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Abstract—Computer simulations are performed to study the effect of internal waves and heating of the sur-
face water layer on the behavior of the local spectral maximums of the interference sound field in coastal
slope conditions, as applied to the operation of the self-sustained oscillator technique for monitoring the
ocean. Results of testing the self-sustained oscillator technique on a 1-km-long propagation path are pre-
sented. © 2001 MAIK “Nauka/Interperiodica”.
One of the promising new acoustic methods devel-
oped for monitoring the variability of the oceanic
medium is the self-sustained oscillator technique,
which was experimentally tested in full-scale condi-
tions in the sea [1–4]. The main feature that determines
the efficiency of this method and its capability for self-
adaptation to the medium is that the medium to be mon-
itored forms part of the self-sustained oscillator and
serves as the feedback loop in it. In the self-sustained
oscillator technique, a specific frequency, usually the
one with the maximal amplitude, is selected from the
whole spectrum of the space–time interference struc-
ture of the noise field and, at this frequency, the reso-
nance amplification of the signal is performed. With
fixed transmitting and receiving points, a change in the
resonance frequency reveals some dynamic processes
that occur both in the bulk of the medium and at its
boundaries: internal waves, currents, cooling or heating
of water, etc.

To predict the response of the self-sustained oscilla-
tor circuit, it is necessary to estimate the behavior of the
local spectral maximums of the interference field.
Computer simulations were performed to determine the
type of motion of the interference maximum, namely,
whether this maximum will move monotonically or in
steps. In other words, whether the frequency of the self-
sustained oscillator will vary smoothly with varying
conditions in the water medium or not.

We estimated the effect of internal waves and the
heating of the surface water layer on the interference
spectrum for a broadband acoustic signal transmitted
through a stationary propagation path on a measuring
test bench. We used the ray program (developed at the
Acoustics Institute), which allowed us to calculate the
sound field at the reception point by combining the
1063-7710/01/4705- $21.00 © 0503
arriving rays with allowance for their phases. For the
computer simulation, we used the parameters of the
medium that corresponded to the region on the Black
Sea shelf near Gelendzhik, where the experiments with
the self-sustained oscillator technique [4] were carried
out (at the base belonging to the southern branch of the
Oceanology Institute, Russian Academy of Sciences).

The sound field was calculated for two propagation
paths 1 and 5 km long with central frequencies of 6570
and 2500 Hz, respectively. The source and the receiver
were set 1 m above the bottom. The sea depth linearly
increased from 12 and 15 m near the source to 28 and
90 m near the receiver for the first and second paths,
respectively.

Taking into account the bottom, we used a liquid
halfspace model with the parameters typical of a sandy
ground: a longitudinal wave velocity of 1.9 (1 – i ×
0.01) km/s and a ground-to-water density ratio of 2.15.
Figure 1 shows the sound velocity profiles for the sum-
mer season. The effect of an internal wave (a large-
scale phenomenon compared to the path length) on the
interference structure of the sound field was modeled
by a change in the sound velocity in the discontinuity
layer at depths from 7 to 50 m with a maximal deviation
of 5 m/s from the mean profile (Fig. 1a). The heating of
the surface was modeled as a smooth increase in the
sound velocity at zero depth: by 2 and 10 m/s relative to
the basic value for the distances 1 and 5 km, respectively
(curves 1 and 2 in Fig. 1b). For the temperature range
15–20°C, such an increase (to the first approximation)
corresponds to a change in the water temperature of
0.66 and 3.3°C, respectively.

The effect of the surface heating on the interference
structure of the acoustic pressure spectrum at the
receiver is represented in the form of three-dimensional
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Variation of the sound velocity profile in the calculations of the interference pattern: (a) in the case of the propagation of an
internal wave and (b) in the case of the surface heating for the distances (1) 1 and (2) 5 km.
surfaces in Figs. 2a and 2b for the distances 1 and 5 km,
respectively. The horizontal axes represent the fre-
quency in hertz and the sound velocity in m/s, and the
vertical axis represents the sound pressure in decibels
relative to the maximal value. The data shown in Fig. 2a
were obtained for the frequency range 6520–6620 Hz at
a step of 5 Hz with the sound velocity at the surface
increasing from 1515 to 1517 m/s at a step of 0.1 m/s.
The data in Fig. 2b correspond to the frequencies 2450–
2550 Hz taken at a step of 5 Hz and to the sound veloc-
ity at the surface increasing from 1515 to 1525 m/s at a
step of 0.5 m/s. The choice of these parameters was dic-
tated by the necessity to obtain smooth variations of the
sound field interference structure.

