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Abstract—The propagator and the complete sets of in- and out-solutions of the wave equation, together with
the Bogoliubov coefficients rel ating these solutions are obtained for the vector W-boson (with the gyromagnetic
ratio g = 2) in a constant electromagnetic field. When only the electric field is present, the Bogoliubov coeffi-
cients areindependent of the boson polarization and are the same as for the scalar boson. For the collinear elec-
tric and magnetic fields, the Bogoliubov coefficientsfor states with the boson spin perpendicular to thefield are
again the same asin the scalar case. For the W spin parallel (antiparallel) to the magnetic field, the Bogoliubov
coefficients and the one-loop contributionsto the imaginary part of the Lagrange function are obtained from the

corresponding expressions for the scalar case by the substitution m? —»

n? + 2eH (m? — P — 2eH). For the

gyromagnetic ratio g = 2, the vector boson interaction with the constant electromagnetic field is described by
the functions that can be expected by comparing the scalar and Dirac particle wave functions in the constant
electromagnetic field. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Vector bosons occupy an intermediate place
between low-spin particles (with the spins 0 and 1/2)
and higher-spin particles. They can therefore share
some of the problems encountered in considering
higher-spin particle interactions with a strong electro-
magnetic field. The most conspicuous feature of the
vector boson interaction in the case of g = 2 is the
appearance of tachyonic modesin the overcritical mag-
netic field. The ways to deal with this problem in the
framework of non-abelian theories are analyzed in [1].
But are there any others? According to [2], problemsin
treating the pair production of the electric field by diag-
onalizing the Hamiltonian precisely occur for g = 2.
Thisissurprising in view of a successful calculation of
the Lagrange function of the constant field in the one-
loop approximation [3]. We calculate the pair produc-
tion by the constant field using the Bogoliubov coeffi-
cients (which contain all the information about this pro-
cess); as expected, the results obtained are in agreement
with those in [3] and [4].

2. VECTOR BOSON

IN THE CONSTANT ELECTRIC FIELD

Weassumen,, =diag(-1, 1,1, 1) andsete=|e|. The
wave function of the W~ boson (with g = 2) in asource-
free space (whered,F* = 0) satisfiesthe equation 1, 5]

(-DgD° + M)y, —2ieF 4’ = 0 (1)

TThis article was submitted by the author in English.

and the constraint
Dul]J“ =0, D,=0,+ieA,. ()]

With the vector potential chosen such that A; = —Et and
A=A, =A,=0, it follows from (1) that @* and Y? sat-
isfy the same equation asin scalar case,

(-D*+m’)y"* = 0. (3)
For 2 and Y, it follows from (1) that

(-D*+m*)y* - 2ieEy’ = 0, @
(-D* + m?)Y° - 2ieEy® = 0.
Introducing Y = Y° + Y3, we rewrite Egs. (4) as
(-D*+m’ F 2ieE)y* = 0, (5)

which can be obtained from (3) by the substitution
m? — n? ¥ 2ieE. We seethat the vector boson wave

function can be obtained from the corresponding scalar
boson wave function by ssimple rules.

We now do this. We let .|, denote the positive-fre-
guency in-solution for the (negatively charged) scalar
boson. The subscript p = (py, P, Ps) is dropped in what
follows. Then [6]

A 0 Dy(t)exp(ip ), (6)
where D, (1) is the parabolic cylinder function [7] and
-1
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d therefore
__ 0.TG _ P an !
T A/2eEexpD '41] =] @) ) )
) ) ) C. DVD_ 1(T|:) + C—D\;III+ 1(T|:)
_M*p*p c,D (T .
M= = 1Dt ep(ip 09. (12)
CZDVE(T[)
For the vector boson, we obtain
o €.D, (10 ~ 6Dy, (15|
0
v (We have c, = _c, in (12) and similarly in other cases))
0= Ik The constraint takes the form
* 2
qu Cip; +C,p, + J2eEe ™[ ¢, +v.c] = 0. (13)
P
(8) Nothing prevents us from assuming that ¢, and ¢, in
c.D,..(1)+c.D,_y(7) (12) arethe same asin (8).
¢,D,(1) exp(ip [X) The negative-frequency out-solution is obtained
c,D,(1) ’ from the positive-frequency in-solution by changing
¢.D, . 4(T) —c.D, _4(T) the sign of T in the parabolic cylinder functionsin (8),
where Cs Dv + 1(_T) + C—Dv—l(_T)
- c,D,(-1) .
Lo wt = P W= LY exp(ip [x),
e s ¢,D.(-1) 14
and o Dv + 1(_T) - C—Dv —1(_T)
1, - N
qJOE+qJO = E(NJ ++l«lJ )’ C. = —C,,
1, . _ see (112a). The constraint is given by
o=’ = ST ), ®)

W = 2¢.D,. . exp(ip [X).

Thefunction D, , 4() isobtained from D,(T) in Egs. (6)
and (7) by the substitution

m? — M2 ¥ 2ieE.

Arbitrary coefficients ¢;, ¢,, and c, = .c, determine the
polarization of the vector boson. They are not indepen-
dent because of constraint (2),

C1P; + Cop, + 2eE€™[(1+V),c, —,c] = 0. (10)

For the negative-frequency in-solution (for the scalar
boson), we have

W O [Dy(0)] Hexp(ip ) (11)

instead of (6). The star denotes the complex conjuga:
tion. Similarly to (8), the parabolic cylinder functions
entering _Y* are obtained from [D,(1)]* in (11) by the
substitution

m — m F 2ieE,
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C.Py + Cop, + ~2eE€™[c.—(1+V)c,] = 0. (15)

Similarly, the positive-frequency out-solution can
be found from _s in (12) by changing the sign of 1*,

C+D\;[|_]_(_T|:) + C—DvD+ 1(_.[[)
+ ¢,D (D

c,D, (-0
.0y y(—10) —€ Dy, o(-TD)|

exp(ip X). (16)

The corresponding constraint is
C.PyL+ Cop,—/2eEe ™[V e+ 7c,] = 0. (17)

For the scalar boson, the in- and out-solutions are
related by [6]

+ _
C'ln qJn + CZn LI*'ni

A
U,

(18)

* + * —
CZn qJn+ Cln qJnv
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VECTOR BOSON IN THE CONSTANT ELECTROMAGNETIC FIELD

_ J2m M, .
Cip = WGXP[—ZO\—O}

Con = exp| 5(A+1)],

|cn®=[Can® = 1.

The subscript n indicates a set of quantum numbers;
here, n = p. By astraightforward calculation similar to
the one in the scalar case, we find that Egs. (18) also
hold for the vector boson and that

.. =—-C =-—

I__C_,
v (19)
¢, = —i(1+v),c, = —c, = i(1+v)T,.

These relations guarantee that the wave functions .
and *) are normalized in the same manner and that any
constraint can be abtained from any other use of (19).

As seen from (18), the Bogoliubov coefficients ¢,
and c,,, do not depend on the boson polarization in the
constant electric field. The imaginary part of the
Lagrange function is therefore given by 3ImLg;q in
agreement with [3, 4].

3. VECTOR BOSON IN THE CONSTANT
ELECTROMAGNETIC FIELD

We now add a collinear constant magnetic field to
the constant electric field. For A, = Hx,, we obtain from
Eq. (1) that

(-D*+ m’)y, - 2ieHy, = 0,

(20)
(-D*+ M), + 2ieHyY, =
Introducing
Uy = Yr—iw,, §p = Py +iy,,
_la s I T (21)
Py = é(wﬁwz), Y, = é(llJl—llJz),
we rewrite Egs. (20) as
(-D*+m’ + 2eH){, = 0, 22

(-D*+m*=2eH){, = 0,

and therefore, LTJLZ can be obtained from the scalar
boson wave function by the substitutions

m’ —» m’+ 2eH.
We can therefore write

§, 02¢,D,5(0), ¥, 02¢,D,.4(0),
_ P2 (23)
i
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Instead of (8), we thus have

[C+ Dv + 1(T) + C—Dv—l(T)] Dn(Z)

[€1Dn_1(0) +C2Dn . 1(Q)] Dy (1)

i[c:Dn_1(0) —€;Dy 1 1(Q] Dy(T)

[C+Dv + 1(T) - C—Dv—l(T)] Dn(Z)
x exp(i(pX; + PsXs)),

and similarly for the other @ functions. Here,

+lIJ p2pPsn (24)

X = m’ +eH(2n + 1)

-2y oE (25)

The constraints can be obtained from the previous
ones by the substitution

C,P, +Cop, — —in/2eH[(1+n)c,—cy].

We note that D" is proportional to the scalar wave
function

(26)

Dn(Q) Dy(t) exp[i(p2%, + PsXs)]

(which is dropped in the expressions similar to (10)
with modification (26), or in (116)). Equations (67) and
(98) were used to obtain the constraints. It followsfrom
the derivation that the presence of ¢, in the right-hand
side of (26) is dueto the assumption that D,_,({) isnhot
zeroin (24),i.e,n= 1.

Using (24) and (26), we can build three polarization
states (i, X), i = 1, 2, 3, see Section 7. For these states,
the respective minimum values of nin (25) are—1, 0, 1.
Thusthe Bogoliubov coefficients depend on all the four
guantum numbers (n = p,, ps, N, i) through the mini-
mum value of n.

Because

2ImL = Z In(1+|c,%),
n

it is easy to show that in agreement with [4],

IM2L g0 = 2% 3IMLg,ng

O 0. M —eHy
+ + =TT
%I n [1 exp o D}

(27)

m’ + eHD} (o

oE [ [)F[EHVT.

—In[l+ expD—n
0
O

Thefactors outside the braces give the statistical weight
of the“ correcting” states, see Egs. (3.6) and (3.7) in[6].

The Bogoliubov coefficients alow finding the tran-
sition probability from any initia to any final state
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(with arbitrary occupation numbers) [6]. For example,
if theinitial state is avacuum, we have

el 1+ w, R wie ) = 1,

e (28)

" e

for the cell with the set of quantum numbersn = p,, ps,

n, i. The term |c,,| W} gives the probability for the
production of k pairs, k=0, 1, 2, .... The events occur-
ring in cells with different quantum numbers are inde-
pendent.

4. THE FREE-VECTOR BOSON PROPAGATOR

The wave functions of a free-vector boson with the
momentum p* = (p°, 0, 0, p®) can be written as

0,0 = LD ep(ip - x),
J2|p
N = diag(-1,1,1,1), W =0,1,2,3,
0 0 ps1 (29
11 10 _1 0
u(l) = ol ui2) = 1l u(3)—mo .
0 0 0°

These solutions satisfy wave equation (1) and con-
straint (2) with the external field switched off. Sum-
ming YH(@i, X)yv" (i, X') over polarizations, we find

00w %) = =
i; 2lp’

00p3p

(30)
exp[ip(x—x)].

If weuse hdlicity statesinstead of linear polarization
states (29) (cf. 816 in [8]), we obtain the same result
(30). Ingeneral, we must replace the matrix in theright-
hand side of (30) by n*’ + p“p'/m?. This case differs
from the scalar particle case only by the presence of this
matrix in the expression for the propagator (which is
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similar to (51)). The vector boson propagator can there-
fore be obtained from the scalar one
4 eXp[l p(x 9]

sme(X X) = (2 )I p +m —I8

_ ds_ [ .. 2, i(x=x)°
_(4n)zoszeXp[ ST s }

(31)

considered asaunit matrix over discreteindices, by act-
ing on it with the differential operator

G“V(x X)
(32)

= G L

Because the scalar boson propagator satisfies the
equation

_ZaX aXD span( )

(=0,0" + M) Ggno(X, X) = 8*(x=x), (33)
we have
(—aca" + mZ)G“V(x, X)
W (34
= B L )

for the vector boson. We note that the right-hand sideis
not simply given by &*(x —X). The complication is due
to the existence of constraints. This prevents us from
using the well-known methods of constructing propa
gators of scalar and spinor particlesin an external field
[9, 10]. An elegant way to circumvent this difficulty
was given by Vanyashin and Terentyev [3].

5. THE VECTOR BOSON PROPAGATOR
IN THE CONSTANT MAGNETIC FIELD

To write the propagator, we need the compl ete set of
orthonormalized solutions. The orthonormalization is
performed by expressing the vector current as[5]

Jp = _i{l-lJv*(Dul-pv_Dvlpp)
—(Dy Wy -Dy )W’}
D, =0,+ieA,.

(35

We note that our expression for D, in (35) coincides
with that in [5]; although our n,, has a different sign,
we a so replace e — —e, using the fact that e = |e| and
assuming that W-is a particle by analogy with the elec-
tron.
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VECTOR BOSON IN THE CONSTANT ELECTROMAGNETIC FIELD

Inthe space without afield, the expression for J, can
be written similarly to the scalar case up to divergence
terms (see 815 in [8]). It is remarkable that with con-
straint (2), the same is true in the presence of afield.
Indeed,

~4" Dyw, = —0,(W )+, Dyw. (36)
The last term in the right-hand side vanishes because
of Eqg. (2) for the boson with g = 2. Similarly,

(DY W)W’ = 9,(W'W,) —w, D" @
= 0,(0'W,),

and therefore,

‘]p = _l{ lIJV* Dplpv
—(Dy W)W’ —0,[w W, —w w1}

To normalize the wave functions, we need only J,.
Straightforward calculations show that the divergence
terms do not contribute to J, for the fields considered
here. We then have

(38)

3= -3y = i{Y" Do, — (Do W)W} . (39)
For orthonormalization, we use the expression
W, W) = i{ Y Do, — (Do Wy )W} (40)

Our vector potentials are such that Ag(x) = 0. It then fol -
lowsthat D, = d/dt and

P, ) = iy ow —w™ou%,

where the sum over k runsfrom 1 to 3.

(41)

The positive-frequency solution of wave equation (1)
with A, (X) = §,,Hx, is given by
¢’Du(@)
Can—l(Z) + CZDn + 1(Z)
i[c1Dn_1(¢) —C2Dn. 1(Q)]
c3D(Q)
x exp[i(PzXe + PaXs— P 1]
The elements of this column correspondtou =0, 1, 2, 3,

— /5an P20

H =
ll’l P2, P3, N (42)

p° = A/m2+ ps+eH(2n + 1).
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The coefficients ¢ determining the boson polarization
satisfy the constraint

—ip°c® +ipsCs+ ~2eH[(N+ 1)c,—Cy] = 0. (43)

For states with the polarizations ¢' and ¢, Egs. (41)
and (42) imply that

W, w) = 2p%( 2¢; ¢;DA_4(Q)

(44)
+2¢; ¢,D5,1(2) + (c5 c;— ™ c”)DAQ)} -

Integrating over x;, we find

O/ 1t _ 0 Tt
Idle W, w) =2p n!&

[Q 1 1 L} 1
x %cl* c,+2(n+1)cy cy+cy cg—c' c‘%,

0
Idxloﬁ(z) = nl JeEH

Using the orthonormalization conditions

(45)

Idxlf’(tw(i, x), W(j, X)) = =5,
i,j =123,

(46)

and constraint (43), we find the positive-frequency
polarization states

(n+1)J/2eH p°D,(Q)
.2
imgD,, .
l,lJ“(l, X) — N(l) ZD 1(Z)
MDD, 1(0) (47)
(n+1)./2eH p;D,(()
x exp[i (P, + PsXs— P11,
where
H=0123, mé = m2+eH(2n+1),
0 _ 2 2
p° = Jm + p;+eH(2n+1),
_ _reHt 1 (48)
N(l) - nlNo, No - T y
T e
1
ng

) J2(n+ 1)mE(m* + eHn)’
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PsDr(¢)
0
W(2X) = mNo|

p°Dy(Q)

p°t)],
(49)

expli(pX; + P3Xs—

W3, X) = ngNg
J2eH p°D(Q)
i[—(m’ + eHn)D,_4(2) + eHD,.4(0)]
) (m*+eHn)D,_4(2) + eHD,.,(Q)
2eH p;D,(Q)

x expli(poXs + PaXs— PO,

l n
N, = |——s—m—.
: 2m2(m2 +eHn)

We separatare the scalar wave function normalization
factor N, from the normalization factors N(i) because
we concentrate our attention on the differences from
the scalar case. We also note that

N(3) 0T (),
which vanishes for n = 0. For the state (3, X) only the
vauesn=1, 2, 3, ... are therefore possible. The same
follows from the fact that constraint (43) cannot be sat-
isfied because it does not involve ¢, for n = 0.

We now construct the vector boson propagator. We
start from the expression (which is a special case of a
more general result derived in Section 6, see Egs. (80)
and (81))

(50)

v ~dp dp
5 2 3
G (xx)—|J'21T o

—00

D+llJ "1, X),

33t

WS 0N, X)W, x), t<t
Inwhat follows, we let E,, denote the previous quan-
tity p® and use the relations

1 o
_ﬁJdpo

_ 1 Oexp[HE(t-1)],
" 2E, SexpliE,(t-t)],

(51)
t>t

exp[—i p°(t—t)]
(p°—E, +i€)(p’+E,—i€)

et (52)
t<t,

[

L [dsexp[—is(E; - pi)]
0

i(E2-(p9))
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to rewrite (51) as (with p® = —py)

o0 =i A5 [T

XJ’dsa“V(x, x)ﬁexp[—l s(m+ps—ps) (53
+i[ paXo— X5) + Pa(Xs —X3) — P°(t=1)]],

mé = m2+eH(2n+ 1).

We notethat thelower linein theright-hand side of (52)
is obtained from the upper line by the substitution
t < t', which does not change anything, because the
right-hand side can be written as

(2E,) "exp[-iE Jt—t]].

Theform of theleft-hand side that isexplicitly symmet-
ricintandt'is
mdsexp[—i SEY w dp° i - p°(t - 1]
| 1 2n °
0 T[/4 - 2 (54)
S ex —isEﬁ—igt—-_—D—]
ﬁJ Rl s

We first obtain the scalar particle propagator in the
proper-time representation [10]. We replace aV(x, X)
by D,(Q)D,(C) in (53). Using the formula

D,(Q) = ﬁe*"‘jdyyey’zcosgy— )

we then find
3 _D_“_(Qn_llj_”.(_z.'zexp[—iT(Zn+1)] = (2sin21)™”
n=0 |
L= 2 (Z+Z)
xexp[ 4 8tant 8cott } (%)

T = eHs, { = .2eH §<+pzD
Subsequent integration over p, gives

dp; <
21T

—oo n=0

Mexp[ |'[(2n + 1) +i pzZz]
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VECTOR BOSON IN THE CONSTANT ELECTROMAGNETIC FIELD

= —|J7(4snt)

(57)
{ eHz(x; +x;) . eH (Zi + Z%)}
x exp| —i i ,

2 4tant

Using

(58)

x expli(pszs — p°2) —is(p3— po)]

1 %27
4nseXp[ 4s }

wefind [6, 9-11]

ds
(4 ) Issm(eHs)

Gspino(xv XI) =

eHz,(x, + X;L)i| (59)

x exp{—| 5

Z-7, (n+Z)eH
4s I4tan(eHs)]'

We now show how to obtain a*(x, x) in (53) and
how to turn it into a differential matrix that gives the
vector boson propagator when inserted in the integrand
in (59). As a preliminary step, we write two formulas
directly related to (56):

= Dy 1(@)Dy1(Q)
>

xexp[—ism2+i

exp[—it(2n+1)]

/ (n+21)!
£ (60)
= exp(2i1) z n(Z)Dn(z)eXIO[—iT(2n+ DI
. (61)
= exp(=2i1) z Mexp[—iT(Zn + I

We see that the expressionsin (60) and (61) differ from
the scalar case only by the factors €™ and 2.

We now return to a®V(x, X). As seen from (51) and
(53),

3
a(x,x) 0 z PrG, X)PvE(i, x). (62)
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Taking, e.g., al'(x, X), we see from (49) that (2, x) =
0, i.e., theterm with i = 2 does not contribute to a(x,
X). In accordance with (47), the contribution of theterm

withi=1is
NimE Dy 1) Do a(Q),
2 _ 1 (63)
2(n + 1)m?(m* + eHn)’
Theterm withi = 3 gives
n3[— (m* + eHNn)D,,_4(Q) + eH D,y 4(0)]
X[~ (m’+eHn)D,_y({) +eHDw1 @], (py)

n = n
’ 2m2(m2 +eHn)

We now have a''(x, X') asthe sum of (63) and (64):

1 N 1
A xx) = 2(m2+eHn)
Om
x%:1+wH) Dy 1Q) Dy s(2)
(65)
JreHn)y b @)
2m
eHWDMAOan0+DnA0DMJO]
Next, we note that
1AM (HPH_ Lo el g

m+eHnM+1 w2 O n+l p?

i.e., theundesirablefactor 1/(n¥ + eHn) contained in ni
and n3 in (63) and (64) disappearsin the sumin Eq. (65).

In what follows, we use the relations

%%+%Dﬂ)=nm4@L

od {0 _
iy FPA(Q) =

see Egs. (8.2.15-16) in [7]. We also write the sum and
the difference of these expressions:

(67)
—Dy.4(0),

d _
2&Dn(l) = nD,_4(¢) —Dy.1(Q),
{Dy(C) = nD,_1(Q) + Dp.1(Q).

(68)
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It isthen easy to verify that

Dy 1(Q)Dn.4(C) | n ]
2(n T 1) + éDn—l(Z)Dn—l(Z)(69)

2eH 9° :

Thefirst term in the right-hand side of (69) isinvolved
in Eq. (60) and the second term isused in (61); the nec-
essary factor n! comes from N, see Eq. (48). The third
term can be written as

1 0
m20X,0X;

all(x, X) =

Dr(Q)Dn(C). (70)

In asimilar manner, we find the other components
a(x, x) = a’"*(x, x).

Itiseasy to verify that the differential operator AW(x, X)
corresponding to a*V(x, x) is given by
v o_ v Y v o_ 1 Vx, .
A" =B"v+C", Cc" = azl'l“(x)l'l (x),

0

Mu(x) = —iﬁ+eA“(x), (71)
M) = i-9 +en %)
K axlp H )
In our case,
A = BoHX, N°X) = i%,
3 (72)
Ox, , .
n-(x) = Fre
The nonzero components B are
B" = B® = cost, B” = -BY = sint,
33 00 (73)
B =-B" =1

The difference of B* from n*" is due to the interaction
of the boson magnetic moment with the magnetic field.
We can say that B withu, v =1, 2 are“dressed” by the
magnetic field.

Thus,

00

eH ds
(4n)2,!s§n(eHs)

G"(x, X) = exp(—ism’) A"

oM Ly
xexp[—le Z,(%, Xl)i|

2 (74)

Lo 2 .
x eXp[Ea-_s—@ + L'—l(zf +25)eH cot(eHs)},

Z, = Xy — X
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It is somewhat surprizing that this representation does
not coincide with the Vanyashin-Terentyev representa
tion [3] with the electric field switched off. Possibly,
these are two different representations for the same
propagator, and it would be interesting to verify this
hypothesis.

6. THE VECTOR BOSON PROPAGATOR
IN THE CONSTANT ELECTRIC FIELD

We first give the generalization of (51) for the case
wherethe external field can create pairs[12, 6]. For this
purpose, we write

G(X1 Xl)abs = [OoutlT(LlJ(X) l'IJT(XI))loinD
= |jDoutloin[(?"(x’ X‘)v

where T is the chronological ordering operator and

(75)

l'lJ(X) = Z [an out+qJn(X) + b; out_l-IJn(X)] ’

" (76)
W) =y (a0 iU (9 + by in WEOL

As usual, a, and b, are the particle and antiparticle

destruction operators in a state with the qguantum num-
bersn:

WI)I000= S (<) 2 nl0 L)
“ (77)
|:G)outl LIJ(X) = |:G)outl Z an out+lIJn(X)-

For t>t', it follows from (75) and (77) that

G(Xv Xl)abs =i z +llJn(X) +lIJ: (X')< Oout|anoutal in| 0in>!
nk (78)
t>t.
In our case, the Bogoliubov transformations have the
form (cf. Eq (18)) [6]

T _ % Af

an out — Clnan in + C2nbn in (79)
— Ak AT

bn out — CZnan in + C1nbn in

Thefirst equation in (79) implies that
al outlOin 1= kaal in[Oin [

Inserting al inl0inC from this relationship into (78) and
using the commutation relation

+
[ak outs a-n out] = 6kn’
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we then obtain

+ 1
G’lasz[oo OinD n +:1rl_*’
(0 X)ae = a0 3 W00 W20V
t>t.
Similarly, for t <t', we find
- 1
G(X X)aps = Mou| 0y _Wo(X) WA (X)—,
(0 X)ae = Dl OTY W9 W e

t<t.

If the external field does not create pairs, the expres-
sions obtained become those in (51).

Intermsof the states . " and .y in (8), the transition
current (41) becomes

IGw, W) = J2eEe™

' . ' ' (82)
X [Cl* C + CZ* Ct 2i (+C—* G — +C+* +C—)] '

wherewe used Eq. (8.2.11) in[7] (and its complex con-
jugate):

d
Dy, (15D, 1(0) = J2eEep T (83

= =D, (04D, .M = DADISD,M). (89

Theconstraintisgivenin (10). Using Egs. (82), (8), and
(10), wefind the , polarization states

b, [Z™(D, (0 -vD,_, (0]
0
+llJ(1, X) - N(l) méDV(T)
L Ee‘”“[ D,.y(t) + VD, _4(1)] |
x explip [¥],
N(@) = mNo, N(1) = nyNy, (85)

_ 1 _ —va_, [] U]
N, = | ————, Ny = (2eE) exp—=-,
Comimtepd) U 80

Dy +4(1) + (1 +V)D, _4(T)
0
0
Dy+1(1) = (1 +V)D, _4(7)

A2 x) = N

x exp(ip X), (86)
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2 _ 2. 2. 2
My = M + py+ Py,

_ |leE
n2 - _2,
A/ZmD

[ JeE
Pr, /5 € [Dys1(1) =D, 4(D)]

(m” + pf)D,(1)

WG X = NE)

P1P2D,(T)
P Ee"“[ Dy .5(1) + VD, _y(7)]
x exp(ip [X), (87)
1

N3 = 2, 2. 2\
Jm(m”+ pi)

The * polarization states can be obtained from
these ones using Egs. (19) (see aso (16)):

‘WL, x) = N(1)

b, [T ™1+ D, (1) + Dy, 1]
5 0
m2D,{~0)
P Ee‘i”“[(l +V)Dy 4(-T0 =Dy, 4 (10
_ x exp(ip X), _(88)
W2 K = NE)
i(1+9)[-Dyo_ (10 + 10,010 |
x 8 (89)
1(L+9)[ Dy (1D -0, D) |
x exp(ip (X),
WE X = NE
b, [Fe 11+ 0D, (1) + Dy, 1)
(M’ + p3) D0
" p1p2D, (1)
b, [T @)D, (1) D10
x exp(ip X). (90)
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In Egs. (85)—(90), the states (i, X) are characterized by
P1, P2, P2, @di; v and A are given in (7).

We note that the transition current JO(*Q', *y)
expressed in terms of *c¢ has the same form as J(,y',
+P) expressed in terms of ,c, see EQ. (82). A similar
statement is true for the negative-frequency states.
Because v + 1 = —v* in accordance with Eq. (7), it fol-
lows from (19) that

+C_* +C+ — +C‘_* .C,
(90a)
=" ¢ = c*e,.
Therefore,
0 H i
= 3°Cw(i, ¥, "Ww(j, X)) 08,
and
0 H i
(WG, %), _W(j, ) (91a)

= 2w, %), W(j, ) = =3°CWai, %), (i, ¥).

As previously, we focus our attention on the differ-
ences from the scalar case in expressions similar to
(53). The proper time representation of the scalar parti-
cle propagator is given by [12]

G(X, X)gin0 = e—Ezexp[iéeE(t +1') 23}
.[ ss nr?(seEs) exp[—i sm + A,l_s(zi +z) (92

+ z'—LeE(zg - zS)coth(eEs)} .

This can be derived similarly to the magnetic case, but
with the role of Eq. (52) played by the relation [12, 6]

do
J2
{A/SinhZB
0. ifT+T)?, (T-T)
xeXpE'ZKe_s[ o * e D
(93)
- i
= FBK + N
8 ED—iK—(]JZ)(X) D_ik—z(=X), T>T
O-ic-w2)(X)Doik—@wa(X), T<T,
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where

T = JaeER -2

0 = eEs,

T = eE - x = a0=d"T, (@

2
.o dma, _A_ g
x' =™, « 5 = 2oE"
The lower line in the right-hand side of (93) can be
obtained from the upper line by the substitution T ~—
T'. As seen from the left-hand side of (93), this does not
change the value of (93), cf. the remark after Eq. (53).
By analogy with the magnetic case, we expect the
appearance of the factors €% in the integrand of (93),
cf. Egs. (73) and (60), (61). To make the insertion pos-
sible, we must rotate the integration contour clockwise
by a certain angle. Thisisin line with the Vanyashin—
Terentyev approach [3]. After the substitution Kk —»
K + i, it then follows from (93) that

do
2
-[A/SinhZB
(T+T)*, (T-T)*H
x eXpE—IZKB +20— [ e — }D
(95)

= FBK_]-DDD—'K+(JJZ)(X)D—IK+(JJZ)( X), T>T
szD i+ 12X D+ (X)), T<T".

Similarly, substituting K —= K —i in (93), we obtain

doe
J2
-([A/SinhZB
_ir(T+Ty? (T—T')Z}D
xeXpEHZKe 26 [ coth® ' tahd -
(96)

EK :'DDD—.K @2 X)Doik—@p(=X), T>T
ZDDD Sik-@)X)Diik—@p(X), T<T.

The integration over p; contained in the sum over n
in Egs. (80) and (81) gives

-——exp |p323—l(T +T")tanh©
I iptag

_ L ims [eEcothB |z3eE , I €EZ;(t +t)0 (97)
T2 T Dahe 2 o
Z3 = X3—Xg,
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where T and T' arefunctions of p;, see (94). Further cal-
culationsleading to (92) are similar to those in the mag-
netic case.

We now consider the differences from the scalar
case. We first rewrite relations (67) and (68) between
the parabol ic cylinder functions for the present case as

E]:I_D Z%D (D = vED, (D),
4 H (98)
a'j_D T2 DDVE( 'E) = _DVD+1(T||:)7
d ! _— ' 1
ZFDDVE(T E) - VDDVm— l(T [) - DvD+ 1(T E)1 (99)

D (D = viD  ,(t'D + D, ,(t'D.
The other necessary relations are obtained from these
by the substitution T* — —T*.
Because

J2m TIK

Cn T FGk+ 12 eXp[‘?

i
a0
i 2 _ exp[3it/4] 10
(:—;1N0 = —2/\/@ FEK'FE:P
we can write the propagator as
exp[3iTv4]
2./TeE

(%, x)exp[ip x —x)] .

(100)

G"(x x) =

3
< J- d p3 aH
(2m)
The scalar particle propagator can be abtained from
theright-hand side of (101) if we replace a*’(x, X') with

expression (93). As an example, we now cal culate a®3(x,
X). Fort>t', we have

(101)

a®(x, x) O i*qﬁ(i, x),.0°Hi, x). (102)
Thefirst termin th(;aljm is
WL 0.0, x) 0-15E0
2 (103)

x D,(—tOtD (1D ———,
’ T Tmy(m” + pi)

where we used the second equation in (99) and the one

obtained fromit by thesubgtitution t* — —t*. Similarly,

W3, %).0°H3, %) O _i%ETm
2 (104)

x D ((—tOTLD (T [)L
m’(m’ + py)
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Adding (103) and (104), we obtain
ieE . .
—TTDDV[(—TE)T b (D
105
R - (109)
mg(m*+pg)  m*(m®+ p3)

The expression in the square brackets can be simplified
as

Op2  pad
L P &% =1 1 (106)
m’ + pltmD m m  m

The undesirable factor (m? + p: )_1 involved in (103)
and (104) disappearsin sum (105). Thefirst termin the

right-hand side of (106) gives the following contribu-
tion to (105):

- iEZTDDV[(—TE)T'DDVE(T'E) = iz
2m m

x (ps—€Et)(ps—eEt') D, (-t D A(t'D).

(107)

This already has the desired form. We now rewrite the
contribution of the second term in the right-hand side of
(106) to (105) in theinitial form (i.e., before using the
second equation in (99)),

E[ —(1+v)’D,_,(=t0D,_,(¥D
2m?

O

+(1+V)D,g, (10D, ,(tD (108)

+(1+v)Dy (18D, (tH
- Dv + 1(_T[) DVD+ 1(TI|:) ] .
This expression still contains the undesirable factor
i) mé . But we must take the contribution from the term
withi = 2in (102) into account:
W) w20 D2 1)
my (109)

x |: vO— 1( TE)DVD+ 1(T E) \;D+ 1( TE)D\;D+ 1(T [)
-V DVD_ 1(_T[) DVD_ 1(TI|:) - DVEI+ 1(_.[':) DVEI_l(T‘[)]
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It is easy to seethat in the sum of (108) and (109), the
undesirable terms are cancelled and the unpleasant
denominator

m = —ieE(1+ 2v)

disappears:
(108) + (109)

_1 g |
= 2[(1 +V)D,o_o(~THD,o_(T'D) (110)

1 1
+ 50,0 410D, (D) |

Thus, a®(x, x')) is given by the sum of expressions
(107) and (110). Thefirst term in the right-hand side of
(110) isused in (96) and the second term in (95). In the
same manner, we find all the other a*(x, x") compo-
nents. Similar to the magnetic case,

Gpv _ e€eE
(4m)®
fs—s nﬁ(SeES) AP exp[l ek, i+ t)} (111)

. i i
X eXp[—l sm? + E(zﬁ +20) + Es(zg - zf))eEcoth(eEs)},

where AW is given by (71), but the vector potential is
Au¥) =

The nonzero BW components are

-9,5Et.

Bll — Bzz =1, B33 - _BOO = cosh(2€Es), (112)
B¥ = —B® = sinh(2eEs).

We seethat the electric field dresses BW with u, v = 3, 0.

Proceeding to the case where t < t', we note that in
accordance with (19),

+ —

_Ci = - Ci,

c, = —C,.

(112a)

This implies that _Y("y) is obtained from *Y(, ) by
changing the sign of the argumentsin the parabolic cyl-
inder functions and the sign of Y° and 2. The overall
change of sign of (2, x) does not affect the corre-
sponding termin (102). In (1, x) and Y(3, X), changing
the sign of Y° and 2 and of the arguments T and T'* is
equivalent to changing the sign of only the D-function
argumentst* and T if Y°and Y2 are expressed through
the left-hand sides of (99). As expected, it now follows
from (93)—«96) that G*(x, x') retains the same form
(111) fort <t
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7. THE VECTOR BOSON PROPAGATOR
IN THE CONSTANT ELECTROMAGNETIC FIELD

After we have considered the magnetic and electric
fields separately, the construction of the vector boson

propagator in both fields meets no new problems. We
take the vector potentia in the form

A(X) = d,,Hx; — 8 3ETL. (113)
The transition current between the states ,\' and ) is

N AT

= 25% 6:D2_4(2) + ¢ ;D% 4(Q)] D, E(rt)u— 1)
(114)

_ [c'_* ¢.D,. 1(rE)i%Dm(r)

1% H d D
+CFCDy, 1(TE)|EDV_1(T)} DX2) O
O

Taking Eq. (84) into account and integrating over x,, we
obtain

Idxla (W, = nt [ZE2em

(115)
X[%c'l*cl+(l+n)c'z*cz+i(c'_*c+—c'+*c_)]
The constraint is given by
2eH[(1+n)c,—c
2eH[(1+n)c,—cy] (116)

+.J2eEe"™[,c.—(1+V) ,c,] = 0.

Using (115) and (116), we find the . polarization
states (in what follows, the factor exp[i(p,X, + psX3)] is
omitted for brevity):

(LX) = N
[(1+n)JEEHE™ (D, , (1) ~vD, _;(0)] D,Q)|
imD,(1) Dy.1(Q)
M3Dy(T) Dy 1(0)

[(1+n) /e EHE™[D, . 4(T) + vD,_4(1)] Do) ]
(117)
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L _ D H Djj4e—r[K/4
NG) = niNo, No = == =
. (118)
n, = ,
J2m? (n + eHn)(1 + n)
A2, %) = N(2)
[Dy+1(T) + (1 +Vv)D, _4(1)] Dy(0)
« 0
0 " (119)

[Dy.+1(1) = (1+V)D,_4(1)] Dx(C)

n, = [<E,
2my

WL, x) = N

W2 x) = N(2)

12+ 9)]-D, (10 + 30,5, (1D DO

0 (123)
0 ,

i@+ V)][-D,1410) =D, (D[P0

WE X = NE) (124)
[ —iJe’EH[~vD, (1D + D, (<D D,@Q) |
™D, (—TD[~(n’ + eHn)D, _4(Q) + eHD,,,, ,(Q)]

€D (IO [(nE + eHn)Dy _4(Q) + eH Dy, @)1 |

| —iNe’EH[-VID,q_4(-TD - D, ,(1DID,Q) |

The first and the fourth lines in the right-hand sides of
(122) and (124) can be written in amore compact form
using relations that can be obtained from (99) by the
substitution T* —» —T*.

Further calculations are quite similar to those in
Sections 5 and 6. The result was of course evident in
advance: A" isnow given by (71) with the vector poten-
tial (113) and all the nonzero B* are “dressed”, see
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[(1+n)Je’EHe ™ [(1+V)D,;_4(-10 + Dy, ,(<T0] D) ]
im’D,(~t0D,. Q)
mD,(~t0D,.,()

(1 +n)Je’EHe ™ [(1+V)D,q (T8 - D, ,(1D1 D,(Q) |
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AWE X = NE)

JEEH[D, , (1) —vD,_4(1)] D(Q)
€™*Dy(t)[~(m’ + eHn)D,,_4(Q) + eH D, 1(Q)]
e™D(1)[(M? + eHn)D,_,(0) + eHD, . )] |

NEEH[D, , 4(1) + VD, _4(1)] D,(2)

n
ng = |————.
* 7 | 2m(n? + eHn)

To obtain the polarization states of *{ (or of _ and
~)), weagain use Eq. (19) (cf. Egs. (88)—(90) and (47)—
(50)). We then obtain

(120)

(121)

; (122)

Egs. (73) and (112). The scalar particle propagator is
given by
2 00
~ _ €EH ds
Gaino(X X) = (4n)2,(|: snh(eEs)sin(eHs)

0. i
X expHism’ + Ll—l[(zf + Z5)eHcot(eHs)
O

+ (24— 25)eEcoth(eEs)] (125)

i [
+5[eEZ3(t+ 1) —eHZ,04 + )]
O

Z, = Xp—X,.

This expression agrees with the calculations by Ritus
[10, 11]. The overall phasefactor ™2 isinvolvedin his
formulas because of a different definition of the propa-
gator. We also note that Eq. (125) is symmetricint and
t' and that

Gspino(xf X, e) = Gspino(xlf X, _e)-
Therefore,
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e2 EH h ds Hv

G"(x,x) = ( 4n)2Isinh(eES)§n(eH5)A
0

0o . i
x expism’ + ~[(Z + Z2)eHcot(eHs)
O 4 (126)

+ (24— 23)eEcoth(eEs)]

i 4
+5[6Ez,(t + 1) —eHz,04 + X)]
u
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Abstract—It is shown that right and left combinations of the positive- and negative-frequency hyperbolically
symmetric solutions of the Klein—Fock—Gordon equation possess an everywhere timelike current density vector
with a definite Lorentz-invariant sign of the charge density, and similar combinations of solutions to the Dirac
equation possess the energy-momentum tensor with everywhere real eigenvalues and a definite Lorentz-invari-
ant sign of the energy density. These right and left modes, just astheir +-frequency components, are eigenfunc-
tions of the Lorentz boost generator with the eigenvalue K. The sign of the charge (energy) density coincides
with the sign of k for the right scalar (spinor) modes and is oppositeto it for theleft modes. It isthen reasonable
to assume that the particles (antiparticles) are precisely described by the right modes with k > 0 (k < 0) and by
the left modes with k < 0 (k > 0). © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Three compl ete sets of solutions of the Klein—Fock—
Gordon (KFG) and Dirac equations are usually consid-
ered in relation to the Unruh effect [1]. One of these
solution sets is the usua planewave set and the other
two are the sets of field modes with a hyperbolic sym-
metry. The hyperbolically symmetric modes radically
differ from the planewave modes by singularities
occurring on the light cone. As aresult, the correspond-
ing charge and energy densities oscillate with increas-
ing the frequency at Compton distances near the cone
and becomeinfinite on the cone. It isnot surprising that
the charge density of the scalar field and the energy
density of the spinor field can have either sign near the
singularity. This means that these modes contain both
particles and antiparticles near the light cone. It isthen
difficult to distinguish the hyperbolically symmetric
field state created by external sources on the light cone
from the state created by the measuring device itself.
Nevertheless, there exist right and left states with
hyperbolic symmetry for which the charge density of
the scalar field and the energy density of the spinor field
possess an everywhere definite Lorentz-invariant sign.

2. PLANEWAVESWITH DEFINITE MOMENTUM
AND FREQUENCY

For scalar plane waves

00 = ——expli(pzF EN)],
i J2E ' (1)

E=.Jm+p° X' =(2),

TThis article was submitted by the author in English.

the current densities J( ) (X) = (£1, p/E) are timelike

vectors. The signs of the charge densities coincide with
the frequency signs. The energy—momentum tensor tg
has the components

thoh 15, 1 = E, p°/E, Fp, %)
with sgntgé) >0.

For spinor plane waveswith definite momentum and
frequency and with the double spin projection s,

Xo2(®) = $857(x)/mul?(8),

3
07(B)UE™(B) = 208,055 o
(the bispinors u{”(6) are givenin (41) in thechira rep-
resentation in the transposed form), the current densities
i$°(%) = (1, p/E) are timelike vectors with positive
time components. The energy—momentum tensor tyg
corresponding to (3) has the components

9 18,1 = +E, +pY/E, —p, (%)

where sgntOO =0.

A superposition of the scalar positive- (negative-) fre-
guency plane waves, unlike the partial waves them-
selves, does not possess a definite positive (negative)
charge density in general. Thus, if

@) = Idpcpqn‘p”(x), (5)

the charge density may not be everywhere positive
because of oscillations of the integrand in the represen-
tation

1063-7761/01/9302-0211$21.00 © 2001 MAIK “Nauka/Interperiodica’
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dpdp'(E+ E")
J2E2FE (6)

x exp{il(p - p)z—(E —E)]} c5cy.
However, the total charge of the packet is positive and
time-independent,

Q= J’dzjo(x) = 2nJ’dp|Cp|2. 7)

Similarly, a superposition of the spinor positive-
(negative-) frequency plane waves does not possess an
everywhere positive (negative) energy density in gen-
eral. Thus, the positive-frequency wave packet

XX = jdpcpxifs’(x) 8)
has the energy density

o) = 3XE090:09 = 3

i’ = igx)0,@x) = [f

dpdp'(E+E)
J2E2E' (9)

x exp{i[(p'— p)z—(E —E)} mu”*®)ul’(@)ck e,

that may not be everywhere positive, but the total
energy of the packet is positive and conserved,

¢ = J’dztoo(x) = 2T[Idp|cp|2E(p). (10)

The negative charge (energy) density for a positive-
frequency scalar (spinor) wave packet can occur
because the packet is nonstationary (cannot be repre-
sented as exp(—iE)f(2), E > 0). Expressions (6) and (9)
imply that the time-averaged values of the charge and
energy densities are equal to zero at any point in space.
Thismeansthat charge and energy come from infinity and
gotoinfinity. In afinite region of space Az, they can there-
fore reach perceptible values AQ and A€ only for afinite
timeinterval At. In addition, each of the quantities

AQ() = [dzj ™

and

NEW) = [dzte(x)

can also be negative. This indicates the appearance of
the antiparticle in this space-time region.

3. POSITIVE- AND NEGATIVE-FREQUENCY
SCALAR WAVES WITH HYPERBOLIC
SYMMETRY

These scal ar waves are defined by the integral repre-
sentation [2]

o0 = %:l'deexp[i(pzi EYFIKOL,

p = msinh®, E = mcosh@,
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where 8 = arctanh(p/E) istherapidity. Intheright and
left sectors of the Minkowski plane, these functions can
be represented by the Macdonald function of a real
argument,

exp(x /2 —-ikv)K; (D),
exp(Fik/2-ikv)K; (0,

= mJZ-t°, v = actanh(t/2),

and in the future and past sectors by the Macdonald
function of an imaginary argument,

(12)

exp(—IKwW)K; (xi1), exp(—ikw)K; (FiT),

B — B (13)
T =myt'—2z, w = arctanh(z/t).

Using the Rindler metric
ds’ = dz°—(az)dt”
in the Rand L sectors and the Milne metric
ds’ = (at')’dz®—dt?
in the F and P sectors, we can write
( = +mZ, v = zat,
T = +mt', w = taZz,
where Z and t' are space and time coordinates in the

Rindler or Milne spaces, see[3]. It isessential that (p(f)

includes plane waves with unlimited energy.
The scalar waves have the following properties.

(&) ¢ (X) are analytical and finite functions in the
lower/upper half-planes of the complex variables x, =
t+zandx =t-z

(b) The hyperbolic symmetry implies that ¢t are
eigenfunctions of the Lorentz boost operator: under the
transformation

Z— [t t—pz
J1-p? 1B
the variables { and t remain invariant, while the cyclic
variablesv andwgotov'=v—-aandw =w-aq,
where a = arctanhf3 is the rapidity corresponding to
the Lorentz transformation velocity (3. Then

0z ) — (2, 1) = €* ez 1),

and therefore, €%« is an eigenval ue of the Lorentz boost

zZt—~7 = t' =

(14)

(15

av w

operator e’ or e ™ Kisan eigenvalue of the
Lorentz boost generator i(td, + zd,) = id, or id,, and is
interpreted as the frequency for a Rindler observer or
the momentum for a Milne observer.
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(© (pff) and (p(K_) arerelated by complex conjugation

accompanied by changing the sign of K,

00 = 000, ¢y = d(z0. (19

The complex conjugation is equivalent to time reflec-
tion. The last property is equivalent to space reflection.

(d) As a striking property of ¢, we note that
although the current density vectors corresponding to
the plane wave components of ¢\ are everywhere

H(+)a

timelike, the current densities j,~ corresponding to

cpf) themselves are not timelike vectors in the entire
Minkowski space: there are space-time regions inside
the light cone where the current densities are spacelike.

The current density | for the Minkowski observer is
related to the current density J* for Rindler or Milne
observers (more exactly, for local Lorentz observers

momentarily comoving to them) by the Lorentz trans-
formation

0 _ JO+[3J3 .3
J1-p?

For the Rindler observer with 3 = t/zin the R sector,
we have

(17

3P = 2E K@, I =0,

¢
For the L sector, we must replace ™ —» —e™"“, The
current density vector istimelike.
For the Milne observer with = z/t, we have

(18)

JI((:)O N U

_m,

(19)
37 = st ZTE K, i)
The current density squared
a2 T 4k° 4]
k) = — ——|Ki (it 20
(i) tz_zzE%l K0y @0

can have either sign when T = mJt’ =7z < 1, but is
negativefor t = 1.

Thus, inside the light cone at invariant distances|ess
than the Compton length from the cone, there are

()

spacetime regions where the current densities j,’~ are

spacelike vectors and the charge density | (Kt)o

negative, while | (K_)O , K >0, ispositive. Becausethe cur-
rent densities are timelike vectors for the real particles,

we can relate the spacelike current density j(K+) to anti-

,K>0,is
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particles of the virtual pairs created in regions with a
very high energy concentration. Thetotal charge of the

(p(K+) state on any spacelike surface in Minkowski space

is positive and is equal to the charge on this surface
entirely situated in the P, L + R or F sector. But the
charge density j° for thisstate with k > 0is positive only
in R sector, is negative in the L sector, and can have
either sign in the P and F sectors.

Thus, unlike the sign of the total charge, the sign of
the charge density is not well defined by the frequency

sign of the (p,(<+) states. This situation occursin external

field problems due to a possible pair creation by the
external field, or in problems of forming wave packets
with a high energy density. The appearance of a nega-
tive charge density inthe P, F, and L sectorsfor the pos-

itive-frequency state (p,(<+) is a consequence of the

hyperbolic symmetry of the state. The hyperbolic sym-
metry divides Minkowski space into spacelike and
timelike subspaces with the Rindler and Milne metrics.
These metrics have singularities on the light cone
(which is their common boundary) and can be consid-
ered as alimiting case of a globa nonsingular smooth
metric of the space with a nonzero external field near
thelight cone. The pair creation by thisfield isthen pos-
sible and the appearance of a negative charge density in
the positive-frequency state (p,(f) after switching the
field off can be understood.

The states cp(K+) and cp(K_) possess, respectively, the
positive and negative total charge but do not possess an
everywhere positive and negative charge density. This
means that both the particle and the antiparticle can be
detected in any of these states.

4. RIGHT AND LEFT SCALAR MODES

In each of the R and L sectors, (pf:') and (p(K_) differ

only by factors. According to Unruh [1], one can find
remarkable right and left combinations

O+ B, o = Bl + o, (20)

G = o, @
suchthat @ =0intheL sector and . =0inthe R sec-
tor. In these combinations,

TIK/2
MK e

= —a,e™ o = —,
P “ “ J2sinhTik
o 2= [Bu]® = &= sgnk.
For kK < 0, we have ./sinhTtk = i./sinhTi K . The set
@F " possesses the same hyperbolic symmetry as the

(22)

set (pff), but the striking property of these functionsis
that the corresponding current densities j~* and j-°
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are timelike vectors in the entire spacetime region
where they are nonzero. The Lorentz transformation
(17) again relates the current density j¢ for the
Minkowski observer to the current density J* for the
Rindler or Milne observers.

For the Rindler observer with 3 = t/z, we have

rRo _ 4mksinhT K|

30 = Z K Q)% I =0 (23
The current density vector is then timelike.
For the Milne observer with B = z/t, we have
JRLO _ iSgl‘l(Kt)T[
K —m :
R = sgn (k) TK 3, @)

Jt2 —ZsinhTik

The Lorentz invariant current density squared is non-
positive,

(R4 = T
‘ t?—7

(25)

x [1 Dar::]lj'ng |J|K(T)|4} <0

for all real k and T = 0 [4]. The current density vector is
timelike.

It is interesting to note that in the R sector, the cur-

rent density squared (jf)2 tendsto infinity as{ — 0,
but in the P or F sectors, itisfiniteat 1 = 0:

_wm’

1+K

(] = (26)
The state ¢F (@) describes awave with hyperbolic

symmetry and charge density that is only positive for
K >0 (k <0) or only negative for k <0 (k > 0). We can
then say that the respective state describes the particle

or the antiparticle. In other words, the state (p,t

describesthe particle or the antiparticle with the sign of
K that is opposite to the sign used in describing for the

oF state[4].
We note that complex conjugation (time reflection)

of the functions @ " is equivalent to changing the sign

of K, while the space reflection is equivalent to chang-
ing the sign of k and replacing R = L:

G () = ¢, o (0 = L );
oz 1) = igh(z 1).

(27)
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In the R sector, where K isinterpreted as energy by the
Rindler observer and cpk =0, particles are described by

the functions q),'f K > 0, and antiparticles by the com-

plex conjugate functions, i.e., by (pf, K <0.IntheF or

P sectors, where K is interpreted as momentum by the
Milne observer, particles with the momentum k are

described by the functions @, k > 0, and ¢, k <0,
while antiparticles with the same momenta are described

by the complex conjugate functions ¢~ and ¢ .

The completeness of the sets ¢ and " is
expressed by
A(+)(X X) — +|J' )(X) ()*(X.)
SKomdy) if ¥ >0, (28)

- Z[s(y(“)Jo(mM ) % iNo(ma/ly? )]
if y2<0,y = X—-X,
A) =y A%()

00

_ Ok ReN  R¥ ron Loy LE
= IJ'ZT[ZSK[cpK(x)cpK (X) =0 X9 (X)]

—00

(29)

= 2e(y)0(-y) Jo(maly).

It isinteresting to note that the analytical properties

of the functions ¢ and ¢ in each of the variables u
and v are similar to the properties of the Pauli—Jordan
function A(X) in x2. Indeed, A(X) isalso equal to the sum
of the positive-frequency and negative-frequency func-
tions A*(x), which are boundary values of some func-
tion F(x?) that is analytical in the complex plane of x?

cut along the real negative semi-axis x* < 0:
AP(X) = +F(x* +iesgnx’), € = +0.

It followsthat A(x) differsfrom zero only for x> < 0 and
isequal to the jump of F(x?) on the cut.
The solution of the Cauchy problem and the normal -

ization condition are given by
Qy) = _[ do® A(y = X) 0 @),
> (30)
0,0 = 21003 K= K)B 0

|J’d0“
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where Sis a spacelike surface in Minkowski space or
in any of the P, L + R, F sectors. For the functions ¢
and (pi"., a, a' 0 R, L, theright-hand side of the nor-
malization condition is 21%¢,£,0(K —K")d,,, Where g =
—£_ = 1. In accordance with the normalization condi-

tion, al the states have the same magnitude of the con-
served total charge; the sign of the charge coincides

with the frequency sign for the @\ states and with the
sign of the product €,&, for the ¢f states,a O R, L.

An arbitrary solution of the KFG equation can be
represented by the expansions

_ dp
) = [

(31)
x [Cpexp[i (pz—Et)] + d% exp[i(pz + Et)]}
i I K a7 + bt 6]
2','[2 K YK K
- (32

- £ frﬁ[z[mpf(x) 12 0]

As an example, we consider
1
/2E,

Cp, = 0(p—py), d, =0
It then follows that

®x) = expli(p.z—E1)],

2T k8,
e

P2E,

a, = b, =0, 6,=arctanh(p,/E,), (33)

. Tiexp( K2 + ik8,)

(JE;snhmk)-

34
"= e Tiexp(— K2 +ik0,) (34)
(/E;snhm)”
The spectra are given by (with g, = 21¥/E,)
2TTK
= S k>0, %20,
ge -1 (35)
1 -0
e K <01 J <0!
e -1

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

215
W= o k>0, (<o,
g e2Tr\K\ (36)
2]1'-[\K\ 1’ k<0, j0> 0.
e —_

There are no reasons to associate these spectra with
thermodynamic ones, especialy for a uniformly mov-
ing Milne observer, for whom K is not the energy but
the momentum, and all the more so for a Minkowski
observer, for whom K is an eigenvalue of the Lorentz
boost generator and is odd under space and time reflec-
tions. We have

@ = e (ar ok - By, @
@ = g (ar g —Brep),

@ = S, B = =, k>0, (3
e -1 e -1

211
2 1 2 e
o =5, |Bd = —=7—, K<0, (39
| | e2T[M_1 | | e2T[M_1

where |B/a,[* is the probability to find any nonzero
number of pairs and |o,|™? is the probability to find no

pairsin the state ¢\, k > 0, etc., cf. [5]. Thisinterpre-
tation follows from the none-one-particle consideration
of the wave equation solutions and does not require
transition to the secondary quantization, although it is
confirmed by it [6].

We note that the modes @ " () with k = 0 are not
defined by Eq. (21) because the coefficients a, and 3,
areinfiniteat K = 0. The term with Kk = 0 in expansions
(32) of an arbitrary solution of the KFG equationis nev-
ertheless finite and can be defined asthe k — 0 limit
of

*

R L _ (+) (-) — (+) *  (-)
rK(pK+IK(pK=aK(pK +b:(pK K-0 — ERL0 +b0(p0 .

A similar remark applies to the term with kK = 0 in
expansion (29).

5. DIRAC EQUATION SOLUTIONS
WITH THE HYPERBOLIC SYMMETRY

Solutions qJ(K? of the Dirac equation in the Rindler

or Milne space arerelated to solutions x'= of thisequa-
tion in Minkowski space by the Lorentz transformation

—00 5/2

(#) —
KS (X) =€

az = diag(os, —03),

(*) _
Xee(X), o = arctanhf, (40)
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where 3 = t/z or z/t for the Rindler or the Milne space
respectively. We use the chiral representation

0

X (x) = % [ d0expli(pz E) #ik8] us"(8),

p = msinh®, E = mcosh6,

- 41
a&i)(e) - (ei9/2’ 0, ie+9/2’0)’ ( )

a(_*_;)(e) - (0’ ie¢9/2, 0’ e:r(-)/Z),
where s = 1 are the eigenvalues of the matrix
>, = diag(o;, 03).

This representation defines the bispinor xffs)(x)

(x2(x)) as an analytical function in the lower (upper)
half-plane of the respective complex variablex, =t + z
andx_=t-z

Bispinor components of s and ¥, can be
expressed through the Macdonald functions with the
indices ik £ 1/2. For example, in the R and F sectors,

LIJ(Ktl) can be represented by the respective expression

U Kik-12(0) UJ
5 0 g
eXp(£ MK/2+iTU/4—iKV) 5 .
E‘IKiK+1I2(Z)E
O ad
. (42)
0 Kik-1(£iT) O
5 0 g
and exp(—ikw .
PERIL K aateinf
0 0 0

In other sectors, these functions can be obtained using
the symmetry relations

Wt 2 = asPi(-t, —2)

(*) (£)* “43)
= quJ—;s(tv _Z) = iBlIJKs (_t! Z)v
where
U U U |
a,=0% %p p=0%Ln (44)
00 —o;0 0100

The functions lp(,f_) 1 With the opposite spin direction
can be obtained from (42) by transposing the first row
elementswith the fourth row and the third row elements
with the second row.
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The orthogonality and normalization condition for
@) ;
e IS

[80 B (Y (Wi ()
s (45)
21C ,
= Wamwasga( K—K )
This involves an oriented surface element do, = n,do,
where do is the invariant surface measure and n, is the

timelike normal to the surface. Because LIJ(K? are solu-
tions of the covariant Dirac equation with the coordi-
nate-dependent metric g, and the matrices y* (see, e.g.,
§3.8in[3]), the normalization condition for these func-
tions also contains y*(x) and it is convenient to choose
the spacelike integration surface Sentirely in one of the
P, L + Ror F subspaceswith either the Milne or the Rin-
dler metric. For a constant t' surface S the surface ele-
ment reduces to

do, = dz«/\_/nm No = ~—Y00

and y = |gs3] isthe determinant of the space metric.

Because the Rindler and Milne spaces and the cor-
responding metrics only represent nonstandard coordi-

nate forms of the flat space-time, the solutions l]J(Kis)

must be related to the solutions X' of the usual Dirac
equation in Minkowski space by a L orentz transforma-
tion. These solutions satisfy the same symmetry rela-
tions (43) and orthogonality and normalization condi-
tion (45) with the standard y matrices. For a constant t
surface S, the surface element becomes do, = dzand the
right-hand side of (45) immediately follows when one
uses integral representation (41) for X(Kis) and performs
the integration over zfirst.

In representation (42), thefunctions x> differ from

) hy the factors €2 and €2 of thefirst and the third

bispinor elementsin the R sector and by €2 and e in
the F sector.

Under Lorentz transformation (14), the functions
Xke goto

X () = epliok -aag2XE0, 0
o = arctanhp, a5 = diag(os, —03).

The eigenval ues are again independent of the frequency

sign. The current densities j* and J* for the

Minkowski and Rindler or Milne observers are again

related by (17).
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For the Rindler observer with 3 = t/z, we have in the
R sector:

I° = 2e™Ki 1@, IE® = 0. (47)
For the L sector, we must replace ™ —» g™,
For the Milne observer with 3 = z/t, we have
3 = [Kieo ol DI + [Ki i), @)

I = £|Ki i 0] F Ky i)

The current density is a timelike vector and its time
component is positive (awell known fact for the spinor

field). But the striking feature of x(,fs) isthat the eigen-
values of the corresponding energy-momentum tensor
tiy are not everywhere real. There are some places
inside the light cone where these eigenvalues are com-
plex conjugate.

The energy—momentum tensors t,z and T, for the
Minkowski and Rindler or Milne observers are related
by the Lorentz transformation

to = V' (Too—2B T+ B Tas),
te = YT —2BTes + B°Too),
tee = Y[ Toa(1+B*) = BToo— BTl
y=@1-p)"

For the Rindler observer with 3 = t/zin the R sector, we
have

(49)

) T 76
Too» Taz, To

(50)

_ 2mKe

HTTK @ 0
z ﬁKiK_m(Z)|Z, !‘}—ﬂm_ma)ﬁ @

For the L sector, we replace e™ — —e™",
For the Milne observer with 3 = z/t, we have

Dm
(@) _ MKdt oy
TR = g% +

£ MK 5 _ MK (51)
TS = +—A@D, Tg = e

A = [Kie 1200 = [Kiy 120 D).

The eigenvalues (invariants) of the energy—momen-
tum tensor,

1 1
Ao = E(Tss—Too) * A/zl(Too"'T33)2—Tc2)3, (52)

are real and have opposite signs in the Rindler space,
while in the Milne space, they are complex conjugate
for T < 1, when the momentum density (energy flux) is
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greater than half the sum of the energy density and the
pressure;
Ay oT) = R?) TS

> T<1
T coshTiK

(53)

Ast — 0, R(1) oscillates with a finite amplitude and
an increasing frequency.

6. RIGHT AND LEFT SPINOR MODES

In the spinor case, the right and left superpositions
of the positive- and negative-frequency modes are
defined asin the scalar case, but the Dirac scalar prod-
uct leads to different Bogoliubov coefficients,

R _ +) (=)
XKS - GKXKS + BKXKS’
L _ (+) (=)
XKS - BKXKS + aKXKS!
TIK/2 (54)
B = iae™ o = ——,
A/2coshTiK

|O(K|2 + |BK|2 =1

Evidently, the right and left modes satisfy the orthogo-
nality and normalization conditions

21

[U0XE0IV Xies() = To-BaaBesd(k =K),  (55)
S

wherea, a' [0 L, Rand Sisaspacelike surface asin (30)
or (45).

Themodes x% and X% form two complete sets of

Dirac equation solutions and any other solution x(X)
can be decomposed into the corresponding integrals

X9 = ISTK[Z[ast&?(x) + b 200]
= (56)
_ 9 R %L
- _-[OZT[Z[rKSXKS(X) + IKSXKS(X)] ’

where summation over sis assumed.

For example, for the positive-frequency plane wave
solution withs=1,

(+) 1

— ; (+)
Xpa(X) = —=exp[i(p,z—E;t)]u; '(6,),
J2E

' (57)
_ Py

8, = arctanh E,’

we have

2T eiKe1 :1 - 0, (58)

A = ,
' J2E,
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_ Texp[ K2 + ik0]
K1 — m
¥, = —iTtexp[—-TtKk/2 + |K91]
) JE;coshTik

For the spectra of the right and left modes, we then
obtain (with g, = 21¥/E,)

(59)

2TTK
2 _ O1€
eZT[K+ 1’

e = =2,

K1 e2T[K +1

For the negative-frequency plane wave solution, the
coefficients in expansions (56) are

(60)

Il

* 2T -ixe
aq =0, by, = e 61
1 1 ﬁ ( )
i —iTiexp[—TK2 —iK8,]
“ /E, coshTiK ’ (62)

« _ Texp[ K2 —-ik0,]

|* =
“ JE;coshTtk

The spectra for the left and right modes then coincide
with the respective expressionsin (60).

Although these spectra resemble the thermal distri-
bution of the Fermi-particle gas, thissimilarity seemsto
be artificial for the same reasons as in the scalar case.
Moreover, decomposi tions (56) of the planewavein the

hyperbolic modes )(KS or )(KS and the inverse expan-

sions of these modes in plane waves in Egs. (41) and
(54) confirm the completeness of these three sets and
the absence of the loss of information or purity of
states. We see that the hyperbolic symmetry and a defi-
nite frequency sign preserve the good analytical prop-
erties of the modes but lead to an indefinite sign of their
charge density or energy density.

The “thermal” spectra appear when one preserves
the hyperbolic symmetry of modes and requires the
definiteness of the charge density or energy density
signs in the entire Minkowski space. This can only be
achieved at the expense of loosing good anaytical
properties of the modes and essentially consists in the
transition from the boundary value of an analytical
function on the cut to its jump on this cut. We have

Xes = OfXs* BiXes Xis = BiXs* Of Xior (63)
27K
2 _ e 2 _ 1
|aK| - e2m<+1’ |BK| - e2nK+1’ (64)

where |a,|” and |B,|® arethe respective probabilitiesto
find no pairs (one pair) and one pair (no pairs) in the
state X', k > 0 (k < 0). This interpretation follows
from the none-one-particle analysis of wave equation
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solutions and does not require the transition to the sec-
ondary quantization, although it is confirmed by it [5, 6].
For the Rindler observer with 3 = t/z, we have

R R R
TOO! T33! T03

4mk coshTtk 0 (65
= fa iK— 1/2(Z)| I |KIK 1/2|
and for Milne observer with [3 = z/t
R _ TImkU T
Tw="7{ COShT[KIT' '“”Z(T)lﬁ’
_ TIMK[G 1 (66)
T33 = %‘- COShT[K| |K+1/2(T)| ,
TIMK
T(F;3 = _2
T

The energy density is greater than the pressure. As
T — 0, we have

Toh=Th=Th = TMK/T°

similarly to the energy—momentum tensor of electro-
magnetic waves.

Itisinteresting to note that in the R sector, the eigen-

value )\fz tend to infinity as{ — 0, whileinthe P or
F sectors, they arefiniteat 1 = 0,
2TIMK

- 21'[m|<2 1+4K2+
1+4k2" 1+ 4K\ 9 + 4K2

The sgnty, is relativistically invariant in only two
Cases:

1) the eigenvalues A, and A, are real and have oppo-
site signs,

(67)

1,2|rao =

A, = ng —ToT33<0, (68)

2) the eigenvalues are real, have the same sign, and
the energy density is greater than the pressure in mag-
nitude:

()\1_7\2)2 = (T00+T33)2_4T§3>0:

, R (69)
AA,>0, sgn(Too—Tgs) >0.

We note that sgn(t5, —t5s) is relativistically invari-
antonly if A\, and A\, areredl, i.e,, if (\; —A,)?> 0. Then,
if Ay , arecomplex or if they arereal and have the same
sign, but sgn(T5, — T5) <0, the sgn t,, can be changed
by a Lorentz transformation.

The tensor tffB possesses the first property in the R

sector and either the first or the second property
depending on the value of T in the F and P sectors.
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Inthe F and P sectors, the eigenvalues AT and AY are
real because of the inequality

Lt
[T Bics 0] = i 0> 0. (70)
0

Inequalities (70) and (25) that are essential in this paper
were not found in the mathematical literature.

7. CONCLUSION

Hyperbolic symmetry of scalar and spinor field
states requires plane waves with unlimited frequencies
to participate in the corresponding superpositions. For
the scalar field, field states with the quantum number K
that are formed as superpositions and are analytic in the
coordinates X, = t £ z do not possess an everywhere
timelike current density, while for the spinor field, they
do not possess the energy—momentum tensor with
everywhere rea eigenvalues. This means that these
states describe both particles and antiparticles. Never-
theless, it is possible to construct hyperbolically sym-
metric right and left states that are not analytic in x, but
possess an everywhere timelike current density and the
energy—momentum tensor with everywhere real eigen-
values. Precisely these states describe the particle or the
antiparticle.

This implies that the charge densities jX° and J5°
for the scalar particle (antiparticle) states (pf and the
energy densities 5y, and Ty, for the spinor particle

(antiparticle) states x,fs are everywhere positive (nega-
tive) for Kk > 0 (k < 0) and are equal to zerointhe L sec-
tor. This assertion remains valid after replacing R ==
L and changing the sign of k.

It isknown [7] that if awave packet isformed from
plane waves and is localized in aregion of the order of
or less than the Compton wave length, it must contain
both positive and negative frequencies. The superposi-

tions @ and Xx{ do not contradict this assertion
because each of them is localized in a region of the
order of the Compton length only for |t| = nT?, while
for |t| > mrt, each superposition consists of two waves
that propagate along the light cone boundaries z = +t,
exponentially decaying outside the cone for ¢ =

my/Z° —t* > 1 and oscillating and falling off only as -2

inside the conefor t = myt* =2 > 1. Therefore, these

two waves remain coherently connected in a single
wave packet with the width =2|t|.

In the well-known review [8], Pauli made the fol-
lowing remark about energy density in the Dirac elec-
tron field theory: “The concept of the energy density
seemsto be more problematic in this theory than that of
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the volume integrated total energy. The energy density
is no longer positive definite for the theory of holes, in
contradistinction to the case for the theories discussed
in 881 and 2. Thisisalso shown in the c number theory;
even if limitation is made to wave packets in which the
partial waves all have the same sign of the frequency in
the phase expi(k - X — kyX,) the energy density (as dis-
tinguished from the total energy) cannot be made posi-
tive definite” 1 do not know whether Pauli had some
example of such awave packet. In any case, each of the

modes X(Kis) can serve as a specific illustration of his

remark. The energy density for each of these modes can
accept both signs near the light cone owing to singular-
ities on the cone related to the hyperbolic symmetry of

the modes. On the other hand, each of the modes X "

is an example of such a superposition of positive- and
negative-frequency spinor plane waves with a sign-def-
inite energy density in the entire Minkowski space.

It isinteresting that the scalar eigenfunctions of the
Lorentz boost operator appear in the analysis of the
photon wave function localized near the photon propa-
gation planein 3 + 1-space[9]. However, ascaar prod-
uct different from (30) is used in this analysis.
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APPENDIX

The integral Ji. defined in [4] by Eq. (14), being
the integral of a total differential, does not actually
depend on the form of the spacelike surface over which
it extends, but depends only on the parameters mt and ¢
fixing the coordinates of the left boundary of this sur-
face. Namely, the z coordinate of the left boundary is

equal to A/t>+Z°/m’, while the right boundary is at
infinity. When the left boundary tends to zero at afixed
ratio mt/¢, we obtain the result (20) from [4] without
any uncertainties related to the factor expli(k —
K') arcsinh(mt/{) ], which eventually turns into 1 at
fixed mt/{ and K = K'. Thus, the normalization integral
(20) in [4] is correct for any spacelike surface lying in
the R sector with the left boundary at zero—not at z =
|t|] as was assumed in [4].

Similarly, expression (28) for the normalization

integral J.. in [4] is correct for any spacelike surface
lying in the L sector with the right boundary at zero,
rather than at z= —|t| aswas assumed in [4].
Theintegral JEK. defined by Egs. (22) and (23) in[4]
isjustified for any spacelike surface lying inside the F
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sector with the boundaries at the points defined by fixed

valuesof mt and T = mA/t* — Z*. The z coordinates of the
left and right boundaries of this surface are then given

by z, , = FJ/t?—1%/m’. Ast tendsto infinity at fixed T,
we obtain the result (25) from [4] without any ambigu-
ity related to the factor inside the parentheses in Eq. (23)
in [4], which turns into Tt at fixed T and K = K'. Thus,
normalization integral (25) in [4] is correct for any
spacelike integration surface lying in the F sector and
having the boundariesat z, ,= Foo butnotat z, , = ¥t/ ,
aswas understood in [4]. A similar comment appliesto

theintegral JF...
On any spacelike surface entirely lyinginthe P, L +
R or F sectorswith the left and right boundaries at infin-

ities, each of the states cpff) has the same conserved
total charge

Q(K—) — Q(K—P) = |(<_L) + Q(K_Fg = Q(K_F) = 0. (71)
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Therefore, the factor 1/2 in the right-hand sides of
Egs. (34) and (35) in [4] must be replaced by 1.
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Abstract—The inverse scattering transform method is used to solve the model that describes the evolution of
light pulsesin an optical system that includes a set of media with different nonlinear optical properties. Asa
physical example, we analyze a model composed of the systems of equations that describe the resonant inter-
action of avery short light pulse with an energy transition of the medium and the ensuing propagation of the
light field in an optical fiber. The constant boundary value of one of thefieldsis shown to result in an asymptotic
quasi-radiative solution of the model. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

An analysis of soliton generation in nonlinear
optics, including that in terms of completely integrable
models [1], has been the subject of many theoretical
papers(see, e.g.,[2, 3]). Tofaithfully describe an exper-
imental situation often requiressolving aninitial value—
boundary value problem for systems of nonlinear evo-
lution equations. In practice, this problem can currently
be solved only in terms of completely integrable mod-
els. Therefore, finding and solving completely integra-
ble modelsis of both theoretical and practical interest.

In this paper, we consider an integrable model com-
posed of two or more model sthat describe the evolution
of fields on nonoverlapping, joined intervals. We call
such models composite to distinguish them from mod-
els combining integrable models on coincident inter-
vals. The latter include, for example, a combination of
the integrable system of Maxwell-Bloch equations for
a two-level medium and the integrable nonlinear
Schrddinger equation (NSE) for an infinite medium [3].

As far as we know, composite models of this kind
and peculiarities of the pulse generation in them have
not yet been studied. At the same time, the existence of
such models is determined by actual physical situa-
tions. The experimental facilities used to generate very
short optical pulses usually include different nonlinear
and linear media. In some media, a pulse is generated;
in other media, it is amplified; in still other media, the
pulse is compressed and takes a shape convenient for
subsequent applications, etc. An example of such asys-
tem can be a two-level laser amplifier supplemented
with anonlinear medium in the form of an optical fiber.
Studies of composite models and the associated initial
value-boundary value problems can reveal qualita-
tively new generation regimes under actua physical
conditions.

A modified nonlinear Schrodinger equation
(MNSE) with differential nonlinearity [4] iscommonly

used to analyze the propagation of very short light
pulses in optical fibers. Stable soliton-like field pulses
in such a medium result from the balance between dis-
persion and nonlinearity. In most studies of soliton
effects in optical fibers, additional nonlinear interac-
tionswere taken into account as perturbations (see, e.g.,
[5]). At the same time, some combinations of nonlinear
effects can be described in terms of integrable models
that combine simpler integrable models in an infinite
medium [3].

The example of a composite model analyzed here
describes the propagation of very short pulses of alight
(main) field in an optical fiber with allowance for the
interaction with additional fields in a nonlinear reso-
nant medium of finite length without invoking the per-
turbation theory. In an actual experiment, such a
scheme can be used to study the generation of very
short pulses in a resonant medium, which are subse-
guently injected into an optical fiber that serves to
transmit information by means of these pulses. The
model includes the MNSE and the system of reduced
Maxwell equations that describes the resonant interac-
tion of three light wave packets with a two-level
medium. This integrable model is associated with a
spectral problem related to the Wadati—Konno—
Ichikawa (WKI) problem [6].

In general, to describe the generation of solitonsand
other wave packets in nonlinear optical problems in
finite or semi-infinite media, an initial value-boundary
value problem with nonzero fields at the boundaries
should be solved. Such boundary conditions often cor-
respond to more redlistic and more easily realizable
experimental conditions than the physical conditions
for which a soliton “classical version” of the inverse
scattering transform method (ISTM) was constructed
[1]. Accordingly, determining the type and form of the
solution associated with boundary conditions of this
kind isimportant for applications. These boundary con-
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ditions can qualitatively change the generation condi-
tions for optical solitons, breathers, and other types of
solutions. At the same time, as was noted above, such a
problem could be solved in practice only in terms of
integrable models. In this case, solving the initia
value-boundary value problem generally runsinto seri-
ous mathematical difficulties. However, papers have
recently appeared in which methods were developed
for solving such problemsfor anumber of modelsinte-
grable by using the ISTM based on the solution of the
Riemann—Hilbert problem [1]. Noteworthy are[7, 8], in
which boundary value problems for the sine-Gordon
eguation, the NSE, and otherswere investigated. In par-
ticular, Kiselev [9] suggested a formal method of solv-
ing the Goursat problem for the system of Maxwell—
Bloch eguations for a two-level medium. Previously,
the initial value-boundary value problem for the same
system was considered by Gabitov et al. [10], who ana-
lyzed self-similar asymptotics. Fokas [11] proposed a
new approach to using the Riemann—Hilbert problem to
solve the initial value-boundary value problem on a
finite interval. In [8], the Raman scattering model,
which isrelated to the Maxwell-Bloch model for asin-
gle-frequency transition, with averaging over fre-
guency mixing was solved in terms of the ISTM for a
finite interval. The form and properties of the asymp-
totic solution generated by simple, but nontrivial
boundary conditions have been discussed in severd
recent papers [12-14]. Isolated soliton-like solutions
with variable parameters were found in [12-14], in
which the Raman scattering model was solved for non-
zero boundary values of the Stokes field and pumping.
In [15], we proved for the same model that as the effec-
tive length of a nonlinear medium increased, the total
contribution of these poles led to a quasi-self-similar,
nonsoliton solution. The result proven theoretically for
slowly changing boundary conditions is confirmed by
numerical simulations [15].

In this paper, we use the version of ISTM based on
the solution of the Riemann—Hilbert problem associ-
ated with the WKI spectral problem to solve the new
integrable model. For simple, but nontrivial initial
value-boundary value problems, we theoretically ana-
lyze the generation and dynamics of very short light
pulses. The integrable model studied here also differs
significantly from those considered, for example, inthe
review [3] in anontrivial dependence of the scattering
coefficient on one of the variables. In particular, this
dependence can give rise to an infinite number of mov-
ing polesin the complex plane associated with soliton-
like solutions.

In our physical example of two different nonlinear
media, the boundary conditions for the second medium
are determined by the field evolution in the first
medium. This initial value-boundary value problem is
generally unsolvable. However, an asymptotic solution
can be found in terms of the new integrable model con-
sidered here. In this paper, we develop an approach that
allows the field evolution in composite models to be
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asymptotically described for thiskind of boundary con-
ditions. It has been proven that for a sufficiently large
effective length of the resonant medium, the solution
reducesto asystem of integral equationsthat asymptot-
ically coincide with the equations describing the quasi-
radiative solution of MNSE. Thissolution isdetermined
only by the continuum of the problem (ImA2 = 0) and can
be expressed in terms of one of the Painleve transcen-
dents [1]. Explicit asymptotics of the quasi-radiative
solution for the MNSE werefound by Kitaev and Varta-
nian [16]. Our results also provide the answer to the
guestion of the form of the asymptotic solution for the
problem of light interaction with a two-level medium
under conditions of degenerate two-frequency reso-
nance and weak excitation of the medium.

The paper was structured as follows. The genera
structure of compositeintegrable modelsisdescribed in
Section 2. The physical situations that |ead to the com-
posite modd analyzed below are considered in Section 3.
The method of model solution based on the Riemann—
Hilbert problem is described in Section 4, and the
dependence of scattering data on variable is derived in
Section 5. In Section 6, we show, for simple initial
value-boundary value problems, that the approximate
quasi-radiative solution of MNSE describing the pulse
dynamics in an optical fiber can be generated by the
boundary conditions for an additional field in the reso-
nant medium. The results and their possible generaliza-
tion are discussed in the final section.

2. COMPOSITE INTEGRABLE MODELS

L et us describe the structure of an integrable model
composed of N x M integrable models (some of them
may coincide). Let the composite integrable model be
represented as a compatibility condition for the follow-
ing linear systems of equations:

d .
Ew(r, Z, A
M 1)
= > BiinOLnz Nz ) =Ly,
i=1
d .
G_ZqJ(T’ Z )\)
N ()
= Zai,i+1(Z)Ai(T’ Z, MY(T, z A) = sy,
Bj,j+1(1) = [6(T—T1;)0(-T +r,-+1)][§,-(r), Tj41>T1,
;212 = [08(2-2)8(-2+2.1)]0i(D), Z.1>2.
Here, 8(2) isthe step function:
_ 0, z<0
M@= 0
No. 2 2001



DYNAMICS OF A LIGHT FIELD IN A COMPOSITE INTEGRABLE MODEL

[~3i(r) and 0;(2) are smooth functions that do not
become zero and infinite; o ;. 12/ and
Bii+1(T) [~3i(r) are the projectors.

ol 12162 = a;;..2/6,2)

etc.; L, A, <, and o are matrix operators.

~ Thecompatibility condition for these linear systems
is
N

aizz Bj.i+ (DL —%Z ai 1A

j=1 i=1

‘{z Bj.j+1(DL;, Zai,i+1(Z)Aii| =0
=1 i=1

Multiplying (3) by &, ;. 1B, ;..G;'B;" yields

©)

BOgL -G @gA+BOLE@Al =0,
200771,

Thus, the evolution in the square [z, z , 4], [T}, Tj+4] is
described by the system of equations with the Lax rep-
resentation as linear systems:

arLIJ = le—jl-l"’ azl-IJ = aAY.

We do not known the ISTM apparatus for the spectral
problem (1) in the case of severa intervals[t;, T, 4]. In
this paper, we study an example of a composite model
with the Lax representation (1) and (2) for one semi-
infinite interval [t, =0, T, = o) and two different media
onintervals[z, =0, z,] and [z, Z; = «]. The problem for
afinite or semi-infiniteinterval [14, T,] correspondingto
a nonzero projector B1,(1) was solved, as noted in the
Introduction, for simple, but nontrivial initial-boundary
conditions for one interval [z, z)](see, e.g., [8, 11]).

Note that here, the composite model including dif-
ferent models integrable on different intervals is
assumed to be integrable in advance. This assumption
generally imposes additional constraints on the physi-
cal parameters.

TO[T), 1.4

3. A PHYSICAL EXAMPLE
OF A COMPOSITE MODEL

3.1. Satement of the Problem

Let us consider a composite model that includes a
model for the resonant interaction of themain field with
an additiona field in a two-level medium on interval
[z, =0, z) and amodel describing the evolution of the
main field in a Kerr medium on a semi-infinite interval
z = z;. Thefield interaction in the resonant medium is
assumed to generate pulses, which subsequently prop-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

223

agate through the Kerr medium. The initial-boundary
conditions in the simplest case are as follows: the
amplitude of the initial “additional” field in the reso-
nant medium is nonzero, and the initial main field is
zero. The pulse generation in this problem can be trig-
gered by an arbitrarily small seed of the main field at
the z= 0 boundary.

3.2. AModel of the Two-Wave Interaction
in a Resonant Medium

Let usfirst consider examples of the resonant field
interaction with a two-level medium and the physical
conditions that lead to the following system of evolu-
tion equations:

0.0; = —20,0, +ivq, ©)

0,0, = 01 —i29°,|qy° (6)

(the bar denotes a complex conjugate) and then to the
system composed of model (5), (6), and MNSE.

3.3. Light Propagation under Conditions
of a Degenerate Two-Photon Interaction

The coherent interaction of avery short pulse with a
two-photon-absorbing medium was considered in sev-
era papers, beginning with [17] (see aso the review
[3]). The effect of self-induced transparency was ana
lyzed in terms of the system of Maxwell-Bloch equa-
tionswith allowancefor the changein level populations
and for the nonlinear Stark effect. However, a signifi-
cant (of the order of unity) change in level populations
requiresintense light fields. At the sasmetime, for appli-
cations, for example, in microelectronics, it is impor-
tant to find conditions for the existence of self-induced
transparency for relatively weak fields that do not
destroy the optical medium.

In this section, we derive the self-consistent integra-
ble model of self-induced transparency that corre-
sponds to weak excitation of the medium. The exist-
ence of multisoliton solutions for this model provesthe
possibility of observing self-induced transparency in
this limiting case for much weaker (by orders of mag-
nitude) fields than in the model noted above [17].

The general system of equations for the field and a
two-level medium (with levels 1 and 2) under condi-
tions of degenerate two-photon resonance was derived
from the Schrédinger and wave equations in [17, 18].
The polarizability dynamics of the medium isdescribed
by the equation

0p o _jdz=lugeep I° 2

aR =-ig7 D|E| R ZhE Rs. (7
Here, R; isthe difference between the upper- and lower-
level populations, R=iR; + R, (R, and R, are the reac-
tive and active polarization components of the
medium), and E is the field amplitude. The Bloch vec-
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tor components are normalized to unity; i.e., thefoll ow-
ing equality holds:

5+ IR = 1. (8)

Twice the field carrier frequency w is assumed to be
equal to the transition frequency w;, of the medium.
The standard derivation of the equations for a two-fre-
guency interaction with a two-level medium involves
an adiabatic elimination of theintermediate-level occu-
pation probability amplitude (see, e.g., [17, 19]). This
procedure leads to the following form of the coeffi-
cients:

r =2 Z 02002 (Wnz + (Zonl),
hey (@t w)

n>3

z nmlqnml
mm ]
ﬁ Wnm— 00

n>3

m=1,2.

Here, g, is the dipole moment between transition lev-
elsm=1, 2 and intermediate levels n, and w,, is the
corresponding transition frequency.

The Maxwell equations for aslowly changing enve-
lope of field E reduce to the equation [17]

o 1aDE 21T(.d\lo
x| cot]

<[ iR -ROEER|,

9)

where R s the initial difference between the level
populations, and c is the speed of light in the medium.
In many known experiments on the observation of two-
frequency coherent effects, the upper-level (m=2) pop-
ulation during the field interaction with the two-level
transition was found to remain low compared to the
ground-state population. The ratio of the upper- and
lower-level populations often does not exceed 107°—
1077 during the entire interaction [20]. In this casg, i.e.,
in the limit of weak excitation of the medium, the fol-
lowing expansion holds:

Ry=—1+|R%2+0(IR") (10
(here, RY = -1). To derive Egs. (5) and (6), we use
expansion (10) and disregard all terms of the fourth
order or higher in field amplitude and polarization
(~|RPE?) in Egs. (7) and (9). Note that including terms
of the third order (~|R]PE) results only in arenormaliza-
tion of the constant g®in (5) and (6). Let us now change
tovariablest and z
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System (7), (9) then takes the form (5), (6) after
allowing for expansion (10), discarding terms higher
than the third order, and the following substitutions:

T

0. ,. . O
E = qlexpEl—lglflRl dr —ivig,
U 5 |

T

I 2 oo
R = qzexpEl—Zlglj’lRl dt —2iv1,
O 5 g

where
_ M=y 2 _Ip—Inp
gl - zh 1 g - 2r2 - +gl'
When deriving (5) and (6), we used the equality
oE” _ _
el 2—| R, (11

which follows from (7) and (9).

3.4. Three-Wave Mixing in the Resonant Medium

Let us describe yet another physical scheme for the
interaction, which also leads to the system of equa-
tions (5) and (6). Let athree-frequency field be propa-
gated through the medium:

3

E(x,t) = Z {Pexp[i(g;x—w;t)] +c.c} .
j=1
Here, P; are the slowly changing envelopes, w, are the
carrier frequencies, and g are the carrier wave vectors.
The following conditions of two-photon resonance
with the proper energy transition of the medium with
frequency wy, are assumed to be satisfied:

(12)

W +0,00, =Wy t+V,, W3+d,w = Wy+V, (13)

Here, 3, = £1, §, = £1, and the detunings v, satisfy the
condition

ve<w, k=12 1i=0,..3

The resonance conditions (13) not only alow one to
enhance significantly (by orders of magnitude) the
effect of nonlinear mixing, but also to eliminate the
terms describing the cubic (in amplitude) field self-
action from the equations, i.e., the terms of type P; |P;|.
In that case, these terms breaks the model integrability.
Asaresult, the model includes only the cubic termsthat
correspond to the two-photon-induced Kerr nonlinear-
ity (see, eg., [21]).

