency.

The Maxwell equations for a slowly changing enve-
lope of field E reduce to the equation [17]

(9)

where is the initial difference between the level
populations, and c is the speed of light in the medium.
In many known experiments on the observation of two-
frequency coherent effects, the upper-level (m = 2) pop-
ulation during the field interaction with the two-level
transition was found to remain low compared to the
ground-state population. The ratio of the upper- and
lower-level populations often does not exceed 10–5–
10−7 during the entire interaction [20]. In this case, i.e.,
in the limit of weak excitation of the medium, the fol-
lowing expansion holds:

(10)

(here,  = –1). To derive Eqs. (5) and (6), we use
expansion (10) and disregard all terms of the fourth
order or higher in field amplitude and polarization
(~|R|2E2) in Eqs. (7) and (9). Note that including terms
of the third order (~|R|2E) results only in a renormaliza-
tion of the constant g2 in (5) and (6). Let us now change
to variables τ and z:
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System (7), (9) then takes the form (5), (6) after
allowing for expansion (10), discarding terms higher
than the third order, and the following substitutions:

where

When deriving (5) and (6), we used the equality

(11)

which follows from (7) and (9).

3.4. Three-Wave Mixing in the Resonant Medium

Let us describe yet another physical scheme for the
interaction, which also leads to the system of equa-
tions (5) and (6). Let a three-frequency field be propa-
gated through the medium:

(12)

Here, Pj are the slowly changing envelopes, ωj are the
carrier frequencies, and qj are the carrier wave vectors.
The following conditions of two-photon resonance
with the proper energy transition of the medium with
frequency ω0 are assumed to be satisfied:

(13)

Here, δ1 = ±1, δ2 = ±1, and the detunings νk satisfy the
condition

The resonance conditions (13) not only allow one to
enhance significantly (by orders of magnitude) the
effect of nonlinear mixing, but also to eliminate the
terms describing the cubic (in amplitude) field self-
action from the equations, i.e., the terms of type Pj |Pj |2.
In that case, these terms breaks the model integrability.
As a result, the model includes only the cubic terms that
correspond to the two-photon-induced Kerr nonlinear-
ity (see, e.g., [21]).

Thus, assuming that the polarization of the medium
follows the field variations and using the standard pro-
cedure of adiabatic elimination [2], we obtain the Max-
well equations in which the nonlinear field mixing is
described by the two-photon-induced Kerr nonlinear-
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ity. The reduced Maxwell equations for the resonance
conditions (13) at δ1 = δ2 = –1 are

(14)

where ∆ = 2q1 – q2 – q3 and v i are the group velocities
of the fields with envelopes Pi. The Maxwell equations
corresponding to this interaction scheme and the coeffi-
cients a23, a32, a22, and a33 are given in [2, Section 10.4].
However, in contrast to the equations in [2], system
(14) includes a time dependence of the field amplitudes
and uses the approximation of slow envelopes. We also
assume that the time scales of amplitude variations are
much shorter than the time Γ–1, where Γ is the mini-
mum relaxation constant. Similar equations emerge for
other δi, which we do not provide here to save space.

In several cases, when waves were mixed in a
medium with Kerr nonlinearity, the constancy condi-
tion for one of the fields was satisfied with good accu-
racy [20]. This condition also significantly simplifies
the synchronization of field pulses, which is required to
observe the effect. The constancy condition for one of
the fields is satisfied, for example, when |P2| @ |P3| or
|P2| @ |P3|. Let us choose the latter case where the vari-
ations in field P3 may be ignored. In this case, only the
first two equations remain in system (14). Let P3(x, t) ≡

A, where A is a real constant (for a complex A = A0 ,

the phase factor  is removed by shifting the phase of
field P2). In this approximation, the first two equations
of system (14) are reduced to system (5), (6) by the fol-
lowing substitutions:
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The integrable system of equations (5) and (6) is
given for the first time. This system, as well as a similar
integrable system of equations built previously [22], is
associated with a WKI-type spectral problem. How-
ever, applying the ISTM apparatus to system (5), (6)
results in new singularities related to peculiarities of the
boundary conditions for this model. The practical sig-
nificance of model (5), (6) may stem from the fact that
it describes the degenerate two-frequency interaction of
light with a medium for minimum field intensities and
simultaneously has nonsingular soliton solutions. This
distinguishes it from the standard model of second-har-
monic generation, which is formally equivalent to (5),
(6) at g = 0. In the latter case, this system of equations
is similar to the model of explosive instability [1] with-
out stable soliton solutions. Some self-similar solutions
for the system of equations (5) and (6) can coincide
with the solutions of the second-harmonic generation
model or the model of a two-wave interaction in media
with quadratic nonlinearity with allowance for cubic
nonlinearity. Accordingly, analyzing system (5), (6) is
of interest in its own right, but here, it will be analyzed
as an element of the composite model.

3.5. The Composite Model

In actual experimental facilities, it is not uncommon
for light pulses to pass through different optical media
located sequentially. Consider a situation when a very
short pulse first passes through a resonant medium on
interval [z1, z2] and then propagates in an optical fiber
on interval [z2, ∞).

In the resonant medium, the main field interacts
with two additional fields. Let the light pulse % (main
field) on interval [z1 = 0, z2] interact with two additional
fields with envelopes & and 8 according to the scheme
described in the preceding subsection. In the notation
of this model,

We assume that the change in field & during the inter-
action may be disregarded. Let us describe the mecha-
nism for energy conversion of the additional fields into
pulses of the main field and determine the form of the
corresponding solution. To this end, we construct a
composite model built from model (5), (6) on interval
[0, z2], α1, 2 ≠ 0, and the MNSE on interval [z2, ∞),
α2, 3 ≠ 0 (αi, i + 1 are defined in Section 2).

ν c2∆
8πω1α pa
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α pa

-------- A 2,+=

τ∂
∂ c2

4παpaω1
----------------------

x∂
∂ 1

v 1
------
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4παsaω2
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The MNSE includes differential cubic nonlinearity
[see the left-hand side of Eq. (20) below], which pro-
duces a nonlinear phase modulation of the pulse and
which should be taken into account when describing
the evolution of sufficiently short light pulses in optical
fibers [23]. A linearly polarized optical wave obeys the
Maxwell equation in a one-dimensional medium:

(15)

Here, E is the electric field and D = E + 4πPL is the field
in the medium. The refractive index is

(16)

where ω0 is the carrier frequency of the field with a
slow envelope %:

(17)

Substituting (17) in (15), passing to the frame of refer-
ence of the pulse, and retaining terms with the first
derivative with respect to nonlinearity, we obtain the
modified nonlinear Schrödinger equation

(18)

(the prime denotes a derivative with respect to ω at
point ω0).

For very short pulses, the dispersion term ik'''Eτττ /6
[24] must generally be added to the left-hand side of
(18). Marcuse [25] found the following empirical ratio
of the coefficients for single-mode optical fibers, which
holds near the minimum of |k'' |:

(19)

It follows from (19) that the third-order dispersion may
be ignored near λ[µm] ≈ 0.86. At the same time,
according to (19), this dispersion must be taken into
account near λ0 = 1.27, because k'' = 0 at this wave-
length [26]. For λ far enough from λ0, the nonlinear
waves, the solutions of Eq. (18), result from the balance
between cubic differential nonlinearity, cubic nonlin-
earity, and quadratic dispersion. These robust nonlinear
modes (solitons and other self-similar solutions) are
stable against small perturbations. Under these condi-
tions, the cubic dispersion (~ik'''Ettt), according to (19),
may be treated as a small perturbation whose allowance
causes the nonlinear-mode parameters to change only
slightly. Therefore, the cubic dispersion was disre-
garded here.

It can be shown that, given the interaction with addi-
tional fields and in the approximations used, the system
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---------------------------------× .≈–
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of Maxwell equations for %, the field envelope of the
pulse propagating in an optical fiber, reduces to the sys-
tem

(20)

(21)

where D, , , , and  are real coefficients.

Since the interaction of field % with field 8 in the
resonant medium and the self-action in the Kerr
medium are spatially separated, the coefficients on the
right-hand side of Eq. (20) can be arbitrary. In general,
the interaction in a resonant medium is characterized by
nonlinearities with coefficients larger than those in
optical fibers by several orders of magnitude. At the
same time, the nonlinear interaction and dispersion
effectively manifest themselves for actual fibers whose
lengths are several orders of magnitude larger than the
length of the resonant medium. Therefore, to justify the
physical applicability of system (20), (21), it will suf-
fice to verify the presence of terms on the right- and
left-hand sides of Eq. (20) separately.

The differential cubic nonlinearity, just as the sec-
ond term on the right-hand side of Eq. (20), produces a
nonlinear phase modulation, in contrast to the remain-
ing terms of the equation. As was shown above, this
nonlinear frequency modulation is resonant in nature
and, therefore, determines the dominant cubic term on
the right-hand side of Eq. (20). We ignore any change
in &.

Next, we assume the detuning  of field 8 to be
large enough to disregard the nonlinear frequency shift,
i.e.,

(22)

Let us change from variables %, 8, t, and x to variables
Q, U, τ, and z:

(23)

where

∂z% θ z z2–( ) iD∂tt
2 % α̃ % 2% β̃∂t % 2%( )+ +[ ]+

=  θ –z z2+( ) 2γ̃18
2&– 2ig̃1

2% 8 2
+( ),

z 0,≥

θ –z z2+( )

× ∂t8 γ̃2%8– 2ig̃2
28 % 2

iν̃8+ +( ) 0,=

z 0,≥

α̃ β̃ γ̃1 2, g̃1 2,

ν̃

g̃2
28 % 2

 ! ν̃8 .

% ρ̃Q 2iν̃t–( ), 8exp δ̃U ν̃t–( ),exp= =

t x/v 0– κ̃ τ , z ζ0x,= =

ρ̃
2ζ0

α̃ 2ν̃+
----------------, κ̃ D

ζ0
-----,= =

δ̃
2 2ζ0

γ̃1G α̃ 2ν̃+
------------------------------,=
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The final system (20), (21) can then be written as

(24)

(25)

where

(26)

Below, α1, 2 = θ(z)θ(–z + z2) and α2, 3 = θ(z – z2). For the
ISTM to be applicable to (24) and (25), the following
constraint must be imposed on the model coefficient:

(27)

Condition (27) can be satisfied for a certain choice of
the detuning  and/or the amplitude of additional field &.

System (24), (25) is invariant with respect to the fol-
lowing simultaneous transformations:

(28)

where f is an arbitrary real constant. Clearly, the condi-
tions used above to derive the integrable system (24),
(25) limit its applicability. However, the model integra-
bility allows the form of the nonlinear field dynamics to
be analyzed analytically, which cannot be done for non-
integrable models. Studying the model allows qualita-
tive characteristics of the generated pulse packets in
close systems to be determined analytically, because
the self-similar solutions of integrable models gener-
ally retain their characteristic singularities in the case of
a small departure from the integrability conditions.
These conditions can also be used as test conditions in
numerical simulations. The effects of departures from
the integrability conditions on the form of the solutions
can be analyzed by using the perturbation theory. Note
that such an analysis was performed for the model com-
bining the system of Maxwell–Bloch equations and the
nonlinear Schrödinger equation by Doktorov and
Prokopenya [27]. These authors showed that when an
integrability condition similar to condition (27) was
slightly violated, the basic properties of solitons did not

1
v 0
------ 4β̃Dν̃2

α̃ 2ν̃+
----------------- Dν̃ , ζ0–

g̃1
2 α̃ 2ν̃+

β̃ 2Dγ1G
--------------------------.= =

∂zQ α2 3, ∂ττ
2 Q 2i Q 2 Q± 2

–( )Q–{–

+ g2∂τ Q 2 Q± 2
–( )Q[ ] }

=  α1 2, 2U2 2ig2Q U 2+( ), z 0,≥

α1 2, ∂τU hQU+( ) 0, z 0,≥=

h
γ̃2G 2D

α̃ 2ν̃+
----------------------, Q± 2 2Dν̃2

ζ0
-------------,= =

g2 2β̃ ζ0

D α̃ 2ν̃+( )
------------------------------.=

h 1.=

ν̃

z z̃ z 1 f 2–( )τ /g2,+=

Q Q̃ Q 2i 1 f 2–( )z–[ ] ,exp=
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change, to a first approximation; in particular, their
amplitudes and velocities did not change. One might
also expect similar results for the composite model con-
sidered here.

Let us now formulate the initial value–boundary
value problem for the composite model (24), (25),
which is solved below. Since the composite model is
assumed to be integrable, it will suffice to formulate the
conditions for τ = 0 and z = z1 = 0. Indeed, the condition
of integrability through the ISTM suggests the exist-
ence of Lax representation in the form (1), (2), which is
analogous to the separation of variables. In this case,
the z dependence of the solution is entirely determined
by the z dependence of scattering data, which, for our
problem, reduces to an ordinary differential equation
for the scattering matrix [see Eq. (44) below]. The solu-
tion of this equation has the following obvious prop-
erty: the value of the scattering matrix at point z = z2
(i.e., at the end of the resonant medium) is the boundary
value for the scattering matrix that describes the evolu-
tion in the second (Kerr) medium. Thus, it will suffice
to specify the boundary condition at point z = z1,
because in this case, the boundary value for the Kerr
medium at point z = z2 is determined by the field evolu-
tion in the resonant medium; i.e., in the integrable
model, by the solution of Eq. (44) at this point. We
emphasize that this property results from the integrabil-
ity of the entire composite model. The initial conditions
for the field must be common to both media, because
the spectral problem is common to both models of the
field interaction in the resonant and Kerr media.

For simplicity, we choose the initial conditions that
correspond to trivial asymptotics at τ  ∞ and τ = 0.
In general, the ISTM apparatus presented in the next
two sections corresponds to the following initial-
boundary conditions:

(29)

where

The constant g, such that Img2 = 0, is defined in (24)
and (25). The function U0(z) is specified on a finite
interval, is limited, and rapidly decreases at infinity.
The functions q0(τ) and q1(z) are smooth and limited
(see below). This apparatus allows soliton and other
related solutions that become zero at infinity, as well as
the radiative solution, to be found. In Section 6, we

q± 0, q τ 0,( ) q0 τ( ), ∞ τ 0,> >= =

q0 0( ) 0, q τ z,( )
τ ∞→
lim 0, z,∀= =

U 0 z,( ) U0 z( ), q 0 z,( ) 0, 0 z z2,≤ ≤= =

U 0 z,( ) 0, q 0 z,( ) q1 z( ), z z2,>= =

q
Q
ig
-----, q± Q±

ig
------.= =
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solve a special boundary-value problem with the condi-
tions

4. THE RIEMANN–HILBERT PROBLEM
FOR THE WKI SPECTRAL PROBLEM

The Lax representation for the integrable composite
model (24), (25) is

(30)

(31)

here, λ is the spectral parameter,

(32)

and the bar denotes a complex conjugate. The integra-
ble system (24), (25) and its Lax representation are
given for the first time. At g = 0, this system reduces to
the standard system combining the second-harmonic
generation equations without Kerr nonlinearity and the
nonlinear Schrödinger equation.

Below, we provide basic information from the
ISTM apparatus for the WKI spectral problem (30) for
a semi-infinite interval [τ1 = 0, τ2 = ∞).

For q(τ, z) decreasing rapidly enough as τ  ∞
(this function and all its derivatives decrease more rap-
idly than any positive power of τ), we define the vector
functions ψ±(τ, z; λ) and φ±(τ, z; λ) as the Jost functions
of the system

[see (30)] with the following values at the ends of the
semi-infinite interval:

(33)
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(34)

where Λ2 = λ2 + g–2; the superscripts ± mean that the
function is analytic at Imλ2 _ 0, respectively; and T
denotes transposition. It follows from the Cauchy theo-
rem that condition (34) is satisfied for ∀τ  < 0.

The Jost functions are related by

(35)

where a± and b± are the complex scalar functions of λ
and z. The superscript means that the function is analyt-
ically continuable to the corresponding half plane of the
complex λ2 plane. For example, a±(λ) is analytically
continuable to the domain where Imλ2 _ 0.

For λ  ∞ and Imλ2 > 0, we have

for λ  ∞ and Imλ2 < 0,

and for Imλ2 = 0,

(36)

Expressions (36) are valid in the λ plane on contour

 = {λ; Imλ2 = 0}, which is oriented as shown in Fig. 1.
As above, the bar denotes a complex conjugate.

Assume that
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σ3 = diag(1, –1) is the Pauli matrix. Let us define

for Imλ2 > 0 and

for Imλ2 < 0.
Introduce the scattering coefficient

whose analytic properties follow from the above for-
mulas. Next, in order not to write the superscripts, we
designate ρ(λ) ≡ ρ–(λ).The 2 × 2 matrix function µ(τ, z;
λ) [detµ(τ, z; λ) = 1] is then the solution of the follow-
ing Riemann–Hilbert problem:

(i) µ(τ, z; λ) is holomorphic for ∀λ ∈  C\ ;

(ii) µ(τ, z; λ) satisfies the condition

(37)

where

E(τ; λ) = exp(iΛ2τσ3),

with ρ(λ) defined for λ ∈   and having the property
ρ(–λ) = –ρ(λ);

(iii) for λ  ∞, λ ∈  C\ ,

I is a unit matrix. These properties follow from the def-
inition of µ(τ, z; λ) for Imλ2 _ 0 and from the analytic
properties of the Jost functions. Let the integral of the
modulus of ρ as a function of λ over all values of vari-

able λ ∈   be limited. The Riemann–Hilbert problem
formulated above is then uniquely solvable:
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is the solution of system (30), (31),

(38)

and µ(τ, z; λ) has the following symmetry properties:

where σ1 is the Pauli matrix. The solvability of the Rie-
mann–Hilbert problem for ∀ z follows from the integral

of the modulus of ρ over λ ∈   being limited (see [16,
28–31] for details). Conditions (38) follow from (30)
and from the expansion of Φ1, 2 in terms of λ–1 for
λ  ∞.

The solution of the Riemann–Hilbert problem (37)
for the case under consideration is well known. It
reduces to the solution of the Volterra integral equa-
tions. For a(λ) ≠ 0, we derive the Volterra equations
from (37) (see, e.g., [11, 30, 31]):

(39)

(40)

where Λ2 = ζ2 + g–2. Γ+ is the integration contour that
combines the paths along the axes in the first and third
quadrants of the λ plane (see Fig. 1) and the arcs at
infinity in these quadrants that connect them; Γ– is a
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Fig. 1.  continuum: {λ, Imλ2 = 0} and integration con-
tours Γ±.

Γ̂
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similar contour in the second and fourth quadrants of
the λ plane. Thus, the problem has been reduced to
solving the integral equations (39) and (40). Let the
coefficient a(z; λk) = 0 and Imλ2 ≠ 0 at a finite number
of isolated nondegenerate poles λk, k = 1, 2, …. The
sum over the residues at all these poles must then be
added to the integrals on the right-hand sides of (39)
and (40).

To solve the composite evolutionary model (24),
(25) for field q(τ, z) by the ISTM, we must solve
Eqs. (39) and (40) by taking into account the z depen-
dences of ρ = /a and  = b/a and then restore q(τ, z)
using Eq. (38).

5. THE z DEPENDENCE OF COEFFICIENT ρ
The next step of the ISTM procedure is to find the z

dependence of the spectral data required for the prob-
lem to be solved. Below, we omit the superscripts ±. Let
us first consider the general case and find the λ depen-
dence of coefficients a and  for different optical media
located on N intervals [zi, zi + 1]. To this end, we rewrite
(35) in matrix form:

(41)

It follows from the symmetry properties of the specific
spectral problem (30) that the matrix T is

(42)

Substituting (41) in (30) yields

(43)

where

here, ! is an arbitrary 2 × 2 matrix and σ3 is the Pauli
matrix.

Consider one finite interval [τ1 = 0, τ2). In this case,
β1, 2 ≠ 0; i.e., Lj ≡ 0 in (1) for j > 1. In what follows, we
pass to the limit τ2  ∞. We consider N intervals [zi,
zi + 1] in variable z. In this case, αi, i + 1(z) ≠ 0. The z
dependence of matrix T is then given by the equation

(44)

b ρ

b

ψ τ z; λ,( ) φ τ z; λ,( )T z; λ( ).=

T z λ,( ) a λ( ) b λ( )

b λ( ) a λ( ) 
 
 

.=

z∂
∂

T z; λ( ) Ã
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Let us introduce the functions

The formal solution of (44) is then

(45)

We see from this solution that the evolution of T(z, λ)
on interval [zi, zi + 1] is described by formula (45) with
the boundary condition T(zi, λ).

For τ2  ∞, the following relation holds:

(!12, 21 are the nondiagonal elements of matrix !; it
follows from Eq. (44) that

(46)

where

Formula (46) describes the dynamics of matrix 71, k on
interval [zk, zk + 1] with the boundary value 71, k – 1, k > 2.

The formal solution of (46) is

(47)

Let us turn to the case of two different media located on
intervals [z1, z2] and [z2, z3]. Below, we provide the solu-
tion of (44) for the elements of matrix T in the case of
an arbitrary 2 × 2 matrix !(0, z; λ) such that
det!(0, z; λ) ≠ 0 for ∀ z, which is constant on intervals
[0, z2] and [z2, ∞) and changes abruptly at point z = z2.

@ y z,( ) E 1– y; λ( ) α i z( )Ai y z; λ,( )E y; λ( )
i 1=

N

∑ λ ,d

0

z

∫=

Bi y z,( ) E 1– y; λ( )Ai y z; λ,( )E y; λ( ) λ ,d

zi

z

∫=

zi z zi 1+ .<≤

Ti 1+ z; λ( ) @ τ2 z,( )[ ] T1 0 λ,( ) –@ 0 z,( )[ ]expexp=

=  @2 τ2 z,( )[ ] Ti zi λ,( ) –@ 0 z,( )[ ]expexp

=  @i τ2 z,( )[ ]… @1 τ2 z,( )[ ] T1 z1; λ( )expexp

× –@1 0 z,( )[ ]… @i 0 z,( )–[ ] .expexp

!12 τ2 z; λ,( ) !21 τ2 z; λ,( ) 0= =

z∂
∂ 71 k, z  λ;( ) 71 k, z; λ( ) Ãk 0 z; λ,( ),–=

71 k, iσ3 α i i 1+, s( ) Ai( )11 τ2 s; λ,( )
τ2 ∞→
lim

i 1=

k

∑ sd
0

z

∫– T1 k, ,exp=

Ãk 0 z; λ,( ) E 1– 0; λ( )Ak 0 z; λ,( )E 0; λ( ).=

71 N, 71 2, 72 3, …7N 1– N, ,=

7i i 1+, z; λ( ) α i i 1+, s( ) Ãi 0 s; λ,( ) sd

zi

zi 1+

∫ .exp=
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Without loss of generality, we choose  ≡ 1, i = 1, 2.
For conditions (54), the solution of (44) for z ≥ 0 is

(48)

(49)

where  are the elements of matrix (τ = 0) [see (43)],

which also change abruptly at point z = z2,  = – ,

Finally, we obtain for the coefficient ρ(z; λ)

(50)

The coefficient ρ0(λ) can be determined from the spec-
tral problem (30) for a given potential q(τ, 0). It is easy
to show that ρ0 = 0 if q(τ, 0) ≡ 0. In the latter case, the
solution of the model is determined only by the bound-
ary conditions.

For the physical problem (24), (25) under consider-
ation and specific initial-boundary conditions (54), the
nondiagonal elements of matrix !c [see the linear sys-
tem (31)] are zero at z > z2 (see the next section). It fol-
lows from the above formulas that the z dependence of
T at z > z2 is given by

α̃ i z( )

a z; λ( )
a0

2Ω
------- Ω Ã11+( ) ρ0 Ã21+[ ]{=

× –zΩ Θ z( )–( )exp

+ Ω Ã11–( ) ρ0 Ã21–[ ] zΩ Θ z( )–( )exp } ,

b z; λ( )
a0

2Ω
------- Ω Ã11–( )ρ0 Ã12+[ ]{=

× –zΩ Θ z( )–( )exp

+ Ω Ã11+( )ρ0 Ã12–[ ] zΩ Θ z( )–( )exp } ,

Ãij Ã

Ã11 Ã22

Ω2 z( ) Ã11
2

0 z; λ,( ) Ã12 0 z; λ,( ) Ã21 0 z; λ,( ),+=

ρ0 λ( ) ρ z 0 λ,=( )
b0

a0
-----,= =

Θ z( ) Ã11
+

s; λ( ) s.d

0

z

∫=

ρ z; λ( )
b
a
---=

=  
Ω Ã11–( )ρ0 Ã12+[ ] e 2Ωz– Ω Ã11+( )ρ0 Ã12–[ ]+

Ω Ã11+( ) ρ0 Ã21+[ ] e 2Ωz– Ω Ã11–( ) ρ0 Ã21–[ ]+
------------------------------------------------------------------------------------------------------------------.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(51)

where T+(z2, z) is the solution of the linear system (31)
for zero nondiagonal elements of matrix !c(τ2, z; λ):

(52)

For the coefficients of matrix T (42), we derive

(53)

where a2 and  are the elements of matrix T(0, z2, λ).
It follows from the latter formula that the boundary
condition for the medium on interval [z2, z3] in our
example of a composite model is determined by the z
dependence of ρ in the medium on interval [z1, z2].

6. THE QUASI-RADIATIVE SOLUTION 
OF THE COMPOSITE MODEL

Let us show that the quasi-radiative solution for the
main field q = Q/ig in the composite model (24), (25)
can be generated by an additional field U for zero initial
and boundary values of the main field. To this end, we
choose the following initial-boundary conditions:

(54)

Since a linear analysis of the stability of the solution
q(τ, z) ≡ 0 of Eq. (24) for z > z2 shows this solution to
be stable, we assume, in view of (54), that the following
relation holds

Below, we show that the initial-boundary conditions
(54) lead to the quasi-radiative solution of the model for
a sufficiently large effective length of the resonant non-
linear medium.
Next, for the application of Eqs. (39) and (40) in terms
of the ISTM, it remains to determine ρ(z; λ) and the
positions of zeros of a(λ). Using solution (50), we
obtain for model (24), (25) and conditions (54)

T z; λ( ) T+ z2 z,( )T z2; λ( )T+
1– z2 z,( ),=

T+ z2 z; λ,( ) e
i2σ3Λ4

z–
, z z2.>=

b
a
--- z λ,( )

b2

a2
----- 4iΛ4z( ), z z2,>exp=

b2

q± 0, q τ 0,( ) 0,= =

τ 0, q 0 z,( )≥ 0 z,∀=

U 0 z,( ) U0 0, ∂z

U0

U0
---------≠ 0,= =

z1 0 z z2, U 0 z,( )≤ ≤ 0, z z2.>= =

q τ z,( )
τ ∞→
lim 0 z.∀=
(55)T z; λ( ) s0

Ωτ( )coth
!0( )11

Ω
----------------– ρ0

!0( )21

Ω
----------------+ eiΘ ρ0 Ωτ( )coth

!0( )11

Ω
----------------+

!0( )12

Ω
----------------–

 
 
 

eiΘ

ρ0 Ωτ( )coth
!0( )11

Ω
----------------–

!0( )21

Ω
----------------–

 
 
 

e–iΘ Ωτ( )coth
!0( )11

Ω
----------------+ ρ0

!0( )12

Ω
----------------–

 
 
 

e–iΘ

 
 
 
 
 
 
 
 

.=
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Fig. 2. Imaginary and real parts of ζ versus n; L0 = 0.01 (a, b) and 50 (c, d).
Here,

(!0)ij and (!∞)11 are the elements of matrix !c(z, τ; λ)
(31), respectively, at τ = 0 and τ = ∞,

We do not provide the expression for (!0)12, because it
is not used explicitly below.

The equation that gives the positions of poles, i.e.,

takes the form

(56)

Those solutions that lie in the first and third quad-
rants (see Fig. 1) correspond to soliton solutions. It fol-
lows from (56) that at  ≠ 0, the positions of
poles are determined both by the solution of spectral
problem (30) and by the solution of the additional prob-
lem (31). Since q(0, z) ≡ 0 in (54), we obtain ρ0 = 0.

s0 a0 Ωτ( ), Θsinh !∞( )11 s; λ( ) s,d

0

z

∫= =

Ω i

Λ2
------ α1 2, z( ) 1 g2Λ2–( ) U0

2 α2 3, z( )2Λ6+[ ] 2{=

– α1 2, z( ) 1 g2Λ2–( ) U0
4 } 1/2

,

!0( )11 –α1 2, z( )i U0
21 g2Λ2–

Λ2
-------------------- 2α2 3, z( )iΛ4.–=

T11 z; λ( ) 0,=

a0 Ωτ( )coth
!0( )11

Ω
----------------– b0

!0( )21

Ω
----------------+ 0.=

b0 !0( )21
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In this case, the positions of poles in the complex
domain at point z is given by

(57)

in which

For the z = z2 boundary of the resonant medium,
Eq. (57) takes the form

(58)

where

L0 = z2|U0|2g2 is the effective length of the resonant
medium. This equation has a countable set of solutions
ζ(n) (n is an integer) satisfying the equation

(59)

A numerical solution of Eq. (59) is shown in Fig. 2. We
found the imaginary part of ζ(n) to approach a constant
value as n increases for L0 ! 1. At L0 @ 1, it may be
assumed, with accuracy 2(1/(L0lnL0)), that

(60)

Thus, the solution of integral equations (39) and (40)
for z ∈  [0, z2] describes the field dynamics in the reso-
nant medium. The z dependence of ρ on this interval
results in an infinite series of poles (59). Outside this

Ωz( )coth
!0( )11

Ω
----------------– 0,=

!0( )ij z( ) !0( )ij z2( ), z z1 z2,[ ] .∈∀≡

iζ L0( )coth ζ ,=

ζ g2Λ2 1–
gΛ

------------------------,±=

ζ n( )
i

L0
----- ζ n( ) 1+

ζ n( ) 1–
-------------------ln+

πn
L0
------.=

Imζ n( ) 0, Reζ n( ) ζ 0( ) nπ/L0.+= =
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interval, the z dependence of ρ has a simple form
[see (53)]:

(61)

To solve Eqs. (39) and (40), let us first calculate the sum
over the residues at poles λn. These poles are related to
ζn in Eq. (59) by

Rewrite the right-hand side of Eq. (39) as

(62)

where ξ is an arbitrary complex variable,

The λ dependences of ci, i = 1, …, 4, at b0(z; λ) = 0 are

[these coefficients are the result of substituting solution
(50)]; (!1)ij is the element of matrix !c (31) at point
τ = 0, z = z1. Thus, the first factor in sum (62) corre-
sponds to the evolution of field 8 in the second
medium (z > z2), and the second factor is associated
with its evolution in the first medium.

Consider a large effective length of the resonant

medium, L0 @ 1. We substitute the n dependence of 
that follows from (60) in (62). Considering that all coef-
ficients in sum (62) change monotonically at large L0

and that each term of the sum is proportional to , we
pass in (62) from the sum over n to an integral over the
continuous variable µ = nπ/L0 in the limit L0  ∞:

(63)

ρ z; λ( ) ρ z2( ) 4i λ2 g 2–+( )2
y[ ]exp=

=  ρ z2( ) 4iΛ4y( ), yexp z z2, z z2.>–=

λn
2 g 2– ζ2 n( )

1 ζ2 n( )–
---------------------.=

F1 τ z; ξ,( )
–iΛn

2τ 4iΛn
4 z z2–( )θ z z2–( )+[ ]exp

ξ λ n–
-------------------------------------------------------------------------------------

n ∞–=

∞

∑=

×
c1 λn( ) c2 λn( )+( ) 2iL0Ω λn( )[ ]exp

c4 λn( ) 2iL0Ω λn( )[ ] 2iL0Ω' λn( )exp
---------------------------------------------------------------------------------ψ2 τ ; λn( ),

Ω' λn( )
λ∂

∂ Ω λ( ),
λ λ n→
lim=

2iLΩ λn( )( )exp
c3 λn( )
c4 λn( )
--------------, Λn

2– λn
2

g 2– .+= =

c1 λ( ) !1( )12 c2 λ( ), c3 λ( )– Ω !1( )11,+= = =

c4 λ( ) Ω !1( )11–=

λn
2

L0
1–

F1 τ z; ξ,( )

=  g
2iX2τ 4iX4y+( )exp

ξ λ–
--------------------------------------------------

ψ1 τ ; µ( )µ µd

π 1 µ2–( )3
------------------------------

–+
∫

=  
g3

2π
------ 2iτ X2 4iX4y+( )exp

ξ χ–
--------------------------------------------------ψ1 τ ; χ( ) X2,d

–+
∫

z z2.>
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Here,

Similarly, we calculate the integral in Eq. (40). As a
result, we obtain approximate, valid at z > z2 with accu-
racy 2(1/L0lnL0), singular integral equations:

(64)

(65)

where ρeff(χ) = 2ig3χ.

These equations describe the radiative solution of
MNSE with effective scattering coefficients ρeff, which
is associated with the continuum of the WKI spectral
problem. This solution reduces to Painleve transcen-
dent PIV [32].

Let us find the solution for small τ. Using (38), we

obtain for the limit  ≈ 1,  ! 1,

(66)

where D–1 is the function of a parabolic cylinder [33].
Below, we provide the asymptotics of the solution for
y  ∞ by using the results of [16]. The asymptotic
solution for q is

(67)

Here, we introduced the variable λ0 = (1/2)  and
the functions of it:

X2 g 2– 1 µ2–( )
2–

g 2–+ χ2 g 2– ,+= =

y z z2 0.>–=

ψ1
+ τ y; λ,( ) 0

1 
  1

2iπ
-------- ρeff χ( )

Γ+

∫+=

× 2iτ X2 4iX4y+( )ψ2
– τ y; χ,( )

dχ
λ χ–
------------,exp

ψ2
– τ y; λ,( ) 1

0 
  1

2iπ
-------- ρeff χ( )

Γ–

∫+=

× –2iτ X2 4iX4y–( )ψ1
+ τ y; χ,( )

dχ
λ χ–
------------,exp

ψ1
+( )2 ψ2

–( )2

q τ y,( )
ig3 iτ2/8y( )exp

2π 2y
-----------------------------------------≈

× D 1–
iτ
2y

---------- 
  D 1–

iτ
2y

----------– 
 + ,

y z z2 0,>–=

q τ y,( )
µ λ0( )

2λ0
2y

------------± i 4λ0
4y µ λ0( ) y ---ln+−





exp≈

+ φ± λ0( ) Φ̂± λ0( ) 2ϑ ± λ0( )– π
2
---+ +





2
C2 λ0( ) yln

λ0
2y

--------------------------- 
  .+

τ /y

µ λ0( )
1

2π
------ 1 r λ0( ) 2–( ),ln–=
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C2(s) ~ 2(1), and Γ is the Gamma function.

7. CONCLUSION

We have analyzed a composite model that can be
used to describe the generation of pulses in a system
composed of a resonant two-level medium and an opti-
cal fiber. A nonzero field U(0, z) was shown to produce
a wave packet Q(τ, z). This packet is described by a
solution that asymptotically approaches the quasi-radi-
ative solution of MNSE as the effective length of the
first medium increases (L0  ∞).

The approach used here is universal. The boundary
conditions that lead to an infinite sequence of poles in
the complex plane whose positions depend on variable
quite often arise in problems of coherent nonlinear
optics. For example, when solving the Maxwell–Bloch
equations, which describe the dynamics of pulses in a
two-level semi-infinite medium under conditions of
single-frequency resonance, infinite series of moving
poles also emerge for incomplete initial inversion of the
medium [8]. Simulating the interaction of light with a
two-level transition under conditions of two-frequency
resonance and four-wave mixing in a semi-infinite Kerr
medium [15] can lead to the same boundary conditions.
For a degenerate two-frequency resonance of this kind,
the boundary conditions that generate an infinite series
of poles in the complex plane arise for a nonzero seed
field slowly changing with time variable. For our exam-
ple of a model of the field interaction with a composite
medium, a nonzero field U(0, z) results in nontrivial

φ– λ0( )
1
π
--- ξ2 λ0

2–ln 1 r ξ( ) 2–( ) ξd ,lnd

λ0

∞

∫=

φ+ λ0( )
1
π
--- ξ2 λ0

2–ln 1 r ξ( ) 2–( ) ξdlnd

0

λ0

∫=

–
1
π
--- ξ2 λ0

2+ln 1 r iξ( ) 2+( ) ξd ,lnd

0

∞

∫

Φ̂± λ0( ) Γ iµ λ0( )( )arg±=

+ r λ0( ) 3µ λ0( ) 2
2 1±( )π

4
--------------------,+ln+−arg

ϑ + λ0( )
1 r ξ( ) 2–( )ln

ξ
--------------------------------- ξd

π
----- 1 r iξ( ) 2+( )ln

ξ
------------------------------------ ξd

π
-----,

0

∞

∫+

0

λ0

∫–=

ϑ – λ0( )
1 r ξ( ) 2–( )ln

ξ
--------------------------------- ξd

π
-----,

λ0

∞

∫–=

r λ0( ) ρeff λ0( ) 2ig3λ0,= =
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field dynamics for all z. Applying the ISTM apparatus
to this model allowed the form of the asymptotic solu-
tion to be determined.

An asymptotic solution of the initial value–bound-
ary value problem for the model that describes a degen-
erate two-frequency field interaction with a two-level
medium (7) and (9) for a constant boundary value of the
field amplitude without regard for phase modulation,
i.e., for

can be found in a similar way. In this case, a nontrivial
asymptotic solution arises under the initial-boundary
conditions (54) where

for an arbitrary finite amplitude |U0(z)|.
One of our results is the proof that the asymptotics

of the solution of the composite model for the initial-
boundary conditions specified above is described by a
self-similar solution and contains no true solitons (in
the sense [1]) for any intensity |U0|2 of the additional
field and a large effective length (L0 @ 1) of the reso-
nant medium.

Our analytic apparatus can also be used for other
composite models, while our solutions can be used as
test ones for nearly integrable models and as a zero-
order approximation in constructing the perturbation
theory.

As was noted above, the laser facilities used to gen-
erate light usually include different nonlinear media,
linear modulation of losses, etc. More complex com-
posite integrable models can be employed in analyzing
the evolution of light pulses in idealized models of the
optical facilities that use different forms of nonlinear
interaction between fields and media at different times.
Combined schemes of the interaction with different
media are known to offer additional possibilities for
controlling the nonlinear interaction, field conversion,
and pulse generation. As we showed here, using com-
posite integrable models allows one to analyze such
schemes in terms of exactly solvable models and simul-
taneously to extend the range of applications of integra-
ble models.
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Abstract—The effect of self-induced acoustic transparency for transverse–longitudinal pulses propagating
along an external magnetic field in a system of resonance paramagnetic impurities with the effective spin S = 1/2 is
theoretically investigated. In this case, the short-wave transverse component of the pulse causes quantum tran-
sitions, and the longitudinal long-wave component dynamically shifts the frequency of those transitions. When
the speeds of the longitudinal and transverse acoustic waves in the crystal matrix are close to each other, both
components interact in the mode of the long-short-wave resonance, which is described by a system of nonlinear
integro-differential equations. It is shown that this interaction results, in particular, in the modulation of the car-
rier frequency of the circular-polarized component of the pulse. More precisely, the frequency in the neighborhood
of the signal’s maximum is less than in the vicinity of its edges. Solutions in the form of traveling 2π-pulses are ana-
lyzed analytically and numerically. It is shown that there exist solutions that include a longitudinal component
and cannot be reduced to well-known transverse solitons of the sinus–Gordon equation. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

After the discovery of the optical self-induced trans-
parency (SIT) in [1], experimental [2, 3] and theoretical
[2, 4] search for the corresponding acoustic resonance
effect (ASIT) in low-temperature (T ≈ 4 K) crystal sam-
ples containing paramagnetic impurities proved fruit-
ful. For example, in [2, 3], ASIT was investigated for
Fe2+ impurities, which possess the effective spin S = 1
and are interstitial in the crystal matrices MgO and
LiNbO3, when a microsecond longitudinal acoustic
pulse propagates at an angle to the external magnetic
field B. In [4], a theoretical treatment of ASIT is given
for the transverse pulse propagating along B in the sys-
tem of spins S = 1/2.

In the general case, the almost independent propaga-
tion of the longitudinal and transverse components of
the acoustic pulse in a solid body is ensured by a con-
siderable detuning of their linear speeds a|| and a⊥ . For
the majority of crystals, such a situation actually takes
place [5]. However, if the Cauchy relation [6] holds for
the components of the elastic constant tensor in an elas-
tically isotropic crystal (the speeds of the longitudinal
and transverse components of the elastic field are inde-
pendent of the direction), the speeds of the longitudinal,
a||, and transverse, a⊥ , acoustic waves are equal to each
other. These conditions are best satisfied with ionic
crystals of halides of alkaline metals [6], for which the
interaction force between atoms is central [7]. NaBr is
a representative of this group of crystals [6].

When propagating in the crystal, both components
of the acoustic pulse interact with quantum paramag-
1063-7761/01/9302- $21.00 © 20236
netic impurities, through which an effective nonlinear
interaction between the two components can realize
provided that a|| and a⊥  are close enough. This interac-
tion can substantially influence the resonance excita-
tion of paramagnetic ions by the acoustic field, which
affects the manifestation of specific features of ASIT,
which were not considered earlier and are discussed in
Section 4 of this paper.

In [8], soliton-like propagation modes of trans-
verse–longitudinal pulses along B under the condition
of a weak (the spectrum of the pulse does not overlap
the quantum transitions) excitation of paramagnetic
impurities with the effective spin S = 1 are investigated.
The system of coupled equations for the longitudinal
and transverse components of the elastic pulse with
weak (power) nonlinearity derived in [8] describes the
quasi-soliton dynamics in the long-short-wave reso-
nance mode when the approximation of the slowly
varying amplitudes and phases (SVAP), which is stan-
dard for quasi-monochrome pulses, is inapplicable. The
role of the long-wave component of the elastic field is
played by the longitudinal component of the acoustic
pulse, and the role of the short-wave component is
played by the transverse component. If the SVAP
approximation is used, this system takes the form of the
long-short-wave resonance systems of the type of the
Zakharov [9] and Yadjima–Oikawa [10] equations.

In this paper, we consider the ASIT effect for quasi-
monochrome acoustic pulses with longitudinal–trans-
verse structure that propagate along B in a system of para-
magnetic impurities with the effective spin S = 1/2 under
the condition of long-short-wave resonance (a|| ≈ a⊥ ).
001 MAIK “Nauka/Interperiodica”
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In this case, the frequency of the transverse component
of the monochromatic pulse ω coincides with the fre-
quency ω0 of the Zeeman split of the Kramers doublet.

The paper is organized as follows. In Section 2, the
semiclassic approach is used to derive self-consistent
wave and constitutive equations describing the nonlinear
dynamics of longitudinal–transverse acoustic pulses that
propagate along an external magnetic field in a system of
paramagnetic impurities. In Section 3, an asymptotic
method for solving constitutive equations is suggested
when neglecting the nonuniform broadening. This asymp-
totics is used as a basis for deriving a system of equations
for the long-short-wave resonance in the strong nonlinear-
ity mode. In the following section, solutions to this system
in the form of stationary traveling pulses are analyzed
analytically and numerically, and the main specific fea-
tures of the acoustic self-induced transparency for lon-
gitudinal–transverse solitons are formulated. In conclu-
sions, the main results obtained in this paper are pre-
sented, and the most interesting unsolved problems are
formulated.

2. SELF-CONSISTENT EQUATIONS
OF MOTION

The Hamiltonian of the Zeeman interaction of the α
magnetic moment  with the magnetic field B has

the form  =  · B. In turn, the components 

(j = x, y, z) of the vector operator  are related to the

corresponding components of the spin  ≡ (rα)
(rα is the radius vector of the spin α) by the gyromag-

netic equation  = , where µB is the
Bohr magneton and gjk are the components of the Landé

tensor . Then,

(1)

Here N is the total number of spins. In terms of the basis

consisting of the eigenfunctions of , the components
of the spin S = 1/2 are written in terms of the Pauli
matrices as

(2)

We orient the coordinate axes x, y, and z along the
principal axes of the Landé tensor, which coincide with
the symmetry axes of the crystal. Then, in the absence
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of strains, the  tensor has a diagonal form with gjk =

 = gjjδjk (δjk is the Kronecker symbol). When propa-
gating in the crystal, the acoustic wave distorts the com-
ponents of the Landé tensor as

(3)

where %pq is the elastic strain tensor of the crystal at the
point where the paramagnetic ion is located. The strain
tensor depends on the components of its displacement
U = (Ux, Uy , Uz) as

The subscript “0” of the terms under the summation
sign means differentiation at %pq = 0.

Hence, the Hamiltonian can be written as the sum

(4)

where the Hamiltonians of the spin subsystem and
spin–phonon interaction have the form

(5)

(6)

Here Fjkpq ≡ (∂gjk/∂%pq)0 are the constants of the spin–
phonon coupling [11, 12].

We supplement Hamiltonians (5) and (6) with the
Hamiltonian of the acoustic field

(7)

where ρ is the average density of the crystal, pj (j = x, y, z)
are the components of the momentum due to dynamic
shifts, and λjklm is the tensor of the crystal elasticity
moduli [13]. The integration in (7) is performed over
the entire crystal volume. Here, following [8], we use
the semiclassical approach in which the spin dynamics
is described in the framework of quantum mechanics,
and the elastic momentum field is described classically.
For this reason, Hamiltonian (7), in contrast to (5) and (6),
is a complex-valued functional rather than an operator.

From the microscopic point of view, the spin–phonon
coupling in the case S = 1/2 appears due to the modulation
of the spin–orbit interaction by the elastic field under the
condition of “freezing” the orbital momentum [14]. In sys-
tems with higher spins, the dominant contribution to the
spin–phonon interaction is made by quadratic (with

respect to spin operators) terms ~  + , which
correspond to the Waller and Van Vleck mechanisms

ĝ

g jk
0( )

g jk g jk
0( )=
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 
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[12, 14]. For S = 1/2, these terms vanish due to anticom-
mutativity of the Pauli operators [11, 14].

According to the semiclassical approach [8, 15], the
following equation holds for the evolution of the den-

sity operator  of the α spin:

(8)

where  is written in the form

the elastic momentum field obeys the classical Hamil-
tonian equations for continuous media:

(9)

where H = Ha +  and 〈…〉  is the operation of
quantum mechanical averaging. Using (9), the classical

interaction Hamiltonian  can be conveniently
written in the form

(10)

Here n = (r – rα) is the concentration of paramag-
netic ions and δ(r – rα) is the Dirac delta function.

Let a transverse–longitudinal acoustic pulse be
propagating in a cubic crystal along B and one of the
fourth-order symmetry axes, which coincides with the
axis z. Consider the one-dimensional case when all
dynamical variables depend only on z and t. In this case,
rotation by 90° about the axis (x  y, y  –x, and
z  z) and the reflections x  –x and y  –y are
symmetry transformations. Taking into account the
axial property of the vectors B and S (when one of the
coordinate axes is inverted, the corresponding compo-
nents of B and S remain unchanged, and the two others

change their sign), we rewrite  and  as

(11)

where ω0 = gµBB/" is the frequency of the Zeeman
splitting of the Kramers doublet, g = gxx = gyy = gzz, and
" is the Planck constant.
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α( )
F44 %xzŜx
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α( )
+( )+{ } ,

α
∑=
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Under our assumptions, the Hamiltonian Ha has the
form

(12)

In (10) and (11), we use the Focht notation for the indi-
ces of fourth-order tensors: xx  1, yy  2, zz  3,
yz  4, xz  5, and xy  6.

Now we have from (8)–(12) and (2)

(13)

(14)

(15)

(16)

where G|| = "ω0F11/g, G⊥  = "ω0F44/g, %|| = %zz, %⊥  =

%xz + i%yz, a|| = , and a⊥  =  are the veloc-
ities of the longitudinal and transverse acoustic waves,
respectively, W = (ρ22 – ρ11)/2 is the inversion of popu-
lation in the system of the Kramers doublets, S⊥  is
expressed in terms of the transverse components of the
Bloch vector U = (ρ21 + ρ12)/2 and V = (ρ21 – ρ12)/2i as
S⊥  = U + iV = ρ21.

It follows from the constitutive Bloch-type equa-
tions (15), (16) that the transverse component of the
strain causes quantum transitions inside the Zeeman
doublet as the pulse propagates in the Faraday geome-
try; the longitudinal component causes a shift in the fre-
quency of those transitions.

The system of Eqs. (13)–(16) describes the self-con-
sistent dynamics of paramagnetic impurities and acous-
tic pulses when the latter propagate along the fourth-
order axis of the cubic crystal in parallel to the external
magnetic field.

3. EQUATIONS
OF SELF-INDUCED TRANSPARENCY

FOR TRANSVERSE–LONGITUDINAL PULSES

Let the circular polarized transverse component of
the acoustic field be a quasi-monochrome pulse of the
duration τp with the filling frequency ω such that ωτp @ 1.
Then, this component is written in the form

(17)
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where k is the wave number and Ω⊥ (z, t ) is the slowly
varying complex amplitude

(18)

In the constitutive equations, we pass to the representa-
tion of the rotating wave

(19)

Substituting (17) and (19) into (13), (15), and (16),
neglecting (by virtue of (18)) the second derivatives
with respect to Ω⊥ , i.e., using the SVAP, and assuming
that k = ω/a⊥ , we obtain

(20)

(21)

where ∆ = ω0 – ω is the detuning of the pulse carrier fre-
quency from the resonance frequency of the quantum
transition, Ω|| = G||ε||/".

As before, the longitudinal component of the acous-
tic pulse is described by Eq. (14).

We will seek solutions to the constitutive Eqs. (21)
under the exact resonance condition (∆ = 0). In general,
the existence of inhomogeneous broadening violates
this condition. Assuming that ∆ ~ 1/  (  is the time of
invertible relaxation in the system of Zeeman’s doublets
due to inhomogeneous broadening), we see from (21) that
the inhomogeneous broadening can be neglected under
the conditions /τp ~ Ω||  ~ |Ω⊥ |  @ 1; hence, we

can set ∆ = 0 in (21). Setting  ~ 10–8 s (see [2, 12]),
we find that τp ~ 10–9 s and Ω||, |Ω⊥ | ∼ 109 s–1. On the
other hand, |Ω⊥ | ~ ω0F%, where F and % are the mean
values of the constants of the spin–phonon interaction
and relative strain. Assuming that ω0 ~ 1011–1012 s–1

and F ~ 10–102 [11, 12], we find that % ~ 10–4, which
corresponds to the intensity of acoustic pulses I ≈ ρa3%2 ≈
10–102 W/cm2 (here we assumed that ρ ~ 2 g/cm3 and
a ~ 3 × 105 cm/s).

In order to solve system (21) under the conditions
formulated above, it is convenient to rewrite this system
in the matrix form

(22)

∂Ω⊥

∂t
----------  ! ω Ω⊥ , ∂Ω⊥

∂z
----------  ! k Ω⊥ .

S⊥ R i ωt kz–( )[ ] .exp=

∂Ω⊥

∂t
---------- a⊥

∂Ω⊥

∂z
----------+ i

nG⊥
2 ω

8"ρa⊥
2

----------------R,=

∂R
∂t
------ i ∆ Ω||+( )R= iΩ⊥ W ,–

∂W
∂t

-------- Im Ω⊥ R*( ),–=

T2* T2*

T2* T2* T2*

T2*

∂Y
∂t
------- i ÂY,=
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where

(23)

The values of the components of the vector Y are
bounded: 0 ≤ |R|2 and |W| ≤ 1/2. Hence, it is seen from (22)
that, as the time of the pulse action decreases, the non-

zero components of the matrix  increase (in the limit,

Ω||, |Ω⊥ |  ∞ as τp  0). Hence, the components of 
are large dynamical parameters; thus, the Wentzel–Bril-
louin–Kramers–Jeffry method (WBKJ) is applicable

[16]. It is seen from (23) that the matrix (t) in the case
under consideration does not commute with itself at

different time moments; i.e. [ (t), (t ' )] ≠ 0. Hence,
the solution to (22) can be symbolically written in the
form of a chronological exponent. However, in the limit

t  t0 and   ∞ (where ||…|| is the operator

norm), the elements of  do not noticeably change
within the time ∆t = t – t0. Therefore, as ∆t  0 and

  ∞, we have [ (t), (t ' )]  0 and

(24)

where

(25)

is the evolution operator [17]. Under the condition that
all eigenvalues λj (j = 1, …, N) of the matrix

are different, we can use the Sylvester formula for com-
puting the exponent in (25) [18, 19]:

(26)

where  is the identity matrix.

The eigenvalues λ of the matrix  are determined
from the equation
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Y t( ) Û t t0,( )Y t0( ),=
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The elements θjk of  are expressed in terms of the cor-

responding elements of  as

(as ∆t  0). Setting

in (27), we obtain for the matrix  of order N × N

Comparing this equation with (27), we see that if
{λj} is the set of eigenvalues of the matrix

then {pj} is the set of eigenvalues of the matrix  in the

limit ∆t  t0 and || ||  ∞; in addition,

Setting

in (26) and using (25), we find the evolution operator

(28)

Thus, (24) and (28) determine a solution to system (22)
for an arbitrary order N if the WBKJ approximation is

valid, i.e., when ∆t  0 and || ||  ∞.

In our case, N = 3, and it is seen from (23) that

From the physical point of view, the limit ∆t  0
means that τp/  ! 1 (see above), which corresponds
to neglecting the inhomogeneous broadening. In this

θ̂
Â
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case, the evolution operator for system (22) (or (21 for
∆ = 0) is written as

(29)

where

(30)

Tending formally t0  –∞ and taking into account
that Y†(–∞) = (0, 0, W∞), we obtain from (29), (30), and
(24) that

(31)

(32)

The direct substitution of (31) and (32) into (21) at
∆ = 0 shows that solutions (31), (32) are valid if the
derivatives of Ω⊥ /Ω and Ω||Ω⊥ /Ω2 are neglected com-
pared to the derivatives of θ. The slow change of the
coefficients of the periodic functions sinθ and sin2(θ/2)
in comparison with the periodic functions themselves is
consistent with the basic assumptions of the WBKJ
method [16].

For Ω|| = 0, Eqs. (21) turn into the system used in [20].
Setting Ω|| = 0 (Ω = |Ω⊥ |) in (31) and (32), we obtain the
solutions that were obtained in [20] in a different way.
This fact provides an important argument in favor of the
general Eqs. (24), (28), which determine an asymptotic

solution to system (22) as   ∞.
Substituting (31) and (32) into (20) and (14), we

obtain

(33)
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where

and Ω and θ are determined by (30).
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Â
Ω
---- θ,sin+

Ω Ω||
2 Ω⊥+

2
= , θ Ω t '.d

t0

t

∫=

R iW∞
Ω⊥

Ω
------- θsin–= 2W∞

Ω||Ω⊥

Ω2
-------------- θ

2
---,sin

2
+

W W∞ 1 2
Ω⊥

2

Ω2
------------ θ

2
---sin

2
–

 
 
 

.=

Â
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pulse speed v  is close to a⊥ . If, in addition, the long-
short-wave resonance condition (a|| = a⊥  = a) is strictly

satisfied and α|| τp ! 1, we can perform a reduction
with respect to the derivatives on both sides of (34) with
the help of the approximation of the one-directional
propagation [21] (or the slowly changing profile). In the
thermodynamically equilibrium case, the initial inver-
sion Ω∞ = –0.5 , where kB is the Bolt-
zmann constant. For ω0 ~ 1011 s–1 and T < 1 K, we can
assume that W∞ ≈ –0.5. Then,

For F44 ~ 10, τp ~ 10–9 s, g = 2, ρ = 2 g/cm3, and a⊥  =

3 × 105 cm/s, we obtain α⊥  ~ 10–4 ! 1. By the same

taken for F11 ~ 10 we obtain, α|| τp ~ 10–4. According
to one-directional propagation approximation, we
introduce the “local” time τ = t – z/a and the “slow”

coordinate ζ = ez, where e ~ α⊥  and α||a–2τp. Then,

We neglected the term ~e2 in the last expression. The
right-hand side of Eq. (34) ~α|| ~ e; hence we set

there and then integrate this equation with respect to τ.
As a result, we obtain, instead of (33) and (34),

(35)

(36)

Here µ⊥  = α⊥ /a, µ|| = α||a/2, and θ is determined from (30)
accurate to the change t  τ in the upper limit of the
integral, and τ0  –∞ in the lower limit.

The integro-differential system obtained describes
the effect of the acoustic self-induced transparency in
the mode of long-short-wave resonance under strong
spin–phonon nonlinearity. The role of the short-wave
component of the elastic field is played by the complex
envelope Ω⊥  of the transverse component of the pulse;
the role of the long-wave component is played by the
longitudinal component. It must be noted that the
change of the two-sided system (33), (34) for the one-
sided system (35), (36) is similar to passing from the
nonintegrable Zakharov equations [9] to the integrable
Yadjima–Oikawa system [10].
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4. SPECIFIC FEATURES
OF SELF-INDUCED TRANSPARENCY

FOR TRANSVERSE–LONGITUDINAL PULSES

Let us write the complex envelope Ω⊥  in the form

(37)

Substituting (37) into (33) and separating the real
and imaginary parts, we obtain

(38)

(39)

For a purely transverse pulse (Ω|| = G|| = 0 and Ω =
∂θ/∂t = |Ω⊥ |), Eq. (39) shows the absence of the phase
modulation, and (38) is reduced to the sinus-Gordon
equation for θ obtained in [4]:

Thus, the phase modulation is caused by the presence
of the longitudinal component of the acoustic pulse.

The general analysis of system (34) (or (36)), (38), (39)
seems rather difficult. Not pretending to generalize, we
will seek a solution to this system in the form of a local-
ized traveling pulse. Below, we call this pulse a soliton;
we interpret this notion in the general sense, and do not
assume that such a pulse interacts elastically with
similar pulses. Thus, we seek a solution in the form
Ω|| = Ω||(ξ), Ω⊥  = Ω⊥ (ξ), φ = φ(ξ), where ξ = t – z/v  and
v  is the speed of the pulse propagation. Then, it follows
from (34), (38), and (39) with regard for the fact that
|Ω⊥ |, Ω||, dΩ||/dξ  0 as t  –∞ that

(40)

where

Let us derive the equation of the phase trajectory for the
dependence of the longitudinal, Ω||, and transverse, |Ω⊥ |,
pulse components. Considering θ as a parameter on
which |Ω⊥ | depends, we can write

Ω⊥ z t,( ) Ω⊥ eiφ z t,( ).=

∂ Ω⊥

∂t
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Substituting this expression into the second equation in
(40) and integrating with regard for the conditions at infin-
ity, we find

Now, we find sin2(θ/2) from the first equation in (40)
and substitute it into the last equation. Differentiating
with respect to |Ω⊥ |, we obtain

(41)

Thus, we passed to the dimensionless variables σ =
(|Ω⊥ |/δ)2 and Φ = –Ω||/δ, where δ = 4α/β.

Below, Eq. (41) is called the phase trajectory equa-
tion.

From the first two equations in (40), we easily find
that

(42)

Integrating system (41), (42), we can determine Ω|| and
|Ω⊥ | as functions of t – z/v. In the general case, it seems
impossible to find the analytical solution to Eq. (41).
However, it can be done for two opposite limiting cases.

1. Let |Ω⊥ |2 @ . In the variables σ and Φ, this cor-
responds to the condition Φ2/σ ! 1. Then, only the first
terms remain in the numerator and denominator of (41),
and dΦ/dσ = 1. Hence, taking into account the fact that
Φ  0 as σ  0, we obtain Φ = σ. Now, neglecting
Φ2 in the parentheses of the radicand in (42) in compar-
ison with σ and passing from the dimensionless vari-
ables to the original ones |Ω⊥ | and Ω||, we find

(43)

where the speed v  is connected with the duration of the
pulse τp by the equation

(44)

and the amplitude of the longitudinal component Ω||m =

β = α||/(  – v 2).

According to (44) and the estimates made above, the
speed of the soliton-like structure is very close to a⊥ . If
a⊥  is substantially different from a⊥  (a|| > a⊥ ), then
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Ω||m ≈ α||/(  – ) (here, we set v  ≈ a⊥ ) and it is almost
independent of τp and the amplitude of the transverse
component. This testifies that the longitudinal and
transverse components affect each other insignificantly
under the condition of a substantial detuning of the
speeds of the longitudinal and transverse acoustic
waves. At the same time, as it was mentioned above, the
influence of the longitudinal and transverse compo-
nents on each other is most effective at a⊥  = a|| = a (the
long-short-wave resonance). Then,

This approximation is equivalent to the transition from
system (33), (34) to (35), (36). Below, all numerical
estimates will be made for the case a⊥  = a|| = a; general
analytic expressions will be given for the case a⊥  ≠ a||;
i.e., for system (33), (34). It is seen from (43) that the
amplitude of the transverse component is |Ω⊥ |m = 2/τp.

Hence, we see that the condition  @  is
equivalent to the inequality

(45)

For the majority of crystals, F11 > F44 [11, 14]. The
validity condition for the SVAP approximation has the
form (ω0τp)2 @ 1, which does not contradict (45). For
ω0τp ~ 103, F44 ~ 10, and g = 2, we have for the ampli-
tude of the relative transverse strain the formula

which corresponds to the intensity I ≈ ρa3|%⊥ |2 ~
103 W/cm2 (ρ = 2 g/cm3 and a = 3 × 105 cm/s).

From (43) and (32), we find the dynamics of the
inversion of population when the pulse under consider-
ation passes through the medium:

(46)

This formula shows that the inversion of spins at the
maximum of the soliton’s amplitude is incomplete
(W ≠ –W∞), which is due to the presence of the trans-
verse component (Ω||m ≠ 0). This phenomenon can be
easily explained in the framework of the model used.
Indeed, the increase of Ω|| (and |Ω⊥ | along with it) takes
the quantum system off the resonance state (see (15)
and (21)), which hinders its further excitation.

Solutions (43), (44) are actually corrections to the
corresponding solutions obtained in [4] for purely
transverse pulses; thus, they can be obtained from (40)
by the successive approximation method with respect
to Ω||. It is clear that no radically new solutions can be
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obtained in this way. From this point of view, the other
limiting case seems to be more interesting.

2. Let |Ω⊥ |2 ! . This condition is equivalent to
the inequality Φ2/σ @ 1; hence, we can neglect the first
terms in the numerator and denominator of (41). Then,
we have

The solution to this equation satisfying the condition
Φ = 0 at σ = 0 has the form Φ = σ/2. Neglecting the
term σ in the parentheses on the right-hand side of (42)
in comparison with Φ2, we obtain after the integration
and return from the dimensionless variables to the orig-
inal ones

(47)

where

and the relation between the speed of the soliton and its
duration is determined as

(48)

Setting Ω2 ≈  in (32) and using (47), we obtain
for the inversion of populations the equation

(49)

By virtue of the condition |  ! , the initial
inversion, as is seen from (49), undergoes only slight
changes as the transverse-longitudinal pulse passes. In
the limit under consideration, the transverse compo-
nent, which causes the quantum transition, is weaker
than the longitudinal component, which takes the tran-
sition off the resonance with the carrier frequency of
the pulse transverse component. This fact explains the
weakening of the excitation degree of the quantum sys-
tem as the ratio |Ω⊥ |/Ω|| decreases.

Setting a|| = a⊥  = a, we obtain an expression for the
amplitude of the transverse component:
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Then, the condition  ! , together with the
applicability condition of the SVAP approximation
(ω0τp @ 1) is written as

(50)

For paramagnetic inclusions of Co2+ in the matrix of
the ion crystal, the ratio 2F11/F44 can reach as much as
10 [11]. Hence, 1 ! ω0τp ! 100. Taking into account
the fact that the SVAP approximation becomes valid for
ω0τp > 10, we conclude that the soliton-like structure of
type (47) can be discovered in experiments with acous-
tic pulses with the transverse component being quasi-
monochromatic with the carrier frequency ω that is

close to ω0. Notwithstanding the fact that  @ |Ω⊥ |2,
the relative strains |%⊥ | and %|| can be comparable in

magnitude; in this case, the inequality  @ |Ω⊥ |2

holds at the expense of the inequality  @ . Set-
ting F11 ~ 102, ω0τp ≈ 40, and g = 2, we find that

which corresponds to the intensity I ≈ ρ |%⊥ |2 ~
105 W/cm2 (here, we assume that ρ = 2 g/cm3 and a⊥  ≈
3 × 105 cm/s). Thus, to excite a soliton of form (47), the
intensity of hypersonic pulses must be by about two orders
of magnitude greater than the intensity of the soliton (43).
It was noted above that the soliton-like solution (43) is
only a slight perturbation of the soliton of the sinus–
Gordon equation obtained in [4]. From this point of
view, solution (47) is a fundamentally new one; it nec-
essarily contains a longitudinal acoustic component. In
this connection, we note that this solution can be also
obtained directly from (34), (38), and (39) if we set
Ω ≈ |Ω||| in those equations.

It follows from (43), (47), (37), and (17) that the car-
rier frequency of the transverse component in the
neighborhood of the soliton maximum is less than the
corresponding frequency on peripheral parts. If the
medium was in thermodynamic equilibrium before the
pulse action, then α||, α⊥  > 0, and the pulse speed v  < a⊥ ,
a||. Hence, it follows from (40) that α, β > 0 and Ω||,
dφ/dξ < 0. Thus, for arbitrary ratios |Ω⊥ |/Ω||, the fre-
quency of the transverse component of the stationary
traveling pulse in the equilibrium medium decreases
from its periphery to the center, where the influence of
the longitudinal component is the largest (see Fig. 1).

In the case of the equilibrium medium, for Ω|| < 0,
according to (15) (or (21)), the longitudinal component
of the pulse reduces the frequency of the quantum tran-
sition, which takes the spin subsystem off the resonance
with the transverse component. Trying to remain in the

Ω⊥ m
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resonance state, the spin subsystem modulates the fre-
quency of the transverse component in an appropriate
way. This fact can be viewed at as a manifestation of the
Le Chatelier–Brown principle [22].

In the intermediate case |Ω⊥ | ~ Ω||, system (41), (42)
resists analytical analysis; thus, it was investigated

ReΩ⊥

Ω||

0 t – z/υ

t – z/υ

Fig. 1. Schematic view of the two-component soliton of the
self-induced acoustic transparency propagating along the
magnetic field.
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numerically. The results of the numerical analysis for
various values of the ratio

are presented in Fig. 2. For the two limiting cases (Figs. 2a
and 2c), the numerical dependences Ω||(ξ), |Ω⊥ (ξ)|, and
W(ξ) are in good agreement with the corresponding
analytic expressions (43), (46) and (47), (49) presented
above. The intermediate case, when Ω||m and ||Ω⊥ |m are
close to each other in magnitude, is illustrated in Fig. 2b.
As expected, the degree of excitation of the quantum
system lies between the two limits (Figs. 2a and 2c)
mentioned above. In all the cases, the longitudinal com-
ponent of the traveling pulse is localized stronger than
the transverse one, and the total area of the pulse is

This is best seen from Eq. (32) for the inversion and
from the plots presented in Fig. 2. The values of W
before sending the pulse (θ = 0) and after its passage
(θ = 2π) are equal to W∞. It seems important that the
contribution to the area of the pulse is made both by the
resonance transverse and the low-frequency longitudi-
nal components of the acoustic pulse. On the other
hand, it is seen from (32) that the purely longitudinal
pulse (Ω⊥  = 0) does not cause quantum transitions (and,
thus, does not change inversion) in the Faraday geome-
try, which was also mentioned above.

Φm
2

σm

-------
Ω||m

Ω⊥ m

------------- 
  2

≡

θ∞ Ω td

∞–

+∞

∫ 2π.= =
(a) (b) (c)
|Ω⊥ |/δ,
–Ω||/δ

|Ω⊥ |/δ,
–Ω||/δ

|Ω⊥ |/δ,
–Ω||/δ

0.3

0 2–2 η

1

0 2–2 η 0 2–2 η

0 2–2 η

0 2–2 η

0 2–2 η

10

20

W/|W∞|

W/|W∞|

W/|W∞|

–0.5

–1.0

0.5

–1.0 –1.0

–0.9

–0.5

Fig. 2. Results of the numerical solution of system (41), (42) upon returning to the original variables Ω|| and |Ω⊥ |: (Ω||/|Ω⊥ |)2 = 0.18 (a),
1.17 (b), and 13 (c); η = 2(t – z/v)/τp. On the upper plots, the dependences |Ω⊥ (η)| are shown in solid lines and Ω||(η) by dashed
ones. The inversion W was calculated by formula (32).
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5. CONCLUSIONS

In this paper, we investigated the structure of trans-
verse–longitudinal soliton-like acoustic pulses interact-
ing with paramagnetic Kramers doublets in the ASIT
mode that propagate along an external magnetic field
(the Faraday geometry). In the process, the transverse
component of the pulse causes resonance quantum
transitions inside the doublets, and the role of the lon-
gitudinal component is reduced to the dynamic shift in
the frequency of those transitions. As a result, the quasi-
monochromatic transverse component is taken off the
resonance state by the low-frequency longitudinal com-
ponent. As a result, the degree of excitation of the quan-
tum system (Kramers doublets) decreases. In addition,
the existence of the longitudinal component of the elas-
tic field results in a modulation of the carrier frequency
of the pulse’s transverse component—the frequency is
less in the vicinity of the soliton’s maximum than it is
in peripheral regions. Thus, the long-wave (longitudi-
nal) and short-wave (transverse) components interact
nonlinearly through the quantum system. This interac-
tion is most effective when the linear speeds of the lon-
gitudinal and transverse sound waves are equal. Then,
the system of integro-differential equations (35), (36)
holds, which describes the long-short-wave resonance
in the strong nonlinearity mode. In this sense, it is dif-
ferent from the Zakharov system [9], Yadjima–Oikawa
system [10], and their generalizations [8, 23, 24], where
the nonlinearity is weak (expanded in powers of the
amplitudes of both components). Thus, in our opinion,
further mathematical investigation of system (35), (36)
is of interest. The asymptotic soliton-like solution of

form (47) (  @ |Ω⊥ |2) is fundamentally new and can-
not be reduced to known [4] purely transverse solitons
of the sinus-Gordon equation.

We considered ions with the effective spin S = 1/2 as
quantum paramagnetic inclusions. This model is
extremely simple and is characterized by ease of inter-
pretation of the results obtained. However, it is well
known that paramagnetic ions of the iron group pos-
sessing the effective spin S = 1 exhibit a much stronger
dynamic coupling with the oscillations of the crystal
lattice. In this case, the Hamiltonian of the spin–phonon
interaction is quadratic in the spin operators. As a
result, the mathematical analysis becomes much more
difficult. However, the model with S = 1 is preferable
from the viewpoint of possible experiments. The sys-
tem of paramagnetic impurities with S = 1 is also inter-
esting for another reason. As an acoustic pulse propa-
gates perpendicularly to B (the Focht geometry), both
components of the pulse (the longitudinal and the trans-
verse ones) cause quantum transitions inside the Zee-
man triplet. More precisely, the transverse component
excites transitions at the frequencies ω0 and 2ω0,
whereas the longitudinal one at the frequency 2ω0 [25].
In this case, both components can be represented in the
form of a slowly varying envelope, and the long-short-

Ω||
2
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wave mode is replaced by a two-frequency ASIT. In our
opinion, the corresponding investigation is of interest.

The method for obtaining asymptotic solutions to
the system of constitutive Eqs. (22) developed in this
paper, which is based on formulas (24) and (28), is also
valid for microobjects with an arbitrary number of quan-
tum levels. Hence, the application of this approach in the
case of paramagnetic impurities with higher effective
spins seems promising. At the same time, the method
described is inapplicable to weaker pulses, when the inho-
mogeneous broadening must be taken into account. In this
case, new approaches to solving constitutive equations
containing both the longitudinal and transverse compo-
nents of the pulse are required. Taking into account the
inhomogeneous broadening is essential for deriving the
areas theorem [2]. In this connection, it is important to
find a modification of this theorem for two-component
pulses compared to the cases of purely longitudinal or
transverse solitons.
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Abstract—The processes of third-harmonic and difference-frequency generation through the four-wave mix-
ing of picosecond pulses in gas-filled hollow fibers are experimentally studied. Due to the improvement of
phase-matching conditions with an appropriate choice of the gas pressure and optimal parameters of the hollow
fiber, we were able to use hollow fibers with a large length (up to 30 cm) for difference-frequency generation,
which resulted in a considerable increase in the power of the difference-frequency signal at the output of the
fiber. Our experimental data reveal a considerable influence of high-order waveguide modes on four-wave mix-
ing processes in a hollow fiber. It is shown that the waveguide regime of nonlinear optical interactions imple-
mented in hollow fibers removes the limitations on the efficiency of third-harmonic and sum-frequency gener-
ation, which are characteristic of the tight-focusing regime in media with normal dispersion and which are due to
the geometric phase shift arising in tightly focused light beams. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Gas-filled hollow fibers have recently successfully
solved several important problems of nonlinear optics
and optics of ultrashort laser pulses. Nonlinear optical
interactions in gas-filled hollow fibers are currently
widely employed in the generation of extremely short
light pulses [1, 2] and optical frequency conversion to
the vacuum-ultraviolet and X-ray ranges (including the
water-window region) through high-order harmonic
generation [3–8]. Fibers of this type also offer much
promise for improving the sensitivity and expanding
the possibilities of coherent four-wave mixing spectros-
copy [9, 10].

An important advantage of hollow fibers is associ-
ated with the fact that they permit the pump and the sig-
nal generated through a frequency-nondegenerate non-
linear optical process to be phase-matched. With a care-
ful choice of the parameters of a hollow fiber, the gas
pressure, and the excitation of appropriate waveguide
modes, the phase mismatch related to the gas dispersion
can be compensated for by the waveguide component
of the phase mismatch [3, 8, 9, 11]. When these condi-
tions are satisfied, the energy of the nonlinear signal
can be considerably increased by using longer hollow
fibers. The parameters of short pulses of short-wave-
length radiation generated through nonlinear optical
interactions in gas-filled hollow fibers can be controlled
due to cross-phase modulation [12–14].
1063-7761/01/9302- $21.00 © 20247
This paper is devoted to the investigation of the
properties of nonlinear optical interactions in gas-filled
hollow fibers that are, in our opinion, of considerable
methodological interest and that open new avenues for
numerous practical applications of hollow fibers in
nonlinear optics, optics of ultrashort pulses, and nonlin-
ear spectroscopy. In particular, one of the most general
properties of the waveguide regime of nonlinear optical
interactions in hollow fibers is associated with a fact
that the use of a hollow fiber allows high power densi-
ties of laser radiation typical of a tight-focusing regime
to be achieved with an appropriate focusing of pump
beams. The waveguide regime of radiation propagation
under these conditions ensures the geometry of nonlin-
ear optical processes that is characteristic of plane-
wave interaction, thus allowing the efficiency of sum-
frequency generation to be considerably improved rel-
ative to nonlinear optical interactions of tightly focused
light beans in a medium with a normal dispersion.

Most of the nonlinear optical hollow-fiber experi-
ments performed to date were performed with the use
of high-intensity femtosecond pulses (the pioneering
work by Miles et al. [9] is an exception, but their work
does not deal with sum-frequency generation pro-
cesses). The prohibition on third-harmonic generation
(THG) and sum-frequency generation in a gas with an
initially positive dispersion in these experiments may
be removed due to the ionization of the gas (such
effects were observed in numerous experiments) and
001 MAIK “Nauka/Interperiodica”
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due to the self-action of laser pulses (which was also
observed experimentally, see [15, 16]).

The experiments presented in this paper provide
direct evidence of the possibility of sum-frequency
generation and optical frequency multiplication in
media with a normal dispersion due to the use of the
waveguide regime of nonlinear optical interactions. For
this purpose, we employed picosecond pulses of moderate
intensities (the maximum intensities of laser pulses in our
experiments were on the order of 1011 W/cm2). No third
harmonic was generated when such laser beams were
tightly focused in the gas in the absence of a fiber,
which indicates that the perturbation of the gas medium
and the pump beams themselves does not have a con-
siderable influence on nonlinear optical processes.
Such an approach allowed us to study the main proper-
ties of four-wave mixing (FWM) processes in the
waveguide regime and to examine the ways to phase
match FWM processes under these conditions. One of the
important results of our study is the experimental demon-
stration of a considerable influence of high-order
waveguide modes on FWM processes in hollow fibers.
The investigation of FWM of picosecond pulses is also
of considerable interest in the context of the possibility of
using hollow fibers to improve the sensitivity of nonlinear
optical techniques for gas-phase analysis. Picosecond
pulses are often a reasonable choice for stationary spectro-
scopic techniques, which are widely employed for various
practical applications and which may often impose certain
limitations on the duration of laser pulses.

The plan of this paper is the following. In Section 2,
we employ the slowly varying envelope approximation
to derive expressions describing FWM processes in
gas-filled hollow fibers including the phase mismatch
and the influence of high-order waveguide modes. Section
3 describes the experimental technique and the procedure
of measurements. The results of experiments are dis-
cussed in Section 4. Finally, the main conclusions will be
briefly summarized in the last section of this paper.

2. THE THEORY OF FOUR-WAVE MIXING
IN HOLLOW FIBERS

2.1. The Amplitude of the FWM Signal

In this section, we will study the specific features of
FWM processes in gas-filled hollow fibers taking into
consideration the influence of phase-matching effects,
optical losses of hollow-fiber modes, and high-order
waveguide modes. We will consider FWM processes of
third-harmonic and difference-frequency generation giv-
ing rise to a signal at the frequency of the third harmonic
in accordance with the following FWM schemes:

where ω and 2ω are the frequencies of pump pulses
(fundamental radiation of the pump laser and its second
harmonic). Processes of this type, as demonstrated by
experiments [3], allow high efficiencies of nonlinear

3ω ω ω ω and 3ω+ + 2ω 2ω ω,–+= =
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optical frequency conversion to be achieved by phase-
matching the light pulses involved in FWM in a hollow
fiber. The results of our experimental studies for such
processes will be presented in Section 4 of this paper.

Suppose that fundamental radiation and its second
harmonic (pump pulses) propagate along the z-axis of a
hollow fiber with an inner radius a. We assume that the
hollow fiber is filled with a gas with a cubic nonlinear-
ity and a refractive index n. The dielectric constant of
the cladding of the hollow fiber is assumed to be a real
quantity meeting the condition ε > n2. The fields of the
pump and FWM pulses can be then represented as

(1)

(2)

(3)

where (ρ), (ρ), and (ρ) are the transverse field
distributions corresponding to the EH1q, EH1l, and
EH1m hollow-fiber modes of fundamental radiation, the
second harmonic, and the FWM pulse, respectively;

ρ is the distance from the axis of the hollow fiber; 

and  are the amplitudes of the pulses of fundamental
radiation and the second harmonic at the input of the
fiber; Cm(z) is the slowly varying amplitude of the

FWM signal; , , and  are the propagation con-
stants of fundamental radiation, the second harmonic,
and the FWM signal in the hollow fiber, respectively;

and  and  are the attenuation coefficients for the
EH1q waveguide mode at the fundamental frequency
and the EH1l waveguide mode at the frequency of the
second harmonic. Representing the field of the second
harmonic in Eq. (2) as a sum of hollow-fiber modes, we
extend our analysis to FWM processes where two of the
four waves have equal frequencies 2ω, but different
transverse field distributions corresponding to different
waveguide modes EH1l ' and EH1l '' (i.e., l = l ', l '').

We assume that each of the waves involved in the
FWM process has a small attenuation coefficient and a
wavelength much less than the fiber core radius a:

(4)

(5)
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where s = 1, 2, 3 and n(sω) is the refractive index of the
gas filling the hollow fiber at the frequency sω. Once
conditions of Eqs. (4) and (5) are met, we can employ the
following approximate expression for the transverse field
distribution in EH1m modes of a hollow fiber [17, 18]:

(6)

where J0(x) is the zeroth-order Bessel function and um

is the eigenvalue for the EH1m mode. Propagation con-
stants and attenuation coefficients in this case are writ-
ten as [18]

(7)

(8)

Using a procedure similar to that described in [19],
we arrive at the following equation for slowly varying
envelope of the third harmonic in a lossy hollow fiber:

(9)

where  is the attenuation coefficient for the EH1m

mode of the THG signal. The phase mismatch is then
written as

(10)

where

(11)

(12)

are the components of the phase mismatch due to the
dispersion of the gas and waveguide dispersion, respec-
tively [the total phase mismatch can be represented as a
sum of these two components in the case when n(ω),

n(3ω) ≈ 1]. The nonlinear coefficient  can be
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expressed in terms of the relevant nonlinear optical
cubic susceptibility [14]:

(13)

where  is the third-order nonlinear optical suscep-
tibility responsible for third-harmonic generation.

In contrast to the standard plane-wave approxima-
tion (see, e.g., [19]), Eq. (9) includes the influence of a
waveguide through the propagation constants (7) and
the nonlinear coefficient (13), which is normalized to
include the transverse distributions of the pump and
third-harmonic fields in the relevant waveguide modes.
In particular, the phase mismatch, which appears in Eq. (9)
and which determines the efficiency of THG, depends
not only on the gas dispersion, but also on the disper-
sion of waveguide modes. This circumstance, as high-
lighted in a number of earlier papers [3, 8, 14], provides
an opportunity to improve phase matching for a given
combination of waveguide modes of pump and third-
harmonic radiation.

Integrating Eq. (9), we derive the following expres-
sion for the amplitude of the EH1m mode of the third
harmonic:

(14)

where L is the length of the gas-filled hollow fiber. In
the limiting case of low losses and zero phase mis-
match, Eq. (14) is reduced to

(15)

Using Eq. (15), we can obtain the following esti-
mate for the power of the third-harmonic signal:

(16)

where P1 is the power of fundamental radiation.

In the case of a difference-frequency generation
(DFG) process 3ω = 2ω + 2ω – ω, involving the EH1q

hollow-fiber mode of fundamental radiation and EH1l '
and EH1l '' modes of the second harmonic, generating
the EH1m mode of the DFG signal at the frequency of
the third harmonic in a lossy hollow fiber, the slowly
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varying envelope of the DFG signal is governed by the
following equation:

(17)

Here, the phase mismatch includes the dispersion of
waveguide modes and can be represented as

(18)

where

(19)

(20)

are the components of the phase mismatch due to the
dispersion of the gas and waveguide modes, respec-
tively. The nonlinear coefficient can be expressed in
terms of the relevant nonlinear optical cubic suscepti-
bility [14]:

(21)

where  is the third-order nonlinear optical suscep-
tibility responsible for difference-frequency genera-
tion.

Integrating Eq. (21), we derive the following expres-
sion for the amplitude of the DFG signal excited in the
EH1m mode:

(22)

In the limiting case of low losses and zero phase
mismatch, Eq. (22) is reduced to

(23)
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Using Eq. (23), we derive the following estimate for the
power of the DFG signal:

(24)

where P2 is the power of pump radiation at the fre-
quency of the second harmonic.

Expressions (16) and (24) describe the dependence
of the FWM signal power on geometrical sizes of a hol-
low fiber. In the following section, we will use these
formulas to analyze the physical factors allowing the
efficiency of four-wave mixing of short laser pulses to
be increased in gas-filled hollow fibers.

2.2. Improving the Efficiency of Four-Wave Mixing
in the Waveguide Regime

To illustrate how the efficiency of FWM processes
can be improved by using hollow fibers, it would be
instructive to consider the basic formulas of the ele-
mentary theory of four-wave mixing. Expressions for
the powers of signals produced through FWM pro-
cesses of third-harmonic and difference-frequency gen-
eration (generally, ωDF = 2ω2 – ω1) can be found in many
textbooks on nonlinear optics [19, 20]. In particular, in the
regime of loose focusing, when the condition

(25)

is satisfied, where b is the confocal parameter, these
expressions can be written as

(26)

in the case of third-harmonic generation,

(27)

in the case of difference-frequency generation. Here,
we used the following notations: P1 and P2 are the pow-
ers of the pump waves and ∆k is the phase mismatch for
the corresponding FWM process.

Let us consider in greater detail the enhancement of
the efficiency of FWM processes in hollow fibers with
respect to the geometry of tight focusing due to the
increase in the interaction length of light beams attain-
able with hollow fibers. Physically, a hollow fiber
enhances FWM processes since it allows light intensi-
ties typical of the tight-focusing regime to be achieved,
simultaneously letting these beams interact in a nearly
plane-wave regime. Since the intensity of the FWM sig-
nal is proportional to the intensities of the pump beams,
the power of the FWM signal can be increased by
decreasing the diameter of a hollow fiber and keeping
the powers of pump beams constant as long as the
phase-matching conditions are satisfied and the losses
of the waves interacting in the fiber are low. The role of
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a hollow fiber is thus to ensure the regime of interaction
of collimated beams [see Eqs. (26), (27) and (16), (24)]
for light beams having intensities typical of the regime
of tight focusing, simultaneously providing large inter-
action lengths for these beams and improving the phase
matching.