In both figures, one can clearly distinguish the dis-
placement of the interference maximums with varying
surface temperature. The maximums move toward
higher frequencies as the surface temperature increases.
A smoother displacement of the interference structure
for the 1-km distance (Fig. 2a) is explained by the
smaller step of the sound velocity variation at the sur-
face and, hence, a smaller temperature range.

For illustration, Fig. 2c shows the evolution of the
spectrum for the 1-km distance in the form of a tint pat-
tern in the coordinates representing frequency versus
sound velocity at the surface. The tint intensity in the
cells is proportional to the sound field level. The maxi-
mums of the interference pattern correspond to the
almost parallel light strips. As the sound velocity at the
surface varies, the maximums move smoothly with
average rates of 15 Hz per 1 m/s of the sound velocity
variation; when the temperature increases, the maxi-
mums move to higher frequencies. It should be noted
that, for the interval of the ray departure angles ±40°
selected for the calculations, we obtained up to 80 rays
at the reception point with the focusing factor no less
than 0.3 at the 1-km distance and up to 70 rays at the
5-km distance. Some of the rays propagated near the
bottom without surface reflections, but most of the rays
(~60%) were multiply reflected from the surface,
which resulted in the aforementioned displacement of
the signal spectrum with varying surface temperature.

The effect of an internal wave on the interference
structure of the field is represented in Fig. 3 for the
5-km distance at frequencies near 2500 Hz in the form
of a tint pattern. The interference was calculated for the
case of the sound velocity variation in the discontinuity
layer from minimal to maximal values within the inter-
nal wave period (Fig. 1a). We obtained a smooth dis-
placement of the interference structure toward higher
frequencies in the first half-period (an increase in the
sound velocity) and toward lower frequencies in the
second half-period (a decrease in the sound velocity) of
the internal wave. From Fig. 3, it follows that the rate of
motion of the interference maximums is ~5 Hz per 1 m/s
of the velocity variation at a depth of 25 m.

On the whole, both the internal waves and the sur-
face heating cause a monotonic displacement of the
maximums of the sound field interference structure,
which allows one to expect a distinct and unambiguous
detection of this type of hydrophysical phenomena by
the self-sustained oscillator technique.

The self-sustained oscillator method of monitoring
the medium variability [4] was tested and studied for
both short (~1 km) and long (~5 km) propagation
paths. The operation of the regenerative circuit is char-
acterized by the loop transmission factor M, which
includes the response of the sound receiver, the trans-
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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mission factor of the amplifier channel with a filter, the
automatic gain control, cables, the response of the
source, and the frequency-dependent transmission fac-
tor of the propagation path. When M < 1, the circuit
operates as a regenerator of the sea noise, and when
M ≥ 1, the circuit operates as a self-sustained oscillator
whose frequency is determined by the spectral maxi-
mum of the ray (mode) interference at the reception
point and by phase matching conditions.

The process of noise regeneration considerably
increases the contrast in the variations of M and detects
the maximum in the frequency dependence of M if the
frequencies of the positive feedback are spaced at suffi-
ciently small intervals, which occurs when the propaga-
tion path is sufficiently long. For example, on the 1-km
path, the frequencies are spaced 1.5 Hz apart, and on
the 5-km path, they are 0.3 Hz apart. Evidently, at M =
1, the circuit switches to the self-sustained oscillator
mode, which corresponds to generation in the region of
the ray interference maximum.