Thus, assuming that the polarization of the medium
follows the field variations and using the standard pro-
cedure of adiabatic elimination [2], we obtain the Max-
well equations in which the nonlinear field mixing is
described by the two-photon-induced Kerr nonlinear-
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ity. The reduced Maxwell equations for the resonance
conditions (13) at o, = o, =-1 are

0,610 4“001
%T V.0 _Epl = [0(22P1|P2|
+ 03Py |P3|% + 2Ima,P,P1 Pyexp(-iAX) ],
0,1 GD _ 41'[002
Bx v _tD 2 (14)
X [a22P2|P1| + a23P1|536Xp(iAX)],
o, 1 aDP _ 4110%
Dx v vyotd 3

X [0(33P3|P1| + O(g,zf’zPlexp(iAz)] ,

where A = 2q; — g, — g3 and v, are the group velocities
of the fields with envelopes P;. The Maxwell equations
corresponding to this interaction scheme and the coeffi-
Cients ays, agy, &y, aNd ag; are given in [2, Section 10.4].
However, in contrast to the equations in [2], system
(14) includes atime dependence of the field amplitudes
and uses the approximation of slow envelopes. We also
assume that the time scales of amplitude variations are
much shorter than the time 2, where I is the mini-
mum relaxation constant. Similar equations emerge for
other &;, which we do not provide here to save space.

In several cases, when waves were mixed in a
medium with Kerr nonlinearity, the constancy condi-
tion for one of the fields was satisfied with good accu-
racy [20]. This condition also significantly simplifies
the synchronization of field pulses, which isrequired to
observe the effect. The constancy condition for one of
the fields is satisfied, for example, when |P,| > |P| or
|P,| > |P4|. Let us choose the latter case where the vari-
ationsin field P; may beignored. In this case, only the
first two eguationsremain in system (14). Let Py(x, t) =

A, where Aisareal constant (for acomplex A = Aoei%

the phase factore® isremoved by shifting the phase of
field P,). In this approximation, the first two equations
of system (14) are reduced to system (5), (6) by thefol-
lowing substitutions:

WAY . '
P, = qlexp[—|§x+ |gl_[|q2|2dr},
0

T

P, = iq, eXp[i 91I|Q2| sz} )
0

GSS

paA’

2 _ 1|:| ss
T 2hhA 291D’ 9 =
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2
c’A a
v = +EIAR
8wy, Oy,

0 _ c Da+ o0
0T 4T0,,0,00x  v,ot)

9 __¢c mo L 1op
9z Amogw,[dx  v,0tT

The integrable system of equations (5) and (6) is
givenfor thefirst time. Thissystem, aswell asasimilar
integrable system of equations built previoudly [22], is
associated with a WKI-type spectral problem. How-
ever, applying the ISTM apparatus to system (5), (6)
resultsin new singularities related to peculiarities of the
boundary conditions for this model. The practical sig-
nificance of moddl (5), (6) may stem from the fact that
it describes the degenerate two-frequency interaction of
light with a medium for minimum field intensities and
simultaneously has nonsingular soliton solutions. This
distinguishesit from the standard model of second-har-
monic generation, which is formally equivalent to (5),
(6) a g = 0. In the latter case, this system of equations
issimilar to the model of explosiveinstability [1] with-
out stable soliton solutions. Some self-similar solutions
for the system of equations (5) and (6) can coincide
with the solutions of the second-harmonic generation
model or the model of atwo-wave interaction in media
with quadratic nonlinearity with alowance for cubic
nonlinearity. Accordingly, analyzing system (5), (6) is
of interest in its own right, but here, it will be analyzed
as an element of the composite model.

3.5. The Composite Model

In actual experimental facilities, it is not uncommon
for light pulses to pass through different optical media
located sequentially. Consider a situation when a very
short pulse first passes through a resonant medium on
interval [z, z] and then propagates in an optical fiber
on interval [z, ).

In the resonant medium, the main field interacts
with two additional fields. Let the light pulse ‘€ (main
field) oninterval [z, = 0, z,] interact with two additional
fields with envelopes 6 and U according to the scheme
described in the preceding subsection. In the notation
of this mode!,

€=P,, 9=P;, U=P,.

We assume that the change in field § during the inter-
action may be disregarded. Let us describe the mecha-
nism for energy conversion of the additional fields into
pulses of the main field and determine the form of the
corresponding solution. To this end, we construct a
composite model built from model (5), (6) on interval
[0, z], a; , # O, and the MNSE on interval [z, ),
0y 3% 0(0; ., aredefined in Section 2).
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The MNSE includes differential cubic nonlinearity
[see the left-hand side of Eq. (20) below], which pro-
duces a nonlinear phase modulation of the pulse and
which should be taken into account when describing
the evolution of sufficiently short light pulsesin optical
fibers[23]. A linearly polarized optical wave obeys the
Maxwell equation in a one-dimensional medium:

°E  19°D

e ot
Here, Eistheelectricfieldand D = E + 41P,_ isthefield
in the medium. The refractiveindex is

21Tn2n0 9°

(| EI°E). (15)

n(w, E) = n(w) + nlE°, ny = neyp),  (16)

where wy, is the carrier frequency of the field with a
slow envelope é:
%} (17)

Substituting (17) in (15), passing to the frame of refer-
ence of the pulse, and retaining terms with the first
derivative with respect to nonlinearity, we obtain the
modified nonlinear Schrodinger equation

0 noaD 1k<ﬁ nnoooo
E'Fx catD 2

E(x,t) = € exp[i wog%)x—

—0/8|%8

(18)

i 21'[n2 0

(8€) = 0

(the prime denotes a derivative with respect to w at
point ).

For very short pulses, the dispersion term ik"E, /6
[24] must generally be added to the left-hand side of
(18). Marcuse [25] found the following empirical ratio
of the coefficients for single-mode optical fibers, which
holds near the minimum of |K"|:

k" 7% 1041)\[um] —0.86

31Kk 1.27 —A[um]’

It follows from (19) that the third-order dispersion may
be ignored near A[um] = 0.86. At the same time,
according to (19), this dispersion must be taken into
account near Ay = 1.27, because k" = 0 at this wave-
length [26]. For A far enough from A, the nonlinear
waves, the solutions of Eq. (18), result from the balance
between cubic differential nonlinearity, cubic nonlin-
earity, and quadratic dispersion. These robust nonlinear
modes (solitons and other self-similar solutions) are
stable against small perturbations. Under these condi-
tions, the cubic dispersion (~ik"Ey), according to (19),
may betreated as a small perturbation whose allowance
causes the nonlinear-mode parameters to change only
dlightly. Therefore, the cubic dispersion was disre-
garded here.

It can be shown that, given the interaction with addi-
tiona fields and in the approximations used, the system

(19)
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of Maxwell equations for €, the field envelope of the
pulse propagating in an optical fiber, reducesto the sys-
tem

0,& +0(z—2,)[iDO>E + 6|€|%¢€ + Ba,(|E|*€)]

= 0(-z+ ) (- 2y, UG + 2igiglu?),  (20)
z=0,
0(-z+12)
x (3, —V, €U + 2igEU[€)* +ivaw) = 0, (21)
220,

whereD, @, B, Y12, and g, , arerea coefficients.

Since the interaction of field € with field AU in the
resonant medium and the self-action in the Ker
medium are spatially separated, the coefficients on the
right-hand side of Eq. (20) can be arbitrary. In general,
theinteraction in aresonant medium is characterized by
nonlinearities with coefficients larger than those in
optical fibers by several orders of magnitude. At the
same time, the nonlinear interaction and dispersion
effectively manifest themselves for actual fibers whose
lengths are several orders of magnitude larger than the
length of the resonant medium. Therefore, to justify the
physical applicability of system (20), (21), it will suf-
fice to verify the presence of terms on the right- and
left-hand sides of Eq. (20) separately.

The differential cubic nonlinearity, just as the sec-
ond term on the right-hand side of Eq. (20), produces a
nonlinear phase modulation, in contrast to the remain-
ing terms of the eguation. As was shown above, this
nonlinear frequency modulation is resonant in nature
and, therefore, determines the dominant cubic term on
the right-hand side of Eq. (20). We ignore any change
ing.

Next, we assume the detuning v of field U to be
large enough to disregard the nonlinear frequency shift,
i.e.,

|goou||€1> < [ (22)

Let uschange from variables €, U, t, and x to variables
QU,t,andz

€ = pQexp(=2ivt), U = dUexp(—it),

- (23)
t—x/vyg = KT, Z = (X,
where
[ . [9
a+2v’ ¢
82 _ J2(,
V.G o + 20
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1 _ 4DV o, _ Gifa+2
vo a+2v ' "’ B./2Dy,G

Thefinal system (20), (21) can then be written as
8,Q- a0, 5{ 95:Q-2i(1Q°-|Q1)Q

+ gl [(1Q”-lQHQn (24)
= ay ,(2U° +2ig°QIUl%), z=0,
a,,(8;U+hQU) = 0, 220, (25)
where
h = Y.G+/2D ek 2DV°
Ja+2y ‘o (26)
2 _ 2B
JD(G +2V)

Below, a; ,=0(2)6(-z+ z,) and a, 3 = 6(z—2,). For the
ISTM to be applicable to (24) and (25), the following
constraint must be imposed on the model coefficient:

h=1 (27)
Condition (27) can be satisfied for a certain choice of
the detuning v and/or the amplitude of additional field 4.

System (24), (25) isinvariant with respect to the fol-
lowing simultaneous transformations:

z-»7=z+1-)1Ud%,

Q —Q = Qexp[-2i(1- )7,
U-—U = Uexp[-i(1-f)7,

Q" —~Q =fqQ,
wheref isan arbitrary real constant. Clearly, the condi-
tions used above to derive the integrable system (24),
(25) limit its applicability. However, the model integra-
bility allowsthe form of the nonlinear field dynamicsto
be analyzed analytically, which cannot be done for non-
integrable models. Studying the model allows qualita-
tive characteristics of the generated pulse packets in
close systems to be determined analytically, because
the self-similar solutions of integrable models gener-
ally retain their characteristic singularitiesin the case of
a small departure from the integrability conditions.
These conditions can aso be used as test conditionsin
numerical simulations. The effects of departures from
the integrability conditions on the form of the solutions
can be analyzed by using the perturbation theory. Note
that such an analysiswas performed for the model com-
bining the system of Maxwell-Bloch equations and the
nonlinear Schrodinger equation by Doktorov and
Prokopenya [27]. These authors showed that when an
integrability condition similar to condition (27) was
dlightly violated, the basic properties of solitonsdid not

(28)
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change, to a first approximation; in particular, their
amplitudes and velocities did not change. One might
also expect similar resultsfor the composite model con-
sidered here.

Let us now formulate the initial value-boundary
value problem for the composite model (24), (25),
which is solved below. Since the composite model is
assumed to beintegrable, it will sufficeto formulate the
conditionsfor 1 = 0and z= z, = 0. Indeed, the condition
of integrability through the ISTM suggests the exist-
ence of Lax representation in theform (1), (2), whichis
analogous to the separation of variables. In this case,
the z dependence of the solution is entirely determined
by the z dependence of scattering data, which, for our
problem, reduces to an ordinary differential equation
for the scattering matrix [see Eq. (44) below]. The solu-
tion of this equation has the following obvious prop-
erty: the value of the scattering matrix at point z = z,
(i.e., a theend of the resonant medium) isthe boundary
value for the scattering matrix that describes the evolu-
tion in the second (Kerr) medium. Thus, it will suffice
to specify the boundary condition at point z = z,
because in this case, the boundary value for the Kerr
medium at point z= z, is determined by the field evolu-
tion in the resonant medium; i.e., in the integrable
model, by the solution of Eq. (44) at this point. We
emphasize that this property resultsfrom theintegrabil -
ity of the entire composite model. Theinitial conditions
for the field must be common to both media, because
the spectral problem is common to both models of the
field interaction in the resonant and Kerr media.

For simplicity, we choose the initial conditions that
correspond to trivial asymptoticsat T —» oo and 1 = 0.
In general, the ISTM apparatus presented in the next
two sections corresponds to the following initial-
boundary conditions:

q° =0, q(0) = gyt), ©>1>0,
go(0) = 0, Ilimq(t,2 = 0, Uz,
T (29)

U(@0,2 = Uy, q(0,2 =0, 0<z=<z,

U@,2 =0, 90,2 = a3, z>z,
where
_Q -9
q - Ig’ q - |g

The constant g, such that Img? = 0, is defined in (24)
and (25). The function Uy(2) is specified on a finite
interval, is limited, and rapidly decreases at infinity.
The functions gy(t) and g,(2) are smooth and limited
(see below). This apparatus allows soliton and other
related solutions that become zero at infinity, aswell as
the radiative solution, to be found. In Section 6, we
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solve aspecia boundary-value problem with the condi-
tions

Qo=0, =0, 9z(Uy/|Uy) = 0.

4. THE RIEMANN-HILBERT PROBLEM
FOR THE WKI SPECTRAL PROBLEM

The Lax representation for the integrable composite
model (24), (25) is

D oy 2 . 2 |:|
0.0 =57 -19° A0 Uo=g.0,
0 Ag  iA*+ig?Q (30)
=0,
. 3[] 2 2
_ g ,(0Ag" gAglul® iU° O
ach - }\292+1 O _UZ )\ |U|2|:|(D
| —
0 glul“o 31)
0
+0, 3(Z)D —iHn Hy, O® = AP,
0 H, iH,O
here, A isthe spectral parameter,
2.2 +|2 _
Hy = [20°+ g7 =1q7°(2A% + g - A%q/7,
— +|2 .
Hi = AM[2q(A° + g7 =g +i9.a-1d’q], (32
_ — +|2 P _
Hy = AM[2a(A° + g7 =g —io.q-d*dl,

and the bar denotes a complex conjugate. The integra-
ble system (24), (25) and its Lax representation are
given for thefirst time. At g = 0, this system reduces to
the standard system combining the second-harmonic
generation equations without Kerr nonlinearity and the
nonlinear Schrédinger equation.

Below, we provide basic information from the
ISTM apparatus for the WKI spectral problem (30) for
asemi-infiniteinterval [t, =0, T, = ).

For q(t, 2) decreasing rapidly enough as T —» oo
(this function and al its derivatives decrease more rap-
idly than any pasitive power of 1), we define the vector
functions W*(t, z; A) and @*(t, z A) asthe Jost functions
of the system

(0. = LT, )Y,z A) = 0,
(0. — L1,z \))@'(T,Z,A) = 0

[see (30)] with the following values at the ends of the
semi-infinite interval:

lim @', z A) = (0,1)7e"",

T > +too

lim @ (t,z;\) = (1,0)7€

T > +o0

(33)

—I/\ T
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90,z N = (1,07, @0z =(0-1)", (34)

where A? = A2 + g% the superscripts + mean that the
function is anaytic at ImA? = 0, respectively; and T
denotes transposition. It follows from the Cauchy theo-
rem that condition (34) is satisfied for @ <O.

The Jost functions are related by
YT,z N = Fa(@Z N (T, A
+b*(z Ntz N), ImA? =

where a* and b* are the complex scalar functions of A
and z. The superscript meansthat the function isanalyt-
ically continuableto the corresponding half plane of the
complex A? plane. For example, a*(A) is analyticaly
continuable to the domain where ImA? = 0.

For A — o and ImA2 > 0, we have

a'(\) = 1+00\),

(35)

Wz e

A2 O o,

o'tz Ner? = %L q(T Z)D + 0,
for A — o0 and ImA2< 0,
a(z\) = 1+0( D),

w (T z )\)el/\ z _ %L CI(T Z)D @0\—2)

Hed 1 oo,

— . —iN’z _
(p (Tu Z, }\)e - D 2)\

and for ImA2=0,
a‘Na(\)+b"A\b () =1,
a'(\) = a(h),
b'(\) = -b (), &) = a'(),
b* () = -b*(-N),
a'(\)a(\)+b"‘M\b(\) =1,

(36)

a’) =a (), b0 =-b(),
a‘(-A) = a'(h), b*(\) = —b*(=\).

Expressions (36) are valid in the A plane on contour

[ = {\; ImA? =0}, which is oriented as shown in Fig. 1.
As above, the bar denotes a complex conjugate.
Assume that

W(T, Z N) = J(T, Z, \) exp(-iA*1ay),
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05 = diag(l, —1) isthe Pauli matrix. Let us define

0+ . [l
0@,z A) WiT z A) E

|:| +

u, z )\)EE ?O"t) Eexp(i/\zms),
DM Wyt z A O
0 a'on ) 0

for ImA2> 0 and
0 N
Oy, z ) -HZ 0

Wz =0 aty Eexp(i/\2m3).
Oyistr,z 3 ~2EED
0 a(ty O

for ImA2<0.
Introduce the scattering coefficient
PN = b'()/a" (M),

whose analytic properties follow from the above for-
mulas. Next, in order not to write the superscripts, we
designate p(A) = p(A).The 2 x 2 matrix function pu(t, z
A) [detu(T, z A) = 1] isthen the solution of the follow-
ing Riemann—Hilbert problem:

(i) u(t, Z A) isholomorphic for A 0 C\T;
(i) p(t, z A) satisfies the condition
Wtz N = p(t,z NE(; A)_lG()\)E(T; A), (37)
ADT,

where

O — 0
GO\ = %1— p&zp(?\) P(A) %,
O —p(A) 10
E(T; A) = exp(iA?10y),
with p(\) defined for A O [ and having the property
P(-A) =—p(A);
(iii) for A —= o0, A O C\T,
W,z A) = 1+0Q7),

| isaunit matrix. These properties follow from the def-
inition of p(t, z A) for IMA? = 0 and from the analytic
properties of the Jost functions. Let the integral of the
modulus of p asafunction of A over all values of vari-
ableA O [ belimited. The Riemann—Hilbert problem
formulated above is then uniquely solvable:

W(T, Z A) = U@, Z, \) exp(—iA°To)
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Im(\)
ImA?>)<0 ~ [T ImA%>0
- B ey
oy | o T
mA\)>0 Im(A\?) <0

Fig. 1. I continuum: {A, ImA2 = 0} and integration con-
tours .

is the solution of system (30), (31),

(T, 2 =2i lim (AR(T, Z; A)) 12,
_ i (39)
q(t, 2 =-2i lim Au(T,  A))a,

and p(t, z A) hasthe following symmetry properties:
M(T, Z; —A) = O3U(T, Z; A) O3,

U(T, z A) = o,u(t, Z, Aoy,

where g isthe Pauli matrix. The solvability of the Rie-
mann—Hilbert problem for [z follows from the integral

of the modulus of p over A [ [ bei ng limited (see[16,
28-31] for details). Conditions (38) follow from (30)
and from the expansion of ®, , in terms of A7 for

A —> o,

The solution of the Riemann—Hilbert problem (37)
for the case under consideration is well known. It
reduces to the solution of the Volterra integral equa
tions. For a(A) # 0, we derive the Volterra equations
from (37) (see, eg., [11, 30, 31]):

iz A = §F
+ =5 [B(z: N exp(2TAD) DT, z; \)-9% )
2iT[,rp ' P ADS VTN
Bz N =
(40)

+ %Tj'p(z; A) exp(—2ir/\2)qﬂ(r, z, )‘)(dTZ)\’
r

where A2 = {? + g=. I, is the integration contour that
combines the paths along the axes in the first and third
guadrants of the A plane (see Fig. 1) and the arcs at
infinity in these quadrants that connect them; I'_ is a
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similar contour in the second and fourth quadrants of
the A plane. Thus, the problem has been reduced to
solving the integral equations (39) and (40). Let the
coefficient a(z; A\,) = 0 and ImA2 # 0 at afinite number
of isolated nondegenerate poles A, k=1, 2, .... The
sum over the residues at all these poles must then be
added to the integrals on the right-hand sides of (39)
and (40).

To solve the composite evolutionary model (24),
(25) for field q(t, 2) by the ISTM, we must solve
Egs. (39) and (40) by taking into account the z depen-
dences of p = b/aand p = b/a and then restore (T, 2)
using Eq. (38).

5. THE z DEPENDENCE OF COEFFICIENT p

The next step of the ISTM procedure isto find the z
dependence of the spectral data required for the prob-
lem to be solved. Below, we omit the superscripts+. Let
us first consider the general case and find the A depen-

denceof coefficientsaand b for different optical media
located on N intervals [z, z . 4]. To this end, we rewrite
(35) in matrix form:

Y(t,z; A) = 1,2, N)T(z A). (41)

It follows from the symmetry properties of the specific
spectral problem (30) that the matrix T is

T = 0ad) b g

(42)
Ob(\) a() O
Substituting (41) in (30) yields
a%T(z; A) = AT@ N =Tz VA, (43)

where

A+(z; A) = lim E_l(T; N AT, z; N E(T, N),

Az A) = E0, A\)s(0, 2, \)E(O, M),
E(t.A) = exp[iogt\*+g7)],

here, o is an arbitrary 2 x 2 matrix and o is the Pauli
matrix.

Consider onefiniteinterval [T, =0, T,). In this case,
B1,#0;i.e,L;=0in(1)forj> 1. Inwhat follows, we
pass to the limit T, — . We consider N intervals [z,
Z .4 in variable z. In this case, a; ;,1(2) # 0. The z
dependence of matrix T isthen given by the equation

(%T(z; A) = E (15 NA(T, 2 NE(T,; N)T(Z N) ”
—-T(z; A) E_l(O; A)SA(0, z; A)E(O; ).
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Let usintroduce the functions

N

B2 = [E 0Ny a@A, z NEY; M,
0 i=1

B(v.2 = [E(: AW Z NE(Y: N,
2,<2<Z,,.
The formal solution of (44) isthen
Tisa(z N) = exp[B(12 2] T4(0, A) exp[-A(0, 2]
= exp[B(T,, 2] Ti(z, A) exp[-2B(0, 2)]
= exp[Bi(T2 2)]... exp[Bu(T2, D] To(z1; N)
x exp[-%B4(0, 2)]... exp[-%Bi(0, 2)] .

(45)

We see from this solution that the evolution of T(z, A)
on interva [z, z . 1] is described by formula (45) with
the boundary condition T(z, A).

For 1, — oo, the following relation holds:
A1t 2, N) = An(t,zA) =0

(A1, » are the nondiagonal elements of matrix «; it
follows from Eq. (44) that

0

STz ) = T NAQ.Z N, (46)
where
Z k
T 1= exp o[y i 2(9) 1IM (A) (T2, S; N)ds | Ty i
0i=1 27 ®

A0, ; ) = ETH(0; A)ALO, Z; \)E(O; A).

Formula (46) describes the dynamics of matrix 7, , on
interval [z, 7., 1] withtheboundary value J; ,_4, k> 2.

The formal solution of (46) is

ar — o7 ar ar
Jin = J12d 25 I nen

Ziv1 . (47)
Tz ) = exp Iai,m(S)Ai(O, s; A)ds|.

Let usturn to the case of two different medialocated on
intervals[z, z,] and [z, z;]. Below, we provide the solu-
tion of (44) for the elements of matrix T in the case of
an arbitrary 2 x 2 matrix (0, z A) such that
det4(0, z, A) # 0 for Oz, which is constant on intervals
[0, z] and [z, ») and changes abruptly at point z = z,.
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Without loss of generality, wechoose a,(2) =1,i =1, 2.
For conditions (54), the solution of (44) for z=0is

Az N) = 53{(Q+ Au) + pohal
x exp(-zQ — 0(2)) (48)
+[(Q = Awr) — poAai] exp(zQ —0(2))},
B(z \) = 52{[(Q - Auw)po + Au]
(49)

x exp(-zQ -6(29))

+[(Q + Au)po— As] exp(zQ - 0(2)},

where A i are the eements of matrix A(T =0) [see (43)],
which also change abruptly & point z=z,, Ay =—As,

Q%2) = AL(0, Z N) + A0, ; N)Ax(0, Z A),

poA) = p(z=0,2) = g—o

z

02 = IAL(s; A)ds.
0

Finally, we obtain for the coefficient p(z; A)

QD IT!

p(zA) =
(50)

— [(Q- An) Po+ A12] e_ 4 [(Q+ All) Po— AlZ]
[(Q + Aw) + poAai] €%+ [(Q — Asz) — PoAqi]

The coefficient py(A) can be determined from the spec-
tral problem (30) for agiven potential g(t, 0). It iseasy
to show that p, = 0if g(t, 0) = 0. In the latter case, the
solution of the model is determined only by the bound-
ary conditions.

For the physical problem (24), (25) under consider-
ation and specific initial-boundary conditions (54), the
nondiagonal elements of matrix s [see the linear sys-
tem (31)] are zero at z > z, (see the next section). It fol-
lows from the above formulas that the z dependence of
Tat z>zisgiven by

231

T@Z N = Tu(z, ) T(2 NT7 (22, 2), (51)

where T,(z,, 2) isthe solution of the linear system (31)
for zero nondiagonal elements of matrix (T, Z; A):

|203A z

T2,z A) = , 2327, (52
For the coefficients of matrix T (42), we derive
B2 2) = Rexpain®y, 2>z, (53)
a a,

where a, and b, are the elements of matrix T(0, z,, A).
It follows from the latter formula that the boundary
condition for the medium on interval [z, z] in our
example of a composite model is determined by the z
dependence of p in the medium on interval [z, z,].

6. THE QUASI-RADIATIVE SOLUTION
OF THE COMPOSITE MODEL

Let us show that the quasi-radiative solution for the
main field g = Q/ig in the composite model (24), (25)
can be generated by an additional field U for zero initial
and boundary values of the main field. To this end, we
choose the following initial-boundary conditions:

qg =0 q(t,0 =0,
120, q(Oz):O Oz,

(54)

U@©,2) = Uy,#0, 9,—% =0,

ZIUol
U, 2 = 0,
Since a linear analysis of the stability of the solution
q(t, 2) = 0 of Eq. (24) for z> z, shows this solution to

be stable, we assume, in view of (54), that thefollowing
relation holds

z, = 0<gz<7, z2>7,.

limq(t,2 = 0 Oz

T
Below, we show that the initial-boundary conditions
(54) lead to the quasi-radiative sol ution of the model for
asufficiently large effective length of the resonant non-
linear medium.

Next, for the application of Egs. (39) and (40) in terms
of the ISTM, it remains to determine p(z A) and the
positions of zeros of a(A). Using solution (50), we
obtain for model (24), (25) and conditions (54)

& 0
E [COth(Q‘[) _(&qgg)n + po(*ﬂgg)zl}eie Epo[coth(Qr) + (ﬂo)n} (Ao), % o E
O 0
T@ N = o J (9
. 0
£ o] ot - 50 °)215 ° Hootn(a) + (o)) Gl o
oo @ Q 0 O
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Fig. 2. Imaginary and real parts of ¢ versusn; Lo =0.01 (&, b) and 50 (c, d).

Here,

z

S = 8snh(Q1), © = I(&ﬁw)n(s: A)ds,
0

(o) and (A,)1; are the elements of matrix A «(z, T; A)
(31), respectively, at T=0and T = oo,

Q= /%z{al,z(z>[<1—92/\2)|uo|2+az,3<z)2/\6]2
—0y (2)(1-g*AD)| Uy,

2l —gPA?
(Ao)u = _a1,2(2)||U0|2 /?2

—2a, 42)iN".

We do not provide the expression for (s4,);,, because it
is not used explicitly below.

The equation that gives the positions of poles, i.e.,
Tu(z; A) =0,

takesthe form

(940)11} + Bo(&ﬁO)ﬂ (56)

ao[coth(Qr)—T o - 0.

Those solutions that lie in the first and third quad-
rants (see Fig. 1) correspond to soliton solutions. It fol-
lows from (56) that at bo(d,),, # 0, the positions of

poles are determined both by the solution of spectral
problem (30) and by the solution of the additional prob-
lem (31). Since q(0, 2 = 0 in (54), we obtain p, = 0.
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Inthis case, the positions of poles in the complex
domain at point zis given by

(ho)u

coth(Qz) — )

=0, (57)

in which
('ﬂo)ij(z) = (&do)ij(zz)a Oz0O[z,z)].

For the z = z, boundary of the resonant medium,
Eq. (57) takesthe form

coth(iZLy) = , (58)

where

[ = AIN -1

gn

Lo = z|Ugf°g? is the effective length of the resonant
medium. This equation has a countabl e set of solutions
¢(n) (nisan integer) satisfying the equation

i {(nN)+1 _ mn

n)+—iIn = —. 59
A numerical solution of Eq. (59) isshownin Fig. 2. We
found the imaginary part of {(n) to approach a constant
value as n increases for Ly << 1. At Ly > 1, it may be
assumed, with accuracy O(1/(L,yInLy)), that

Im¢(n) = 0, Rel(n) = ¢(0) +n1r/L,. (60)

Thus, the solution of integral equations (39) and (40)
for z U [0, z,] describes the field dynamics in the reso-
nant medium. The z dependence of p on this interval
results in an infinite series of poles (59). Outside this

No. 2 2001



DYNAMICS OF A LIGHT FIELD IN A COMPOSITE INTEGRABLE MODEL

interval, the z dependence of p has a simple form
[see (53)]:
Pz N) = p(z)exp[4i(\* +g7)'y]
= p)exp(4in'y), y = z-2,

To solve Egs. (39) and (40), let usfirst calculatethe sum
over theresidues at poles A,,. These poles are related to
¢, n EQ. (59) by

(61)
>z,

> _ g
T
Rewrite the right-hand side of Eqg. (39) as
exp[—iAZT + 4iNi(z—2,)0(z—2,)]
E _)\n
o (C1(An) + Co(An)) exp[2iLoQ(A)] UL(T M),
A SXPI2ILQAN 2L QA P2 T
where € is an arbitrary complex variable,

Fi(t, 7€) = Z

n = —oo

(62)

QM) =

Cs(An)
CyAp)’
The A dependencesof ¢, i =1, ..., 4, a by(z; A) =0 are
Ci(A) = (A1 = —CA), CA) = Q+ (A1),
cA) = Q— (A1)

[these coefficients are the result of substituting solution
(50)]; (sdy); is the element of matrix o4 (31) at point
1=0, z= z. Thus, the first factor in sum (62) corre-
sponds to the evolution of field AU in the second
medium (z > z,), and the second factor is associated
with its evolution in the first medium.

Consider a large effective length of the resonant

medium, L, > 1. We substitute the n dependence of )\ﬁ

that followsfrom (60) in (62). Considering that all coef-
ficients in sum (62) change monotonically at large L,

exp(2iLQ(,)) = — N =\ +g7

and that each term of the sum isproportional to L;", we

passin (62) from the sum over n to an integral over the
continuous variable u = n1vLy in the limit Ly — oo:

Fl(rl Z; E)
exp(2i X2t + 4i X*y) W1(T; p)pdp
&-A n(1-p?)’
J.exp(2|TX +4i X* y)lIJ (t: Y)dxX,

el

|
«Q

(63)

_ g
2

7> 7,
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Here,
X2 = ghL-p) T+g”? = X+ g7
y =2z-2,>0.

Similarly, we calculate the integral in Eq. (40). As a
result, we abtain approximate, valid at z> z, with accu-

racy O(1/LyInLy), singular integral equations:

iy N = B+ ZHIIPaKX>
(64)
x exp(2iTX + 4i X y) P, y; X)A_—x’
(T, y; A) = DlD 2ITJpeff(X)
(65)
x exp(=2iTX? = 4i X"y) Pi(T, v; X)>\_—>(’

where pg(X) = 2ig’.

These equations describe the radiative solution of
MNSE with effective scattering coefficients pg;, which
is assaciated with the continuum of the WKI spectral
problem. This solution reduces to Painleve transcen-
dent P,y [32].

Let us find the solution for small 1. Using (38), we
obtain for the limit (1), = 1, (73), < 1,

Jig’exp(it*/8y)
212y

itn, o AT (66)
oo 431

y =2z2-2,>0,

qT,y) =

where D_; is the function of a parabolic cylinder [33].
Below, we provide the asymptatics of the solution for
y — o by using the results of [16]. The asymptotic
solution for qis

q(n.y) = Z;O;eXPD[4)\OY+ H(Ag)Inlyl
(67)
Q) + D (M) =29 (o) + 2 } " @[M%
)\oy

Here, we introduced the variable Ay = (1/2) J/1/y and
the functions of it:

B0 = —=In(1= [0\,
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$ 0 = S[Infe?-AJdin(1-Ir @),
)\0

A

@) = Z[Infe?~Addin(L-r@))ck
0

_%J|n|22 + )\(2)|dln(1 +|r(i&)|%)dE,
0

®*(\o) = xargl(ip(\o)

2z

+argr(Ag) F3p(Ag)In2 + ]

Tt

Ao ) - . ,
5 (\o) = —deﬁ +J.m(1+£¢)|)d_§,
0

0

19_0\0) - _I|n(1—£r(§)| )d_-,-E["

Ao

rMo) = PaiMo) = 2ig°A,
C,(s) ~0(1), and T isthe Gamma function.

7. CONCLUSION

We have analyzed a composite model that can be
used to describe the generation of pulses in a system
composed of aresonant two-level medium and an opti-
cal fiber. A nonzero field U(0, 2) was shown to produce
a wave packet Q(t, 2). This packet is described by a
solution that asymptotically approaches the quasi-radi-
ative solution of MNSE as the effective length of the
first medium increases (L, — ).

The approach used here is universal. The boundary
conditions that lead to an infinite sequence of polesin
the complex plane whose positions depend on variable
quite often arise in problems of coherent nonlinear
optics. For example, when solving the Maxwell-Bloch
equations, which describe the dynamics of pulsesin a
two-level semi-infinite medium under conditions of
single-frequency resonance, infinite series of moving
poles also emerge for incompleteinitial inversion of the
medium [8]. Simulating the interaction of light with a
two-level transition under conditions of two-frequency
resonance and four-wave mixing in asemi-infinite Kerr
medium [15] can lead to the same boundary conditions.
For a degenerate two-frequency resonance of this kind,
the boundary conditions that generate an infinite series
of polesin the complex plane arise for a nonzero seed
field slowly changing with time variable. For our exam-
ple of amode of the field interaction with a composite
medium, a nonzero field U(0, 2) results in nontrivial
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field dynamics for al z Applying the ISTM apparatus
to this model allowed the form of the asymptotic solu-
tion to be determined.

An asymptotic solution of the initial value-bound-
ary value problem for the model that describes a degen-
erate two-frequency field interaction with a two-level
medium (7) and (9) for aconstant boundary value of the
field amplitude without regard for phase modulation,
i.e, for

B=0=0,=0
can be found in asimilar way. In this case, a nontrivial
asymptotic solution arises under the initial-boundary
conditions (54) where

Uy = exp(ike2)|Uo(2)],

for an arbitrary finite amplitude |Uy(2)|.

One of our results is the proof that the asymptotics
of the solution of the composite model for the initial-
boundary conditions specified above is described by a
self-similar solution and contains no true solitons (in
the sense [1]) for any intensity |U,|* of the additional
field and a large effective length (L, > 1) of the reso-
nant medium.

Our analytic apparatus can also be used for other
composite models, while our solutions can be used as
test ones for nearly integrable models and as a zero-
order approximation in constructing the perturbation
theory.

Aswas noted above, the laser facilities used to gen-
erate light usually include different nonlinear media,
linear modulation of losses, etc. More complex com-
posite integrable models can be employed in analyzing
the evolution of light pulsesin idealized models of the
optical facilities that use different forms of nonlinear
interaction between fields and media at different times.
Combined schemes of the interaction with different
media are known to offer additional possibilities for
controlling the nonlinear interaction, field conversion,
and pulse generation. As we showed here, using com-
posite integrable models allows one to analyze such
schemesin terms of exactly solvable modelsand simul-
taneously to extend the range of applications of integra-
ble models.
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Abstract—The effect of self-induced acoustic transparency for transverse-longitudinal pulses propagating
along an externa magnetic field in a system of resonance paramagnetic impurities with the effective spin S=1/2 is
theoretically investigated. In this case, the short-wave transverse component of the pulse causes quantum tran-
sitions, and the longitudinal long-wave component dynamically shifts the frequency of those transitions. When
the speeds of the longitudinal and transverse acoustic waves in the crystal matrix are close to each other, both
componentsinteract in the mode of the long-short-wave resonance, which is described by a system of nonlinear
integro-differential equations. It is shown that thisinteraction results, in particular, in the modulation of the car-
rier frequency of the circular-polarized component of the pulse. More precisely, the frequency in the neighborhood
of the signal’s maximum islessthan in the vicinity of itsedges. Solutionsin the form of traveling 2re-pul ses are ana-
lyzed analytically and numerically. It is shown that there exist solutions that include alongitudinal component
and cannot be reduced to well-known transverse solitons of the sinus-Gordon equation. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

After the discovery of the optical self-induced trans-
parency (SIT) in[1], experimental [2, 3] and theoretical
[2, 4] search for the corresponding acoustic resonance
effect (ASIT) inlow-temperature (T = 4 K) crystal sam-
ples containing paramagnetic impurities proved fruit-
ful. For example, in [2, 3], ASIT was investigated for
Fe?* impurities, which possess the effective spin S= 1
and are intergtitial in the crystal matrices MgO and
LiNbO;, when a microsecond longitudinal acoustic
pulse propagates at an angle to the external magnetic
field B. In [4], atheoretical treatment of ASIT is given
for the transverse pulse propagating along B in the sys-
tem of spins S=1/2.

Inthe general case, the almost independent propaga-
tion of the longitudinal and transverse components of
the acoustic pulse in a solid body is ensured by a con-
siderable detuning of their linear speeds a, and a. For
the majority of crystals, such a situation actually takes
place [5]. However, if the Cauchy relation [6] holds for
the components of the elastic constant tensor in an elas-
tically isotropic crystal (the speeds of the longitudinal
and transverse components of the elastic field are inde-
pendent of the direction), the speeds of thelongitudinal,
a,, and transverse, ap, acoustic waves are equal to each
other. These conditions are best satisfied with ionic
crystals of halides of alkaline metals [6], for which the
interaction force between atomsis central [7]. NaBr is
arepresentative of this group of crystals[6].

When propagating in the crystal, both components
of the acoustic pulse interact with quantum paramag-

netic impurities, through which an effective nonlinear
interaction between the two components can realize
provided that a, and a, are close enough. This interac-
tion can substantially influence the resonance excita-
tion of paramagnetic ions by the acoustic field, which
affects the manifestation of specific features of ASIT,
which were not considered earlier and are discussed in
Section 4 of this paper.

In [8], soliton-like propagation modes of trans-
verse-ongitudinal pulses along B under the condition
of awesak (the spectrum of the pulse does not overlap
the quantum transitions) excitation of paramagnetic
impurities with the effective spin S= 1 are investigated.
The system of coupled equations for the longitudinal
and transverse components of the elastic pulse with
weak (power) nonlinearity derived in [8] describes the
quasi-soliton dynamics in the long-short-wave reso-
nance mode when the approximation of the slowly
varying amplitudes and phases (SVAP), which is stan-
dard for quasi-monochrome pulses, isinapplicable. The
role of the long-wave component of the elastic field is
played by the longitudinal component of the acoustic
pulse, and the role of the short-wave component is
played by the transverse component. If the SVAP
approximation isused, this system takesthe form of the
long-short-wave resonance systems of the type of the
Zakharov [9] and Yadjima—Oikawa [10] equations.

In this paper, we consider the ASIT effect for quasi-
monochrome acoustic pulses with longitudinal—trans-
verse structure that propagate aong B in asystem of para
magnetic impurities with the effective spin S= 1/2 under
the condition of long-short-wave resonance (g, = a).

1063-7761/01/9302-0236%$21.00 © 2001 MAIK “Nauka/Interperiodica’



SELF-INDUCED ACOUSTIC TRANSPARENCY

In this case, the frequency of the transverse component
of the monochromatic pulse w coincides with the fre-
guency wy, of the Zeeman split of the Kramers doubl et.

The paper is organized as follows. In Section 2, the
semiclassic approach is used to derive self-consistent
wave and constitutive equations describing the nonlinear
dynamics of longitudinal—transverse acoustic pulses that
propagate along an external magnetic field in a system of
paramagnetic impurities. In Section 3, an asymptatic
method for solving congtitutive equations is suggested
when neglecting the nonuniform broadening. Thisasymp-
toticsis used asabasisfor deriving a system of equations
for the long-short-wave resonance in the strong nonlinear-
ity mode. In the following section, solutionsto this system
in the form of dationary traveling pulses are analyzed
analytically and numerically, and the main specific fea-
tures of the acoustic self-induced transparency for lon-
gitudinal—transverse solitons are formul ated. In conclu-
sions, the main results obtained in this paper are pre-
sented, and the most interesting unsolved problems are
formulated.

2. SELF-CONSISTENT EQUATIONS
OF MOTION

The Hamiltonian of the Zeeman interaction of the a
magnetic moment ﬁ(a) with the magnetic field B has

-B. Inturn, the components {1{*
(1 =X, Y, 2) of the vector operator u( ) are related to the
corresponding components of the spin 9 = S(ru)
(r is the radius vector of the spin a) by the gyromag-

netic equation ufu) = kungk§<a), where Yz is the

Bohr magneton and gj, are the components of the Landé

the form A = —pn'

tensor é.Then,
N
= 5 Aa =) 5 BigyS 1)
a=1 a j,k
Here N isthetotal number of spins. Intermsof thebasis

consisting of the eigenfunctions of S, the components
of the spin S = 1/2 are written in terms of the Pauli
matrices as

. Oa10 - Oa 0
& - lOlDS;l lO|D
25105 2D|OD
(2
g = 1D10D
ZDO 1D

We orient the coordinate axes X, y, and z along the
principal axes of the Landé tensor, which coincide with
the symmetry axes of the crystal. Then, in the absence
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of strains, the é tensor has a diagonal form with g, =

gfﬁ) 0,9k (3 is the Kronecker symbol). When propa-
gating in the crystal, the acoustic wave distorts the com-

ponents of the Landé tensor as

09
© 4 [ Yjk[]
g]k Z @% o 0% (3)

where €, isthe elastl c strai n tensor of the crystal at the
point where the paramagnetic ion is located. The strain
tensor depends on the components of its displacement
U=, U, U)as

19Uy, Vg
2Lax, 6x ax.

The subscript “0" of the terms under the summation
sign means differentiation at € ,, = 0.

Hence, the Hamiltonian can be written as the sum

Epg =

HZ: Hs"'ﬂint, (4)

where the Hamiltonians of the spin subsystem and
spin—phonon interaction have the form

=35 Heg;B S, (5)
a

Hint - Z z UB
a j,kpq
Here Fjypq = (ngk/ 0€ ), are the constants of the spin—
phonon coupling [11, 12].

We supplement Hamiltonians (5) and (6) with the
Hamiltonian of the acoustic field

U1 5> 1 oU;0uld ,
= I%z P; +§_ ; )\jklma—xkyﬁd r, (7
J LKl,m

where p isthe average density of thecrystal, p (j = X, ¥, 2)
are the components of the momentum due to dynamic
shifts, and Ajr, is the tensor of the crystal elagticity
moduli [13]. The integration in (7) is performed over
the entire crystal volume. Here, following [8], we use
the semiclassical approach in which the spin dynamics
is described in the framework of quantum mechanics,
and the elastic momentum field is described classically.
For thisreason, Hamiltonian (7), in contrast to (5) and (6),
isacomplex-vaued functiond rather than an operator.
From the microscopic point of view, the spin—phonon
coupling in the case S= 1/2 gppears due to the modulation
of the spin—orbit interaction by the dastic field under the
condition of “freezing” theorbital momentum[14]. Insys-
tems with higher spins, the dominant contribution to the
spin—phonon interaction is made by quadratic (with

respect to spin operators) terms ~§; S + SS;, which
correspond to the Waller and Van Vleck mechanisms

]kpq pqs‘ (6)

No. 2 2001



238

[12, 14]. For S=1/2, these terms vanish due to anticom-
mutativity of the Pauli operators[11, 14].

According to the semiclassical approach [8, 15], the
following eguation holds for the evolution of the den-

sity operator p™ of the o spin:
PP ®)
at 1 )

where p'“) iswritten in the form

f)(U) - Epzz P21 E;
Upp P U

the elastic momentum field obeys the classical Hamil-
tonian equations for continuous media:

a_U = 6_H a_p = _6_H (9)
ot op’ ot ouU’

where H = H, + Hiyd and [..Ois the operation of
quantum mechanical averaging. Using (9), theclassical

interaction Hamiltonian [Hix] can be conveniently
written in the form

(Aind = > [eNB{F g po(r) BB )T (120)
., KP, g

Heren= " &(r —r,) istheconcentration of paramag-
neticionsand &(r —r) isthe Dirac delta function.

Let a transverse-ongitudinal acoustic pulse be
propagating in a cubic crystal along B and one of the
fourth-order symmetry axes, which coincides with the
axis z. Consider the one-dimensional case when al
dynamical variablesdepend only onzandt. Inthiscase,
rotation by 90° about the axis (X — vy, y — —X, and
z— 2) and thereflectionsx — —xandy —= —y are
symmetry transformations. Taking into account the
axial property of the vectors B and S (when one of the
coordinate axes is inverted, the corresponding compo-
nents of B and S remain unchanged, and the two others

change their sign), we rewrite Hs and Hin as

= z ﬁOOOASSJ),
¢ (11)

h a
B S + Fau(€, 8 + €, 87)

I:Iint = z

a

where w, = gugB/# is the frequency of the Zeeman
splitting of the Kramers doublet, g = g, = 9,y = 9, and
h isthe Planck constant.
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Under our assumptions, the Hamiltonian H, has the
form

_ 1 Opy + Py + P, Dauﬂz
Ha=3fo—p — hudan
(12)
U, [1’
+)\44[D62D }[d r.

In (10) and (11), we use the Focht notation for the indi-
cesof fourth-order tensors, xx —= 1,yy — 2, zz— 3,
yz— 4,xz— 5, and xy —= 6.

Now we have from (8)—(12) and (2)

%6, ,0%€, nGLd°S,
-a = , 13
ot 97 P o7 13)
62% 262%” = n_G”az_\N (14)
o o7 T 2p o7
@) + =W, (15)
oW €
5= |m§3—ﬂﬁ “stH, (16)

where G = AwgF11/9, Gp = hoF /0, €= €, €n =

Ep+ 6y, = JAu/p,andag = /A ,/p aretheveloc-
ities of the longitudinal and transverse acoustic waves,
respectively, W= (p,, — p11)/2 isthe inversion of popu-
lation in the system of the Kramers doublets, S; is
expressed in terms of the transverse components of the
Bloch vector U = (p,; + pro)/2 and V = (py — p12)/2i as
S =U+iV=p,.

It follows from the constitutive Bloch-type equa-
tions (15), (16) that the transverse component of the
strain causes quantum transitions inside the Zeeman
doublet as the pulse propagates in the Faraday geome-
try; thelongitudinal component causesashiftinthefre-
guency of those transitions.

The system of Egs. (13)—(16) describesthe self-con-
sistent dynamics of paramagnetic impurities and acous-
tic pulses when the latter propagate along the fourth-
order axis of the cubic crystal in parallel to the externa
magnetic field.

3. EQUATIONS
OF SELF-INDUCED TRANSPARENCY
FOR TRANSVERSE-LONGITUDINAL PULSES

Let the circular polarized transverse component of
the acoustic field be a quasi-monochrome pulse of the
duration T, with thefilling frequency w such that wt, > 1.
Then, this component is written in the form

G.év
fi

= Quexp[i(wt—k2)], (17)
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where k is the wave number and Q(z, t) is the slowly
varying complex amplitude

‘Z;}t_m < wQ, <KQ.

Glol
18
~ (18)

In the constitutive equations, we pass to the representa-
tion of the rotating wave
S, = Rexp[i(wt —k2z)]. (29
Substituting (17) and (19) into (13), (15), and (16),
neglecting (by virtue of (18)) the second derivatives
with respect to Q, i.e., using the SVAP, and assuming
that k = w/a-, we obtain

0Q N aDc?QD _ nGDoo R, 20)
6'[ GZ 8hpaD
%—R =i(A+Q)R-IQW,
W (21)
i -Im(Q;R*),

where A = w, — wisthedetuning of the pulse carrier fre-
guency from the resonance frequency of the quantum
transition, Q= G”s“/ﬁ.

Asbefore, the longitudinal component of the acous-
tic pulseis described by Eqg. (14).

We will seek solutions to the constitutive Egs. (21)
under the exact resonance condition (A = 0). In general,
the existence of inhomogeneous broadening violates
thiscondition. Assumingthat A~1/T; (T3 isthetimeof

invertible relaxation in the system of Zeeman's doublets
dueto inhomogeneous broadening), we seefrom (21) that
the inhomogeneous broadening can be neglected under

the conditions T3 /t,~ QT3 ~|Qy|T; > 1; hence, we
canset A=0in (21). Setting T; ~ 108 s(see[2, 12)),
we find that T, ~ 10° sand Q, |Q-| 010° s™. On the
other hand, |Q | ~ w,Fé, where F and € are the mean
values of the constants of the spin—phonon interaction
and relative strain. Assuming that wy, ~ 10-10'? st
and F ~ 10-10? [11, 12], we find that ‘€ ~ 10, which
correspondsto theintensity of acoustic pulses| = pa
10-10% W/cn?? (here we assumed that p ~ 2 g/cm? and
a~3x10°cm/s).

In order to solve system (21) under the conditions

formulated above, it is convenient to rewritethis system
in the matrix form

(22)
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where
oROo
— EQ*D
Dv
Cwd
0 . (23)
) a8 Q, 0 —QEID
A=E 0 -Q QF E
O0-Qf/2Q4/2 0 O

The values of the components of the vector Y are
bounded: 0< |R? and [W| < 1/2. Hence, it isseen from (22)
that, as the time of the pulse action decreases, the non-

zero components of the matrix A increase (in the limit,

Q, |Q| — w0 ast, —= 0). Hence, the componentsof A
arelarge dynamical parameters; thus, the Wentzel-Bril-
louin—Kramers—Jeffry method (WBKJ) is applicable

[16]. Itisseen from (23) that the matrix A (t) inthe case
under consideration does not commute with itself at

different time moments; i.e. [A(t), A(t)] # 0. Hence,
the solution to (22) can be symbolically written in the
form of achronological exponent. However, in thelimit

t —» tyand |A] —» o (where ||...|| is the operator

norm), the elements of A do not noticeably change
within the time At = t —t,. Therefore, as At —= 0 and

|Al —~ o, wehave[A(t), A(t')] — Oand

Y(t) = U(t, to) Y (to), (24)

where

t
U(t, to) = lim expDJ'A(t)dtD

HAH ~ o fo

(25)

is the evolution operator [17]. Under the condition that
al eigenvalues A (j = 1, ..., N) of the matrix

t
6= [A(t)dt’
!
aredifferent, we can use the Sylvester formulafor com-
puting the exponent in (25) [18, 19]:

G )\II)\

“2[1x=°

i k#j

(26)

where 1 isthe identity matrix.

The eigenvalues A of the matrix 6 are determined
from the equation

det(8,,—Ad;,) = 0. 27)
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The elements 6, of 6 are expressed in terms of the cor-
responding elements of A as

t
K= IAjkdt' = A At
to
(as At — 0). Setting
t
A= pAtzfpdt',

to
in (27), we obtain for the matrix A of order N x N
det(8;,—Ad,) = det(A; At — pd; At)
= (At)"det(A;— pd;) = 0.
Comparing this equation with (27), we see that if
{Aj} isthe set of eigenvalues of the matrix
t
6 = [Adt,
!
then{p;} isthe set of eigenvalues of the matrix A inthe
limit At — to and [|A ||—= co; in addition,

t
O 0
{A} = Ofp;atD.
0
Setting
t
8= AAt, A= piAt= [pidt

to
in (26) and using (25), we find the evolution operator

N t ~ ~

- O O A—pyl
U(t, ty) = expdp;dtDf | —— 28
(t, to) j; |0DT[|OJ Dup,—pk (28)

Thus, (24) and (28) determine asolution to system (22)
for an arbitrary order N if the WBKJ approximation is

valid, i.e., when At — 0 and ||A ||—= oo
Inour case, N = 3, and it is seen from (23) that

/ 2
P =0, p,=-p;= Qﬁ+|QD| ‘

From the physical point of view, the limit At — 0
means that T,/ T5 < 1 (see above), which corresponds
to neglecting the inhomogeneous broadening. In this
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case, the evolution operator for system (22) (or (21 for
A =0) iswritten as

0 =7 _2A 28
U(t,ty) =1 - Q sm 2+|Qsm9, (29)
where
t
Q=.JQl+|Q]% 8= [odt. (30)

t
Tending formally t, — —oco and taking into account
that Y T(—o0) = (0, 0, W,,), we obtain from (29), (30), and
(24) that

Q Q

R=—iW,="sin6 + 2W,, —ll——Dsm29 (31)
Q Q°

W = WEJL 2 (32)

sin %

The direct substitution of (31) and (32) into (21) at
A = 0 shows that solutions (31), (32) are valid if the
derivatives of Q/Q and QQ/Q? are neglected com-
pared to the derivatives of 8. The dow change of the
coefficients of the periodic functions sin@ and sin’(6/2)
in comparison with the periodic functionsthemselvesis
consistent with the basic assumptions of the WBKJ
method [16].

For Q= 0, Egs. (21) turn into the system used in [20].
Setting Q= 0(Q = Q) in (31) and (32), we obtain the
solutions that were obtained in [20] in a different way.
Thisfact providesan important argument in favor of the
general Egs. (24), (28), which determine an asymptotic

solution to system (22) as |A| —» .

Substituting (31) and (32) into (20) and (14), we
obtain

0Q
(33)
= —aD 0 %me + 2| 92%
0°Q, _ 2__9_1| cqd B__ (34)
ot oz~ Mang %
where
~W,,nGiw, _2W,nGj
8hpa’; = ap
and Q and 6 are determined by (30).
Since||Qy| ~ 11, we have ||dQ./dt| ~ T, . Hence, it

isseen from (33) that under the condition O(Drf, < 1the
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pulse speed v is close to a. If, in addition, the long-
short-wave resonance condition (a, = a; = a) is strictly

satisfied and a”a” T, <1, wecan perform areduction
with respect to the derivatives on both sides of (34) with
the help of the approximation of the one-directional
propagation [21] (or the slowly changing profile). Inthe
thermodynamically equilibrium case, the initia inver-
sion Q,, =—0.5tanh (% w,/2kgT) , where kg is the Bolt-

zmann constant. For wy ~ 10" st and T< 1 K, we can
assume that W,, =—0.5. Then,

2 NAWFay(T,)’
olp=

169°pa’
For Fy~10,1,~10°s,g=2,p=2g/cm? and a; =
3 x 10° cm/s, we obtain a.T; ~ 10 < 1. By the same

taken for Fy, ~ 10 we obtain, o 1, ~ 10 According

to one-directional propagation approximation, we
introduce the “loca” time 1 = t — z/a and the “sow”

coordinate { = ez, where e ~ GDT,Z) and C(”a_zl'p. Then,

0_0 o0 _10, 0
ot 01 o0z adt ol
9> _19° 2¢ &
o7 v aotl

We neglected the term ~e? in the last expression. The
right-hand side of Eq. (34) ~a), ~ €; hence we set

0%/07° = a20°/91°,

there and then integrate this equation with respect to 1.
As aresult, we obtain, instead of (33) and (34),

3 -—DQ%nG+Z|an2], (35
09, _ OH
E aTDQ Sn% (36)

Here uy = ap/a, b= aj@/2, and 0 is determined from (30)
accurate to the changet — T in the upper limit of the
integral, and T, — —o in the lower limit.

The integro-differential system obtained describes
the effect of the acoustic self-induced transparency in
the mode of long-short-wave resonance under strong
spin—phonon nonlinearity. The role of the short-wave
component of the elastic field is played by the complex
envelope Q of the transverse component of the pulse;
the role of the long-wave component is played by the
longitudinal component. It must be noted that the
change of the two-sided system (33), (34) for the one-
sided system (35), (36) is similar to passing from the
nonintegrable Zakharov equations [9] to the integrable
Yadjima—Oikawa system [10].
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4. SPECIFIC FEATURES
OF SELF-INDUCED TRANSPARENCY
FOR TRANSVERSE-LONGITUDINAL PULSES

L et us write the complex envelope Qp in the form
Qu(z 1) = |Q|e**Y. (37)

Substituting (37) into (33) and separating the real
and imaginary parts, we obtain

0|Qd . 9]Qf _ IQDI

ot 75z g 9nd. (38)
acp acp _ || 20

5t aDa = ZGDQ sin 5 (39)

For a purely transverse pulse (Q = G;=0and Q =
00/0t = |Q)), Eq. (39) shows the absence of the phase
modulation, and (38) is reduced to the sinus-Gordon
equation for 8 obtained in [4]:

9°0
0201

Thus, the phase modulation is caused by the presence
of the longitudinal component of the acoustic pulse.

Thegeneral analysisof system (34) (or (36)), (38), (39)
seems rather difficult. Not pretending to generalize, we
will seek asolution to this systemin theform of alocal-
ized traveling pulse. Below, we call this pulse asoliton;
weinterpret this notion in the general sense, and do not
assume that such a pulse interacts elastically with
similar pulses. Thus, we seek a solution in the form
Q)= Q(&), Q= Qx(§), 9= @(&), where§ =t—2z/v and
v isthe speed of the pulse propagation. Then, it follows
from (34), (38), and (39) with regard for the fact that

= —uySing.

2

_ |QD| . 26
=P8y
Q]

dQy _ .
AE =qa o) sino,

do Q28
g - 0Ny

(40)

where

_ oy __Oo
B = v’ | ajv-1
Let us derive the equation of the phase trgjectory for the
dependence of the longitudinal, Q, and transverse, [Q,
pulse components. Considering 6 as a parameter on
which |Q| depends, we can write

dod _dog _ dod
dg¢ ~ “de o
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Subgtituting this expression into the second equation in
(40) and integrating with regard for the conditionsat infin-
ity, wefind
||
0

|QD|2+Qﬁ 6
i Bl 5

[ —an
0

Now, we find sin?(6/2) from the first equation in (40)
and substitute it into the last equation. Differentiating
with respect to |Q|, we obtain

dQ, = 2asn’

dp _ o’ +0d°+ d°
do = ?+300°
Thus, we passed to the dimensionless variables 0 =
(1Q0l/3)? and ® = —Q;/3, where 6 = 4a/p.
tionBeI ow, Eqg. (41) is caled the phase trgjectory equa-

From the first two equations in (40), we easily find
that

(41)

gig = 2Ja¢[o—§(c+¢2)¢}.

Integrating system (41), (42), we can determine Q;and
|Qq| as functions of t — Z/v. In the generd casg, it seems
impossible to find the analytica solution to Eq. (41).
However, it can be donefor two opposite limiting cases.

1. Let|Q 2> Qf. Inthevariables o and &, this cor-

responds to the condition ®?%/g < 1. Then, only thefirst
termsremain in the numerator and denominator of (41),
and dd/do = 1. Hence, taking into account the fact that
® — O0aso — 0, weobtain @ = 0. Now, neglecting
®? in the parentheses of the radicand in (42) in compar-
ison with o and passing from the dimensionless vari-
ablesto the original ones [Q-| and Q;, wefind

(42)

Q| = TzseChn_Z/VD

O T, r

_ 2t —2/v
Q) = Qnsech™ 7 T, O (43)

do _ Q. 20=2vQ

G- 2 oD

where the speed v is connected with the duration of the
pulse 1, by the equation
1 1

- = —_(1+GDT[23)1

v = o (44)

and the amplitude of the longitudinal component Q;,, =

B=ay(al —v?.

According to (44) and the estimates made above, the
speed of the soliton-like structure isvery closeto a.. If
a is substantialy different from a; (g, > ag), then
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Q= 0/(aj —a3) (here, weset v =a) anditisalmost
independent of T, and the amplitude of the transverse
component. This testifies that the longitudina and
transverse components affect each other insignificantly
under the condition of a substantial detuning of the
speeds of the longitudina and transverse acoustic
waves. At the sametime, asit was mentioned above, the
influence of the longitudinal and transverse compo-
nents on each other is most effective at a;, = ;= a (the
long-short-wave resonance). Then,

_ ap oy 8uwy(FulFy)’
2a’(1-v/a) 2041, (woT,)°

This approximation is equivalent to the transition from
system (33), (34) to (35), (36). Below, al numerical
estimates will be made for the case a; = a, = a; general
analytic expressions will be given for the case a; # a;
i.e., for system (33), (34). It is seen from (43) that the
amplitude of the transverse component is |Qg|, = 2/1,,.
Hence, we see that the condition |Q-Z > QF is

equivalent to the inequality
(WoTp)° > (2F 13/ Fyy)’. (45)

For the majority of crystals, F,; > Fy, [11, 14]. The
validity condition for the SVAP approximation has the
form (wot,)? > 1, which does not contradict (45). For
Wolp, ~ 103 Fyy ~ 10, and g = 2, we have for the ampli-
tude of the relative transverse strain the formula

— g|QD|m — Zg
WoFa  WeT Fu

[Im

04 x 107,

which corresponds to the intensity | = pad[é ~
103 W/em? (p = 2 g/emd and a = 3 x 10° cn/s).

From (43) and (32), we find the dynamics of the
inversion of population when the pulse under consider-
ation passes through the medium:

|%D|m

—2zlv
ZIQDIisechZS—-T—E

W=W,|1- P

2 2 2t—ziv|
Q| + Qimsech” T, U

(46)

This formula shows that the inversion of spins at the
maximum of the soliton’s amplitude is incomplete
(W # -W,,)), which is due to the presence of the trans-
verse component (Q, # 0). This phenomenon can be
easily explained in the framework of the model used.
Indeed, the increase of Q (and || along with it) takes
the quantum system off the resonance state (see (15)
and (21)), which hindersiits further excitation.
Solutions (43), (44) are actually corrections to the
corresponding solutions obtained in [4] for purely
transverse pulses; thus, they can be obtained from (40)
by the successive approximation method with respect
to Q. Itisclear that no radically new solutions can be
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obtained in this way. From this point of view, the other
limiting case seems to be more interesting.

2. Let |Q ] < Qf. This condition is equivalent to

theinequality ®%c > 1; hence, we can neglect the first
termsin the numerator and denominator of (41). Then,
we have

a0 _ 15, 9
do_?EU-GD'

The solution to this equation satisfying the condition
® =0 at o =0 has the form ® = 0/2. Neglecting the
term o in the parentheses on the right-hand side of (42)
in comparison with ®?, we obtain after the integration
and return from the dimensionless variables to the orig-
inal ones

Q4 = |Qsech2 =20

O T, r
—2zlv
do _ Q. .1-Zvg
G - a2 =g T, O
where
4 2
|QD|m = Q||m =

A/ZBT:;’,, T
and the relation between the speed of the soliton and its
duration is determined as

1

1 2
— = e + i
L = 31+ 200 (48)

Setting Q2 = Q[ in (32) and using (47), we obtain
for theinversion of populations the equation

_ Qo (1 =2 V(]
e Ww[%L—Z o Heeeh (= D}. (49)

By virtue of the condition ||QZ < Qf, the initial
inversion, as is seen from (49), undergoes only slight
changes as the transverse-longitudinal pulse passes. In
the limit under consideration, the transverse compo-
nent, which causes the quantum transition, is weaker
than the longitudinal component, which takes the tran-
sition off the resonance with the carrier frequency of
the pulse transverse component. This fact explains the
weakening of the excitation degree of the quantum sys-
tem asthe ratio |Qq|/ Q, decreases.

Setting & = a; = a, we obtain an expression for the
amplitude of the transverse component:

Fus [2y
FuN T,

|QD|m =
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Then, the condition |Q /% < Qi, together with the

applicability condition of the SVAP approximation
(uxT, > 1) iswritten as

(50)

For paramagnetic inclusions of Co?* in the matrix of
theion crystal, the ratio 2F4,/F,, can reach as much as
10 [11]. Hence, 1 < wyT, < 100. Taking into account
the fact that the SVAP approximation becomesvalid for
Wy, > 10, we conclude that the soliton-like structure of
type (47) can be discovered in experiments with acous-
tic pulses with the transverse component being quasi-
monochromatic with the carrier frequency w that is

close to wy,. Notwithstanding the fact that Qff > |QF,
the relative strains [é-| and €, can be comparable in

magnitude; in this case, the inequality Qi > |Q

holds at the expense of theinequality F3, > F2,. Set-
ting Fy; ~ 107 wyt, =40, and g = 2, wefind that

1< 0T, < (2Fyy/Fy)’.

&= —29_ ~10°
1™ F a0t ’

€)= 29 <5x10°,

F11./0T,,

which corresponds to the intensity | = pa’ [, ~
10° W/cn?? (here, we assume that p = 2 g/lcm® and a; =
3 x 10° cm/s). Thus, to excite asoliton of form (47), the
intensity of hypersonic pulsesmust be by about two orders
of magnitude greater than the intensity of the soliton (43).
It was noted above that the soliton-like solution (43) is
only a dight perturbation of the soliton of the sinus—
Gordon eguation obtained in [4]. From this point of
view, solution (47) is afundamentally new one; it nec-
essarily contains alongitudinal acoustic component. In
this connection, we note that this solution can be also
obtained directly from (34), (38), and (39) if we set
Q = |Q | in those equations.

It followsfrom (43), (47), (37), and (17) that the car-
rier frequency of the transverse component in the
neighborhood of the soliton maximum is less than the
corresponding frequency on periphera parts. If the
medium was in thermodynamic equilibrium before the
pulse action, then ay, ay > 0, and the pulse speed v < &,
a,. Hence, it follows from (40) that a, B > 0 and Q,
d@/d¢ < 0. Thus, for arbitrary ratios |Q-|/Q,, the fre-
guency of the transverse component of the stationary
traveling pulse in the equilibrium medium decreases
from its periphery to the center, where the influence of
the longitudinal component isthe largest (see Fig. 1).

In the case of the equilibrium medium, for Q, <0,
according to (15) (or (21)), the longitudinal component
of the pulse reduces the frequency of the quantum tran-
sition, which takes the spin subsystem off the resonance
with the transverse component. Trying to remain in the
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Fig. 1. Schematic view of the two-component soliton of the
self-induced acoustic transparency propagating along the
magnetic field.

resonance state, the spin subsystem modulates the fre-
guency of the transverse component in an appropriate
way. Thisfact can be viewed at asamanifestation of the
Le Chatelier—Brown principle [22].

In the intermediate case | Q| ~ Q,, system (41), (42)
resists analytical analysis; thus, it was investigated

VORONKOV, SAZONOV

numerically. The results of the numerical analysis for
various values of theratio

|2

0Qym [
| ]

m |:IIQDm

Q

arepresented in Fig. 2. For thetwo limiting cases (Figs. 2a
and 2c), the numerical dependences Q,(€), [Q+(¢)|, and
W(E) are in good agreement with the corresponding
analytic expressions (43), (46) and (47), (49) presented
above. The intermediate case, when Q;,, and |||, are
close to each other in magnitude, isillustrated in Fig. 2b.
As expected, the degree of excitation of the quantum
system lies between the two limits (Figs. 2a and 2c)
mentioned above. In all the cases, thelongitudinal com-
ponent of the traveling pulse is localized stronger than
the transverse one, and the total area of the pulseis

+o00

0, = J’th = 2T

This is best seen from Eq. (32) for the inversion and
from the plots presented in Fig. 2. The values of W
before sending the pulse (6 = 0) and after its passage
(8 = 2m) are equal to W,.. It seems important that the
contribution to the area of the pulseis made both by the
resonance transverse and the low-frequency longitudi-
nal components of the acoustic pulse. On the other
hand, it is seen from (32) that the purely longitudinal
pulse (Qp = 0) does not cause quantum transitions (and,
thus, does not change inversion) in the Faraday geome-
try, which was also mentioned above.

1201/,
—Q”/5I/ \ (C)
201",

-
—
=)

T

-

Fig. 2. Results of the numerical solution of system (41), (42) upon returning to the original variables Q; and |Qg: (Q |QD|)2 =0.18(a),
1.17 (b), and 13 (c); n = 2(t — Z/v)/t,. On the upper plots, the dependences |Qr(n)| are shown in solid lines and Q(n) by dashed

ones. Theinversion W was calculated by formula (32).
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5. CONCLUSIONS

In this paper, we investigated the structure of trans-
verse-longitudinal soliton-like acoustic pulsesinteract-
ing with paramagnetic Kramers doublets in the ASIT
mode that propagate along an external magnetic field
(the Faraday geometry). In the process, the transverse
component of the pulse causes resonance quantum
transitions inside the doublets, and the role of the lon-
gitudinal component is reduced to the dynamic shift in
the frequency of thosetransitions. Asaresult, the quasi-
monochromatic transverse component is taken off the
resonance state by the low-frequency longitudinal com-
ponent. Asaresult, the degree of excitation of the quan-
tum system (Kramers doublets) decreases. In addition,
the existence of the longitudinal component of the elas-
tic field results in amodulation of the carrier frequency
of the pulse's transverse component—the frequency is
lessin the vicinity of the soliton’s maximum than it is
in peripheral regions. Thus, the long-wave (longitudi-
nal) and short-wave (transverse) components interact
nonlinearly through the quantum system. This interac-
tion is most effective when the linear speeds of the lon-
gitudinal and transverse sound waves are equal. Then,
the system of integro-differentia equations (35), (36)
holds, which describes the long-short-wave resonance
in the strong nonlinearity mode. In this senseg, it is dif-
ferent from the Zakharov system [9], Yadjima—Oikawa
system[10], and their generalizations[8, 23, 24], where
the nonlinearity is weak (expanded in powers of the
amplitudes of both components). Thus, in our opinion,
further mathematical investigation of system (35), (36)
is of interest. The asymptotic soliton-like solution of

form (47) (Qﬁ > |Q?) is fundamentally new and can-

not be reduced to known [4] purely transverse solitons
of the sinus-Gordon equation.

We considered ionswith the effective spin S= 1/2 as
guantum paramagnetic inclusions. This modd is
extremely simple and is characterized by ease of inter-
pretation of the results obtained. However, it is well
known that paramagnetic ions of the iron group pos-
sessing the effective spin S= 1 exhibit a much stronger
dynamic coupling with the oscillations of the crystal
lattice. Inthis case, the Hamiltonian of the spin—phonon
interaction is quadratic in the spin operators. As a
result, the mathematical analysis becomes much more
difficult. However, the model with S= 1 is preferable
from the viewpoint of possible experiments. The sys-
tem of paramagnetic impuritieswith S= 1 isalso inter-
esting for another reason. As an acoustic pulse propa-
gates perpendicularly to B (the Focht geometry), both
components of the pulse (thelongitudinal and thetrans-
Verse ones) cause quantum transitions inside the Zee-
man triplet. More precisely, the transverse component
excites trangitions at the frequencies w, and 2wy,
whereas the longitudinal one at the frequency 2wy, [25].
In this case, both components can be represented in the
form of a dowly varying envelope, and the long-short-
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wave mode is replaced by a two-frequency ASIT. In our
opinion, the corresponding investigation is of interest.

The method for obtaining asymptotic solutions to
the system of conditutive Egs. (22) developed in this
paper, which is based on formulas (24) and (28), is also
valid for microobjects with an arbitrary number of quan-
tum levels. Hence, the application of this approach in the
case of paramagnetic impurities with higher effective
spins seems promising. At the same time, the method
described isinapplicableto weaker pulses, when theinho-
mogeneous broadening must be taken into account. In this
case, new approaches to solving congtitutive equations
containing both the longitudinal and transverse compo-
nents of the pulse are required. Taking into account the
inhomogeneous broadening is essential for deriving the
areas theorem [2]. In this connection, it is important to
find a modification of this theorem for two-component
pulses compared to the cases of purely longitudinal or
transverse solitons.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 00-02-17436a.

REFERENCES

1. S. L. McCadl and E. L. Hahn, Phys. Rev. Lett. 18, 908
(1967).

N. S. Shiren, Phys. Rev. B 2, 2471 (1970).

3. V. V. Samartsev, B. P. Smolyakov, and R. Z. Sharipov,
Pis'ma zZh. Eksp. Teor. Fiz. 20, 644 (1974) [JETP Lett.
20, 296 (1974)].

4. G.A. Denisenko, Zh. Eksp. Teor. Fiz. 60, 2269 (1971)
[Sov. Phys. JETP 33, 1220 (1971)].

5. O. Anderson, Physical Acoustics: Principles and Methods,
Vol. 3, Part B: Lattice Dynamics, Ed. by W. P. Mason (Aca-
demic, New York, 1965; Mir, Moscow, 1968), p. 62.

6. C. Kittel, Introduction to Solid State Physics (Wiley,
New York, 1976; Fizmatlit, Moscow, 1963).

7. C. Zener, Phys. Rev. 71, 323 (1947).

8. S.V. Sazonov, Zh. Eksp. Teor. Fiz. 118, 20 (2000) [JETP
91, 16 (2000)].

9. V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972)
[Sov. Phys. JETP 35, 908 (1972)].

10. N.Yadjimaand M. Oikawa, Prog. Theor. Phys. 56, 1719
(1976).

11. J.W. Tucker andV. W. Rampton, Microwave Ultrasonics
in Solid Sate Physics (North Holland, Amsterdam,
1972; Mir, Moscow, 1975).

12. V. A. Golenishchev-Kutuzov, V. V. Samartsev, N. K. Solo-
varov, and B. M. Khabibulin, Magnetic Quantum Acous-
tics (Nauka, Moscow, 1977).

13. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow,
1987; Pergamon, New York, 1986).

14. S. A. Altshuler and B. M. Kozyrev, Electron Paramag-
netic Resonance in Compounds of Transition Elements
(Nauka, Moscow, 1972; Halsted, New York, 1975).

N

No. 2 2001



246

15.
16.

17.

18.

19.

20.

21.

VORONKOV, SAZONOV

S. V. Sazonov, J. Phys.: Condens. Matter 6, 6295 (1994).
N. N. Moiseev, Asymptotic Methods of Nonlinear
Mechanics (Nauka, Moscow, 1981).

A.Yu. Parkhomenko and S. V. Sazonov, KvantovayaEle-
ktron. (Moscow) 27, 139 (1999).

F. R. Gantmacher, The Theory of Matrices (Nauka, Mos-
cow, 1966; Chelsea, New York, 1959).

U. Kh. Kopvillem and S. V. Prants, Polarization Echo
(Nauka, Moscow, 1985).

S. V. Sazonov and E. V. Trifonov, J. Phys. B 27, L7
(1994).

M. B. Vinogradova, O. V. Rudenko, and A. P. Sukho-
rukov, The Theory of Waves (Nauka, Moscow, 1990).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

22.

23.

R. Kubo, Thermodynamics. An Advanced Course with
Problems and Solutions (North-Holland, Amsterdam,
1968; Mir, Moscow, 1970).

E. S. Benilov and S. P. Burtzev, Phys. Lett. A 98A, 256
(1983).

24. V. G. Makhan'kov, Yu. P. Rybakov, and V. I. Sanyuk,

Usp. Fiz. Nauk 164 (2), 121 (1994) [Phys. Usp. 37, 113
(1994)].

25. V.Yu. Man'kov and S. V. Sazonov, Fiz. Tverd. Tela (St.

Petersburg) 41, 623 (1999) [Phys. Solid State 41, 560
(1999)].

Translated by A. Klimontovich

No. 2 2001



Journal of Experimental and Theoretical Physics, Vol. 93, No. 2, 2001, pp. 247-255.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 120, No. 2, 2001, pp. 280-290.
Original Russian Text Copyright © 2001 by Naumov, Sidorov-Biryukov, Giammanco, Fedotov, Marsili, Ruffini, Kolevatova, Zheltikov.

ATOMS, SPECTRA,
RADIATION

Four-Wave Mixing of Picosecond Pulsesin Hollow Fibers:
Phase Matching and the Influence
of High-Order Waveguide Modes

A.N. Naumov?, D. A. Sidorov-Biryukov?, F. Giammanco®, A. B. Fedotov?,
P. Marsili®, A. Ruffini®, O. A. Kolevatova?, and A. M. Zheltikova *

4 nternational Laser Center, Physics Faculty, Moscow Sate University, Moscow, 119899 Russia
*e-mail: zheltikov@top.phys.msu.su
bDipartimento di Fisica e Unitd INFM — Universita di Pisa, via F. Buonarroti 2, 56127 Pisa, Italy
Received January 30, 2001

Abstract—The processes of third-harmonic and difference-frequency generation through the four-wave mix-
ing of picosecond pulses in gas-filled hollow fibers are experimentally studied. Due to the improvement of
phase-matching conditions with an appropriate choice of the gas pressure and optimal parameters of the hollow
fiber, we were able to use hollow fibers with alarge length (up to 30 cm) for difference-frequency generation,
which resulted in a considerable increase in the power of the difference-frequency signal at the output of the
fiber. Our experimental datareveal a considerable influence of high-order waveguide modes on four-wave mix-
ing processes in a hollow fiber. It is shown that the waveguide regime of nonlinear optical interactions imple-
mented in hollow fibers removes the limitations on the efficiency of third-harmonic and sum-frequency gener-
ation, which are characteristic of the tight-focusing regime in mediawith normal dispersion and which are dueto
the geometric phase shift arising in tightly focused light beams. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Gasfilled hollow fibers have recently successfully
solved several important problems of nonlinear optics
and optics of ultrashort laser pulses. Nonlinear optical
interactions in gas-filled hollow fibers are currently
widely employed in the generation of extremely short
light pulses [1, 2] and optical frequency conversion to
the vacuum-ultraviolet and X-ray ranges (including the
water-window region) through high-order harmonic
generation [3-8]. Fibers of this type also offer much
promise for improving the sensitivity and expanding
the possibilities of coherent four-wave mixing spectros-
copy [9, 10].

An important advantage of hollow fibers is associ-
ated with the fact that they permit the pump and the sig-
nal generated through a frequency-nondegenerate non-
linear optical processto be phase-matched. With acare-
ful choice of the parameters of a hollow fiber, the gas
pressure, and the excitation of appropriate waveguide
modes, the phase mismatch related to the gasdispersion
can be compensated for by the waveguide component
of the phase mismatch [3, 8, 9, 11]. When these condi-
tions are satisfied, the energy of the nonlinear signal
can be considerably increased by using longer hollow
fibers. The parameters of short pulses of short-wave-
length radiation generated through nonlinear optical
interactionsin gas-filled hollow fibers can be controlled
due to cross-phase modulation [12-14].

This paper is devoted to the investigation of the
properties of nonlinear optical interactionsin gas-filled
hollow fibers that are, in our opinion, of considerable
methodological interest and that open new avenues for
numerous practical applications of hollow fibers in
nonlinear optics, optics of ultrashort pulses, and nonlin-
ear spectroscopy. In particular, one of the most genera
properties of the waveguide regime of nonlinear optical
interactions in hollow fibers is associated with a fact
that the use of a hollow fiber allows high power densi-
ties of laser radiation typical of atight-focusing regime
to be achieved with an appropriate focusing of pump
beams. The waveguide regime of radiation propagation
under these conditions ensures the geometry of nonlin-
ear optical processes that is characteristic of plane-
wave interaction, thus alowing the efficiency of sum-
frequency generation to be considerably improved rel-
ative to nonlinear optical interactions of tightly focused
light beans in a medium with anormal dispersion.

Most of the nonlinear optical hollow-fiber experi-
ments performed to date were performed with the use
of high-intensity femtosecond pulses (the pioneering
work by Miles et al. [9] is an exception, but their work
does not deal with sum-frequency generation pro-
cesses). The prohibition on third-harmonic generation
(THG) and sum-frequency generation in a gas with an
initialy positive dispersion in these experiments may
be removed due to the ionization of the gas (such
effects were observed in humerous experiments) and
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due to the self-action of laser pulses (which was also
observed experimentally, see [15, 16]).

The experiments presented in this paper provide
direct evidence of the possibility of sum-frequency
generation and optical frequency multiplication in
media with a norma dispersion due to the use of the
waveguide regime of nonlinear opticd interactions. For
this purpose, we employed picosecond pulses of moderate
intengities (the maximum intensities of laser pulsesin our
experiments were on the order of 10 W/cm?). No third
harmonic was generated when such laser beams were
tightly focused in the gas in the absence of a fiber,
which indicatesthat the perturbation of the gas medium
and the pump beams themselves does not have a con-
siderable influence on nonlinear optical processes.
Such an approach allowed usto study the main proper-
ties of four-wave mixing (FWM) processes in the
waveguide regime and to examine the ways to phase
match FWM processes under these conditions. One of the
important results of our study is the experimental demon-
gration of a considerable influence of high-order
waveguide modes on FWM processes in hollow fibers.
The investigation of FWM of picosecond pulsesis aso
of considerableinterest in the context of the possibility of
using hollow fibersto improve the sengitivity of nonlinear
optical techniques for gas-phase anaysis. Picosecond
pulses are often areasonabl e choice for stationary spectro-
scopic techniques, which arewidely employed for various
practical applicationsand which may often impose certain
limitations on the duration of laser pulses.

The plan of this paper isthe following. In Section 2,
we employ the slowly varying envel ope approximation
to derive expressions describing FWM processes in
gas-filled hollow fibers including the phase mismatch
and theinfluence of high-order waveguide modes. Section
3 describes the experimental technique and the procedure
of measurements. The results of experiments are dis-
cussed in Section 4. Findly, the main conclusions will be
briefly summarized in the last section of this paper.

2. THE THEORY OF FOUR-WAVE MIXING
IN HOLLOW FIBERS

2.1. The Amplitude of the FWM Sgnal

In this section, we will study the specific features of
FWM processes in gas-filled hollow fibers taking into
consideration the influence of phase-matching effects,
optical losses of hollow-fiber modes, and high-order
waveguide modes. We will consider FWM processes of
third-harmonic and difference-frequency generation giv-
ing riseto asignd at the frequency of the third harmonic
in accordance with the following FWM schemes:

3w = W+ W+t wand 3w = 2W+ 2W— W,

where w and 2w are the frequencies of pump pulses
(fundamental radiation of the pump laser and its second
harmonic). Processes of this type, as demonstrated by
experiments [3], allow high efficiencies of nonlinear
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optical frequency conversion to be achieved by phase-
matching the light pulsesinvolved in FWM in a hollow
fiber. The results of our experimental studies for such
processes will be presented in Section 4 of this paper.
Suppose that fundamental radiation and its second
harmonic (pump pulses) propagate along the z-axis of a
hollow fiber with an inner radius a. We assume that the
hollow fiber isfilled with a gas with a cubic nonlinear-
ity and a refractive index n. The dielectric constant of
the cladding of the hollow fiber is assumed to be areal
quantity meeting the condition € > n?. The fields of the
pump and FWM pulses can be then represented as

1
SEEHOL "

x exp[—iwt + (IK]-0$/2)7] +c.c.,

1 | I
E;=35) fap)By
ZZ 2

x exp[—2iwt + (iK,—a5/2)7] +c.c.,

Es

%f?(p)cm(z) exp[=3iwt +iKT +cc., (3)

where fJ(p), 5 (p), and 5 (p) arethe transverse field
distributions corresponding to the EH,,, EH,, and
EH,,,, hollow-fiber modes of fundamental radiation, the
second harmonic, and the FWM pulse, respectively;

p is the distance from the axis of the hollow fiber; Ag

and BL are the amplitudes of the pulses of fundamental
radiation and the second harmonic at the input of the
fiber; C™M(2) is the dlowly varying amplitude of the
FWM signal; K¢, K., and KT are the propagation con-

stants of fundamental radiation, the second harmonic,
and the FWM signal in the hollow fiber, respectively;

and af and 0('2 are the attenuation coefficients for the

EH,, waveguide mode at the fundamenta frequency
and the EH,; waveguide mode at the frequency of the
second harmonic. Representing the field of the second
harmonicin Eq. (2) asasum of hollow-fiber modes, we
extend our analysisto FWM processes where two of the
four waves have equal frequencies 2w, but different
transverse field distributions corresponding to different
waveguide modes EH,; and EHy;- (i.e, 1 =17, 1M).

We assume that each of the waves involved in the
FWM process has a small attenuation coefficient and a
wavelength much less than the fiber core radius a:

wa
—>1 4
= > 1, (4

Kic
-1 <1, 5
swn(sw) ‘ ©)
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wheres=1, 2, 3 and n(sw) istherefractive index of the
gas filling the hollow fiber at the frequency sw. Once
conditions of Egs. (4) and (5) are met, we can employ the
following approximate expression for the transverse field
distribution in EH,,,, modes of ahollow fiber [17, 18]:

m

f(p) = JoF=H (6)

where Jy(X) is the zeroth-order Bessel function and u™
is the eigenvalue for the EH;,, mode. Propagation con-
stants and attenuation coefficients in this case are writ-
ten as[18]

m_ Swn(sw) 1o u "c DZ
K== [1 2Laswn(sw)] ] U
o= 2 2 [ug cD
s~ an(sw)Chsud] @

9 e(sw)+n (soo)

2n(sw) (£(sw) — n*(sw)) "

Using a procedure similar to that described in [19],
we arrive at the following equation for slowly varying
envelope of the third harmonic in alossy hollow fiber:

m
—d—C$HG + EJ('gc?HG
dz 2
O
a
= IBTHG(AO) eXpD_IAkTHGZ 212%1

where a3 is the attenuation coefficient for the EH,,

mode of the THG signal. The phase mismatch is then
written as

1mg

Akt = K3 —3K{ = Ak%ys + Ay, (10)
where

AK® = %”[n(m)—n(w)], (1)

MK = 2l 3(u Wy ] (12)

are the components of the phase mismatch due to the
dispersion of the gas and waveguide dispersion, respec-
tively [the total phase mismatch can be represented asa
sum of these two components in the case when n(w),

n(3w) = 1]. The nonlinear coefficient BTi; can be
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expressed in terms of the relevant nonlinear optical
cubic susceptibility [14]:

mg _ 9T[(JL)2 (3)
THG = ——m 3XTHG
Tc
m 3 (13)
[[Fe)Fe) pdpcd

i f3(p)]°pdpde

where x\3, isthethird-order nonlinear optical suscep-

tibility responsible for third-harmonic generation.

In contrast to the standard plane-wave approxima-
tion (see, e.g., [19]), Eq. (9) includes the influence of a
waveguide through the propagation constants (7) and
the nonlinear coefficient (13), which is normalized to
include the transverse distributions of the pump and
third-harmonic fields in the relevant waveguide modes.
In particular, the phase mismatch, which appearsin Eq. (9)
and which determines the efficiency of THG, depends
not only on the gas dispersion, but also on the disper-
sion of waveguide modes. This circumstance, as high-
lighted in anumber of earlier papers[3, 8, 14], provides
an opportunity to improve phase matching for a given
combination of waveguide modes of pump and third-
harmonic radiation.