Figure 1 displays the phase mismatch calculated
with the use of Eqs. (10)–(12) and (18)–(20) for THG
and DFG processes involving different waveguide
modes as a function of the inner radius of a hollow fiber
filled with air at standard atmospheric pressure under
normal conditions. As can be seen from these plots, the
phase mismatch for the DFG process involving funda-
mental waveguide modes of pump and signal radiation
can be completely compensated with an appropriate
choice of the hollow-fiber inner radius. In the case of
third-harmonic generation in the field of the fundamen-
tal mode of pump radiation, phase matching can be
achieved only for high-order modes of the hollow fiber.
Generally, the phase-matching problems under these
conditions can be solved by adjusting the gas pressure,
choosing optimal parameters of the hollow fiber, and
excitation of appropriate waveguide modes [3, 8, 14].

Thus, there are two natural ways of increasing the
efficiency of nonlinear optical processes in hollow
fibers: (i) increasing the fiber length and (ii) reducing
the inner radius of the fiber. The enhancement factor
cannot be increased infinitely, of course. The increase
of the fiber length is limited by optical losses of hollow-
fiber modes, while the decrease of the inner radius
requires a tighter focusing of the pump beam, eventu-
ally leading to the breakdown of the gas filling the fiber.
The use of shorter pulses under these conditions allows
further improvement in the efficiency of nonlinear opti-
cal processes due to the increase in the breakdown
threshold of the gas.

2.3. Removing the Prohibition
on Third-Harmonic Generation

Hollow fibers may play an even more important role
in the case of sum-frequency and third-harmonic gener-
ation. In media with a normal dispersion, such FWM
processes are characterized by a low efficiency in the
tight-focusing regime due to an additional phase shift
of a focused beam with respect to a plane wave. This
geometric phase shift around the axis of a Gaussian
beam can be written as [20]

(28)

where z0 is the coordinate of the beam waist.

In accordance with Eq. (28), the phase shift between
the field of the third harmonic and the nonlinear polar-
ization responsible for THG tends to ±π as z  ±∞.
Therefore, no third harmonic can be observed at the
output of the medium in this regime because of the

∆ϕ
2 z z0–( )

b
--------------------,arctan–=
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destructive interference of the pump and third-har-
monic fields generated before and after the focus.

The situation radically changes in the case of hollow
fibers, where nonlinear optical interactions occur in the
regime of collimated light beams, giving rise to no ±π
phase shift between the signal field and the relevant
polarization of the medium. This allows efficient third-
harmonic generation. In Section 4, we will present the
experimental data confirming this conclusion.

3. EXPERIMENTAL SETUP

The experimental setup for studying FWM pro-
cesses in gas-filled hollow fibers (Fig. 2) consisted of a
picosecond laser system, which generated pumping
radiation at the wavelengths of 1.06 and 0.53 µm, a hol-
low fiber, and a detection system based on a photode-
tector, photomultiplier, and a CCD camera. The pico-

40

∆kTHG
mq

a, µm
60 80 100 120 140

10

5

0

–5

–10

, ∆kDFG
ml'l''q , cm–1

Fig. 1. Phase mismatches for (1–3) third-harmonic genera-
tion and (4) difference-frequency generation in a hollow
fiber filled with air at standard atmospheric pressure under
normal conditions as functions of the inner radius of the
hollow fiber a. The transverse distribution of the pump field
corresponds to the EH11 waveguide mode. The third har-
monic is produced in the EH11 (1), EH12 (2), and EH13 (3)
waveguide modes. The DFG signal is generated in the EH11
waveguide mode.
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Fig. 2. Diagram of the experimental setup for studying
FWM processes in gas-filled hollow fibers based on a pas-
sively mode-locked picosecond laser system: LS, picosec-
ond laser system; A, amplification stages; GP, Glan prism;
L, achromatic lens; HF, hollow fiber; F, bandpass filter; PM,
photomultiplier; CCD, CCD camera; SP, signal-processing
unit; and PC, personal computer.
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second system included a passively mode-locked
Nd:YAG master oscillator with a negative-feedback-
controlled cavity Q-factor [21], a single-pulse selection
unit, and amplifying stages. Passive mode locking in
the master oscillator was implemented with the use of a
saturable absorber film, which was placed in front of
the rear cavity mirror and which made it possible to
generate laser pulses with a duration of 35 ps. Negative
feedback was introduced by inserting an electro-optical
switch controlled with a fast-response photomultiplier
inside the cavity. An optical signal served as an input
for the fast-response photomultiplier. This feedback
loop considerably improved the stability of parameters
of laser pulses [22], providing an opportunity to gener-
ate trains of picosecond light pulses with a duration of
the envelope on the order of 30–40 µs. As the regime of
stationary lasing was established in the master oscilla-
tor, the negative feedback loop was switched off, and a
short train of highly stable picosecond pulses with a
duration of the envelope of about 100 ns and an energy
of approximately 1.5 mJ was generated.

An electro-optical switch was used to separate a sin-
gle pulse from this train. The energy of a single 35-ps
laser pulse thus selected ranged from 30 to 40 µJ. The
single-pulse selection unit also served as an optical
decoupler, suppressing the parasitic feedback between
amplifying stages and the master oscillator and pre-
venting radiation reflected from optical elements of the
amplification system from influencing the formation of
trains of pulses in the master oscillator. The further
details of our picosecond laser system can be found
elsewhere [21, 22].

A single pulse of 1.06-µm radiation passes through
three amplifying stages. The energy of the laser pulse at
the output of the third stage may reach 50 mJ. The spa-
tial distribution of intensity in such a laser beam is close
to that characteristic of the Gaussian mode. This radia-
tion was used as a pump beam in the THG scheme and
one of the pump beams in sum- and difference-fre-
quency generation. A KDP crystal was used to produce

DO  PM

DGVC HF

VPC

LS
 L

F

1.06 µm 0.53 µm
50 ps

PD2

PD1

Fig. 3. Diagram of the experimental setup for studying the
influence of the gas pressure on FWM processes in a gas-
filled hollow fiber: LS, picosecond laser system; L, achro-
matic lens; VC, vacuum chamber; HF, hollow fiber; DG,
diffraction grating; PM, photomultiplier; F, filter blocking
pump beams; PD1 and PD2, photodiodes measuring the
energy of fundamental radiation and the second harmonic,
respectively; DO, digital oscilloscope; V, computer-con-
trolled valve for gas delivery.
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the second harmonic of Nd:YAG laser radiation for
two-color experiments. A spherical lens was employed
to couple pump beams into the fiber (Fig. 2). We used
commercially available hollow fibers with inner diam-
eters of 70, 100, 127, 152, and 203 µm in our experi-
ments. The lengths of the fibers were varied from 1 to
30 cm. The attenuation coefficients of 1.06-µm radia-
tion in these fibers were estimated as 0.6, 0.2, 0.1, 0.06,
and 0.04 dB/cm, respectively. The signals produced
through third-harmonic, sum-frequency, and differ-
ence-frequency generation in these fibers were selected
with a monochromator and bandpass filters and were
detected with a photomultiplier. A CCD camera was
used to investigate the spatial profiles of light beams
coming out of the fiber.

To measure the gas-pressure dependences of nonlin-
ear optical signals, we used an experimental setup (Fig. 3)
consisting of a picosecond laser, a vacuum chamber
with a hollow fiber inside, and a detection system based
on a photomultiplier. The Nd:YAG picosecond laser
generated 50-ps pump pulses at 1.06 µm and 0.53 µm.
The maximum energy of 1.06-µm radiation reached
100 mJ. A KDP crystal was used to produce the second
harmonic of fundamental radiation. An achromatic lens
was used to couple the pump laser beams into a hollow
fiber. Two photodiodes were used to monitor the ener-
gies of both of these laser beams transmitted through
the fiber. The energies of fundamental radiation and the
second harmonic in these experiments were equal to 1
and 0.1 mJ, respectively. The signal produced through
an FWM process in a hollow fiber was detected with a
photomultiplier and was then processed and displayed
with a digital oscilloscope. The result of averaging over
30 FWM pulses was stored in a personal computer.

4. RESULTS AND DISCUSSION

The results of our experiments fully justify our
expectations that the use of hollow fibers allows the effi-
ciency of FWM processes to be improved, the prohibition
on THG to be removed, and phase-matching conditions in
FWM processes to be improved. Our experiments also
revealed a noticeable influence of high-order waveguide
modes on FWM processes in gas-filled hollow fibers. The
use of picosecond pulses allowed us to couple pump
beams with a sufficiently high intensity into a hollow
fiber without any noticeable perturbation of the gas
medium in the fiber or the self-action of laser pulses.

Figure 4 presents the powers of third-harmonic and
the difference-frequency signals as functions of the
pump energy. As can be seen from the data presented in
Fig. 4a, the power of the third harmonic can be approx-
imated with high accuracy with a cubic function of the
power of fundamental radiation. The power of the DFG
signal at the frequency ωDF = 2ω2 – ω1 (where ω1 is the
frequency of fundamental radiation of the Nd:YAG
laser and ω2 = 2ω1 is the frequency of the second har-
monic of this laser) is linear in the fundamental radia-
 AND THEORETICAL PHYSICS      Vol. 93      No. 2      2001



FOUR-WAVE MIXING OF PICOSECOND PULSES IN HOLLOW FIBERS 253
0.4

PíçG, arb. units

E1.06, mJ
0.5 0.6 0.7 0.8 0.9 1.0

(‡)

1

0.1

0.01
10–3

PDFG, arb. units

(E0.53)2 E1.06, mJ3

(b)10–1

10–2

10–3

10–2 10–1

Fig. 4. The powers of (a) the third-harmonic and (b) difference-frequency signals produced in a hollow fiber filled with atmospheric-
pressure air under normal conditions as functions of the energy of fundamental radiation E1.06 (a) and the parameter (E0.53)2E1.06
(b) (E0.53 is the energy of second-harmonic radiation). The inner diameter of the fiber is (a) 127 and (b) 152 µm. The fiber length
is equal to (a) 4 and (b) 20 cm. Cubic (a) and linear (b) dependences are given for the convenience of comparison.
tion power and quadratic in the power of the second
harmonic of the Nd:YAG laser (see Fig. 4b). These
results indicate that nonlinear optical interactions in our
experiments occur in a weak-field regime, and effects
related to the ionization of the medium and the self-
action of pump pulses do not exert a considerable influ-
ence on nonlinear optical processes. This conclusion is
also supported by the fact that no THG signal was
observed in our experiments in the tight-focusing
regime with the same focusing parameters as in hollow-
fiber experiments, but in the absence of a hollow fiber,
until a plasma was produced due to the gas breakdown.
The THG signal was easily detectable under conditions
of ionization of the medium and ionization-induced
self-action of pump pulses [15, 16].

The influence of phase-matching effects on FWM
processes in hollow fibers is illustrated by the experi-
mental data presented in Fig. 5. In particular, these
experimental data indicate that, for gases whose disper-
sion properties are similar within the studied frequency
range, the pressure dependences of the DFG signal
power have much in common. Specifically, the pressure
dependences of the DFG signal for argon and nitrogen
display qualitatively similar tendencies (Fig. 5). At the
same time, the pressure dependence of the DFG signal
for carbon dioxide qualitatively differs from similar
dependences for argon and nitrogen. This is due to con-
siderable differences in dispersion properties of carbon
dioxide and dispersion properties of argon and nitro-
gen. In particular, the phase mismatch for the DFG pro-
cess at the atmospheric pressure of carbon dioxide is

estimated as  = 1.8 cm–1, which noticeably differs
from the phase mismatch corresponding to the atmo-

spheric pressure of nitrogen or argon (  = 1 cm–1).

Comparison of the experimental data presented in
Figs. 6 and 7 with the results of calculations performed
with the use of Eqs. (18)–(20) and (22) reveals a notice-

∆kDFG
g

∆kDFG
g
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able role of high-order waveguide modes in nonlinear
optical processes in hollow fibers. It is instructive in
this context to consider in greater detail the results
obtained for the DFG process ωDF = 2ω2 – ω1 in an
argon-filled hollow fiber with a length of 17.4 cm and
an inner diameter a = 100 µm (Fig. 6). A satisfactory
agreement between the experimental data (squares) and
theoretical predictions (the solid line) is achieved when
effects related to high-order waveguide modes are
included in the analysis. In particular, a satisfactory
agreement between the experimental data in Fig. 6 and
the results of calculations performed with the use of
Eqs. (18)–(20) and (22) was achieved when not only the
DFG process occurring in the fundamental waveguide
mode (i.e., the DFG process involving the EH11 hollow-
fiber modes of fundamental radiation, second har-
monic, and the DFG signal) was included in the calcu-

0.1

PDFG, arb. units

p, atm
1

100

1

0.1

0.01

10 N2

CO2

Ar

Fig. 5. The power of the difference-frequency signal pro-
duced in a hollow fiber filled with different gases [(d) Ar,
(+) N2, and (h) CO2] as a function of the gas pressure p.
The fiber length is 19.3 cm. The inner diameter of the fiber
is 127 µm.
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lations; but also the DFG process involving the EH12
mode of fundamental radiation, EH11 and EH13 modes
of the second harmonic, and the EH12 mode of the DFG
signal was included. The maximum of the DFG signal
around an argon pressure of about 0.7 atm is observed
within the pressure range where the DFG process in the
fundamental waveguide mode is phase matched (the
dashed line in Fig. 6 shows the phase mismatch for this

0.1

100

p, ‡tm
1

10

1

0.1

1.0

0.5

0

–0.5

PDFG, arb. units ∆kDFG
ml'l''q, cm–1

Fig. 6. The power of the DFG signal (the dots show the
experimental data, and the solid line represents the results
of calculations) and the phase mismatch for the DFG pro-
cess in an argon-filled hollow fiber as functions of the argon
pressure p. The dashed line shows the phase mismatch for
the DFG process occurring in the fundamental waveguide
mode EH11. The dash–dotted line represents the phase mis-
match for the DFG process involving the EH12 mode of fun-
damental radiation, EH11 and EH13 modes of the second
harmonic, and the EH12 mode of the DFG signal. The
length of the hollow fiber is 17.4 cm, and the inner diameter
is 100 µm.
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p, ‡tm
1
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0.1
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203 µm

PDFG, arb. units

Fig. 7. The power of the DFG signal in argon-filled hollow
fibers with different inner diameters as a function of the
argon pressure p. The length of hollow fibers in all the
experiments was approximately equal to 20 cm. The inner
diameter of the hollow fiber was (u) 100, (+) 127, (×) 152,
and (n) 203 µm.
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process). At lower pressures, difference-frequency gen-
eration through the FWM interaction of the EH12 mode
of fundamental radiation, EH11 and EH13 modes of the
second harmonic, and the EH12 mode of the DFG signal
begins to play a more important role (the phase mis-
match for this process is shown by the dash–dot line in
Fig. 6). Thus, high-order waveguide modes of a hollow
fiber may have a noticeable influence on FWM pro-
cesses.

Figure 7 presents the experimental dependences of
the DFG signal produced in argon-filled hollow fibers
with different inner diameters and a length of ≈20 cm
on the gas pressure p. As can be seen from Fig. 7, with
the increase in the inner diameter of the fiber, the max-
imum of the DFG signal related to the FWM interaction
of the pump and DFG beams in the fundamental
waveguide mode is shifted toward lower pressures,
tending in the case of large inner diameters to the limiting
value corresponding to the FWM process in collimated
beams. In this limiting case, the maximum power of the
DFG signal is achieved, in accordance with Eq. (27), at the
gas pressure in the fiber equal to 0.16 atm (at this pressure,

the coherence length Lph = π/  becomes equal to
the fiber length). These results are in perfect agreement
with our expectations based on the analysis of Eqs. (18)–
(20). The maxima observed in the DFG signal at an
argon pressure of about 0.7 atm for a hollow fiber with
an inner diameter of 152 µm and a pressure of 0.9 atm
for a fiber with an inner diameter of 203 µm can be
attributed, by analogy with the case considered above,
to FWM processes involving high-order waveguide
modes of the pump and FWM beams.

A methodologically important aspect of nonlinear
optical experiments reported in this paper is that the use
of sufficiently long picosecond pulses allowed us to
study phase-matching effects and effects related to high-
order waveguide modes in nonlinear optical interactions in
gas-filled hollow fibers under conditions when group-
delay effects remain negligible (see the estimates in
[12, 14]). Due to the optimization of the phase matching
for FWM processes in hollow fibers under these condi-
tions, we were able to considerably increase the fiber
length (DFG experiments were performed with the use
of hollow fibers with a length up to 30 cm). This
allowed us to achieve efficiencies of FWM processes
comparable in their order of magnitude with efficien-
cies attainable with femtosecond pulses of much higher
intensities. This result seems to be very important for
numerous spectroscopic applications where the band-
widths of laser pulses should be narrower than those
typical of the femtosecond range.

5. CONCLUSION

Thus, the results of experimental studies devoted to
FWM processes of third-harmonic and difference-fre-
quency generation in the field of picosecond laser
pulses presented in this paper reveal several important

∆kDFG
g
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features of nonlinear optical processes in gas-filled hol-
low fibers, giving a deeper insight into methodological
aspects of the problem and opening new possibilities
for practical applications of hollow fibers in nonlinear
optics, optics of ultrashort pulses, and nonlinear spec-
troscopy. Unlike experiments carried out with the use
of high-intensity laser pulses, our approach allowed us
to implement conditions when effects related to the ion-
ization of a gas medium and the self-action of pump
pulses do not exert a noticeable influence on nonlinear
optical processes in hollow fibers, as indicated by the
absence of optical-harmonic generation in tightly focused
pump beams in the absence of a hollow fiber. The results
of our experiments also demonstrate the possibility of cou-
pling high-intensity picosecond pulses into a hollow fiber
without any noticeable perturbation of the gas medium
or self-action of laser pulses. Our experimental approach,
based on the use of picosecond pulses, allowed us to ana-
lyze the main properties of FWM processes in the
waveguide regime and to explore the ways of phase-
matching such processes under these conditions.

Due to the improvement of phase-matching condi-
tions with an appropriate choice of the gas pressure and
optimal parameters of the hollow fiber, we were able to
use hollow fibers with a large length (up to 30 cm) for
difference-frequency generation, which resulted in a
considerable increase in the power of the difference-
frequency signal at the output of the fiber. Our experi-
mental results indicate that high-order waveguide
modes may have a considerable influence on four-wave
mixing processes in gas-filled hollow fibers. This effect
can be employed to increase the total energy of short-
wavelength radiation produced through nonlinear opti-
cal processes in hollow fibers. On the other hand,
effects related to high-order waveguide modes should
be taken into consideration in the optimization of hol-
low-fiber frequency converters and pulse compressors,
where the excitation of high-order waveguide modes
may lead to unwanted energy losses.

Finally, we have shown that the waveguide regime
of nonlinear optical interactions implemented in hollow
fibers removes the limitations on the efficiency of third-
harmonic and sum-frequency generation, which are
characteristic of the tight-focusing regime in media
with normal dispersion and which are due to the geo-
metric phase shift arising in tightly focused light
beams. This finding considerably expands the possibil-
ities of using hollow fibers for frequency conversion
and nonlinear optical gas-phase analysis.
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Abstract—Collisions between negative and positive atomic ions are investigated. The ionic wave function is
expressed in terms of the Coulomb Green’s function. Normalizing this function allows the system of two ions
to be described completely. The exchange matrix elements turn out to be the sums of products of the Coulomb
wave functions over degenerate states. These sums are expressed in terms of the quadratic form of the wave
function for a state with zero angular quantum numbers, l = m = 0. The nonadiabatic coupling of quasi-crossing
terms with other terms of the system is analyzed; this effect significantly increases the cross section for single-
electron capture. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Here, we investigate collisions between negative
and positive atomic ions. We study the single-electron
capture

(1)

at low collision velocities, v  ! v 0 = 2.19 × 108 cm s–1.
The cross section for single-electron capture in a colli-
sion of H– with a proton, H– + H+ = H + H(n), and with
other singly charged positive ions has previously been
calculated in [1–12] and measured in [13–16]. The
recombination cross section for H– in its collision with
an α particle, H– + He++ = H + He+(n), was measured
experimentally [17, 18] and calculated theoretically
[17, 19] (see also [20, 21]); H– + {Ne3+, Ar3+} collisions
were studied in experimental measurements [22, 23]
and in [24]. The Ca– production cross section in the
reverse reaction

(2)

was calculated in [25–27] and measured in [28–30].
The properties of a collisional system that can pro-

duce a pair of oppositely charged ions are determined
by the crossing of energy terms. The probability of sin-
gle-electron exchange reactions (1) and (2) at low col-
lision velocities significantly increases in the presence
of such crossings. Since the binding energies of nega-
tive ions are low, the ionic term crosses the terms of
highly excited states with large principal quantum num-
bers n. Such states of any atom are similar in properties
to purely Coulomb states, whose energies do not
depend (or depend weakly) on orbital quantum num-
bers l and m. Consequently, in collisions (1) and (2), the
ionic term crosses a complex variety of degenerate
states whose number for each n is n2.

A– BZ+ A B Z 1–( )+ n( )++

Ca B∗ n( ) Ca– B++ +
1063-7761/01/9302- $21.00 © 20256
Previously, the authors of [31–36] used the approx-
imation of zero-range potentials, the approximation of
δ potentials, to investigate reaction (1). The latter
approximation is applicable to negative ions whose
weakly bound electrons have zero orbital angular
momenta, as, for example, for H–. The energy levels in
the above papers were determined by solving a tran-
scendental equation with the logarithmic derivative of
Coulomb Green’s function. It was found that for each
crossing and for each n, only one of the total number n2

of states interacted with the ionic state, while the ener-
gies of the remaining n2 – 1 states, the so-called passive
states, were not perturbed by the ionic term, and these
states were disregarded in specific calculations [33].

In reality, however, the passive states are involved in
processes (1) and (2). Although the energies of the pas-
sive states are not perturbed, their wave functions are
time dependent, because they result when reconstruct-
ing the basis of Coulomb functions and prove to be
dependent on the separation between the colliding ions.
The adiabatic matrix element of the time derivative
between active and passive states is nonzero. Here, we
construct a complete adiabatic basis of wave functions,
which is used to solve an adiabatic system of close-cou-
pling equations.

In our approximation, the wave function of the outer
weakly bound electron is expressed in terms of Cou-
lomb Green’s function. This function, normalized to
unity as the wave function of a bound state with a neg-
ative energy [7, 8], was analyzed in detail on the E, R
(energy, internuclear separation; –∞ ≤ E ≤ +∞, 0 ≤ R ≤ ∞)
half-plane. The analysis yielded energy separations
between the adiabatic terms for quasi-crossings and all
the matrix elements between the adiabatic states; i.e., it
allowed the A– + BZ+ system to be described completely.
001 MAIK “Nauka/Interperiodica”
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This approach allows negative ions with any orbital
angular momentum L to be considered.

In this paper, we consider L = 0 (H–) and L = 1 (Ca–).
The term separation for quasi-crossings was found to
be expressed in terms of the sums of products of the
Coulomb wave functions over degenerate states, i.e.,
over angular quantum numbers l and m. An analysis of
the closed expression for Coulomb Green’s function
derived by Hostler and Pratt [37, 38] allows these sums
to be expressed in terms of the quadratic form of the
wave function only for one state with zero angular
quantum numbers, l = m = 0. Such sums, which
describe the behavior of a negative ion with a zero
orbital angular momentum, L = 0, in the field of a pos-
itive ion, were calculated previously [39–41], while
similar sums for ions with L = 1 are calculated here.

We also study the following nonadiabaticity effect
discussed previously [24] in the atomic-basis approxi-
mation. If the ionic term quasi-crosses the nth covalent
term, then the matrix element between the ionic state
and another covalent state n' experiences a sharp jump,
causing the population of state n' to increase. This effect
proves to be strong. It appreciably increases the total
cross section for single-electron capture (1).

Here, we use the system of atomic units, e2 = m =
" = 1.

2. THE WAVE FUNCTION 
OF THE OUTER WEAKLY BOUND ELECTRON

The wave function Φ(R, r) of the weakly bound
electron in the A– + BZ+ system is the solution of the
wave equation

(3)

where V(|R – r|) is the potential energy of interaction
between the weakly bound electron and the core of
atom A. The wave function Φ0(r) of the unperturbed
negative ion A– satisfies the equation

(4)

Let us consider Green’s function G(r, r', E) that is
the solution of the equation

(5)

and whose spectral expansion over Coulomb eigen-
functions is [42]

(6)

where the sum denotes summation over the discrete
states with a negative energy and integration over the

–
∆
2
--- Z

r
---– V R r–( ) E–+ 

  Φ R r,( ) 0,=

–
∆
2
--- V R r–( ) E0–+ 

  Φ0 r( ) 0.=

–
∆
2
--- Z

r
---– E– 

  G r R E, ,( ) δ R r–( ),=

G r R E, ,( )
ψnlm r( )ψnlm* R( )

En E–
------------------------------------,

nlm

∑=
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continuum. In spherical coordinates, the Coulomb
eigenfunctions of bound states with a negative energy
are [43]

(7)

(8)

(9)

Using Green’s function, we may write the following
integral equation instead of the differential equation (3):

(10)

Since the effective potential V is relatively small, we
may expand Green’s function into a Taylor series about
variable r' at point r' = R:

. (11)

For large internuclear separations satisfying the
condition

(12)

the perturbation of a negative ion by a positive ion is
small; it reduces to a comparatively small polarization
displacement of its energy level ε0. For H–, ε0 =
−0.75421 eV = –0.027716 a.u., γ = 0.23544, and it fol-
lows from condition (12) that the internuclear separa-
tions are R @ 4.25a0, where a0 is the Bohr radius. For
Ca–(4s24p) with two bound levels, two fine-structure
components with total angular momenta j = 1/2 and 3/2

are  = –0.02455 eV, γ1/2 = 0.04248, R @ 24a0 and

 = –0.01973 eV, γ3/2 = 0.03808, R @ 26a0. The dis-
tances that mainly contribute to the cross sections for
the processes under study are larger by more than a fac-
tor of 10 than those limiting distances (see below).
Therefore, condition (12) is satisfied with a large mar-

ψnlm r( ) f nl r( )Ylm θ φ,( ),=

Ylm θ φ,( ) NlmPl
m θcos( ) imφ( )exp

2π
------------------------,=

d2 f nl
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gin, and the unperturbed ionic wave function may be
substituted in the integral of motion (10). 

2.1. A Negative Ion 
with a Zero Orbital Angular Momentum, L = 0

Let us first consider a negative ion whose weakly
bound electron has a zero orbital angular momentum,
L = 0. In this case, the wave function of the unperturbed
negative ion may be chosen to be

(13)

which is the limit of the ionic wave function Φ for an
infinite internuclear separation.

Substituting function (13) and expanding Green’s
function (11) in integral (10), we find that the wave
function of the outer electron for L = 0 is Green’s func-
tion at r' = R,

(14)

because Φ0 for L = 0 does not depend on the angles and
the contribution from the second term of expansion (11)
vanishes. The contributions from the higher order terms
of expansion (11) are proportional to positive powers of
the low binding energy for the negative ion, |ε0 |p ! 1,
p ≥ 1, and they may be ignored. The constant C0 in (14)
can be determined by normalization.

A closed expression for Coulomb Green’s function
was derived by Hostler and Pratt [37, 38]:1 

(15)

(16)

The Whittaker functions W(τ) and M(τ) have the sub-
scripts Zν and 1/2 in (15) and are the solutions of the
equation [44]

(17)

and a similar equation for MZν, 1/2(τ). In the limit E  En,
where Zν  n, Eq. (17) when changing variables
τ = 2Zr/n transforms to the equation for the Coulomb

1 Our definition of Green’s function in formulas (6) and (15) differ
from those in [37, 38] by the factor (–2).
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× W τ x( )M' τ y( ) W' τ x( )M τ y( )–[ ] ,

τ x y,{ }
x y,{ }
ν

---------------, x r r' r r'– ,+ += =

y r r' r r'– , ν 1

2E–
--------------.≡–+=

WZν 1/2,'' τ( ) –
1
4
--- Zν

τ
------+ 

  WZν 1/2, τ( )+ 0=
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function φn0 = rψn0(r) for the state with a zero orbital
angular momentum, l = 0,

(18)

The Whittaker function M is expressed via a linear
combination of WZν(τ) and W–Zν(–τ) [44]:

(19)

WZν(τ) exponentially decreases, while W–Zν(–τ) expo-
nentially increases as τ  ∞.

Using the linear combination (19), we may write
Green’s function (15) at r' = R as the sum of two terms:

(20)

(21)

(22)

r' = R,

where W+ ≡ WZν, 1/2(τ) and W– ≡ W–Zν, 1/2(–τ). The func-
tions W+ and W– are not regular at zero, but their linear
combination (19), i.e., the function M, is regular at zero.
Accordingly, the functions G1 and G2 are not regular in
the limit r  0 or r'  0, but their sum, i.e., the full
Green’s function (15), is regular in these limits. The
functions G2 and G1 may be called the ionic and cova-
lent parts of Green’s function, respectively.

The binding energies ε0 of negative ions are low, and
we are interested in the low energies E of the H– + AZ+

system. For such energies, we can use either the asymp-
totics of the Whittaker functions in subscript Zν  ∞
[45] or calculate them in the semiclassical approxima-
tion to solve Eq. (17). We use the semiclassical approx-
imation [7], in which the solutions of Eq. (17) in the
subbarrier region are

d2φn0

dr2
------------- 2 En

Z
r
---+ 

  φn0+ 0.=

Γ 1 Zν–( )MZν 1/2, τ( ) 1–( )1 Zν+ Γ 1 Zν–( )
Γ 1 Zν+( )
-----------------------WZν 1/2, τ( )=

+ 1–( )ZνW Z– ν 1/2, τ–( ),

G r R E, ,( )
1–( )1 Zν–

2π
---------------------Γ 1 Zν–( )

Γ 1 Zν+( )
-----------------------G1 r R E, ,( )=

+
1–( )Zν

2π
---------------G2 r R E, ,( ),

G1 r R E, ,( )
W+ τ x( )W+' τ y( ) W+' τ x( )W+ τ y( )–

r R–
-----------------------------------------------------------------------,=

G2 r R E, ,( )
W+ τ x( )W–' τ y( ) W+' τ x( )W– τ y( )–

r R–
-----------------------------------------------------------------------,=

WZν 1/2, τ( ) C1

p τ'( ) τ'd

τ0

τ

∫–
 
 
 

exp

1 τ0/τ–( )1/4
-------------------------------------------,=
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(23)

Integration yields the function W [7]:

(24)

where the plus and minus signs correspond to W–Zν, 1/2(–τ)
and WZν, 1/2(τ), respectively. In view of relations (24),
M is the linear combination (19).

The asymptotics of the Whittaker functions W± for
τ  ∞ are [44]

(24a)

Note that for highly excited states, when Zν ≥ 3–5, the
second and third terms of these asymptotic expansions
become small at comparatively large distances exceed-
ing the size of the region of classically permitted
motion, rν = Z|E|–1, for a given energy E by a factor of 3 or
4. At the same time, calculating W from formulas (24a)
with three terms of the asymptotic expansion provides
high accuracy (~1%) up to distances equal to or smaller
than rν. 

It is convenient to use the semiclassical representa-
tion (24) of W± to analyze the ionic part of Green’s
function G2 in the vicinity of the negative ion, i.e., at
|r – R | ! R. The corresponding expansion yields

(25)

The form of this function is the same as that of the
unperturbed function (13). If, however, the energy E is

W Z– ν 1/2, τ–( ) C2

+ p τ'( ) τ'd

τ0

τ

∫ 
 
 

exp

1 τ0/τ–( )1/4
-------------------------------------------,=

p τ( ) 1
4
--- Zν

τ
------– , τ τ 0 4Zν .≡>=

W τ( )

=  

1
2
--- τ τ τ 0–( ) Zν 2Zν

τ τ τ 0––
2Zν

------------------------------ln±±± 
 exp

1 τ0/τ–( )1/4
----------------------------------------------------------------------------------------------------------------,

WZν 1/2, τ( ) τZν τ
2
---– 

 exp≈

× 1 Zν Zν 1–( )
τ

--------------------------– Zν Zν 1–( )2 Zν 2–( )
2τ2

-------------------------------------------------- …+ + 
  ,

W Z– ν 1/2, τ–( ) τ Z– ν τ
2
--- 

 exp≈

× 1 Zν Zν 1+( )
τ

--------------------------- Zν Zν 1+( )2 Zν 2+( )
2τ2

-------------------------------------------------- …+ + + 
  .

G2 r R E, ,( )
γscl r R––( )exp
r R–

-----------------------------------------,≈

r R–  ! R, γscl R( ) 2 E Z/R+( )– .≡
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equal to the negative-ion energy in the zero-order
approximation,

(26)

then the exponents in functions (25) and (13) are also
equal, γscl = γ. For several energies E, the product |r – R|G2
was calculated exactly using series in positive powers
of the argument for the Whittaker functions [44]. The
result obtained was compared with formula (25). The
discrepancies did not exceed a few percent; i.e., the
semiclassical approximation proves to be highly accu-
rate.

The function G1 has no singularity for r  R, and
its behavior in the vicinity of the negative ion can be
determined by expanding expression (21) in a Taylor
power series of τx – τ0 and τy – τ0. The result of this
expansion is

(27)

The first expansion term describes the separation of
energy terms for quasi-crossings.

Let us now turn to normalizing Green’s function
considered as the wave function [see relation (14)]. The
normalized wave function Φ(R, r) can be written as

(28)

or as

(29)

where

(30)

When calculating the normalization factor N(R), we
performed numerical integration over positive powers
of the argument using series for the Whittaker functions W
and M [44]. The energy was assumed to depend on the
internuclear separation via relation (26) of the zero-

E E0 R( )≈ ε0
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2
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order approximation. The question of energy is consid-
ered in detail in Sect. 4. The derived functions N(R) and
B(R) are shown in Figs. 1 and 2 for Z = 2. The normal-
ization factor N(R) is seen from Fig. 1 to have sharp
peaks for term crossings, when E = En = –Z2/2n2.

Far from term crossings, when the integrand in (28)
is large and the normalization factor N(R) is small, the
exponentially increasing term is dominant in the linear
combination (19) (the argument of M varies over the
range 0 ≤ τy ≤ 2R/ν). Alternatively, near crossings, the
exponentially decreasing term is dominant in (19); the
integrand in (28) is small and N(R) is large.

Figure 2 shows the function B(R). Far from term
crossings, when the exponentially increasing term is
dominant in (19), B(R) is close to 1. In this case, in the
normalized Green’s function (29), the first term with G1
is small, while the second term with G2 matches the
unperturbed function (13). The second term in (29) is
given by expression (25) at any distances R, while at
energy of the zero-order approximation (26), when
γscl = γ, the second term in (29) and, hence, the entire
ionic function Φ(R, r) are close to the unperturbed

0

10

R, at. units

1

0.1

0.01

0.001

N, Z = 2

20 40 60 80

Fig. 1. Normalization factor N as a function of the internu-
clear separation R for the H– + He++ system.

0

1.0

R, at. units

–1.0

B, Z = 2

20 40 60 80

0.5

0

–0.5

Fig. 2. Function B as a function of internuclear separation R
for the H– + He++ system.
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function (13). In this case, the electron stays mainly
near the negative ion. For term crossings, when the
exponentially decreasing term in (19) becomes domi-
nant and B(R) decreases to zero, the electron moves to
the positively charged center. The first term with G1
becomes dominant in (29).

Using the spectral representation (6) for Green’s
function, we can write a similar representation for the
wave function of the outer electron,

(31)

where the normalized adiabatic wave functions of cova-
lent states Ψn(R, r) are determined by the sums over
degenerate Coulomb states:

(32)

(32a)

while the expansion coefficients Cn(E) and the sum
Qn(R) are

(33)

(34)

Note that using the summation rule for spherical
functions Ylm [43]:

(35)

where α is the angle between unit vectors n1 and n2, the
sum in (32), in terms of which the function Ψn(R, r) is
expressed, can be written as a single sum only over
quantum number l:

(36)

It follows from (36) that  does not depend on
the z-axis orientation in the coordinate system in which
the functions ψnlm(r) were defined.

Φ R r,( ) Cn E( )Ψn R r,( )
n

∑ ,=

Ψn R r,( )
1

Qn R( )
------------------ ψnlm* r( )ψnlm R( )

m l–=

l

∑
l 0=

n 1–

∑=

=  Jnlm R( )ψnlm* r( ),
m l–=

l

∑
l 0=

n 1–

∑

Jnlm R( )
ψnlm R( )

Qn R( )
-------------------≡ ψnlm r( )Ψn R r,( ) r,d∫=

Cn E( )
2πN0B E( )

E En–
-------------------------Qn

1/2 R( ),–=

Qn R( ) ψnlm R( ) 2.
m l–=

l

∑
l 0=

n 1–

∑≡

Ylm* n1( )Ylm n2( )
m l–=

+l

∑ 2l 1+
4π

--------------Pl αcos( ),=

Q̂n r R,( ) ψnlm* r( )ψnlm R( )
lm

∑≡

=  
1

4π
------ 2l 1+( )Pl θr R,cos( ) f nl r( ) f nl R( ).

l 0=

n 1–

∑

Q̂n r R,( )
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Analyzing the limit of Coulomb Green’s function
for E  En allowed the sums (32) and (34) to be
expressed in terms of the quadratic form of the wave
function only for one state with zero orbital quantum
numbers, l = m = 0 [39, 40]:

(37)

(38)

It follows from (36) and (37) that Ψn(R, r) are real func-
tions. From (38), it follows that Qn(R) is nonzero at
finite R [but Qn(R)  0 as R  ∞], because the inte-
grand on the right-hand side of (38) is positive. We also

see from (38) that zeros of the derivative  coin-

cide with zeros of the function φn0(r); hence, 
decreases to zero in steps as R  ∞ (see Fig. 3).

2.2. A Negative Ion 
with a Nonzero Orbital Angular Momentum, L = 1

To investigate the energy levels of the A– + BZ+ sys-
tem with a nonzero orbital angular momentum of the A–

ion and the parameters on which these energies depend,
it is convenient first to introduce a coordinate system
with the z axis directed along the vector of internuclear
separation R. The energy of the system under study
depends on the internuclear separation of the colliding
particles and on the absolute value of R, but does not
depend on the direction of vector R.

The three angular components {x, y, z} of the unper-
turbed wave function for a weakly bound electron with
orbital angular momentum L = 1 are

(39)

Ψn R r,( )
Q̂n R r,( )

Qn R( )
--------------------,=

Q̂n R r,( )
4Z2

n2
---------

φn0' τ y( )φn0 τ x( ) φn0 τ y( )φn0' τ x( )–
τ x τ y–

-----------------------------------------------------------------------,=

Qn R( ) ψnlm R( ) 2∑ dφn0 R( )
dR

------------------ 
 

2

= =

+ 2 En
Z
R
---+ 

  φn0
2 R( ) 2Z

φn0
2 r( )

r2
-------------

R

∞

∫ dr,=

φn0 r( ) rψn0 r( ), τ x y,
Z
n
--- r R r R–±+[ ] .= =

Qn' R( )

Qn R( )

Φ0 x y z, ,{ }, rb( )
χ0 rb( )

rb

-------------=

× 3
4π
------ θbcos θb φbcossin θb φbsinsin, ,{ } ,

rb r R,–=
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where the radial function χ0(rb) is the solution of the
equation

(40)

The azimuthal angle φ is measured from the collision
plane.

When substituting the wave function (39) and the
expansion of Green’s function (11) in the right-hand
part of integral equation (10), we find the integral (10)
of the first term of expansion (11) to be zero. For a neg-
ative ion with orbital angular momentum L = 1, the
two-center ionic wave function is given by the second
term of expansion (11), and, hence, it is proportional to
the derivatives of Green’s function

(41)

with

(42)

(43)

(44)

d2χ0 rb( )

drb
2

------------------- 2 ε0 V rb( )–( ) L L 1+( )

rb
2

--------------------– χ0 rb( )+ 0,=

L 1.=
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∂G
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-------∝

r' R→
, Φy

∂G
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-------∝

r' R→
, Φz
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-------------------------,cos–=
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Fig. 3. The sums of products of the Coulomb functions over
angular quantum numbers l and m for Z = 2 and principal quan-

tum number n = 6: 1—Qn(R) [ ], formulas (38),

(100); 2— , formulas (96), (100); and 3—

, formulas (97), (100).
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Here, θb and ϕb are the spherical angles of vector rb ≡
r – R in the coordinate system centered on the nucleus
of the negative ion A–:

(45)

xR, yR, and zR are the components of vector R in the
coordinate system centered on the nucleus of the posi-
tive ion. If the z axis is directed along vector R, then
zR = R, xR = yR = 0, and Fxyz{M, W} are

(46)

(47)

Fx{M, W} = Fy{M, W} = Fxy{M, W} and x, y, z are the
components of vector r.

The asymptotics of the radial unperturbed function
χ0(rb) [see Eq. (40)] is governed mainly by the centrif-
ugal potential. The atomic potential, which is deter-

mined by the polarization interaction V(rb)  –α/2
at large distances, may be disregarded. The asymptotics
of χ0(rb) is then2 

(48)

The coefficient  = 0.112 was calculated by numer-
ically solving Eq. (40) using the model potential V(rb)
from [26, 27].

If we use the semiclassical approximation (24) for
the Whittaker functions [7], substitute them in (46)
and (47), and expand on condition that |r – R| ! R, then
we obtain for Fz, xy{M, W}

(49)

here, the constant γscl in the semiclassical approxima-
tion is defined in (25). Expression (49), to within a con-
stant factor, coincides with (48) if the ionic-state energy
is given by the zero-order approximation (26) at γscl = γ.
Thus, the constructed functions (41)–(44), (46), and (47)
satisfy the necessary condition: at large internuclear

2 Note that (48) is an exact solution of Eq. (40) at V(rb) = 0.

θbcos
z zR–
R r–
---------------, θb ϕbcossin

x xR–
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---------------,= =
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y yR–
R r–
---------------;=
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ν
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+ 1
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R

------ R r–
R z–
------------+– 

  WM
WM' – W'M

R r–
------------------------------,–

Fxy M W,{ } 2
ν
---W'M'≡

+ 1
2ν
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Zν
R

------r R+
r z+
------------+– 

  WM
WM' W'M–

R r–
-----------------------------,–

rb
4

χ0
as N0

1( ) 1 1
γrb

-------+ 
  γrb–( ).exp=

N0
1( )

Fz Fxy 1 1
γscl r R–
------------------------+ 

  γscl r R––( ),exp≈ ≈
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separations [see condition (12)], they coincide with the
unperturbed functions near the negative ion.

The region of large distances from the nucleus of the
negative ion mainly contributes to the normalization
integral, but the contribution from asymptotics (48)
and (49) diverges when rb  0. Therefore, the spe-
cific expressions for the three components of the two-
center ionic wave functions for L = 1 were chosen to be

(50)

(51)

(52)

where the following relation was used for each of the
three components:

(53)

The function χ0 was determined by numerically solving

Eq. (40). The joining point  = 25a0 was chosen in

such a way that the solution of Eq. (40) for rb ≥  was
close to the asymptotic expression (48). The model
atomic potential V(rb) for Ca was taken from [26, 27].

The normalization constants Nx, y, z of ionic func-
tions (50)–(52),

(54)

(55)

were calculated by using expansions of the Whittaker
functions in terms of positive powers of the argument
[44] and a numerical solution of Eq. (40).

Similar to the case of L = 0, the ionic wave function
for L = 1 can be written as

(56)

(57)

The numerically calculated functions N(E) and B(E)
(using the zero-order approximation for energy E) are
similar to these functions for L = 0 (see Figs. 1 and 2).
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Using the spectral representation of Green’s func-
tion (6), we write a similar expansion for the ionic func-
tion:

(58)

here, the normalized wave functions

(59)

are linear combinations of the Coulomb wave functions
ψnlm(r) with the same principal quantum number n and,
hence, with the same energy. The expansion coeffi-
cients and normalization factors are

(60)

(61)

with the last two sums with subscripts x and y being
equal.

For a complete basis of adiabatic wave functions to
be constructed (see the next section), function (59)
must be expressed in terms of the sums of Coulomb
functions ψnlm in the coordinate system with the z' axis
perpendicular to the collision plane and with the x' axis
directed either along the impact parameter (rectilinear
trajectories) or along the vector of the smallest separa-
tion (Coulomb trajectories, time t = 0). This system of
x', y', z' coordinates does not rotate during a collision.

Note that the sum  does not depend
on the coordinate-system orientation (see above). There-
fore, to pass to the new system, we need only to redeter-
mine the derivatives. Since the x axis of the rotating coor-
dinate system used in this section coincides with the z axis
of the new nonrotating coordinate system, it is clear that
(d/dx) = (d/dz'). For the other two pairs of coordinates, we
have the following obvious relations:
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Expressing the derivatives with respect to x' and y' in
terms of the derivatives with respect to spherical coor-

dinates R, θ, and φ, we obtain the function 
in the new nonrotating coordinate system:

(62)

where θR and φR are the spherical angles of vector R; the
polar angle θR is constant and equal to π/2 during the entire
collision, because the z' axis is perpendicular to the colli-

sion plane. The normalization factors  are

(63)

and do not depend on the coordinate system (see Sect. 4). 

Since the wave functions  belong to the
states with nonzero components of the orbital angular
momentum along the R axis, these functions are zero if
vector r is directed along vector R. Indeed, the azi-
muthal angles of these vectors are π/2 in this case. The
associated Legendre polynomials in (7) and their deriv-
atives at θ = π/2 are [44]

(64)

Ψn
x y z, , R r,( )

Ψn
x R r,( ) ψnlm* r( )Jnlm

x R( ),
lm

∑=

Jnlm
x R( )

∂ψnlm R( )/∂θR

R Qn
x R( )

---------------------------------,≡

Ψn
y R r,( ) ψnlm* r( )Jnlm

y R( ),
lm

∑=

Jnlm
y R( )

∂ψnlm R( )/∂φR

R Qn
y R( )

---------------------------------,≡

Ψn
z R r,( ) ψnlm* r( )Jnlm

z R( ),
lm

∑=

Jnlm
z R( )

∂ψnlm R( )/∂R

Qn
z R( )

-------------------------------,≡

Qn
x y z, , R( )

Qn
x R( )

1

R
2

------ ∂ψnlm R( )
∂θR

----------------------
2
,

lm

∑=

Qn
2 R( ) ∂ψnlm R( )

∂R
----------------------

2
,

lm

∑=

Qn
y R( )

1

R2
----- ∂ψnlm R( )

∂φR

----------------------
2

lm

∑ 1

R2
----- m2 ψnlm R( ) 2

lm

∑= =

Ψn
x y, R r,( )

NlmPl
m θcos( ) θcos 0= Nlm

2 m

π
-------=

× Γ l m 1+ +( )/2[ ]
Γ 1 l m–( )/2+[ ]
------------------------------------------- π

2
--- l m 1+ +( ) ,sin
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(65)

We see from the definition of  that for r || R,
this function is proportional to the product of expres-
sions (64) and (65). The latter product, in turn, is pro-
portional to the product of sines

(66)

which is zero for any integer l and m. Thus, in the sum

defining , either the function ψnlm or its derivative
∂ψnlm/∂θ are zero at θr = θR = π/2.

The sum defining  in (62) is also zero for
r || R, because the azimuthal angles of these vectors are
equal in this case, φr = φR. This sum can be written as

(67)

The expression under the modulus sign in the last sum
depends only on the absolute value |m|. After multipli-
cation by m, the contributions from +|m| and –|m| to this
sum cancel out for any |m|, and, hence, the entire sum is
zero.

Functions (62) are mutually orthogonal; the corre-
sponding integrals are proportional to expressions (66)

and (67), which are zero. The functions  for
L = 1 are also orthogonal to Ψn(R, r) for L = 0, because
they belong to the states with different components of
the angular momentum along the internuclear axis. The
integrals of Ψn  and Ψn  are proportional to the

product of sines (66) and to the sum (67), respectively.

3. PROPERTIES OF THE COULOMB
GREEN’S FUNCTION AND A COMPLETE BASIS

OF ADIABATIC WAVE FUNCTIONS
A Coulomb system possesses a symmetry [43],

which manifests itself in the degeneracy of its energy
levels. This symmetry affects the properties of Cou-
lomb Green’s function, whose spectral expansion (6)
can be written as

(68)

where Ψn(R, r) are given by formula (32).

Nlm

dPl
m θcos( )

d θcos
-----------------------------

θcos 0=
Nlm

2 m 1+

π
-------------=

× Γ 1 l m–( )/2+[ ]
Γ l m– 1+( )/2[ ]
------------------------------------------ π

2
--- l m+( ) .sin

Ψn
x R r,( )

π
2
--- l m 1+ +( ) π

2
--- l m+( )sinsin 0,=

Ψn
x

Ψn
y R r,( )

ψnlm* r( )
lm

∑ ∂ψnlm R( )
∂φR

---------------------- i
2π
------ f nl r( ) f nl R( )

l 0=

n 1–

∑=

× m NlmPl
m 0( )

2

m l–=

m +l=

∑ 0.=

Ψn
x y, R r,( )

Ψn
x Ψn

y

G̃ R r E, ,( )
Qn R( )( )1/2Ψn R r,( )

En E–
---------------------------------------------,

n

∑=
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For each principal quantum number n, linear combi-
nations can be constructed from n2 wave functions of
degenerate states, which will be the wave functions in
the new representation. One of these functions is Ψn(R, r)
in the spectral expansion of the ionic function (31). The
remaining functions, designated as Ψnlm(R, r),

(69)

are absent from (31). The functions Ψnlm(R, r) must be
orthogonal between themselves and orthogonal to Ψn.
Consequently, the degenerate Coulomb basis can be
reconstructed in such a way that only one of the new
functions, Ψn(R, r), will be present in the spectral
expansion of Green’s function (68), while Ψnlm(R, r)
will not be present in this expansion.

In our problem, since there are no Ψnlm(R, r) in the
spectral expansion of Green’s function, the ionic term
interacts only with one covalent state, while the ener-
gies of the remaining degenerate states Ψnlm do not
change and are equal to the unperturbed Coulomb ener-

gies,  = –Z2/2n2. Nevertheless, the latter states are
not absolutely passive. They can be populated during
captures (1) and (2), because their wave functions
Ψnlm(R(t), r) are time dependent and because the matrix
element of the time derivative between them and Ψn(R, r)
is nonzero. Thus, the complete basis of adiabatic states
includes both Ψn and Ψnlm states, and our goal now is to
construct the functions Ψnlm.

The possibility of reconstructing the Coulomb basis
of eigenfunctions to study electron scattering by a sys-
tem composed of many small potential wells was
explored in [46], but the specific algorithm for con-
structing an orthonormal basis was not discussed in
previous papers [33–36, 46].

To find the reconstructed orthonomal Coulomb basis
of eigenfunctions, we assume that one of Coulomb func-
tions (7), Ψnλm, is orthogonal to Ψn from the outset, so that
Jnλµ(R) = 0. Let us consider the combinations

(70)

(71)

Each of these functions is orthogonal to Ψn (L = 0), or

to  (L = 1). For the mutual orthogonality, for
example, of Ψnlm(R, r) to be established, we must cal-
culate the integral of their product

(72)

Ψnlm R t( ) r,( ) Cn l' m', ,
n l m, , R( )ψn l' m', , r( ),

l' m',
∑=

En
0

L 0, Ψnlm R r,( ) ψnlm r( )= =

– Jnlm R( ) Ψn R r,( ) ψnλµ r( )+[ ] , lm{ } λµ{ } ,≠

L 1, Ψnlm
x y z, , R r,( ) ψnlm r( )= =

– Jnlm
x y z, , R( ) Ψn

x y z, , R r,( ) ψnλµ r( )+[ ] .

Ψn
x y z, ,

ΨnlmΨnl'm' rd∫ δll'δmm' 2JnlmJnl'm'*–=

+ JnlmJnl'm'* Ψn R r,( ) ψnλµ r( )+ 2 r.d∫
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Since ψnλµ(r) is orthogonal to Ψn(R, r), the integral on
the right-hand side of (72) is equal to 2 (ψnλµand Ψn are
normalized to unity), and the sum of the second and
third terms in (72) is zero. The same is true for L = 1;
therefore, each of the functions (70) and (71) is normal-
ized to unity and orthogonal to all the other functions:

(73)

(74)

At l = λ and m = µ, the equality Ψnλµ = ψnλµ holds
for the functions (70), because ψnλµ is orthogonal to Ψn

(L = 0), and the second term in (70) is zero. Therefore,
the function (70) with orbital quantum numbers λ and
µ is not orthogonal to the functions (70) with l ≠ λ and
µ ≠ m. This is also true for L = 1. Consequently, for a
given principal quantum number n, the number of

orthonormal functions Ψnlm or  is n2 – 1. Together

with Ψn, or , the total number of functions is n2,
as must be the case.

The proposed orthogonalization method, formu-
las (70) and (71), is general. It is based on the existence
of ψnλµ, which is orthogonal to the active-state function
Ψn from the outset. For this method to be applicable to
our problem, it must be shown that ψnλµ actually exists.

In the introduced coordinate system with the z axis
perpendicular to the collision plane, the polar angle of
vector R is a constant during the collision and is equal
to θR = π/2. The functions ψnlm(R) and their derivatives
with respect to x and y are proportional to the associated
Legendre polynomials at cosθ = 0, while the deriva-
tives with respect to z are proportional to the derivatives
of these polynomials. These polynomials and their
derivatives at θ = π/2 are given by (64) and (65), respec-

tively. We thus see that  as well as ψnlm(R) and
its derivatives with respect to x and y are zero at even
l + |m | + 1, while the derivative with respect to z is zero
at even l + |m | (or odd l + |m | + 1). The integrals Jnlm(R),
formulas (32a) and (62), are zero at these orbital quan-
tum numbers l and m. Consequently, the Coulomb
functions ψnlm(r) with even l + |m | + 1 are orthogonal to

Ψn and  but not orthogonal to . At odd l + |m| + 1,

ψnlm are orthogonal to  and not orthogonal to Ψn

and .

Thus, in our problem, the function ψnλµ(r) exists and
is not unique. For each n, the number of such functions
is approximately half the number of all degenerate
states, i.e., ≈n2/2.

As we see, the solution of the orthogonalization
problem depends on the choice of the coordinate sys-
tem. In the coordinate system we chose, this solution is
simplest, because the polar angle θR of vector R is π/2

Ψnlm* R r,( )Ψnl'm' R r,( ) rd∫ δll'δmm' ,=

Ψnlm
x y z, , R r,( )( )∗ Ψnl'm'

x y z, , R r,( ) rd∫ δll'δmm' .=

Ψnlm
x y z, ,

Ψn
x y z, ,

Pl
m 0( )

Ψn
x y, Ψn

z

Ψn
z

Ψn
x y,
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during the entire collision for both rectilinear and cur-
vilinear Coulomb trajectories. The trajectory must be
plane, which is the case for central forces. The pro-
posed method of constructing a complete orthonomal
basis is based on the specific form of active-state func-
tions Ψn(R, r).

Each principal quantum number n has its own set of
orthonormal functions {Ψn, Ψnlm}. Any function from
set n is orthogonal to any function from set n' (n' ≠ n),
because these sets are constructed from different sets of
Coulomb functions, respectively, from ψn'lm and Ψnlm,
which are orthogonal between themselves.

The functions Ψnlm given by (70) are zero at r = R:
Ψnlm(r = R) = 0. This fact is determined by the specific
form of active-state function Ψn and by its orthogonal-
ity to Ψnlm; i.e., it results from the degeneracy of Cou-
lomb energy levels attributable to Coulomb-field sym-
metry [43, 47].

The ionic wave function (31) is constructed from the
wave functions of only active states. Consequently, the
wave function of any passive state ψnlm(R, r) is orthog-
onal to the ionic function (31). By contrast, any active-
state function Ψn(R, r) (L = 0), is not orthogonal to the
ionic function Ψ(R, r) [see formula (31)]. The integral
of their product is equal to the coefficient Cn(E) [see
formula (33)]. Based on the same method used to con-
struct the orthonormal system of functions {Ψn, Ψnlm}
given by formulas (70) and (71), we construct the func-
tions

(75)

(76)

where ψnλ'µ' is orthogonal to Ψn, Φ (L = 0) or to ,
Φx, y, z (L = 1) (the orbital quantum numbers λ' and µ'

differ from λ and µ). The functions  and  are
orthogonal between themselves and orthogonal to the
ionic functions Φ and Φx, y, z and to the functions of pas-

sive states Ψnlm or  (λ ≠ λ', µ ≠ µ'). In addition,
the functions (75) and (76) are normalized, because

, (77)

and a similar relation holds for L = 1.

Next, we must calculate the adiabatic matrix ele-
ments of the time derivative. Since the z component of
vector R(t) is zero,

L 0, Ψ̃n R r,( ) Ψn R r,( )= =

– Cn E( ) Φ R r,( ) ψnλ'µ' r( )+[ ] ,

L 1, Ψ̃n
x y z, ,

R r,( ) Ψn
x y z, , R r,( )= =

– Cn
x y z, , E( ) Φx y z, , R r,( ) ψnλ'µ' r( )+[ ] ,

Ψn
x y z, ,

Ψ̃n Ψ̃n
x y z, ,

Ψnlm
x y z, ,

Ψ̃n R r,( )
2

rd∫ Ψn R r,( ) 2 rd∫ 1= =

td
d

Ṙ
R∂
∂ φ̇R φR∂

∂
.+=
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The matrix element between Ψnlm and Ψn is then given by

(78)

and does not depend on quantum numbers λ and µ.
When calculating the matrix element (78), we used the
expression for the derivative

which follows from the definition of Qn(R) in for-
mula (38). For L = 1, these matrix elements are

(79)

and do not depend on quantum numbers λ and µ either.
The derivatives with respect to azimuthal angle φR are

(80)

and the derivatives with respect to R are

(81)

(82)

L 0,=
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Ψn R r,( )d
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=  
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2R3Qn
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(83)

The sums  and their derivatives with respect to R
are calculated in the next section.

4. THE SUMS OF PRODUCTS
OF THE COULOMB WAVE FUNCTIONS

OVER DEGENERATE STATES

In this section, we calculate the sums of products of
the Coulomb wave functions with negative energy,
which are present in the wave functions of covalent
states constructed in the preceding section. The prod-
ucts are summed over orbital quantum numbers l and m.
Based on the analysis of Green’s function by Hostler
and Pratt [37, 38], the authors of [39–41] calculated the
sum

(84)

which is equal to the wave function (32), to within the
normalization factor. In his papers [47] devoted to four-
dimensional symmetry of the hydrogen atom, Fock
studied a similar sum, but for the wave functions in
momentum representation.

By analyzing a Taylor expansion of the sum (84), we
can obtain the sums of products of the derivatives of
arbitrary orders of Coulomb eigenfunctions with
respect to the absolute value of R at r = R:

(85)

To calculate the sum (85), let us consider the limit of
relation (84) for r  R when point r moves along
vector R and when

∂Jnlm
z R( )
∂R

---------------------
2–

Qn
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------------------=

× En
Z
R
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2R2
-----------------– 1

R
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+ +
 
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ψnlm R( ).
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Q̂n r R,( ) ψnlm* r( )ψnlm R( )
l m,
∑≡

=  
4Z2

n2
---------

φn0' τ y( )φn0 τ x( ) φn0 τ y( )φn0' τ x( )–
τ x τ y–

-----------------------------------------------------------------------,

τ x y,
Z
n
--- r R r R–±+[ ] ,=

Qn
i j, R( )

diψnlm* R( )

dRi
-----------------------

l m,
∑ d jψnlm R( )

dR j
------------------------.=

τ x
2ZR

n
---------- const, τ y

2Zr
n
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τ x τ y–
2Z R r–( )

n
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The expansion of the sum from (84) in a Taylor series
in powers (r – R)n is

(86)

and the expansion of the right-hand part of (84) is

(87)

Comparing these expansions and equating the terms at
the same powers (r – R)k yields

(88)

where φ(j) ≡ djφ/djR. For the special cases j = 0 and 1,
we obtain the two previously calculated sums [39–41]
from (88): the sum (38) and its derivative

Calculating the higher derivatives of  with respect
to R when differentiating the wave equation (18), we find

the sums  for the special cases j = 2–5:

(89)

ψnlm* r( )ψnlm R( )
l m,
∑ ψnlm R( ) 2

l m,
∑≈

+ r R–( )
dψnlm R( )

dR
----------------------ψnlm* R( )

l m,
∑

+ … r R–( )k

k!
------------------

dkψnlm R( )

dRk
------------------------ψnlm* R( ) …,+

l m,
∑+

φn0' r( )φn0 R( ) φn0 r( )φn0' R( )–
R r–

----------------------------------------------------------------
dφn0 R( )

dR
------------------ 

 
2

=

– φn0 R( )
d2φn0 R( )

dR2
-------------------- … r R–( )k 1–

k!
------------------------+ +

× φn0' R( )
dkφn0 R( )

dRk
-------------------- φn0 R( )

dk 1+ φn0 R( )

dRk 1+
--------------------------–

 
 
 

…  .+

Qn
0 j,( ) R( ) ψnlm* R( )

d jψnlm R( )

dR j
------------------------

lm

∑≡

=  
1

j 1+
----------- φn0

j 1+( ) R( )φn0
1( ) R( ) φn0

j 2+( ) R( )φn0 R( )–( ),

dQn R( )
dR

----------------- 2Zψn0
2 R( ).–=

φn0
j

Qn
0 j,( )

Qn
0 2,( ) R( ) ψnlm* R( )

d2ψnlm R( )

dR2
------------------------

lm

∑≡

=  
2l 1+

4π
-------------- f nl R( )

d2 f nl

dR2
------------

l

∑ 2
3
--- En

Z
R
---+ 

  Qn
0 0,( ) R( )–=

+
2Z

3R3
--------- 2φn0

2 R( ) Rφn0 R( )φn0' R( )–( ),
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(90)

(91)

(92)

Differentiating equality (88) with respect to R, we
derive the relation

(93)

The second sum in the left-hand part of this relation is
equal to the sum (88) with the change j  j + 1, so the
sums for i = 1 are

(94)
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A similar differentiation of Eq. (94) with respect to

R yields the sums  for i = 2:

(95)

By continuing the differentiation, we can calculate the

sum  for any i and j, but the result rapidly becomes
unwieldy. Below, we give the sums for the most inter-
esting particular values of i and j. We have

(96)

for i = j = 1 and

(97)

for i = j = 2.

Differentiating (96) with respect to R yields a simple
expression for the sum with i = 1 and j = 2:
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Differentiating (97) with respect to R also yields a sim-
ple expression for i = 2 and j = 3:

(99)

Integrating (98) and (99), we write Qn (≡ ), ,

and  as

(100)

The sums Qn, , and  are shown in Fig. 3
as a function of internuclear separation R. They have no
zeros at finite R. All the calculated sums are of interest
not only in analyzing collisions between negative and
positive ions, but also in the physics of highly excited
Rydberg states [48].

For the system A– + BZ+, where the negative ion has
the orbital angular momentum L = 1, the sums of prod-
ucts of the Coulomb functions (62), which define the
wave functions of active covalent states, are calculated
in a way similar to that for L = 0. It is necessary to analyze
the limit of Coulomb Green’s function for E  En. We
obtained for the functions (62)

(101)
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(102)

These functions have no poles at r = R.
To calculate the sums (63), many expansion terms for

these functions must be analyzed in the limit r  R,
which complicates the problem. Below, we therefore
calculate the sums (63) by a different method.

The sum , formula (63), is equal to the sum

 calculated above, formulas (96) and (100). The

sums , formula (63), are equal and can be written
as two expressions:

(103)

The values θ = π/2 and 0 correspond to the cases where
the z axis is perpendicular to the collision plane and
directed along R, respectively. The summation result
does not depend on the choice of z-axis direction. We
use the coordinate system with the z axis directed along
vector R. It follows from the representation of the asso-
ciated Legendre polynomial as the full hypergeometric
function [44],

(104)

that the derivative with respect to angle θ at θ = 0 is
nonzero only for the angular momentum components
m = ±1 and is

(105)

Using this result and the expression for normalization
factor Nlm, (9), we transform the sum (103) to

(106)
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Calculating this sum can be reduced to calculating

, which, using the summation
theorem for spherical functions (35), can be written as

(107)

The sums (106) and (107) differ by the l- and m-inde-
pendent factor (2R)–2. Having calculated (107), we
therefore also determine the sum (106).

To calculate the sum (107), we express l(l + 1)fnl in
terms of fnl , dfnl/dR, and d2fnl/dR2 from the wave equa-
tion (8). Thereafter, (106) and (107) can be expressed in
terms of the sums that have already been calculated
above and take the form

(108)

(109)

The sum , formula (109), is shown in Fig. 4 as
a function of internuclear separation R in comparison

with  [or ], formula (96). The two sums

are positive for all R. However, whereas  decreases
in steps in the classically permitted range of distances R,

 have indistinct bends instead of steps. Most of
the other sums given above also exhibit a peculiar
behavior as functions of R. All the sums were calculated
both by using the derived quadratic forms of φn0 and by
direct summation over l using the Coulomb functions fnl,
(9). The results have always been in close agreement.

5. THE APPROXIMATION
OF A DISTANT TERM CROSSING

In the preceding sections, the energy E and internu-
clear separation R of the A– + BZ+ system were assumed
to be independent parameters. In this section, we calcu-
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late the energy E as a function of internuclear separa-
tion R. In the zero-order approximation, this energy fol-
lows the law (26), from which we derive the distances Rn

of term crossings:

(110)

For internuclear separations R ≈ Rn near distant term
crossings, where Rn is larger than the size of the corre-
sponding Coulomb orbit for a covalent state, the matrix
element between the ionic and covalent states is small
compared to the difference between the Coulomb
terms, Z2/n3. In this case, the two-level approximation
may be used for the adiabatic wave function:

(111)

In this approximation, the ionic state Φ0 interacts with
the active adiabatic state Ψn(R, r) that belongs to only
one principal quantum number n. Separating the reso-
nant term Ψn from expansion (31) does not affect the
form of Φ0, because the coefficients Cn(E) are small far
from a quasi-crossing. Using relations (33) and (60)
between the coefficients Cn and the function B, we
obtain after normalizing the function (111)

(112)

because the overlap integral 〈Φ0|Ψn〉  is zero due to the
orthogonality of Ψn and Ψn' at n ≠ n'.

ε0
Z
Rn

-----– En, Rn
Z

ε0 En–
----------------.= =

Φ R r,( ) Cn E( )Ψn R r,( )
lm

∑=

≈ B E( )Φ0 R r–( ) Cn E( )Ψn R r,( ).+
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 
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Fig. 4. Comparison of the sums  and  as functions

of internuclear separation R: 1— , formulas (96),

(100), and 2— , formula (109).
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1 1,( )

Qn
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Qn
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R( )

Qn
x y,

R( )
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For negative ions with orbital angular momenta L = 0
and 1, ∆En(R) are

(113)

(114)

Equalities (113) and (114) follow from formulas (33)

and (60), while the sums Qn(R) and  were cal-
culated in the preceding section.

We derive the function B(E) from (112). Substitut-
ing it in (33) and (60) yields Cn(E) as functions of
energy near term crossings:

(115)

(116)

(117)

Expressions (115) and (116) are the zero-order
approximation of a distant crossing, while (117) is the
next, first approximation. We see from (115) and (116)
that near a quasi-crossing, where |E – En| ≈ |∆En(Rn)|,
the coefficients Cn and Bn are of the order of 1 in abso-
lute value, while for the other covalent states n' ≠ n
which the ionic term does not cross in the range of dis-
tances under consideration, the coefficients Cn, n'(Rn)
are small:

Let us write relations (115)–(117) by using the zero-
order approximation for energy (26). For any n, the dif-
ference E0(R) – En can be written as

(118)

which is an exact expression, not an approximation.
Substituting (118) in (115)–(117) yields Bm, Cn, and Cn'
as functions of internuclear separation R rather than
energy:

(119)

(120)
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where

(122)

Note that at R = Rn,

where the force

Representing the coefficients B and C as functions
of R allows the two-level approximation under consid-
eration to be compared with the exact calculation
described in Section 1. In Fig. 5, the function B(R) cal-
culated from formula (119) of the two-level approxima-
tion is compared with the result of its exact calculation
at R ≈ R4. The agreement between the results is excel-
lent, so the two-level approximation proves to be very
close to the exact calculation. For R ≈ R5 and R ≈ R3, the
two-level approximation is equally close to the exact
calculation.

The coefficients B and C in (115)-(117) are func-
tions of energy. To determine the system’s energy as a
function of internuclear separation R, note that when
the two-level approximation is considered in detail, the
adiabatic wave functions ψ1, 2 prove to be linear combi-
nations of the wave functions φ1, 2 of the zero-order
approximation [31, 43]:

(123)

where, in our notation, the difference between the diag-
onal matrix elements x and twice the nondiagonal
matrix element ∆ are

The equality Bn = –Cn = 1/  at E – En = ∆En(R) follows
from (115) and (116). In turn, it follows from (123) that
these coefficients correspond to a minimum energy dif-
ference between two quasi-crossing terms, when x = 0.

∆Rn R( )
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-----.=
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a
x2 ∆2+ x+

2 x
2 ∆2+

------------------------------

1/2

,=

b
x2 ∆2+ x–

2 x
2 ∆2+

------------------------------
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,=

x E1
0 V11 E2

0– V22–+≡ E0 R( ) En,–=

∆ 2 V0n .≡

2
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Thus, for the A– + BZ+ system under study, we can write
an expression for the nondiagonal matrix element,

(124)

and an expression for the energies of two quasi-cross-
ing terms,

(125)

because the diagonal matrix element for the ionic state is

(126)

and because the shifts of covalent terms may be disre-

garded by assuming that  ≈ En. Substituting the
expressions for energy (125) in (115) and (116), we
derive relations (123).

Equation (115) for energy levels contains ∆En(R),
which, according to (113) and (114), are expressed in
terms of the sums of products of the Coulomb wave

functions Qn and  calculated in the preceding sec-
tion. These sums are shown in Figs. 3 and 4. As follows

from these figures, Qn, , and, hence, the nondiag-
onal matrix elements V0n are nonzero at all finite inter-
nuclear separations R, both for negative ions with a zero
orbital angular momentum, L = 0, and for positive
ions with L = 1.

Thus, the procedure for normalizing Coulomb
Green’s function as the wave function and analyzing
the results allow us to calculate the nondiagonal matrix
elements and to determine the behavior of terms for
each crossing; i.e., this procedure allows the behavior
of the A– + B+ system to be completely described.

V0n Φ0 V Ψn〈 〉 ∆ En R( ),= =

E± R( ) En–( )

= 
1
2
--- E0 R( ) En– E0 R( ) En–( )2 4∆En

2 R( )+±( ),

Ĥ00 E0 R( ) ε0
Z
R
---,–= =

Ĥnn

Qn
x y z, ,

Qn
x y z, ,

16

B

Internuclear separation R,
17 18 19 20 21 22 23

1.0

0.5

0

–0.5

–1.0

 at. units (R4 = 20.56)

Fig. 5. Function B versus internuclear separation R for the
H– + He++ system near the crossing of the ionic term with
the covalent n = 4 term: the solid lines and diamonds repre-
sent, respectively, the exact numerical calculation and the
approximation of a distant crossing, formulas (119) and (122).
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The system of adiabatic states breaks up into two
groups. The first group includes the states that quasi-
cross the ionic term. The second group includes the
covalent states whose energies are above the energy ε0

of the unperturbed negative ion and which are not
involved in quasi-crossings. In the two-level approxi-

0

–0.110

Internuclear separation R,

Ö, at. units

2018 22 2420.56

–0.120

–0.125

–0.130

Ö4 = –0.125 at. units

 at. units (R4 = 20.56)

Fig. 6. Energy terms of the H– + He++ system near the
quasi-crossing of the ionic term with the covalent n = 4
term. A comparison of the results of an exact calculation
obtained when solving a transcendental equation by using
the logarithmic derivative of Green’s function [33, 35] (solid
lines) with the approximation of a distant term crossing
(crosses and diamonds). The dotted line represents the ionic
term in the zero-order approximation, E0(R) = ε0 – Z/R.

Table 1.  Orbital sizes rn, quasi-crossing positions Rn, and term
splittings δEn = 2∆En(Rn) at quasi-crossings for the H– + H+

system

n rn, at. units Rn, at. units δEn(Rn), at. units

1 2.0 2.117 1.652–1

2 8.0 10.279 1.876–2

3 18.0 35.921 2.318–4

4 32.0 283.005 7.123–27

Table 2.  Orbital sizes rn, quasi-crossing positions Rn, and term
splittings δEn = 2∆En(Rn) at quasi-crossings for the H– + He++

system

n rn, at. units Rn, at. units δEn(Rn), at. units

1 1.0 1.01 5.108–1

2 4.0 4.23 1.059–1

3 9.0 10.28 3.126–2

4 16.0 20.56 7.429–3

5 25.0 38.25 7.179–4

6 36.0 71.84 5.089–6

7 49.0 152.67 3.556–12

8 64.0 566.01 5.158–50
JOURNAL OF EXPERIMENTAL 
mation used for each crossing, the adiabatic energies of
the first group are

(127)

The two energy branches were joined at point 
between the two closest crossings Rn and Rn + 1.

The energy  is close to the Coulomb energy
En for R < Rn + 1 and to En + 1 for R > Rn + 1. Between the
crossings for Rn < R < Rn + 1, this energy is close to the
ionic energy of the zero-order approximation, E0(R)
[see (26)]. Figure 6 shows the energies calculated from
formula (127) in the approximation of a distant cross-
ing for n = 4 (R4 = 20.56) in comparison with the results
of an exact calculation obtained when solving a tran-
scendental equation using the logarithmic derivative of
Green’s function [33, 35]. The approximation of a dis-
tant term crossing is seen to be very close to the exact
result. Tables 1 and 2 give the internuclear separations
Rn at which the ionic term crosses the covalent term and
the term separations at quasi-crossings for H– + H+ and
H– + He++ collisions. 

The wave functions of the first group of states are

(128)

where

(129)
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The coefficients Cn, n'(R) describing the contributions of
the states with principal quantum numbers n' ≠ n to the
function  are

(130)

The function  is close to Ψn at R < Rn, because

 ≈ 1 and  ≈ 0 in this range. It is given by a linear
combination of Ψn and Φ0 near the crossing R ≈ Rn and
by a linear combination of Φ0 and Ψn + 1 near the cross-
ing R ≈ Rn + 1. Between the crossings, Rn < R < Rn + 1,

 is close to the unperturbed wave function of the

negative ion Φ0, when the amplitude  is close

to unity and all  are small. At R > Rn + 1,  is

close to Ψn + 1, because  ≈ 1 and  ≈ 0 in this
range.

The matrix elements of the derivative with respect to
R for two quasi-crossing active states are

(131)

These matrix elements are nonzero in narrow ranges
∆Rn near the points of quasi-crossing Rn, and their abso-
lute values at R = Rn are large:

(132)

Near the nth crossing, the matrix elements between
the active crossing states and the other active states Ψn'
that are not involved in the nth crossing, i.e., for n' ≠ n,
are also at a maximum. Using the coefficients Cn', for-
mula (121), we obtain
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(134)

The maximum absolute values of these matrix elements
are reached at R = Rn,

(135)

These values are a factor of ∆En'(Rn)/( (En – En'))
smaller than the maximum values (132) of matrix ele-
ments (131) between the wave functions of active
states. The matrix elements (131) and (133) are shown
in Figs. 7 and 8.

The wave functions of the extreme adiabatic states 

and  (nm is the highest Coulomb level crossed by
the ionic term) are given by different relations than (128)
and (129). These formulas contain only the upper row

with n = 0 for the extreme lower state  and only the

lower row with n = nm for the extreme upper state .

The adiabatic energies of the states with principal
quantum numbers n > nm are equal to the unperturbed
Coulomb energies En. The wave functions of both pas-
sive and active states for these n at all separations R are,

respectively, Ψnlm(R, r) and , formulas (70), (71)
and (75), (76).

To conclude this section, we give asymptotic limits
for the term splitting (125), which are valid for distant
quasi-crossings when Rn is more than twice the size rn

of the corresponding Coulomb orbit:

(136)

(137)

(138)

dCn
± R( )

dR
----------------- 4 2π2N0

2 Z

R2
-----±=

×
Qn R( ) xn R( )φn0

2 R( )+

Dn
5/2 R( ) Dn R( ) xn R( )±

-------------------------------------------------------.

dCn n',
± R( )
dR

---------------------
R Rn=

=  
∆En' Rn( )

2 En En'–( )
------------------------------ Z

4Rn
2∆En Rn( )

-----------------------------.±

2

Φ0
1

Φnm

nm 1+

Φ0
1

Φnm

nm 1+

Ψ̂n R r,( )

L 0, δEn
as Rn( ) 2∆En

as Rn( ) 2γnAs Rn( ),≈= =

L 1, δEn z,
as Rn( ) 2∆En z,

as Rn( )= =

≈ 3Z
N0

1( )

γ
--------- Z

n
---As Rn( ),

δEn xy,
as Rn( ) 2∆En xy,

as Rn( )=

≈
N0

1( )

γ
--------- 3n n 1–( )

2
-----------------------

As Rn( )
Rn

---------------,

As Rn( )
Z
n
--- 

 
3/2 2n

n!
----- 

  ZRn

n
--------- 

 
n 1– ZRn

n
---------– 

  .exp≡
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0

(∂/∂R)n, n + 1
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Internuclear separation R, at. units
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0

71.7

(∂/∂R)n, n + 1
n – 1, n , n = 6

Internuclear separation R,
71.8

(b)
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 at. units, R6 = 71.84

Fig. 7. Adiabatic matrix elements, formula (131), versus internuclear separation R between the ionic state and the covalent states
with (a) n = 1, 2, 3, 4, 5 and (b) n = 6 crossed by the ionic term.
We see from (136)–(138) that the asymptotics

 contains an additional negative power R–1 com-

pared to  and , because the asymp-
totics of the exchange matrix element is proportional to
R–|m| [49].

6. THE SYSTEM OF CLOSE-COUPLING 
EQUATIONS AND THE ELECTRON CAPTURE 

CROSS SECTION 

The evolution of a collisional system with time is
described by the temporal Schrödinger equation for the

δEn xy,
as

δEn
as Rn( ) δEn z,

as Rn( )

16

0.02

Internuclear separation R,
18 20 22 24

0.01

0

–0.01

–0.02

5+
7+

9+

9–

7–
5–

 at. units (R4 = 20.56)

Fig. 8. Adiabatic matrix elements versus internuclear sepa-
ration R between the ionic state near its crossing with the
covalent n = 4 term and the other states with n = 5, 7, and 9,
formulas (133) and (134). The plus and minus signs refer,
respectively, to one of the quasi-crossing states at R ≈ R4
and to the other state.
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wave function of an electron with coordinate r:

(139)

In this equation, the total two-center Hamiltonian Htot

of the system depends on time t, because the atomic
nuclei are assumed to be moving along a classical tra-
jectory which is determined by the time dependence of
internuclear separation R(t). 

We expand the full wave function of the A– + B+ sys-
tem in terms of the wave functions of the adiabatic
states introduced above:

(140)

with Nmax exceeding nmax; i.e., (140) includes the cova-
lent states whose binding energies are lower than those
of the unperturbed negative ion. These states are popu-
lated through the coefficients Cn, n' in the expansion of
the ionic wave function. The sum in (140) contains
active and passive states.

The system of adiabatic equations for the coeffi-
cients bnlm(t) that results after substituting expansion
(140) in Eq. (139) [50] is

(141)

i
∂Ψtot R r t, ,( )

∂t
------------------------------- H tot t( )Ψtot R r t, ,( ).=

Ψtot R r t, ,( ) bnlm t( )Ψnlm R r,( )
nlm

Nmax

∑=

× i En t'( ) t'd

t

∫–
 
 
 

,exp

dbnlm

dt
------------- bn'l'm' t( )

t∂
∂

 
 

nlm

n'l'm'

iφn n', t( )( ),exp
n'l'm'

Nmax

∑=
 AND THEORETICAL PHYSICS      Vol. 93      No. 2      2001



ELECTRON CAPTURE IN COLLISIONS 275
where the phases φn', n(t) are

(142)

The system of equations (141) includes all the active
and passive states with principal quantum numbers
n ≤ Nmax, with the maximum principal quantum number
varying in the range Nmax = 9–14. System (141) was

φn' n, t( )

≡ En
n 1+ R t'( )( ) En'

n' 1+ R t'( )( )–( ) t'.d

t0

t

∫

101

σ, 10–16 cm2

Collision energy in center-of-mass system, eV
102 103 104 105

1

2
34

5

6

7

8

4

3

2

1

1

150

100

50

0

Fig. 9. The total cross section for electron capture in the
H– + H+  H + H*(n) collision. Theory: curve 1—our
calculation, curve 2—from [1], curve 3—Ermolaev’s calcu-
lation [2], curve 4—from [5], curve 5—from [6], dotted
curve 6—the calculation of Shingal et al. [4], curve 7—the
calculation of Bates and Lewis [11], and curve 8—the cal-
culation of Dalgarno et al. [12]. Experiment: squares and
crosses—merged-beam measurements of Brouillard’s
group [13], respectively, for the H– + H+ and H– + D+ colli-
sions (the results for the H– + D+ collision are shown for the
same collision velocity as that for H– + H+); and dia-
monds—crossed-beam measurements of Salzborn’s
group [16].

107

2000

Collision velocity, cm s–1
106 108

1000

500

200

1
2 1

1

2

σ, 10–16 cm2

Fig. 10. The total cross section for electron capture in the
H– + He++  H + He+(n) collision. Theory: the solid line
represents our calculation; dotted curves 1 and 2 represent
variational calculations [17, 19]. Experiment: crosses—
from [18] and diamonds—from [17].
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solved numerically by the methods described in Hem-
ming’s book [51]. We used the matrix elements calcu-
lated above. The trajectories R(t) corresponded to the
Coulomb field of attraction between A– and BZ+. The
partial (σi) and total (σtot) electron capture cross sec-
tions were calculated using the formula

(143)

where Pi is the probability of populating state i,

σtot = .

Figure 9 shows the total cross section for electron
capture in the H– + H+  H + H*(n) collision. The
discrepancy of theoretical data is large. If we exclude
the early results (curves 7 and 8), then our calculated
cross section will be the largest and the closest to the
experimental results. This is because of the higher pop-
ulation of the n = 3 state in our calculation attributable
to the coupling of the two crossing n = 2 states with the
n = 3 states. This coupling is given by the matrix ele-
ments (133).

Figure 10 shows the total cross section for the H– +
He++  H + He+(n) collision. As in the previous case,
our calculated cross section exceeds other theoretical
cross sections and is closest to the experimental cross
section. The cause of the disagreement with other theo-
retical calculations is the same. Because of the nonadi-
abatic coupling between the crossing states and the
states that are not involved in a given crossing, the pop-
ulation of more highly excited covalent levels signifi-
cantly increases. The n = 4, 5, 6, and 7 states are most
populated.

Figure 11 shows the total cross section for electron
capture in the Ca– + He++  Ca + He+(n) collision
that we calculated by disregarding spin-orbit splitting

σi 2π Pi ρ( )ρ ρ,d

0

∞

∫=

σii∑

107

20

Collision velocity, cm s–1
106 108

10

5

2

σ, 10–12 cm2

Fig. 11. Our calculated total cross section for electron cap-
ture in the Ca– + He++  Ca + He+(n) collision. The
solid curve represents the cross section for the state with a
zero component of the orbital angular momentum along the
internuclear axis, m = 0; the diamonds are for |m| = 1.
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of the binding energies for Ca–. We took the binding
energy of this negative ion to be 0.022 eV, which is the
mean of two actual binding energies: E3/2 = 0.01973 eV
and E1/2 = 0.02455 eV (see, e.g., [27]). Figure 11 shows
the two cross sections corresponding to two compo-
nents of the orbital angular momentum L = 1 for Ca–

along the internuclear axis R. The states with the
angular momentum components |m| = 1 and 0 have
different term splittings at quasi-crossings, so the
electron capture cross sections for them are different.
The capture cross section for this ion is very large,
because its binding energy is very low. Distances of
200–500a0 mainly contribute to the cross section. The
covalent states n = 14–19 are most populated.
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ATOMS, SPECTRA,
RADIATION
Multiphoton Atomic Ionization in the Field
of a Very Short Laser Pulse
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Abstract—Closed analytic expressions are derived for the probability of multiphoton atomic and ionic ioniza-
tion in a variable electric field %(t), which are applicable for arbitrary Keldysh parameters γ. Dependencies of
the ionization probability and photoelectron pulse spectrum on the shape of a very short laser pulse are ana-
lyzed. Examples of pulse fields of various forms, including a modulated light pulse with a Gaussian or Lorentz
envelope, are considered in detail. The interference effect in the photoelectron energy spectrum during atomic
ionization by a periodic field of a general form is examined. The range of applicability of the adiabatic approx-
imation in the multiphoton ionization theory is discussed. The imaginary time method is used in the calcula-
tions, which allows the probability of particle tunneling through oscillating barriers to be effectively calculated.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION AND STATEMENT
OF THE PROBLEM

Studies of physical phenomena under extreme con-
ditions, including those in strong external fields, have
always been of considerable interest. As is well known,
the Einstein law for the photoelectric threshold breaks
down in the field of a strong light wave and multiphoton
atomic and molecular ionization becomes possible.