Figure 4 shows the results of the experiment for the
path 1 km long. The left curve shows the regeneration-
contrasted noise spectrum in a 2500-Hz frequency band
with the maximum at a frequency of 6509 Hz. The
observation of the time variation of the interference pat-
tern, which presumably is quite informative for moni-
toring the path, makes the separation of rays and the
detection of inhomogeneities possible; however, fur-
ther methodical and theoretical development of this
monitoring technique is necessary. We note that with
the regenerative circuit, the position of the interference
maximums on the frequency axis can be determined
with high accuracy. The right plot in Fig. 4 illustrates
this statement. This plot represents the same regener-
ation spectrum in a 37-Hz frequency band near the
principal maximum of the interference pattern (about
6509 Hz) at M = 0.9. The experiment showed that the
maximum can be traced with an accuracy of about
0.005 Hz at a frequency of 6500 Hz; i.e., with an accu-
racy of about 10–6. Therefore, this method seems to be
promising for the development of the interference
tomography [5–8].

The experiment also revealed the interesting fact
that the intervals between the positive feedback fre-
quencies are constant. For the given example, all fre-
quency separations between the peaks of the positive
feedback proved to be equal to 1.56 Hz, which corre-
sponds to the travel time of the dominant ray covering
the whole path within 0.64 s. It should be noted that
long-term observation of the spectra (like the spectrum
presented in Fig. 4) showed that the frequency grid of
positive feedback remains unchanged and equidistant
for a long time, and the interference maximum is slowly
displaced following changes in the propagation condi-
tions along the path. Such a behavior of the regenera-
tion spectrum in the region of the interference maxi-
mum suggests that self-sustained oscillations (when
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
M ≥ 1) occur at a frequency that is close to the interfer-
ence maximum and determined by a set of rays with the
phase condition governed by only one energy-dominant
ray. A gain increase to M ≥ 1 leads to the self-excitation
of the oscillator. In this case, we obtain a monochro-
matic signal whose frequency responds to the changes
in the propagation conditions on the path: a ship or a
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Fig. 2. Evolution of the pressure spectrum in the case of the
surface heating: in the form of three-dimensional surfaces
for the distances (a) 1 and (b) 5 km and (c) in the form of a
tint pattern for the 1-km-long distance.
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internal wave period for the 5-km-long distance.
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Fig. 4. Experimental testing of the regenerative circuit in the interference spectrum measuring mode.
fish shoal crossing the path, changes in the water tem-
perature or currents, the passage of hydrographic inho-
mogeneities, etc.
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Abstract—A theorem on the representation of a vibration field of an elastic system comprising two sub-
systems is proved in a general form. It is assumed that the system is linear and the subsystems are rigidly
connected and interact along a continuous surface S. According to the theorem, forced vibrations of the
system can be represented in the form of the sum of two components, which are the solutions of two sim-
pler auxiliary boundary-value problems. The first component is the field of vibrations of the isolated (sep-
arated or blocked along S) subsystems under the effect of preset external forces. The second component
represents the forced vibrations of the junction of the subsystems, where the external forces are taken equal
to zero and only the reaction forces obtained in solving the first auxiliary problem act at the surface S. The the-
orem is applied to the problem on the reflection and transmission of elastic waves through a junction of
two media. It is demonstrated that the theorem utilization reduces the amount of calculations. Other appli-
cations are discussed. © 2001 MAIK “Nauka/Interperiodica”.
Forced vibrations of composite elastic systems are
usually analyzed on the basis of the decomposition
approach: a system is divided into several simpler sub-
systems and each subsystem is analyzed separately;
then, partial solutions are combined into a general solu-
tion for the whole system. The SEA energy analysis [1],
the methods of solving acoustoelastic problems [2, 3],
the method of transfer functions [4], and many other
techniques are grounded on this approach. The modifi-
cation of this approach is also the replacement of a dif-
ficult boundary-value problem by a finite sequence of
simpler problems. A classical example is the represen-
tation of a field by a sum of incident and scattered fields
in the theory of wave diffraction [5]: the incident field
is the solution to the problem on forced vibrations of a
medium with preset sources but without a scatterer, and
the scattered field is the solution to a problem on radia-
tion by a scatterer into a medium without sources.
Undoubtedly, each of these two auxiliary problems is
simpler than the initial problem on forced vibrations of
a medium with a scatterer. One of the extensions of this
result of the diffraction theory to arbitrary linear oscil-
latory systems was given in our previous paper [6]
without proof. Below, this extension is augmented and
rigorously proved in the form of a theorem on the rep-
resentation of a field of forced vibrations of a system
consisting of two subsystems that are connected to each
other along the surface S. The theorem states that the
solution of the problem of forced vibrations of a system
by external forces can be represented in the form of a
sum of two components: the first component is the solu-
1063-7710/01/4705- $21.00 © 20507
tion to the problem on forced vibrations of the isolated
subsystems (separated or with a blocked contact sur-
face S), and the second component represents the
forced vibrations of the whole system under the action
of simpler external forces (more precisely, the reac-
tion forces at S, which were obtained in solving the
first problem). The theorem is illustrated using an
example of the elastic wave reflection and transmis-
sion through the junction of two media. It is demon-
strated that the application of the theorem reduces the
amount of calculations. Applications to other prob-
lems are discussed.