Integrating Eq. (9), we derive the following expres-
sion for the amplitude of the EH,,,, mode of the third
harmonic:

3
CTHG = IBTHG(Ag)

q
exp[—% L] - exp[%—%‘l —iakn AL }

(14)

X

ug —3(11
2

where L is the length of the gas-filled hollow fiber. In
the limiting case of low losses and zero phase mis-
match, Eq. (14) isreduced to

Clhe = IBTHG(Ag)aL' (15)

Using Eg. (15), we can obtain the following esti-
mate for the power of the third-harmonic signal:

—iAkTiG

2

L
Prig U Pig, (16)

where P, isthe power of fundamental radiation.

In the case of a difference-frequency generation
(DFG) process 3w = 2w + 2w — w, involving the EH,,
hollow-fiber mode of fundamental radiation and EH;;.
and EH,;- modes of the second harmonic, generating
the EH,,,, mode of the DFG signal at the frequency of
the third harmonic in a lossy hollow fiber, the slowly
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varying envelope of the DFG signal is governed by the
following equation:

d m ag m
d_ZCDFG + 23 Chrg = IBDl o qu BoBo
(17)

mIIq

I' "
al+a,+a
><expD|AkDFG #%

2

Here, the phase mismatch includes the dispersion of
waveguide modes and can be represented as

Akpre' = K5 =Kz =K + K a8
=~ AKpeg + AK'DrG,
where
AR e = [3n(3w)—4n(2w) +n(w)], (29
AK BrG”
c [<u">2+<u'")2_(um)2_(uq)z} )
Zwaz 2 2 3

are the components of the phase mismatch due to the
dispersion of the gas and waveguide modes, respec-
tively. The nonlinear coefficient can be expressed in
terms of the relevant nonlinear optical cubic suscepti-
bility [14]:

276 3)
5 XDFG
3C

_[[[f3(e)f2(p) 13 (p)pdpae
[[f5e)N pdpde

m'l"g _
DFG —

(21)

where XDFG isthethird-order nonlinear optical suscep-

tibility responsible for difference-frequency genera-
tion.

Integrating Eq. (21), we derivethefollowing expres-
sion for the amplitude of the DFG signal excited in the
EH,,,, mode:

Ches = iBore'A§ BoBy 22

af + (12 + 0(2 IAkml'l"qu}
—_— DFG[]

exp[—O(—z3 L} — exp[D >

RN T
Oz —0;—0,—0y . mg

X

In the limiting case of low losses and zero phase
mismatch, Eg. (22) is reduced to

Core = iBore Al BoBol. (23)
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Using Eg. (23), we derive the following estimate for the
power of the DFG signal:

2

L
Porc [ Plpéaz, (24)

where P, is the power of pump radiation at the fre-
guency of the second harmonic.

Expressions (16) and (24) describe the dependence
of the FWM signal power on geometrical sizes of ahol-
low fiber. In the following section, we will use these
formulas to analyze the physical factors allowing the
efficiency of four-wave mixing of short laser pulses to
be increased in gas-filled hollow fibers.

2.2. Improving the Efficiency of Four-Wave Mixing
in the Waveguide Regime

To illustrate how the efficiency of FWM processes
can be improved by using hollow fibers, it would be
instructive to consider the basic formulas of the ele-
mentary theory of four-wave mixing. Expressions for
the powers of signals produced through FWM pro-
cesses of third-harmonic and difference-frequency gen-
eration (generaly, Wy = 2w, — w;) can befound in many
textbooks on nonlinear optics[19, 20]. In particular, inthe
regime of loose focusing, when the condition

b> L (25)

is satisfied, where b is the confocal parameter, these
expressions can be written as

P3L sin [(Ak+ 4/b)L/2]

P 26
™e [(Ak + 4/b)L/2] (29
in the case of third-harmonic generation,
L2sin’[AKL/2]
P et LN ] 27
DFG 1 2b2 [AkL/2]2 ( )

in the case of difference-frequency generation. Here,
we used the following notations: P, and P, are the pow-
ersof the pump waves and Ak isthe phase mismatch for
the corresponding FWM process.

Let us consider in greater detail the enhancement of
the efficiency of FWM processes in hollow fibers with
respect to the geometry of tight focusing due to the
increase in the interaction length of light beams attain-
able with hollow fibers. Physically, a hollow fiber
enhances FWM processes since it allows light intensi-
tiestypical of the tight-focusing regime to be achieved,
simultaneously letting these beams interact in a nearly
plane-waveregime. Sincetheintensity of the FWM sig-
nal isproportional to the intensities of the pump beams,
the power of the FWM signal can be increased by
decreasing the diameter of a hollow fiber and keeping
the powers of pump beams constant as long as the
phase-matching conditions are satisfied and the losses
of the waves interacting in the fiber are low. The role of
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ahollow fiber isthusto ensure the regime of interaction
of collimated beams[see Egs. (26), (27) and (16), (24)]
for light beams having intensities typical of the regime
of tight focusing, simultaneously providing large inter-
action lengthsfor these beams and improving the phase
matching.

Figure 1 displays the phase mismatch calculated
with the use of Egs. (10)—(12) and (18)—20) for THG
and DFG processes involving different waveguide
modes as afunction of theinner radius of ahollow fiber
filled with air at standard atmospheric pressure under
normal conditions. As can be seen from these plots, the
phase mismatch for the DFG process involving funda
mental waveguide modes of pump and signal radiation
can be completely compensated with an appropriate
choice of the hollow-fiber inner radius. In the case of
third-harmonic generation in the field of the fundamen-
tal mode of pump radiation, phase matching can be
achieved only for high-order modes of the hollow fiber.
Generaly, the phase-matching problems under these
conditions can be solved by adjusting the gas pressure,
choosing optimal parameters of the hollow fiber, and
excitation of appropriate waveguide modes [3, 8, 14].

Thus, there are two natural ways of increasing the
efficiency of nonlinear optical processes in hollow
fibers: (i) increasing the fiber length and (ii) reducing
the inner radius of the fiber. The enhancement factor
cannot be increased infinitely, of course. The increase
of thefiber length islimited by optical losses of hollow-
fiber modes, while the decrease of the inner radius
requires a tighter focusing of the pump beam, eventu-
ally leading to the breakdown of the gasfilling the fiber.
The use of shorter pulses under these conditions allows
further improvement in the efficiency of nonlinear opti-
cal processes due to the increase in the breakdown
threshold of the gas.

2.3. Removing the Prohibition
on Third-Harmonic Generation

Hollow fibers may play an even more important role
in the case of sum-frequency and third-harmonic gener-
ation. In media with a normal dispersion, such FWM
processes are characterized by a low efficiency in the
tight-focusing regime due to an additional phase shift
of afocused beam with respect to a plane wave. This
geometric phase shift around the axis of a Gaussian
beam can be written as [20]

2(z-2)
b L
where z, is the coordinate of the beam waist.

In accordance with Eqg. (28), the phase shift between
the field of the third harmonic and the nonlinear polar-
ization responsible for THG tendsto x1masz —» oo,
Therefore, no third harmonic can be observed at the
output of the medium in this regime because of the

Ad = —arctan

(28)
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Fig. 1. Phase mismatches for (1-3) third-harmonic genera-
tion and (4) difference-frequency generation in a hollow
fiber filled with air at standard atmospheric pressure under
normal conditions as functions of the inner radius of the
hollow fiber a. The transverse distribution of the pump field
corresponds to the EH,, waveguide mode. The third har-
monicisproduced inthe EH; (1), EHy5 (2), and EH;3(3)
waveguide modes. The DFG signal isgenerated inthe EH ¢
waveguide mode.

— CCD ﬁ HF ﬁKDP GP A2
N
PM | !
A =1.06 ym
PC T=35ps LS
[ =]

Fig. 2. Diagram of the experimental setup for studying
FWM processes in gas-filled hollow fibers based on a pas-
sively mode-locked picosecond laser system: LS, picosec-
ond laser system; A, amplification stages; GP, Glan prism;
L, achromatic lens; HF, hollow fiber; F, bandpassfilter; PM,
photomultiplier; CCD, CCD camera; SP, signal-processing
unit; and PC, personal computer.

destructive interference of the pump and third-har-
monic fields generated before and after the focus.

The situation radically changesin the case of hollow
fibers, where nonlinear optical interactions occur in the
regime of collimated light beams, giving rise to no £t
phase shift between the signal field and the relevant
polarization of the medium. This alows efficient third-
harmonic generation. In Section 4, we will present the
experimental data confirming this conclusion.

3. EXPERIMENTAL SETUP

The experimental setup for studying FWM pro-
cesses in gas-filled hollow fibers (Fig. 2) consisted of a
picosecond laser system, which generated pumping
radiation at the wavelengths of 1.06 and 0.53 um, ahol-
low fiber, and a detection system based on a photode-
tector, photomultiplier, and a CCD camera. The pico-
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Fig. 3. Diagram of the experimental setup for studying the
influence of the gas pressure on FWM processes in a gas-
filled hollow fiber: LS, picosecond laser system; L, achro-
matic lens; VC, vacuum chamber; HF, hollow fiber; DG,
diffraction grating; PM, photomultiplier; F, filter blocking
pump beams; PD; and PD,, photodiodes measuring the
energy of fundamental radiation and the second harmonic,
respectively; DO, digital oscilloscope; V, computer-con-
trolled valve for gas delivery.

second system included a passively mode-locked
Nd:YAG master oscillator with a negative-feedback-
controlled cavity Q-factor [21], asingle-pulse selection
unit, and amplifying stages. Passive mode locking in
the master oscillator wasimplemented with the use of a
saturable absorber film, which was placed in front of
the rear cavity mirror and which made it possible to
generate laser pulses with aduration of 35 ps. Negative
feedback wasintroduced by inserting an electro-optical
switch controlled with a fast-response photomultiplier
inside the cavity. An optical signal served as an input
for the fast-response photomultiplier. This feedback
loop considerably improved the stability of parameters
of laser pulses[22], providing an opportunity to gener-
ate trains of picosecond light pulses with a duration of
the envel ope on the order of 3040 ps. Astheregime of
stationary lasing was established in the master oscilla-
tor, the negative feedback loop was switched off, and a
short train of highly stable picosecond pulses with a
duration of the envelope of about 100 ns and an energy
of approximately 1.5 mJ was generated.

An electro-optical switch was used to separate asin-
gle pulse from this train. The energy of a single 35-ps
laser pulse thus selected ranged from 30 to 40 pJ. The
single-pulse selection unit also served as an optical
decoupler, suppressing the parasitic feedback between
amplifying stages and the master oscillator and pre-
venting radiation reflected from optical elements of the
amplification system from influencing the formation of
trains of pulses in the master oscillator. The further
details of our picosecond laser system can be found
elsewhere[21, 22].

A single pulse of 1.06-um radiation passes through
three amplifying stages. The energy of thelaser pulse at
the output of the third stage may reach 50 mJ. The spa-
tial distribution of intensity in such alaser beamisclose
to that characteristic of the Gaussian mode. Thisradia
tion was used as a pump beam in the THG scheme and
one of the pump beams in sum- and difference-fre-
guency generation. A KDP crystal was used to produce
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the second harmonic of Nd:YAG laser radiation for
two-color experiments. A spherical lens was employed
to couple pump beams into the fiber (Fig. 2). We used
commercially available hollow fibers with inner diam-
eters of 70, 100, 127, 152, and 203 um in our experi-
ments. The lengths of the fibers were varied from 1 to
30 cm. The attenuation coefficients of 1.06-um radia-
tion in these fibers were estimated as 0.6, 0.2, 0.1, 0.06,
and 0.04 dB/cm, respectively. The signals produced
through third-harmonic, sum-frequency, and differ-
ence-frequency generation in these fibers were selected
with a monochromator and bandpass filters and were
detected with a photomultiplier. A CCD camera was
used to investigate the spatial profiles of light beams
coming out of the fiber.

To measure the gas-pressure dependences of nonlin-
ear optical signals, we used an experimental setup (Fig. 3)
consisting of a picosecond laser, a vacuum chamber
with ahollow fiber inside, and a detection system based
on a photomultiplier. The Nd:YAG picosecond laser
generated 50-ps pump pulses at 1.06 um and 0.53 pm.
The maximum energy of 1.06-um radiation reached
100 mJ. A KDP crystal was used to produce the second
harmonic of fundamental radiation. An achromatic lens
was used to couple the pump laser beamsinto a hollow
fiber. Two photodiodes were used to monitor the ener-
gies of both of these laser beams transmitted through
the fiber. The energies of fundamental radiation and the
second harmonic in these experiments were equal to 1
and 0.1 mJ, respectively. The signal produced through
an FWM process in a hollow fiber was detected with a
photomultiplier and was then processed and displayed
with adigital oscilloscope. Theresult of averaging over
30 FWM pulses was stored in a personal computer.

4. RESULTS AND DISCUSSION

The results of our experiments fully justify our
expectations that the use of hollow fibers alows the effi-
ciency of FWM processes to be improved, the prohibition
on THG to be removed, and phase-matching conditionsin
FWM processes to be improved. Our experiments also
revealed a noticeable influence of high-order waveguide
modes on FWM processesin gas-filled hollow fibers. The
use of picosecond pulses alowed us to couple pump
beams with a sufficiently high intensity into a hollow
fiber without any noticeable perturbation of the gas
medium in the fiber or the self-action of laser pulses.

Figure 4 presents the powers of third-harmonic and
the difference-frequency signals as functions of the
pump energy. As can be seen from the data presented in
Fig. 4a, the power of the third harmonic can be approx-
imated with high accuracy with a cubic function of the
power of fundamental radiation. The power of the DFG
signal at the frequency wpr = 2w, — w, (Where w, isthe
frequency of fundamental radiation of the Nd:YAG
laser and w, = 2w, is the frequency of the second har-
monic of this laser) islinear in the fundamental radia-
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Fig. 4. The powersof (a) thethird-harmonic and (b) difference-frequency signals produced in a hollow fiber filled with atmospheric-
pressure air under normal conditions as functions of the energy of fundamental radiation E; g (a) and the parameter (Eq55)°E1 o6
(b) (Egs3 isthe energy of second-harmonic radiation). The inner diameter of the fiber is (a) 127 and (b) 152 um. The fiber length
isegual to (a) 4 and (b) 20 cm. Cubic (a) and linear (b) dependences are given for the convenience of comparison.

tion power and quadratic in the power of the second
harmonic of the Nd:YAG laser (see Fig. 4b). These
resultsindicate that nonlinear optical interactionsin our
experiments occur in a weak-field regime, and effects
related to the ionization of the medium and the self-
action of pump pulses do not exert aconsiderable influ-
ence on nonlinear optical processes. Thisconclusionis
also supported by the fact that no THG signal was
observed in our experiments in the tight-focusing
regime with the same focusing parametersasin hollow-
fiber experiments, but in the absence of a hollow fiber,
until a plasmawas produced due to the gas breakdown.
The THG signal was easily detectable under conditions
of ionization of the medium and ionization-induced
self-action of pump pulses[15, 16].

The influence of phase-matching effects on FWM
processes in hollow fibers is illustrated by the experi-
mental data presented in Fig. 5. In particular, these
experimental dataindicate that, for gases whose disper-
sion properties are similar within the studied frequency
range, the pressure dependences of the DFG signdl
power have much in common. Specifically, the pressure
dependences of the DFG signal for argon and nitrogen
display qualitatively similar tendencies (Fig. 5). At the
same time, the pressure dependence of the DFG signal
for carbon dioxide qualitatively differs from similar
dependencesfor argon and nitrogen. Thisis dueto con-
siderabl e differences in dispersion properties of carbon
dioxide and dispersion properties of argon and nitro-
gen. In particul ar, the phase mismatch for the DFG pro-
cess at the atmospheric pressure of carbon dioxide is

estimated as Ak = 1.8 cnr?, which noticeably differs

from the phase mismatch corresponding to the atmo-

spheric pressure of nitrogen or argon (Akp g = 1 cm).
Comparison of the experimental data presented in

Figs. 6 and 7 with the results of calculations performed
with the use of Egs. (18)—(20) and (22) revealsanotice-
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able role of high-order waveguide modes in nonlinear
optical processes in hollow fibers. It is instructive in
this context to consider in greater detail the results
obtained for the DFG process wpr = 20, — W, in an
argon-filled hollow fiber with a length of 17.4 cm and
an inner diameter a = 100 um (Fig. 6). A satisfactory
agreement between the experimental data (squares) and
theoretical predictions (the solid line) is achieved when
effects related to high-order waveguide modes are
included in the analysis. In particular, a satisfactory
agreement between the experimental datain Fig. 6 and
the results of calculations performed with the use of
Egs. (18)—(20) and (22) was achieved when not only the
DFG process occurring in the fundamental waveguide
mode (i.e., the DFG processinvolving the EH,; hollow-
fiber modes of fundamental radiation, second har-
monic, and the DFG signal) was included in the calcu-

Pprg, arb. units
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Fig. 5. The power of the difference-frequency signal pro-
duced in a hollow fiber filled with different gases [(®) Ar,
(+) Np, and (O0) CO,] as a function of the gas pressure p.
Thefiber length is 19.3 cm. The inner diameter of the fiber
is127 pm.
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Fig. 6. The power of the DFG signa (the dots show the
experimental data, and the solid line represents the results
of calculations) and the phase mismatch for the DFG pro-
cessin an argon-filled hollow fiber as functions of the argon
pressure p. The dashed line shows the phase mismatch for
the DFG process occurring in the fundamental waveguide
mode EH4. The dash—dotted line represents the phase mis-
match for the DFG processinvolving the EH,, mode of fun-
damental radiation, EH,; and EH,3 modes of the second
harmonic, and the EH,, mode of the DFG signal. The
length of the hollow fiber is17.4 cm, and the inner diameter
is100 pm.
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Fig. 7. The power of the DFG signal in argon-filled hollow
fibers with different inner diameters as a function of the
argon pressure p. The length of hollow fibers in al the
experiments was approximately equal to 20 cm. The inner
diameter of the hollow fiber was (O0) 100, (+) 127, (x) 152,
and (A) 203 pm.

lations; but also the DFG process involving the EH,,
mode of fundamental radiation, EH,; and EH,5 modes
of the second harmonic, and the EH,, mode of the DFG
signa was included. The maximum of the DFG signal
around an argon pressure of about 0.7 atm is observed
within the pressure range where the DFG processin the
fundamental waveguide maode is phase matched (the
dashed line in Fig. 6 shows the phase mismatch for this
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process). At lower pressures, difference-frequency gen-
eration through the FWM interaction of the EH;, mode
of fundamental radiation, EH,; and EH,; modes of the
second harmonic, and the EH,, mode of the DFG signal
begins to play a more important role (the phase mis-
match for this process is shown by the dash—dot linein
Fig. 6). Thus, high-order waveguide modes of a hollow
fiber may have a noticeable influence on FWM pro-
Cesses.

Figure 7 presents the experimental dependences of
the DFG signa produced in argon-filled hollow fibers
with different inner diameters and a length of =20 cm
on the gas pressure p. As can be seen from Fig. 7, with
the increase in the inner diameter of the fiber, the max-
imum of the DFG signal related to the FWM interaction
of the pump and DFG beams in the fundamental
waveguide mode is shifted toward lower pressures,
tending in the case of largeinner diametersto the limiting
vaue corresponding to the FWM process in collimated
beams. In this limiting case, the maximum power of the
DFG sgna isachieved, in accordancewith Eq. (27), at the
gaspressurein thefiber equal to 0.16 atm (at this pressure,

the coherence length L, = TWAKD - becomes equal to

the fiber length). These results are in perfect agreement
with our expectations based on the analysis of Egs. (18)—
(20). The maxima observed in the DFG signal at an
argon pressure of about 0.7 atm for a hollow fiber with
an inner diameter of 152 um and a pressure of 0.9 atm
for a fiber with an inner diameter of 203 um can be
attributed, by analogy with the case considered above,
to FWM processes involving high-order waveguide
modes of the pump and FWM beams.

A methodologically important aspect of nonlinear
optical experimentsreported in this paper isthat the use
of sufficiently long picosecond pulses allowed us to
study phase-matching effects and effects related to high-
order waveguide modesin nonlinear optical interactionsin
gasfilled hollow fibers under conditions when group-
delay effects remain negligible (see the edtimates in
[12, 14]). Due to the optimization of the phase matching
for FWM processes in hollow fibers under these condi-
tions, we were able to considerably increase the fiber
length (DFG experiments were performed with the use
of hollow fibers with a length up to 30 cm). This
allowed us to achieve efficiencies of FWM processes
comparable in their order of magnitude with efficien-
cies attai nable with femtosecond pul ses of much higher
intensities. This result seems to be very important for
numerous spectroscopic applications where the band-
widths of laser pulses should be narrower than those
typical of the femtosecond range.

5. CONCLUSION

Thus, the results of experimental studies devoted to
FWM processes of third-harmonic and difference-fre-
guency generation in the field of picosecond laser
pulses presented in this paper reveal several important
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features of nonlinear optical processesin gas-filled hol-
low fibers, giving a deeper insight into methodol ogical
aspects of the problem and opening new possibilities
for practical applications of hollow fibers in nonlinear
optics, optics of ultrashort pulses, and nonlinear spec-
troscopy. Unlike experiments carried out with the use
of high-intensity laser pulses, our approach allowed us
toimplement conditionswhen effectsrelated to theion-
ization of a gas medium and the sdlf-action of pump
pulses do not exert a noticeable influence on nonlinear
optical processes in hollow fibers, as indicated by the
absence of optical-harmonic generation in tightly focused
pump beams in the absence of a hollow fiber. The results
of our experiments al so demonstrate the possibility of cou-
pling high-intensity picosecond pulsesinto ahollow fiber
without any noticeable perturbation of the gas medium
or self-action of laser pulses. Our experimenta approach,
based on the use of picosecond pulses, allowed usto ana-
lyze the main properties of FWM processes in the
waveguide regime and to explore the ways of phase-
matching such processes under these conditions.

Due to the improvement of phase-matching condi-
tions with an appropriate choice of the gas pressure and
optimal parameters of the hollow fiber, we were able to
use hollow fibers with a large length (up to 30 cm) for
difference-frequency generation, which resulted in a
considerable increase in the power of the difference-
frequency signal at the output of the fiber. Our experi-
mental results indicate that high-order waveguide
modes may have a considerable influence on four-wave
mixing processes in gas-filled hollow fibers. This effect
can be employed to increase the total energy of short-
wavelength radiation produced through nonlinear opti-
cal processes in hollow fibers. On the other hand,
effects related to high-order waveguide modes should
be taken into consideration in the optimization of hol-
low-fiber frequency converters and pulse compressors,
where the excitation of high-order waveguide modes
may |ead to unwanted energy losses.

Finally, we have shown that the waveguide regime
of nonlinear optical interactionsimplemented in hollow
fibers removes the limitations on the efficiency of third-
harmonic and sum-frequency generation, which are
characteristic of the tight-focusing regime in media
with normal dispersion and which are due to the geo-
metric phase shift arising in tightly focused light
beams. This finding considerably expands the possibil-
ities of using hollow fibers for frequency conversion
and nonlinear optical gas-phase analysis.
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Abstract—Caollisions between negative and positive atomic ions are investigated. The ionic wave function is
expressed in terms of the Coulomb Green’s function. Normalizing this function allows the system of two ions
to be described completely. The exchange matrix elements turn out to be the sums of products of the Coulomb
wave functions over degenerate states. These sums are expressed in terms of the quadratic form of the wave
function for a state with zero angular quantum numbers, | = m= 0. The nonadiabatic coupling of quasi-crossing
terms with other terms of the system is analyzed; this effect significantly increases the cross section for single-
electron capture. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Here, we investigate collisions between negative
and positive atomic ions. We study the single-electron
capture

A +B“ —~A+BY P (n) (1)

at low collision velocities, v < v, =219 x 108 cm s,
The cross section for single-electron capture in a colli-
sion of H~with aproton, H-+ H* = H + H(n), and with
other singly charged positive ions has previously been
calculated in [1-12] and measured in [13-16]. The
recombination cross section for H™in its collision with
an a particle, H- + He** = H + He*(n), was measured
experimentally [17, 18] and calculated theoretically
[17, 19] (seeds0[20, 21]); H- + {Ne**, Ar3*} collisions
were studied in experimental measurements [22, 23]
and in [24]. The Ca production cross section in the
reverse reaction

Ca+BHn)— Ca +B" (2)

was calculated in [25-27] and measured in [28-30].

The properties of a collisional system that can pro-
duce a pair of oppositely charged ions are determined
by the crossing of energy terms. The probability of sin-
gle-electron exchange reactions (1) and (2) at low col-
lision velocities significantly increases in the presence
of such crossings. Since the hinding energies of nega-
tive ions are low, the ionic term crosses the terms of
highly excited stateswith large principal quantum num-
bers n. Such states of any atom are similar in properties
to purely Coulomb states, whose energies do not
depend (or depend weakly) on orbital quantum num-
bers| and m. Consequently, in collisions (1) and (2), the
ionic term crosses a complex variety of degenerate
states whose number for each nisn?.

Previoudly, the authors of [31-36] used the approx-
imation of zero-range potentials, the approximation of
0 potentials, to investigate reaction (1). The latter
approximation is applicable to negative ions whose
weakly bound €electrons have zero orbital angular
momenta, as, for example, for H™. The energy levelsin
the above papers were determined by solving a tran-
scendental equation with the logarithmic derivative of
Coulomb Green’s function. It was found that for each
crossing and for each n, only one of the total number n?
of states interacted with the ionic state, while the ener-
gies of the remaining n® — 1 states, the so-called passive
states, were not perturbed by the ionic term, and these
states were disregarded in specific calculations [33].

In reality, however, the passive statesareinvolved in
processes (1) and (2). Although the energies of the pas-
sive states are not perturbed, their wave functions are
time dependent, because they result when reconstruct-
ing the basis of Coulomb functions and prove to be
dependent on the separation between the colliding ions.
The adiabatic matrix element of the time derivative
between active and passive states is nonzero. Here, we
construct a complete adiabatic basis of wave functions,
which isused to solve an adiabatic system of close-cou-
pling equations.

I'n our approximation, the wave function of the outer
weakly bound electron is expressed in terms of Cou-
lomb Green's function. This function, normalized to
unity as the wave function of a bound state with a neg-
ative energy [7, 8], was analyzed in detail on the E, R
(energy, internuclear separation; —o < E < +00, 0 S R< )
half-plane. The analysis yielded energy separations
between the adiabatic terms for quasi-crossings and all
the matrix elements between the adiabatic states; i.e,, it
dlowedthe A~ + B#* system to be described completely.
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ELECTRON CAPTURE IN COLLISIONS

This approach allows negative ions with any orbital
angular momentum L to be considered.

In this paper, we consider L =0 (H) and L = 1 (Ca).
The term separation for quasi-crossings was found to
be expressed in terms of the sums of products of the
Coulomb wave functions over degenerate states, i.e.,
over angular quantum numbers| and m. An analysis of
the closed expression for Coulomb Green's function
derived by Hostler and Pratt [37, 38] allowsthese sums
to be expressed in terms of the quadratic form of the
wave function only for one state with zero angular
guantum numbers, | = m = 0. Such sums, which
describe the behavior of a negative ion with a zero
orbital angular momentum, L = O, in the field of a pos-
itive ion, were calculated previously [39-41], while
similar sumsfor ionswith L = 1 are calculated here.

We aso study the following nonadiabaticity effect
discussed previously [24] in the atomic-basis approxi-
mation. If the ionic term quasi-crosses the nth coval ent
term, then the matrix element between the ionic state
and another covalent state n' experiences a sharp jump,
causing the population of staten'toincrease. Thiseffect
proves to be strong. It appreciably increases the total
cross section for single-electron capture (1).

Here, we use the system of atomic units, & =m=
h=1.

2. THE WAVE FUNCTION
OF THE OUTER WEAKLY BOUND ELECTRON

The wave function ®(R, r) of the weakly bound
electron in the A~ + B system is the solution of the
wave equation

A Z
g5 +V(R-r)-E0R,N =0 (3
where V(IR —r|) is the potential energy of interaction
between the weakly bound electron and the core of
atom A. The wave function ®y(r) of the unperturbed
negative ion A~ satisfies the equation
A
75 + V(R =) ~Eg®q(r) = 0. (4)

Let us consider Green's function G(r, r', E) that is

the solution of the equation

%_%_%—E%G(r,R,E) = 3(R-r), (5)

and whose spectral expansion over Coulomb eigen-
functionsis[42]

l-I*'nl m(r) l-IJ:\CI m(R)

G(r,R,E)=z EE (6)

nlm

where the sum denotes summation over the discrete
states with a negative energy and integration over the
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continuum. In spherical coordinates, the Coulomb
eigenfunctions of bound states with a negative energy
are [43]

l-|Jnlm(r) = fnl(r)YIm(ev (P).

Y8, @ = N,P™(cos® —exp(im(p), 0
im(8, @ imP1( ) o
d_zfn|+g(_j.f_n_|
dr®? rdr
Z 1(1+1) ®
] _
i)
Zr 7
ful®) = N o exp 2T
271 ®
| . L &4l
XFD—n+I+1, 21+ 2; 0

2Z3/2

[(n+1)!

n?(2l + )N (n=1=1)""
PRI =]m)!
Nim = =2+ m)

Using Green's function, we may write the following
integral equation instead of the differential equation (3):

dR,r) = —J’G(r,r',E)V(Ir'—RI)CD(R,r‘)dr'. (10)

E, = =Z°/2n°, N, =

Since the effective potential V is relatively small, we
may expand Green’sfunction into a Taylor series about
variabler' at pointr' = R:

dG

G(r,r',E)=G(r,R,E) + — (r=-R)+.... (11
dr rr=R

For large internuclear separations satisfying the

condition
YR>1, y = ,/-2¢,, (12

the perturbation of a negative ion by a positive ion is
small; it reduces to a comparatively small polarization
displacement of its energy level €, For H-, & =
-0.75421 eV = -0.027716 a.u., y = 0.23544, and it fol-
lows from condition (12) that the internuclear separa-
tions are R > 4.25a,, where @, is the Bohr radius. For
Ca(4s?4p) with two bound levels, two fine-structure
components with total angular momentaj = 1/2 and 3/2

are séjz =-0.02455 eV, y,;, = 0.04248, R > 24a, and

€% =-0.01973 eV, y5, = 0.03808, R > 26a,. The dis-

tances that mainly contribute to the cross sections for
the processes under study arelarger by more than afac-
tor of 10 than those limiting distances (see below).
Therefore, condition (12) is satisfied with a large mar-
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gin, and the unperturbed ionic wave function may be
substituted in the integral of motion (10).

2.1. ANegative lon
with a Zero Orbital Angular Momentum, L = 0

Let us first consider a negative ion whose weakly
bound electron has a zero orbital angular momentum,
L =0. Inthiscase, the wave function of the unperturbed
negative ion may be chosen to be

o(|r —R|) = N, ERLYIL=R)
Ir =R
(13)

Ny =

which is the limit of the ionic wave function ® for an
infinite internuclear separation.

Substituting function (13) and expanding Green's
function (11) in integral (10), we find that the wave
function of the outer electron for L = 0is Green's func-
tionatr' =R,

PR, r)=CyG(r, R, E), (24)

because @, for L = 0 does not depend on the angles and
the contribution from the second term of expansion (11)
vanishes. The contributions from the higher order terms
of expansion (11) are proportional to positive powers of
the low binding energy for the negative ion, |&P < 1,
p =1, and they may beignored. The constant C,in (14)
can be determined by normalization.

A closed expression for Coulomb Green’s function
was derived by Hostler and Pratt [37, 38]:1

, _M(1-2v)
ST E = e (19
x [W(T)M'(ty) —W(T,)M(1))],
Txy = {x()y}’ X=r+r+|r—r,
' ' 1 (16)
y=r+r—r-r1, v=ﬁE.

The Whittaker functions W(t) and M(1) have the sub-
scripts Zv and 1/2 in (15) and are the solutions of the
equation [44]

" l VAY,
W2y 1(T) + E 277 EWZV 12(0) =

(17)
and asimilar equationfor M, 1,,(7). InthelimitE — E,
where Zv — n, Eq. (17) when changing variables
T = 2Zr/n transforms to the equation for the Coulomb

1 our definition of Green's function in formulas (6) and (15) differ
from those in [37, 38] by the factor (—2).
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function @5 = ro(r) for the state with a zero orbital
angular momentum, | =0,

d (pn0+ZBE

The Whittaker function M is expressed via a linear
combination of W, (1) and W_,,(-T1) [44]:

20, = 0. (18)

1+zvl (1 =2V)
mwz\;, uz((?g)

M1-2v)My, (1) = (-1)

+ (—1)"'W_z,, 1(=T),

W, (T) exponentially decreases, while W_,(-T) expo-
nentially increasesas T —» co.

Using the linear combination (19), we may write
Green'sfunction (15) at r' = R asthe sum of two terms:

(=) ra- )P

G(r,R,E) = 1(r,R,E)
212'5) r@a+2v) (20)
+(‘21) G,(r, R, E),
Gy(r R.E) = W+(TX)WL(T|>II-)__|\?A|/L(TX)W+(Ty)’ 1)
G,(r.R.E) = W+(TX)W'_(T|¥)_—;/Q\|/'+(TX)W(Ty)’ 22)
r=R,

where W, =W, 1,(T) and W_=W._z, 15(-T). The func-
tions W, and W_ are not regular at zero, but their linear
combination (19), i.e., thefunction M, isregular at zero.
Accordingly, the functions G, and G, are not regular in
thelimitr — Qor r' — 0, but their sum, i.e., the full
Green's function (15), is regular in these limits. The
functions G, and G, may be called the ionic and cova-
lent parts of Green's function, respectively.

The binding energies g, of negativeionsarelow, and
we are interested in the low energies E of the H- + A%
system. For such energies, we can use either the asymp-
totics of the Whittaker functionsin subscript Zv —» oo
[45] or calculate them in the semiclassical approxima-
tion to solve Eq. (17). We use the semiclassical approx-
imation [7], in which the solutions of Eq. (17) in the
subbarrier region are

0" 0
exp3- J’ [p(T")|dtO
U |

Wa,, 12(T) = C, (1_TOT0/_[)]J4
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O’ O
expBirJ’I p(t")|dtO
O O

W_,, 1n(-1) = C Lo
Zv, 1/2 2 (1__[0/_[

v (23)

1 2Zv

Ip(t)| = i T1>1,=42v.

Integration yields the function W[7]:
W(T)

A/T(T —Tgt2Zvi ZZvIn

(1-t/T)"

./T Td]( )

where the plus and minus signs correspond to W._z,, 1/»(—T)
and Wy, 1,5(T), respectively. In view of relations (24),
M isthe linear combination (19).

The asymptotics of the Whittaker functions W, for
T — oo are[44]

Wz 1(T) = T expD 2]

y E;l _v@v-1) V@V =) (Zv-2), [
- .

21° (24a)

W 7, 1(-T) = S exp %%

2
9 %l + Zv(2Zv +1) + Zv(Zv + 1)2(Zv +2) + E
1 21

Note that for highly excited states, when Zv = 3-5, the
second and third terms of these asymptotic expansions
become small at comparatively large distances exceed-
ing the size of the region of classicaly permitted
motion, r, = Z|E[?, for agiven energy E by afactor of 3 or
4. At the same time, cdculaing W from formulas (24a)
with three terms of the asymptotic expansion provides
high accuracy (~1%) up to distances equal to or smaller
thanr,.

It is convenient to use the semiclassical representa-
tion (24) of W, to analyze the ionic part of Green's
function G, in the vicinity of the negative ion, i.e., at
[r —R] < R The corresponding expansion yields

_ exp(_yscllr - Rl)
G REB=="7TR (25)
Ir-R| <R, yu(R=./-2(E+Z/R).

The form of this function is the same as that of the
unperturbed function (13). If, however, the energy E is
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equal to the negative-ion energy in the zero-order
approximation,
Z

E=Ex(R) = so—ﬁ,
then the exponents in functions (25) and (13) are aso
equal, Yoy =Y. For savera energiesE, the product r —R|G;
was calculated exactly using series in positive powers
of the argument for the Whittaker functions [44]. The
result obtained was compared with formula (25). The
discrepancies did not exceed a few percent; i.e, the
semiclassical approximation proves to be highly accu-
rate.

The function G, has no singularity forr — R, and
its behavior in the vicinity of the negative ion can be
determined by expanding expression (21) in a Taylor
power series of T, — T, and T, — T,. The result of this
expansion is

(26)

WL ()WL (T,) Wi (T) Wi (T,)

Gy, R, E) = —
(AW o 4 Zogz 27
Z[DdRD * az-'-m +:|T_2R/V ( )
W2 (2R/v)

(—R)

The first expansion term describes the separation of
energy terms for quasi-crossings.

Let us now turn to normalizing Green's function
considered as the wave function [seerelation (14)]. The
normalized wave function ®(R, r) can be written as

N(R ,
O(R,r) = IrE )I[W%M H-wHEmEH|
N(R) = U%NE{EM'M (29)
Ky Yocf_dt 17
~WROMROD Ry } :
or as
®d(R,r) = 2nNy,B(R)G(r, R, E)
_ N(R (29)
F(—l—:l_—z—SGl(r, R, E) + B(R)NOGZ(T', R, E),
where
B(R) = Norlzlﬁ)z\z)' (30)

When calculating the normalization factor N(R), we
performed numerical integration over positive powers
of theargument using seriesfor the Whittaker functionsW
and M [44]. The energy was assumed to depend on the
internuclear separation via relation (26) of the zero-
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0.1
0.01
0.001 ! ! ! !
0 20 40 60 80
R, at. units

Fig. 1. Normalization factor N as a function of the internu-
clear separation Rfor the H™ + He*™* system.

B,Z=2

;:g? ] n
UL

0 20 40 60 80
R, at. units

—0.5

—-1.0p

Fig. 2. Function B asafunction of internuclear separation R
for the H™ + He*™ system.

order approximation. The question of energy is consid-
ered in detail in Sect. 4. The derived functionsN(R) and
B(R) are shownin Figs. 1 and 2 for Z = 2. The normal-
ization factor N(R) is seen from Fig. 1 to have sharp
peaks for term crossings, when E = E,, = -Z2/2r2.

Far from term crossings, when the integrand in (28)
is large and the normalization factor N(R) is small, the
exponentially increasing term is dominant in the linear
combination (19) (the argument of M varies over the
range 0 < 1, < 2R/V). Alternatively, near crossings, the
exponentially decreasing term is dominant in (19); the
integrand in (28) issmall and N(R) islarge.

Figure 2 shows the function B(R). Far from term
crossings, when the exponentially increasing term is
dominant in (19), B(R) iscloseto 1. In this case, in the
normalized Green'sfunction (29), thefirst termwith G;
is small, while the second term with G, matches the
unperturbed function (13). The second term in (29) is
given by expression (25) at any distances R, while at
energy of the zero-order approximation (26), when
Vs =V, the second term in (29) and, hence, the entire
ionic function ®(R, r) are close to the unperturbed
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function (13). In this case, the electron stays mainly
near the negative ion. For term crossings, when the
exponentially decreasing term in (19) becomes domi-
nant and B(R) decreases to zero, the electron moves to
the positively charged center. The first term with G;
becomes dominant in (29).

Using the spectral representation (6) for Green's
function, we can write a similar representation for the
wave function of the outer electron,

PR,r) = Z C.(BE)W.(R, 1), (3D

where the normalized adiabatic wave functions of cova-
lent states W,(R, r) are determined by the sums over
degenerate Coulomb states:

n-1 |
1
ViR 1) = —= WD Wnm(R)
Q“(R IZOmZ—I | |
n-1 | (32)
= Z z ‘]nlm(R)qJ:Im(r)!
I=0m=-
— lIJnIm(R) —
‘]nlm(R) - Qn(R) Il-pnlm(r)q'}n(Ry r)dr’ (328-)

while the expansion coefficients C(E) and the sum
Qu(R) are

21NoB(E) 12

CuB) = —2g—Q (R, (33)
n-1 1

QR=S Y [WunR) (34)
I=0m=-

Note that using the summation rule for spherical
functions Y, [43]:

+
T Vi) Yiulva) = ZE2P (cosa),

m=-

where a isthe angle between unit vectors v, and v,, the
sum in (32), in terms of which the function W (R, r) is
expressed, can be written as a single sum only over
guantum number I

Qn(r, R) = Z lI-J:Im(r)Ll'lnlm(R)
Im

(35

(36)

n-1

- 4_1112 (21 + 1)P,(cosB; ) f () fu(R).
=0

It follows from (36) that Qn(r, R) does not depend on
the z-axis orientation in the coordinate system in which
the functions Y, (r) were defined.
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Analyzing the limit of Coulomb Green’s function
for E — E, allowed the sums (32) and (34) to be
expressed in terms of the quadratic form of the wave
function only for one state with zero orbital quantum
numbers, | = m= 039, 40]:

Qu(R, 1) )
n(R r) -
JQR)

(37
Qn(R ) — 4Z (pnO(Ty)(pnO(T:)_?no('[y)(pno('[x)
R
QR = 3 Wan(Rf = B
0 2 _ oo(Pﬁo(r) (39)
2Lk, + Zg2(R) = 2z gr,
+ an+R:|(pn0( ) J. r2 r
@) = Woelr), Ty = 21 + Rt |r —R(].

It followsfrom (36) and (37) that W, (R, r) arereal func-
tions. From (38), it follows that Q,(R) is nonzero at
finiteR[but Q,(R) — 0 asR — o], because theinte-
grand on the right-hand side of (38) is positive. We also

see from (38) that zeros of the derivative Q,(R) coin-

cide with zeros of the function @(r); hence, Q,(R)
decreasesto zero in stepsas R — o« (see Fig. 3).

2.2. ANegative lon
with a Nonzero Orbital Angular Momentum, L = 1

To investigate the energy levels of the A~ + B#* sys-
tem with anonzero orbital angular momentum of the A~
ion and the parameters on which these energies depend,
it is convenient first to introduce a coordinate system
with the z axis directed along the vector of internuclear
separation R. The energy of the system under study
depends on the internuclear separation of the colliding
particles and on the absolute value of R, but does not
depend on the direction of vector R.

Thethree angular components{x, y, zZ} of the unper-
turbed wave function for aweakly bound electron with
orbital angular momentum L =1 are

Xol's)
cDO{xyz}(rb) = Or :
b
3 . L (39)
X 471{ cosB,, sinB,cos@,, sinb,sing} ,
r, = r—-R,
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Q(llj)

10_2 T T T T T

Z=2
10-4L 1 n=6
1076 2 ]
3
1078 ]

1 1 1 1 1
0 10 20 30 40 50 60
Distance R from He™™ nucleus, at. units

Fig. 3. The sums of products of the Coulomb functions over
angular quantum numbers| and mfor Z=2 and principa quan-

tum number n = 6: 1—Qy(R) [Qﬁ]o’ O)(R) ], formulas (38),
@00); 2—Q"Y(R), formulas (96), (100); and 3—

Q®2(R) , formulas (97), (100).

where the radial function X(rp,) is the solution of the
equation

d’ Xo(rb)
drg

[ (0= V(ry) -

L =1

L(L + 1):|X0(rb) - 0’

2
Mo

(40)

The azimuthal angle ¢ is measured from the collision
plane.

When substituting the wave function (39) and the
expansion of Green's function (11) in the right-hand
part of integral equation (10), we find the integral (10)
of thefirst term of expansion (11) to be zero. For aneg-
ative ion with orbital angular momentum L = 1, the
two-center ionic wave function is given by the second
term of expansion (11), and, hence, it is proportional to
the derivatives of Green’s function

0G 0G 0G

CDXD&r'ﬁR’ CDDW , CDDErﬁR (41)
with

0G _ r(1-2zv)FAM, W

v = —cos0 , 42
37|, = b 2m Ir —R| (42)
G - o r-zv)F{M W

vs = —sinB,cos , (43
aX' - b (I)b 2.,.[ |I’—R| ( )
0G| = _gng,sing,~A=ZWEAMM

ay, - b (I)b 2.,.[ |r—R| ( )
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Here, 6, and ¢, are the spherical angles of vector r, =
r — R in the coordinate system centered on the nucleus
of the negativeion A~

z-7 . X—X
cosB, = ﬁ sin®,cos¢,, = ﬁ
(45)
sinB,sing, = IT? le

Xr YR @Nd zg are the components of vector R in the
coordinate system centered on the nucleus of the posi-
tive ion. If the z axis is directed along vector R, then
Zz=R Xz=yr=0,and FXYZ{M,V\/} are

FAM, W E\%WM'

1  ZVR-r WM' —=W'M (46)
Ol 4vR-m _WM =WM
+D2V+RR—23WM R—r|
F =2 '
Xy{M,W} =\—}WM
(47)
01, 2Zvr+Ry WM' —W'M
+ | ——————
Dzv Rr+2z0 IR—=r|

FAM, W} = F{M, W} = F,,{M, W} and x, y, zarethe
components of vector r.

The asymptotics of the radial unperturbed function
Xo(ry,) [see Eq. (40)] is governed mainly by the centrif-
uga potential. The atomic potential, which is deter-
mined by the polarization interaction V(r,) — —a/2r§
at large distances, may be disregarded. The asymptotics
of Xo(r) isthen®

N(l)%L + 1

The coefficient N(l) = 0.112 was calculated by numer-
ically solving Eq. (40) using the model potential V(ry)
from [26, 27].

If we use the semiclassical approximation (24) for
the Whittaker functions [7], substitute them in (46)
and (47), and expand on conditionthat [r —R| <€ R, then
we obtain for F, . { M, W}

exp(—vrb) (48)

Fo=Fy= i+ o geP(Yaall =RD), - (49)

here, the constant v, in the semiclassical approxima:
tion isdefined in (25). Expression (49), to within acon-
stant factor, coincideswith (48) if theionic-state energy
isgiven by the zero-order approximation (26) at Y = V.
Thus, the constructed functions (41)—(44), (46), and (47)
satisfy the necessary condition: at large internuclear

2 Note that (48) is an exact solution of Eq. (40) at V(rp) = 0.
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separations [see condition (12)], they coincide with the
unperturbed functions near the negative ion.

Theregion of large distances from the nucleus of the
negative ion mainly contributes to the normalization
integral, but the contribution from asymptotics (48)
and (49) diverges when r, — 0. Therefore, the spe-
cific expressions for the three components of the two-
center ionic wave functionsfor L = 1 were chosen to be

1) = COSe" B, W, (50)
o) = nyway{m W, (5)
o) = Nxﬁi‘—e—*;-:‘i@—bﬁxy{m,vw, (52)

where the following relation was used for each of the
three components:

0 27X(1'y) ro<pO
Bimow = Jra-zn) (53)
%:{M!M ’ rbzrb

The function x, was determined by numerically solving
Eqg. (40). The joining point rg = 25a, was chosen in

such away that the solution of Eq. (40) for r, > rp was

close to the asymptotic expression (48). The model
atomic potential V(r,,) for Cawas taken from [26, 27].

The normalization constants N, ,, of ionic func-
tions (50)—«52),

) i —1/2
U A2 2 . 0
N, = DZnIdrbIcmos 0,sn6,d6,0 (>4
O 50 [l
N Enmd nﬁz in’0,do T (55)
w = r[Fyxsin ,
y D-!: b-!)- y b tH

were calculated by using expansions of the Whittaker
functions in terms of positive powers of the argument
[44] and anumerical solution of Eq. (40).

Similar to the case of L = 0, the ionic wave function
for L = 1 can be written as

(1)J_1T oG(r, r', E)
(R r)_N xyz( )m r':R,
ny Y, z(E)
N /3/anr(1-2zv)

The numerically calculated functions N(E) and B(E)
(using the zero-order approximation for energy E) are
similar to these functions for L = 0 (see Figs. 1 and 2).

(56)

xyz

Bx, Y, AB)= (57)
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Using the spectral representation of Green's func-
tion (6), wewrite asimilar expansion for theionic func-
tion:

O, AR T) = ZCE’V’Z(E)‘P?’Y’Z(RJ), (58)
here, the normalized wave functions
x z X, Y, 2 -1/2
2R ) = (Q(R)
(59)

OYnm(R)
Z l-IJnIm( )a{ le,

are linear combinations of the Coulomb wave functions
Wrrn(r) with the same principal quantum number n and,
hence, with the same energy. The expansion coeffi-
cients and normalization factors are

(1) X, z
Cﬁ'y'z(E) — N /\/_T[Bxyz(E) y ’ (60)
QR = Y |2unl®) z‘ ,
Im
n alIJnIm(R) 61
i (61)

2\

with the last two sums with subscripts x and y being
equal.

For a complete basis of adiabatic wave functions to
be constructed (see the next section), function (59)
must be expressed in terms of the sums of Coulomb
functions ,,,, in the coordinate system with the Z axis
perpendicular to the collision plane and with the X' axis
directed either along the impact parameter (rectilinear
trajectories) or along the vector of the smallest separa-
tion (Coulomb tragjectories, timet = 0). This system of
X, Y, Z coordinates does not rotate during a collision.

Note that the sum ZIm PN W, m(R) does not depend

on the coordinate-system orientation (see above). There-
fore, to pass to the new system, we need only to redeter-
mine the derivatives. Since the x axis of the rotating coor-
dinate system used in this section coincideswiththezaxis
of the new nonrotating coordinate system, it is clear that
(d/dx) = (d/d2). For the other two pairs of coordinates, we
have the following obvious relations.

4. CosQ d sing <
dz Rdx Rdy"”
d . —sing d + COSQ, d
dy Rdx' "dy"”
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Expressing the derivatives with respect to X' and y' in
terms of the derivatives with respect to spherical coor-

dinates R, 8, and ¢, we obtain the function W) ” 4R, r)
in the new nonrotating coordinate system:

ViR 1) = 3 Win(n) Jain(R),
Im

OYnin(R)/00g

RJQR

qu(R I’) - zl-l"nlm(r)‘:J Im(R)

‘]r):lm(R) =

62
annlm(R)/a(pR ( )

RJVQA(R)

WIR 1) = 3 WinD)Tan(R),
Im

Jﬁlm(R) =

allJnIm(R)/aR

JoER

where 6 and ¢, are the spherica angles of vector R; the
polar angle B isconstant and equal to V2 during theentire
collision, because the Z axisis perpendicular to the colli-

sion plane. The normalization factors Q) ¥ “(R) are

‘]ﬁlm(R) =

X _ 1 alIJnIm(R)2
R = 5 [WunR)?
QR R.Z‘ L

QiR = y |MunR)" (63)
Im
R = o | Wanl®F = %5 il (R
Im Pr Im

and do not depend on the coordinate system (see Sect. 4).

Since the wave functions W) (R, r) belong to the

states with nonzero components of the orbital angular
momentum along the R axis, these functions are zero if
vector r is directed along vector R. Indeed, the azi-
muthal angles of these vectors are 02 in this case. The
associated L egendre polynomialsin (7) and their deriv-
atives at 6 = 172 are [44]

[ml
NimP1™(C0S8) | s - o = N,m2
L0+ Imi + 1)72) - ©9
+m + Tt
o S50+ M+ D),
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dP™(cos0) N olmi +1
™ dcos® | eso = Im™
0=0 Jm (65)
r[1+(| |m|)/2]

| 50+ m) |

We see from the definition of W)(R, r) that for r || R,

this function is proportional to the product of expres-
sions (64) and (65). The latter product, in turn, is pro-
portional to the product of sines

sin[’-z‘(l |mf + 1)}sin[g(| ¥ |m|)} -

which is zero for any integer | and m. Thus, in the sum
defining W}, either the function Y, or its derivative
0Y,,/00 are zero at 6, = B = 2.

The sum defining WY(R, r) in (62) isalso zero for

r || R, because the azimuthal angles of these vectorsare
equal in this case, @ = k. This sum can be written as

alIJnIm(R)

F[(I —|m + 1)/2]

(66)

_nl

anlm(r) 21'[2 fnl(r)nt(R)

m=+| (67)
2
x 5 mNLPMO)" =
mZ—I

The expression under the modulus sign in the last sum
depends only on the absolute value |[m|. After multipli-
cation by m, the contributions from +|m| and -|m| to this
sum cancel out for any |m|, and, hence, the entiresumis
zero.

Functions (62) are mutually orthogonal; the corre-
sponding integrals are proportional to expressions (66)
and (67), which are zero. The functions W, *(R, r) for
L = 1 areaso orthogonal to W, (R, r) for L = 0, because

they belong to the states with different components of
the angular momentum along the internuclear axis. The

integrals of W, W), and W, W) are proportional to the
product of sines (66) and to the sum (67), respectively.

3. PROPERTIES OF THE COULOMB
GREEN’S FUNCTION AND A COMPLETE BASIS
OF ADIABATIC WAVE FUNCTIONS

A Coulomb system possesses a symmetry [43],
which manifests itself in the degeneracy of its energy
levels. This symmetry affects the properties of Cou-
lomb Green’s function, whose spectral expansion (6)
can be written as

(QR)*W (R, 1)
E,—E ;

GR,r,E) = )3 (68)

n

where W (R, r) are given by formula (32).
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For each principal guantum number n, linear combi-
nations can be constructed from n? wave functions of
degenerate states, which will be the wave functionsin
the new representation. One of these functionsisW,(R, r)
in the spectral expansion of theionic function (31). The
remaining functions, designated as W, (R, r),

WanR®). 1) = 5 CoimR)Wrm(),  (69)

Iym

are absent from (31). The functions W,(R, r) must be
orthogonal between themselves and orthogonal to W,
Consequently, the degenerate Coulomb basis can be
reconstructed in such a way that only one of the new
functions, W, (R, r), will be present in the spectral
expansion of Green's function (68), while W, (R, r)
will not be present in this expansion.

In our problem, since there are no W, (R, r) in the
spectral expansion of Green's function, the ionic term
interacts only with one covalent state, while the ener-
gies of the remaining degenerate states W, do not
change and are equal to the unperturbed Coulomb ener-

gies, EY = —Z2/2r2. Nevertheless, the latter states are

not absolutely passive. They can be populated during
captures (1) and (2), because their wave functions
W.m(R(1), r) aretime dependent and because the matrix
element of thetime derivative between themand W, (R, 1)
is nonzero. Thus, the complete basis of adiabatic states
includesboth W, and W,,,, states, and our goal now isto
construct the functions W, ,,.

The possibility of reconstructing the Coulomb basis
of eigenfunctions to study electron scattering by a sys-
tem composed of many small potential wells was
explored in [46], but the specific agorithm for con-
structing an orthonormal basis was not discussed in
previous papers [33-36, 46].

To find the reconstructed orthonomal Coulomb basis
of elgenfunctions, we assume that one of Coulomb func-
tions(7), W,,m isorthogona to W, from the outset, so that
Jau(R) = 0. Let us consider the combinations

L = O, l'I',nlm(R’ I') = LIJnIm(r) (70)
= Jam(RIWPh(R, 1) + Wi, (D], {1} 2Ap},
_ x Y, Z,
L= 1 nIm (R r) lI-Jnlm(r) (71)

= Jnim (RWH (R, 1) + Wi ()]
Each of these functions is orthogonal to W, (L = 0), or

to W' (L = 1). For the mutual orthogonality, for
example, of W, (R, r) to be established, we must cal-
culate the integral of their product

J‘l'l',nlml'l',nl'n’rdr = 6II'6mm'_2‘]nIm‘];’1cl'm'
(72)

+ 'Jnlm nl' mI'qJn(R r) + LIJn)\p(r)| dr.
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Since Y, (r) is orthogonal to W(R, r), the integra on
the right-hand side of (72) isequal to 2 (Y, and W, are
normalized to unity), and the sum of the second and
third termsin (72) is zero. The sameistruefor L = 1,
therefore, each of the functions (70) and (71) isnhormal-
ized to unity and orthogonal to all the other functions:

J'LIJ:Im(Ri r)LIJnI'm'(Ri r)dr = 6II'6mm'v (73)

[WRR RN WEIR A = 880 (74)

Atl =\ and m =y, the equality ¥, = Y, holds
for the functions (70), because Y, is orthogonal to ¥,
(L =0), and the second term in (70) is zero. Therefore,
the function (70) with orbital quantum numbers A and
 is not orthogonal to the functions (70) with | # A and
n#m. Thisis aso true for L = 1. Consequently, for a
given principal quantum number n, the number of

orthonormal functions W,,,or Wn%.* isn2—1. Together
with W, or W7 ”*, the total number of functionsis n?,
as must be the case.

The proposed orthogonalization method, formu-
las (70) and (71), isgeneral. It isbased on the existence
of Wy, Whichisorthogonal to the active-state function
W, from the outset. For this method to be applicable to
our problem, it must be shown that Y, actually exists.

In the introduced coordinate system with the z axis
perpendicular to the collision plane, the polar angle of
vector R is a constant during the collision and is equal
to Bz = 2. The functions Y,,(R) and their derivatives
with respect to x and y are proportional to the associated
Legendre polynomials at cos® = 0, while the deriva
tiveswith respect to zare proportional to the derivatives
of these polynomials. These polynomials and their
derivativesat 6 = 1/2 are given by (64) and (65), respec-
tively. We thus see that P|™(0) as well as 1,,(R) and
its derivatives with respect to x and y are zero at even
| +|m| + 1, while the derivative with respect to zis zero
atevenl +|m|(orodd| + |m| + 1). Theintegrals J,(R),
formulas (32a) and (62), are zero at these orbital quan-
tum numbers | and m. Consequently, the Coulomb
functions Y,(r) with even | + |m| + 1 are orthogonal to

W, and W, but not orthogonal to W7 . Atodd | + |m| + 1,
W are orthogonal to W, and not orthogonal to W,

and W7,

Thus, inour problem, thefunction Y, (r) existsand
is not unique. For each n, the number of such functions
is approximately haf the number of all degenerate
states, i.e., =n?/2.

As we see, the solution of the orthogonalization
problem depends on the choice of the coordinate sys-
tem. In the coordinate system we chose, this solution is
simplest, because the polar angle 6 of vector R is 172
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during the entire collision for both rectilinear and cur-
vilinear Coulomb trajectories. The trajectory must be
plane, which is the case for central forces. The pro-
posed method of constructing a complete orthonomal
basis is based on the specific form of active-state func-
tionsW,(R, r).

Each principa quantum number n hasits own set of
orthonormal functions {W¥,, W,.}. Any function from
set nis orthogonal to any function from set n' (n' # n),
because these sets are constructed from different sets of
Coulomb functions, respectively, from @, and Wy
which are orthogonal between themselves.

The functions W, given by (70) are zero at r = R:
W, m(r =R) =0. Thisfact is determined by the specific
form of active-state function W, and by its orthogonal-
ity to W, i.e, it results from the degeneracy of Cou-
lomb energy levels attributable to Coulomb-field sym-
metry [43, 47].

Theionic wavefunction (31) is constructed from the
wave functions of only active states. Consequently, the
wave function of any passive state Y, (R, ) is orthog-
onal to the ionic function (31). By contrast, any active-
state function W (R, r) (L = 0), is not orthogonal to the
ionic function W(R, r) [see formula (31)]. The integral
of their product is equal to the coefficient C.(E) [see
formula (33)]. Based on the same method used to con-
struct the orthonormal system of functions {W¥,, ¥t
given by formulas (70) and (71), we construct the func-
tions

L=0, YR 1) =W(R,r)

(75)
—CiB)IPR, ) + Yppp(r)],
_ T Yz _ XY, 2
L=1 WY,"(R,r) =¥ " (R,r) (76)

_C)ri v Z(E)[cbx, Y, z(Ri r) + qJn)\'p‘(r)] '
XY,z

where Y, is orthogonal to W,,, ® (L=0) orto W, ",
®, ,,, (L =1) (the orbital quantum numbers A" and |’

differ from A and ). The functions ¥, and Wy *'* are
orthogonal between themselves and orthogonal to the
ionic functions ® and @, , , and to the functions of pas-

sive states W, or Whi? (A # \', 2 W). In addition,

the functions (75) and (76) are normalized, because

J'|qJn(R,r)|2dr = J’|wn(R,r)|2dr =1, (77

and asimilar relation holds for L = 1.

Next, we must calculate the adiabatic matrix ele-
ments of the time derivative. Since the z component of
vector R(t) is zero,

d -0 -0
at - TarT Pag
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The matrix element between W,,,,, and W,, isthen given by
L=0,
d¥ (R, )
Va"(R) = [Wnin(R, 1)— g —ar

— d‘]nlm(R) — 1
dt JQR)

[' M@rY,m(R) + menlm(R) * Z0nim(R) q(JQn()((FF%;)E}

and does not depend on quantum numbers A and .
When calculating the matrix element (78), we used the

(78)

expression for the derivative
dQn — 2
= = ~2Z0w(R),

which follows from the definition of Q.(R) in for-
mula (38). For L = 1, these matrix elements are

L =1,

oW yz(R r)

Vi) = [WR ) .

= Bpegmr + R ®)

and do not depend on quantum numbers A and [ either.
The derivatives with respect to azimutha angle ¢ are

al-I*'nlm(R)
0%inR) _ .~ 0R

0% Jr
al~|Jnlm(R)
dJam(R) _ o 98g (80)
0% RJQUR)
nIm(R) mqunlm(R)
9%s RJQIR)
and the derivatives with respect to R are
0yR) _ 1
R Jm -
QR ~Wi(R) 1, 1 000Www(R)
0 2RQ((R R RIRg 06
nIm(R) — im
R YR
NQ(R) ©)

100

GOV 1 105, o)

0 2RQR R
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a‘]rzﬂm(R) — =2
oR z
R
QR &)
s ;_|(| +1) % (wno(R))
DE + ZQH(R) Da llJnIm(R)'

Thesums Q)" *(R) andtheir derivativeswith respect to R
are calculated in the next section.

4. THE SUMS OF PRODUCTS
OF THE COULOMB WAVE FUNCTIONS
OVER DEGENERATE STATES

In this section, we calculate the sums of products of
the Coulomb wave functions with negative energy,
which are present in the wave functions of covaent
states constructed in the preceding section. The prod-
uctsare summed over orbital quantum numbers| and m.
Based on the anaysis of Green's function by Hostler
and Pratt [37, 38], the authors of [39-41] calculated the
sum

Q. R) = Y Wi Wain(R)
I,m

4Z (pnO(Ty) (pnO(Tx) (pnO(Ty) (pnO(Tx) (84)

n2 T,-T,

Ty = %[r +Rz|r-R]],

which is equal to the wave function (32), to within the
normalization factor. In his papers[47] devoted to four-
dimensional symmetry of the hydrogen atom, Fock
studied a similar sum, but for the wave functions in
momentum representation.

By analyzing aTaylor expansion of the sum (84), we
can obtain the sums of products of the derivatives of
arbitrary orders of Coulomb eigenfunctions with
respect to the absolutevalueof R atr = R:

Z d llJnIm(R)d llJnIm(R) ]

i —
n R) =
R drR dR’

(85)
I,m
To calculate the sum (85), let us consider the limit of

relation (84) for r — R when point r moves along
vector R and when

_ 2ZR _ _2Zr
T, = =— =const, T, = —,
n n
_ 2Z(R-r)
T,-T, = ————.
n
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The expansion of the sum from (84) in a Taylor series
in powers (r —R)"is

Y WD) Wan(R) = z [Wan(R)|°
I,m

R)zd”’“'”‘(R)wn.m(R) (@)

- d
+ +(I’ k!R) Z LI:;II::](R)LIJnIm(R)"'

I,m

and the expansion of the right-hand part of (84) is

o) Pno(R) = Pro(N Pro(R) _ ﬂj(Pno(R)D
R—r 0 gr O
d 3 R _ k-1
WG] ‘O‘I’Fz” AR g
d cpno(R) d“" g, (RD

X ECPho(R) = Qnol )—_TJT“D +.

Comparing these expansions and equating the terms at
the same powers (r — R)kyields

d llJnIm(R)
dR’

L@ RIENR) - ¢ 2 (Ra(R),

Qv (R = zwn.mm)
(88)

RS
where ¢f) = dig/diR. For the special casesj =0 and 1,

we obtain the two previously calculated sums [39-41]
from (88): the sum (38) and its derivative

TR = 2z4%(R).

Calculating the higher derivatives of (pLO with respect
to Rwhen differentiating the wave equation (18), we find

the sums Qﬁo’ D for the special casesj = 2-5:

SRCE an.mm)d Bt

o’ fn,

= > G R

A A GCY

" fég(mﬁo(m — Reu(R)Gho(R).
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%R = an.m(R)d Ynn(R)
2l+1; d’ fn z O
=2 e R = SPOR
0
+ [Zazn + %— R§2:|(pﬁ0(R) + %¢nO(R)%O(R) %
) d*Yn(R
(0 )(R) Zl‘pnlm(R) llJ| ( )
d'f )
ZZ|+1 n|( ) nI g[azn.p% _Ri| (00)(R)
| 327 37 3 (91)
_Q[E” * SR o)
87 Z 9 '
* S_RZ[E” "R™ 2_Rz:|(pnO(R)(pno(R),
7 = 5 vy el
— 21 + 1 d° fnl
- IZ 47T nI(R)
= _L-%E:E }Q(o O)(R) @)
R
1[2E *35 8}<pno(R)<pn0(R)
Z 7 5 2 0
+[%n+% n+§_5—5_R3 ﬂ%}cpﬁo(R)S

Differentiating equality (88) with respect to R, we
derive the relation

Y U RWIHR) + z Whn(R)Wiin (R)
Im (93)

(2) (i+1) (j+3)
——(@roPro  —ProPro )

J+1

The second sum in the left-hand part of thisrelation is
equal to the sum (88) withthechangej — j + 1, sothe

sumsfori=1are
dWhim d Po(RIgh (R
(L.1) “tnim & TnoATV¥no ATY
Q (R) Z dR llJnIm( ) J+1

(94)

cpn%}(R) Gho' ”(R) (R (R
j+2 (+1)(+2)°

No. 2 2001



268

A similar differentiation of EqQ. (94) with respect to
Ryields the sums Q\"” fori = 2:

(2 ]) d lI-Jnlm_gj_
( ) Z dR dRJlIJnIm( )

3’(R)<pn’o*”<R> 90 (R g0 (R
j+1 (J+1(+2)
2¢0(Re6 (R 20(R e (R
(J +1)(+3) G+ +2)(j+3)
By continuing the differentiation, we can calculate the
sum Qf,i’ D for any i and j, but theresult rapidly becomes

unwieldy. Below, we give the sums for the most inter-
esting particular values of i and j. We have

(11) _ 2
(R = %—dR

- S

+ Z—é((pﬁo(R) —2R¢,(R) 9o(R)),

(95)

2l + 1 f (R
4t U drR O

Q<° R (96)

fori=j=1and
@2 = 2 + 10 fm(R)D
QA (R %_—_dR zmmm
4 2 27
ﬁ%w% +Z]g0 R
97)
Z 0 _Z_27p2
—R?,[S%wFéj < Rz}cpno(R)

Z 2
SRS Dcpno(R)cpno(Rm

fori=j=2.

Differentiating (96) with respect to Ryieldsasimple
expression for thesumwithi =1andj = 2:

Q2(R) = zdwnlmd Wnim

dR (r? (98)

_1d

(1 1) ' 2
= SRV IR = —Z(Wid(R)?
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Differentiating (97) with respect to Raso yieldsasim-
ple expressionfori =2 andj = 3:

02I(R A (R) W m(R)
(R = !
Z dR drR® ()

2
- 1d 4(<p§o(R>)‘.

Q2R = —Z(y; (R))Z—
ZdR no

Integrating (98) and (99), wewrite Q, (=Q* ), Q"
and Q(2 D as

QR = 2zpu§o(r)dr,

Q"U(R) = 2z j(tu'nofdr, (100)

QP?(R) = zzIE{wno(r)>2+ () o

ThesumsQ,, Q" , and Q*? are shown in Fig. 3

asafunction of internuclear separation R. They have no
zeros at finite R. All the calculated sums are of interest
not only in analyzing collisions between negative and
positive ions, but also in the physics of highly excited
Rydberg states [48].

For the system A~ + B?*, where the negative ion has
the orbital angular momentum L = 1, the sums of prod-
ucts of the Coulomb functions (62), which define the
wave functions of active covalent states, are calculated
inaway smilar tothat for L = 0. It isnecessary to anayze
the limit of Coulomb Green's function for E — E,. We
obtained for the functions (62)

llJ:| m(r) dlpnlm(R)
WiR,r) =
2 feim R
47°%cosb,

n’lr —R[JQX(R)

< [(P;]o(Ty) Ono(Ty) — @no(Ty) Pro(T)
T, Ty

(101)

)it + B3+ S (0 )atr) |
qJ{Xy}(R r= z llJﬁhm(f) OWnn(R)

= JQ R X |
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47°sin6,{ cosH,, sin6,}

n’lr —RIJQ:Y(R)

(102)
y [(Pho(Ty) Gno(Ty) — Pro(Ty) Pro(T)
T, T,
o)t + B3+ R () )]

These functions have no polesat r = R.

To cdculate the sums (63), many expansion terms for
these functions must be andyzed in the limit r — R,
which complicates the problem. Below, we therefore
calculate the sums (63) by a different method.

The sum Q’(R), formula (63), is equal to the sum
Q" P calculated above, formulas (96) and (100). The

sums QY formula (63), are equal and can be written
as two expressions:

X,y R =
SCRDIE I
(103)
= i al~|Jnlm(R) 2 = l allJnIm(R) 2
RZZ 00  |e=mw2 RZZ 90 |e-0

Im Im

Thevalues 6 = 172 and 0 correspond to the cases where
the z axis is perpendicular to the collision plane and
directed along R, respectively. The summation result
does not depend on the choice of z-axis direction. We
use the coordinate system with the zaxis directed along
vector R. It follows from the representation of the asso-
ciated Legendre polynomial as the full hypergeometric
function [44],

)™ (1 +|m))tsin™ ()
2™ mit (1 =|m)!
xF(m =1; 1 +|m +1; m +1, sin2(6/2))

that the derivative with respect to angle® at 8 = 0 is
nonzero only for the angular momentum components
m=+landis

dP/(cosB)
do

Using this result and the expression for normalization
factor N, (9), we transform the sum (103) to

P"(cosB) = (-1 (104

__lg+1)

> (105)

6=0

Qﬁ y( )— Z‘awnlm(R)

6=0

(106)
- 8LIZ(2| + DI+ 1) F3(R).
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Calculating this sum can be reduced to calculating
1+ 1) W (R)|?, which, using the summation
theorem for spherical functions (35), can be written as

(| |+1)(R) Zl(l + 1)|llJn|m(R)|
(107)

1 2
=N 2+DI(+1)f(R).

The sums (106) and (107) differ by the |- and m-inde-
pendent factor (2R)2. Having calculated (107), we
therefore also determine the sum (106).

To calculate the sum (107), we expressI(l + D), in
terms of f,, df,,/dR, and d’f,/dR? from the wave equa-
tion (8). Thereafter, (106) and (107) can be expressed in
terms of the sums that have already been calculated
above and take the form

Q" (R) = ZI(I + 1)|llJn|m(R)|2

Im

- 4_1112(2' +DII+) AR (109

= R Z10,R) - 2[R + Rou(RI(RI

<25

QV'(R =

2R (109)

=2+ R]Qn(R) [cpno(R) + Ro(R)ho(R)].
Thesum Q7 formula (109), is shown in Fig. 4 as
a function of internuclear separation R in comparison

with Q%(R) [or Q" Y(R)], formula (96). The two sums

are positive for al R. However, whereas Q;, decreases
in steps in the classically permitted range of distances R,

QrY(R) haveindistinct bends instead of steps. Most of
the other sums given above also exhibit a peculiar
behavior asfunctions of R. All the sumswere calculated
both by using the derived quadratic forms of @, and by
direct summation over | using the Coulomb functionsf,,
(9). Theresults have always been in close agreement.

5. THE APPROXIMATION
OF A DISTANT TERM CROSSING

In the preceding sections, the energy E and internu-
clear separation R of the A-+ B%* system were assumed
to beindependent parameters. In this section, we cal cu-
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Distance R from He*" nucleus, at. units

Ell’ Y and Qﬁ’y asfunctions
(L1
n

Fig. 4. Comparison of the sums Q

of internuclear separation R 1—Q; 7/(R) , formulas (96),

(100), and 2—Qy Y(R) , formula (109).

late the energy E as a function of internuclear separa-
tion R. In the zero-order approximation, thisenergy fol-
lows the law (26), from which we derive the distances R,
of term crossings:

Z Z

€n—— = ,—>R = i
0 Rn n n 8O_En

(110)

For internuclear separations R = R, near distant term
crossings, where R, is larger than the size of the corre-
sponding Coulomb orbit for a covalent state, the matrix
element between the ionic and covaent states is small
compared to the difference between the Coulomb
terms, Z?/n3. In this case, the two-level approximation
may be used for the adiabatic wave function:

PR,r) = ZCn(E)‘Pn(R, r

Im

=B(E)Po(IR -r]) + CAB)W\(R, 1).

In this approximation, the ionic state @, interacts with
the active adiabatic state W, (R, r) that belongs to only
one principal quantum number n. Separating the reso-
nant term W, from expansion (31) does not affect the
form of ®,, because the coefficients C(E) are small far
from a quasi-crossing. Using relations (33) and (60)
between the coefficients C,, and the function B, we
obtain after normalizing the function (111)

(112)

O AEXR O
1 = BXE) + C4E) = BYE)[L + — :
0 (E—En)% (112)
|E_En| < |En_En:1| = Zn—31

because the overlap integral [@,|W,[is zero due to the
orthogonality of W,and W, atn#n'.
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For negative ions with orbital angular momentaL =0
and 1, AE,(R) are

AEL(R) =2mNo/Q,(R), L = 0, (113)
(1)
AR =N R L s (e

Y
Equalities (113) and (114) follow from formulas (33)
and (60), while the sums Q,(R) and Q" %(R) were cal-
culated in the preceding section.
We derive the function B(E) from (112). Substitut-
ing it in (33) and (60) yields C,(E) as functions of
energy near term crossings:

B.E) = (E-E)[(E-E,)?+AEXR] ™, (115)

C.E) = -DE(R[(E-E,)?+AEXR] ™", (116)

(E_ En)

Con(E) = -A E”'(R)(E_—TE_S

(117)
x[(E—En)® + AEXR)] ™,
E=E,

Expressions (115) and (116) are the zero-order
approximation of a distant crossing, while (117) is the
next, first approximation. We see from (115) and (116)
that near a quasi-crossing, where |E — E,| = [AEL(R,)|,
the coefficients C,, and B, are of the order of 1 in abso-
lute value, while for the other covalent states n' # n
which the ionic term does not crossin the range of dis-
tances under consideration, the coefficients C, ;(R,)
aresmall:

n'#n.

AEL(R)B 1
-E

n n

nzn, |C,.(Ry) D‘

Let uswriterelations (115)—(117) by using the zero-
order approximation for energy (26). For any n, the dif-
ference Ey(R) — E,, can be written as

R-R,
RR, "’
which is an exact expression, not an approximation.
Substituting (118) in (115)—(117) yields B, C,, and C,,

as functions of internuclear separation R rather than
energy:

E(R-E, =2

(118)

B.,(R) = (R-R)[(R-R)*+AR(R] ™, (119)

C.(R) = -AR(R[(R-R,)*+ARYR] ™, (120)

(E«(R) -E,)
Cy(R) = -ARy(R—=—-
(R R E5, .
x[(R=R,)*+AR(R)] 7,
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where

RR,

AR(R) =—

AE(R). (122)

Notethat at R=R,,

AE (R
AR(R) = SR,

where the force

Z
F,= =.

n Rﬁ

Representing the coefficients B and C as functions

of R allows the two-level approximation under consid-
eration to be compared with the exact calculation
described in Section 1. In Fig. 5, the function B(R) cal-
culated from formula(119) of the two-level approxima-
tion is compared with the result of its exact calculation
at R= R,. The agreement between the results is excel-
lent, so the two-level approximation proves to be very
closeto the exact calculation. For R= R; and R= R;, the
two-level approximation is equally close to the exact
calculation.

The coefficients B and C in (115)-(117) are func-
tions of energy. To determine the system’s energy as a
function of internuclear separation R, note that when
the two-level approximation is considered in detail, the
adiabatic wave functions |, , prove to be linear combi-
nations of the wave functions ¢, , of the zero-order
approximation [31, 43]:

Y, = ag, +bg,, Y, = —be, +age,
_ —1/2
[N+ x

a=|— ,
L 2 x2+A2_
— —7
b = X+ A% —x 2,
L 2 x2+A2_

(123)

where, in our notation, the difference between the diag-
onal matrix elements x and twice the nondiagonal
matrix element A are

X=Ey+Vy —Ey =V, = E(R) —E,
A=2|Vy,.

The equality B,=-C,, = 1/./2 a E—E,=AE(R) follows
from (115) and (116). In turn, it follows from (123) that
these coefficients correspond to a minimum energy dif-
ference between two quasi-crossing terms, when x = 0.
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B
1.0

|
16 17 18 19 20 21 22 23
Internuclear separation R,

at. units (R4 = 20.56)

Fig. 5. Function B versus internuclear separation R for the

H™ + He™ system near the crossing of the ionic term with
the covalent n = 4 term: the solid lines and diamonds repre-
sent, respectively, the exact numerica cdculation and the
approximation of adistant crossing, formulas (119) and (122).

Thus, for the A~ + B#* system under study, we can write
an expression for the nondiagonal matrix element,

Vo, = VIV [O=AE(R), (124)

and an expression for the energies of two quasi-cross-
ing terms,

(EA(R) -E,)

= LE(R -E, J(ER-E + 40EXR),

because the diagona matrix €lement for theionic Sateis

Z

Ho = Ei(R) = &5 (126)

and because the shifts of covalent terms may be disre-
garded by assuming that Hn, = E,. Substituting the
expressions for energy (125) in (115) and (116), we
derive relations (123).

Equation (115) for energy levels contains AE.(R),
which, according to (113) and (114), are expressed in
terms of the sums of products of the Coulomb wave

functionsQ, and Q,*"* calculated in the preceding sec-

tion. These sums are shown in Figs. 3 and 4. Asfollows

from thesefigures, Q,, Q,”"*, and, hence, the nondiag-

onal matrix elements V,, are nonzero at al finite inter-
nuclear separations R, both for negativeionswith azero
orbital angular momentum, L = 0, and for positive
ionswith L = 1.

Thus, the procedure for normalizing Coulomb
Green's function as the wave function and analyzing
theresults allow usto calculate the nondiagonal matrix
elements and to determine the behavior of terms for
each crossing; i.e., this procedure allows the behavior
of the A~ + B* system to be completely described.
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E, at. units
-0.110

-0.120
-0.125

-0.130

2020.56 22 . 24
Internuclear separation R,

at. units (R4 = 20.56)

Fig. 6. Energy terms of the H™ + He** system near the
quasi-crossing of the ionic term with the covalent n = 4
term. A comparison of the results of an exact calculation
obtained when solving a transcendental equation by using
thelogarithmic derivative of Green’sfunction [33, 35] (solid
lines) with the approximation of a distant term crossing
(crosses and diamonds). The dotted line represents the ionic
term in the zero-order approximation, Ex(R) = £5—Z/R.

The system of adiabatic states breaks up into two
groups. The first group includes the states that quasi-
cross the ionic term. The second group includes the
covalent states whose energies are above the energy ¢,
of the unperturbed negative ion and which are not
involved in quasi-crossings. In the two-level approxi-

Tablel. Orbital sizesr,, quasi-crossing positionsR,,, and term
splittings OF,, = 2AE(R,) a& quasi-crossings for the H™ + H*
system

n Iy, a. units | R, at. units | dE,(R,), at. units
1 2.0 2117 1.65271
2 8.0 10.279 1.87672
3 18.0 35.921 2318
4 320 283.005 7.12372%7

Table2. Orbital sizesr,, quasi-crossing positions R,, and term
splittings OE,, = 2AE,(R,) at quasi-crossings for the H™ + He™™*
sysem

n ry, . units | R,, a. units | 8E,(R,), a. units
1 1.0 1.01 5.10871

2 4.0 4.23 1.0591

3 9.0 10.28 3.1262

4 16.0 20.56 7.42973

5 25.0 38.25 7.179%

6 36.0 71.84 5.089°6

7 49.0 152.67 3.556712

8 64.0 566.01 5.158%0
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mation used for each crossing, the adiabatic energies of
thefirst group are

En (R

_1E(R) +En1—Dpuy(R), R2RY™ (127)

_ZD n+1
[(E(R)+E,+D,(R), R<R, -,

DA(R) = JX{(R) + AX(R),
Xn(R) = EO(R) - En- Xn(Rn) = O,

I:'zndl- F'2n+l

A(R) =2AE(R), R''= 5

The two energy branches were joined at point R)"*
between the two closest crossings R, and R, 1.

Theenergy E) " (R) iscloseto the Coulomb energy
E,forR<R,,;andto E,,,for R>R,, ;. Between the
crossingsfor R, < R< R, , thisenergy is close to the
ionic energy of the zero-order approximation, Ey(R)
[see (26)]. Figure 6 shows the energies calculated from
formula (127) in the approximation of a distant cross-
ing for n=4 (R, =20.56) in comparison with the results
of an exact calculation obtained when solving a tran-
scendental equation using the logarithmic derivative of
Green's function [33, 35]. The approximation of adis-
tant term crossing is seen to be very close to the exact
result. Tables 1 and 2 give the internuclear separations
R, a which theionic term crosses the covalent term and
the term separations at quasi-crossings for H-+ H* and
H-+ He™ collisions.

The wave functions of the first group of states are

o (R, T)
HCr A(RPIR 1) + Co s(RAW, (R, 1),
ERz R (128)
=0 . _
ECM(R)%(IR —r)) + CRWL(R, 1),
ERS RV
where
s _ [Du(R) £ X,(R)
Cn(R)_ 2Dn(R) I}
_ . (129)
(R, R=R™'
BE+1(R) — %pz 1( ) n+r;.
C.(R), R<R™.
No. 2 2001
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The coefficients C,, (R) describing the contributions of
the states with principal quantum numbersn' # n to the

. 1
function @, " are

AE(R)

n n(R) - En En

Ci(R), (n'#n). (130)

Thefunction CD'”1 iscloseto W, at R< R,, because

|Cn| =1and C, =0inthisrange. It isgiven by alinear
combination of W, and ®, near the crossing R= R, and
by alinear combination of ®,and ¥, , , near the cross-
ing R=R,, ;. Between the crossings, R, < R< R, .1,

ol ' isclose to the unperturbed wave function of the

n+1

negative ion ®,, when the amplitude B, (R) isclose

to unity and all C; are small. AtR>R,,;, ®2" ' is

=land C,,,; =0inthis

closeto W, , ;, because|C;,
range.

The matrix elements of the derivative with respect to
R for two quasi-crossing active states are

nn+l
Vi_1(R(Y) = D@
_ AN (R, 1) _dc; .dc;
chn 1(R )—dr = Cnﬁ—Cnﬁ
131
_ z 2Ny QR + x(Rieks (13

R JQ,(R)X: + 4(21tNp) *Q,(R)

These matrix elements are nonzero in narrow ranges
AR, near the points of quasi-crossing R,,, and their abso-
lutevaluesat R= R, arelarge:

n B Da Dn' n+1
(Va-1(RO)) max = mn_l,n R=R
] (132)

" 4RAE(R)

Near the nth crossing, the matrix elements between
the active crossing states and the other active states W,,
that are not involved in the nth crossing, i.e., for n' # n,
are also at a maximum. Using the coefficients C,,, for-
mula (121), we obtain

_pndg"  _dC,» _ AE(R)dC,
Un-1(RW) = EFFEH” - dR  E,-E;dR’
n 65”'
UTR) = & (133)
(R(1)) PR, .,
— dC; n _ AEn‘(Rn)d_CJr;
- dR ~ E,-E, dR’
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dCi(R) _ 27
R - i4ﬁn2NoR—2
, (134)
x Qn(R)+Xn(R)(pnO(R)
DrA(R)/D(R) £ x,(R)

The maximum absol ute val ues of these matrix elements
arereached at R=R,,

dC, ~(R)
dR |r=R,
(135)
A En'(Rn) Z

" J2(E,—Ey)4RAEL(R)

These values are a factor of AE,(R)/(J/2(E, — E,))
smaller than the maximum values (132) of matrix ele-
ments (131) between the wave functions of active
states. The matrix elements (131) and (133) are shown
in Figs. 7 and 8.

Thewave functions of the extreme adiabatic States d)é

and CD::+1 (n,, is the highest Coulomb level crossed by

theionic term) are given by different relations than (128)
and (129). These formulas contain only the upper row

with n = O for the extreme lower state <D(1) and only the
lower row with n = n,, for the extreme upper state CDEZ+ !

The adiabatic energies of the states with principal
guantum numbers n > n,, are equal to the unperturbed
Coulomb energies E,. The wave functions of both pas-
sive and active states for these n at dl separations R are,

respectively, W, (R, r) and Wy(R, r) , formulas (70), (71)
and (75), (76).

To conclude this section, we give asymptatic limits
for the term splitting (125), which are valid for distant
quasi-crossings when R, is more than twice the sizer,,
of the corresponding Coulomb orbit:

L =0, SE™R) = 2AE™(R) = J/2ynA(R,), (136)

L =1, BE(R) = 20E;(R)
N(l) (137)
= ’\/_Z [ s( Rn)
SEnyy(Ry) = 2AE;(R)
(139)

:@ Bn(n—1)A(R,)
y 2 R, '
0 2R

3/2
EZDBZR@
A(Ry) = [hD om0 &P —Fo
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Fig. 7. Adiabatic matrix elements, formula (131), versus internuclear separation R between the ionic state and the covalent states

with(@ n=1, 2, 3,4, 5and (b) n =6 crossed by theionic term.

We see from (136)—138) that the asymptotics
OE, ,, contains an additional negative power R™* com-

pared to 3E;(R,) and 8E,(R,), because the asymp-

totics of the exchange matrix element is proportional to
RAm [49].

6. THE SYSTEM OF CLOSE-COUPLING
EQUATIONS AND THE ELECTRON CAPTURE
CROSS SECTION

The evolution of a collisional system with time is
described by the temporal Schrodinger equation for the

0.02 T T T T ]

0.01

-0.01

-0.02

16 18 20 22 24
Internuclear separation R,

at. units (R, = 20.56)

Fig. 8. Adiabatic matrix elements versus internuclear sepa-
ration R between the ionic state near its crossing with the
covalent n = 4 term and the other stateswithn=15, 7, and 9,
formulas (133) and (134). The plus and minus signs refer,
respectively, to one of the quasi-crossing states at R = Ry
and to the other state.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

wave function of an e ectron with coordinater:

ia‘Ptm(R, r,t) _

ot = H() PR, T, 1). (139)

In this equation, the total two-center Hamiltonian H,;
of the system depends on time t, because the atomic
nuclel are assumed to be moving along a classical tra-
jectory which is determined by the time dependence of
internuclear separation R(t).