The production of increasingly intense electromag-
netic fields is associated with the shortening of a laser
pulse, whose duration becomes comparable to an opti-
cal period (see, e.g., [1–3] and references therein) and
whose spectrum contains many higher harmonics.
Since multiphoton ionization is a highly nonlinear pro-
cess [4-8], it cannot be reduced to the sum of contribu-
tions from individual harmonics. The ionization proba-
bility and the pulse spectrum of the emerging photo-
electrons significantly depend on the shape of the pulse
field, particularly when the external-field frequency ω
exceeds the tunneling frequency ωt. Elucidating this
dependence becomes necessary for analyzing experimen-
tal data and is the subject of our study (see also [9, 10]).

To this end, consider the problem of atomic-level
ionization in a variable electric field (spatially uniform
and linearly polarized),

(1)

which arbitrarily depends on time t '. Here, F is the field
amplitude, ω is the characteristic field frequency, and t is
the dimensionless time. Regarding the function ϕ specify-
ing the pulse shape, we assume that |ϕ(t)| ≤ ϕ(0) = 1
for −∞ < t < ∞ (i.e., t = 0 is the time of field maximum,
when the electron emerges from under the barrier [6])

% t'( ) Fϕ t( ), t ωt',= =
1063-7761/01/9302- $21.00 © 0278
and ϕ(–t) = ϕ(t); note that the latter condition is imposed
only for the convenience of calculations.

For our calculations, we use the semiclassical imag-
inary time method (ITM) [6, 7, 11], which gives a clear
description of the particle tunneling through any
smooth and rapidly oscillating barriers. In this case, the
subbarrier trajectories that formally satisfy the classical
equations of motion (but with imaginary time!) are
introduced. The principal (exponential) factor in the
ionization probability is determined by the so-called
extreme subbarrier trajectory, on which the imaginary
part of the action function, ImS, reaches a minimum
(and which, according to Feynmann [12, 13], deter-
mines the most probable particle tunneling path). Next,
for the pulse spectrum of the emerging electrons to be
derived, we must consider a bundle of classical, nearly
extreme trajectories and calculate the quadratic correc-
tion to ImS proportional to (p – pmax)2 on them (see
[7, 11] for more details; the ITM is also presented in the
monograph [14]).

Below, we assume the following conditions to be
satisfied:

(2)

they ensure that the semiclassical approximation is
applicable to multiphoton processes. Here, K0 is the
multiquantum parameter, e is the reduced electric field,
I = κ2me4/2"2 is the atomic-level ionization potential,
and κ is the (dimensionless) momentum characteristic

K0
I

"ω
-------  @ 1, e

e"F

2I( )3/2m1/2
-------------------------

F

κ3Fa

----------- ! 1,= = =

ImS @ ",
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of a bound state.1 The tunneling process significantly
depends on Keldysh parameter γ [4],

(2')

where ωt is the tunneling frequency in a static field F
(below, we use atomic units, " = m = e = 1, where m is
the electron mass, Fa = m2e5/"4 = 5.14 × 109 V cm–1).

Our goal is to investigate the atomic-level ionization
probability and the photoelectron pulse spectrum as
functions of pulse-field shape (1) and Keldysh parame-
ter.2 In the next section, we give basic equations that
describe this dependence (in the semiclassical approxi-
mation). We formulate an algorithm that allows the
auxiliary function χ(z) to be calculated from the speci-
fied shape of the external field ϕ(t) whereupon the prob-
lem reduces to quadratures. In Section 3, we consider
model examples of fields ϕ(t), for which all calcula-
tions are performed analytically. The results of our
numerical calculations, including those for an ampli-
tude-modulated electromagnetic wave with a Gaussian
or Lorentz envelope, are presented in Section 4. The
tunneling interference effect in the photoelectron
energy spectrum is examined in Section 5, and the range
of applicability of the adiabatic approximation in the mul-
tiphoton ionization theory is considered in Section 6. Our
results are briefly discussed in the final Section 7. Details
of our calculations, including the derivation of approxima-
tion (17) for large γ, auxiliary formulas, and asymptot-
ics, are given in the Appendices.

The results presented below have been partly
announced in [9, 10]. It should be noted that the theory
of multiphoton ionization by very short laser pulses
was also considered by Keldysh [3], who, in particular,
analytically and numerically analyzed (by a different
method) soliton-like, Gaussian, and Lorentz pulses. To
compare our results with those from [3], it is useful to
bear in mind that Keldysh [3] used the following nota-
tion: Ω = 1/K0, % = 2e, λ = 1/γ, and f '(x) = ϕ(x) with
x = ωt ' ≡ t.

2. BASIC EQUATIONS

For field (1), it is clear from physical considerations
that the extreme trajectory is one-dimensional and
directed along the field. Solving the classical equations of

1 For the ground level of a hydrogen atom, κ = 1. For the ground
states of neutral atoms, κ ranges from 0.535 for Cs (I = 3.89 eV)
to 1.344 for He (I = 24.59 eV); see [15] and Table 1 in [11]. For
weakly bound states, this parameter can be appreciably smaller
than unity. Thus, for example, I = 0.754 eV and κ = 0.235 for a
negative hydrogen ion and I = 0.077 eV and κ = 0.075 for He–. In
these cases, the reduced fields e and the ionization probabilities
significantly increase (at fixed electric field F).

2 For monochromatic laser emission, the momentum, energy, and
angular distributions of photoelectrons during multiphoton ion-
ization have already been considered previously [6–8]. Recently,
they have been analyzed in detail [16–8] over the entire range of
γ, including the general case of elliptic polarization.

γ ω
ωt

-----
ω 2mI

eF
------------------,= =
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motion and calculating ImS yields the multiphoton ioniza-
tion probability (to within a preexponential factor):

(3)

where p|| and p⊥  are the longitudinal (along the field)
and transverse momenta of the emerging electron,
respectively; pmax is its most probable momentum:3 

(4)

(p⊥  is the integral of motion, and F/ω is the characteris-
tic momentum of the oscillatory electron motion in the
wave field). This includes the function χ(z), which
depends on pulse shape (1); after its derivation, the
problem reduces to quadratures. This function can be
specified parametrically:

(5)

where  ≡ ϕ(it). The latter equation also defines
(implicitly) the inverse function τ = h–1(z); in this case,4

(6)

and the initial time of the subbarrier electron motion is

(6')

The derivation of Eqs. (3)–(6) is omitted here. It is
based on the ITM and is a generalization of the calcu-
lations in [7] for the special (but important for applica-
tions) case of a monochromatic laser field. In this paper,

3 Assuming that pmax = 0 in (3), we obtain the pulse spectrum of
the electrons at the time of their emergence form under the barrier
(t = 0). Its recalculation to the distribution of emerging photoelec-
trons (t  +∞) in finite kinetic energies is a separate problem,
which has been addressed by many authors (see, e.g., [19–23]).
Here, we only note that expression (4) for pmax applies only to
very short (with a duration T ( 1 ps) laser pulses).

4 In (5), τ is the parameter whose elimination yields an explicit
dependence of χ on z. Note that h(τ) differ from the vector poten-
tial A(t ') continued to the complex plane only by the factor iω/cF.

wi p( )
dWi

dp
---------- 2

3e
------g γ( )–





exp∝≡

–
κ
F
--- b1 γ( ) p|| pmax–( )2 b2 γ( ) p⊥

2+[ ]




,

g γ( )
3
2
--- χ γz( ) 1 z2–( ) z,d

0

1

∫=

b1 γ( ) γ
db2

dγ
--------,–=

b2 γ( ) χ γz( ) zd

0

1

∫ γ 1– τ γ( ),= =

pmax
F
ω
---- ϕ t( ) td

0

∞

∫=

χ 1
ϕ̃ τ( )
----------, z h τ( ) ϕ̃ t( ) t,d

0

τ

∫= = =

ϕ̃ τ( )

χ z( ) τ' z( ),=

t0' iω 1– τ γ( ), τ γ( ) h 1– γ( ).= =
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we apply these formulas to pulse fields of various forms
and discuss the effect of laser-pulse shortening on the
total ionization probability and on the photoelectron
spectrum. Note that examples of calculating (by the
ITM) the preexponential factor, including those for
time-constant electric and magnetic fields of arbitrary
magnitudes and directions, can be found in [7, 11].

In the tunneling limit, γ ! 1 (low-frequency laser
field), ionization occurs at times close to t = 0. Assum-
ing for t  0 that

(7)

we find from (5) that [see also (A.3) and (A.4) in
Appendix A]

(7')

whereupon, using (4), we obtain expansions that allow
the adiabatic corrections to be easily calculated:

(8)

(8')

The last two formulas can also be written as

(8'')

where gn are the coefficients of series (8) for the func-
tion g(γ). To a first approximation in γ2, the dependence
of multiphoton ionization probability (3) on pulse
shape is universal:

(9)

ϕ t( ) 1
a2

2!
-----t2–

a4

4!
-----t4 a6

6!
-----t6– …, a2 0,>+ +=

χ z( ) 1–( )n χn

2n( )!
-------------z2n,

n 0=

∞

∑=

χ0 1, χ1 a2, χ2 10a2
2 a4,–= = =

g γ( ) 1 1–( )ngnγ
2n,

n 1=

∞

∑+=

gn
3

2n 1+( )! 2n 3+( )
-------------------------------------------χn,=

b1 γ( ) 1–( )n χn 1+

2n 1+( )! 2n 3+( )
-------------------------------------------γ2n 2+ ,

n 0=

∞

∑=

b2 γ( ) 1–( )n χn

2n 1+( )!
----------------------γ2n.

n 0=

∞

∑=

b1
2
3
--- 1–( )n 1– n 2n 3+( )gnγ

2n,
n 1=

∞

∑=

b2
1
3
--- 1–( )n 2n 3+( )gnγ

2n,
n 0=

∞

∑=

wi p( )
2κ3

3F
-------- 1

1
10
------ γ̃2– 

 –




exp∝

+
κ
F
--- 1

3
--- γ̃2 p|| pmax–( )2 p⊥

2+ 
 





,

γ ! 1,
JOURNAL OF EXPERIMENTAL 
where  =  and a2 = –ϕ''(0) is the curvature of the

pulse near its apex. In this case, ∆p⊥  ~ κ ! κ, ∆p|| ~

γ–1∆p⊥  ~ E/ω ! p0, and p0 ~ F/ω is the characteristic
momentum of the electron oscillatory motion in the
wave field (for t > 0). In our case, the longitudinal elec-
tron momentum is much larger than the transverse one,
which is explained by the possibility of electron accel-
eration along a slowly varying electric field %(t).

In the other limit (rapidly varying fields), it is con-
venient to rewrite (3) in a different form:

(10)

where κ2/ω = 2K0 @ 1,

(10')

and c1, 2(γ) = γb1, 2(γ). In physical problems, the func-
tion f(γ) for γ  ∞ either approaches a constant limit
[if ϕ(t) has the singularity t = i, τs at a finite distance
from the real time axis in the complex plane] or
increases logarithmically [see Table 1 in [9] and expan-
sions (A.5)–(A.10)].

3. ANALYTIC MODELS

In the cases considered below, Eqs. (4)–(6) can be
solved analytically. These model examples define the
basic qualitative characteristics of the process under
study and can also be of interest in their own right.

(1) ϕ(t) = cost corresponds to monochromatic laser
light. In this case, χ(z) = (1 + z2)–1/2, the integrals in (4)
are tabular and give

(11)

in close agreement with previous results [4-6].

(2) For ϕ(t) = 1/  (soliton-like pulse), we have
χ(z) = (1 + z2)–1, whence

(12)

γ̃ a2

e

e

wi p( )
κ2

ω
----- f γ( )

1
ω
---- c1 p||

2 c2 p⊥
2+( )+–

 
 
 

,exp∝

γ @ 1,

f γ( )
2
3
---γg γ( ) χ u( ) 1 u2

γ2
-----– 

  u,d

0

γ

∫= =

f γ( ) 1 1

2γ2
--------+ 

  γ 1 γ2+
2γ

------------------,–arcsinh=

c1 γ γ

1 γ2+
------------------,–arcsinh=

c2 τ0 γ( ) γarcsinh , pmax 0,= = =

tcosh
2

f γ( ) 1 γ 2–+( ) γ 1
γ
---,–arctan=

c1 γ γ
1 γ2+
--------------, c2–arctan γ,arctan= =

pmax F/ω.=
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(3) For a Gaussian pulse, ϕ(t) = exp(–t2/2σ2), χ(z)
can be determined from the equation

(13)

where w(z) is the so-called Dawson integral [24] (see
also Appendix B). At σ = 1, we have

(13')

as a result, we obtain expansions (A.10).
(4) For a pulse field,

(14)

Eqs. (5) take the form

(5')

where τ is the parameter and F(…) ≡ 2F1(…) is the
Gaussian hypergeometric function; hence

(15)

(15')

As γ  ∞, the initial point of the subbarrier trajectory,
t0 = iτ0(γ), approaches to the singularity ts = i of field (14):

(16)

where k = [2α(α – 1)]–1/(α – 1) (see Appendix C for more
details). This example is typical of those cases where the
nearest singularity ts = iτs of field function ϕ(t) lies at a
finite distance from the real axis and is a pole (α = 1, 2, …)
or a power-type bifurcation point. In this case, (10) takes
the asymptotic form

(17)

(17')

which differs from the probability of ionization by
monochromatic emission and significantly exceeds it.

Here,

1
χ
---w χln–( ) z

2σ
-----------, 0 χ 1,≤<=

χ z( )

=  
1

1
2
---z2–

7
24
------z4 …, z 0,+ +

z 2 zln( ) 1–
1 O 1/ zln( )+[ ] , z ∞,






ϕ t( ) 1 t2+( ) α–
, α 1,≥=

χ 1 τ2–( )α
, z τF α 1/2; 3/2; τ2,( ),= =

0 τ 1,<≤

χ z( ) 1 αz2–
1
6
--- 7α2 3α–( )z4 …, z 0,+ +=

χ z( ) 2 α 1–( )z[ ] α / α 1–( )– , z ∞ α 1>( ).≈

τ0 γ( )
1 2e 2γ– …, α+– 1,=

1 kγ 1/ α 1–( )–– …, α 1,>+



=

wi p( )
τ s

ω
---- κ2 p|| pmax–( )2 p⊥

2+ +[ ]–
 
 
 

,exp∝

γ @ 1,

pmax
πΓ α 1/2–( )

2Γ α( )
--------------------------------κ

γ
---  ! κ ,=

Wi wi p( ) p 2K0τ s–( ),exp∝d∫=
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while for a monochromatic field,

In this case, the photoelectron momentum distribution
approaches an isotropic Gaussian distribution with the
center at point pmax in momentum space:

(5) At integer and half-integer α, the hypergeometric
function in (5') reduces to elementary functions; see for-
mulas (C.1) and (C.2) in Appendix C. The case α = 3/2 is
particularly simple analytically: here, z = τ(1 – τ2)–1/2,
χ(z) = (1 + z2)–3/2, and we have5 

(18)

This example has a kind of a duality: ϕ(t) ≡ χ(t) for it,
which also holds for a pulse of the form ϕ(t) = 1/ .

The case α = 1, i.e., ϕ(t) = 1/(1 + t2), corresponds to
a Lorentz pulse shape, with

(19)

At arbitrary α, substituting τ =  in (5)
yields the equation

(20)

which explicitly defines the inverse function z = z(χ).
The subsequent calculations using formulas (4) involve no dif-
ficulties. At α = 3/2 and 1, expressions (18) and (19) readily

5 Note that individual terms in the expressions for f(γ) and g(γ)
become infinite when γ  0 (in sum, they cancel out). There-
fore, to obtain expansions in the adiabatic range γ ! 1, it is more
convenient to use (8) rather than exact formulas of type (11),
(12), or (18).

Wi 2K0 2γln–( ).exp∝

∆ p|| ∆ p⊥ ω/τ s κ K0τ s( ) 1/2–
 ! κ .∼ ∼=

f γ( )
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γ
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------------------.= =
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1 π2

12γ2
-----------– 2γ 1– 2γ–( ), γ @ 1,exp+
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
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
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c1 γ( ) γtanh
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γcosh
2

----------------, c2 γ( )– γ,tanh= =

pmax
πF
2ω
-------

πκ
2γ
------.= =

u/ 1 u+( )

z uF
1
2
--- 3

2
--- α ; 

3
2
---; u––, 

  ,=
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follow from them, while at α = 2 [a pole of the second
order in ϕ(t)], we obtain

(21)

(6) A generalization of the soliton pulse (12) is

(22)

Changing from τ to ξ =  in (5) yields

0 < ξ < ∞. At α = 1, considering that F(1/2, 1/2; 3/2;
–ξ2) = , we derive χ(z) = 1/ . For even
α = 2, 4, …, the expression for z(ξ) reduces to a poly-
nomial: thus, z = ξ and ξ + (1/3)ξ3 at α = 2 and 4.

(7) The preceding examples, except for example 1,
belong to unidirectional pulses. Although any uniform
field is the solution of the Maxwell equations, % 
%(t – x/c), and, hence, is (in principle) physically real-

izable, the integral J =  is either zero or

numerically small for the fields commonly encountered
in laser physics (see [25, 26]). As an example, consider

(23)

In this case, Eqs. (5) take the form

(5'')

If α = 1/2, then example (23) coincides with (18); at
α = 1, we have

(24)

while at arbitrary α, the system of equations (5") can be
easily solved numerically.
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τ
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--------------------------------------------,=

f γ( ) 1 1

4γ2
--------+ 1

γ
---–

2γarcsinh

4γ2
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For a monochromatic field ϕ(t) = cost, J = 0 as well.
In that case, this integral has an unequivocal meaning
when it is considered that the laser field, which is
approximately uniform near the focus, is adiabatically
switched off at infinity:

Therefore, J ≈ 0 for α ! ω with an exponential accu-
racy.

(8) In the limit α  ∞, examples 4 and 7 are equiv-

alent (after the scaling t  t/ ) to the pulses

(25)

Note that when the time scale is changed, ϕ(t) 
ϕ(λt), the following scaling relations hold:

(26)

and χ(z)  χ(λz).
(9) To estimate the effect of higher harmonics in the

laser pulse spectrum, we assume that

(27)

where ρ is the anharmonicity parameter,6 ρ0 = –(  –
1)2 = –0.1715, with ϕ(t + π) = –ϕ(t).

In this case,

(28)

(28')

Function (27) has a pole at cos2t = (ρ + ρ–1)/2 or t = iτs

(as ρ  0, this point goes to infinity, and ϕ(t) = cost
is an integral function). As ρ increases, the pulse
becomes increasing sharp, turning into a sequence of
δ-shaped peaks of alternating polarity when ρ  1:

(29)

6 The intensities of adjacent odd harmonics in the pulse spectrum
are related as ρ2.
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where a2 = (1 + 6ρ + ρ2)/(1 – ρ)2, with a2 = 0 at ρ = ρ0.
After simple, though cumbersome, calculations, we
obtain

(30)

so that

(30')

Note that pulse (27) becomes a double-humped one for
ρ < ρ0, and t = 0 is not a point of ϕ(t) maximum for it
but a point of minimum.

(10) Finally, consider the following ansatz for the
function χ:

(31)

Calculating the integrals in (4) [26, 27] yields

(32)

It can be shown [see (B.6)] that the pulse shape cor-
responding to (31) is characterized by the expansion

(33)

for t  0, while for t  ∞,

(33')

In particular, at µ = 1/2, 1, and 3/2, we have ϕ(t) = cost,

1/ , and (1 + t2)–3/2 (the examples considered
above), while g(γ) has a remarkably simple form at
µ = 5/2:

(34)

In that case, the coefficients gn from (8) are

(35)
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Since gn ∝  nµ – 3 for n  ∞, series (8), (8'), and (8")
converge at |γ| < 1. At µ = 1/2, we derive an adiabatic
expansion for the Keldysh function (11):

(36)

whose first terms were found previously [4–6].
On the other hand, all functions (32) decrease pro-

portionally to 1/γ as γ  ∞:

(37)

in agreement with the behavior of the curves in Fig. 1.
The above examples demonstrate the ITM efficiency.

An analytic solution is also possible for ϕ(t) = (  +

β2 )
–1

 and [  + ( /β)2]
–1

 (β is the
parameter, 0 ≤ β < ∞), for ϕ(t) = cn(t, q), where cn is the
elliptic cosine, and others (see the table). For any pulse
shape, including that taken directly from experimental
data, χ(z) can be easily calculated numerically using the
above equations, whereupon the problem reduces to
quadratures.

4. NUMERICAL CALCULATIONS

Let us now discuss the results of our numerical cal-
culations. The function g(γ) for several pulse fields is
presented in Fig. 1, which, for comparison, also shows
this function for a monochromatic field (curve 1). The
notation is explained below. The curve numbers in Fig. 1
correspond to

(38)

The time axis was scaled so that all pulses had the same
curvature at the apex [ϕ''(0) = –1], which corresponds

to a changeover from γ to  = γ, where a2 is the
coefficient in expansion (7). This is convenient for
comparing variously shaped pulses: in the adiabatic
range, the ionization probability does not depend on the
form of ϕ(t), see (9); such a dependence appears only
beginning with terms of order γ4. The function f(γ) is
shown in Fig. 2. We see from Figs. 1 and 2 that when
passing from ϕ(t) = cost to pulse fields of various forms
concentrated in a finite time interval, g(γ) and f(γ)

f γ( )
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------γ3–
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280
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---------------------------------------------------------,= =
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c
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------------------------------------,=
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2

tsinh
2 βt( )cosh

2 β( )sinh

1) ϕ t; 2) ϕcos 1/ tcosh
2

;= =

3) ϕ t2–( ); 4) ϕexp 1 t2+( ) 3/2–
;= =

5) ϕ 1 t2+( ) 1–
; 6) ϕ 1 t4+( ) t2–( );exp= =

7) ϕ 1 c*t4+( ) t2–( ).exp=

γ̃ a2
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Table

ϕ(t) χ(z)  × 100

cost (1 + z2)–1/2 3.21
cos2t – 2.86
1/cosh2t (1 + z2)–1 2.14
(cosh2t + β2sinh2t)–1 [cosh2βz + (sinhβz/β)2]–1 1.43(1 + δ/2)
[cosh2βt + (sinhβt/β)2]–1 (cosh2z + β2sinh2z)–1 2.14(1 – δ/3)
1/I0(t) – 1.96
1/cosht 1/coshz 1.79
(1 + t2)–1 1/cosh2z 1.43
(1 + t2)–3/2 (1 + z2)–3/2 1.79
(1 + t2)–2 see (21) 1.96
exp(–t2) see (13) 2.50

(1 – t2)/(1 + t2)2
2/(1 + 4z2 + 2.38

– 2.98

cn(t, q), 0 ≤ q ≤ 1 [1 + (sinhqz/q)2]–1/2 0.357(9 – 4q2)
see (33) (1 + z2)–µ 1.07(1 + µ–1)

Note: Here, δ = 1/(1 + β2), I0(t) is the modified Bessel function, and cn is the elliptic cosine [24].

g̃4

1 4z2+

1 2t2–( )e–t
2

decrease, particularly at γ > 1 (rapidly varying fields).
As a result, in view of conditions (2), the ionization
probability increases sharply [because e ! 1 and K0 @ 1;
see formulas (3) and (10)]. Some of the curves in Fig. 1
refer to pulses of the type

(39)

At c = 0, the pulse is Gaussian (curve 3); dashed curves 6
and 7 in Fig. 1 correspond to c = 1 and c = c* ≈ 1.544

ϕ t( ) 1 ct4+( ) t2–( ), a2exp 2.= =

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10 12 14

g

γ~

1

2
3

4
5

6
7

Fig. 1. Function g(γ) for fields of form (1). The curve num-
bers 1–7 are explained in (38). The scaled variable  =

 is along the x axis.

γ̃
a2γ
JOURNAL OF EXPERIMENTAL
(see Appendix B). In all the cases we considered, g(γ)
monotonically decreases with increasing Keldysh
parameter γ.

We see from Fig. 2 that the behavior of f(γ) at large
γ is directly related to the analytic properties of field
function ϕ(t) in the complex plane. More specifically,
curves 1 and 3, which correspond to the integral ana-
lytic functions ϕ(t) = cost and exp(–t2), rise as  andγln

4

f

γ~
8 12

3

2

1

0

1

2

3

4
5

Fig. 2. Function f(γ) from Eq. (10). The curve numbers are
given in (38).
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2
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Fig. 3. (a) Coefficient c1(γ) for the same pulses as in the previous figure. Note that c1(∞) = π/2 for curve 2 and c1(∞) = 1 for curves 4
and 5. (b) Coefficient b1(γ) in (3) for various pulses.
, while in the remaining cases, they approach a
constant limit: f(γ)  τs, where ts = iτs is the position
of the singularity of ϕ(t) closest to the real axis: τs = π/2
for curve 2 and s = 1 for curves 4 and 5. This asymptotic
limit [corresponding to formula (17) for the pulse spec-
trum] can be approached rapidly enough.

Plots of pulse-spectrum coefficient c1 and coefficient
b1 against  are shown in Figs. 3a and 3b, respectively.
The curves for c2(γ) are similar to those in Fig. 3, except
the range of small γ, in which c1 ∝  γ3 and c2 = γ + O(γ3).

For pulses (14) and (23), we performed calculations
at α = 1, 1.5, 2, 3, and ∞ [α = ∞ corresponds to passage
to the limit (25)]. In both cases,  monotonically

γln

γ̃

g γ̃( )

2

g

γ~

1.0

0.8

0.6

0.4

0.2
0 4 6 8 10 12

1

α = ∞

Fig. 4. Function g(γ) for pulses of form (23) with J = 0. The
curves correspond to α = 1, 3/2, 2, 5/2, and ∞ (from bottom

to top),  = .γ̃ 6αγ
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increases with exponent α, while the ionization proba-
bility decreases (Fig. 4). This may be because the
weight of the high harmonics in ϕ(t) with frequen-
cies ω @ 1/τs decreases:

A comparison of Figs. 1 and 4 shows that there is no
qualitative difference between unidirectional pulses of
type (14) and pulses with the integral J = 0 for mul-
tiphoton ionization.

ωtcos

1 t/τ s( )2+[ ] α-------------------------------- td

0

∞

∫ ωτs( ) α– ωτs–( ).exp∝

3

f(γ, σ)

γ

3

1
2

1

10
5
3

7 11 15 19

σ = ∞

Fig. 5. Function f(γ, σ) from (10) for a pulse field (40). The
curves (from bottom to top) correspond to the following
pulse-width parameters σ: σ = 1, 3, 5, 10, and ∞.
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Fig. 6. Coefficients (a) c1 and (b) c2 of pulse spectrum (10) versus γ. The values of σ in (40) are shown alongside the curves.
                   
The next figures refer to a modulated electromag-
netic pulse,

(40)

which is closer to an actual experiment. Here, at small γ,

(41)

The pulse shortens with decreasing σ: its amplitude
decreases by a factor δ ≈ exp(–2π2/σ2) in one period of

ϕ t( ) t2

2σ2
---------– 

  t,cosexp=

g γ( ) 1
1

10σ2
------------ 1 σ2+( )γ2–=

+
1

280σ4
--------------- 9σ4 14σ2 7+ +( )γ4 …  .+                         

3

f

γ
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1

0

20
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σ = ∞

Fig. 7. Function f(γ, σ) for a pulse with a Lorentz envelope
(42). The curves (from bottom to top) correspond to σ = 1,
2, 2.5, 3, 4, 5, 6.67, 10, 20, and ∞ (monochromatic light).
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the laser field, with J ∝  exp(–σ2/2)  0 for σ @ 1. The
functions g(γ) and f(γ) also decrease (see Fig. 5), caus-
ing the ionization probability to increase sharply. Phys-
ically, this is because the relative weight of high har-
monics ωn in the pulse spectrum increases. At 

 

ω

 

n

 

 

 

> I,
these harmonics can ionize the atom even in the first
order of perturbation theory (whereas for monochro-
matic light, there are no higher harmonics at all, and
only the multiphoton ionization mechanism [4]
remains). As we see from Fig. 5, this becomes notice-
able at 

 
σ

 
 ~ 5–10 for field (40). Assuming (arbitrarily)

the duration of a laser pulse to be the time during which
its amplitude exceeds a fixed 

 
ε

 
, we have for 

 
σ

 
 

 
@

 
 1

i.e., 

 

N

 

 ~ 0.2

 

σ

 

2

 

 for 

 

ε

 

 = 0.1. Therefore, the light-pulse
shortening begins to appreciably affect the ionization
probability when the pulse spans 

 

N

 

 ~ 5–10 periods of
the laser field. Regarding the shape of the pulse spec-
trum, it follows from Fig. 6a that the dependence of

 

c

 

1

 

(

 

γ

 

, 

 

σ

 

) on 

 

σ

 

 may be disregarded if 

 

σ

 

 

 

≥

 

 3 and, generally,
it is less significant than for the function 

 

f

 

, i.e., for the
rate of atomic ionization. The same is also true for 

 

c

 

2

 

(

 

γ

 

, 

 

σ

 

);
see Fig. 6b.

Similar results were obtained for a Lorentz enve-
lope, i.e., for

 

7

 

 

(42)

As for (40), 

 

f

 

(

 

γ

 

, 

 

σ

 

) decreases with decreasing 

 

σ

 

 (i.e.,
with pulse shortening) at fixed 

 

γ 

 

(Fig. 7). However,
there is a qualitative difference between pulses (40) and
(42) at large 

 

γ

 

, which is related to the analytic properties
of 

 

ϕ

 

(

 

t

 

). More specifically, 

 

f

 

(

 

γ

 

, 

 

σ

 

) in Fig. 5 increases

 

7

 

Here, 

 

σ

 

 is equal to the width of the envelope at half its height. For
field (40), its value is 2.35

 

σ

 

.

N 0.1σ2 1
ε
---;ln≈

ϕ t( ) 1 2t/σ( )2+[ ] 1–
t.cos=
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(logarithmically) with γ, while for (42), it approaches a
constant limit:8 f(γ, σ)  τs = σ/2 as γ  ∞, just as
in the case of (14). This is because (40) is an integral
function of t, while (42) has a pole at point ts = iσ/2.

Finally, the function g(γ) for a periodic field (27) cal-
culated from Eqs. (4) and (30) are displayed in Fig. 8,
which shows a sharp dependence on anharmonicity
parameter ρ, with g(γ) decreasing appreciably even at
small γ. At ρ close to unity, the ionization probability
increases dramatically even at γ & 1.

Eqs. (4)–(6) allow all the quantities appearing in the
semiclassical formulas (3) and (10) for wi(p) to be cal-
culated for an arbitrary pulse %(t) and at any γ. This
enables a detailed comparison of the multiphoton ion-
ization theory with experiments in strong fields and
under very short pulses.

5. TUNNELING INTERFERENCE
IN THE ENERGY SPECTRUM

There is an interference effect in the photoelectron
energy spectrum, which (for linearly polarized laser
emission) was noted in [6] and has recently been stud-
ied experimentally [28, 29], where the phenomenon
was referred to as the “tunneling interference”. In the
case of a periodic field (1), for which ϕ(t + T/2) = –ϕ(t),
the equation for saddle points in the complex t plane (or
for the initial time in the ITM),

(43)

has the solutions

(44)

Here, k = 0, ±1, ±2, …, q = p/κ, p is the momentum of
the electron as it emerges from under the barrier, τ(z) is
the function introduced in (5) and (6), and T is taken to
be 2π. At p ! κ and for k = 0, we have

(45)

where τ0 = τ(γ) is the initial time of the subbarrier elec-
tron motion and

(45')

The amplitude Ak of the electron transition from a
bound state to a continuum state is determined by the
action function S calculated along the path from point tk to

8 As σ increases, the range in which this asymptotics is established
is displaced toward increasingly large γ, and we have f(γ) = ln2γ –
1/2 + … for σ = ∞.

p2 tk( ) p||
F
ω
---- ϕ t( ) td

0

tk

∫+
 
 
 

2

p⊥
2+ κ2,–= =

tk ωtk'≡ kπ iτ γ 1 q⊥
2+ iγq||+( ).+=

τ γ p,( ) it0– τ0
1
2
---τ1q⊥

2 τ2q||
2+ += =

+ i τ1 τ2q⊥
2– τ3q||

2–( )q|| O q4( ),+

τn γ( )
1–( )n 1+
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dγn
---------------, n 1.≥=
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the real time axis (whereupon ImS(t) no longer changes).
As we see from (45), the initial point t0 for p|| ≠ 0 is dis-
placed from the imaginary time axis, and the other sad-
dle points tk are displaced similarly. In this case, a real
shift in phase φ arises between the amplitudes Ak and
Ak + 1 corresponding to the points tk and tk + 1 within one
period of laser emission (for example, A0 and A1), which
causes interference. Using the ITM [7], we obtain

(46)

(47)

Here, the phase difference between A0 and A2k accumu-
lates as t changes along the real time axis in k periods
(ε is the system’s quasi-energy in a periodic field), and the
phase φ arises when integrating (over imaginary time) the
linear (in p||) term 2p||Fω–1h(τ ') that enters into p2(t ')
in (46). To be more precise, the adjacent amplitudes A2k

and A2k + 1 receive the phase factors exp(±iφ/2). After the
coherent addition of Ak, the transition probability becomes
proportional to time9 and the δ function expressing the
energy conservation law for n-photon absorption emerges.
Adding up the contributions from 2N saddle points (over

9 For a single pulse of the form 1/  or exp(–t2), only the total
ionization probability over the entire time of pulse action can be
determined.

Ak t( ) iSk t( )[ ]exp=

=  
i
2
--- k2 p2 t'( )+[ ] t'd

tk

t

∫–
 
 
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,exp

A2k 2πik
ε
ω
----– 

  A0,exp=
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πε
ω
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Fig. 8. Periodic field (27). ρ = 0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7,
0.8, and 0.9 for the curves from top to bottom.
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N periods of the field), we pass to the probability of
atomic ionization per unit time for N  ∞(see (B.7)
and [30–33]):

(48)

(the linear regime Wi ∝  t that holds on time scales
ω−1 ! t ! 1/w); wi(p) = |A0|2 applies to a single pulse
and is given by (3).

For ionization of the atomic s level, the pulse spec-
trum during n-photon absorption takes the form

(49)

Here, pn = , ν is the photoionization thresh-
old (C.9), the multiphoton ionization probability w(p)
is defined in (3) or (10), the oscillation phase is

(50)

(51)

and the function h(τ) is defined in (5). In particular,
h(τ) =  and τ0 =  for monochromatic
laser light, whence [6]

(52)

w
ω
π
---- pd

2π( )3
-------------∫ 1 1–( )n φcos+[ ] wi p( )

n ν>
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× δ p2

2
----- n ν–( )ω– 

 

w pn( ) w pn( ) 1 1–( )n φ pn( )cos+[ ] /2.

2ω n ν–( )

φ pn( )
κ2 p||

F
----------- A γ( ) O p2/κ2( )+[ ] ,=

A 2γ 2– h τ( ) τd
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τ0 γ( )
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=  1
1
4
---a2γ

2– … γ 0( ),+
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A γ( ) 2γ 2– τ0 1–cosh( ) 2

1 1 γ2++
---------------------------= =
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Fig. 9. Function A(γ) determining the oscillation phase ver-
sus Keldysh parameter for a periodic field (27). The anhar-
monicity parameters ρ = 0, 0.1, 0.25, 0.5, and 0.75 corre-
spond to the curves (from top to bottom).
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(see the curve for ρ = 0 in Fig. 9). Since the character-

istic oscillation phase is φ ~ κ2p||/F ~ 1/γ  at small

γ and φ ~ κp/ω ~  for γ @ 1, the number of
oscillations is large (because K0 @ 1) even in the latter
case.

It is easy to show, using (51), that for a periodic

sequence of pulses of the form ϕ(t) = 1/  and
(1 + t2)–3/2, we have, respectively,

(53)

(in these cases, the phase φ for γ *  is of the
order of unity). Finally, for a periodic field (27), h(τ) =
p–1  and

(54)

[at ρ = 0, we return to (52)]. As we see from Fig. 9, the
oscillation phase rapidly decreases with increasing
anharmonicity even at comparatively small γ < 1.

The energy spectrum is obtained by integrating expres-
sions (3) and (49) over the photoelectron escape angles; as
a result, the amplitude of the oscillating term significantly
decreases [see formulas (B.14) and (B.15)]. This is in
qualitative agreement with Fig. 1 from [28] (see the upper
right part of this figure that refers to linearly polarized
emission). Note that for ϕ = cost, the cubic (in momen-
tum) term in the expansion of oscillation phase φ (at all γ)
was also calculated [16].

The interference effect in the photoelectron pulse
spectrum that arises when adding up the amplitudes Ak

was apparently first considered (in the multiphoton
atomic ionization theory) in [6] (see formula (53) there
and Section 8 in [16]). In a different physical situation
(and for a different dispersion law ε(p)), similar phe-
nomena are encountered in the semiconductor electri-
cal breakdown theory [32], in the theory of charged
boson and fermion pair production from vacuum in a
variable electric field [30, 31], and in the problem of
resonant atomic-level excitation in a strong electromag-
netic field (in the two-level approximation [33]). Cur-
rently, the production of e+e– pairs from vacuum in a
strong electric field, which has previously been considered
from a purely theoretical point of view [30, 31, 34–38], is
again attracting attention, because projects are being
developed to produce free-electron X-ray lasers based on
the TESLA electron-positron collider and SLAC [39].

6. A REMARK
ON THE ADIABATIC APPROXIMATION

The examples of pulse fields analyzed above allow
the range of applicability of the adiabatic (γ ! 1)
approximation to be considered in the multiphoton ion-

e

K0/ 2γln
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2

A γ( )
1 γ2+( )ln

γ2
------------------------ and

2

1 γ2 1 γ2++ +
---------------------------------------=
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p τsinh( )arccoth
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2
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∫ 2 ρ
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ization theory. After the scaling t  t (see Sec-
tion 4), we obtain

(55)

where a2 and a4 are the coefficients in (7), and similar
expansions for the coefficients b1(γ) and b2(γ) of the
pulse spectrum.

A dependence on specific pulse form ϕ(t) begins to
show up here in the terms of order γ4. The coefficients

 (in contrast to g4) depend only on pulse shape but
not on pulse duration, and they are numerically small in
all the cases we considered (see the table). Thus, for
example, for (14) and (23), we have, respectively,

(56)

this coefficient ranges from 0.025 to 0.032 for field (40)
at 0 < σ < ∞ and from 0.014 to 0.032 for (42). This sug-
gests that the range of applicability of the adiabatic
approximation (which definitely holds for γ ! 1) is
generally extended up to γ * 1, so the situation at γ ~ 1
is closer to the tunneling one rather than to the mul-
tiphoton one. This is also confirmed by the results of
our numerical calculations presented in Figs. 1 and 4, in
which the curves for different pulses are very close to
each other at γ ≤ 2–3.

Note also that the asymptotics of gn [and the radius of
convergence of the adiabatic expansions (8), (8'), and (8")]
is determined by the nearest singularity of χ(z). If

(57)

then, in view of the expansion

we have10 for n  ∞

(58)

For monochromatic emission, χ(z) = (1 + z2)1/2, i.e.,
A = a = 1, µ = 1/2, and asymptotics (58) agrees with the
expansion of exact coefficients (36):

(59)

10Except for µ = 0, –1, –2, … when χ(z) has a logarithmic singular-
ity. The corresponding formulas can be found in [40, 41].
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Similarly, the parameters in (58) for pulse (14) are

(60)

In both cases, power bifurcation points are the singular-
ities of g(γ) closest to zero. Thus, for example, we have
for the Keldysh function (11)

(c0 and c1 are constants), in close agreement with (59).

7. CONCLUSION

(a) The equations of motion for a classical particle
in a uniform field (1) can be integrated analytically.
This allows formulas (3)-(5) for the atomic-level ioniza-
tion probability, Wi, and for the photoelectron pulse spec-
trum, wi(p), to be derived (in the semiclassical approxima-
tion). The external electric field %(t') enters into these for-
mulas via the function χ; we formulated a simple
algorithm for determining this function. Thereafter, the
ionization probability can be calculated for an arbitrary
pulse satisfying the applicability conditions for the semi-
classical approximation, and, in many cases, an analytic
solution can be obtained.

(b) We analyzed the dependence of the functions
defining wi(p) on laser-pulse shape. The coefficients
c1, 2(γ) of the pulse spectrum were shown to be virtually
independent of the duration of a very short pulse (40) if
it spanned no fewer than three optical periods.

(c) We considered the effect of tunneling interfer-
ence in a periodic laser field, which produces rapid
oscillations in the photoelectron energy spectrum.

(d) The formulas derived above apply to the ioniza-
tion of systems bound by short-range forces (H–, He–,
etc.). As was shown in [9, 42], the Coulomb interaction
between the emerging electron and the atomic core can
be taken into account in terms of the semiclassical per-
turbation theory based on the Coulomb potential, which
gives rise to a (large in magnitude) preexponential fac-
tor in the expression for the atomic-level ionization rate.
Since the pulse-spectrum shape is determined mainly by
the factors in the exponent, our results can be used not only
to describe the ionization of H–-type negative ions but also
for neutral atoms (in any case, at γ & 1).

(e) Above, we imposed the condition ϕ(–t) = ϕ(t),
which actually means that ϕ(t) is the real-valued ana-
lytic function t2 whose nearest singularity on the semi-
axis –∞ < t2 < 0 lies at a finite distance from t = 0 [or
has no singularities in a finite part of the t plane at all,

as in the case ϕ = cost ≡  or exp(–t2)]. All the
functions considered above, ϕ(t) = [(t2 + a2)(t2 + b2)]–1,
cn(t, q), and many others satisfy this condition.

µ α , a πΓ α 1/2–( )
2Γ α( )

-------------------------.= =

g γ( )
3

2γ
------ f γ( ) c0 c1 1 γ2+( )+= =

+ 1 γ2+( )3/2 …, γ i±+

t2–cosh
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If this condition is not satisfied, then the imaginaries
cannot be completely eliminated from the equations of
subbarrier motion, and the formulas become more com-
plex. However, the ionization probability Wi can be cal-
culated using the steepest descent method by determin-
ing saddle points of the action function in the complex
plane. In this way, Keldysh [3] considered pulse fields

ϕ(t) = 33/2  and texp[(1 – t2)/2] (a soliton-
like one-cycle pulse and a Gaussian one-cycle pulse [3]),
for which ϕ(–t) = –ϕ(t) and J = 0; the numerical factors
were chosen here in such a way that |ϕ(tm)| = 1 at the
extrema. In these cases, oscillations are also predicted
in the photoelectron spectrum, which owe their origin
to the interference of two saddle points symmetric
about the imaginary t axis (and with equal ImS), a situ-
ation similar to that considered in Section 5 for a peri-
odic field. Note that for fields of the form ϕ(t) =

1/  and 1/(1 + t2), the exponential factors in the
probability Wi calculated in [3] and [9, 10] are equal,
within the accuracy of the semiclassical approximation
itself.
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APPENDIX A

Expansions for Small and Large γ

Substituting (7) in (5), we have

(A.1)

Hence, using formulas for the inversion of a power
series [27, 43], we obtain the expansion of τ in powers
of z, whose coefficients are expressed in terms of a2k.
On the other hand,

(A.2)

t/2sinh tcosh
3

tcosh
2

h τ( )
a2n
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----------------------τ2n 1+

n 0=
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∑ z, a0 1.= = =

τ z( ) 1–( )n χn
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n 0=

∞
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A comparison of these expressions gives formulas (7').
The next two coefficients are

(A.3)

[using formulas from [43], we can also explicitly write
out the coefficients χ5 and χ6 for an arbitrary field ϕ(t),
but these expressions are very cumbersome].

Thus, we have the following expansion for z  0:

(A.4)

whose substitution in (4) gives the expansions of g(γ)
and b1, 2(γ) of the pulse spectrum in the adiabatic range.

Below, we also give a summary of asymptotics
(γ  ∞) for the functions f, c1, and c2 in those cases
where they can be obtained by expanding exact formu-
las of type (11) or (12).

For ϕ(t) = cost, it is clear that τs = ∞ and

(A.5)

(here, the terms proportional to γ–4 were discarded); for

ϕ(t) = 1/  (soliton), we have τs = π/2 and

(A.6)

for ϕ(t) = 1/ ,

(A.7)

for ϕ(t) = (1 + t2)–3/2,

(A.8)
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for a Lorentz pulse, ϕ(t) = (1 + t2)–1,

(A.9)

and, finally, for a Gaussian, ϕ(t) = exp(–t2/2), we obtain

(A.10)

Thus, for fields of type (14) and (23),

(A.11)

where ts = iτs is the singularity of field function ϕ(t)
closest to the real axis; the larger is the exponent α, the
more slowly this limit is approached.

APPENDIX B

Auxiliary Functions

(a) The function w(x), or the Dawson integral, is
defined as [24, 44]

(B.1)

has the expansions

(B.2)

and reaches a maximum of 0.54104 at xm = 0.9241….
Note the relation

(B.3)

where pn – 1(x) is a polynomial of degree n – 1: p1 = 1,
p2 = 2x, p3 = 4x2 – 2x –2, etc.; and Hn(x) is the Hermitian
polynomial.

(b) Let us consider function (39). For 0 ≤ c ≤ 1, it
monotonically decreases at t > 0; for c > 1, minima (±t1)

and maxima (±t2) appear in it, with  = 1 – 

and  = 1 + . The height of the maxima
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increases with constant c, and ϕ(±t2) = ϕ(0) = 1 at
c = c

*
 = 1.5441…. If c > c*, then the electric field

reaches the largest value not at zero but at t = ±t2. The
dashed curves in Fig. 1 correspond to c = 1 and c

*
, and

curve 3 corresponds to c = 0 (Gaussian). Given that

(B.4)

and using (B.3), we finally obtain

(B.5)

which determines χ(z) and g(γ) for a pulse of form (39).
(c) The very short pulse ϕ(t) corresponding to ansatz

(31) can be specified parametrically:

(B.6)

whence follow expansions (33) and (33') and, at µ = 1/2,
1, and 3/2, the explicit expressions for ϕ(t) given above
(Section 3).

(d) When deriving formula (48), we used the relation

(B.7)

and the fact that |Ak| = |A0| for all k in view of the condition
ϕ(t + T/2) = –ϕ(t). In our case, β = φ/2 [see (50)] and

(B.8)
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where ν is the photoionization threshold; for example,

(B.9)

if ϕ(t) = . The excess of ν over the multi-
quantum parameter K0 is related to the energy of oscil-
latory motion of the emerging electron in the wave
field.

(e) Two types of integrals are encountered when (49) is
integrated over the photoelectron escape angles:

(B.10)

where a = c2 /ω, b = c1 /ω, a > b [see (10) and (11)],
and w(x) is the Dawson function (B.1) and its generali-
zation

(B.11)

[here, x and λ are real, λ = A(γ)κ2pn/2F]. The substitu-

tion t = x  gives the integral representation

(B.12)

whence

(B.13)

(B.14)

and for ρ ≡   ∞, we have

(B.15)
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Thus, this function rapidly oscillates and decreases
at λx @ 1, which accounts for the significant reduction
in oscillation amplitude in the electron energy spectrum
[28] compared to formula (49), where this amplitude
reaches 100%.

APPENDIX C

Asymptotics of the Function f(γ) for γ  ∞

Using [24, 27], we obtain

(C.1)

and, from the recurrent relation,

(C.2)

For arbitrary α > 1 and x  1,

therefore, (16) for the initial time τ0(γ) directly follows
from the equation h(τ0) = γ.

The function χ(z) has asymptotics (15') for z  ∞.
If α < 3/2 in (14), then α/(α – 1) > 3 and

(C.3)

(for example, τs = 1 and a = π2/12 for α = 1), as well as

(C.4)

where χ(z) ≈ c∞z–α/(α – 1) and ν = 1/(α – 1) > 2. Hence
follows the asymptotic formula (17).
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If α = 3/2, then χ(z) ∝  z–3 and the integral (C.3) log-
arithmically diverges at the upper limit. Naturally, a
correction proportional to lnγ/γ2 appears here [see (A.8)].
Finally, for α > 3/2,

(C.5)

with

(C.6)

We thus determined the asymptotics of f(γ) for
γ  ∞ for pulse (14) and established its relationship
to the nearest singularity of ϕ(t), which specifies the
pulse shape, in the complex t plane. We pass from (14)
to the general case of a power singularity,

(C.7)

by using the scaling relations (26).

In the opposite case, γ  0, the higher orders of adi-
abatic expansions (8) and their radius of convergence
depend on the singularity of χ(z) closest to zero. Thus,
the analytic properties of χ and ϕ manifest themselves
at small and large γ, respectively.
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Abstract—The angular distributions of the fragments from a Coulomb explosion of a diatomic heteronuclear
molecule during multielectron dissociative ionization in a superintense field are considered in terms of classical
mechanics. The patterns of angular distributions of the Coulomb explosion fragments are shown to differ in dif-
ferent ranges of laser pulse parameters. In particular, there are two distinct modes of fragment separation: sep-
aration in a Coulomb field and separation in the field of an effective “fragment+field” potential. The effective
potential includes both the force of Coulomb repulsion between the fragments and the period-averaged force
exerted on the system by the field; it can be determined by using the Kramers–Henneberger method. The limits
of applicability of the Kramers–Henneberger method to the problem in question are discussed. These limits
specify the range of field parameters in which the fragments fly apart in a direction perpendicular to the field
for the initially arbitrary orientation of the molecular axis relative to the field. © 2001 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

One of the most efficient methods for theoretically
describing the dynamics of atomic systems in superin-
tense fields is the Kramers–Henneberger method [1, 2].

The idea behind the Kramers–Henneberger method
is to apply the following transformation [1] to the initial
Hamiltonian of an atom in a laser field

(1)

where

This transformation reduces Hamiltonian (1) to

(2)

where ae = E/ω2 is the oscillation amplitude of a free
electron in the laser field; and E and ω are the field
strength and frequency, respectively. Below, we use the
atomic system of units, me = " = e = 1. In the Kramers–
Henneberger approximation, the time-dependent
potential in Hamiltonian (2) is substituted with the

Ĥ
1
2
--- p

e
c
--A– 

 
2

V r( ),+=

A A0ex ωt, A0sin Ec/ω,–= =

SKH
i
c
--p A t '( ) t 'd

0

t

∫ 
 
 

exp=

× i

2c2
-------- A2 t '( ) t 'd

0

t

∫–
 
 
 

.exp

ĤKH
p2

2
----- V r exae ωtcos+( ),+=
1063-7761/01/9302- $21.00 © 20295
Kramers–Henneberger period-averaged potential
VKH(r, ae). This approximation is valid if the effect of
the corrections

is marginal. In this case, some quantities, for example,
the ionization rate and polarizability, can be calculated
by using the perturbation theory, and the system’s exact
quasi-energies are well approximated by the steady-
state energies.

Presently, the properties of the Kramers–Hen-
neberger potential, eigenfunctions, and eigenstates are
well understood [3-7]. The Kramers–Henneberger
potential virtually coincides with the initial atomic
potential for a/ae @ 1, where a is the scale size of the
atomic potential. As the oscillation amplitude
increases, ae > a, the Kramers–Henneberger potential
acquires a double-well structure and extends along the
electric vector of an electromagnetic wave. Since the
Kramers–Henneberger potential is the central object of
the Kramers–Henneberger formalism, which character-
izes the rearrangement of atomic states in weak high-
frequency and strong fields and is used to describe adi-
abatic stabilization, probing the structure of this object
in a real experiment is of considerable interest. Com-
puter simulations that allow the structure of the Kram-
ers–Henneberger potential to be determined are dis-
cussed in [8, 9].

Here, we show that the angular distributions of the
fragments from Coulomb explosions of diatomic heter-
onuclear molecules during dissociative ionization in an
intense laser field are determined by the structure of the
Kramers–Henneberger potential.

δV V r exae ωtcos+( ) VKH r ae,( )–=
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2. MODELING DISSOCIATIVE
IONIZATION

The dissociative ionization of molecules in intense
laser fields has been studied extensively both experi-
mentally [10–22] and theoretically [23–32]. A model in
which the entire variety of the events constituting the
pattern of dissociative ionization reduces to two con-
secutive events, (1) electron removal and (2) Coulomb
explosion of the molecular ion produced by the electron
removal, is commonly used in theoretical treatment to
simplify this process. Thus, the evolution of dissocia-
tive ionization is determined by the competition of the
above effects, which give different contributions to this
process in different ranges of laser-pulse parameters.

The most important characteristic of dissociative
ionization is the angular distribution of Coulomb explo-
sion fragments. Experimental results suggest that the
angular distributions of the fragments from molecular
dissociation in a strong, linearly polarized field have a
sharp peak in the direction of the field polarization axis
(see, e.g., [12, 13, 15, 17, 19]). The sharp anisotropy in
angular distributions is interpreted as resulting from the
dynamic alignment of molecules [12, 33] or from a sig-
nificant increase in dissociation cross sections with an
increasing degree of molecular alignment with the field
[15]. These processes obviously take place at the first
stage of dissociative ionization.

In this paper, we consider the dissociation of a het-
eronuclear HA molecule (H is a hydrogen atom, and A
is an atom of a different element, for example, deute-
rium, chlorine, bromine, and the like) by an optical
pulse of intensity P ≥ 1019 W cm–2 and duration 100 fs.
One might expect the two-electron (q + 1-electron) ion-
ization of the molecule in such intense fields to take
place virtually instantaneously. Therefore, it seems rea-
sonable to focus attention on the second stage of disso-
ciative ionization, the Coulomb explosion of the molec-
ular ion HA(q + 1)+ with q ≥ 1. Thus, we consider here the
processes that can affect the formation of angular dis-
tributions at the stage of the Coulomb explosion.

We consider the dissociation problem in terms of
classical mechanics. Under the assumption of sudden
electron removal at time t = 0, the dynamics of ions, H+

and A(q + 1)+, is described by the equations

with the initial conditions

µ zd
td

----- pρ,
pρd
td

--------
∂
ρ∂
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ρ2 z2+
--------------------

Lz
2

2µρ2
------------+
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,–==
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td
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where

(3)

(4)

Lz is the z component of the momentum moment, Tω =
2π/ω, M1 is the proton mass, M2 is the mass of Aq+, µ is
the reduced ion mass, ρ and z are the components of the
vector that describes the relative motion of ions, pp and
pz are the components of the momentum vector of the
relative motion, R0 is the equilibrium internuclear dis-
tance, and θ0 is the angle between the molecular axis
and the field polarization vector. Here, we use cylindri-
cal coordinates.

The angular distributions of the fragments from the
Coulomb explosion of the HD molecule (M2 = 2M1, q = 1,
R0 = 1.5) for various field parameters are shown in
Fig. 1. The angle

which characterizes the direction of ion separation on
completion of the field pulse, is measured from the z
axis. The centrifugal potential affects the angular distri-

butions only slightly, at least for 0 ≤  ≤ . For
Lmax, we used an estimate

kT ≈ 0.025 eV. The pattern of the angular distributions
significantly depends on field parameters and can be
described in terms of the Kramers–Henneberger
approximation.

Indeed, the Hamiltonian of our problem in the cen-
ter-of-mass system, which describes the relative motion
of the Coulomb explosion fragments, is

(5)
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After the Kramers–Henneberger transformation (it is
also defined in classical mechanics [34–39]), Hamilto-
nian (5) takes the form

(6)

The Hamiltonian in Eq. (6) is written in cylindrical
coordinates, and

(7)

In the Kramers–Henneberger approximation, the time-
dependent term in Hamiltonian (6) can be disregarded.
Thus, the separation dynamics of the Coulomb explo-
sion fragments is determined by the structure of the
Kramers–Henneberger potential and, hence, signifi-
cantly depends on field parameters. The Kramers–Hen-
neberger potential (7) is [40]

where K is the complete elliptic integral of the first
kind. For ae ! 1,

and the fragments fly apart in the Coulomb field with
θout = θ0 (Fig. 1, curve 1). Below, this mode of ion sep-
aration is called Coulomb mode. The ions in the field of
the Kramers–Henneberger potential for

(8)

fly apart in a direction perpendicular to the field (θout =
π/2) at any θ0. This result is qualitatively explained by
Fig. 2. For simplicity, we consider the case with M1 !
M2. The field-induced oscillations of H+ take place
along straight line ab. Clearly, when averaged over the
period for R0cosθ0 ≤ ae, the z component of the total
force acting on H+ is zero, while its ρ component is
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nonzero. Thus, if the averaging procedure that under-
lies the Kramers–Henneberger method is valid, the
fragments fly apart perpendicular to the direction of
field polarization. Below, this mode of ion separation is
called the Kramers–Henneberger mode. Note that,
given the finite duration of the laser pulse front, the sat-
isfaction of conditions (8) is not enough for the Kram-
ers–Henneberger mode to be realized. The third condi-
tion that limits the range of admissible fields and fre-
quencies stems from the fact that when the field
intensity and frequency decrease, the duration τ of the
part of the pulse with ae < 1 increases, and the Kram-
ers–Henneberger potential is close to the Coulomb
potential. If the ions fly apart to a distance aτ larger than
ae in time τ, then the formation of the double-peaked

1/8
θ0/π
1/4 3/8 1/2

1/2

3/8

1/4

1/8

0

1

2

3

4

θout/π

Fig. 1. The HD molecule. The changes in angular distribu-
tions when passing from Coulomb to the Kramers–Hen-
neberger mode of ion separation. θout is the angle between
the direction of motion of the Coulomb explosion fragments
on completion of the field pulse and the field polarization
axis, θ0 is the angle between the molecular axis and the field

polarization vector. P = 1019 W cm–2, ω = 1 eV (1); P =
2 × 1020 W cm–2, ω = 1 eV (2); P = 2 × 1021 W cm–2, ω =
1 eV (3); and P = 9 × 1022 W cm–2, ω = 9 eV (4).

F

FC

F

FC

a b
θ0 2ae

R0

H+

Aq+

ρ

z

Fig. 2. To the discussion of ion separation dynamics in the
field of the Kramers–Henneberger potential. FC is the force

of Coulomb repulsion between H+ and Aq+, F is the force
exerted on H+ by the laser field.
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Fig. 3. Variations of θ with time: (a) in the Coulomb mode of ion separation, P = 9 × 1019 W cm–2, ω = 1 eV; and (b) in the Kramers–
Henneberger mode, P = 3.5 × 1021 W cm–2, ω = 1 eV.
structure of the Kramers–Henneberger potential on
time scales t > τ will no longer significantly affect the
mode of ion separation, which will remain the Cou-
lomb one as before. In contrast to conditions (8), the
condition aτ < ae depends on the shape of the pulse
envelope. In our case [see Eq. (3)], it is clear that

   

Thus, the deviations from the Coulomb mode of
nuclear separation (curves 2–4 in Fig. 1) are attribut-
able to the formation of the double-peaked structure of
the Kramers–Henneberger potential. Figure 1 traces the
changes in angular distributions when passing from
Coulomb (curve 1) to the Kramers–Henneberger mode
of ion separation (curve 4). The variations of θ with
time in the Coulomb and the Kramers–Henneberger
modes of ion separation are shown in Fig. 3.

Let us consider the question of whether the averag-
ing procedure, or the range of applicability of the
Kramers–Henneberger approximation, is valid for our
problem. The applicability of the Kramers–Hen-
neberger approximation to the finite motion of a parti-
cle in the field of an attractive potential was considered
in [39, 41]. However, these results cannot be extended
to the infinite motion of a particle in the field of a repul-
sive potential. Note that the possibility of considering
the dynamics of a particle in the field of a repulsive
potential in terms of the Kramers–Henneberger approx-
imation was pointed out in [39]. For the validity of the
averaging procedure, it is important that the following
two conditions be satisfied in our problem. First, the
change in relative coordinate ρ in half the period must
be small compared to the internuclear distance,

Second, the force exerted on H+ by the field must be
larger than the force of Coulomb repulsion; otherwise,

τ 20
ω
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H+ oscillations about the force center Aq+ cannot be
provided (see Fig. 3a).

Thus, the domain of field parameters in which the
ions fly apart in the Kramers–Henneberger mode is
given by

(9)

(10)

(11)

(12)

(13)

Here, ξ = 5.44 × 10–4 is the electron-to-proton mass
ratio and m = M2/M1. The satisfaction of conditions
(9)–(11) is necessary to ensure the double-peaked
structure of the Kramers–Henneberger potential during
the ion separation; the satisfaction of conditions (12)
and (13) is necessary for the averaging procedure to be
valid. Figure 4 shows the domain of field parameters in
which the Kramers–Henneberger mode is established
for the HD molecule. Condition (13) is not reflected in
Fig. 4, because it leads to the requirement P > 1, which
is definitely satisfied in the entire domain. Straight
line 5 in Fig. 4 corresponds to the conditions ν = c, ν =
E0/µω. In the region below this straight line, the Cou-
lomb explosion dynamics can be described in terms of
the nonrelativistic model used here. The diamonds
mark the domain boundary constructed by simulating
the Coulomb explosion of the above molecule. Note
that for M1 ! M2 (for example, the HCL molecule), the
intensities required for the Kramers–Henneberger
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mode to be achieved are an order of magnitude lower
than those for the HD molecule. This is because the
parameter γ increases in this case approximately three-
fold [see Eq. (3)].

3. CONCLUSIONS

The angular distributions of the fragments from the
Coulomb explosion of a diatomic heteronuclear mole-
cule during dissociative ionization in a superintense
laser field have been considered in terms of classical
mechanics.

The patterns of angular distributions of the Cou-
lomb explosion fragments have been shown to differ in
different ranges of laser-pulse parameters. In particular,
there are two distinct modes of ion separation: separa-
tion in a Coulomb field (θout = θ0) and separation in the
field of an effective ion + field potential (θout = π/2).
Based on the Kramers–Henneberger method, we deter-
mined the boundaries of these modes. The analytic esti-
mates are in good agreement with computations (see
Fig. 4).

Considering the above problem in terms of classical
mechanics implies the following: (1) the realization of
initial conditions close to the classical ones in a real
experiment and (2) the classical dynamics of ions. A
linearly polarized, molecule-aligning pulse of the
intensity P ≈ 1013 Wcm–2 can apparently be used to
realize initial conditions close to the classical ones in a
real experiment. The classical treatment of the ion
dynamics is possible, because the parameter νs/νd ≈
ξ1/4, where νs is the spread velocity and νd is the drift
velocity of the ion wave packet, is small.

–1
log(ω/ωat)

–2

log(P/Pat)

8

6

1
2

3
4

5

Fig. 4. The domain of field parameters (bounded by heavy
lines) in which the Kramers–Henneberger ion separation
mode is established for the HD molecule. The diamonds
mark the domain boundary constructed by computer simu-
lating Coulomb explosion of this molecule. Pat and ωat are
the atomic units of field intensity and frequency, respec-
tively. ae = 1 (1), R0/ae = 1 (2), aτ = ae (3), ∆ρ = R0 (4), and
ν = c (5).
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Abstract—The electrodynamics and dispersion properties of a magnetized dusty plasma containing elongated
and rotating charged dust grains are examined. Starting from an appropriate Lagrangian for dust grains, a
kinetic equation for the dust grain and the corresponding equations of motion are derived. Expressions for the
dust charge and dust current densities are obtained with the finite size (the dipole moment) of elongated and
rotating dust grains taken into account. These charge and current densities are combined with the Maxwell–
Vlasov system of equations to derive dispersion relations for the electromagnetic and electrostatic waves in a
dusty magnetoplasma. The dispersion relations are analyzed to demonstrate that the dust grain rotation intro-
duces new classes of instabilities involving various low-frequency waves in a dusty magnetoplasma. Examples
of various unstable low-frequency waves include the electron whistler, the dust whistler, dust cyclotron waves,
Alfvén waves, electromagnetic ion-cyclotron waves, as well as lower-hybrid, electrostatic ion cyclotron, mod-
ified dust ion-acoustic waves, etc. Also found is a new type of unstable waves whose frequency is close to the
dust grain rotation frequency. The present results should be useful in understanding the properties of low-fre-
quency waves in cosmic and laboratory plasmas that are embedded in an external magnetic field and contain
elongated and rotating charged dust grains. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

About a decade ago, Shukla and collaborators [1, 2]
introduced the idea of considering the dynamics of
charged dust grains, which formed the foundation for
the dust acoustic waves (DAWs) [1]. In the latter, the
restoring force comes from the pressures of the inertia-
less electrons and ions, while the dust mass provides
the inertia to maintain the wave. The phase velocity (the
frequency) of DAWs is much smaller than the electron
and ion thermal velocities (the dust plasma frequency).
On the other hand, when the wave frequency is much
higher (lower) than the dust (ion) plasma frequency, we
have the dust ion-acoustic waves (DIAWs) [3] whose
phase velocity is much lower (higher) than the electron
(ion) thermal velocity. In DIAWs, the restoring force
comes from the pressure of the inertialess electrons,
while the ion mass provides the inertia because the
massive dust grains remain immobile at the time scale
of the DIAWs. Both the dust acoustic and dust ion-
acoustic waves are spectacularly verified in several lab-
oratory experiments [4–8]. We note that the previous
theories of DAWs and DIAWs and the corresponding
laboratory experiments have dealt with spherical dust
grains. Comprehensive reviews of waves and instabili-

¶This article was submitted by the authors in English.
1063-7761/01/9302- $21.00 © 20301
ties in a weakly coupled unmagnetized dusty plasma
with spherical dust grains were given in [9, 10].

However, elongated charged dust grains are ubiqui-
tous in cosmic and laboratory plasmas [11–14]. The
formation of elongated charged dust grains is attributed
to the coagulation of particulates in partially or fully
ionized gases due to some attractive forces. Elongated
charged grains can acquire a rotational motion due to
their interaction with photons and particles of the sur-
rounding gas, or due to the presence of an oscillating
electric field in a plasma [11, 15]. In astrophysical
objects, the angular frequency of the dust grain rotation
can reach a rather large value, viz. between tens of kHz
to MHz for thermal dust grains and hundreds and thou-
sands of MHz for super thermal grains [11, 12, 16].
There is an orientation of a different kind involving pre-
ferred direction (relative to the galactic disk) of the dust
grain angular momentum vector.

In general, elongated charged dust grains have a
nonzero dipole moment due to a finite grain size.
Accordingly, Mahmoodi et al. [17] investigated the dis-
persion properties of an unmagnetized dusty plasma in
the presence of rotating and elongated dust grains. It
was found that the dust rotational energy can be cou-
pled to both the electromagnetic and electrostatic
waves. However, cosmic and laboratory plasmas are
usually embedded in an external magnetic field that can
001 MAIK “Nauka/Interperiodica”
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have substantial effects on the dusty plasma wave spec-
tra when elongated and rotating dust grains are present
in a dusty plasma system.

In this paper, we present the electrodynamics and
dispersion properties of a dusty magnetoplasma whose
constituents are electrons, ions, and finite-sized elon-
gated dust grains. In Section 2, we find expressions for
the charge and current densities of dust grains by
including the effect of the dust dipole moment and the
dust grain rotation. The forces acting on the dust grains
as well as the corresponding dust kinetic equation and
the equations of motion are presented in Section 3. In
Section 4, we derive dispersion relations for both the
electromagnetic and electrostatic waves. Specific insta-
bility results are discussed in Section 5. Finally, Section 6
contains a brief summary and possible applications of
our work to cosmic and laboratory plasmas.

2. DERIVATION OF THE CHARGE AND 
CURRENT DENSITIES FOR DUST GRAINS

We consider a multicomponent dusty plasma in the
external magnetic field , where  is the unit vector
along the z axis and B0 is the strength of the external
magnetic field. The dusty plasma constituents are elec-
trons, ions, and negatively charged nonspherical rotat-
ing dust grains. The dust sizes are much smaller than
the characteristic scale sizes of the inhomogeneities
(wavelength of disturbances in our system). To con-
struct the electrodynamics of charged dust grains in a
magnetized dusty plasma, we must obtain appropriate
expressions for the charge and current densities of dust
grains through the dust grain distribution function, tak-
ing the size of the dust grain into account. On the other
hand, expressions for the charge and current densities
of electrons and ions assume the standard form.

For our purposes, we assume that the charged dust
grains are a system of discrete parts [18]. The charge
microdensity of the grains is represented as

(1)

where the summation over i is taken over different
grains and the one over j is taken over different parts of
the ith grain. Here, dqi(rj) is the charge of the jth part of
the ith grain and δ(r – rj) is the standard Dirac function.
If there is a continuous charge distribution onto the
grain, the summation over j can be replaced with the
integral over the grain volume, and the charge density
on the grain can be introduced. Hence, we have

(2)

where Ri is the radius vector of the center of mass of the
grain and the integral is taken over the grain volume

ẑB0 ẑ

ρm q r j( )δ r r j–( )d
j

∑ ,
i

∑=

ρm ρi r' Ri– Ri,( )δ r r'–( ),

Vi Ri( )

∫
i

∑=
JOURNAL OF EXPERIMENTAL 
Vi(Ri). In (2), we introduced the density of the charge
distribution onto the grain

(3)

For a point grain charge, we have

(4)

which leads to the usual expression for the charge
microdensity of the grain

(5)

where qi is the total charge of the ith grain.
For the statistical description of a dust grain gas, we

must introduce the probability density D for the grain
gas state [19, 20]. If all grains are identical, we have

(6)

where vi is the velocity of the center of mass, Wi is the
angular velocity of the ith grain, and θi, ψi, and ϕi (the
Euler angles) describe the orientation of elongated
grains. For the averaged charge density of the grain, we
can then write

(7)

where N is the total number of grains and

Introducing the one-particle distribution function for
the dust grain

(8)

we can write the charge density of the grains as

(9)

In what follows, we omit the subscript 1 and consider
the one-dimensional grain rotation such that the angu-
lar velocity is oriented along the external magnetic field
direction, W = (0, 0, Ω). Equation (9) can then be writ-
ten as

(10)

where the integrand

(11)

dqi r( )
dq r( )

dr
-------------dr ρi r Ri– Ri,( )dr.≡=

ρi r Ri– Ri,( ) qiδ r Ri–( ),=

ρm qiδ r Ri–( ),
i

∑=

D D R1 v1 W1 θ1 ψ1 ϕ1;, , , , ,(=

R2 v2 W2 θ2 ψ2 ϕ2; … t,, , , , , ),

ρ r t,( ) Γ1 Γ2 … Γ N Dρm,d, ,d,d∫=

dΓ i dRidvidWidθidψidϕ i.=

f d R1 v1 W1 θ1 ψ1 ϕ1, , , , ,( )

=  N Γ2 Γ3 … Γ N D,d, ,dd∫

ρ r t,( ) Γ1d∫ ρ1 r''( )δ r R1– r''–( )

V1

∫=

× f d R1 v1 W1 θ1 ψ1 ϕ1 t, , , , , ,( )dr''.

ρ r t,( ) Γρ̂ r R– ϕ,( ) f d R v Ω ϕ t, , , ,( ),d∫=

ρ̂ r R– ϕ,( ) r'ρ r'( )δ r R r'––( ),d

V

∫=
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describing the charge distribution onto a single grain,
depends on the shape of the grain and the azimuthal ori-
entation of the grain elongation axis. Outside the grain
volume, we have  = 0. For identical grains, we can
partly determine the dependence of  on the azimuthal
angle ϕ. Every given direction of the grain elongation
axis, determined by the angle ϕ, can be considered as
the final position of the axis (and simultaneously the
entire grain) rotation from the direction where ϕ = 0.
This allows us to write

(12)

where  is the rotation matrix for the angle ϕ,

(13)

In the dipole approximation, when the dust grain
size a is much smaller than the scale length of the
plasma inhomogeneity λ,

a ! λ, (14)

we insert (12) in (10) and expand the distribution func-
tion fd around the point r. This gives the grain charge
density

(15)

where dΛ = dvdΩdϕ,

(16)

is the total charge of the dust grain, and

(17)

is the dipole moment of the grain. Here,  is the

inverse matrix of .

Similar calculations lead to the following expres-
sion for the dust current density:

(18)

The first term in the right-hand side of (18) describes
the transfer of charge (15) and the second term
describes the current arising from the dust grain rota-
tion. In the next section, we show that Eq. (15) and (18)
are related to the continuity equation.

ρ̂
ρ̂

ρ̂ r R– ϕ,( ) ρ̂ F ϕ( ) r R )– 0,( )[ ]=

≡ ρ̂ F ϕ( ) r R–( )[ ] ,

↔

↔

F ϕ( )
↔

F Fij j( ) ϕcos ϕsin–

ϕsin ϕcos 
 
 

.= =
↔

ρd r t,( ) q d ∇⋅–( ) f d r v Ω ϕ t, , , ,( ) Λ ,d∫=

q rρ̂ r( )d∫=

d F 1– ϕ( ) rrρ̂ r( )d∫=
↔

F 1–↔

F ϕ( )
↔

Jd r t,( ) Λ v q d ∇⋅–( ) W × d+[ ]d∫=

× f d r v Ω ϕ t, , , ,( ).
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3. FORCES ACTING ON GRAINS 
AND THE GRAIN KINETIC EQUATION

To construct the kinetic equation for dust grains, we
must completely know the forces that act on dust grains
in the presence of electromagnetic fields. Assuming
that charged dust grains constitute a discrete system of
particles [18], we have the Lagrangian

(19)

where ∆mi and ∆qi are the mass and the charge of the
ith part of the grain, respectively, ri and ui are its coor-
dinate and velocity, A and φ are the vector and scalar
potentials, respectively, and c is the speed of light in
vacuum. Separating the center-of-mass motion and the
rotation around the center of mass, we can write

where v and r are the velocity and the position of the
center of mass, ∆ri is the coordinate of the ith part of the
grain relative to the center of mass, and W is the angular
velocity of the dust grain. Assuming that the inhomoge-
neity scale λ of the electromagnetic field is much larger
than the grain size a, we can use dipole approximation
(14) up to the third order in the small parameter a/λ and
expand the potentials as

(20)

and

(21)

Accordingly, Lagrangian (19) becomes

(22)

where

are the total mass and charge of the grain,

+
∆miui

2

2
---------------

i

∑=

+
1
c
--- ∆qi vi A r t,( )⋅[ ]

i

∑ ∆qiφ r t,( ),
i

∑–

ui v W ∆ri and ri×+ r ∆ri,+= =

A ri t,( ) A r t,( ) ∆ri ∇⋅( )A r t,( )+=

+
1
2
--- ∆ri ∇⋅( )2A r t,( ) …,+

φ ri t,( ) φ r t,( ) ∆ri ∇⋅( )φ r t,( )+=

+
1
2
--- ∆ri ∇⋅( )2φ r t,( ) … .+

+
mdv2

2
------------

1
2
--- IαβΩαΩβ

q
c
---v A r t,( ) qφ r t,( )–⋅+ +=

+ m B⋅ d
1
2
--- ∆qi∆ri ∆ri ∇⋅( )

i

∑+ E
v
c
--- B×+ 

  ,+

md ∆mi

i

∑= , q ∆qi

i

∑=
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is the inertia moment tensor,

is the dipole moment of the elongated grain, and

(with Ui = W × ∆ri being the rotation velocity) is the
magnetic moment of the grain. The electric and mag-
netic fields are

respectively. In deriving (22), we used the relation

In the presence of the gravity field g, we must add
the term mdg · r to the right-hand side of (22). In what
follows, we neglect the second term in the square
bracket in the right-hand side of (22), which is associ-
ated with the multidipole effect.

The equations of motion for the charged dust grains
can be readily deduced from (22) as

(23)

and

(24)

where p = mdv is the momentum,

and Mα = IαβΩβ is the angular momentum of the grain.
If we choose the principal axis of the moment of inertia,
then

The kinetic equation for the dust grains can now be
written as

(25)

Iα β, ∆mi ∆ri( )2δαβ ∆ri( )α ∆ri( )β⋅–[ ]
i

∑=

d ∆qi∆ri

i

∑=

m 1/2c( ) ∆qi ∆r Ui×( )
i

∑=

E ∇φ– c 1– ∂tA r t,( ), B– ∇ A r t,( ),×= =

dd/dt W d.×=

dp
dt
------ q d ∇⋅+( ) E

1
c
---v B×+ 

 =

+
1
c
--- W d×( ) B× m ∇×( ) B×+

dMα

dt
-----------

1
2
---Sαβ

∂Bβ

∂t
--------- v ∇⋅( )Bβ+–=

+ d E
1
c
---v B×+ 

 ×
α

m B×( )α ,+

Sαβ c 1– ∆qi ∆ri( )2δαβ ∆ri( )α ∆ri( )β–[ ] ,
i

∑=

Mx IxΩx, My IyΩy, Mz IzΩz.= = =

∂ f d

∂t
-------- v

∂ f d

∂r
--------⋅ W

∂ f d

∂ϕ
--------⋅+ +

+
dp
dt
------

∂ f d

∂p
--------

dM
dt

---------
∂ f d

∂M
--------⋅+⋅ 0,=
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where the respective forces dp/dt and dM/dt are defined
by Eqs. (23) and (24). Kinetic equation (25) and defini-
tions (15) and (18) imply that the dust grain charge and
the current densities satisfy the continuity equation

(26)

Using the expressions for ρd and Jd, we can construct
the kinetics and electrodynamics of a dusty plasma with
elongated and rotating dust grains. In what follows, we
consider the wave dynamics of such a magnetized dusty
plasma.

4. DIELECTRIC PERMITTIVITY

We assume that the dust grain size is much smaller
than the grain gyroradius and that the dust grain thermal
velocity is smaller than the characteristic velocity of
our problem. Under these conditions, taken together
with (14), equations of motion (23) and (24) can be
simplified. For simplicity, we furthermore consider the
one-dimensional case of the dust grain rotation; we
then have M = (0, 0, M), where M = IΩ and I is the z
component of the principal moment of inertia. The
kinetic equation for the dust grain (25) then assumes the
form

(27)

For electrons and ions, we have the well-known kinetic
equation

(28)

where α equals e for electrons and i for ions, and eα is
the charge of the species α.

Assuming that the wave electric and magnetic field
perturbations are small, we can express the perturbed
distribution function as

The equilibrium distribution functions are [21]

(29)

∂ρd

∂t
--------

∂Jd

∂r
--------+ 0.=

∂ f d

∂t
-------- v

∂ f d

∂r
--------⋅ Ω

∂ f d

∂ϕ
--------+ +

+ d E×( )z

∂ f d

∂M
-------- q E

1
c
---v B0×+ 

  ∂ f d

∂p
--------⋅+ 0.=

∂ f α

∂t
--------- v

∂ f α

∂r
---------⋅+

+ eα E
1
c
---v B0 B+( )×+

∂ f α

∂p
---------⋅ 0,=

δ f d f d f d0 ! f d0 and δ f α– f α f α0 ! f α .–= =

f d0

nd0

2π 2πmdTd( )3/2
------------------------------------ 1

2πITd( )1/2
-------------------------=

× –
p2

2mdTd

----------------
M M0–( )2

2ITd

-------------------------– ,exp
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and

(30)

where nβ0 and Tβ (β = e, i, d) are the unperturbed num-
ber density and the temperature of the species β. We
assumed that the dust grains rotate with a preferred
angular velocity Ω0, and therefore, M0 = IΩ0.

The components of the dust dipole moment are

(31)

Thus, the perturbed dust grain distribution function is
represented as

(32)

and therefore, Eqs. (27) and (28) give [22]

(33)

and

(34)

where

are the cyclotron frequencies of the dust grain and the
species α, respectively. Furthermore, ∆(n) equals 1 for
n = 0 and 0 for n ≠ 0. The symbol ψis the azimuthal
angle in the momentum space [22],

In accordance with (31), only n = 0, ±1 give a contribu-
tion to the summation in (32).

Assuming that the perturbed quantities are propor-
tional to exp(–iωt + ik · r), where ω and k are the fre-
quency and the wave vector, respectively, we obtain
[22] the following solutions of Eqs. (33) and (34):

(35)

f α0

nα0

2πmαTα( )3/2
------------------------------ p2

2mαTα
----------------– 

  ,exp=

dx d ϕ , dycos d ϕ .sin= =

δ f d δ f n inϕ( ),exp
n ∞–=

∞

∑=

∂δ f n

∂t
------------ v

∂δ f n

∂r
------------ inΩδ f n ωcd

∂δ f n

∂ψ
------------–+⋅+

=  –qE
∂ f d0

∂p
-----------∆ n( )

i
2
---

∂ f d0

∂M
-----------–⋅

× d Ex iEy–( )∆ n 1–( ) Ex iEy+( )∆ n 1+( )+[ ]

∂δ f α

∂t
------------ v

∂δ f α

∂r
------------ ωcα

∂δ f α

∂ψ
------------–⋅+ eαE

∂ f α0

∂p
-----------,⋅–=

ωcd qB0/mdc, ωcα eα B0/mαc= =

px p⊥ ψ, pycos p⊥ ψ.sin= =

δ f 0
qE
ωcd

-------- ψ'
∂ f d0

∂p
-----------d

∞±

ψ

∫=

× i
ω k v ψ''( )⋅( )–

ωcd

------------------------------------ ψ''d

ψ'

ψ

∫–
 
 
 

,exp
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(36)

(37)

Inserting Eqs. (35) and (36) in (18) and also inserting
(37) in the expression for the electron and ion current
densities

(38)

we obtain the total current density

(39)

where the first term in the right-hand side is related to
the rotational motion of the dust grain and the second
term represents the contributions of the electrons and
ions including the center of mass motion of the grains.

The various components [25] of  and the dielectric per-

mittivity are given in the Appendix. For  ! 

and  @ KVdt, the dust grains are assumed to be
cold and the rotational part of the dielectric tensor (cf.
Eq. (A.15) in the Appendix) is given by

(40)

where

(41)

and

(42)

We note that this involves a new characteristic fre-
quency

δ f 1±
i
2
---

d Ex iEy+−( )
ωcd

---------------------------- ψ'
∂ f d0

∂M
-----------d

∞±

ψ

∫±=

× –
ω Ω k v ψ''( )⋅–+−

ωcd

------------------------------------------ ψ''d

ψ'

ψ

∫ 
 
 

,exp

δ f α
eαE
ωcα
--------- ψ'

∂ f α0

∂p
-----------d

∞±

ψ

∫=

× i
ω k v ψ''( )⋅( )–

ωcα
------------------------------------ ψ''d

ψ'

ψ

∫–
 
 
 

.exp

Jα eα pv f α ,d∫=

Ji σij
r ω k,( ) σij

β ω k,( )
β e i d, ,=

∑+ E j,=

σij
r

k ⊥
2 Vtd

2 ωcd
2

ω Ω0±

eij
r

e⊥
r igr 0

igr– e⊥
r 0

0 0 0 
 
 
 
 

,=

e⊥
r –

Ωr
2

ω Ω0–( )2
-----------------------

Ωr
2

ω Ω0+( )2
------------------------–=

gr Ωr
2

ω Ω0–( )2
-----------------------

Ωr
2

ω Ω0+( )2
------------------------.–=

Ωr 4πnd0d2/4I( )1/2
=
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for dust grains that have a nonzero dipole moment. This
frequency is of the same order as the dust plasma fre-
quency ωpd.

5. DISPERSION PROPERTIES

The general analysis of the dispersion relation

(43)

for waves in a magnetized dusty plasma is rather com-
plicated, because the number of wave branches is large.
Here, we present the dispersion properties of some
most interesting modes and describe the underlying
approximations required for the existence of these
modes. We first consider waves that are propagating
along . For waves in a cold dusty plasma with

(44)

we have

(45)

(46)

(47)

and

(48)

The electric field components are determined by the set
of equations

(49)

(50)

(51)

We note that for k⊥  = 0 (i.e., for k = ), we have e|| = 0
if Ez ≠ 0, which shows that the dust grain rotation does
not affect the longitudinal waves. Obviously, the dust
grain rotation can act on the waves when the electric
field is in the rotation plane. The energy exchange

k2δij kik j–
ω2

c2
------eij ω k,( )– 0=

ẑB0

k ⊥ Vtα  ! ωcα , kz Vtα  ! ω
and ω nωcα±  @ kz Vtα ,

exx eyy e⊥= =

=  1
ωpβ

2

ω2 ωcβ
2–

--------------------
Ωr

2

ω Ω0–( )2
-----------------------–

Ωr
2

ω Ω0+( )2
------------------------,–

β
∑–

exy –eyx ig= =

=  –i
ωpβ

2 ωcβ

ω ω2 ωcβ
2–( )

----------------------------- i
Ωr

2

ω Ω0–( )2
----------------------- i

Ωr
2

ω Ω0+( )2
------------------------,–+

β
∑

ezz e|| 1
ωpβ

2

ω2
--------,

β
∑–= =

exz ezx eyz ezy 0.= = = =

kz
2 ω2

c2
------e⊥– 

  Ex i
ω2

c2
------gEy– k ⊥ kzEz– 0,=

ω2

c2
------gEx k2 ω2

c2
------e⊥– 

  Ey+ 0,=

–k ⊥ kzEx k ⊥
2 ω2

c2
------e||– 

  Ez+ 0.=

ẑkz
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between the dust grain rotation and such a wave is most
efficient when the rotation frequency is close to the
wave frequency.