Let us consider an arbitrary oscillatory system,
which can be presented as a combination of two sub-
systems a and b connected along a continuous surface S
(see Fig. 1). We write down the oscillation equations
and the boundary conditions for the system in the form

Lau = ϕa in the region Va ,

Mau = ψa at the surface part Sa ,

Lbv  = ϕb in the region Vb , (1)

Mbv  = ψb at the surface part Sb ,

u = v , f + g = 0 at the contact surface S.

Here, u and v  are the displacement vectors of the sub-
systems a and b; f = lau and g = lbv  are the densities of
the internal forces (stresses) acting upon the sub-
systems at the surface S; La, b, Ma, b, and la, b are differ-
ential operators; and ϕa, b and ψa, b are the densities of
the external bulk and surface forces. An inhomoge-
001 MAIK “Nauka/Interperiodica”
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neous boundary-value problem of mathematical phys-
ics is represented by Eqs. (1). This problem describes
forced vibrations of all (known to the author) linear
media and structures.

We seek the solution to problem (1) in the form of a
sum of solutions of two simpler auxiliary problems:

(2)

Let the first auxiliary problem describe the forced
vibrations u0 and v 0 of isolated subsystems. The two
field representations given below differ in the boundary
conditions at the contact surface S of the first auxiliary
problem: representation 1 corresponds to the blocked
surface S and representation 2, to the surface S free of
external loading. The second auxiliary problem for the
determination of the terms u1 and v 1 is formulated after
the substitution of the solution given by Eqs. (2) into
Eqs. (1). As it is shown below, the second auxiliary
problems of these two representations also differ only
in the boundary conditions at S. We treat each represen-
tation separately.

Representation 1. We assume that the displace-
ments of both subsystems at the contact surface in the
first auxiliary problem are equal to zero. This means
that the functions u0 and v 0 are solutions to the follow-

u u0 u1, v+ v 0 v 1.+= =

ψb

Vb

ϕb

ϕa

Va

ϕb

ϕa

ψb

ψa ψa

Sb

Sa

–( f0 + g0)
S
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ϕa

Va

ϕb

ϕa

ψb

ψa ψa

Sb

Sa

v0 – u0

S
+

+

(a)

(b)

Fig. 1. The field of forced vibrations of a composite system
is represented by a sum of two fields: (a) the field of forced
vibrations of the subsystems with a stationary contact sur-
face S and the field of the system vibrations under the action
of force excitation at S; (b) the field of forced vibrations of
separated subsystems and the vibration field of the system
with a kinematic excitation.
ing two independent boundary-value problems for the
subsystems a and b:

(3)

In this case, the reaction forces acting upon both sub-
systems from the side of the stationary boundary S are
equal to

(4)

Substituting Eqs. (2) into Eqs. (1) and taking into
account Eqs. (3), we obtain the following equations for
the determination of the components u1 and v 1:

(5)

As one can see from these equations, the second auxil-
iary problem represents vibrations of the whole system
with switched-off sources (ϕa, b = ψa, b = 0) under the
action of the reaction forces (Eqs. (4)) applied to the
contact surface S. Representation 1 is shown schemati-
cally in Fig. 1a.