We expand the full wave function of theA-+ B* sys-
tem in terms of the wave functions of the adiabatic
states introduced above;

N

max

l'I',’[ot(R1 r,t) = Z bnlm(t)wnlm(Ri r)

nim
t

0. [
x exp[H J' E.(t)dt,
O O

(140)

with N, exceeding n,; i.€., (140) includes the cova-
lent states whose binding energies are lower than those
of the unperturbed negative ion. These states are popu-
lated through the coefficients C, , in the expansion of
the ionic wave function. The sum in (140) contains
active and passive states.

The system of adiabatic equations for the coeffi-
cients b, (t) that results after substituting expansion
(240) in Eq. (139) [50] is

dbnlm
dt

_ Nmax EﬁDn'l'm' |
=Y By .~
% OG5 ePe®)., (14D
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= 1 1 6 O tregoes
10! 10 10° 10* 10°
Collision energy in center-of-mass system, eV

Fig. 9. The total cross section for electron capture in the
H™+ H" — H + H*(n) collision. Theory: curve 1—our
calculation, curve 2—from [1], curve 3—Ermolaev’s calcu-
lation [2], curve 4—from [5], curve 5—from [6], dotted
curve 6—the calculation of Shingal et al. [4], curve 7—the
calculation of Bates and Lewis[11], and curve 8—the cal-
culation of Dalgarno et al. [12]. Experiment: squares and
crosses—merged-beam measurements of  Brouillard's
group [13], respectively, for the H™+ H* and H™ + D* calli-
sions (the resultsfor the H™+ D* collision are shown for the
same collision velocity as that for H™ + H*); and dia-
monds—crossed-beam measurements of Salzborn's
group [16].

where the phases @, () are
@, ()

=[E e - wonar. O

The system of equations (141) includes all the active
and passive states with principal quantum numbers
N < Ny With the maximum principal quantum number
varying in the range N, = 9-14. System (141) was

o, 10710 cm?
20007 .

1000

500

200+ .\ A

1 L [ | L T R |
10° 107 108
Collision velocity, cm st

Fig. 10. Thetotal cross section for electron capturein the
H™+ He"™ — H + He"(n) collision. Theory: the solid line
represents our calculation; dotted curves 1 and 2 represent
variational calculations [17, 19]. Experiment: crosses—
from [18] and diamonds—from [17].
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solved numerically by the methods described in Hem-
ming's book [51]. We used the matrix elements calcu-
lated above. The trajectories R(t) corresponded to the
Coulomb field of attraction between A~ and B%*. The
partial (o;) and tota (o,,) electron capture cross sec-
tions were calculated using the formula

00

o = 2nj Pi(p)pdp, (143)

where P; is the probability of populating state i,

Otot = zi 0.

Figure 9 shows the total cross section for electron
capture in the H- + H* — H + H*(n) collision. The
discrepancy of theoretical datais large. If we exclude
the early results (curves 7 and 8), then our calculated
cross section will be the largest and the closest to the
experimental results. Thisis because of the higher pop-
ulation of the n = 3 state in our calculation attributable
to the coupling of the two crossing n = 2 stateswith the
n = 3 states. This coupling is given by the matrix ele-
ments (133).

Figure 10 shows the total cross section for the H= +
He"* — H + He*(n) collision. Asin the previous case,
our calculated cross section exceeds other theoretical
cross sections and is closest to the experimental cross
section. The cause of the disagreement with other theo-
retical calculationsis the same. Because of the nonadi-
abatic coupling between the crossing states and the
states that are not involved in agiven crossing, the pop-
ulation of more highly excited covalent levels signifi-
cantly increases. Then =4, 5, 6, and 7 states are most
popul ated.

Figure 11 shows the total cross section for electron
capture in the Ca- + He** —~ Ca + He*(n) collision
that we calculated by disregarding spin-orbit splitting

o, 10712 cm?
20

10

1 Il Il
10° 107 108
Collision velocity, cm s~

Fig. 11. Our calculated total cross section for electron cap-
ture in the Ca~ + He** — Ca + He*(n) collision. The
solid curve represents the cross section for the state with a
zero component of the orbital angular momentum along the
internuclear axis, m= 0; the diamonds are for |m| = 1.
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of the binding energies for Ca. We took the binding
energy of this negative ion to be 0.022 eV, which isthe
mean of two actual binding energies: E;, = 0.01973 eV
and E;;, = 0.02455 eV (see, e.g., [27]). Figure 11 shows
the two cross sections corresponding to two compo-
nents of the orbital angular momentum L = 1 for Ca
along the internuclear axis R. The states with the
angular momentum components |m| = 1 and 0 have
different term splittings at quasi-crossings, so the
electron capture cross sections for them are different.
The capture cross section for this ion is very large,
because its binding energy is very low. Distances of
200-500a, mainly contribute to the cross section. The
covalent states n = 1419 are most popul ated.
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Multiphoton Atomic lonization in the Field
of aVery Short Laser Pulse
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Abstract—Closed analytic expressions are derived for the probability of multiphoton atomic and ionicioniza-
tionin avariable electric field ‘€(t), which are applicable for arbitrary Keldysh parametersy. Dependencies of
the ionization probability and photoelectron pulse spectrum on the shape of a very short laser pulse are ana
lyzed. Examples of pulsefields of various forms, including a modulated light pulse with a Gaussian or L orentz
envelope, are considered in detail. The interference effect in the photoelectron energy spectrum during atomic
ionization by aperiodic field of ageneral form is examined. The range of applicability of the adiabatic approx-
imation in the multiphoton ionization theory is discussed. The imaginary time method is used in the calcula-
tions, which allowsthe probability of particle tunneling through oscillating barriersto be effectively calculated.

© 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION AND STATEMENT
OF THE PROBLEM

Studies of physical phenomena under extreme con-
ditions, including those in strong external fields, have
always been of considerableinterest. Asiswell known,
the Einstein law for the photoelectric threshold breaks
downinthefield of astrong light wave and multiphoton
atomic and molecular ionization becomes possible.

The production of increasingly intense electromag-
netic fields is associated with the shortening of a laser
pulse, whose duration becomes comparable to an opti-
cal period (see, e.g., [1-3] and references therein) and
whose spectrum contains many higher harmonics.
Since multiphoton ionization is a highly nonlinear pro-
cess [4-8], it cannot be reduced to the sum of contribu-
tions from individual harmonics. The ionization proba-
bility and the pulse spectrum of the emerging photo-
electrons significantly depend on the shape of the pulse
field, particularly when the external-field frequency w
exceeds the tunneling frequency w,. Elucidating this
dependence becomes necessary for analyzing experimen-
tal dataand isthe subject of our study (seedso [9, 10)).

To this end, consider the problem of atomic-level
ionization in a variable electric field (spatially uniform
and linearly polarized),

B(t) = FOO), t = wt, (1)

which arbitrarily dependsontimet'. Here, F isthefield
amplitude, w isthe characterigtic field frequency, and t is
the dimensionlesstime. Regarding the function ¢ specify-
ing the pulse shape, we assume that |d(t)] < $(0) = 1
for —oo <t < oo (i.e,, t = 0isthetime of field maximum,
when the electron emerges from under the barrier [6])

and ¢(—t) = ¢(t); note that the latter condition isimposed
only for the convenience of calculations.

For our calculations, we use the semiclassical imag-
inary time method (ITM) [6, 7, 11], which givesaclear
description of the particle tunneling through any
smooth and rapidly oscillating barriers. In this case, the
subbarrier trajectoriesthat formally satisfy the classical
equations of motion (but with imaginary time!) are
introduced. The principal (exponential) factor in the
ionization probability is determined by the so-called
extreme subbarrier trgjectory, on which the imaginary
part of the action function, ImS, reaches a minimum
(and which, according to Feynmann [12, 13], deter-
mines the most probabl e particle tunneling path). Next,
for the pulse spectrum of the emerging electrons to be
derived, we must consider a bundle of classical, nearly
extreme trajectories and calcul ate the quadratic correc-
tion to ImS proportional to (p — Pma)? ON them (see
[7, 11] for more details; the I TM isalso presented in the
monograph [14]).

Below, we assume the following conditions to be
satisfied:

I ehF F
Ky= —>1, €= = <1,
°T AW en¥m”  K°F, )
ImS> 4,

they ensure that the semiclassical approximation is
applicable to multiphoton processes. Here, K, is the
multiquantum parameter, € is the reduced electric field,
| = k’me*/2A2 is the atomic-level ionization potential,
and K is the (dimensionless) momentum characteristic
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MULTIPHOTON ATOMIC IONIZATION IN THE FIELD

of a bound state.! The tunneling process significantly
depends on Keldysh parameter y [4],

_ W _ wy2ml
Y @ oF
where y is the tunneling frequency in a static field F
(below, we use atomic units, 2 = m=e=1, where mis
the electron mass, F, = mfe’/A* = 5.14 x 10°V cm™).

Our goal isto investigate the atomic-level ionization
probability and the photoelectron pulse spectrum as
functl ons of pulse-field shape (1) and Keldysh parame-
ter.? In the next section, we give basic equations that
describe this dependence (in the semiclassical approxi-
mation). We formulate an algorithm that allows the
auxiliary function x(2) to be calculated from the speci-
fied shape of the external field ¢ (t) whereupon the prob-
lem reduces to quadratures. In Section 3, we consider
model examples of fields ¢(t), for which all calcula
tions are performed analytically. The results of our
numerical calculations, including those for an ampli-
tude-modulated electromagnetic wave with a Gaussian
or Lorentz envelope, are presented in Section 4. The
tunneling interference effect in the photoelectron
energy spectrum is examined in Section 5, and therange
of applicability of the adiabatic approximation in the mul-
tiphoton ionization theory is considered in Section 6. Our
results are briefly discussed in the final Section 7. Details
of our calculations, including the derivation of approxima:
tion (17) for large y, auxiliary formulas, and asymptot-
ics, are given in the Appendices.

The results presented below have been partly
announced in [9, 10]. It should be noted that the theory
of multiphoton ionization by very short laser pulses
was also considered by Keldysh [3], who, in particular,
analytically and numerically analyzed (by a different
method) soliton-like, Gaussian, and Lorentz pulses. To
compare our results with those from [3], it is useful to
bear in mind that Keldysh [3] used the following nota-
tion: Q = 1/K,, € = 2¢, A = 1y, and f'(X) = ¢p(x) with
X=wt'=t.

(2)

2. BASIC EQUATIONS

For field (1), it isclear from physical considerations
that the extreme trgectory is one-dimensiona and
directed along the field. Solving the classical equations of

L For the ground level of a hydrogen atom, k = 1. For the ground

states of neutral atoms, k ranges from 0.535 for Cs (I = 3.89 eV)
to 1.344 for He (I = 24.59 eV); see [15] and Table 1 in [11]. For
weakly bound states, this parameter can be appreciably smaller
than unity. Thus, for example, | = 0.754 eV and k = 0.235 for a
negative hydrogenion and | = 0.077 eV and K = 0.075 for He™. In
these cases, the reduced fields e and the ionization probabilities
sgnlflcantly increase (at fixed electric field F).
2 For monochromatic |aser emission, the momentum, energy, and
angular distributions of photoelectrons during multlphoton ion-
ization have already been considered previously [6-8]. Recently,
they have been analyzed in detail [16-8] over the entire range of
Y, including the general case of elliptic polarization.
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motion and calculating ImSyieldsthe multiphotonioniza:
tion probability (to within a preexponentia factor):

wi(p) = S

p[ﬂaM}3gW)

3
K
- ,‘:[bl(Y)( P—
where p, and p; are the longitudina (along the field)

and transverse momenta of the emerging electron,
respectively; p.a 1S its most probable momentum:3

1

o) = 3[x0A(1-2)z
0

]
Prax) + ba(Y) p] 0

_ .db,
by(¥) = v
1 (4)
mm:pww:fwx

_F,
o = o000
0

(poistheintegral of motion, and F/wisthe characteris-
tic momentum of the oscillatory electron motion in the
wave field). This includes the function x(z), which
depends on pulse shape (1); after its derivation, the
problem reduces to quadratures. This function can be
specified parametrically:

=5

where ¢(1) = ¢(it). The latter equation also defines
(implicitly) theinversefunctiont = h"(z); inthiscase,*

z=h(r) = J'<T>(t)dt, ©®)

X@ = 1(2, (6)
and the initial time of the subbarrier electron motion is
ty = i ty), Tly) = h(y). (6)

The derivation of Egs. (3)—(6) is omitted here. It is
based on the ITM and is a generalization of the calcu-
lationsin [7] for the special (but important for applica-
tions) case of amonochromatic laser field. In this paper,

3 Assuming that pmax = 0 in (3), we obtain the pulse spectrum of
the electrons at the time of their emergence form under the barrier
(t=0). Itsrecalculation to the distribution of emerging photoel ec-
trons (t — +0) in finite kinetic energies is a separate problem,
which has been addressed by many authors (see, e.g., [19-23]).
Here, we only note that expression (4) for pyax applies only to
very short (with aduration T < 1 ps) laser pulses).

4In (5), T is the parameter whose elimination yields an explicit
dependence of x on z. Note that h(t) differ from the vector poten-
tial A(t") continued to the complex plane only by the factor iw/cF.
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we apply these formulasto pul sefields of variousforms
and discuss the effect of laser-pulse shortening on the
total ionization probability and on the photoelectron
spectrum. Note that examples of calculating (by the
ITM) the preexponential factor, including those for
time-constant electric and magnetic fields of arbitrary
magnitudes and directions, can be found in[7, 11].

In the tunneling limit, y < 1 (low-frequency laser
field), ionization occurs at times closeto t = 0. Assum-
ing fort — O that

o) = 1-5 2 Et —at ., a,>0, (7)
we find from (5) that [see adso (A.3) and (A.4) in
Appendix A]

n Xn 2n

2) = -1 ,
X@ = z< ) e -
Xo=1, X1=a, X2= lOaﬁ—a4,

whereupon, using (4), we obtain expansions that allow
the adiabatic corrections to be easily calculated:

oY) = 1+ 5 (-1)"gw"

(8)
_ 3
9 = Zn+Di(2n+ 3k
b (y) — i(_l)n Xn+1 y2n+2
! 4 (2n+1)!1(2n+3) ’
(8)
— 2n
The last two formulas can aso be written as
2 - n-1 2n
b, =35 (=17 n(2n+3)g,y™,
3
(8)

e, oy n
=3 (1)'@n+3)gy",
n=0

where g, are the coefficients of series (8) for the func-
tion g(y). To afirst approximation iny?, the dependence
of multiphoton ionization probability (3) on pulse
shapeis universal:

O r2x® 1~1]
wi(p)Dexp&[— - Y
. ?,FElL 10’0
)
K 2, 2d
+ £E7(py~ Poe) +p%}%

y <1,
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= ,Ja, and a, = " (0) is the curvature of the
pulse near its apex. In this case, Ap; ~ Jek <K, Ap,~

VAP ~ Je Elw < py, and p, ~ F/wisthe characteristic
momentum of the electron oscillatory motion in the
wavefield (for t > 0). In our case, the longitudinal elec-
tron momentum is much larger than the transverse one,
which is explained by the possibility of electron accel-
eration along a slowly varying electric field €(t).

In the other limit (rapidly varying fields), it is con-
venient to rewrite (3) in a different form:

where y

O rk® 1 2 2\
w(p) 0 &P W)+ Seipi + P B g

y>1,
where k?/w = 2K, > 1,

Y
) = Svaw = xR~ (10)
0

and ¢, 5(Y) = yby, »(y). In physical problems, the func-
tion f(y) for y — oo either approaches a constant limit
[if ¢(t) has the singularity t = i, T4 at a finite distance
from the real time axis in the complex plane] or
increases logarithmically [see Table 1 in [9] and expan-
sions (A.5)—A.10)].

3. ANALYTIC MODELS

In the cases considered below, Egs. (4)—<6) can be
solved analytically. These model examples define the
basic qualitative characteristics of the process under
study and can aso be of interest in their own right.

(1) ¢(t) = cost corresponds to monochromatic laser
light. Inthiscase, X(2) = (1 + 222, theintegralsin (4)

are tabular and give
J1+Y°

f(y) = %Higarcsinhy—

2y
c, = arcsinhy — Y : (1D
A/1+y2
C, = To(y) = arcsinhy, ppa = 0,

in close agreement with previous results [4-6].
(2) For () =1/ cosh’t (soliton-like pulse), we have
X(2 = (1 + 22, whence
f(y) = (1+y 2 arctany —%/,
Y
1+y
Prax = F/O.

(12)

c, = arctany — c, = arctany,

27
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(3) For a Gaussian pulse, ¢(t) = exp(—t%20?), x(2)
can be determined from the equation

1 .z
W) = <=,

where w(2) is the so-called Dawson integral [24] (see
also Appendix B). At o = 1, we have

X@

1> 7 4

0
Mm-3 =7+,
=0 2° " 24

HzJ/2Inz) 11+ 0(1/In2)],

as aresult, we obtain expansions (A.10).
(4) For apulsefield,

o) = (1+t9)7,
Egs. (5) take the form

X = (1-1%,

0<x<1, (13)

z—0, (13)

Z*»OO,

az1, (14)

z = 1F(a, 12; 3/2; 19,
O<t<1,

where T is the parameter and F(...) = ,F4(...) is the
Gaussian hypergeometric function; hence

(5)

X(2) = 1—o(zz+(—15(7a2—3a)z4+ ..., z—=0,(15)

X@=[2(a-1)7"" 7z ~w(@>1). (15)

Asy . oo, theinitial point of the subbarrier trajectory,
ty = ito(Y), approachesto the singularity t; =1 of field (14):

M-26%+..., a=1,

oY) = 0 _ e 1)+ (16)

a>1,

where k = [29(a — 1)]7Y@ -1 (see Appendix C for more
details). This example is typica of those cases where the
nearest singularity ts = itg of field function ¢(t) liesat a
finitedistancefromthered axisandisapole(a =1,2,...)
or a power-type bifurcation point. In this case, (10) takes
the asymptotic form

01, O
Wi(p) O exp-TK” + (P~ Prma)” + PEIC,
0 O

(17)

y > 1,
_ Jma-12k _ .
Pmax = ZF—(G)V < K, (17)

which differs from the probability of ionization by
monochromatic emission and significantly exceedsiit.

Here,

W, = I wi(p)dp O exp(-2K,Ty),
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while for amonochromatic field,
W, O exp(—2K,In2y).

In this case, the photoelectron momentum distribution
approaches an isotropic Gaussian distribution with the
center at point P, iIN Momentum space:

Apy = Apy O/t k(Kote) 2 < k.

(5) At integer and haf-integer a, the hypergeometric
function in (5) reduces to dementary functions; see for-
mulas (C.1) and (C.2) in Appendix C. Thecasea = 3/2is

particularly simple analytlcally here, z=1(1 — 137,
X(2) = (1 + 222, and we have®
arcsinh
f(y) = ym/1+v2— y O
(18)

3 c, = Y

Ji+y?
This example has akind of aduality: ¢(t) = x(t) for it,
which aso holdsfor apulse of the form ¢(t) = 1/ cosht .

Thecasea =1, i.e, ¢(t) = 1/(1 + t3), corresponds to
a Lorentz pulse shape, with

xdx
f(y) = 1——I
2 3, 4 5
"B 1 19
A-——+2y ep(-2y), y=1, (19
0 12y
cy(y) = tanhy ——Y—, ¢ (y) = tanhy,
cosh’y
_ Tk _ TK
Prrax 2w 2y’

At arbitrary a, substituting T = J/u/(1+u) in (5)
yields the equation

_ 3 .3
Z= A/l_“:EQ’Z &5 (20)

u:X—lla_ O<u<oo,

which explicitly defines the inverse function z = z(x).
Thesubsequent cdculaionsusing formulas (4) involve no dif-
ficulties At a = 3/2 and 1, expressons (18) and (19) readily

5 Note that individual terms in the expressions for f(y) and g(y)
become infinite when y — 0 (in sum, they cancel out). There-
fore, to obtain expansions in the adiabatic rangey < 1, it ismore
convenient to use (8) rather than exact formulas of type (11),
(12), or (18).
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follow from them, while at a = 2 [a pole of the second
order in ¢(t)], we obtain

7= %(A/u(1+ ) + arcsinh Ju), U = x2—1. (21)
(6) A generalization of the soliton pulse (12) is

o(t) = (cosht)™,
Changing from T to & = tant in (5) yields

az1. (22)

—a/2

X = (L+&)7,

g
_ o (a-2)2 _a 1__§__;D
Z—I(1+X) dx-EF%L > 5 3 <
0

0< & <. Ata =1, considering that F(1/2, 1/2; 3/2;
—£2) = arcsinh& /¢, we derive X(2) = 1/ coshz. For even
o =24, ..., the expression for z(&) reduces to a poly-
nomial: thus, z=& and & + (1/3)&3at a = 2 and 4.

(7) The preceding examples, except for example 1,
belong to unidirectional pulses. Although any uniform
field is the solution of the Maxwell equations, ¢ —
é(t—x/c), and, hence, is (in principle) physically real-

izable, the integral J = %%(t)dt is either zero or

numerically small for the fields commonly encountered
in laser physics (see[25, 26]). As an example, consider

0 = 4 L) = 1=l
(1+1t9) (1+1t9)
a>1/2,
o.() = 1—3at?+ ga(a D+t 0 P
b, () =—(2a —1)t?* —=0, t —» o0,
In this case, Egs. (5) take the form

a+1

__(1-1 1 ’
1+ (20 —1)1% ‘ &)

-

If a = 1/2, then example (23) coincides with (18); at
o =1, we have

wy) = —2—,
1+ J1+4y°
_ 2
X2 = (24)

1+47 + J1+47

1 1, acsinh2y
fly) = [1+—-—=+—"—-
) Nooayt Y 4y?

whileat arbitrary a, the system of equations (5") can be
easily solved numerically.
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For amonochromatic field ¢(t) = cost, J =0 aswell.
In that case, this integral has an unequivocal meaning
when it is considered that the laser field, which is
approximately uniform near the focus, is adiabatically
switched off at infinity:

J = Iim}exp[—(aTt)z]coswtdt
0

a -0

2
_ m -1 0 wn._
= |lim [=a exp=——— = 0.
M[z gipys

Therefore, J= 0 for a < w with an exponential accu-
racy.
(8) Inthelimit a — oo, examples4 and 7 are equiv-

alent (after the scalingt — t/./a ) to the pulses
(1) = exp(-t),

25
(1-2)ep(-t) = Sitexp(-£)]. (29

Note that when the time scale is changed, ¢(t) —
¢ (At), the following scaling relations hold:

ay) —9gQy), fy) —=ATfQy),
Cr oY) —= Aey (),
and x(2) — x(A2).

(9) To estimate the effect of higher harmonicsin the
laser pulse spectrum, we assume that

(26)

(1—p)*cost
1+ p®—2pcos2t’

o) = Po<p<l, (27

where p is the anharmonicity parameter,6 Po = ~J2 -
1)2=-0.1715, with ¢(t + 1) = —(t).

In this case,
1(y) = aarcsinh{ p~tanh(py)} , (28)
_ . a1 _2Jp .
T, = arcsinh(p ™) = 2Inp, p = _1—p' (28"

Function (27) hasapoleat cos2t = (p + p)/2 ort =ity
(asp —= 0, this point goes to infinity, and ¢(t) = cost
is an integral function). As p increases, the pulse
becomes increasing sharp, turning into a sequence of
0-shaped peaks of alternating polarity whenp —» 1:

d1-p(1+4sin’t) +O(p?)]cost, p <1,

OJ
1) = @ 29
070 S coreptla-mE, o1
—l U O

6 The intensities of adjacent odd harmonics in the pulse spectrum
arerelated as p?.
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wherea, = (1 + 6p + p?)/(1—p)? witha, =0 at p = p,.
After ssimple, though cumbersome, calculations, we
obtain

X(@ = {cosh(p2)/1+(1+ p2)sini(pz)}
S0 that

(30)

@ = 1-(p°+VU2)L+...,
[X(2) O exp(-2p2),
Note that pulse (27) becomes a double-humped one for

P < Py, andt =0isnot apoint of ¢(t) maximum for it
but a point of minimum.

(10) Finally, consider the following ansatz for the
function x:

20, (3p)

Z—> 0,

X@ = (1+2)"
Calculating the integralsin (4) [26, 27] yields

(31)

1]

a(y) = Dl s g; ¥

. 9.
1+y2 @12 IVl,z,:l_.kya:"

S. A1
2

(32

by(y) = 3uv FEE H+1 3 Yo

bAY) = FE5 b3 3;

It can be shown [see (B.6)] that the pul se shape cor-
responding to (31) is characterized by the expansion

_y%.

Ot) = 1-pt*+ (730" + . (33)
fort — O, whilefort — oo,
ex _2t ) = 11
[Aexp(-2t), M (33)

(t)=
M0 Hau-ng e ysa
Inparticular, at p = 1/2, 1, and 3/2, we have ¢(t) = cost,

1/cosh’t, and (1 + t2)-32 (the examples considered

above), while g(y) has a remarkably simple form at
M = 5/2:

ay) = (1+y)77

(34)
) = B+ &y 5a+y)™
In that case, the coefficients g, from (8) are
3r(n+p)
9 = GnrD@n+3)rn’ (35)
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Since g, O n*=3for n — oo, series (8), (8'), and (8")
converge at |y|< 1. At u = /2, we derive an adiabatic
expansion for the Keldysh function (11):

_ 2 D
) = 50 -36% * 350" 336V
(36)
(22 - (2n—1)!!
"3 (2n+1)(@2n+3)2" 't

whose first terms were found previously [4-6].
On the other hand, al functions (32) decrease pro-
portionally to 1/y asy — oo:
_ 2
gy)=cy . byy) =by)=5cy
37
_ 3/nr(u-1/2 37)
ar)

in agreement with the behavior of the curvesin Fig. 1.
The above examples demonstrate the ITM efficiency.

An analytic solution is also possible for ¢(t) = (coshzt +

B2sinh’t) ™ and [ cosh’(Bt) + (sinh(B) /)] (B is the
parameter, 0< 3 <), for ¢(t) = cn(t, g), wherecnisthe
eliptic cosine, and others (see the table). For any pulse
shape, including that taken directly from experimental
data, X(2) can beeasily calculated numerically using the
above equations, whereupon the problem reduces to
guadratures.

4. NUMERICAL CALCULATIONS

L et us now discuss the results of our numerical cal-
culations. The function g(y) for severa pulse fields is
presented in Fig. 1, which, for comparison, also shows
this function for a monochromatic field (curve 1). The
notation is explained below. The curve numbersin Fig. 1
correspond to

1) ¢ =cost; 2) ¢ = 1/cosh’t;

3 0= ep(-t); 4 o= @+t)

B) ¢ = (L+t9)7; 6) ¢ = (L+t)exp(—t);
7) ¢ = (1+c, thexp(-t).

Thetime axiswas scaled so that all pulses had the same
curvature at the apex [¢"(0) = —1], which corresponds

to a changeover fromyto y = ,/a,y, where a, is the

coefficient in expansion (7). This is convenient for
comparing variously shaped pulses: in the adiabatic
range, the ionization probability does not depend on the
form of ¢(t), see (9); such a dependence appears only
beginning with terms of order y*. The function f(y) is
shown in Fig. 2. We see from Figs. 1 and 2 that when
passing from ¢ (t) = cost to pulsefields of variousforms
concentrated in a finite time interval, g(y) and f(y)

(38)
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Table
b(t) X2 g, x 100

cost 1+ 22712 321
cos’t - 2.86
1/cosht 1+ 2.14
(cosh?t + B2sinh?t) L [cos?Bz + (sinhpZ/B)3 1.43(1 + 3/2)
[cosh?Bt + (sinhBt/)q (cosh?z + B2sinh?7) 2.14(1 - 8/3)
Ulq(t) - 1.96
L/cosht L/coshz 1.79
(L+t3)7L 1/cosh’z 1.43
(1+1t9)372 (1+ )32 1.79
(1+1)2 see (21) 1.96
exp(-9) see (13) 2.50
(1-19)/(1 +12)2 (L +42 + AJ1+47 2.38
(1-2t)e " - 2.98
ent, g),0<sqgs<1 [1+ (sinhgz/g)3 Y2 0.357(9 - 499
see (33) 1+ 2™ 1.07(1 + Y

Note: Here, 6=1/(1 + |32), Io(t) is the modified Bessel function, and cn isthe elliptic cosine [24].

decrease, particularly at y > 1 (rapidly varying fields).
As aresult, in view of conditions (2), the ionization
probability increases sharply [becausee < 1 and Ky > 1;
seeformulas (3) and (10)]. Some of the curvesin Fig. 1
refer to pulses of the type

o) = (L+ctexp(-t), a, = 2. (39)

At c =0, the pulseis Gaussian (curve 3); dashed curves 6
and 7 in Fig. 1 correspondtoc=1and c=c, = 1.544

T
1

0.8
0.6 .

0.4 | "«...‘..... .

T
RN/ 4
il
Hl
1

0.2

Fig. 1. Function g(y) for fields of form (1). The curve num-
bers 1-7 are explained in (38). The scaled variable y =

Jayy isalong thex axis.

(see Appendix B). In al the cases we considered, g(y)
monotonically decreases with increasing Keldysh
parameter y.

We see from Fig. 2 that the behavior of f(y) at large
y is directly related to the anaytic properties of field
function ¢(t) in the complex plane. More specifically,
curves 1 and 3, which correspond to the integral ana-

lytic functions ¢(t) = cost and exp(-t?), rise as Iny and

f

3 T T T
1

7k i
3
2

L 5
2

1 1 1
0 4 8 12

<t

Fig. 2. Function f(y) from Eg. (10). The curve numbers are
givenin (38).
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by

0.3

0.2

0.1

Fig. 3. (8) Coefficient c,(y) for the same pulses asin the previous figure. Note that c,(c0) = 172 for curve 2 and c(e) = 1 for curves 4

and 5. (b) Coefficient by(y) in (3) for various pulses.

Fig. 4. Function g(y) for pulses of form (23) withJ=0. The
curvescorrespondto a = 1, 3/2, 2, 5/2, and « (from bottom

totop), y = J/6ay .

JIny, while in the remaining cases, they approach a
constant limit: f(y) — 1, wheret, = i1, isthe position
of the singularity of ¢(t) closest to thereal axis: 1,= 102
for curve 2 and s= 1 for curves4 and 5. Thisasymptotic
limit [corresponding to formula (17) for the pul se spec-
trum] can be approached rapidly enough.

Plots of pulse-spectrum coefficient ¢, and coefficient
b, againgt y are shown in Figs. 3a and 3b, respectively.
The curves for c,(y) are smilar to those in Fig. 3, except
therange of small y, inwhich ¢, 0 y® and ¢, = y + O(y®).

For pulses (14) and (23), we performed calculations
aa=1,15,2, 3, and o [a = co corresponds to passage
to the limit (25)]. In both cases, g(y) monotonically
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Ay, 0)

3

Fig. 5. Function f(y, o) from (10) for apulsefield (40). The
curves (from bottom to top) correspond to the following
pulse-width parameters o: 0 = 1, 3, 5, 10, and co.

increases with exponent o, while the ionization proba-
bility decreases (Fig. 4). This may be because the
weight of the high harmonics in ¢(t) with frequen-
cies w > 1/1, decreases:

coswt

{ [1+(t/1e)7"

A comparison of Figs. 1 and 4 shows that there is no
qualitative difference between unidirectional pulses of
type (14) and pulses with the integral J = 0 for mul-
tiphoton ionization.

dt O (wT) " exp(—wTy).
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Fig. 6. Coefficients (a) ¢, and (b) ¢, of pulse spectrum (10) versusy. The values of o in (40) are shown alongside the curves.

The next figures refer to a modulated electromag-
netic pulse,

2

_ t 0
o) = exp 0 cost, (40)
O og?]

which is closer to an actual experiment. Here, at small y,
1

= 1-——(1+ %)y’
a(y) 1002( )Y
1 (41)
+ 90" + 140+ T)y* + ... .
28004( W

The pulse shortens with decreasing o: its amplitude
decreases by afactor & = exp(—21%/0?) in one period of

3 7 11 15 19
Y

Fig. 7. Function f(y, o) for a pulse with a Lorentz envelope
(42). The curves (from bottom to top) correspondto o =1,
2,25,3,4,5,6.67, 10, 20, and c (monochromatic light).
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thelaser field, with J O exp(—0%/2) — Oforo > 1. The
functions g(y) and f(y) also decrease (see Fig. 5), caus-
ing theionization probability to increase sharply. Phys-
icaly, this is because the relative weight of high har-
monics wy, in the pulse spectrum increases. At w, > |,
these harmonics can ionize the atom even in the first
order of perturbation theory (whereas for monochro-
matic light, there are no higher harmonics at al, and
only the multiphoton ionization mechanism [4]
remains). As we see from Fig. 5, this becomes notice-
able at 0 ~ 5-10 for field (40). Assuming (arbitrarily)
the duration of alaser pulse to be the time during which
its amplitude exceeds a fixed €, we have for 0 > 1

N= O.lozlnl ;

€

i.e.,, N~ 0.202 for € = 0.1. Therefore, the light-pulse
shortening begins to appreciably affect the ionization
probability when the pulse spans N ~ 5-10 periods of
the laser field. Regarding the shape of the pulse spec-
trum, it follows from Fig. 6a that the dependence of
ci(y, 0) on o may bedisregarded if 0 = 3 and, generally,
it is less significant than for the function f, i.e., for the
rate of atomicionization. Thesameisasotruefor c,(y, 0);
see Fig. 6b.

Similar results were obtained for a Lorentz enve-
lope, i.e., for’

o(t) = [1+(2t/0)% " cost. (42)

As for (40), f(y, o) decreases with decreasing o (i.e,,
with pulse shortening) at fixed y (Fig. 7). However,
thereisaqualitative difference between pulses (40) and
(42) at largey, whichisrelated to the anal ytic properties
of ¢(t). More specificaly, f(y, o) in Fig. 5 increases

" Here, 0 isequal to the width of the envelope at half its height. For
field (40), itsvalue is 2.350.
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(logarithmically) with y, while for (42), it approaches a
constant limit:2 f(y, 0) —» 1= 0/2asy —» », just as
in the case of (14). This is because (40) is an integral
function of t, while (42) has apole at point ts = io/2.

Finally, thefunction g(y) for aperiodicfield (27) cal-
culated from Egs. (4) and (30) are displayed in Fig. 8,
which shows a sharp dependence on anharmonicity
parameter p, with g(y) decreasing appreciably even at
small y. At p close to unity, the ionization probability
increases dramatically evenat y < 1.

Egs. (4)—(6) allow all the quantities appearing in the
semiclassical formulas (3) and (10) for wi(p) to be cal-
culated for an arbitrary pulse é(t) and at any y. This
enables a detailed comparison of the multiphoton ion-
ization theory with experiments in strong fields and
under very short pulses.

5. TUNNELING INTERFERENCE
IN THE ENERGY SPECTRUM

There is an interference effect in the photoelectron
energy spectrum, which (for linearly polarized laser
emission) was noted in [6] and has recently been stud-
ied experimentally [28, 29], where the phenomenon
was referred to as the “tunneling interference”. In the
case of aperiodic field (1), for which ¢(t + T/2) =—(t),
the equation for saddle pointsin the complex t plane (or
for theinitial timeinthe ITM),

t 2

2 _ 0 F ‘ g 2 _ 2
Pty = Ep||+o—oj'¢(t)dﬂ1 +pg = K7, (43)
d ! O
has the solutions

=t = KT+it(y 1+ a5 +iyqy). (44)

Here, k=0, £1, £2, ..., q = p/K, p isthe momentum of
the electron as it emerges from under the barrier, 1(2) is
the function introduced in (5) and (6), and T is taken to
be 21t At p < Kk and for k = 0, we have

. 1
Y. p) = -ito = To+ 51,07+ o0
(45)
+i(T, — 00— T50)) gy + O(q'),

where 1y = 1(y) istheinitial time of the subbarrier elec-

tron motion and
_ (—1)””ynd”T(v)
n! dyn '

The amplitude A, of the electron transition from a
bound state to a continuum state is determined by the
action function Scal culated along the path from point t, to

n=1.

To(Y) (45)

8 As g increases, the range in which this asymptotics is established
is displaced toward increasingly largey, and we have f(y) = In2y —
12+ ... for o =oco.
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Fig. 8. Periodic field (27). p=0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7,
0.8, and 0.9 for the curves from top to bottom.

the red time axis (whereupon ImS(t) no longer changes).
As we see from (45), the initia point t, for p; # O is dis-
placed from the imaginary time axis, and the other sad-
die pointst, are displaced similarly. In this case, aread
shift in phase @ arises between the amplitudes A, and
A .1 corresponding to the points t, and t, . ; within one
period of laser emission (for example, Ay and A,), which
causesinterference. Using the ITM [7], we obtain

A = expliS(t)]

t
O , (46)
= expry 1K€+ p7()] dtd,
02 0
Ay = exp%—Zni k(%EAO,
(a7)

[TTE
Ags1 = exp[—l% ‘HE}Azk-

Here, the phase difference between A, and A, accumu-
lates as t changes aong the real time axisin k periods
(¢ isthe system’s quasi-energy in aperiodic field), and the
phase @ arises when integrating (over imaginary time) the
linear (in py) term 2p Fwh(t’) that enters into p(t’)
in (46). To be more precise, the adjacent amplitudes Ay,
and A, ., receive the phase factors exp(zi@/2). After the
coherent addition of A, thetransition probability becomes
proportiond to ti me® and the & function expressing the
energy conservation law for n-photon absorption emerges.
Adding up the contributions from 2N saddl e points (over

9 For asingle pulse of the form 1/ cosh’t or exp(—t?), only the total
ionization probability over the entire time of pulse action can be
determined.
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Fig. 9. Function A(y) determining the oscillation phase ver-
sus Keldysh parameter for a periodic field (27). The anhar-
monicity parameters p = 0, 0.1, 0.25, 0.5, and 0.75 corre-
spond to the curves (from top to bottom).

N periods of the field), we pass to the probability of
atomic ionization per unit time for N — oo(see (B.7)
and [30-33)):

- O o —1)" :
w = nz | (2n)3[1+( 1) cosq] wi(p)

XG%—pZ—Z—(n—v)o%

(the linear regime W, [0 t that holds on time scales
w <t < Uw); wi(p) = |A]® applies to a single pulse
and isgiven by (3).

For ionization of the atomic s level, the pulse spec-
trum during n-photon absorption takes the form

w(p,) —= W(p,)[1+(-1)"cosq(p,)] /2. (49)

Here, p,= ~/2w(n—V), v isthe photoionization thresh-
old (C.9), the multiphoton ionization probability w(p)
isdefined in (3) or (10), the oscillation phase is

(48)

o) = “2NAY) +OEKA,  (50)

oY)
A= 2y7 .[ h(t)dt
0 (51)

(y—0),

and the function h(t) is defined in (5). In particular,
h(t) = sinht and 1, = arcsinhy for monochromatic
laser light, whence [6]

1
= 1—1a2y2+

2

1+ 1+Y°

A(y) = 2y (coshT,—1) = (52)
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(seethe curvefor p = 0in Fig. 9). Since the character-
istic oscillation phase is ¢ ~ k?p/F ~ 1/y./e at small
yand ¢ ~ kp/w ~ ,/K,/In2y for y> 1, the number of
oscillationsis large (because K, > 1) even in the latter
case.

It is easy to show, using (51), that for a periodic

sequence of pulses of the form ¢(t) = 1/ cosh’t and
(1 + t9)732, we have, respectively,
2

1+y°+ J1+y°

(in these cases, the phase ¢ for y = «/E) is of the
order of unity). Finally, for aperiodic field (27), h(t) =
p*arccoth(psinht) and

A = DY) o (53)

tanhp

Y
2 arccothx 2
Ay = 2, [ TG o 2R (e
Y 4 JIX+p P

[at p =0, wereturn to (52)]. As we see from Fig. 9, the
oscillation phase rapidly decreases with increasing
anharmonicity even at comparatively small y < 1.

Theenergy spectrumisaobtained by integrating expres-
sions(3) and (49) over the photoel ectron escape angles,; as
aresult, the amplitude of the oscillating term significantly
decreases [see formulas (B.14) and (B.15)]. This is in
quditative agreement with Fig. 1 from [28] (see the upper
right part of this figure that refers to linearly polarized
emission). Note that for ¢ = cost, the cubic (in momen-
tum) term in the expansion of oscillation phase @ (at al y)
was also calculated [16].

The interference effect in the photoelectron pulse
spectrum that arises when adding up the amplitudes A,
was apparently first considered (in the multiphoton
atomic ionization theory) in [6] (see formula (53) there
and Section 8 in [16]). In adifferent physical situation
(and for a different dispersion law g(p)), ssmilar phe-
nomena are encountered in the semiconductor electri-
cal breakdown theory [32], in the theory of charged
boson and fermion pair production from vacuum in a
variable electric field [30, 31], and in the problem of
resonant atomic-level excitation in astrong el ectromag-
netic field (in the two-level approximation [33]). Cur-
rently, the production of e*e~ pairs from vacuum in a
strong el ectric field, which has previoudy been considered
from apurely theoretical point of view [30, 31, 34-38], is
again dtracting attention, because projects are being
developed to produce free-electron X-ray lasers based on
the TESLA electron-positron collider and SLAC [39].

6. A REMARK
ON THE ADIABATIC APPROXIMATION

The examples of pulse fields analyzed above allow
the range of applicability of the adiabatic (y << 1)
approximation to be considered in the multiphoton ion-
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ization theory. After the scalingt —» ,/a,t (see Sec-
tion 4), we obtain

afy) = l—l—ov +y" +

~ 10a5 — V= Jay 9
! 2802’ 20

(@]

where a, and a, are the coefficients in (7), and similar
expansions for the coefficients b;(y) and b,(y) of the
pulse spectrum.

A dependence on specific pulse form ¢(t) beginsto
show up here in the terms of order y*. The coefficients
g, (in contrast to g,) depend only on pulse shape but

not on pulse duration, and they are numerically small in
all the cases we considered (see the table). Thus, for
example, for (14) and (23), we have, respectively,

9% = 380 168

this coefficient ranges from 0.025 to 0.032 for field (40)
at 0< 0 <o andfrom 0.014 t0 0.032 for (42). Thissug-
gests that the range of applicability of the adiabatic
approximation (which definitely holds for y < 1) is
generally extended uptoy = 1, so the situationat y ~ 1
is closer to the tunneling one rather than to the mul-
tiphoton one. This is aso confirmed by the results of
our numerical calculationspresentedinFigs. 1and 4, in
which the curves for different pulses are very close to
each other at y< 2-3.

Note also that the asymptotics of g, [and the radius of
convergence of the adiabatic expansions (8), (8), and (8")]
is determined by the nearest singularity of x(2). If

(7 307" and (5 al),  (56)

X@=AZ+a)", z—~+ia, (57)
then, in view of the expansion
= F(n+u) n
=27 = 2 Sre
we havel® for n —» o
_3A u-3_2(n+
P arept & e

For monochromatic emission, X(2) = (1 + 222, i.e,,
A=a=1, u=1/2, and asymptotics (58) agrees with the
expansion of exact coefficients (36):

1l —5/2[ Dlﬂ}
1-=— + O
2./n )

10y cent for p=0, -1, -2, ... when x(2) has alogarithmic singular-
ity. The corresponding formulas can be found in [40, 41].

fn = égn = (59)
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Similarly, the parametersin (58) for pulse (14) are

Ma —1/2)
= Jm 2M(a)

In both cases, power bifurcation points are the singul ar-
ities of g(y) closest to zero. Thus, for example, we have

u=a, (60)

for the Keldysh function (11)
3
o) = 5, f0) = cor el +Y)
+(1+y) P+ Y 4

(cy and ¢, are constants), in close agreement with (59).

7. CONCLUSION

(8 The equations of motion for a classical particle
in a uniform field (1) can be integrated analytically.
This alows formulas (3)-(5) for the atomic-level ioniza-
tion probability, W, and for the photoel ectron pul se spec-
trum, wi(p), to be derived (in the semiclassical approxima:
tion). The external eectric field é(t') entersinto thesefor-
mulas via the function x; we formulated a smple
agorithm for determining this function. Theregfter, the
ionization probability can be caculated for an arbitrary
pulse satisfying the applicability conditions for the semi-
classical approximation, and, in many cases, an analytic
solution can be obtained.

(b) We analyzed the dependence of the functions
defining w;(p) on laser-pulse shape. The coefficients
C,, »(y) of the pulse spectrum were shown to be virtually
independent of the duration of avery short pulse (40) if
it spanned no fewer than three optical periods.

(c) We considered the effect of tunneling interfer-
ence in a periodic laser field, which produces rapid
oscillations in the photoel ectron energy spectrum.

(d) The formulas derived above apply to the ioniza-
tion of systems bound by short-range forces (H-, He-,
etc.). Aswas shownin [9, 42], the Coulomb interaction
between the emerging electron and the atomic core can
be taken into account in terms of the semiclassical per-
turbation theory based on the Coulomb potential, which
gives rise to a (large in magnitude) preexponential fac-
tor in the expression for the atomic-level ionization rate.
Since the pulse-spectrum shape is determined mainly by
thefactorsin the exponent, our resultscan be used not only
to describe theionization of H~type negativeions but also
for neutral atoms (inany case, at y < 1).

(e) Above, we imposed the condition ¢(-t) = ¢(t),
which actually means that ¢(t) is the real-valued ana-
lytic function t2 whose nearest singularity on the semi-
axis —o < t? < 0 lies at a finite distance from t = 0 [or
has no singularities in a finite part of thet plane at all,

asinthe case ¢ = cost = cosh —t* or exp(-t?)]. All the
functions considered above, ¢(t) = [(t* + a?)(t? + bA)] 7,
cn(t, g), and many others satisfy this condition.
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If this condition is not satisfied, then theimaginaries
cannot be completely eliminated from the equations of
subbarrier motion, and the formul as become more com-
plex. However, the ionization probability W, can be cal-
culated using the steepest descent method by determin-
ing saddle points of the action function in the complex
plane. In this way, Keldysh [3] considered pulse fields

d(t) = 3%2sinht/2 cosh’t and texp[(1 —t2)/2] (a soliton-
like one-cycle pulse and a Gaussian one-cycle pulse [3]),
for which ¢(-t) = —¢(t) and J = O; the numerical factors
were chosen here in such away that |¢(t,)| = 1 at the
extrema. In these cases, oscillations are also predicted
in the photoelectron spectrum, which owe their origin
to the interference of two saddle points symmetric
about the imaginary t axis (and with equal ImS), asitu-
ation similar to that considered in Section 5 for a peri-
odic field. Note that for fields of the form ¢(t) =

1/ cosh’t and 1/(1 + t?), the exponential factors in the
probability W, calculated in [3] and [9, 10] are equal,
within the accuracy of the semiclassical approximation
itself.
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APPENDIX A
Expansions for Small and Largey
Substituting (7) in (5), we have

2n+1 _

— - o
h(T) = nzom'[ = Z,

=1 (Al

Hence, using formulas for the inversion of a power
series [27, 43], we obtain the expansion of T in powers
of z, whose coefficients are expressed in terms of ay,.
On the other hand,

12 = Z( n(an-:l)' An+1 (A.2)
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A comparison of these expressions gives formulas (7).
The next two coefficients are

Xs = a—56a,a, + 280a;, (A.3)

X. = —ag+ 120a4a, + 126a; — 4620a,a, + 15400a,

[using formulas from [43], we can also explicitly write
out the coefficients x5 and X for an arbitrary field ¢(t),
but these expressions are very cumbersome].

Thus, we have the following expansion for z— 0:
1 5

X2 = 1—§azZZ+ E(a§—0.1a4)z4
A4
7 1a a 8 (A-4)
T 182 5% 2803‘?]

whose substitution in (4) gives the expansions of g(y)
and b, ,(y) of the pulse spectrum in the adiabatic range.

Below, we also give a summary of asymptotics
(y — =) for the functions f, ¢,, and ¢, in those cases
where they can be obtained by expanding exact formu-
las of type (11) or (12).

For ¢(t) = cost, itisclear that T, = 0 and

f(y) = In2y+

3 (A.5)
C; = In2y-1+—, ¢, = In2y+-—=+..
4y
(here, the terms proportional to y* were discarded); for
d(t) = 1/cosh’t (soliton), we have T, = 172 and

i) = D-2yt+ -2
2y° 3y
c, = __2y_l+O(y 3) (A.6)
C2 = lz-[—y_1+ ,
for ¢(t) = 1/ cosht,
f(y) = g——"— 4y
8y’ (A7)
C,=C, = g+ o(e™),
for d(t) = (1 + 1332,
f(y) = 1-(In2y—12)y >+ O(y ™),
A.8
C]_:l_—§-+ y szl_—l_'i', ( )
2y 2y
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for aLorentz pulse, ¢(t) = (1 +t9)7,
f(y) = 1—i +2yte 4
12y (A.9)
c,=C, = 1+0(e?)

and, finally, for aGaussian, ¢(t) = exp(—t%2), we obtain
Ininy
f(y) = J2Iny + —% + ...
(v) y oty

Iny
A.l
= J2In(ylny) + ..., (A.10)
ci(y) = co(y) = ~2Iny.
Thus, for fields of type (14) and (23),
limtly) = limf(y) = 1, (A.11)
y* 00 V" 00

where tg = it is the singularity of field function ¢(t)
closest to thereal axis; the larger is the exponent a, the
more slowly this limit is approached.

APPENDIX B
Auxiliary Functions

(& The function w(x), or the Dawson integral, is
defined as [24, 44]

X

w(xX) = exp(—xz)Iexp(tz)dt
0

(B.1)
= g-[erf(ix)exp(—xz),
has the expansions
w(X)
23,4 5
_ Eﬁ“sx X e X0, (B.2)
E:—sz_l+1x3+gx_5+ , X—»00,

and reaches a maximum of 0.54104 at x,, = 0.9241....
Note the relation

W) = (=1)"THL(x)W) = p_1(X)],
n=12...,

where p,_;(X) isapolynomial of degreen—1: p, =1,
P, = 2X, P3 = 4x2 —2x -2, etc.; and H,(X) isthe Hermitian
polynomial.

(b) Let us consider function (39). For0<c<1, it
monotonically decreasesat t > 0; for ¢ > 1, minima (xt,)

and maxima (+t,) appear init, with t; =1 — J1-c
and t5 = 1 + J1—c . The height of the maxima

(B.3)
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increases with constant ¢, and ¢(xt,) = $(0) = 1 at
c=c, = 15441.... If ¢ > c,, then the electric field

reaches the largest value not at zero but at t = £t,. The
dashed curvesin Fig. 1 correspondtoc =1 and c,, and

curve 3 corresponds to ¢ = 0 (Gaussian). Given that

T

h(t) = J’etz(l +ct*)dt
0

=0+ ca—ZDT ot (B.4)
B s |
j 2 1 2
exp(Bt’)dt = —=w(./Bt)exp(BT°)
I 0
and using (B.3), wefinally obtain
h(t) = [%l + %%W(T)
(B.5)

+ c%z— %r _ZIIE} exp(t°),

which determines x(2) and g(y) for apulse of form (39).

(c) Thevery short pulse ¢(t) corresponding to ansatz
(31) can be specified parametrically'

u3/2

¢ = (1+&H)7, t—j(1+ " dx,

(B.6)
0<¢€ <o,

whence follow expansions (33) and (33) and, at p = 1/2,
1, and 3/2, the explicit expressions for ¢(t) given above
(Section 3).

(d) When deriving formula(48) we used therelation

2N-1

tim 2 Al
2N-1 2
= [Af?lim 3 ew(-ilka+ (1A @7
k=0

= w| A’ Z [1+ (=1)"cos2B]d(a —nT)

and thefact that |A | = |A,| for all kinview of the condition
Ot + T/2) =—d(t). In our case, B = @/2 [see (50)] and

;
2a = %{[K%pz(t'n dt = S(pf+ p?+ 200),

(B.8)
1. _ M, 2 2
a—nn = 250" - (-v)w| = 500"~ p0),
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where v is the photoionization threshold; for example,

4
T

k>1

(B.9)

if o(t) = Z f,coskt. The excess of v over the multi-

guantum parameter K is related to the energy of oscil-
latory motion of the emerging electron in the wave
field.

(e) Twotypesof integralsare encountered when (49) is
integrated over the photoel ectron escape angles:

5[ep{~(asin’® + bcos'6)} sird B

0 (B.10)
_ e—bW(«/ﬂ)
Ja=b '

wherea=c,p?/w,b=c, p/w, a>b[see (10) and (11)],
and w(x) isthe Dawson function (B.1) and its generali-
zation

W(X, A)

X

2 . B.11
=g* Iet cos2Atdt = Re[e€® ™ w(X +i))] (B:11)

[here, x and A arereal, A = A(y)k?p,/2F]. The substitu-
tiont = x./1—s givestheintegral representation

w(X, A)
1
2 B.12
= %xje‘sx cos(2Ax/1—s)(1—s)“ds, (8.12)
0
whence
WX, \) = x—§(1 A +0(C), X0, (B.13)
w = %([COSZ)\X + %(sinZ)\x
e (B.14)
+ ——;——2——0032}\x+ } X —» 00,
X
and for p = x>+ A% —> o0, we have
WX \) = xcosZ)\x+)\sm2)\x+O(p_3)_ (B.15)

20X +\?)
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Thus, this function rapidly oscillates and decreases
at Ax > 1, which accounts for the significant reduction
in oscillation amplitude in the el ectron energy spectrum
[28] compared to formula (49), where this amplitude
reaches 100%.

APPENDIX C
Asymptotics of the Function f(y) for y — oo
Using [24, 27], we obtain

Fg:-—T

Oarccotht/t, a =1,
g 2.-1/2
%(14) , a = 3/2, (C.1)
= E[arccothr+r/(1—I2)]/2r, a =2,
2 —312
%—éfg(l—rz) , o =52
and, from the recurrent relation,
1.3.0_1
Fri 15575 = 5
(C.2)
13 *n
[(1 )+ o -FFL 5 5 D}

For arbitrary o > 1 and x — 1,

il

therefore, (16) for theinitial time 14(y) directly follows
from the equation h(ty) = .

= [2(a-1)(1=x)°""Y "+ ...,

The function x(z) has asymptotics (15') for z— o.
If a <3/2in(14), thena/(a —1) > 3 and

00

f(y) = to—ay“+..., a= Ix(z)zzdz,
0

(C.3)

y—» 00
(for example, Ty=1and a=T1?/12 for a = 1), aswell as

Cy(Y) = Ta—aCLy "+ ...,
1(Y) y - C4)
cy) = Ts—(a-1)c.y +...,

where X(2) = ¢,z%@-Y and v = 1/(a — 1) > 2. Hence
follows the asymptotic formula (17).
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If a =3/2, thenx(2) O z2 and the integral (C.3) log-
arithmically diverges at the upper limit. Naturally, a
correction proportional to Iny/y? appears here [see (A.8)].
Finally, for a > 3/2,

1(y) = 1s—ky  +...,

N (C5)
fy) = 1s-kyy  +...,
with
1
V= a—1<2’
_2a0-2 ~1(a— 1)

k = S 3[2 (a—=1)] (C.6)

2(a-1)

E, = 20 -3 k.

We thus determined the asymptotics of f(y) for
y — oo for pulse (14) and established its relationship
to the nearest singularity of ¢(t), which specifies the
pulse shape, in the complex t plane. We pass from (14)
to the general case of a power singularity,

o) = (L+t712) ",
by using the scaling relations (26).

Inthe opposite case, y — 0, the higher orders of adi-
abatic expansions (8) and their radius of convergence
depend on the singularity of x(2) closest to zero. Thus,
the analytic properties of x and ¢ manifest themselves
at small and largey, respectively.

(C.7)

t—it,,
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Abstract—The angular distributions of the fragments from a Coulomb explosion of a diatomic heteronuclear
mol ecul e during multielectron dissociative ionization in asuperintense field are considered in terms of classical
mechanics. The patterns of angular distributions of the Coulomb explosion fragments are shown to differ in dif-
ferent ranges of laser pulse parameters. In particular, there are two distinct modes of fragment separation: sep-
aration in a Coulomb field and separation in the field of an effective “fragment+field” potential. The effective
potential includes both the force of Coulomb repulsion between the fragments and the period-averaged force
exerted on the system by thefield; it can be determined by using the Kramers—Henneberger method. The limits
of applicability of the Kramers-Henneberger method to the problem in question are discussed. These limits
specify the range of field parameters in which the fragments fly apart in a direction perpendicular to the field
for theinitially arbitrary orientation of the molecular axis relative to the field. © 2001 MAIK “ Nauka/Interpe-

riodica” .

1. INTRODUCTION

One of the most efficient methods for theoretically
describing the dynamics of atomic systems in superin-
tensefieldsisthe Kramers-Henneberger method [1, 2].

The idea behind the Kramers—-Henneberger method
isto apply thefollowing transformation [1] to theinitial
Hamiltonian of an atom in alaser field

A= 2=+ v, €

where

>
I

Ajesinwt, A, = —Ec/w,

Sqy = ex Ejr tA(t‘)dt%
H pD:p'!’ J

t

X ex EL | Az(t')dﬂ%
pD 2c2-([ O

This transformation reduces Hamiltonian (1) to

2
Ay = % +V(r + e,a,coswt), 2

where a, = E/«¥ is the oscillation amplitude of a free
electron in the laser field; and E and w are the field
strength and frequency, respectively. Below, we use the
atomic system of units, m,=#% =e= 1. In the Kramers—
Henneberger approximation, the time-dependent
potential in Hamiltonian (2) is substituted with the

Kramers—Henneberger  period-averaged  potential
Vku(r, a). This approximation is valid if the effect of
the corrections

oV = V(r +e,a.,coswt) —V,(r, a,)

is marginal. In this case, some quantities, for example,
the ionization rate and polarizability, can be calculated
by using the perturbation theory, and the system’s exact
guasi-energies are well approximated by the steady-
state energies.

Presently, the properties of the Kramers—Hen-
neberger potential, eigenfunctions, and eigenstates are
well understood [3-7]. The Kramers—Henneberger
potential virtually coincides with the initial atomic
potential for a/a, > 1, where a is the scale size of the
atomic potential. As the oscillation amplitude
increases, a, > a, the Kramers—-Henneberger potential
acquires a double-well structure and extends along the
electric vector of an electromagnetic wave. Since the
Kramers—Henneberger potential isthe central object of
the Kramers—Henneberger formalism, which character-
izes the rearrangement of atomic states in weak high-
frequency and strong fields and is used to describe adi-
abatic stabilization, probing the structure of this object
in areal experiment is of considerable interest. Com-
puter simulations that alow the structure of the Kram-
ers-Henneberger potential to be determined are dis-
cussedin[8, 9].

Here, we show that the angular distributions of the
fragments from Coulomb explosions of diatomic heter-
onuclear molecules during dissociativeionization in an
intense laser field are determined by the structure of the
Kramers—Henneberger potential.

1063-7761/01/9302-0295%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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2. MODELING DISSOCIATIVE
IONIZATION

The dissociative ionization of molecules in intense
laser fields has been studied extensively both experi-
mentally [10—22] and theoretically [23-32]. A modél in
which the entire variety of the events constituting the
pattern of dissociative ionization reduces to two con-
secutive events, (1) electron removal and (2) Coulomb
explosion of the molecular ion produced by the electron
removal, is commonly used in theoretical treatment to
simplify this process. Thus, the evolution of dissocia-
tive ionization is determined by the competition of the
above effects, which give different contributionsto this
processin different ranges of laser-pulse parameters.

The most important characteristic of dissociative
ionization isthe angular distribution of Coulomb explo-
sion fragments. Experimental results suggest that the
angular distributions of the fragments from molecular
dissociation in a strong, linearly polarized field have a
sharp peak in the direction of thefield polarization axis
(see, eg., [12, 13, 15, 17, 19]). The sharp anisotropy in
angular distributionsisinterpreted as resulting from the
dynamic alignment of molecules[12, 33] or from asig-
nificant increase in dissociation cross sections with an
increasing degree of molecular alignment with thefield
[15]. These processes obviously take place at the first
stage of dissociative ionization.

In this paper, we consider the dissociation of a het-
eronuclear HA molecule (H is a hydrogen atom, and A
is an atom of a different element, for example, deute-
rium, chlorine, bromine, and the like) by an optical
pulse of intensity P > 10 W ¢cm and duration 100 fs.
One might expect the two-electron (q + 1-electron) ion-
ization of the molecule in such intense fields to take
place virtualy instantaneously. Therefore, it seemsrea
sonabl e to focus attention on the second stage of disso-
ciativeionization, the Coulomb explosion of the molec-
ularion HA@* D+ with g = 1. Thus, we consider herethe
processes that can affect the formation of angular dis-
tributions at the stage of the Coulomb explosion.

We consider the dissociation problem in terms of
classical mechanics. Under the assumption of sudden
electron removal at timet = 0, the dynamics of ions, H*
and A+ D* s described by the equations

“d_Z = p % = i%; + Li D
dt p dt ap /p2 + 22 ZIJP%
dz _ dp, o 1
WG =P 5 - +YE(1)

77

with theinitial conditions
p(0) = R,sing,,
P =0,

z(0) = R,cos8,,

p, =0,
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where
%E cos(cot)smzm)tlj 0<t<5T,,
(ha
[E coswt, 5T, ,<t<85T,,
Et) =1 ©)
%Ocos(wt)sm E;(E 85T, <t<90T,,
O
Eb, t>90T,,
-0 _ 90

L, is the z component of the momentum moment, T, =
217w, M, isthe proton mass, M, isthe mass of A%, L is
the reduced ion mass, p and z are the components of the
vector that describes the relative motion of ions, p, and
p, are the components of the momentum vector of the
relative motion, R, is the equilibrium internuclear dis-
tance, and 6, is the angle between the molecular axis
and the field polarization vector. Here, we use cylindri-
cal coordinates.

The angular distributions of the fragments from the
Coulomb explosion of the HD molecule (M, =2M,,g=1,
R, = 1.5) for various field parameters are shown in
Fig. 1. Theangle

eou'[ = t“me(t)y
o(t) = Darctan(p(t)/z(t)) z=0,
T gt actan(p/(1), 2<0,

which characterizes the direction of ion separation on
completion of the field pulse, is measured from the z
axis. The centrifugal potential affects the angular distri-
butions only slightly, at least for 0 < L? < L2, . For
Lmax, We used an estimate

21R;

KT = 0.025 eV. The pattern of the angular distributions
significantly depends on field parameters and can be
described in terms of the Kramers-Henneberger
approximation.

Indeed, the Hamiltonian of our problem in the cen-
ter-of -mass system, which describesthe rel ative motion
of the Coulomb explosion fragments, is

H = lgl Ap 2 pAOl  qpQ

= KT,

20M, M; c M, MM
5)
+94 A’ Dl q 0
No. 2 2001
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After the Kramers-Henneberger transformation (it is
also defined in classical mechanics [34-39]), Hamilto-
nian (5) takes the form

L;

_Ptp;,
2H 2pp°

2

| ©®)

tVin(p z.a) + ) Va(p, 2 2)e ™.

The Hamiltonian in Eg. (6) is written in cylindrica
coordinates, and

2n

_ 1 q
Viu(p, z,8) = 5= do, (7)
- 2 ——
21
_ 1 q -ing
Vn(pv Z, ae) - 5= e d(l),
2"{ Jo? + (z+ a,cosp)?
- Epl _ap
WMy M

In the Kramers—-Henneberger approximation, the time-
dependent term in Hamiltonian (6) can be disregarded.
Thus, the separation dynamics of the Coulomb explo-
sion fragments is determined by the structure of the
Kramers—Henneberger potential and, hence, signifi-
cantly depends on field parameters. The Kramers—Hen-
neberger potential (7) is[40]

2
Vin(P. 2, 8) = —0

KOs |1- Pz -a, TZE
V2 [(p*+(z+a)?) (P’ +(z—a))]™*] O

[(p% + (z+a)?)(p*+ (z—ag) ) " ’

where K is the complete eliptic integral of the first
kind. For a, < 1,

_ 1, omioh
Vi = THOm a0

and the fragments fly apart in the Coulomb field with
Bou = 6o (Fig. 1, curve 1). Below, this mode of ion sep-
aration iscalled Coulomb mode. Theionsinthefield of
the Kramers—-Henneberger potential for

a,>1, Rya,<1 )
fly apart in adirection perpendicular to the field (8, =
T02) at any 6,. Thisresult is qualitatively explained by
Fig. 2. For simplicity, we consider the case with M; <
M,. The field-induced oscillations of H* take place

along straight line ab. Clearly, when averaged over the
period for Rycosf, < a,, the z component of the total

force acting on H* is zero, while its p component is
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eOMf/T[
12

3/8

1/4

1/8

0 1/8 1/4 3/8 12
8/t

Fig. 1. The HD molecule. The changes in angular distribu-
tions when passing from Coulomb to the Kramers—Hen-
neberger mode of ion separation. 8, is the angle between

the direction of motion of the Coulomb explosion fragments
on completion of the field pulse and the field polarization
axis, By isthe angle between the molecular axisand thefield
polarization vector. P = 102 W em™, w=1eV (1); P =
2x10°%Wem2 w=1eV (2); P=2x102W cm?, w =
1eV (3);andP=9x102W cm?, w=9eV (4).

Fig. 2. To the discussion of ion separation dynamics in the
field of the Kramers-Henneberger potential. F¢ isthe force
of Coulomb repulsion between H* and A%, F is the force
exerted on H* by the laser field.

nonzero. Thus, if the averaging procedure that under-
lies the Kramers—Henneberger method is valid, the
fragments fly apart perpendicular to the direction of
field polarization. Below, this mode of ion separationis
caled the Kramers-Henneberger mode. Note that,
given thefinite duration of the laser pulse front, the sat-
isfaction of conditions (8) is not enough for the Kram-
ers—Henneberger mode to be realized. The third condi-
tion that limits the range of admissible fields and fre-
guencies stems from the fact that when the field
intensity and frequency decrease, the duration 1 of the
part of the pulse with a, < 1 increases, and the Kram-
ers-Henneberger potential is close to the Coulomb
potential. If theionsfly apart to adistance a, larger than
a. in time 1, then the formation of the double-peaked

No. 2 2001



298

GRIDCHIN et al.

o/mt o/mt
0.5 T T T T 1.0 T T T T
0.4+ @ 4 0.8+ (0) .
0.3F 1 0.6 -
0.1r 1 0.2 .
0 2 4 6 8 0 2 4 6 8
t, 108 at. unit

Fig. 3. Variations of 6 with time: (a) in the Coulomb mode of ion separation, P=9 x 101°W cm?, w=1eV; and (b) inthe Kramers—

Henneberger mode, P = 3.5 x 1022 W cm™, =1 eV.

structure of the Kramers-Henneberger potential on
time scalest > 1 will no longer significantly affect the
mode of ion separation, which will remain the Cou-
lomb one as before. In contrast to conditions (8), the
condition a, < a, depends on the shape of the pulse
envelope. In our case [see Eq. (3)], it isclear that

2
= na;l/Z iC))a;uz, arz%?é_.
H

Thus, the deviations from the Coulomb mode of
nuclear separation (curves 2—4 in Fig. 1) are attribut-
able to the formation of the double-peaked structure of
the Kramers—Henneberger potential. Figure 1 tracesthe
changes in angular distributions when passing from
Coulomb (curve 1) to the Kramers—Henneberger mode
of ion separation (curve 4). The variations of 6 with
time in the Coulomb and the Kramers—Henneberger
modes of ion separation are shown in Fig. 3.

Let us consider the question of whether the averag-
ing procedure, or the range of applicability of the
Kramers-Henneberger approximation, is valid for our
problem. The applicability of the Kramers—Hen-
neberger approximation to the finite motion of a parti-
clein thefield of an attractive potential was considered
in [39, 41]. However, these results cannot be extended
to theinfinite mation of aparticlein thefield of arepul-
sive potential. Note that the possibility of considering
the dynamics of a particle in the field of a repulsive
potential interms of the Kramers—-Henneberger approx-
imation was pointed out in [39]. For the validity of the
averaging procedure, it is important that the following
two conditions be satisfied in our problem. First, the
change in relative coordinate p in half the period must
be small compared to the internuclear distance,

.17

2R’
Second, the force exerted on H* by the field must be
larger than the force of Coulomb repulsion; otherwise,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

H* oscillations about the force center A% cannot be
provided (see Fig. 3a).

Thus, the domain of field parameters in which the
ions fly apart in the Kramers-Henneberger mode is
given by

137 }
a.>1, Q-1 ar s )
Ry 137 £ q7”
—<1, , 10
Y 'H- (10)
-2
a,<a, P>20"e 2000 "R, (1)
0
1/2
Ap<R, w>-= E;H_lg 1/2 3/2’ (12)
1 137
E0>-R—(2), P>—8—T—[RO (13)

Here, & = 5.44 x 10 is the electron-to-proton mass
ratio and m = M,/M,. The satisfaction of conditions
(99—(11) is necessary to ensure the double-peaked
structure of the Kramers—-Henneberger potential during
the ion separation; the satisfaction of conditions (12)
and (13) is necessary for the averaging procedure to be
valid. Figure 4 shows the domain of field parametersin
which the Kramers—Henneberger mode is established
for the HD molecule. Condition (13) is not reflected in
Fig. 4, because it leads to the requirement P > 1, which
is definitely satisfied in the entire domain. Straight
line 5in Fig. 4 correspondsto the conditionsv = ¢, v =
Ey/pw. In the region below this straight line, the Cou-
lomb explosion dynamics can be described in terms of
the nonrelativistic model used here. The diamonds
mark the domain boundary constructed by simulating
the Coulomb explosion of the above molecule. Note
that for M; < M, (for example, the HCL molecule), the
intensities required for the Kramers-Henneberger
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log(P/P,,)

log (w/ at)

Fig. 4. The domain of field parameters (bounded by heavy
lines) in which the Kramers—Henneberger ion separation
mode is established for the HD molecule. The diamonds
mark the domain boundary constructed by computer simu-
lating Coulomb explosion of this molecule. Py and wy are

the atomic units of field intensity and frequency, respec-
tively. ag= 1 (1), Ry/ae = 1 (2), a = a¢ (3), Ap = Ry (4), and
v =c (5).

mode to be achieved are an order of magnitude lower
than those for the HD molecule. This is because the
parameter y increases in this case approximately three-
fold [see Eq. (3)].

3. CONCLUSIONS

The angular distributions of the fragments from the
Coulomb explosion of a diatomic heteronuclear mole-
cule during dissociative ionization in a superintense
laser field have been considered in terms of classical
mechanics.

The patterns of angular distributions of the Cou-
lomb explosion fragments have been shown to differ in
different ranges of laser-pulse parameters. In particular,
there are two distinct modes of ion separation: separa-
tion in aCoulomb field (6, = 8,) and separation in the
field of an effective ion + field potential (8, = 12).
Based on the Kramers—Henneberger method, we deter-
mined the boundaries of these modes. The analytic esti-
mates are in good agreement with computations (see
Fig. 4).

Considering the above problem in terms of classical
mechanics implies the following: (1) the realization of
initial conditions close to the classical ones in a real
experiment and (2) the classical dynamics of ions. A
linearly polarized, molecule-aligning pulse of the
intensity P = 10'* Wcm can apparently be used to
realize initial conditions close to the classical onesin a
real experiment. The classical treatment of the ion
dynamics is possible, because the parameter v /vy =
&V4 where v, is the spread velocity and vy is the drift
velocity of the ion wave packet, is small.
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Abstract—The el ectrodynamics and dispersion properties of a magnetized dusty plasma containing elongated
and rotating charged dust grains are examined. Starting from an appropriate Lagrangian for dust grains, a
kinetic equation for the dust grain and the corresponding equations of motion are derived. Expressions for the
dust charge and dust current densities are obtained with the finite size (the dipole moment) of elongated and
rotating dust grains taken into account. These charge and current densities are combined with the Maxwell—
Vlasov system of equations to derive dispersion relations for the electromagnetic and electrostatic wavesin a
dusty magnetoplasma. The dispersion relations are analyzed to demonstrate that the dust grain rotation intro-
duces new classes of instabilitiesinvolving various low-frequency waves in a dusty magnetoplasma. Examples
of various unstable low-frequency waves include the electron whistler, the dust whistler, dust cyclotron waves,
Alfvén waves, electromagnetic ion-cyclotron waves, as well as lower-hybrid, electrostatic ion cyclotron, mod-
ified dust ion-acoustic waves, etc. Also found is a new type of unstable waves whose frequency is close to the
dust grain rotation frequency. The present results should be useful in understanding the properties of low-fre-
guency waves in cosmic and laboratory plasmas that are embedded in an external magnetic field and contain

elongated and rotating charged dust grains. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

About a decade ago, Shukla and collaborators[1, 2]
introduced the idea of considering the dynamics of
charged dust grains, which formed the foundation for
the dust acoustic waves (DAWS) [1]. In the latter, the
restoring force comes from the pressures of the inertia-
less electrons and ions, while the dust mass provides
theinertiato maintain the wave. The phase velocity (the
frequency) of DAWSs is much smaller than the electron
and ion thermal velocities (the dust plasma frequency).
On the other hand, when the wave frequency is much
higher (lower) than the dust (ion) plasmafrequency, we
have the dust ion-acoustic waves (DIAWS) [3] whose
phase velocity is much lower (higher) than the electron
(ion) thermal velocity. In DIAWS, the restoring force
comes from the pressure of the inertialess electrons,
while the ion mass provides the inertia because the
massive dust grains remain immobile at the time scale
of the DIAWS. Both the dust acoustic and dust ion-
acoustic waves are spectacularly verified in several lab-
oratory experiments [4-8]. We note that the previous
theories of DAWSs and DIAWSs and the corresponding
laboratory experiments have dealt with spherical dust
grains. Comprehensive reviews of waves and instabili-

TThis article was submitted by the authors in English.

ties in a weakly coupled unmagnetized dusty plasma
with spherical dust grainswere givenin [9, 10].

However, elongated charged dust grains are ubiqui-
tous in cosmic and laboratory plasmas [11-14]. The
formation of elongated charged dust grainsis attributed
to the coagulation of particulates in partialy or fully
ionized gases due to some attractive forces. Elongated
charged grains can acquire a rotational motion due to
their interaction with photons and particles of the sur-
rounding gas, or due to the presence of an oscillating
electric field in a plasma [11, 15]. In astrophysica
objects, the angular frequency of the dust grain rotation
can reach arather large value, viz. between tens of kHz
to MHz for thermal dust grains and hundreds and thou-
sands of MHz for super thermal grains [11, 12, 16].
Thereisan orientation of adifferent kind involving pre-
ferred direction (relative to the galactic disk) of the dust
grain angular momentum vector.

In general, elongated charged dust grains have a
nonzero dipole moment due to a finite grain size.
Accordingly, Mahmoodi et al. [17] investigated the dis-
persion properties of an unmagnetized dusty plasmain
the presence of rotating and elongated dust grains. It
was found that the dust rotational energy can be cou-
pled to both the electromagnetic and electrostatic
waves. However, cosmic and laboratory plasmas are
usually embedded in an external magnetic field that can

1063-7761/01/9302-0301$21.00 © 2001 MAIK “Nauka/Interperiodica’
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have substantial effects on the dusty plasmawave spec-
trawhen elongated and rotating dust grains are present
in adusty plasma system.

In this paper, we present the electrodynamics and
dispersion properties of a dusty magnetoplasma whose
constituents are electrons, ions, and finite-sized elon-
gated dust grains. In Section 2, we find expressions for
the charge and current densities of dust grains by
including the effect of the dust dipole moment and the
dust grain rotation. The forces acting on the dust grains
as well as the corresponding dust kinetic equation and
the eguations of motion are presented in Section 3. In
Section 4, we derive dispersion relations for both the
electromagnetic and el ectrostatic waves. Specific insta-
bility results are discussed in Section 5. Finally, Section 6
contains a brief summary and possible applications of
our work to cosmic and laboratory plasmas.

2. DERIVATION OF THE CHARGE AND
CURRENT DENSITIES FOR DUST GRAINS

We consider a multicomponent dusty plasmain the
external magnetic field 2B, , where Z isthe unit vector
along the z axis and By is the strength of the external
magnetic field. The dusty plasma constituents are elec-
trons, ions, and negatively charged nonspherical rotat-
ing dust grains. The dust sizes are much smaller than
the characteristic scale sizes of the inhomogeneities
(wavelength of disturbances in our system). To con-
struct the electrodynamics of charged dust grainsin a
magnetized dusty plasma, we must obtain appropriate
expressions for the charge and current densities of dust
grains through the dust grain distribution function, tak-
ing the size of the dust grain into account. On the other
hand, expressions for the charge and current densities
of electrons and ions assume the standard form.

For our purposes, we assume that the charged dust

grains are a system of discrete parts [18]. The charge
microdensity of the grainsis represented as

Pn=S {z dal(r ;) 3(r —rj)} 1)
[ J

where the summation over i is taken over different
grains and the one over j istaken over different parts of
theith grain. Here, da(r;) isthe charge of the jth part of
theith grainand o(r —r;) isthe standard Dirac function.
If there is a continuous charge distribution onto the
grain, the summation over j can be replaced with the
integral over the grain volume, and the charge density
on the grain can be introduced. Hence, we have

Pm = Z I pi(r' —=R;, R)o(r —r7), 2
i VIR)

where R; istheradius vector of the center of mass of the
grain and the integral is taken over the grain volume
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Vi(R;). In (2), we introduced the density of the charge
distribution onto the grain

da(r) = War =5 R, R)Ir.  (3)

For apoint grain charge, we have
Pi(r =R, R) = qd(r —Ry), (4)

which leads to the usual expression for the charge
microdensity of the grain

Pm = ZQié(r -Ry), )

where g; isthe total charge of theith grain.

For the statistical description of adust grain gas, we
must introduce the probability density D for the grain
gas state [19, 20]. If all grains are identical, we have

D = D(Ry, vy, 24,04, Wy, 04;
R21 V21 92’92"‘I’J21¢2; "'lt)’

where v; is the velocity of the center of mass, &, isthe
angular velocity of the ith grain, and 6;, j;, and ¢, (the
Euler angles) describe the orientation of elongated
grains. For the averaged charge density of the grain, we
can then write

p(r,t) = J.drlv dry, ...,dryDpy, (7)
where N is the total number of grains and
dr; = dR,dv;d€2;d6,dy;d¢;.

Introducing the one-particle distribution function for
the dust grain

fy(Ry, Ve, 24,01, 01,0)

(6)

_ €S)
= NIszdI'3, ..,dryD,
we can write the charge density of the grains as
r,t) = fdro[pu(r)o(r —Ry—r"
p(r, b I 1\{p1( )( 1 ) )

X f4(Ry, vy, 24,01, Qy,¢4,t)dr".

In what follows, we omit the subscript 1 and consider
the one-dimensional grain rotation such that the angu-
lar velocity is oriented along the external magnetic field
direction, = (0, 0, Q). Equation (9) can then be writ-
ten as

p(r,t) = jdrﬁ(r -R )R, v, Q,¢,1), (10)
where the integrand
p(r—R, 9) = J’dr'b(r‘)é(r -R-r7), (11)
No.2 2001
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describing the charge distribution onto a single grain,
depends on the shape of the grain and the azimuthal ori-
entation of the grain elongation axis. Outside the grain

volume, we have p = 0. For identical grains, we can

partly determine the dependence of p on the azimuthal
angle ¢. Every given direction of the grain elongation
axis, determined by the angle ¢, can be considered as
the final position of the axis (and simultaneoudly the
entire grain) rotation from the direction where ¢ = 0.
This allows usto write

p(r =R, ¢) = PIF(®)(r —R), 0)]

- (12)
=p[F(@)(r=R)I,
where IE(¢) isthe rotation matrix for the angle ¢,
F = Fy() = 000 ~Sné (13)

Osing cosd O

In the dipole approximation, when the dust grain
size a is much smaller than the scale length of the
plasmainhomogeneity A,

a<\, (14)

weinsert (12) in (10) and expand the distribution func-
tion fy4 around the point r. This gives the grain charge
density

Pq(r, 1) = J’(q—d M) fa(r, v, Q,¢,0)dA,  (15)
where dA = dvdQdd,
q= I drp(r) (16)
isthetotal charge of the dust grain, and
d = F(@)[drrp() (17)
is the dipole moment of the grain. Here, F* isthe

inverse matrix of IE(¢) .

Similar calculations lead to the following expres-
sion for the dust current density:

Jy(r, t) = Id/\[v(q—d (M) + Q x d]
xfqr,v,Q,d,t).

(18)

The first term in the right-hand side of (18) describes
the transfer of charge (15) and the second term
describes the current arising from the dust grain rota-
tion. In the next section, we show that Eqg. (15) and (18)
are related to the continuity equation.
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3. FORCES ACTING ON GRAINS
AND THE GRAIN KINETIC EQUATION

To construct the kinetic equation for dust grains, we
must completely know the forcesthat act on dust grains
in the presence of electromagnetic fields. Assuming
that charged dust grains constitute a discrete system of
particles [18], we have the Lagrangian

Amu?

#=y4

+%ZAqi[vi CA(r, )] —ZAqi(P(ﬁt),

(19)

where Am and Ag; are the mass and the charge of the
ith part of the grain, respectively, r; and u; are its coor-
dinate and velocity, A and ¢ are the vector and scalar
potentials, respectively, and c is the speed of light in
vacuum. Separating the center-of-mass motion and the
rotation around the center of mass, we can write

U = v+QxAr; and r; =r +Ar;,

where v and r are the velocity and the position of the
center of mass, Ar; isthe coordinate of theith part of the
grain relative to the center of mass, and Q isthe angular
velocity of the dust grain. Assuming that the inhomoge-
neity scale A of the electromagnetic field is much larger
than the grain size a, we can use dipole approximation
(14) up to the third order in the small parameter a/A and

expand the potentials as
A(ri, 1) = A(r, ) + (Ar; LO)A(r, 1)

20
+%(Ari[lj)2A(r,t)+..., (20)
and
@r;, ) = @(r, t) + (Ar; ) q(r, 1)
21
+%(Ari[lj)2(p(r,t)+.... (1)
Accordingly, Lagrangian (19) becomes
myv’ 1
¢ ==+ EIGBQGQB+gv CA(r, ) —qalr, ©)
(22)

1 Vo
+mB+|d+ éZAinri(Ari () |FE + =X B,

where

my = zAmiv q-= ZAQi

are the total mass and charge of the grain,
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lag = Y AM(Ar)*8ug — (Ar,)g AT )]

is the inertia moment tensor,
d= z AgAr,

is the dipole moment of the elongated grain, and

m = (JJZC)ZAqi(Ar xU,)

(with U; = Q x Ar; being the rotation velocity) is the
magnetic moment of the grain. The eectric and mag-
netic fields are

E=—0l —c 9A(r, 1), B=0OxA(r,),
respectively. In deriving (22), we used the relation
dd/dt = @ xd.

In the presence of the gravity field g, we must add
the term myg - r to the right-hand side of (22). In what
follows, we neglect the second term in the square
bracket in the right-hand side of (22), which is associ-
ated with the multidipol e effect.

The equations of motion for the charged dust grains
can be readily deduced from (22) as

P - (qramfE+ vl

(23)
+%(9><d)XB+(mXD)XB
and
d'(;f [ (v [I])BB}
(24

1
+[dxHE+vaBEL+(mxB)G,
where p = myv is the momentum,
Sip = €Y AG[(Ar)*Bup — (A1) (Ar))gl,

and M, = 1,5Qg is the angular momentum of the grain.
If we choosethe principal axis of the moment of inertia,

then
M, = LQ, M, =10, M,=1Q,

The kinetic equation for the dust grains can now be

written as
afd Da—d+9Da—d
or
dp dM _
+aa‘s—;+w‘;ﬁ—o

(25)
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where the respective forces dp/dt and dM/dt are defined
by Egs. (23) and (24). Kinetic equation (25) and defini-
tions (15) and (18) imply that the dust grain charge and
the current densities satisfy the continuity equation

90, , 03,
ot or

Using the expressions for py and Jy, we can construct
thekinetics and el ectrodynamics of adusty plasmawith
elongated and rotating dust grains. In what follows, we
consider the wave dynamics of such amagnetized dusty
plasma.

= 0. (26)

4. DIELECTRIC PERMITTIVITY

We assume that the dust grain size is much smaller
than the grain gyroradius and that the dust grain thermal
velocity is smaller than the characteristic velocity of
our problem. Under these conditions, taken together
with (14), equations of motion (23) and (24) can be
simplified. For simplicity, we furthermore consider the
one-dimensional case of the dust grain rotation; we
then have M = (0, 0, M), where M = 1Q and | isthe z
component of the principal moment of inertia. The
kinetic equation for the dust grain (25) then assumesthe

form
D"__d

+(d><E)Z +qBE+ v><Bq%Da—d = 0.

afd

(27)

For electrons and ions, we have the well-known kinetic

equation
o0f, Qfa
FRAAT

+eG[E+lv><(BO+B)} ALY
c op

where a equals e for electronsand i for ions, and g, is
the charge of the speciesa.

(28)

Assuming that the wave electric and magnetic field
perturbations are small, we can express the perturbed
distribution function as
6fd = fd_ de < fdo

and 8f, = fo—fgo < fo.

The equilibrium distribution functions are [21]

fo= Nyo 1
© T onenm T ¥ (2m Ty Y2 9
xexp[ p’ _(M—Mo)z}
mgTs 21T, '
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and

Nao 0_p 0
- =Pp iy
(ana-l-a)3/2 2m, Ty

(30)

where ng, and Tg (B = €, i, d) are the unperturbed num-

ber density and the temperature of the species 3. We

assumed that the dust grains rotate with a preferred
angular velocity Q,, and therefore, M, = 1Q,,

The components of the dust dipole moment are

d, = dcosp, d, = dsing. (31)

Thus, the perturbed dust grain distribution function is
represented as

8fg = 3 of,exp(ing), (32)
and therefore, Egs. (27) and (28) give [22]
66f Q "4 inQaf, — Cdaéfn
oy
_ ngdo i0fq (33)
= B AM -5y
xd[(Ex—IE))A(n—-1) + (E,+IE))A(n + 1)]
and
66f of, 00f, foo
E@ Weq alIJ —e,E Daa—p, (34)
where
(*)cd = qBO/dev wca = euBO/maC

are the cyclotron frequencies of the dust grain and the
species a, respectively. Furthermore, A(n) equals 1 for
n=0and 0 for n# 0. The symbol Yis the azimuthal
angle in the momentum space [22],

P« = PocOsY, p, = posing.
In accordance with (31), only n =0, +1 give acontribu-
tion to the summation in (32).