For the circularly polarized electromagnetic waves,
we have

(52)

where ± in the denominators corresponds to the
left/right-hand circularly polarized waves. By replacing
Ω0 with –Ω0, we can make the dust grain rotation direc-
tion coincide with the wave polarization direction.

Dispersion relation (52) can be written as

(53)

where

(54)

Introducing a small frequency shift ∆ around Ω0, we set
ω = Ω0 + ∆, where ∆ ! Ω0, and express (53) as

(55)

We now assume that Ω0 is far from the characteristic
frequency ω0 of the magnetized dusty plasma, which
satisfies

(56)

The condition

(57)

is then satisfied (this case is referred to as the nonreso-
nance case) and we obtain

(58)

where we also assumed that  ! k2c2. Equation (58)
describes a new type of unstable transversal waves
whose frequency is close to the rotation frequency Ω0.
In the resonance case, when inequality (57) is reversed,
Ω0 is close to some characteristic frequency of the mag-
netized dusty plasma,

(59)

k2c2

ω2
---------- 1

ωpβ
2

ω ω ωcβ+−( )
----------------------------

2Ωr
2

ω Ω0±( )2
------------------------,–

β
∑–=

k2c2

ω2
---------- e ω( )

2Ωr
2

ω Ω0–( )2
-----------------------,–=

e ω( ) 1
ωpβ

2

ω ω ωcβ+( )
----------------------------.

β
∑–=

k2c2

Ω0
2

---------- e Ω0( )– ∆ Ω0∂
∂ k2c2

Ω0
2

---------- e Ω0( )–+
2Ωr

2

∆2
----------.–=

H ω0( ) k2c2

ω2
---------- e ω0( )– 0.= =

H Ω0( )
Ω0 dH Ω0( )/dΩ0( )
-------------------------------------------  @ 

∆
Ω0
------,

∆ i 2
Ωr

kc
------Ω0 1

Ω0
2

k2c2
----------e Ω0( )+ ,±=

Ω0
2

H Ω0( ) 0,=
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and we obtain the frequency shift

(60)

Equation (60) exhibits an unstable root with a substan-

tial growth rate that is proportional to . This was
expected because dispersion relation (53) is formally
similar to the dispersion relation for a two-stream insta-
bility discussed in [23].

We now present several examples of the magnetized
dusty plasma wave spectra for the resonance case.
Because Ω0 is small in most of the astrophysical and
terrestrial environments, we consider low-frequency
regimes of the plasma oscillations.

For |ωcd |, ωci ! ω ! |ωce |, we have

(61)

Setting

where

(the electron whistler waves), we obtain the growth rate

(62)

In the frequency regime where |ωcd | ! ω ! ωci, we have

(63)

In deriving (63), we used the dusty plasma quasi-neu-
trality condition at equilibrium

(64)

Setting

where

(the dust whistler wave [2, 24–26]), we obtain the
growth rate

(65)

∆
2Ωr

2

Ω0
3∂H Ω0( )/∂Ω0

--------------------------------------–

1/3

Ω0

1
1 i 3±

2
------------------– 

 
 
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Ωr
2/3

H ω( ) k2c2

ω2
----------

ωpe
2

ω ωce

---------------.–=

ω Ω0 iγ,+=
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γ Ω0 2
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2
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1/3

.≈
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γ 2
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2
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On the other hand, for ω ~ ωcd, we have

(66)

In this case, setting

where

(the electromagnetic dust cyclotron wave), we obtain
the growth rate

(67)

For the frequency range ω ≈ ωci (ion cyclotron waves),
the growth rate is given by

(68)

We now take the thermal motion of the electrons into
account assuming that

(69)

We restrict ourself to the wavelengths longer than the
Larmor radii

From (A.9)–(A.11), we then obtain the dielectric per-
mittivity tensor components

(70)

(71)

(72)

(73)
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where we used (64) and set

We also ignored the Landau damping on electrons. Dis-
persion relation (43) separates into two equations:

(74)

which is not influenced by the rotation of the grain, and

(75)

We now assume that ω ! |ωcd |. Setting

where

(Alfvén waves), and using (58), we obtain the growth
rate

(76)

We next consider the longitudinal waves for which the
dispersion relation assumes the form

, (77)

where the components exx and ezz for the cold plasma
are defined by (70) and (72). Inserting the latter equa-
tion in (77), we obtain

(78)

It follows from (78) that the dust grain rotation contrib-
utes only for waves with k⊥  ≠ 0, because the electric
field of the longitudinal waves then has a component
that lies in the dust grain rotation plane.

To obtain the growth rates for longitudinal waves,
we use the same procedure as was used to deduce
Eqs. (58) and (60).

We now consider the lower hybrid waves with
|kz |Vte, |kz |Vti, ωci ! ω ! |ωce|. Setting
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where

(79)

we find the growth rate

(80)

Next, we consider the frequency regime where

The dielectric permittivity components in Eq. (77) are
now defined by Eqs. (72) and (78). Using these expres-
sions, we obtain the dispersion relation

(81)

This equation can be analyzed in two limiting cases.
First, we consider the ion-cyclotron waves with ωcd !
ω ≈ Ωci and kz ! . Setting

we then obtain the growth rate

(82)

where

is the ion acoustic speed.
Second, we consider the modified dust ion-acoustic

waves (MDIAWs) characterized by ωpd, ωcd ! ω ! ωci.
In this case, Eq. (81) gives

(83)
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Equation (83) admits an instability of the MDIAWs
with the frequency

and the growth rate is

(84)

Finally, we consider coupled dust acoustic-dust cyclo-
tron waves in a dust-electron plasma (without ions)
with positive dust grains [27]. For kVtd ! ω ! kzVte, we
then have

(85)

For ω ! |ωcd |, Eq. (85) admits an instability of short
wavelength DIWs when

where

The growth rate of this instability is

(86)

On the other hand, for ω ~ |ωcd |, k⊥  @ kz, and k2  !
1, an instability of the dust cyclotron waves occurs
when

The growth rate of the instability is

(87)

It is interesting to note that a dust-electron plasma
with positively charged grains can occur in the Earth’s
polar mesosphere [28, 29], where the grains are irradi-
ated by the sun light, in which case the grains act as a
source of electrons and collect ions from the ambient
plasma to become positively charged. There also is the
prediction [30] that positively charged dust grains in
retrograde orbits are most likely to be observed by the
Cosmic Dust Analyzer aboard the Cassini Orbiter mis-
sion to Saturn. Furthermore, the dust electron plasma
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can also be created in a laboratory discharge when the
dust grains are irradiated by ultraviolet (UV) radiation
[31–34].

6. SUMMARY AND CONCLUSIONS

In this paper, we have developed the electrodynam-
ics of a magnetized dusty plasma taking the finite size
of elongated and rotating charged dust grains into
account. Starting from an appropriate Lagrangian for
charged dust grains, we have derived the dust charge
and dust current densities, as well as a kinetic equation
for charged dust grains and the corresponding equa-
tions of motion in the external magnetic field. The
effects of the dipole moment and the principal moment
of inertia of the elongated and rotating dust grains are
self-consistently incorporated. The newly derived dust
charge and dust current densities, together with the cor-
responding quantities for electrons and ions, are com-
bined with the Maxwell–Vlasov system of equations to
obtain dielectric response functions for a magnetized
dusty plasma. 

For a cold dust gas, we have obtained explicit
expressions for the permittivities associated with the
dust grain rotation and for those of the ambient plasma
species. The dispersion relations for transverse and lon-
gitudinal waves were then derived. Our analytical
results exhibit the instabilities of the electron whistler,
the dust whistler, the Alfvén waves, electromagnetic
ion and dust cyclotron waves, as well as lower-hybrid,
electrostatic ion-cyclotron, and coupled dust acoustic
and dust cyclotron waves. The instability arises due to
the resonance interaction between waves and elongated
rotating dust grains. The free energy stored in the dust
grain rotational motion is basically coupled to both the
electromagnetic and electrostatic waves, driving them
at nonthermal levels. The presence of nonthermal fluc-
tuations can be used for diagnostic purposes. For exam-
ple, coherent or incoherent scatterings of star light
and/or electromagnetic waves off nonthermal fluctua-
tions in cosmic plasmas may yield valuable information
regarding the light polarization, the dust number den-
sity and the dust charge in situ, and other plasma
parameters including the external magnetic field
strength. We stress that the oscillating electric fields of
electromagnetic waves may produce dust grain rota-
tion, the energy of which is required for driving waves
at nonthermal levels. 

In conclusion, we emphasize that the present inves-
tigation should be useful for understanding waves and
instabilities in astrophysical and laboratory plasmas
that contain elongated and rotating charged dust grains.
Finally, we suggest that new laboratory experiments in
a weakly coupled dusty magnetoplasma must be
designed to test the ideas described in this paper. A
recent experimental work by Molotkov et al. [14] has
conclusively demonstrated the Coulomb crystallization
of 300-µm highly charged elongated cylindrical grains
(with |q | ~ 7.7 × 105 and with the length-to-diameter
SICS      Vol. 93      No. 2      2001
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ratio 20–40) of the mass density 1.1 g/cm3 and the
diameters 15 and 7.5 µm in a low-pressure gas dis-
charge plasma, where the electron energy ranges
between 1–10 eV. Thus, a sheath electric field of the
order 30 V/cm can levitate the grain. 

Molotkov et al. [14] have discussed the role of the
induced dipole moment that can influence the grain ori-
entation. At small pressures (0.1 Torr), they also
observed oscillations with the wavelength ~1 mm and
the frequency 20–50 Hz. The latter can be associated
with the dust acoustic waves that are deduced from
our Eq. (83). Furthermore, by applying the external
magnetic field 1–6 kG and with the plasma (ni0 ~
109 cm–3 and nd0 ~ 103 cm–3) and dust parameters simi-
lar to those in Molotkov et al. [14], one should be able
to observe the magnetization of ions and the electro-
static ion-cyclotron wave instability described by (81).

Finally, we mention that several authors [35–38]
have experimentally observed rotation of spherical dust
grains by magnetic fields. The rotation is attributed to
the azimuthal E × B0 ion drift, which also drags the dust
grain along due to the space charge electric field that is
set up between ions and grains.
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APPENDIX: VARIOUS COMPONENTS OF 
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(A.3)

with

(A.4)

Here,

is the grain thermal velocity,

In(z) is the Bessel function of an imaginary argument,
and the function

has the asymptotic behavior

(A.5)
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(A.6)

for |x | ! 1.

For the tensor , we have
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where eβ is q for β = d.
Straightforward calculations lead to the following

expressions for the dielectric permittivity tensor [22]:
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where

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

and

(A.15)

Here,

is the plasma frequency of the species β, and k ≡ (k⊥ , 0,
kz).
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êyz –êzy=

=  –i
ωpβ

2 k ⊥

ωωcβkz

-----------------An' zβ( ) 1 J+ ξn( )–[ ] ,
n

∑
β
∑
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Abstract—The collective movement of dust particles in a plasma formed during deceleration of decay products
of californium nuclei in neon is investigated experimentally. For the first time, compact vortex structures con-
taining a large number of coagulating dust particles and dense dust clouds evolving in time are observed. Dust
formations have clearly defined boundaries and particles in them form ordered liquid-type structures. Under
steady-state conditions, dust structures exist from several minutes to hours. An increase in the voltage applied
to the high-voltage electrode leads to the formation of dust particle jets. A change in the electric field configu-
ration transforms the structures from one type to another. A strong recombination of electrons and ions at dust
particles is observed. The momentum transfer from ions drifting in an external field to gas molecules is studied
using the Monte Carlo method. It is shown that the transferred momentum is so large that it may cause a gas
flow. The characteristic features of vortex flow in neon and in air are explained. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Nuclear-induced dust plasma is created by ionizing
particles appearing in nuclear reactions during nuclear
fission as well as during the α and β decay [1, 2]. A typ-
ical feature of such plasma is its space–time inhomoge-
neity associated with its track structure [3]. The accu-
mulation of charge by particles in this type of plasma is
stochastic [4] and the time of charge variation is deter-
mined by the intensity of decay in a radioactive source
and by the distance from the source. A dust particle in
a nuclear-induced plasma in an external electric field
experiences the action of electron bunches and ion clus-
ters drifting towards different electrodes and having (in
the case of a uniform field) a cylindrical shape with a
symmetry axis parallel to the trajectory of the ionizing
particle. As a result of diffusion, the electron bunches
and ion clusters spread in the radial direction, the dif-
ference in the diffusion coefficients resulting in a con-
siderable increase in the radii of electron bunches.
These formations encounter dust particles more fre-
quently and transfer a negative charge to them. The less
frequent action of ion clusters effectively discharges
dust particles. Alternating action of electron bunches
and ion clusters leads to strong fluctuations of the elec-
tric charge of a dust particle [4]. In an external electric
field under a considerable gas pressure, the drift of elec-
trons and ions to the electrodes causes a momentum
transfer to neutral components of the medium. In view
of the large velocity and short time of the electron drift
1063-7761/01/9302- $21.00 © 20313
to the anode, the momentum transferred by electrons to
neutral particles is negligibly small but the momentum
transfer by ions plays the decisive role. As a result, the
gas performs a motion whose type depends not only on
the geometry of the volume occupied by the gas, but
also on the concentration of dust particles, their mass
and charge. Such a movement complicates the forma-
tion of stationary dust structures and leads to the evolu-
tion of vortices, streamlined clouds, and jets of dust
particles.

The present work aims at experimental investigating
the behavior of dust particles of various diameters in a
nuclear-induced plasma in the presence of electric
fields with a varying spatial configuration.

2. EXPERIMENTAL SETUP

The experiments were made in a setup similar to that
described in [1]. As a source of ionizing radiation, we
used a thin layer of 252Cf whose nuclei experience
alpha-decay and spontaneous fission in a ratio approxi-
mately equal to 32 : 1. The intensity of the source was
4 × 106 divisions/s. For such an intensity of the radioac-
tive source, the concentration of Ne ions near its surface
is Ni ~ 3 × 109 cm–3. The source was mounted on an
earthed metallic electrode (Fig. 1) made in the form of
a disk of diameter 44 mm. A high-voltage electrode of
the same diameter was arranged at a distance of 3.5 cm
from the source. In the vicinity of this electrode, the ion
001 MAIK “Nauka/Interperiodica”
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concentration was Ni ~ 1 × 108 cm–3. The ion concentra-
tion was determined from the calculated coordinate
dependence of the power density for the energy contri-
bution of fission fragments and α-particles to the gas in
analogy with [1]. Additional electrodes were mounted
on the planar high-voltage electrode to create a nonuni-
form field. Figure 1 shows electrode A with a hole of
diameter 15 mm and two copper tubes of diameter
2 mm inserted through an insulator. The auxiliary elec-
trode B has a hemispherical shape.The electrodes were
placed in a sealed cylindrical glass tube with an inner
diameter of 50 mm. Different voltages were applied to
the high-voltage and auxiliary electrodes.

A gas–dust mixture was produced by a pulsed action
of the neon flow supplied from a dispenser with a fixed
volume. This flow was directed to a container with a
netlike bottom containing the particles under investiga-
tion, and the formed gas–dust mixture uniformly filled
the entire volume of the glass cell. The glass cell was
preliminarily evacuated to a pressure of about 1.3 Pa to
prevent the loss of electrons to oxygen molecules. The
gas pressure was varied from 104 to 105 Pa. We used Zn
particles with a mean diameter of 2.4 µm and a mass of
5 × 10–11 g as dust particles. The initial concentration of
particles varied from 105 to 106 cm–3. The cell was
exposed to a 2D laser beam with a constriction formed
by a cylindrical lens; the constriction diameter could be
varied from 100 to 200 µm with the help of a dia-
phragm. Laser radiation scattered by particles was reg-
istered by a video camera with a CCD matrix as a radi-
ation detector.

3. DUST PARTICLE VORTICES

In order to analyze the effect of a nonuniform elec-
tric field on the motion of dust particles, we used a 2D
electrode with auxiliary high-voltage electrodes A. The
central hole in the electrode, which is intended for the
injection of particles from the container, did not signif-
icantly affect the motion of particles. The potential U of

1

23

4
5

6

7

8

A

B

C

A

Fig. 1. Experimental setup: injection of gas–dust mixture
from the evacuation and gas-filling system (1), netlike con-
tainer of dust particles (2), glass walls (3), metallic elec-
trodes (4), laser with a cylindrical lens (5), 2D radioactive
source (6), video camera (7), dc source (8), and various
types of high-voltage electrode (A, B, C).
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the main electrode as well as the potentials U* of the
auxiliary electrodes had positive values such that the
following inequality holds:

After the injection of the gas–dust mixture into the cell,
the particles were separated by weight. The remaining
particles were gradually accumulated into a rotational
dust structure (Fig. 2a) whose center was located under
an auxiliary electrode and was displaced towards the
center of the cell. The particles were accelerated
towards the auxiliary electrode (in the direction shown
by the black arrow) on segment 1–2, which can be
explained by the existence of a charge on the particles.
Then the particles were turned away from the upper
electrode on segment 2–3, decelerated, and ultimately
involved in the rotational motion. The velocity v  of the
particles was determined by the formula

(1)

where N is the number of frames per second transmitted
by the video camera for recording (N = 25 in our exper-
iment), k is the number of frames on which a dust par-
ticle displaced over a distance s was observed, and F is
the magnification of the optical system (F = 10.5 in our
experiment). In the vicinity of point 2, the velocities of
particles exceed 10 cm/s, while the velocity on the
opposite side (near point 4) is half as small (approxi-
mately equal to 5 cm/s).

In a few minutes, the majority of the particles were
concentrated at the center of the structure, while the
remaining volume was almost completely free of parti-
cles (Fig. 2b). The center of the structure was separated
from the center of the auxiliary electrode by 6 mm
(Fig. 3). With the passage of time, agglomeration of
small particles into coarser fragments could be seen,
the finer fraction remaining in the central part (Fig. 2c).
Upon an abrupt increase in the potential at the auxiliary
electrode and subsequent restoration of the previous
value of the potential, the vortex flow is at first violated
and particles strive to fly apart (Fig. 2d), and then the
motion of particles is restored (Figs. 2e and 2f). After
the restoration, the vortex motion at this stage may con-
tinue for a long time under constant external conditions.
(The structure depicted in Fig. 2g was observed for
more than 20 min until the power supply was switched
off.) It should be noted that the shape of the structure is
close to a circle of diameter 5 mm in the plane of the
laser “knife” (vertical cross section), while along the
axis of observation it is spindle-shaped with a linear
size of approximately 1.5 cm.

By placing the second auxiliary electrode symmet-
rically relative to the cell axis, we could observe two
structures instead of one, which rotate in opposite
directions (Fig. 2h). The type of motion of the particles
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v
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k
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Fig. 2. Vortex flow of Zn dust particles for U = 187 V, U* = 442 V, and neon pressure 0.4 × 105 Pa; frame size 3.2 × 2.4 cm:
(a) 1.5 min, (b) 3 min, and (c) 4.5 min after the injection of the gas–dust mixture; (d–f) variation of the auxiliary electrode potential
from 400 to 500 V during the eighth minute; (g) 10 min; (h) general view of two vortex structures during the fourth minute (frame
size 4.2 × 3.1 cm). (Light strips in the frames are due to reflections at glass walls of the cell and at electrodes.)
does not change if the central hole in the main electrode
is absent. For a low initial concentration of the particles,
no dust structures are formed, indicating a clearly mani-
fested collective type of the behavior of dust particles.
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Since we used in our experiments polydisperse dust
particles, their radii rd were determined experimentally
from the steady-state velocity v  of their descent in the
gas after the removal of the electric field (the resistance
SICS      Vol. 93      No. 2      2001
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to the motion of particles was taken into account using
the Stokes formula):

(2)

where η is the gas viscosity, ρ is the density of dust par-
ticles, and g is the acceleration due to gravity. The rate of
fall for the particles was found to be v  = 1.7 ± 0.2 cm/s.
The radii of Zn particles constituting a rotating struc-
ture calculated by formula (2) varied from 5.5–6.2 µm.
The average mass of particles was 3.5 × 10–9 g. The
fivefold increase in the radius and the nearly two-
orders-of-magnitude increase in the particle mass point
towards a coagulation of the particles in the rotating
structure. It was mentioned above that this can be
observed visually.

Let us consider the equilibrium conditions of a com-
pact rotating dust formation (Fig. 3). It is acted upon by
the field of two electrodes and the wall,

as well as the force of gravity Mg and the force of pres-
sure appearing due to different values of the velocity of
the gas flow streamlining the dust structure. This pres-
sure may be calculated by the formula

(3)

where v 2 and v 4 are the velocity of the gas in the vicin-
ity of points 2 and 4 in Fig. 2a. Pressure (3) creates the
force of pressure Fp. The dust structure will be in equi-
librium if (Fig. 3)

(4)

where Q is the charge of the structure. In view of the
indeterminacy in the mass of the entire structure, we
estimate the charge q of a particle constituting it. The

rd
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Fig. 3. Schematic diagram of the arrangement of dust struc-
ture: auxiliary electrode (1), main electrode (2), and dust
structure (3).
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equilibrium conditions lead to the following system of
equations:

(5)

Here, α and β are the angles formed by vectors E2 and
Fp with the vertical, m = 4πρr3/3 is the particle mass,
and fp is the force of pressure exerted on the particle. In
our experiments, fp = πr2p ≈ 3.6 × 10–13 N. This value is
negligibly small as compared to the force of gravity
mg ≈ 3.5 × 10–8 N. System (5) makes it possible to
determine unknowns q and Ew if the force of pressure fp

is negligibly small and the remaining quantities appear-
ing in it are known. The field strength created by the
upper electrode near the center of the rotating structure
is E1 ≈ 45 V/cm, while the strength of the field created
by the auxiliary electrode is E2 ≈ 100 V/cm. The aver-
age angle α ≈ 45°. The strength of the field of the walls
determined from Eqs. (5) is Ew ≈ 70 V/cm. The charge
of dust particles determined from the solution of system
(5) was 2.7 × 104 in the electron charge units. On the
average, there are approximately 270 electrons for each
hundred smaller particles.

In order to obtain the exact value of the charge of the
particles, one must solve the self-consistent problem in
which the Poisson equation is written taking into
account the external fields, the fields of the walls and
space charges (electrons and ions), as well as the fields
of particles whose charges themselves are functions of
the local resultant electric field. However, such a self-
consistent problem can hardly be solved at the moment;
for this reason, effective potentials of interaction of dust
particles are used in mathematical simulation of a dust
plasma [5].

As the potential of the auxiliary electrode increases
to 500 V, the rotating structure moves away from it to a
distance of 9 mm. This can be explained by an increase
in the electron flux to the wall, which leads to an
increase in the force qEw pushing away the structure.
For new values of E2 and Ew, the structure finds its new
equilibrium position in which conditions (5) are satis-
fied for the new values of the angles.

Coagulation of dust particles in the plasma created
by a radioactive source was considered for the first time
by Belov et al. [6]. These authors do not refute the
coagulation of charged particles. However, the charge
per small particle prior to coagulation may turn out to
be too high in our case. On the other hand, it should be
noted that the coagulation time in the described experi-
ment is of the order of minutes. Coagulation may be
facilitated by the nonsphericity of particles and their
high conductivity. The particle charge may be slightly
exaggerated in view of the entrainment of dust particles
by a moving gas, which will be considered below.

qE2 α f p βsin+sin qEw,=

q E1 E2 αcos+( ) mg f p β.cos–=
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Fig. 4. Evolution of the dust cloud formed by Zn particles: (a) 2 min, (b) 4 min, (c) 4.5 min, (d) 4 min 45 s after the injection of the
dust component. The upper electrode has the shape C (Fig. 1). The upper electrode potential is 152 V, the separation between the
upper and lower electrodes is 3.5 cm, the neon pressure is 0.76 × 105 Pa; frame size is 4.2 × 3.1 cm.
4. LIQUID CLOUDS OF DUST PARTICLES

In the case when potentials U and U* are identical
and electrode C is used (see Fig. 1), Zn dust particles,
after the injection of the gas–dust mixture, coagulate in
a few minutes into a cloud with well-defined bound-
aries (Figs. 4a–4d). The cloud has the shape of a trun-
cated cone with the base lying in the plane of the upper
electrode and the top near the radioactive source. The
entire volume of the experimental cell can be divided
into five regions in which the particles behave in differ-
ent manners. In region I, particles are almost stationary
(levitation). In region II, particles move slowly, creating
an ascending flow. The velocity of particles in the flow
decreases as they approach the boundaries of the struc-
ture and its upper part. In the middle part of the flow, the
velocity has the maximum value equal to 0.6 cm/s.
In region III, particles move downwards along the gen-
erator of the cone at a velocity of 1.2 cm/s; some of
the particles are deflected to the axis of the structure in
the vicinity of the lower electrode and then move
upwards. Another fraction of particles get into region V.
Region IV contains a very small number of particles
whose velocity at the boundaries of the structure is
equal to the velocity of particles in region III. When dust
particles approach the lower electrode, they are deflected
from it to the walls, where they ascend to form closed tra-
jectories. In region V, all particles fall down at a rate
approximately equal to 1 cm/s. The velocities of parti-
cles were determined by formula (1).
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Thus, there are two types of vortex flows of parti-
cles. One of them is the motion of particles with a low
number density at the periphery, while the other is the
motion within the structure at approximately half the
velocity. These flows are separated by a sharp boundary
near which the velocities of particles are identical on
both sides. It will be proven below that the momentum
transfer from ions to neutral particles is large enough
for initiating the motion of the gas. In our opinion, this
is one of the main reasons behind the emergence of vor-
tices. Another reason may be the intense recombination
of ions and electrons at dust particles, which may give
rise to large concentration gradients and auxiliary flows
of plasma particles. The ionization and recombination
of the gas (including that at dust particles) occur at the
highest rate in the vicinity of the source of ionizing
radiation. The ion flow reducing the diameter of the
structure near this source is directed precisely at this
region.

At the lowest part of the structure (region V), the
charge of particles becomes positive [4], and they fall to
the lower earthed electrode.

The radius rd of the particles was determined from
the rate of fall of the particles of the structure after the
connection of a power source between the electrodes
[formulas (1) and (2)] and was found to lie in the interval
0.9–1.4 µm. The particle mass varied from 3 × 10–11 to
8 × 10–11 g.
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Fig. 5. Digital image of the central part of the structure and the corresponding pair distribution function.
The value of the electric charge q of particles was
calculated from the condition of equilibrium between
levitating particles in region I and slowly moving parti-
cles in region II:

(6)

where E is the strength of the external electric field. The
charges of particles varied, depending on the radius,
from 400 to 1000 units of the electron charge.

The mathematical processing of the central part of
the structure give the average distance b ≈ 190 ± 30 µm
between particles and the concentration nd ≈ (3–4) ×
104 cm–3. The electric field of particles with such a con-
centration and with the maximum charge creates a field
of strength E ≈ 4 V/cm at a distance 1 cm from the cen-
ter of the sphere of radius 1 cm (characteristic size of
the structure), which is an order of magnitude smaller
than the applied field and may be disregarded in the first
approximation.

Digital processing of the frames makes it possible to
obtain a pair distribution function for dust particles
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Fig. 6. Time dependence of current.
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(pair correlation function [7]) presented in Fig. 5. It has
a clearly manifested peak typical of liquid structures.
The nonideality parameter for the dust component is
given by

(7)

where T is the gas temperature in energy units, which
varies from 45 to 340 for particles of different sizes,
which also speaks in favor of the liquid type of the
obtained structures. For particles whose radius is equal
to the average radius (1.2 µm), the nonideality parame-
ter is 130. The spread in the size of particles, the fluctu-
ations of their charge [4] and the motion of the medium
considerably hinder the formation of crystalline dust
structures.

Under a constant pressure and for constant poten-
tials of electrodes, the cloud forms in a few minutes
with the streamlined spherelike upper part (Fig. 4b).
Then it gradually changes the contour of its boundaries
and smoothly falls on the lower electrode (Figs. 4c and
4d). At the same time, the vortex motion of periphery
particles, as if grinding the structure, creates a constric-
tion at its lower part. In the situation depicted in Fig. 4d,
the vortex motion also considerably affects the behav-
ior of the upper part, exerting an additional pressure on
it. After the structure falls on the lower electrode, the
motion which was formerly typical of periphery parti-
cles embraces the entire volume. The velocity of parti-
cles in such a vortex near the cell axis is equal to
1.2 cm/s.

Recombination of plasma particles on dust particles
is reflected in the time dependence of the electric cur-
rent between the electrodes (Fig. 6). The figure shows
the results of measurements of current for three differ-
ent injections of the gas–dust mixture to the volume of
the experimental cell. In the initial instant after the
injection of the gas–dust mixture, the density and the

Γ 1
4πε0
----------- q2
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------,=
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number of dust particles are large and the current is
small. During the formation of the structure and its evo-
lution in time, the volume occupied by dust particles
decreases. The electric current increases and attains sat-
uration after the falling of the dust structure on the
lower electrode.

Another reason behind the decrease in the current in
the presence of dust particles could be the collisions of
dust particles with ionizing particles, after which an
ionizing particle is stuck in a dust particle and stops
moving. As a result of such a process, further ionization
is terminated due to the interruption of the track. If we
assume that dust particles are spheres of radius rd, the
mean free path of an ionizing particle relative to colli-
sions with dust particles is calculated by the formula

(8)

The calculations based on this formula gives a mean
free path of 16 cm for the largest particles of radius
1.4 µm with the maximum concentration 106 cm–3.
This value is much larger than the actual mean free path
of fission fragments and α particles in neon near atmo-
spheric pressure. Consequently, the loss of ionizing
particles on dust particles can be neglected.

The clouds described above are formed under pres-
sures from 0.1 × 105 to 1 × 105 Pa and their behavior is
always the same. The gas pressure was never higher
than the atmospheric pressure. In the absence of an
electric field or a radioactive source, no clouds are
formed, and the particles injected into the volume grad-
ually fall down along the trajectories parallel to the
acceleration due to gravity.

5. DUST JETS
If the potential of the upper electrode is increased

after the formation of a dust particle structure, dust par-
ticles rush towards it with a velocity proportional to the
potential. It is interesting to note that the entire struc-
ture does not move upwards. One or a few jets of mov-
ing particles are formed in its upper part. In front of the
electrode, the velocity of particles in a jet decreases and
the jet expands to form a funnel. The continuity condi-
tion typical of liquid media is satisfied. The jet may
change its shape; the location of its bases may also
change (Fig. 7). In the regions of space outside the
structure and jets, the number density of dust particles
is close to zero.

The use of an auxiliary electrode having a hemi-
spherical shape and insulated from the main electrode
by a dielectric makes it possible to remove dust parti-
cles from the cloud (Figs. 8a–8c). In this case, a single
dust jet directed to this electrode is formed. As a rule,
the potential at the auxiliary electrode is twice as high
as at the main electrode. Dust particles attracted to the
electrode remain on its surface. This effect can be used
for designing a device for the removal of dust from
technological volumes in nuclear reactors.

λ ndπrd
2( ) 1–

.=
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If a high voltage is supplied to the auxiliary elec-
trode mounted at a certain distance from the center of
the high-voltage electrode after the formation of a
cloud of particles (as in Figs. 2a–2g), the dust cloud is
transformed into a rotating structure similar to that con-
sidered in Section 3 (Fig. 8h).

6. CALCULATION OF MOMENTUM TRANSFER 
FROM DRIFTING FLOWS OF IONS 

AND ELECTRONS TO GAS MOLECULES

In this section we will demonstrate the important
role of momentum transfer from drifting ions to neutral
components of the medium in the formation of vortex
motion of dust particles. Drifting ions acquire an addi-
tional momentum between collisions as a result of their
interaction with an electric field. During the time of
motion t, Ni electrons acquire (and hence transfer to gas
molecules) a momentum equal to miwiNit/τ in the linear
approximation, where τ is the mean time between col-
lisions and wi is the drift. For the momentum ∆p trans-
ferred to a gas of mass ∆m during the drift time Td, we
can easily obtain the following relation:

(9)

where j is the current density, vT is the thermal velocity
of an ion, σ is the collision cross section of ions with
atoms, V is the gas volume, n the density of gas atoms,
and E is the field strength. Substituting into expression
(9) the quantities typical of our experiment leads to a

∆p
∆m
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miwiNiTd/τ
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≈
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qETd

mmnV
--------------,≈

Fig. 7. Motion of CeO2 dust particles in the form of jets
directed to the upper electrode. The electrode is of the C
shape (Fig. 1). The upper electrode potential is 200 V; the
separation between the upper and lower electrodes is
3.5 cm, the neon pressure is 0.79 × 105 Pa; the frame size is
4.2 × 3.1 cm. The lower part of the cloud is not illuminated.
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(c) (d)
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Fig. 8. (a–c) Removal of dust cloud of Zn particles using a spherical auxiliary electrode (Fig. 1, B). The auxiliary electrode diameter
is 3 mm, the potential of the main electrode is +153 V, the potential of the auxiliary electrode is +273 V, the separation between the
upper and lower electrodes is 4 cm; the neon pressure is 0.76 × 105 Pa, and the frame size is 4.2 × 3.1 cm. The lower part of the
structure is not seen due to the finite size of the laser “knife”. (d) Formation of a vortex from the cloud.
value of several centimeters per second for the momen-
tum per unit mass of the gas.

Let us consider the same process on macroscopic
level. Figure 9 shows the forces acting on ions during
their motion through the gas. The external electric field
exerts a force FE on a drifting ion cloud. Since the drift
velocity is constant, the gas exerts the resistive force FC

on the cloud. In turn, ions act on the gas with an equal
and opposite force F which is precisely the driving
force for the gas. The reason behind the emergence of
this force on molecular level lies in the transfer of the

Ions

Track

Gas

FE

FC

F

E

z

xθ

0

Fig. 9. Forces emerging during the motion of ions through
the gas.
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additional momentum acquired by ions due to the field
to molecules of the medium.

The transferred momentum of particles per unit
mass, averaged over the time interval T, was calculated
by the formula

(10)

where ∆p is the momentum transferred to the gas of
mass ∆m during the time ∆t under the action of the
time-averaged force F on the gas. This force is caused
by the interaction of the charge of the ion or electron
cloud with an external electric field E. Under our exper-
imental conditions, the time dependence of force F is of
the pulsed type in view of the limited intensity of the
source of ionizing particles:

(11)

Here, Qe, i is the charge of an electron bunch or ion clus-
ter and ts and te are the initial and final time of its motion
to the electrode. The averaging time T may be arbitrary,
but it must correspond to a sufficiently large number of
events. The time interval ∆t is equal to the characteristic
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time of variation of the vortex velocity; in our experi-
ments, it was approximately equal to 1 s. In order to
simplify the calculations (which are of approximate
nature), we assume that the field is uniform.

Figure 10 shows dependence (11) schematically. By
way of an example, three typical situations each are
depicted for an inert gas and an electrically neutral gas
(e.g., air). The first pulses (ionization events) occurring
in the vicinity of the source produce large impulses of
force. Their contribution to the value of ∆p/∆m is deci-
sive. In the second case, when ionization occurs in the
middle part of the electrode gap, impulses of force for
positive and negative ions are approximately equal. In
the third case, the impulse of force created by negative
ions prevails. The contribution of electrons to ∆p/∆m is
negligibly small since their drift velocity is approxi-
mately four orders of magnitude larger than the velocity
of ions in all cases. Upon an increase in the distance
from the radioactive source, the number of electron–ion
pairs decreases, leading to a decrease in the amplitude
of the impulses of force.

The time-averaged value of the momentum per unit
mass transferred from ions to neutral components was
calculated using the Monte Carlo method. The track
nature of the processes was taken into consideration.
Figure 9 shows that an ion cluster and an electron bunch
drifting in opposite directions appear upon the passage
of an ionizing particle through a gas in an electric field
directed along the z axis. If we consider the entire track,
these clusters have a cylindrical shape, the axis of the
cylinder being parallel to the initial track. We took into
account the contribution of fission fragments only. For
a californium source, the contribution of 16α particles
(the other half from 32 goes to the substrate) to the pro-
cess under investigation is approximately equal to the
contribution from a fission fragment; hence, the result
is simply doubled. The cone angle in the direction of
the x axis was chosen so small that the time interval
between the tracks was larger than the time of ion drift
to the electrodes. In this case, there is no need to pro-
cess the effects associated with accidental coincidence
of overlapping tracks. The exit angle θ is selected ran-
domly. The result is averaged over the time correspond-
ing to the passage of 2000 tracks. The length of the cell
along the z axis is assumed to be equal to the mean free
path of fission fragments, while the size of each cell
along the x axis is equal to one hundredth of the mean
free path of a fission fragment. We calculated the num-
ber of ions produced by a fragment in the cells crossed
by it. The contributions of ions and electrons (or oppo-
sitely charged ions) in each unit cell cut with a step
along the x axis are taken with opposite signs.

The calculations were made for neon under a pres-
sure of 5 × 104 Pa with a Cf source of intensity 4 ×
106 divisions/s, and the electric field strength was cho-
sen equal to 100 V/cm (the values typical of the exper-
iment). The field strength vector was directed down-
wards since the upper electrode in the experiments was
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maintained under a positive voltage. The drift velocities
required for calculations were taken from [8–10]. The
results are presented in Fig. 11 (curve 1). Electrons are
the carriers of negative charge in neon. If the field is
antiparallel to the z axis, the ascending electrons cannot
make a large contribution to the transferred momentum
in view of their very short drift time. On the other hand,
the ion contribution leads to the momentum transfer
towards the source, which precisely affects the motion
of dust particles. Since the energy losses for ionization
along the track and the density of tracks decrease, the
ions moving in the vicinity of the z axis and generated
in the vicinity of the source make a larger contribution
to the transferred momentum.

In our previous publication [1], we studied the
behavior of CeO2 dust particles in the nuclear-induced
plasma formed in atmospheric air by fission fragments
and α particles of 252Cf with an intensity of 1 × 105 fis-
sions/s. As the external electric field strength increases,
levitation of particles is replaced by rotational motion,
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Fig. 10. Time dependence of force: pulses of positive ions (1),
pulses of electrons (2), pulses of negative ions (3); dashed
curves correspond to strong recombination on the path of
pulses to the electrodes: (a) inert gas, (b) electronegative
gas.

Fig. 11. Results of calculation of the transferred momen-
tum.
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their trajectories under the steady-state conditions are
closed curves, and the motion of the entire ensemble of
particles in the plane of observation has the form of two
stable vortex formations. The rotation motion was also
observed for solitary particles. The type of motion of
macroparticles did not change upon the sign reversal of
the applied voltage and under rotations of the experi-
mental cell. In all cases, the vortices moved so that par-
ticles near the axis of the setup had a velocity directed
away from the radioactive source. Another feature of
the experimental results [1] is that the dependence of
the angular velocity for particles in a vortex on the elec-
tric field strength resembles the current–voltage charac-
teristic.

Let us first consider the electric charge transfer to a
dust particle of diameter 1 µm subjected in air to the
action of drifting ions of different polarity. In analogy
with [4], the time dependence of the charge was calcu-
lated by the Monte Carlo method for an electric field
strength of 100 V/cm. The results of calculations are
presented in Fig. 12. The dust particle was placed at a
point with coordinate z = 1 cm (the middle part of the
experimental cell in [1]). The R coordinate of the cylin-
drical reference frame varied from 2 cm to 0. Although
the charge increases with decreasing distance to the
source, is still remains small (from 9 charge units at the
periphery to 20 units at the axis). Charge fluctuations
are caused by the random nature of interaction between
nuclear particles and matter [4]. The magnitude of the
average charge is too small to cause a fast motion. Ear-
lier [2], the flow of the gas was not taken into account
in determining the charge, which led to an exaggerated
value of the charge.

If we assume that the main reason behind the vortex
flow of particles is the motion of air, and that particles
visualize this flow, the features of the experiments [1]
carried out in air can be interpreted. We calculated the
transferred momentum under these experimental con-
ditions (air under atmospheric pressure and the electric
field strength 100 V/cm). The results are presented in
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Fig. 12. Time dependence of the inverted charge of a dust
particle at 1 cm from the source. The average charge is
20.6 units.
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Fig. 11 (curve 2 corresponds to the upper electrode at
a positive potential and curve 3, at a negative poten-
tial). A decrease in energy losses for ionization along
the track and a decrease in the density of tracks, as
with neon, lead to a larger contribution to the trans-
ferred momentum of the ions moving in the vicinity of
the z axis. The number of ion pairs in each unit cell
increases upon a decrease in the distance from the
source. The ions moving to the upper electrode traverse
a longer path in the gas and transfer a larger momen-

tum. Negative oxygen ions  are formed in air in a
time equal to a fraction of a microsecond during the
interaction with oxygen and having a mobility which

differs insignificantly from that of the positive  ions;
the contribution to the momentum transfer of these ions
upon a change in the direction of the field is almost the
same. The momentum transfer in air is virtually inde-
pendent of the direction of the electric field, which is
precisely observed in experiments. This leads to the
emergence of an air flow directed away from the source
of ionizing particles for any polarity. Consequently, the
direction of rotation of an electrically negative gas in a
limited volume coincides with the normal to the surface
of the source. A vortex flow of the gas in the space con-
fined by walls and electrodes can be visualized with the
help of dust particles.

The calculations were made for the ionizing cham-
ber operating under the saturation of the current–volt-
age characteristic. For lower values of the electric field
strength, recombination leads to charge losses in the
track itself as well as on the path of ions to the elec-
trodes, which is shown schematically by dashed curves
in Fig. 10. As a result, the electric current and the trans-
ferred momentum decrease. The proposed model of the
emergence of a vortex flow explains another important
experimental result, viz., the saturation of the velocity
of rotation corresponding to the plateau on the current–
voltage characteristic. The reason behind these two
effects is the same. Before attaining the plateau, both
quantities increase since recombination in tracks
decreases, while after the attainment of the plateau, all
the ions produced by the source reach the electrodes.
For this reason, the velocity of the vortex flow exhibits
the same dependence on the applied voltage as the cur-
rent–voltage characteristic. Indeed, in accordance with
(9), the value of the transferred momentum is propor-
tional to the drift time (inversely proportional to the
drift velocity) and to the field strength. In turn, the drift
velocity is directly proportional to the field. In the case
of saturation, i.e., in the absence of charge losses, the
dependence on the field strength vanishes:

(here L is the separation between the electrodes and K
is the ion mobility).
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The dimensions and the physical meaning of the
momentum per unit mass of the gas correspond to the
velocity of this gas. However, it can be determined only
by taking into account the force of viscous friction in
the gas and by solving the hydrodynamic equations.
The estimates obtained by us here prove that such an
analysis must be carried out.

7. CONCLUSIONS

As a result of the experiments, we studied the col-
lective motion of Zn dust particles in the plasma formed
during the deceleration of the decay products of cali-
fornium nuclei in neon. An electric field of various spa-
tial configurations was created in the volume contain-
ing the gas medium, the source of ionizing radiations,
and dust particles. We observed for the first time com-
pact vortex structures with a large number of dust par-
ticles. Dust particles in these structures coagulate, after
which the mass of particles increases almost by two
orders of magnitude. We also observed dense dust
clouds with sharp boundaries, which evolve in time.
Particles in such clouds create ordered structures of the
liquid type. Under steady- state conditions, dust struc-
tures of both types exist for tens of minutes. As the volt-
age at the high-voltage electrode increases, jets of dust
particles are formed. Such jets can be directed in a
desired direction by using an auxiliary electrode whose
potential is higher than that of the main electrode.

It is shown that the momentum transfer from ions to
the neutral component of the medium considerably
affects the formation of the vortex motion of dust parti-
cles. The motion of ions is induced by the external elec-
tric field as well as by the intense recombination of ions
and electrons on dust particles, which might cause the
emergence of large concentration gradients and addi-
tional flows of plasma particles. Gas ionization and
recombination (including that on dust particles) have
the maximum intensity in the vicinity of the source of
ionizing radiation. The ion flow causing a decrease in
the diameter of the structures in the vicinity of the
source is directed precisely at this region. The spread in
the particle size, fluctuations of particle charges, and
the hydrodynamic flow of the medium are considerable
obstacles in the formation of crystal dust structures.
The behavior of dust particles is determined to a con-
siderable extent by the external field. Our calculations
made it possible to explain different behavior of the
vortex flow of dust particles in inert gases and in elec-
trically negative gases. In the latter case, the momen-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tum transferred by ions always induces vortex motion
with a direction of rotation such that the particles lying
in the vicinity of the experimental cell axis move away
from the radioactive source.

Dust particles may considerably affect the processes
occurring in plasmas. For this reason, the kinetic mod-
els of the nuclear-induced dust plasma should be devel-
oped, taking into account the recombination of plasma
particles on dust particles.
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Abstract—The paper deals with the results of investigations of spatial structures of continuous microwave
discharge in a quasi-optical resonator. The results are given of experimental observations and measurements of
the parameters of plasma in discharges of different forms, and the reasons are analyzed for the formation of
spatial discharge structures. It is demonstrated that, as a result of the plasma-resonance amplification of the
field, the discharge makes a transition to the contracted state with a size that is much less than the microwave-
frequency wavelength and with an electron concentration in excess of the critical. It is found that the stratifica-
tion of the contracted state across the electric field vector, which arises in some gases, is caused by the devel-
opment of thermoelectric-current instability that was not previously observed in microwave discharges. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of plasma instabilities has one of the cen-
tral places in the physics of microwave gas discharge.
Such a discharge demonstrates a wide variety of spatial
structures forming as a result of the development of var-
ious instabilities. Fairly well studied at the present are
the stratification of plasma across the field vector,
which arises as a result of plasma-resonance instability
[1] at low values of gas pressure, and the formation of
thin plasma filaments extending along the electric field
vector, which form at high values of pressure during the
development of ionization-overheating instability [2].
In addition, in pulsed discharges, the field amplification
on plasma inhomogeneities (that are initial or form
under the effect of instabilities) may bring about the
formation of a filamentary discharge structure (high-
frequency streamers) [3]. The above-identified instabil-
ities were observed experimentally in pulsed discharges
of microsecond duration [4–6]. In continuous dis-
charges, instabilities of a different type come to the
fore, which are associated both with the kinetic pro-
cesses in a discharge plasma [6–10] and with the singu-
larities of interaction between the field and plasma at
the nonlinear stage of the development of the instabili-
ties identified above.

The urgency of the investigations of continuous
microwave discharge is caused by the potentialities of
its various practical uses. Such a discharge is widely
used for gas laser pumping, in processes of dry etching
in microelectronics, for diamond film deposition, and
in various plasma-chemical reactors. The efficiency of
operation of most of those devices is defined by the
concentration of chemically active particles in the dis-
charge plasma. In its turn, the rate of generation of

†Deceased.
1063-7761/01/9302- $21.00 © 0324
active particles depends on the concentration of elec-
trons in the discharge plasma and on the constants of
kinetic processes, which are clearly defined functions
of reduced electric field. Therefore, the efficiency of the
processes is defined by the self-consistent evolution of
the field and density of plasma in the discharge and may
vary considerably in the process of instability develop-
ment. In a number of cases, when a high degree of dis-
charge homogeneity is required (gas lasers, etching
processes), the instability development is an undesir-
able process, while in other cases the formation of
structures with a high temperature and a high electron
concentration brings about an increase in the efficiency
of plasma-chemical processes.

This paper deals with the investigation of spatial
structures arising as a result of the development of var-
ious instabilities in a continuous microwave discharge
ignited in a quasi-optical resonator. The results of mea-
surements of the discharge plasma parameters are
given, as well as the description of the experimentally
observed forms of discharge. A detailed analysis is per-
formed of the reasons for the emergence of the contrac-
tion of discharge in electropositive and electronegative
gases. It is demonstrated that the mechanism of con-
traction and the parameters of plasma in the contracted
state are considerably affected by the quasistatic ampli-
fication of the electric field on plasma formations with
a high concentration of electrons. As a result, a self-
localized contracted form of discharge (autosoliton)
arises in a system with integral negative feedback.

A new (from the standpoint of a microwave dis-
charge) type of small-scale stratification of plasma
across the electric field vector has been revealed, which
is associated with the development of thermoelectric-
current instability [11]. It is demonstrated that this
instability develops in a contracted discharge under
2001 MAIK “Nauka/Interperiodica”
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conditions of electron density exceeding the critical
value and in gases characterized by a clearly defined
dependence of the electron temperature on the electric
field. The development of instability leads to the forma-
tion of a structure in the form of periodic fixed stria-
tions formed in active systems with diffusion, described
by two diffusion equations.

2. EXPERIMENTAL SETUP
AND DIAGNOSTIC TECHNIQUES

A schematic view of the experimental setup is given
in Fig. 1. A detailed description of the experimental
apparatus may also be found in [7]. An open quasi-opti-
cal resonator 3, 4 was excited in the TEM00q mode by
microwave radiation from a continuous-wave magne-
tron 1 with a wavelength λ ≈ 3 cm and power P0 = 10 to
200 W. The resonator was formed by round spherical
mirrors (diameter of 24 cm, curvature radius of 18 cm)
and had a Q factor without plasma of Q0 ≈ 5 × 103. The
experiment involved measurements, by a calorimeter 2,
of the incident power and of the power reflected from
the resonator, with the power input into the resonator
calculated as their difference. The distance between the
mirrors was adjustable, which enabled one to vary the
resonator eigenfrequency and, with a constant magne-
tron frequency, to adjust the power input into the reso-
nator. The relative variations of the field amplitude in
the resonator were registered by a stub antenna 13
located in the vicinity of one of the mirrors.

The electron concentration Ne in the discharge was
determined by the known procedure based on measur-
ing the variation of the Q factor and resonance fre-
quency of the resonator upon emergence of plasma in
the latter [12]. The correlation between the electron
concentration and the resonator parameters was found
using the perturbation theory [12, 13], and the plasma
dimensions required for calculations were determined
using photographs of the discharge. The condition of
validity of this procedure is the smallness of the elec-
tron concentration Ne compared with the critical con-
centration Nc and the smallness of the detuning of the
resonator ∆f compared with the difference between the
frequencies of two adjacent types of oscillation,

(1)

where ω is the circular frequency of electromagnetic
wave, ν is the electron–neutral collision frequency, and
f1 and f2 are the resonance frequencies of the resonator.

Used as a diagnostic resonator for measurements of
low electron concentrations (~1010–1011 cm–3) was the
same 3-cm resonator excited on a different frequency
from a low-power diagnostic oscillator 9 via bandpass

Ne ! Nc, Nc

me ω2 ν2+( )
4πe2

----------------------------- 1 ν2

ω2
------+ 

  Nc0,= =

Nc0

meω
2

4πe2
------------, ∆f  ! f 1 f 2– ,=
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filter 12 in the TEM00q ± 2 mode [7]. Higher concentra-
tions (up to 1013 cm–3) were measured using a diagnos-
tic quasi-optical resonator 5 with spherical mirrors
(diameter of 10 cm, curvature radius of 11 cm) located
on either side of the axis of the 3-cm resonator. In this
resonator, the fundamental mode TEM00q was excited
on a frequency fr = 54 GHz with a Q factor of 7 × 103,
with the electric field vector of the probing wave being
perpendicular to that of the high-power wave. The res-
onance frequency shift was determined by a microwave
spectrum analyzer 11. The accuracy of measurements
of the electron concentration by this method is not high,
with the error arising largely because of the indetermi-
nacy of the form of spatial distribution of plasma and
reaching 50%.

3. EXPERIMENTALLY OBSERVED FORMS
OF DISCHARGE

Typical forms of microwave discharge, that arise in
various gases during variation of pressure and power
input, are given in Fig. 2. Even the first investigations
of a discharge in a resonator [8] revealed the presence
of two fundamental forms of its existence, namely, dif-
fuse and contracted. In the diffuse form (Figs. 2a, 2b,
and 2c), the discharge was burning in one or several
antinodes of the field, with the discharge size being
close to that of the region of field localization and the
boundary being smooth and diffuse. The number of
antinodes, in which the discharge existed, was decreas-
ing with increasing pressure. When some threshold
pressure was reached during matching the resonator (by
displacing the movable mirror) and increasing the
microwave power input into the resonator, the dis-
charge made a jumpwise transition to the contracted
state, see Figs. 2d and 2e. In this form, the discharge
was shaped as an ellipsoid slightly extended along the

2

3 4
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8

9
10 11

12

13

14

1

8

11

12

7

Fig. 1. Schematic of the experimental setup: (1) 3-cm mag-
netron, (2) calorimeter, (3) stationary semi-reflecting reso-
nator mirror, (4) movable mirror, (5) 8-mm diagnostic open
resonator, (6) discharge plasma, (7) circulator, (8) direc-
tional coupler, (9) 3-cm diagnostic oscillator, (10) 8-mm
diagnostic oscillator, (11) spectrum analyzer, (12) bandpass
microwave filter, (13) stub antenna, (14) vacuum chamber
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electric field vector and having a size much less than
that of diffuse discharge and the electromagnetic wave-
length. The discharge transition to the contracted state
was accompanied by a 10–20% reduction of the field in
the resonator.

The threshold pressure, below which no contraction
occurred at any values of the power input to the resona-
tor, was substantially different for different gases. In
highly electronegative gases (with a high rate of attach-
ment), such as ammonia, carbon dioxide, and water
vapors, the threshold pressure amounted to p* = 3 to
8 torr, while in air and nitrogen it amounted to p* ≈
50 torr. It was found in [8] that the threshold pressure of
the diffuse-to-contracted transition in an N2:O2 mixture
decreased considerably with increasing fraction of the
electronegative component (oxygen).

In some electronegative gases, autooscillation
occurred of the amplitude of the field sustaining the dis-
charge and of the electron concentration, that was asso-
ciated with the development of attachment instability
and was investigated in detail in [9].

It was noted in [8, 10] that, in the case of contraction
in the region of high values of threshold pressure, the
gas temperature increased by 300–400 K to reach

2 
cm

E

(a)

(b)

(c) (e)

(d)

Fig. 2. Photographs of typical forms of continuous micro-
wave discharge in an open resonator. Diffuse discharge (a)
in air at p = 7.5 torr, (b) in air at p = 43 torr, (c) in oxygen at
p = 11 torr; contracted discharge (d) in air at p = 64 torr,
(e) in oxygen at p = 11 torr.
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1500–2000 K. In a mixture with a high content of elec-
tronegative component, the gas temperature increment
did not exceed 100 K.

It is known [14, 15] that the transition of a discharge
into the contracted form is possible when two necessary
conditions are valid, namely, the existence of the non-
linear dependence of the ionization rate on the electron
concentration and the presence of volume neutraliza-
tion of charged particles. It is pointed out in [16] that,
in an electronegative gas, the channel of acceleration of
the process of production of electrons may be provided
by the decay of negative ions and the emergence of new
electrons during detachment. Theoretical studies were
made into discharge structures in a highly electronega-
tive gas, arising in a homogeneous field, with due
regard for the detachment processes and the effect of
the dependence of the electron diffusion coefficient on
the concentration of negative ions. It has been demon-
strated that, for spatially inhomogeneous distributions
of the electron concentration, an increase in the elec-
tron concentration in the central region of the discharge
brings about a decrease in the density of negative ions,
as a result of which the electron diffusion coefficient
decreases. On the contrary, at the periphery, the elec-
tron diffusion is high as a result of considerable preva-
lence of negative ions over electrons. The combined
action of these effects brings about a decrease in the
characteristic scale of distribution of electrons with an
increase in their concentration in the central region.
However, this model did not include the field variation
in the plasma in the case of fairly high (comparable to
critical) values of electron concentration, that may have
a considerable effect on the process of discharge con-
traction.

3.1. Discharge Contraction

In order to find the mechanisms of contraction of a
microwave discharge, one must know the plasma
parameters in the vicinity of the contraction threshold
and in the contracted state. Figure 3 gives the concen-
tration of electrons in diffuse and contracted discharges
in carbon dioxide as a function of power input to the
resonator. An analogous dependence for oxygen was
given previously in [6]. One can see that this depen-
dence exhibits an ambiguous hysteretic behavior. The
lower branch corresponds to the diffuse discharge, and
the upper branch, to the contracted discharge. With an
increase in the power input to the resonator, the electron
concentration in the diffuse form increases, with the
plasmoid size remaining unchanged; when some
threshold value  is reached, the discharge makes a
jumpwise transition to the contracted state, with the
power input somewhat decreasing and the field in the
resonator dropping (by approximately 20%). In the
contracted state, a variation of the power input to the
resonator does not lead to a variation of the electron
concentration, but brings about a corresponding

Ne*
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increase or decrease in the size of the plasmoid whose
volume is a linear function of the power input. When the
size of the contracted form of discharge becomes small (of
the order of the diffusion length of electron loss), the
reverse, contracted-to-diffuse, transition occurs.

One can see in Fig. 3 that there exists a range of
power input values, in which the existence of two forms
of discharge is possible. In this range, a strong pertur-
bation of the electron concentration is capable of
changing the discharge from the diffuse to contracted
form. In the experiment, this was accomplished with
the aid of a pulsed breakdown between the ends of two
metal wires introduced inside a diffuse discharge nor-
mally to the electric field vector.

The electron concentration in discharges of both
forms was measured for different gases while varying the
pressure and power input to the resonator. Some results are
given in the table for different states of discharge along
with other parameters that characterize the discharge (den-
sity N of neutral molecules, gas pressure p, plasma volume
Vpl, power input to the resonator Pin).

We will analyze the obtained data. First, note the
closeness of the parameters in the contracted state in
different gases. The average electron concentration in
this form is approximately the same and exceeds the
critical value given by Eq. (1),

Ne ≈ (1–3)Nc .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The electron concentrations at the contraction threshold
in different gases likewise prove to be close in magni-
tude,

Neth 0.1–0.5( )Nc.∼

1012

1011

Ne, cm–3

P, W
0 10 20 30

1

2

Fig. 3. The electron concentration as a function of the power
input to the resonator for a discharge in CO2, p = 15 torr:
(1) diffuse discharge, (2) contracted discharge. The broken
lines indicate the transition from the diffuse to contracted
discharge and back.
Table

Form Gas p, torr Ne, cm–3 N, 1017 cm–3 Vpl, cm3 Pin, W

Diffuse NH3 8 1.3 × 1010 2.6 – 10.5
CO2 8 2 × 1010 2.6 0.653) 1
CO2 8 8 × 1010 2.6 0.90 4.6
O2 5 3.6 × 1010 1.7 4.7 23
O2 5 (1.2–4.3)1) × 1011 1.7 1.3 18.5
O2 20 (0.5–1.1) × 1011 6.6 3.0 28
N2 5 2.6 × 1010 1.7 6.8 14
N2 15 4.5 × 1010 32) 3.7 12
N2 15 8.8 × 1010 32) 7.3 30
N2 40 2 × 1011 4.52) 2.9 38

Diffuse on the con-
traction threshold

CO2 20 2 × 1011 6.6 1.3 19
O2 10 (1.6–8) × 1011 3.3 0.62 17
N2 90 3.3 × 1011 82) 1.1 24

Contracted NH3 8 1.5 × 1012 2.6 – 10.5
NH3 8 2 × 1012 2.6 – 45
CO2 20 3.4 × 1012 6.6 0.053 16
O2 10 (1.8–4.5) × 1012 3.3 0.075 18
O2 20 (1.5–4) × 1012 6.6 0.075 25
N2 90 2.5 × 1012 62) 0.05 20

Note: 1) Two values of Ne, separated by a dash, correspond to the minimum and maximum detuning of the frequency of diagnostic reso-

nator in the autooscillation mode of sustaining the discharge [9]. 2) The gas density was calculated proceeding from the pressure
and from the results of measurements of the gas temperature [10]. 3) The plasma volume was determined by the size of the lumi-
nosity region and used to calculate the electron concentration.
SICS      Vol. 93      No. 2      2001



328 VIKHAREV et al.
In spite of the different values of pressure, the gas
density in the contracted form and at the contraction
threshold and in electronegative gases, as well as in
electropositive ones (as a result of heating), is such that the
electron–neutral collision rate is insignificant (ν/ω < 2).
That is, the imaginary part of plasma permittivity

(2)

is small, and effects associated with plasma resonance
may show up.

A marked difference is observed between electrone-
gative and electropositive gases in the diffuse form of
discharge. For comparable values of pressure and
power input, the discharge plasma in an electropositive
gas takes a much larger volume than in an electronega-
tive gas (see table and Fig. 2). As a result, the electron
concentration in an electropositive gas is lower. An
increase in the power input to the resonator has differ-
ent effects on different gases in the low-pressure region.
In an electropositive gas, this brings about a consider-
able increase in the plasma volume and a slight increase
in the electron concentration; in an electronegative gas,
on the contrary, this causes mainly an increase in the
electron concentration with an insignificant increase in
volume.

Therefore, high values of the electron concentration
in the vicinity of the contraction threshold and in the
contracted form bring about the considerable effect of
the discharge plasma on the magnitude and distribution
of the electric field. Therefore, in constructing an ade-
quate model of contraction, this phenomenon must be
included. At the same time, the observed difference in
the behavior of the discharge between electronegative
and electropositive gases is indicative of the importance
of the kinetic processes.

ε 1
Ne

Nc

------ 1 i
ν
ω
----+ 

 –=

1 cm

(a) (b) (c)

E

Fig. 4. Photographs of the stratified form of contracted dis-
charge in NH3, p = 6 torr, for different values of microwave
power input to the resonator: (a) 6, (b) 13, (c) 21 W.
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3.2. Stratification of Contracted Discharge

In addition to the contracted and diffuse forms, yet
another unusual form, that of contracted discharge
stratified along the electric field vector (Fig. 4), was
observed in some gases such as NH3, H2O, and CO2 in
the pressure range p = 3 to 20 torr. The discharge had
the form of an ellipsoid slightly extended along the
electric field vector and consisting of alternating light-
and dark-colored disks. No such stratification was
observed in other investigated gases (air, N2, O2, He).

The distance between the disks (stratification scale)
was always in the range of 1–2 mm. As the power input
to the resonator was increased, the discharge size
increased, as well as the distance between the disks,
with the number of disks remaining the same. At a cer-
tain moment, the number of disks increased by one, and
the stratification scale decreased jumpwise (see Fig. 4).

A stratified contracted discharge as a whole is char-
acterized by the same regularities as a regular con-
tracted discharge. The mean concentration of electrons
in a stratified contracted discharge exceeds the critical
value as it does in an unstratified discharge.

The emergence of stratification depends substan-
tially on the type of gas. An addition of several percent
of nitrogen to ammonia resulted in suppression of strat-
ification. The stratification disappeared also in the case
of sustaining a discharge for a long time in ammonia,
which decomposed as a result of dissociation.1 These
facts point to the kinetic pattern of the revealed instabil-
ity. At the same time, this stratification was only
observed in a plasma with a higher-than-critical elec-
tron density.

4. DISCUSSION OF THE RESULTS

4.1. Mechanism of Discharge Contraction

As follows from the foregoing experimental data,
the process of contraction occurs upon exceeding a cer-
tain value of electron concentration in a diffuse dis-
charge, which depends little on the type and pressure of
gas. In the contracted form, the electron concentration
also proves to be close in magnitude for different exper-
imental conditions. This leads one to conclude that the
mechanism of contraction in electropositive and elec-
tronegative gases is of one and the same nature. At the
same time, the type of gas has a fundamental effect on
the process of reaching the threshold electron concen-
tration required for transition from one state to another.

The contracted form of discharge is represented by
an ellipsoid extended slightly along the vector E, whose
size is much less than the electromagnetic wavelength.
In this case, the electric field may be found approxi-

1 The increase with time of the pressure in the vacuum chamber
was indicative of the dissociation of ammonia under the effect of
the discharge.
ND THEORETICAL PHYSICS      Vol. 93      No. 2      2001
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mately from the solution of the electrostatic problem on
dielectric ellipsoid with a clearly defined boundary in
homogeneous external field (see, for example, [17]),

(3)

where  is the value of the field within the contracted
form of discharge, n∗  is the depolarization coefficient
dependent on the ellipsoid semiaxes, and Er is the
amplitude of external field, i.e., of the field in the reso-
nator in the region of plasmoid. For the complex per-
mittivity given by Eq. (2), this formula may be repre-
sented by

(4)

The value of Er depends on the incident microwave
power, Q factor, and the value of detuning of the reso-
nator frequency with plasma. Note that it was a signal
proportional to the quantity Er that was recorded in the
experiment from the stub antenna (see Fig. 1).

For an ellipsoid corresponding to the contracted
form of discharge, n∗  ≤ 1/3 [17]. In the region of low
values of gas density, where ν ≤ ω, the correlation

(Ne) given by Eq. (4) exhibits a resonant behavior. In
this case, the field inside the plasmoid at values of the
electron concentration of less than

increases with Ne. It is in the contracted form of dis-
charge that this effect is most pronounced. The diffu-
sion of plasma boundaries, characteristic of real plas-
moid, brings about an increase in the internal loss and
causes attenuation of resonance; however, it does not
suppress the resonance completely in the case when the
boundary width is much less than the plasmoid size
[18]. In a diffuse discharge (Ne ! Nc), the value of the
field is close to that of undisturbed field in the resona-

tor,  ≈ Er.

Therefore, it is natural to assume that the contracted
state is maintained owing to a quasistatic amplification
of the field. This, in particular, explains the fact that the
transition from the diffuse to contracted form is accom-
panied by a reduction of the field in the resonator (Er in
formula (4)). Indeed, during transition to the contracted
state, in spite of the decrease in the external field, the
value of the field in the plasma of contracted discharge
increases, whereby a high electron concentration is
maintained. At the same time, a reduction of the field
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outside of contracted discharge brings about a consid-
erable decrease in the electron concentration in this
region.

A more detailed analysis of spatial distribution of
the field and electron concentration in a contracted dis-
charge was performed using a numerical model. For
this purpose, the stationary distributions of the electron
concentration and of the electric field were calculated
within the framework of quasistatic equations and bal-
ance equations for particles.

The electric field distribution on scales of much less
than the electromagnetic wavelength was calculated
from Poisson’s equation with complex permittivity ε
given by Eq. (2),

(5)

Equation (5) was solved, proceeding from the symme-
try of the problem, in cylindrical coordinates (ρ, z),
with the z axis directed along the external electric field
vector Er. The boundary conditions were preassigned at
the boundary of the integration region exceeding con-
siderably the size of plasmoid and corresponded to a
uniform unperturbed field.

The stationary distribution of electron concentration
was found from balance equations for particles analo-
gous to those used in [9],

(6)

Here, Ne, N–, N+, N*, and N0 denote the concentration of
electrons, negative and positive ions, excited particles,
and neutral molecules, respectively; Da is the coeffi-
cient of ambipolar diffusion for electrons; αei and βii are
the coefficients of electron–ion and ion–ion recombina-
tion, respectively; νi and νa denote the rates of ioniza-
tion by electron impact and of dissociative attachment
of electrons, respectively; kd and k* are the rate con-
stants of reactions of detachment and formation of
excited particles, respectively; and τ* is the character-
istic relaxation time of N*. In the stationary case, one
can assume that the density N* of excited particles is
proportional to Ne, and then the term describing the
detachment of electrons from negative ions in reactions
with excited particles may be written in the form k1NeN–
(k1 ≈ k*kdτ*N0), thereby eliminating the third one of
Eqs. (6).
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Fig. 5. Stationary distribution of the electron concentration in the (1) diffuse and (2) contracted forms of discharge. The solid curve
indicates the distribution along the z axis at ρ = 0, and the broken line indicates the distribution on the radius ρ at z = 0: (a) in air
(A = 1) for different values of the field in the resonator (1) Er0/Ec = 2.51 and Er/Ec = 0.95, (2) Er0/Ec = 4.78 and Er/Ec = 0.75; (b) in
a strongly electronegative gas (A = 10): (1) Er0/Ec = 1.64 and Er /Ec = 1.57, (2) Er0/Ec = 1.72 and Er /Ec = 1.13. (Here, Er0 is an
electric field in the resonator without plasma, and Er is a self-consistent field in the resonator with plasma for the selected value
of Er0).

2

1

The ionization and attachment rates may be conve-
niently written in the model form, disregarding the con-
crete type of gas (in so doing, we will treat two limiting
cases, namely, those of weakly and strongly electrone-
gative gas, that differ only by the value of the attach-
ment rate),

(7)

where νa0 and Ec denote the attachment rate and the
breakdown field (νi(Ec) = νa0) in a weakly electroneg-
ative gas, respectively; and A is a coefficient that char-
acterizes the degree to which the gas is electronegative.
It is assumed that A = 1 for the weakly electronegative
gas and A = 10 for the strongly electronegative gas. In
calculating the frequency, the coefficients appearing in
Eqs. (6) and (7) for a weakly electronegative gas
approximately corresponded to those for air.

The function f(ρ, z) describes the spatial inhomoge-
neity of the ionization rate in a uniform unperturbed
electromagnetic field, that may be caused, for example,
by the inhomogeneity of the gas density. It is assumed
that f = 1 at the origin and f ! 1 at the boundary of the
integration region. This method of localization of the
discharge region is often used in numerical calculations
of the discharge dynamics in an initially uniform field
[5, 19].

The magnitude of the field Er in the resonator (at the
boundary of the integration region) for the known form
of distribution of Ne(ρ, z) and E(ρ, z) was defined by the
variation of the Q factor and eigenfrequency of the res-

ν i νa0 f ρ z,( ) E ρ z,( )
Ec

-------------------- 
  n

,=

νa νa0A, n @ 1,=
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onator, which were calculated by the formulas of the
perturbation theory given in [12, 13].

The set of equations (6) and (5) was solved by sim-
ple iterations; in the calculations, the magnitude of the
initial electric field Er0 in the resonator without plasma
and the parameter A (attachment frequency νa) were
varied. The results of calculation of the stationary struc-
tures of discharge for the gas density corresponding to
the ratio ν/ω = 0.5 and for Nc = 1012 cm–3 (λ ≈ 3 cm) are
given in Figs. 5–7. One can see in the figures that,
depending on the magnitude of the initial field, two
forms of discharge may exist in the resonator, which
differ substantially from one another by the character-
istic width of the spatial distribution of electron con-
centration. The size of diffuse discharge is defined by
the spatial localization of the ionization rate given by
Eq. (7) (by the form of the function f(ρ, z)). In the con-
tracted form, the distribution of electron concentration
is formed as a result of quasistatic amplification of the
field, and the plasma takes up a much smaller volume.
An increase in the initial field in the contracted form
brings about an increase in the plasma volume with
almost unchanged values of the maximum concentra-
tion and of the electric field (see Fig. 6).

On analyzing the distribution of the field and elec-
tron concentration (see Fig. 7), one can understand the
reason why no elongation of the plasmoid (characteris-
tic of microwave streamers [3]) occurs along the elec-
tric field vector. Indeed, a considerable field increase is
observed at the ellipsoid poles, especially, in the Ne = Nc

region, compared with the external field and with the
field in the internal region of the plasmoid. However, in
the region of the higher field, a region is observed, in
which the field is much weaker and the plasma is
 AND THEORETICAL PHYSICS      Vol. 93      No. 2      2001
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absent, and the electrons produced in the plasma reso-
nance zone diffuse to the region of lower field to be lost
as a result of recombination and attachment. This fact
prevents the discharge from propagating along the elec-
tric field vector. The presence of the region of lower
field is associated with the continuity of the normal
component of the electric induction vector D and with
the change of sign of the real part of permittivity given
by Eq. (2) during transition through the plasmoid
boundary.

One can see in Fig. 5 that a much lower initial field
is required for contraction in a strongly electronegative
gas. Indeed, the width of the plasmoid boundary, at
which the electron concentration decreases, depends on

the diffusion length of electron loss ld ≈ , where
νl is the rate of electron loss. In a strongly electronega-
tive gas, the rate of loss is high, and the plasmoid
boundary is much thinner than in an electropositive gas
(compare Fig. 5a with Fig. 5b and Fig. 6). For example,
for a gas density N ≈ 6 × 1017 cm–3, the attachment rate
νa ~ 106 s–1 in oxygen exceeds considerably the recom-
bination rate αeiNe in nitrogen. As was demonstrated by
Gil’denburg et al. [18], an increase in the thickness of
the plasmoid boundary brings about an attenuation of
resonance and of the degree of field amplification in a
plasmoid. However, at high pressures, the heating of
gas causes a decrease in its density and, accordingly, a
rise of the ionization rate in the region of plasma exist-
ence. This facilitates the maintenance of the contracted
state in an electropositive gas at high pressures.

The experimental results demonstrate (see table)
that the threshold concentration in different gases is
reached under different conditions. At low pressures, a
discharge in electronegative gas takes up a much

Da/ν l

Ne/Nc

1.5

1.0

0.5

0 2 4 6

1

2

ρ, z, mm

Fig. 6. Stationary distribution of the electron concentration
in the contracted form of discharge for A = 10 and different
values of the initial field Er0: (1) Er0/Ec = 1.72 and Er/Ec =
1.13, (2) Er0/Ec = 2.51 and Er/Ec = 1.13. The solid curve
indicates the distribution along the z axis at ρ = 0, and the
dashed curve indicates the distribution along the radius ρ at
z = 0.
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smaller volume that varies little as the power input is
increased. Apparently, this behavior is associated with
the effect of the nonlinear diffusion mechanism
described above [16] and with the difficulty of break-
down in other antinodes because of the high breakdown
field. As a result, an increase in the power input to the
resonator leads to a rise of the electron concentration.
No clearly defined breakdown threshold is present in
electropositive gases; therefore, an increase in the
power input causes the emergence of plasma in new
regions and an increase in the discharge volume with
an insignificant rise of the electron concentration. At
high pressures, the heating of gas and decrease in its
density lead to localization of the region of plasma
existence and make it possible to raise the electron
concentration to a value required for transition to the
contracted state.

Therefore, the formation and maintenance of the
contracted form of microwave discharge may be attrib-
uted to the plasma-resonance amplification of the field
on small-scale plasma formations.

4.2. Small-Scale Stratification 
of Contracted Discharge

A small-scale stratification of contracted discharge
is observed only in some gases and under conditions of
the electron concentration Ne exceeding the critical
value Nc. According to the quasistatic equations, at Ne >
Nc, a local increase in Ne in a layer perpendicular to the
vector E must bring about a field decrease in this region
and vice versa. At the same time, a field increase is
accompanied by a rise of the electron temperature Te

and, in a stratified discharge, the quantities Te and Ne

change in antiphase. The diffusion equation for elec-
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Fig. 7. Stationary distribution of (1) the electron concentra-
tion and (2) the modulus of electric field in the contracted
form of discharge (A = 10, Er0/Ec = 1.82). The solid curve
indicates the distribution along the z axis at ρ = 0, and the
dashed curve indicates the distribution along the radius ρ at
z = 0.
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trons with due regard for spatial inhomogeneity of dis-
tribution of the electron temperature may be repre-
sented as

(8)

where

(9)

is the ambipolar electron velocity in view of thermodif-
fusion [20], and F(Ne, Te, …) is the term describing the
processes of production and loss of electrons. The coef-
ficients of ambipolar diffusion Da and of thermodiffu-

sion , disregarding the importance of negative ions
in the case of highly nonequilibrium plasma, when Te @
Ti, are2 [20]

(10)

where Di is the coefficient of eigendiffusion for positive
ions, and

is the coefficient allowing for the effect of thermal force
[20]. Note that these expressions for diffusion coeffi-
cients include the characteristic electron temperature
Te = De/µe.

In the one-dimensional case corresponding to the
stratification across the vector E, Eq. (8) in view of
Eqs. (9) and (10) may be written as

(11)

In this case, the correlation between the electric field
and electron concentration is algebraic,

(12)

where E0 is the field in the plasmoid in the absence of
stratification.

If the scale being treated is not too small (exceeds
the electron thermal conductivity), the correlation

2 In the expression for the coefficient of ambipolar diffusion, the
effect of negative ions may be ignored, because, at high electron
concentrations characteristic of the contracted state, the number
N* of excited particles is high, attachment is compensated by
detachment, and the concentration of negative ions is low [7].
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between the electron temperature and the field, Te =
Te (E(Ne )), may likewise be regarded as local. In this
case, Eq. (11) may be transformed to the ordinary
form

(13)

with effective diffusion

(14)

For the correlation E(Ne) of the form of (12) with the
plasma parameters corresponding to the contracted
state, the relation

is usually valid. It follows from Eq. (14) that, with a
fairly sharp field dependence of Te, such that

(15)

the coefficient of effective diffusion becomes negative.
In this case, an instability may develop, whose physical
mechanism is as follows. In the case of a higher-than-
critical electron concentration in the plasmoid, a
decrease in Ne in a layer perpendicular to the vector E
causes a field increase. In the case of a clearly defined
Te(E) dependence, a considerable heating of electrons
occurs, and the thermodiffusion flow of electrons from
this region, associated with the inhomogeneity of Te ,
exceeds the return flow caused by the inhomogeneity of
the electron density. In this manner, Ne continues to
decrease.

For a glow discharge, such an instability, referred to
as thermoelectric-current instability, was first predicted
by Timofeev [21], who obtained an instability criterion
analogous to inequality (15). Experimental and theoret-
ical investigations of the thermoelectric-current insta-
bility in a glow discharge are dealt with in [22–25].
Note that a decrease in the electron density caused by
thermodiffusion is also observed when powerful elec-
tromagnetic radiation acts on an ionospheric plasma
[26].

For an instability to arise in our conditions, it is nec-
essary that the electron temperature increase rapidly
with the field given by Eq. (15). A comparison of the
dependences of the electron temperature Te = De/µe on
the parameter E/N for different gases (Fig. 8), such as
those given in [27–29], leads one to the following con-
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clusion. For gases such as nitrogen, air, oxygen, and
helium, in which no stratification of the contracted
form is observed, the dependence Te(E) is smooth,

in the entire range of discharge maintenance fields. On
the contrary, for ammonia, water vapors, and carbon
dioxide, the Te(E) curve exhibits a fairly steep region in
which condition (15) may be valid.

Note that the clearly defined dependence Te(E) [29]
is observed for electric field values of less than the
breakdown value Ec determined from the condition

Therefore, the instability described may be observed
only in quasistationary discharges, when, as a result of
the accumulation of active particles, the loss of elec-
trons due to attachment is compensated by detachment,
and the discharge maintenance field becomes markedly
less than the breakdown one [7]. In short-pulse dis-
charges, the field is fairly high, the Te(E) dependence is
weak, and the thermodiffusion flow introduces an insig-
nificant addition to the total electron flow. With the
increasing function E(Ne), the thermodiffusion does not
bring about a variation of the electron flow; the inclusion
of thermodiffusion may only bring about minor quantita-
tive corrections rather than to new qualitative effects.

Note that the hydrodynamic description of the phe-
nomenon, employed by us, is strictly valid only in the
case of Maxwellian energy distribution of electrons. In
a nonequilibrium microwave discharge, the electron
distribution function may differ appreciably from the
Maxwellian. Therefore, a more rigorous description
calls for the calculation of the transport coefficients
with due regard for the disequilibrium of the electron
distribution. However, we believe that, in our case, a
microwave discharge is maintained by a weak field, the
disequilibrium of the electron distribution function is
minor, and the hydrodynamic approach provides for a
qualitatively correct description of the phenomenon.
Indeed, a more rigorous calculation of the distribution
function and transport coefficients for the experimental
conditions produces agreement with the experimental
results in observing the stratification of plasma in dif-
ferent gases [30].

The characteristic scale of instability being treated
was determined in [11]. One can see in Eq. (13) that,
with Deff < 0, small-scale perturbations for which the
diffusion term is maximal are characterized by the
maximal increment. It is obvious, however, that the
electron thermal conductivity brings about suppression
of the rise of perturbations with a characteristic scale
that is less than the thermal conductivity length of elec-
trons. Therefore, the analysis of instability in [11] was
based on the set of equations for the electron concentra-
tion and temperature. It has been revealed that the per-

Teln∂
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turbations, whose characteristic scale lies between the
relaxation length of electron temperature and the char-
acteristic diffusion length of electrons, are character-
ized by the most increment. The obtained criterion of
the emergence of instability actually coincides with that
given by Eq. (15).

The theory of nonuniform steady states (autosoli-
tons and striations) realized in nonequilibrium dissipa-
tive systems, which are described by a set of two non-
linear differential diffusion equations, is described in
detail in the monograph [31]. A certain class of such
systems is usually referred to as active systems with
diffusion in the sense that one parameter, i.e., activator
θ, is used to accomplish positive feedback that is the
reason for the instability of the uniform state of the sys-
tem. The other parameter, inhibitor η, suppresses the
process of activator rise. By its nature, the thermoelec-
tric-current instability of microwave discharge is close
to thermodiffusion autosolitons in an electron-hole
plasma heated in the process of carrier photogenera-
tion, that are treated by way of example in [31].

In [11], based on the concepts described in [31], it
has been demonstrated that this situation is realized for
the themoelectric-current instability being treated; in
this case, it is convenient to take

In such a system, it is possible to realize nonuniform
steady-state solutions in the form of thermodiffusion
striations. The set of equations for the electron concen-
tration and temperature was also solved numerically in
a one-dimensional approximation [11]. As a result, a
nonuniform steady-state solution in the form of stria-
tions was obtained. The predicted period of stratifica-
tion agrees well with that observed experimentally.
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Fig. 8. The characteristic electron temperature Te = De/µe as
a function of reduced electric field E/N for different gases
according to the data of [27–29].
SICS      Vol. 93      No. 2      2001



334 VIKHAREV et al.
In full accordance with the theoretical concepts of [31],
the distribution of inhibitor η = NeTe is almost uni-
form. Note that η is in fact the partial pressure of elec-
tron gas.

Therefore, the small-scale stratification of con-
tracted state may be attributed to the development of
thermoelectric-current instability, as a result of which a
stationary structure in the form of fixed striations is
formed. Note that the emergence of this instability in a
microwave discharge calls for the development of fairly
specific conditions, namely, a plasma with a supercriti-
cal electron concentration to provide for decreasing
dependence E(Ne), a steady-state mode of burning of
discharge with low maintenance fields, and a gas of cer-
tain type with a clearly defined dependence of the elec-
tron temperature on the electric field.

5. CONCLUSION

The results of the investigations of a continuous
microwave discharge in a quasi-optical resonator have
demonstrated the possibility of existence of inhomoge-
neous stationary spatial structures in such a discharge.
The distinguishing feature of these structures is that the
form of discharge is defined by the development of
instabilities rather than by the distribution of the initial
electric field.

As a result of the development of a plasma-reso-
nance instability, the diffuse form of discharge, in
which the plasma distribution almost repeats the elec-
tric field distribution, changes to the contracted form. In
this form, the discharge is shaped as an ellipsoid
slightly extended along the electric field vector and
having an electron concentration exceeding the critical
value and a size that is much less than that of the diffuse
discharge and the electromagnetic wavelength. The for-
mation of such a self-localized state occurs owing to
quasistatic resonance amplification of the field, arising
on small-scale plasma formations at Ne > Nc.

In some gases such as NH3, H2O, and CO2, the strat-
ification of contracted discharge occurs; the discharge
acquires the form of an ellipsoid consisting of alternat-
ing light- and dark-colored disks perpendicular to the
electric field vector. This stratification is kinetic and
due to the development of thermoelectric-current insta-
bility. The development of this instability results in a
stationary structure in the form of fixed striations.
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Abstract—The insulator–metal transitions of different kinds caused by heating above the melting temperature
under pressure of tens kilobars and by compressing at the critical temperature to a pressure of about 1.1 kbar
occur in liquid selenium. At tens kilobars, metallization is interpreted as the forbidden energy band vanishing
due to a gradual structural transition (melting of polymer chains) described by the Clapeyron–Clausius equa-
tion. At supercritical temperatures, the insulator–metal transition is caused by percolation of overlapping elec-
tron shells (classically accessible spheres) of virtual atoms in molecules Se2 remaining when polymer chains
decay. The percolation threshold in such a system has been found to increase due to coupling of virtual atoms.
The thermally activated conductivity in the vicinity of percolation threshold has been calculated and compared
with existing experimental data. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Selenium belongs to a group of well studied low-
boiling elemental metals and semiconductors which
possess a considerable conductivity in the vicinity of
the critical points, giving evidence of the existence of a
nonideal plasma. Heated up to the critical points, the
metals mercury and cesium show a more or less sharp
decrease in conductivity caused by the metal–insulator
transition upon expansion. In contrast, selenium dem-
onstrates a transition from semiconductor to metallic
state upon melting, heating, and compression and, as a
whole, exhibits a much more complex behavior than
metallic elements. As is known, there is a decaying
polymer structure in melted selenium which plays an
essential role in such a behavior [1]. In this connection,
the insulator–metal transition in liquid selenium show-
ing the effect of local structure is of great interest. How-
ever, available experimental information for decaying
polymer structure is restricted, since it is difficult to evi-
dence the exponential temperature dependence of con-
ductivity which differs the insulator (semiconductor)
from the metal.