Representation 2. Let the first terms in Eq. (2) be
the fields in the subsystems separated along S. In this
case, the first auxiliary problem has the form

(6)

Substituting Eqs. (2) into the initial Eqs. (1) and tak-
ing into account Eqs (6), we obtain the following
equations and boundary conditions for the second
auxiliary problem:

(7)

The physical meaning of Eqs. (7) is as follows. They
describe vibrations of the whole system without
sources (ϕa, b = ψa, b = 0) under the action of a special
load at the contact surface S. The load consists of two
equal and opposite forces lau1 and lbv1, which are
applied to separate subsystems and have values such
that the relative oscillatory displacement between the
subsystems u1 – v 1 is equal to the fixed value of v 0 – u0
determined by the solution of the first auxiliary prob-
lem (Eqs. (6)). In practice, such an load can be realized,
for example, by using piezoceramic plates inserted
between the subsystems. Thus, the second auxiliary
problem in representation 2 describes forced vibra-
tions of the system without initial sources but with

Lau0 = ϕa in Va, Mau0 = ψa at Sa, u0 = 0 at S;

Lbv 0 = ϕb in Vb, Mbv 0 = ψb at Sb, v 0 = 0 at S.

f 0 lau0, g0 lbv 0.= =

Lau1 0 in Va, Mau1 0 at Sa,= =

Lbv 1 0 in Vb, Mbv 1 0 at Sb,= =

u1 v 1, lau1 lbv 1+ f 0 g0+( ) at S.–= =

Lau0 = ϕa in Va, Mau0 = ψa at Sa, lau0 = 0 at S;

Lbv 0 = ϕb in Vb, Mbv 0 = ψb at Sb, lbv 0 = 0 at S.

Lau1 0 in Va, Mau1 0 at Sa,= =

Lbv 1 0 in Vb, Mbv 1 0 at Sb,= =

u1 v 1 v 0 u0– , lau1= lbv 1+– 0 at S.=
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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a kinematic excitation at the contact surface S (see the
schematic diagram in Fig. 1b).

As an illustration, let us demonstrate the results of
the theorem application to some well-known problems
of wave reflection. In the simplest case of reflection of
plane waves from the plane boundary of two semi-infi-
nite homogeneous liquid media with impedances Z1
and Z2, the solution is given by the Fresnel formulas
for the reflection coefficient R and the coefficient of
transmission T from the first medium to the second
one:

(8)

According to the theorem given above, these coeffi-
cients can be represented as the sum of two compo-
nents. Here, representation 1 (see Eqs. (2)–(5)) has the
form

(9)

where the first terms (1 and 0, respectively) corre-
spond to the incidence of a plane pressure wave with
amplitude pi on a stationary boundary and the second
terms describe the vibrations of two media (without
the incident wave) under the action of an external
force distributed over the boundary with an amplitude
–2pi.

Representation 2 (see Eqs. (2), (6), and (7)) is writ-
ten in the form

(10)
where the first terms (–1 and 0) correspond to the inci-
dence of a plane wave on an absolutely soft boundary
(the media are separated) and the second terms repre-
sent the media motion (without the incident wave)
under the action of a distributed source located between
the media; this source provides equal pressure at the
boundaries of both media and maintains a fixed relative
velocity with the amplitude 2pi/Z1.

Here, the representations given by Eqs. (9) and (10)
do not have any advantages over the Fresnel formulas
(Eqs. (8)) in their structure or in the amount of calcula-
tion because of the simplicity of this example. The
cases of more complex reflection problems are quite
different. For example, let us consider the reflection and
transmission of waves in the junction of two media or
waveguides, where N normal modes can exist. The
problem is to determine two N × N matrices of reflec-
tion and transmission coefficients. A direct solution of
this problem leads to a system of 2N linear algebraic
equations. At the same time, the application of the the-
orem proved above reduces the system to two systems
of the Nth order. Since the amount of calculation neces-
sary to solve a system is proportional to the cube of its
order [7], the utilization of Eqs. (2) can provide a four-
fold economy in calculation. This fact was verified in