Assuming that the perturbed quantities are propor-
tional to exp(—wt + ik - r), where w and k are the fre-
guency and the wave vector, respectively, we obtain
[22] the following solutions of Egs. (33) and (34):

W

3f, = = J'deade
(35)
xexpmj[w—wwgw Dy,
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|d E,FIE,) Gf
. (36)
N exp%_ [w+ Q—k Oy )}dw'%,
0J Weg 0
i
g
_ gE 0f0
of, = wwj'dlp 3D
(37)

<eof} I[M}dwg

CU

Inserting Egs. (35) and (36) in (18) and aso inserting
(37) in the expression for the electron and ion current
densities

Jy = eaJ'dpvfa, (38)
we obtain the total current density
Ji = | oj(w k) + > o i, k)} (39)
B=ei,d

where the first term in the right-hand side is related to
the rotational motion of the dust grain and the second
term represents the contributions of the electrons and
ions including the center of mass motion of the grains.

The various components[25] of oirj andthedidlectric per-
mittivity are given in the Appendix. For K3V5, < wiy
and |w+ Q > KV, the dust grains are assumed to be

cold and the rotational part of the dielectric tensor (cf.
Eqg. (A.15) in the Appendix) is given by

(40)

where

(41)

(@- Q) (w+ Q)

and

N S o
(W=Qp)* (+ Qp)*

We note that this involves a new characteristic fre-
quency

(42)

Q, = (4mngd4/41)™
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for dust grainsthat have anonzero dipole moment. This
frequency is of the same order as the dust plasma fre-

quUENCY Wy,

5. DISPERSION PROPERTIES
The general analysis of the dispersion relation
2

K5, —kikj— e (w, k)| = 0

ij — R (43)
for waves in a magnetized dusty plasmais rather com-
plicated, because the number of wave branchesislarge.
Here, we present the dispersion properties of some
most interesting modes and describe the underlying
approximations required for the existence of these
modes. We first consider waves that are propagating

along 2B, . For wavesin acold dusty plasmawith

kDVta < ('oca! |kz|Vtcx <Ww (44)
and  |W* Nwg| > [k Vi,
we have
eXX = eyy = ED
-1y S S o (45)
W -0 (0-0Q)° (0t Q)’
€xy = “€yx = Ig
-y Wppep . Q! . QF (46
- oW -wgg) (0= Q) (0+ Q)
002
€, = ¢ =1- B (47
Il %wz
and
€xz = €x = eyz = ezy = 0. (48)

The electric field components are determined by the set
of equations

2 2
w w
f-Yefeior ke 0, @)
C C
W > o 0
=gE, + E( ~=epgEy = 0, (50)
Cc C
2 W O
—k k,E, +H:-2eHE, = 0. (51)
O B(D 2 I

We note that for k; =0 (i.e,, for k = 2k, ), we have ¢, = 0
if E, # 0, which shows that the dust grain rotation does
not affect the longitudinal waves. Obvioudly, the dust
grain rotation can act on the waves when the electric
field is in the rotation plane. The energy exchange
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between the dust grain rotation and such awave is most
efficient when the rotation frequency is close to the
wave frequency.

For the circularly polarized el ectromagnetic waves,
we have
2Q°
1- z )
w(w+ 0%[3) (w* Q)

_.C_ (52)
W

where £ in the denominators corresponds to the
left/right-hand circularly polarized waves. By replacing
Q, with—-Q,, we can make the dust grain rotation direc-
tion coincide with the wave polarization direction.

Dispersion relation (52) can be written as

K 207
£ = (o) - -, (53)
(w— Q)
where
2
wpﬁ (54)

Introducing asmall frequency shift A around Q,, we set
w=Qy+ A, where A < Q,, and express (53) as

2Q

k22 a k22
o e(Q)+AaQ[ S —<(@)

0

(55

We now assume that Q, is far from the characteristic
frequency wy, of the magnetized dusty plasma, which
satisfies

K*c?
H(wy) = — —€(wy) = 0. (56)
w
The condition
H(Qo) > A’ (57)
Qo(dH(QY/dQ,)| o

isthen satisfied (this caseis referred to as the nonreso-
nance case) and we obtain

= +|[2 fQ [1+ Q e(QO)} (58)

where we also assumed that Q5 < k2c2. Equation (58)
describes a new type of unstable transversal waves
whose frequency is close to the rotation frequency Q.
In the resonance case, when inequality (57) isreversed,
Q, iscloseto some characteristic frequency of the mag-
netized dusty plasma,

H(Q,) = 0, (59)
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and we obtain the frequency shift

V3 1
A:[ } Qo%_li'ifa%.

o 2 O
Equation (60) exhibits an unstable root with a substan-

tial growth rate that is proportional to Q”°. This was
expected because dispersion relation (53) is formally
similar to the dispersion relation for atwo-stream insta-
bility discussed in [23].

We now present several examples of the magnetized
dusty plasma wave spectra for the resonance case.
Because Q, is small in most of the astrophysical and
terrestrial environments, we consider low-frequency
regimes of the plasma oscillations.

For |uyl, Wy < @ < |, we have

2Q°
QIOH(Q,)/0Q,

(60)

2

Setting
w= Q,+iy,

where

2.2 2
Qo= wy = KC|wed /Wpe
(the electron whistler waves), we obtain the growth rate

Q/
y= 90[22—2}

1/3

2 (62)

In thefrequency regimewhere |w,y| << w < w,, we have
22 2

H(w) = K& - o

w? 0 G

In deriving (63), we used the dusty plasma guasi-neu-
trality condition at equilibrium

lefNeo + lalnge =

(63)

€iNio. (64)
Setting
w = Qy+iy,
where
Qo= 0 = K°C®|wgl/dng

(the dust whistler wave [2, 24-26]), we obtain the
growth rate

1/3

2
0
25 0, (65)

-
Y 0 Kc
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On the other hand, for w ~ w4, we have
K°c? (*)fad

R =~ W )

(66)

In this case, setting
w = Qy+iy,
where
Qo = Wy = |00yl (1~ Wie/K'C?)

(the electromagnetic dust cyclotron wave), we obtain
the growth rate

2 13

PRI
= wC
Y Dkzczk% @

For the frequency range w =
the growth rate is given by

(67)

Wy (ion cyclotron waves),

0 Q2 (,02 D1/3
V=R—=5=50 wy. (68)
0 K*c?K3c ¢
We now take the thermal motion of the electrons into

account assuming that

Vie Vi < 17 (69)

Ikl

We restrict ourself to the wavelengths longer than the
Larmor radii

24,2 2,2 2
KiViar [k Vig < 0.

From (A.9)—(A.11), we then obtain the dielectric per-
mittivity tensor components

2 2
C w
Ex T €&y T 1t = —— »
VA W — g
, ) (70)
Q° Q-
(0-0Qp)° (w+ Qp)°
_ _ (U;Z)d W
Exy = —€yx = 2 W
(.0 _(}‘)Cd cd
) ) (71)
+i 2 i 2
(0= (w+ Qp)”
2 2 2
W, W )
€, = 1-——&_—pd _—pe (72)
” o o KV
€z = €x = €yz = €2y = Ov (73)
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where we used (64) and set
Bo
Jarm, niol

Wealsoignored the Landau damping on electrons. Dis-
persion relation (43) separates into two equations:

€(w k) = 0, (74)

which is not influenced by the rotation of the grain, and

V=

Kc® ¢
H((JJ) = —
Va
Whg 207
Weg(W (*)cd) (0F Q)

We now assume that w << |wy|. Setting

(75)

W= Qy+iy,
where

(Alfvén waves), and using (58), we obtain the growth
rate

0 2 1/3
=[—+1 Kkv,.
Ekzc% 8
We next consider the longitudinal waves for which the
dispersion relation assumes the form

K2 K
k—?exx(w, k) + k—éezz(w, k) =0,

(76)

(77)

where the components e, and €, for the cold plasma
are defined by (70) and (72). Inserting the latter equa-
tionin (77), we obtain

K Wi
K* 4w’ — wiy kZ

K[ Q2 Q?
= 2t 2|
K (00— Q)" (w+ Q)

It follows from (78) that the dust grain rotation contrib-
utes only for waves with ky # 0, because the electric
field of the longitudinal waves then has a component
that liesin the dust grain rotation plane.

To obtain the growth rates for longitudinal waves,
we use the same procedure as was used to deduce
Egs. (58) and (60).

We now consider the lower hybrid waves with
|kz|VtE! |kz|Vti’ W KW< |(’Q:e|- Setti ng

1—
(78)

W= Qy+iy,
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where
Wy W,
Qp = W = —p' : (79)
A wpe + (*)(Z:e
we find the growth rate
Q0"
y = ——D Q. (80)
w2

pi
Next, we consider the frequency regime where
|kfVig, [kJVi < 0 <[k Ve.

The dielectric permittivity components in Eq. (77) are
now defined by Egs. (72) and (78). Using these expres-
sions, we obtain the dispersion relation

k2|:| 002- wZ 0
1+ 212 __2[’2 p|2+ 2 pdzD
Krpe KW —wg  —wJ 61
2 2 2 2 2 ( )
_&% = k_D Qr + Qr
Ko K[(0-Q)" (0+Q)°

This egquation can be analyzed in two limiting cases.
First, we consider the ion-cyclotron waves with wy <

w= Qg and k, < k. Setting
W= wy+iy,
we then obtain the growth rate

(82)

where
Qp = Wy = (wgi +ké0§)u2, Cs = g

istheion acoustic speed.

Second, we consider the modified dust ion-acoustic
waves (MDIAWS) characterized by Gy, Wy < W < (.
In this case, Eq. (81) gives

kzc2
1+K° rDe+kDps =
(83)

2 2

= kérzDe{ Qr > + Qr >

(W=CQp)" (w+ Q)

where
- rDe(’opi = i
ps B (*)ci - (*)ci.
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Equation (83) admits an instability of the MDIAWS
with the frequency

K.Cs

Qo = wp = 2 2,12’

(1+Krpe + k5pe)
and the growth rateis

Finally, we consider coupled dust acoustic-dust cyclo-
tron waves in a dust-electron plasma (without ions)
with positive dust grains[27]. For kVy < w < k,V,,, we
then have

2 2 2.2
1 ko 9 _ KW

1+22__§2 2 2 2
Krpe Kw—-wy Kw

(85)

ko[ @? Q7
=2 2t 2|
K (0—Qp)"  (w+ Q)
For w < |wy|, Eg. (85) admits an instability of short
wavelength DIWs when

Kr peWpq

(1+ K2, +K2pZ)

Qy = wy

where

psd = )\Dewpd/wcd-
The growth rate of thisinstability is
ké QrZDHS

—1 Q,.
k? W] °

(86)

On the other hand, for w ~ [al, ko = k,, and K2r3, <
1, an instability of the dust cyclotron waves occurs
when

_ 2 2.2 2,12
QO - wo(wcd+ k rDeoopd) '

The growth rate of the instability is
1/3
Q2 2
V=Bt Q.
Qy Q0

It is interesting to note that a dust-electron plasma
with positively charged grains can occur in the Earth’'s
polar mesosphere [28, 29], where the grains are irradi-
ated by the sun light, in which case the grains act as a
source of electrons and collect ions from the ambient
plasmato become positively charged. There dso isthe
prediction [30] that positively charged dust grains in
retrograde orbits are most likely to be observed by the
Cosmic Dust Analyzer aboard the Cassini Orbiter mis-
sion to Saturn. Furthermore, the dust electron plasma

(87)
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can aso be created in a laboratory discharge when the
dust grains are irradiated by ultraviolet (UV) radiation
[31-34].

6. SUMMARY AND CONCLUSIONS

In this paper, we have developed the electrodynam-
ics of a magnetized dusty plasma taking the finite size
of elongated and rotating charged dust grains into
account. Starting from an appropriate Lagrangian for
charged dust grains, we have derived the dust charge
and dust current densities, as well as akinetic equation
for charged dust grains and the corresponding equa-
tions of motion in the external magnetic field. The
effects of the dipole moment and the principal moment
of inertia of the elongated and rotating dust grains are
self-consistently incorporated. The newly derived dust
charge and dust current densities, together with the cor-
responding quantities for electrons and ions, are com-
bined with the Maxwell-VIasov system of equationsto
obtain dielectric response functions for a magnetized
dusty plasma.

For a cold dust gas, we have obtained explicit
expressions for the permittivities associated with the
dust grain rotation and for those of the ambient plasma
species. Thedispersion relationsfor transverse and lon-
gitudina waves were then derived. Our anaytica
results exhibit the instabilities of the electron whistler,
the dust whistler, the Alfvén waves, electromagnetic
ion and dust cyclotron waves, as well as lower-hybrid,
electrostatic ion-cyclotron, and coupled dust acoustic
and dust cyclotron waves. The instability arises due to
the resonance interaction between waves and elongated
rotating dust grains. The free energy stored in the dust
grain rotational motion is basically coupled to both the
electromagnetic and electrostatic waves, driving them
at nonthermal levels. The presence of nonthermal fluc-
tuations can be used for diagnostic purposes. For exam-
ple, coherent or incoherent scatterings of star light
and/or electromagnetic waves off nonthermal fluctua-
tionsin cosmic plasmas may yield valuable information
regarding the light polarization, the dust number den-
sity and the dust charge in situ, and other plasma
parameters including the external magnetic field
strength. We stress that the oscillating electric fields of
electromagnetic waves may produce dust grain rota-
tion, the energy of which isrequired for driving waves
at nonthermal levels.

In conclusion, we emphasize that the present inves-
tigation should be useful for understanding waves and
instabilities in astrophysical and laboratory plasmas
that contain elongated and rotating charged dust grains.
Finally, we suggest that new laboratory experimentsin
a weakly coupled dusty magnetoplasma must be
designed to test the ideas described in this paper. A
recent experimental work by Molotkov et al. [14] has
conclusively demonstrated the Coulomb crystallization
of 300-um highly charged elongated cylindrical grains
(with |g| ~ 7.7 x 10° and with the length-to-diameter

No. 2 2001



310

ratio 20-40) of the mass density 1.1 g/cm® and the
diameters 15 and 7.5 pm in a low-pressure gas dis-
charge plasma, where the electron energy ranges
between 1-10 €V. Thus, a sheath electric field of the
order 30 V/cm can levitate the grain.

Molotkov et al. [14] have discussed the role of the
induced dipole moment that can influence the grain ori-
entation. At small pressures (0.1 Torr), they also
observed oscillations with the wavelength ~1 mm and
the frequency 20-50 Hz. The latter can be associated
with the dust acoustic waves that are deduced from
our Eq. (83). Furthermore, by applying the external
magnetic field 1-6 kG and with the plasma (n;, ~
10° cm2 and ny, ~ 10° cm) and dust parameters simi-
lar to those in Molotkov et al. [14], one should be able
to observe the magnetization of ions and the electro-
static ion-cyclotron wave instability described by (81).

Finally, we mention that several authors [35-38]
have experimentally observed rotation of spherical dust
grains by magnetic fields. The rotation is attributed to
theazimuthal E x Byion drift, which also dragsthe dust
grain along due to the space charge electric field that is
set up between ions and grains.
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APPENDIX: VARIOUS COMPONENTS OF Girj

The components of o{j are given by

r E Oy Oxy OE
O'ij((x), k) = E_O_ry O_;y OE’ (A1)
0o o oO
where
2
roo_ Nged” 1
T = 0w = 14 KV,

(A.2)
X% exp(=Zg) 1z (P2 + PY),

n=—o
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roo_ ndod2 1
Oy = e
y 4l KV

(A.3)

00

xS exp(—2a) n(z) (P2 3,

n=—o
o = K KV
oKWt Qy—nw U

20— Wy _ k Q.U
(]
K? KV k2K

it Q) — N
KVy U

(A.4)

B0 Qo—noocd]}
<[r 5w o)

Here,
Vig = (Td/md)ﬂz
isthe grain thermal velocity,

KoV
zﬁzmtﬁ,K-Alkﬂ( [
Wep
I,(2) is the Bessel function of an imaginary argument,
and the function

X t7 _
J.(X) = Efdtexpg—ig(x—t) !

has the asymptotic behavior
1,3

J(X) = 1+=+=+ ...
X2 X2

—i @xexp(—xZ/Z) (A.5)

for [x| > 1, |Rex| > |Imx|, and Imx <0 and

J.(X) =—i «/TETX (A.6)
for [x| < 1.
For the tensor o7, (w k), we have
WAIYE
afi(w k) = [Jdpv(w)jdw hp, O
(A.7)

Y
 expld [(0—k V(W) ong] di'D,
0J O

where gz isq for B =d.
Straightforward calculations lead to the following
expressions for the dielectric permittivity tensor [22]:

€@, k) = eij(w, k) + (@, k), (A.8)
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where
n2w? 8 An(zB)
Exx - 1 %Zw(w r:wa) ZB \]+(En)1 (Ag)
ny = Exx
BZB o (A.10)
+ Zz Zw(wp n(o ) n(zﬁ)‘]+(€n),
Exy = —€yx
(A.12)
I’] (;J B Al
- _Izzw(w r:oo ) n(ZB)J+(an),
€xz = ;zx
kg (A.12)
%Z” Woski Ay (Z“)[l 3E,
;yz = —ey
km (A.13)
= —i z Z(}J B n(ZB)[l J+(En)]
ezz =1
(A.14)
DD SHlC rt':"“‘) Az 1- 3.,
and
€0, k) = .,( k). (A.15)
Here,
A@ = ep(-21,@, &, = “?lj'—fj*’ﬁﬂ

laTiein
Wpp = —
mg

isthe plasmafrequency of the species3, and k = (k, 0,
k).
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Abstract—The collective movement of dust particlesin aplasmaformed during decel eration of decay products
of californium nuclei in neon is investigated experimentally. For the first time, compact vortex structures con-
taining alarge number of coagulating dust particles and dense dust clouds evolving in time are observed. Dust
formations have clearly defined boundaries and particles in them form ordered liquid-type structures. Under
steady-state conditions, dust structures exist from several minutes to hours. An increase in the voltage applied
to the high-voltage electrode leads to the formation of dust particle jets. A change in the electric field configu-
ration transforms the structures from one type to another. A strong recombination of electrons and ions at dust
particles is observed. The momentum transfer from ions drifting in an external field to gas moleculesis studied
using the Monte Carlo method. It is shown that the transferred momentum is so large that it may cause a gas
flow. The characteristic features of vortex flow in neon and in air are explained. © 2001 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

Nuclear-induced dust plasma is created by ionizing
particles appearing in nuclear reactions during nuclear
fission aswell asduring thea and 3 decay [1, 2]. A typ-
ical feature of such plasmaisits space-time inhomoge-
neity associated with its track structure [3]. The accu-
mulation of charge by particlesin thistype of plasmais
stochastic [4] and the time of charge variation is deter-
mined by the intensity of decay in a radioactive source
and by the distance from the source. A dust particle in
a nuclear-induced plasma in an externa electric field
experiencesthe action of electron bunchesandion clus-
ters drifting towards different electrodes and having (in
the case of a uniform field) a cylindrical shape with a
symmetry axis parallél to the trgjectory of the ionizing
particle. As a result of diffusion, the electron bunches
and ion clusters spread in the radial direction, the dif-
ference in the diffusion coefficients resulting in a con-
siderable increase in the radii of electron bunches.
These formations encounter dust particles more fre-
guently and transfer anegative charge to them. Theless
frequent action of ion clusters effectively discharges
dust particles. Alternating action of electron bunches
and ion clusters |eads to strong fluctuations of the elec-
tric charge of a dust particle [4]. In an external electric
field under aconsiderable gas pressure, the drift of elec-
trons and ions to the electrodes causes a momentum
transfer to neutral components of the medium. In view
of the large velocity and short time of the electron drift

to the anode, the momentum transferred by electronsto
neutral particlesis negligibly small but the momentum
transfer by ions plays the decisive role. As aresult, the
gas performs a motion whose type depends not only on
the geometry of the volume occupied by the gas, but
also on the concentration of dust particles, their mass
and charge. Such a movement complicates the forma-
tion of stationary dust structures and |leads to the evolu-
tion of vortices, streamlined clouds, and jets of dust
particles.

The present work aims at experimental investigating
the behavior of dust particles of various diametersin a
nuclear-induced plasma in the presence of electric
fields with avarying spatial configuration.

2. EXPERIMENTAL SETUP

The experimentswere madein asetup similar to that
described in [1]. As a source of ionizing radiation, we
used a thin layer of 2%2Cf whose nuclei experience
alpha-decay and spontaneous fission in aratio approxi-
mately equal to 32 : 1. The intensity of the source was
4 x 10° divisions/s. For such an intensity of the radioac-
tive source, the concentration of Neions near its surface
is N, ~ 3 x 10° cm3. The source was mounted on an
earthed metallic electrode (Fig. 1) made in the form of
adisk of diameter 44 mm. A high-voltage electrode of
the same diameter was arranged at a distance of 3.5 cm
from the source. Inthe vicinity of thiselectrode, theion

1063-7761/01/9302-0313%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Experimental setup: injection of gas—dust mixture
from the evacuation and gasfilling system (1), netlike con-
tainer of dust particles (2), glass walls (3), metallic elec-
trodes (4), laser with a cylindrical lens (5), 2D radioactive
source (6), video camera (7), dc source (8), and various
types of high-voltage electrode (A, B, C).

concentration was N, ~ 1 x 108 cm3, Theion concentra-
tion was determined from the calculated coordinate
dependence of the power density for the energy contri-
bution of fission fragments and a-particlesto thegasin
analogy with [1]. Additional electrodes were mounted
on the planar high-voltage electrode to create a nonuni-
form field. Figure 1 shows electrode A with a hole of
diameter 15 mm and two copper tubes of diameter
2 mm inserted through an insulator. The auxiliary elec-
trode B has a hemispherical shape.The electrodes were
placed in a sealed cylindrical glass tube with an inner
diameter of 50 mm. Different voltages were applied to
the high-voltage and auxiliary electrodes.

A gas—dust mixture was produced by a pulsed action
of the neon flow supplied from a dispenser with afixed
volume. This flow was directed to a container with a
netlike bottom containing the particles under investiga:
tion, and the formed gas—dust mixture uniformly filled
the entire volume of the glass cell. The glass cell was
preliminarily evacuated to a pressure of about 1.3 Pato
prevent the loss of electrons to oxygen molecules. The
gas pressure was varied from 10% to 10° Pa. We used Zn
particles with amean diameter of 2.4 um and a mass of
5x 10 g asdust particles. Theinitial concentration of
particles varied from 10° to 10° cmr3. The cell was
exposed to a 2D laser beam with a constriction formed
by acylindrical lens; the constriction diameter could be
varied from 100 to 200 um with the help of a dia-
phragm. Laser radiation scattered by particles was reg-
istered by avideo camerawith a CCD matrix as aradi-
ation detector.

3. DUST PARTICLE VORTICES

In order to analyze the effect of a nonuniform elec-
tric field on the motion of dust particles, we used a 2D
electrode with auxiliary high-voltage electrodes A. The
central hole in the electrode, which is intended for the
injection of particles from the container, did not signif-
icantly affect the motion of particles. The potential U of
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the main electrode as well as the potentials U* of the
auxiliary electrodes had positive values such that the
following inequality holds:

u*=U.

After theinjection of the gas—dust mixture into the cell,
the particles were separated by weight. The remaining
particles were gradually accumulated into a rotational
dust structure (Fig. 2a) whose center was located under
an auxiliary electrode and was displaced towards the
center of the cell. The particles were accelerated
towards the auxiliary electrode (in the direction shown
by the black arrow) on segment 1-2, which can be
explained by the existence of a charge on the particles.
Then the particles were turned away from the upper
electrode on segment 2-3, decelerated, and ultimately
involved in the rotational motion. The velocity v of the
particles was determined by the formula

= Ns

where N isthe number of frames per second transmitted
by the video camerafor recording (N = 25 in our exper-
iment), k is the number of frames on which a dust par-
ticle displaced over adistance swas observed, and F is
the magnification of the optical system (F =10.5in our
experiment). In the vicinity of point 2, the velocities of
particles exceed 10 cm/s, while the velocity on the
opposite side (near point 4) is half as small (approxi-
mately equal to 5 cm/s).

In afew minutes, the majority of the particles were
concentrated at the center of the structure, while the
remaining volume was almost completely free of parti-
cles (Fig. 2b). The center of the structure was separated
from the center of the auxiliary electrode by 6 mm
(Fig. 3). With the passage of time, agglomeration of
small particles into coarser fragments could be seen,
thefiner fraction remaining in the central part (Fig. 2c).
Upon an abrupt increase in the potential at the auxiliary
electrode and subsequent restoration of the previous
value of the potential, the vortex flow isat first violated
and particles strive to fly apart (Fig. 2d), and then the
motion of particles is restored (Figs. 2e and 2f). After
therestoration, the vortex motion at this stage may con-
tinuefor along time under constant external conditions.
(The structure depicted in Fig. 2g was observed for
more than 20 min until the power supply was switched
off.) It should be noted that the shape of the structureis
close to a circle of diameter 5 mm in the plane of the
laser “knife” (vertical cross section), while along the
axis of observation it is spindle-shaped with a linear
size of approximately 1.5 cm.

By placing the second auxiliary electrode symmet-
rically relative to the cell axis, we could observe two
structures instead of one, which rotate in opposite
directions (Fig. 2h). The type of motion of the particles
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Fig. 2. Vortex flow of Zn dust particles for U = 187 V, U* = 442V, and neon pressure 0.4 x 10° Pa; frame size 3.2 x 2.4 cm:
(a) 1.5 min, (b) 3 min, and (c) 4.5 min after the injection of the gas—dust mixture; (d-f) variation of the auxiliary electrode potential
from 400 to 500 V during the eighth minute; (g) 10 min; (h) general view of two vortex structures during the fourth minute (frame
size4.2 x 3.1 cm). (Light stripsin the frames are due to reflections at glass walls of the cell and at electrodes.)

doesnot changeif the central holein the main el ectrode Since we used in our experiments polydisperse dust
is absent. For alow initial concentration of the particles,  particles, their radii ry were determined experimentally
no dust structures are formed, indicating a clearly mani- ~ from the steady-state velocity v of their descent in the
fested collective type of the behavior of dust particles. gas after the removal of the electric field (the resistance
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Fig. 3. Schematic diagram of the arrangement of dust struc-
ture: auxiliary electrode (1), main electrode (2), and dust
structure (3).

to the motion of particles was taken into account using
the Stokes formula):

_ [onv
rd - 2pg’ (2)

wheren isthe gasviscosity, p isthe density of dust par-
ticles, and g is the acceleration due to gravity. The rate of
fal for the particleswas found to be v = 1.7 £ 0.2 cm/s.
The radii of Zn particles constituting a rotating struc-
ture calculated by formula (2) varied from 5.5-6.2 pm.
The average mass of particles was 3.5 x 10° g. The
fivefold increase in the radius and the nearly two-
orders-of-magnitude increase in the particle mass point
towards a coagulation of the particles in the rotating
structure. It was mentioned above that this can be
observed visually.

L et us consider the equilibrium conditions of acom-
pact rotating dust formation (Fig. 3). It isacted upon by
the field of two electrodes and the wall,

E=E,+E,+E,,

aswell astheforce of gravity Mg and the force of pres-
sure appearing due to different values of the velocity of
the gas flow streamlining the dust structure. This pres-
sure may be calculated by the formula

p = 2(v3-vd), 3

where v, and v, are the velocity of the gasin thevicin-
ity of points2 and 4 in Fig. 2a. Pressure (3) creates the
force of pressure F,. The dust structure will be in equi-
librium if (Fig. 3)

QE+Mg+F, =0, (4
where Q is the charge of the structure. In view of the

indeterminacy in the mass of the entire structure, we
estimate the charge q of a particle constituting it. The
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equilibrium conditions lead to the following system of
equations:

qE,sna + f,sinf3 = gE,,

©)

q(E; + Eycosa) = mg— f ,cosf3.

Here, a and 3 are the angles formed by vectors E, and
F, with the vertical, m = 4nr¥3 is the particle mass,
and f, isthe force of pressure exerted on the particle. In
our experiments, f, = Tr?p= 3.6 x 10* N. Thisvalueis
negligibly small as compared to the force of gravity
mg= 3.5 x 108 N. System (5) makes it possible to
determine unknowns g and E,, if the force of pressuref;,
isnegligibly small and the remaining quantities appear-
ing in it are known. The field strength created by the
upper electraode near the center of the rotating structure
is E; = 45 V/cm, while the strength of the field created
by the auxiliary electrode is E, = 100 V/cm. The aver-
age angle a = 45°. The strength of the field of thewalls
determined from Egs. (5) isE,, = 70 V/cm. The charge
of dust particles determined from the solution of system
(5) was 2.7 x 10* in the electron charge units. On the
average, there are approximately 270 electronsfor each
hundred smaller particles.

In order to obtain the exact value of the charge of the
particles, one must solve the self-consistent problem in
which the Poisson equation is written taking into
account the external fields, the fields of the walls and
space charges (electrons and ions), aswell asthefields
of particles whose charges themselves are functions of
the local resultant electric field. However, such a self-
consistent problem can hardly be solved at the moment;
for thisreason, effective potentials of interaction of dust
particles are used in mathematical simulation of a dust
plasmal5].

Asthe potential of the auxiliary electrode increases
to 500V, the rotating structure moves away fromitto a
distance of 9 mm. This can be explained by an increase
in the electron flux to the wall, which leads to an
increase in the force gE,, pushing away the structure.
For new values of E, and E,, the structure finds its new
equilibrium position in which conditions (5) are satis-
fied for the new values of the angles.

Coagulation of dust particles in the plasma created
by aradioactive source was considered for thefirst time
by Belov et al. [6]. These authors do not refute the
coagulation of charged particles. However, the charge
per small particle prior to coagulation may turn out to
be too high in our case. On the other hand, it should be
noted that the coagulation time in the described experi-
ment is of the order of minutes. Coagulation may be
facilitated by the nonsphericity of particles and their
high conductivity. The particle charge may be dightly
exaggerated in view of the entrainment of dust particles
by a moving gas, which will be considered below.
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Fig. 4. Evolution of the dust cloud formed by Zn particles: (a) 2 min, (b) 4 min, (c) 4.5 min, (d) 4 min 45 s after the injection of the
dust component. The upper electrode has the shape C (Fig. 1). The upper electrode potential is 152 V, the separation between the

upper and lower electrodesis 3.5 cm, the neon pressureis 0.76 x 10° Pa; frame sizeis 4.2 x 3.1 cm.

4. LIQUID CLOUDS OF DUST PARTICLES

In the case when potentials U and U* are identical
and electrode C is used (see Fig. 1), Zn dust particles,
after the injection of the gas—dust mixture, coagulatein
a few minutes into a cloud with well-defined bound-
aries (Figs. 4a-4d). The cloud has the shape of a trun-
cated cone with the base lying in the plane of the upper
electrode and the top near the radioactive source. The
entire volume of the experimental cell can be divided
into five regions in which the particles behave in differ-
ent manners. Inregion |, particles are almost stationary
(levitation). Inregion 11, particlesmove slowly, creating
an ascending flow. The velocity of particlesin the flow
decreases as they approach the boundaries of the struc-
tureand itsupper part. Inthe middle part of theflow, the
velocity has the maximum value equal to 0.6 cm/s.
In region 111, particles move downwards along the gen-
erator of the cone at a velocity of 1.2 cm/s; some of
the particles are deflected to the axis of the structure in
the vicinity of the lower electrode and then move
upwards. Another fraction of particles get into region V.
Region IV contains a very small number of particles
whose velocity at the boundaries of the structure is
equal to the velocity of particlesin region I11. When dust
particles approach the lower electrode, they are deflected
fromittothewalls, wherethey ascend to form closed tra-
jectories. In region V, dl particles fal down at a rate
approximately equal to 1 cm/s. The velocities of parti-
cles were determined by formula (1).
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Thus, there are two types of vortex flows of parti-
cles. One of them is the motion of particles with alow
number density at the periphery, while the other is the
motion within the structure at approximately half the
velocity. These flows are separated by a sharp boundary
near which the velocities of particles are identical on
both sides. It will be proven below that the momentum
transfer from ions to neutral particles is large enough
for initiating the motion of the gas. In our opinion, this
isone of the main reasons behind the emergence of vor-
tices. Another reason may be the intense recombination
of ions and electrons at dust particles, which may give
riseto large concentration gradients and auxiliary flows
of plasma particles. The ionization and recombination
of the gas (including that at dust particles) occur at the
highest rate in the vicinity of the source of ionizing
radiation. The ion flow reducing the diameter of the
structure near this source is directed precisely at this
region.

At the lowest part of the structure (region V), the
charge of particlesbecomes positive[4], and they fall to
the lower earthed electrode.

The radius ry of the particles was determined from
the rate of fall of the particles of the structure after the
connection of a power source between the electrodes
[formulas (1) and (2)] and wasfound to lie in the interval
0.9-1.4 um. The particle mass varied from 3 x 10! to
8x 10 g.
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Fig. 5. Digital image of the central part of the structure and the corresponding pair distribution function.

The value of the electric charge g of particles was
calculated from the condition of equilibrium between
levitating particlesinregion | and slowly moving parti-
clesinregionIl:

q="2, (6)

where E isthe strength of the external electricfield. The
charges of particles varied, depending on the radius,
from 400 to 1000 units of the electron charge.

The mathematical processing of the central part of
the structure give the average distance b = 190 + 30 um
between particles and the concentration ny = (3-4) x
10* cm 3. The électric field of particles with such acon-
centration and with the maximum charge creates afield
of strength E=4V/cm at adistance 1 cm from the cen-
ter of the sphere of radius 1 cm (characteristic size of
the structure), which is an order of magnitude smaller
than the applied field and may bedisregarded in thefirst
approximation.

Digital processing of the frames makesit possible to
obtain a pair distribution function for dust particles

1,108 A

0 50 100 150 200 250 300
t,s

Fig. 6. Time dependence of current.
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(pair correlation function [7]) presented in Fig. 5. It has
a clearly manifested peak typical of liquid structures.
The nonideality parameter for the dust component is
given by

_1 g
"~ Amg, bT’ (7)

where T is the gas temperature in energy units, which
varies from 45 to 340 for particles of different sizes,
which also speaks in favor of the liquid type of the
obtained structures. For particles whose radius is equal
to the average radius (1.2 um), the nonideality parame-
ter is130. The spread in the size of particles, the fluctu-
ations of their charge [4] and the motion of the medium
considerably hinder the formation of crystalline dust
structures.

Under a constant pressure and for constant poten-
tials of electrodes, the cloud forms in a few minutes
with the streamlined spherelike upper part (Fig. 4b).
Then it gradually changes the contour of its boundaries
and smoothly falls on the lower electrode (Figs. 4c and
4d). At the same time, the vortex motion of periphery
particles, asif grinding the structure, creates a constric-
tion at itslower part. In the situation depicted in Fig. 4d,
the vortex motion also considerably affects the behav-
ior of the upper part, exerting an additional pressure on
it. After the structure falls on the lower electrode, the
motion which was formerly typical of periphery parti-
cles embraces the entire volume. The velocity of parti-
cles in such a vortex near the cell axis is equal to
1.2 cm/s.

Recombination of plasma particles on dust particles
is reflected in the time dependence of the electric cur-
rent between the electrodes (Fig. 6). The figure shows
the results of measurements of current for three differ-
ent injections of the gas-dust mixture to the volume of
the experimental cell. In the initial instant after the
injection of the gas—dust mixture, the density and the
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number of dust particles are large and the current is
small. During the formation of the structure and its evo-
[ution in time, the volume occupied by dust particles
decreases. The electric current increases and attains sat-
uration after the falling of the dust structure on the
lower electrode.

Another reason behind the decreasein the currentin
the presence of dust particles could be the collisions of
dust particles with ionizing particles, after which an
ionizing particle is stuck in a dust particle and stops
moving. Asaresult of such aprocess, further ionization
is terminated due to the interruption of the track. If we
assume that dust particles are spheres of radius ry, the
mean free path of an ionizing particle relative to colli-
sions with dust particlesis calculated by the formula

A = (ngrr2) ™ (8)

The calculations based on this formula gives a mean
free path of 16 cm for the largest particles of radius
1.4 um with the maximum concentration 10° cm=.
Thisvalueis much larger than the actual mean free path
of fission fragments and a particlesin heon near atmo-
spheric pressure. Conseguently, the loss of ionizing
particles on dust particles can be neglected.

The clouds described above are formed under pres-
suresfrom 0.1 x 10° to 1 x 10° Paand their behavior is
always the same. The gas pressure was never higher
than the atmospheric pressure. In the absence of an
electric field or a radioactive source, no clouds are
formed, and the particlesinjected into the volume grad-
ually fall down along the trgjectories paralel to the
acceleration due to gravity.

5. DUST JETS

If the potential of the upper electrode is increased
after the formation of adust particle structure, dust par-
ticlesrush towards it with avelocity proportional to the
potential. It is interesting to note that the entire struc-
ture does not move upwards. One or afew jets of mov-
ing particles are formed in its upper part. In front of the
electrode, the velocity of particlesin ajet decreasesand
the jet expands to form afunnel. The continuity condi-
tion typical of liquid media is satisfied. The jet may
change its shape; the location of its bases may also
change (Fig. 7). In the regions of space outside the
structure and jets, the number density of dust particles
iscloseto zero.

The use of an auxiliary electrode having a hemi-
spherical shape and insulated from the main electrode
by a dielectric makes it possible to remove dust parti-
cles from the cloud (Figs. 8a—8c). In this case, asingle
dust jet directed to this electrode is formed. As arule,
the potential at the auxiliary electrode is twice as high
as at the main electrode. Dust particles attracted to the
electrode remain on its surface. This effect can be used
for designing a device for the removal of dust from
technological volumesin nuclear reactors.
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Fig. 7. Motion of CeO, dust particles in the form of jets
directed to the upper electrode. The electrode is of the C
shape (Fig. 1). The upper electrode potentia is 200 V; the
separation between the upper and lower electrodes is
3.5 cm, the neon pressureis 0.79 x 10° Pa; theframe sizeis
4.2 x 3.1 cm. The lower part of the cloud is not illuminated.

If a high voltage is supplied to the auxiliary elec-
trode mounted at a certain distance from the center of
the high-voltage electrode after the formation of a
cloud of particles (asin Figs. 2a—2g), the dust cloud is
transformed into arotating structure similar to that con-
sidered in Section 3 (Fig. 8h).

6. CALCULATION OF MOMENTUM TRANSFER
FROM DRIFTING FLOWS OF IONS
AND ELECTRONS TO GAS MOLECULES

In this section we will demonstrate the important
role of momentum transfer from drifting ionsto neutral
components of the medium in the formation of vortex
motion of dust particles. Drifting ions acquire an addi-
tional momentum between collisions as aresult of their
interaction with an electric field. During the time of
motiont, N; electrons acquire (and hence transfer to gas
molecules) amomentum equal to mw;N;t/T inthelinear
approximation, where 1 is the mean time between col-
lisonsand w; is the drift. For the momentum Ap trans-
ferred to a gas of mass Am during the drift time T, we
can easily obtain the following relation:

Ap _ mwN T4/t
Am~  m,nV
_J0ry0lry  gETy
- e  mnV

(9)

wherej isthe current density, v+ isthe thermal velocity
of anion, o is the collision cross section of ions with
atoms, V is the gas volume, n the density of gas atoms,
and E isthefield strength. Substituting into expression
(9) the quantities typical of our experiment leads to a
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Fig. 8. (a—) Removal of dust cloud of Zn particlesusing aspherical auxiliary electrode (Fig. 1, B). The auxiliary electrode diameter
is 3 mm, the potential of the main electrode is +153V, the potential of the auxiliary electrode is +273V, the separation between the
upper and lower electrodes is 4 cm; the neon pressure is 0.76 x 10° Pa, and the frame size is 4.2 x 3.1 cm. The lower part of the
structure is not seen due to the finite size of the laser “knife”. (d) Formation of avortex from the cloud.

value of several centimeters per second for the momen-
tum per unit mass of the gas.

Let us consider the same process on macroscopic
level. Figure 9 shows the forces acting on ions during
their motion through the gas. The externa electric field
exerts aforce Fg on adrifting ion cloud. Since the drift
velocity is constant, the gas exertstheresistive force F
on the cloud. In turn, ions act on the gas with an equal
and opposite force F which is precisely the driving
force for the gas. The reason behind the emergence of
this force on molecular level lies in the transfer of the

Gas

Fig. 9. Forces emerging during the motion of ions through
the gas.
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additional momentum acquired by ions due to the field
to molecules of the medium.

The transferred momentum of particles per unit
mass, averaged over the timeinterval T, was calculated
by the formula

Ap
A

where Ap is the momentum transferred to the gas of
mass Am during the time At under the action of the
time-averaged force F on the gas. This force is caused
by the interaction of the charge of the ion or electron
cloud with an external electric field E. Under our exper-
imental conditions, the time dependence of force F is of
the pulsed type in view of the limited intensity of the
source of ionizing particles:

Qe E, tO[tgt],
B, 10t

01 0
= %J’F(t)duam, (10)

F(t) = (11)

Here, Q, ; isthe charge of an electron bunch or ion clus-
ter andt;andt, aretheinitial and final time of itsmotion
to the electrode. The averaging time T may be arbitrary,
but it must correspond to a sufficiently large number of
events. Thetimeinterval Atisequal to the characteristic
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time of variation of the vortex velocity; in our experi-
ments, it was approximately equal to 1 s. In order to
simplify the calculations (which are of approximate
nature), we assume that the field is uniform.

Figure 10 shows dependence (11) schematically. By
way of an example, three typical situations each are
depicted for an inert gas and an electrically neutral gas
(e.g., ar). Thefirst pulses (ionization events) occurring
in the vicinity of the source produce large impulses of
force. Their contribution to the value of Ap/Amis deci-
sive. In the second case, when ionization occurs in the
middle part of the electrode gap, impulses of force for
positive and negative ions are approximately equal. In
the third case, the impulse of force created by negative
ions prevails. The contribution of electronsto Ap/Amis
negligibly small since their drift velocity is approxi-
mately four orders of magnitude larger than the vel ocity
of ionsin al cases. Upon an increase in the distance
from the radi oactive source, the number of electron-ion
pairs decreases, leading to a decrease in the amplitude
of the impulses of force.

The time-averaged value of the momentum per unit
mass transferred from ions to neutral components was
calculated using the Monte Carlo method. The track
nature of the processes was taken into consideration.
Figure 9 showsthat anion cluster and an el ectron bunch
drifting in opposite directions appear upon the passage
of an ionizing particle through agasin an electric field
directed along the zaxis. If we consider the entire track,
these clusters have a cylindrical shape, the axis of the
cylinder being paralel to theinitial track. We took into
account the contribution of fission fragments only. For
a californium source, the contribution of 16a particles
(the other half from 32 goesto the substrate) to the pro-
cess under investigation is approximately equal to the
contribution from a fission fragment; hence, the result
is simply doubled. The cone angle in the direction of
the x axis was chosen so small that the time interval
between the tracks was larger than the time of ion drift
to the electrodes. In this case, there is no need to pro-
cess the effects associated with accidental coincidence
of overlapping tracks. The exit angle 0 is selected ran-
domly. Theresult is averaged over the time correspond-
ing to the passage of 2000 tracks. The length of the cell
along the z axisis assumed to be equal to the mean free
path of fission fragments, while the size of each cell
along the x axis is equal to one hundredth of the mean
free path of afission fragment. We calculated the num-
ber of ions produced by afragment in the cells crossed
by it. The contributions of ions and electrons (or oppo-
sitely charged ions) in each unit cell cut with a step
along the x axis are taken with opposite signs.

The calculations were made for neon under a pres-
sure of 5 x 10* Pa with a Cf source of intensity 4 x
106 divisions/s, and the électric field strength was cho-
sen equal to 100 V/cm (the values typical of the exper-
iment). The field strength vector was directed down-
wards since the upper € ectrode in the experiments was
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Fig. 10. Time dependence of force: pulses of positiveions (1),
pulses of electrons (2), pulses of negative ions (3); dashed
curves correspond to strong recombination on the path of
pulses to the electrodes: (a) inert gas, (b) €lectronegative
gas.
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Fig. 11. Results of calculation of the transferred momen-
tum.

maintained under a positive voltage. Thedrift velocities
required for calculations were taken from [8-10]. The
results are presented in Fig. 11 (curve 1). Electrons are
the carriers of negative charge in neon. If the field is
antiparallel to the zaxis, the ascending electrons cannot
make a large contribution to the transferred momentum
inview of their very short drift time. On the other hand,
the ion contribution leads to the momentum transfer
towards the source, which precisely affects the motion
of dust particles. Since the energy losses for ionization
along the track and the density of tracks decrease, the
ions moving in the vicinity of the z axis and generated
in the vicinity of the source make a larger contribution
to the transferred momentum.

In our previous publication [1], we studied the
behavior of CeO, dust particles in the nuclear-induced
plasma formed in atmospheric air by fission fragments
and a particles of 252Cf with an intensity of 1 x 10° fis-
siong/s. Asthe external electric field strength increases,
levitation of particlesis replaced by rotational motion,
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Fig. 12. Time dependence of the inverted charge of a dust
particle at 1 cm from the source. The average charge is
20.6 units.

their trajectories under the steady-state conditions are
closed curves, and the motion of the entire ensembl e of
particlesin the plane of observation hasthe form of two
stable vortex formations. The rotation motion was also
observed for solitary particles. The type of motion of
macroparticles did not change upon the sign reversal of
the applied voltage and under rotations of the experi-
mental cell. In all cases, the vortices moved so that par-
ticles near the axis of the setup had a velocity directed
away from the radioactive source. Another feature of
the experimental results [1] is that the dependence of
the angular vel ocity for particlesin avortex on the elec-
tric field strength resemblesthe current—voltage charac-
teristic.

Let usfirst consider the electric charge transfer to a
dust particle of diameter 1 um subjected in air to the
action of drifting ions of different polarity. In analogy
with [4], the time dependence of the charge was cal cu-
lated by the Monte Carlo method for an electric field
strength of 100 V/cm. The results of calculations are
presented in Fig. 12. The dust particle was placed at a
point with coordinate z= 1 cm (the middle part of the
experimental cell in[1]). The R coordinate of the cylin-
drical reference frame varied from 2 cm to 0. Although
the charge increases with decreasing distance to the
source, isstill remains small (from 9 charge units at the
periphery to 20 units at the axis). Charge fluctuations
are caused by the random nature of interaction between
nuclear particles and matter [4]. The magnitude of the
average charge istoo small to cause afast motion. Ear-
lier [2], the flow of the gas was not taken into account
in determining the charge, which led to an exaggerated
value of the charge.

If we assume that the main reason behind the vortex
flow of particlesis the motion of air, and that particles
visualize this flow, the features of the experiments [1]
carried out in air can be interpreted. We calculated the
transferred momentum under these experimental con-
ditions (air under atmospheric pressure and the electric
field strength 100 V/cm). The results are presented in
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Fig. 11 (curve 2 corresponds to the upper electrode at
a positive potential and curve 3, at a negative poten-
tial). A decrease in energy losses for ionization along
the track and a decrease in the density of tracks, as
with neon, lead to a larger contribution to the trans-
ferred momentum of theions moving in the vicinity of
the z axis. The number of ion pairs in each unit cell
increases upon a decrease in the distance from the
source. Theions moving to the upper electrode traverse
a longer path in the gas and transfer a larger momen-

tum. Negative oxygen ions O, are formed in air in a

time equal to a fraction of a microsecond during the
interaction with oxygen and having a mability which

differsinsignificantly from that of the positive N ions;

the contribution to the momentum transfer of theseions
upon a changein the direction of thefield is almost the
same. The momentum transfer in air is virtually inde-
pendent of the direction of the electric field, which is
precisely observed in experiments. This leads to the
emergence of an air flow directed away from the source
of ionizing particlesfor any polarity. Consegquently, the
direction of rotation of an electrically negative gasin a
limited volume coincides with the normal to the surface
of the source. A vortex flow of the gasin the space con-
fined by walls and el ectrodes can be visualized with the
help of dust particles.

The calculations were made for the ionizing cham-
ber operating under the saturation of the current—volt-
age characteristic. For lower values of the electric field
strength, recombination leads to charge losses in the
track itself as well as on the path of ions to the elec-
trodes, which is shown schematically by dashed curves
in Fig. 10. Asaresult, the electric current and the trans-
ferred momentum decrease. The proposed model of the
emergence of avortex flow explains another important
experimental result, viz., the saturation of the velocity
of rotation corresponding to the plateau on the current—
voltage characteristic. The reason behind these two
effects is the same. Before attaining the plateau, both
guantities increase since recombination in tracks
decreases, while after the attainment of the plateau, all
the ions produced by the source reach the electrodes.
For this reason, the velocity of the vortex flow exhibits
the same dependence on the applied voltage as the cur-
rent—voltage characteristic. Indeed, in accordance with
(9), the value of the transferred momentum is propor-
tional to the drift time (inversely proportiona to the
drift velocity) and to the field strength. In turn, the drift
velocity isdirectly proportional to the field. In the case
of saturation, i.e., in the absence of charge losses, the
dependence on the field strength vanishes:

@:QETd_ g L _ qL

Am m,nV m,nVw,  m,nVK

(here L is the separation between the electrodes and K
istheion mobility).
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The dimensions and the physical meaning of the
momentum per unit mass of the gas correspond to the
velocity of this gas. However, it can be determined only
by taking into account the force of viscous friction in
the gas and by solving the hydrodynamic equations.
The estimates obtained by us here prove that such an
analysis must be carried out.

7. CONCLUSIONS

As aresult of the experiments, we studied the col-
lective motion of Zn dust particlesin the plasmaformed
during the deceleration of the decay products of cali-
fornium nuclei in neon. An electric field of various spa-
tia configurations was created in the volume contain-
ing the gas medium, the source of ionizing radiations,
and dust particles. We observed for the first time com-
pact vortex structures with a large number of dust par-
ticles. Dust particlesin these structures coagulate, after
which the mass of particles increases aimost by two
orders of magnitude. We also observed dense dust
clouds with sharp boundaries, which evolve in time.
Particlesin such clouds create ordered structures of the
liquid type. Under steady- state conditions, dust struc-
tures of both types exist for tens of minutes. Asthe volt-
age at the high-voltage electrode increases, jets of dust
particles are formed. Such jets can be directed in a
desired direction by using an auxiliary €l ectrode whose
potentia is higher than that of the main electrode.

It is shown that the momentum transfer fromionsto
the neutral component of the medium considerably
affects the formation of the vortex motion of dust parti-
cles. Themoation of ionsisinduced by the external elec-
tric field aswell as by the intense recombination of ions
and electrons on dust particles, which might cause the
emergence of large concentration gradients and addi-
tional flows of plasma particles. Gas ionization and
recombination (including that on dust particles) have
the maximum intensity in the vicinity of the source of
ionizing radiation. The ion flow causing a decrease in
the diameter of the structures in the vicinity of the
sourceisdirected precisely at thisregion. The spreadin
the particle size, fluctuations of particle charges, and
the hydrodynamic flow of the medium are considerable
obstacles in the formation of crystal dust structures.
The behavior of dust particles is determined to a con-
siderable extent by the external field. Our calculations
made it possible to explain different behavior of the
vortex flow of dust particlesin inert gases and in elec-
trically negative gases. In the latter case, the momen-
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tum transferred by ions always induces vortex motion
with adirection of rotation such that the particles lying
in the vicinity of the experimental cell axis move away
from the radioactive source.

Dust particles may considerably affect the processes
occurring in plasmas. For this reason, the kinetic mod-
els of the nuclear-induced dust plasma should be devel -
oped, taking into account the recombination of plasma
particles on dust particles.
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Abstract—The paper deals with the results of investigations of spatial structures of continuous microwave
discharge in aquasi-optical resonator. The results are given of experimental observations and measurements of
the parameters of plasma in discharges of different forms, and the reasons are analyzed for the formation of
spatial discharge structures. It is demonstrated that, as a result of the plasma-resonance amplification of the
field, the discharge makes a transition to the contracted state with a size that is much less than the microwave-
frequency wavelength and with an electron concentration in excess of the critical. It isfound that the stratifica-
tion of the contracted state across the electric field vector, which arises in some gases, is caused by the devel-
opment of thermoel ectric-current instability that was not previously observed in microwave discharges. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The study of plasmainstabilities has one of the cen-
tral places in the physics of microwave gas discharge.
Such a discharge demonstrates awide variety of spatial
structuresforming asaresult of the devel opment of var-
ious instabilities. Fairly well studied at the present are
the stratification of plasma across the field vector,
which arises as aresult of plasma-resonance instability
[1] at low values of gas pressure, and the formation of
thin plasma filaments extending along the electric field
vector, which form at high values of pressure during the
development of ionization-overheating instability [2].
In addition, in pulsed discharges, the field amplification
on plasma inhomogeneities (that are initial or form
under the effect of instabilities) may bring about the
formation of a filamentary discharge structure (high-
frequency streamers) [3]. The above-identified instabil-
itieswere observed experimentally in pul sed discharges
of microsecond duration [4—6]. In continuous dis-
charges, instabilities of a different type come to the
fore, which are associated both with the kinetic pro-
cessesin adischarge plasma[6-10] and with the singu-
larities of interaction between the field and plasma at
the nonlinear stage of the devel opment of the instabili-
tiesidentified above.

The urgency of the investigations of continuous
microwave discharge is caused by the potentialities of
its various practical uses. Such a discharge is widely
used for gas laser pumping, in processes of dry etching
in microelectronics, for diamond film deposition, and
in various plasma-chemical reactors. The efficiency of
operation of most of those devices is defined by the
concentration of chemically active particlesin the dis-
charge plasma. In its turn, the rate of generation of

"Deceased.

active particles depends on the concentration of elec-
trons in the discharge plasma and on the constants of
kinetic processes, which are clearly defined functions
of reduced electric field. Therefore, the efficiency of the
processes is defined by the self-consistent evolution of
thefield and density of plasmain the discharge and may
vary considerably in the process of instability devel op-
ment. In anumber of cases, when a high degree of dis-
charge homogeneity is required (gas lasers, etching
processes), the instability development is an undesir-
able process, while in other cases the formation of
structures with a high temperature and a high electron
concentration brings about an increase in the efficiency
of plasma-chemical processes.

This paper deals with the investigation of spatial
structures arising as a result of the development of var-
ious instabilities in a continuous microwave discharge
ignited in a quasi-optical resonator. The results of mea-
surements of the discharge plasma parameters are
given, as well as the description of the experimentally
observed forms of discharge. A detailed analysisis per-
formed of the reasonsfor the emergence of the contrac-
tion of discharge in electropasitive and electronegative
gases. It is demonstrated that the mechanism of con-
traction and the parameters of plasmain the contracted
state are considerably affected by the quasi static ampli-
fication of the electric field on plasma formations with
a high concentration of electrons. As a result, a self-
localized contracted form of discharge (autosoliton)
arisesin a system with integral negative feedback.

A new (from the standpoint of a microwave dis-
charge) type of small-scale stratification of plasma
across the electric field vector has been revealed, which
is associated with the development of thermoelectric-
current instability [11]. It is demonstrated that this
instability develops in a contracted discharge under
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conditions of electron density exceeding the critica
value and in gases characterized by a clearly defined
dependence of the electron temperature on the electric
field. The devel opment of instability leadsto the forma-
tion of a structure in the form of periodic fixed stria-
tionsformed in active systemswith diffusion, described
by two diffusion equations.

2. EXPERIMENTAL SETUP
AND DIAGNOSTIC TECHNIQUES

A schematic view of the experimental setup isgiven
in Fig. 1. A detailed description of the experimental
apparatus may also befound in[7]. An open quasi-opti-
cal resonator 3, 4 was excited in the TEMy,, mode by
microwave radiation from a continuous-wave magne-
tron 1 with awavelength A = 3 cm and power P, = 10to
200 W. The resonator was formed by round spherical
mirrors (diameter of 24 cm, curvature radius of 18 cm)
and had a Q factor without plasmaof Q,= 5 x 10%. The
experiment involved measurements, by acalorimeter 2,
of the incident power and of the power reflected from
the resonator, with the power input into the resonator
calculated astheir difference. The distance between the
mirrors was adjustable, which enabled one to vary the
resonator eigenfrequency and, with a constant magne-
tron frequency, to adjust the power input into the reso-
nator. The relative variations of the field amplitude in
the resonator were registered by a stub antenna 13
located in the vicinity of one of the mirrors.

The electron concentration N, in the discharge was
determined by the known procedure based on measur-
ing the variation of the Q factor and resonance fre-
guency of the resonator upon emergence of plasmain
the latter [12]. The correlation between the electron
concentration and the resonator parameters was found
using the perturbation theory [12, 13], and the plasma
dimensions required for calculations were determined
using photographs of the discharge. The condition of
validity of this procedure is the smallness of the elec-
tron concentration N, compared with the critical con-
centration N, and the smallness of the detuning of the
resonator Af compared with the difference between the
frequencies of two adjacent types of oscillation,

2 2 2
my(w” +Vv°) v
N. < N, NC:—EZE——:%-‘-;)—ENCO’
) &)
MW
Ne = pt Af < |f -1,

where w is the circular frequency of electromagnetic
wave, v isthe electron—neutral collision frequency, and
f, and f, are the resonance frequencies of the resonator.

Used as a diagnostic resonator for measurements of
low electron concentrations (~10'°-10"! cm3) was the
same 3-cm resonator excited on a different frequency
from alow-power diagnostic oscillator 9 via bandpass
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Fig. 1. Schematic of the experimental setup: (1) 3-cm mag-
netron, (2) calorimeter, (3) stationary semi-reflecting reso-
nator mirror, (4) movable mirror, (5) 8-mm diagnostic open
resonator, (6) discharge plasma, (7) circulator, (8) direc-
tiona coupler, (9) 3-cm diagnostic oscillator, (10) 8-mm
diagnostic oscillator, (11) spectrum analyzer, (12) bandpass
microwave filter, (13) stub antenna, (14) vacuum chamber

filter 12 in the TEMgyq . , mode [7]. Higher concentra-

tions (up to 10*2 cm) were measured using a diagnos-
tic quasi-optical resonator 5 with spherical mirrors
(diameter of 10 cm, curvature radius of 11 cm) located
on either side of the axis of the 3-cm resonator. In this
resonator, the fundamental mode TEMy, was excited
on afrequency f, = 54 GHz with a Q factor of 7 x 103,
with the electric field vector of the probing wave being
perpendicular to that of the high-power wave. The res-
onance frequency shift was determined by a microwave
spectrum analyzer 11. The accuracy of measurements
of the electron concentration by this method isnot high,
with the error arising largely because of the indetermi-
nacy of the form of spatial distribution of plasma and
reaching 50%.

3. EXPERIMENTALLY OBSERVED FORMS
OF DISCHARGE

Typical forms of microwave discharge, that arise in
various gases during variation of pressure and power
input, are given in Fig. 2. Even the first investigations
of adischarge in a resonator [8] revealed the presence
of two fundamental forms of its existence, namely, dif-
fuse and contracted. In the diffuse form (Figs. 2a, 2b,
and 2c), the discharge was burning in one or several
antinodes of the field, with the discharge size being
close to that of the region of field localization and the
boundary being smooth and diffuse. The number of
antinodes, in which the discharge existed, was decreas-
ing with increasing pressure. When some threshold
pressure was reached during matching the resonator (by
displacing the movable mirror) and increasing the
microwave power input into the resonator, the dis-
charge made a jumpwise transition to the contracted
state, see Figs. 2d and 2e. In this form, the discharge
was shaped as an elipsoid slightly extended along the

No. 2 2001



326

(© (e)

Fig. 2. Photographs of typical forms of continuous micro-
wave discharge in an open resonator. Diffuse discharge (a)
inairat p="7.5torr, (b)inair at p=43torr, (c) in oxygen at
p = 11 torr; contracted discharge (d) in air at p = 64 torr,
(e) inoxygen at p = 11 torr.

electric field vector and having a size much less than
that of diffuse discharge and the electromagnetic wave-
length. The discharge transition to the contracted state
was accompanied by a 10-20% reduction of thefield in
the resonator.

Thethreshold pressure, below which no contraction
occurred at any values of the power input to the resona-
tor, was substantially different for different gases. In
highly electronegative gases (with ahigh rate of attach-
ment), such as ammonia, carbon dioxide, and water
vapors, the threshold pressure amounted to p* = 3 to
8 torr, while in air and nitrogen it amounted to p* =
50 torr. It wasfound in [8] that the threshold pressure of
the diffuse-to-contracted transition in an N,: O, mixture
decreased considerably with increasing fraction of the
el ectronegative component (oxygen).

In some electronegative gases, autooscillation
occurred of the amplitude of thefield sustaining the dis-
charge and of the electron concentration, that was asso-
ciated with the development of attachment instability
and was investigated in detail in [9].

It wasnoted in [8, 10] that, in the case of contraction
in the region of high values of threshold pressure, the
gas temperature increased by 300400 K to reach
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1500-2000 K. In amixture with a high content of elec-
tronegative component, the gas temperature increment
did not exceed 100 K.

Itisknown[14, 15] that the transition of adischarge
into the contracted form is possible when two necessary
conditions are valid, namely, the existence of the non-
linear dependence of the ionization rate on the electron
concentration and the presence of volume neutraliza-
tion of charged particles. It is pointed out in [16] that,
in an electronegative gas, the channel of acceleration of
the process of production of electrons may be provided
by the decay of negative ions and the emergence of new
electrons during detachment. Theoretical studies were
made into discharge structuresin a highly electronega
tive gas, arising in a homogeneous field, with due
regard for the detachment processes and the effect of
the dependence of the electron diffusion coefficient on
the concentration of negative ions. It has been demon-
strated that, for spatially inhomogeneous distributions
of the electron concentration, an increase in the elec-
tron concentration in the central region of the discharge
brings about a decrease in the density of negative ions,
as a result of which the electron diffusion coefficient
decreases. On the contrary, at the periphery, the elec-
tron diffusion is high as aresult of considerable preva-
lence of negative ions over electrons. The combined
action of these effects brings about a decrease in the
characteristic scale of distribution of electrons with an
increase in their concentration in the central region.
However, this model did not include the field variation
in the plasma in the case of fairly high (comparable to
critical) values of electron concentration, that may have
a considerable effect on the process of discharge con-
traction.

3.1. Discharge Contraction

In order to find the mechanisms of contraction of a
microwave discharge, one must know the plasma
parameters in the vicinity of the contraction threshold
and in the contracted state. Figure 3 gives the concen-
tration of electronsin diffuse and contracted discharges
in carbon dioxide as a function of power input to the
resonator. An analogous dependence for oxygen was
given previoudly in [6]. One can see that this depen-
dence exhibits an ambiguous hysteretic behavior. The
lower branch corresponds to the diffuse discharge, and
the upper branch, to the contracted discharge. With an
increase in the power input to the resonator, the electron
concentration in the diffuse form increases, with the
plasmoid size remaining unchanged; when some

threshold value Nj is reached, the discharge makes a
jumpwise transition to the contracted state, with the
power input somewhat decreasing and the field in the
resonator dropping (by approximately 20%). In the
contracted state, a variation of the power input to the
resonator does not lead to a variation of the electron
concentration, but brings about a corresponding
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increase or decrease in the size of the plasmoid whose
volumeis alinear function of the power input. When the
sizeof the contracted form of discharge becomes small (of
the order of the diffuson length of eectron loss), the
reverse, contracted-to-diffuse, transition occurs.

One can see in Fig. 3 that there exists a range of
power input values, in which the existence of two forms
of discharge is possible. In this range, a strong pertur-
bation of the electron concentration is capable of
changing the discharge from the diffuse to contracted
form. In the experiment, this was accomplished with
the aid of a pulsed breakdown between the ends of two
metal wires introduced inside a diffuse discharge nor-
mally to the electric field vector.

The electron concentration in discharges of both
forms was measured for different gases while varying the
pressure and power input to theresonator. Someresultsare
given in the table for different states of discharge dong
with other parametersthat characterizethe discharge (den-
sty N of neutral molecules, gas pressurep, plasmavolume
Vi, power input to the resonator Py).

We will analyze the obtained data. First, note the
closeness of the parameters in the contracted state in
different gases. The average electron concentration in
this form is approximately the same and exceeds the
critical value given by Eq. (1),

N,, cm ™3
—=2 2 o
| \
1 \
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Fig. 3. The electron concentration as afunction of the power
input to the resonator for a discharge in CO,, p = 15 torr:

(2) diffuse discharge, (2) contracted discharge. The broken
lines indicate the transition from the diffuse to contracted
discharge and back.

The €l ectron concentrations at the contraction threshold
in different gases likewise prove to be close in magni-
tude,

N, = (1-3)N.. Nei, 0(0.1-0.5)N,.
Table
Form Gas p, torr N,, cm N, 10" cm™ Vp, cm? P, W

Diffuse NH, 8 1.3 x 1010 2.6 - 10.5
CO, 8 2 x 1010 2.6 0.65% 1
co, 8 8 x 1010 2.6 0.90 4.6
0, 5 3.6 x 10 1.7 47 23
0, 5 (1.2-4.3)Y x 101 1.7 13 185
0, 20 (0.5-1.1) x 10%* 6.6 3.0 28
N, 5 2.6 x 10% 17 6.8 14
N, 15 4.5 x 10% P 37 12
N, 15 8.8 x 1010 3 7.3 30
N, 40 2x 10t 45 29 38

Diffuse on the con- CO, 20 2 x10% 6.6 1.3 19

traction threshold 0, 10 (1.6-8) x 1011 3.3 0.62 17
N, 90 3.3x 104 2 11 24

Contracted NH, 8 1.5 x 10%2 2.6 - 10.5
NH, 8 2 x 10% 2.6 - 45
co, 20 3.4 x10% 6.6 0.053 16
0, 10 (1.8-4.5) x 10%2 33 0.075 18
0, 20 (1.5-4) x 10% 6.6 0.075 25
N, 90 2.5 x 1012 62 0.05 20

Note: ¥ Two values of Ne, separated by a dash, correspond to the minimum and maximum detuning of the frequency of diagnostic reso-

nator in the autooscillation mode of sustaining the discharge [9]. 2 The gas density was calculated proceeding from the pressure

and from the results of measurements of the gas temperature [10]. 3 The plasma volume was determined by the size of the lumi-
nosity region and used to calculate the electron concentration.
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Fig. 4. Photographs of the stratified form of contracted dis-
chargein NHs, p = 6 torr, for different values of microwave

power input to the resonator: (a) 6, (b) 13, (c) 21 W.

In spite of the different values of pressure, the gas
density in the contracted form and at the contraction
threshold and in electronegative gases, as well as in
electropositive ones (asaresult of heating), issuch that the
electron—neutra collison rate is indgnificant (V/w < 2).
That is, the imaginary part of plasma permittivity

_ 1 Ney  .vp
€ = l_NBHIOﬂ (2

is small, and effects associated with plasma resonance
may show up.

A marked difference is observed between el ectrone-
gative and electropositive gases in the diffuse form of
discharge. For comparable values of pressure and
power input, the discharge plasmain an electropositive
gas takes a much larger volume than in an electronega-
tive gas (see table and Fig. 2). As aresult, the electron
concentration in an electropositive gas is lower. An
increase in the power input to the resonator has differ-
ent effects on different gasesin the low-pressure region.
In an electropositive gas, this brings about a consider-
ableincreasein the plasmavolume and aslight increase
in the electron concentration; in an electronegative gas,
on the contrary, this causes mainly an increase in the
electron concentration with an insignificant increase in
volume.

Therefore, high values of the electron concentration
in the vicinity of the contraction threshold and in the
contracted form bring about the considerable effect of
the discharge plasma on the magnitude and distribution
of the electric field. Therefore, in constructing an ade-
guate model of contraction, this phenomenon must be
included. At the same time, the observed difference in
the behavior of the discharge between electronegative
and el ectropositive gasesisindicative of theimportance
of the kinetic processes.
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3.2. Stratification of Contracted Discharge

In addition to the contracted and diffuse forms, yet
another unusual form, that of contracted discharge
stratified along the electric field vector (Fig. 4), was
observed in some gases such as NH3, H,O, and CO, in
the pressure range p = 3 to 20 torr. The discharge had
the form of an ellipsoid slightly extended along the
electric field vector and consisting of alternating light-
and dark-colored disks. No such stratification was
observed in other investigated gases (air, N,, O,, He).

The distance between the disks (stratification scal€)
was alwaysin therange of 1-2 mm. Asthe power input
to the resonator was increased, the discharge size
increased, as well as the distance between the disks,
with the number of disks remaining the same. At a cer-
tain moment, the number of disksincreased by one, and
the stratification scale decreased jumpwise (see Fig. 4).

A stratified contracted discharge as awholeis char-
acterized by the same regularities as a regular con-
tracted discharge. The mean concentration of electrons
in a stratified contracted discharge exceeds the critical
value asit doesin an unstratified discharge.

The emergence of stratification depends substan-
tially on the type of gas. An addition of several percent
of nitrogen to ammoniaresulted in suppression of strat-
ification. The stratification disappeared also in the case
of sustaining a discharge for along time in ammonia,
which decomposed as a result of dissociation.® These
facts point to the kinetic pattern of the revealed instabil -
ity. At the same time, this stratification was only
observed in a plasma with a higher-than-critical elec-
tron density.

4. DISCUSSION OF THE RESULTS
4.1. Mechanism of Discharge Contraction

As follows from the foregoing experimenta data,
the process of contraction occurs upon exceeding a cer-
tain value of electron concentration in a diffuse dis-
charge, which depends little on the type and pressure of
gas. In the contracted form, the electron concentration
also provesto be closein magnitude for different exper-
imental conditions. This leads one to conclude that the
mechanism of contraction in electropositive and elec-
tronegative gases is of one and the same nature. At the
same time, the type of gas has a fundamental effect on
the process of reaching the threshold electron concen-
tration required for transition from one state to another.

The contracted form of discharge is represented by
an ellipsoid extended slightly along the vector E, whose
size is much less than the electromagnetic wavel ength.
In this case, the electric field may be found approxi-

1 The increase with time of the pressure in the vacuum chamber
was indicative of the dissociation of ammonia under the effect of
the discharge.
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mately from the solution of the el ectrostatic problem on
dielectric ellipsoid with a clearly defined boundary in
homogeneous externa field (see, for example, [17]),

E

k _
B T E—Dn

©)

where E; isthe value of the field within the contracted
form of discharge, npjis the depolarization coefficient
dependent on the ellipsoid semiaxes, and E, is the
amplitude of external field, i.e., of the field in the reso-
nator in the region of plasmoid. For the complex per-
mittivity given by Eqg. (2), this formula may be repre-
sented by

k Er

E :
' Ny N@ DV N, N 272
[%L‘ N D}

(4)

The value of E, depends on the incident microwave
power, Q factor, and the value of detuning of the reso-
nator frequency with plasma. Note that it was a signal
proportional to the quantity E, that was recorded in the
experiment from the stub antenna (see Fig. 1).

For an dllipsoid corresponding to the contracted
form of discharge, np< /3 [17]. In the region of low

values of gas density, where v < ), the correlation
E:‘ (No) given by Eq. (4) exhibitsaresonant behavior. In

this case, the field inside the plasmoid at values of the
electron concentration of less than

N }
N* = n—° 0(3-4)N, = (3-4) x 10 cm™®
*

increases with N,. It is in the contracted form of dis-
charge that this effect is most pronounced. The diffu-
sion of plasma boundaries, characteristic of real plas-
moid, brings about an increase in the internal loss and
causes attenuation of resonance; however, it does not
suppress the resonance compl etely in the case when the
boundary width is much less than the plasmoid size
[18]. In a diffuse discharge (N, < N.), the value of the
field is close to that of undisturbed field in the resona-

tor, E' = E,.

Therefore, it isnatural to assume that the contracted
state is maintained owing to a quasi static amplification
of thefield. This, in particular, explainsthe fact that the
transition from the diffuse to contracted formis accom-
panied by areduction of thefield in the resonator (E, in
formula(4)). Indeed, during transition to the contracted
state, in spite of the decrease in the external field, the
value of the field in the plasma of contracted discharge
increases, whereby a high electron concentration is
maintained. At the same time, a reduction of the field
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outside of contracted discharge brings about a consid-
erable decrease in the electron concentration in this
region.

A more detailed analysis of spatia distribution of
the field and electron concentration in a contracted dis-
charge was performed using a numerical model. For
this purpose, the stationary distributions of the electron
concentration and of the electric field were calculated
within the framework of quasistatic equations and bal-
ance eguations for particles.

The electric field distribution on scales of much less
than the electromagnetic wavelength was calculated
from Poisson’s equation with complex permittivity €
given by Eq. (2),

D¢ ) =0, E=-10. ()

Equation (5) was solved, proceeding from the symme-
try of the problem, in cylindrical coordinates (p, 2),
with the z axis directed along the external electric field
vector E,. The boundary conditionswere preassigned at
the boundary of the integration region exceeding con-
siderably the size of plasmoid and corresponded to a
uniform unperturbed field.

The stationary distribution of electron concentration
was found from balance equations for particles analo-
gousto those used in [9],

ON,

+
= = DabNe+ (V-

a)Ne

+KyN*N_—ag NN,

ON_

W = VaNe—de* N—_BiiN—N+7 (6)
ON* N*
s = K NoNe—kgN*N_— =,

N, = N_+N.,.

Here, Ng, N_, N, N*, and N, denote the concentration of
electrons, negative and positive ions, excited particles,
and neutral molecules, respectively; D, is the coeffi-
cient of ambipolar diffusion for electrons; a and 3; are
the coefficients of electron—on and ion—on recombina-
tion, respectively; v; and v, denote the rates of ioniza-
tion by electron impact and of dissociative attachment
of electrons, respectively; ky and k* are the rate con-
stants of reactions of detachment and formation of
excited particles, respectively; and T* is the character-
istic relaxation time of N*. In the stationary case, one
can assume that the density N* of excited particles is
proportional to N,, and then the term describing the
detachment of electrons from negative ionsin reactions
with excited particlesmay bewrittenintheform k;N,N_

(k; = k*kgyT*Ny), thereby eliminating the third one of
Egs. (6).
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Fig. 5. Stationary distribution of the electron concentration in the (1) diffuse and (2) contracted forms of discharge. The solid curve
indicates the distribution along the z axis at p = 0, and the broken line indicates the distribution on the radiusp at z= 0: (a) in air

(A=1) for different values of thefield in theresonator (1) E; o/E; =

251 and E,/E, = 0.95, (2) E, o/E, = 4.78 and E, /E = 0.75; (b) in

astrongly electronegative gas (A = 10): (1) E, o/E. = 1.64 and E,/E. = 1.57, (2) E, o/E. = 1.72 and E; /E. = 1.13. (Here, E;gisan
electric field in the resonator without plasma, and E; is a self-consistent field in the resonator with plasmafor the selected value

of Er 0).

The ionization and attachment rates may be conve-
niently written in the model form, disregarding the con-
crete type of gas (in so doing, we will treat two limiting
cases, namely, those of weakly and strongly electrone-
gative gas, that differ only by the value of the attach-
ment rate),

V, = Vo (p, 9 HER2LT o

V, = VoA, n>1,

where v, and E; denote the attachment rate and the
breakdown field (v;(E.) = v,o) in aweakly electroneg-
ative gas, respectively; and A is a coefficient that char-
acterizesthe degree to which the gasis electronegative.
It is assumed that A = 1 for the weakly electronegative
gas and A = 10 for the strongly electronegative gas. In
calculating the frequency, the coefficients appearing in
Egs. (6) and (7) for a weakly electronegative gas
approximately corresponded to those for air.

The function f(p, 2) describes the spatial inhomoge-
neity of the ionization rate in a uniform unperturbed
electromagnetic field, that may be caused, for example,
by the inhomogeneity of the gas density. It is assumed
that f = 1 at the origin and f < 1 at the boundary of the
integration region. This method of localization of the
dischargeregionisoften used in numerical calculations
of the discharge dynamicsin an initialy uniform field
[5, 19].

The magnitude of the field E, in the resonator (at the
boundary of the integration region) for the known form
of distribution of N.(p, 2) and E(p, 2) was defined by the
variation of the Q factor and eigenfrequency of theres-
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onator, which were calculated by the formulas of the
perturbation theory givenin[12, 13].

The set of equations (6) and (5) was solved by sim-
ple iterations; in the calculations, the magnitude of the
initial electric field E,q in the resonator without plasma
and the parameter A (attachment frequency v,) were
varied. Theresultsof calculation of the stationary struc-
tures of discharge for the gas density corresponding to
theratiov/w=0.5and for N, =102 cm= (A = 3cm) are
given in Figs. 5-7. One can see in the figures that,
depending on the magnitude of the initial field, two
forms of discharge may exist in the resonator, which
differ substantially from one another by the character-
istic width of the spatial distribution of electron con-
centration. The size of diffuse discharge is defined by
the spatial localization of the ionization rate given by
Eq. (7) (by the form of the function f(p, 2)). In the con-
tracted form, the distribution of electron concentration
isformed as aresult of quasistatic amplification of the
field, and the plasma takes up a much smaller volume.
An increase in the initial field in the contracted form
brings about an increase in the plasma volume with
almost unchanged values of the maximum concentra-
tion and of the electric field (see Fig. 6).

On analyzing the distribution of the field and elec-
tron concentration (see Fig. 7), one can understand the
reason why no elongation of the plasmoid (characteris-
tic of microwave streamers [3]) occurs along the elec-
tric field vector. Indeed, a considerable field increase is
observed at theellipsoid poles, especialy, inthe N, =N,
region, compared with the externa field and with the
field in the internal region of the plasmoid. However, in
the region of the higher field, aregion is observed, in
which the field is much weaker and the plasma is
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0 2 4 6
P,z mm

Fig. 6. Stationary distribution of the electron concentration
in the contracted form of discharge for A = 10 and different
values of theinitial field Eo: (1) E,o/E. = 1.72 and E,/E. =
1.13, (2) E;o/E; = 2,51 and E,/E. = 1.13. The solid curve

indicates the distribution along the z axis at p = 0, and the
dashed curve indicates the distribution along the radius p at
z=0.

absent, and the electrons produced in the plasma reso-
nance zone diffuse to the region of lower field to be lost
as aresult of recombination and attachment. This fact
preventsthe discharge from propagating along the elec-
tric field vector. The presence of the region of lower
field is associated with the continuity of the normal
component of the electric induction vector D and with
the change of sign of thereal part of permittivity given
by Eg. (2) during transition through the plasmoid
boundary.

One can seein Fig. 5 that a much lower initial field
isrequired for contraction in a strongly electronegative
gas. Indeed, the width of the plasmoid boundary, at
which the electron concentration decreases, depends on

thediffusion length of electronlossly= ./D,/v,, where
v, istherate of electron loss. In astrongly electronega-
tive gas, the rate of loss is high, and the plasmoid
boundary is much thinner than in an el ectropositive gas
(compare Fig. 5awith Fig. 5b and Fig. 6). For example,
for agas density N = 6 x 10" cm3, the attachment rate
v, ~ 108 s in oxygen exceeds considerably the recom-
bination rate a4 N, in nitrogen. As was demonstrated by
Gil’denburg et al. [18], an increase in the thickness of
the plasmoid boundary brings about an attenuation of
resonance and of the degree of field amplification in a
plasmoid. However, at high pressures, the heating of
gas causes a decrease in its density and, accordingly, a
rise of theionization rate in the region of plasma exist-
ence. Thisfacilitates the maintenance of the contracted
state in an electropositive gas at high pressures.

The experimental results demonstrate (see table)
that the threshold concentration in different gases is
reached under different conditions. At low pressures, a
discharge in electronegative gas takes up a much
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N, /N, E, rel. units

L5+ .
1.0

0.5

P, Z mm

Fig. 7. Stationary distribution of (1) the electron concentra-
tion and (2) the modulus of electric field in the contracted
form of discharge (A = 10, E, o/E. = 1.82). The solid curve

indicates the distribution along the z axis at p = 0, and the
dashed curve indicates the distribution along the radius p at
z=0.

smaller volume that varies little as the power input is
increased. Apparently, this behavior is associated with
the effect of the nonlinear diffusion mechanism
described above [16] and with the difficulty of break-
downin other antinodes because of the high breakdown
field. As aresult, an increase in the power input to the
resonator leads to arise of the electron concentration.
No clearly defined breakdown threshold is present in
electropositive gases; therefore, an increase in the
power input causes the emergence of plasma in new
regions and an increase in the discharge volume with
an insignificant rise of the electron concentration. At
high pressures, the heating of gas and decrease in its
density lead to localization of the region of plasma
existence and make it possible to raise the electron
concentration to a value required for transition to the
contracted state.

Therefore, the formation and maintenance of the
contracted form of microwave discharge may be attrib-
uted to the plasma-resonance amplification of the field
on small-scale plasma formations.

4.2. Small-Scale Stratification
of Contracted Discharge

A small-scale stratification of contracted discharge
is observed only in some gases and under conditions of
the electron concentration N, exceeding the critical
value N... According to the quasi static equations, at N, >
N,, alocal increasein N, in alayer perpendicular to the
vector E must bring about afield decreasein thisregion
and vice versa. At the same time, a field increase is
accompanied by a rise of the electron temperature T,
and, in a stratified discharge, the quantities T, and N,
change in antiphase. The diffusion equation for elec-
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trons with due regard for spatial inhomogeneity of dis-
tribution of the electron temperature may be repre-
sented as

(%%div(uaNe) = F(Ng Te, ...), (8
where
ON aT
Uy = —Do g~ Da ©)
e e

isthe ambipolar electron velocity in view of thermodif-
fusion [20], and F(N,, T, ...) isthe term describing the
processes of production and loss of electrons. The coef-
ficients of ambipolar diffusion D, and of thermodiffu-

sion Dl, disregarding the importance of negative ions

inthe case of highly nonequilibrium plasma, when T, >
T, are? [20]

- To
D=Dit+ 7
(10)
T T ~
Da=Di7(1-09) = Da(1-9),

where D; isthe coefficient of eigendiffusion for positive
ions, and

_ olnv
oInT,

isthe coefficient allowing for the effect of thermal force
[20]. Note that these expressions for diffusion coeffi-
cients include the characteristic electron temperature
T. = Do/le-

In the one-dimensiona case corresponding to the
stratification across the vector E, Eg. (8) in view of
Egs. (9) and (10) may be written as

oN, _ 9 QD ONe, ;TNeOTq,

ot oxCax AT, axU
In this case, the correlation between the electric field
and electron concentration is algebraic,

E
E = E(N,) = ﬁ

Néjz . D_)&Gz}-l/z

(11)

(12)

where E, is the field in the plasmoid in the absence of
stratification.

If the scale being treated is not too small (exceeds
the electron thermal conductivity), the correlation

2In the expression for the coefficient of ambipolar diffusion, the
effect of negative ions may be ignored, because, at high electron
concentrations characteristic of the contracted state, the number
N* of excited particles is high, attachment is compensated by
detachment, and the concentration of negativeionsislow [7].
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between the electron temperature and the field, T, =
T.(E(N.)), may likewise be regarded as local. In this
case, Eq. (11) may be transformed to the ordinary
form

N, _ o . ON,

Bt ax e ox TT (13)

with effective diffusion

dInT,
Der = Dol 1+ (1= 031t |

(14

: oInT, dInE
N Da[1+ (1-93mE alnNJ'

For the correlation E(N,) of theform of (12) with the
plasma parameters corresponding to the contracted
state, the relation

JdInE
dInN,

= (1-2)

is usualy valid. It follows from Eqg. (14) that, with a
fairly sharp field dependence of T, such that

>—[(1—g)§|'n—r@_l,

the coefficient of effective diffusion becomes negative.
In this case, an instability may develop, whose physical
mechanism is as follows. In the case of a higher-than-
critical electron concentration in the plasmoid, a
decrease in N, in alayer perpendicular to the vector E
causes a field increase. In the case of a clearly defined
T.(E) dependence, a considerable heating of electrons
occurs, and the thermodiffusion flow of electrons from
this region, associated with the inhomogeneity of T,
exceedsthereturn flow caused by theinhomogeneity of
the electron density. In this manner, N, continues to
decrease.

dInT,
dInE

(15

For aglow discharge, such an instability, referred to
as thermoel ectric-current instability, wasfirst predicted
by Timofeev [21], who obtained an instability criterion
analogousto inequality (15). Experimental and theoret-
ical investigations of the thermoelectric-current insta-
bility in a glow discharge are deat with in [22-25].
Note that a decrease in the electron density caused by
thermodiffusion is also observed when powerful elec-
tromagnetic radiation acts on an ionospheric plasma
[26].

For aninstability to arisein our conditions, it isnec-
essary that the electron temperature increase rapidly
with the field given by Eq. (15). A comparison of the
dependences of the electron temperature T, = Do/p ON
the parameter E/N for different gases (Fig. 8), such as
those given in [27-29], leads one to the following con-
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clusion. For gases such as nitrogen, air, oxygen, and
helium, in which no stratification of the contracted
form is observed, the dependence T, (E) is smooth,

aInTe<;
dlnE 2’

in the entire range of discharge maintenance fields. On
the contrary, for ammonia, water vapors, and carbon
dioxide, the T,(E) curve exhibitsafairly steep regionin
which condition (15) may be valid.

Note that the clearly defined dependence T,.(E) [29]
is observed for electric field values of less than the
breakdown value E determined from the condition

Vi(EC) = Va( Ec)

Therefore, the instability described may be observed
only in quasistationary discharges, when, as a result of
the accumulation of active particles, the loss of elec-
trons due to attachment is compensated by detachment,
and the discharge maintenance field becomes markedly
less than the breakdown one [7]. In short-pulse dis-
charges, thefield isfairly high, the T,(E) dependenceis
weak, and the thermodiffusion flow introducesan insig-
nificant addition to the total electron flow. With the
increasing function E(N,), the thermodiffusion does not
bring about a variation of the eectron flow; the inclusion
of thermodiffusion may only bring about minor quantita:
tive corrections rather than to new qualitative effects.

Note that the hydrodynamic description of the phe-
nomenon, employed by us, is strictly valid only in the
case of Maxwellian energy distribution of electrons. In
a nonequilibrium microwave discharge, the electron
distribution function may differ appreciably from the
Maxwellian. Therefore, a more rigorous description
cals for the calculation of the transport coefficients
with due regard for the disequilibrium of the electron
distribution. However, we believe that, in our case, a
microwave discharge is maintained by aweak field, the
disequilibrium of the electron distribution function is
minor, and the hydrodynamic approach provides for a
qualitatively correct description of the phenomenon.
Indeed, a more rigorous calculation of the distribution
function and transport coefficients for the experimental
conditions produces agreement with the experimental
results in observing the stratification of plasmain dif-
ferent gases[30].

The characteristic scale of instability being treated
was determined in [11]. One can see in EQ. (13) that,
with Dg < O, small-scale perturbations for which the
diffusion term is maximal are characterized by the
maximal increment. It is obvious, however, that the
electron thermal conductivity brings about suppression
of the rise of perturbations with a characteristic scale
that islessthan the thermal conductivity length of elec-
trons. Therefore, the analysis of instability in [11] was
based on the set of equationsfor the el ectron concentra-
tion and temperature. It has been revealed that the per-
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Fig. 8. The characteristic electron temperature T, = Do/l 8S

a function of reduced €electric field E/N for different gases
according to the data of [27-29].

turbations, whose characteristic scale lies between the
relaxation length of electron temperature and the char-
acteristic diffusion length of electrons, are character-
ized by the most increment. The obtained criterion of
the emergence of instability actually coincideswith that
given by Eq. (15).