The properties of semiconductors essentially con-
nected with the forbidden energy band may radically
change due to the structural transformations (note, for
example, that germanium and silicon transform into
metals on melting, although their amorphous phases are
semiconducting [2]). Similar to germanium and silicon,
selenium melts at pressures over 36 kbar to form a
metallic liquid. At lower pressures, the melt is a semi-
conductor which transforms into a metallic liquid via a
gradual phase transition at higher temperatures [3]. The
insulator–metal transition can be related to the decay of
1063-7761/01/9302- $21.00 © 0336
a locally ordered mesoscopic structure with a forbidden
band, which is responsible for the whole material
properties [4] (for a review of theoretical conceptions
of the insulator–metal transition, see, e.g., [5–7]). It is
known that in liquid selenium near the melting point
the polymer chains consist of 105–106 atoms¶, but the
maximum chain length rapidly decreases with increasing
temperature [8]. Assuming that the polymer structure dis-
appears via a gradual phase transition, the insulator–
metal transition can be considered a consequence of
this structural transition. The significance of the struc-
ture is also evidenced by the metallization of liquid
selenium expanded below an amorphous phase density,
while solid selenium can only be metallized when
being compressed.

At a critical temperature of the liquid–vapor phase
transition (Tc = 1888 K, pc = 365 bar, ρc = 1.85 g cm–3) [9],
a minimum metallic conductivity of about 200 Ω–1 cm–1

appears at a pressure much lower than that near the
melting curve, but still considerably higher than the
critical pressure [10, 11]. In this domain of the phase
diagram, the insulator–metal transition is due to the
percolation of overlapping electron shells, which arises
with increasing density. As a whole, this percolation
transition is similar to that in the vicinity of the critical
points of metallic elements, but there are essential
peculiarities caused by the many-electron s-p-valence
shell and the molecular structure of selenium. Thus, in
different domains of the phase diagram, there are two
different insulator–metal transitions caused by heating

¶ In contrast to sulfur which polymerizes at λ point above the melt-
ing temperature.
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and melting of the polymer structure and by the com-
pression of molecular liquid. However, the transitions
are mixed at a temperature of about 1500°C and a pres-
sure of a few kbar.

Near the boiling curve, liquid selenium is a semi-
conductor with a predominant hole conductivity [12]
determined by the energy gap width which is known
from measurements of the optical absorption edge [13]
(except the vicinity of the critical point where the spec-
tral transparency window is closed, but a low conduc-
tivity shows that there is an energy gap). With increas-
ing temperature and constant pressure, the conductivity
exponentially increases and then passes through a max-
imum below the critical temperature where the energy
gap increases due to expansion faster than tempera-
ture.1 The conductivity maximum is characteristic of
a liquid semiconductor, being in striking contrast with
monotonically decreasing conductivity of expanded met-
als. However, the polymer melt models (see, for example,
[14]) do not explain such a behavior of liquid selenium.

On the other hand, a computer simulation of the
electron structure and the insulator–metal transition in
such a system encounters great difficulties, since a
many-electron quantum problem is linked with a great
number of particles in decaying polymer chains and/or
in percolation clusters. In a range of high densities and
temperatures, where only short chains remain, a com-
bined method of molecular dynamics and the electron
density functional is used for the system of several tens
of atoms. Simulations show, that near the critical tem-
perature the chain distribution with respect to the num-
ber of atoms transforms into a maximum peak at Se2
dimers which are also responsible for the diffusion in
the system [15, 16]. However, it is obvious that the sim-
ulation of percolation transition in such a system is not
possible with only a few tens of atoms.

The purpose of this paper is twofold. First of all, we
interpret the structural transition in liquid selenium as
the final stage of a two-step melting process in which
polymer chains decay (melt). Second, we will study the
insulator–metal transition in a two-atomic molecular liq-
uid using a concept of percolation of classically accessible
spheres of virtual atoms in molecules. It will be shown that
the molecular structure leads to a considerable increase of
the threshold density compared to the well known perco-
lation problem of spheres without coupling and essentially
influences the electronic properties of liquid. In particular,
the threshold density strongly influences the activated
percolation conductivity which can be compared with
existing experimental data.

The outline of the paper is as follows. In Section 2,
we discuss a gradual phase transition observed on heat-
ing liquid selenium. In Section 3, we consider a perco-
lation problem for the classically accessible spheres of

1 Contrary to an opinion that the gap is closed near the critical
point [12], the conductivity maximum is only possible when the
gap increases with increasing temperature.
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virtual atoms in molecules. The activated percolation
conductivity of liquid selenium is analyzed in Section 4.
The conclusions follow in Section 5.

A general analysis of experimental data in the con-
text of insulator–metal transitions in different liquids
has been made in our previous review [17].

2. MELTING OF POLYMER BUNCHES
AND METALLIZATION

Selenium is a semiconductor with an energy gap of
about 2 eV which occurs in amorphous, vitreous, mon-
oclinic and hexagonal modifications with the density
varying from 4.2 g cm–3 in amorphous to 4.8 g cm–3 in
hexagonal forms. At pressures below 36 kbar, selenium
melts to yield a polymer liquid which consists, as the
amorphous phase, of macroscopically long deformed
atomic chains packed in bunches [1]. With further heat-
ing at a high pressure, the polymer decays into Se2
dimers. In view of the macroscopic size of closely
packed polymer chains, this gradual phase transition
(melting of chains in bunches) is extended over a rela-
tively narrow temperature range. The melting of chains
implies that the dimers can get mixed in their bunches
that provides for the fluidity but, on the other hand,
means the decay of polymer chains.

Except for the ends of chains, the valences of sele-
nium atoms equal to 2 (corresponding to two unpaired
spins of the electron configuration 4s24p4) are satu-
rated, typical of semiconductors. Due to a local order in
the polymer structure, liquid (or amorphous) selenium
is generally considered a semiconductor with a local
forbidden band between a filled valence band (formed
by nonbonding transverse p orbitals occupied by pairs
of electrons with opposite spins) and the conduction
band. The melting of polymer bunches at high pres-
sures leads to the disappearance of the forbidden band
and, therefore, to the transition of selenium into a
metallic state. With relatively little heating, the transi-
tion is manifested by a sharp increase in the conductiv-
ity of liquid up to a characteristic metallic value. During
the gradual transition, the length of polymer chains
(characterizing the scale of ordering) continuously
decreases and eventually the forbidden band disappears
when this length becomes of the microscopic scale.

Thus, the metallization of liquid selenium upon
heating is caused by a gradual structural phase transi-
tion (Fig. 1). There are solid and liquid semiconducting
phases and a liquid metallic phase in a region where
this transition branches off the melting curve (Tbr =
900 K, pbr = 36 kbar) [3], while at higher pressures sele-
nium, similar to other semiconductors such as silicon
and germanium, melts to yield a metallic liquid. The
conception of melting of polymer bunches is supported
by an analysis of the experimental data based on the
Clapeyron–Clausius equation of phase equilibrium

(1)dp
dT
------

q
T v 2 v 1–( )
---------------------------,=
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where p is the pressure, T is the temperature, q is the
heat of melting of polymer bunches, and v 2 and v 1 are
the specific volumes of metallic and semiconducting
liquid phases, respectively. By existing data [3], the
transition into a dimer liquid near the branching point is
accompanied by a decrease in the specific volume,
v 2 – v 1 ≈ −0.03/ρ, which explains the negative slope of
the phase equilibrium line, dp/dT ≈ –7 J/cm3 K. Note,
that the negative slope corresponds to anomalous melt-
ing caused by heating and compression (which is also
observed in usual ice). Substituting numerical values
into equation (1), we find for the heat of melting of
polymer bunches q ≈ 45 J/g (i.e., 0.074 eV per Se2 mol-
ecule).

On the other hand, an effective heat of melting can
be expressed through the heat capacity cp(T) which is
expected to have a maximum in the transition range,

(2)

where 〈cp 〉  is the average heat capacity in the transition
range. Inversely, using equation (2), a latent heat calcu-
lated from the Clapeyron–Clausius equation and the
transition width (∆T ≈ 50 K) known from measure-
ments, one can estimate the average capacity to be
〈cp 〉  ≈ 0.9 J/g K (or 8.5 kB/atom, where kB is the Boltz-
mann constant). This value is two times greater than the
heat capacity of amorphous selenium. Obviously, a

q cp T( ) Td∫ cp〈 〉∆ T ,= =
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Fig. 1. Phase diagram of selenium: BF is the insulator–
metal transition line by data of Brazhkin et al. [3] and of
Alekseev et al. [25] corresponding to the minimum metallic
conductivity of about 200 Ω–1 cm–1.
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considerable increase in the heat capacity is related to
the dissociation of macromolecules.

Leaving studies of the semiconducting polymer
melt for the future, we note that the disappearance of
the ordering at a sufficiently low density leads only to
the transition into a dielectric molecular liquid still pos-
sessing an energy gap. Near the transition to a metallic
state, where the thermal ionization is ill-defined
because of overlapping electron shells, the role playing
by the energy gap goes over to a mobility gap [18].
Note that the mobility gap at the critical point reaches
about 1.5 eV, i.e., differs not too much from the width
of the forbidden band in liquid selenium near the melt-
ing curve. The theory of the insulator–metal transition
in the vicinity of the critical point, from which, in par-
ticular, this estimate follows, is considered in more
detail in the following sections.

3. PERCOLATION 
INSULATOR–METAL TRANSITION

The domain of metallic liquid selenium in the phase
diagram is bounded by the line of melting of macromol-
ecules (from the side of low temperatures) and by the
metal–insulator transition due to expansion (from the
side of low pressures). Along the boiling curve, sele-
nium remains semiconducting up to the critical point
[12]. The minimum metallic conductivity of about
200 Ω–1 cm–1 is reached by heating the liquid up to the
critical temperature with the compression up to almost
three times the critical pressure. Once more we under-
line that the transition to a metallic state at the critical tem-
perature occurs at a considerably lower density than the
density of amorphous selenium, i.e., the absence of the
ordered structure is manifested in a very radical way.

Peculiarities of the insulator–metal transition in
selenium are related to features of the molecular struc-
ture. Note that the ionization potential of the Se2 mole-
cule (8.88 eV) is smaller than that of the Se atom. Thus,
when the atoms form the molecule, the binding energy
of electrons decreases2 that shows evidence of a signif-
icant repulsion between electron shells. In this case, the
electron states are better described by weakly overlap-
ping Heitler–London orbitals which (in contrast to,
e.g., molecular orbitals) take into account a strong
interelectron correlation from the beginning. The radius
of weakly overlapping classically accessible spheres of
atoms, in which the residual ions are screened, is virtu-
ally unchanged, since it is determined by the potential
of the residual ion and the minimum internal energy of
the virtual atom –I (where I = 9.752 eV is the ionization
potential). This allows the virtual atoms in molecules to
be considered as constituents of percolation clusters.

In the atom of selenium, the valence electrons with
a large principal quantum number are distributed

2 This also takes place for weekly bound alkali dimers and, for
example, iodine dimers.
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mainly near the surface of a classically accessible
sphere. Taking into account that for the many-electron
shell a self-consistent potential in this region can devi-
ate from the Coulomb potential and introducing a cor-
rection, we write the classically accessible radius [17]

(3)

where e is the electron charge, εi ≈ 0.8 eV is the polar-
ization affinity of the residual ion to the electron (esti-
mated by the electron affinity of the isoelectronic As
atom). Formula (3) gives classically accessible radius
Ra ≈ 1.6 Å, while the bond length in selenium molecule
[19], d = 2.17 Å, is only by one third smaller than the sum
of the radii of two atoms. Thus an overlap of the classi-
cally accessible spheres (Fig. 2) is small enough to make
the concept of virtual atoms in molecules sensible.

A characteristic parameter of the percolation prob-
lem is the volume fraction of the classically accessible
spheres

(4)

where na is the number density of virtual atoms. In
atomic gas, the percolation threshold is reached when
this volume fraction is about one third. However, the
coupling of virtual atoms leads to a change of the per-
colation threshold. We define an average coordination
number B as the mean number of virtual atoms with
centers within a coordination sphere of radius 2Ra sur-
rounding the central atom. In the ideal molecular gas,
the coordination number is

(5)

where, on the right-hand side, the unity corresponds to
a permanent bond with another atom of the molecule,
and the second term corresponds to bonds with atoms
belonging to neighboring molecules, with one bond per
molecule.3 We use a principle of the invariable thresh-
old coordination number of the percolation sphere
problem, which is responsible for the connectivity and
local structure of the infinite cluster. Substituting the
threshold value Bpc = 2.7, known from Monte Carlo
simulations for the ideal gas of overlapping spheres
(see, for example, [20]), into equation (5), we find the
threshold volume fraction of the classically accessible
spheres

(6)

where the upper index 2 denotes the value for two-
atomic fluid. In the well known percolation problem of

overlapping spheres, the corresponding value is  =

3 We neglect the case of bonds with two atoms in one neighboring
molecule, which is less probable.

Ra
e2

I εi–
------------,=

ζ0
4π
3

------Ra
3na,=

B 1 4ζ0,+=

ζ pc
2( ) Bpc 1–

4
----------------- 0.425,= =

ζ p
1( )
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Bpc/8 = 0.3375. Therefore, according to equation (6),
the coupling increases the threshold by 25%.

The threshold for molecular chains increases still
more. Although, in the case of long polymer chains, the
percolation is possible at a coordination number close
to 2, it is assumed that the metallic conductivity arises
only when long chains decay and the coordination
number increases up to the microscopic percolation
threshold of the atomic system. Thus, in a broad sense,
the principle of invariable threshold coordination num-
ber defines a structural percolation transition related to
a definite change in the local structure. In the case of
chains consisting of k atoms, instead of equation (5) we
have

(7)

where the first term on the right-hand side corresponds
to the average coordination number within the chain
and the second term corresponds to bonds with atoms
belonging to neighboring molecules. Using the thresh-
old coordination number Bpc for the atomic system, we
obtain

(8)

Formula (8) with k = 1 and 2 yields, respectively, the
thresholds for atomic and two-atomic fluids given

above. With k = 3, we find  = 0.5125 that is compa-
rable to the volume fraction of the classically accessible
spheres at the density of amorphous selenium. Thus,
the insulator–metal transition is only possible when
chains are almost completely dissociated. If the mean
number of atoms per chain and the volume fraction of
classically accessible spheres are considered as functions
of the temperature and pressure, k(p, T) and ζ0(p, T), equa-
tion (7) determines a transition line in the p–T plane.

Now let us consider the percolation problem taking
into account the repulsion between virtual atoms in the
diatomic fluid. Ascribing to atoms the hard cores of
diameter d equal to the interatomic distance in the mol-

B
2 k 1–( )

k
-------------------

8ζ0

k
--------,+=

ζ pc
k( ) kBpc

8
-----------

k 1–
4

-----------.–=

ζ pc
3( )

3

2

1

0
–1

–2

–3

2 4–2–4

Fig. 2. Overlapping classically accessible spheres of virtual
atoms in the molecule of selenium. Scales are given in the
atomic units (Bohr radius).
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ecule and taking into account the effect of an excluded
volume, we write the coordination number

(9)

where F(η) is the Karnahan–Starling function [21]
describing the density with respect to a free volume,

,

η = πd3na/6 is the packing fraction of the hard cores. In
formula (9), the subtrahend A(c)η with the coefficient
A(c) depending on the relative radius of cores c = d/2Ra,
allows for an excluded volume around the molecule
with one atom placed at the center of coordination
sphere. A direct calculation of the excluded volume
gives at c < 1/2

and at 1/2 < c < 1

Substituting formula η = c3ζ0 and the threshold
value of the coordination number into equation (9), we
obtain an algebraic equation which determines ζpc(c) as
an implicit function of the relative diameter of cores

B 1 4 ζ0 A c( )η–[ ] F η( ),+=

F
1 η η 2 η3–+ +

1 η–( )3
------------------------------------=

A c( ) 27/16,=

A c( ) 27
16
------ 1 1

2c
------– 

  2

1 1
c
--- 3

4c2
--------+ + 

  .–=

0

ζ pc

d/2Ra
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Atoms

Fig. 3. Percolation threshold of overlapping shells as a func-
tion of the relative diameter of hard cores for virtual atoms
in molecular liquid and in atomic liquid [17] (dots are by
Monte Carlo simulations [22]).
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(for the sake of brevity, here and below the upper index 2
is omitted). This function is plotted in Fig. 3. In a wide
range of the relative size of cores c < 0.8 (in particular,
for selenium c ≈ 2/3) the magnitude of this function vir-
tually coincides with the threshold given by equation (6)
for the ideal gas.4 In Fig. 3 this function is compared
with the results of analogous calculations without cou-
pling [17] and Monte Carlo simulations [22], existing
for this case, which confirm the principle of the invari-
able threshold coordination number.

Thus, the coupling of virtual atoms leads to an
essential increase of the percolation threshold compared to
that of an atomic liquid. Using formulas (3), (4), and (6),
it is easy to estimate that the percolation threshold cor-
responds to the density of about 3.2 g/cm3, i.e., by
approximately 25% smaller than the density of amor-
phous selenium. Indirectly, this estimate of the percola-
tion threshold can be confirmed by the experiment,
since the activated percolation conductivity strongly
depends on the distance from the threshold, as will be
shown in the next section.

The pressure at the transition point can be estimated
using a scaling equation of the critical isotherm

(10)

where δ ≈ 5 is the universal critical exponent, and A ≈
8.71 is the amplitude found by fitting the experimental
data [9]. Substituting the estimated threshold density
into equation (10), we obtain the transition pressure of
about 1.1 kbar, i.e., nearly 3 times the critical pressure.

4. PERCOLATION CONDUCTIVITY

In a macroscopically large percolation cluster, the mol-
ecules, as well as virtual atoms, are no longer separate par-
ticles, but the constituents of an electron-ion plasma. The
valence electrons are partially free, since the screening of
residual ions in the percolation cluster becomes collec-
tive. Therefore, mixed states of virtual atoms have a
continuous spectrum of internal energy including the
energy of free motion in the screened potential of resid-
ual ions.

In the percolation problem, it is convenient to take
the ground level of the remainder ion to be zero energy.
Then, the minimum internal energy of the virtual atoms
with a one-electron excitation [18] is

(11)

where εp = p2/2m is the energy of asymptotically free
motion of the electron, p is the asymptotic momentum,
m is the electron mass. Depending on the proximity to

4 Besides the repulsion, there is an averaged many-particle
exchange attraction between virtual atoms in the percolation clus-
ter, which only weekly depends on the configuration and, there-
fore, as assumed, does not influence the percolation threshold.

p
pc

----- 1– A
ρ
ρc

----- 1– 
  δ

,=

Ep –I εp,+=
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the transition point, the renormalized Fermi energy of
such mixed states of virtual atoms is

(12)

where

(13)

is the Fermi wavevector of the electron gas, z = 6 is the
number of s and p valence electrons of selenium with
almost the same radii of the classically accessible spheres,
which are considered as equivalent, ϑ ≤ 1 is a renormaliza-
tion factor caused by partial localization of electrons,
which is determined by the relative frequency of the elec-
tron transitions between virtual atoms. The renormalized
Fermi energy  and the wave vector

(14)

go over to the corresponding quantities for a homoge-
neous electron gas in the limit when the frequency of
the electron transitions corresponds to a free flight
between neighboring atoms, i.e., the localization factor
goes to unity.5 As will be seen, the Fermi energy decreases
near the insulator–metal transition with decreasing tem-
perature faster than the temperature; therefore, the exci-
tation of virtual atoms is described by the Boltzmann
statistics.

In the vicinity of the percolation transition, the
valence electrons of overlapping s–p shells (which can
transfer between virtual atoms) provides an over-bar-
rier hopping conductivity. Analogously to the band
conductivity depending on filling of the valence band,
the percolation hopping conductivity depends on filling
of the s–p shells. The frequency of hopping is propor-
tional to the product of the number of valence electrons
by the number of free places (holes) in these shells,
since the transitions are only possible to such holes. We
assume that due to the mixing of states the maximum
number of electrons in s–p shells is greater than that
in free atoms by a small value z, and the number of
holes is 8 + ε – z. Then, we define an effective number
of valence electrons ze proportional to the frequency of
hopping and obeying the conditions ze(1) = ze(8) = 1 for
the minimum and maximum numbers of s–p electrons
possible in free atoms. It is easy to see that with these
conditions ε must be taken equal to 1, and the effective
number of valence electrons is

(15)

As a function of z, the effective number of valence
electrons defined above has a week maximum and, in the
case of selenium, is close to 2, i.e., coincides with the
number of holes in the valence s–p shells of a free atom.

5 Equations (12) and (13) replace an expression for the renormal-
ized Fermi energy through the statistical weight of the ground
level [18], which obeys this condition only for s electrons.

εF' "
2kF

2 ϑ 2/2m,=

kF 3π2zna( )1/3
=

εF'

kF' kFϑ=

ze
1
8
---z 9 z–( ).=
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The percolation conductivity is described by a mod-
ified Drude formula with the localization factor [18]

(16)

where τ is the relaxation time. In the case of the Boltz-
mann statistics, the minimum relaxation time is

(17)

where Rs ≈ (4πna/3)–1/3 is the mean interatomic dis-
tance, vT = (8T/πm)1/2 is the mean thermal velocity of
electrons. At high density, in the case of nearly free
degenerate electrons, the relaxation time is

(18)

where vF is the Fermi velocity, l = Rs/γ is the free path
found at the density where the localization factor
becomes equal to unity, γ ≤ 1 is a parameter correspond-
ing to the inverse value of the relative free path. As an
interpolation, we use formula (17) if vT > γvF and for-
mula (18) otherwise vT < γvF (however, we underline
that this does not really concern the crossover between
the Boltzmann case and the degenerate case, which is
determined by the localization factor).

Below the percolation threshold, a partial localiza-
tion of electrons, described by the localization factor, is
connected with a mobility gap ∆pc, and in a wider range,
with a soft gap ∆cp of low mobility (smaller than that at
the minimum free path),

(19)

where ζcp ≈ 0.425 is the threshold volume fraction of
the classically accessible spheres, and ζcp ≈ 0.74 corre-
sponds to close packing of these spheres. At the edge, the
mobility goes to zero as the inverse of correlation length
[6] being described by a power function

(20)

where ν ≈ 0.9 is the critical exponent of the correlation
length of percolation clusters [23]. The localization fac-
tor is obtained by averaging the scaling function ϑ(εp),
extended to the range εp > ∆cp where it is equated to
unity, over the Boltzmann distribution of virtual atoms
(for the simplicity, the exponent v  can be replaced with
unity). On the insulating side of the transition, the local-
ization factor exponentially depends on the temperature
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(21)

where functions Fk are expressed by the incomplete
gamma functions Γ(m, x),

and the second part of formula (21) corresponds to the
limit ∆cp > ∆pc @ T. Thus, below the transition point, the
mobility gap plays a role of the activation energy of per-
colation conductivity.

On the metallic side of the transition, the mobility
gap is virtual, ∆pc ≤ 0, and the localization factor retains
only a weak temperature dependence

(22)

The second part of formula (22) corresponds to the
limit ∆cp @ T. This formula shows that at the transition
point, where the activation energy equals zero, the local-

ϑ
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≈ 2

π
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  ,exp
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-----, 

  ∆k
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2
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1.6 2.4 3.2 4.00.8
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101

100

10–1

Conductivity, Ω–1 × Òm–1

T = 1888 K
γ = 1

Fig. 4. Percolation conductivity of expanded fluid selenium
as a function of the pressure along the critical isotherm. The
pressure of the insulator–metal transition is about 1.1 kbar
(shown by an arrow). Experimental dots: (h) Hoshino et al.
[10, 11] (see also Fig. 1 in [9]); (s) Alekseev et al. [25];
(n) R. Fischer and R.W. Schmutzler [1].
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ization factor is proportional to T. Therefore, the Fermi
energy is proportional to T2, i.e., as was noted above,
decreases faster than temperature. According to (19) and
(22), with increasing density, when the soft gap ∆cp

becomes of the order of temperature, the localization fac-
tor goes to unity. Then, the Fermi energy increases giving
rise to the degeneracy of electrons on the metallic side of
the transition (although the localization factor itself can
be calculated almost always using the Boltzmann distri-
bution [24]).

Shown in Fig. 4 is the conductivity of selenium as a
function of the pressure along the critical isotherm, cal-
culated with formulas (15)–(22) and the equation of
state (10). Experimental data at high pressures [1, 25]
are best fitted choosing the maximum parameter γ = 1
corresponding to the minimum free path length equal to
the mean distance between virtual atoms. In view of a
strong pressure dependence of the conductivity near the
percolation transition, the experimental data indirectly
confirm a locus of the transition point determined by
formula (6). At the critical point, the calculated conduc-
tivity is about 0.1 Ω–1 cm–1 in agreement with the exper-
imental value [9]. We note, that a vertically going depen-
dence on the pressure near the critical point is caused by a
diverging compressibility, rather than by the insulator–
metal transition located at nearly three times the critical
pressure.

In conclusion, we discuss the thermoelectric coeffi-
cient of selenium retaining positive sign in the entire
range of measurements [1]. In the case of electron–hole
conductivity, the positive sign corresponds to the higher
mobility of holes [12]. However, near the insulator–
metal transition, the valence electrons become partially
free, therefore, the thermal generation of electrons and
holes is ill-defined. Thus, the reason of positive thermo-
electric coefficient connected with the sign of carriers is
still an open question. The problem becomes not so sharp,
since the thermoelectric coefficient is proportional to the
difference of the chemical potential and a weighted mean
energy of electrons, [26], which can also change the sign.
Additional data at higher temperatures and densities
where the thermoelectric coefficient may change the sign
from positive to negative, and the Hall constant measure-
ments could shed light on the problem.

5. CONCLUSIONS

The transition of liquid selenium into a metallic state
near the melting curve is different from that in the vicinity
of the critical point. Near the melting curve, this transition
is caused by the decomposition of the polymer structure
responsible for a local forbidden band. Therefore, the
insulator–metal transition line branching off the melt-
ing curve is described by the Clapeyron–Clausius equa-
tion for a gradual structural transition. At high pres-
sures, a rather sharp dissociation of the polymer chains
upon heating of liquid selenium has been confirmed by
observations, therefore, some connection between the
AND THEORETICAL PHYSICS      Vol. 93      No. 2      2001
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dissociation and the metallization can be considered an
experimental fact.

On the other hand, the metallization of a molecular
liquid, formed after the decomposition of polymer
chains, is possible only in the case of overlapping elec-
tron shells, i.e., at high enough density. Therefore, the
insulator–metal transition upon compression in the
vicinity of the critical point is interpreted as percolation
of weakly overlapping classically accessible spheres of
coupled virtual atoms in the dimers of selenium. As is
shown, the molecular structure leads to an essential
increase of the percolation threshold compared to that
of the atomic liquid: the longer are molecular chains,
the stronger the threshold increases. Nevertheless, the
activation energy of the percolation conductivity van-
ishes at a density smaller than that of semiconducting
amorphous selenium. At the critical isotherm, the tran-
sition point is located at a pressure of about 1.1 kbar
where liquid selenium transforms into a molecular
metal with a conductivity greater than 200 Ω–1 cm–1.

The activated percolation conductivity is caused by
over-barrier electron hopping with an effective number
of electrons per atom equal to the number of holes in s–
p shells of selenium. The conductivity is described by a
modified Drude formula allowing for a partial localiza-
tion of electrons. Well above the transition point, where
the localization is not important, experimental data cor-
respond to the free path length of electrons equal to the
mean interatomic distance. The percolation conductiv-
ity describes experimental data along the critical iso-
therm in a wide pressure range, where the conductivity
varies by four orders of magnitude.

The insulator–metal transition is only possible when
polymer chains are almost completely dissociated, and
the local structure corresponds to a critical value of the
coordination number. In the region where the percola-
tion transition line goes over to the melting line of mac-
romolecules, two kinds of the insulator–metal transi-
tion become identical.
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Abstract—Spatial correlation functions of orientation fluctuations in bounded cells of smectic and nematic liq-
uid crystals are calculated taking into account the effect of external fields and finiteness of the energy of anchor-
ing to the surface. The cases of positive and negative anisotropies of magnetic susceptibility or permittivity are
considered. The calculations are based on the division of degrees of freedom into bulk and surface ones and on
the reduction of the computation of the continual integral determining the correlation function to the solution
of the Euler equation with corresponding boundary conditions of the first or third kind. The obtained correlation
functions are used for describing the intensity of light scattered in nematics for the planar and homeotropic ori-
entations. It is shown, in particular, that the measurements of the angular dependence of the scattered light
intensity may serve as a reliable method for determining the energy of anchoring of a liquid crystal to a substrate
for different values of the external field. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An important feature of liquid crystals (LC) is the
very small value of orientational melting energy. As a
result, the orientation of a system in the ordered phase
may change significantly due to very weak effects; in
other words, the susceptibility of the system is
extremely high. For this reason, most types of LC
exhibit strong fluctuations of orientation [1]. Fluctua-
tions strongly affect many properties of LC. This refers
to the behavior of the system in the vicinity of phase
transitions [1–5], optical properties (above all, light
scattering} [1, 6], the formation of viscoelastic coeffi-
cients [1], the fluctuational contribution to attraction
between walls [7–10], etc.

A distinguishing feature of orientation fluctuations
in LC is their infinitely large correlation radius. In such
a situation, an important role is played by factors which
may be disregarded in most other systems. This prima-
rily refers to the effect of external fields [1, 11, 12], the
interaction of LC with the confining surface [5, 8, 11,
13], and finite dimensions and shape of the sample [3,
8, 14]. This problem has become quite important in
connection with numerous applications of LC in infor-
mation display systems. The description of the struc-
ture and spectrum of thermal noise for LC in encapsu-
lated and twisted cells is essential in this case.

The statistical properties of fluctuations are
described with the help of correlation functions. First
calculations of spatial correlation functions of fluctua-
tions in LC were made for unbounded nematic and
smectic-A liquid crystals (NLC and SLC-A) [15]. The
evolution of these investigations was aimed at extend-
1063-7761/01/9302- $21.00 © 20344
ing the classes of LC [1], types of fluctuations [16],
inclusion of dynamic processes [1], and taking into
account the finiteness of the system and interaction of
LC molecules with the surface [10, 17– 21].

The most serious difficulties are encountered when
correlation functions are calculated for finite systems.
In most cases, fluctuations in a planar cell are consid-
ered. The simplest case of stringent boundary condi-
tions in NLC was considered in [17–19]. The correla-
tion functions obtained in these works had the form of
an infinite series in the eigenfunctions of the system. A
more realistic model of mild boundary conditions
described by a Rapini type potential [22] was consid-
ered for NLC in [10, 20] and for SLC in [21, 23]. The
authors of [10, 20, 23] succeeded in presenting the
result in closed form, while in [21] it was obtained in
the form of a series.

It should be noted here that no universal approach
has been developed for calculating the correlation func-
tion for finite LC. The methods of expansion in eigen-
functions [10, 17] and continual integration [10], as
well as the theory of self-conjugate operators [20, 23]
were used. It may appear at first glance that in each
publication, the computational method was based on
the specific features of the given system.

In the present work, we propose an algorithm for
calculating the correlation functions for bounded LC,
which combines the approaches used in [10, 17, 18, 20,
21] and makes it possible to obtain the result in closed
form in the general case of a multicomponent order
parameter.
001 MAIK “Nauka/Interperiodica”
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This approach can be used for calculating the corre-
lation functions for plane-parallel NLC and SLC-A
cells in the presence of an external field. We consider
the case when the directions of orientation of the direc-
tor by the external field and confining surfaces coincide
and analyze the systems with positive and negative
anisotropy of magnetic susceptibility χa or permittivity.
In the most commonly encountered case, with χa > 0,
the equilibrium position of the director is aligned with
the external field. In the case of negative anisotropy, the
director is perpendicular to the magnetic field in equi-
librium. For such systems, the magnetic field sup-
presses only one of two fluctuational modes of the
director, the other mode remaining singular [24].

We derived an explicit expression for the correlation
functions for smectics A and nematics in planar geom-
etry taking into account the external field and the effect
of the surface simultaneously. The behavior of the cor-
relation function near the surface is analyzed in detail.
It is shown that fluctuations at the surface may be stron-
ger or weaker than in the bulk depending on the system
parameters. The fluctuations in a bounded cell with the
planar geometry is calculated in detail for the first time
without using the single-constant approximation.

In Section 2, basic equations describing the energy
of a bounded liquid crystal in an external field are intro-
duced. A general approach to calculating the spatial
correlation function of the vector order parameter fluc-
tuations in a bounded system is developed in Section 3.
A general expression for the correlation function is
derived in Section 4. In Section 5, the obtained formu-
las are used for calculating the correlation function of
displacement fluctuations in SLC-A and for fluctuations
of the director in NLC. The dependence of the spatial
correlation function on the parameters of the system
(above all, on the anchoring energy and the applied
external field) is analyzed in detail. The intensity of
scattered light in a liquid crystal cell is calculated in
Section 6. It is shown that the parameters of a liquid
crystal (above all, the anchoring energy) can be deter-
mined by measuring the angular dependence of the
intensity of scattered light in external fields.

2. FREE ENERGY OF A LIQUID-CRYSTAL CELL 
IN AN EXTERNAL FIELD

In order to describe liquid crystals, we will use the
standard continual model [1]. In this model, the elastic
properties of liquid crystals in bounded cells are usually
described taking into account the three types of contri-
butions to the elastic energy:

(2.1)

Here, Fe is the elastic energy of a liquid crystal, Ff is the
contribution of the external field, and Fsf is the surface
energy. The approach which will be described below
can be used for studying various types of liquid crys-

Ftot Fe F f Fsf .+ +=
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tals. In the present work, we consider nematics and
smectics A.

For a nematic liquid crystal, the elastic energy is
equal to the Frank energy

(2.2)

where n(r) is the unit vector of the director and Kjj (j =
1–3) are the Frank moduli. The minimum value of Fe

corresponds to the homogeneous equilibrium state of
the director n0 = const.

In order to calculate the volume energy of SLC-A,
we confine our analysis to the standard model [1]:

(2.3)

Here, u(r) is the component of the displacement vector
along the z axis, which is directed across the smectic
layers; B is the smectic elastic constant associated with
the compression of smectic layers; K is the elastic con-
stant associated with the distortion of the layer shape;

where the subscript “⊥ ” corresponds to vector compo-
nents perpendicular to the z axis. Model (2.3) corre-
sponds to the director vector

which is normal to smectic layers.
The term Ff  describing the magnetic or electric field

in SLC-A and NLC has the form

(2.4)

respectively, where χa and εa are the anisotropies of the
magnetic susceptibility and permittivity, and H and E
are the magnetic and electric field strengths. For the
sake of definiteness, we will confine our subsequent
analysis to magnetic fields only. For a transition to elec-
tric fields, it is sufficient to make the substitution H 
E and χa  εa/4π in the final formulas. It follows from
Eq. (2.4) that the term Ff has a minimum for χa > 0 if n0 || H
and for χa < 0 if n0 ⊥  H.

The term Fsf describes the surface energy. The fol-
lowing two cases of the orientation of the director on
the surface are considered most frequently: the planar
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case when the director is parallel to the surface and the
homeotropic case when it is perpendicular to the sur-
face. Let a liquid crystal be enclosed in a plane-parallel
cell of thickness L. We introduce the Cartesian system
of coordinates {ex, ey, ez} with the origin at the center
of the cell and with the ez axis perpendicular to the
planes z = l1 and z = l2 (L = l2 – l1) confining the cell.

For nematic liquid crystals, we will use the surface
energy Fsf in the form of the Rapini potential [22]:

(2.5)

in the case of the homeotropic orientation and

(2.6)

in the case of the planar orientation with the easy orien-

tation axis y. Here, the quantities Wj and  (j = 1, 2)
are the anchoring energies.

For SLC-A, we confine ourselves to the case when
smectic layers are perpendicular to the z axis. In this
case,

(2.7)

where  are the anchoring coefficients and  are
surface tensions (j = 1, 2). In the case of a freely sus-

pended smectic film, we have  = 0.

In the present work, we will be interested in the case
when the confining surfaces as well as the external field
stabilize the orientation of the director. For this reason,
we will disregard the competition between the field and
the surfaces (Freedericksz effect) or between two sur-
faces (twisted cell).

In the case of NLC, we will be interested in devia-
tions δn = n – n0 of the director n from its equilibrium
value n0. In the principal order, we have δn ⊥  n0. In the
case of SLC-A, we take for the fluctuating parameter
the quantity u(r) describing the deviation of smectic
layers from the equilibrium state.

The structure of formulas (2.2)–(2.7) implies that
the fluctuation contribution to the total energy (2.1) in
the Gaussian approximation is the quadratic form of the
fluctuating parameter u(r) or δn containing gradients of
an order not higher than the second.

The conventional method for solving the problem of
fluctuations in an unbounded NLC is based on a transi-
tion to the 3D Fourier spectrum. For a plane-parallel

Fsf r⊥ W jn⊥
2 r⊥ l j,( ),

j 1 2,=
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cell, it is natural to carry out the 2D Fourier transforma-
tion. We will use the Fourier transformation in the form

Thus, the problem formally involves an analysis of the
correlation function of the scalar parameter φ(q, z) =
u(q, z) or the two-component vector f(q, z) = δn(q, z).
It makes the contribution to the bulk energy Fbk = Fe +
Ff of the form

(2.8)

where Φbk is the positive-definite quadratic form of the
type

(2.9)

Here, f = f(q, z) and f' = ∂f(q, z)/∂z are the n-compo-

nent vectors,  = (q),  = (q), and  = (q) are n ×
n square matrices,  and  being Hermitian matrices,
and the superscript + denotes Hermitian conjugation.
The dimension n = 1 for SLC-A and n = 2 for NLC.

The contribution of f to the surface energy (2.5),
(2.6), and (2.7) of the system has the form

(2.10)

where

(2.11)

f1 = f(q, l1), f2 = f(q, l2), and the Hermitian positive
definite n × n matrices  correspond to the first
(z = l1) and second (z = l2) boundaries.

The specific form of matrices , , , , and 
depends on the type of the liquid crystal and on the
geometry under investigation. The expressions for
these matrices will be given in Section 5.

3. GENERAL METHOD FOR CALCULATING
THE CORRELATION FUNCTION

FOR A FINITE CELL

We will be interested in the correlation function of
fluctuations in the general case of the vectorial order
parameter φ(q, z):

(3.1)
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× f'+âf' f'+b̂f' f+b̂
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where the angle brackets 〈…〉  indicate statistical aver-
aging and the superscript 〈*〉  indicates complex conju-
gation.

In order to calculate tensor , we must average the

expression φα(z)  over all possible values of f(q,
z) with the weight function exp(–Ftot(f)/kBT).

Since the quantity φ(r) is real-valued, we have φ(–q,
z) = φ*(q, z) and, hence, the quantities φ(q, z) and φ(–q,
z) are not independent. It is convenient to write the
expression of Ftot(f) in terms of independent variables.
For this purpose, a transition is usually made from the
integration over the entire spectrum of q to the integra-
tion over a half-space [25] which will be conditionally
denoted as q ≥ 0:

(3.2)

where

In the Gaussian approximation, the fluctuational modes
f(q, z) for various q ≥ 0 are independent. Conse-
quently, we can confine our analysis to a certain fixed
q. The probability density for fluctuations f(z) = f(q,
z) is given by

(3.3)

where the partition function has the form

(3.4)

Here, the continual integration symbol  corre-

sponds enumeration of all possible pairs of functions
Re(f(q, z)) and Im(f(q, z)) for l1 ≤ z ≤ l2. Pay attention
to coefficient 2 in Eqs. (3.2)–(3.4). It appears in connec-
tion with the integration over the half-space q ≥ 0 in
(3.2).

The pair correlation function in this case can be
expressed through the continual integral:

(3.5)

Along with (3.5), a representation of gαβ in the form of
a functional derivative is also used. For this purpose,
the generating function

(3.6)

is introduced, where the source is given by

ĝ
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qd
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Z 2
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…$f∫

gαβ z z1,( ) φαφβ
* z1( )ρ f( )$f.∫=

Z eeee( )
2Φtot f( ) 6 f; eeee( )+

kBT
---------------------------------------------– $f,exp∫=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(3.7)

and the function eeee(q, z) = eeee*(–q, z) denotes a fictitious
external field which is assumed to be equal to zero in
the final results. In this case, the correlation function 

can be calculated through the average value  in the
presence of field eeee,

(3.8)

as follows:

(3.9)

Here, we assume that the symbol δ/δeeee of functional dif-
ferentiation for complex-valued eeee in (3.9) has the fol-
lowing meaning:

(3.10)

The peculiarity of our problem is that Φtot(f) con-
tains the surface term Φsf which depends on a finite
number (2n) of degrees of freedom f1 = f(l1) and f2 =
f(l2). Consequently, it is natural to divide the degree of
freedom of f into two parts and present integral (3.5) as
a continual integral with fixed values of f(lj) = fj (j =
1, 2) at the ends of the interval [l1, l2], followed by finite-
dimensional integration with respect to f1 and f2:

(3.11)

The continual integral in this expression corresponds
to severe boundary conditions. Following Feynman [26],
we carry out in (3.11) a shift of the integration variable,
presenting function f(z) in the form of the sum

(3.12)

where f0 is a fixed function satisfying inhomogeneous
boundary condition of the first kind

(3.13)

and the Euler equation

(3.14)

6 f; eeee( ) f z( ) eeee∗ z( )⋅ f∗ z( ) eeee z( )⋅+[ ] z,d

l1

l2

∫=

ĝ

f

f z eeee,( )
1

Z eeee( )
----------=

× f z( )
2Φtot f( ) 6 f; eeee( )+

kBT
---------------------------------------------– $fexp∫

gαβ z z1,( ) kBT
δφα z eeee,( )
δeβ z1( )

---------------------–=
eeee 0=

.

δ
δeeee
-----

1
2
--- δ

δRe eeee( )
---------------- i

δ
δIm eeee( )
----------------– 

  .=

gαβ q; z z1,( )
1
Z
---

2Φsf f1 2,( )
kBT

-------------------------–exp f1d f2d∫=

× …∫∫
2Φbk 6+

kBT
-----------------------– 

  φα z( )φβ
* z1( )$f.exp

f l j( ) f j=

  

f z( ) f0 z( ) h z( ),+=

f0 l1( ) f1, f0 l2( ) f2= =

+̂Ef0 z( ) eeee z( ),=
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corresponding to the condition for the minimum of the
exponent 2Φbk(f) = 6(f; eeee) for l1 < z < l2. In this case,
the boundary conditions for the new integration vari-
able h(z) in the continual integral are homogeneous:

(3.15)

For energy (2.9), the differential operator  is given
by

(3.16)

Considering that the function Φbk(f) is quadratic,
while 6(f; eeee)is linear in the variable f, and taking into
account the equilibrium condition δ(2Φbk + 6) = 0 and
the boundary conditions (3.15), we can write

Here, only the quantity f0(z) = f0(f1, 2) on the right-
hand side is a function of parameters f1 and f2. Con-
sidering that the surface energy Φsf(f1, 2) is also only a
function of these parameters, the integrals with respect
to f1, f2, and h in Eq. (3.11) can be factorized. As a
result, the degrees of freedom h(z) and f1, f2 are found
to be independent, and we have

(3.17)

where

(3.18)

(3.19)

and the distribution functions are given by

(3.20)

(3.21)

Here, the following notation has been introduced:

In relations (3.18) and (3.19), we put eeee = 0. The integral
in (3.18) is a finite-dimensional integral of the Gaussian
type and can be evaluated easily. The integral (3.19) is

h l1( ) h l2( ) 0.= =

+̂E

+̂E â
z2

2

∂
∂

b̂ b̂
+

+( )
z∂

∂
ĉ.–+=

2Φbk f( ) 6 f; eeee( )+

≡ 2Φbk f0( ) 6 f; eeee( ) 2Φbk h( ).+ +

φα z( )φβ
* z1( )〈 〉

=  φ0α z( )φ0β
* z1( )〈 〉 f1 2, ηα z( )ηβ

* z1( )〈 〉 h,+

φ0α z( )φ0β
* z1( )〈 〉 f1 2, f0α z f1 2,,( )∫=

× φ0β
* z1 f1 2,,( )ρ f1 f2,( )df1df2,

ηα z( )ηβ
* z1( )〈 〉 h

=  …∫∫ ηα z( )ηβ
* z1( )ρ h( )$h,

h l j( ) 0=

  

ρ f1 f2,( ) 2
Φsf f1 2,( ) Φbk f1 2,( )+

kBT
--------------------------------------------------– ,exp∝

ρ h( ) 2
Φbk h( )

kBT
----------------– .exp∝

Φbk f1 2,( ) Φbk f0 f1 2,( )( ).=
JOURNAL OF EXPERIMENTAL 
a Gaussian continual integral and in principle, can also
be calculated explicitly. However, it is more convenient
to calculate the correlation function (3.19) by using the
relation

(3.22)

which is a version of relation (3.9) for zero boundary
conditions h(l1) = h(l2) = 0. Pay attention to the fact that
the derivative δφ0α/δeβ is independent of the quantities
f1, f2, and eeee since the dependence of the solution φ0 of
the Euler equation (3.13), (3.14) on the parameters f1,
f2, and eeee is linear.

It should be noted that the quantity Φbk(f1, 2) appear-
ing in formula (3.20) can be expressed in terms of the
values of f0(z) and  at the boundaries z = l1 and
z = l2. Indeed, if we use the Euler equation (3.14) in for-
mula (2.9), the integration by parts for eeee = 0 gives

(3.23)

Thus, the calculation of the correlation function
(q; z, z1) boils down to the solution of the Euler

equation (3.14) with the boundary conditions of the
first kind (3.13), followed by the evaluation of the
finite-dimensional integral (3.18) and the functional
derivative (3.22).

An alternative method for calculating the correla-
tion matrix (q; z, z1) is based on the direct evaluation
of the functional derivative (3.9). This is possible since

the average value  in relation (3.8) for a random
Gaussian quantity can be obtained by solving the Euler
equation corresponding to the condition for the mini-
mum of the total action

in the field eeee of the source. In the equilibrium equation

we integrate by parts the first, second, and third terms
in expression (2.9) for Φbk. On the interval l1 < z < l2,
the equilibrium equation can be reduced to the form

(3.24)

which is identical to (3.14). In equilibrium, we must
take into account at the boundaries z = l1, 2 the contribu-
tion of the surface energy Φsf as well as the nonintegral
terms emerging as a result of integrating Φbk by parts.
The requirement that the first variation of action must
vanish for z = l2 and z = l1 leads to

(3.25)

ηα z( )ηβ
* z1( )〈 〉 h kBT

δφ0α z( )
δeβ z1( )
-----------------,–=

f0' z( )

Φbk f0( )
1
2
--- f0

+âf0' f0
+b̂f0+( )

l1

l2

.=

ĝαβ

ĝ

f

2Φtot f( ) 6+ 2Φbk 2Φsf 6+ +=

2Φbk 2Φsf δ6/2+ + 0=

+̂Ef z( ) eeee z( ),=

âf' l2( ) b̂ ŵ2+( )f l2( )+ 0=

âf' l1( ) b̂ ŵ1+( )f l1( )+ 0.=


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Thus, in order to find  = , we must solve the
Euler equation (3.24) with the boundary conditions
(3.25) of the third kind.

The equation for the correlation function gαβ can
also be obtained directly. To this end, it is sufficient to take
the functional derivative of the Euler equation (3.24) and
of the boundary conditions (3.25) with respect to deeee(z1).
This gives

(3.26)

for any fixed z1: l1 ≤ z1 ≤ l2. The derivatives in
Eqs. (3.26) are taken with respect to the first argument
of the function (z, z1). A system of equations of the
type (3.26) was used in [20, 23].

4. EXPLICIT EXPRESSION
FOR CORRELATION FUNCTION

The solution of the inhomogeneous Euler equation

can be easily obtained by the method of variation of
arbitrary constants. For this purpose, we introduce a set
of independent solution

(4.1)

(i = 1, …, 2n) of the homogeneous equation

Vectors e(i) are the solution of the system of equations

(4.2)

while numbers λi are the roots of the algebraic equation

(4.3)

The Hermitian nature of matrices  and  and the anti-

Hermitian nature of matrix  imply that if λ is a
root of Eq. (4.3), –λ* is also its root. Consequently,

numbers λi can be ordered as follows: λj + n = – , j =

1, …, n. If we introduce the n × 2n matrix  of fun-
damental solutions with columns formed by solutions
fi(z), i.e.,

(4.4)

f f q z f, ,( )

+̂Eg z z1,( ) kBTδ z z1–( )1̂–=

âg'ˆ l2 z1,( ) b̂ ŵ2+( )ĝ l1 z1,( )+ 0=

âg'ˆ l1 z1,( ) b̂ ŵ1–( )ĝ l1 z1,( )+ 0=





ĝ

+̂Ef z( ) eeee z( )=

fi z( ) e
λ ize i( )=

+̂Ef z( ) 0.=

âλ i
2 b̂ b̂

+
–( )λ i ĉ–+[ ] e i( ) 0,=

det âλ2 b̂ b̂
+

–( )λ ĉ–+[ ] 0.=

â ĉ

b̂ b̂
+

–

λ j
*

Φ̂ z( )

Φ̂ z( ) f1 z( ) f2 z( ) … f2n z( ), , ,( ),=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the general solution of Eq. (3.14) for l1 ≤ z ≤ l2 may be
written in the form

(4.5)

where the kernel  is an n × n matrix:

(4.6)

while the 2n × n matrix  is defined with the help of
block matrices:

(4.7)

Here and below, we use the following notation:

are 2n × n matrices,  is the nth order unit matrix,  is
the nth order zero matrix, C0 is an arbitrary 2n × 1 con-
stant column vector, and θ(z) is the Heaviside function.
It should be noted that by virtue of the identity

 = , the function  is continuous for
z = z1.

The equilibrium solution f0(z)satisfies the boundary
conditions (3.13). Substituting Eq. (4.5) into (3.13), we
determine the components of vector C0. This gives

(4.8)

where  =  is the 2n × 2n matrix

(4.9)

Calculating the functional derivative in (3.22), we
obtain

(4.10)

It should be noted that the right-hand side of this equa-
tion vanishes for z = l1, 2 or z1 = l1, 2. For eeee  0, we
obtain from Eq. (4.8)

(4.11)

f z( ) Φ̂ z( )C0 k̂ z z',( )eeee z'( ) z',d

l1

l2

∫+=

k̂ z z',( )

k̂ z z',( ) θ z z'–( )Φ̂ z( )Ψ̂ z'( ),=

Ψ̂ z( )

Ψ̂ z( ) âΦ'ˆ z( )
Φ̂ z( ) 

 
1–

R̂10.=

R̂01
0̂
1̂ 

  , R̂10
1̂
0̂ 

 = =

1̂ 0̂

Φ̂ z( )Ψ̂ z( ) 0̂ k̂ z z1,( )

f0 z( ) Φ̂ z( )M̂
f1

f2 
 =

+ k̂ z z',( ) Φ̂ z( )M̂R̂01k̂ l2 z',( )–[ ] eeee z'( ) z',d

l1

l2

∫

M̂ M̂ l1 l2,( )

M̂
Φ̂ l1( )

Φ̂ l2( ) 
 

1–

.=

ηα z( )ηβ
* z1( )〈 〉 h

=  kBT Φ̂ z( )M̂R̂01k̂ l2 z1,( ) k̂ z z1,( )–[ ] .

φ0α z( )φ0β
* z1( )〈 〉 f1 2,

=  Φ̂ z( )M̂
f1

f2 
  f1* f2*,( )

f1 2,

M̂
+Φ̂ z1( )

αβ
.
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The mean value in Eq. (4.11) is calculated by for-
mula (3.18). Using Eq. (4.8) for eeee = 0 in formulas (2.11)
and (3.23), we can write the expression for Φbk + Φsf as
a quadratic form in the variables f1 and f2:

(4.12)

where

(4.13)

is a 2n × 2n matrix. Here, we have used the relations

(4.14)

which follow from definition (4.9) of matrix . Using
the standard formula for Gaussian averaging (see, for
example, [25]), we obtain the following result in terms
of the elements of the reciprocal matrix:

(4.15)

Thus, the complete correlation function calculated by
formula (3.17) has the form

(4.16)

In order to calculate , we can also use an
alternative approach based on the solution of the Euler
equation (3.24) (identical to (3.13)) with the boundary
conditions (3.25) of the third kind.

Substituting Eq. (4.5) into (3.25), we obtain a sys-
tem of linear equations defining the vector C0 for these
boundary conditions, which leads to

(4.17)

where the 2n × 2n matrix  is of the block type:

(4.18)

and

(4.19)

are n × 2n matrices.
Substituting Eq. (4.17) into Eq. (4.5), we find that

the dependence of  on eeee is linear. The derivative δ/δeeee

in Eq. (3.9) can be evaluated trivially. Taking into

Φbk Φsf+ 1
2
--- f1* f2*,( )F̂1

f1

f2 
  ,=

F̂1 R̂01âΦ'ˆ l2( ) R̂10âΦ'ˆ l1( )+[ ] M̂=

+
–b̂ ŵ1+ 0̂

0̂ b̂ ŵ2+ 
 
 
 

.

M̂
+Φ̂+

l2( ) R̂01, M̂
+Φ̂+

l1( ) R̂10,= =

M̂

φ0α z( )φ0β
* z1( )〈 〉 f1 2,

=  kBT Φ̂ z( )M̂F̂1
1–
M̂

+Φ̂+
z1( )[ ] αβ.

ĝ z z1,( ) kBT Φ̂ z( )M̂F̂1
1–
M̂

+Φ̂+
z1( )[=

– k̂ z z1,( ) Φ̂ z( )M̂R̂01k̂ l1 z1,( )+ ] .

ĝ z z1,( )

C0 F̂2
1–
R̂01 X̂2 Ψ̂ z'( )eeee z'( ) z',d

l1

l2

∫–=

F̂2

F̂2
X̂1

X̂2 
  ,=

X̂ j âΦ'ˆ l j( ) b̂ 1–( ) jŵ j+( )Φ̂ l j( )+=

f

JOURNAL OF EXPERIMENTAL
account Eq. (4.6), we obtain the correlation function in
the form

(4.20)

where

and  is a unit matrix of the order 2n.
Carrying out simple but cumbersome calculations

based on the properties of an analog of the Wronskian
for operator (3.16), it can be proved that expressions
(4.16) and (4.20) are identical. For the sake of defi-
niteness, we will use formula (4.20) in the subsequent
analysis. Further simplification can be carried out by
taking into account the explicit expression for functions

 in formula (4.4).

Let us introduce an n × 2n matrix  with compo-

nents Uαi =  and a diagonal matrix  of the 2nth
order with numbers λi on the diagonal, Λij = λiδij. Here,
the summation over index i is absent. We can express all
the matrices in expression (4.20) in terms of the matri-

ces  and :

(4.21)

Substituting these expressions into (4.20), we obtain

(4.22)

It was shown above that numbers λi are connected

through conditions λi + n = – . In the general case of a

non-Hermitian matrix , there is no such simple
relation for vectors e(i). However (see Section 5), for all

main geometries of SLC-A and NLC, matrix  –  is

symmetric and, hence, imaginary (  = 0 for smectics A).
It follows from Eq. (4.2) that e(i + n) = e(i)* in this case.

Consequently, we can write matrices  and  in the
block form:

(4.23)

where  is a diagonal nth order matrix with numbers
λ1, …, λn on the diagonal and  is an n × n matrix with

ĝ z z1,( ) kBT Φ̂ z( )F̂2
1–
R̂01 X̂2Ψ̂ z1( ) k̂ z z1,( )–[ ]=

=  kBTΦ̂ z( ) F̂ θ z z1–( ) Î–[ ]Ψ̂ z1( ),

F̂ F̂2
1–
R̂01 X̂2,=

Î

Φ̂ z( )

Û

eα
i( ) Λ̂

Û Λ̂

Φ̂ z( ) ÛeΛ̂z, Ψ̂ z( ) e Λ̂z– V̂ ,= =

V̂ âÛΛ̂
Û 

 
1–

R̂10,=

X̂ j âÛΛ̂ b̂ 1–( ) jŵ j+( )Û+( )e
Λ̂ l j.=

ĝ z z1,( ) kBTÛeΛ̂z F̂ θ z z1–( ) Î–[ ] e
Λ̂z1–

V̂ .=

λ i
*

b̂ b̂
+

–

b̂ b̂
+

b̂

Λ̂ Û

Λ̂ λ̂ 0̂

0̂ λ̂∗– 
 
 
 

, Û û û∗,( ),= =

λ̂
û
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elements uαi = . It is convenient to assume that
Reλi > 0, i = 1, …, n.

In this case, it can easily be verified that matrix  in
(4.21) can be written in the form

(4.24)

where

(4.25)

Here,  is the transposition matrix,  = ,  and 

are n × n matrices,  being a diagonal matrix and  a
real-valued matrix. The superscript T indicates transpo-
sition.

Substituting Eqs. (4.23)–(4.25) into Eqs. (4.21) and
(4.22), we can write the correlation matrix in the form

(4.26)

where

(4.27)

Here,  are n × n matrices defined by the block rep-
resentation

(4.28)

Pay attention to the fact that in view of identity

function is continuous for z = z1 in spite of the
presence of discontinuous θ functions in its definition.

In order to determine the blocks , we must know

the explicit expression for matrix . Since  is a
complete matrix 2n × 2n in the general case, the corre-
sponding reciprocal matrix for a nematic (n = 2) is
rather cumbersome.

eα
i( )

V̂

V̂ D̂7̂Û
+
,=

7̂ 0̂ 1̂

1̂ 0̂ 
 
 
 

, D̂ d̂ 0

0 d̂∗– 
 
 
 

,= =

d̂ ûT ŝû( ) 1–
, ŝ 2âRe ûλ̂ û 1–( ).= =

7̂ 7̂
2

7̂ d̂ ŝ

d̂ ŝ

ĝ z z1,( ) kBT ĝ 1( ) z z1,( ) ĝ 2( ) z z1,( )+[ ] ,=

ĝ 1( ) z z1,( ) ûeλ z f̂
11( )

1̂θ z z1–( )–[ ] d̂e
λ̂ z1–

ûT=

– û∗ e λ̂∗ z– f̂
22( )

1̂θ z z1–( )+[ ] d̂∗ e
λ̂∗ z1û+,+

ĝ 2( ) z z1,( ) û∗ e λ̂∗ z– f̂
21( )

d̂e
λ̂ z1–

ûT=

– ûeλ̂ z f̂
12( )

d̂∗ e
λ̂∗ z1û+.

f̂
ij( )

F̂ f̂
11( )

f̂
12( )

f̂
21( )

f̂
22( )

 
 
 
 

.=

ûd̂ ûT û∗ d̂∗ û+=

ĝ 1( ) z z1,( )

f̂
ij( )

F̂2
1–

F̂2
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
In order to overcome this difficulty, it is convenient
to use perturbation theory in the small parameters

 for samples that are not very thin.

We choose the origin of coordinates so that l1 = –L/2

and l2 = L/2. In this case, matrices  in (4.19) can be
written in the block form:

(4.29)

j = 1, 2, where

(4.30)

In the principal order in parameters , we obtain
from (4.18), (4.28), and (4.29)

(4.31)

The next corrections to matrices  and  are of

the order of  and to matrices  and  are

of the order of .

Substituting formulas (4.31) into (4.27), we obtain

(4.32)

where

(4.33)

are Hermitial n × n matrices. It should be noted that as

L  ∞, the term  in (4.32) tends to zero and,

hence, . Thus, the term  in Eq. (4.32)
describes fluctuations in an unbounded medium in q,

z-representation, while the term  describes the cor-
rections associated with the boundedness of the sample
and with anchoring to the surface.

e
λ j L–

X̂1 2,

X̂ j X̂ j
1( )

e
λ̂ l j X̂ j

2( )
e

λ̂∗ l j–
,( ),=

X̂ j
1( )

âûλ̂ b̂ 1–( ) jŵ j+( )û,+=

X j
2( ) âû∗ λ̂∗– b̂ 1–( ) jŵ j+( )û∗ .+=

e
λ j L–

f̂
11( )

1̂, f̂
22( )

0̂,= =

f̂
12( )

e λ̂ L/2– X̂2
1( )( )

1–
X̂2

2( )
e λ̂∗ L/2– ,=

f̂
21( )

e λ̂∗ L/2– X̂1
2( )

( )
1–
X̂1

1( )
e λ̂ L/2– .–=

f̂
11( )

f̂
22( )

e
2λ j L–

f̂
12( )

f̂
21( )

e
3λ j L–

ĝ 1( ) z z1,( ) ûd̂e
λ̂ z z1–( )

ûTθ z1 z–( )=

+ û∗ d̂∗ e
λ̂∗ z z1–( )–

û+θ z z1–( ),

ĝ 2( ) z z1,( ) û∗ e λ̂∗ L/2 z+( )– Ŷ1e
λ̂ L/2 z1+( )–

ûT–=

– ûeλ̂ z L/2–( )Ŷ2e
λ̂∗ z1 L/2–( )

û+,

Ŷ1 X̂1
2( )( )

1–
X̂1

1( )
d̂ ,=

Ŷ2 X̂2
1( )( )

1–
X̂2

2( )
d̂∗=

ĝ 2( )

ĝ ĝ 1( )= ĝ 1( )

ĝ 2( )
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5. CORRELATION FUNCTION 
OF FLUCTUATIONS IN SMECTICS A

AND NEMATICS

Let us apply the general formulas derived above for
determining correlation functions in specific cases.

5.1. Fluctuations in Smectics A

For the elastic component of energy from formula
(2.3), we have

(5.1)

In accordance with relation (2.4), the contribution of
the external field in the r-representation has the form

for χa > 0 and

for χa < 0. In the latter case, we have directed the x axis
along the external field H = (H, 0, 0).

The corresponding quantities Φf have the form

(5.2)

where q = (q1, q2, 0).

It follows from formula (2.7) that the surface energy
density is given by

(5.3)

In the given case, matrices , , , and  (j = 1, 2) in
expression (2.9) are one-dimensional, i.e., are scalars:

(5.4)

The characteristic equation is quadratic and has the
roots

(5.5)

Φe
1
2
--- z B ∂zuq z( ) 2 Kq4 uq z( ) 2+{ } .d∫=

F f
1
2
---χaH2 1 —⊥ u( )2–[ ] ,=

F f –
1
2
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------ 

 
2

=

Φ f

1
2
---χaH2q2 z uq z( ) 2, χa 0>d∫
–

1
2
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2 z uq z( ) 2, χa 0,<d∫





=

Φsf
1
2
--- γ1

j( ) q2γ2
j( )+( ) uq l j( ) 2.

j 1 2,=

∑=

â b̂ ĉ ŵ j

a B, b 0, w j γ1
j( ) γ2

j( )q2,+= = =

c
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


=
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B
---.= =
JOURNAL OF EXPERIMENTAL
“Vectors” e(j) are also scalars and can be put equal to

unity: e(1) = 1, e(2) = 1. The “matrices” are  = λ,  = 1,
d = (2Bλ)–1. This gives

(5.6)

Substituting these relations into Eqs. (4.28)–(4.31), we
obtain the correlation function (4.26), (4.27) in the
form

(5.7)

where

Formula (5.7) describes both cases (χa > 0 and χa < 0).

Let us single out two modes of the behavior of a liq-
uid crystal at the boundary that can be referred to as
strong and weak anchoring. In the case of strong
anchoring, fluctuations near the surface are suppressed.
If, however, the energy of anchoring with the given sur-
face is low, fluctuations in the vicinity of this boundary
may be stronger than in the bulk. A qualitative reason
behind this effect is that the retrieving force at the sur-
face is determined by the surface as well as bulk contri-
butions, the role of bulk forces at the boundary being
smaller than in the bulk of the sample.

This is illustrated in Fig. 1. If we take the simplest

case  = 0,  =  = γ, a transition from strong

to weak anchoring occurs for γ ~ .

Let us analyze the effect of an external field on the
correlation function for SLC-A.

The conditions λL ~ 1 and χaH2 ~Kq2 lead to the
characteristic value of the field in SLC-A:

For the typical values K ~ 10–6 dyne, B ≈ 3 ×
107 dyn/cm2, χa ~ 10–7 for L ≈ 3 × 10–3 cm, this gives
HS ~ 105 G. It can be seen that the characteristic field
for smectics is quite large.

Let us now consider nematics.

λ̂ û

V̂
1

2Bλ
---------- 1
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  ,=
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5.2. Homeotropic Orientation, χa > 0

In this case, the equilibrium director vector n0 is par-
allel to the vector of the external field strength H and
directed along the z axis, n0 = (0, 0, 1), H = (0, 0, H).
The director fluctuation vector is given by

Following [1], we choose the x axis along the wave vec-
tor q = (q, 0, 0). Formula (2.2) for Frank’s energy gives

(5.8)

The contribution of the external field is

(5.9)

This gives the following expressions for matrices , ,
and :

(5.10)

For the surface energy in this geometry, model (2.5)
is commonly used, in which matrices  and  in
(2.11) are proportional to the unit matrix:

(5.11)

Thus, we can write

(5.12)

It should be noted that if matrices  and  are not
proportional to the unit matrix, they are nondiagonal
and depend on the direction of vector q in the general
case.

The roots of the corresponding characteristic equa-
tion are given by

(5.13)

The eigenvectors have the form

(5.14)

In this case, matrix  from Eq.(4.23) is a unit matrix

(  = ), while matrix  in Eq. (4.25) is given by

(5.15)
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ŵ1 ŵ2

λ i –λ i 2+
Kiiq

2 χaH2+
K33

-------------------------------.= =

e 1( ) e 3( ) 1
0 

  , e 2( ) e 4( ) 0
1 

  .= = = =

û
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The block matrices  can easily be evaluated and are
diagonal:

(5.16)

where the symbol  denotes a diagonal matrix
with the elements µ1, µ2, … on the diagonal,

(5.17)

Substituting relations (5.14)–(5.17) into relations
(4.26) and (4.27), we obtain the correlation matrix for
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Fig. 1. Behavior of the correlation function g(z, z) in SLC-
A for various values of surface tension. The following

parameters are used:  = 0, B = 3 × 107 dyn/cm2, K =

10–6 dyn, q = 105 cm–1, L = 10–3 cm, T = 300 K, and H = 0.
Curve 1 corresponds to weak anchoring at both surfaces,

 =  = 2.5 erg/cm2; curve 2 corresponds to strong

anchoring at the surface z = –L/2,  = 10 erg/cm2 and

weak anchoring at the surface z = L/2,  = 3 erg/cm2; and

curve 3 corresponds to strong anchoring at both surfaces,

 =  = 15 erg/cm2. All the curves are normalized to

g(0, 0) for  =  = 15 erg/cm2.
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director fluctuations, which is a diagonal matrix in the
present case (g12 = g21 = 0):

(5.18)

where

(5.19)

The characteristic value of the external magnetic
field in NLC is HN ≈ L–1(Kii /χa)1/2 [1]. For the typical
values K ~ Kii ~ 10–6 dyn and χa ~ 10–7, this gives HN ~
103 G for L ≈ 3 × 10–3 cm. Consequently, in contrast to
SLC-A, the effect of the field may be significant for the
field strengths HN ~ 103–104 G conventionally used in
experiments.

The realistic values of the anchoring energy lie in
the interval W ~ 10–2–10–4 erg/cm2 [27, 28]. For large
values of q ~ 104–105 cm–1, weak anchoring will take
place for both gjj modes. If, however, q ~ 103 cm–1,
strong anchoring may take place, and field effects also
become significant.

5.3. Homeotropic Orientation, χa < 0

In this case, the external field vector H is perpendic-
ular to the director n0 = (0, 0, 1). We choose the x axis
along H = (H, 0, 0). With such a choice of the axes, the
director fluctuations and the wave vector have the form
δn = (δn1, δn2, 0) and q = (q1, q2, 0).

The Frank energy is given by

(5.20)

and the contribution of the external field has the form

(5.21)
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+ K33λ j W1 W2+( ) λ j L z z1––( )[ ]sinh
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Φe
1
2
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2 K22q1

2+( ) δn2q
2

+ q1q2 K11 K22–( ) δn1qδn2q
* δn1q

* δn2q+( )

+ K33 ∂zδn1q
2 ∂zδn2q

2+( ) ] ,

Φ f
1
2
---χaH2 z δn1q

2.d∫–=
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The surface energy has the same form as (5.12) for
χa > 0.

Thus, in this geometry, we obtain the same matrices

, , and  as in (5.10) and (5.11), while matrix 
has the form

(5.22)

where

(5.23)

The characteristic equation has the real roots

(5.24)

where

i = 1, 2. Except for the normalization, vectors e(i) are
defined as

(5.25)

We could carry out calculations on the basis of for-
mulas (4.26) and (4.27). However, the final result can
be obtained much more simply. It should be noted that
vectors e(1) and e(2) in (5.25) are orthogonal and real-
valued. Consequently, matrix  in (4.23)) is orthogo-

nal:  = . After the transition to the coordinate sys-
tem with axes e(1) and e(2) in the (x, y) plane, matrix  is
diagonalized. Since matrices  and  are propor-
tional to unit matrices in this geometry, they do not
change upon a transition to the new system of coordi-
nates. In this case, problem (3.26) for χa < 0 (as well as
the differential equation and the boundary conditions)
formally coincides with the corresponding problem for
χa > 0. The only difference is that λi in this case is
defined by formulas (5.24) instead of formulas (5.13).
Returning to the initial system of coordinates, we can
write the correlation function for χa < 0 in the form

(5.26)

where  is a diagonal matrix with the components
gjj defined in (5.18).
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Substituting relations (5.23) and (5.25) into (5.26),
we obtain

(5.27)

Systems with χa < 0 are studied less thoroughly than
those with χa > 0. Such systems are interesting for our
analysis in that the external field H suppresses only one
of the fluctuating modes in them, while the other mode
remains finite in the limit H  ∞ [24]. Having chosen
a strong field for such a system with a small q, we may
obtain weak anchoring at the boundary for one mode
and strong anchoring for the other mode. These effects
are illustrated in Figs. 2a and 2b. It should also be noted
that the correlation function contains a crossed purely
imaginary component g12(q; z, z1) presented in Fig. 2c.

5.4. Planar Orientation with χa > 0

Let us direct the y axis along the director (n0 || H).
The director fluctuations and the wave vector in this
system of coordinates have the form δn = (δn1, 0, δn2)
and q = (q1, q2, 0).

The Frank energy is given by

(5.28)

The contribution of the external field is

(5.29)

The surface energy (2.6) in the given geometry can
be written in the form

(5.30)
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2
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2
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Thus, matrices , , , and  (j = 1, 2) in this
geometry are given by

(5.31)

â b̂ ĉ ŵ j

â
K22 0

0 K11 
 
 

, b̂ iq1
0 K22–

K11 0 
 
 
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ŵ j
W j

1( ) 0

0 W j
2( )
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 
 
 

, ĉ
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 
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1 1

2z 1/
L
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03

(a)
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Fig. 2. Elements of the correlation matrix for NLC in the
case of the homeotropic orientation with χa < 0. The follow-

ing parameters are used: χa = –10–7, K11 = 10–6 dyn, K22 =

0.5 × 10–6 dyn, K33 = 2 × 10–6 dyn, T = 300 K, H = 104 G,

q1 = 103 cm–1, q2 = 2 × 103 cm–1, W1 = 5 × 10–3 erg/cm2,

W2 = 4 × 10–3 erg/cm2, L = 10–2 cm. (a) g11(z, z1); (b) g22(z, z1),
and (c) g12(z, z1)/i. The curves are normalized to g22(0, 0).
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where

(5.32)

The characteristic equation (4.3) has the following
roots:

(5.33)

In this case, vectors e(i) are identical (to within normal-
ization):

(5.34)

A3 K11q1
2 K33q2
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Fig. 3. Elements g11 and g22 of the correlation matrix (in
arbitrary units) for NLC in the case of the planar orientation

with χa > 0 for z = z1 = L/2 as functions of  = 

and  =  for H = 0, L = 10–2 cm. The remaining

parameters are the same as in Fig. 2. (a) g11(L/2, L/2),
(b) g22(L/2, L/2).
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In this case, we have

(5.35)

Then matrix  in (4.25) is given by

(5.36)

where Ω = K33  + χaH2.

In contrast to the homeotropic geometry, matrix 
in (4.18) has no special structure, and the components

of the reciprocal matrix  in relation (4.20) (and,

hence, of matrices  in relation (4.28)) are rather
cumbersome. For this reason, it is convenient to use for
numerical calculations the general expressions (4.26)
and (4.27) for the correlation matrix.

It should be noted that in the planar orientation,

coefficients  and  determine the contribution
of modes δn1 and δn2, respectively, to the surface
energy. We can expect that component g11 is mainly

determined by coefficient  and is almost indepen-

dent of , while component g22 is determined by

coefficient  and is almost independent of .
This effect, however, is masked by the interaction of
modes δn1 and δn2 in the bulk energy. Nevertheless, for
realistic values of parameters, the dependence of gll on

 is observed to a high degree of accuracy. It can be
seen from Fig. 3 that the value of gll is indeed deter-

mined only by . This dependence for z = z1 = ±L/2
is approximately defined by the formula

(5.37)

where l = 1, 2, the upper sign corresponds to j = 1, and
the lower sign, to j = 2. If z and z1 do not lie simulta-
neously on a face of the sample, component gll becomes

a function of both coefficients .

The conditions of strong and weak anchoring at the
boundaries z = ±L/2 are determined by the sign of the
derivatives
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2
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----------------------------------------------------,
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.
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A transition from one case to another occurs for

It should be noted that this condition also corresponds

to the sign reversal of  in formula (5.37).

5.5. Planar Orientation with χa < 0

In this geometry, the external field vector is perpen-
dicular to the director and may form an arbitrary angle
α with the x, y plane. As in the case of planar geometry
with χa > 0, we direct the y axis along n0. Then H =
H(cosα, 0, sinα), δn = (δn1, 0, δn2), and q = (q1, q2, 0).

The Frank energy and the surface energy in this case
have the same form (5.28), (5.30) as in the previous
case.

The contribution of the external field is given by

(5.38)

Thus, matrices , , and  in this geometry are

the same as in (5.31), while matrix  is given by

(5.39)

where

(5.40)

The characteristic equation in this case contains a
term linear in λ:

(5.41)

The solutions of this equation λ1 = –  and λ2 = –
for 0 < α < π/2 and K11 ≠ K22 always contain an imagi-
nary component. Nonstandardized vectors e(j) are given
by

(5.42)
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Φ f
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2
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ĉ

ĉ
A5 A7

A7 A6 
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 

,=

A5 K11q1
2 K33q2

2 χaH2 αcos
2

,–+=

A6 K22q1
2 K33q2

2 χaH2 αsin
2

,–+=

A7 χaH2 α α .cossin–=

K11K22λ
4 A5K11 A6K22 q1

2 K11 K2–( )2–+[ ]λ 2–

+ 2iq1A7 K11 K22–( )λ A5A6 A7
2–+ 0.=

λ3
* λ4

*

e j( ) A7 iq1 K11 K22–( )– λ j

K22λ j
2 A5– 

  .=
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In the simplest cases when α = 0 or α = π/2. coefficient
A7 = 0 and Eq. (5.41) becomes biquadratic. Its solutions
have the form

(5.43)

where

Here, i = 1 corresponds to α = π/2 and i = 2 to α = 0. It
should be noted that solutions (5.43) may be complex-
valued.

Using formulas (5.43) and (5.42), we can derive

analytic expressions for matrices  and  in (4.23).
We shall not present the expression for the correlation
matrix in this case since it is extremely cumbersome
even in perturbation theory. However, numerical calcu-
lations of the elements of the correlation matrix on the
basis of formulas (4.26), (4.27), or (4.32) are not diffi-
cult in this case also.

The peculiarity of the case under investigation is the
complex valuedness of the eigenvalues λj for 0 < α <
π/2. However, the estimates obtained for realistic val-
ues of NLC parameters, the external field amplitude H,
and the wave numbers q1 and q2 show that the inequal-
ity Imλj ! Reλj holds in all cases. For this reason, the
components of matrices  do not oscillate.
Another feature of this case is the complex valuedness
of all the component of the correlation matrix.

Concerning the effect of an external field, the situa-
tion in this case is similar to the homeotropic orienta-
tion with χa < 0. Namely, the component of the director
fluctuations which is perpendicular to H is not sup-
pressed by the external field. In the given geometry, this
component has the form of the linear combination

In particular, the field does not suppress the correlation
matrix component g22 for α = 0 and g11 for α = π/2.

A problem emerging when the exact formulas (4.22)
and (4.26) are used for numerical calculations is worth

noting. The factors exp( ) appearing in formulas
(4.21) contain both very large and very small compo-
nents (in absolute value) which must be taken into
account simultaneously without disregarding the latter
components. For actual parameters of NLC, e.g., in
solving an optical problem for a sample of thickness
L ~ 100 µm, this necessitates that quantities of the order
of 10±2000 be takes into account in intermediate compu-
tations. This renders formula (4.22) inapplicable for

λ j λ j 2+– {
1

2K11K22
--------------------= =

× 2K11K22q1
2 K33 K11 K22+( )q2+[

– KiiχaH2 1–( ) j 1+ D+ ] } 1/2
,

D K33
2 K11 K22–( )2q2

4 Kii
2 χa

2
H4+=

+ 2 1–( )i K11 K22–( )χaH2 2K11K22q1
2 KiiK33q2

2+( ).

û Û

ĝ z z1,( )

δn δn1 α δn2 α .cos+sin–=

Λ̂l j
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numerical calculations. Such a problem does not
emerge when thin samples with small values of |λj |L are
considered. In the case of large values of λL, formulas
(4.32) from perturbation theory can be used for numer-
ical calculations. The calculations based on exact for-
mulas (4.22) and formulas (4.32) in perturbation theory
lead to virtually identical results up to values of λL ≤
2−3. The most significant discrepancy in the results of
calculations made using these formulas are observed
when z and z1 lie at the opposite ends of the sample
(L/2 and –L/2). These discrepancies are eliminated if
we take into account the second order in perturbation
theory. However, the value of gαβ(L/2, –L/2) is negligi-
bly small as compared to gαβ(z, z1) for z = z1 and hence
these corrections are of no interest to us.

6. LIGHT SCATTERING

The measurement of the angular and polarization
dependences of the intensity of scattered light is one of
the methods of analysis of spatial correlation functions.
From the point of view of optics, SLC-A and NLC are
uniaxial media with the permittivity tensor

(6.1)

where εa = ε|| – ε⊥ , and ε|| and ε⊥  are the dielectric con-
stants along and across the optical axis. The permittiv-
ity fluctuations δεαβ, which have the form

(6.2)

in the approximation linear in δn, lead to light scatter-
ing.

The intensity of scattering in an anisotropic planar
layer can be written in the form (cf. [29])

(6.3)

where V is the scattering volume; ω is the cyclic fre-
quency; c is the velocity of light in vacuum;

(6.4)

and  is the correlation function of
permittivity tensor fluctuations, which has the follow-
ing form in the coordinate representation:

(6.5)

qsc = k(i) – k(s) being the scattering vector. Here, i and s
denote the incident and scattered waves, respectively,
e(i) and e(s) are the polarization vectors of these waves,

εαβ r( ) ε⊥ δαβ εanα r( )nβ r( ),+=

δεαβ εa nα
0 δnβ nβ

0δnα+( ),=

I e i( ) e j( ),( )
V I0

i( )ω4

16π2R2c4
-----------------------A is( ) k s( ), k i( )( )=

× eν
s( )eµ

* s( )
Dνρµη qsc; L( )eρ

i( )eη
* i( )

,

Dνρµη qsc; L( )
1
L
---=

× Dνρµη qsc⊥ ; z z1,( )e
iqsc|| z z1–( )–

zd z1,d

L/2–

L/2

∫
L/2–

L/2

∫
Dνρµη qsc⊥ ; z z1,( )

Dνρµη r1 r2,( ) δενρ r1( )δεµη r2( )〈 〉 ,=
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and k(i) and k(s) are the wave vectors. In a uniaxial
medium, e(i), k(i) and e(s), k(s) may assume two values
each, corresponding to the ordinary and extraordinary
waves. The quantity A(is)(k(s), k(i)), k(i) is the angular fac-
tor, R is the distance from the scattering volume to the

point of observation, and  is the intensity of incident
light. The refraction at the sample boundary is not taken
into account in formula (6.3). This problem is consid-
ered in [30].

In accordance with formula (6.2), the correlation

function  in formula (6.3) is connected wit

the correlation function of director fluctuations 
through the following relation:

(6.6)

where  =  for a nematic and

for a smectic.
The integral with respect to z and z1 in formula (6.4)

can be evaluated in the general form using formula
(4.22). This gives

(6.7)

where  =  – iq||  is a diagonal matrix.

For the extraordinary ray, the length of the wave
vector k depends on direction, and the polarization vec-
tor e lying in the (k, n0) plane is not orthogonal to k. We
are interested above all in the effect of the anisotropy of
the medium on the length of the scattering vector qsc =
k(i) – k(s) since the scattering intensity in an unbounded

medium in zero field (H = 0) is proportional to ~1/
[1]. We will disregard anisotropy in the remaining
quantities, which allows us to assume that e ⊥  k and
A(is)(k(s), k(i)) = 1.

Let us analyze the possibility of determining the
anchoring energy from the data on light scattering in
homeotropic and planar geometries of NLC with χa > 0.

6.1. Homeotropic Orientation

Let us consider the case when the incident ray is
normal to the surface of the cell. The geometry of scat-
tering is shown in Fig. 4. Here, the incident ray is ordi-
nary and the scattered ray is extraordinary.

I0
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Ĝ
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0nη
0 Gρµ+(=

+ nρ
0nµ

0 Gνη nρ
0nη

0 Gνµ+ ),

Ĝ ĝ
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Ĝ q⊥ ; z z1,( )e
iq|| z z1–( )–

zd z1d

L/2–

L/2

∫
L/2–

L/2

∫
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The angular dependence of the intensity of scattered
light in this case has the form

(6.8)

where

is a constant, and G(j) has the form

(6.9)

,

where

and λj are calculated using formula (5.13) with

For large values of λjL, the exponential terms in for-
mula (6.9) can be omitted, and the quantity G(j) is deter-
mined by the first three terms. The first of these terms
corresponds to the limit of an unbounded medium,
L  ∞,

which coincides with the well-known result [1].
The second term is associated with the finiteness of

the volume in the exponential approximation, and we
can put  ≈  ≈ expx in formula (5.19) while
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integrating of the spatially inhomogeneous correlation
function of an unbounded medium, for which

For this reason, this term is independent of the anchor-
ing energies W1 and W2.

The third term in formula (6.9), which is a function
of W1 and W2, appears due to integration of the third
term in formula (5.19) between finite limits in the expo-
nential approximation taking into account the spatial
inhomogeneity of the correlation function. It should be
noted that the spatially inhomogeneous term associated
with the fourth term in formula (5.19) does not contrib-
ute to scattering in view of symmetry.

It should be noted that the third term in formula
(6.9) is commensurate with the first two terms for sam-
ples that are not very thick.

It can be seen from formula (6.8) that angle ϕ deter-
mines only the relative contributions δn1 and δn2 to
scattering. Consequently, the main information on
parameters W1 and W2 is contained in the dependence
of I(θ, ϕ) on angle θ, which is shown in Fig. 5. The fig-
ure presents the dependence of the scattering intensity
calculated using formulas (6.8) and (6.9) for two sets of
anchoring energy in the angular interval from 0.003 to
0.03 rad. The inset to Fig. 5a shows this dependence in
an extended angular interval 0 ≤ θ ≤ π/3. Figures 5a and
5b depict three curves each, corresponding to different
values of the external field: H = 0, 700, and 2000 G. It
should be noted that when the first three terms in for-
mula (6.9) are used, the deviation from exact results
appears starting from angles θ ≤ 10–2 rad.

The difference in the behavior of the curves depicted
in Figs. 5a and 5b shows that the measurement of the
angular dependence of scattering intensity for different
values of the applied field may serve as an effective
method for determining anchoring energies.

g q z z1, ,( ) g q z z1–,( ).≈

y

x

z

e(s)

ϕ

z = –L/2

e(i)

n0

z = L/2 k(s)

k(i)

θ

Fig. 4. Geometry of light scattering for the homeotropic ori-
entation of NLC.
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Fig. 5. Angular dependence of the intensity of scattered light for the homeotropic orientation of NLC in an external field for L =

3 × 10–3 cm, χa = 10–7, k0 = (ω/c) = 105 cm–1. The values of Kjj, j = 1, 2, 3, are the same as in Fig. 2. (a) W1 = 10–3 erg/cm2,

W2 = 2 × 10–3 erg/cm2; (b) W1 = 10−4 erg/cm2, W2 = 2 × 10–4 erg/cm2, H = 0 (1), 700 G (2) and 2000 G (3).