R Z2 Z1–( )/ Z2 Z1+( ), T 2Z2/ Z2 Z1+( ).= =

R 1 2Z1– / Z2 Z1+( ), T 0 2Z2/ Z2 Z1+( ),+= =

R = –1 2Z2+ / Z2 Z1+( ), T  = 0 2Z2/ Z2 Z1+( ),+
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
solving a problem on the wave reflection in a corner
junction of two thin semiinfinite homogeneous straight
rods (Fig. 2). In the case of rod vibrations in the corner
plane, the number of normal modes is N = 3 (one longi-
tudinal wave and two flexural waves, one of which is
propagating and another is evanescent). A direct solu-
tion by sewing together the fields in the corner leads to
a system of six algebraic equations [8, 9], whereas the
utilization of representation 1 given in this paper (see
Fig. 2) leads to a more than fourfold reduction in the
amount of calculation, because longitudinal and flex-
ural waves in separate rods are independent and the
analytical solution of auxiliary problems is elementary
in this case.

In conclusion, we note that the most important
applications of the theorem formulated in this paper
should be expected in the case of solving the problems
on forced vibrations of composite elastic systems with
complex or unknown sources. A working machine can
be an example: as it is impossible yet to describe the
sources of vibrations inside a machine, the theorem
(representation 2) provides an opportunity to move the
sources to the machine support while staying within the
framework of exact consideration (see also [10]).
Another example of a problem of this type is sound
transmission into an elastic shell from a propeller
operating in a flow [2, 3]. The application of represen-
tation 1 provides an opportunity to separate the calcu-
lation of the external acoustic field of the propeller and
the calculation of the shell vibrations together with the
field of the inner acoustic volume and to simplify in
such a way to the solution problem on the whole.
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Abstract—Features characterizing the formation of the spatial (in depth and horizontal distance) interfer-
ence structure of an acoustic field generated by a point tone source or a vertically distributed tone source in
a shallow-water oceanic waveguide are considered. The waveguide is modeled by a three-layered fluid
medium. The main object of the study is the effect of the acoustic parameters of the sediment layer on the
formation and structure of the spatial regions within which the diffraction focusing of the acoustic field takes
place. © 2001 MAIK “Nauka/Interperiodica”.
The propagation of waves of different origin in the
waveguide media can be accompanied by the diffrac-
tion focusing of the corresponding fields [1–12]. The
name of this phenomenon was chosen by analogy with
the formation of the diffraction images of periodic
structures in optics [13–16]. The main features of dif-
fraction focusing of acoustic fields in oceanic
waveguides were considered in a number of publica-
tions [1–4, 8–12]. It was found (see [8–12]) that a rear-
rangement of the interference structure of the acoustic
field occurs along an oceanic waveguide. This rear-
rangement is characterized by the minimal Rmin and
maximal Rmax spatial periods and manifests itself as a
partial repetition of the characteristic features observed
for 0 ≤ r ! Rmin in the spatial (in the depth z and in the
horizontal distance r) distribution of the field intensity
J(r, z). Such a rearrangement of the interference struc-
ture leads to diffraction focusing of the acoustic field in
the intervals of horizontal distances [8–12]

(1)

This phenomenon is the more pronounced the smaller
the quantity

(2)

Here,

(3)

and the quantity

(4)

where l is the mode number, corresponds to the period
of the interference structure rearrangement of the field

mRmin r mRmax m 1 2…,=( ).≤ ≤

∆R Rmax Rmin.–=

Rmin min Rg l l 1+ ; l 1 l 2+,+,( ){ } ,=

Rmax max Rg l l 1+ ; l 1 l 2+,+,( ){ } ,=

Rg l l 1+ ; l 1 l 2+,+,( )
=  Rl l 1+, Rl 1+ l 2+, / Rl l 1+, Rl 1 l 2+,+– ,
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produced by adjacent pairs of modes with the corre-
sponding interference periods

(5)

and frequency dependences of the horizontal wave
numbers kl.