The theory of nonuniform steady states (autosoli-
tons and striations) realized in nonequilibrium dissipa-
tive systems, which are described by a set of two non-
linear differential diffusion equations, is described in
detail in the monograph [31]. A certain class of such
systems is usually referred to as active systems with
diffusion in the sense that one parameter, i.e., activator
0, is used to accomplish positive feedback that is the
reason for the instability of the uniform state of the sys-
tem. The other parameter, inhibitor n, suppresses the
process of activator rise. By its nature, the thermoel ec-
tric-current instability of microwave dischargeis close
to thermodiffusion autosolitons in an electron-hole
plasma heated in the process of carrier photogenera-
tion, that are treated by way of examplein [31].

In [11], based on the concepts described in [31], it
has been demonstrated that this situation is realized for
the themoelectric-current instability being treated; in
this case, it is convenient to take

8 =T, N =N
In such a system, it is possible to realize nonuniform
steady-state solutions in the form of thermodiffusion
striations. The set of equations for the electron concen-
tration and temperature was also solved numerically in
a one-dimensional approximation [11]. As a result, a
nonuniform steady-state solution in the form of stria-
tions was obtained. The predicted period of stratifica-
tion agrees well with that observed experimentally.
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In full accordance with the theoretical concepts of [31],
the distribution of inhibitor n = N.T, is amost uni-
form. Notethat n isin fact the partial pressure of elec-
tron gas.

Therefore, the small-scale stratification of con-
tracted state may be attributed to the development of
thermoel ectric-current instability, as aresult of which a
stationary structure in the form of fixed striations is
formed. Note that the emergence of thisinstability in a
microwave discharge callsfor the devel opment of fairly
specific conditions, namely, a plasmawith a supercriti-
cal electron concentration to provide for decreasing
dependence E(N,), a steady-state mode of burning of
discharge with low maintenance fields, and agas of cer-
tain type with aclearly defined dependence of the elec-
tron temperature on the electric field.

5. CONCLUSION

The results of the investigations of a continuous
microwave discharge in a quasi-optical resonator have
demonstrated the possibility of existence of inhomoge-
neous stationary spatial structures in such a discharge.
The distinguishing feature of these structuresisthat the
form of discharge is defined by the development of
instabilities rather than by the distribution of the initial
electric field.

As aresult of the development of a plasma-reso-
nance instability, the diffuse form of discharge, in
which the plasma distribution almost repeats the elec-
tric field distribution, changesto the contracted form. In
this form, the discharge is shaped as an ellipsoid
dlightly extended along the electric field vector and
having an electron concentration exceeding the critical
value and asizethat ismuch lessthan that of the diffuse
discharge and the el ectromagnetic wavelength. Thefor-
mation of such a self-localized state occurs owing to
quasistatic resonance amplification of the field, arising
on small-scale plasmaformations at N, > N...

In some gases such asNHj;, H,0, and CO,, the strat-
ification of contracted discharge occurs; the discharge
acquires the form of an ellipsoid consisting of alternat-
ing light- and dark-colored disks perpendicular to the
electric field vector. This stratification is kinetic and
due to the devel opment of thermoel ectric-current insta-
bility. The development of this instability results in a
stationary structure in the form of fixed striations.
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Abstract—The insulator—metal transitions of different kinds caused by heating above the melting temperature
under pressure of tens kilobars and by compressing at the critical temperature to a pressure of about 1.1 kbar
occur in liquid selenium. At tens kilobars, metallization is interpreted as the forbidden energy band vanishing
due to agradual structural transition (melting of polymer chains) described by the Clapeyron—Clausius equa-
tion. At supercritical temperatures, the insulator—metal transition is caused by percolation of overlapping elec-
tron shells (classically accessible spheres) of virtual atoms in molecules Se, remaining when polymer chains
decay. The percolation threshold in such a system has been found to increase due to coupling of virtual atoms.
The thermally activated conductivity in the vicinity of percolation threshold has been calculated and compared
with existing experimental data. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Selenium belongs to a group of well studied low-
boiling elemental metals and semiconductors which
possess a considerable conductivity in the vicinity of
the critical points, giving evidence of the existence of a
nonideal plasma. Heated up to the critical points, the
metals mercury and cesium show a more or less sharp
decrease in conductivity caused by the metal—nsulator
transition upon expansion. In contrast, selenium dem-
onstrates a transition from semiconductor to metallic
state upon melting, heating, and compression and, as a
whole, exhibits a much more complex behavior than
metallic elements. As is known, there is a decaying
polymer structure in melted selenium which plays an
essential rolein such abehavior [1]. In this connection,
the insulator—metal transition in liquid selenium show-
ing the effect of local structureisof great interest. How-
ever, available experimental information for decaying
polymer structureisrestricted, sinceitisdifficult to evi-
dence the exponential temperature dependence of con-
ductivity which differs the insulator (semiconductor)
from the metal.

The properties of semiconductors essentially con-
nected with the forbidden energy band may radically
change due to the structural transformations (note, for
example, that germanium and silicon transform into
metals on melting, although their amorphous phasesare
semiconducting [2]). Similar to germanium and silicon,
selenium melts at pressures over 36 kbar to form a
metallic liquid. At lower pressures, the melt is a semi-
conductor which transformsinto ametallic liquid viaa
gradual phasetransition at higher temperatures[3]. The
insulator—metal transition can be related to the decay of

alocally ordered mesoscopic structure with aforbidden
band, which is responsible for the whole material
properties[4] (for areview of theoretical conceptions
of the insulator—metal trangition, see, eg., [5-7]). It is
known that in liquid selenium near the melting point

the polymer chains consist of 10°-106 atoms', but the
maximum chain length rapidly decreases with increasing
temperature[8]. Assuming that the polymer structure dis-
appears via a gradua phase transition, the insulator—
metal transition can be considered a consequence of
this structural transition. The significance of the struc-
ture is also evidenced by the metallization of liquid
selenium expanded bel ow an amorphous phase density,
while solid selenium can only be metallized when
being compressed.

At acritical temperature of the liquid—vapor phase
trangition (T, = 1888 K, p. = 365 bar, p.=1.85gcn®) [9],
aminimum metallic conductivity of about 200 Q- cnmr?
appears at a pressure much lower than that near the
melting curve, but still considerably higher than the
critical pressure [10, 11]. In this domain of the phase
diagram, the insulator—metal transition is due to the
percolation of overlapping electron shells, which arises
with increasing density. As a whole, this percolation
transition is similar to that in the vicinity of the critical
points of metalic elements, but there are essentia
peculiarities caused by the many-electron s-p-valence
shell and the molecular structure of selenium. Thus, in
different domains of the phase diagram, there are two
different insulator—-metal transitions caused by heating

T In contrast to sulfur which polymerizes at A point above the melt-
ing temperature.

1063-7761/01/9302-0336%$21.00 © 2001 MAIK “Nauka/Interperiodica’



STRUCTURAL TRANSITION AND METALLIZATION

and melting of the polymer structure and by the com-
pression of molecular liquid. However, the transitions
aremixed at atemperature of about 1500°C and a pres-
sure of afew kbar.

Near the boiling curve, liquid selenium is a semi-
conductor with a predominant hole conductivity [12]
determined by the energy gap width which is known
from measurements of the optical absorption edge [13]
(except the vicinity of the critical point where the spec-
tral transparency window is closed, but alow conduc-
tivity shows that there is an energy gap). With increas-
ing temperature and constant pressure, the conductivity
exponentially increases and then passes through a max-
imum below the critical temperature where the energy
gap increases due to expansion faster than tempera-
ture.! The conductivity maximum is characteristic of
a liquid semiconductor, being in striking contrast with
monotonically decreasing conductivity of expanded met-
as. However, the polymer melt models (see, for example,
[14]) do not explain such abehavior of liquid selenium.

On the other hand, a computer simulation of the
electron structure and the insulator—metal transition in
such a system encounters great difficulties, since a
many-electron quantum problem is linked with a great
number of particlesin decaying polymer chains and/or
in percolation clusters. In arange of high densities and
temperatures, where only short chains remain, a com-
bined method of molecular dynamics and the electron
density functional is used for the system of several tens
of atoms. Simulations show, that near the critical tem-
perature the chain distribution with respect to the num-
ber of atoms transforms into a maximum peak at Se,
dimers which are also responsible for the diffusion in
the system [15, 16]. However, it is obviousthat the sim-
ulation of percolation transition in such a system is not
possible with only afew tens of atoms.

The purpose of this paper istwofold. First of all, we
interpret the structural transition in liquid selenium as
the final stage of a two-step melting process in which
polymer chains decay (melt). Second, we will study the
insulator—metd trangition in atwo-atomic molecular lig-
uid using aconcept of percolation of classically accessible
spheresof virtual atomsin molecules. It will be shown that
the molecular structure leads to a considerable increase of
the threshold density compared to the well known perco-
lation problem of sphereswithout coupling and essentialy
influencesthe eectronic properties of liquid. In particular,
the threshold density strongly influences the activated
percolation conductivity which can be compared with
existing experimental data.

The outline of the paper is as follows. In Section 2,
we discuss agradual phase transition observed on heat-
ing liquid selenium. In Section 3, we consider a perco-
lation problem for the classically accessible spheres of

lContrary to an opinion that the gap is closed near the critical
point [12], the conductivity maximum is only possible when the
gap increases with increasing temperature.
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virtual atoms in molecules. The activated percolation
conductivity of liquid selenium is analyzed in Section 4.
The conclusions follow in Section 5.

A genera analysis of experimental datain the con-
text of insulator—-metal transitions in different liquids
has been made in our previous review [17].

2. MELTING OF POLYMER BUNCHES
AND METALLIZATION

Selenium is a semiconductor with an energy gap of
about 2 eV which occursin amorphous, vitreous, mon-
oclinic and hexagona modifications with the density
varying from 4.2 g cm in amorphousto 4.8 g cm=in
hexagonal forms. At pressures below 36 kbar, selenium
melts to yield a polymer liquid which consists, as the
amorphous phase, of macroscopically long deformed
atomic chains packed in bunches[1]. With further heat-
ing at a high pressure, the polymer decays into Se,
dimers. In view of the macroscopic size of closely
packed polymer chains, this gradual phase transition
(melting of chains in bunches) is extended over arela
tively narrow temperature range. The melting of chains
implies that the dimers can get mixed in their bunches
that provides for the fluidity but, on the other hand,
means the decay of polymer chains.

Except for the ends of chains, the valences of sele-
nium atoms equal to 2 (corresponding to two unpaired
spins of the electron configuration 4s’4p*) are satu-
rated, typical of semiconductors. Dueto alocal order in
the polymer structure, liquid (or amorphous) selenium
is generally considered a semiconductor with a local
forbidden band between afilled valence band (formed
by nonbonding transverse p orbitals occupied by pairs
of electrons with opposite spins) and the conduction
band. The melting of polymer bunches at high pres-
sures leads to the disappearance of the forbidden band
and, therefore, to the transition of selenium into a
metallic state. With relatively little heating, the transi-
tion is manifested by a sharp increase in the conductiv-
ity of liquid up to acharacteristic metallic value. During
the gradual transition, the length of polymer chains
(characterizing the scale of ordering) continuously
decreases and eventually the forbidden band disappears
when this length becomes of the microscopic scale.

Thus, the metalization of liquid selenium upon
heating is caused by a gradual structural phase transi-
tion (Fig. 1). There are solid and liquid semiconducting
phases and a liquid metallic phase in a region where
this transition branches off the melting curve (T, =
900 K, py, = 36 kbar) [3], while at higher pressures sele-
nium, similar to other semiconductors such as silicon
and germanium, melts to yield a metdlic liquid. The
conception of melting of polymer bunchesis supported
by an analysis of the experimental data based on the
Clapeyron—Clausi us equation of phase equilibrium

dp___ 9
dT T(V2_ Vl), (1)
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Fig. 1. Phase diagram of selenium: BF is the insulator—
metal transition line by data of Brazhkin et al. [3] and of
Alekseev et al. [25] corresponding to the minimum metallic
conductivity of about 200 QL cm L.

where p is the pressure, T is the temperature, q is the
heat of melting of polymer bunches, and v, and v, are
the specific volumes of metalic and semiconducting
liquid phases, respectively. By existing data [3], the
transition into adimer liquid near the branching point is
accompanied by a decrease in the specific volume,
Vv, — v, = -0.03/p, which explains the negative slope of
the phase equilibrium line, dp/dT = -7 Jcm?® K. Note,
that the negative slope corresponds to anomal ous melt-
ing caused by heating and compression (which is also
observed in usual ice). Substituting numerical values
into equation (1), we find for the heat of melting of
polymer bunches q= 45 Jqg (i.e., 0.074 eV per Se, mol-
ecule).

On the other hand, an effective heat of melting can
be expressed through the heat capacity c,(T) which is
expected to have a maximum in the transition range,

gq-= Icp(T)dT = /AT, 2

where [¢, (s the average heat capacity in the transition
range. Inversely, using equation (2), alatent heat calcu-
lated from the Clapeyron—Clausius equation and the
transition width (AT = 50 K) known from measure-
ments, one can estimate the average capacity to be
[¢,[0= 0.9 Jg K (or 8.5 kg/atom, where kg is the Boltz-
mann constant). Thisvalueistwo times greater than the
heat capacity of amorphous selenium. Obvioudly, a
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considerable increase in the heat capacity is related to
the dissociation of macromolecules.

Leaving studies of the semiconducting polymer
melt for the future, we note that the disappearance of
the ordering at a sufficiently low density leads only to
thetransition into adielectric molecular liquid still pos-
sessing an energy gap. Near the transition to ametallic
state, where the thermal ionization is ill-defined
because of overlapping electron shells, therole playing
by the energy gap goes over to a mobility gap [18].
Note that the mobility gap at the critical point reaches
about 1.5 eV, i.e, differs not too much from the width
of the forbidden band in liquid selenium near the melt-
ing curve. The theory of the insulator—metal transition
in the vicinity of the critical point, from which, in par-
ticular, this estimate follows, is considered in more
detail in the following sections.

3. PERCOLATION
INSULATOR-METAL TRANSITION

The domain of metallic liquid selenium in the phase
diagram isbounded by the line of melting of macromol-
ecules (from the side of low temperatures) and by the
metal—insulator transition due to expansion (from the
side of low pressures). Along the boiling curve, sele-
nium remains semiconducting up to the critical point
[12]. The minimum metallic conductivity of about
200 Q' cm is reached by heating the liquid up to the
critical temperature with the compression up to almost
three times the critical pressure. Once more we under-
linethat thetransitionto ametallic state at the critical tem-
perature occurs a a considerably lower density than the
density of amorphous selenium, i.e., the absence of the
ordered structure is manifested in avery radical way.

Peculiarities of the insulator—metal transition in
selenium are related to features of the molecular struc-
ture. Note that the ionization potential of the Se, mole-
cule (8.88 eV) issmaller than that of the Se atom. Thus,
when the atoms form the molecule, the binding energy

of electrons decreases? that shows evidence of asi gnif-
icant repulsion between electron shells. In this case, the
electron states are better described by weakly overlap-
ping Heitler—London orbitals which (in contrast to,
e.g., molecular orbitals) take into account a strong
interelectron correlation from the beginning. Theradius
of weakly overlapping classically accessible spheres of
atoms, in which the residua ions are screened, is virtu-
aly unchanged, since it is determined by the potential
of the residual ion and the minimum internal energy of
thevirtual atom— (wherel =9.752 eV istheionization
potential). Thisalowsthevirtual atomsin moleculesto
be considered as constituents of percolation clusters.

In the atom of selenium, the valence electrons with
a large principa quantum number are distributed

2This also takes place for weekly bound alkali dimers and, for
example, iodine dimers.
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mainly near the surface of a classically accessible
sphere. Taking into account that for the many-electron
shell a self-consistent potential in this region can devi-
ate from the Coulomb potential and introducing a cor-
rection, we write the classically accessible radius[17]

Ra = (3)

where e isthe electron charge, € = 0.8 eV isthe polar-
ization affinity of the residual ion to the electron (esti-
mated by the electron affinity of the isoelectronic As
atom). Formula (3) gives classically accessible radius
R, = 1.6 A, while the bond length in selenium molecule
[19],d=2.17 A, isonly by onethird smaller than the sum
of theradii of two atoms. Thus an overlap of the classi-
cally accessible spheres (Fig. 2) is smal enough to make
the concept of virtud atomsin molecules sensible.

A characteristic parameter of the percolation prob-
lem is the volume fraction of the classically accessible
spheres

- 4n
ZO_B

where n, is the number density of virtual atoms. In
atomic gas, the percolation threshold is reached when
this volume fraction is about one third. However, the
coupling of virtual atoms leads to a change of the per-
colation threshold. We define an average coordination
number B as the mean number of virtual atoms with
centers within a coordination sphere of radius 2R, sur-
rounding the central atom. In the ideal molecular gas,
the coordination number is

B = 1+4(,, (5)

where, on the right-hand side, the unity corresponds to
a permanent bond with another atom of the molecule,
and the second term corresponds to bonds with atoms
bel onging to neighboring molecules, with one bond per

molecule.® We use a principle of the invariable thresh-
old coordination number of the percolation sphere
problem, which is responsible for the connectivity and
local structure of the infinite cluster. Substituting the
threshold vaue B, = 2.7, known from Monte Carlo
simulations for the ideal gas of overlapping spheres
(see, for example, [20]), into equation (5), we find the
threshold volume fraction of the classically accessible
spheres

RN, (4)

U = _ch4—1 = 0.425, (6)

where the upper index 2 denotes the value for two-
atomic fluid. In the well known percolation problem of

overlapping spheres, the corresponding value is Z(pl) =

3 We neglect the case of bonds with two atoms in one neighboring
molecule, which is less probable.
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Fig. 2. Overlapping classically accessible spheres of virtual
atoms in the molecule of selenium. Scales are given in the
atomic units (Bohr radius).

B,./8 = 0.3375. Therefore, according to equation (6),
the coupling increases the threshold by 25%.

The threshold for molecular chains increases till
more. Although, in the case of long polymer chains, the
percolation is possible at a coordination number close
to 2, it is assumed that the metallic conductivity arises
only when long chains decay and the coordination
number increases up to the microscopic percolation
threshold of the atomic system. Thus, in abroad sense,
the principle of invariable threshold coordination num-
ber defines a structural percolation transition related to
a definite change in the local structure. In the case of
chains consisting of k atoms, instead of equation (5) we
have

_ 2(k-1), 8%

T T X @

where the first term on the right-hand side corresponds
to the average coordination number within the chain
and the second term corresponds to bonds with atoms
belonging to neighboring molecules. Using the thresh-
old coordination number B, for the atomic system, we
obtain

kB, k-1
(k) —
(= X2 ®)

Formula (8) with k = 1 and 2 yields, respectively, the
thresholds for atomic and two-atomic fluids given

above. With k = 3, wefind ) = 0.5125 that is compa-
rableto the volumefraction of the classically accessible
spheres at the density of amorphous selenium. Thus,
the insulator—metal transition is only possible when
chains are amost completely dissociated. If the mean
number of atoms per chain and the volume fraction of
classically accessible spheres are consdered as functions
of thetemperatureand pressure, k(p, T) and {y(p, T), equar

tion (7) determines atrangition line in the p-T plane.

Now let us consider the percolation problem taking
into account the repulsion between virtual atomsin the
diatomic fluid. Ascribing to atoms the hard cores of
diameter d equal to the interatomic distance in the mol-
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Fig. 3. Percolation threshold of overlapping shellsasafunc-
tion of the relative diameter of hard cores for virtual atoms
in molecular liquid and in atomic liquid [17] (dots are by
Monte Carlo simulations [22]).

ecule and taking into account the effect of an excluded
volume, we write the coordination number

B = 1+4[Z,—A(c)n]F(n), ©)

where F(n) is the Karnahan—Starling function [21]
describing the density with respect to afree volume,

F-1ltn+n’-n’
3
(1-n)

n = 1®n,/6 is the packing fraction of the hard cores. In
formula (9), the subtrahend A(c)n with the coefficient
A(c) depending on therelativeradius of coresc=d/2R,,
allows for an excluded volume around the molecule
with one atom placed at the center of coordination
sphere. A direct calculation of the excluded volume
givesat c< 1/2

A(c) = 27/16,
andat 1/2<c<1
27 175 .1, 30
g, [—— + -+ ==,
Ale) = 75 20 0 "¢ ;A

Substituting formula n = ¢3¢, and the threshold
value of the coordination number into equation (9), we
obtain an algebraic equation which determines {,;(c) as
an implicit function of the relative diameter of cores
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(for the sake of brevity, here and below the upper index 2
isomitted). Thisfunction is plotted in Fig. 3. In awide
range of the relative size of cores ¢ < 0.8 (in particular,
for selenium ¢ = 2/3) the magnitude of thisfunction vir-
tualy coincides with the threshold given by equation (6)

for the ideal gas.* In Fig. 3 this function is compared
with the results of analogous cal culations without cou-
pling [17] and Monte Carlo simulations [22], existing
for this case, which confirm the principle of the invari-
able threshold coordination number.

Thus, the coupling of virtual atoms leads to an
essentia increase of the percolation threshold compared to
that of an atomic liquid. Using formulas (3), (4), and (6),
it is easy to estimate that the percolation threshold cor-
responds to the density of about 3.2 g/cm?, i.e., by
approximately 25% smaller than the density of amor-
phous selenium. Indirectly, this estimate of the percola
tion threshold can be confirmed by the experiment,
since the activated percolation conductivity strongly
depends on the distance from the threshold, as will be
shown in the next section.

The pressure at the transition point can be estimated
using a scaling equation of the critical isotherm

0
P_1=aP_1 (10)

C Cc

where d = 5 is the universal critical exponent, and A =
8.71 is the amplitude found by fitting the experimental
data [9]. Substituting the estimated threshold density
into equation (10), we obtain the transition pressure of
about 1.1 kbar, i.e., nearly 3 times the critical pressure.

4. PERCOLATION CONDUCTIVITY

In amacroscopically large percolation cluster, themol -
ecules, aswdl asvirtua atoms, are no longer separate par-
ticles, but the constituents of an eectron-ion plasma. The
vaence dectrons are partialy free, since the screening of
residua ions in the percolation cluster becomes collec-
tive. Therefore, mixed states of virtual atoms have a
continuous spectrum of internal energy including the
energy of free motion in the screened potential of resid-
ual ions.

In the percolation problem, it is convenient to take
the ground level of the remainder ion to be zero energy.
Then, the minimum internal energy of the virtual atoms
with a one-electron excitation [18] is

E, = -l +¢, (11)

p
where g, = p%2m is the energy of asymptotically free
motion of the electron, p is the asymptotic momentum,
m s the electron mass. Depending on the proximity to

4Besides the repulsion, there is an averaged many-particle
exchange attraction between virtual atomsin the percolation clus-
ter, which only weekly depends on the configuration and, there-
fore, as assumed, does not influence the percolation threshold.
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the transition point, the renormalized Fermi energy of
such mixed states of virtual atomsis

er = £°KE9%/2m, (12)

where

ke = (3r¢zn,)"" (13)

is the Fermi wavevector of the electron gas, z= 6 isthe
number of s and p valence dectrons of sdenium with
amodst the sameradii of the classically accessible spheres,
which are considered asequivaent, 9 < 1lisarenormaliza
tion factor caused by partial localization of eectrons,
which is determined by the relative frequency of the elec-
tron trangitions between virtua atoms. The renormalized

Fermi energy € and the wave vector
ke = ked 14

go over to the corresponding quantities for a homoge-
neous electron gas in the limit when the frequency of
the electron transitions corresponds to a free flight
between neighboring atoms, i.e., the localization factor

goesto unity.5 Aswill be seen, the Fermi energy decreases
near the insulator—metal transition with decreasing tem-
peraturefaster than the temperature; therefore, the exci-
tation of virtual atoms is described by the Boltzmann
statistics.

In the vicinity of the percolation transition, the
valence electrons of overlapping s+ shells (which can
transfer between virtual atoms) provides an over-bar-
rier hopping conductivity. Analogously to the band
conductivity depending on filling of the valence band,
the percolation hopping conductivity dependson filling
of the s shells. The frequency of hopping is propor-
tional to the product of the number of valence electrons
by the number of free places (holes) in these shells,
since thetransitions are only possible to such holes. We
assume that due to the mixing of states the maximum
number of electronsin s—p shellsis greater than that
in free atoms by a small value z, and the number of
holesis 8 + £ — z. Then, we define an effective number
of valence electrons z, proportional to the frequency of
hopping and obeying the conditions z,(1) = z,(8) = 1 for
the minimum and maximum numbers of s—p electrons
possible in free atoms. It is easy to see that with these
conditions € must be taken equal to 1, and the effective
number of valence electronsis

7, = %z(g—z). (15)

As a function of z, the effective number of valence
el ectrons defined above has aweek maximum and, in the
case of selenium, is close to 2, i.e., coincides with the
number of holesin the valence s—p shellsof afree atom.

5 Equations (12) and (13) replace an expression for the renormal-
ized Fermi energy through the statistical weight of the ground
level [18], which obeys this condition only for s electrons.
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The percolation conductivity is described by amod-
ified Drude formula with the localization factor [18]

2
= enazetﬁ, (16)
m

where T is the relaxation time. In the case of the Boltz-
mann statistics, the minimum relaxation timeis

— RS
T = VT, (17)
where R, = (4™n,/3)® is the mean interatomic dis-
tance, vy = (8T/Tm)Y2 is the mean thermal velocity of

electrons. At high density, in the case of nearly free
degenerate electrons, the relaxation time is

(18)

where v isthe Fermi velocity, | = RJ/y isthe free path
found at the density where the localization factor
becomes equal to unity, y< 1 isaparameter correspond-
ing to the inverse value of the relative free path. As an
interpolation, we use formula (17) if v > yvg and for-
mula (18) otherwise v, < yve (however, we underline
that this does not really concern the crossover between
the Boltzmann case and the degenerate case, which is
determined by the localization factor).

Below the percolation threshold, a partial localiza-
tion of electrons, described by the localization factor, is
connected with amobility gap A, and in awider range,
with a soft gap A, of low mobility (smaller than that at
the minimum free path),

TN 1/3
A, = |—si—eZD4—"’D

A (19)

(k= pc, cp),

where {, = 0.425 is the threshold volume fraction of
the classicaly accessible spheres, and (, = 0.74 corre-
sponds to close packing of these spheres. At the edge, the
mobility goes to zero as the inverse of corrdation length
[6] being described by a power function

DSP_APCDV

B2,

d(Ep) = €, <A (20)

p cp?

cp

wherev = 0.9 isthe critical exponent of the correlation
length of percolation clusters[23]. Thelocalization fac-
tor is obtained by averaging the scaling function 3 (g,),
extended to the range g, > Ay, where it is equated to
unity, over the Boltzmann distribution of virtual atoms
(for the simplicity, the exponent v can be replaced with
unity). Ontheinsulating side of thetransition, thelocal-
ization factor exponentially depends on the temperature
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Fig. 4. Percolation conductivity of expanded fluid selenium
asafunction of the pressure aong the critical isotherm. The
pressure of the insulator—metal transition is about 1.1 kbar
(shown by an arrow). Experimental dots: (o) Hoshino et al.
[10, 11] (see also Fig. 1 in [9]); (o) Alekseev et al. [25];
(») R. Fischer and R.W. Schmutzler [1].

= T(Foe—Fep)
Dep— A

_ 2B 08
b —By PO

where functions F, are expressed by the incomplete
gamma functions I (m, x),

- 270 A0 A8 Ag
Fic = ﬁ[r@’ O™ T O TD}’

and the second part of formula (21) corresponds to the
limit Ay, > Ay, > T. Thus, below the transition point, the
mobility gap playsarole of the activation energy of per-
colation conductivity.

On the metallic side of the transition, the mobility
gapisvirtual, A, < 0, and thelocalization factor retains
only aweak temperature dependence

9

" (21)

3 3
ET—ApC—TFCp éT—Apc
g = = . (22)
Aw_Am Aw_Am

The second part of formula (22) corresponds to the
limit A, > T. This formula shows that at the transition

point, where the activation energy equals zero, the local-
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ization factor is proportiona to T. Therefore, the Fermi
energy is proportiona to T?, i.e, as was noted above,
decreases faster than temperature. According to (19) and
(22), with increasing density, when the soft gap Ay,
becomes of the order of temperature, the localization fac-
tor goesto unity. Then, the Fermi energy increases giving
riseto thedegeneracy of electronson the metallic side of
the transition (although the localization factor itself can
be cal culated almost always using the Boltzmann distri-
bution [24]).

Shown in Fig. 4 isthe conductivity of selenium asa
function of the pressure along the critical isotherm, cal-
culated with formulas (15)—(22) and the equation of
state (10). Experimental data at high pressures [1, 25]
are best fitted choosing the maximum parameter y = 1
corresponding to the minimum free path length equal to
the mean distance between virtual atoms. In view of a
strong pressure dependence of the conductivity near the
percolation transition, the experimental data indirectly
confirm a locus of the transition point determined by
formula(6). At the critical point, the cal culated conduc-
tivity isabout 0.1 Q* cm in agreement with the exper-
imental value [9]. We note, that a vertically going depen-
dence on the pressure near the critical point is caused by a
diverging compressibility, rather than by the insulator—
metal transition located at nearly threetimesthe critical
pressure.

In conclusion, we discuss the thermoel ectric coeffi-
cient of selenium retaining positive sign in the entire
range of measurements[1]. Inthe case of electron—hole
conductivity, the positive sign correspondsto the higher
mobility of holes [12]. However, near the insulator—
metal transition, the valence electrons become partially
free, therefore, the thermal generation of electrons and
holes is ill-defined. Thus, the reason of postive thermo-
electric coefficient connected with the sign of carriersis
still an open question. The problem becomes not so sharp,
since the thermoelectric coefficient is proportional to the
difference of the chemical potential and aweighted mean
energy of eectrons, [26], which can aso change the sign.
Additional data at higher temperatures and densities
where the thermoel ectric coefficient may change the sign
from positive to negative, and the Hall constant measure-
ments could shed light on the problem.

5. CONCLUSIONS

The trangition of liquid selenium into a metallic state
near the melting curveis different from that in the vicinity
of the critical point. Near the melting curve, thistransition
is caused by the decomposition of the polymer structure
responsible for a local forbidden band. Therefore, the
insulator—metal transition line branching off the melt-
ing curveisdescribed by the Clapeyron—Clausius equa-
tion for a gradual structura transition. At high pres-
sures, arather sharp dissociation of the polymer chains
upon heating of liquid selenium has been confirmed by
observations, therefore, some connection between the
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dissociation and the metallization can be considered an
experimental fact.

On the other hand, the metallization of a molecular
liquid, formed after the decomposition of polymer
chains, is possible only in the case of overlapping elec-
tron shells, i.e., at high enough density. Therefore, the
insulator—metal transition upon compression in the
vicinity of thecritical point isinterpreted as percolation
of weakly overlapping classically accessible spheres of
coupled virtual atoms in the dimers of selenium. Asis
shown, the molecular structure leads to an essential
increase of the percolation threshold compared to that
of the atomic liquid: the longer are molecular chains,
the stronger the threshold increases. Nevertheless, the
activation energy of the percolation conductivity van-
ishes at a density smaller than that of semiconducting
amorphous selenium. At the critical isotherm, the tran-
sition point is located at a pressure of about 1.1 kbar
where liquid selenium transforms into a molecular
metal with a conductivity greater than 200 Q% cm™.

The activated percolation conductivity is caused by
over-barrier electron hopping with an effective number
of electrons per atom equal to the number of holesin s—
p shells of selenium. The conductivity is described by a
modified Drude formulaallowing for a partial localiza-
tion of electrons. Well above the transition point, where
the localization is not important, experimental data cor-
respond to the free path length of electrons equal to the
mean interatomic distance. The percolation conductiv-
ity describes experimental data along the critical iso-
therm in awide pressure range, where the conductivity
varies by four orders of magnitude.

Theinsulator—metal transition isonly possiblewhen
polymer chains are almost compl etely dissociated, and
the local structure corresponds to a critical value of the
coordination number. In the region where the percola-
tion transition line goes over to the melting line of mac-
romolecules, two kinds of the insulator—metal transi-
tion become identical.
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Abstract—Spatial correlation functions of orientation fluctuationsin bounded cells of smectic and nematic lig-
uid crystalsare cal cul ated taking into account the effect of external fields and finiteness of the energy of anchor-
ing to the surface. The cases of positive and negative anisotropies of magnetic susceptibility or permittivity are
considered. The calculations are based on the division of degrees of freedom into bulk and surface ones and on
the reduction of the computation of the continual integral determining the correlation function to the solution
of the Euler equation with corresponding boundary conditions of thefirst or third kind. The obtained correlation
functions are used for describing the intensity of light scattered in nematics for the planar and homeotropic ori-
entations. It is shown, in particular, that the measurements of the angular dependence of the scattered light
intensity may serve asareliable method for determining the energy of anchoring of aliquid crystal to asubstrate

for different values of the external field. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

An important feature of liquid crystals (LC) is the
very small value of orientational melting energy. As a
result, the orientation of a system in the ordered phase
may change significantly due to very weak effects; in
other words, the susceptibility of the system is
extremely high. For this reason, most types of LC
exhibit strong fluctuations of orientation [1]. Fluctua-
tions strongly affect many properties of LC. Thisrefers
to the behavior of the system in the vicinity of phase
transitions [1-5], optical properties (above al, light
scattering} [1, 6], the formation of viscoelastic coeffi-
cients [1], the fluctuational contribution to attraction
between walls [7-10], etc.

A distinguishing feature of orientation fluctuations
in LCistheir infinitely large correlation radius. In such
asituation, an important roleis played by factorswhich
may be disregarded in most other systems. This prima-
rily refersto the effect of external fields[1, 11, 12], the
interaction of LC with the confining surface [5, 8, 11,
13], and finite dimensions and shape of the sample [3,
8, 14]. This problem has become quite important in
connection with numerous applications of LC in infor-
mation display systems. The description of the struc-
ture and spectrum of thermal noise for LC in encapsu-
lated and twisted cellsis essential in this case.

The dtatistical properties of fluctuations are
described with the help of correlation functions. First
calculations of spatial correlation functions of fluctua-
tions in LC were made for unbounded nematic and
smectic-A liquid crystals (NLC and SLC-A) [15]. The
evolution of these investigations was aimed at extend-

ing the classes of LC [1], types of fluctuations [16],
inclusion of dynamic processes [1], and taking into
account the finiteness of the system and interaction of
L C molecules with the surface [10, 17— 21].

The most serious difficulties are encountered when
correlation functions are calculated for finite systems.
In most cases, fluctuations in a planar cell are consid-
ered. The simplest case of stringent boundary condi-
tions in NLC was considered in [17-19]. The correla-
tion functions obtained in these works had the form of
an infinite series in the eigenfunctions of the system. A
more redlistic model of mild boundary conditions
described by a Rapini type potentia [22] was consid-
ered for NLC in [10, 20] and for SLCin [21, 23]. The
authors of [10, 20, 23] succeeded in presenting the
result in closed form, while in [21] it was obtained in
the form of a series.

It should be noted here that no universal approach
has been devel oped for cal culating the correlation func-
tion for finite LC. The methods of expansion in eigen-
functions [10, 17] and continua integration [10], as
well as the theory of self-conjugate operators [20, 23]
were used. It may appear at first glance that in each
publication, the computational method was based on
the specific features of the given system.

In the present work, we propose an agorithm for
calculating the correlation functions for bounded LC,
which combinesthe approachesused in [10, 17, 18, 20,
21] and makes it possible to obtain the result in closed
form in the general case of a multicomponent order
parameter.

1063-7761/01/9302-0344%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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This approach can be used for calculating the corre-
lation functions for plane-parallel NLC and SLC-A
cells in the presence of an external field. We consider
the case when the directions of orientation of the direc-
tor by the external field and confining surfaces coincide
and analyze the systems with positive and negative
anisotropy of magnetic susceptibility x, or permittivity.
In the most commonly encountered case, with x, > 0,
the equilibrium position of the director is aligned with
the external field. In the case of negative anisotropy, the
director is perpendicular to the magnetic field in equi-
librium. For such systems, the magnetic field sup-
presses only one of two fluctuational modes of the
director, the other mode remaining singular [24].

We derived an explicit expression for the correlation
functions for smectics A and nematics in planar geom-
etry taking into account the external field and the effect
of the surface simultaneously. The behavior of the cor-
relation function near the surface is analyzed in detail.
It is shown that fluctuations at the surface may be stron-
ger or weaker than in the bulk depending on the system
parameters. The fluctuationsin a bounded cell with the
planar geometry is calculated in detail for thefirst time
without using the single-constant approximation.

In Section 2, basic equations describing the energy
of abounded liquid crystal in an external field areintro-
duced. A general approach to calculating the spatia
correlation function of the vector order parameter fluc-
tuationsin abounded system is developed in Section 3.
A general expression for the correlation function is
derived in Section 4. In Section 5, the obtained formu-
las are used for calculating the correlation function of
displacement fluctuationsin SLC-A and for fluctuations
of the director in NLC. The dependence of the spatial
correlation function on the parameters of the system
(above al, on the anchoring energy and the applied
external field) is analyzed in detail. The intensity of
scattered light in a liquid crystal cell is calculated in
Section 6. It is shown that the parameters of a liquid
crystal (above al, the anchoring energy) can be deter-
mined by measuring the angular dependence of the
intensity of scattered light in external fields.

2. FREE ENERGY OF A LIQUID-CRY STAL CELL
IN AN EXTERNAL FIELD

In order to describe liquid crystals, we will use the
standard continual model [1]. In this model, the elastic
propertiesof liquid crystalsin bounded cellsare usually
described taking into account the three types of contri-
butions to the elastic energy:

Fia = FetFi+Fq. (2.1)
Here, F.istheelastic energy of aliquid crystal, F;isthe
contribution of the external field, and F is the surface
energy. The approach which will be described below
can be used for studying various types of liquid crys-
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tals. In the present work, we consider nematics and
smectics A.

For a nematic liquid crystal, the elastic energy is
equal to the Frank energy

F, = %J'dr[Kn(divn)z

+ Kyy(n Ceurln)® + Kge(n x curln)?],

(2.2)

where n(r) isthe unit vector of the director and K;; (j =
1-3) are the Frank moduli. The minimum value of F,
corresponds to the homogeneous equilibrium state of
the director n® = const.

In order to calculate the volume energy of SLC-A,
we confine our analysis to the standard model [1]:

F.= %Idr{ B[ou(r, 217+ K[V u(r,, 213 . (2.3)

Here, u(r) is the component of the displacement vector
along the z axis, which is directed across the smectic
layers; B isthe smectic elastic constant associated with
the compression of smectic layers; K isthe elastic con-
stant associated with the distortion of the layer shape;

v _ [0 o[
[} ch‘]a

where the subscript “[I” corresponds to vector compo-
nents perpendicular to the z axis. Model (2.3) corre-
sponds to the director vector

du du
n(r) ” (_VDU; 1) = E_—a_)ljv _b_y! 151

which is normal to smectic layers.

Theterm F; describing the magnetic or electricfield
in SLC-A and NLC hasthe form

F, = —}an’dr(n [H)?,
21 (2.4)

_ 1 2

Fi = 8T[eaJ'dr(n (E)",

respectively, where x, and €, are the anisotropies of the
magnetic susceptibility and permittivity, and H and E
are the magnetic and electric field strengths. For the
sake of definiteness, we will confine our subsequent
analysisto magnetic fieldsonly. For atransition to elec-
tricfields, it is sufficient to makethe substitution H —
E and x, — & /4mtinthefinal formulas. It followsfrom
Eq. (2.4) that theterm F; hasaminimum for x, > 0if n° ||H

and for x, <0if n° O H.
The term F4 describes the surface energy. The fol-

lowing two cases of the orientation of the director on
the surface are considered most frequently: the planar
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case when the director is parallel to the surface and the
homeotropic case when it is perpendicular to the sur-
face. Let aliquid crystal be enclosed in a plane-paralléel
cell of thickness L. We introduce the Cartesian system
of coordinates { e, g,, &} with the origin at the center
of the cell and with the e, axis perpendicular to the
planesz=1,and z=1, (L =1, —1,) confining the cell.
For nematic liquid crystals, we will use the surface
energy F4 in the form of the Rapini potential [22]:

Fy = [dr S W na(ro, 1), (2.5)
j=12
in the case of the homeotropic orientation and
1
st = EJ-dr O
(2.6)

xS WIS o 1)+ W 1))
=12
in the case of the planar orientation with the easy orien-
tation axisy. Here, the quantities\W, and Wi"? (1 =1, 2)
are the anchoring energies.

For SLC-A, we confine ourselves to the case when
smectic layers are perpendicular to the z axis. In this
case,

-1
Fg = Zfer
. _ , (2.7
xS U 1) + v (Vours 1),
j=12
where y(lj) are the anchoring coefficients and y(zj) are

surface tensions (j = 1, 2). In the case of afredly sus-
pended smectic film, we have y!" = 0.

In the present work, we will beinterested in the case
when the confining surfaces aswell asthe external field
stabilize the orientation of the director. For this reason,
wewill disregard the competition between the field and
the surfaces (Freedericksz effect) or between two sur-
faces (twisted cell).

In the case of NLC, we will be interested in devia-
tions 6n = n —n° of the director n from its equilibrium
value n®. In the principal order, we have dn [ n°. In the
case of SLC-A, we take for the fluctuating parameter
the quantity u(r) describing the deviation of smectic
layers from the equilibrium state.

The structure of formulas (2.2)—«2.7) implies that
the fluctuation contribution to the total energy (2.1) in
the Gaussian approximation isthe quadratic form of the
fluctuating parameter u(r) or dn containing gradients of
an order not higher than the second.

The conventional method for solving the problem of
fluctuations in an unbounded NLC is based on atransi-
tion to the 3D Fourier spectrum. For a plane-parallel

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

VAL’KOV et al.

cell, itisnatura to carry out the 2D Fourier transforma:
tion. We will use the Fourier transformation in theform

_ 1 iqrg
f(r) = (Zn)z-[f(q,z)e dqg.

Thus, the problem formally involves an analysis of the
correlation function of the scalar parameter @(q, 2) =
u(g, 2) or the two-component vector ¢(q, 2) = dn(q, 2).
It makes the contribution to the bulk energy F, = F. +
F; of theform

OFp(0) = I

dg
(2m)°
where ®,, is the positive-definite quadratic form of the
type

Ppi(9), (2.8)

1
2

l2 A i (2.9)
x j(¢'+é¢' + ¢ o'+ "D o' + ¢ Co)dz.

ll

By =

Here, & = ¢(q, 2 and ¢' = 00(q, 2)/0z are the n-compo-
nent vectors, & = a(q), b = b(q), and & = &(q) aren x
n square matrices, & and € being Hermitian matrices,

and the superscript + denotes Hermitian conjugation.
Thedimensionn=1for SLC-Aand n=2for NLC.

The contribution of ¢ to the surface energy (2.5),
(2.6), and (2.7) of the system has the form

= 99
F4(@) = [ Loy (210)
where
Oy = (0101 + 03,0,), (211)

d; = 0(q, 11), ¢, = ¢(q, I,), and the Hermitian positive
definite n x n matrices W ,(q) correspond to the first
(z=1,) and second (z = |,,)) boundaries.

The specific form of matrices &, b, &, W, , and W,
depends on the type of the liquid crystal and on the
geometry under investigation. The expressions for
these matrices will be given in Section 5.

3. GENERAL METHOD FOR CALCULATING
THE CORRELATION FUNCTION
FOR A FINITE CELL

We will be interested in the correlation function of
fluctuations in the general case of the vectorial order
parameter ¢(q, 2):

9ap(d; 2.22) = [ip,(0, D@ (0, )00 (31
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where the angle brackets Ll.. [indicate statistical aver-
aging and the superscript [} Cindicates complex conju-
gation.

In order to calculate tensor 3, we must average the
expression @,(2) (p’g (z,) over dl possible values of ¢(q,
) with the weight function exp(—F,(0)/ksT).

Sincethe quantity @(r) isreal-valued, we have ¢(—,
2) = ¢*(q, 2) and, hence, the quantities ¢(q, z) and ¢(—q,
2) are not independent. It is convenient to write the
expression of F,,(¢) in terms of independent variables.
For this purpose, a transition is usually made from the
integration over the entire spectrum of q to the integra-
tion over a half-space [25] which will be conditionally
denoted asq = O:

Ful@) = 2 [ X _ga_ Sul®). (32)

q>0

where

Pi(9) = Pui(0) + P(0).

In the Gaussian approximation, the fluctuational modes
®(q, 2 for various g = 0 are independent. Conse-
guently, we can confine our analysis to a certain fixed
g. The probability density for fluctuations ¢(2) = ¢(q,
2) isgiven by

tot(¢)
(@) = Fep[ 2727 |, (33
where the partition function has the form
z = J’exp[ 2 lft(T‘")] 0. (3.4)
Here, the continual integration symbol [...2¢ corre-

sponds enumeration of all possible pairs of functions
Re(d(q, 2) and Im(d(q, 2)) for |, <z<|,. Pay attention
to coefficient 2in Egs. (3.2)—(3.4). It appearsin connec-
tion with the integration over the half-space g = 0 in
(3.2).

The pair correlation function in this case can be
expressed through the continual integral:

Jap(z 21) = J’%(pE (2)p(9)2 . (3.5)
Along with (3.5), arepresentation of g, in the form of
a functional derivative is also used. For this purpose,
the generating function

20,,(9) + S(0; €)
- st 9p,,

Z(e) = J'exp[ (36)

isintroduced, where the source is given by
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Iy

S(d; € = Jle@ [(eH2) + 012 Ce@)]dz,  (3.7)

and the function €(q, 2) = €*(—q, 2) denotes afictitious
external field which is assumed to be equal to zero in

the final results. In this case, the correlation function §

can be calculated through the average value (T) in the
presence of field e,

6.9 = 7
20,(0) + (0 €) (38)
[0 exp| ~—EH === D0
as follows:
Gep(2 22) = —k Té%:(zzj) . (3.9)

Here, we assume that the symbol &/de of functional dif-
ferentiation for complex-valued € in (3.9) has the fol-
lowing meaning:

0 _ 10 o i d
3¢ ~ 2[bRe(e) olm(e)

(3.10)

The peculiarity of our problem is that ®,,(¢) con-
tains the surface term @4 which depends on a finite
number (2n) of degrees of freedom ¢, = ¢(l,) and ¢, =
d(l,). Consequently, it is natural to divide the degree of
freedom of ¢ into two partsand present integral (3.5) as
acontinual integral with fixed values of ¢(l;) = ¢; (j =
1, 2) at theends of theinterval [, I,], followed by finite-
dimensional integration with respect to ¢, and ¢,:

2(Dsf (¢1 2)

1
B

< Jof et
[}

o(l)) = o,

The continua integra in this expression corresponds
to severe boundary conditions. Following Feynman [26],
we carry out in (3.11) a shift of theintegration variable,
presenting function ¢(2) in the form of the sum

(2 = 92 +M(d),

where ¢, is afixed function satisfying inhomogeneous
boundary condition of the first kind

|do.do,
(3.12)

KT Dcpa(z)cpg(zl)@tb

(3.12)

0o(l) = 01, Ou(l) = &, (3.13)
and the Euler equation
Ledod = €. (3.14)
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corresponding to the condition for the minimum of the
exponent 2®,,(d) = F(o; €) for |, < z<1,. Inthiscase,
the boundary conditions for the new integration vari-
ablen(2) in the continual integral are homogeneous:

n(y) =n(,) = 0. (3.15)

For energy (2.9), the differential operator i’E is given
by

SN T N B

e = ag+ (b+b )a—z—c. (3.16)

Considering that the function ®,(¢) is quadratic,

while ¥ (0; €)islinear in the variable ¢, and taking into

account the equilibrium condition 3(2®,, + ¥) =0 and
the boundary conditions (3.15), we can write

2D (0) + (0 €)

=20, (0g) + F(9; €) + 2Dy (n).

Here, only the quantity @y(2) = ¢o(Py ) on the right-
hand side is a function of parameters ¢, and ¢,. Con-
sidering that the surface energy ®«(¢, ,) isaso only a
function of these parameters, the integrals with respect
to ¢4, ¢,, and n in Eq. (3.11) can be factorized. As a
result, the degrees of freedom n(z) and ¢,, ¢, arefound
to be independent, and we have

(%9 (2) 95 (200

(3.17)
= (o (2 Pop(200h, , + Ma(@Np (200,
where
HPOG(Z)(p;B(Zl)Dl’Lz = J'(I)OQ(Z, 01,2)
(3.18)
X (PZ)CB(ZL 012)p(91, ¢,)d0,dd,,
(a@N (@25,
. (3.19)
= é---éna(zmg(zl)p(n)@n,
O
n(l) =0
and the distribution functions are given by
Dt (91,2) + Pru(P4
o0y, ) [ exp[—z s (0 VZ)k:T ok( @ 2)}, (3.20)
()
o) O exp[—z IE;(T“)] (3.21)

Here, the following notation has been introduced:

Dp(d15) = Pp(0o(1,2))-

Inrelations (3.18) and (3.19), we put € = 0. The integral
in (3.18) isafinite-dimensional integral of the Gaussian
type and can be evaluated easily. The integral (3.19) is
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a Gaussian continual integral and in principle, can also
be calculated explicitly. However, it is more convenient
to calculate the correlation function (3.19) by using the
relation

OGa(2)

dep(zy)’
which is a version of relation (3.9) for zero boundary
conditionsm(l,) =n(l,) = 0. Pay attention to thefact that
the derivative d@,,/de; is independent of the quantities
¢4, ¢, and e since the dependence of the solution @, of
the Euler equation (3.13), (3.14) on the parameters ¢,
¢,, and e islinear.

It should be noted that the quantity ®,, (¢, ,) appear-
ing in formula (3.20) can be expressed in terms of the
values of ¢y(2) and ¢y(2) at the boundaries z =1, and
z=1,. Indeed, if we usethe Euler equation (3.14) in for-
mula (2.9), the integration by partsfor € = 0 gives

Ma@ng (), = —ksT (3.22)

A |2
Pl = 5(05a05+ 0sboo)| . (329
Thus, the calculation of the correlation function
0qp (05 2, ) boils down to the solution of the Euler
equation (3.14) with the boundary conditions of the
first kind (3.13), followed by the evaluation of the
finite-dimensiona integral (3.18) and the functional
derivative (3.22).
An dternative method for calculating the correla-
tion matrix §(q; z, z,) is based on the direct evaluation
of the functional derivative (3.9). Thisis possible since

the average value ¢ in relation (3.8) for a random
Gaussian quantity can be obtained by solving the Euler
equation corresponding to the condition for the mini-
mum of the total action

20 (0) +F = 20, + 204 + S
in the field e of the source. In the equilibrium equation
20, +204,+0F/2 = 0

we integrate by parts the first, second, and third terms
in expression (2.9) for ®,. On theinterval |, <z <,
the equilibrium equation can be reduced to the form

Feo(d = €2, (3.24)

which is identical to (3.14). In equilibrium, we must
take into account at the boundariesz= 1, , the contribu-
tion of the surface energy ®4 aswell as the nonintegral
terms emerging as a result of integrating @y, by parts.
The requirement that the first variation of action must
vanishfor z=1,and z=1, leads to

5a5'(|2)+<6+w2)$(|2> =0

_ R _ (3.25)
Ao'(ly) + (b+wWy)a(,) = 0.
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Thus, in order to find (T) = (T)(q, Z, 0) , wemust solvethe
Euler equation (3.24) with the boundary conditions
(3.25) of the third kind.

The equation for the correlation function g,g can
also be obtained directly. Tothisend, it issufficient to take
the functional derivative of the Euler equation (3.24) and
of the boundary conditions (3.25) with respect to de(z,).
This gives

Feg(z 2) = —ksT(z—2,)1
Eﬁ@'(lz, z)) + (b+W,)d(l,, 2)) = 0
(B (1, z)) + (b—W,)d(l5,2) = 0

(3.26)

for any fixed z: |, < z; < |,. The derivatives in
Eqgs. (3.26) are taken with respect to the first argument
of the function §(z, z). A system of equations of the
type (3.26) was used in [20, 23].

4. EXPLICIT EXPRESSION
FOR CORRELATION FUNCTION

The solution of the inhomogeneous Euler equation

Pe0(d = €2)

can be easily obtained by the method of variation of
arbitrary constants. For this purpose, we introduce a set
of independent solution

0,2 = e (4.1)

(i=1, ..., 2n) of the homogeneous equation
Feo(@ = 0.
Vectors el are the solution of the system of equations

[aA7+ (b-b")A, —¢le” = 0, (4.2)

while numbers A, are the roots of the algebraic equation

det[arn®+ (b-bHA-¢ = 0. (4.3)

The Hermitian nature of matrices & and ¢ and the anti-
Hermitian nature of matrix b—b" imply that if A isa
root of Eq. (4.3), -A* is also its root. Consequently,
numbers A; can be ordered asfollows: A; ., = —)\}* =
1, ..., n. If weintroduce the n x 2n matrix &J(z) of fun-
damental solutions with columns formed by solutions

o (2,i.e,

d2) = (012, 0,2, ..., 02(2), (4.4)
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the general solution of Eq. (3.14) for |, < z< |, may be
written in the form

I

0(2) = D@F)Cy+ J'R(z, 7)e(2)dz, (4.5)
Iy
where the kernel k(z, Z) isan n x n matrix:
kz 2) = 6(z-2)P(2¥(2), (4.6)

whilethe 2n x n matrix LAP(z) is defined with the help of
block matrices:

l:I\J(Z) = Dﬁfl\) I(Zb_lr?lo.

4.7
Uad(z) U
Here and below, we use the following notation:
ﬁm = %& |3310 = %

are 2n x n matrices, 1 isthe nth order unit matrix, O is
the nth order zero matrix, Cyisan arbitrary 2n x 1 con-
stant column vector, and 8(2) is the Heaviside function.
It should be noted that by virtue of the identity

d2¥(2) = 0, the function k(z z,) is continuous for
z=1z,.
The equilibrium solution ¢(2)satisfiesthe boundary

conditions (3.13). Substituting Eqg. (4.5) into (3.13), we
determine the components of vector C,,. This gives

_ b PO
04(2 = P(29M ¥
" (4.8)
+ [k(z 2) - D) MRuk(l,, 2)] €(2)dz,
|1

where M = M(l,, I,) isthe 2n x 2n matrix
= 0200
Eu(PYE

Calculating the functional derivative in (3.22), we
obtain

4.9

M@ (205,
= ks T[P(DMRuk(l,, 2,) —k(z z,)].

It should be noted that the right-hand side of this equa-
tion vanishesfor z=1, ,or zy = I, ,. For e — 0, we
obtain from Eq. (4.8)

o () B2,
- [ POo* o
EE M< 001,03 >>¢

(4.10)

" (4.11)
K dD(zl)} ;

12
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The mean value in Eq. (4.11) is calculated by for-
mula(3.18). Using Eq. (4.8) for e = 0informulas (2.11)
and (3.23), we can write the expression for @, + ®4 as
aquadratic form in the variables ¢, and ¢.:

_ 1- * *\ [ |j1)1[|
P+ Py = 2(¢1’¢2)F1E¢£’ (4.12)
where
Fi1 = [Rua®'(l,) + Rioad'(1,)] M
5 O (4.13)

E—B"'Wl 0 O
+ .
O ~ 0
b+w,O
isa2n x 2n matrix. Here, we have used the relations
M'®(l) = Ry, M'®°(1) = Ru, (4.14)

which follow from definition (4.9) of matrix M . Using
the standard formula for Gaussian averaging (see, for
example, [25]), we obtain the following result in terms
of the elements of the reciprocal matrix:

[oa (2 Pop(z) T, ,
= ke T[P@MET M D' (2)] p-

Thus, the complete correlation function calculated by
formula (3.17) hasthe form

0z z) = ke T[P@MFI M ®"(2)
—k(z, ) + P(@QMRuk(l,, 2,)].

In order to calculate §(z, z,), we can aso use an

alternative approach based on the solution of the Euler
equation (3.24) (identical to (3.13)) with the boundary
conditions (3.25) of the third kind.

Substituting Eq. (4.5) into (3.25), we obtain a sys-
tem of linear equations defining the vector C, for these
boundary conditions, which leads to

(4.15)

(4.16)

P
Co = —F2 RuXo J’@(z)e(z)dz,

Iy

(4.17)

where the 2n x 2n matrix F» is of the block type:

£~ oy
k=20 (4.18)

and
X; = ad'(l;) + (b+ (1)) d()
aren x 2n matrices.
Substituting Eq. (4.17) into Eq. (4.5), we find that

the dependence of & on e is linear. The derivative &/e
in Eg. (3.9) can be evaluated trivially. Taking into

(4.19)
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account Eq. (4.6), we obtain the correlation function in
the form

4z z) = kB‘[[ &)(ZA) £ |?e015<2f|i(zi) —k(z z,)] 20)
= kgTP(D[F -06(z—2) 1% (z)),
where
F = F2 RuXe,
and 1 isaunit matrix of the order 2n.

Carrying out simple but cumbersome calculations
based on the properties of an analog of the Wronskian
for operator (3.16), it can be proved that expressions
(4.16) and (4.20) are identical. For the sake of defi-
niteness, we will use formula (4.20) in the subsequent
analysis. Further simplification can be carried out by
taking into account the explicit expression for functions

®(2) informula(4.4).
Let us introduce an n x 2n matrix U with compo-

nents U, = €Y and a diagonal matrix A of the 2nth

order with numbers A; on the diagonal, A\; = A;9;. Here,
the summation over index i isabsent. We can expressall
the matrices in expression (4.20) in terms of the matri-

cesU and A:
d@ = 06, W@ = 'V,
. _ A0A
v = Y0 Ry,
oopo e (4.22)
X; = (A0A + (b+ (-1)w,) 0)e"",
Substituting these expressionsinto (4.20), we obtain

8z 2) = keTOE[E -B(z-2)i]e" V. (4.22)

It was shown above that numbers A; are connected
through conditionsA; , ,=—A;" . Inthe general caseof a
non-Hermitian matrix b—b", there is no such simple
relation for vectors el). However (see Section 5), for all
main geometries of SLC-A and NLC, matrix b — b is
symmetric and, hence, imaginary (6 =0 for smectics A).
It follows from Eq. (4.2) that € *" = &i* in this case.

Consequently, we can write matrices A and U inthe
block form:

A = (@, 00D, (4.23)

I .|
Oy >
(@)}

Oooo
(@)
1

_\H
where A isa diagonal nth order matrix with numbers

At ..., Ayonthediagona and O isan n x n matrix with
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dements uy, = €Y.

ReA,>0,i=1,...,n.

It is convenient to assume that

Inthiscase, it can easily be verified that matrix Vin
(4.21) can be written in the form

VvV =DJ0", (4.24)
where
O ~0 HPN 0
70000 6= 0
Di 6D 00 —aDD (4.25)
d = (0'80)", &= 2aRe(0AL™)
Here, J |sthetranspost|onmatr|x g = J,dand5

are n x n matrices, d bei ng a diagonal matrix and § a
real-valued matrix. The superscript T indicates transpo-
sition.

Substituting Egs. (4.23)—(4.25) into Egs. (4.21) and
(4.22), we can write the correlation matrix in the form

0z z) = keT[6(z 2) + 5Pz 2)],  (4.26)
where
6%z 2) = 0@ i —16(z—2,)]de 0"
_ae 4 7 4 Ta(z—z)1a% 2o,
(4.27)

6@z 2) = o6 P ge g

. Aza(12)Ar A, .
—0e F Mgt =g

Here, £ are n x n matrices defined by the block rep-
resentation
O -1 -a20
F=g f f g. (4.28)
0§ 3@

Pay attention to the fact that in view of identity
odo” = oot

function §'”(z, z,) is continuousfor z=z, in spite of the
presence of discontinuous 0 functionsin its definition.

In order to determine the blocks " , we must know

the explicit expression for matrix ' Since F» isa
complete matrix 2n x 2n in the general case, the corre-
sponding reciprocal matrix for a nematic (n = 2) is
rather cumbersome.
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In order to overcome this difficulty, it is convenient
to use perturbation theory in the small parameters
e ™" for samples that are not very thin.

We choose the origin of coordinates so that |, =—L/2

and |, = L/2. Inthiscase, matrices X1 » in (4.19) can be
written in the block form:

% = (X0 @y, (4.29)

j=1,2, where

D _ any o (E PR
X;” = a0\ + (b + (-1)'W))a,
(2)1 AD( A( ) .,) (4.30)
X;” = —aib\=+ (b + (-1)'W;)aC)
In the principal order in parameters e_ML, we obtain
from (4.18), (4.28), and (4.29)
f(ll) — 1 f(22) — (")
?(12) — —)\L/2(§‘((1))_ 5((2) A |_/2 (4.31)
];(21) —)\ L/Z(X(Z)) X(l) —)\LIZ

. . ~(11 ~(22
The next corrections to matrices f( ) and f( ) are of

the order of e_zx"L and to matrices ?(1 and fm)

of the order of e Mt .

Substituting formulas (4.31) into (4.27), we obtain

60z z) = 00 ?0(z,—2)

+ 0 P grez- 2,

. . (4.32)
8%z z) = _ple 2 g, g2 2T
Oei\(z— Li2) ?2e}\D(Zl —L2) ot
where
v (2)y— (1)
Y1 = (X§ X
=04 (4.33)

¥ = () x‘f’olD
are Hermitial n x n matrices. It should be noted that as

L — oo, the term §® in (4.32) tends to zero and,
g in Eq. (4.32)

hence, § = §. Thus, the term §
describes fluctuations in an unbounded medium in g,
Z-representation, while the term g(z) describes the cor-
rections associated with the boundedness of the sample
and with anchoring to the surface.
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5. CORRELATION FUNCTION
OF FLUCTUATIONS IN SMECTICS A
AND NEMATICS

Let us apply the general formulas derived above for
determining correlation functions in specific cases.

5.1. Fluctuations in Smectics A

For the elastic component of energy from formula
(2.3), we have

b, = %J'dz{ B|ou,@° +Kq'lu,@3 . (5.1

In accordance with relation (2.4), the contribution of
the external field in the r-representation has the form

1
Fi = SXaH L= (Vou)],
for x,>0and

_ 1 eput
Ff - 2XaH @)dj

for x, < 0. Inthelatter case, we have directed the x axis
along the external field H = (H, 0, 0).

The corresponding gquantities ®; have the form

%xaquzdeIUq(z)lz, Xa>0
®; =

5.2
0l 2 2 2 62
D_EXaH qlJ.dzluq(z)l ) Xa<0a

where q = (qy, Oy, 0).

It follows from formula (2.7) that the surface energy
density is given by

1 . .
oy =35 Y (v +aVD)ug)l”

=12

(5.3)

In the given case, matrices &, b, €, and W; (j =1,2) in
expression (2.9) are one-dimensiona,, i.e., are scalars.

a=B, b=0 w=v+y)d,
(Kg'+x.H*o’, x>0 (5.4)
- B 4 2 2
[Kg"—XaHd1, Xa<O.
The characteristic equation is quadratic and has the

roots
= -\, = }_C
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“Vectors’ el) are also scalars and can be put equal to
unity: eV =1, € =1, The “matrices’ aeh =\ 0 =1,
d=(2BA\)™. Thisgives

v = 1010
2BAC-IT
Xi = HBA-w,)e™ % <(BA +wy)e" ', (5.6)
X, = gBA +w,)e""? (-BA + wz)e_“/%

Substituting these relations into Egs. (4.28)—4.31), we
obtain the correlation function (4.26), (4.27) in the
form

. _ kgT
9(a: 22) = 554

+BA(w, —w,)sinh[(z+ z)A]
+ (B*\? + wyw,) cosh[ (L —|z—z,|)A]
+BA(w, +wp)sinh[(L —|z-2z|)A] },

{ (B°A* —w,w,) cosh[(z+ z;)A]

(5.7)

where
A = (B*A*+w,w,)sinh(AL)
+ B(w; + w,)Acosh(AL).
Formula (5.7) describes both cases (x, > 0 and x, < 0).

Let ussingle out two modes of the behavior of alig-
uid crystal at the boundary that can be referred to as
strong and weak anchoring. In the case of strong
anchoring, fluctuations near the surface are suppressed.
If, however, the energy of anchoring with the given sur-
faceislow, fluctuationsin the vicinity of this boundary
may be stronger than in the bulk. A qualitative reason
behind this effect is that the retrieving force at the sur-
faceis determined by the surface aswell as bulk contri-
butions, the role of bulk forces at the boundary being
smaller than in the bulk of the sample.

Thisisillustrated in Fig. 1. If we take the simplest

casey"? =0, y5? = y? =y, atransition from strong

to weak anchoring occursfor y~ ./KB.

Let us analyze the effect of an external field on the
correlation function for SLC-A.

The conditions AL ~ 1 and x,H? ~Kg? lead to the
characteristic value of the field in SLC-A:

Hs O(KB)™(XaL) ™
For the typical values K ~ 10° dyne, B = 3 x
107 dyn/cm?, x, ~ 10~ for L = 3 x 1072 cm, this gives

Hs~ 10° G. It can be seen that the characteristic field
for smecticsis quite large.

Let us now consider nematics.
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5.2. Homeotropic Orientation, X, > 0

Inthis case, the equilibrium director vector n®is par-
allel to the vector of the externa field strength H and
directed aong the z axis, n"° = (0, 0, 1), H = (0, 0, H).
The director fluctuation vector is given by

oNn(d, 2) = (0Nn14(2), dNyy(2), 0).

Following [1], we choose the x axis a ong the wave vec-
tor g =(q, 0, 0). Formula(2.2) for Frank’s energy gives

1
®, = zfdz[qz(Klﬂanqu + K 25|8N54|%)

(5.8)
+ K 55(]0,8n,4|” +0,8n,4|) 1.
The contribution of the externa field is
1
o, = éxaHz_[olz(|a'>n1q|2+|63n2q|2). (5.9)

This givesthe following expressionsfor matrices a, b,
and C:

a=Kgul b=0,
0 0
5 - Eanz"'XaHz 0 E (5.10)
0 0 Kol + XaH* 0

For the surface energy in this geometry, model (2.5)
is commonly used, in which matrices Wy and W, in
(2.11) are proportional to the unit matrix:

W, = W1, W, = W,1. (5.11)
Thus, we can write
_1 2
by = > Z |6niq(lj)| W;,. (5.12)

ij=12
It should be noted that if matrices W; and W, arenot

proportiona to the unit matrix, they are nondiagonal
and depend on the direction of vector g in the general
case.

The roots of the corresponding characteristic equa-
tion are given by

A= A= /Kiiq2+XaH2
i = Aiv2 = ———_Kgg :

(5.13)
The eigenvectors have the form
w_- @00 @_-»_-00
e =e" =4 € =€ = a5 (5.19)

In this case, matrix G from Eq.(4.23) is aunit matrix
(G = 1), while matrix d in Eq. (4.25) isgiven by

A0
0 A,

N1
= — i
d = 5 1 (5.15)

Oooo
o [
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g8z 2
1.5
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1 ]
-0.2 0.2 0.6 1.0
2z/L

1 1
-1.0 -0.6

Fig. 1. Behavior of the correlation function g(z, z) in SLC-
A for various values of surface tension. The following

parameters are used: y(ll’ 2 =0,B=3x 10 dyn/cm? K =

108 dyn, q=10°cm %, L =103 cm, T=300K, and H = 0.
Curve 1 corresponds to wesk anchoring at both surfaces,

y(zl) = y(22) = 2.5 erg/lcm?; curve 2 corresponds to strong

anchoring at the surface z = —L/2, y(zl) =10 erg/cm2 and

weak anchoring at thesurfacez=L/2, y(22) =3 erg/cmz; and
curve 3 corresponds to strong anchoring at both surfaces,

y(zl) = y(22) = 15 erg/cm?. All the curves are normalized to

9(0, 0) for y&" = y{?) = 15 ergiem?

The block matrices " can eas ly be evaluated and are
diagonal:

]:(22) — dHQ(CIJJ-_/Aj),
L) o (5.16)
1% = diag(yj/n),
B = dag(y)ia),

where the symbol diag(p;) denotes a diagonal matrix
with the elements ,, W, ... on the diagonal,
+ _ 1
07 = S[E(KEAT+ Wi W)

L

+Kgph (W +Wy)le ',
+ 1 2,2
gi = é[i(K:%s)\j -W,W,) (5.17)
+ KA (W, —W,)],
A = [(K3A? + W, W,)sinh(A L)
+ KA (W, + W,)cosh(A;L)].

Substituting relations (5.14)—«5.17) into relations
(4.26) and (4.27), we abtain the correlation matrix for
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director fluctuations, which is a diagonal matrix in the
present case (g, = g = 0):

koT
90 2 2) = 5-%(0,2,2), (5.18)
33
j =12,
where
-1
€0,z,7) = A
x { (K3A? + W, W,) cosh[A (L —|z—z])]
(5.19)

+ K33}\J-(Wl+W2)sinh[)\j(L—|z—zl|)]
+ (K3 — W, W,) cosh[ A (2 + ;)]
+ KgA (W —W,)sinh[A(z+z)] }.

The characteristic value of the external magnetic
field in NLC is Hy = L™}(K;i/x2)"? [1]. For the typical
valuesK ~ K;; ~ 106 dyn and X, ~ 107, this gives Hy, ~
10° G for L = 3 x 102 cm. Consequently, in contrast to
SLC-A, the effect of the field may be significant for the
field strengths Hy, ~ 10°-10* G conventionally used in
experiments.

The redistic values of the anchoring energy lie in
the interval W ~ 1010 erg/cm? [27, 28]. For large
values of g ~ 10*-10° cm, weak anchoring will take
place for both g; modes. If, however, q ~ 10° cm™,
strong anchoring may take place, and field effects also
become significant.

5.3. Homeotropic Orientation, X, < 0

Inthis case, the external field vector H is perpendic-
ular to the director n® = (0, O, 1). We choose the x axis
along H = (H, 0, 0). With such achoice of the axes, the
director fluctuations and the wave vector have the form
on = (dn,, on,, 0) and q = (qy, g, 0).

The Frank energy is given by
1
®, = éj’dz[(Kn(ﬁ + K22q§)|6n1q|2
+(Kyp 05+ K22Q§)|6n2q|2 (5.20)
+ 01 0(Kyy — Kzz)(5nlq5n§q + 6n;q6n2q)
+ K33(|(326n1q|2 + |626n2q|2)],

and the contribution of the external field has the form

®, = —%XaHZ [azldng”. (5.21)
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The surface energy has the same form as (5.12) for
Xa>0.

Thus, in this geometry, we obtain the same matrices

a, b,and W; asin (5.10) and (5.11), while matrix €
has the form

O O
e=pleB O, (5.22)
0B A0
where
_ 2 2 _
A = Kph+ Kypgr, B = 0:0,(Ky —Kyy), (5.23)
A, = KllQi"’ Kzzqg_XaHz-
The characteristic equation has the real roots
Ai = Ao
1 i+ V2 (5.24)
= [ 5 ((Ku+ Ko - xaH + (1) 'Q)|
2K 53
where
Q= [(3|4(K11—K22)2
4,12

—2XaH (K =Ky (d —a3) + XaH'T

i =1, 2. Except for the normalization, vectors €0 are
defined as

M _ i+ - B

= d. 2
e e EK33)\i2—Agj (5.25)

We could carry out calculations on the basis of for-
mulas (4.26) and (4.27). However, the final result can
be abtained much more simply. It should be noted that
vectors €Y and €2 in (5.25) are orthogona and real-

valued. Consequently, matrix O in (4.23)) is orthogo-

nal: 0" = 0" . After thetransition to the coordinate sys-
tem with axes € and €@ inthe (x, y) plane, matrix ¢ is
diagonalized. Since matrices W, and W, are propor-
tional to unit matrices in this geometry, they do not
change upon atransition to the new system of coordi-
nates. In this case, problem (3.26) for x, < 0 (aswell as
the differential equation and the boundary conditions)
formally coincides with the corresponding problem for
Xa > 0. The only difference is that A; in this case is
defined by formulas (5.24) instead of formulas (5.13).
Returning to the initial system of coordinates, we can
write the correlation function for x, < 0intheform

gxa<0 = nga>00_ly (526)

where §, ., isadiagonal matrix with the components
g; defined in (5.18).
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Substituting relations (5.23) and (5.25) into (5.26),
we obtain

KgT i 2
= “DN(A -NKL)E:(a: Z Z,),
ai 2QK33J-=212( ) (A =AjK5)é5(q )
| = 1,2, (5.27)

kBTB i+1

O =01 = 57— (_1)J %j(q; 2, 2y).
20K
Q 33, £

12

Systemswith X, < 0 are studied less thoroughly than
those with x, > 0. Such systems are interesting for our
analysisin that the external field H suppresses only one
of the fluctuating modes in them, while the other mode
remainsfiniteinthelimit H — o [24]. Having chosen
astrong field for such a system with asmall g, we may
obtain weak anchoring at the boundary for one mode
and strong anchoring for the other mode. These effects
areillustrated in Figs. 2aand 2b. It should a so be noted
that the correlation function contains a crossed purely
imaginary component g;,(q; z, z;) presented in Fig. 2c.

5.4. Planar Orientation with x, > 0

Let us direct the y axis along the director (n° || H).
The director fluctuations and the wave vector in this
system of coordinates have the form dn = (dn;, 0, dn,)

and g = (0, Gy, 0).
The Frank energy is given by

1
®, = éj-dz{ (Kllqi + K33qg)|6n1q|2

+ K ]0,8N54]” + (K0t + K3303) 8Ny (5.28)

+ K 148,850 > + 01 [K11(8N140,8N5, — 8N3,0,8N5,)
— KZZ(ESnzqazén’l‘q — 6n’2‘q626nlq)] }.

The contribution of the external field is
1
O, = éxaH2 J’dz(|6n1q|2 +[3nq|%). (5.29)

The surface energy (2.6) in the given geometry can
be written in the form

1 i
Py =3 Z W 317

ij=12

(5.30)
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(a)
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/ /%WW |

Wy
i
"’5?74/// / / '/'/'/’/"
’7’///2 IR

Z i) / AN
74

(g12/1) X 10°

Fig. 2. Elements of the correlation matrix for NLC in the
case of the homeotropic orientation with x5 < 0. Thefollow-

ing parameters are used: X, = -10~, Ky, = 108 dyn, Ky, =
0.5x 108 dyn, Kg3=2x 108 dyn, T=300K, H = 10* G,
oy = 10% em L, g = 2 x 108 em™L, W, = 5 x 1072 erg/em?,
W, =4x 10 erg/em?, L =102 em. () 014(z 21); (0) 9oz 20),
and (C) g12(z, z)/i. The curves are normalized to g,,(0, 0).

Thus, matrices &, b, &, and W; (j = 1, 2) in this
geometry are given by

a=0%2 05 B=igp 0 =g
00 KyO OKy 0 O
SR ; (5.31)
w=0WT 00 a-pghOp
30 wPg 00 A0
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Fig. 3. Elements g;1 and gy, of the correlation matrix (in
arbitrary units) for NLC in the case of the planar orientation

with x5 > 0 for z=z = L/2 as functions of W(ll) = W(zl)
and WP = W for H =0, L = 102 cm. The remaining

parameters are the same as in Fig. 2. (a) g141(L/2, L/2),
(b) gx5(L/2, L/2).

where

2
Ag Kllqi + Kg0p + XaHz,

(5.32)

A, = KzzQi + K33q§ + XaHZ-

The characteristic equation (4.3) has the following

roots:

A [A
}\1 = _)\3 = —Ki, }\2 = _}\4 = —K—;lz (533)

In this case, vectors e are identical (to within normal-

ization):

GG In i [l

€ AL

(5.34)

@ _ @0 _ Ay
e e Oq, 0

In this case, we have

0 q O
a=p0 % N (5.35)
D_l)\l ql D

Then matrix d in (4.25) is given by

0,1 O

- 10OA 0

d= 58" "B (5.36)
00 A O

where Q = Kg;0p + X,H2.

In contrast to the homeotropic geometry, matrix F
in (4.18) has no specia structure, and the components

of the reciprocal matrix 3" in relation (4.20) (and,

hence, of matrices £ in relation (4.28)) are rather
cumbersome. For thisreason, it is convenient to use for
numerical calculations the general expressions (4.26)
and (4.27) for the correlation matrix.

It should be noted that in the planar orientation,

coefficients W', and W, determine the contribution
of modes on, and dn,, respectively, to the surface
energy. We can expect that component g,; is mainly

determined by coefficient Wi" and is almost indepen-

dent of W(f)z while component g,, is determined by
coefficient W'? and is aimost independent of WY .

This effect, however, is masked by the interaction of
modes on, and &n, in the bulk energy. Nevertheless, for
realistic values of parameters, the dependence of g, on

W is observed to a high degree of accuracy. It can be
seen from Fig. 3 that the value of g, is indeed deter-
mined only by WE') . Thisdependencefor z=z, = +L/2
is approximately defined by the formula
AN, =0
oiP(£L/2, £L/2) = —kBT—lz)fl o
WP —a1) -NQ
WA, - ) + A, Q'
wherel =1, 2, the upper sign correspondsto j = 1, and
the lower sign, to j = 2. If zand z; do not lie simulta-
neously on aface of the sample, component g, becomes
afunction of both coefficients W(l',)2 .

The conditions of strong and weak anchoring at the
boundaries z = +L/2 are determined by the sign of the
derivatives

(5.37)

0
O_Zg' (2,2

z=%*L/2
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A transition from one case to another occurs for
W = QA /(A A, - ).

It should be noted that this condition also corresponds
to the sign reversal of gi” in formula (5.37).

5.5. Planar Orientation with x, < 0

In this geometry, the external field vector is perpen-
dicular to the director and may form an arbitrary angle
o withthex, y plane. Asin the case of planar geometry
with x, > 0, we direct the y axis along n®. Then H =
H(cosa, 0, sina), dn = (dny, 0, dn,), and q = (q;, Gs, 0).

The Frank energy and the surface energy inthis case
have the same form (5.28), (5.30) as in the previous
case.

The contribution of the external field is given by

d, = —%xaHZJ’dz|6nlqcosa +6n2qsina|2. (5.38)

Thus, matrices &, b, and W; in this geometry are
the same asin (5.31), while matrix € isgiven by

0J 0
e=0""g (5.39)
OA, A
where
As = K11Qi+ K%Qi_XaHZCOSZO(,
As = KzzQi"‘ K33q§—xastin2a, (5.40)

A, = —x,H’sina cosa.

The characteristic equation in this case contains a
term linear in A:

KuKooh* = [AgK yy + AgKp — G5 (Kyy — Kp) A (541
+210; A (K —Kp)A + AgAg— A§ = 0.

The solutions of this equation A\; = —A3 and A, = -\

for 0 <a <12 and Ky, # K, always contain an imagi-
nary component. Nonstandardized vectors €0 are given
by

o) = dbv_i%(Kn—Kzz))\H (5.42)

D Kzz}\jz_As
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In the simplest caseswhen a =0 or a = 1v2. coefficient
A;=0and Eq. (5.41) becomes biquadratic. Its solutions
have the form

_ _ 1
A=A = R,

X [2K11K22Qi + Kgg(Kyy + Kzz)qz
~KXaH*+ (<1)) " */D1} %,

(5.43)

where
D = Ki(Ky—Ky) a5 + KixaH*
+ 2(—1)i(K11 - Kzz)XaHZ(ZKnKzz(ﬁ +Kj Kasqg)-

Here, i =1 correspondstoa =1/2andi =2toa =0. It
should be noted that solutions (5.43) may be complex-
valued.

Using formulas (5.43) and (5.42), we can derive
analytic expressions for matrices 0 and U in (4.23).
We shall not present the expression for the correlation
matrix in this case since it is extremely cumbersome
even in perturbation theory. However, numerical calcu-
lations of the elements of the correlation matrix on the
basis of formulas (4.26), (4.27), or (4.32) are not diffi-
cult in this case also.

The peculiarity of the case under investigation isthe
complex valuedness of the eigenvalues A; for 0 < a <
TU2. However, the estimates obtained for realistic val-
ues of NLC parameters, the external field amplitude H,
and the wave numbers g, and ¢, show that the inequal-
ity ImA; < ReA; holdsin all cases. For this reason, the

components of matrices §(z z;) do not oscillate.

Another feature of this case is the complex valuedness
of al the component of the correlation matrix.

Concerning the effect of an external field, the situa-
tion in this case is similar to the homeotropic orienta-
tion with x, < 0. Namely, the component of the director
fluctuations which is perpendicular to H is not sup-
pressed by the external field. Inthe given geometry, this
component has the form of the linear combination

on = -An,sina +dn,cosa.

In particular, the field does not suppress the correlation
matrix component g, for a = 0 and gy, for a = 172.

A praoblem emerging when the exact formulas (4.22)
and (4.26) are used for numerical calculations is worth

noting. The factors exp(Al;) appearing in formulas
(4.21) contain both very large and very small compo-
nents (in absolute value) which must be taken into
account simultaneously without disregarding the latter
components. For actual parameters of NLC, eg., in
solving an optical problem for a sample of thickness
L ~ 100 um, this necessitatesthat quantities of the order
of 10*20% pe takes into account in intermediate compu-
tations. This renders formula (4.22) inapplicable for
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numerical calculations. Such a problem does not
emerge when thin sampleswith small values of |Aj|L are
considered. In the case of large values of AL, formulas
(4.32) from perturbation theory can be used for numer-
ical calculations. The calculations based on exact for-
mulas (4.22) and formulas (4.32) in perturbation theory
lead to virtualy identical results up to values of AL <
2-3. The most significant discrepancy in the results of
calculations made using these formulas are observed
when z and z lie at the opposite ends of the sample
(L/2 and —L/2). These discrepancies are eliminated if
we take into account the second order in perturbation
theory. However, the value of gos(L/2, —L/2) is negligi-
bly small as compared to gus(z ) for z=z and hence
these corrections are of no interest to us.

6. LIGHT SCATTERING

The measurement of the angular and polarization
dependences of the intensity of scattered light is one of
the methods of analysis of spatial correlation functions.
From the point of view of optics, SLC-A and NLC are
uniaxial media with the permittivity tensor

Suﬁ(r) = 8560[3 + Eana(r)nﬁ(r)i (61)

where g, = g, — €, and g and €, are the dielectric con-
stants along and across the optical axis. The permittiv-
ity fluctuations d¢,s, which have the form

(6.2)

in the approximation linear in dn, lead to light scatter-
ing.
The intensity of scattering in an anisotropic planar
layer can be written in the form (cf. [29])
VIP !
16 R°c’

8q3 = Ea(NgdNg +N3N,),

|(e(i), e(j)) — A(is)(k(s), k(i))

(6.3)
(s) . i) * (i)
x €965 7D pun (dsc; L) ER ",
where V is the scattering volume; w is the cyclic fre-
guency; c isthe velocity of light in vacuum;

1
Dvpun(qsc; L) = E

L/2 L/2
X I I Dvpun(qscD; Z, Zl)e_lqscu(z_21)d2dzl,

-L/12-L/2

(6.4)

and D,,,n(Qscos 2 27) is the correlation function of

permittivity tensor fluctuations, which has the follow-
ing form in the coordinate representation:

Dvppr](rla r2) = Eﬁsvp(rl)éspn(rz)u (65)

0« = k@ —k® being the scattering vector. Here, i and s
denote the incident and scattered waves, respectively,
el) and € are the polarization vectors of these waves,
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and kO and k©® are the wave vectors. In a uniaxial
medium, €V, k® and €9, k& may assume two values
each, corresponding to the ordinary and extraordinary
waves. The quantity A19(k®, k), k@ isthe angular fac-
tor, Ris the distance from the scattering volume to the
point of observation, and 1{’ istheintensity of incident
light. Therefraction at the sample boundary isnot taken
into account in formula (6.3). This problem is consid-
ered in [30].

In accordance with formula (6.2), the correlation
function D(q,; z z,) informula (6.3) is connected wit

the correlation function of director fluctuations G
through the following relation:

°n’G,. +nn’G

D viREen vl

_ 2
voun = €a(N

0.0 0,0 (6.6)
+n,n, Gy, +nyn, Gy,

where G = § for anematic and

Gup(@ns (z21)) = dq99(A0; 2 2)
for asmectic.

Theintegral with respect to zand z; in formula (6.4)
can be evaluated in the general form using formula
(4.22). This gives

L/2 L2
I Gy z z)e 7 dzdz,
—L/2-L/2 (6_7)
= keTOJ ' DhsineFsinnat + L3+ 1 -"H370,
2 2 0

where J = A —ig,l isadiagona matrix.

For the extraordinary ray, the length of the wave
vector k depends on direction, and the pol arization vec-
tor elyingin the (k, n° planeisnot orthogonal to k. We
areinterested above all in the effect of the anisotropy of
the medium on the length of the scattering vector g, =
k@ —k®© since the scattering intensity in an unbounded
medium in zero field (H = 0) is proportional to ~1/ qgc
[1]. We will disregard anisotropy in the remaining
quantities, which alows us to assume that e [0 k and
A(K®, kD) =1,

Let us analyze the possibility of determining the

anchoring energy from the data on light scattering in
homeotropic and planar geometriesof NLC withx, > 0.

6.1. Homeotropic Orientation

Let us consider the case when the incident ray is
normal to the surface of the cell. The geometry of scat-
tering isshown in Fig. 4. Here, the incident ray is ordi-
nary and the scattered ray is extraordinary.
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The angular dependence of theintensity of scattered
light in this case has the form

1(6, §) = C,sin’®

(6.8)
X [G(z) + (G - G(Z))coszcb coszg},
where
) 2
oy Hw'e. U
Cp = |")vmﬂa
° ° AriRc
isaconstant, and G, has the form
ke T
Gj) = ———
Kas(Aj+ gL
2 2 2452
< EL + qllz—}\J _ + K33)\j —\ileZ + 4e—)\jL)\j
O MNA+q) A
. (W5 W, — Kgoq) cos(Lgy) — KasG(W; + W) sin(Lay)
(A + D)X}
+ & KEAZ Wy W, — O L+ S | 5 (6.9)
A d Aj+q 0
-1
« 1_e—2)\JLfl{_i ,
I
where

Hi = (Kaghj 2 Wp)(Kagh; £ W,),

Q) = 2,/e,sn’(612),

and A; are calculated using formula (5.13) with
W .
q=qy = .Jeg sinG.

For large vaues of AL, the exponential termsin for-
mula (6.9) can be omitted, and the quantity G is deter-
mined by the first three terms. The first of these terms
corresponds to the limit of an unbounded medium,

L — 00,
keT 1 kg T

Co) = x= = :
K33)‘J'2+ Qﬁ KsaQﬁ"‘ ijQé"‘XaHz

which coincides with the well-known result [1].