ε⊥

0.74

I, rel. units

θ(s), rad
0.78 0.82

1

2

3 4

12

8

4

0

(a)

0.74

I, rel. units

θ(s), rad
0.78 0.82

1

2

3

4

3

0

(b)

2

1

Fig. 6. Angular dependence of the scattering intensity of the (ee)-type for θ(i) = π/4 for the planar orientation of NLC. (a) ϕ = π/2,
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(3)  = 2,  = 700,  = 1.9,  = 860; (4)  = 200,  = 700,  = 190,  = 860. These values are in

the units of 10–4 erg/cm2. The intensities are normalized to the same value.
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6.2. Planar Orientation

In an analysis of light scattering in NLC, the most
interesting case is when qsc  0 since the scattering
intensity has the maximum value [1]. In view of the
anisotropy of the medium, such a situation may be real-
ized when the incident and scattered rays are of the
same type; i.e., both rays are ordinary (oo) or both rays
are extraordinary (ee). Since the scattering of the (oo)
type is absent for geometrical reasons [1], we will con-
sider the (ee)-type scattering. In contrast to the homeo-
tropic situation, we have to consider here the case of
oblique incidence since the intensity of light scattering
through zero angle for normal or grazing incidence
vanishes [29]. For the sake of simplicity, we choose the
angle of incidence θ(i) = π/4, since in this case the
JOURNAL OF EXPERIMENTAL
extinction coefficient is close to its maximum [29], and
confine the analysis to the case when the incident and
scattered rays lie in the same plane with the normal to
the surface. The azimuthal angle ϕ between the projec-
tions of vectors k(i) and k(s) on the xy plane and the x
axis will be assumed to be arbitrary.

The relative contribution of the modes δn1, 2 of
director fluctuations δn = (δn1, 0, δn2) to scattering is
determined by the factor

(6.10)

eα
s( )eγ

s( )Dαβγρeβ
i( )eρ

i( ) e s( ) n 0( )⋅( )2
e i( )ĝe i( )( )=

+ e s( ) n 0( )⋅( ) e i( ) n 0( )⋅( ) e i( ) · ĝe s( )( ) e s( ) · ĝe i( )( )+[ ]

+ e i( ) n 0( )⋅( )2
e s( ) · ĝe s( )( ).
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For ϕ = π/2, vectors k(i) ≈ k(s) ⊥  e(i) ≈ e(s) for small-
angle scattering lie in the yz plane. Consequently, the

convolutions of the type ( ) in formula
(6.10) do not contain a contribution from mode δn1 (the
director fluctuation component along the x axis). Thus,
the contribution of the δn2 mode and the surface ener-

gies  and  associated with it are measured
directly in this geometry. This is illustrated in Fig. 6a
depicting the dependence of scattering intensity on the
angle θ(s) between k(s) and the z axis. Formally, the fig-
ure shows the intensity curves corresponding to four
sets of the values of surface energy. Since the g22 com-

ponent is virtually independent of  (see Fig. 3 in
Subsection 5.4), the pairs of curves in Fig. 6a corre-

sponding to the same set  but to different values of

 are indistinguishable. Thus, this geometry is most
convenient for determining a pair of energy values of

.

In order to determine the other two values of

anchoring energy , we must measure the contribu-
tion of the δn1 mode to scattering, i.e., make measure-
ments for ϕ ≠ π/2. It should be kept in mind in this case
that the vectors e(s, i) coincide in direction with the
director vector n0 for ϕ = 0, and hence all convolutions

of the type ( ) in formula (6.10) are equal to
zero by virtue of the condition δn ⊥  n0. For this reason,
such measurements should be made for 0 < ϕ < π/2.
Figure 6b shows the angular dependence of scattering
intensity for the same four sets of anchoring energies

 as in Fig. 6a. It can be seen that the scattering
intensity starts depending on the anchoring energies

 also due to the contribution of the δn1 mode.

The effect of the external field in the planar geome-
try is illustrated in Fig. 7. It can be seen that the charac-
teristic fields in which the small-angle scattering intensity
decreases significantly are of the order of H ~ 104 G.

7. CONCLUSIONS

A general algorithm is proposed for calculating the
correlation functions of orientation fluctuations in
bounded samples of liquid crystals taking into account
the effect of orienting surfaces and external fields. Spa-
tial correlation functions are determined for plane-par-
allel cells in nematic and smectic liquid crystals with-
out using simplifying assumptions of the one-constant
approximation type. The cases of positive and negative
anisotropy of permittivity or magnetic susceptibility
are considered.

e i s,( ) · ĝe i s,( )

W1
2( ) W2

2( )

W1 2,
1( )

W1 2,
2( )

W1 2,
1( )

W1 2,
2( )

W1 2,
1( )

e i s,( ) · ĝe i s,( )
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The obtained results were used for calculating the
angular dependence of the intensity of scattered light in
various geometries. It turns out that the scattering inten-
sity in bounded cells is very sensitive to the values of
anchoring energy as well as to the magnitude of the
applied field. It is shown, in particular, that in the case
of the planar orientation of NLC, such experiments can
be used for measuring separately the surface energies
associated with the rotation of the director in the orient-
ing plane and deviations from this plane.

The study of the intensity of light scattering in nem-
atic liquid crystals with negative anisotropy may be
interesting in connection with additional possibilities of
studying the materials in which fluctuational modes
vary in different ways in an external field.

The approach developed by us here can also be gen-
eralized to other geometries such as spherical or cylin-
drical, which are important for describing orientation
fluctuations in liquid crystal drops encapsulated in a
polymer matrix or porous media, as well as to more
realistic surface potentials [27] differing from the Rap-
ini potential (2.11).
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Abstract—We have measured the absorption spectra and the dispersion of refractive index for porous silicon
samples with different porosities in the energy range 1.5–3.5 eV at room temperatures. The experimental data
are compared with the dependences calculated by using Bruggeman’s theory for the dielectric constant of a
multicomponent system composed of crystal silicon, SiO2, amorphous silicon, and voids (pores). The best
agreement between the experimental and theoretical dependences is achieved for a significant percentage of
SiO2 in the porous silicon samples. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The flow of papers on porous silicon (por-Si) pub-
lished in the past decade is growing like an avalanche.
Attention has been focused on elucidating the nature of
its visible photoluminescence at room temperature,
which could be of great importance for applications
(see, e.g., the review article [1]). The first and still one
of the main versions of the nature of photolumines-
cence is the quantum-dimensional theory. Nanometer-
sized wires and dots, in which quantum energy levels
emerge above the band gap due to the quantum confine-
ment of carriers, are believed to be formed in porous
structures through electrochemical etching. This results
in a blueshift of the absorption edge and, consequently,
in the accompanying frequency shift of the lumines-
cence that emerges during band-to-band carrier recom-
bination. There are also important arguments for alter-
native points of view on the nature of photolumines-
cence, with the molecular theory being most popular
among them.

As regards the study of fundamental optical charac-
teristics for porous silicon (refractive indices n, absorp-
tion coefficients α, and, consequently, the properties of
its dielectric function ε), such studies are relatively few
[2–10]. In most of the above studies, either the absorp-
tion spectra or the refractive indices were measured,
and only in [3, 4] were both characteristics investigated
simultaneously. We emphasize that a comprehensive
study is important for elucidating the effects of the
changed structure of the material when por-Si is pro-
duced on its optical characteristics. After all, the dielec-
tric function is directly related to the band structure and
selection rules for band-to-band transitions.

A comparison of the results obtained by different
authors clearly reveals that the absolute values of
refractive index vary over a wide range: from 3.99 [10]
to 1.28 [9]. In addition, the dispersion curves n(λ) in a
wide spectral range differ in slope and structure in the
ultraviolet near strong transitions in crystal silicon (3.4–
1063-7761/01/9302- $21.00 © 0363
4.2 eV) [3, 4]. These differences may be associated
with different porosities of the samples analyzed.

Therefore, it seems of current interest to compre-
hensively study the dielectric function, to compare it
with available theoretical models, and to correlate it
with the porosity of por-Si samples.

2. EXPERIMENT

Samples. We analyzed two por-Si samples pro-
duced by a standard technique and separated from a sil-
icon single-crystal substrate. Sample no. 1 was taken
from a series of crystals whose luminescence was
investigated in [11, 12]. It was in optical contact with a
glass substrate and appeared a transparent bluish film.
The crystal surface viewed through a microscope was
smooth, shiny, and structureless. The sample thickness,
as measured with a Linnik microinterferometer (MII-4)
by the shift of the zero interference fringe during the
reflection from the crystal and substrate surfaces, was
0.6 µm. As was shown in [12] using electron-microscope
measurements, the samples of this series consisted of crys-
tals 5–20 nm in size with a perfect single-crystal structure.
They had an amorphous-phase impurity that gave clear
halos in the electron diffraction pattern.

Sample no. 2 belonged to the series of crystals ana-
lyzed in [7]. Its thickness measured with a microscope
“edge on” was 30 µm. It was in a free stand, with one
of its corners being fixed to the substrate. The sample
appeared as a yellowish transparent plate whose surface
had a grainy structure through a microscope with a
1000-fold magnification. The views of these grains
when focusing on the upper and lower crystal surfaces
are shown in Fig. 1. The grain sizes (of the order of sev-
eral tenths of a micron) are much larger than those for
sample no. 1, as evidenced by the rugged edges of the
interference fringes obtained with the MII-4 during the
reflection from the sample surface.
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Microphotographs of the (a) upper and (b) lower surfaces of sample no. 2.
Apart from analyzing the por-Si samples, we mea-
sured the optical constants of the silicon deposited on a
glass substrate. The film was produced by a technique
similar to that described in [13] through the deposition
of amorphous germanium. The deposition conditions
ensured the formation of an amorphous structure. The
film surface viewed through a microscope was smooth
and mirror-reflecting, while the interference fringes on the
MII-4 were clear-cut. The film thickness was 0.06 µm.

The dispersion of refractive index was measured by
using a Jamin two-beam interferometer combined with
a spectrograph (DFS-13), whose reciprocal linear dis-
persion was 4 Å mm–1. The sample to be analyzed was
placed in one of the two interferometer arms. In this
case, a path difference [n(λ) – 1]d arises between the
interfering beams, where n(λ) is the refractive index of
the sample and d is its thickness. This causes the entire
fringe pattern and, in particular, the zero fringe to be
shifted by ∆y. The relation between the pattern dis-
placement and the path difference is given by

(1)

where H is the fringe width. By sequentially photo-
graphing the patterns with and without the crystal and
then measuring the zero-fringe displacement, we deter-
mined the refractive index.1 Thus, the technique for
measuring n(λ) is based on a direct measurement of the
change in phase of the light beam passed through the
crystal plate, while the authors of [3, 4] used ellipsom-
etry and calculations from the Kramers–Kronig rela-
tions based on measured reflectance spectra.

The absorption spectra were measured with an auto-
mated spectral setup that included a monochromator
(MDR-6) with replaceable gratings. The reciprocal lin-
ear dispersion was 6.5 and 13 Å mm–1 in the wavelength
ranges 200–500 and 500–900 nm, respectively. The light
source was a halogen lamp. The cross-sectional area of the

1 A special method was developed for measuring crystals of large
thickness, where a considerable zero-fringe displacement moved
the fringe out of the visibility range.

n λ( ) 1–[ ] d
∆y
H
------ 

  λ ,=
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light spot focused on the sample surface was 1 mm2. The
computer control of the experiment allowed the light-flux
instability to be “kept” at 3%.

The absorption coefficients α for the free stand sam-
ples were calculated by taking into account multibeam
interference using the relation

(2)

where T and d are the transmittance in intensity and
thickness of the sample, respectively;

are the complex amplitude reflectivity and transmit-
tance at the air-sample interface for normally incident
light; Φ = 4πnd/λ is the phase shift of the beam when it
traverses the sample twice; and the extinction coeffi-
cients κ (the imaginary parts of complex refractive
index  = n + iκ) are related to α by α = 4πκ/λ.

When the film to be analyzed was in optical contact
with the substrate, we performed our calculation by the
method from [14]. The passage of a light beam through
the film and the reflection of light from it were calcu-
lated by taking into account multibeam interference,
while the contributions from the multiple beam pas-
sages through the thick transparent substrate were
added incoherently. The transmittance T of the sample
on the substrate relative to the measured substrate trans-
mittance for normal incidence is given by

(3)

Here, Tf and Rf are, respectively, the transmittance and
reflectivity at the substrate-film interface in intensity
with allowance for multibeam interference; ng is the

T n αd–( ) t1
2 n iκ+( )

1 r1
2 –iΦ αd–( )exp+
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Fig. 2. The dispersion of refractive index for por-Si samples nos. 1 (a) and 2 (b) and for a-Si (c). (d) The combined data for por-Si
no. 1 (curve 1), por-Si no. 2 (curve 2), a-Si (curve 3), crystal Si from [15] (curve 4), and amorphous Si from [16] (curve 5).
refractive index of the substrate; Rg = (ng –1)2/(ng + 1)2

is the reflectivity at the substrate-air interface; and

are the complex reflectivity and transmittance at the
film-substrate interface, respectively.

Eqs. (2) and (3) allow the absorption of light in the
sample to be properly determined, because the contri-
bution of reflections from the faces and multibeam inter-
ference can significantly distort the absorption coefficient
estimated from simpler relations. In a porous medium,
apart from the absorption and reflection of light from the
faces, there is also light scattering. In our experiments, we
did not measure the fraction of scattered light and,
thereby, overestimated the absorption coefficient. Our
samples were of a fairly high optical quality, and the
contribution of scattered emission was not dominant.

Based on the experimentally derived spectral depen-
dences of transmittances and refractive indices using the
measured sample thickness, we calculated the absorption
[α(hν)] and extinction [κ(hν)] coefficients. Subsequently,
we calculated the real, ε'(hν) = n(hν)2 – κ(hν)2, and imag-
inary, ε''(hν) = 2n(hν)κ(hν), parts of dielectric constant

ε = ε' + iε' = .

The photoluminescence spectrum was taken with the
same setup. The third harmonic of a pulsed YAG : Nd3+

r2

n ng–( ) iκ+
n ng+( ) iκ+

------------------------------ and t2 t1 n iκ+( )= =

ñ2
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(wavelength 353 nm) laser was used for the excitation.
The excitation power was about 1 mW cm–2, and the
pulse duration was 10 ns.

3. RESULTS

The measured energy dependences of refractive
index, n(hν), for the two samples, the porous (por-Si)
and amorphous (a-Si) silicon deposited on a glass sub-
strate, are shown in Figs. 2a–2c. In each figure, the
mean measurement error corresponds to the distance
between the upper and lower dashed lines that bound
the “predictable” domain. For sample no. 1, the exper-
imentally measured dispersion of refractive index is fit-
ted by

where hν is in electronvolts. For sample no. 2, the fit is

Figure 2d shows all the measured experimental
curves and the published data on the dispersion of
refractive index for crystal silicon (c-Si) obtained by
spectral ellipsometry [15] and for amorphous silicon
(a-Si) calculated from Kramers–Kronig relations based
on the measured reflectance spectrum R(hν) [16]. For
convenience, n(hν) is presented on a logarithmic scale.

n 1.491 0.055hν ,+=

n2 1.3012 + 
0.096

3.6122 hν( )2–
-----------------------------------.=
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As can be seen from Fig. 2d, we obtained almost flat
dispersion curves n(hν) without a sharp rise at short
wavelengths. They are very similar to the curves in [4]
and [9] and differ sharply from those in [3], in which a

1.5 2.0 2.5 3.0 3.5 4.0

λ, nm

100

10–2

10–4

κ 4

5
3

2

1

3'

400 500 600

15

10

5

0

α 
× 

10
–

4 , c
m

–
1

α 
× 

10
–

3 , c
m

–
1

8

6

4

2

0

400 500 600 700 800 900

1

2
3

3'

λ, nm

hν, eV

1.0

0.5

0

2

1

0

T

I lu
m

, a
rb

, u
ni

ts1 2

3
54

Fig. 3. (a) The transmittance curves for por-Si no. 1 (curve 1),
no. 2 (curve 2), and a-Si (curve 3) and the luminescence
spectra of samples from the same series as por-Si no. 1
(curve 4) and por-Si no. 2 (curve 5). (b) The spectra of
absorption coefficients, α(hν). (c) The spectra of extinction
coefficients, κ(hν). The notation is the same as in Fig. 2d.
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significant rise followed by a peak on the n(hν) curve
near 3.5 eV was recorded. Much more of the crystalline
phase may have remained in the sample analyzed in [3]
than in our samples.

Figure 3a shows the transmittance curves T(λ) for
the two por-Si samples and for the a-Si film deposited
on a glass substrate. Also shown here for comparison
are the luminescence spectra of samples belonging to
the same series as por-Si no. 1 and por-Si no. 2 before
their separation from the substrate. The measurements
were made at room temperature. The results are seen to
be consistent with the quantum-dimensional theory of
photoluminescence; more specifically, the smaller the
grain size in the porous structure, the larger the blue-
shift of the photoluminescence peak.

Figure 3b shows the absorption coefficients α(hν)
calculated from the transmittance curves, while Figure 3c
(on a logarithmic scale for convenience) shows the cor-
responding dimensionless extinction coefficients κ(hν)
and published data for crystal and amorphous silicon.
Since the correction for reflection for a-Si strongly affects
α(hν) and κ(hν), the values without this correction being
applied are indicated in Figs. 3b and 3c by curves 3'.
Finally, Fig. 4 shows ε'(hν) and ε''(hν) for our por-Si sam-
ples.

4. DISCUSSION

Our main objective was to establish a relationship
between the optical properties of porous silicon and its
composition, in particular, its porosity.

Some authors (see, e.g., [7]) estimated the porosity p of
crystals, i.e., the fraction of voids in them, from a sim-
ple relation:

(4)

where α and α' are the absorption coefficients of the
crystal and porous silicon, respectively. In our view,
this relation is improper, because the energy absorbed
in the material is proportional to the imaginary part of
the dielectric function, ε'' = 2nκ, whereas κ character-

α ' α 1 p–( ),=
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Fig. 4. Dielectric constants for por-Si samples nos. 1 (a) and 2 (b).
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volume fraction fc-Si = 25.74%; curves 2, to 12.12%; and curves 3 and 3', to 2.15%.
izes only the rate of decrease in the amplitude of the
light wave propagating through the medium.

When the scale length of the microstructure is smaller
than the light wavelength (the long-wavelength limit), one
may ignore the retardation effects and replace the multi-
component system by an effective medium with a macro-
scopic dielectric constant. By far the most accurate poros-
ity estimate can be obtained in the approximation of
Bruggeman’s theory [17] for the effective medium, which
is the most realistic for systems of irregularly shaped
particles even for small porosities [18].

The effective dielectric constant εeff of a multicompo-
nent isotropic system is determined, according to [17],
from the dielectric constants of its individual compo-
nents, εi , whose volume fraction in the system is fi:

(5)

Based on this theory, we determined the porosity and com-
position of our porous silicon samples. We assumed that
the crystals consisted mainly of crystal silicon, c-Si, but
they could also contain an amorphous-phase (a-Si) impu-
rity. We did not rule out the inclusion of quartz SiO2 in the
samples, which, according to [19], forms on the silicon
pore surfaces. Thus, we considered a four-component
system. The values of ε were taken from [15] for c-Si

f i

εi εeff–
εi 2εeff+
--------------------

i

∑ 0, f i

i

∑ 1.= =
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and from [16] for a-Si; we assumed that κ = 0 and
n = 1.5 for SiO2 (an approximately mean value between
the refractive indices of α-SiO2 and fused quartz) and
ε = 1 for air.

Figures 5 and 6 show the calculated n(hν) and κ(hν)
curves for the multicomponent system as a function of
the volume fraction of its components, to reconcile
them with the corresponding experimental curves for
samples nos. 1 and 2.

At the first stage of our calculations, we considered
a two-component system: c-Si + pores (Figs. 5a, 5b and
6a, 6b). It turned out that for the two crystals, no rela-
tion between c-Si and air allowed the dispersion curves
of refractive indices and the absorption curves to be rec-
onciled between themselves. The values of n(hν) are
always smaller than those measured experimentally if
the volume fraction is such that the κ(hν) curves are
close. Conversely, if the n(hν) curves can be reconciled,
then the calculated κ(hν) are much larger than those
measured experimentally. Also shown in these figures
for comparison are the absorption curves calculated
using formula (4). They are lying considerably higher
than those calculated from Bruggeman’s theory.

Figures 5b and 6b clearly show how the absorption
spectrum changes with fc-Si: the band gap seemingly
increases. Accordingly, recall that the popular opinion
SICS      Vol. 93      No. 2      2001
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Fig. 6. Same as in Fig. 5 for por-Si sample no. 2. Curves 1 correspond to the volume fraction fc-Si = 16.7%; curves 2, to 8.57%; and
curves 3 and 3', to 1.287%.
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about an increase in band gap with porosity and, conse-
quently, with the appearance of a quantum level in fila-
ments is based on the blueshift of the absorption edge.
The edge shift is believed to result in crystal transpar-
ency in the visible spectral range. As we see from Fig. 3a,
our samples also became transparent to visible light.
However, if we estimate the absorption per unit remain-
ing material, then the shift of the absorption edge is appar-
ent, because invariable initial values of e for silicon with
no quantum level, i.e., without an artificial increase in
band gap, were laid in our calculations. Note in passing
that neither the absorption spectra (Fig. 3) nor the disper-
sion curves of refractive index (Fig. 2) exhibit any features
associated with the quantum levels responsible for the
luminescence of these crystals (Fig. 3a). This may be
determined by the spread in micrograin sizes, which
gives a spread in absorption coefficients and strongly
smoothens the resulting curve.

At the next stage of our calculations (three-component
system), we introduced SiO2 into the system to approach
the experimental values of n(hν). The results of this intro-
duction are indicated in Figs. 5c, 5d and 6c, 6d by the dot-

Table 1

c-Si SiO2 a-Si Porosity p

Sample 1 8.93% 80.7% 1.14% 9.23%

Sample 2 3.2% 49% 0.53% 47.23%
JOURNAL OF EXPERIMENTAL
ted curves. As we see from the figures, the gap between the
n(hν) and κ(hν) curves can be reduced by assuming that
sample no. 1 contains up to 85% of SiO2, while sample
no. 2 contains about 49% of SiO2 for c-Si volume frac-
tions of 9 and 4%, respectively.

At the final stage of our calculations (four-compo-
nent system), we introduced an amorphous-phase (a-Si)
impurity. As a result, the agreement between the experi-
mental and theoretical curves improved, but we still failed
to achieve close agreement. The best agreement between
the measured and calculated n(hν) and κ(hν) curves (the
dashed lines in Figs. 5c, 5d and 6c, 6d) was achieved for
the fraction ratios presented in Table 1. Such volume
fractions are obtained if our data and the published data
[16] are used for the amorphous phase in samples nos. 1
and 2, respectively.

The possible large SiO2 impurity in porous silicon
was discussed in [19]. The authors pointed out that the
formation of a 1.5-nm-thick oxide layer on the pore
walls must result in a SiO2 fraction in porous silicon
exceeding 30%. In addition, an infrared absorption band
was discovered at the SiO2 characteristic oscillation fre-
quency (approximately 1100 cm–1). In the same frequency
range (1060–1200 cm–1), a strong absorption band of por-
Si samples was also detected by Astrova et al. [6]. The
authors emphasize that the smaller crystallites are sur-
rounded by a much larger number of silicon bonds with
oxygen and hydrogen. Finally, the spectra recently pub-
lished in [20] exhibit a drastic increase in absorption at
 AND THEORETICAL PHYSICS      Vol. 93      No. 2      2001
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a frequency of 1100 cm–1 during a long exposure in air
(up to 450 days). Important information confirming the
presence of a large fraction of SiO2 impurity in porous
silicon is also contained in [21]. An analysis of Auger
spectra showed that an oxide phase is produced on the
surface by anisotropic etching. The thickness of the
recorded oxidized layer exceeded 100 nm. Based on
two independent methods of investigation, ellipsometry
and Rutherford backscattering, Belyakov et al. [9] con-
cluded that their sample contained from 38.8 to 43.3%
of SiO2. As has already been noted, the refractive index
and the behavior of n(hν) determined in [9] are close to
n(hν) for our sample no. 2. In our case, the SiO2 volume
fraction also approaches its value in [9].

As for sample no. 1, the SiO2 volume fraction that
has to be substituted in Bruggeman’s formulas to recon-
cile the n(hν) and κ(hν) curves proves to be very large
(about 80%). This may seem surprising and may cast
doubt on their validity. Therefore, we analyze the results
by using data from [22]. The authors of [22] studied the
change in the optical parameters of thin oxidized porous
silicon films depending on how they were produced and
thermally treated. The film composition was deter-
mined from the measured refractive index at λ = 632.8 nm
by using the dependences calculated with Bruggeman’s
three-component model for an effective medium com-
posed of layers with different initial porosities. Despite the
fact that we did not subject our samples to special oxida-
tion, it still was of interest to compare their parameters
with those in [22], although the calculations in [22] were
performed for a single wavelength, only for a three-com-
ponent system, and disregarding the absorption.

An important assertion made in [22] is that the oxi-
dized film is not an arbitrary mixture of three compo-
nents and that the volume fraction of each of them
changes during oxidation at the expense of another. The
oxidation of each Si atom was shown to cause the vol-
ume of the solid phase associated with it to increase by
a factor of 2.27. Therefore, when the initial two-compo-
nent system Si + pores is oxidized, a new SiO2 phase
emerges and the volumes occupied by pores and silicon
decrease. Since the possibility of oxidation depends on
the volume of free space that SiO2 can occupy, samples
with different initial porosities pin behave differently. If
pin > 56%, then after complete oxidation of the silicon
skeleton, the sample remains porous and consists of
SiO2 and pores. If, alternatively, pin < 56%, then the
pores completely disappear when the silicon skeleton
has not yet been completely oxidized, resulting in a dif-
ferent two-component system: Si + SiO2.

The possible compositions for the coexistence of
three phases were calculated in [22] and shown in the
plots there as the hatched part of the plane. A compari-
son of our data with those from [22] indicates that, first,
both our samples fall within the region where three
phases can coexist. Second, using relations from the
above paper, we can determine the degree of oxidation
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and pin for our samples. The volume fraction of the sil-
icon skeleton that oxidized is x = /2.27. The total
silicon volume fraction in the initial por-Si is the sum
fSi = fc-Si + fa-Si + x. The initial porosity is pin = 1 – fSi.
The degree of oxidation is defined as s = (x/fSi)100%.
The results are given in Table 2. Thus, pin < 56% in por-
Si sample no. 1 and pin > 56% in por-Si sample no. 2.
This determined a very large difference in their compo-
sitions after a prolonged storage in air. However, in
none of them did possible finite processes take place:
there is no complete oxidation in por-Si no. 2 and no
complete disappearance of pores in por-Si no. 1. Nev-
ertheless, the degree of oxidation in both samples is
very large.

If two plots from [22] are used (s-n and p-n), then
pin = 52.5 and 53.5% for por-Si no. 1 and pin = 73 and
74% for por-Si no. 2. These values are very close to
those from Table 2. Therefore, the entire set of our data
suggests that the processes in our crystals followed the
scheme proposed in [22]. The recorded oxidation of the
por-Si samples may be responsible for the attenuation
of their photoluminescence with time.

Comparison with theoretical calculations of the
por-Si band structure. While summarizing the results
of fitting the experimental curves by theoretical depen-
dencies, it should be emphasized that close agreement
between them still cannot be achieved. We believe that
this is because we used in our calculations the ε values for
pure silicon as the initial data for c-Si. This automatically
assumes that the band structure and selection rules for
band-to-band transitions and, consequently, the corre-
sponding oscillator strengths in porous silicon remain the
same as those in the initial single crystal. This, of course,
is a rough approximation. When a porous structure is
formed, the far order in the grating inevitably breaks
down, which must weaken direct transitions at the center
of Brillouin’s zone k = 0 (3.4 eV, 4.2 eV). This precisely
takes place during the formation of amorphous silicon,
when, on the one hand, strong peaks of absorption and
dispersion n(hν) vanish in the ultraviolet, and, on the
other hand, the absorption and n increase in the red
spectral range near the indirect absorption edge. This
can be seen from Figs. 2d and 3c and suggests a reduc-
tion in the indirectness of amorphous silicon.

The electronic structure and optical properties of
porous silicon were theoretically and consistently stud-
ied in detail in [23, 24]. In [24], the material was repre-

f SiO2

Table 2

Volume
fraction of

skeleton (Si)
oxidized, x

Initial
volume

fraction of
silicon, fSi

Initial 
porosity, 

pin

Degree of 
oxidation s

Sample 1 35.5% 46.2% 53.8% 77%

Sample 2 21.6% 25.3% 75.0% 85%
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sented as a set of tightly bound quantum wires with
lengths of the order of a micron and widths of several
nanometers (the length-to-width ratio is of the order of
1000 : 1). The authors calculated the band gap and the
position of the exciton level as a function of wire width,
as well as the imaginary part of the dielectric function
and the absorption spectra.

In [23], porous silicon was modeled by a supercell,
in which “columns” of material were removed with a
certain periodicity. The same porosity, i.e., the percent-
age of the removed material, was achieved by different
methods: either narrow columns were removed fre-
quently or wide columns were removed rarely. The
authors analyzed the dependences of band structure and
absorption spectrum (the imaginary part of ε) on the
sizes of the removed column and on porosity. Their cal-
culations showed that the position of the absorption edge
is determined by two competing effects. First, transitions
are assisted by the scattering of carriers on the lattice of
pores, which effectively decrease the “indirectness” of
por-Si and results in a redshift of the absorption edge. Sec-
ond, quantum confinement of carriers increases the
band gap. The latter effect significantly depends on the
thickness of the silicon skeleton that remains between
the pores.

It was of interest to compare our experimental data
with theoretical calculations in order to find out
whether the simplified theoretical models correspond to
actual crystal structures.

The comparison indicates that the absolute values of
ε" and α (cm–1) calculated in [24] and the shape of the
α(hν) curves including exciton states are far from our
experimental dependences. As for the polarization
anisotropy in absorption relative to the direction of the
quantum-wire axis predicted in [24], we could not
detect it under our experimental conditions. Our struc-
tures were dots (grains) rather than wires.

The ε(hν) curves calculated in [23] for samples with
different porosities clearly show an increase in the red
tail and a decrease in the short-wavelength peaks with
increasing p, in qualitative agreement with our data.
However, the minimum percentage of the remaining
crystal material (1–p) for which the calculation was
performed (about 23.4%) is considerably higher than
that estimated in our samples, which complicates a
comparison. The authors obtained a spectrum that was
greatly blueshifted compared to c-Si. This spectrum
consisted of several peaks that emerge during transi-
tions between almost flat bands. Our measurements of the
absorption spectrum do not cover this spectral range,
which further complicates a comparison of experiment
with theory. Unfortunately, neither ε'(hν) nor n(hν)
curves are given in [23] and [24], with which a comparison
can be made in the visible spectral range. Nevertheless,
based on the measured n(hν) curves, no ultraviolet shift of
the absorption spectrum takes place in our samples, but
only a general lowering of the κ(hν) curve is observed.
Thus, the resonant frequency ω0 = 3.61 eV estimated in
JOURNAL OF EXPERIMENTAL
sample no. 2 from the curvature of the n(hν) curve
(Fig. 2b), which characterizes the position of the max-
imum of an averaged absorption bands, falls between
the first (3.4 eV) and second (4.2 eV) extrema of the
κ(hν) curve for crystal silicon [15].

5. CONCLUSION

We have comprehensively studied the properties of
the dielectric function for two por-Si samples from dif-
ferent series by measuring the dispersion curves of
refractive index n(hν) and the absorption spectra α(hν)
and κ(hν). Based on the dependences derived from
Bruggeman’s theory [17], we determined the porosities of
these samples and the possible percentages of silica (SiO2)
and the amorphous phase (a-Si) in them. The analysis was
performed by assuming that the dielectric function ε of
crystal silicon c-Si was invariable during the formation
of a porous structure. In this case, the n(hν) and κ(hν)
curves can be roughly reconciled for each sample if
they contain a large fraction of silica. The oxidation of
the silicon skeleton to produce SiO2 appears to be one
of the main reasons for the “ageing” of porous silicon
samples, i.e., the deterioration of their quality and the
attenuation of photoluminescence.

At present, we know no theoretical calculations that
could reconcile the absorption and dispersion of our
porous silicon samples without including SiO2 in their
composition. The available theories that allow for quan-
tum-dimensional effects in porous silicon (quantum wires,
supercells) fail to describe our experimental data.
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The Nature of Activation Centers in Y2SiO5 : Pr3+, Gd2SiO5 : Pr3+, 
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Abstract—A complex study of the energy spectra and relaxation channels for the excitation energy of activa-
tion centers in Y2SiO5 : Pr3+, Lu2SiO5 : Pr3+, and Gd2SiO5 : Pr3+ was performed. An analysis of the low-tem-
perature optical spectra showed that the energy parameters and the character of field splitting of the 1D2 and 3H4
activator ion terms were substantially different in crystals of different crystallographic types. The pseudosym-
metry effect was observed in splitting of the 1D2 and 3H4 terms of Pr3+ ions situated in nonequivalent crystal
lattice cation sites of Y2SiO5 and Lu2SiO5. Activator ions nonuniformly populated nonequivalent cation sites
of the Y2SiO5 crystal lattice. At high activator ion concentrations (>1 at. %), luminescence decay in Y2SiO5
could not be described by a simple exponential time dependence. The complex luminescence decay law was
caused by activator ion excitation energy migration and capture by acceptors. The role of energy acceptors was
played by activator ion dimers. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Oxiorthosilicate crystals offer much promise for the
development of new lasing and scintillating materials, in
the first place, because of their large isomorphic capacity
[1–5]. Effective scintillating systems have already been
found among oxiorthosilicates and have been extensively
studied; these are Y2SiO5 : Ce3+, Gd2SiO5 : Ce3+, and
Lu2SiO5 : Ce3+ [2, 6–8]. The mechanism of scintillating
response in these system is, however, not well under-
stood. For creating solid-state lasers with the mecha-
nism of population inversion through frequency conver-
sion toward higher frequencies [9], of special interest is
activation of oxiorthosilicates by Pr3+ ions. Diode IR
pumping of Pr3+ ions can be used for multifrequency laser
generation in the blue-green spectral region [3, 10].

Rare-earth metal oxiorthosilicates form monoclinic
crystals [1, 2, 4, 5, 11]. Oxiorthosilicate crystals, how-
ever, form two structural classes in cation sites depending
of the radius of the rare-earth metal ion [4, 5, 11]. The first
and second classes are formed by the La…Tb and
Dy…Yb (including Y) ions, respectively. Y2SiO5 (YSO)
and Lu2SiO5 (LSO) crystals have the same structural type
[1, 4, 5, 11]. The YSO unit cell parameters are a =
14.43 Å, b = 10.41 Å, c = 6.733 Å, β = 122.13°, and
V = 856.1 Å3; for the LSO lattice, a = 14.33 Å, b =
10.32 Å, c = 6.671 Å, β = 122.3°, and V = 833.8 Å3

[1, 5, 11]. Gd2SiO5 (GSO) crystals are of a different struc-
tural type. Their unit cell parameters are a = 9.16 Å,
1063-7761/01/9302- $21.00 © 0372
b = 7.09 Å, c = 6.83 Å, b = 107.58°, and V = 422.9 Å3

[5]. In the YSO lattice, one of the cation sites is a dis-
torted octahedron with four bound and two free oxygen
atoms; the Y–O distance varies in the range 2.21–2.33 Å
[4, 5, 11]. The second cation site is a coordination poly-
hedron formed by five bound and two free oxygen
atoms [4, 5, 11]. In GSO, the coordination polyhedron
of one cation site contains four bound and three free
oxygen atoms (the mean Gd–O distance is 2.39 Å), and
the coordination polyhedron of the second cation site
contains eight bound and one free oxygen atoms (the
mean Gd–O distance is 2.29 Å) [4, 5]. Nonequivalence
of cation sites in oxiorthosilicates is determined by the
special features of the structure of coordination polyhe-
dra and differences in the mean distances between the
rare-earth metal ion and oxygen atoms in polyhedron
vertices [1, 2, 4, 5, 11]. The introduction of rare-earth
metal ions as activators into oxiorthosilicate crystals
results in the formation of two types of optical centers
[5, 12].

A complex structure of spectral lines was determined
for both types of Pr3+ optical centers in the YSO : Pr3+

crystal by the method of spectral hole burning [13]. The
spectral lines of Pr3+ optical centers comprised several
spectral contours, which coalesced into one inhomoge-
neously broadened spectral contour [13]. The complex
structure of spectral lines is evidence that the Pr3+ ion can
have several different states (positions) in YSO cation
sites of both types. Thermally stimulated Pr3+ ion tran-
2001 MAIK “Nauka/Interperiodica”
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sitions between these states create an additional channel
for phase relaxation on resonance optical transitions [14].

The practical aspects of the use of activated oxiortho-
silicates are related to several fundamental problems con-
cerning the microstructure of activation centers and their
energy spectrum, the dynamics of electronic transitions,
and energy relaxation channels. The large isomorphic
capacity of oxiorthosilicates with respect to activator ions
(see above) has not been given a satisfactory consistent
explanation as yet. It remains unclear how activator ions
populate nonequivalent cation sites in oxiorthosilicate lat-
tices. Another open question is whether or not electronic
excitation energy exchange can occur between the centers
that arise as a result of activator ion localization in non-
equivalent cation sites of oxiorthosilicate crystal lat-
tices.

2. EXPERIMENTAL TECHNIQUE

The optical spectra of the crystals were recorded on
an automated spectrofluorimeter based on an NDR-23
monochromator. The luminescence spectra were excited
by an organic dye frequency-tunable laser. Luminescence
decay was recorded by time-correlated single photon
counting [15].

The YSO : Pr3+, LSO : Pr3+, and GSO : Pr3+ crystals
were grown by the Chokhral’skii method. The concen-
tration of activator ions was 0.3 at. % in LSO and GSO
and 0.3, 0.6, and 1.8 at. % in YSO.

Low-temperature measurements were taken using a
helium optical cryostat. The crystals were placed in
helium vapors.

3. EXPERIMENTAL RESULTS

The crystal field characteristics of nonequivalent cat-
ion sites in oxiorthosilicates and the conditions of populat-
ing them by activator ions were studied spectroscopically.
In particular, the low-temperature optical spectra of Pr3+

activator ions were recorded. The 1D2, 3P0, 3P1, 1I6, and 3P2

states of the Pr3+ ion were observed in the visible optical
spectrum region [16, 17]. The spectral lines corre-
sponding to optical transitions between the fundamen-
tal 3H4 term and the 1I6, 3P1, and 3P2 terms were strongly
mixed, which complicated their correct interpretation
[16, 17]. At low temperatures, the spectral lines of optical
transitions between the Stark sublevels of the fundamental
3H4 term and the 3P0 and 1D2 terms could fairly easily be
assigned [12, 16, 17]. We used the spectral region of opti-
cal transitions involving the 3H4 and 1D2 terms on the
assumption that the special features of the ligand field
microstructure should influence the splitting of the 1D2
term.

Fragments of the absorption spectra of YSO, LSO,
and GSO crystals activated by Pr3+ are shown in Fig. 1.
The spectral lines of each absorption spectrum could be
divided into two groups according to their widths (Fig. 1).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
With GSO : Pr3+, this property of the spectrum was less
manifest (Fig. 1c). Each group comprised five spectral
lines. The lines progressively broadened as their num-
ber increased (Fig. 1). This behavior is characteristic of
spectral lines corresponding to one multiplet of rare-
earth ions [16–18].

Selectively exciting luminescence into separate
groups of spectral lines (Fig. 1) gave two different
luminescence spectra for each crystal (Figs. 2, 3). The
line at the highest frequency in the luminescence spec-
tra of both types (Figs. 2, 3) was in resonance coinci-
dence with the line observed at the lowest frequency in
the absorption spectra, 1 or 1* (Fig. 1). When lumines-
cence of one type was selectively excited, we did not
observe luminescence of the other type.

Spectral lines whose intensity depended on temper-
ature could be observed in the optical spectra of the
crystals as temperature increased. For instance, the η, ζ, ξ,
and γ lines (Fig. 3) were recorded at T = 80 K. The η
and ζ lines were in resonance coincidence with spectral
lines 2 and 3, and the ξ spectral line coincided with
spectral line 2* of the corresponding luminescence
spectrum (Fig. 3). The η, ζ, and ξ, spectral lines corre-
sponded to absorption from thermally populated Stark
components of the 3H4 term. At T = 80 K, two 3H4 term
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Fig. 1. Fragments of optical absorption spectra of YSO :
Pr3+, LSO : Pr3+, and GSO : Pr3+. Spectral lines in groups
are marked by numbers and numbers with asterisks.
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Stark components were populated in optical centers of
the first type, and only one Stark component was popu-
lated in centers of the second type. For a similar reason,
the luminescence spectra of the first type contained the γ
spectral line. This line is caused by luminescence from
the second thermally populated Stark component of the
1D2 term. An analysis of the temperature-dependent spec-
tral lines allows the spectral lines in the optical spectra
of the crystals to be unambiguously interpreted and
assigned.

To inquire into the mode of the distribution of acti-
vator ions over nonequivalent cation sites, we studied
the concentration dependence of the optical spectra of
YSO : Pr3+ crystals. In the first place, an increase in the
concentration of activator ions resulted in usual concen-
tration broadening of spectral lines (Figs. 1, 4). The inte-
grated intensity of absorption by YSO : Pr3+ increased pro-
portionally to the total concentration of activator ions. To
reduce errors, we studied this dependence for two spectral
lines, 1 and 1* (Figs. 1, 4). The total area under spectral
lines 1 and 1* increased proportionally to the concen-
tration of activator ions. The areas under lines 1 and 1*,
however, changed differently. The area of spectral
line 1 increased in the ratio 1 : 2.2 : 6.5, and that of
spectral line 1*, in the ratio 1 : 1.6 : 3.2.

At a high concentration of activator ions, the spectra
contained well-defined spectral lines δ1 and δ2 (Fig. 4).
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Fig. 2. Fragments of luminescence spectra of LSO : Pr3+

and GSO : Pr3+ crystals obtained by selectively exciting
groups of spectral lines.
JOURNAL OF EXPERIMENTAL A
The frequency intervals between spectral lines 1* and δ1

and between 1 and δ2 were 8.9 and 21.4 cm–1, respectively.
The same lines, although virtually obscured by noise,
were present in the absorption spectrum of the sample
with an intermediate concentration of Pr3+ ions. In the
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Fig. 3. Fragments of optical spectra of YSO : Pr3+ crystals
at 80 K.
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Fig. 4. Absorption spectrum of YSO : Pr3+ crystals with a
high (1.8 at. %) concentration of activator ions.
ND THEORETICAL PHYSICS      Vol. 93      No. 2      2001



THE NATURE OF ACTIVATION CENTERS 375
crystal with the lowest concentration of activator ions,
the δ1 and δ2 spectral lines were absent. The intensity of
the δ1 and δ2 spectral lines depended on temperature. At
80 K, these lines virtually disappeared (Fig. 5). We did
not observe spectral lines with the same frequencies as
δ1 and δ2 in the luminescence spectrum (Fig. 5). Note
that spectral lines 5, 3, 4*, and 2* were also character-
ized by a certain structure (Fig. 1). This structure was,
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Fig. 5. Temperature dependences of the intensity of spectral
lines of activator ion dimers in YSO : Pr3+.
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Fig. 6. Luminescence decay curves for optical centers in
YSO : Pr3+ with the lowest concentration of activator ions
(0.3 at. %).
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however, independent of the concentration of activator
ions.

Luminescence decay after pulsed excitation in
YSO : Pr3+, LSO : Pr3+, and GSO : Pr3+ crystals with the
lowest concentration of activator ions (0.3 at. %) was
described by an exponential time dependence for both
optical centers (Fig. 6). The decay constants did not
depend on temperature in the temperature range 1.5–80 K.
The decay constants for two optical centers were τ(1) = 108
and τ(2) = 145 µs in YSO, τ(1) = 64 and τ(2) = 82 µs in
LSO, and τ(1) = 39 and τ(2) = 50 µs in GSO. In all crystals,
the ratio between the luminescence decay constants for
centers of the first and second type equaled 1.3.

The shape of the luminescence decay curve for opti-
cal centers of the first type changed appreciably in the
YSO : Pr3+ crystal with a 0.6 at. % concentration of acti-
vator ions. Precisely these ions make up the larger fraction
of activator ions. At a 1.8 at. % concentration of activa-
tor ions, a strong change in the luminescence decay
curve was observed for optical centers of both types
(Fig. 7). The following tendency was observed for opti-
cal centers of the first type. The higher the concentra-
tion of activator ions was, the stronger luminescence
decay deviated from the exponential law. The deviation
was more manifest at the initial decay stage (Fig. 7).
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Fig. 7. Luminescence decay curves for optical centers in
YSO : Pr3+ with the highest concentration of activator ions
(1.8 at. %).
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Table 1

YSO : Pr3+ LSO : Pr3+ GSO : Pr3+

type I type II type I type II type I type II

Term 1D2 1 0 (16529.2) 0 (16477.3) 0 (16521.7) 0 (16466.9) 0 (16657.9) 0 (16496.7)

2 59.6 364 66 373.7 42.1 43.8

3 224.9 667.9 202.2 688.4 248 248.7

4 501.2 948 498.2 951.7 525.9 940

5 801.3 1071.5 801.8 1091.4 621.8 1056.7

Term 3H4 1 0 0 0 0 – –

2 88.4 – 73.4 176 – –

3 146.3 – 140.7 263 – –

4 207.9 – 198.2 308.7 – –

5 263.7 – 254 332.2 – –

6 286.2 – 275 351.7 – –

7 344.1 – 288 381.5 – –

8 366.3 – 304 430 – –

9 388.5 418 406 499.7 – –

Note: Splitting parameters of the 1D2 and 3H4 terms are in cm–1 with respect to the positions of spectral lines 1 and 1*.
For the crystal with the highest concentration of activator
ions, the shape of the luminescence decay curve for optical
centers of both types depended on temperature. In the
crystal with an intermediate concentration of activator
ions, a weak temperature dependence was only observed
for optical centers of the first type.

4. ANALYSIS OF EXPERIMENTAL RESULTS

The presence of spectral lines with essentially dif-
ferent widths (Fig. 1) and selective excitation of lumi-
nescence of two types with different decay constants
lead us to assert that the two groups of spectral lines in
the absorption spectra of the crystals (Fig. 1) corre-
spond to Pr3+ optical centers of two types. These centers
are formed as a result of Pr3+ substitution in nonequiv-
alent cation sites of YSO, LSO, and GSO [1, 2, 4, 5].
The presence of five spectral lines in each group (Fig. 1) is
evidence of very low symmetry of cationic sites in
YSO, LSO, and GSO. The degeneracy of the 1D2 term of
the Pr3+ ion is completely removed under the crystal field
action. At helium temperatures, only the lowest Stark
component of the 3H4 fundamental term is populated, and
the five spectral lines of each group (Fig. 1) can there-
fore be unambiguously related to the five Stark compo-
nents of the 1D2 term. This allows us to determine the
energy parameters of the splitting of the 1D2 term of
Pr3+ ions under the action of YSO, LSO, and GSO crys-
tal fields. The results are summarized in Table 1. The
parameters and the character of the splitting of the 1D2

term are different for different Pr3+ centers. In YSO and
LSO crystals of the same crystallographic type [1, 2, 4, 5],
JOURNAL OF EXPERIMENTAL 
the energy parameters of the splitting of the 1D2 term
and the arrangement of the Stark components are simi-
lar (see Fig. 1 and Table 1). The unambiguous corre-
spondence of the spectral lines in the absorption spectra
(Fig. 1) to the Stark components of the 1D2 term gives
grounds for analyzing the special features of the
arrangement of both. For optical centers of the first type
in YSO and LSO crystals, the smallest energy interval
of ~60 cm–1 separates spectral lines 1 and 2. Line 3 is
situated close to lines 1 and 2. The interval between the
first three lines and lines 4 and 5 is substantially larger,
about 290 cm–1 (Fig. 1). For optical centers of the sec-
ond type, the smallest energy interval separates lines 4*
and 5*. Line 3* is situated somewhat lower in energy.
Lines 1* and 2* are separated from line 3* by an inter-
val of ~300 cm–1. A qualitative conclusion can be
drawn that the 1D2 Stark components of optical centers
of the second type are arranged in an order inverse to
that characteristic of optical centers of the first type.

Certain splitting characteristics of the 3H4 term of
activator Pr3+ ions in YSO and LSO crystals are similar
to those observed for the 1D2 term. The energy parameters
of splitting of the 3H4 term for two optical centers can be
found from the arrangement of lines in the low-tempera-
ture luminescence spectra (Figs. 2, 3). Unfortunately,
some spectral lines corresponding to optical transitions to
the high-energy Stark components of the 3H4 term could
not be interpreted unambiguously (Figs. 2, 3). For this
reason, Table 2 contains incomplete data on the split-
ting of the 3H4 term. The 3H4 term splitting parameters
in YSO and LSO are very close to each other. The energy
AND THEORETICAL PHYSICS      Vol. 93      No. 2      2001
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Table 2

T, K
YSO 0.3 at. % Pr3+ YSO 0.6 at. % Pr3+ YSO 1.8 at. % Pr3+

type I type II type I type II type I type II

77 τ0, s 108 × 10–6 145 × 10–6 108 × 10–6 145 × 10–6 108 × 10–6 145 × 10–6

α 0 0 0.4 0.14 2.3 1.98

β 0 0 0.19 0 1.24 0.99

ca, cm–3 – – 3.1 × 1019 1019 1.8 × 1020 1.5 × 1020

D, cm3 s–1 – – 6.2 × 10–12 – 6.9 × 10–12 3.5 × 10–12

1.5 τ0, s – – – – 108 × 10–6 145 × 10–6

α – – – – 2.3 1.98

β – – – – 0.73 0.54

ca, cm–3 – – – – 1.8 × 1020 1.5 × 1020

D, cm3 s–1 – – – – 5.7 × 10–12 2.5 × 10–12
intervals separating the two lowest 3H4 Stark components
are substantially different for optical centers of the first
and second types, as with 1D2 term splitting. Qualitatively
and ignoring frequency intervals, the arrangement of
the 1D2 and 3H4 term Stark components can be said to
be quasi-inverse for two Pr3+ optical centers in YSO and
LSO crystals. This effect is similar to the splitting of the
2D term of the Ti3+ ion in ligand fields of tetrahedral and
octahedral symmetry [19, 20]. The phenomena under
consideration can be treated in quasi-symmetry terms,
because nonequivalent cation sites have the lowest
point symmetry group possible [1, 2, 4, 5].

Unlike YSO : Pr3+ and LSO : Pr3+ crystals, GSO : Pr3+

gives absorption spectra in which spectral lines are
arranged similarly for optical centers of both types: the
first group is 1–2–3 (1*–2*–3*), and the second one is
4–5 (4*–5*) (Fig. 1).

It follows from a comparison of the splitting param-
eters of the 1D2 and 3H4 terms that the Pr3+ optical cen-
ters of the second type (narrower spectral lines, Fig. 1)
in YSO, LSO, and GSO crystals experience stronger
crystal field perturbation. It might seem that the lumi-
nescence decay constant should be lower for centers of
the second type. Indeed, parity selection rule restric-
tions on optical electric dipole transitions within the f
shell of rare-earth metal ions are removed by crystal
field [17–20]. It is likely that, in the systems under con-
sideration, an important role is played not only by the
amplitude but also by crystal field quasi-symmetry in
the region of admixture center localization. The contri-
bution of odd harmonics to ligand field expansion is
therefore smaller for optical centers of the second type
than for first-type centers. Precisely odd crystal field
harmonics remove restrictions on optical electric dipole
transitions within the f shell [17–20].

The concentration dependence of the δ1 and δ2 spec-
tral lines allows them to be assigned to activator ion
associates. At a comparatively low activator ion con-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
centration, 1.8 at. %, these associates can be expected
to be dimers. One or two dimer states can be observed
in optical spectra depending on the mutual orientation
of the dipole moments of ions in the dimer [21]. For
Pr3+ optical centers of the first and second types, the
lower and higher dimer energy states, respectively, are
observed. It follows that the dipole moments of inter-
acting ion optical transitions in second-type centers
have exactly opposite orientations [21]. Dimer energy
states usually [21, 22] experience strong radiationless
relaxation. For this reason, the luminescence spectra do
not contain spectral lines whose frequencies coincide
with those of δ1 and δ2 (Fig. 5).

The temperature dependence of the intensities of spec-
tral lines δ1 and δ2 is evidence of a collective character of
the excited state of dimers. Generally [21], the state of a
dimer is described by a wave function of the form
φ = a1(t)ϕ1 + a2(t)ϕ2, where ϕ1 and ϕ2 are the wave func-
tions describing the states of monomers, and a1(t) and
a2(t) are complex functions of time. If the relative phase of
a1(t) and a2(t) experiences stochastic disturbances at a fre-
quency exceeding Vdd/" (Vdd is the dipole-dipole interac-
tion value in the dimer, and " is the Planck constant),
the states of the dimer collapse. One of the reasons for
a1(t) and a2(t) phase disturbances is scattering of phonons
on admixture centers. Heating the crystal therefore
decreases the intensity of the δ1 and δ2 spectral lines
(Fig. 5). For a similar reason, dimer states are not
formed if the initial states are subject to strong radia-
tionless relaxation. This is characteristic of the 1D2 term
Stark components that lie higher in energy than the
metastable state [18]. Dimer states are therefore not
formed for the Stark components related to spectral
lines 2 (2*), 3 (3*), 4 (4*), and 5 (5*).

The complex nonexponential luminescence decay
law for YSO : Pr3+ crystals with a high activator ion con-
centration (1.8 at. %) and the dependence of the shape of
the luminescence decay curve on the concentration of acti-
SICS      Vol. 93      No. 2      2001
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vator ions and temperature (Fig. 6, 7) are consequences of
simultaneous action of two relaxation mechanisms
[23–26]. The first one operates by activator ion excita-
tion energy transfer to acceptors [23, 24]. The second
mechanism involves migration of electronic excitation
energy [23, 24]. Activator ions (Pr3+) donate electronic
excitation energy to acceptor centers (the nature of these
centers will be discussed below). Before the system lumi-
nesces a photon or there occurs energy transfer to an
acceptor center, electronic excitation migrates over Pr3+

ions of the same type. Migration and transfer of activa-
tor ion electronic excitation energy are caused by
dipole-dipole interactions between the corresponding
pairs [23–26]. If both mechanisms are operative, the lumi-
nescence decay curve for donors (Pr3+ activator ions) is
described by the dependence [24]

(1)

(2)

(3)

where τ0 is the luminescence decay constant for donors
in the absence of acceptors, R0 is the critical radius of
electronic excitation energy transfer, D is the diffusion
coefficient of electronic excitation energy, and ca is the
concentration of acceptors.

If α = 0 and β = 0, (1) describes luminescence decay
in samples with a low concentration of activator ions.
The τ0 values determined for luminescence of the first
and second type were given above. Correctly approxi-
mating the luminescence decay curves of the YSO : Pr3+

crystals with medium and maximum activator ion con-
centrations by (1) requires the α and β parameters to be
assigned some physical meaning and their values to be
specified.

Unfortunately, neither ca nor R0 are known. A rea-
sonable estimate of R0 can, however, be obtained. Sec-
ond-type luminescence decay in the YSO : Pr3+ sample
with an intermediate concentration of activator ions
(0.6 at. %) is close to exponential and can be described
by (1) with α = 0.14 and β = 0. It follows that energy
transfer to acceptors is in the nascent state, and migra-
tion is absent. First-type optical centers participate in
electronic excitation energy migration. If some part of
activator ions are acceptors (this will be shown below),
the mean distance between second-type optical centers
equals the critical radius of energy transfer. The mean
distance between second-type optical centers can be
estimated taking into account that the unit cell contains
eight Y2SiO5 formula units and only 37% of the total
concentration of activator ions are involved in the for-
mation of second-type optical centers. It follows that the
concentration of second-type optical centers (donors)
equals 2.3 × 1020 cm–3, and the mean distance between
them is 12 Å. Substituting R0 ~ 12 Å and α = 0.14 into (2)

Id t( ) I0 –
t
τ0
---- α t

τ0
----– β t

τ0
----– 

  ,exp=

α 7.4R0
3ca,=

β 8.6R0
3/2 Dτ0( )3/4ca,=
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yields the concentration of acceptors, ca ~ 1.3 × 1019 cm–3.
The concentration of acceptors is one order of mag-
nitude lower than the concentration of donors, cd =
2.3 × 1020 cm–3. It follows that uncontrolled impurities
cannot play the role of acceptors, because their concen-
tration in the raw material used to activate YSO crystals
is three orders of magnitude lower than the concentra-
tion of Pr3+ ions. This raises the question of the nature
of acceptors. The presence of the δ1 and δ2 lines in the
absorption spectrum (Fig. 4) and their absence in the
luminescence spectrum (Fig. 5) allows activator ion
dimers to be treated as effective acceptors. Considering
the topology of the YSO lattice and the concentration of
Pr3+ admixture ions equal to 0.6 at. %, we arrive at the con-
clusion that, among optical centers of the second type,
there are about 1.9% ion pairs. Their concentration is
~4.6 × 1018 cm–3, which is close to the calculated con-
centration of acceptors (~1.3 × 1019 cm–3).

The results obtained by approximating the kinetics
of luminescence of the samples by (1) at various tem-
peratures are summarized in Table 2. In (1), both α and
β parameters were varied. The α and β parameter val-
ues and R0 = 12 Å were used to calculate the concentration
of acceptors and the diffusion coefficient of electronic
excitation energy for each system and temperature. The α
value and R0 = 12 Å were used to determine ca. The D
value was found from the concentration of acceptors and
the β parameter. For optical centers of the first type, the
diffusion coefficients of electronic excitation energy were
almost equal in samples with the highest and intermediate
activator ion concentrations. The diffusion coefficients for
first- and second-type optical centers were, however, dif-
ferent. As expected, the diffusion coefficient of electronic
excitation energy decreased as temperature lowered. It
follows that diffusion of electronic excitation energy
was a thermally activated process [23, 24].

The areas under spectral lines 1 and 1* in the absorp-
tion spectra of YSO : Pr3+ were different increasing func-
tions of the concentration of activator ions (Fig. 4). This
and the special features of luminescence decay for two
types of optical centers led us to conclude that nonequiva-
lent cation sites were nonuniformly populated by activator
ions. Energy transfer between optical centers of two types
in YSO : Pr3+ did not occur in the temperature range
1.5–80 K. This finding requires special comments.
Because the frequency gap between the metastable lev-
els of two optical centers in YSO : Pr3+ is about 66 cm–1

(Fig. 1), energy transfer with the participation of phonons
might well occur at 80 K [26]. Such energy transfer
between rare-earth metal ions in solid-state matrices is
observed under less favorable conditions [26].

The totality of the experimental data obtained in this
work, their analysis, and spectral hole burning [13] and
photon echo [14] experiments for YSO : Pr3+ shed light
on the microscopic nature of the large isomorphic
capacity of oxiorthosilicates [1, 2, 4, 11]. Cation sites in
oxiorthosilicate crystals are in a certain sense fairly
 AND THEORETICAL PHYSICS      Vol. 93      No. 2      2001



THE NATURE OF ACTIVATION CENTERS 379
“loose” because of high mobility of free oxygen atoms
in coordination polyhedra. This makes it possible to
optimize (from the point of view of free energy minimi-
zation) the geometry of activation complexes (“activa-
tor ion + oxygen polyhedron”) in doping oxiorthosili-
cate crystals by various rare-earth metal ions.

5. CONCLUSION
An analysis of the low-temperature optical spectra

of the YSO : Pr3+, LSO : Pr3+, and GSO : Pr3+ crystals
shows that the energy parameters and the character of field
splitting of the 1D2 and 3H4 activator ion terms are substan-
tially different for crystals of different crystallographic
types. The pseudosymmetry effect is observed in
YSO : Pr3+ and LSO : Pr3+ for the splitting of the terms of
Pr3+ ions situated in nonequivalent cation sites of the
crystal lattices. Activator ions nonuniformly populate
nonequivalent cation sites of the YSO crystal lattice. At
high activator ion concentrations (above 1 at. %), acti-
vator ion luminescence decay in YSO : Pr3+ is not
described by a simple exponential time dependence.
The complex decay law is caused by co-occurrence of
two relaxation processes involving migration and cap-
ture by traps of activator ion excitation energy. Energy
acceptors are activator ion dimers.
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Abstract—The variations of the pitch of smectics C* in thin planar layers in an external electric field and their
dependence on the surface anchoring are investigated theoretically. The proposed mechanism of the change in
the number of half-turns of the helical structure in a finite-thickness layer upon a change in the applied field is
the slip of the director on the surface of the layer through the potential barrier of surface anchoring. The equa-
tions describing the pitch variation in an external field and, in particular, the hysteresis in the jumpwise varia-
tions of the pitch for opposite directions of field variation are given and analyzed for arbitrary values of the field.
For weak fields, it is found that the pitch variation in the layer is of a universal nature and is determined by only
one dimensionless parameter, Sd = K22/dW, where K22 is the Frank torsion modulus, W is the surface anchoring
potential, and d is the layer thickness. The possibility of direct determination of the form of the anchoring poten-
tial from the results of corresponding measurements is considered. Numerical calculations for the deviation of
the director from the direction of alignment on the layer surface and pitch variations, as well as the points of
pitch jumps and hysteresis in the field, are made for the Rapini model anchoring potential for values of the
parameters for which the pitch variation weakly depends on the direction of the field applied in the plane per-
pendicular to the spiral axis of smectics C*. The changes in the pitch variation in stronger fields are discussed,
and the optimal conditions for observing the discovered effects are formulated. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Interest in the detailed analysis of smectics C* pos-
sessing unique properties, since they are not only char-
acterized by local anisotropy of dielectric parameters
but also exhibit spontaneous electric polarization, has
increased considerably in recent years (see, for exam-
ple, [1]). This interest is partially explained by general
physical factors (these crystals are characterized by a
large number of various nontrivial phases; see, for
example, monograph [2]). Besides, numerous addi-
tional advantages of smectics C* over traditional nem-
atic crystals have not been realized as yet in applica-
tions. Since smectics C* are widely used in developing
information display systems, controllable optical trans-
parencies, and for many other purposes, an analysis of
their properties in confined geometries is extremely
vital. The study of the optical parameters of thin layers
of smectics C*, including the influence of external
agencies on them, provides information on the change
in their structure in thin layers and on the dynamics of
these changes, which is important for applications as
well as for understanding the physics of liquid crystals.

It is well known that in the presence of surface
anchoring forces in thin planar layers of smectics C*,
jumpwise pitch variations take place upon a continuous
variation of an external action [1, 3]. Such jumpwise
1063-7761/01/9302- $21.00 © 20380
changes were studied most comprehensively for the
pitch of cholesteric liquid crystals upon the variation of
temperature [4, 5]. In particular, these changes are man-
ifested in precise measurements in linear and nonlinear
optics of liquid crystals [6, 7]. Moreover, jumpwise
variation of the pitch of helical structures of smectics
C* display a temperature hysteresis [4, 5]. This leads to
bistability of liquid crystals, which is important from
the viewpoint of numerous applications of liquid crys-
tals.

Phenomena similar to the above-mentioned temper-
ature hysteresis must exist in an external field applied to
thin layers of smectics C* due to adhesive forces acting
on their surfaces (see, for example, [8,9]). However, the
corresponding changes in the parameters of these crys-
tals (especially the hysteresis of these changes) in
external electric or magnetic fields have been studied
less comprehensively, although the jumps and hystere-
sis in the variation of parameters in an external field are
important from the physical point of view.

The present work is devoted to an analysis of pitch
variations in thin layers of smectics C* in an external
electric field. This problem is more complicated than
the problem of temperature variations of the pitch in
thin layers with surface anchoring since the field
induces not only a change in the spiral pitch in these
001 MAIK “Nauka/Interperiodica”
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crystals, but also distortions of the spiral itself (it
becomes unharmonic). In particular, the so-called frus-
trations take place in smectics C* due to a competition
between enantiomorphism facilitating a nonuniform
helical ordering of molecules and the action of an exter-
nal field striving to align the molecules along the field.
The compromise between these opposite tendencies
(and, hence, elimination of frustrations) may be
achieved in the system due to the formation of domain
walls or solitons separating the regions with a practi-
cally uniform orientation. For example, an ideal spiral
of the director field is transformed into a lattice of 2π
solitons in a magnetic field (or in an electric field in the
case of cholesteric liquid crystals which display no
spontaneous polarization). This means that the regions
of uniform orientation of the director along the field
become separated by domain walls in which the orien-
tation changes by 2π, while in smectics C* in an elec-
tric field, a π-soliton lattice is formed.

In this work, we determine the conditions under
which the simple continual theory of elasticity taking
into account surface anchoring is applicable for
describing the structural variations of smectics C* in
layers in an external field. For these conditions, a gen-
eral analysis of pitch variation (including pitch jumps)
in a field, as well as of the hysteresis of these variations,
is carried out. It is shown that in weak fields, pitch vari-
ations exhibit a universal behavior in a layer upon the
application of an electric field, which is similar to tem-
perature variations of the pitch in smectics C* [10].
Numerical calculations of pitch variation and of the
hysteresis of pitch jumps in smectics C* in an electric
field are made for the case of strong surface anchoring
and the effects accessible for experimental observation
are outlined.

2. BASIC EQUATIONS

Let us consider the behavior of a spiral pitch in a
thin planar layer of smectic C* in an electric field per-
pendicular to the spiral axis. A similar problem for a
bulk cholesteric was considered for the first time in [11,
12], for a bulk smectic C* in [13], and for a cholesteric
layer with the spiral axis perpendicular and parallel to
its surface in [14] and [15], respectively. We will
assume that the forces of surface anchoring acting on
the two surfaces of the layer are identical and that the
directions of the axes of the director alignment on both
surfaces are preset (and generally different). The prob-
lem of the spiral unwinding in a layer of a smectic C*
in the presence of surface anchoring forces (in particu-
lar, the jumps of the spiral pitch) differs qualitatively
from the corresponding problem for a bulk crystal. In
the case of confined geometry with surface anchoring,
simple equilibrium models of liquid crystals do not
always provide a correct description of the behavior of
a smectic C* under the action of an external factor. In
particular, the points at which the parameters of liquid
crystals in a layer experience jumpwise variation deter-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
mined using such models may not reflect the actual
course of the process. A correct description of director
field variations in such cases requires an analysis of the
liquid crystal dynamics. A simple illustration of this
fact is the behavior of a spiral in a layer of a smectic C*
with an infinitely strong surface anchoring in an exter-
nal field. In the simple continual theory taking the sur-
face anchoring into account, the variations of an exter-
nal field cannot change the number of turns of a helix in
the layer; they simply deform the helix. In actual prac-
tice, however, the number of helix turns changes under
the action of an external factor (field, temperature, etc.)
even in the case of a very strong anchoring and the sys-
tem passes to an equilibrium state corresponding to the
intensity of the external action. In the models taking
into account the dynamics of liquid crystals, such tran-
sitions are possible due to fluctuations in the orientation
of the director. The example with and infinitely strong
surface anchoring describes an extreme situation in
which the simple theory is completely inapplicable. In
the general case of a finite force of surface anchoring,
fluctuations displace (on the scale of the external effect)
the points of jumps in the parameters of a liquid crystal
layer, determined by using the continual approach,
towards a decrease in the observed hysteresis in a
change in the parameters of the layer. In some cases, it
is fluctuations that determine the jump mechanism,
while in other cases the fluctuations lead to the above-
mentioned displacement of the jump points determined
using the continual approach. The specific mechanism
of a jump in the given case depends on the parameters
of the problem of liquid crystals in a layer. We will
assume in the subsequent analysis that the jump mech-
anism is associated with overcoming the potential bar-
rier of surface anchoring forces by the director on the
surface; for this reason, the problem will be solved for
the corresponding range of liquid crystal parameters in
a layer (see [10]).

It should be noted that in contrast to [11, 12, 14],
where spontaneous ferroelectric polarization in liquid
crystals was absent, we do not assume that the sponta-
neous polarization in smectics C* is equal to zero. We
write the expression for the free energy in a layer placed
in an electric field in the form

(1)

where FV(E) is the volume density of free energy of
smectics C* in an external electric field E, FS is the sur-
face free energy, and integration is carried out over the
layer volume.

The surface free energy can be expressed in terms of
the surface anchoring potential and in the simplest case
has the form

(2)

F E( ) FS FV E( ) V ,d∫+=

FS WS ϕ iS( ),∑=
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where summation is carried out over both surfaces of
the layer, WS(ϕ) is the surface anchoring potential, and
ϕiS is the angle of deviation of the director on the ith
surface of the layer from the alignment direction.

It was mentioned above that smectics C* are unique
systems with spontaneous electric polarization; for this
reason, it is necessary to take into account in the general
case both the linear (in an electric field) contribution to
the free energy, associated with nonzero spontaneous
polarization, and the quadratic contribution associated
with anisotropy of permittivity. Moreover, it is well
known [3, 16, 17] that any deformation of the director
field in liquid crystals may lead to the emergence of
electric dipole polarization (the so-called flexoelectric
effect). In the case of strong deformations of the direc-
tor field, the corresponding contribution to the free
energy of liquid crystals in an electric field may become
comparable to the above-mentioned dielectric and fer-
roelectric contributions.

Surface anchoring, as well as an external field, leads
to frustrations; however, a compromise between the
opposite tendencies in this case may be reached more
easily since enantiomorphism is significant in the entire
volume of the liquid crystal, while surface anchoring
acts in a narrow surface layer, ξ ≈ K/W, where K is the
characteristic elastic modulus and W is the characteris-
tic anchoring potential.

In the general case, W is a function of the polar and
azimuthal angles formed by the director with the nor-
mal to the surface, W(θ, ϕ), and the problem of minimi-
zation of the total free energy becomes very compli-
cated. Since we aim mainly at determining qualitative
dependences, we assume that W(θ, ϕ) can be factorized
(W(θ, ϕ) = W1(θ)W2(ϕ)) so that W1(θ) = W1(θ – θ0),
where θ0 is the angle of tilt of the director, and the
potential W1(θ) is such that a very strong anchoring in
the polar angle (θ – θ0) takes place. As regards W2(ϕ),
the anchoring energy for this function can be arbitrary.

We do not assume that such a simplified model of
surface energy is necessarily applicable to all known
smectics C*. Our aim is much more modest: to consider
the consequences of our simplified model and to com-
pare them with experimental data. It should also be
noted that in the case of cholesteric liquid crystals, our
model anchoring potential (with θ0 = 0) is quite justi-
fied from the physical point of view.

Let us first consider cholesteric liquid crystals with
zero spontaneous polarization. In this case, the volume
component of the free energy density FV(E) has the
familiar form

(3)

FV E( ) 1
2
--- K11 divn( )2[= K22 n curln⋅ q0–( )2+

+ K33 n curln×[ ] 2 ]
εa n E⋅( )2

8π
-----------------------+

+ e1E · n curln×[ ] e3ndivn,+
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where Kii are elastic moduli, q0 = 2π/p0, p0 being the
pitch of the cholesteric spiral, which has an equilibrium
value for a bulk liquid crystal, and e1 and e3 are the flex-
oelectric coefficients.

Smectics C* have the spontaneous polarization Ps,
whose direction is unambiguously determined by sym-
metry considerations: Ps = Psn × l, where l is a unit vec-
tor perpendicular to smectic layers.

Thus, expression (3) for the free energy of these
crystals must be supplemented with the additional term
Ps · E. Taking into account the symmetry properties of
smectic C*, we can write its director in the form n =
lcosθ + csinθ, where θ is the angle of tilt of molecules
in smectic layers, which is determined by intermolecu-
lar forces, and c is the so-called c director which singles
out a certain direction in the plane of smectic layers.

The elastic energy of a smectic C* also contains the
contribution associated with the compression of smec-
tic layers, which, however, is not affected by an external
field and hence can be disregarded. The orientation
energy component important for our analysis can be
presented in the form of an expansion in the gradients
of l and c (it is also convenient to introduce the third
vector p = c × l to have the unit vectors of the local sys-
tem of coordinates).

The general expression for the free energy of a
smectic C* is very cumbersome in view of its low sym-
metry (e.g., it contains 14 flexoelectric terms alone!).
Considering that the values of phenomenological con-
stants appearing in the relevant terms are not known
exactly, we will consider the simplest situation, in
which torsion is the only admissible deformation,
which leads to the following expression for the volume
density of free energy [13, 16] (in the case of choles-
teric liquid crystals, we must put Ps = 0):

(4)

where K22 is the elastic torsion modulus, p0 is the equi-
librium value of the spiral pitch in a bulk smectic C* in
zero field, ϕ is the azimuthal angle of molecular orien-
tation measured from the direction of the applied field,
εa is the dielectric anisotropy of the liquid crystal, Ps is
its spontaneous polarization, and d is the layer thick-
ness.

The same type of expression for free energy in the
general case also corresponds to the boundary regions
of the layer. In order to derive this expression, we must
write all possible invariants constructed on the basis of
the three vectors p, c, and l for both surfaces of the
layer. Besides, in the general case, we must take into
account the fact that the angle of tilt of molecules on the
surface might differ from its value in the bulk of the

FV E( )
K22d

2
----------- dϕ

dz
------ 2π

p0
------– 

  2

=

+ EPs ϕ
εaE2

16π
----------- 2ϕ ,cos+cos
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layer, and the order parameter does not remain constant
over the layer thickness [18]. Moreover, a domain
structure may be formed on the surface of a layer of fer-
roelectric liquid crystals. The physical mechanism
responsible for this domain structure is associated with
the dipole interaction. Besides, owing to the dipole
interaction, the polarization can modify the spatial dis-
tribution of the order parameter. This interaction must
be added to the surface and volume energies by intro-
ducing the so-called depolarization field Ed [19] in the
form of the term –Ed(Ps + Pf )/2, where Ps and Pf are the
spontaneous and flexoelectric polarizations, respec-
tively.

For a thin layer having a thickness d and being
unbounded on the surface, this field differs from zero
only if the direction of the total polarization P = Ps + Pf

is not parallel to the surface of the layer. Introducing the
angle χ between the normal to the surface and the polar-
ization vector P, we can write the expression for the
depolarization field in the form [19]

(5)

where ε0 is the isotropic permittivity component and the
integration is carried out over the layer thickness.

We may consider in principle the behavior of a
smectic C* in a field, taking into account all the above-
mentioned contributions to the free energy of the layer.
However, a comparison with the experimental data
requires the knowledge of many phenomenological
parameters, most of which are unfortunately unknown.
For this reason, we will not minimize the free energy of
the layer in its most general form in the presence of
unknown parameters since the theory is divested of its
predictability in this case. Instead, we will be using the
“principle of minimum requirements”; i.e., we will
carry out our analysis using the simplest (but not trivial)
model, which ensures experimentally verifiable predic-
tions under relatively weak limitations on generality.
This means that we will use an expression for free
energy in the form (4), assuming that the direction of
the polarization vector P is rigidly connected with
director n and disregarding the dipole interaction. In
this case, the surface anchoring energy assumes the
standard form (2) and is a function of the azimuthal
angle ϕS between the director on the surface and the
alignment direction only. The equation describing the
spatial variations of the director orientation in the field,
i.e., ϕ(z), where the z axis determines the direction of
the spiral axis and is perpendicular to the layer surface,
can be obtained in the conventional way [11–13] from
the condition for the minimum of the free energy (1).

The volume component of free energy given by the
integral in relation (1), which will be denoted by
FIV(E, N, ϕ1S, ϕ2S), where N is the number of half-turns
of the director over a layer of a finite thickness and ϕ1S

Ed z( ) 4πε0 χ P z( ) l
d
--- P z( ) zd∫–cos

2
,–=
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and ϕ2S are the angles formed by the director with the
direction of alignment on the layer surfaces, turns out to
be a function of not only magnitude of the applied field
E, but also the mutual orientation of the director on the
layer surfaces and the direction of the applied field. The
procedure of minimization of the free energy (1) in this
case is reduced to determining the minimum value of
the sum of the surface energy and the functional
FIV(E, N, ϕ1S, ϕ2S) as a function of ϕ1S and ϕ2S. It should
be noted that the minimum of functional FIV(E, N, ϕ1S,
ϕ2S) for fixed values of ϕ1S and ϕ2S is realized for a cer-
tain function ϕ(z), describing the director distribution
over the layer thickness and corresponding to the solu-
tion of the initial problem for an infinitely strong sur-
face anchoring with preset direction of alignment (ϕ1S

and ϕ2S) on the surfaces. This means that the equilib-
rium configuration of the spiral in the field is defined by
the equations

(6)

The equilibrium value of free energy F(E) for a fixed
value of field E can be found by substituting the func-
tion ϕ(z) as well as the quantities ϕ1S and ϕ2S deter-
mined from Eqs. (6) into expression (1). The system of
equations defining the equilibrium values of ϕ1S and ϕ2S

for a fixed value of field E is given by equations con-
taining the surface anchoring potential WS(ϕi), the vol-
ume density of free energy FV (E), and the function ϕ(z)
defining the equilibrium distribution of the director in
the layer for the field E:

(7)

Equations (6) and (7) solve, in the general form, the
problem of determining the effect of the electric field
on the director distribution in the layer of a smectic C*
of finite thickness in the presence of surface anchoring.
It can be seen from system (7) that the decisive factor in
the solution of the above-formulated problem is the dis-
tributions of the director in the layer and of the angles
of deviation of the director from the direction of align-
ment on the layer surfaces.

3. INFINITELY STRONG SURFACE ANCHORING

It follows from the previous section that the solution
of the problem of field distortion of the director distri-
bution in a layer of a smectic C* of finite thickness for

∂
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∂
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dWS ϕ( )
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infinitely strong anchoring at the surface is a stage in
the solution of the corresponding problem in the case of
finite surface anchoring forces. In this case, we must
retain only the volume term in formula (1) for free
energy, assuming that the orientations of the director on
both surfaces of the layer are preset, i.e., assuming that
angles ϕ1S and ϕ2S are known. Then the conditions for
the minimum of free energy (1) are determined by the
same Euler equations as for a bulk smectic C* [13]:

(8)

The first integral in this equation is the same as for a
bulk smectic C*:

(9)

where the constant C1 has to be determined.

Thus, the equation for the function ϕ(z) assumes the
form

(10)

Integration of this equation defines the function ϕ(z) in
an implicit form with the help of the following relation:

(11)

Constants C1 and C2 in this relation are determined by
the equilibrium distribution of the director in a layer of
the liquid crystal for zero value of field E:

(12)

where z = 0 corresponds to the middle of the layer; for
this reason, angles ϕ1S and ϕ2S are measured not from
the direction of preferred orientation on the surface, but
from point z = 0 and, hence, have opposite signs. They
also contain an angle incursion associated with the rota-
tion of the director in the bulk of the layer upon a
change in the coordinate along the z axis from its center
to the surface. Consequently, if, for example, an inte-
gral number of half-pitches fit into the layer thickness
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in zero field, and the direction of alignment and surface
anchoring are identical for both surfaces, we obtain
C1 = (2π/p0)2 and C2 = 0 (the pitch in the layer in zero
field in this case coincides with the pitch p0 in a bulk
liquid crystal in zero field).

The function ϕ(z, E) defined unambiguously in this
way describes the distortion of the structure of the
director in the layer upon field variations in the case
when the orientations of the director on the layer sur-
faces are independent of the field and also determines
the changes in the spiral deformation and the volume
component of free energy upon a change in the values
of ϕ1S and ϕ2S. It is appropriate to note here that for an
infinitely strong surface anchoring, the number N of
half-turns of the spiral in the layer thickness does not
depend on the field and coincides with the initial num-
ber of half-turns in zero field. The action of the field in
this case is reduced only to the deformation of a helix
in the layer.

In order to solve the problem of the action of the
field on the director structure in a layer of a liquid crys-
tal for finite surface anchoring forces, we must substi-
tute the obtained functions of the field ϕ(z, E, ϕ1S, ϕ2S),
containing ϕ1S and ϕ2S as parameters, into system (7),
which determines the angles ϕ1S and ϕ2S of deviation of
the director on the surface, which have equilibrium val-
ues for each value of field E, and the deformation of the
helix in the bulk of the layer corresponding to these
angles. For finite anchoring forces, the number of half-
turns of a helix fitting into the thickness of a layer may
change under the action of the field (the helix is not
only deformed but also uncoiled). The above remark
concerning the independence of the number of helical
turns on the applied field for an infinitely strong surface
anchoring refers to an idealized model of a smectic C*,
which rules out the formation of defects in the field of
the director. In actual experiments, the number of heli-
cal pitches fitting into the layer thickness may also
change with the applied field, but this occurs due to the
formation of a defect layer in the field of the director in
the bulk, followed by the relaxation of the director field
to its equilibrium configuration.

4. PITCH JUMPS INDUCED 
BY FIELD VARIATIONS

A general analysis of Eqs. (1)–(12) shows that as in
the case of temperature-induced variations of the pitch
in a layer of a smectic C* with surface anchoring [10],
the change in the helical pitch induced by field varia-
tions exhibits, along with smooth variations as a func-
tion of the field, jumps at certain values of the field (see
also [14]). At the points corresponding to a certain
value of the field, the number of turns in the helix of a
smectic C* in a finite-thickness layer experiences a
jump. It was found that the points corresponding to the
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jumps do not coincide for opposite directions of field
variation. This means that we are dealing with a hyster-
esis similar to that observed long ago in the confocal
texture of a smectic C* [8].

The above formulas describe the pitch jump in the
mechanism of director slip over the surface through the
surface anchoring potential barrier. However, it was
observed in [4, 5] and confirmed theoretically in [10]
that the jump mechanism, i.e., the helical configura-
tions through which a transition between states differ-
ing in the number of turns over the layer thickness
occurs in actual experiments in a field, depend on the
parameter Sd = K22/dW. For values of this parameter
larger than the critical value Sdc = 1/2π, the mechanism
of transition is associated with the slip of the director
through the surface anchoring potential barrier in the
layer, and the above formulas describe the real jump
process. For values of Sd smaller than Sdc, the form of
the jump is studied insufficiently and may be associated
with the dynamics of the liquid crystal and with the for-
mation of defects in the planar texture of a smectic C*
(these defects have already been mentioned in connec-
tion with infinitely strong anchoring, for which Sd = 0),
followed by their relaxation. For this reason, there
exists a limitation (in parameter Sd) on the applicability
of the formulas derived above to real experiments. We
will confine our subsequent analysis of the behavior of
a layer of a smectic C* in an external field to the values
of parameter Sd exceeding Sdc, for which the mecha-
nism of director slip through the barrier of surface
anchoring forces “operates.”

Since the jump (and hysteresis) phenomena are con-
sequences of metastable states existing in the system, it
would be interesting to analyze the height of the barrier
between these states and its dependence on the field
strength. In analogy with the case of temperature hys-
teresis [10], the expression for the barrier height
between helical configurations differing by a half-turn
can be presented in the form

(13)

where ϕc is a certain critical angle of deviation of the
director on the surface, beyond which the helical con-
figuration in the layer changes jumpwise. (Here and
below, we consider for simplicity the symmetric prob-
lem under the assumption that the alignment directions
on both surfaces coincide; in this problem, ϕ1S = –ϕ2S =
ϕS and the orientation of the director on the surfaces of
the layer is defined by the same parameter ϕS.) The
equilibrium value of the angle ϕS(E) of deviation of the
director on the surface is determined by the solution of
Eqs. (7), while the free energy F(E, ϕS(E), Sd), which
has the equilibrium value for a given field E, is defined
by formula (1) after the substitution of the director dis-
tribution over the cell thickness determined from

B E Sd,( ) Fc E ϕc Sd, ,( )= F E ϕS E( ) Sd, ,( ),–
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Eqs. (6) and (7). The free energy Fc(E, ϕc, Sd) is also
determined by formula (1) upon the substitution of the
director distribution over the cell thickness determined
from Eqs. (6) and (7) for field E under the condition
that the angle of deviation of the director on the surface
coincides with the critical value ϕc. In other words, the
free energy Fc(E, ϕc, Sd) contains the volume compo-
nent FIV(E, N, ϕS) corresponding to an infinitely strong
surface anchoring for the orientation of the director cor-
responding to the critical angle. As expected, as the
angle ϕS(E) attains the critical value, the barrier height
vanishes and a jumpwise transition between configura-
tions differing in the number of helical turns by a half-
turn occurs in the layer. In the case of temperature-
induced variations of the pitch, the critical angle is
determined only by the shape of the surface anchoring
potential [10]. It is clear from general considerations
that in the presence of pitch jumps in the field, the value
of the critical angle depends not only on the form of the
surface potential, but also on the magnitude and direc-
tion of the field (if it is strong).