The second term is associated with the finiteness of
the volume in the exponential approximation, and we
can put coshx = sinhx = expxinformula(5.19) while
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Fig. 4. Geometry of light scattering for the homeotropic ori-
entation of NLC.

integrating of the spatially inhomogeneous correlation
function of an unbounded medium, for which

0(0, 2. z) =9(a, |z—z)).

For this reason, thisterm is independent of the anchor-
ing energies W, and W.

The third term in formula (6.9), which is afunction
of W, and W,, appears due to integration of the third
terminformula(5.19) between finite limitsin the expo-
nential approximation taking into account the spatial
inhomogeneity of the correlation function. It should be
noted that the spatially inhomogeneous term associated
with the fourth termin formula (5.19) does not contrib-
ute to scattering in view of symmetry.

It should be noted that the third term in formula
(6.9) is commensurate with the first two terms for sam-
plesthat are not very thick.

It can be seen from formula (6.8) that angle ¢ deter-
mines only the relative contributions &n; and &n, to
scattering. Consequently, the main information on
parameters W, and W, is contained in the dependence
of 1(6, ¢) onangle B, whichisshown in Fig. 5. Thefig-
ure presents the dependence of the scattering intensity
calculated using formulas (6.8) and (6.9) for two sets of
anchoring energy in the angular interval from 0.003 to
0.03 rad. Theinset to Fig. 5a shows this dependencein
an extended angular interval 0< 0 < 173. Figures 5aand
5b depict three curves each, corresponding to different
values of the externa field: H = 0, 700, and 2000 G. It
should be noted that when the first three terms in for-
mula (6.9) are used, the deviation from exact results
appears starting from angles 8 < 102 rad.

Thedifferencein the behavior of the curves depicted
in Figs. 5a and 5b shows that the measurement of the
angular dependence of scattering intensity for different
values of the applied field may serve as an effective
method for determining anchoring energies.
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Fig. 5. Angular dependence of the intensity of scattered light for the homeotropic orientation of NLC in an external field for L =
3x103cem, Xo =107, ko=, /e, (w0) = 10° cmi™. The values of K;;, j = 1, 2, 3, are the same as in Fig. 2. (@) W, = 1073 erg/em?,
W, = 2 x 1073 erg/em?; (b) W; = 107* erg/em?, W, = 2 x 10~ erg/cm?, H = 0 (1), 700 G (2) and 2000 G (3).
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1, rel. units
T T T T T
(a)

12 .
8 - .
4 i
0 + 1
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0% rad

1
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Fig. 6. Angular dependence of the scattering intensity of the (eg)-type for 8®) = 1v4 for the planar orientation of NLC. (a) ¢ = 172,
(b) ¢ = 120. In our calculations, we assumed that &= 3.5, g =25, L = 1073 cm, and H = 0. The values of Kjj ( = 1-3) are the

sameasin Fig. 2. (1) W =2, W =7, Wl =19 W =86; (2) W =200, W? =7, Wi =190, W =sg.6;

0.82

@) W =2, w? =700, WS = 1.9, WP =860; (4) WY =200, W'?) =700, WS =190, WP = 860. These values arein
the units of 10~ erg/cm?. The intensities are normalized to the same value.

6.2. Planar Orientation

In an analysis of light scattering in NLC, the most
interesting case is when q,, — 0 since the scattering
intensity has the maximum value [1]. In view of the
anisotropy of the medium, such asituation may bereal-
ized when the incident and scattered rays are of the
sametype; i.e., both rays are ordinary (0o) or both rays
are extraordinary (e€). Since the scattering of the (00)
type is absent for geometrical reasons [1], we will con-
sider the (eg)-type scattering. In contrast to the homeo-
tropic situation, we have to consider here the case of
oblique incidence since the intensity of light scattering
through zero angle for normal or grazing incidence
vanishes [29]. For the sake of simplicity, we choose the
angle of incidence 6" = 174, since in this case the
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extinction coefficient is close to its maximum [29], and
confine the analysis to the case when the incident and
scattered rays lie in the same plane with the normal to
the surface. The azimuthal angle ¢ between the projec-
tions of vectors k® and k© on the xy plane and the x
axiswill be assumed to be arbitrary.

The relative contribution of the modes dn, , of
director fluctuations én = (dny, 0, dn,) to scattering is
determined by the factor

i) (i 2 i)a (i
efo)ef/S)DaBypeé)eEJ) — (e(s) D’](O)) (e( )ge( ))
+ (e(S) Eh(o))(e(i) [h(o))[(e(i) . ge(s)) + (e(S) . ge(i))]
+(e” (e - ge"). (6.10)
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For ¢ = 172, vectors k® = k® [0 &) = &9 for small-
angle scattering lie in the yz plane. Consequently, the

convolutions of the type ("9 - ge“®) in formula
(6.10) do not contain a contribution from mode én, (the
director fluctuation component along the x axis). Thus,
the contribution of the dn, mode and the surface ener-

gies W2 and W associated with it are measured
directly in this geometry. This is illustrated in Fig. 6a
depicting the dependence of scattering intensity on the
angle 6 between k® and the z axis. Formally, the fig-
ure shows the intensity curves corresponding to four
sets of the values of surface energy. Since the g,, com-

ponent is virtually independent of W(ll)2 (see Fig. 3in

Subsection 5.4), the pairs of curves in Fig. 6a corre-

sponding to the same set W(f)z but to different values of

WA, areindistinguishable. Thus, this geometry is most
convenient for determining a pair of energy values of
Wi

In order to determine the other two values of

anchoring energy W(llé , We must measure the contribu-

tion of the dn; mode to scattering, i.e., make measure-
mentsfor ¢ # 102. It should be kept in mind in this case
that the vectors e coincide in direction with the
director vector n° for ¢ = 0, and hence all convolutions

of thetype (" - §e'"¥) informula (6.10) are equal to
zero by virtue of the condition én [J n°. For this reason,
such measurements should be made for 0 < ¢ < TW/2.
Figure 6b shows the angular dependence of scattering

intensity for the same four sets of anchoring energies

W2 asin Fig. 6a. It can be seen that the scattering
intensity starts depending on the anchoring energies
WA, also due to the contribution of the 5h; mode.

The effect of the external field in the planar geome-
try isillustrated in Fig. 7. It can be seen that the charac-
terigtic fieldsin which the small-angle scattering intensity
decreases significantly are of the order of H ~ 10* G.

7. CONCLUSIONS

A genera algorithm is proposed for calculating the
correlation functions of orientation fluctuations in
bounded samples of liquid crystals taking into account
the effect of orienting surfaces and external fields. Spa-
tial correlation functions are determined for plane-par-
alel cellsin nematic and smectic liquid crystals with-
out using simplifying assumptions of the one-constant
approximation type. The cases of positive and negative
anisotropy of permittivity or magnetic susceptibility
are considered.
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Fig. 7. Effect of external field on the angular dependence of
the intensity of scattered light in the same geometry asin
Fig. 6a The parameters used in calculations are the same as

in Fig. 6. The anchoring energies are assumed to be W(ll) =

2, W2 =7, Wi = 10 WP = 86 (in units of
104 erglen?), Xo = 107, H=0(1), 2x 103G (2), 10° G (3),
and 2 x 10% G (4).

The obtained results were used for calculating the
angular dependence of theintensity of scattered light in
various geometries. It turnsout that the scattering inten-
sity in bounded cells is very sensitive to the values of
anchoring energy as well as to the magnitude of the
applied field. It is shown, in particular, that in the case
of the planar orientation of NLC, such experiments can
be used for measuring separately the surface energies
associated with the rotation of the director in the orient-
ing plane and deviations from this plane.

The study of theintensity of light scattering in nem-
atic liquid crystals with negative anisotropy may be
interesting in connection with additional possibilities of
studying the materials in which fluctuational modes
vary in different waysin an external field.

The approach devel oped by us here can a so be gen-
eralized to other geometries such as spherical or cylin-
drical, which are important for describing orientation
fluctuations in liquid crystal drops encapsulated in a
polymer matrix or porous media, as well as to more
realistic surface potentials [27] differing from the Rap-
ini potential (2.11).
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Abstract—We have measured the absorption spectra and the dispersion of refractive index for porous silicon
samples with different porosities in the energy range 1.5-3.5 eV at room temperatures. The experimental data
are compared with the dependences calculated by using Bruggeman'’s theory for the dielectric constant of a
multicomponent system composed of crystal silicon, SiO,, amorphous silicon, and voids (pores). The best
agreement between the experimental and theoretical dependences is achieved for a significant percentage of
SiO, in the porous silicon samples. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The flow of papers on porous silicon (por-Si) pub-
lished in the past decade is growing like an avalanche.
Attention has been focused on elucidating the nature of
its visible photoluminescence at room temperature,
which could be of great importance for applications
(see, e.g., thereview article [1]). Thefirst and still one
of the main versions of the nature of photolumines-
cence is the quantum-dimensional theory. Nanometer-
sized wires and dots, in which quantum energy levels
emerge above the band gap due to the quantum confine-
ment of carriers, are believed to be formed in porous
structuresthrough electrochemical etching. Thisresults
in ablueshift of the absorption edge and, consequently,
in the accompanying frequency shift of the lumines-
cence that emerges during band-to-band carrier recom-
bination. There are also important arguments for alter-
native points of view on the nature of photolumines-
cence, with the molecular theory being most popular
among them.

As regards the study of fundamental optical charac-
teristicsfor porous silicon (refractive indices n, absorp-
tion coefficients a, and, consegquently, the properties of
itsdielectric function €), such studies are relatively few
[2-10]. In most of the above studies, either the absorp-
tion spectra or the refractive indices were measured,
and only in[3, 4] were both characteristicsinvestigated
simultaneously. We emphasize that a comprehensive
study is important for elucidating the effects of the
changed structure of the material when por-Si is pro-
duced on its optical characteristics. After all, the dielec-
tric functionisdirectly related to the band structure and
selection rules for band-to-band transitions.

A comparison of the results obtained by different
authors clearly reveds that the absolute values of
refractive index vary over awide range: from 3.99 [10]
to 1.28 [9]. In addition, the dispersion curves n(A) in a
wide spectra range differ in dope and structure in the
ultraviolet near strong trangitions in crystal silicon (3.4—

4.2 eV) [3, 4]. These differences may be associated
with different porosities of the samples analyzed.

Therefore, it seems of current interest to compre-
hensively study the dielectric function, to compare it
with available theoretical models, and to correlate it
with the porosity of por-Si samples.

2. EXPERIMENT

Samples. We analyzed two por-Si samples pro-
duced by a standard technique and separated from asil-
icon single-crystal substrate. Sample no. 1 was taken
from a series of crystals whose luminescence was
investigated in [11, 12]. It was in optical contact with a
glass substrate and appeared a transparent bluish film.
The crystal surface viewed through a microscope was
smooth, shiny, and structurel ess. The sample thickness,
as measured with aLinnik microinterferometer (M11-4)
by the shift of the zero interference fringe during the
reflection from the crystal and substrate surfaces, was
0.6 um. Aswas shown in [12] using el ectron-microscope
measurements, the samplesof thisseries consisted of crys-
tals5-20 nmin sizewith aperfect single-crystal structure.
They had an amorphous-phase impurity that gave clear
hal osin the dectron diffraction pattern.

Sample no. 2 belonged to the series of crystals ana-
lyzed in [7]. Its thickness measured with a microscope
“edge on” was 30 um. It was in a free stand, with one
of its corners being fixed to the substrate. The sample
appeared as ayellowish transparent plate whose surface
had a grainy structure through a microscope with a
1000-fold magnification. The views of these grains
when focusing on the upper and lower crystal surfaces
areshowninFig. 1. Thegrain sizes (of the order of sev-
eral tenths of a micron) are much larger than those for
sample no. 1, as evidenced by the rugged edges of the
interference fringes obtained with the M11-4 during the
reflection from the sample surface.

1063-7761/01/9302-0363%21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Microphotographs of the (a) upper and (b) lower surfaces of sample no. 2.

Apart from analyzing the por-Si samples, we mea-
sured the optical constants of the silicon deposited on a
glass substrate. The film was produced by a technique
similar to that described in [13] through the deposition
of amorphous germanium. The deposition conditions
ensured the formation of an amorphous structure. The
film surface viewed through a microscope was smooth
and mirror-reflecting, whiletheinterferencefringeson the
MI1-4 were clear-cut. The film thickness was 0.06 pum.

The dispersion of refractive index was measured by
using a Jamin two-beam interferometer combined with
a spectrograph (DFS-13), whose reciprocal linear dis-
persion was 4 A mmL. The sample to be analyzed was
placed in one of the two interferometer arms. In this
case, a path difference [n(A) — 1]d arises between the
interfering beams, where n(A) is the refractive index of
the sample and d isits thickness. This causes the entire
fringe pattern and, in particular, the zero fringe to be
shifted by Ay. The relation between the pattern dis-
placement and the path difference is given by

- By

[n(A)-1]d = B2, D)
where H is the fringe width. By sequentially photo-
graphing the patterns with and without the crystal and
then measuring the zero-fri nge displacement, we deter-
mined the refractive index.™ Thus, the technique for
measuring n(A) is based on a direct measurement of the
change in phase of the light beam passed through the
crystal plate, while the authors of [3, 4] used elipsom-
etry and calculations from the Kramers—-Kronig rela-
tions based on measured reflectance spectra.

The absorption spectrawere measured with an auto-
mated spectral setup that included a monochromator
(MDR-6) with replaceable gratings. The reciprocal lin-
ear dispersion was 6.5 and 13 A mmr? in the wavelength
ranges 200-500 and 500-900 nm, respectively. The light
sourcewas ahaogen lamp. The cross-sectiona areaof the

Ia special method was developed for measuring crystals of large
thickness, where a considerable zero-fringe displacement moved
the fringe out of the visibility range.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

light spot focused on the sample surface was 1 mm?. The
computer control of the experiment allowed the light-flux
instability to be “kept” at 3%.

The absorption coefficients a for the free stand sam-
ples were calculated by taking into account multibeam
interference using the relation

t3(n +iK) 2

1+rlexp(—i®—ad)|

where T and d are the transmittance in intensity and
thickness of the sample, respectively;

_(h=1)+iK _ 2
YU (n+1)+ik 7 (n+1)+ik

are the complex amplitude reflectivity and transmit-
tance at the air-sample interface for normally incident
light; @ = 4rind/A is the phase shift of the beam when it
traverses the sample twice; and the extinction coeffi-
cients K (the imaginary parts of complex refractive
index N =n+iK) arerelated to a by a = 4TK/A.

When the film to be analyzed was in optical contact
with the substrate, we performed our calculation by the
method from [14]. The passage of alight beam through
the film and the reflection of light from it were calcu-
lated by taking into account multibeam interference,
while the contributions from the multiple beam pas-
sages through the thick transparent substrate were
added incoherently. The transmittance T of the sample
onthe substrate relative to the measured substrate trans-
mittance for normal incidence is given by

T = TJ/[(1-RyRe)(1-Ry)l,
t,t,
—ryrexp(-i®—ad)

T = nexp(—ad) 2

2

’

T = ngexp(—a d)‘1

(©)
tritexp(—=i® —ad) 3

Ri = T LepGo—ad)

Here, T; and R; are, respectively, the transmittance and
reflectivity at the substrate-film interface in intensity
with allowance for multibeam interference; n, is the
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Fig. 2. The dispersion of refractive index for por-Si samples nos. 1 (a) and 2 (b) and for aSi (c). (d) The combined data for por-Si
no. 1 (curve 1), por-Si no. 2 (curve 2), aSi (curve 3), crystal Si from [15] (curve 4), and amorphous Si from [16] (curve 5).

refractive index of the substrate; R, = (ny —1)%/(ng + 1)
isthereflectivity at the substrate-air interface; and

_ (n=ny) +iK

= (hFn) ik and t, = t;(n+iK)
9

Iy

are the complex reflectivity and transmittance at the
film-substrate interface, respectively.

Egs. (2) and (3) allow the absorption of light in the
sample to be properly determined, because the contri-
bution of reflections from the faces and multibeam inter-
ference can significantly distort the absorption coefficient
estimated from smpler relations. In a porous medium,
gpart from the absorption and reflection of light from the
faces, thereisalso light scattering. In our experiments, we
did not measure the fraction of scattered light and,
thereby, overestimated the absorption coefficient. Our
samples were of a fairly high optical quality, and the
contribution of scattered emission was not dominant.

Based on the experimentally derived spectra depen-
dences of transmittances and refractive indices using the
mesasured sample thickness, we calculated the absorption
[a(hv)] and extinction [k(hv)] coefficients. Subsequently,
we cdculated thered, €'(hv) = n(hv)?—k(hv)?, and imag-
inary, €"(hv) = 2n(hv)k(hv), parts of dielectric constant
g=g+ig'=n’.

The photol uminescence spectrum was taken with the
same setup. The third harmonic of a pulsed YAG : Nd®*

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

(wavelength 353 nm) laser was used for the excitation.
The excitation power was about 1 mW c¢cm, and the
pulse duration was 10 ns.

3. RESULTS

The measured energy dependences of refractive
index, n(hv), for the two samples, the porous (por-Si)
and amorphous (a-Si) silicon deposited on a glass sub-
dtrate, are shown in Figs. 2a-2c. In each figure, the
mean measurement error corresponds to the distance
between the upper and lower dashed lines that bound
the “predictable” domain. For sample no. 1, the exper-
imentally measured dispersion of refractive index isfit-
ted by

n = 1.491 + 0.055hv,
where hv isin electronvolts. For sample no. 2, thefit is

0.096
3.612° — (hv)*

Figure 2d shows all the measured experimental
curves and the published data on the dispersion of
refractive index for crystal silicon (c-Si) obtained by
spectral elipsometry [15] and for amorphous silicon
(a-Si) calculated from Kramers—Kronig relations based
on the measured reflectance spectrum R(hv) [16]. For
convenience, n(hv) is presented on alogarithmic scale.

n? = 1.301% +
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Ascan be seen from Fig. 2d, we obtained almost flat
dispersion curves n(hv) without a sharp rise at short
wavelengths. They are very similar to the curvesin [4]
and [9] and differ sharply from those in [3], in which a

g €" x 100
—/10.0

5.0

1

STRASHNIKOVA et al.

significant rise followed by a peak on the n(hv) curve
near 3.5 eV wasrecorded. Much more of the crystalline
phase may have remained in the sample analyzed in [3]
than in our samples.

Figure 3a shows the transmittance curves T(A) for
the two por-Si samples and for the aSi film deposited
on a glass substrate. Also shown here for comparison
are the luminescence spectra of samples belonging to
the same series as por-Si no. 1 and por-Si no. 2 before
their separation from the substrate. The measurements
were made at room temperature. The results are seen to
be consistent with the quantum-dimensional theory of
photoluminescence; more specifically, the smaller the
grain size in the porous structure, the larger the blue-
shift of the photoluminescence peak.

Figure 3b shows the absorption coefficients a(hv)
cdculated from the transmittance curves, while Figure 3c
(on alogarithmic scale for convenience) showsthe cor-
responding dimensionless extinction coefficients k(hv)
and published data for crystal and amorphous silicon.
Since the correction for reflection for aS strongly affects
a(hv) and k(hv), the values without this correction being
applied are indicated in Figs. 3b and 3c by curves 3.
Findly, Fig. 4 showse'(hv) and €"(hv) for our por-Si sam-
ples.

4. DISCUSSION

Our main objective was to establish a relationship
between the optical properties of porous silicon and its
composition, in particular, its porosity.

Someauthors(see, eg., [7]) estimated the porosity p of
crystals, i.e., the fraction of voids in them, from asim-
plerelation:

a' = a(l-p), 4)

where a and a' are the absorption coefficients of the
crystal and porous silicon, respectively. In our view,
this relation is improper, because the energy absorbed
in the material is proportiona to the imaginary part of
the dielectric function, €" = 2nk, whereas K character-

1.72

1.70 '
2.0

: 0
3.0

2.5
hv, eV

Fig. 4. Dielectric constants for por-Si samples nos. 1 (a) and 2 (b).
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Fig. 5. Comparison of the experimentally measured n(hv) and k(hv) curves for sample no. 1 (solid curves) with those calculated
from Bruggeman's theory [17]: (), (b) two-component system (curves 1-3); (c), (d) three-component system (dotted curves) and
four-component system (dashed curves). Dashed-dotted curve 3' is the calculation using formula (4). Curves 1 correspond to the
volume fraction f_g = 25.74%; curves 2, to 12.12%; and curves 3 and 3', to 2.15%.

izes only the rate of decrease in the amplitude of the
light wave propagating through the medium.

When the scale length of the microstructure is smaller
than the light wavelength (the long-wavelength limit), one
may ignore the retardation effects and replace the multi-
component system by an effective medium with a macro-
scopic dielectric constant. By far the most accurate poros-
ity estimate can be obtained in the approximation of
Bruggeman'stheory [17] for the effective medium, which
is the most readlistic for systems of irregularly shaped
particles even for small porosities [18].

The effective didectric constant €4; of a multicompo-
nent isotropic system is determined, according to [17],
from the dielectric constants of its individual compo-
nents, g;, whose volume fraction in the system isf;:

€ — &t _ o
Zfiei+286ﬂ =0, zf, 1. (5)
I 1

Based on thistheory, we determined the porosity and com-
position of our porous silicon samples. We assumed that
the crystas consisted mainly of crystal silicon, ¢-Si, but
they could also contain an amorphous-phase (aS) impu-
rity. Wedid not rule out theinclusion of quartz SiO, in the
samples, which, according to [19], forms on the silicon
pore surfaces. Thus, we considered a four-component
system. The values of € were taken from [15] for c-Si

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

and from [16] for a-Si; we assumed that k = 0 and
n = 1.5for SO, (an approximately mean value between
the refractive indices of a-SiO, and fused quartz) and
e=1forair.

Figures 5 and 6 show the calculated n(hv) and k(hv)
curves for the multicomponent system as a function of
the volume fraction of its components, to reconcile
them with the corresponding experimental curves for
samples nos. 1 and 2.

At thefirst stage of our calculations, we considered
atwo-component system: c-Si + pores (Figs. 5a, 5b and
6a, 6b). It turned out that for the two crystals, no rela-
tion between c-Si and air alowed the dispersion curves
of refractiveindicesand the absorption curvesto berec-
onciled between themselves. The values of n(hv) are
always smaller than those measured experimentally if
the volume fraction is such that the k(hv) curves are
close. Conversely, if the n(hv) curves can bereconciled,
then the calculated k(hv) are much larger than those
measured experimentally. Also shown in these figures
for comparison are the absorption curves calculated
using formula (4). They are lying considerably higher
than those calculated from Bruggeman'’s theory.

Figures 5b and 6b clearly show how the absorption
spectrum changes with f.g: the band gap seemingly
increases. Accordingly, recall that the popular opinion
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Fig. 6. Same asin Fig. 5 for por-Si sample no. 2. Curves 1 correspond to the volume fraction f._g; = 16.7%; curves 2, to 8.57%; and
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about an increase in band gap with porosity and, conse-
quently, with the appearance of a quantum level in fila-
ments is based on the blueshift of the absorption edge.
The edge shift is believed to result in crystal transpar-
ency inthevisible spectrd range. Aswe see from Fig. 3a,
our samples also became transparent to visible light.
However, if we estimate the absorption per unit remain-
ing materia, then the shift of the absorption edgeisappar-
ent, because invariable initial values of e for silicon with
no quantum leve, i.e,, without an artificial increase in
band gap, were laid in our calculations. Note in passing
that neither the absorption spectra (Fig. 3) nor the disper-
sion curves of refractiveindex (Fig. 2) exhibit any features
associated with the quantum levels responsible for the
luminescence of these crystals (Fig. 3a). This may be
determined by the spread in micrograin sizes, which
gives a spread in absorption coefficients and strongly
smoothens the resulting curve.

At the next stage of our calculations (three-component
system), we introduced SO, into the system to approach
the experimenta values of n(hv). The results of thisintro-
duction areindicated in Figs. 5¢, 5d and 6¢, 6d by the dot-

Table 1
c-Si SO, a-Si Porosity p
Samplel | 8.93% 80.7% 1.14% 9.23%
Sample2 | 3.2% 49% 0.53% 47.23%
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ted curves. Aswe seefrom thefigures, the gap betweenthe
n(hv) and k(hv) curves can be reduced by assuming that
sample no. 1 contains up to 85% of SiO,, while sample
no. 2 contains about 49% of SIO, for ¢c-Si volume frac-
tions of 9 and 4%, respectively.

At the final stage of our calculations (four-compo-
nent system), we introduced an amorphous-phase (&Si)
impurity. As a result, the agreement between the experi-
menta and theoretical curvesimproved, but we till failed
to achieve close agreement. The best agreement between
the measured and caculated n(hv) and k(hv) curves (the
dashed linesin Figs. 5¢, 5d and 6¢, 6d) was achieved for
the fraction ratios presented in Table 1. Such volume
fractions are obtained if our data and the published data
[16] are used for the amorphous phase in samples nos. 1
and 2, respectively.

The possible large SIO, impurity in porous silicon
was discussed in [19]. The authors pointed out that the
formation of a 1.5-nm-thick oxide layer on the pore
walls mug result in a SIO, fraction in porous silicon
exceeding 30%. In addition, an infrared absorption band
was discovered a the SO, characteristic oscillation fre-

quency (approximately 1100 cm2). In the same frequency
range (1060-1200 cm™Y), a strong absorption band of por-
Si samples was also detected by Astrova et al. [6]. The
authors emphasize that the smaller crystallites are sur-
rounded by amuch larger number of silicon bondswith
oxygen and hydrogen. Finally, the spectrarecently pub-
lished in [20] exhibit a drastic increase in absorption at
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afrequency of 1100 cm during along exposurein air
(up to 450 days). Important information confirming the
presence of alarge fraction of SiO, impurity in porous
silicon is aso contained in [21]. An analysis of Auger
spectra showed that an oxide phase is produced on the
surface by anisotropic etching. The thickness of the
recorded oxidized layer exceeded 100 nm. Based on
two independent methods of investigation, ellipsometry
and Rutherford backscattering, Belyakov et al. [9] con-
cluded that their sample contained from 38.8 to 43.3%
of SIO,. Ashas already been noted, the refractive index
and the behavior of n(hv) determined in [9] are closeto
n(hv) for our sample no. 2. In our case, the SiIO, volume
fraction also approachesitsvaluein [9].

As for sample no. 1, the SIO, volume fraction that
hasto be substituted in Bruggeman’sformulasto recon-
cile the n(hv) and k(hv) curves proves to be very large
(about 80%). This may seem surprising and may cast
doubt on their validity. Therefore, we andyze the results
by using data from [22]. The authors of [22] sudied the
change in the optical parameters of thin oxidized porous
slicon films depending on how they were produced and
thermally treated. The film composition was deter-
mined from the measured refractiveindex at A = 632.8 nm
by using the dependences calculated with Bruggeman's
three-component model for an effective medium com-
posed of layerswith different initia porosities. Despitethe
fact that we did not subject our samples to specid oxida
tion, it still was of interest to compare their parameters
with those in [22], dthough the calculationsin [22] were
performed for a single wavelength, only for athree-com-
ponent system, and disregarding the absorption.

An important assertion made in [22] is that the oxi-
dized film is not an arbitrary mixture of three compo-
nents and that the volume fraction of each of them
changes during oxidation at the expense of another. The
oxidation of each Si atom was shown to cause the vol-
ume of the solid phase associated with it to increase by
afactor of 2.27. Therefore, when theinitial two-compo-
nent system Si + pores is oxidized, a new SO, phase
emerges and the volumes occupied by poresand silicon
decrease. Since the possibility of oxidation depends on
the volume of free space that SiO, can occupy, samples
with different initial porosities p;,, behave differently. If
pin > 56%, then after complete oxidation of the silicon
skeleton, the sample remains porous and consists of
SO, and pores. If, dternatively, p;, < 56%, then the
pores completely disappear when the silicon skeleton
has not yet been completely oxidized, resulting in adif-
ferent two-component system: Si + SIO,.

The possible compositions for the coexistence of
three phases were calculated in [22] and shown in the
plots there as the hatched part of the plane. A compari-
son of our datawith those from [22] indicates that, first,
both our samples fall within the region where three
phases can coexist. Second, using relations from the
above paper, we can determine the degree of oxidation
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Table 2
Volume Initial Initial
fractionof | volume orosit Degree of
skeleton (Si)| fraction of | PO"OSY: | oxidation's
oxidized, x | silicon, fg | Pin
Samplel| 35.5% 46.2% | 53.8% 77%
Sample2| 21.6% 253% | 75.0% 85%

and p;,, for our samples. The volume fraction of the sil-
icon skeleton that oxidized isx = fgo,/2.27. The total

silicon volume fraction in the initial por-Si is the sum
fg = fog + fag + X. Theinitia porosity isp;, = 1 —fg.
The degree of oxidation is defined as s = (x/f5)100%.
Theresultsaregivenin Table 2. Thus, p;,, < 56% in por-
Si sample no. 1 and p,, > 56% in por-Si sample no. 2.
This determined avery large differencein their compo-
sitions after a prolonged storage in air. However, in
none of them did possible finite processes take place:
there is no complete oxidation in por-Si no. 2 and no
compl ete disappearance of poresin por-Si no. 1. Nev-
ertheless, the degree of oxidation in both samples is
very large.

If two plots from [22] are used (s-n and p-n), then
pi, = 52.5 and 53.5% for por-Si no. 1 and p;, = 73 and
74% for por-Si no. 2. These values are very close to
those from Table 2. Therefore, the entire set of our data
suggests that the processesin our crystals followed the
scheme proposed in[22]. The recorded oxidation of the
por-Si samples may be responsible for the attenuation
of their photoluminescence with time.

Comparison with theoretical calculations of the
por-Si band structure. While summarizing the results
of fitting the experimental curves by theoretical depen-
dencies, it should be emphasized that close agreement
between them still cannot be achieved. We believe that
thisisbecausewe used in our calculationsthe € vauesfor
pure silicon astheinitia datafor c-Si. Thisautomatically
assumes that the band structure and selection rules for
band-to-band transitions and, consequently, the corre-
sponding oscillator strengths in porous silicon remain the
same asthose in the initial single crystal. This, of course,
is a rough approximation. When a porous structure is
formed, the far order in the grating inevitably breaks
down, which must weaken direct transitions at the center
of Brillouin'szone k = 0 (3.4 €V, 4.2 eV). This precisely
takes place during the formation of amorphous silicon,
when, on the one hand, strong peaks of absorption and
dispersion n(hv) vanish in the ultraviolet, and, on the
other hand, the absorption and n increase in the red
spectral range near the indirect absorption edge. This
can be seen from Figs. 2d and 3c and suggests a reduc-
tion in the indirectness of amorphous silicon.

The electronic structure and optical properties of
porous silicon were theoretically and consistently stud-
iedin detail in [23, 24]. In[24], the material was repre-
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sented as a set of tightly bound quantum wires with
lengths of the order of a micron and widths of several
nanometers (the length-to-width ratio is of the order of
1000 : 1). The authors calculated the band gap and the
position of the exciton level asafunction of wire width,
as well as the imaginary part of the dielectric function
and the absorption spectra.

In[23], porous silicon was modeled by a supercell,
in which “columns’ of material were removed with a
certain periodicity. The same porosity, i.e., the percent-
age of the removed material, was achieved by different
methods: either narrow columns were removed fre-
guently or wide columns were removed rarely. The
authors analyzed the dependences of band structure and
absorption spectrum (the imaginary part of €) on the
sizes of the removed column and on porosity. Their cal-
culations showed that the position of the absorption edge
is determined by two competing effects. First, transitions
are assisted by the scattering of carriers on the lattice of
pores, which effectively decrease the “indirectness’ of
por-Si and resultsin aredshift of the absorption edge. Sec-
ond, quantum confinement of carriers increases the
band gap. The latter effect significantly depends on the
thickness of the silicon skeleton that remains between
the pores.

It was of interest to compare our experimental data
with theoretical calculations in order to find out
whether the simplified theoretical models correspond to
actual crystal structures.

The comparison indicates that the absol ute val ues of
€" and a (cm™) calculated in [24] and the shape of the
a(hv) curves including exciton states are far from our
experimental dependences. As for the polarization
anisotropy in absorption relative to the direction of the
guantum-wire axis predicted in [24], we could not
detect it under our experimental conditions. Our struc-
tures were dots (grains) rather than wires.

Thee(hv) curvescalculated in [23] for sampleswith
different porosities clearly show an increase in the red
tail and a decrease in the short-wavelength peaks with
increasing p, in qualitative agreement with our data.
However, the minimum percentage of the remaining
crystal material (1-p) for which the calculation was
performed (about 23.4%) is considerably higher than
that estimated in our samples, which complicates a
comparison. The authors obtained a spectrum that was
greatly blueshifted compared to c-Si. This spectrum
consisted of several peaks that emerge during transi-
tions between almost flat bands. Our measurements of the
absorption spectrum do not cover this spectra range,
which further complicates a comparison of experiment
with theory. Unfortunately, neither €'(hv) nor n(hv)
curvesaregivenin[23] and [24], with which acomparison
can be made in the visible spectral range. Nevertheless,
based on the measured n(hv) curves, no ultraviolet shift of
the absorption spectrum takes place in our samples, but
only a genera lowering of the k(hv) curve is observed.
Thus, the resonant frequency w, = 3.61 eV estimated in
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sample no. 2 from the curvature of the n(hv) curve
(Fig. 2b), which characterizes the position of the max-
imum of an averaged absorption bands, falls between
the first (3.4 €V) and second (4.2 eV) extrema of the
K(hv) curve for crystal silicon [15].

5. CONCLUSION

We have comprehensively studied the properties of
the dielectric function for two por-Si samples from dif-
ferent series by measuring the dispersion curves of
refractive index n(hv) and the absorption spectraa(hv)
and k(hv). Based on the dependences derived from
Bruggeman'stheory [17], we determined the porosities of
these samplesand the possible percentages of silica(SO,)
and the amorphous phase (aS) inthem. The analysiswas
performed by assuming that the dielectric function € of
crystal silicon ¢c-Si was invariable during the formation
of a porous structure. In this case, the n(hv) and k(hv)
curves can be roughly reconciled for each sample if
they contain alarge fraction of silica. The oxidation of
the silicon skeleton to produce SiO, appears to be one
of the main reasons for the “ageing” of porous silicon
samples, i.e., the deterioration of their quality and the
attenuation of photoluminescence.

At present, we know no theoretical calculations that
could reconcile the absorption and dispersion of our
porous silicon samples without including SO, in their
composition. The available theories that alow for quan-
tum-dimensional effectsin poroussilicon (quantum wires,
supercells) fail to describe our experimentd data.
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Abstract—A complex study of the energy spectra and relaxation channels for the excitation energy of activa
tion centersinY,SiOs : Pr¥*, Lu,SiOs : Pr3*, and Gd,SiOs : Pré* was performed. An analysis of the low-tem-
perature optical spectrashowed that the energy parameters and the character of field splitting of the *D, and °H,,
activator ion terms were substantially different in crystals of different crystallographic types. The pseudosym-
metry effect was observed in splitting of the 1D, and 3H, terms of Pr3* ions situated in nonequivalent crystal
lattice cation sites of Y,SiOg and Lu,SiOg. Activator ions nonuniformly populated noneguivalent cation sites
of theY,SiOg crystal lattice. At high activator ion concentrations (>1 at. %), luminescence decay inY ,SiOg
could not be described by a simple exponentia time dependence. The complex luminescence decay law was
caused by activator ion excitation energy migration and capture by acceptors. The role of energy acceptors was

played by activator ion dimers. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Oxiorthosilicate crystals offer much promise for the
development of new lasing and scintillating materids, in
the first place, because of their large isomorphic capecity
[1-5]. Effective scintillating systems have already been
found among oxiorthosilicates and have been extensively
studied; these are Y,SIO; : Ce*, Gd,S0; : Ce*, and
Lu,SiO; : Ce** [2, 6-8]. The mechanism of scintillating
response in these system is, however, not well under-
stood. For creating solid-state lasers with the mecha-
nism of population inversion through frequency conver-
sion toward higher frequencies [9], of specid interest is
activation of oxiorthosilicates by Pr®* ions. Diode IR
pumping of Pr3* ions can be used for multifrequency laser
generation in the blue-green spectrd region [3, 10].

Rare-earth metal oxiorthosilicates form monoclinic
crystals[1, 2, 4, 5, 11]. Oxiorthosilicate crystals, how-
ever, form two structurd classesin cation sites depending
of theradius of therare-earth metal ion [4, 5, 11]. Thefirst
and second classes are formed by the La..Tb and
Dy...Yb (including Y) ions, respectively. Y ,SIOs (Y SO)
and Lu,SO; (LSO) crystals have the same structural type
[1, 4, 5, 11]. The YSO unit cell parameters are a =
14.43A,b=1041A,¢c=6.733 A, p =122.13°, and
V = 856.1 A3: for the LSO lattice, a = 14.33 A, b =
10.32 A, c=6.671 A, B =122.3°, and V = 833.8 A3
[1, 5, 11]. Gd,SIO; (GSO) crystdsare of adifferent struc-
tural type. Their unit cell parameters are a = 9.16 A,

b=7.09A,c=6.83A,b=10758°, andV = 422.9 A3
[5]. IntheY SO lattice, one of the cation sitesisa dis-
torted octahedron with four bound and two free oxygen
atoms, the Y-O distance varies in the range 2.21-2.33 A
[4,5, 11]. The second cation site isa coordination poly-
hedron formed by five bound and two free oxygen
atoms [4, 5, 11]. In GSO, the coordination polyhedron
of one cation site contains four bound and three free
oxygen atoms (the mean Gd—O distanceis 2.39 A), and
the coordination polyhedron of the second cation site
contains eight bound and one free oxygen atoms (the
mean Gd—O distanceis 2.29 A) [4, 5]. Nonequivalence
of cation sites in oxiorthosilicates is determined by the
special features of the structure of coordination polyhe-
dra and differences in the mean distances between the
rare-earth metal ion and oxygen atoms in polyhedron
vertices [1, 2, 4, 5, 11]. The introduction of rare-earth
metal ions as activators into oxiorthosilicate crystals
results in the formation of two types of optical centers
[5, 12].

A complex structure of spectral lines was determined
for both types of Pr3* optical centers in the YSO : Pr3*
crystal by the method of spectral hole burning [13]. The
spectral lines of Pré* optical centers comprised several
spectra contours, which coalesced into one inhomoge-
neoudy broadened spectral contour [13]. The complex
structure of spectrd linesis evidence that the Pr3* ion can
have severa different states (positions) in'Y SO cation
sites of both types. Thermally stimulated Pr3* ion tran-
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sitions between these states create an additional channel
for phase relaxation on resonance optica transitions[14].

The practica aspects of the use of activated oxiortho-
slicates are related to several fundamental problems con-
cerning the microstructure of activation centers and their
energy spectrum, the dynamics of eectronic transitions,
and energy relaxation channels. The large isomorphic
capacity of oxiorthosilicates with respect to activator ions
(see above) has not been given a satisfactory consistent
explanation as yet. It remains unclear how activator ions
populate nonequivalent cation sitesin oxiorthoslicate lat-
tices. Another open question is whether or not electronic
excitation energy exchange can occur between the centers
that arise as a result of activator ion localization in non-
equivalent cation sites of oxiorthosilicate crystal lat-
tices.

2. EXPERIMENTAL TECHNIQUE

The optical spectra of the crystals were recorded on
an automated spectrofluorimeter based on an NDR-23
monochromator. The luminescence spectra were excited
by an organic dye frequency-tunable laser. Luminescence
decay was recorded by time-corrdlated single photon
counting [15].

TheYSO: Pr3*, LSO : Pr3*, and GSO : Pr3* crystals
were grown by the Chokhral’skii method. The concen-
tration of activator ionswas 0.3 a. % in LSO and GSO
and 0.3, 0.6, and 1.8 a. % inY SO.

L ow-temperature measurements were taken using a
helium optical cryostat. The crystals were placed in
helium vapors.

3. EXPERIMENTAL RESULTS

The crystd field characteristics of nonequivaent cat-
ion sitesin oxiorthosilicates and the conditions of populat-
ing them by activator ions were studied spectroscopically.
In particular, the low-temperature optical spectra of Pr3*
activator ionswere recorded. The'D,, 3Py, 3Py, U1, and 3P,
states of the Pr* ion were observed in the visible optical
spectrum region [16, 17]. The spectral lines corre-
sponding to optical transitions between the fundamen-
tal ®H, term and the !¢, 3P,, and 3P, termswere strongly
mixed, which complicated their correct interpretation
[16, 17]. At low temperatures, the spectral lines of optical
trangitions between the Stark sublevels of the fundamental
3H, term and the 3P, and D, terms could fairly easily be
assigned [12, 16, 17]. We used the spectral region of opti-
ca trandtions involving the *H, and ‘D, terms on the
assumption that the special features of the ligand field
microstructure should influence the splitting of the D,
term.

Fragments of the absorption spectra of Y SO, LSO,
and GSO crystals activated by Pr¥* are shownin Fig. 1.
The spectra lines of each absorption spectrum could be
divided into two groups according to their widths (Fig. 1).
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1
16800 17100
W21, cm™!

I
16500 17400

Fig. 1. Fragments of optical absorption spectra of YSO :
Pr3*, LSO : Pr¥*, and GSO : Pré*. Spectral lines in groups
are marked by numbers and numbers with asterisks.

With GSO : Pr¥*, this property of the spectrum was less
manifest (Fig. 1c). Each group comprised five spectral
lines. The lines progressively broadened as their num-
ber increased (Fig. 1). Thisbehavior is characteristic of
spectral lines corresponding to one multiplet of rare-
earth ions [16-18].

Selectively exciting luminescence into separate
groups of spectral lines (Fig. 1) gave two different
luminescence spectra for each crystal (Figs. 2, 3). The
line at the highest frequency in the luminescence spec-
tra of both types (Figs. 2, 3) was in resonance coinci-
dence with the line observed at the lowest frequency in
the absorption spectra, 1 or 1* (Fig. 1). When lumines-
cence of one type was selectively excited, we did not
observe luminescence of the other type.

Spectral lines whose intensity depended on temper-
ature could be observed in the optical spectra of the
crystals astemperature increased. For instance, then, ¢, &,
and y lines (Fig. 3) were recorded at T = 80 K. The n
and ¢ lineswerein resonance coincidence with spectral
lines 2 and 3, and the & spectral line coincided with
spectral line 2* of the corresponding luminescence
spectrum (Fig. 3). Then, ¢, and &, spectral lines corre-
sponded to absorption from thermally populated Stark
components of the ®H, term. At T =80 K, two °H, term
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T=15K
GSO : Pr** 1"
type II luminescence
~
type I luminescence 1
~
32

LSO : Pr*
type I

luminescence N
type 11
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1 | ) i
16200 16350 16500 16650

W21, cm™ !

1
16050

Fig. 2. Fragments of luminescence spectra of LSO : Pr3*
and GSO : Pr3* crystals obtained by selectively exciting
groups of spectral lines.

Stark components were populated in optical centers of
thefirst type, and only one Stark component was popu-
lated in centers of the second type. For asimilar reason,
the luminescence spectra of the firg type contained the y
spectral line. Thislineis caused by luminescence from
the second thermally populated Stark component of the
D, term. An analysis of the temperature-dependent spec-
tral lines allows the spectral linesin the optical spectra
of the crystals to be unambiguously interpreted and
assigned.

To inquire into the mode of the distribution of acti-
vator ions over nonequivalent cation sites, we studied
the concentration dependence of the optical spectra of
Y SO : Pré* crystals. In thefirst place, an increasein the
concentration of activator ions resulted in usua concen-
tration broadening of spectral lines (Figs. 1, 4). The inte-
grated intensity of absorption by Y SO : Pr3* increased pro-
portionaly to the total concentration of activator ions. To
reduce errors, we studi ed this dependencefor two spectral
lines, 1 and 1* (Figs. 1, 4). Thetotal areaunder spectral
lines 1 and 1* increased proportionally to the concen-
tration of activator ions. The areasunder lines1 and 1*,
however, changed differently. The area of spectral
line 1 increased in the ratio 1 : 2.2 : 6.5, and that of
spectra line1*, intheratio1: 1.6 : 3.2.

At ahigh concentration of activator ions, the spectra
contained well-defined spectral lines o, and d, (Fig. 4).
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YSO : PR3*
&  T=80K
™~ absorption
¢
n
1*
type I
/ luminescence
1*
1 u 2%
type II
1 _~ luminescence
M
T T T T
605 610 615 620
A, nm

Fig. 3. Fragments of optical spectra of YSO : Pré* crystals
at 80 K.

The frequency intervals between spectral lines 1* and &,
and between 1 and 3, were 8.9 and 21.4 cn?, respectively.
The same lines, although virtually obscured by noise,
were present in the absorption spectrum of the sample
with an intermediate concentration of Pr3* ions. In the

T T I T
16750 17000 17250 17500

/2T, cm™!

T
16500

Fig. 4. Absorption spectrum of YSO : Pr3* crystals with a
high (1.8 at. %) concentration of activator ions.
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Fig. 5. Temperature dependences of thei ntens ty of spectral
lines of activator ion dimersinYSO : Pr3*

crystal with the lowest concentration of activator ions,
the &, and &, spectral lineswere absent. Theintensity of
the &, and &, spectral lines depended on temperature. At
80 K, these lines virtually disappeared (Fig. 5). We did
not observe spectral lines with the same frequencies as
0, and 9, in the luminescence spectrum (Fig. 5). Note
that spectral lines 5, 3, 4%, and 2* were aso character-
ized by a certain structure (Fig. 1). This structure was,

YSO : Pr3* T=80K

type II luminescence
L
Ny

= ¥ T
= Y
S Y- a8
= 4 4
= S,.% £
— \'.. ‘" .‘° -
v, .q}}: -
"'h’h__‘ -‘_ o
s - A
N '“t'_h.
e, :
ey
type I luminescence ".;".' »
'o._.:?;::,.‘".,.'
e,
Bt
Ko

0 100 200 300 400 500
Channels (0.2 ps/channel)

Fig. 6. Lumlneﬂ:ence decay curves for optical centers in
YSO : Pré* with the lowest concentration of activator ions
(0.3 at. %).
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_however, independent of the concentration of activator
ions.

Luminescence decay after pulsed excitation in
YSO: Pr¥*, LSO Pr3*, and GSO : Pr¥* crystalswith the
lowest concentration of activator ions (0.3 at. %) was
described by an exponential time dependence for both
optical centers (Fig. 6). The decay constants did not
depend on temperature in thetemperaturerange 1.5-80 K.
The decay constantsfor two optica centersweret =108
and 1@ = 145 usinYSO, ™ = 64 and 1@ = 82 psin
LSO, and T =39 and 1@ =50 usin GSO. In dl crystals,
the ratio between the luminescence decay congtants for
centers of thefirst and second type equaled 1.3.

The shape of the luminescence decay curve for opti-
cal centers of the first type changed appreciably in the
Y SO : Pr¥ crystal with a 0.6 at. % concentration of acti-
vator ions. Precisaly theseions make up the larger fraction
of activator ions. At a 1.8 at. % concentration of activa-
tor ions, a strong change in the luminescence decay
curve was observed for optical centers of both types
(Fig. 7). The following tendency was observed for opti-
cal centers of the first type. The higher the concentra-
tion of activator ions was, the stronger luminescence
decay deviated from the exponential law. The deviation
was more manifest at the initial decay stage (Fig. 7).

. ' T=80K
A
s\‘\’
= A,
A :
2 g\‘k‘ type II luminescence
9 o /
Q .,
EA )
) Xy
% T
\ . \’ -
g ., A
s s o
5 - "
“# .
",
-.’.1' Jo®

0 50

| | | |
100 150 200 250
Channels (0.4 ps/channel)

Fig. 7. Lumlneﬂ:ence decay curves for optical centers in
Y SO : Pr3* with the highest concentration of activator ions
(1.8 at. %).
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Tablel
YSO: Pr3* LSO : Pr3* GSO: Pr3*
typel type Il typel typell typel typell

Term D, 1 0(16529.2) 0(16477.3) 0 (16521.7) 0 (16466.9) 0 (16657.9) 0 (16496.7)

2 59.6 364 66 373.7 421 43.8

3 224.9 667.9 202.2 688.4 248 248.7

4 501.2 948 498.2 951.7 525.9 940

5 801.3 10715 801.8 1091.4 621.8 1056.7
Term 3H, 1 0 0 0 0 - -

2 884 - 734 176 - -

3 146.3 - 140.7 263 - -

4 207.9 - 198.2 308.7 - -

5 263.7 - 254 332.2 - -

6 286.2 - 275 351.7 - -

7 344.1 - 288 3815 - -

8 366.3 - 304 430 - -

9 388.5 418 406 499.7 - -

Note: Splitting parameters of the 1D2 and 3H4 terms are in cm—* with respect to the positions of spectral lines 1 and 1*.

For the crystal with the highest concentration of activator
ions, the shape of theluminescence decay curvefor optica
centers of both types depended on temperature. In the
crystal with an intermediate concentration of activator
ions, aweak temperature dependence was only observed
for optical centers of thefirst type.

4. ANALY SIS OF EXPERIMENTAL RESULTS

The presence of spectral lines with essentially dif-
ferent widths (Fig. 1) and selective excitation of lumi-
nescence of two types with different decay constants
lead usto assert that the two groups of spectral linesin
the absorption spectra of the crystals (Fig. 1) corre-
spond to Pr3* optical centersof two types. These centers
are formed as aresult of Pr3* substitution in nonequiv-
alent cation sites of YSO, LSO, and GSO [1, 2, 4, 5].
The presence of five spectral linesineach group (Fig. 1) is
evidence of very low symmetry of cationic sites in
Y SO, LSO, and GSO. The degeneracy of the D, term of
the Pr* ion is completely removed under the crystal field
action. At helium temperatures, only the lowest Stark
component of the *H, fundamentd term is populated, and
the five spectral lines of each group (Fig. 1) can there-
fore be unambiguously related to the five Stark compo-
nents of the D, term. This allows us to determine the
energy parameters of the splitting of the D, term of
Pr3* ions under the action of Y SO, LSO, and GSO crys-
tal fields. The results are summarized in Table 1. The
parameters and the character of the splitting of the D,
term are different for different Pr3* centers. In Y SO and
LSO crygasof the same crystallographic type[1, 2, 4, 5],
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the energy parameters of the splitting of the D, term
and the arrangement of the Stark components are simi-
lar (see Fig. 1 and Table 1). The unambiguous corre-
spondence of the spectral linesin the absorption spectra
(Fig. 1) to the Stark components of the 'D, term gives
grounds for analyzing the special features of the
arrangement of both. For optical centersof thefirst type
inYSO and LSO crystals, the smallest energy interval
of ~60 cm separates spectral lines1 and 2. Line 3 is
situated closeto lines 1 and 2. The interval between the
first threelinesand lines 4 and 5 is substantialy larger,
about 290 cm™ (Fig. 1). For optical centers of the sec-
ond type, the smallest energy interval separates|lines 4*
and 5*. Line 3* is situated somewhat lower in energy.
Lines 1* and 2* are separated from line 3* by an inter-
val of ~300 cm™. A qualitative conclusion can be
drawn that the 1D, Stark components of optical centers
of the second type are arranged in an order inverse to
that characteristic of optical centers of the first type.

Certain splitting characteristics of the 3H, term of
activator Pré*ionsinY SO and LSO crystals are similar
to those observed for the 1D, term. The energy parameters
of splitting of the *H, term for two optica centers can be
found from the arrangement of lines in the low-tempera
ture luminescence spectra (Figs. 2, 3). Unfortunately,
some spectral lines corresponding to opticd transitionsto
the high-energy Stark components of the *H, term could
not be interpreted unambiguoudy (Figs. 2, 3). For this
reason, Table 2 contains incomplete data on the split-
ting of the °H, term. The 3H, term splitting parameters
inY SO and LSO are very close to each other. The energy
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Table 2
TK Y SO 0.3 at. % Pré* YSO 0.6 at. % Pr3* YSO 1.8 at. % Pr3*
’ typel type Il typel typell typel typell
77 T, S 108x10° | 145x10° | 108x10° | 145x10° | 108x10° | 145x107°
o} 0 0 04 0.14 23 1.98
B 0 0 0.19 0 124 0.99
Cy, O3 - - 3.1 x 1019 1019 1.8 x 10%° 1.5 x 10%°
D,cm3st - - 6.2 x 10712 - 69x10"? | 35x107%?
15 1o, S - - - - 108 x 10°° 145 x 10°°
o} - - - - 23 1.98
B - - - - 0.73 0.54
Cy CM3 - - - - 1.8 x 102 1.5 x 10%
D,cm3s? - - - - 5.7 x 10712 25x 10712

intervals separating the two lowest *H, Stark components
are subgtantialy different for optica centers of the first
and second types, aswith 1D, term splitting. Qualitatively
and ignoring frequency intervals, the arrangement of
the 1D, and 3H, term Stark components can be said to

be quasi-inverse for two Pré* optical centersinY SO and
LSO crystals. Thiseffectissimilar to the splitting of the
2D termof the Ti*ioninligand fields of tetrahedral and
octahedral symmetry [19, 20]. The phenomena under
consideration can be treated in quasi-symmetry terms,
because nonequivalent cation sites have the lowest
point symmetry group possible[1, 2, 4, 5].

UnlikeYSO: Pr3* and LSO : Pr3* crystdls, GSO : Pr3*
gives absorption spectra in which spectral lines are
arranged similarly for optical centers of both types: the
first group is 1-2—3 (1*—2*—3*), and the second one is
4-5 (4*-5*) (Fig. 1).

It follows from a comparison of the splitting param-
eters of the 'D, and 3H, terms that the Pr3* optical cen-
ters of the second type (narrower spectral lines, Fig. 1)
in YSO, LSO, and GSO crystals experience stronger
crystal field perturbation. It might seem that the lumi-
nescence decay constant should be lower for centers of
the second type. Indeed, parity selection rule restric-
tions on optical electric dipole transitions within the f
shell of rare-earth metal ions are removed by crysta
field [17-20]. It islikely that, in the systems under con-
sideration, an important role is played not only by the
amplitude but also by crystal field quasi-symmetry in
the region of admixture center localization. The contri-
bution of odd harmonics to ligand field expansion is
therefore smaller for optical centers of the second type
than for first-type centers. Precisely odd crystal field
harmonics removerestrictionson optical eectric dipole
transitions within the f shell [17-20].

The concentration dependence of the 8, and &, spec-
tral lines allows them to be assigned to activator ion
associates. At a comparatively low activator ion con-
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centration, 1.8 at. %, these associates can be expected
to be dimers. One or two dimer states can be observed
in optical spectra depending on the mutual orientation
of the dipole moments of ions in the dimer [21]. For
Pr3* optical centers of the first and second types, the
lower and higher dimer energy states, respectively, are
observed. It follows that the dipole moments of inter-
acting ion optical transitions in second-type centers
have exactly opposite orientations [21]. Dimer energy
states usually [21, 22] experience strong radiationless
relaxation. For this reason, the luminescence spectrado
not contain spectral lines whose frequencies coincide
with those of &, and 3, (Fig. 5).

The temperature dependence of theintensities of spec-
tra lines d, and &, is evidence of a collective character of
the excited state of dimers. Generdly [21], the State of a
dimer is described by a wave function of the form
0= a,(t)d,; + ay(t)d,, where ¢, and ¢, are the wave func-
tions describing the states of monomers, and ay(t) and
ay(t) are complex functions of time. If therelative phase of
a4 (t) and a(t) experiences stochastic disturbances at afre-
quency exceeding Vy/fi (Vg4 isthe dipole-dipole interac-
tion value in the dimer, and # is the Planck constant),
the states of the dimer collapse. One of the reasons for
a,(t) and a,(t) phase disturbancesis scattering of phonons
on admixture centers. Heating the crysta therefore
decreases the intensity of the 8, and d, spectral lines
(Fig. 5). For a similar reason, dimer states are not
formed if the initial states are subject to strong radia-
tionlessrelaxation. Thisischaracteristic of the 'D, term
Stark components that lie higher in energy than the
metastable state [18]. Dimer states are therefore not
formed for the Stark components related to spectral
lines 2 (2*), 3 (3*), 4 (4*), and 5 (5%).

The complex nonexponential luminescence decay
law for Y SO : Pr3* crystals with a high activator ion con-
centration (1.8 at. %) and the dependence of the shape of
theluminescence decay curve on the concentration of acti-
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vator ions and temperature (Fig. 6, 7) are consequences of
simultaneous action of two relaxation mechanisms
[23-26]. The first one operates by activator ion excita-
tion energy transfer to acceptors [23, 24]. The second
mechanism involves migration of electronic excitation
energy [23, 24]. Activator ions (Pr3*) donate eectronic
excitation energy to acceptor centers (the nature of these
centers will be discussed below). Before the system lumi-
nesces a photon or there occurs energy transfer to an
acceptor center, electronic excitation migrates over Pr3*
ions of the same type. Migration and transfer of activa
tor ion electronic excitation energy are caused by
dipole-dipole interactions between the corresponding
pairs[23-26]. If both mechanisms are operative, thelumi-
nescence decay curve for donors (Pré* activator ions) is
described by the dependence [24]

_ t t t
ly(t) = IoexpE—T—O—a - T—(E, 1)
o = 74Rc,, )
B = 86R; (Do) c,, €)

where 1, isthe luminescence decay constant for donors
in the absence of acceptors, R, is the critical radius of
electronic excitation energy transfer, D is the diffusion
coefficient of electronic excitation energy, and c, isthe
concentration of acceptors.

If a =0and 3 =0, (1) describes luminescence decay
in samples with a low concentration of activator ions.
The 1, values determined for luminescence of the first
and second type were given above. Correctly approxi-
mating the luminescence decay curvesof theY SO : Pr3*
crystals with medium and maximum activator ion con-
centrations by (1) requiresthe a and 3 parametersto be
assigned some physical meaning and their values to be
specified.

Unfortunately, neither ¢, nor R, are known. A rea
sonable estimate of R, can, however, be obtained. Sec-

ond-type luminescence decay in theY SO : Pr3* sample
with an intermediate concentration of activator ions
(0.6 at. %) isclose to exponential and can be described
by (1) with a = 0.14 and 3 = 0. It follows that energy
transfer to acceptorsisin the nascent state, and migra-
tion is absent. First-type optical centers participate in
electronic excitation energy migration. |If some part of
activator ions are acceptors (thiswill be shown below),
the mean distance between second-type optical centers
equals the critical radius of energy transfer. The mean
distance between second-type optical centers can be
estimated taking into account that the unit cell contains
eight Y,SiO; formula units and only 37% of the total
concentration of activator ions are involved in the for-
mation of second-type optical centers. It follows that the
concentration of second-type optical centers (donors)
equals 2.3 x 10%° cmr3, and the mean distance between
themis12 A. Substituting Ry~ 12 A and a =0.14 into (2)
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yieldsthe concentration of acceptors, ¢, ~ 1.3 x 10%° cnr3,
The concentration of acceptors is one order of mag-
nitude lower than the concentration of donors, ¢4 =

2.3 x 102 cm3. It follows that uncontrolled impurities
cannot play therole of acceptors, because their concen-
tration in the raw material used to activateY SO crystals
is three orders of magnitude lower than the concentra-
tion of Pr¥* ions. This raises the question of the nature
of acceptors. The presence of the §; and d, linesin the
absorption spectrum (Fig. 4) and their absence in the
luminescence spectrum (Fig. 5) allows activator ion
dimersto be treated as effective acceptors. Considering
thetopology of theY SO lattice and the concentration of
Pr3* admixtureionsequa to0 0.6 at. %, we arrive at the con-
clusion that, among optica centers of the second type,
there are about 1.9% ion pairs. Their concentration is
~4.6 x 108 cm3, which is close to the calcul ated con-
centration of acceptors (~1.3 x 10'° cm3).

The results obtained by approximating the kinetics
of luminescence of the samples by (1) at various tem-
peratures are summarized in Table 2. In (1), both a and
[3 parameters were varied. The a and 3 parameter val-
uesand R, =12 A were used to cal cul ate the concentration
of acceptors and the diffusion coefficient of eectronic
excitation energy for each system and temperature. The a
value and R, = 12 A were used to determine c,. The D
value was found from the concentration of acceptors and
the 3 parameter. For optical centers of the firgt type, the
diffusion coefficients of electronic excitation energy were
amost equa in sampleswith the highest and intermediate
activator ion concentrations. The diffusion coefficients for
first- and second-type optical centers were, however, dif-
ferent. As expected, the diffusion coefficient of electronic
excitation energy decreased as temperature lowered. It
follows that diffusion of electronic excitation energy
was athermally activated process[23, 24].

Theareasunder spectral lines1 and 1* in the absorp-
tion spectraof Y SO : Pr3* were different increasing func-
tions of the concentration of activator ions (Fig. 4). This
and the specia features of luminescence decay for two
types of optical centersled usto conclude that nonequiva:
lent cation siteswere nonuniformly populated by activator
ions. Energy transfer between optical centers of two types
in YSO : Pr3* did not occur in the temperature range
1.5-80 K. This finding requires specia comments.
Because the frequency gap between the metastable lev-
els of two optical centersinYSO : Pré* is about 66 cm
(Fig. 1), energy transfer with the participation of phonons
might well occur at 80 K [26]. Such energy transfer
between rare-earth metd ions in solid-state matrices is
observed under less favorable conditions[26].

Thetotality of the experimental dataobtained in this
work, their analysis, and spectral hole burning [13] and
photon echo [14] experiments for Y SO : Pr3* shed light
on the microscopic nature of the large isomorphic
capacity of oxiorthosilicates[1, 2, 4, 11]. Cation sitesin
oxiorthosilicate crystals are in a certain sense fairly
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“loose” because of high mobility of free oxygen atoms
in coordination polyhedra. This makes it possible to
optimize (from the point of view of free energy minimi-
zation) the geometry of activation complexes (“activa
tor ion + oxygen polyhedron”) in doping oxiorthosili-
cate crystals by various rare-earth metal ions.

5. CONCLUSION

An analysis of the low-temperature optical spectra
of theYSO : Pr¥, LSO : Pr¥, and GSO : Pr¥* crystals
showsthat the energy parametersand the character of field
splitting of the D, and *H,, activator ion terms are substan-
tially different for crystals of different crystalographic
types. The pseudosymmetry effect is observed in
Y SO : Pr3*and LSO : Pré* for the splitting of theterms of
Pr3* ions situated in nonequivaent cation sites of the
crystal lattices. Activator ions nonuniformly populate
nonequivalent cation sites of theY SO crystal lattice. At
high activator ion concentrations (above 1 at. %), acti-
vator ion luminescence decay in YSO : Pr3* is not
described by a simple exponential time dependence.
The complex decay law is caused by co-occurrence of
two relaxation processes involving migration and cap-
ture by traps of activator ion excitation energy. Energy
acceptors are activator ion dimers.
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Abstract—The variations of the pitch of smectics C* in thin planar layersin an external electric field and their
dependence on the surface anchoring are investigated theoretically. The proposed mechanism of the changein
the number of half-turns of the helical structure in afinite-thickness layer upon achange in the applied field is
the dlip of the director on the surface of the layer through the potential barrier of surface anchoring. The equa-
tions describing the pitch variation in an external field and, in particular, the hysteresisin the jumpwise varia-
tions of the pitch for opposite directions of field variation are given and analyzed for arbitrary values of thefield.
For weak fields, it isfound that the pitch variation in the layer is of auniversal nature and is determined by only
one dimensionless parameter, §; = Ko,/dW, where K, is the Frank torsion modulus, W is the surface anchoring
potential, and d isthelayer thickness. The possibility of direct determination of the form of the anchoring poten-
tial from the results of corresponding measurementsis considered. Numerical calculations for the deviation of
the director from the direction of alignment on the layer surface and pitch variations, as well as the points of
pitch jumps and hysteresis in the field, are made for the Rapini model anchoring potential for values of the
parameters for which the pitch variation weakly depends on the direction of the field applied in the plane per-
pendicular to the spiral axis of smectics C*. The changes in the pitch variation in stronger fields are discussed,
and the optimal conditions for observing the discovered effects are formulated. © 2001 MAIK “ Nauka/Inter-

periodica’ .

1. INTRODUCTION

Interest in the detailed analysis of smectics C* pos-
sessing unique properties, since they are not only char-
acterized by local anisotropy of dielectric parameters
but also exhibit spontaneous electric polarization, has
increased considerably in recent years (see, for exam-
ple, [1]). Thisinterest is partially explained by general
physical factors (these crystals are characterized by a
large number of various nontrivial phases, see, for
example, monograph [2]). Besides, numerous addi-
tional advantages of smectics C* over traditional nem-
atic crystals have not been realized as yet in applica
tions. Since smectics C* are widely used in developing
information display systems, controllable optical trans-
parencies, and for many other purposes, an analysis of
their properties in confined geometries is extremely
vital. The study of the optical parameters of thin layers
of smectics C*, including the influence of external
agencies on them, provides information on the change
in their structure in thin layers and on the dynamics of
these changes, which is important for applications as
well asfor understanding the physics of liquid crystals.

It is well known that in the presence of surface
anchoring forces in thin planar layers of smectics C*,
jumpwise pitch variations take place upon a continuous
variation of an external action [1, 3]. Such jumpwise

changes were studied most comprehensively for the
pitch of cholesteric liquid crystals upon the variation of
temperature[4, 5]. In particular, these changes are man-
ifested in precise measurementsin linear and nonlinear
optics of liquid crystals [6, 7]. Moreover, jJumpwise
variation of the pitch of helical structures of smectics
C* display atemperature hysteresis[4, 5]. Thisleadsto
bistability of liquid crystals, which is important from
the viewpoint of numerous applications of liquid crys-
tals.

Phenomena similar to the above-mentioned temper-
ature hysteresismust exist in an external field applied to
thin layers of smectics C* dueto adhesive forces acting
on their surfaces (see, for example, [8,9]). However, the
corresponding changes in the parameters of these crys-
tals (especially the hysteresis of these changes) in
external electric or magnetic fields have been studied
less comprehensively, although the jumps and hystere-
sisin the variation of parametersin an external field are
important from the physical point of view.

The present work is devoted to an analysis of pitch
variations in thin layers of smectics C* in an external
electric field. This problem is more complicated than
the problem of temperature variations of the pitch in
thin layers with surface anchoring since the field
induces not only a change in the spiral pitch in these
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crystals, but also distortions of the spira itself (it
becomes unharmonic). In particular, the so-called frus-
trations take place in smectics C* due to a competition
between enantiomorphism facilitating a nonuniform
helical ordering of molecules and the action of an exter-
nal field striving to align the molecules along the field.
The compromise between these opposite tendencies
(and, hence, dimination of frustrations) may be
achieved in the system due to the formation of domain
walls or solitons separating the regions with a practi-
cally uniform orientation. For example, an ideal spira
of the director field is transformed into a lattice of 21t
solitonsin amagnetic field (or in an electric field in the
case of cholesteric liquid crystals which display no
spontaneous polarization). This means that the regions
of uniform orientation of the director along the field
become separated by domain walls in which the orien-
tation changes by 2rt, while in smectics C* in an elec-
tric field, a-soliton lattice is formed.

In this work, we determine the conditions under
which the simple continual theory of elasticity taking
into account surface anchoring is applicable for
describing the structural variations of smectics C* in
layers in an external field. For these conditions, a gen-
eral analysis of pitch variation (including pitch jumps)
inafield, aswell asof the hysteresis of these variations,
iscarried out. It is shown that in weak fields, pitch vari-
ations exhibit a universal behavior in a layer upon the
application of an electric field, which is similar to tem-
perature variations of the pitch in smectics C* [10].
Numerical calculations of pitch variation and of the
hysteresis of pitch jumps in smectics C* in an electric
field are made for the case of strong surface anchoring
and the effects accessible for experimental observation
are outlined.

2. BASIC EQUATIONS

Let us consider the behavior of a spira pitch in a
thin planar layer of smectic C* in an electric field per-
pendicular to the spira axis. A similar problem for a
bulk cholesteric was considered for thefirst timein[11,
12], for abulk smectic C* in[13], and for acholesteric
layer with the spiral axis perpendicular and parallel to
its surface in [14] and [15], respectively. We will
assume that the forces of surface anchoring acting on
the two surfaces of the layer are identical and that the
directions of the axes of the director alignment on both
surfaces are preset (and generally different). The prob-
lem of the spiral unwinding in alayer of a smectic C*
in the presence of surface anchoring forces (in particu-
lar, the jumps of the spiral pitch) differs qualitatively
from the corresponding problem for a bulk crystal. In
the case of confined geometry with surface anchoring,
simple equilibrium models of liquid crystals do not
always provide a correct description of the behavior of
a smectic C* under the action of an external factor. In
particular, the points at which the parameters of liquid
crystalsin alayer experience jumpwise variation deter-
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mined using such models may not reflect the actual
course of the process. A correct description of director
field variations in such cases requires an analysis of the
liquid crystal dynamics. A simple illustration of this
fact isthe behavior of aspiral in alayer of asmectic C*
with an infinitely strong surface anchoring in an exter-
nal field. In the simple continual theory taking the sur-
face anchoring into account, the variations of an exter-
nal field cannot change the number of turnsof ahelix in
the layer; they simply deform the helix. In actual prac-
tice, however, the number of helix turns changes under
the action of an external factor (field, temperature, etc.)
even in the case of avery strong anchoring and the sys-
tem passes to an equilibrium state corresponding to the
intensity of the external action. In the models taking
into account the dynamics of liquid crystals, such tran-
sitions are possible due to fluctuationsin the orientation
of the director. The example with and infinitely strong
surface anchoring describes an extreme situation in
which the simple theory is completely inapplicable. In
the general case of afinite force of surface anchoring,
fluctuations displace (on the scale of the external effect)
the points of jumpsin the parameters of aliquid crystal
layer, determined by using the continua approach,
towards a decrease in the observed hysteresis in a
change in the parameters of the layer. In some cases, it
is fluctuations that determine the jump mechanism,
while in other cases the fluctuations lead to the above-
mentioned displacement of the jump points determined
using the continual approach. The specific mechanism
of ajump in the given case depends on the parameters
of the problem of liquid crystals in a layer. We will
assume in the subsequent analysis that the jump mech-
anism is associated with overcoming the potential bar-
rier of surface anchoring forces by the director on the
surface; for this reason, the problem will be solved for
the corresponding range of liquid crystal parametersin
alayer (see[10]).

It should be noted that in contrast to [11, 12, 14],
where spontaneous ferroelectric polarization in liquid
crystals was absent, we do not assume that the sponta-
neous polarization in smectics C* is equal to zero. We
writethe expression for thefreeenergy in alayer placed
in an electric field in the form

F(E) = FS+J'FV(E)dV, (1)

where Fy(E) is the volume density of free energy of
smectics C* in an external electric field E, Fgisthe sur-
face free energy, and integration is carried out over the
layer volume.

The surface free energy can be expressed in terms of
the surface anchoring potential and in the simplest case
has the form

Fs = ZWS(¢is)1 2
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where summation is carried out over both surfaces of
the layer, W{¢) is the surface anchoring potential, and
¢;s is the angle of deviation of the director on the ith
surface of the layer from the alignment direction.

It was mentioned above that smectics C* are unique
systems with spontaneous el ectric polarization; for this
reason, it isnecessary to takeinto account inthe general
case both the linear (in an electric field) contribution to
the free energy, associated with nonzero spontaneous
polarization, and the quadratic contribution associated
with anisotropy of permittivity. Moreover, it is well
known [3, 16, 17] that any deformation of the director
field in liquid crystals may lead to the emergence of
electric dipole polarization (the so-called flexoelectric
effect). In the case of strong deformations of the direc-
tor field, the corresponding contribution to the free
energy of liquid crystalsin an electric field may become
comparable to the above-mentioned dielectric and fer-
roelectric contributions.

Surface anchoring, aswell as an external field, leads
to frustrations; however, a compromise between the
opposite tendencies in this case may be reached more
easily since enantiomorphismissignificant in the entire
volume of the liquid crystal, while surface anchoring
actsin a narrow surface layer, & = K/W, where K is the
characteristic elastic modulus and W is the characteris-
tic anchoring potential.

In the general case, Wis afunction of the polar and
azimuthal angles formed by the director with the nor-
mal to the surface, W(8, ¢), and the problem of minimi-
zation of the total free energy becomes very compli-
cated. Since we aim mainly at determining qualitative
dependences, we assume that W(6, ¢) can be factorized
(W(B, ¢) = Wi(B)W,(9)) so that Wy(8) = Wy(8 — 6y),
where 6, is the angle of tilt of the director, and the
potential W;(0) is such that a very strong anchoring in
the polar angle (6 — 6,) takes place. As regards W,(¢),
the anchoring energy for this function can be arbitrary.

We do not assume that such a simplified model of
surface energy is necessarily applicable to al known
smectics C*. Our aim ismuch more modest: to consider
the consegquences of our simplified model and to com-
pare them with experimental data. It should also be
noted that in the case of cholesteric liquid crystals, our
model anchoring potentia (with 8, = 0) is quite justi-
fied from the physical point of view.

Let usfirst consider cholesteric liquid crystals with
zero spontaneous polarization. In this case, the volume
component of the free energy density F\(E) has the
familiar form

Fy(E) = %[Kll(divn)z + K (N Ceurin —q)?

£a(n [E)° (3)
81
+e,E - [n xcurln] + e;ndivn,

+ Kgs[n x curl n]z] +
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where K;; are elastic moduli, g, = 217p,, p, being the
pitch of the cholesteric spiral, which has an equilibrium
valuefor abulk liquid crystal, and e; and e; are the flex-
oelectric coefficients.

Smectics C* have the spontaneous polarization P,
whose direction is unambiguously determined by sym-
metry considerations: P, = P,n % |, wherel isaunit vec-
tor perpendicular to smectic layers.

Thus, expression (3) for the free energy of these
crystals must be supplemented with the additional term
P, - E. Taking into account the symmetry properties of
smectic C*, we can write its director in the form n =
IcosO + csinB, where 0 isthe angle of tilt of molecules
in smectic layers, which is determined by intermol ecu-
lar forces, and cisthe so-called c director which singles
out a certain direction in the plane of smectic layers.

The elastic energy of asmectic C* also containsthe
contribution associated with the compression of smec-
tic layers, which, however, is not affected by an external
field and hence can be disregarded. The orientation
energy component important for our analysis can be
presented in the form of an expansion in the gradients
of | and c (it is aso convenient to introduce the third
vector p = ¢ x | to have the unit vectors of thelocal sys-
tem of coordinates).

The general expression for the free energy of a
smectic C* isvery cumbersomein view of itslow sym-
metry (e.g., it contains 14 flexoelectric terms aonel).
Considering that the values of phenomenological con-
stants appearing in the relevant terms are not known
exactly, we will consider the simplest situation, in
which torsion is the only admissible deformation,
which leads to the following expression for the volume
density of free energy [13, 16] (in the case of choles-
teric liquid crystals, we must put P, = 0):

- Kedrdy 27
Fv(E) = 2 Cdz pl "

2

e.E
+ EP_cosd + ==

16m cos2¢,

where K,, is the elastic torsion modulus, p, is the equi-
librium value of the spiral pitchin abulk smectic C* in
zero field, ¢ isthe azimuthal angle of molecular orien-
tation measured from the direction of the applied field,
€, isthe dielectric anisotropy of the liquid crystal, Pgis
its spontaneous polarization, and d is the layer thick-
ness.

The same type of expression for free energy in the
general case also corresponds to the boundary regions
of the layer. In order to derive this expression, we must
write all possible invariants constructed on the basis of
the three vectors p, ¢, and | for both surfaces of the
layer. Besides, in the general case, we must take into
account the fact that the angle of tilt of moleculesonthe
surface might differ from its value in the bulk of the
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layer, and the order parameter does not remain constant
over the layer thickness [18]. Moreover, a domain
structure may be formed on the surface of alayer of fer-
roelectric liquid crystals. The physical mechanism
responsible for this domain structure is associated with
the dipole interaction. Besides, owing to the dipole
interaction, the polarization can modify the spatial dis-
tribution of the order parameter. This interaction must
be added to the surface and volume energies by intro-
ducing the so-called depolarization field E4 [19] in the
form of theterm —E (P, + P;)/2, where P and P; are the
spontaneous and flexoelectric polarizations, respec-
tively.

For a thin layer having a thickness d and being
unbounded on the surface, this field differs from zero
only if the direction of the total polarization P = P+ P;
isnot parallel to the surface of the layer. Introducing the
angle x between the normal to the surface and the polar-
ization vector P, we can write the expression for the
depolarization field in the form [19]

Eq(2) = —4T[%C082X[P(Z) —C%J'P(z)dz}, (5)

where g, istheisotropic permittivity component and the
integration is carried out over the layer thickness.

We may consider in principle the behavior of a
smectic C* in afield, taking into account all the above-
mentioned contributions to the free energy of the layer.
However, a comparison with the experimental data
requires the knowledge of many phenomenological
parameters, most of which are unfortunately unknown.
For this reason, we will not minimize the free energy of
the layer in its most general form in the presence of
unknown parameters since the theory is divested of its
predictability in this case. Instead, we will be using the
“principle of minimum requirements’; i.e., we will
carry out our analysisusing the simplest (but not trivial)
model, which ensures experimentally verifiable predic-
tions under relatively weak limitations on generality.
This means that we will use an expression for free
energy in the form (4), assuming that the direction of
the polarization vector P is rigidly connected with
director n and disregarding the dipole interaction. In
this case, the surface anchoring energy assumes the
standard form (2) and is a function of the azimuthal
angle ¢¢ between the director on the surface and the
alignment direction only. The equation describing the
spatial variations of the director orientation in the field,
i.e., §(2), where the z axis determines the direction of
the spiral axisand is perpendicular to the layer surface,
can be obtained in the conventional way [11-13] from
the condition for the minimum of the free energy (1).

The volume component of free energy given by the
integral in relation (1), which will be denoted by
Fv(E, N, 015 §,9), where N isthe number of half-turns
of the director over alayer of afinite thicknessand ¢,5
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and ¢,g are the angles formed by the director with the
direction of alignment on the layer surfaces, turnsout to
be afunction of not only magnitude of the applied field
E, but also the mutual orientation of the director on the
layer surfaces and the direction of the applied field. The
procedure of minimization of the free energy (1) in this
case is reduced to determining the minimum value of
the sum of the surface energy and the functional
Fiv(E, N, .5 ¢, asafunction of ¢,sand ¢, It should
be noted that the minimum of functional F,(E, N, ¢,
¢,9) for fixed values of ¢,5and ¢p,sisrealized for acer-
tain function ¢(2), describing the director distribution
over the layer thickness and corresponding to the solu-
tion of the initial problem for an infinitely strong sur-
face anchoring with preset direction of alignment (¢,
and ¢,g) on the surfaces. This means that the equilib-
rium configuration of the spiral inthefield is defined by
the equations

9
095
9
092s

(Fs*+Fy(E, N, d:5059) = 0,
(6)
(Fs*+Fy(E, N, ¢15055) = 0.

The equilibrium value of free energy F(E) for a fixed
value of field E can be found by substituting the func-
tion ¢(2) as well as the quantities ¢,5 and ¢,¢ deter-
mined from Egs. (6) into expression (1). The system of
equations defining the equilibrium values of ¢,sand ¢,g
for afixed value of field E is given by equations con-
taining the surface anchoring potential Ws(¢,), the vol-
ume density of free energy F (E), and thefunction ¢(2)
defining the equilibrium distribution of the director in
the layer for the field E:

rAWs(9) dz -
O dsq) D¢:¢1s+ E:V(E)a-q—)[lq):qhs - O, (7)
CAWs(9)n o

dzy
u d(l) D¢ =b5s * %V(E)dq)[l‘b =05 -

Equations (6) and (7) solve, in the general form, the
problem of determining the effect of the electric field
on the director distribution in the layer of a smectic C*
of finite thicknessin the presence of surface anchoring.
It can be seen from system (7) that the decisivefactor in
the solution of the above-formulated problemisthedis-
tributions of the director in the layer and of the angles
of deviation of the director from the direction of align-
ment on the layer surfaces.

3. INFINITELY STRONG SURFACE ANCHORING

It follows from the previous section that the solution
of the problem of field distortion of the director distri-
bution in alayer of a smectic C* of finite thickness for
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infinitely strong anchoring at the surface is a stage in
the solution of the corresponding problem in the case of
finite surface anchoring forces. In this case, we must
retain only the volume term in formula (1) for free
energy, assuming that the orientations of the director on
both surfaces of the layer are preset, i.e., assuming that
angles ¢,5 and ¢,g are known. Then the conditions for
the minimum of free energy (1) are determined by the
same Euler equations as for abulk smectic C* [13]:

2

g,E
KQEWD +EPsing + —=—sin2¢ = 0. (8)

The first integral in this equation is the same as for a
bulk smectic C*:

[dq)D 2EP

Ca " Ky,

2
c0322¢ = C,, 9

¢-4 K ,,

where the constant C, has to be determined.

Thus, the equation for the function ¢(z) assumesthe
form

12

cos” 2¢}
2

(10)

Integration of this equation defines the function ¢(2) in
an implicit form with the help of the following relation:

z= iJ’[Cl+ Z—KEZ;Pcosq)

(11)

=12

€ E’
4 K22cos 2(])} d¢ + C..

Constants C; and C, in this relation are determined by
the equilibrium distribution of the director in alayer of
the liquid crystal for zero value of field E:

C=(¢1s—2¢zs)2’ c-—d
d 2(¢15—d2s)

where z = 0 corresponds to the middle of the layer; for
this reason, angles ¢,5 and ¢,g are measured not from
the direction of preferred orientation on the surface, but
from point z = 0 and, hence, have opposite signs. They
also contain an angleincursion associated with therota-
tion of the director in the bulk of the layer upon a
changein the coordinate along the zaxisfrom its center
to the surface. Consequently, if, for example, an inte-
gral number of half-pitches fit into the layer thickness

(12)
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in zero field, and the direction of alignment and surface
anchoring are identical for both surfaces, we obtain
C, = (217/py)? and C, = 0 (the pitch in the layer in zero
field in this case coincides with the pitch p, in a bulk
liquid crystal in zero field).

The function ¢(z, E) defined unambiguously in this
way describes the distortion of the structure of the
director in the layer upon field variations in the case
when the orientations of the director on the layer sur-
faces are independent of the field and also determines
the changes in the spiral deformation and the volume
component of free energy upon a change in the values
of ¢,5and ¢, It is appropriate to note here that for an
infinitely strong surface anchoring, the number N of
half-turns of the spira in the layer thickness does not
depend on the field and coincides with theinitial num-
ber of half-turnsin zero field. The action of the field in
this case is reduced only to the deformation of a helix
in the layer.

In order to solve the problem of the action of the
field on the director structure in alayer of aliquid crys-
tal for finite surface anchoring forces, we must substi-
tute the obtained functions of thefield ¢(z, E, ¢, $,9),
containing ¢, and ¢ .5 as parameters, into system (7),
which determines the angles ¢, and ¢, of deviation of
the director on the surface, which have equilibrium val-
uesfor each value of field E, and the deformation of the
helix in the bulk of the layer corresponding to these
angles. For finite anchoring forces, the number of half-
turns of a helix fitting into the thickness of alayer may
change under the action of the field (the helix is not
only deformed but also uncoiled). The above remark
concerning the independence of the number of helical
turns on the applied field for an infinitely strong surface
anchoring refersto an idealized model of asmectic C*,
which rules out the formation of defectsin the field of
the director. In actual experiments, the number of heli-
cal pitches fitting into the layer thickness may also
change with the applied field, but this occurs due to the
formation of adefect layer inthefield of the director in
the bulk, followed by the relaxation of the director field
toits equilibrium configuration.

4. PITCH JUMPS INDUCED
BY FIELD VARIATIONS

A general analysis of Egs. (1)—(12) showsthat asin
the case of temperature-induced variations of the pitch
in alayer of asmectic C* with surface anchoring [10],
the change in the helical pitch induced by field varia-
tions exhibits, along with smooth variations as a func-
tion of thefield, jumps at certain values of thefield (see
also [14]). At the points corresponding to a certain
value of the field, the number of turnsin the helix of a
smectic C* in a finite-thickness layer experiences a
jump. It was found that the points corresponding to the
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jumps do not coincide for opposite directions of field
variation. This means that we are dealing with a hyster-
esis similar to that observed long ago in the confocal
texture of asmectic C* [§].

The above formulas describe the pitch jump in the
mechanism of director slip over the surface through the
surface anchoring potential barrier. However, it was
observed in [4, 5] and confirmed theoretically in [10]
that the jump mechanism, i.e., the helical configura-
tions through which a transition between states differ-
ing in the number of turns over the layer thickness
occurs in actual experiments in a field, depend on the
parameter S§; = K,,/dW. For values of this parameter
larger than the critical value S, = 1/21, the mechanism
of transition is associated with the dlip of the director
through the surface anchoring potential barrier in the
layer, and the above formulas describe the real jump
process. For values of §; smaller than Sy, the form of
thejump is studied insufficiently and may be associated
with the dynamics of theliquid crystal and with the for-
mation of defects in the planar texture of a smectic C*
(these defects have aready been mentioned in connec-
tion with infinitely strong anchoring, for which §; = 0),
followed by their relaxation. For this reason, there
existsalimitation (in parameter S;) on the applicability
of the formulas derived above to real experiments. We
will confine our subsequent analysis of the behavior of
alayer of asmectic C* in an external field to the values
of parameter S, exceeding ., for which the mecha-
nism of director dip through the barrier of surface
anchoring forces “ operates.”

Sincethe jump (and hysteresis) phenomenaare con-
sequences of metastable states existing in the system, it
would be interesting to analyze the height of the barrier
between these states and its dependence on the field
strength. In analogy with the case of temperature hys-
teresis [10], the expression for the barrier height
between helical configurations differing by a half-turn
can be presented in the form

B(E, &) = Fo(E, ¢c, Su) —F(E, ¢(E), &), (13)

where ¢, is a certain critical angle of deviation of the
director on the surface, beyond which the helical con-
figuration in the layer changes jumpwise. (Here and
below, we consider for smplicity the symmetric prob-
lem under the assumption that the alignment directions
on both surfaces coincide; in thisproblem, b,5=—¢,5=
¢ and the orientation of the director on the surfaces of
the layer is defined by the same parameter ¢) The
equilibrium value of the angle ¢ E) of deviation of the
director on the surface is determined by the solution of
Egs. (7), while the free energy F(E, ¢4E), &), which
has the equilibrium value for agiven field E, is defined
by formula (1) after the substitution of the director dis-
tribution over the cell thickness determined from
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Egs. (6) and (7). The free energy F(E, ¢., §) is aso
determined by formula (1) upon the substitution of the
director distribution over the cell thickness determined
from Egs. (6) and (7) for field E under the condition
that the angle of deviation of the director on the surface
coincides with the critical value ¢.. In other words, the
free energy F4(E, ¢., §) contains the volume compo-
nent F(E, N, ¢¢) corresponding to an infinitely strong
surface anchoring for the orientation of the director cor-
responding to the critical angle. As expected, as the
angle ¢(E) attains the critical value, the barrier height
vanishes and a jumpwise transition between configura-
tions differing in the number of helical turns by a half-
turn occurs in the layer. In the case of temperature-
induced variations of the pitch, the critical angle is
determined only by the shape of the surface anchoring
potential [10]. It is clear from general considerations
that in the presence of pitch jumpsinthefield, thevalue
of the critical angle depends not only on the form of the
surface potential, but also on the magnitude and direc-
tion of thefield (if it is strong).