The value of the pitch pd(Ej) in a layer immediately
before its jump can also be expressed in terms of the
critical angle ϕc whose value is now determined by the
form of the anchoring potential and by the applied field.
Naturally, the value of the field Ej for which a jump
takes place can be used for determining the angle
ϕ0(Ej) of free rotation of the director in the absence of
surface anchoring as well as the value of the helix pitch
p(Ej) for this field Ej  in a bulk smectic C* [13].

It was mentioned above that the critical angle in the
case of temperature-induced pitch variations is the
same for all values of the parameters of the layer (prob-
ably except for the parameter specifying the form of the
surface anchoring potential), while the calculation of
the critical angle for a nonzero field is a separate prob-
lem. It can only be stated beforehand that the value of
ϕc for the symmetric situation under investigation does
not exceed π/2. As in the case of temperature-induced
variations of the pitch [10], the condition for the attain-
ment of the critical value in the system is the vanishing
of the height of the barrier between helical configura-
tions in the layer differing by half-turn of the helix,
which is equivalent to the absence of the system resis-
tance at this point to the rotation of the entire config-
uration of the helix in a layer as a whole. This means
that the derivative of the equilibrium free energy with
respect to ϕ1S or ϕ2S vanishes for a fixed difference
ϕ1S – ϕ2S for a certain value of field Ej. Consequently,
the corresponding field Ej and the value of ϕc can be
determined from the condition

(14)

under the additional requirement that the variation is
taken at the point ϕ1S = –ϕ2S for ϕ1S – ϕ2S = const = 2ϕc

and that ϕS is determined by function ϕ(E)S.
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5. STRONG SURFACE ANCHORING

Generally speaking, the value of free energy (1)
depends not only on the magnitude of the applied field,
but also on the mutual orientation of the alignment
directions on the surfaces of the layer and the direction
of the applied field. However, this dependence may be
very weak and can be neglected for a strong surface
anchoring and a large number of turns in the layer
thickness d. In order to demonstrate this, we divide the
integral in expression (1) into two regions: the internal
region containing an integral number of turns in the
helix and the surface region containing less than one
helix turn. The free energy of the internal part of the
layer attains its minimum value for the helical configu-
ration realized in the corresponding problem for a bulk
smectic C* [13] and does not depend on the direction of
the field in the plane perpendicular to the helix axis. If
the volume free energy of the second (surface) region is
much smaller than the surface free energy FS, it can be
disregarded. The possibility of such disregard is deter-
mined by the condition

(15)

Naturally, in the case of very weak fields, condition
(15) holds in all cases. In order to estimate the upper
field limit for the fulfillment of condition (15), we can
put E = αEc, where Ec is the critical field of unwinding
of the helix, which is determined by the parameters of
the smectic C* [3, 13, 16], and α is a certain numerical
coefficient determined by condition (15). It should be
emphasized that when condition (15) is satisfied, the
deviation of the director from the preferred orientation
direction on the surface becomes universal and inde-
pendent of the details of the director field configuration
in the bulk of the layer.

It should also be noted that we presume the homo-
geneous state of the liquid crystal in the layer. For this
reason, domain walls in the layer of the liquid crystals
are disregarded in our analysis. In the approximation
formulated above, the angle of deviation of the director
from the direction of the alignment as a function of the
field (under the assumption that the orientation is the
same on both surfaces of the layer) can be calculated on
the basis of relations similar to the equations for the
temperature-induced variations of the director orienta-
tion [10]:

(16)

where we have omitted the subscript S on the angle of
deviation of the director on the surface, p(E) is the pitch
in the field E in the bulk smectic C* [13], and ϕ0(p(E))
is the angle of deviation of the director on the surface
from the alignment direction in the absence of anchor-
ing for a harmonic helix with pitch p(E).
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The values of the pitch pd(Ej) in a layer just before
its jump can also be expressed in terms of the critical
angle ϕc, whose value under the assumptions made here
are determined quite exactly by the form of the anchor-
ing potential (naturally, the angle ϕ0(Ej) of free rotation
of the director; i.e., the helix pitch p(Ej) in a bulk smec-
tic C* for the jump field Ej, can also be determined
from the value of Ej):

(17)

where N is the number of half-turns of the helix in a
layer of thickness d in the initial equilibrium configura-
tion of the helix in zero field, Ej is the value of the field
corresponding to the pitch jump, and the angle of free
rotation of the helix for this value of the jump field is
given by

(18)

Thus, if we know the shape of the surface anchoring
potential and the behavior of the helix pitch in a bulk
smectic C* as a function of the applied field, the above
relations determine the behavior of the pitch in a finite-
thickness layer as a function of the applied field pro-
vided that the field is weak and satisfies the inequality
(15). The same formulas can also be used for solving
the inverse problem, namely, the reconstruction of the
surface anchoring potential from the experimentally
determined field dependence of the helix pitch in a
finite-thickness layer.

6. FIELD-INDUCED HYSTERESIS
OF PITCH VARIATIONS IN A LAYER

In order to describe field-induced variations of the
pitch in a layer, we must specify the shape of the sur-
face anchoring potential WS(ϕ) [20, 21]. However, even
without specifying the shape of this potential, we can
qualitatively determine the variations of the pitch in a
layer of a smectic C* as a function of the applied field.
In order to analyze the field dependence of the pitch in
the layer and, in particular, to determine the values of
the field at the points of pitch jump corresponding to the
change in the number of half-turns of the helix of the
smectic C* in the layer by unity, we present the results
of the corresponding analysis for a strong surface
anchoring for which we can assume that the critical
angle ϕc is determined by the shape of the surface
anchoring potential. The orientation of director on the
layer surface coincides with the alignment direction for
the field value such that an integral number of half-
pitches p(E) of the helix fits into the layer thickness for
a bulk smectic C* in an external field E; i.e., ϕ(E) = 0.
When the field deviates from this value, the values of
ϕ0(E) and ϕ(E) differ from zero. For a certain value of
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the field, the free energies of two helical configurations
with a number of half-turns in the layer differing by
unity become equal, but the transition between these
configurations takes place not at this point on the field
scale, but upon a further change in the field due to the
presence of a surface anchoring potential barrier
between these configurations. Thus, a field hysteresis
emerges during the transition; i.e., the points corre-
sponding to the transition on the field scale are different
for different directions of field variation. In actual prac-
tice, the pitch jump due to hysteresis takes place for the
field value determined by the condition ϕ(E) = ϕc,
where ϕc is the critical angle at which the jumpwise
change in the helix pitch takes place.

For example, in the case of strong anchoring, we can
readily conclude that the solution of Eq. (16) for ϕ is an
odd function of ϕ0(E) and is bounded by the values ϕc

proceeding from the natural assumption that potential
WS(ϕ) is an even function of ±ϕc, viz., the angle of devi-
ation of the director from the preferred orientation on
the surface of the layer. (It should be recalled that in this
case, ϕ0(E) and ϕ(E) are measured from the direction of
alignment and might have different values depending
on the magnitude of field E.) For example, when angle
ϕ attains one of the limiting values of ϕc, the pitch of a
cholesteric helix in the layer changes jumpwise and
angle ϕ assumes a new value also in a jump. If the point
of the jump corresponded to the angle ϕ0(Ej+) of free
rotation of the director, the value of this angle determin-
ing the value of ϕ after the jump is equal to ϕ0(Ej+) –
π/2, but in a new helical configuration with the number
of half-turns in the layer thickness differing by unity
from the previous value. If the field varies in the oppo-
site direction, the pitch jump occurs when angle ϕ
attains the other limiting value (–ϕc) and the corre-
sponding value of free rotation angle is ϕ0(Ej–) =
−ϕ0(Ej+) (where Ej– is the field value corresponding to
the jump in this direction of field variation). This rela-
tion leads to the expression connecting the values of
pitches of the helix in the field for a bulk smectic C* at
the points corresponding to the pitch jump in the field
for opposite directions of its variation [5]:

(19)

where N is the number of half-pitches in the layer for
the initial configuration of the helix (before the jump
for the field value Ej+ and after the jump for field values
Ej–).

1
p E j+( )
---------------- 1

p E j–( )
----------------+

N 1/2–
d

------------------,=

d
1

p E j+( )
---------------- 

  1
p E j–( )
----------------–

=  
∂WS ϕ( )/∂ϕ( )

πWSd

--------------------------------- 
 

ϕ ϕ c=

4ϕc/π 1–
2

-----------------------,+
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The fist relation from (19) is quite universal and
does not depend in any way on the surface anchoring
force at first glance. In fact, the values of the jump fields
Ej+ and Ej– depend on the surface anchoring, to be more
precise, on the parameter Sd. This expression itself
determines the relation between the values of the fields
of the pitch jumps for opposite directions of field vari-
ation, i.e., the field hysteresis in pitch variations, which
does not depend on the specific shape of the surface
potential, and possesses predictability which can be
verified experimentally. Namely, if the value of the
pitch is measured experimentally at the jump point for
a certain direction of field variation in the case of a
strong surface anchoring, the value of the pitch at the
jump point for the opposite direction of field variation
can be calculated using formula (19) and subjected to
experimental verification. In particular, it follows from
formula (19) that in the limit of vanishingly weak sur-
face anchoring (i.e., for Ej+  Ej–), the value of the
pitch at the jump point is d/(N – 1/2) as expected [4],
and hysteresis is absent. The same formula implies that
as the layer thickness increases, the hysteresis loop
becomes smaller (to be more precise, hysteresis
decreases upon an increase in N for a fixed Sd).

The results obtained in this and in the previous sec-
tion show that, as in the case of temperature-induced
variations of the pitch, the variations of the helix in a
layer in weak fields (for strong anchoring) are universal
by nature, which is manifested in that their form
depends not on the separate parameters of the sample
under investigation, but only on one dimensionless
parameter Sd.

7. PITCH VARIATION 
IN THE RAPINI MODEL POTENTIAL

In the Rapini model (see, for example, [3, 20, 21]),
the surface anchoring potential should be substituted
into formulas (1) and (2) in the form WS(ϕ) =
−(W/2)cos2ϕ, the critical angle being ϕc = π/4. In the
case of strong anchoring, the relation (16) determining
the equilibrium value of the angle ϕ(E) of deviation of
the director on the surface in an external field assumes
the form

(20)

where parameter Sd is defined as

(21)

Expression (13) for the barrier assumes the form

(22)

4Sd ϕ E( ) ϕ0 p E( )( )–[ ] 2ϕ E( )sin+ 0,=

Sd K22/dW .=

B T( )
W

------------ 2Sd
π
4
--- ϕ0 p E( )( )sgn ϕ0 p E( )( )–

2

=

+ ϕ p E( )( )cos
2 ( 22 ϕ ) p E( )sin

8Sd

---------------------------------- 1
2
---– .–
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Using formulas (16) and (20), we can also write expres-
sion (22) in the form

(23)

The calculations based on formulas (20)–(23) allow
us to determine the angle ϕ(E) of rotation of the direc-
tor on the surface of the layer in the presence of anchor-
ing as a function of the angle ϕ0(E) of free rotation of
the director on the layer surface, i.e., the angle of rota-
tion in the absence of surface anchoring. In particular,
we can determine the values of various quantities at
jump points. For example, the angle of free rotation of
the director at a jump point is given by

(24)

and the value of the helix pitch corresponding to a jump
in a bulk smectic C* is defined by the formula

(25)

It follows from relation (24) that the interesting case
in which ϕ(Ej) = ϕ0(Ej) = 0 after a jump, i.e., a new heli-
cal configuration with a different value of N corre-
sponds to the minimum of the free energy for the new
value of N, corresponds to Sd = 1/π. In this case, the dif-
ference in the angles formed by the director on the sur-
face with the direction of alignment before and after the
jump amounts to π/4. The maximum value of this dif-
ference is equal to π/2 and is realized in the limit of van-
ishingly weak surface anchoring, i.e., in the limit of an
infinitely large value of Sd.

The values of helical pitches in a layer for the sam-
ple immediately before a jump and after it can easily be
determined from the above formulas. For example,
when the field in a layer with N half-turns of the helix
increases, the values of the pitch before and after the
jump are given, respectively, by the formulas

(26)

where ϕj is the angle of deviation of the director after
the jump.

As the field decreases, the corresponding values of
the helical pitches in the layer are given by

(27)
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The second relation in (19) for the field hysteresis of
the pitch assumes the form

(28)

The results of calculations of the pitch and the angle of
deviation of the director from the direction of alignment in
the strong-anchoring approximation formulated above
(under the assumption that the directions of alignment
coincide on both surfaces of the layer) for the Rapini
anchoring potential will be presented in the next section.

8. RESULTS OF CALCULATIONS

In order to illustrate quantitatively the general anal-
ysis of the behavior of a helix in a layer of a smectic C*
in the presence of surface anchoring forces, which was
carried out in the previous sections, we consider the
results of numerical calculations in a situation which
simplifies general relations to the maximum possible
extent. It was noted earlier that in the general case, the
solution of the problem depends on a large number of
parameters determining the dependence of free energy
(1) not only on the magnitude of the applied field, but
also on the mutual orientation of the directions of align-
ment on the surfaces of the layer and on the direction of
the applied field. Consequently, in order to simplify the
presentation of the results of calculations, it is expedi-
ent first to confine our analysis to the case with the min-
imum number of computational parameters and then,
after determining general regularities, to consider a
more complicated problem, introducing additional
parameters. It was found that the simplest case is that in
which the directions of alignment and of the surface
anchoring force coincide on both surfaces of the layer,
the number of turns in the layer thickness is quite large,
and the surface anchoring is quite strong so that relation
(15) holds in a large range of electric field values. It is
also convenient to assume (although this assumption is
not of a fundamental nature) that in zero field, the direc-
tor on both surface is oriented along the direction of
alignment and the pitch variation in an external field for
a bulk smectic C* can be described by the analytic for-
mula (5) from [13]:

(29)

where E0 = 4πPS/εa. It should be noted that relation (29)
is valid for the so-called intermediate (between dielec-
tric and ferroelectric) mode of helix unwinding in the
field, for which (PSp0)2 = πεaK22.

Under the limitations formulated above, the field
dependences of the pitch in a layer and of the deviation
of the director from the alignment directions were cal-
culated using the Rapini model potential on the basis of
the formulas derived in the previous section. We
assumed that N = 10; i.e., five turns of a helix fit into the
layer thickness in zero field, and Sd = 1/2π.

d
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Figure 1 shows the field dependence of the angle of
deviation of the director from the alignment direction
for a field increasing from zero. After the attainment of
the critical value, the angle of deviation undergoes a
jump and a further increase in the field again leads to its
continuous variation until the critical value of the angle
is attained. It is known from the solution of the problem
for a bulk smectic C* [11–13, 16] that the helix pitch
increases with the field; consequently, the angle of
deviation of the director from the alignment direction
becomes negative. Figure 2 shows a similar field depen-
dence of the angle of deviation of the director, but in a
decreasing field. As in an increasing field, the angle of
deviation in the decreasing field experiences jumps
after attaining the critical value. However, the angle of
deviation in this case is positive except in the initial
region of the decreasing field. Another characteristic fea-
ture of Fig. 2 is that in zero field the angle of deviation
of the director does not assume the initial zero value

0

ϕ, rad

Field
0.2 0.4 0.6 0.8

0

–0.2

–0.4

–0.6

–0.8

Fig. 1. Dependence of the angle of deviation of the director
on the surface from the alignment direction on the field
(reduced to its critical value for increasing field) (Sd = 1/2π;
the initial number of half-turns in zero field is N = 10).

0

ϕ, rad

Field
0.2 0.4 0.6 0.8

0.5

0

–0.5

Fig. 3. Dependence of the angle of deviation of the director
on the surface from the alignment direction on the field
(reduced to its critical value) for both directions of field
variation (Sd = 1/2π; the initial number of half-turns in zero
field is N = 10).
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from which its variation started in the increasing field
(see Fig. 1). This is a consequence of the fact that the
helical configuration in zero field in the present case has
a number of half-turns over the layer thickness which is
smaller by unity. This is a manifestation of bistability of
the helical configuration in the field.

Figure 3 shows the field dependences of the angle of
deviation of the director on the surface for both directions
of field variation. This figure demonstrates the hysteresis
of the jumps in the angle of deviation of the director (and
pitch) in a layer in the presence of surface anchoring. The
jump from a configuration with N half-turns in a layer to a
configuration with N – 1 half-turns occurs at a higher value
of the field than the reverse transition from the configura-
tion with N – 1 half-turns in a layer to that with N half-
turns taking place in the decreasing field.

Figure 4 shows the results of calculating the field
dependence of the helix pitch in a layer with surface
anchoring in an increasing field and the variation of the

0

ϕ, rad

Field
0.2 0.4 0.6 0.8

0.5

0

–0.5

Fig. 2. Dependence of the angle of deviation of the director
on the surface from the alignment direction on the field
(reduced to its critical value for decreasing field) (Sd = 1/2π;
the initial number of half-turns in zero field is N = 10).

Pitch
2.0

1.6

1.4

1.0
0

Field
0.2 0.4 0.6 0.8

1.8

1.2

Fig. 4. Dependence of pitch (normalized to its initial value)
on the field (reduced to its critical value) in an increasing
field (Sd = 1/2π; the initial number of half-turns in zero field
is N = 10). The solid curve depicts the corresponding depen-
dence for a bulk smectic C*, described by formula (29).
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Pitch
1.8

1.6

1.4

0
Field

0.2 0.4 0.6 0.8

1.2

Pitch
2.0

1.6

1.4

1.0
0

Field
0.2 0.4 0.6 0.8

1.8

1.2

Fig. 5. Dependence of pitch (normalized to its initial value)
on the field (reduced to its critical value) in a decreasing
field (Sd = 1/2π; the initial number of half-turns in zero field
is N = 10).

Fig. 6. Dependence of pitch (normalized to its initial value)
on the field (reduced to its critical value) for both directions
of field variation (Sd = 1/2π; the initial number of half-turns
in zero field is N = 10). The solid curve depicts the corre-
sponding dependence for a bulk smectic C*.

Barrier

0.3

0.2

0.1

0.35
Field

0
0.40 0.45 0.50 0.55 0.60 0.65

Fig. 7. Dependence of the height of the barrier (referred to
the depth of anchoring potential) between configurations
with N = 9 and 8 on the field (normalized to its critical
value) in an increasing field (right branches of the curves)
and of the barrier between configurations with N = 8 and 9
(left branches of the curves) in a decreasing field (Sd = 1/2π,
2/2π, 5/2π, and 10/2π (from top to bottom); the initial num-
ber of half-turns in a layer is N = 10).
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pitch with the field in a bulk smectic C* for the values
of parameters ensuring the applicability of formula
(29). This figure demonstrates the pitch jumps in the
layer as well as the fact the pitch in the layer in an
increasing field remains smaller than the helix pitch in
a bulk smectic C* for the same value of the field. Fig-
ure 5 shows the same dependence in a decreasing field.
In this case, the pitch in the layer in the decreasing field
remains larger than the helix pitch in a bulk smectic C*
for the same value of the field (except in the initial
region of field variation).

In Fig. 6, the results of calculation of the pitch vari-
ation are presented for both directions of field variation
for a layer with anchoring and for a bulk smectic C*.
This figure demonstrates the jumpwise nature of pitch
variations in the field for a layer (against the back-
ground of the continuous variation for a bulk crystal)
and the hysteresis of pitch jumps as well as bistability
of the helical configuration in a layer which were con-
sidered above.

Figure 7 shows the results of calculations of the bar-
rier height between the helical configurations with the
numbers of half-turns over the layer thickness differing
by unity for various values of the parameter Sd in the
case of increasing (right slope of the curves) and
decreasing (left slope) values of the applied field. The
figure demonstrates a hysteresis for the transition
between the configurations for opposite directions of
the field variation as well as the dependence of the hys-
teresis width (the distance between the points corre-
sponding to zero values of the barrier height for oppo-
site directions of field variation) on the value of param-
eter Sd. The larger the value of this parameter, the
smaller the hysteresis width.

9. CONCLUSIONS

The above analysis of the behavior of a helix of a
smectic C* in a finite-thickness layer with surface
anchoring forces in an external electric field revealed
the characteristic features of the effect such as the exist-
ence of bistable states in the helical configurations of
the smectic C*, the jumps in the values of parameters of
the smectic C* in a layer and their field hysteresis at the
points of these jumps for opposite directions of field
variation. Naturally, we did not touch upon many
details of these dependences in specific experimental
situations in view of the large number of the parameters
of the problem in the general case. Our numerical cal-
culations were made under the simplest assumptions
concerning the parameters of a smectic C* layer. Nev-
ertheless, the results presented in this article make it
possible to predict the behavior of a smectic C* layer in
an electric field in situations free of the limitations used
also in our calculations.

For example, the inclusion of the dependence of the
free energy of the layer on the direction of the applied
field relative to the direction of the alignment on the
AND THEORETICAL PHYSICS      Vol. 93      No. 2      2001
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surface leads to the dependence of the angle of devia-
tion of the director from the preferred orientation at the
jump points on the direction of the applied field. This
means that, for example, that for the above-mentioned
dependence, the angles of deviation of the director at
the jump points for the field perpendicular to the direc-
tion of the alignment is smaller than for the field paral-
lel to the direction of alignment (see Fig. 1). The inclu-
sion of the field dependence of the critical angle in the
same figure would lead to a change in the angles of
deviation of the director at jump points with the field
instead of remaining unchanged as in Fig. 1. The corre-
sponding changes, which can be easily predicted qual-
itatively, will also be manifested in other figures.

It is also clear that the predominance of the dielec-
tric or ferroelectric mechanisms of helix unwinding in
the field (or, which is the same, the deformation of a
simple helix by π- and 2π-solitons) would also change
the pattern of the phenomenon analyzed above. For
example, in the case of the ferroelectric mechanisms of
deformation of a helix in the field, strictly opposite field
orientation leads to different deformations of the helix
of a smectic C* in contrast to the dielectric mechanism
in which the sign reversal of the field does not change
the deformation of the helix. For this reason, the strong
surface anchoring approximation used in the above cal-
culations, which allows one to disregard the direction
of the external field, “works” better when the dielectric
mechanism of helix unwinding dominates.

As in the case of temperature-induced variations of
the pitch [10], thermal fluctuations of director orienta-
tion will also affect the hysteresis of jumps (cause its
decrease). The displacement of the jump point can be
estimated, for example, with the help of Fig. 7, depict-
ing the dependence of the height of the barrier between
the helical configurations on the applied field. In the
presence of fluctuations, a jump occurs not at the point
of barrier vanishing, but at the point at which the barrier
height becomes equal to temperature. However, it fol-
lows from general considerations that away from the
jump points, the effect of fluctuations for the field hys-
teresis under investigation is weaker than in the case of
the temperature hysteresis since the applied field sup-
presses orientational fluctuations. The last statement
refers only to the range of parameters Sd considered by
us here and exceeding the critical value Sdc, for which
the mechanism of the director slip on the surface
through the anchoring potential barrier. For smaller val-
ues of the parameter Sd, the fluctuations of the director
may play a certain role in discrete transitions of the
helix between configurations with different numbers of
turns fitting into the layer thickness. Consequently, in
order to ensure the optimal conditions for the experi-
mental observation of pitch jumps in a smectics C* in a
field in accordance with the mechanism of the director
slip over the surface through the potential barrier, it is
expedient to use the layers of liquid crystals for which
parameter Sd exceeds its critical value only slightly.
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The peculiarities revealed in the variation of the
helix in a smectic C* in a layer are useful both for an
analysis of the physics of liquid crystal state (e.g., for
reconstructing the form of the surface anchoring poten-
tial from the results of measurements) and for applica-
tions (this especially refers to bistable states of helical
configurations of a smectic C*, jumps in the values of
liquid crystal parameters in the layer, and their hystere-
sis. As in the case of temperature-induced pitch varia-
tions in the layer [4, 5], optical methods of investiga-
tions [22–24] appear the most suitable for studying the
effects considered here.

Our analysis was carried out for static electric fields
with an orientation perpendicular to the helical axis of
a smectic C*. However, a helix in a field exhibits a sim-
ilar behavior for other orientations of the static field as
well as for varying fields and a magnetic field. It should
also be noted that we assumed that the only conse-
quence of the external field applied to a smectic C* is
the deformation of its helix. However, it is well known
[16] that other structural characteristic of liquid crystals
(e.g., the tilt angle of molecules in a layer) may also
vary in strong fields. However, an analysis of these
effects is beyond the scope of this article.
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Abstract—The pressure dependences of the electrical resistance and thermal electromotive force of lithium
were measured at room temperature. The results substantiated the occurrence of a phase transition caused by
increasing pressure (6.7 GPa). A phase transition was detected when pressure was decreased (6.4 GPa). Tem-
perature effects on the pressures of these transitions were studied near room temperature. At pressures above
4 GPa, the pressure dependences of thermal electromotive force and of the velocity of ultrasonic shear waves
in BCC lithium exhibited anomalies. The suggestion was made that applying pressure increased the role played
by electron-phonon and phonon-phonon interactions in lithium. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Much work, both theoretical and experimental, has
been done to study the lightest alkali metal, lithium.
Less attention has been given to pressure effects on the
physical properties of lithium; in particular, data on the
phase diagram are obviously insufficient. At room tem-
perature, a phase transition in lithium was detected and
interpreted as the BCC  FCC transition [1]. Various
authors reported different pressure values for this tran-
sition; the transition was only observed by various
methods when pressure was increased (direct transi-
tion). Electrical resistance jump measurements gave
7.0 GPa [2, 3], the values obtained in X-ray diffraction
studies were 6.9 ± 0.4 [1] and 7.5 GPa [4], whereas
according to the Knight shift data [5], the transition
pressure equaled 6.3 GPa [5].

It was shown in several works that the temperature
of the martensite transition observed earlier at low tem-
peratures near 77 K [6–8] increased in the pressure
range 0–2 GPa [9–11]. The suggestion was made that
this transition was similar in nature to the transition at
room temperature and high pressures [9].

Theoretical calculations showed that the energies of
all lithium phases with closely packed structures (BCC,
FCC, HCP, and 9R) were close to each other [12, 13]. It
is therefore not surprising that the phase transition at
room temperature was accompanied by a volume
change as small as 0.25% [1] (0.16% [4]), and at low
temperatures, the transition did not involve any volume
jump [9]. Ultrasonic studies of lithium showed that the
phase transition at both low and room temperatures
were preceded by a strong softening of shear character-
istics [9, 14] related to changes in the low-frequency
phonon spectrum region.
1063-7761/01/9302- $21.00 © 20393
Studies of the kinetic characteristics of lithium such
as electrical resistance and thermal electromotive force
(emf) at pressures up to 9 GPa and a comparison of the
results with the ultrasonic data on the velocity of trans-
verse wave propagation allow us to gain insight into the
state of the crystal lattice before the phase transition
and can be used in theoretical work. Exact data on the
phase transition pressure parameters at room tempera-
ture would provide a basis for further studies of the p–
T phase diagram of lithium at high temperatures.

2. EXPERIMENTAL

Electrical resistance and thermal emf were mea-
sured on a Toroid-type high-pressure apparatus [15],
which could operate during increasing and decreasing
pressure; in this respect, our procedure was different from
those mentioned above [2, 3]. Another distinguishing fea-
ture of our measurements was virtually hydrostatic condi-
tions and the use of comparatively large samples, whereas,
for instance, in [2], measurements were performed on
anvils and with very thin (about 0.3 mm) samples, which
might distort the behavior of electrical resistance dur-
ing the phase transition in lithium.

Pressure was created in a cell made of Teflon about
1 cm3 by volume. The medium that transmitted pres-
sure to the sample was liquid polyethylenesiloxane.
This liquid proved to be as inert toward lithium as ker-
osene. A microscopic examination of the sample before
and after applying pressure revealed no changes on the
surface. An LE-1 lithium sample containing 99.0% Li
was prepared in a neutral medium in the form of a cyl-
inder 7 mm high and about 2 mm in diameter. In most of
the experiments, pressure was determined from the known
load dependence of pressure. This dependence was mea-
sured in several experiments using a two-section ampule
001 MAIK “Nauka/Interperiodica”
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[16], one section of which contained a manganin pressure
gauge and a bismuth reference in a 4 : 1 methanol–ethanol
mixture. The procedure that we used gave an absolute
pressure measurement error not exceeding 0.1 GPa (the
relative error of a single measurement in one experi-
ment did not exceed 0.01 GPa).

Electrical resistance was measured by the four-point
scheme.

In thermal emf measurements, the bottom of the
sample was brought in contact with the copper lid of an
ampule, which served as a good thermostat, and a plane
heater was mounted on the top end of the sample. The
temperature was measured by copper–constantan ther-
mocouples 0.1 mm in diameter; the temperature differ-
ence (3–5°C) at the points of thermal emf measure-
ments was maintained constant during pressure varia-
tions.

The velocity of ultrasonic shear wave propagation,
Vt(p), was measured in a chamber of the type “toroid
with a plane bottom” by the pulsed ultrasonic method
at 3–5 MHz frequencies [14]. To circumvent the diffi-
culties arising from the large difference of the wave
resistances of the chamber material (the chamber was
made of a VK-6 metal-ceramic hard alloy) and lithium
and from acoustic disturbances caused by the geometry
of the working cell, the usual diameter of the chamber
was increased to 16 mm and the sample was surrounded
by a 2 × 2 mm2 “belt-filter,” which was a mixture of par-
affin with VK-6 crumbs. A sample about 7 mm high and
16 mm in diameter was placed into a catlinite container
and, at the ends, protected from contact with the mate-
rial of the chamber by copper caps. Pressure was in each
experiment determined from electrical resistance jumps of
reference materials, namely, bismuth, thallium, and bar-
ium. Reference wires were situated vertically at the border
between lithium and catlinite.

0

R, mΩ

p, GPa
2 4 6 8

1.0

0.9

0.8

0.7
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0.5

Fig. 1. Electrical resistance of lithium during (1) increasing
and (2) decreasing pressure, T = 293 K.
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3. RESULTS AND DISCUSSION

The results obtained in studying the pressure depen-
dence of the electrical resistance of lithium R(p) were
quite reproducible from one experiment to another.
Some measurements were taken in a two-section
ampule, that is, in the presence of the manganin pres-
sure gauge and bismuth reference. The results are
shown in Fig. 1. The electrical resistance of lithium was
found to increase linearly as pressure grew to 6.7 GPa.
The phase transition from the BCC to the FCC structure
was accompanied by about a 5% decrease in electrical
resistance. Further, in the high-pressure phase, resis-
tance continued to increase. The very large direct tran-
sition-induced electrical resistance jump reported in [2]
was, we believe, caused by a methodological error. In
an anvil-type high-pressure chamber used in [2], sam-
ples have very small dimensions. When a two-point
scheme of resistance measurements is used and the
contacts have a strong tendency to oxidize, the instru-
mental effects are fairly difficult to take into account.
Their subtraction from the total measured resistance
can result in underestimating the fraction of resistance
due to the sample proper and, therefore, in overestimat-
ing the relative decrease in resistance due to the phase
transition. This methodological difficulty has been men-
tioned in [3].

The pressure dependences of lithium resistance at
various temperatures allowed us to determine the
parameters of the BCC  FCC transitions. At 20°C,
the pressure of the direct transition in lithium was
p = 6.7 ± 0.1 GPa and the pressure of the onset of the
reverse transition was p = 6.4 ± 0.1 GPa. We obtained
different R(p) isotherms at 15 to 25°C, which allowed
us to estimate the slope of the boundaries of the direct
and reverse transitions in the p–T diagram; this slope
equaled 0.03 GPa/K. This result leads us to conclude
that the spread of the literature data on the direct phase
transition pressure is caused not only by different errors
of different procedures and apparatus but also by the
strong temperature dependence of the transition onset
pressure. Extrapolating the phase transition boundary
from room to low temperatures with the use of the
obtained coefficient, 0.03 GPa/K, yields the martensite
transition coordinates reported for lithium in [6, 9].

Thermal emf measurements under pressure, S(p), were
performed in a one-section ampule. A bismuth pressure
reference was placed near the sample. The load depen-
dence of pressure was determined preliminarily as
described above, with the use of a manganin pressure
gauge placed together with the bismuth reference in a
hydrostatic mixture of alcohols (methanol–ethanol). Fol-
lowing [17], pressure-induced changes in the calibration
of the copper-constantan thermocouple were assumed
to be insignificant.

The thermal emf of lithium was measured with ref-
erence to the thermal emf of copper, which equaled
1.8 µV/K and insignificantly changed as pressure var-
ied. The obtained pressure dependence of the absolute
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thermal emf of lithium is shown in Fig. 2. The thermal
emf of BCC lithium increased as pressure grew up to
the onset of the phase transition, and the phase transi-
tion caused a sharp decrease in its value. The S(p)
dependences measured while increasing and decreas-
ing pressure coincided, which is once again evidence of
high hydrostatic pressure conditions in our experiments.
Some spread of the data at pressures up to p = 2 GPa can
be explained by methodological difficulties of mea-
surements at low pressures in a Toroid-type chamber.
Nevertheless, extrapolating the pressure dependence of
lithium thermal emf from pressures above 2 GPa to the
atmospheric pressure gave S0 = 10.5 µV/K, which
equaled the handbook value for normal conditions [18].
An anomaly was regularly observed in the S(p) depen-
dence at p > 4 GPa during both increasing and decreas-
ing pressure. A substantial anomaly in this pressure
region was also observed in the nuclear magnetic reso-
nance study [5] of the pressure dependence of the self-
diffusion coefficient of lithium.

The results obtained in measuring the velocity of
ultrasonic shear waves in lithium at room temperature
and pressures up to 7 GPa, Vt(p) [9], are shown in Fig. 3.
The Vt(p) dependence has some peculiarities. The veloc-
ity changed insignificantly in the initial region and
remained virtually constant in the pressure range 1.5–
2.5 GPa. Between 4 and 6.4 GPa, it decreased sharply and
then began to increase; that is, above 6.4 GPa, a new,
“harder,” phase was formed. It follows from the calcula-
tions performed in [14] that, before the BCC  FCC
transition, the lithium lattice loses stability toward

shear in the {110} plane in the [1 0] direction under
the action of pressure. This should result in a decrease
in the c' = (c11 – c12)/2 elastic constant and manifest
itself by anomalies of the Vt(p) dependence for poly-
crystalline lithium. This is exactly what follows from
the character of the pressure dependence of the velocity
of ultrasonic shear waves obtained in our experiments.
Note in addition that a decrease in Vt(p) at p > 4 GPa
correlates with anomalies of the S(p) dependence in the
same pressure range.

A comparison of the R(p), S(p), and Vt(p) depen-
dences shows that sharp changes in the kinetic and elas-
tic physical properties of lithium, which are clearly
caused by the phase transition, are observed at almost
equal pressures. Some difference in the recorded phase
transition pressures is likely to be caused by the temper-
ature dependence of the transition and certain devia-
tions from hydrostatic conditions in ultrasonic experi-
ments.

The thermal emf of lithium and other alkali metals
at pressures up to 0.3 GPa was very accurately mea-
sured in [19]. The thermal emf of lithium equaled
S0 = 10.6 µV/K at atmospheric pressure and slightly
decreased as pressure increased (to S = 10.5 µV/K at
p = 0.3 GPa). As mentioned, the accuracy of S measure-
ments below 2 GPa was fairly low in our experiments.

1
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Our data are therefore difficult to compare with those
reported in [19]. It can only be noted that there are no
discrepancies exceeding experimental errors.

The data of ultrasonic measurements [14] were used
to obtain the pressure dependence of lithium compres-
sion at p < 2.5 GPa and room temperature. The depen-
dence was described by the polynomial

where v 0 is the volume at atmospheric pressure. Based
on these results, we obtained the dependence of thermal
emf

where S0 is the thermal emf at atmospheric pressure, on
the volume of lithium under compression to 2.5 GPa
(Fig. 4). The Z(v ) dependence was constructed by aver-
aging the experimental S(p) values (see Fig. 2).

According to the theoretical calculations [19] based
on the model of free electrons, Z should decrease as
pressure increases, which is at variance with the data on
lithium even at small pressures. A sharp increase in Z
above 1.5 GPa and a substantial decrease in the velocity
of ultrasonic shear wave propagation at pressures much
bellow the transition pressure are evidence that the

v
v 0
------ 0.999 0.0792 p– 0.00729 p2,+=

Z S S0–( )/S0,=

2

S, µV/ä

p, GPa
0 4 6 8

16

14
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1
2

Fig. 2. Thermal emf of lithium during (1) increasing and
(2) decreasing pressure at room temperature.

2

Vt, km/s

p, GPa
0 4 6

2.9

2.8

2.7

Fig. 3. Velocity of transverse ultrasonic waves in lithium at
room temperature during increasing pressure.
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phase transition is preceded by strengthening of elec-
tron-phonon and phonon-phonon interactions in lith-
ium. It follows that the model of free electrons is inap-
plicable to the kinetic properties of lithium.

To summarize, we determined the p–T coordinates
of the direct and reverse transitions in lithium close to
room temperature with an error of 0.1 GPa. Extrapolat-
ing the boundary of the phase transition from room to
low temperatures with the use of the obtained coeffi-
cient, 0.03 GPa/K, yields the martensite transition coor-
dinates reported for lithium in [9]. Note that ultrasonic
experiments at low temperatures show that extrapolat-
ing the martensite transition boundary from low to
room temperatures yields a pressure of about 7 GPa.
This gives more reasons to treat both transformations as
one structural phase transition. To conclusively sub-
stantiate this suggestion, it would be interesting to per-
form measurements under pressure in the temperature
range T = 100–300 K.

0

Z

1 – v /v 0

0.04 0.08 0.12 0.16

0.04

0.02

0

–0.02

Fig. 4. Relative changes in lithium thermal emf versus
changes in relative volume. Undotted solid line is the data
from [19], and dashed line is the theoretical dependence
obtained in [19] for the model of free electrons.
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Abstract—A mechanism for the occurrence of heavy-fermion states in non-Fermi-liquid (NFL) metals with
f-shell impurities is proposed. The impurity with an unstable valence is suggested to have an energy spectrum
consisting of a deep f-level and quasicontinuum states (narrow band) in resonance with the Fermi energy.
Depending on the impurity concentration, the single-site NFL states are generated by the two-channel Kondo
scattering for the low concentration (the Kondo regime) or by the screening interaction for a relatively high con-
centration (the X-ray-edge regime). It is shown that the NFL states are unstable against the scattering of the
NFL excitations by electron states of the narrow band. This scattering generates additional narrow Fermi-liquid
(FL) resonances at/near the Fermi level in the Kondo regime and in the X-ray-edge regime. The mixed-valence
states are shown to be induced by new FL resonances. The mixed valence mechanism is local and is related to
the instability of single-site NFL states. The FL resonances lead to the existence of additional energy scales and
of pseudogaps near the Fermi level in the mixed-valence states. They also considerably narrow the region with
a nearly integer valence. © 2001 MAIK “Nauka/Interperiodica”.
¶ 1. INTRODUCTION

At present, intermetallic compounds with the f-shell
atoms Ce or U are an important class of alloys in which
non-Fermi-liquid (NFL) behavior is observed (see [1, 2]
for a review). The anomalous temperature dependences
of their linear specific heat, magnetic susceptibility, and
resistivity strongly support the NFL scenario. The Ce
and U ions carry magnetic dipole or electric quadrupole
moments that interact with the spins and charges of the
conduction electrons, thereby giving rise to the Kondo
effect and the NFL behavior at low temperatures. The f-
electron compounds of interest have been alloyed with
nonmagnetic elements (with a few possible exceptions)
[2, 3]. The thermodynamic measurements evidence in
favor of the quadrupole two-channel Kondo model
introduced in [4]. We note that according to photoemis-
sion spectra, the U-based compounds look much more
like the mixed-valence ones (see references in [5, 6]).
Recently [7], it was shown that the temperature behav-
ior of the specific heat and magnetic susceptibility is
governed by nonuniversal power-law dependences for a
relatively high concentration of the f-shell atoms.

Taking the foregoing into account, it would be
highly desirable to have the unified treatment involving
the explanation of two essential facts:

(1) the coexistence of the single-ion two-channel
Kondo effect and the mixed-valence state;

(2) the possibility of nonuniversal power-law energy
dependences on the parameters.

It should be noted that the role of instabilities of the
NFL states in forming the heavy-fermion (HF) states

¶ This article was submitted by the author in English.
1063-7761/01/9302- $21.00 © 20397
has not been completely clarified. At the same time, it
is well known that the single-ion NFL state is unstable
against any perturbation that eliminates the orbital or
spin degeneracy of the impurity. Two instability mech-
anisms are presently known in the two-channel quadru-
pole and orbital Kondo model. In [4], the instability is
induced by the Jahn–Teller distortions of the impurity
site. The second mechanism [8] attributes the instabil-
ity to the channel anisotropy. As shown in [9] and [10],
there occurs a new physical realization of the two-chan-
nel quadrupole Kondo model and of the NFL state
instability against the scattering generated by the tunnel
process in the doped size-quantized structures. The
physical reason of the instability is the existence of
additional narrow Fermi-liquid (FL) resonances induced
by tunneling.

For a metal containing orbitally degenerated deep
impurity states, it was shown in [11] that the NFL state
can be unstable against the scattering of the multiparti-
cle excitations having different z projections of the qua-
drupole moment.

In this paper, we propose a new mechanism for the
occurrence of HF states in NFL metals with the f-shell
impurities. We assume that a specific feature of atoms
with an unstable valence is an energy spectrum that
contains two unfilled shells: the orbitally degenerate
deep f-level states and the atomic quasicontinuum
states (narrow band) near the Fermi level. As shown
below, the scattering of the NFL excitations by atomic
quasicontinuum states, which is potential in its charac-
ter, generates additional FL resonances near the Fermi
level. Along with the NFL excitations, new FL reso-
nances form an additional branch of heavy-fermion states
with the characteristic energy that is much smaller than the
001 MAIK “Nauka/Interperiodica”
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width of the NFL resonance (even in the case of the Kondo
effect). New FL resonances generate the mixed-valence
state. The heavy-fermion states have a local origin within
the treatment proposed below.

In conclusion, we briefly discuss the temperature
transitions within the proposed framework and the role
of single-site NFL fluctuations in the “concentrated”
heavy-fermion systems.

2. THE IMPURITY MODEL
AND THE SCATTERING PROBLEM
FOR AN INTERACTING SYSTEM

2.1. It is commonly known that an ion with unfilled
d- or f-shells partially retains its atomic properties in a
crystal. This is possible due to the presence of a centrif-
ugal barrier separating the region A in which the atomic
forces act from the region B where the lattice potential
acts. The height of the barrier is comparable to other
characteristic energies of the system, i.e., the Fermi
energy and the interatomic interaction energy. The typ-
ical energy spectrum of lanthanide and actinide ions
with an unstable valence seems to contain quasilocal
deep f-levels together with the quasicontinuum states
under the centrifugal barrier. The atomic quasicontin-
uum may be formed by the d-shell states being in reso-
nance with the conduction band states at the Fermi
level. A similar impurity model with a highly degener-
ate f-level was also considered in [12]. The initial elec-
tron spectrum before mixing is depicted in Fig. 1.

The Hamiltonian of the system is given by

(2.1)

where HB and HA are the Hamiltonians of the conduc-
tion band and of the impurity region. The Hamiltonian
HAB describes the hybridization Hh and the scattering
Hsc between electron states of the conduction band and

H HA= HB HAB,+ +

f1

f2

d-states

A-band

A-region B-region

B-band

(É7)

(É3)

U
εF = 0

Fig. 1. The initial electron spectrum. A and B are the impu-
rity region and the conduction band, respectively, U is the
Hubbard repulsion. The A-band consists of the impurity
states in resonance with the Fermi level.
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the impurity region. The Hamiltonian of the impurity
region is given by

where  is the Hamiltonian of the deep level,  is

the Hubbard repulsion, and  is the Hamiltonian of
the narrow A-band. In what follows, we do not consider
the intraband interactions, assuming that they are weak
compared to the interaction between the deep level and

the band electrons. Therefore,  is the Hamiltonian of
the noninteracting d-electrons. It is also assumed that
the d- and f-shells are not mixed in the impurity region.
We start from the low-lying electron configuration of
the isolated ion and then take the mixing with the con-
duction electrons into account in the spirit of the Ander-
son model with two unfilled shells.

We consider the situation where the deep level is a Γ3
quadrupole (non-Kramers) doublet of the crystal field
interacting with the Γ8 quartet of the conduction electrons.
However, we emphasize that the mechanism proposed
here can be applied for all compounds in which the sym-
metry allows the local quartet of conduction states to cou-
ple to the two-fold degenerate level and an additional
potential scattering of the multiparticle excitations exists.

For U-based compounds, the Γ3 doublet in the 5f 2

configuration is formed as a result of splitting the mul-
tiplet with the total moment J = 4 with the cubic crystal
field. The Γ3 doublet has an electric quadrupole
moment and no magnetic dipole moment. The quantum
numbers of the Γ3 level electron are the numbers of
lines µ for the irreducible representation of the point
group  = ±1. The two quantum number values µ = ±1
correspond to the projections of the quadrupole
moment on the z axis, i.e., Qzz = ±8.

The multiparticle configuration of the unfilled shell
is denoted by n; |n; µ〉 , where n indicates the number of
electrons and µ is the set of quantum numbers charac-
terizing the configuration.

For relatively large values of the Hubbard repulsion
in the absence of hybridization, the ground state config-
uration of the ion U4+ is the singly occupied Γ3 doublet
with the electron configurations |1; +1〉  and |1; –1〉 and
the energy Ef . The electron creation operators and elec-
tron numbers correspond to the singly occupied states:

(2.2)

HA H0
f= H0

d HU
f ,+ +

H0
f HU

f

H0
d

H0
d

µΓ3

f µ +1=
+ 1; +1| 〉 0; 0〈 |; f µ 1–=

+ 1; 1–| 〉 0; 0〈 |;==

n fµ f µ
+ f µ; n fµ

µ
∑ 1;= =

H0
f En µ, n; µ| 〉 n µ,〈 |

n µ,
∑= E fµ f µ

+ f µ,
µ
∑≡

HU
f Uµµ 'n fµn fµ ' 1 δµµ '–( ).

µµ '

∑=
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The Γ3 states are hybridized with the partial conduc-
tion band waves having the total angular momentum j =
5/2. Taking the splitting of the j = 5/2 multiplet by the
cubic crystal field into account amounts to the transi-
tion from the angular momentum representation to the
irreducible representations of the point group of the crys-
tal. The latter representation has the quartet Γ8 that can be
hybridized with the Γ3 doublet. The Γ8 quartet pos-

sesses two groups of the states: ,  with  =

|Γ8; 2〉, |Γ8; 1〉 and  = |Γ8; –2〉, |Γ8; –1〉 . The groups

 and  correspond to different signs of jz. Differ-
ent signs of jz correspond to different sings of the spin
projection σz. In addition, the states |Γ8; ±2〉  and
|Γ8; ±1〉 have the respective z components of the qua-
drupole moment Qzz = ±8.

Γ8
+( ) Γ8

–( ) Γ8
+( )

Γ8
–( )

Γ8
+( ) Γ8

–( )
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In other words, the quartet Γ8 of partial waves
decomposes into the tensor product Γ3 # Γ7. It is there-
fore described by a combination of the “orbital” (Γ3)
and the “spin” (magnetic) (Γ7) indices.

The partial states of the conduction electrons mixed
with the Γ3 doublet can therefore be classified by the quan-
tum numbers |ε; γ, α〉 , where ε = vFk – εF, with k being the
wave vector modulus and εF being the Fermi energy. In
what follows, we choose the position of the Fermi level as
zero. The quantum number γ = 2, 1 ; µ corresponds to the
two values of the quadrupole moment within the groups

 and ; the magnetic quantum numbers α = ± dis-

tinguish the respective groups  and . The opera-

tors (ε) describe the states |ε; µ, α〉  in the B-band.

In terms of these states, the hybridization Hamiltonian

Γ8
+( ) Γ8

–( )

Γ8
+( ) Γ8

–( )

aBµα
+

Hh Vµn 1+ µnσ
f k( )aBσ

+ k( ) n 1; µn 1++| 〉 n; µn〈 | H.c.+( ),
µn 1+ µn

∑
kσn

∑=
where (k) creates the conduction band electron
with the spin σ and the wave vector k, can be written as

(2.3)

Here, ρ0B(ε) is the density of states (DOS) in the B-con-

tinuum, the terms with (ε), µ ≠ µ' are neglected
because of the cubic symmetry, and the matrix elements

(ε) are denoted by (ε).

In finding the interaction Hamiltonian in what follows,
it is significant that, because of the band state symmetry,

the hybridization matrix elements (ε) are nonzero for
both components of the Γ3 doublet with µ = ±1. This

means that the matrix elements (k) are spatially
nonlocal. We additionally assume the hybridization matrix
elements to be independent of the sign of the z component

jz of the total momentum j, i.e.,  ≡ .

The Hamiltonian HAB in Eq. (2.1) also involves the
scattering between electron states of the A- and
B-bands. In terms of the partial states, the scattering
Hamiltonian is given by

(2.4)

aBσ
+

Hh ερ0B ε( ) Vµα
f ε( )aBµα

+ ε( ) f µ H.c.+( ).d

∞–

+∞

∫
µα
∑=

Vµµ 'α
f

Vµµα
f Vµα

f

Vµα
f

Vµn 1+ µnσ
f

Vµα
f Vµ

f

Hsc ερ0A ε( )d

∞–

+∞

∫
µα
∑=

× ε'ρ0B ε'( )Tµµ
AB ε ε',( )aAαµ

+ ε( )aBαµ ε'( ),d

∞–

+∞

∫

where the operators aAµα(ε) describe the states in the
atomic continuum (A). The scattering with µ ≠ µ' is
absent because of the cubic symmetry. We assume that
the scattering matrix elements, as well as the hybridiza-
tion ones, are independent of the quantum number α.

In defining the NFL states, it is important to account
for the splitting of the f doublet ground state due to a
local deviation from the cubic symmetry at the impurity
site. In the Hamiltonian, the splitting is described by the
term

(2.5)

Because the Hubbard repulsion U is the largest param-
eter in the problem, it is convenient first to take the
effective interaction induced by U into account and
then to use the multiparticle states as a basis for solving
the scattering problem. As shown below, the system
described by the Hamiltonian H in (2.1) has two physi-
cal mechanisms generating singularities at/near the
Fermi level. The Hubbard repulsion U generates the
effective interaction between conduction electrons and
the deep level. This interaction induces an NFL reso-
nance at the Fermi level in the B-band. The scattering
of the multiparticle excitations in the conduction band
by the electron states of the A-band generated by Hsc

results in the formation of additional FL resonances
near the Fermi level.

2.2. In the system with the Hamiltonian H, the exci-
tations are completely described by the Green function

Because the energy U is dominant, it is essential to prop-

erly treat correlations on site. To calculate (z), we use

H∆ ∆τ̂ f
z .=

Ĝ fµ z( ) f µ〈 | z Ĥ–( ) 1–
f µ| 〉 .=

Ĝ fµ
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the method of the equations of motion [19] that correctly
accounts for these on-site correlations. This gives

(2.6)

where

is the Green function of the interacting system without
scattering; we then have

Equation (2.6) implies that the full Green function

(z) has features of two types. The function (z)
describes the contributions of the multiparticle reso-
nances at the Fermi level due to the interaction between
the conduction electrons and the deep level. The second
factor in Eq. (2.6) is generated by the scattering of the
multiparticle excitations via the atomic quasicontin-
uum states. The scattering results in additional singu-
larities, namely, simple poles near the Fermi level. The

pole positions are determined by the equation (z) = 0.

The self-energy functions (z) and (z) with ν = A,
B are expressed as spectral expansions of multiparticle
Green functions of the A- and B-bands,

(2.7)

where εν(p) is the excitation spectrum at the Fermi
level, ρν(ε) is the DOS corresponding to this spectrum,
and f(ε) is the Fermi function. In Eqs. (2.7), it is

assumed that (ε) ≈ (0) and the scattering matrix
elements are separable:

where (0) is dimensionless.

Without the interaction, we have ρν(ε) = ρ0ν and

(z) = [z –  – iγfµ]–1, where  is the energy of
the deep level renormalized by the hybridization and γfµ

is the width of this level. In this case, both (z) and

(z) have no singularities near the Fermi level.

In the interacting system as U  ∞, we are inter-
ested in the case where the dominant effect of the inter-

Ĝ fµ z( ) Ĝ fµ
0

z( )
1 ΣAµ z( )ΣBµ z( )–

D̂µ
AB

z( )
-----------------------------------------,=

Ĝ fµ
0

z( ) z ε f– Σ̂Bµ
h

z( )–[ ]
1–

=

D̂µ
AB

z( ) 1 ΣAµ
sc z( )ŴBµ z( ),–=

ŴBµ z( ) ΣBµ
sc z( ) ΣBµ

sc z( )ΣµB
sc z( )Ĝ fµ

0
z( ).+=

Ĝ fµ Ĝ f rµ
0

D̂µ
AB

ΣBµ
h Σνµ

sc

Σνµ
sc z( ) Tµ

ν 0( ) 2 1
z εν p( )–
---------------------

p

∑=

=  Tµ
ν 0( ) 2 ε

ρν ε( ) f ε( )
z ε–

------------------------,d∫
ΣBµ

h z( ) Vµ
f 0( ) 2 ε

ρB ε( ) f ε( )
z ε–

-------------------------,d∫=

Vµ
f Vµ

f

Tµµ
AB ε ε',( ) T AB 0 0,( )≈ Tµ

A 0( )Tµ
B 0( ),=

Tµ
A

Ĝ fµ
0 ε fµ ε fµ

Ĝ fµ
0

Σνµ
0
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action is the generation of a multiparticle resonance
(the fr-level) near the Fermi level. The Green function

(z) of this resonance must then be inserted in

Eq. (2.6). The multiparticle peaks in (z) at the
Fermi level determine the properties of the DOS ρB(ε)

and of the self-energy functions (z).

To obtain the density of states at the Fermi level in
the interacting system, the following consideration can
be used. It is known [19] that the exact Green function
of the conduction electrons in the impurity Anderson
model is given by (in our notation)

(2.8)

where G0µα(k; z) is the Green function of noninteracting
electrons (in accordance with the definition given
above, the variables k and ε are identical). Because of

the symmetry properties, the function (z) can have
only diagonal components. The Green function of an

impurity state (z) involves all the interactions
induced by the Hubbard repulsion U. Near the Fermi
level, the multiparticle resonance Green function

(z) must be inserted in Eq. (2.8). Thus, the DOS of
multiparticle excitations at the Fermi level takes the
form

where Aρ  γBρ0B, γB ≡ , and γBµ ≡ ρ0B.

With the foregoing taken into account, the complete
solution of the scattering problem requires determina-
tion of the main interaction and calculation of the Green

function (z).

3. THE INTERACTION HAMILTONIAN
AND THE NFL STATE

3.1. To derive the effective interaction between the
deep f-doublet and the conduction electrons, we sup-
pose that for relatively large values of the Hubbard
repulsion, the ground state configuration of the ion U4+

is the singly occupied Γ3 doublet with the electron con-
figurations |1; +1〉 , |1; –1〉  and the energy Ef . Taking vir-
tual transitions into the excited states with the energies
E2 = 2Ef + U into account and using either the projec-
tion operator techniques or the Schriffer–Wolff trans-

Ĝ f rµ
0

Ĝ f rµ
0

ΣBµ
sc h,

Gµα k k '; z,( ) δµµ 'δαα 'δ k k '–( )G0µα k k '; z,( )=

+ G0µα k; z( )Vµα
f * k( )G fµµ

0( ) z( )Vµα
f k '( )G0µα k; z( ),

G fµµ
0( )

G fµµ
0( )

Ĝ f rµ
0

ρB ε( ) ρ0B ε( )–
1
π
---AρImSpĜ f rµ

0 ε( ), ε 0,>–=

∝ γ Bµµ∑ Vµ
f 2

Ĝ f rµ
0
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formation for the Hamiltonian  +  + Hh, we
obtain the standard expression

(3.1)

As Uµµ'  ∞, the matrix elements in Eq. (3.1) become

The doubly degenerate f-level containing one elec-
tron can be conveniently described in terms of the pseu-
dospin variable . The projections of the pseudospin

operator  on the coordinate axes coincide with the
components of the quadrupole moment tensor. The pro-

jection  ~ Qzz on the z axis has two values corre-
sponding to the occupation of the different orbitals of

the doublet. The operator    –  inverts the
pseudospin, and we can therefore write

where σi are the Pauli matrices.
The index α = ± is magnetic, and therefore, it cannot

change under the scattering by the electric quadrupole
moment of the impurity nonmagnetic Γ3 doublet
described by (2.4). In other words, for Hamiltonian (2.4)
to possess the time reversal property, the quantum num-
ber α must be conserved during the scattering. The
scattering processes change only the states belonging to

the same group (  or ), and these states form a

representation for the pseudospin  = 1/2.

The time reversal symmetry therefore guarantees
the transfer from Hamiltonian (2.4) to the two-channel
quadrupole exchange Hamiltonian with the channel
index α,

(3.2)

Because the hybridization matrix elements are com-
plex in general, Eqs. (3.1) and (3.2) contain the term

involving  along with the term involving . We are
interested in the case where the dominant effect of the
interaction is the generation of a multiparticle reso-
nance at the Fermi level. The Green function corre-
sponding to this resonance can be calculated using the
bosonization method by reducing the Hamiltonian v to
the resonance-level model proposed in [14]. To reduce

HU
f H0

f

H int εd ε'ρ0B ε( )ρ0B ε'( )d∫∫
µµ 'αα '

∑=

× Vµµ ' ε ε',( )aBαµ
+ ε( )aBα 'µ ' ε'( ) f µ

+ f µ ' .

Vµµ ' ε ε',( )
Vµα

f * ε( )Vµ '
f ε'( )

ε f

----------------------------------, εF E f ε f .≡–∼

τ̂ f

τ̂ f

τ̂ f
z

τ̂ f
x ∝ Jx

2 Jy
2

τ̂ f
i f µ

+σµµ '
i f µ ' ,

µµ ' 1±=

∑=

Γ8
+( ) Γ8

–( )

τ̂ f

H int εd ε'ρ0B ε( )ρ0B ε'( )d∫∫
i x y z, ,=

∑
µµ 'α
∑=

× Vi ε ε',( )aBαµ
+ ε( )σµµ '

i aBαµ ' ε'( )τ̂ f
i ,

Vi ε ε',( )σµµ '
i Vµµ ' ε ε',( ).≡

τ̂ f
y τ̂ f

x
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the Hamiltonian H0 = H00 + Hint + H∆ with the two-
channel exchange in Eq. (3.2) to the resonance-level
model, it is convenient to rewrite H0 as

(3.3)

where

and

The bosonic representation of the fermion fields
ψµα(x) takes the form

(3.4)

where ϕµα(x) is the boson field, Pµα(x ') is the canon-
ically conjugate momentum, [ϕµα(x), Pµ'α '(x ')] =
iδ(x – x ')δµµ'δαα ', and a is the lattice constant. The oper-
ators  ensure the anticommutation relations
between different species of fermions. The boson fields
ϕµα(x) and Pµα(x) can be rewritten in terms of the col-
lective variables that are introduced by means of the
canonical transformation of ϕµα(x) and Pµα(x):

(3.5)

Similar expressions can be written for the conjugate
fields Pµα(x), µ, α = 1, 2. The Fourier components of the
boson fields k1/2ϕl(k) correspond to the charge (c), fla-
vor (f), pseudospin (s), and mixed (flavor-quadrupole,
sf) density operators ρl(k). The flavor is generated by
the channel index α.

In terms of the collective bosonic variables, the
spinless fermion collective fields are given by

. (3.6)

The Hamiltonian H0 can be represented as a sum of
four terms corresponding to the four spinless fermion

H0 iv F ψµα
+ x( )∂xψµα x( )

∞–

+∞

∫
µµ 'α
∑=

+
1
2
--- Viψµα

+ 0( )σ̂µµ '
i ψµ 'α 0( )τ̂ f

i ∆τ̂ f
z ,+

i x y z, ,=

∑
µα
∑

ψµα x( ) keikxaBµα k( )d

∞–

+∞

∫=

ψµα 0( ) ψµα x 0=( ).=

ψµα x( ) η̂µα
e

iΦµα x( )–

2πa( )1/2
-------------------, η̂µα

2 1,= =

Φµα x( ) π( )1/2 x 'Pµα x '( )d

∞–

x

∫ ϕµα x( )+ ,=

η̂µα

ϕc f,
1
2
--- ϕ11 ϕ12+( ) ϕ21 ϕ22+( )±[ ] ,=

ϕ s sf( ),
1
2
--- ϕ11 ϕ12–( ) ϕ21 ϕ22–( )±[ ] .=

ψl x( ) e
iΦl x( )–

2πa( )1/2
-------------------, l c f s sf( ), , ,= =
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collective channels. The charge and flavor channels are
not coupled to the impurity pseudospin. The other
channels give the following terms in the Hamiltonian
H0 = H00 + Hint +H∆:

(3.7)

The Hamiltonian in Eq. (3.7) corresponds to the res-
onance-level model that yields a multiparticle reso-
nance (the fr level) at the Fermi level. The fr level can be
described in terms of the fermion operators d+ and d
coupled to the pseudospin operator  via the Majorana

representation: d+ = ,  = d+d–(1/2), where  is

the Majorana (real) fermion operator such that  = 1.

The Green function (z) of the resonance level con-
tains the anomalous components 〈dd 〉  and 〈d+d+ 〉
in addition to the normal components 〈dd+ 〉  because
the number of fermions is not conserved in the models
described by Eq. (3.7).

3.2. It is known [15, 16] that the two-channel model
described by Eqs. (3.3) and (3.7) has two regions with
essentially different physical properties depending on
the relation between TK and ∆, where TK is the exponen-
tial Kondo temperature.

We consider the region of the parameters where the
Kondo physics plays the key role. This case is referred
to as the “Kondo regime” in what follows. It occurs
under the condition

(3.8)

In this case, the model described by (3.7) renormalizes
to the strong coupling limit [15, 16]. In this limit, the

quantities ΓK = πρ0B  and ∆ renormalize to TK and
∆2/TK, respectively. The fixed point lies on the line

 = 0 [8] (the Emery–Kivelson line), and the screen-
ing interaction is not essential for small energies. The
quantity TK is defined on the Emery–Kivelson line and
depends on Vx only. For this reason, the parameters TK

and ∆ are independent. The NFL state is generated by
the impurity degrees of freedom that are not hybridized
with the conduction electrons [14, 17]. Near the Fermi
level at T = 0, the Green function becomes

(3.9)

H00 iv F   x ψ l 
+ x ( )∂ x ψ l x ( ) , d  

∞
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+

 

∞

 ∫  

l s sf
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0
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0
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[ ]τ

 

ˆ f
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+ Ṽ zψs
+ 0( )ψs 0( )τ̂ f

z ∆τ̂ f
z , Ṽ z 2 Vz πv F–( ).≡+

τ̂ f
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+η̂ τ̂ f

z η̂

η̂2

Ĝ f r
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∝ ∝
∝
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2

Ṽ z

Ĝ f r
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where 
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) is the self-energy part determined by the
hybridization term in Eq. (3.7) and 
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Re(

 

z

 

) 

 

_

 

 0. As usual, the exponential pole at 
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z
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  TK in

the first term of (z) has the exponentially small res-

idue ZK  exp( /γB), TK  εFZK.

On the other hand, under the conditions

(3.10)

the model does not renormalize to the strong coupling

limit (or equivalently, to the fixed point at  = 0) for
low temperatures because of a very weak renormaliza-
tion of ∆ [15]. In this case, the NFL state is generated
by the screening interaction in Eq. (3.7) and by the non-
hybridized impurity degrees of freedom. This mecha-
nism is referred to as the “X-ray-edge regime” in what
follows. In this case, the hybridization occurring in the
sf-channel can be treated as a perturbation of the ground
state obtained at Vx = 0. At Vx = 0, the problem is solved

exactly. To obtain the Green function (z) at Vx = 0,
we use the technique that was previously applied to the
well-known problem of the X-ray absorption in metals.

We first diagonalize the Hamiltonian  + Hs + H∆

in (3.7) at Vx, y = 0. For this, we introduce the boson

operators bsk = k–1/2ρs(k) and  = k–1/2ρs(–k), where 

(3.11)

are density operators, ψs(k) are Fourier components of
the fields ψs(x), and the cutoff occurs at kD ~ a–1. Using

the operators bsk and  we write the Hamiltonian as

(3.12)

This is diagonalized by the canonical transformation

∝

Ĝ f r

0

∝ ε Γ3
– ∝

TK  ! ∆, Ṽ z @ V x y, ,

Ṽ z

Ĝ f r

0

H00
s

bsk
+

ρs k( ) 1

N1/2
--------- ψs

+ q( )ψs q k+( ),
q 0=

kD k–

∑=

ρs k–( ) 1

N1/2
--------- ψs

+ q( )ψs q k–( ), k 0,≥
q k=

kD

∑=

bsk
+

H00
s Hs ∆τ̂ f

z+ + v F kbsk
+ bsk Ṽ z d+d

1
2
---– 

 +
k 0>
∑=

× k
N
---- 

 
1/2

bsk
+ bsk+( ) ∆τ̂ f

z .+
k 0>
∑

UB Ṽzρ0B d+d
1
2
---– 

  kN( ) 1/2– bsk bsk
+–( )

k 0>
∑ 

 
 

.exp=
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Under this operation, the Hamiltonian  + Hs +

 is transformed to

(3.13)

where

 = ∆ – εU, and εU = ρ0B is the “polaron shift”.
Equation (3.13) allows us to find the Green function

of the resonance level,

(3.14)

where U0B(t) is derived from U0B(0) by the substitution

bsk  bsk . In Eq. (3.14), 〈…〉D denotes averaging

over the states of the diagonalized Hamiltonian  +

Hs and (t) is the Green function with the s-channel
interaction disregarded. The averaging is performed in
the standard way using the relations

where F is an arbitrary linear combination of boson
operators. As a result, we find that at large times εFt @ 1,
the function in Eq. (3.14) is given by

(3.15)

where αs = (δs/π)2 and δs is the phase shift for the scat-
tering described by Hs in the pseudospin channel.

At Vx, y = 0, we use Eq. (3.15) with (t)  
to obtain the known expression for the Green function

(3.16)

where A(+) = –1 and A(–) =  for Re(z – ) _ 0,
respectively, Γ(x) is the gamma function, and W is the
cutoff parameter of the order of the conduction band
width.

We next recall (e.g., from [23]) that including the
hybridization Vx as a perturbation in the X-ray-edge
Hamiltonian, we recover the previous X-ray-edge results
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with the energy shifted as iω  iω + iΓK , ΓK =

πρ0F , in the resonance level Green function .
Within the framework of two-channel model (3.5), the
width due to the hybridization appears only for half the

impurity degrees of freedom  hybridized with the
conduction sf-channel.

The same result can be obtained by writing Hamil-
tonian (3.5) in terms of the hybridized states and then
considering the screening interaction for these states.
One can readily show that additional interactions induced
by the transition to the new basis are proportional to

(Vx/W) and are therefore much smaller than the screen-
ing interaction. In the new basis, Hamiltonian (3.7) is
reduced under condition (3.10) to a Hamiltonian of the
X-ray-edge type. In the present case, the hybridization in
Eq. (3.7) gives the level width related to half the degrees
of freedom of the impurities hybridized with the con-
duction electrons.

Using Eqs. (3.14) and (3.15) with

we thus obtain (z) in the energy representation,

(3.17)

where

Because we calculate the retarded Green function in
Eq. (3.17), we must have Imz < 0. If the radial parts of

the wave functions entering the matrix elements  are
independent of µ, we readily obtain

(3.18)

The power-law dependence occurs in Eq. (3.17) under
conditions (3.10).

It follows from (3.17) that the multiparticle NFL
resonance at the Fermi level is generated by the mixed
flavor-quadrupole (sf) mode. The interactions in the
pseudospin channels having the screening character
lead to the effective broadening of the resonance level.
The second term in Eq. (3.17) is due to the impurity
degrees of freedom that are not hybridized with the
conduction electrons.

In concluding this section, we write the expression
for the DOS ρB(ε) near the Fermi level. The multiparti-
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cle resonances at the Fermi level are described by the
Green functions in Eqs. (3.9), (3.17), and (3.16). These
Green functions must be inserted in Eq. (2.8), after which
ρB(ε) is derived. In particular, inserting Eq. (3.17) in
Eq. (2.8), we find the DOS in the X-ray-edge regime:

(3.19)

where Aρ ~ γBρ0B. The widths Γ1 = δ  0+ and Γ2 = ΓK

correspond to the two contributions to the Green func-

tion  in Eq. (3.17).

In the Kondo regime, the DOS is determined by
function (3.9).

4. THE FL RESONANCES
NEAR THE FERMI LEVEL

4.1. The scattering of the multiparticle excitations
due to the term Hsc results in simple poles near the

Fermi level in the complete Green function (z) in
Eq. (2.6). The poles correspond to new Fermi-liquid reso-

nances. The positions  =  –  of the poles are
determined by the equation

(4.1)

Because this equation is the same for all terms of the

matrix , the matrix indices are omitted in Eq. (4.1).
The expression for the Green function (2.6) near the

FL resonance with the energy zrµ becomes 

(4.2)

where we expanded the denominator in Eq. (2.6) near

the resonance energy as D(ε) = D '(zrµ)(ε –  – zrµ),
where D '(zrµ) ≈ Fr/zrµ (with the indices of the denomi-
nator omitted at the moment) and Fr is a function of the
parameters of the order of unity. The energy depen-

dences of (z) in (2.6) are determined by the DOS
ρν(ε). In the model under consideration, the function

(z) has no features at the Fermi level, which allows
us to write

(4.3)

The self-energy functions (z) have the features
corresponding to the NFL peaks in the DOS ρB(ε).
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------------arctansin
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Ĝ fµ
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D̂µ
AB
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In the Kondo regime, the main singular term appears

in (z) because of the δ-like contribution to the spec-
tral function induced by the second term in the Green
function (3.9) as z  ε + i0+. In other words, this sin-
gular term is due to the impurity degrees of freedom
that are not hybridized with the conduction electrons.

The self-energy (z) takes the form

(4.4)

In the X-ray-edge regime, using the density of states
in Eq. (3.19), we obtain the contribution of the reso-
nance levels to the self-energy function at zero temper-
ature,

(4.5)

where |ABµ| ~ 1.

In the Kondo regime, inserting (3.9) and (4.4) in
(4.1) and taking the most singular term 1/z3 in WBµ(z)
into account, we readily obtain two resonances above
and below the Fermi level that occur due to the scatter-
ing of the nonhybridized impurity degrees of freedom.
The energies of these resonances are determined by

(4.6)

where Ar ~ 1 and γAµ = ρ0A. The resonance width
above the Fermi level is much smaller than the reso-
nance width below the Fermi level. The former width is
determined by the terms in Eq. (4.1), which are much
smaller than the leading singular term 1/z3. There-
fore, the pseudogap exists near the Fermi level for

|ε(−) | @  and for |ε(–) | ! .

In addition, Eq. (4.1) has two solutions above and
below the Fermi level with |z + iγK| ! γK. For this rea-
son, the shape and the width of the Kondo peak
change weakly at the Fermi level. In particular, the
width of the Kondo peak has a small additional term
~TK(γAµρ0A)(γBρ0B) ! TK due to the scattering.

The qualitative picture of the DOS in the Kondo
regime near the Fermi level is shown in Fig. 2. We see
that the FL resonances generate both the additional
energy scale γr ! TK and the pseudogap near the Fermi
level.

We thus obtained the essential result that the scatter-
ing of the nonhybridized impurity degrees of freedom
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by the electron states of the narrow band leads to the
existence of new resonances near the Fermi level.

According to the experimental data [2], there exists a
concentration region where the Kondo energy TK

increases exponentially with decreasing the impurity con-
centration. At the same time, the hybridization matrix ele-
ments and, consequently, the widths γB and γAµ remain
approximately constant in this region. We can therefore
expect that the condition |zr| ! TK is satisfied at a suffi-
ciently low concentration of the impurity atoms.

4.2. Using expressions (2.7) and (3.17), it is easy to
verify that in the X-ray-edge regime, Eq. (4.1) pos-

2

ρ

γr
(+)

εr
(–)

2

1

2

γr
(–)

εr
(+)0 ε

Fig. 2. The Kondo resonance (curve 1) and new FL reso-
nances (curves 2) show the respective FL resonances with

 @  and  ! .εr
± γr

± εr
± γr

±
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sesses solutions of two types with their energies satis-
fying the respective conditions

For simplicity, we here used the condition

The signs “±” correspond to the resonances above and

below the Fermi level. For  ! , , the
widths of the FL resonances are determined by

(4.7)

(4.8)

where A1, 2 ~ 1. In this case, the FL resonances merge into
a single weakly split resonance at the Fermi level (Fig. 3b).

For  @ , , the energies  are
determined by the expressions in the right-hand sides of

Eqs. (4.7) and (4.8) and by  = sinϕ with ϕ ! 1.
In this case, pairs of the FL resonances appear above
and below the Fermi level (Fig. 3a). Pairs of the FL res-

onances can exist because the Green function (z)
has two branches above and below the Fermi level. For

 @ , there are well-determined pseudogaps near
the Fermi level in the case of the narrow resonances.
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Fig. 3. The NFL (curves 1) and FL (curves 2) resonances in the X-ray-edge regime: (a) the narrow resonances for  @ ;
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Two types of FL resonances correspond to the exist-
ence of the hybridized and nonhybridized impurity
degrees of freedom. In particular, the narrow reso-
nances, which determine a new small energy scale near
the Fermi level, are generated by the interband scattering
of the nonhybridized impurity degrees of freedom. In
other words, the narrow resonances result from broaden-
ing and displacement of the zero-width term in the spectral

function  (see the second term in Eq. (3.17)) due to
the interband scattering.

Equations (4.7) and (4.8) imply that the FL reso-
nances exist for the deep level (εf @ γB) under the con-
dition

(4.9)

which is the same for the resonances of both types.

Condition (4.9) is satisfied for all values of αs in the
following cases. First, for γΑµ @ γB and sufficiently
“shallow” f-levels such that

(4.10)

and second, for γΑµ ! γB and εf ~ W.

On the other hand, the widths of the NFL resonance
and, correspondingly, the characteristic binding energy
of the collective states forming the NFL resonance can
be estimated as

(4.11)

This estimate is derived from the NFL DOS in
Eq. (3.19). As αs increases, the binding energy εK also
increases.

The FL resonance can appear if the collective states
defined in Eqs. (3.6) and (3.11) decay. Taking the fore-
going into account, we must bear in mind that the decay
of collective states becomes more difficult as αs

increases. Therefore, the structure of the FL resonances
near the Fermi level essentially depends on the magni-
tude of the parameter αs that describes the scattering in
the quadrupole (pseudospin) channel. From the imagi-
nary part of Eq. (4.1), we readily find that the narrow
resonances exist for αs ≤ 3/5. For 1/7 < αs ≤ 1/3, the nar-
row resonances appear above and below the Fermi
level. For αs > 5/7, FL resonances are absent.

In addition to condition (4.9), we thus find that the
narrow FL resonances can exist when the pseudospin

channel interaction  is not very strong.

Ĝ f r

0( )
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2 6α s– W
ε f

----- 
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W
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,

εK ΓK

εF
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α s
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In the limiting case where Vx y = 0, the FL resonance
exists above the Fermi level for αs ≤ 1/3. Its energy is
determined by

(4.12)

In the X-ray-edge regime, the narrow FL resonances
provide peaks in the DOS with the widths much smaller
than those of the NFL resonance (see Fig. 3). Thus,
their existence allows us to obtain a new mechanism for
the appearance of the small energy scale.

We also mention that as shown in [11], the model
without the continuum in the impurity region does not
give narrow FL resonances and therefore does not lead
to the small energy scale. The “wide” resonances above
and below the Fermi level and a local state above the
Fermi level have been obtained in this model. Addi-
tional mechanisms are required for broadening local
states.

At the same time, the existence of the narrow FL
resonances leads to the appearance of pseudogaps near
the Fermi level in the X-ray-edge regime. The
pseudogap occurs under the Fermi level for a single
narrow FL resonance at 1/3 < αs ≤ 3/5. At αs ≤ 1/3 for
the split FL resonances, the pseudogap also splits into
two branches above and below the Fermi level. The
pseudogaps are well determined for |εr| @ γr . The min-
imum value of the DOS inside the pseudogaps is of the
order of the magnitude of the “wide” resonances. The
maximum widths of the pseudogaps are of the order

 and are determined by the expression in the right-
hand side of Eq. (4.7).

The conditions required for the appearance of
pseudogaps are identical to those for the existence of
the narrow FL resonances.

5. THE MIXED-VALENCE
AND NEARLY INTEGER STATES

The criterion that enables us to choose between the
two types of states involves the partial f-component

(0) of the DOS at the Fermi level and the DOS

ρf (εfµ) at the deep level. For (0) @ ρf(εfµ), the charged

excitations play the key role at the Fermi level, while the
opposite inequality means that their role is negligible.
The former case corresponds to the mixed-valence
state, and the latter case leads to the state with a nearly
integer valence.

γr
±( )

W
----------- γAµρ0A( )

1/ 1 α s–( )
∼

× γBρ0B( )
1/ 1 α s–( )

 ! γB.

εr
±( )

ρ f r

ρ f r
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The Green function (z) for |z| close to the
energy εfµ of the deep level can be represented as

(5.1)

where Zfµ ~ 1 is the residue at the pole z = εf µ. The
energy εfµ renormalized by hybridization is determined
by the equation

The maximum value of the DOS at the deep level can
therefore be estimated as

(5.2)

We now verify our criterion for the Kondo reso-
nance. It is well known [19, 20] that in this case, the
density of charged states is small at the Fermi level.
Using the “resonance level” formalism, one can see this
from the small residue ZK that determines the pole con-
tribution to the Green function at |z| close to the Fermi
energy,

(5.3)

where EK ~ iγK and γK ~ TK. In accordance with our cri-
terion, the inequality corresponds to a small contribu-
tion of the charged excitations at the Fermi level.

However, for new FL resonances with the widths 
in Eq. (4.6), the following inequality holds:

(5.4)

Therefore, additional FL resonances lead to the exist-
ence of a mixed-valence state in the Kondo regime.

In the X-ray-edge regime, the NFL resonance is
generated by the flavor-quadrupole and the quadrupole
(pseudospin) modes that have a charge due to the qua-

drupole contribution. The component (0) =

−(1/π)ImSp (0) is then estimated as

(5.5)
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For the narrow FL resonances, using expression (2.6)
for the Green function (z), we readily arrive at the
estimate

(5.6)

Assuming  ~ W and comparing (5.2) with (5.5)
and (5.6), we find

(5.7)

and also the inequality

, (5.8)

which holds for all values of the parameters at which
FL resonances exist.

It is interesting to note that under the conditions
γAµ @ γB and

(5.9)

the mixed-valence state and FL resonances exist simul-
taneously for all values of αs.

Inequalities (5.7)–(5.8) imply that, first, the state
with a nearly integer valence can be realized only when
FL resonances are absent and the parameter αs is suffi-
ciently large. Second, two types of the mixed-valence
states are generated in our system.

The NFL mixed-valence state occurs for αs < 1/2 if
FL resonances are absent.

In the limiting case where  = 0, the mixed-
valence state exists only owing to the additional FL res-
onance.

The FL mixed-valence states are generated by the
instability of the NFL state against the interband scat-
tering. These states are formed under the same condi-
tions that are necessary for the existence of FL reso-
nances at the Fermi level. The type of the FL mixed-
valence state depends on the type of the FL resonance
(narrow or “wide”) that can be realized for a given set
of parameters.

As shown above, narrow FL resonances exist for all
values αs < 1/2. Thus, the main features of the FL
mixed-valence state are the appearance of a small
energy scale and the formation of pseudogaps.
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--- ImSpĜ fµ 0( )

µ
∑–=

∼ ρ 0B
W
γr

----- 
  1 α s–( )

.

ε f

ρ f r

NFL 0( ) @ ρ f ε fµ( ) at α s
1
2
---,<

ρ f r

NFL 0( ) ! ρ f ε fµ( ) at α s
1
2
---,>

ρ f r

FL 0( ) @ ρ f r

NFL 0( ), ρ f ε fµ( )

W
γB

W
----- 

 
1 2α s–( )/2 1 α s–( )

 ! ε f

! W
γB

W
----- 

 
1 3α s–( )/3 1 α s–( )

,

V x y,
Λ

SICS      Vol. 93      No. 2      2001



408 MANAKOVA
The transitions between the NFL and FL mixed-
valence states are characterized by changing the
valence from one noninteger value to another. Taking
the foregoing into account, we conclude that condition
(4.9) alone is necessary for the transitions between two
mixed-valence states.

When condition (4.9) is not satisfied, the direct tran-
sition between the NFL mixed-valence state and the
state with a nearly integer valence occurs at αs ≈ 1/2.

Apparently, the most realistic way to generate the
transitions experimentally is to change the lattice
parameter by doping [3]. This leads to changing the
hybridization between conduction electrons and the Γ3
level that enters the interaction matrix elements and the
widths γB. We can thus obtain a series of transitions,
which are considered in detail elsewhere.

6. CONCLUDING REMARKS

6.1. The above results allow us to understand the
mechanisms of two important properties of HF NFL
metals.

(1) The single-site two-channel Kondo effect and
the mixed-valence state coexist because of additional
FL resonances at/near the Fermi level. The scattering of
the nonhybridized impurity degrees of freedom by the
narrow A-band electrons generates these resonances.
Therefore, two energy scales TK and γr exist at the
Fermi level. The FL resonance with the width γr corre-
sponds to the local mixed-valence state.

(2) There are two possible energy dependence types
in a system with the two-channel quadrupole exchange
interaction. In the Kondo regime (TK @ ∆), one
obtains the known universal energy dependences [14,
17, 22] because the Green function in Eq. (3.9) has a
single energy scale TK.

In the X-ray-edge regime (TK ! ∆), nonuniversal
power-law energy dependences must occur in accor-
dance with the form of the Green function in Eqs. (3.16)
and (3.17).

It follows from the experimental data [2] that the
increase of the impurity concentration x in the U-com-
pounds results in (a) decreasing TK(x), (b) increasing
the concentration of the impurity atoms by a noticeable
value ∆, and (c) increasing the anisotropy of the
exchange parameters. Therefore, increasing the impu-
rity concentration must enable crossing over from the
Kondo regime with the universal energy dependences
to the X-ray-edge regime with nonuniversal energy
dependences.

As shown above, characteristic features of the NFL
compounds with f-shell impurities are the different
types of the mixed-valence states with the NFL and FL
excitation spectra and the fact that the heavy-fermion-
state type depends on the interaction parameter αs. In the
other words, this parameter determines the role of the
JOURNAL OF EXPERIMENTAL
charge and spin excitations in the formation of heavy
fermions.

Small energy scales and the pseudogaps are induced
by the narrow FL resonances. Therefore, the instability
of the NFL state provides a new physical mechanism
for the small energy scale. Unlike in previous works [6,
21], this mechanism is especially appropriate for impu-
rities with an unstable valence.

Thus, the instability of the NFL state induced by the
interband scattering of multiparticle excitations consid-
erably changes the mechanisms of the formation of
heavy-fermion states.

6.2. We now briefly consider the features of the tem-
perature dependences within the framework of the
mechanism proposed in the present paper. The energy
dependences of the Green functions (2.6), (3.9), (3.16),
and (3.17) imply that new types of the temperature tran-
sitions (crossovers) occur in the system. When new FL
resonances generated by scattering are not formed, a tran-
sition occurs from the universal temperature dependences
of the physical quantities in the Kondo regime to nonuni-
versal power-law dependences in the X-ray-edge regime.
The characteristic temperature of this crossover is Tc1 ~ ∆.
In particular, the logarithmic dependence of the linear
specific heat C/T  ln(TK/T) must be transformed into

the power-law dependence C/T  . The former
dependence was calculated in [14, 17] using expres-
sion (3.9) within the framework of the two-channel
Kondo model. The power-law dependences follow
from Eqs. (3.16) and (3.18) for the Green functions in
the X-ray-edge regime. As mentioned in this section,
the condition TK ! ∆ can be realized at a relatively high
concentration of the f-shell impurities. The power-law
dependences of C/T observed in UxY1 – xPd3 at x = 0.2
in [7] can therefore be generated by the mechanism dis-
cussed here. We recall that historically, the alloys
UxY1 – xPd3 were the first systems where the NFL behav-
ior induced by the two-channel quadrupole Kondo
model was observed [3, 5].

In the two-channel quadrupole Kondo model, the
magnetic susceptibility is known [2] to have the van
Vleck contribution between the Γ3 ground state and the
first excited crystalline electric field. The van Vleck
susceptibility is described by the temperature depen-
dence χ ~ χ0 – α(T/TK)1/2. According to the experimen-
tal data [7], this dependence is also transformed into a
power-law one as the impurity concentration increases.

The quadrupole susceptibility χQ has the logarith-
mic divergence ln(TK/T) in the Kondo regime. It is
experimentally determined from the nonlinear mag-
netic susceptibility χ3 [24]. Correspondingly, χQ and
χ3 must exhibit the same crossover as the specific heat.

We emphasize that the crossover discussed here cor-
responds to the transition between the state with a
nearly integer valence and the mixed-valence state.

∝

∝ T
1– α s+

∝
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The existence of the FL resonances generated by the
scattering of the NFL excitations results in crossovers
between the FL and NFL temperature dependences
within both the Kondo regime and the X-ray-edge
regime. The characteristic temperatures of these cross-
overs are Tc2 ~ γr , where γr are the widths of the FL res-
onances determined in Eqs. (4.6), (4.7). We note that
the low-temperature transition to the FL state usually
occurs at T ~ ∆2/TK in the two-channel Kondo model
[3, 25]. The maximum value of the linear specific heat
is equal to (C/T)max ~ TK/∆2. 

Within the framework of our mechanism, it must be

(C/T)max ~  for γr @ ∆2/TK. It is possible that the
additional small scale γr enters the scaling dependences
in the FL–NFL transition region. The appearance of a
new small energy scale is observed in the low-temperature
scaling law of resistivity in [24]. In the X-ray-edge
regions, the crossover at T ~ Tc2 corresponds to the transi-
tion between the FL and NFL mixed-valence states.

The temperature transitions between FL mixed-
valence states of the different origins were considered
in [26].

6.3. The above results are obtained for single-ion
NFL effects. We now show that these effects can also be
considerable in “concentrated” systems.

The ground state of these systems significantly
depends on the competition between the intersite inter-
action, i.e., the indirect exchange of the RKKY type for
pseudospins, and the on-site Kondo scattering leading
to the screening of the quadrupole impurity moment by
conduction electrons. The characteristic energy for the
two-channel on-site Kondo scattering is determined by
expression (4.11). The characteristic energy scale of the
RKKY interaction is

(6.1)

where ci is the concentration of the interacting atoms. In
concentrated systems, i.e., at ci ~ 1, the energies εK and
εRKKY are such that

(6.2)

This implies that single-ion NFL effects can be very
important even when the two-channel impurities form a
sublattice.

The analysis presented here enables us to qualita-
tively understand two important aspects of the problem
for the concentrated systems: the dependence of the HF
properties on doping and physical reasons that can sat-
isfactorily explain a number of properties of the con-
centrated systems within the framework of the single-
ion quadrupole Kondo model.

γr
1–

εRKKY ci

Vex
2

εF

------- 
  ciΓK ,∼ ∼

εK  @ εRKKY for α s 0.≠
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Abstract—The specific case of slow-electron diffraction in fast-ion tracks is considered. The excitation condi-
tion for standing waves of δ electrons is a strong screening of the Coulomb interaction, for which most of the
δ electrons are knocked out in radial directions relative to the track axis. In that case, an appreciable number of
δ electrons with a wavelength of the order of the interatomic distance experience multiple backscatterings
between the atomic chains located near the track axis. The lifetime of standing electron waves is estimated from
diffractometric measurements of the decrease in atomic density on the track axis. The mobility of crystal atoms,
their displacements, and the expenditure of energy on deformation are also estimated. © 2001 MAIK
“Nauka/Interperiodica”.
Intensive studies of ionic-irradiation effects on the
physical properties of widely used materials have pro-
vided insight into the many physical phenomena that
occur in fast-ion tracks, such as anomalous defect for-
mation [1, 2], alloy amorphization [3, 4], the so-called
anisotropic expansion at low temperatures, and creep in
the directions normal to ion beams [5–8]. There are also
several theoretical studies in which models of a thermal
flash [9–12], Coulomb explosion [13–15], soft phonon
modes [16], structural modification [17], and the local
electric field [18] generated by δ electrons in tracks
were considered. The wide use of semiconductor crys-
tals as detectors of high-energy ions stimulates investi-
gations into their structural degradation, which is
accompanied by a degradation of electrophysical prop-
erties. The peculiar features of defect formation in sili-
con irradiated with xenon and krypton ions with ener-
gies of 5.6 and 0.21 GeV, respectively, were studied in
[19] by two-crystal X-ray diffractometry. It follows
from the experimental data that the atomic density
decreases approximately by 10% in Kr-ion tracks at
large radiation doses. Chelyadinskii et al. [19] attribute
the appearance of a second peak in the plot of interpla-
nar spacing ∆d against depth to the ions falling into
“old” tracks and having path lengths that are larger than
ordinary ones by 10%. More informative experimental
data can be obtained by using currently available meth-
ods of structural diagnostics. These methods are based
on three-crystal X-ray diffractometry, which makes it
possible to separate diffuse scattering and to demon-
strate the peculiar behavior of dilatations in fast-ion
tracks. At high energies, the deceleration of ions by
electrons is much larger than their deceleration by
nuclei, and it determines the behavior of several physi-
cal processes in tracks. Large energy release into an
electron subsystem gives rise to intense fluxes of δ elec-
trons with an initially distinct angular anisotropy.
1063-7761/01/9302- $21.00 © 20410
In this paper, we consider the peculiar behavior of
collective electron excitation in crystals irradiated by
fast ions. Our approach is based on a microscopic
examination of the interaction between those crystal
atoms that are simultaneously excited by a fast imping-
ing ion. While crossing the crystal planes along the nor-
mal, such an ion simultaneously knocks δ electrons out
of several atoms in each crystal plane located in the
immediate vicinity of the track axis. For a screened
Coulomb interaction with a screening radius of the
order of the Bohr radius, the knocking of δ electrons out
of atoms that are not in the immediate vicinity of the
track axis may be disregarded. Below, we consider the
simplest case where the track axis passes between two
chains of crystal atoms. In this case, the number of
interacting atoms closest to the track axis and excited
simultaneously is N = 2, and the scattering system
becomes simplest. The number of δ electrons emitted
by each interacting atom per unit time and per unit solid
angle in direction θ relative to the track axis is

(1)

where V1 and dE1/dz are the ion velocity and the ion
energy losses for electron excitation, respectively; m =
cosθ gives the emission direction of the δ electrons rel-
ative to the track axis; εm = 4mE1/M1 is the maximum
energy of the knocked-out δ electrons at fast-ion energy

E1; ξ2 = "2/2m εm, rsc is the screening radius; m and
M1 are the electron and fast-ion masses, respectively;
N is the number of interacting atoms excited simulta-
neously; and A is the normalization factor,
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The energy of the δ electrons emitted at angle θ is
ε(µ) = εmµ2. The stopping power of a Kr ion in silicon
is estimated to be dE1/dz ≈ 8 keV nm–1. It follows from
Eq. (1) that the maximum emission intensity of the δ
electrons for ξ ! 1 corresponds to nearly radial direc-

tions with µ ≈ ξ/ . The direction-integrated emission
intensity is estimated from Eq. (1) to be

(2)

Here, the function f(z/L) = E1(z)/Em gives the decrease
in the energy of the fast impinging ions at depth z along
the track axis; and Em and L are the initial energy and
path length of the fast ions, respectively. For a silicon
crystal irradiated with krypton ions with an energy of
210 MeV, the path length is L ≈ 30 µm. If N = 2 and the
screening radius is approximately equal to the Bohr
radius, rsc ≈ aB = "2/me2, then φint ≈ 1 × 1018 s–1. Since
the mean interplanar spacing along the [111] axis in sil-
icon is d ≈ 0.15 nm, the mean excitation time of the
atoms in a separate (111) crystal plane is tex ≈ d/V1 ≈ 7 ×
10–18 s. This corresponds to the knocking of about
seven (Z∗  ≈ 7) δ electrons out of each interacting atom.
Thus, after the passage of the fast ions, the opposite
atoms of the two chains under consideration irradiate
each other with δ electrons. This interaction between
the atomic chains, which is switched on by a passing
ion, causes their mutual repulsion over the lifetime of
the excited state of δ electrons. Below, we estimate the
number of δ electrons that provides such an interaction
between the atomic chains.

To this end, the scattering pattern of these electrons
should be considered. First, note that the energy of
these δ electrons is

and corresponds to an electron wavelength λ ≈
2π rsc. The electron transport mean free path ltr,
which is determined by elastic collisions with crystal
atoms, for a screened Coulomb interaction is given by

(3)

where n0 is the atomic density of the target material and
Z0 is the number of electrons in the target ionized atom.
It is easy to see that the maximum of the integrand in
Eq. (3) at η = sin(γ/2) = 1 corresponds to ξ2/µ2 ≈ 3, sug-
gesting that the scattering angles γ ≈ π (head-on colli-
sions) mainly contribute to elastic scattering and that
the δ electrons under consideration can conserve
energy for subsequent elastic collisions and can experi-
ence multiple backscatterings. This means that in the
case of an approximate equality between the transport
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mean free path, half the electron wavelength, and the
distance between the atomic chains, each pair of inter-
acting atoms produces a standing electron wave in
which the scattered δ electrons under consideration are
involved. At the same time, the interacting atoms suffer
several tens of elastic collisions, causing the mutual
repulsion of the atomic chains under consideration. A
gradual increase in the distance between the chains
results in the violation of diffraction conditions for
electrons and determines the lifetime of such a collec-
tive excited state. 

The energy dependence of the electron transport
mean free path (3) is

(4)

where 

and g is a universal function that depends on parameter

ς = 2m ε/"2 as follows:

It has a minimum gm ≈ 3.42 at ς ≈ 0.68. For the δ elec-

trons with energy εw ≈ "2/6m  under consideration, g
is close to the minimum and is g(1/3) ≈ 3.8.

The excitation condition for standing electron waves
is

(5)

This is the Bragg condition for backscattering. It is sat-
isfied for k = 1 at the screening radius

(6)

For a silicon crystal (n0 = 5 × 1022 cm–3 and Z0 ≈ 7),
Eq. (6) gives the screening radius rsc ≈ 0.8aB. For stand-
ing electron waves to be excited, the distance l between
the atomic chains must also be a multiple of half the
wavelength of a δ electron:

(7)

Equation (7) gives the screening radius at k = 1, which
is also rsc ≈ 0.8aB. The simultaneous satisfaction of con-
ditions (5) and (7) yields the relation

(8)

for the parameters of a scattering system composed of
two atomic chains. In our case, these parameters are:
atomic density n0, distance l between the chains of
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interacting atoms, and the degree of ionization Z0 of
these atoms. If the number of atomic chains involved in
the scattering of δ electrons is large, the number of
parameters of the scattering system increases. At spec-
ified n0 and l, relation (8) gives the degree of ionization
of the interacting atoms at which they provide the back-
scattering of δ electrons and conserve their energy:

(9)

For silicon with n0 = 5 × 1022 cm–3 and l ≈ 0.23 nm,
Eq. (9) gives the number of electrons, Z0 ≈ 7, that
remain in the interacting atoms after their ionization by
fast ions and that scatter the knocked-out δ electrons.
The number Nw of δ electrons that each interacting
atom donates to the generation of standing electron

waves is determined by the ratio /2πl, where σbs is
the backscattering cross section. Estimates yield

which gives  ≈ 0.2 nm at Z0 ≈ 7 and rsc ≈ 0.8aB.
Therefore, the expression for the number of electrons in
the state of a standing wave in the ranges of wave-
lengths and distances under consideration is

which has a maximum at Z0 ≈ Z∗  ≈ Z/2 (Z is the atomic
number of the interacting atom). At Z0 ≈ Z∗  ≈ 7 and
scattering length l ≈ 0.23 nm, we obtain Nw ≈ 1 for sili-
con. Nw has the following physical meaning: this is the
initial population of the state of a standing electron
wave under consideration.

The parameters l, Z0, and n0 of the scattering
medium given by relation (8) provide the required scat-
tering power of the interacting atoms to maintain a
standing wave at k = 1. The states at k = 2, 3, 4, … can
also be excited. However, their populations are consid-
erably lower because of the small number of δ electrons
with a shorter wavelength in the initial energy spec-
trum. The states of a standing wave with k ≥ 2 can also
be populated by δ electrons with energy εw using
atomic chains whose separation is equal to or is a mul-
tiple of kl.

As the interacting atoms are displaced during the
scattering and recombination of δ electrons, the param-
eters l and Z0 of the scattering medium increase and
condition (8) is violated. This causes the standing elec-
tron waves to be damped out. Thus, the lifetime of
standing waves is determined by two damping pro-
cesses and can be represented as
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where τc and τp are the lifetimes attributable to the dis-
placement of interacting atoms and to the recombina-
tion of δ electrons, respectively. The decay of the quasi-
steady state of a standing wave may be considered as
an exponential decrease in its population: Nw(t) 
Nwexp(–t/τ). The recombination time in semiconductor
crystals is known to be typically τp > 10–10 s. The dis-
placement time of interacting atoms is much shorter,
τc ! τp. Therefore, the lifetime of a standing wave is
determined by atomic displacement, τ ≈ τc, and can be
estimated from experimental data in [19]. 

For the lifetime of a standing wave to be estimated,
the displacement of interacting atoms under multiple
collisions of δ electrons must be considered. This dis-
placement can be represented as resulting from the dif-
fusion of a heavy gas in a light gas. The displacement
velocity V(t) of atoms can be represented as the product
of their mobility by the force F(t) determined by the
momentum transferred to the atom from δ electrons
during head-on collisions per unit time. If the oscilla-
tion frequency in a standing wave, ω ≈ πvw/l, is not
equal to the natural oscillation frequency of crystal
atoms ω0, then it will suffice to take into account only
the weakening of the force exerted on atoms due to a
reduction in population Nw. In that case,

and the equation of motion for the interacting atoms is

(10)

where Nw is the initial number of δ electrons (per atom)
in the state of a standing wave under consideration, and

εw = /2 ≈ π2"2/2ml2 is the energy of such an elec-
tron. From Eq. (10), we derive the time dependence of
atomic displacement, s(t) ≈ u[1 – exp(–t/τ)], and the
total displacement

(11)

Disregarding the atomic displacement along the track
axis, we find the decrease in atomic density on the track
axis, ∆n/n0, to be determined by a lengthening of the
distance between the interacting atomic chains:

(12)

where Ry = e2/aB ≈ 27.2 eV. Here, the mobility of the
interacting atoms is taken to be b ≈ τ/M, where M is
their mass. It follows from (12) that the lifetime of a
standing wave can be estimated from the measured
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reduction in atomic density on the track axis, (∆n/n0)exp,
using

(13)

Assuming the frequency of standing waves, ω ≈ πvw/l ≈
2 × 1016 s–1, for silicon irradiated with krypton ions
with energy Em = 210 MeV to be much higher than the
natural oscillation frequencies ω0 of crystal atoms, we
use formula (13) to estimate the lifetime of a standing
wave. The lifetime estimated for (∆n/n0)exp ≈ 0.1, M =
28Mn, l = 0.23 nm, and Nw = 1 is τ ≈ 5.2 × 10–15 s. The
characteristic energy of the quasi-steady-state level for
a standing wave is equal to the energy of the δ electrons,
εw ≈ 7.5 eV, in this wave for silicon, while the energy
width of this level is∆εw ≈ "/τ ≈ 0.13 eV. It follows from
(13) that the lifetime of the δ electrons with a wave-
length λ ≈ 2l under consideration is proportional to the
square of the wavelength. This means that the standing
waves generated by longer wavelength δ electrons on
more widely separated atomic chains can exist longer.

Given that the mass of the interacting atoms is M =
28Mn ≈ 4.67 × 10–23 g, their mobility follows from our
estimate of the lifetime for a standing electron wave:
b ≈ τ/M ≈ 1 × 108 s g–1. The δ electrons under consider-
ation move between atoms at a velocity of vw ≈ π"/ml ≈
1.7 × 108 cm s–1 and traverse a distance of vwτ ≈ 8.8 nm
in the lifetime of the standing wave. This means that at
λ ≈ 0.23 nm, each chain atom suffers v τ/l ≈ 40 head-on
collisions with δ electrons in the lifetime of the stand-
ing wave. In this time, the atoms are displaced by u ≈
0.5l∆n/n0 ≈ 0.01 nm.

The mean displacement velocity of the interacting
atoms in time τ is 〈V 〉 ≈ u/τ ≈ 2 × 105 cm s–1 and exceeds
the velocity imparted by the atom in a single collision
by almost two orders of magnitude, V1 = 2mvw/M ≈
6.6 × 103 cm s–1. The mean velocity 〈V〉  has the same
order of magnitude as the initial atomic velocity, which,
according to (10), is V0 ≈ 4bεwNw/l ≈ 2.3 × 105 cm s–1.
The motion of an atom in the force field of a damped
standing wave gradually slows down from V0 to zero.

The work done by standing electron waves to dis-
place the interacting atoms can be estimated from the
formula

which yields Ad ≈ 0.75 eV per atom for silicon. The
ratio Ad/Nwεw ≈ 0.1 means that the standing wave
spends 10% of its energy on crystal deformation in the
track region. In the case where the silicon (111) surface
is irradiated with krypton ions with energy 210 MeV,
about 4 × 105 silicon atoms are contained in the two
interacting chains at a path length L ≈ 30 µm if the
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mean interatomic distance along the track axis is d ≈
0.15 nm. The deformation energy of these two chains
(.300 keV) then accounts for about 0.14% of the
energy of the impinging krypton ion. The excitation of
several standing waves can lead to a higher expenditure
of fast-ion energy on deformation.

In the right-hand part of Eq. (10), we discarded the
terms that describe viscosity and the elastic force
restoring the displaced atoms to their original position,
because we consider the case where the electron pres-
sure acts much faster than the elastic and friction
forces. An experiment [19] and an estimate of the ten-
sion between two atoms, 2n0Ad ≈ 7.5 × 1022eV cm–3,
which exceeds the shear modulus G ≈ 1010 N m–2 ≈ 6 ×
1022 eV cm–3, suggest that the displacement of the inter-
acting atoms is irreversible. Including the restoring

force M s and the friction force Mκ ds/dt in the right-
hand part of Eq. (10) can bring the atoms to their orig-
inal position s = 0 only when β = (ω0τ)2/(1 + κτ) ~ 1 (k
is the coefficient of viscosity). In this case, the atomic
displacement changes in accordance with

the interacting atom executes an aperiodic oscillation,
and the breaking point is not reached. For β ! 1, the
atom is displaced so rapidly that the energy transferred
from δ electrons has time to be spent on the deforma-
tion, which exceeds the shear modulus and becomes
irreversible as a result. In the latter case, the atom no
longer returns to its original position, and, according to
(11), the displacement is u ≈ 0.5l∆n/n0.

In conclusion, it should be emphasized that the
standing electron waves excited in fast-ion tracks can
displace atomic chains. This mechanism must lead to
the generation of dislocations, which can then be stabi-
lized or move through the crystal. In this paper, we have
considered in detail the excitation of a linearly polar-
ized wave between linear atomic chains. In general, a
superposition of standing waves corresponding to dif-
ferent distances between the atomic chains can be
excited. The excitation of a complete spectrum of
standing electron waves can give rise to peculiar cigar-
shaped dilatations with an appreciable reduction in
atomic density on the track axis.
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Abstract—A simple model of charge ordering is considered. It is explicitly shown that at any deviation from
half-filling (n ≠ 1/2), the system is unstable with respect to the phase separation into the charge ordered regions
with n = 1/2 and the metallic regions with a smaller electron or hole density. A possible structure of this phase-
separated state (metallic droplets in a charge ordered matrix) is discussed. The model is extended to account for
the strong Hund-rule onsite coupling and the weaker intersite antiferromagnetic exchange. The analysis of this
extended model allows us to determine the magnetic structure of the phase-separated state and to reveal the
characteristic features of the manganites and other substances with charge ordering. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The problem of charge ordering in magnetic oxides
has attracted the attention of theorists since the discov-
ery of the Verwey transition in magnetite at the end of
the 1930s [1]. An early theoretical description of this
phenomenon was given, e.g., in [2]. This problem was
recently reexamined in a number of papers in connec-
tion with the colossal magnetoresistance in manganites,
see, e.g., [3–5]. Mechanisms stabilizing the charge
ordered state can be different: the Coulomb repulsion
of charge carriers (the energy minimization requires
keeping the carriers as far away as possible, similarly to
the Wigner crystallization) or the electron-lattice inter-
action leading to the effective repulsion of electrons at
the nearest-neighbor sites. In all cases, charge ordering
can arise in mixed-valence systems if the electron band-
width is sufficiently small. In the opposite case, the
large electron kinetic energy stabilizes the homoge-
neous metallic state. In real materials, in contrast to the
Wigner crystallization, the underlying lattice periodic-
ity determines the preferential types of charge ordering.
Thus, in the simplest bipartite lattice, to which belongs
the colossal magnetoresistance manganites of the type
R1 – xAxMnO3 (where R = La, Pr and A = Ca, Sr) or lay-
ered manganites R2 – xAxMnO4, R2 – 2xA1 + 2xMn2O7, the
optimum conditions for the formation of the charge
ordered state exist for the doping x = 1/2. At this value
of x, the concentrations of Mn3+ and Mn4+ are equal and
the simple checkerboard arrangement is possible. The
most remarkable experimental fact here is that even at
x ≠ 1/2 (in the underdoped manganites with x < 1/2),
only the simplest version of charge ordering is experi-

¶This article was submitted by the authors in English.
1063-7761/01/9302- $21.00 © 20415
mentally observed with the alternating checkerboard
structure of the occupied and empty sites in the basal
plane [6]. In other words, this structure corresponds to
the doubling of the unit cell, whereas more complicated
structures with a longer period (or even incommensu-
rate structures) do not actually appear in this case.

A natural question then arises as to how the extra or
missing electrons can be redistributed for an arbitrary
doping level such that the superstructure remains the
same as for x = 1/2? To answer this question, the exper-
imentalists introduced the concept of the incipient
charge ordered state corresponding to the distortion of
a long-range charge ordering by microscopic metallic
clusters [7]. In fact, the existence of this state implies a
kind of phase separation. We note that the phase sepa-
ration scenario in manganites is very popular presently
[8–15]. There is a growing evidence nowadays suggest-
ing that an interplay between the charge ordering and
the tendency toward phase separation plays an essential
role in the physics of materials with colossal magne-
toresistance.

In this paper, we consider a simple model allowing
us to clarify the situation at an arbitrary doping. The
model includes both the Coulomb repulsion of elec-
trons on the neighboring sites and the magnetic interac-
tions responsible for the magnetic ordering in mangan-
ites. After demonstrating the instability of the system
toward phase separation in certain doping ranges, we
consider the simplest form of the phase separation—the
formation of metallic droplets in the insulating matrix.
We estimate parameters of such droplets and construct
the phase diagram illustrating the interplay between
charge ordering, magnetic ordering, and phase separa-
tion.
001 MAIK “Nauka/Interperiodica”
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We note that the charge ordering mechanism consid-
ered below (the Coulomb repulsion) is not the only one.
The electron-lattice interaction can also play an impor-
tant role (see, e.g., [16]). In application to manganites,
one must also take the orbital and magnetic interactions
into account [4, 16, 17]. These may be important, in
particular, in explaining the fact that the charge order-
ing in half-doped perovskite manganites is a checker-
board one only in the basal plane, but it is “in-phase”
along the c-direction. However, the nature of this
charge ordering is not clear yet and presents a separate
problem: it is not evident that the dominant mechanism
is indeed given by the magnetic interactions responsi-
ble for this stacking of ab-planes in [16]. We also
emphasize that the charge ordering is often observed in
manganites at higher temperatures than the magnetic
ordering, and one must seek a model that does not
heavily rely on magnetic interactions. In contrast to
magnetic interactions, the Coulomb interaction is one
of the important factors that is always present in the
systems under consideration. Moreover, it has a univer-
sal nature and does not critically depend on specific fea-
tures of a particular system. Consequently, our treat-
ment can also be applied to other systems with charge
ordering such as magnetite Fe3O4 [1], cobaltites [18],
nickelates [19], etc.

2. THE SIMPLEST MODEL FOR CHARGE 
ORDERING

We consider a simple lattice model for charge order-
ing,

(1)

where t is the hopping integral, V is the nearest-neigh-
bor Coulomb interaction (a similar nn repulsion can
also be obtained via the interaction with the breathing-
type optical phonons), µ is the chemical potential, and

 and cj are one-electron creation and annihilation

operators, ni = ci. The symbol 〈i, j〉  denotes the sum-
mation over the nearest-neighbor sites. Here, we omit
spin and orbital indices for simplicity. As mentioned in
the Introduction, the spin and orbital effects play an
important role in the formation of the real structure in
specific compounds; in this section, however, we
emphasize the most robust effects related to the nearest-
neighbor Coulomb repulsion. The magnetic effects are
discussed in Section 5. We also assume that the double
occupancy does not occur in this model because of the
strong onsite repulsion between electrons.

Hamiltonian (1) explicitly accounts for the correla-
tion effect that is most important for the formation of
charge ordering, namely, the electron repulsion on
neighboring sites. The long-range part of the Coulomb
interaction only leads to the renormalization of the
bandwidth W and does not significantly affect the prop-

Ĥ t– ci
+c j

i j,〈 〉
∑= V nin j

i j,〈 〉
∑ µ ni,

i

∑–+

ci
+

ci
+
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erties of the uniform charge ordered state. However, it
can produce a qualitative effect on the structure of the
phase-separated state (see the discussion in the begin-
ning of Section 4).

The models of type (1) with the nn repulsion respon-
sible for the charge ordering are the most popular in
describing this phenomenon, see, e.g., [2, 3, 5, 20] and
references therein. Hamiltonian (1) captures the main
physical effects; if necessary, one can add some extra
terms to it, which we do in Section 5.

In the main part of this paper, we always speak about
electrons. However, in application to real manganites,
we mostly have in mind less than half-doped (under-
doped) systems of the type R1 – xAxMnO3 with x < 1/2.
For a real system, one must therefore substitute holes
for our electrons. All the theoretical treatment definitely
remains the same (from the very beginning, we could
define the c and c+ operators in (1) as the operators of
holes); we hope that this does not lead to any misunder-
standing.

In what follows, we consider the simplest case of
square (2D) or cubic (3D) lattices, where the simple
two-sublattice ordering occurs for x = 1/2. As men-
tioned in the Introduction, this is the case in layered
manganites, whereas in 3D perovskite manganites, this
ordering occurs only in the basal plane (the ordering is
“in-phase” along the c direction). A more complicated
model is apparently needed to account for this behavior.

For n = 1/2, model (1) was analyzed in many papers;
we follow the treatment in [2]. As mentioned above, the
Coulomb repulsion (the second term in (1)) stabilizes
the charge ordering in the form of a checkerboard
arrangement of the occupied and empty sites, whereas
the first term (band energy) opposes this tendency. At
arbitrary values of the electron density n, we first con-
sider a homogeneous charge ordered solution and use
the same ansatz as in [2], namely, 

(2)

This expression implies doubling the lattice periodicity,
with the local densities

at the neighboring sites. We note that at n = 1/2 for a
general form of the electron dispersion without nesting,
the charge ordered state exists only for a sufficiently
strong repulsion V > 2t [2]. The order parameter is τ < 1
for finite V/2t, and the ordering is not complete in gen-
eral; i.e., an average electron density ni differs from
zero or one even at T = 0.

We use the coupled Green function approach as in
[2], which yields

(3)

ni n 1 1–( )i+ τ[ ] .=

n1 n 1 τ+( ), n2 n 1 τ–( )= =

E µ+( )G1 tk– G2 zVn 1 τ–( )G1–
1

2π
------,=

E µ+( )G2 tk– G1 zVn 1 τ+( )G2– 0,=




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where G1 and G2 are the Fourier transforms of the nor-
mal lattice Green functions

for the sites i and l belonging respectively to the same
sublattice or to different sublattices, z is the number of
nearest neighbors, and tk is the Fourier transform of the
hopping matrix element. In deriving (3), we performed
a mean-field decoupling and replaced the averages

by the onsite densities ni in Eq. (2). The solution
of Eqs. (3) leads to the following spectrum:

(4)

The spectrum defined by (4) resembles the spectrum
of superconductor and, hence, the first term under the
square root is analogous to the superconducting gap
squared. In other words, we can introduce the charge
ordered gap by the formula

It depends on the density not only explicitly, but also
via the density dependence of τ.

We thus obtain

(5)

We note a substantial difference between the spectrum
of charge ordered state (5) and the superconducting
state, namely, the chemical potential does not enter
under the square root in (5) for n ≠ 1/2, which is in con-
trast to the spectrum of superconductor, where

We can then find the Green functions

(6)

where

(7)

After the standard Wick transformation

Gil cicl
+〈 〉〈 〉=

ci
+ci〈 〉

E µ+ Vnz= Vnτz( )2 tk
2+± Vnz= ωk.±

∆ Vnτz.=

ωk ∆2 tk
2+ .=

ωk tk µ–( )2 ∆2+ .=

G1

Ak

E µ Vnz– ωk– i0+ +
----------------------------------------------------=

+
Bk

E µ Vnz– ωk i0+ + +
----------------------------------------------------

G2 = 
tk

2ωk

--------- 1
2π
------ 1

E µ Vnz– ωk– i0+ +
----------------------------------------------------

–
1

E µ Vnz– ωk i0+ + +
---------------------------------------------------- ,















Ak
1

4π
------ 1 ∆

ωk

------– 
  , Bk

1
4π
------ 1 ∆

ωk

------+ 
  .==

E i0 iE+
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in the expression for G1, we find the densities in the fol-
lowing form:

(8)

where

is the Fermi distribution function and ΩBZ is the volume
of the first Brillouin zone.

Adding and subtracting the two equations for n1 and
n2, we obtain the resulting system of equations for n and
µ:

(9)

For low temperatures (T  0) and n ≤ 1/2, it is rea-
sonable to assume that µ – Vnz is negative. Therefore,

and

is the step function.
It is easy to see that for n = 1/2, the system of equa-

tions (9) yields identical results for all

From this point of view, n = 1/2 is the indifferent equi-
librium point. For infinitely small deviations from n =
1/2, that is, for densities n = 1/2 – 0, the chemical poten-
tial must be defined as

n1 n 1 τ+( )=

=  1 ∆
ωk

------– 
  f F ωk µ– Vnz+( )∫

+ 1 ∆
ωk

------+ 
  f F ωk– µ– Vnz+( ) dk

2ΩBZ

-------------,

n2 n 1 τ–( )=

=  1 ∆
ωk

------+ 
  f F ωk µ– Vnz+( )∫

+ 1 ∆
ωk

------– 
  f F ωk– µ– Vnz+( ) dk

2ΩBZ

-------------,

f F y( ) 1

ey/T 1+
-----------------=

1 Vz
1
ωk

------ f F –ωk µ– Vnz+( )[∫=

– f F ωk µ– Vnz+( ) ] dk
2ΩBZ

-------------,

n f F ωk– µ– Vnz+( )[∫=

+ f F ωk µ– Vnz+( ) ] dk
2ΩBZ

-------------.

f F ωk µ– Vnz+( ) 0=

f F ωk– µ– Vnz+( ) θ ωk– µ– Vnz+( )=

–∆ µ≤ Vnz– ∆.≤

µ ∆–= Vz
2

------+
Vz
2

------ 1 τ–( ).=
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If we consider the strong coupling case V @ 2t and
assume a constant density of states inside the band, we
have

for a simple cubic lattice and, therefore,

(10)

where W = 2zt is the bandwidth. We note that for the
density n = 1/2, the charge ordered gap ∆ appears for an
arbitrary interaction strength V. This is due to the exist-
ence of nesting in our simple model. In the weak cou-
pling case V ! 2t and with perfect nesting, we have

and τ is exponentially small. For Vz @ W or, accord-
ingly, for V @ 2t, it follows that ∆ ≈ Vz/2 and τ  1.
As mentioned above, for a general form of the electron
dispersion without nesting, the charge ordering exists
only if the interaction strength V exceeds a certain crit-
ical value of the order of the bandwidth W [2]. In what
follows, we restrict ourselves to the physically more
instructive strong-coupling case V @ 2t.

For the constant density of states (flat band), the
integrals in (9) can be taken explicitly and the system of
equations (9) can be easily solved for arbitrary n. We
note, however, that in the strong-coupling case V @ 2t
and for small density deviations from 1/2 (δ ! 1), the
results are not very sensitive to the form of the electron
dispersion. That is why we do not need to solve the sys-
tem of equations (9) exactly.

We now consider the case where n = 1/2 – δ, with
δ ! 1 being the density deviation from 1/2. In this case,
µ = µ(δ, τ) and we have two coupled equations for µ
and τ. As a result,

(11)

The energy of the charge ordered state is therefore
given by

(12)

where

τ 1 2W2

3V2z2
--------------–=

µ W2

3Vz
---------,=

∆ W
W
Vz
------–

 
 
 

exp∝

µ δ( ) Vnz 1 τ–( )≈ 4W2

Vz
----------δ2–

≈ W2

3Vz
--------- 4W2

3Vz
----------δ O δ2( ).+ +

ECO δ( ) ECO 0( )=
W2

3Vz
---------δ–

2W2

3Vz
----------δ2– O δ3( ),+

ECO 0( ) W2

6Vz
---------–=
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is the energy precisely corresponding to the density n =
1/2 and |ECO(0)| ! W. At the same time, the charge
ordered gap ∆ is given by

(13)

The dependence of the chemical potential µ and the
total energy E on δ in Eqs. (11) and (12) actually stems
from this linear decrease of the energy gap ∆ with the
deviation from half-filling.

For n > 1/2, the energy of the charge ordered state
starts to increase rapidly due to a large contribution of
the Coulomb repulsion (the upper Verwey band is par-
tially filled for n > 1/2). Note that for n > 1/2, contrary
to the case where n < 1/2, each extra electron put into
the checkerboard charge ordered state necessarily has
occupied nearest-neighbor sites, increasing the total
energy by Vz|δ|. For |δ| = n – 1/2 > 0, we then have

(14)

Accordingly, the chemical potential is given by

(15)

It undergoes a jump equal to Vz as τ  1. We note that
the gap ∆ is symmetric for n > 1/2 and is given by

We could make the entire picture symmetric with
respect to n = 1/2 by shifting all the one-electron energy
levels and the chemical potential by Vz/2, i.e., defining

In terms of µ', Eqs. (11) and (15) can be written as

Similarly to the situation in semiconductors, we
have µ' = 0 precisely at the point n = 1/2, which means
that the chemical potential lies in the middle of the band
gap (see Fig. 1). At densities n = 1/2 – 0, the chemical
potential µ' = –Vz/2 coincides with the upper edge of
the filled Verwey band.

3. PHASE SEPARATION

We now check the stability of the charge ordered
state. At the densities close to n = 1/2, the dependence
of energy on the charge density has the form illustrated

∆ Vz
2

------ 1 2δ–
2W2

3V2z2
-------------- 1 4δ+( )– .≈

ECO δ( ) ECO 0( )=

+ Vz
W2

3Vz
---------– 

  δ 2W2

3Vz
----------δ2– O δ3( ).+

µ δ( ) Vz= W2

3Vz
---------–

4W2

3Vz
---------- δ– O δ2( ).+

∆ Vz
2

------ 1 2 δ– 2W2

3V
2
z2

--------------– 1 4 δ+( ) .≈

µ ' µ= Vz/2.–

µ ' Vz
2

------–= W2

3Vz
---------

4W2

3Vz
----------δ, n

1
2
---,<+ +

µ ' Vz
2

------ W2

3Vz
---------–

4W2

3Vz
---------- δ , n

1
2
---.>–=
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in Fig. 2. This figure clearly indicates a possible insta-
bility of the charge ordered state. Indeed, the most
remarkable implication of Eqs. (11)–(15) is that the
compressibility κ of the homogeneous charge ordered
system is negative for the densities different from 1/2,

(16)

where δ = 1/2 – n. This is a manifestation of the ten-
dency toward the phase separation characteristic of the
charge ordered system with δ ≠ 0. The presence of a
kink in ECO(δ) (cf. Eqs. (12) and (14)) implies that one
of the states into which the system might separate
would correspond to the checkerboard charge ordered
state with n = 1/2, whereas the other would have a cer-
tain density n' smaller or larger than 1/2. This conclu-
sion resembles that in [4] (see also [10, 14]), although
the detailed physical mechanism is different. The pos-
sibility of phase separation in model (1) away from
half-filling was also reported earlier in [12] for the infi-
nite-dimensional case. In what follows, we focus our
attention on the situation with n < 1/2 (underdoped
manganites); the case where n > 1/2 apparently has cer-
tain special properties—the existence of stripe phases,
etc. [13], the detailed origin of which is not yet clear.

It is easy to understand the physics of the phase sep-
aration in our case. As follows from (13), the charge
ordered gap decreases linearly with deviation from
half-filling. Correspondingly, the energy of the homo-
geneous charge ordered state rapidly increases, and it is
more favorable to “extract” extra holes from the charge
ordered state, putting them into one part of the sample,
while creating the “pure” checkerboard charge ordered
state in the other part. The energy loss due to this redis-
tribution of holes is overcompensated by the gain pro-
vided by a better charge ordered.

However, the hole-rich regions would not be com-
pletely “empty,” similarly to pores (clusters of vacan-
cies) in crystals: we can gain extra energy by “dissolv-
ing” a certain amount of electrons there. In doing this,
we decrease the band energy of the electrons due to
their delocalization. Thus, this second phase would be
a metallic one. The simplest state of this kind is a homo-
geneous metal with the electron concentration nm. This
concentration, as well as the relative volume of the
metallic and charge ordered phases, can be easily cal-
culated by minimizing the total energy of the system.
The energy of the metallic part of the sample Em is
given by

(17)

where c is a constant.

Minimizing (17) with respect to nm, we find the
equilibrium electron density in the metallic phase. For
the strong coupling case V > zt, we obtain (neglecting a

1
κ
--- dµ

dn
------∝ dµ

dδ
------– d2E

dδ2
--------- 4W2

3Vz
----------–= = = 0,<

Em tzn– m= ct nm( )5/3 V nm( )2,+ +
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relatively small correction provided by the term with
(nm)5/3)

(18)

In accordance with this simple treatment, the system
with nm0 < n < 1/2 would therefore undergo the phase
separation into the charge ordered phase with n = 1/2
and the metallic phase with n = nm0. For arbitrary n, the
relative volumes vm and vCO of these phases can be
found from the Maxwell construction,

(19)

which implies that the metallic phase occupies the part
vm of the total volume v  given by

(20)

nm0 tz/2V .≈

v m

v CO

---------
1/2 n–
n nm0–
-----------------,=

v m

v
-------

1/2 n–
1/2 nm0–
---------------------.=

µ' = 0 2∆ = Vz

Fig. 1. Band structure of model (1) at n = 1/2. The lower
Verwey band is completely filled. The upper Verwey band is
empty. Chemical potential µ' = 0 lies in the middle of the
band gap with the width 2∆.

E
1/2

n

Fig. 2. Energy of the charge ordered state versus charge
density for n  1/2.
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The metallic phase would occupy the entire sample
when the total electron density n is less than nm0.

4. AN EXAMPLE: THE PHASE SEPARATED 
STATE WITH METALLIC DROPLETS

As argued above, the system with a short-range
repulsion described by Eq. (1) is unstable with respect
to the phase separation for n close to but different from
1/2. The long-range Coulomb forces would, however,
prevent the full phase separation into large regions con-
taining all extra holes and the pure n = 1/2 charge
ordered region. We can avoid this energy loss by form-
ing, instead of one big metallic phase with many elec-
trons, finite metallic clusters with smaller number of
electrons. The limiting case would be a set of spherical
droplets, each containing one electron. This state is
similar to magnetic polarons (“ferrons”) considered in
the problem of phase separation for doped magnetic
insulators [8, 14, 11].

We now estimate the characteristic parameters of
these droplets. The main purpose of this treatment is to
demonstrate that the energy of the state constructed in
this way is lower than the energy of the homogeneous
state, even if we treat these droplets rather crudely and
do not optimize all their properties. In particular, we
make the simplest assumption that the droplets have
sharp boundaries and that the charge ordered state
existing outside these droplets is not modified in their
vicinity. This state can be treated as a variational one:
optimizing the structure of the droplet boundary can
only decrease its energy.

The energy (per unit volume) of the droplet state
with the concentration of droplets nd can be written in
total analogy with the ferron energy in the double-
exchange model (see [14, 11]). This yields

(21)

where a is the lattice constant and R is the droplet
radius. The first term in (21) corresponds to the kinetic
energy gain of the electron delocalization inside the
metallic droplets and the second term describes the
charge ordered energy in the remaining insulating part
of the sample.

Minimization of the energy in (21) with respect to R
gives

(22)

The critical concentration ndc corresponds to the
configuration where metallic droplets start to overlap,

Edroplet tnd z
π2a2

R2
----------– 

 –=

–
W

2

6Vz
--------- 1 nd–

4
3
---π R

a
--- 

 
3

,

R
a
--- 2V

t
------- 

 
1/5

≈ .
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i.e., where the volume of the charge ordered phase (the
second term in (21)) tends to zero. Hence,

(23)

Actually, one should include the surface energy con-
tribution to the total energy of the droplet. The surface
energy must be of the order of W2R2/V. For large drop-
lets, this contribution is small compared to the term ∝ R3

in (21); it would also be reduced for a “soft” droplet
boundary. It is easy to show that even in the worst case
of a small droplet (of the order of several lattice con-
stants) with a sharp boundary, R/a acquires the factor
1 – 0.2(t/2V)1/5 related to the surface contribution.
Thus, the corrections related to the surface would not
exceed about 20% of the bulk value. That is why we
ignore this term below.

Comparing (12) with (21) and (22), we see that for
the deviations from half-filling 

the energy of the phase-separated state is always lower
than the energy of the homogeneous charge ordered
state. The energy of the droplet state (21) with the
radius given by (22) is also lower than the energy of the
fully phase separated state obtained by the Maxwell
construction from the homogeneous metallic state (17).
Correspondingly, the critical concentration ndc in
Eq. (23) is larger than nm0 in Eq. (18). There is no con-
tradiction here: in the droplet state that we constructed,
the electrons are confined to spheres of the radius R,
and even when these droplets start to overlap at n = ndc,
occupying the entire sample, the electrons, by construc-
tion, are still confined within their own spheres and
avoid each other. In other words, a certain degree of
charge ordered correlations is still present in our drop-
let state, decreasing the repulsion and hence the total
energy.

Thus, the energy of the phase separated state with
the droplets corresponds to the global minima of the
energy for all 0 < δ ≤ δc. This justifies our conclusion
about the phase separation into the charge ordered state
with n = 1/2 and a metallic state with small spherical
droplets.

The situation encountered here resembles that of a
partially filled strongly interacting Hubbard model,
with the charge ordered state corresponding to the anti-
ferromagnetic state of the latter and with the nearest-
neighbor interaction V playing the role of Hubbard’s U.
In both cases, the kinetic energy of doped carriers tends
to destroy this “antiferro,” or charge ordering, by first
“spoiling” it in their vicinity and eventually leading to
the formation of the metallic state (Nagaoka ferromag-
netism). In the Hubbard model, we also face the situa-
tion with the phase separation at a sufficiently small
doping [21].

ndc
3

4π
------ a

R
--- 

 
3 t

V
--- 

 
3/5

.∝=

0 δ δc≤< 1/2= ndc,–
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We also note that for n > 1/2, the compressibility of
the charge ordered state is again negative,

and has the same value as for n < 1/2. As a result, it is
again more favorable to create a phase-separated state
for these densities. However, as already mentioned, the
nature of the second phase with n > 1/2 is not quite clear
at present, and therefore, we do not consider this case
here.

5. AN EXTENDED MODEL

We can now extend the model discussed in the pre-
vious sections by taking the essential magnetic interac-
tions into account. In manganites, in addition to the
conduction electrons in the eg bands, there also exist
practically localized t2g electrons, which we now
include in our consideration. The corresponding
Hamiltonian is given by

(24)

In comparison to (1), the additional terms here corre-
spond to the strong Hund-rule onsite coupling JH

between the localized spins S and the spins of conduc-
tion electrons σ, and a relatively weak Heisenberg anti-
ferromagnetic (AFM) exchange J between neighboring
local spins. In real manganites, the AFM ordering of the
zigzag (CE) type in the charge ordered phase is deter-
mined not only by the exchange of the localized t2g

electrons but to a large extent by the charge- and orbit-
ally ordered eg electrons themselves. For simplicity, we
ignore this factor and assume the superexchange inter-
action to be the same in the charge ordering and in the
metallic phases.

It is physically reasonable to consider this model in
the limit

In the absence of the Coulomb term, this is exactly the
conventional double-exchange model (see, e.g., [8,
14]). As is usually assumed in the theory of the double
exchange (that is, in the theory where JH @ W), the
main role of the itinerant electrons is to form a parallel
arrangement of local spins. The exchange-correlation
effects of the itinerant electrons themselves are not very
important here and can be included in the renormaliza-
tion of the effective bandwidth.

We note that the absence of doubly occupied sites in
(24) is guaranteed by the large Hund term. It also favors
the metallicity in the system, because the effective

1
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Ĥ t ciσ
+ c jσ

i j,〈 〉 σ,
∑–= V nin j

i j,〈 〉
∑ JH Siσi

i

∑–+

+ J SiS j

i j,〈 〉
∑ µ ni.

i

∑–

JHS V W JS2.> > >
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
bandwidth depends on the magnetic order in our prob-
lem. The estimate for the critical concentration is there-
fore different from the one in (23). Similarly to [14], the
metallic droplets are ferromagnetic (FM) because of
the double exchange. The energy of one such droplet is
given by

(25)

The last two terms in (25) describe the loss of the
Heisenberg AFM exchange energy inside the FM
metallic droplets and the gain of this energy in the AFM
insulating part of the sample, respectively. The minimi-
zation with respect to the droplet radius (as in (21))
yields

(26)

We note that at t/V ! JS2/t, Eq. (26) gives the same
estimate for the radius of a FM metallic droplet, as in
[8, 14] 

.

In the opposite limit, where t/V @ JS2/t, we repro-
duce the same result as in (22):

.

Finally, the critical concentration nc is estimated as

(27)

As a result, also taking the tendency to the phase
separation at very small values of n into account [8–11,
14], we arrive at the following phase diagram for the
extended model (cf. [11]):

1. At 0 < n < (JS2/t)3/5, it corresponds to the phase
separation into an FM metal with n = n' > 0 embedded
into the AFM insulating matrix (n = 0). To minimize the
Coulomb energy, it may again be favorable to split this
metallic region into droplets with the concentration n'
and the average radius given by Eq. (26) with t/V = 0,
each containing one electron and kept apart from one
another.

2. At (JS2/t)3/5 < n < (t/V + JS2/t)3/5 < 1/2, the system
is an FM metal. Of course, we need a window of param-
eters to satisfy the inequality in the right-hand side. In
actual manganites, where t/V ~ 1/2–1/3 and JS2/t  ~ 0.1,
these conditions imposed on n are not necessarily satis-
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fied. Experiments suggest that this window is present
for La1 – xCaxMnO3, but it is definitely absent for
Pr1 − xCaxMnO3 [11].

3. Finally, at (t/V + JS2/t)3/5 < n < 1/2, we have the
phase separation in the form of FM metallic droplets
inside the AFM charge ordered matrix.

This phase diagram is in a good qualitative agree-
ment with many available experimental results for real
manganites [22–25], in particular with the observation
of the small-scale phase separation close to the doping
0.5 [26]. We also note that our phase diagram has cer-
tain similarities to the phase diagram obtained in [27,
28] for the problem of spontaneous ferromagnetism in
doped excitonic insulators.

6. CONCLUSIONS
In summary, we have shown that the narrow-band

system that has the checkerboard charge ordering at n =
1/2 (corresponding to the doping x = 0.5) is unstable
toward phase separation away from half-filling (n ≠
1/2). The system separates into regions with the ideal
charge ordering (n = 1/2) and other regions where extra
electrons or holes are trapped. The simplest form of
these metallic regions could be spherical metallic drop-
lets embedded into the charge ordered insulating
matrix. Simple considerations allow estimation of the
size of these droplets and the critical concentration, or
doping xc = 1/2 – δc, at which the metallic phase occu-
pies the entire sample and the charge ordered phase dis-
appears. Taking into account the magnetic interactions
does not change these conclusions but somewhat mod-
ifies the characteristic parameters of the metallic drop-
lets.

The long-range Coulomb interaction may also mod-
ify the results, but we do not expect any qualitative
changes. For realistic values of the parameters, the size
of metallic droplets is still microscopic (about 10 Å) and
the excess charge contained in them is rather small.

The picture obtained corresponds rather well to the
known properties of 3D and layered manganites close
to (less than) half-doping, x ≤ 1/2. The percolation pic-
ture of transport properties emerging from this treat-
ment is confirmed by the results reported in [7, 15, 22,
24–26]; moreover, the coexistence of ferromagnetic
reflections and those of the CE type magnetic structure
typical of the charge ordered state at x = 0.5 were
observed by the neutron scattering [29]. Thus, the gen-
eral behavior of the underdoped manganites (x ≤ 0.5) is
in a good qualitative agreement with our results.

Our treatment also leads to the same tendency to
phase separation (instability of the homogeneous
charge ordered phase) for the overdoped mode x > 0.5.
It is still not clear what would be the second phase in
this case. Therefore, we did not concentrate our atten-
tion on this case.

Our treatment is also applicable to other systems
with charge ordering, such as cobaltites [18] and nick-
JOURNAL OF EXPERIMENTAL
elates [19]. It would be interesting to study them for
charge carrier concentrations different from the com-
mensurate “checkerboard” one.

A number of important problems still remain unre-
solved (the origin of the “in-phase” ordering along the
c-direction in perovskite manganites, the detailed
description of inhomogeneous states in the overdoped
mode x > 1/2, and the behavior at finite temperatures).
Nevertheless, in spite of the simplifications introduced,
our model seems to capture the essential physics under-
lying the interplay between phase separation and
charge ordering in transition metal oxides.
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Abstract—The low-temperature 2D variable range hopping conduction over the states of the upper Hubbard
band is investigated in detail for the first time in multilayered Be-doped p-type GaAs/AlGaAs structures with
quantum wells of 15-nm width. This situation was realized by doping the layer in the well and a barrier layer
close to the well for the upper Hubbard band (A+ centers) in the equilibrium state filled with holes. The conduc-
tion was of the Mott hopping type in the entire temperature range (4–0.4 K). The positive and negative magne-
toresistance branches as well as of non-Ohmic hopping conduction at low temperature are analyzed. The den-
sity of states and the localization radius, the scattering amplitude, and the number of scatterers in the upper Hub-
bard band are estimated. It is found that the interference pattern of phenomena associated with hopping
conduction over the A+ band is qualitatively similar to the corresponding pattern for an ordinary impurity band,
but the tunnel scattering is relatively weak. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The conduction of 2D structures, including those on
p-GaAs/AlGaAs, has become an object of intense
investigations in recent years. This is due to a concen-
tration-induced transition from the insulator-type tem-
perature dependence to the metal-type dependence
observed in purest structures at low temperatures.

It is important to note that the scaling theory of
localization predicts an insulator-type behavior for 2D
structures at low temperatures and rules out a metal–
insulator transition. A few approaches were proposed
for solving this problem [1–4]. For example, we pro-
posed earlier a model explaining the observed behavior
(including the suppression of the metal-type conduc-
tion by a parallel magnetic field). This model presumes
a significant role of the conduction channel associated
with the states in the upper hubbard band (D–, A+) [4].

In this connection, an analysis of conduction over
the upper Hubbard band are of special importance. In
the 3D case, in accordance with theoretical calcula-
tions, the binding energy of a small charged impurity
(A+ or D–) relative to the bottom of the conduction band
is quite small, ε– = 0.055ε0 (ε0 is the binding energy of
an isolated impurity). Thus, the conduction over the
upper Hubbard band was regarded as noncompetitive as
compared to the band conduction. However, conduction
over the upper Hubbard band was observed in [5] for
asymmetrically stressed Ge : Cu; it was noted that Hub-
bard bands are separated from each other and from the
valence band. In this case, the Hubbard energy amounted
1063-7761/01/9302- $21.00 © 20424
to 3.7 meV in weakly doped samples and vanished as
the impurity concentration approached the critical
value. Since the number of doubly filled states in 3D
semiconductors in equilibrium must be much smaller
than the number of singly filled states (the only
exception is U – centers), these results can be regarded
as indirect.

A different situation may be realized in 2D systems
with selective doping, where selective doping and bias
voltage applied to the shutter can be used to controlla-
bly change the electron concentration in the well, thus
changing the ratio of the concentrations of D– and D0

centers [6]. In narrow quantum wells (for which the
wave function scale becomes equal to the size of the
well), the values of energy ε– and ε0 increase. It is clear
that this increase is stronger for the D– state than for D0

in view of a considerably larger localization radius of
an electron. In the case of an extremely narrow quantum
well, the energies ε– and ε0 increase by a factor of 10 and
4, respectively, as compared to the 3D case. In wells of
finite width, a situation is possible when the energy of
the D– state is lowered, while the energy of the D0 state
preserves its value, which may also reduce the Hubbard
energy. This may facilitate the observation of the con-
tribution from the upper Hubbard band and consider-
ably affect the physics of the given systems.

In our previous publication [7], we analyzed a mul-
tilayered GaAs/AlGaAs system with a quantum well
having a width of the order of 15 nm, which was doped
with a Be acceptor impurity for which the localization
001 MAIK “Nauka/Interperiodica”
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radius (2 nm) was much smaller than the width of the
well. Using selective doping of the barrier layer close to
the well, a situation when the upper Hubbard band in
equilibrium is filled with holes and conduction takes
place over its states was realized in the well also. The
Hall effect and the impurity and hopping conduction
were investigated in the temperature range 300–1.7 K.
The experiments proved that the binding energy of the
ground state A0 of acceptors did not change signifi-
cantly in wells of width 15 nm as compared to the situ-
ation in the bulk of the sample, while the binding
energy of the A+ centers increases noticeably as com-
pared to the bulk case and amounts to 7 meV (which is
five times as large as in the bulk material). This can be
explained by the closeness of the size of the well and
the hole radius at an A+ center. It should be noted for
comparison that the theoretical calculations made on
the basis of the Monte Carlo method in the effective-
mass approximation, as well as magnetooptical experi-
ments, give the binding energy of a D– center in 100-nm
wells, which is seven times as high a in the bulk case [8].

In the present work, we investigate in detail for the
first time the low-temperature 2D variable range hop-
ping conduction realized over the states of the upper
Hubbard band in multilayered p-GaAs/AlGaAs with a
quantum well having a width of the order of 15 nm. The
positive and negative branches of magnetoresistance, as
well as non-Ohmic hopping conduction at low temper-
atures, are analyzed. Densities of state and localization
radius are estimated as well as the scattering amplitude
and the concentration of scatterers in the upper Hub-
bard band.

2. EXPERIMENT

The structures under investigation were grown on
semi-insulating GaAs(100) substrates by molecular-
beam epitaxy on a Riber 32P device equipped with
solid Ga, Al, As, and Be sources. The growth was carried
out under As-enrichment conditions at the substrate tem-
perature 580°C. The growth rate was approximately
10 nm/min. The structures contain 10 quantum GaAs
wells of width 15 nm, separated by Al0.3Ga0.7As barriers of
width 15 nm. Confining Al0.3Ga0.7As layers of thickness
100 nm were deposited in front of the first and behind the
last quantum well. Epitaxial growth was terminated by
the deposition of coating GaAs layer of thickness
20 nm. In the samples under investigation, the middle
region of quantum wells of width 5 nm was doped as
well as the Al0.3Ga0.7As barriers, the width of the middle
doped region of the barrier being 5 nm. Consequently,
the thickness of the undoped spacer layers from both
sides of the barrier was 5 nm. We used beryllium as a
p-type doping impurity introduced at the concentration
1 × 1017 atoms/cm3. The contacts with the samples were
made by 2-min burning in deposited gold containing
3% Zn at 450°C.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Figure 1 shows the temperature dependences of
conductivity. It can be seen that for low voltages (0.1–
0.01 V/cm) and currents (10–100 nA), the conduction
is of the Ohmic type and its temperature dependence
corresponds to hopping conduction with a variable dis-
tance of the jump. Since the jump distance at low tem-
peratures is known to exceed the size of the structure,
the hopping transport is two-dimensional and is
described by the formula

(1)

where T0 is the parameter associated with the density of
states  at the Fermi level and localization radius a:

(2)

C = 13.8 being a numerical coefficient. Parameter T0 for
our sample was estimated at 1500 K.

At the lowest temperature (0.4 K), we recorded the
current–voltage characteristics. The magnetoresistance
was measured in a constant magnetic field up to 5 T,
perpendicular to the plane of the structure (it should be
noted that magnetoresistance was virtually equal to zero
for our fields parallel to the plane of the structure). The
characteristic curves in the region of low fields for several
temperatures are presented in Fig. 2, showing a region of
negative magnetoresistance. A further increase in the field
leads to the emergence of a region of positive magnetore-
sistance. It can be seen from Fig. 3 that the dependence

 ∝  H2/3 is observed in the region of strong fields.

3. DISCUSSION OF RESULTS

We assume that low-temperature transport is deter-
mined by 2D variable range hopping conduction. The 2D
nature of hopping transport follows from the characteristic
temperature dependence of conductivity (see Fig. 1) and
a considerable anisotropy of magnetoresistance.

σ σ0 T0/T–( )1/3,exp=

NEF

T0 C NEF
a2( ) 1–

,=

R H( )log

0.8

logR [Ω]

1.0 1.2 1.4

10

9

8

7

T–1/3, K–1/3

Fig. 1. Temperature dependence of the resistance of a mul-
tilayered p-GaAs/AlGaAs structure in the temperature
range 0.4–4 K.
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An analysis of magnetoresistance in the hopping
mode makes it possible to estimate the localization radius.
For example, such an estimate was obtained in [9] as
applied to a 2D hopping transport on the basis of an anal-
ysis of the negative magnetoresistance whose detailed
theory in the limit of strong scattering was constructed
by Raikh and Wessels [10]. It should be noted that it is
exactly in the limit of strong scattering that the behavior
of negative magnetoresistance is universal and insensi-
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Fig. 2. Negative magnetoresistance in weak magnetic fields
for various temperatures. The inset shows the temperature
dependence of the linear segment of the slope of the nega-
tive magnetoresistance lnR on H.
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Fig. 3. Positive magnetoresistance in strong fields for vari-
ous temperatures. The inset shows the temperature depen-
dence of the linear segment of the slope of the positive mag-
netoresistance lnR on H2/3.
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tive to the details of the scattering proper [10]. A char-
acteristic feature of such a mode is the universal value
of magnetoresistance at a minimum whose presence is
determined by the competition between the negative
interference magnetoresistance and the positive magne-
toresistance determined by the compression of the
wave functions of centers in the magnetic field. This
value amounts to approximately 20%, which is notice-
ably higher than in our situation (see Fig. 2).

It should be noted that a certain decrease in the neg-
ative magnetoresistance (by half) may be due to the
spin effects analyzed in [11] and disregarded in [10]. As
a matter of fact, in the case of singly filled centers, the
final state for a system for a jump with tunnel scattering
depends on the spin state of the intermediate center and
interference takes place only for a certain spin orienta-
tion of this center. However, for jumps in the upper
Hubbard band, when doubly filled centers play the
roles of the initial and intermediate states, the spin cor-
relation of electrons at these centers rules out arbitrari-
ness in the orientation of the hopping electron spin and
interference always takes place. For this reason, spin
effects cannot explain the relatively small value of the
negative magnetoresistance observed by us.

Besides, the value of the resistance at the minimum
depends on temperature in our experiments, which also
contradicts the predictions for the case of strong scat-
tering [10]. These circumstances indicate that the limit
of strong scattering is not realized in our system. It
should be noted that in accordance with the conclusions
drawn in [10], the strong-scattering limit is realized in
almost all cases, but the scattering potential was
regarded in [10] as a purely Coulomb potential. In our
opinion, the weak scattering observed in this situation
is in accord with the pattern of hopping transport over
filled centers (a hole jumps over A0 centers) for which
the potential relative to an “extra” electron is not a
purely Coulomb potential and decreases faster with
increasing distance from the center. An order-of-magni-
tude analysis of the situation with weak scattering was
carried out by Spivak and Shklovskii [12]. In accor-
dance with their estimates, the 2D negative interference
magnetoresistance is defined as

(3)

where N is the concentration of scatterers in a 2D layer,
µ is the scattering amplitude, and Φ0 is the magnetic
flux quantum. In accordance with this expression, the
linear magnetoresistance coefficient depends on tem-
perature as (T0/T)1/3, while Raikh and Wessels [10] pre-
dicted the T –1/2 dependence for the strong-scattering
limit. The inset in Fig. 2 shows the temperature depen-
dence of the corresponding slope determined from
experimental data. It can be seen that this dependence
indeed corresponds to the weak scattering limit. By
comparing this estimate with experimental results, we
determined the value of µ (assuming that the values of
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a = 110 Å and T0 are known). The corresponding esti-
mate resulted in µ ~ 2 × 10–6 cm, i.e., µ ~ a. In other
words, the scattering amplitude is of the order of the
localization radius, which corresponds to the weak
scattering limit. Shklovskii and Spivak give the esti-
mate µ ~ 1/Na2 for scattering at a filled center. In our
situation, this gives µ ~ 4 × 10–6 cm. Taking into
account the approximate nature of the estimates, we
can say that the theoretical value is in satisfactory
agreement with the experimental result.

Another possibility of estimating the localization
radius is based on an analysis of the positive contribu-
tion to magnetoresistance, which is associated with the
compression of wave functions since this contribution
is also universal in the region of weak fields.

In accordance with [10], this contribution in the case
of hopping conduction with a varying distance of the
jump for a constant density of states at the Fermi level
is given by

(4)

where K = 0.0028 is a numerical coefficient.
Figure 4 shows the low-temperature (T = 0.4 and

4.2 K) positive magnetoresistance, which is a quadratic
function of magnetic field. It can be seen that in accor-
dance with formula (4), the derivative of the logarithm
of resistance with respect to the square of the magnetic
field varies in inverse proportion to temperature (the
slope decreases by a factor of 10 as the temperature
increases from 0.4 to 4.2 K). The radius of states
through which hopping conduction takes place is esti-
mated from this dependence as 110 Å.

In the region of strong fields, an exponential positive
magnetoresistance is observed, which is satisfactorily
described by the law  H2/3 (Fig. 3). The deriv-
ative of the logarithm of resistance with respect to H2/3

decreases upon heating, and the temperature dependence
of this quantity is shown in the inset in Fig. 3. The
observed behavior is in accord with the predictions
made by Shklovskii and Spivak [12], who estimated the
contribution of the under-the-barrier scattering of a tun-
neling electron at localization centers to the positive
magnetoresistance. In accordance with their results, the
quadratic dependence of magnetoresistance upon an
increase of the magnetic field is replaced by the law

(5)

where s is a certain number and N is the concentration
of scattering centers. By comparing the coefficient in
this formula with the experimentally determined value
(see inset in Fig. 3) and taking into account the esti-
mates of a and T0 obtained above, we determined the
concentration of scattering centers N = 2 × 1016 cm–3,
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which is in accord (by the order of magnitude) with the
concentration of localized states (1017 cm–3). Taking
into account the dependence of this quantitative esti-
mate on the model-sensitive factor s, we can state that
the accuracy of our estimate is quite satisfactory, which
additionally supports the earlier estimate of the local-
ization radius.

On the other hand, it should be noted that, in accor-
dance with the data on the negative magnetoresistance
and the positive magnetoresistance in strong fields, the
pattern of interference phenomena in the hopping con-
duction in the A+ band is at least qualitatively similar to
the corresponding pattern for an ordinary impurity
band. However, an important difference is the weak
under-the-barrier scattering and the absence of spin
effects (which are suppressed by the strong spin corre-
lation at doubly filled sites).

Another independent method of estimating the
radius involves an analysis of the non-Ohmic compo-
nent of the low-temperature hopping conductivity. In
accordance with the Shklovskii theory of nonlinear
hopping conduction [13], nonlinearity starts manifest-
ing itself in electric fields such that eEL @ kT, where E
is the electric field, L is the correlation length of the per-
colation cluster,

(6)

r(T) is the jump distance, a is the localization radius,
ξ = (T0/T)1/3, and ν is the critical index equal to 1.34 for
2D conduction. The theoretical dependence of conduc-
tivity on the electric field has the form

(7)

In accordance with this relation, the derivative of the
dependence of the logarithm of conductivity with respect
to E0.43 is equal to (eL/kT)0.43. The field dependences of
the resistance plotted on the appropriate scale are pre-
sented in Fig. 5 (T = 0.4 K). The experimentally obtained
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Fig. 4. Quadratic positive magnetoresistance for tempera-
tures 0.4 and 4.2 K.
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value of L is 3 × 10–4 cm. Using relations (6), we obtain
a = 110 Å, which is in good agreement with the value
of the radius obtained from the expression for the low-
temperature magnetoresistance.

Further, we can try to estimate the impurity band
width W associated with the A+ states. Assuming that
the total number of states in the impurity band is equal
to the impurity concentration NA = 1.5 × 1011 cm–2 and
determining the density of states at the Fermi level as

 = NA W = 13.8/(T0a), we estimate the width of the
impurity band as W = 3.5 meV.

4. CONCLUSIONS

The analysis of the experimental results obtained
unambiguously indicates that the low-temperature
transport in the p-GaAs/AlGaAs structures under inves-
tigation (with doped wells and barriers) is associated
with a 2D hopping conduction over the upper Hubbard
band. This follows primarily from the experimentally
obtained value of binding energy as well as from the
value of localization radius estimated from a number of
independent experimental values, which is higher than
the corresponding value for the ground state of an
acceptor in the 3D case approximately by a factor of
4−5.1 A number of other parameters such as the scatter-
ing cross section in the impurity band, the concentra-
tion of scattering centers, and the impurity band width,
which were estimated on the basis of existing theoreti-

1 It should be emphasized that we obtained quantitative estimates
using the numerical coefficients determined earlier for the stan-
dard 2D impurity band; strictly speaking, these numerical coeffi-
cients for states from the upper Hubbard band may be slightly
different.
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Fig. 5. Dependence of resistance on the electric field
strength at 0.4 K.
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cal concepts under the assumption that transport occurs
in the upper Hubbard band are also in accord with the
model used here. An important conclusion is that the
pattern of interference phenomena is qualitatively the
same as for jumps in an ordinary impurity band,
although quantitative differences are possible. In par-
ticular, an analysis of the negative magnetoresistance
leads to the conclusion that tunnel scattering is weak. In
our opinion, this indicates a non-Coulomb nature of the
potential of the corresponding centers, which is
expected for jumps over the upper Hubbard band (when
intermediate centers are neutral).

Summing up, we emphasize that a situation in
which hopping transport in the upper Hubbard band is
controllable was realized by us for the first time.
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Abstract—New types of stable discrete solitons are discovered. They represent the first example of asymmetric
dark solitons and shock waves with a nonzero background. Both types of solutions exhibit a strong intrinsic
phase dynamics. Their domains of existence and criteria of stability are identified. Numerical experiments sup-
port the analytical findings. © 2001 MAIK “Nauka/Interperiodica”.
Numerous recent studies have evidenced that the
inherent discreteness of nonlinear systems can qualita-
tively alter their dynamical behavior compared to their
continuous counterparts. Because many physical sys-
tems are discrete by definition, these effects attract a
steadily increasing interest in various branches of phys-
ics (for a detailed overview, see the review papers [1]
and references therein). In these studies, particular
emphasis was given to stationary, localized structures
that are frequently termed as discrete solitons. One
option to categorize them is by their degree of localiza-
tion. Strongly localized solitons (SLSs), where the
excitation is resting and involves only a few lattice
sites, exhibit properties that originate from the very dis-
creteness of the system [2]. Thus, their behavior differs
in many aspects from solutions of related continuous
models. It was shown that SLSs can significantly con-
tribute to the heat transfer and other thermodynamic
and magnetic effects in solids. Moreover, certain desta-
bilization scenarios can be used for signal processing
and switching applications in discrete optical systems
such as the coupled waveguide arrays [1–4]. Up to now,
various types of SLSs have been reported to exist.
Bright [3–7] and dark [8–11] stable SLSs exhibiting
interesting new topologies and shapes were identified
in various nonlinear evolution equations.

However, similarly to continuum models, all these
solutions are (anti-) symmetric and do not exhibit an
intrinsic phase dynamics. The existence and stability of
asymmetric bright SLSs that are quasi-periodic in time
were studied in [12]. In this paper, we reveal that a dis-
creteness may induce new soliton formation mecha-
nisms resulting in the existence of shock waves with
two finite backgrounds as well as asymmetric dark soli-
tons. They exhibit a nontrivial intrinsic phase dynam-
ics; i.e., the backgrounds oscillate at two different fre-

¶This article was submitted by the authors in English.
1063-7761/01/9302- $21.00 © 20429
quencies, and the transition region is characterized by
combinations of these frequencies.

Our model is based on the discrete nonlinear
Schrödinger equation (DNLSE), which is among the
most prominent model equations in nonlinear physics.
Vibron modes in biomolecules, the Heisenberg ferro-
magnet or Frenkel excitons in a chain with two-level
atoms can be mentioned among numerous phenomena
described by this equation [1]. Moreover, the DNLSE
also describes light propagation in arrays of weakly
coupled nonlinear optical waveguides exhibiting Kerr
nonlinearity [13]. Recently, the existence and dynamics
of discrete solitons in the latter environment were
experimentally verified [14].

We consider the DNLSE in the generic form

(1)
where ψn denotes the amplitude excitation at the nth
site, c and λ = ±1 are the linear and nonlinear coupling
coefficients, respectively, and the upper dot denotes the
derivative with respect to the evolution variable t.

Traditionally, one seeks a resting solution to (1) with
the common frequency ω in the form ψn = fnexp(iωt),
where the localization involves only several lattice sites
n. In contrast to this conventional ansatz, we search for
solutions that are characterized by a combinational fre-
quency. This combinational frequency is determined by
interaction of the lattice sites of the localization region
with both backgrounds. We show that typical stable
SLSs of this type are, e.g., shock waves with two finite
backgrounds (Fig. 1a) or asymmetric dark solitons
(Fig. 1b). A new family of symmetric dark solitons
without the phase jump π in the soliton center is also
identified in what follows.

The asymmetric SLSs displayed in Fig. 1 have the
form

iψ̇n c ψn 1– ψn 1++( ) λ ψn
2ψn+ + 0,=

ψ ψn{ } … 1 1 1, , ,( ) iω1t( )exp ψ N–,{= =

…ψN A A A …, , ,( ) iω2t( )exp } ,,
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Fig. 1. Discrete shock wave with a finite background (a) and asymmetric discrete dark soliton (b).
where the amplitude of the left background is scaled to
unity. Strong localization implies c ! 1 [4, 6–11] and a
small number N of constituents of the transition region.
It is evident from Eq. (1) that the two background fre-
quencies, ω1 = 2c + λ for n > −N and ω2 = 2c + λA2 for
n > N, do not coincide. For these solutions to exist, the
localization between both backgrounds (n = –N, …, N)
must have the form

(2)

where mn(t) contains an infinite sum of terms with var-
ious combinational frequencies of both backgrounds.
We follow the conventional terminology [3], assuming
that odd (even) SLSs have an odd (even) number of
transition sites, and we omit the site n = 0 for even
modes. As can be seen in the ansatz, we assume unstag-
gered backgrounds, which requires λ = –1 for modula-
tionally stable solutions [15]. Because (1) is invariant
under the transformation λ  –λ, t  –t, ψn 
(−1)nψn, the results also hold for staggered back-
grounds with λ = 1.

In what follows, we assume that A is real-valued,
thus dealing with either the in-phase (A > 0) or out-of-
phase (A < 0) background at t = 0. Substitution of (2)
into (1) results in a system of equations where in the
strong localization limit [2–7], we only keep the rms in
the lowest order in the small parameter c.

SHOCK WAVES WITH A FINITE BACKGROUND

We begin with SLSs of the narrowest possible
width, namely, with finite background shock waves
(Fig. 1a). It is an even SLS with N = 1, and therefore,
only two sites n = –1, 1 constitute the transition region.
Within the first-order approximation in c, the solution
to Eq. (1) is given by

(3)

ψn t( ) f n iω1t( )exp gn iω2t( )exp mn t( ),+ +=

ψ 1– 1 c
2
---– 

  e
iω1t

α A3e
iω2t

– αAe
i 2ω1 ω2–( )t

,+≈

ψ1 A
c

2A
-------– 

  e
iω2t

αe
iω1t

– α A2e
i 2ω2 ω1–( )t

,+≈
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where

and the oscillation of each site in the transition region
is determined by a combination of three frequencies.
Other combinations of the background frequencies ω1
and ω2 appear only as higher order terms in c and do not
significantly contribute to the dynamics of this SLS.
Two constraints must be satisfied for solution (3) to be
valid, namely, |αA3| ! 1 for |A| > 1 and |α| ! |A| for
|A| < 1.

We also mention that the limit A  1 requires tak-
ing the second-order terms in c into account. The trans-
formation α  α(1 ± c), where the respective signs
“+” and “–” correspond to the second and third terms in
Eq. (3), provides a more accurate solution in this case.
Without loss of generality, we consider the case where
|A| ≥ 1, thereby normalizing with respect to the lower
background amplitude.

We performed numerical experiments to prove the
existence and to probe the robustness of this new SLS.
We directly integrated Eq. (1) using solution (3) as the
initial condition. The results have shown that the soliton
can be easily excited. Moreover, the solution is very
robust against rather strong perturbations of the initial
conditions. We used a steplike profile

for excitation and obtained the robust propagation dis-
played in Fig. 2. A zoomed picture of the amplitude and
phase evolution of the two sites in the transition region
is shown in Fig. 3, where an excellent agreement
between analytical (Eq. (3)) and numerical results can
be recognized. However, this SLS exists only in a
restricted domain in the parameter space because for A

approaching A±  1 ±  + c3/2/8, the approximate
solution diverges, see Eq. (3). For example, if c = 0.08,
then A+ ≈ 1.29. Indeed, the numerical integration of
Eq. (1) with the steplike initial condition reveals a rapid
decay of the initial excitation even for A = 1.45 (Fig. 4).

α c

A2 1–( )2
2c 1 A2+( )–

------------------------------------------------------=

f n … 1 1 1 A A A …, , , , , , ,( )=

c
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This behavior can be easily explained by realizing that,
e.g., for n = –1, the ratio of the amplitudes oscillating at
ω2 and ω1 amounts to approximately 0.35. Thus,
higher-order terms become essential and evoke the SLS
decay. If we require that this ratio should be of the order
of c, we can estimate the SLS robustness domain. The

3

2

1

200

150

100

50

0
5

10
15

20

Fig. 2. Temporal evolution of the amplitude of a stable
shock wave; A = 3, c = 0.08; step-like excitation.

n
t
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condition αA3 ~ c ! 1 gives the approximate threshold
value of the amplitude A as Ath ≈ 1.9 + c. For A * 1.9,
one can therefore expect a robust SLS behavior that has
been confirmed by our numerical simulations.

ASYMMETRIC DARK SOLITONS

Following the same approach, we can find an odd
solution that takes form

(4)

To the best of our knowledge, the solution represents
the first example of an asymmetric dark soliton
(Fig. 1b) exhibiting a strong intrinsic phase dynamics.
Numerical solution of Eq. (1) with initial condition (4)
proves the robustness of the solution. Although both
amplitudes with n = 0 are small, the presence of two
frequency components is essential, because the back-
grounds interact via the excitation at n = 0. Precisely

ψ 1– 1 c
2
---– 

  e
iω1t

,≈

ψ0 ce
iω1t

–
c
A
---e

iω2t
,–≈

ψ1 A
c

2A
-------– 

  e
iω2t

.≈
Amplitude Phase
1.00

0.95

0.90

(a)

(b)

3
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–3
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3.00

2.99

2.98
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0 2 4 6 8 10

0 2 4 6 8 100 2 4 6 8 10
t

t t

t
Fig. 3. Amplitude oscillations and phase evolution of the excitations in the shock wave transition region: (a) n = –1; (b) n = 1; the
parameters are as in Fig. 2. The solid lines show analytical results (3) and the dashed lines correspond to the numerical integration
of Eq. (1).
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this interaction affects the stability of the dark soliton.
The existence domain of this mode depends on the cou-
pling constant c and the ratio of the background ampli-
tudes A. If the backgrounds are separated by more than
two lattice constants, wide solitons form. In fact, such
solitons can be viewed as two noninteracting discrete
front waves, reported recently [7].

Whereas the canonical case where A = –1 has been
investigated previously and both even and odd dark
solutions have been found [8, 9], the case where A = 1
provides a new type of solutions, namely, symmetric
dark solitons without a phase jump in the center repre-
senting a genuine dark soliton with regard to the ampli-
tude. This particular solution has no intrinsic phase
dynamics; i.e., all excitations oscillate with frequency
ω = 2c + λ. There are odd,

(5)

and even,

(6)

solutions.

Because asymmetric dark soliton (4) is a fairly
exotic object, it is worthwhile to probe its stability by
linear stability analysis. Introducing a complex pertur-
bation at each site via ψn  ψn + en and linearizing
Eq. (1) with respect to perturbations en, we obtain the
set of equations

ψ 1– ψ1 1 c
2
---– 

  eiωt, ψ0 2ceiωt–≈ ,≈=

ψ 2– ψ2 1 c
2
---– 

  eiωt, ψ 1–≈ ψ1 ceiωt,–≈= =

iė 2– 2e 2– ce 1– e 2–* e
2iω1t

–+– 0,=

Fig. 4. Temporal evolution of the amplitude of an unstable
shock wave; A = 1.45, c = 0.08; step-like excitation.
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(7)

where only the sites that belong to the transition region
and one site from each background were taken into
account. Nevertheless, this set of equations can be eas-
ily extended to any number of background sites.

The approach successfully used in studying the sta-
bility of bright SLSs [4] cannot be applied here,
because the coefficients in Eqs. (7) depend explicitly on
the evolution variable. We therefore follow a different
procedure to tackle the stability issue of multifrequency
localized structures. In doing this, we introduce the
Fourier transform of the perturbations,

where Φn(Ω) = (–Ω), and rewrite Eqs. (7) in the fre-
quency domain. We eliminate functions Φ0 and F0 and
reduce the total number of equations to eight,

(8)

(9)

(10)

(11)

(12)

iė 1– 2 1 c–( )e 1– c e0 e 2–+( )+–

– 1 c–( )e 1–* e
2iω1t

0,=

iė0 c e 1– e1+( )+ 0,=

iė1 2 A2 c–( )e1– c e0 e2+( )+

– A2 c–( )e1*e
2iω2t

0,=

iė2 2A2
e2– ce1 A2

e2*e
2iω2t

–+ 0,=

en Fn Ω( )eiΩt Ω, en*d

∞–

∞

∫ Φn Ω( )eiΩt Ω,d

∞–

∞

∫= =

Fn*

2 Ω+( )F 2– Ω( ) Φ 2– Ω 2ω1–( ) cF 1– Ω( )–+ 0,=

F 2– Ω( ) Ω 4c–( )Φ 2– Ω 2ω1–( )–

– cΦ 1– Ω 2ω1–( ) 0,=

–cF 2– Ω( ) 2 2c– c2

Ω
----– Ω+ 

  F 1– Ω( )+

+ 1 c–( )Φ 1– Ω 2ω1–( ) c2

Ω
----F1 Ω( )– 0,=

cΦ 2–– Ω 2ω1–( ) 1 c–( )F 1– Ω( )+

+ 2c Ω– c2

Ω 2 4c–+
-------------------------+ 

  Φ 1– Ω 2ω1–( )

+
c2

Ω 2 4c–+
-------------------------Φ1 Ω 2ω1–( ) 0,=

c2

Ω
----– F 1– Ω( ) Ω 2A2 2c– c2

Ω
----–+ 

  F1 Ω( )+

+ A2 c–( )Φ1 Ω 2ω2–( ) cF2 Ω( )– 0,=
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Fig. 5. Amplitude evolution of discrete dark solitons: (a) stable asymmetric dark soliton, A = 1.4, c = 0.065; (b) unstable asymmetric
dark soliton, A = 1.4, c = 0.1; (c) stable symmetric dark soliton, A = 1, c = 0.07; (d) unstable symmetric dark soliton, A = 1, c = 0.1.
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(13)
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(15)

where all functions with shifted arguments must be
considered independent. A complete set of these equa-
tions contains an infinite number of equations for the
functions Fn(Ω – 2lω1), Fn(Ω – 2lω2), Φn(Ω – 2lω1)
and Φn(Ω – 2lω2) with n = ±1, ±2 and l = 0, 1, 2, 3 ….
This fact is not surprising because Eqs. (7) explicitly
depend on time and, therefore, their solutions contain
all harmonics of the background frequencies ω1 and ω2.

c2

Ω 2A2 4c–+
--------------------------------Φ 1– Ω 2ω2–( ) A2 c–( )F1 Ω( )+

– Ω 2c– c2

Ω 2A2 4c–+
--------------------------------– 

  Φ1 Ω 2ω2–( )

– cΦ2 Ω 2ω2–( ) 0,=

–cF1 Ω( ) Ω 2A2+( )F2 Ω( )+

+ A2Φ2 Ω 2ω2–( ) 0,=

cΦ1 Ω 2ω2–( )– A2F2 Ω( )+

– Ω 4c–( )Φ2 Ω 2ω2–( ) 0,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The terms with denominators in Eqs. (8)–(15) are
responsible for higher harmonics. They are of the sec-
ond order in c and could therefore be omitted. A reason
for keeping them is to account for possible resonances
that appear as any denominators approaches zero, i.e.,
as Ω  0, Ω – 2ω1  0, Ω – 2ω2  0. Outside the
resonance regions, these terms can be omitted and
Eqs. (8)–(15) reduce to two sets of four closed equa-
tions allowing the solution of the respective eigenvalue
problem. The solution reveals that all eigenvalues are
real, i.e., the SLS is stable. Thus, only the resonance
regions are potentially responsible for the onset of
instability. To treat the set of equations (8)–(15), one
needs to close it by truncating to a finite number of
equations. To proceed in this way, we note that only the
terms Φ1(Ω – 2ω1) in (11) and Φ–1(Ω – 2ω2) in (13)
introduce new frequencies into the system. A more
thorough analysis of Eqs. (8)–(15) shows that it is not
necessary to consider these harmonics in the first-order
approximation in c because the amplitudes of these
oscillations are of a higher order in c. In seeking the
instability gain ImΩj ~ c, we can therefore drop these
terms. We then obtain eight closed equations with the
coefficients that depend nonlinearly on the eigenvalue Ω .
SICS      Vol. 93      No. 2      2001
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The corresponding eigenvalue problem represents a
polynomial of the 11th order possessing complex solu-
tions in some domains of the parameter space (c, A). We
found that complex eigenvalues appear for c > ccr1(A).
Our analysis also revealed the existence of stability
windows for ccr2n(A) < c < ccr2n + 1(A), where n = 1, 2, …
As was shown recently [10], the existence of such win-
dows is due to the finite size of the system used for
modeling. The windows tend to disappear with an
increasing number of lattice sites. With additional sites
taken into account, we indeed observed this phenome-
non. We note that the results obtained also hold for
symmetric dark soliton (5).

Thus, we conclude that both asymmetric and sym-
metric dark solitons destabilize provided the linear cou-
pling exceeds the threshold c = ccr1(A). It is important to
note that the value ccr1(A) slightly depends on both the
number Ns of sites regarded for the stability analysis,
provided Ns ≥ 5, and the ratio of the background ampli-
tudes A. This value can be calculated with a good accu-
racy by taking five sites into account. To improve the
accuracy, we also considered the case of seven sites
involved. The result obtained was ccr1 ≈ 0.085. A direct
numerical integration of Eq. (1) confirms this predic-
tion. Representative examples are displayed in Fig. 5
for A = 1.4 (asymmetric dark soliton) and A = 1 (sym-
metric dark soliton without a phase jump). Figures 5a
and 5c exhibit stable propagation below the critical
coupling (c < ccr1), whereas the solitons decay beyond
that threshold (c = 0.1 > ccr1), which is in agreement
with the linear stability analysis (Figs. 5b and 5d).

In conclusion, we have shown that new types of soli-
tons, not reported before in the literature, may exist in
nonlinear lattices described by the discrete nonlinear
Schrödinger equation. These solitons are shock waves
with a finite background and asymmetric dark solitons.
They are peculiar in that they exhibit a nontrivial intrin-
sic phase dynamics. Additionally, we found a symmet-
ric dark soliton with the conventional phase dynamics
but without a phase jump in the center. A linear stability
analysis and numerical experiments revealed the
domains of their robust behavior.
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