The value of the pitch py(E;) in alayer immediately
before its jump can also be expressed in terms of the
critical angle ¢, whose value is now determined by the
form of the anchoring potential and by the applied field.
Naturally, the value of the field E; for which a jump
takes place can be used for determining the angle
do(E;) of free rotation of the director in the absence of
surface anchoring as well asthe value of the helix pitch
p(E;) for thisfield E; in abulk smectic C* [13].

It was mentioned above that the critical anglein the
case of temperature-induced pitch variations is the
samefor al values of the parameters of the layer (prob-
ably except for the parameter specifying the form of the
surface anchoring potential), while the calculation of
the critical angle for anonzero field is a separate prob-
lem. It can only be stated beforehand that the value of
¢ for the symmetric situation under investigation does
not exceed 172. As in the case of temperature-induced
variations of the pitch [10], the condition for the attain-
ment of the critical valuein the system isthe vanishing
of the height of the barrier between helical configura-
tions in the layer differing by half-turn of the helix,
which is equivalent to the absence of the system resis-
tance at this point to the rotation of the entire config-
uration of the helix in alayer as awhole. This means
that the derivative of the equilibrium free energy with
respect to ¢,5 or ¢, vanishes for a fixed difference
$1s— ¢, for a certain value of field E;. Consequently,
the corresponding field E; and the value of ¢ can be
determined from the condition

O(Fs+ Fiv(E, N, ¢15,0,5)) = 0 (14)

under the additional requirement that the variation is
taken at the point ¢,5=—b,sfor ¢,5— P, = const = 2¢,
and that ¢gis determined by function ¢ (E)s.
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5. STRONG SURFACE ANCHORING

Generally speaking, the value of free energy (1)
depends not only on the magnitude of the applied field,
but aso on the mutual orientation of the alignment
directions on the surfaces of the layer and the direction
of the applied field. However, this dependence may be
very weak and can be neglected for a strong surface
anchoring and a large number of turns in the layer
thickness d. In order to demonstrate this, we divide the
integral in expression (1) into two regions: the internal
region containing an integral number of turns in the
helix and the surface region containing less than one
helix turn. The free energy of the interna part of the
layer attainsits minimum value for the helical configu-
ration realized in the corresponding problem for a bulk
smectic C* [13] and does not depend on the direction of
the field in the plane perpendicular to the helix axis. If
the volume free energy of the second (surface) regionis
much smaller than the surface free energy F, it can be
disregarded. The possibility of such disregard is deter-
mined by the condition

2
w €,E
—>EP+ ,
Po EP 161

(15

Naturally, in the case of very weak fields, condition
(15) holds in all cases. In order to estimate the upper
field limit for the fulfillment of condition (15), we can
put E = aE,, where E. isthe critical field of unwinding
of the helix, which is determined by the parameters of
the smectic C* [3, 13, 16], and a isacertain numerical
coefficient determined by condition (15). It should be
emphasized that when condition (15) is satisfied, the
deviation of the director from the preferred orientation
direction on the surface becomes universal and inde-
pendent of the details of the director field configuration
in the bulk of the layer.

It should also be noted that we presume the homo-
geneous state of the liquid crystal in the layer. For this
reason, domain walls in the layer of the liquid crystals
are disregarded in our analysis. In the approximation
formulated above, the angle of deviation of the director
from the direction of the alignment as a function of the
field (under the assumption that the orientation is the
same on both surfaces of the layer) can be calculated on
the basis of relations similar to the equations for the
temperature-induced variations of the director orienta-
tion [10]:

OWS(9) , 2Kz _
39 a0 =0u(p(EN) = 0

where we have omitted the subscript S on the angle of
deviation of the director on the surface, p(E) isthe pitch
in the field E in the bulk smectic C* [13], and ¢4(p(E))
is the angle of deviation of the director on the surface
from the alignment direction in the absence of anchor-
ing for a harmonic helix with pitch p(E).

(16)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

BELYAKOV, KATS

The values of the pitch py(E;) in alayer just before
its jJump can also be expressed in terms of the critical
angle ¢, whose value under the assumptions made here
are determined quite exactly by the form of the anchor-
ing potential (naturally, the angle ¢(E;) of freerotation
of thedirector; i.e., the helix pitch p(E;) in abulk smec-
tic C* for the jump field E;, can also be determined
from the value of E):

2d 2d

pd(EJ) N +2¢C/T[1 p(EJ) N +2¢O(Ej)/T[, (17)
where N is the number of half-turns of the helix in a
layer of thicknessd in theinitial equilibrium configura-
tion of the helix in zero field, E; isthe value of the field
corresponding to the pitch jump, and the angle of free
rotation of the helix for this value of the jump field is
given by

_ PWs(¢)/0¢r
do(Ej) = ¢+ 0 2WS, Oyoy. (18)

Thus, if we know the shape of the surface anchoring
potential and the behavior of the helix pitch in a bulk
smectic C* as afunction of the applied field, the above
relations determine the behavior of the pitch in afinite-
thickness layer as a function of the applied field pro-
vided that the field is weak and satisfies the inequality
(15). The same formulas can aso be used for solving
the inverse problem, namely, the reconstruction of the
surface anchoring potential from the experimentally
determined field dependence of the helix pitch in a
finite-thickness layer.

6. FIELD-INDUCED HY STERESIS
OF PITCH VARIATIONS IN A LAYER

In order to describe field-induced variations of the
pitch in alayer, we must specify the shape of the sur-
face anchoring potential Wg(¢) [20, 21]. However, even
without specifying the shape of this potential, we can
gualitatively determine the variations of the pitch in a
layer of a smectic C* asafunction of the applied field.
In order to analyze the field dependence of the pitch in
the layer and, in particular, to determine the values of
thefield at the points of pitch jump corresponding to the
change in the number of half-turns of the helix of the
smectic C* in the layer by unity, we present the results
of the corresponding analysis for a strong surface
anchoring for which we can assume that the critical
angle ¢. is determined by the shape of the surface
anchoring potential. The orientation of director on the
layer surface coincides with the alignment direction for
the field value such that an integral number of half-
pitches p(E) of the helix fitsinto the layer thickness for
abulk smectic C* in an externa field E; i.e., (E) = 0.
When the field deviates from this value, the values of
¢o(E) and ¢ (E) differ from zero. For a certain value of
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thefield, the free energies of two helical configurations
with a number of half-turns in the layer differing by
unity become equal, but the transition between these
configurations takes place not at this point on the field
scale, but upon a further change in the field due to the
presence of a surface anchoring potential barrier
between these configurations. Thus, a field hysteresis
emerges during the transition; i.e., the points corre-
sponding to the transition on thefield scale are different
for different directions of field variation. In actual prac-
tice, the pitch jump due to hysteresistakes place for the
field value determined by the condition ¢(E) = ¢,
where ¢, is the critical angle at which the jumpwise
changein the helix pitch takes place.

For example, in the case of strong anchoring, we can
readily conclude that the solution of Eq. (16) for ¢ isan
odd function of ¢,(E) and is bounded by the values ¢,
proceeding from the natural assumption that potential
Wy(9) isan even function of £¢, viz., theangle of devi-
ation of the director from the preferred orientation on
the surface of thelayer. (It should berecalled that in this
case, ¢o(E) and ¢(E) are measured from the direction of
alignment and might have different values depending
on the magnitude of field E.) For example, when angle
¢ attains one of the limiting values of ¢, the pitch of a
cholesteric helix in the layer changes jumpwise and
angle ¢ assumesanew valueasoin ajump. If the point
of the jump corresponded to the angle ¢q(E;,) of free
rotation of the director, the value of thisangle determin-
ing the value of ¢ after the jump is equal to ¢q(E;.) —
102, but in anew helical configuration with the number
of half-turns in the layer thickness differing by unity
from the previous value. If the field variesin the oppo-
site direction, the pitch jump occurs when angle ¢
atains the other limiting value (—¢.) and the corre-
sponding value of free rotation angle is ¢q(E_) =
—do(Ej+) (where E;_is the field value corresponding to
the jump in this direction of field variation). This rela-
tion leads to the expression connecting the values of
pitches of the helix in thefield for abulk smectic C* at
the points corresponding to the pitch jump in the field
for opposite directions of its variation [5]:

1,1 _N-12
P(E;+) p(Ej) d '
o lnp 1
OhE Y RED (19
_ {OWs($)/9¢ ) 4 /-1
S Uy Dy, 2

where N is the number of half-pitches in the layer for
the initial configuration of the helix (before the jump
for thefield value E;, and after the jump for field values
E.).

]
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The fist relation from (19) is quite universal and
does not depend in any way on the surface anchoring
force at first glance. Infact, the values of thejump fields
E;. and E;_ depend on the surface anchoring, to be more
precise, on the parameter S;. This expression itself
determines the relation between the values of thefields
of the pitch jumps for opposite directions of field vari-
ation, i.e,, thefield hysteresisin pitch variations, which
does not depend on the specific shape of the surface
potential, and possesses predictability which can be
verified experimentally. Namely, if the value of the
pitch is measured experimentally at the jJump point for
a certain direction of field variation in the case of a
strong surface anchoring, the value of the pitch at the
jump point for the opposite direction of field variation
can be calculated using formula (19) and subjected to
experimental verification. In particular, it follows from
formula (19) that in the limit of vanishingly weak sur-
face anchoring (i.e,, for §, — E;_), the value of the
pitch at the jump point is d/(N — 1/2) as expected [4],
and hysteresisis absent. The same formulaimplies that
as the layer thickness increases, the hysteresis loop
becomes smaller (to be more precise, hysteresis
decreases upon an increase in N for afixed §)).

The results obtained in this and in the previous sec-
tion show that, as in the case of temperature-induced
variations of the pitch, the variations of the helix in a
layer inweak fields (for strong anchoring) are universal
by nature, which is manifested in that their form
depends not on the separate parameters of the sample
under investigation, but only on one dimensionless
parameter S;.

7. PITCH VARIATION
IN THE RAPINI MODEL POTENTIAL

In the Rapini model (see, for example, [3, 20, 21]),
the surface anchoring potential should be substituted
into formulas (1) and (2) in the form Wg¢) =
—-(WI2)cos?’¢, the critical angle being ¢. = /4. In the
case of strong anchoring, the relation (16) determining
the equilibrium value of the angle ¢(E) of deviation of
the director on the surface in an externa field assumes
the form

4S4[9(E) —do(p(E))] +sin2¢(E) = 0,  (20)
where parameter S is defined as
Sy = Ky/dW. (21)

Expression (13) for the barrier assumes the form
B = 25/ Jsn6o(p(E) ~ 0o(P(E)) |
2 (22)
+ o’ o (p(E)) - (SN ZHRE) 2
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Using formulas (16) and (20), we can also write expres-
sion (22) intheform

BC = 25/ Fs0noo(p(E)) ~ 0o(P(E)) |

x| Z5009o(P(E)) + §(P(E)) - 20o(P(E)) |  (23)

+ 05" (P(E)) - 3.

The calculations based on formulas (20)—(23) allow
us to determine the angle ¢ (E) of rotation of the direc-
tor on the surface of the layer in the presence of anchor-
ing as a function of the angle ¢(E) of free rotation of
the director on the layer surface, i.e., the angle of rota-
tion in the absence of surface anchoring. In particular,
we can determine the values of various quantities at
jump points. For example, the angle of free rotation of
the director at ajump point is given by

1
48y
and the value of the helix pitch corresponding to ajump
in abulk smectic C* is defined by the formula

_ 2d
P(&) = Noia—temsy

Po(Ej) = ¢c+ (24)

(25)

It follows from relation (24) that the interesting case
inwhich ¢(E;) = ¢,(E;) = 0 after ajump, i.e., anew heli-
cal configuration with a different value of N corre-
sponds to the minimum of the free energy for the new
value of N, correspondsto S, = 1/1t Inthis case, the dif-
ference in the angles formed by the director on the sur-
face with the direction of alignment before and after the
jump amounts to 174. The maximum value of this dif-
ferenceisequal to 1V2 and isrealized in thelimit of van-
ishingly weak surface anchoring, i.e., in the limit of an
infinitely large value of S;.

The values of helical pitchesin alayer for the sam-
pleimmediately before ajump and after it can easily be
determined from the above formulas. For example,
when the field in a layer with N half-turns of the helix
increases, the values of the pitch before and after the
jump are given, respectively, by the formulas

2d 2d

v 77 L R N T O G

where ¢; is the angle of deviation of the director after
the jump.

As the field decreases, the corresponding values of
the helical pitchesin the layer are given by

2d 2d

b= rmz P T NvTegm @0
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Thesecond relation in (19) for thefield hysteresis of
the pitch assumes the form

qQ 1 1 g_ 1
Ih(Ej.) p(EH  2mSy

The results of calculations of the pitch and the angle of
deviation of the director from the direction of aignment in
the strong-anchoring approximation formulated above
(under the assumption that the directions of aignment
coincide on both surfaces of the layer) for the Rapini
anchoring potential will be presented in the next section.

(28)

8. RESULTS OF CALCULATIONS

In order to illustrate quantitatively the general anal-
ysisof the behavior of ahelix in alayer of asmectic C*
in the presence of surface anchoring forces, which was
carried out in the previous sections, we consider the
results of numerical calculations in a situation which
simplifies genera relations to the maximum possible
extent. It was noted earlier that in the general case, the
solution of the problem depends on a large number of
parameters determining the dependence of free energy
(1) not only on the magnitude of the applied field, but
also onthe mutual orientation of the directionsof align-
ment on the surfaces of the layer and on the direction of
the applied field. Consequently, in order to simplify the
presentation of the results of calculations, it is expedi-
ent first to confine our analysisto the case with the min-
imum number of computational parameters and then,
after determining general regularities, to consider a
more complicated problem, introducing additional
parameters. It was found that the simplest caseisthat in
which the directions of alignment and of the surface
anchoring force coincide on both surfaces of the layer,
the number of turnsin the layer thicknessis quite large,
and the surface anchoring is quite strong so that relation
(15) holds in alarge range of electric field values. It is
also convenient to assume (athough this assumptionis
not of afundamental nature) that in zero field, the direc-
tor on both surface is oriented along the direction of
alignment and the pitch variation in an external field for
abulk smectic C* can be described by the analytic for-
mula (5) from [13]:

P(E) = po/[1—(E/Ep)] ", (29)

where E, = 41iP4/€,,. It should be noted that relation (29)
isvalid for the so-caled intermediate (between dielec-
tric and ferroelectric) mode of helix unwinding in the
field, for which (Pgpg)? = e K.

Under the limitations formulated above, the field
dependences of the pitch in alayer and of the deviation
of the director from the alignment directions were cal-
culated using the Rapini model potential on the basis of
the formulas derived in the previous section. We
assumed that N = 10; i.e., fiveturnsof ahelix fit into the
layer thicknessin zero field, and §; = /210
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Fig. 1. Dependence of the angle of deviation of the director
on the surface from the aignment direction on the field
(reduced to its critical valuefor increasing field) (S = 1/2rt

theinitial number of half-turnsin zero field isN = 10).

o \\\\ |
I

| |
0 0.2

-0.

(9,

Field

Fig. 3. Dependence of the angle of deviation of the director
on the surface from the alignment direction on the field
(reduced to its critical value) for both directions of field
variation (§ = 1/2rt, the initial number of half-turnsin zero

field isN = 10).

Figure 1 shows the field dependence of the angle of
deviation of the director from the alignment direction
for afield increasing from zero. After the attainment of
the critical value, the angle of deviation undergoes a
jump and afurther increasein thefield again leadsto its
continuous variation until the critical value of theangle
isattained. It isknown from the solution of the problem
for a bulk smectic C* [11-13, 16] that the helix pitch
increases with the field; consequently, the angle of
deviation of the director from the alignment direction
becomes negative. Figure 2 showsasimilar field depen-
dence of the angle of deviation of the director, but in a
decreasing field. Asin an increasing field, the angle of
deviation in the decreasing field experiences jumps
after attaining the critical value. However, the angle of
deviation in this case is positive except in the initia
region of the decreasing field. Another characterigtic fear
ture of Fig. 2 isthat in zero field the angle of deviation
of the director does not assume the initial zero value
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Fig. 2. Dependence of the angle of deviation of the director
on the surface from the aignment direction on the field
(reduced toiitscritical value for decreasing field) (S = 1/2rt,

theinitial number of half-turnsin zero field isN = 10).
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Fig. 4. Dependence of pitch (normalized to itsinitial value)
on the field (reduced to its critical value) in an increasing
field (§ = /2 theinitial number of half-turnsin zero field

isN=10). The solid curve depicts the corresponding depen-
dence for abulk smectic C*, described by formula (29).

from which its variation started in the increasing field
(see Fig. 1). This is a consequence of the fact that the
helical configurationin zero field in the present case has
anumber of half-turns over thelayer thicknesswhichis
smaller by unity. Thisisamanifestation of bistability of
the helical configuration in the field.

Figure 3 shows the field dependences of the angle of
deviation of the director on the surface for both directions
of field variation. This figure demonstrates the hysteresis
of the jJumpsin the angle of deviation of the director (and
pitch) in alayer in the presence of surface anchoring. The
jump from aconfiguration with N haf-turnsin alayer toa
configuration with N—1 half-turnsoccursat ahigher value
of the field than the reverse transition from the configura-
tion with N — 1 half-turns in a layer to that with N half-
turnstaking place in the decreasing field.

Figure 4 shows the results of calculating the field

dependence of the helix pitch in a layer with surface
anchoring in an increasing field and the variation of the
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Fig. 5. Dependence of pitch (normalized to itsinitial value)
on the field (reduced to its critical value) in a decreasing
field (§y= /2 theinitial number of half-turnsin zero field
isN =10).
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Fig. 6. Dependence of pitch (normalized to itsinitial value)
on thefield (reduced to its critical value) for both directions
of field variation (§; = 1/2rt, theinitial number of half-turns
in zero field is N = 10). The solid curve depicts the corre-
sponding dependence for a bulk smectic C*.
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Fig. 7. Dependence of the height of the barrier (referred to
the depth of anchoring potential) between configurations
with N = 9 and 8 on the field (normalized to its critical
value) in an increasing field (right branches of the curves)
and of the barrier between configurations with N =8 and 9
(Ieft branches of the curves) in adecreasing field (§; = 1/2m,
2/21, 5/21, and 10/21t (from top to bottom); theinitial num-
ber of half-turnsin alayer isN = 10).
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pitch with the field in a bulk smectic C* for the values
of parameters ensuring the applicability of formula
(29). This figure demonstrates the pitch jumps in the
layer as well as the fact the pitch in the layer in an
increasing field remains smaller than the helix pitchin
abulk smectic C* for the same value of thefield. Fig-
ure 5 shows the same dependence in adecreasing field.
In this case, the pitch in thelayer in the decreasing field
remains larger than the helix pitch in abulk smectic C*
for the same value of the field (except in the initia
region of field variation).

In Fig. 6, the results of calculation of the pitch vari-
ation are presented for both directions of field variation
for a layer with anchoring and for a bulk smectic C*.
This figure demonstrates the jumpwise nature of pitch
variations in the field for a layer (against the back-
ground of the continuous variation for a bulk crystal)
and the hysteresis of pitch jumps as well as bistability
of the helical configuration in alayer which were con-
sidered above.

Figure 7 shows the results of calculations of the bar-
rier height between the helical configurations with the
numbers of half-turns over the layer thickness differing
by unity for various values of the parameter S; in the
case of increasing (right slope of the curves) and
decreasing (left Slope) values of the applied field. The
figure demonstrates a hysteresis for the transition
between the configurations for opposite directions of
the field variation aswell as the dependence of the hys-
teresis width (the distance between the points corre-
sponding to zero values of the barrier height for oppo-
site directions of field variation) on the value of param-
eter S;. The larger the value of this parameter, the
smaller the hysteresis width.

9. CONCLUSIONS

The above analysis of the behavior of a helix of a
smectic C* in a finite-thickness layer with surface
anchoring forces in an external electric field revealed
the characteristic features of the effect such asthe exist-
ence of bistable states in the helical configurations of
the smectic C*, thejumpsin the values of parameters of
the smectic C* in alayer and their field hysteresis at the
points of these jumps for opposite directions of field
variation. Naturally, we did not touch upon many
details of these dependences in specific experimental
situationsin view of thelarge number of the parameters
of the problem in the general case. Our numerical cal-
culations were made under the simplest assumptions
concerning the parameters of a smectic C* layer. Nev-
ertheless, the results presented in this article make it
possibleto predict the behavior of asmectic C* layer in
an electricfield in situations free of the limitations used
alsoin our calculations.

For example, the inclusion of the dependence of the
free energy of the layer on the direction of the applied
field relative to the direction of the alignment on the
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surface leads to the dependence of the angle of devia
tion of the director from the preferred orientation at the
jump points on the direction of the applied field. This
means that, for example, that for the above-mentioned
dependence, the angles of deviation of the director at
the jump points for the field perpendicular to the direc-
tion of the alignment is smaller than for the field paral-
lel to the direction of alignment (see Fig. 1). Theinclu-
sion of the field dependence of the critical angle in the
same figure would lead to a change in the angles of
deviation of the director at jump points with the field
instead of remaining unchanged asin Fig. 1. The corre-
sponding changes, which can be easily predicted qual-
itatively, will also be manifested in other figures.

It is also clear that the predominance of the dielec-
tric or ferroelectric mechanisms of helix unwinding in
the field (or, which is the same, the deformation of a
simple helix by 1= and 2resolitons) would also change
the pattern of the phenomenon analyzed above. For
example, in the case of the ferroel ectric mechanisms of
deformation of ahelix inthefield, strictly oppositefield
orientation leads to different deformations of the helix
of asmectic C* in contrast to the dielectric mechanism
in which the sign reversal of the field does not change
the deformation of the helix. For this reason, the strong
surface anchoring approximation used in the above cal-
culations, which alows one to disregard the direction
of the external field, “works’ better when the dielectric
mechanism of helix unwinding dominates.

Asin the case of temperature-induced variations of
the pitch [10], thermal fluctuations of director orienta-
tion will also affect the hysteresis of jumps (cause its
decrease). The displacement of the jump point can be
estimated, for example, with the help of Fig. 7, depict-
ing the dependence of the height of the barrier between
the helical configurations on the applied field. In the
presence of fluctuations, ajump occurs not at the point
of barrier vanishing, but at the point at which the barrier
height becomes equal to temperature. However, it fol-
lows from general considerations that away from the
jump points, the effect of fluctuations for the field hys-
teresis under investigation is weaker than in the case of
the temperature hysteresis since the applied field sup-
presses orientational fluctuations. The last statement
refers only to the range of parameters S, considered by
us here and exceeding the critical value Sy, for which
the mechanism of the director dlip on the surface
through the anchoring potentia barrier. For smaller val-
ues of the parameter S, the fluctuations of the director
may play a certain role in discrete transitions of the
helix between configurations with different numbers of
turns fitting into the layer thickness. Consequently, in
order to ensure the optimal conditions for the experi-
mental observation of pitch jumpsinasmecticsC* ina
field in accordance with the mechanism of the director
slip over the surface through the potential barrier, it is
expedient to use the layers of liquid crystals for which
parameter S; exceedsits critical value only dlightly.
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The peculiarities revealed in the variation of the
helix in a smectic C* in alayer are useful both for an
analysis of the physics of liquid crystal state (e.g., for
reconstructing the form of the surface anchoring poten-
tial from the results of measurements) and for applica-
tions (this especially refers to bistable states of helical
configurations of a smectic C*, jumps in the values of
liquid crystal parametersin the layer, and their hystere-
sis. Asin the case of temperature-induced pitch varia-
tions in the layer [4, 5], optical methods of investiga-
tions [22—24] appear the most suitable for studying the
effects considered here.

Our analysiswas carried out for static electric fields
with an orientation perpendicular to the helical axis of
asmectic C*. However, ahelix in afield exhibitsasim-
ilar behavior for other orientations of the static field as
well asfor varying fields and amagnetic field. It should
also be noted that we assumed that the only conse-
guence of the external field applied to a smectic C* is
the deformation of its helix. However, it iswell known
[16] that other structural characteristic of liquid crystals
(e.g., the tilt angle of molecules in a layer) may aso
vary in strong fields. However, an analysis of these
effects is beyond the scope of this article.
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Abstract—The pressure dependences of the electrical resistance and thermal electromotive force of lithium
were measured at room temperature. The results substantiated the occurrence of a phase transition caused by
increasing pressure (6.7 GPa). A phase transition was detected when pressure was decreased (6.4 GPa). Tem-
perature effects on the pressures of these transitions were studied near room temperature. At pressures above
4 GPa, the pressure dependences of thermal electromotive force and of the velocity of ultrasonic shear waves
in BCC lithium exhibited anomalies. The suggestion was made that applying pressureincreased the role played
by electron-phonon and phonon-phonon interactions in lithium. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Much work, both theoretical and experimental, has
been done to study the lightest alkali metal, lithium.
L ess attention has been given to pressure effects on the
physical properties of lithium; in particular, data on the
phase diagram are obvioudly insufficient. At room tem-
perature, a phase transition in lithium was detected and
interpreted asthe BCC — FCC transition [1]. Various
authors reported different pressure values for this tran-
sition; the transition was only observed by various
methods when pressure was increased (direct transi-
tion). Electrical resistance jump measurements gave
7.0 GPa[2, 3], the values obtained in X-ray diffraction
studies were 6.9 =+ 0.4 [1] and 7.5 GPa [4], whereas
according to the Knight shift data [5], the transition
pressure equaled 6.3 GPa [5].

It was shown in several works that the temperature
of the martensite transition observed earlier at low tem-
peratures near 77 K [6-8] increased in the pressure
range 02 GPa [9-11]. The suggestion was made that
this transition was similar in nature to the transition at
room temperature and high pressures[9].

Theoretical calculations showed that the energies of
all lithium phases with closely packed structures (BCC,
FCC, HCP, and 9R) were close to each other [12, 13]. It
is therefore not surprising that the phase transition at
room temperature was accompanied by a volume
change as small as 0.25% [1] (0.16% [4]), and at low
temperatures, the transition did not involve any volume
jump [9]. Ultrasonic studies of lithium showed that the
phase transition at both low and room temperatures
were preceded by a strong softening of shear character-
istics [9, 14] related to changes in the low-frequency
phonon spectrum region.

Studies of the kinetic characteristics of lithium such
as electrical resistance and thermal electromotive force
(emf) at pressures up to 9 GPa and a comparison of the
results with the ultrasonic data on the velacity of trans-
verse wave propagation allow usto gaininsight into the
state of the crysta lattice before the phase transition
and can be used in theoretical work. Exact data on the
phase transition pressure parameters at room tempera-
ture would provide a basis for further studies of the p—
T phase diagram of lithium at high temperatures.

2. EXPERIMENTAL

Electrical resistance and therma emf were mea
sured on a Toroid-type high-pressure apparatus [15],
which could operate during increasing and decreasing
pressure; in thisrespect, our procedure was different from
those mentioned above [2, 3]. Another distinguishing fea:
ture of our measurements was virtually hydrostatic condi-
tionsand the use of comparatively large samples, wheress,
for instance, in [2], measurements were performed on
anvilsand with very thin (about 0.3 mm) samples, which
might distort the behavior of electrical resistance dur-
ing the phase transition in lithium.

Pressure was created in a cell made of Teflon about
1 cm® by volume. The medium that transmitted pres-
sure to the sample was liquid polyethylenesiloxane.
Thisliquid proved to be as inert toward lithium as ker-
osene. A microscopic examination of the sample before
and after applying pressure revealed no changes on the
surface. An LE-1 lithium sample containing 99.0% Li
was prepared in a neutral medium in the form of a cyl-
inder 7 mm high and about 2 mm in diameter. In most of
the experiments, pressure was determined from the known
load dependence of pressure. This dependence was mea:
sured in several experiments using a two-section ampule
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Fig. 1. Electrical resistance of lithium during (1) increasing
and (2) decreasing pressure, T =293 K.

[16], one section of which contained amanganin pressure
gauge and abismuth referencein a4 : 1 methanol—ethanol
mixture. The procedure that we used gave an absolute
pressure measurement error not exceeding 0.1 GPa (the
relative error of a single measurement in one experi-
ment did not exceed 0.01 GPa).

Electrical resistance was measured by the four-point
scheme.

In thermal emf measurements, the bottom of the
sample was brought in contact with the copper lid of an
ampule, which served as agood thermostat, and a plane
heater was mounted on the top end of the sample. The
temperature was measured by copper—constantan ther-
mocouples 0.1 mm in diameter; the temperature differ-
ence (3-5°C) at the points of thermal emf measure-
ments was maintained constant during pressure varia-
tions.

The velocity of ultrasonic shear wave propagation,
Vi(p), was measured in a chamber of the type “toroid
with a plane bottom” by the pulsed ultrasonic method
at 3-5 MHz frequencies [14]. To circumvent the diffi-
culties arising from the large difference of the wave
resistances of the chamber material (the chamber was
made of aVK-6 metal-ceramic hard aloy) and lithium
and from acoustic disturbances caused by the geometry
of the working cell, the usual diameter of the chamber
wasincreased to 16 mm and the sample was surrounded
by a2 x 2 mm? “belt-filter,” which was amixture of par-
affin withVK-6 crumbs. A sample about 7 mm high and
16 mm in diameter was placed into a catlinite container
and, at the ends, protected from contact with the mate-
rial of the chamber by copper caps. Pressure was in each
experiment determined from electrical resistancejumps of
reference materials, namely, bismuth, thallium, and bar-
ium. Reference wireswere situated vertically at the border
between lithium and catlinite.
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3. RESULTS AND DISCUSSION

Theresults obtained in studying the pressure depen-
dence of the electrical resistance of lithium R(p) were
quite reproducible from one experiment to another.
Some measurements were taken in a two-section
ampule, that is, in the presence of the manganin pres-
sure gauge and bismuth reference. The results are
shownin Fig. 1. Theelectrical resistance of lithium was
found to increase linearly as pressure grew to 6.7 GPa.
The phasetransition from the BCC to the FCC structure
was accompanied by about a 5% decrease in electrical
resistance. Further, in the high-pressure phase, resis-
tance continued to increase. The very large direct tran-
sition-induced electrical resistance jump reported in [2]
was, we believe, caused by a methodological error. In
an anvil-type high-pressure chamber used in [2], sam-
ples have very small dimensions. When a two-point
scheme of resistance measurements is used and the
contacts have a strong tendency to oxidize, the instru-
mental effects are fairly difficult to take into account.
Their subtraction from the total measured resistance
can result in underestimating the fraction of resistance
due to the sample proper and, therefore, in overestimat-
ing the relative decrease in resistance due to the phase
transition. This methodologica difficulty has been men-
tioned in[3].

The pressure dependences of lithium resistance at
various temperatures alowed us to determine the
parameters of the BCC ~—— FCC transitions. At 20°C,
the pressure of the direct trangtion in lithium was
p=6.7 £ 0.1 GPa and the pressure of the onset of the
reverse transition was p = 6.4 £ 0.1 GPa. We obtained
different R(p) isotherms at 15 to 25°C, which allowed
us to estimate the slope of the boundaries of the direct
and reverse transitions in the p—T diagram; this slope
equaled 0.03 GPa/K. This result leads us to conclude
that the spread of the literature data on the direct phase
transition pressureis caused not only by different errors
of different procedures and apparatus but also by the
strong temperature dependence of the trangition onset
pressure. Extrapolating the phase transition boundary
from room to low temperatures with the use of the
obtained coefficient, 0.03 GPa/K, yields the martensite
transition coordinates reported for lithium in [6, 9].

Therma emf measurementsunder pressure, Yp), were
performed in a one-section ampule. A bismuth pressure
reference was placed near the sample. The load depen-
dence of pressure was determined preiminarily as
described above, with the use of a manganin pressure
gauge placed together with the bismuth reference in a
hydrostatic mixture of acohols (methanol—ethanal). Fol-
lowing [17], pressure-induced changes in the calibration
of the copper-constantan thermocouple were assumed
to beinsignificant.

The thermal emf of lithium was measured with ref-
erence to the thermal emf of copper, which equaled
1.8 uV/K and insignificantly changed as pressure var-
ied. The obtained pressure dependence of the absolute
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thermal emf of lithium is shown in Fig. 2. The thermal
emf of BCC lithium increased as pressure grew up to
the onset of the phase transition, and the phase transi-
tion caused a sharp decrease in its value. The §p)
dependences measured while increasing and decreas-
ing pressure coincided, which is once again evidence of
high hydrostatic pressure conditions in our experiments.
Some spread of the data at pressuresup to p =2 GPacan
be explained by methodological difficulties of mea
surements at low pressures in a Toroid-type chamber.
Nevertheless, extrapolating the pressure dependence of
lithium thermal emf from pressures above 2 GPato the
atmospheric pressure gave § = 10.5 uV/K, which
equal ed the handbook value for normal conditions[18].
An anomaly was regularly observed in the §(p) depen-
dence at p > 4 GPaduring both increasing and decreas-
ing pressure. A substantial anomaly in this pressure
region was also observed in the nuclear magnetic reso-
nance study [5] of the pressure dependence of the self-
diffusion coefficient of lithium.

The results obtained in measuring the velocity of
ultrasonic shear waves in lithium at room temperature
and pressures up to 7 GPa, V(p) [9], are shown in Fig. 3.
The V{(p) dependence has some peculiarities. The veloc-
ity changed insignificantly in the initial region and
remained virtually constant in the pressure range 1.5—
2.5 GPa. Between 4 and 6.4 GPa, it decreased sharply and
then began to increase; that is, above 6.4 GPa, a new,
“harder,” phase was formed. It follows from the cacula
tions performed in [14] that, before the BCC — FCC
transition, the lithium lattice loses stability toward

shear in the {110} plane in the [110] direction under
the action of pressure. This should result in a decrease
in the ¢' = (¢c;; — ¢;»)/2 elastic constant and manifest
itself by anomalies of the V,(p) dependence for poly-
crystalline lithium. This is exactly what follows from
the character of the pressure dependence of the velocity
of ultrasonic shear waves obtained in our experiments.
Note in addition that a decrease in V,(p) at p > 4 GPa
correlates with anomalies of the §(p) dependencein the
same pressure range.

A comparison of the R(p), S(p), and V,(p) depen-
dences showsthat sharp changesin thekinetic and elas-
tic physical properties of lithium, which are clearly
caused by the phase transition, are observed at almost
equal pressures. Some differencein the recorded phase
transition pressuresislikely to be caused by the temper-
ature dependence of the transition and certain devia-
tions from hydrostatic conditions in ultrasonic experi-
ments.

The thermal emf of lithium and other alkali metals
at pressures up to 0.3 GPa was very accurately mea-
sured in [19]. The thermal emf of lithium equaled
S = 10.6 pV/K at atmospheric pressure and dlightly
decreased as pressure increased (to S=10.5 pV/K at
p = 0.3 GPa). As mentioned, the accuracy of Smeasure-
ments below 2 GPawas fairly low in our experiments.
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Fig. 3. Velocity of transverse ultrasonic waves in lithium at
room temperature during increasing pressure.

Our data are therefore difficult to compare with those
reported in [19]. It can only be noted that there are no
discrepancies exceeding experimental errors.

The data of ultrasonic measurements[14] were used
to abtain the pressure dependence of lithium compres-
sion a p < 2.5 GPa and room temperature. The depen-
dence was described by the polynomial

g— = 0.999 —0.0792p + 0.00729p°,

0

where v, is the volume at atmospheric pressure. Based
on these results, we obtai ned the dependence of thermal
emf

Z = (S-9)/S,

where §) isthethermal emf at atmospheric pressure, on
the volume of lithium under compression to 2.5 GPa
(Fig. 4). The Z(v) dependence was constructed by aver-
aging the experimental p) values (see Fig. 2).

According to the theoretical calculations [19] based
on the model of free electrons, Z should decrease as
pressureincreases, which isat variance with the dataon
lithium even at small pressures. A sharp increase in Z
above 1.5 GPaand asubstantia decreasein the velocity
of ultrasonic shear wave propagation at pressures much
bellow the transition pressure are evidence that the
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Abstract—A mechanism for the occurrence of heavy-fermion states in non-Fermi-liquid (NFL) metals with
f-shell impurities is proposed. The impurity with an unstable valence is suggested to have an energy spectrum
consisting of a deep f-level and quasicontinuum states (narrow band) in resonance with the Fermi energy.
Depending on the impurity concentration, the single-site NFL states are generated by the two-channel Kondo
scattering for thelow concentration (the Kondo regime) or by the screening interaction for arelatively high con-
centration (the X-ray-edge regime). It is shown that the NFL states are unstable against the scattering of the
NFL excitations by electron states of the narrow band. This scattering generates additional narrow Fermi-liquid
(FL) resonances at/near the Fermi level in the Kondo regime and in the X-ray-edge regime. The mixed-valence
states are shown to be induced by new FL resonances. The mixed valence mechanism islocal and isrelated to
theinstability of single-site NFL states. The FL resonances lead to the existence of additional energy scalesand
of pseudogaps near the Fermi level in the mixed-valence states. They also considerably narrow the region with

anearly integer valence. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

At present, intermetallic compounds with the f-shell
atoms Ce or U are an important class of aloysin which
non-Fermi-liquid (NFL) behavior is observed (see [1, 2]
for areview). The anomal ous temperature dependences
of their linear specific heat, magnetic susceptibility, and
resistivity strongly support the NFL scenario. The Ce
and U ions carry magnetic dipole or el ectric quadrupole
moments that interact with the spins and charges of the
conduction electrons, thereby giving rise to the Kondo
effect and the NFL behavior at low temperatures. The f-
electron compounds of interest have been aloyed with
nonmagnetic elements (with a few possible exceptions)
[2, 3]. The thermodynamic measurements evidence in
favor of the quadrupole two-channel Kondo model
introduced in [4]. We note that according to photoemis-
sion spectra, the U-based compounds look much more
like the mixed-valence ones (see references in [5, 6]).
Recently [7], it was shown that the temperature behav-
ior of the specific heat and magnetic susceptibility is
governed by nonuniversal power-law dependencesfor a
relatively high concentration of the f-shell atoms.

Taking the foregoing into account, it would be
highly desirable to have the unified treatment involving
the explanation of two essential facts:

(1) the coexistence of the single-ion two-channel
Kondo effect and the mixed-valence state;

(2) the possibility of nonuniversal power-law energy
dependences on the parameters.

It should be noted that the role of instabilities of the
NFL states in forming the heavy-fermion (HF) states

T This article was submitted by the author in English.

has not been completely clarified. At the same time, it
iswell known that the single-ion NFL state is unstable
against any perturbation that eliminates the orbital or
spin degeneracy of the impurity. Two instability mech-
anisms are presently known in the two-channel quadru-
pole and orbital Kondo model. In [4], the instability is
induced by the Jahn-Teller distortions of the impurity
site. The second mechanism [8] attributes the instabil-
ity to the channel anisotropy. As shown in [9] and [10],
there occurs anew physical realization of the two-chan-
nel quadrupole Kondo model and of the NFL state
instability against the scattering generated by the tunnel
process in the doped size-quantized structures. The
physical reason of the instability is the existence of
additional narrow Fermi-liquid (FL) resonancesinduced
by tunneling.

For a metal containing orbitally degenerated deep
impurity states, it was shown in [11] that the NFL state
can be unstable against the scattering of the multiparti-
cle excitations having different z projections of the qua-
drupole moment.

In this paper, we propose a new mechanism for the
occurrence of HF statesin NFL metals with the f-shell
impurities. We assume that a specific feature of atoms
with an unstable valence is an energy spectrum that
contains two unfilled shells. the orbitally degenerate
deep f-level states and the atomic quasicontinuum
states (narrow band) near the Fermi level. As shown
below, the scattering of the NFL excitations by atomic
quasicontinuum states, which is potential in its charac-
ter, generates additional FL resonances near the Fermi
level. Along with the NFL excitations, new FL reso-
nances form an additiona branch of heavy-fermion states
withthe characteristic energy that ismuch smaller than the
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A-region

B-region

Fig. 1. Theinitial electron spectrum. A and B are the impu-
rity region and the conduction band, respectively, U is the
Hubbard repulsion. The A-band consists of the impurity
states in resonance with the Fermi level.

width of the NFL resonance (eveninthe case of theKondo
effect). New FL resonances generate the mixed-valence
gate. The heavy-fermion states have alocal origin within
the treatment proposed bel ow.

In conclusion, we briefly discuss the temperature
transitions within the proposed framework and the role
of single-site NFL fluctuations in the “concentrated”
heavy-fermion systems.

2. THE IMPURITY MODEL
AND THE SCATTERING PROBLEM
FOR AN INTERACTING SYSTEM

2.1. Itiscommonly known that an ion with unfilled
d- or f-shells partially retains its atomic propertiesin a
crystal. Thisis possible due to the presence of acentrif-
ugal barrier separating the region A in which the atomic
forces act from the region B where the lattice potential
acts. The height of the barrier is comparable to other
characteristic energies of the system, i.e.,, the Fermi
energy and the interatomic interaction energy. The typ-
ical energy spectrum of lanthanide and actinide ions
with an unstable valence seems to contain quasilocal
deep f-levels together with the quasicontinuum states
under the centrifugal barrier. The atomic quasicontin-
uum may be formed by the d-shell states being in reso-
nance with the conduction band states at the Fermi
level. A similar impurity model with a highly degener-
ate f-level was also considered in [12]. Theinitial elec-
tron spectrum before mixing is depicted in Fig. 1.

The Hamiltonian of the system is given by

H=Hp+Hg+ Hpg, (2.1)

where Hg and H, are the Hamiltonians of the conduc-
tion band and of the impurity region. The Hamiltonian
H g describes the hybridization H,, and the scattering
H,. between electron states of the conduction band and
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the impurity region. The Hamiltonian of the impurity
region is given by

Ha=Ho+ Ho+H,
where H{ is the Hamiltonian of the deep level, H|, is

the Hubbard repulsion, and Hg is the Hamiltonian of

the narrow A-band. In what follows, we do not consider
the intraband interactions, assuming that they are weak
compared to the interaction between the deep level and

the band electrons. Therefore, Hg isthe Hamiltonian of

the noninteracting d-electrons. It is also assumed that
the d- and f-shells are not mixed in the impurity region.
We start from the low-lying electron configuration of
the isolated ion and then take the mixing with the con-
duction electronsinto account in the spirit of the Ander-
son model with two unfilled shells.

We consider the situation where the deep level isal 3
quadrupole (non-Kramers) doublet of the crystd field
interacting with the ™ g quartet of the conduction electrons.
However, we emphasize that the mechanism proposed
here can be applied for al compounds in which the sym-
metry alowsthe local quartet of conduction statesto cou-
ple to the two-fold degenerate level and an additiona
potential scattering of the multiparticle excitations exists.

For U-based compounds, the I"; doublet in the 5f2
configuration is formed as aresult of splitting the mul-
tiplet with the total moment J = 4 with the cubic crystal
field. The '; doublet has an electric quadrupole
moment and no magnetic dipole moment. The quantum
numbers of the I'; level electron are the numbers of
lines u for the irreducible representation of the point
group Hr, =*1. The two quantum number valuesp = 1

correspond to the projections of the quadrupole
moment on the z axis, i.e., Q, = £8.

The multiparticle configuration of the unfilled shell
is denoted by n; |n; uCJwhere n indicates the number of
electrons and  is the set of quantum numbers charac-
terizing the configuration.

For relatively large values of the Hubbard repulsion
inthe absence of hybridization, the ground state config-
uration of theion U#* isthe singly occupied I ; doubl et
with the electron configurations |1; +100and |1; —1[Jand
the energy E; . The electron creation operators and el ec-
tron numbers correspond to the singly occupied states:

+

11, +100; O;  f,-_, = [1; -100; Q;

+
fp:+1 -

ne, = f,f, znf“ = 1;
n

(2.2)
HS = ZEmJn; W, p| = ZEfuf:fu'
n, K
HL = Zupp'nfpnfp'(l_éuul)'
i
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TheT ; states are hybridized with the partial conduc-
tion band waves having the total angular momentumj =
5/2. Taking the splitting of the j = 5/2 multiplet by the
cubic crystal field into account amounts to the transi-
tion from the angular momentum representation to the
irreducible representations of the point group of the crys-
tal. The latter representation has the quartet I'g that can be
hybridized with the I'; doublet. The I'g quartet pos-

sesses two groups of the states: 157, 18 with 1{? =
IFg; 20| 10and I = | —20] |, —10 The groups
Fg) and Fé_) correspond to different signsof j,. Differ-
ent signs of j, correspond to different sings of the spin
projection o, In addition, the states |[g; +20and

|s; £100have the respective z components of the qua
drupole moment Q,, = +8.

399

In other words, the quartet I'g of partial waves
decomposes into the tensor product 'y ® I5. Itisthere-
fore described by a combination of the “orbital” (I'3)
and the “spin” (magnetic) (") indices.

The partia states of the conduction electrons mixed
withthel” ;doublet can therefore be classified by the quan-
tum numbers|g; y, alJwhere € = vk — &g, with k being the
wave vector modulus and & being the Fermi energy. In
what follows, we choose the position of the Fermi level as
zero. The quantum number y=2, 1 =l correspondsto the
two values of the quadrupole moment within the groups

Fé” and I'f;); the magnetic quantum numbers a = + dis-
tinguish the respective groups '{” and '’ . The opera-
tors agw (€) describe the states |g; W, allin the B-band.

In terms of these states, the hybridization Hamiltonian

Hi= S S (Vio(®)ass(k)n+ L o 0 +He),

kon po.qMn

where ag, (k) creates the conduction band electron
with the spin o and the wave vector k, can be written as

+o00

Hyo= IdepOB(s)(v;u(e)agw(e) f,+H.c). (2.3)
10 QP

Here, pyg(€) isthe density of states (DOS) in the B-con-

tinuum, the terms with Vﬂu.a (e), 1 # W' are neglected

because of the cubic symmetry, and the matrix elements

me (€) are denoted by V:m ().

In finding theinteraction Hamiltonian in what follows,
it is dgnificant that, because of the band state symmetry,
the hybridization matrix elements V:,a (€) are nonzero for
both components of the I'; doublet with p = £1. This
means that the matrix elements VLMW (k) are spatialy

nonlocal . We additionally assumethe hybridization matrix
elementsto beindependent of the sign of the zcomponent

j, of thetotdl momentumj, i.e, Vi, = V..

The Hamiltonian Hug in EQ. (2.1) also involves the
scattering between electron states of the A- and
B-bands. In terms of the partial states, the scattering
Hamiltonian is given by

+o00

Hsc = Z J.dEpOA(s)

Het e (2.4)

+o00

X jds'pos(s')T’:E(s, £")Angu () Agap (€1,
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where the operators a,,(€) describe the states in the
atomic continuum (A). The scattering with p # p' is
absent because of the cubic symmetry. We assume that
the scattering matrix elements, aswell asthe hybridiza-
tion ones, are independent of the quantum number a.

In defining the NFL states, it isimportant to account
for the splitting of the f doublet ground state due to a
local deviation from the cubic symmetry at theimpurity
site. Inthe Hamiltonian, the splitting is described by the
term

H, = AT}. (2.5)
Because the Hubbard repulsion U is the largest param-
eter in the problem, it is convenient first to take the
effective interaction induced by U into account and
then to use the multiparticle states as abasis for solving
the scattering problem. As shown below, the system
described by the Hamiltonian H in (2.1) has two physi-
cal mechanisms generating singularities at/near the
Fermi level. The Hubbard repulsion U generates the
effective interaction between conduction electrons and
the deep level. This interaction induces an NFL reso-
nance at the Fermi level in the B-band. The scattering
of the multiparticle excitations in the conduction band
by the electron states of the A-band generated by Hg,
results in the formation of additional FL resonances
near the Fermi level.

2.2. In the system with the Hamiltonian H, the exci-
tations are completely described by the Green function

Gu(z) = T J(z-A)If,0

Because the energy U is dominant, it is essentia to prop-
erly treat correlations on site. To calculate Gy, (2), we use
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the method of the equations of motion [19] that correctly
accounts for these on-site corrations. This gives

1- zAu(z)zBu(Z)
- AB

Du (2)

G2 = Gu(2)

(2.6)

where

Gh(2) = [z-&-Sau(2]

is the Green function of the interacting system without
scattering; we then have

1(2) = 1-Z5,(2)Wey(2),

Weu(2) = Z5.(2) + Z5 (D (2 Gr(2).
Equation (2.6) implies that the full Green function

G (2) has features of two types. The function G+ . (2)

describes the contributions of the multiparticle reso-
nances at the Fermi level dueto the interaction between
the conduction electrons and the deep level. The second
factor in EQ. (2.6) is generated by the scattering of the
multiparticle excitations via the atomic quasicontin-
uum states. The scattering results in additional singu-
larities, namely, simple poles near the Fermi level. The

pole positions are determined by the equation D}, (2) =0.
The seif-energy functions 3, (2) and =35, (2 withv = A,

B are expressed as spectral expansions of multiparticle
Green functions of the A- and B-bands,

Z5u(2) = ITﬁ(O)IZZ

z—¢,(p)

5)1(2)
= [T fae® (8)

(2.7)
f
zBu(Z) - |V (0)| J'd E).B_(_S_)__(_S_)

where €,(p) is the excitation spectrum at the Fermi
level, p,(€) isthe DOS corresponding to this spectrum,
and f(€) is the Fermi function. In Egs. (2.7), it is

assumed that VL (e) = VL (0) and the scattering matrix
elements are separable:
T (€)= Tag(0,0) = TR(0)TH(0),

where T;, (0) is dimensionless,

Without the interaction, we have p,(€) = pg, and
G (@ = [2— &, — iV ™ where &, is the energy of
the deep level renormalized by the hybridization and y,
is the width of thislevel. In this case, both G(f)p (2 and
ng (2) have no singularities near the Fermi level.

In the interacting system as U —» oo, we are inter-
ested in the case where the dominant effect of theinter-
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action is the generation of a multiparticle resonance
(the f-level) near the Fermi level. The Green function

G?,u(z) of this resonance must then be inserted in
Eq. (2.6). The multiparticle peaks in G{,(2) at the
Fermi level determine the properties of the DOS pg(€)
and of the self-energy functions 5" (2).

To obtain the density of states at the Fermi level in
the interacting system, the following consideration can
be used. It is known [19] that the exact Green function
of the conduction electrons in the impurity Anderson
model is given by (in our notation)

Gua(K K'; 2) = 81040 0(K=K')Ggq (K, K'; 2)

+ Goua(K; 2V, (K)GL(2)V o (K) Gopa (K; 2),

(2.8)

where Gy 4(K; 2) isthe Green function of noninteracting
electrons (in accordance with the definition given
above, the variables k and € are identi caI) Because of

the symmetry properties, the function Gmu (2) can have

only diagonal components. The Green function of an

impurity state G\, (2) involves al the interactions

induced by the Hubbard repulsion U. Near the Fermi
level, the multiparticle resonance Green function

G? . (2) must beinserted in Eq. (2.8). Thus, the DOS of

multiparticle excitations at the Fermi level takes the
form

1 ~
Po(E) ~ Pos(e) = —AIMSpGru(e), €>0,

2
where A, 0 YgPog, Y = zy By and Yg, = |fol| Pos-

With the foregoing taken into account, the complete
solution of the scattering problem requires determina-
tion of the main interaction and cal culation of the Green

function G{ , (2).

3. THE INTERACTION HAMILTONIAN
AND THE NFL STATE

3.1. To derive the effective interaction between the
deep f-doublet and the conduction electrons, we sup-
pose that for relatively large values of the Hubbard
repulsion, the ground state configuration of theion U4
isthe singly occupied I ; doublet with the electron con-
figurations|1; +10]|1; —10bnd the energy E;. Taking vir-
tual transitions into the excited states with the energies
E, = 2E; + U into account and using either the projec-
tion operator techniques or the Schriffer—Wolff trans-
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formation for the Hamiltonian H[, + Hé + H,, we
obtain the standard expression

z IJ.deSIpOB(S)pOB(SI)

pp'aa’
XV, (€, €)agau(€)agg(€) i f o
AsU,,, — o, thematrix elementsin Eq. (3.1) become

Hint =
(3.1)

fx f
w1 Vo (E) Ve (€) -
Vuu'(&e)D%, er—Ef=¢gy.

The doubly degenerate f-level containing one elec-
tron can be conveniently described in terms of the pseu-

dospin variable 1; . The projections of the pseudospin
operator T; on the coordinate axes coincide with the
components of the quadrupole moment tensor. The pro-

jection 7 ~ Q,, on the z axis has two values corre-
sponding to the occupation of the different orbitals of

the doublet. The operator T O J5 — J2 inverts the
pseudospin, and we can therefore write

T = z frouef e
pp' =1
where o' are the Pauli matrices.

Theindex a =+ ismagnetic, and therefore, it cannot
change under the scattering by the eectric quadrupole
moment of the impurity nonmagnetic '; doublet
described by (2.4). In other words, for Hamiltonian (2.4)
to possessthetime reversal property, the quantum num-
ber a must be conserved during the scattering. The
scattering processes change only the states belonging to

the same group (r§;> or Fﬁ{) ), and these states form a
representation for the pseudospin T; = 1/2.

The time reversal symmetry therefore guarantees
the transfer from Hamiltonian (2.4) to the two-channel
qguadrupole exchange Hamiltonian with the channel
index a,

= Y Y [fdecePos(e)os(e)

HU'ai=xy,2Z

X V,(€, €")8pay (£) Opyrape, (€)1,
Vi(e, €)0,, =V, (g €).

Because the hybridization matrix elements are com-
plex in generd, Egs. (3.1) and (3.2) contain the term

involving T4 aong with the term involving 7. We are
interested in the case where the dominant effect of the
interaction is the generation of a multiparticle reso-
nance at the Fermi level. The Green function corre-
sponding to this resonance can be calculated using the
bosonization method by reducing the Hamiltonian v to
the resonance-level model proposed in [14]. To reduce

(3.2)
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the Hamiltonian Hy = Hyy + H;x + Hp with the two-
channel exchange in Eq. (3.2) to the resonance-level
model, it is convenient to rewrite H, as

+o0o

Ho=ivey Iw;a(x)axwm(x)
e (33)
1 . o
+éz z VillJpa(O)Ow.un,u(o)Tf +A-[-f1
pa i=xy,z
where

+o00

Wua(X) = jdkeik*asuu(k)

and

Wa(0) = Wua(x = 0).

The bosonic representation of the fermion fields
W,q(X) takes the form

—i® (%)
pa 2

~ €
alX) = o 1 a = 1-
Wua(X) = Ny (2ra) ™ Nu

" (3.9
®o(x) = (M Idx'Pua(x')+¢ua(x)}

where ¢,,4(X) is the boson field, P,,(x") is the canon-
ically conjugate momentum, [¢,q(X), Pu(X)] =
10(X —X") 9, 0qq» @Nd @aisthelattice constant. The oper-
aors f,, ensure the anticommutation relations
between different species of fermions. The boson fields
$ua(¥) and Pyq(X) can be rewritten in terms of the col-
lective variables that are introduced by means of the
canonical transformation of ¢,,4(x) and P4 (X):

B = 3102+ 022) % (02 + 0],
(35)

Ose) = 3100 —01) = (02— 02)].

Similar expressions can be written for the conjugate
fieldsPy,(X), 4, o = 1, 2. The Fourier components of the
boson fields k¥2¢, (k) correspond to the charge (c), fla-
vor (f), pseudospin (s), and mixed (flavor-quadrupole,
sf) density operators p,(k). The flavor is generated by
the channel index a.

In terms of the collective bosonic variables, the
spinless fermion collective fields are given by

—i ®(x)

| = ¢ f,s,(sf).

P(x) = (3.6)

(2ma)"*
The Hamiltonian H, can be represented as a sum of
four terms corresponding to the four spinless fermion
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collective channels. The charge and flavor channels are
not coupled to the impurity pseudospin. The other
channels give the following terms in the Hamiltonian
Ho = Hoo + Hipe +Ha!

+o00

Hoo = iVe IXmUr(X)ale(X),
I'=5s(sf) -
vV, . ~ @37
Hing + Ha = (Za—n)l/z[l-l"sf(o) + Py (0)] T

+ Vs (0)W(0)1f + AT, V.=2(V,—Tve).

The Hamiltonian in Eqg. (3.7) correspondsto theres-
onance-level model that yields a multiparticle reso-
nance (thef, level) at the Fermi level. Thef, level can be
described in terms of the fermion operators d* and d

coupled to the pseudospin operator T; viathe Majorana
representation: d* = £1f, T = d*d_(1/2), where fj is
the Mgjorana (real) fermion operator such that r“]2 =1.

The Green function é(f) (2) of the resonance level con-

tains the anomalous components OCddOand [d*d* O
in addition to the normal components [Cldd* Checause
the number of fermionsis not conserved in the models
described by Eq. (3.7).

3.2. Itisknown [15, 16] that the two-channel model
described by Egs. (3.3) and (3.7) has two regions with
essentially different physical properties depending on
therelation between T and A, where T isthe exponen-
tial Kondo temperature.

We consider the region of the parameters where the
Kondo physics plays the key role. This caseis referred
to as the “Kondo regime” in what follows. It occurs
under the condition

T > A. (3.8)
In this case, the model described by (3.7) renormalizes
to the strong coupling limit [15, 16]. In this limit, the

quantities ', = ng)Bvi and A renormalize to T and
N?ITy, respectively. The fixed point lies on the line

V; = 0[8] (the Emery—Kivelson ling), and the screen-
ing interaction is not essential for small energies. The
guantity Ty is defined on the Emery—Kivelson line and
depends on V, only. For this reason, the parameters Ty
and A are independent. The NFL state is generated by
the impurity degrees of freedom that are not hybridized
with the conduction electrons [14, 17]. Near the Fermi
level at T = 0, the Green function becomes

(3.9)

~.(0 6o—0x  Gp+0
G(fy)(z) - i|: 0 X 0 Xi|1

z—24(2) z
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where 2(2) is the self-energy part determined by the
hybridization term in Eqg. (3.7) and £ corresponds to
Re(2) = 0. Asusual, the exponential poleat |z O Tk in
thefirst term of G? (2) has the exponentially small res-
idue Zx U exp(€ r,/yg), Tk U &xZk.

On the other hand, under the conditions

T <A, V,>V (3.10)

X,y

the model does not renormalize to the strong coupling

limit (or equivalently, to the fixed point at V, = Q) for
low temperatures because of avery weak renormaliza-
tion of A [15]. In this case, the NFL state is generated
by the screening interaction in Eg. (3.7) and by the non-
hybridized impurity degrees of freedom. This mecha-
nism isreferred to as the “ X-ray-edge regime” in what
follows. In this case, the hybridization occurring in the
sf-channel can betreated as aperturbation of the ground
state obtained at V, = 0. At V, = 0, the problem is solved
exactly. To obtain the Green function G? (2) at V, =0,

we use the technique that was previously applied to the
well-known problem of the X-ray absorption in metals.

Wefirst diagonalize the Hamiltonian Hg, + Hg+ H,
in (3.7) a V, , = 0. For this, we introduce the boson
operators by, = k¥2py(k) and by, = k2p(—k), where

kp —k
1 +
ps(k) = —N'sz z lle(CI)lle(Q"‘k),

a=0 (3.11)

ko
S e
ps(_k) - N:UqukLIJS(q)wS(q k)! kZO’

are density operators, Y4k) are Fourier components of
the fields Y4(x), and the cutoff occurs at k, ~a. Using

the operators by and by, we write the Hamiltonian as

HE, + Ho+ AT = szkb;kbskﬂ?ZEfd-%g

k>0 (3.12)

K2, -
xS ag (bt by + AT
k>0

Thisis diagonalized by the canonical transformation
— - + lD -1/2 + O
UB—emghm$#d—ZQ;wN) (by—b3
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Under this operation, the Hamiltonian Hg, + Hg +
AT} istransformed to

|:|s = VFZ k5§k55k+5%+a— ID

ot (3.13)
k>0

where

d" = Ugd'Ug = Uped",

ot + -1 _ ot pOB\N/Z +
bsk = UBbskUB - bsk+ kN)uzd d,
by, — b
Ugg = explVzp .
0B 0 OBKZO (kN)lIZD

A = A—gy,andeg; = \Va Pog IS the “polaron shift”.

Equation (3.13) alows usto find the Green function
of the resonance level,

(1) = 617 () Wia(DUe(O)D,  (314)
where Ugg(t) is derived from Uyg(0) by the substitution
by — bye™ . In Eq. (3.14), [I..[3 denotes averaging
over the states of the diagonalized Hamiltonian Hg, +

H and é(f?O) (t) isthe Green function with the s-channel

interaction disregarded. The averaging is performed in
the standard way using the relations
eAeé - eA+ B+ (U2)[A é]’
+ 2+
|:e[F(b ,b)]D - e(JJZ)EF (b ,b)D’

where F is an arbitrary linear combination of boson
operators. As aresult, we find that at largetimes gqt > 1,
the function in Eq. (3.14) is given by

A(00)

Pt oGP (™, (3.15)

where o, = (64/m)? and &, is the phase shift for the scat-
tering described by H, in the pseudospin channel.
~.(00)

AtV, , =0, weuseEq. (3.15) with Gy, " (t) [ ot
to obtain the known expression for the Green function

6Oz = Al (-0 z=a™

(3.16)

where A,y =—1and A, = (-1) * for Re(z— A) = 0,
respectively, I'(X) is the gamma function, and W is the
cutoff parameter of the order of the conduction band
width.

We next recal (eg., from [23]) that including the
hybridization V, as a perturbation in the X-ray-edge
Hamiltonian, we recover the previous X-ray-edge results
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with the energy shifted asico —= iw + il sgnw, Nk =

ng)Fvi, in the resonance level Green function éfr.

Within the framework of two-channel model (3.5), the
width due to the hybridization appears only for half the

impurity degrees of freedom r?3 hybridized with the
conduction sf-channel.

The same result can be obtained by writing Hamil-
tonian (3.5) in terms of the hybridized states and then
considering the screening interaction for these states.
One can readily show that additional interactionsinduced
by the trangition to the new basis are proportiona to
V. (V, /W) and are therefore much smaller than the screen-
ing interaction. In the new basis, Hamiltonian (3.7) is
reduced under condition (3.10) to a Hamiltonian of the
X-ray-edge type. In the present case, the hybridization in
Eq. (3.7) givesthelevel width related to half the degrees
of freedom of the impurities hybridized with the con-
duction electrons.

Using Egs. (3.14) and (3.15) with

G D(Go-Gy)e "+ 6o+ B)e
we thus obtain é(fO) (2) in the energy representation,

62(2) = Awl (1-ay)

(3.17)
9 62_6x [?‘AHFKDUS_,_&O“L?x[Z—ADaS,
z—A+ir 0w U, AbwlD
where
YeiY
M OW=2EE2
&

Because we calculate the retarded Green function in
Eq. (3.17), we must have Imz < 0. If theradial parts of
the wave functions entering the matrix elements V; are
independent of |, we readily obtain
2
rOw'e,
f

Ye1 UYe2 =V s (3.18)

The power-law dependence occursin Eqg. (3.17) under
conditions (3.10).

It follows from (3.17) that the multiparticle NFL
resonance at the Fermi level is generated by the mixed
flavor-quadrupole (sf) mode. The interactions in the
pseudospin channels having the screening character
lead to the effective broadening of the resonance level.
The second term in Eq. (3.17) is due to the impurity
degrees of freedom that are not hybridized with the
conduction electrons.

In concluding this section, we write the expression
for the DOS pg(€) near the Fermi level. The multiparti-
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cle resonances at the Fermi level are described by the
Green functions in Egs. (3.9), (3.17), and (3.16). These
Green functions must be inserted in Eq. (2.8), after which
Pg(€) is derived. In particular, inserting Eq. (3.17) in
Eq. (2.8), wefind the DOSin the X-ray-edge regime:

Pa(e) ~Poa(®) = ~2AImSpGY (e)

s n[(l —0g)arctan L’ﬂ (3.19)

€ —

Aiﬂlwa@-Af+rﬁ””””

€>0,
where A, ~ YgPos. Thewidthsl; =& — 0" and M, =T
correspond to the two contributions to the Green func-
tion G{ in Eq. (3.17).

In the Kondo regime, the DOS is determined by
function (3.9).

4. THE FL RESONANCES
NEAR THE FERMI LEVEL

4.1. The scattering of the multiparticle excitations
due to the term Hg, results in simple poles near the

Fermi level in the complete Green function éfp (2 in
Eqg. (2.6). The poles correspond to new Fermi-liquid reso-
nances. The positions 2 = &/ —iy™* of the polesare
determined by the equation

Du%(2"Y) = 1-Z3,(Z")We(z7) = 0. (41)
Because this equation is the same for all terms of the

matrix f)ﬁB , thematrix indices are omitted in Eq. (4.1).

The expression for the Green function (2.6) near the
FL resonance with the energy z,, becomes

A (0)
17, Gi (er)

Gru(e) = Fy il

4.2
e-A-z,

where we expanded the denominator in Eq. (2.6) near
the resonance energy as D(g) = D'(z)(e — A - Z),
where D'(z,) = F,/z,, (with the indices of the denomi-
nator omitted at the moment) and F, isafunction of the
parameters of the order of unity. The energy depen-
dences of ) (2) in (2.6) are determined by the DOS
py(€). In the model under consideration, the function

ZSACH (2) has no features at the Fermi level, which allows
usto write

ReZZCu(O)'-:pOA(O), ImZi\cu(O) = 0. 4.3

The self-energy functions =3, (2) have the features
corresponding to the NFL peaksin the DOS pg(€).
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Inthe Kondo regime, the main singular term appears

in 23, (2) because of the 3-like contribution to the spec-
tral function induced by the second term in the Green
function (3.9) asz — € +i0". In other words, thissin-
gular term is due to the impurity degrees of freedom
that are not hybridized with the conduction electrons.

The self-energy 3, (2) takes the form

S5 (2) = const + V[T, VBSOB.

(4.4

In the X-ray-edge regime, using the density of states
in Eq. (3.19), we obtain the contribution of the reso-
nance levelsto the self-energy function at zero temper-
ature,

e
Zsécu(z) = ABu(yByBupOB)%
! (4.5)

a,—1

(G

1-a

xL W O
S-oa+ir M
where |Ag | ~ 1.

In the Kondo regime, inserting (3.9) and (4.4) in
(4.1) and taking the most singular term 01/Z% in W, (2)
into account, we readily obtain two resonances above
and below the Fermi level that occur due to the scatter-
ing of the nonhybridized impurity degrees of freedom.
The energies of these resonances are determined by

o, A (YauPon) ﬂS(VBpOB)I (4.6)

where A, ~ 1 and Yau = |TE|2 Poa- The resonance width
above the Fermi level is much smaller than the reso-
nance width below the Fermi level. Theformer widthis
determined by the termsin Eq. (4.1), which are much
smaller than the leading singular term [J1/Z. There-
fore, the pseudogap exists near the Fermi level for

1€9] > vy and for [e0] < y©.

In addition, Eqg. (4.1) has two solutions above and
below the Fermi level with |z + iyk| < yk. For thisrea-
son, the shape and the width of the Kondo peak
change weakly at the Fermi level. In particular, the
width of the Kondo peak has a small additional term
~Tk(YauPon) (YaPos) << Tk due to the scattering.

The qualitative picture of the DOS in the Kondo
regime near the Fermi level is shown in Fig. 2. We see
that the FL resonances generate both the additional
energy scaley, < Ty and the pseudogap near the Fermi
level.

We thus obtained the essential result that the scatter-
ing of the nonhybridized impurity degrees of freedom
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|
€
e

e 0

Fig. 2. The Kondo resonance (curve 1) and new FL reso-
nances (curves 2) show the respective FL resonances with
+

r

+
g| >y, ad

by the electron states of the narrow band leads to the
existence of new resonances near the Fermi level.

According to the experimentd data [2], there exists a
concentration region where the Kondo energy Ty
increases exponentialy with decreasing the impurity con-
centration. At the same time, the hybridization matrix ele-
ments and, consequently, the widths ys and y,, remain
approximately constant in this region. We can therefore
expect that the condition |z| < Ty is satisfied at a suffi-
ciently low concentration of the impurity atoms.

4.2. Using expressions (2.7) and (3.17), it is easy to
verify that in the X-ray-edge regime, Eq. (4.1) pos-
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sesses solutions of two types with their energies satis-
fying the respective conditions

|z§t’| < Tk, thenarrow resonances,
|49 +ir,| < Ty, the“wide’ resonances.
For simplicity, we here used the condition
A<T,, 2.
The signs “+” correspond to the resonances above and

below the Fermi level. For [ <y, [y* - | , the
widths of the FL resonances are determined by

(¥)

U(1-ay)
K;V Al(yAuprpOB)
. 4 4.7
2/(1-0) s
*(poe) s W <M
u
|y(+) K|—A( )]Js(l—as)
W 2 yApprpOB 49)

2/3(L-ay) +
X (YpPos) |VE )_rK| < Ty,

where A ,~ 1. Inthiscase, the FL resonances merge into
asingleweakly split resonance at the Fermi leve (Fig. 3b).
For [e)] > vy, [y =r|, the energies [¢™] are
determined by the expressionsin the right-hand sides of
Egs. (4.7) and (4.8) and by y*) = [ sing with ¢ < 1.
In this case, pairs of the FL resonances appear above
and below the Fermi level (Fig. 3a). Pairsof the FL res-

onances can exist because the Green function éfp 2
has two branches above and below the Fermi leve. For

] >y, there are well-determined pseudogaps near
the Fermi level in the case of the narrow resonances.

p (b)

g 0

Fig. 3. The NFL (curves 1) and FL (curves 2) resonances in the X-ray-edge regime: (a) the narrow resonances for

(b) these resonances for
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Two types of FL resonances correspond to the exist-
ence of the hybridized and nonhybridized impurity
degrees of freedom. In particular, the narrow reso-
nances, which determine a new small energy scale near
the Fermi level, are generated by the interband scattering
of the nonhybridized impurity degrees of freedom. In
other words, the narrow resonances result from broaden-
ing and displacement of thezero-width terminthe spectral

function é(fO) (see the second term in Eq. (3.17)) due to
the interband scattering.

Equations (4.7) and (4.8) imply that the FL reso-
nances exist for the deep level (& > vyg) under the con-
dition

2_6q DM]e(l ag)

g8 (4.9)

Yo < (YeuPos)
YBu

which isthe same for the resonances of both types.

Condition (4.9) is satisfied for all values of a4 in the
following cases. First, for y,, > yg and sufficiently
“shallow” f-levels such that

(1-3ag)/3(1-ay)

Ve <& < W%T\E , (4.10)

and second, for y,, < yg and & ~

On the other hand, the widths of the NFL resonance
and, correspondingly, the characteristic binding energy
of the collective states forming the NFL resonance can
be estimated as

GS
Ex DFKE&% . (4.11)

K

This estimate is derived from the NFL DOS in
Eq. (3.19). As a, increases, the binding energy ¢ also
increases.

The FL resonance can appear if the collective states
defined in Egs. (3.6) and (3.11) decay. Taking the fore-
going into account, we must bear in mind that the decay
of collective states becomes more difficult as ag
increases. Therefore, the structure of the FL resonances
near the Fermi level essentially depends on the magni-
tude of the parameter o that describes the scattering in
the quadrupol e (pseudospin) channel. From the imagi-
nary part of EQ. (4.1), we readily find that the narrow
resonancesexist for a,< 3/5. For 1/7 < a,< 1/3, thenar-
row resonances appear above and below the Fermi
level. For ag > 5/7, FL resonances are absent.

In addition to condition (4.9), we thus find that the
narrow FL resonances can exist when the pseudospin

channel interaction V; is not very strong.
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Inthelimiting case where V,, = 0, the FL resonance
exists above the Fermi level for ag < 1/3. Its energy is

determined by
(#)
(1-ay
|V O(YauPoa) (4.12)
1(1-ay
X (YsPos) < Vg

In the X-ray-edge regime, the narrow FL resonances
provide peaksin the DOS with the widths much smaller
than those of the NFL resonance (see Fig. 3). Thus,
their existence allows usto obtain anew mechanism for
the appearance of the small energy scale.

We aso mention that as shown in [11], the model
without the continuum in the impurity region does not
give narrow FL resonances and therefore does not lead
to the small energy scale. The “wide” resonances above
and below the Fermi level and a local state above the
Fermi level have been obtained in this model. Addi-
tiona mechanisms are required for broadening local
states.

At the same time, the existence of the narrow FL
resonances leads to the appearance of pseudogaps near
the Fermi level in the X-ray-edge regime. The
pseudogap occurs under the Fermi level for a single
narrow FL resonance at 1/3 < a < 3/5. At a < 1/3 for
the split FL resonances, the pseudogap also splits into
two branches above and below the Fermi level. The
pseudogaps are well determined for [g| = V,. The min-
imum value of the DOS inside the pseudogapsis of the
order of the magnitude of the “wide” resonances. The
maximum widths of the pseudogaps are of the order

|efi)| and are determined by the expression in theright-
hand side of Eq. (4.7).

The conditions required for the appearance of
pseudogaps are identical to those for the existence of
the narrow FL resonances.

5. THE MIXED-VALENCE
AND NEARLY INTEGER STATES

The criterion that enables us to choose between the
two types of states involves the partia f-component

Py, (0) of the DOS at the Fermi level and the DOS

Pr (€5,,) et thedeep level. For p; (0) > py(g;,), the charged
excitations play the key role at the Fermi level, while the
opposite inequality means that their role is negligible.
The former case corresponds to the mixed-valence
state, and the latter case leads to the state with a nearly
integer valence.
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The Green function G(ffl) (2) for |z close to the
energy &, of the deep level can be represented as

an

G(z) = —,
fp() Z—Sfu

(5.2)
where Z;, ~ 1 is the residue at the pole z = & . The

energy €&, renormalized by hybridization is determined
by the equation

_ (0) == ;
Ery = &5 + Zp,(Eqy) EE; +iyyy.

The maximum value of the DOS at the deep level can
therefore be estimated as

Di(€q) Dposg—g. (5.2)

We now verify our criterion for the Kondo reso-
nance. It is well known [19, 20] that in this case, the
density of charged states is small at the Fermi level.
Using the “resonancelevel” formalism, one can seethis
from the small residue Z that determines the pole con-
tribution to the Green function at |z close to the Fermi
energy,

Zx

GK(Z) = Z_EKl

. (5.3)
Pk (0) DV_:D Pos < Pt(Ery)s

where E, ~iyk and yx ~ Tx. In accordance with our cri-
terion, the inequality corresponds to a small contribu-
tion of the charged excitations at the Fermi level.

However, for new FL resonances with the widths yf
in Eq. (4.6), the following inequality holds:

W
P (0) 05 Pos > (). (5.4)

Therefore, additional FL resonances lead to the exist-
ence of a mixed-valence state in the Kondo regime.

In the X-ray-edge regime, the NFL resonance is
generated by the flavor-quadrupole and the quadrupole
(pseudospin) modes that have a charge due to the qua-

drupole contribution. The component p} - (0) =

—(Wm)ImSpGY (0) is then estimated as

1-a
NFL s

pr, (0) DpOBE‘—WKE
e (5.5)
|1) 0B '

Ly
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For the narrow FL resonances, using expression (2.6)
for the Green function G , (2), wereadily arrive at the

estimate

P7(0) = = ImSpGi(0)
I (5.6)

(1-ay)

D:)OBD/_rD

Assuming &; ~ W and comparing (5.2) with (5.5)
and (5.6), wefind

1
pr, (0) > pi(eq) at a,<3,
5.7
NFL 1
pr, (0) < py(eq) a as>§!
and also the inequality
P (0) > pi (), Ps(eqy), (5.8)

which holds for all values of the parameters at which
FL resonances exist.

It is interesting to note that under the conditions
Yau > Vg @nd

— / _
WD/_ED(l 2a)/2(1-ay) e
(1-3ay)/3(1—ay) (5.9
<wiE
b ,

the mixed-val ence state and FL resonances exist simul-
taneously for all values of a..

Inequalities (5.7)—(5.8) imply that, first, the state
with anearly integer valence can berealized only when
FL resonances are absent and the parameter o is suffi-
ciently large. Second, two types of the mixed-valence
states are generated in our system.

The NFL mixed-valence state occurs for o < 1/2 if
FL resonances are absent.

In the limiting case where Vy;, = 0, the mixed-

valence state exists only owing to the additional FL res-
onance.

The FL mixed-valence states are generated by the
instability of the NFL state against the interband scat-
tering. These states are formed under the same condi-
tions that are necessary for the existence of FL reso-
nances at the Fermi level. The type of the FL mixed-
valence state depends on the type of the FL resonance
(narrow or “wide") that can be realized for a given set
of parameters.

As shown above, narrow FL resonances exist for all
values o, < 1/2. Thus, the main features of the FL
mixed-valence state are the appearance of a small
energy scale and the formation of pseudogaps.
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The transitions between the NFL and FL mixed-
valence states are characterized by changing the
valence from one noninteger value to another. Taking
the foregoing into account, we conclude that condition
(4.9) alone is necessary for the transitions between two
mixed-valence states.

When condition (4.9) is not satisfied, the direct tran-
sition between the NFL mixed-valence state and the
state with a nearly integer valence occurs at a,= 1/2.

Apparently, the most realistic way to generate the
transitions experimentally is to change the lattice
parameter by doping [3]. This leads to changing the
hybridization between conduction electrons and the I3
level that entersthe interaction matrix elements and the
widths ys. We can thus obtain a series of transitions,
which are considered in detail elsewhere.

6. CONCLUDING REMARKS

6.1. The above results allow us to understand the
mechanisms of two important properties of HF NFL
metals.

(1) The single-site two-channel Kondo effect and
the mixed-valence state coexist because of additional
FL resonances at/near the Fermi level. The scattering of
the nonhybridized impurity degrees of freedom by the
narrow A-band electrons generates these resonances.
Therefore, two energy scales T and y, exist at the
Fermi level. The FL resonance with the width y, corre-
sponds to the local mixed-valence state.

(2) There are two possible energy dependence types
in asystem with the two-channel quadrupol e exchange
interaction. In the Kondo regime (Tx > A), one
obtains the known universal energy dependences [14,
17, 22] because the Green function in Eq. (3.9) has a
single energy scale Ty.

In the X-ray-edge regime (Tx < A), nonuniversal
power-law energy dependences must occur in accor-
dance with the form of the Green function in Egs. (3.16)
and (3.17).

It follows from the experimental data [2] that the
increase of the impurity concentration x in the U-com-
pounds results in () decreasing Tx(X), (b) increasing
the concentration of the impurity atoms by a noticeable
value A, and (¢) increasing the anisotropy of the
exchange parameters. Therefore, increasing the impu-
rity concentration must enable crossing over from the
Kondo regime with the universal energy dependences
to the X-ray-edge regime with nonuniversal energy
dependences.

As shown above, characteristic features of the NFL
compounds with f-shell impurities are the different
types of the mixed-valence states with the NFL and FL
excitation spectra and the fact that the heavy-fermion-
state type depends on the interaction parameter a.. In the
other words, this parameter determines the role of the
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charge and spin excitations in the formation of heavy
fermions.

Small energy scales and the pseudogaps are induced
by the narrow FL resonances. Therefore, the instability
of the NFL state provides a new physical mechanism
for the small energy scale. Unlikein previousworks|[6,
21], thismechanism is especially appropriate for impu-
rities with an unstable valence.

Thus, theinstability of the NFL state induced by the
interband scattering of multiparticle excitations consid-
erably changes the mechanisms of the formation of
heavy-fermion states.

6.2. We now briefly consider the features of the tem-
perature dependences within the framework of the
mechanism proposed in the present paper. The energy
dependences of the Green functions (2.6), (3.9), (3.16),
and (3.17) imply that new types of the temperaturetran-
sitions (crossovers) occur in the system. When new FL
resonances generated by scattering are not formed, atran-
sition occurs from the universal temperature dependences
of the physicd quantities in the Kondo regime to nonuni-
versal power-law dependences in the X-ray-edge regime.
The characterigtic temperature of thiscrossoveris T, ~ A.
In particular, the logarithmic dependence of the linear
specific heat C/T O In(T,/T) must be transformed into

the power-law dependence C/T O T "% Theformer
dependence was calculated in [14, 17] using expres-
sion (3.9) within the framework of the two-channel
Kondo model. The power-law dependences follow
from Egs. (3.16) and (3.18) for the Green functions in
the X-ray-edge regime. As mentioned in this section,
the condition T, << A can bereadlized at arelatively high
concentration of the f-shell impurities. The power-law
dependences of C/T observed in U,Y,_,Pd; at x = 0.2
in[7] cantherefore be generated by the mechanism dis-
cussed here. We recall that historically, the aloys
U,Y, _,Pd; were thefirst systems where the NFL behav-
ior induced by the two-channel quadrupole Kondo
model was observed [3, 5].

In the two-channel quadrupole Kondo model, the
magnetic susceptibility is known [2] to have the van
Vleck contribution between the I" ; ground state and the
first excited crystalline electric field. The van Vleck
susceptibility is described by the temperature depen-
dence X ~ X, — a(T/T,)Y2. According to the experimen-
tal data[7], this dependence is also transformed into a
power-law one as the impurity concentration increases.

The quadrupole susceptibility xq has the logarith-
mic divergence OIn(T¢/T) in the Kondo regime. It is
experimentally determined from the nonlinear mag-
netic susceptibility x5 [24]. Correspondingly, Xq and
X3 must exhibit the same crossover as the specific heat.

We emphasize that the crossover discussed here cor-

responds to the transition between the state with a
nearly integer valence and the mixed-valence state.
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The existence of the FL resonances generated by the
scattering of the NFL excitations results in crossovers
between the FL and NFL temperature dependences
within both the Kondo regime and the X-ray-edge
regime. The characteristic temperatures of these cross-
oversare T, ~y;, wherey, arethe widths of the FL res-
onances determined in Egs. (4.6), (4.7). We note that
the low-temperature transition to the FL state usually
occurs at T ~ A?/T in the two-channel Kondo model
[3, 25]. The maximum value of the linear specific heat
isequal to (C/T)™ ~ T, /A2,

Within the framework of our mechanism, it must be
(Cmm ~ v for y, > A%T,. It is possible that the
additional small scaley, entersthe scaling dependences
in the FL-NFL transition region. The appearance of a
new small energy scaleisobserved inthelow-temperature
scaing law of resigtivity in [24]. In the X-ray-edge
regions, the crossover at T ~ T, corresponds to the transi-
tion between the FL and NFL mixed-valence states.

The temperature transitions between FL mixed-
valence states of the different origins were considered
in[26].

6.3. The above results are obtained for single-ion
NFL effects. We now show that these effects can also be
considerable in “ concentrated” systems.

The ground state of these systems significantly
depends on the competition between the intersite inter-
action, i.e., theindirect exchange of the RKKY typefor
pseudospins, and the on-site Kondo scattering leading
to the screening of the quadrupol e impurity moment by
conduction electrons. The characteristic energy for the
two-channel on-site Kondo scattering is determined by
expression (4.11). The characteristic energy scale of the
RKKY interactionis

EVZ
Errky LG DE_T;%] Gl k,

where ¢; isthe concentration of theinteracting atoms. In
concentrated systems, i.e., a ¢ ~ 1, the energies g, and
Erkiy are such that

(6.1)

€ > Egkky for ag z0. (6.2)

This implies that single-ion NFL effects can be very
important even when the two-channel impuritiesform a
sublattice.

The analysis presented here enables us to qualita-
tively understand two important aspects of the problem
for the concentrated systems: the dependence of the HF
properties on doping and physical reasons that can sat-
isfactorily explain a number of properties of the con-
centrated systems within the framework of the single-
ion quadrupole Kondo model.
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Abstract—The specific case of dow-electron diffraction in fast-ion tracks is considered. The excitation condi-
tion for standing waves of  electrons is a strong screening of the Coulomb interaction, for which most of the
0 electrons are knocked out in radial directionsrelative to the track axis. In that case, an appreciable number of
0 electrons with a wavelength of the order of the interatomic distance experience multiple backscatterings
between the atomic chainslocated near the track axis. Thelifetime of standing electron wavesis estimated from
diffractometric measurements of the decrease in atomic density on thetrack axis. The mobility of crystal atoms,
their displacements, and the expenditure of energy on deformation are also estimated. © 2001 MAIK

“Nauka/Interperiodica” .

Intensive studies of ionic-irradiation effects on the
physical properties of widely used materials have pro-
vided insight into the many physical phenomena that
occur in fast-ion tracks, such as anomalous defect for-
mation [1, 2], aloy amorphization [3, 4], the so-called
anisotropic expansion at low temperatures, and creepin
the directionsnormal toion beams[5-8]. Thereareaso
several theoretical studiesin which models of athermal
flash [9-12], Coulomb explosion [13-15], soft phonon
modes [16], structural modification [17], and the local
electric field [18] generated by & electrons in tracks
were considered. The wide use of semiconductor crys-
tals as detectors of high-energy ions stimulates investi-
gations into their structural degradation, which is
accompanied by a degradation of electrophysical prop-
erties. The peculiar features of defect formation in sili-
con irradiated with xenon and krypton ions with ener-
gies of 5.6 and 0.21 GeV, respectively, were studied in
[19] by two-crystal X-ray diffractometry. It follows
from the experimental data that the atomic density
decreases approximately by 10% in Kr-ion tracks at
large radiation doses. Chelyadinskii et al. [19] attribute
the appearance of a second peak in the plot of interpla-
nar spacing Ad against depth to the ions faling into
“old” tracks and having path lengthsthat are larger than
ordinary ones by 10%. More informative experimental
data can be obtained by using currently available meth-
ods of structural diagnostics. These methods are based
on three-crystal X-ray diffractometry, which makes it
possible to separate diffuse scattering and to demon-
strate the peculiar behavior of dilatations in fast-ion
tracks. At high energies, the deceleration of ions by
electrons is much larger than their deceleration by
nuclei, and it determines the behavior of severa physi-
cal processes in tracks. Large energy release into an
electron subsystem givesriseto intense fluxes of 6 elec-
trons with an initially distinct angular anisotropy.

In this paper, we consider the peculiar behavior of
collective electron excitation in crystal