However, it should be noted that even in the case of
a considerable difference between the values of Rmin
and Rmax (Eqs. (3)) with the ratio ∆R/Rmin ≈ 1, diffrac-
tion focusing can manifest itself for certain groups of
modes with relatively minimal variations of Rg(l, l + 1;
l + 1, l + 2) (Eq. (4)) [10, 11]. Naturally, the greater the
number of modes Lm = lb – ls in each of these groups
ls ≤ l ≤ lb and the smaller the quantity ∆Rg = Rb – Rs, the
more pronounced the diffraction focusing of the acous-
tic field in the corresponding intervals of horizontal dis-
tances

(6)

Here,

(7)

and ls and lb are the boundary values of the mode num-
bers in a given group of modes.

For specific types of oceanic waveguides, the effect
of the sound velocity stratification in the water column,
as well as the effects of the radiation frequency and the
source depth, on the spatial interference structure of the
acoustic fields in the diffraction focusing zones was
studied earlier [8–12]. However, the effect of the sedi-
ment layer on the formation of the diffraction focusing
zones of acoustic fields was not investigated. The study

Rl l 1+, 2π/ kl kl 1+–( ),=

Rl 1 l 2+,+ 2π/ kl 1+ kl 2+–( ),=

mRs r mRb.≤ ≤

Rs min Rg l l 1+ ; l 1 l 2+,+,( ){ } ,=

Rb max Rg l l 1+ ; l 1 l 2+,+,( ){ } ,=
ls l lb≤ ≤( )
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512 BORODINA, PETUKHOV
of this effect is fundamentally important for shallow-
water oceanic waveguides, and it is the subject of this
paper.

To solve the problem of interest, we use a relatively
simple model of a shallow-water waveguide: an iso-
velocity water layer characterized by the depth H, the
sound velocity C, and the density of the medium ρ over-
lying a homogeneous fluid sediment layer with the
depth h, the sound velocity cs, and the density ρs. The
sediment layer in turn overlies a homogeneous fluid
bottom with the corresponding acoustic characteristics
cb and ρb. We also assume that a point source generating
a tone signal with the frequency ω is positioned in the
water layer at the depth zs. Then, in such a waveguide,
the distribution of the sound field intensity in depth and
horizontal distance in the water layer, J0(r, z) = rJ(r, z),
will be described by the expression (the distribution is
normalized to the geometric spread) [17]

(8)

where Al(zs , z, ω) is the amplitude of the lth mode, ul =
k/kl is the normalized phase velocity of this mode, and
k = ω/c. Using the relationships presented in [17], we
obtain the following expression for the lth mode ampli-
tude:

(9)

J0 r z,( ) Al zs z ω, ,( )e
ikr/ul
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2

Here,

(10)

The normalized phase velocities of modes are deter-
mined from the dispersion equation characteristic of
the given waveguide [17]

(11)

where

(12)

In the numerical calculations, as in [12], we used the
following parameters of the sound radiation, the water
layer, and the bottom: f = ω/2π = 300 Hz, zs = 4.5 m,
H = 300 m, c = 1.45 km/s, ρ = 103 kg/m3, cb = 1.7 km/s,
and ρb = 1.6ρ. In addition, we assumed that the sedi-
ment layer thickness was h = 0.1H, the density of this
layer was ρs = 1.4ρ, and the sound velocity varied
within natural limits c ≤ cs ≤ cb.

We numerically calculated the dependence of the
quantity |Al(zs , z, ω)| determined by Eq. (9) on l at z =
zs and the dependence of Rg (given by Eq. (4)) on l. The
results of these calculations show that a decrease in the
sound velocity in the sediment layer does not affect the
dependence of the mode amplitude on the mode num-
ber (see [18]); in contrast, the dependence of the rear-
rangement period on the mode number exhibits not only
quantitative but also fundamental qualitative changes in
this case (Fig. 1). As cs decreases (see Fig. 1), the range
of values of Rg first slightly narrows for the low-number
modes 1 ≤ l < 30, which are responsible for the forma-
tion of the diffraction focusing zones [12]. Then, begin-
ning from a certain value of cs, the range of values of Rg
for these modes noticeably widens with a simultaneous
increase in Rg at l = 1. In addition, it should be noted
that, at cs = cb, the dependence of Rg on l practically
coincides with the corresponding dependence obtained
in the absence of the sediment layer (at h = 0), whereas
at cs = c, it fundamentally differs from the latter depen-
dence: it exhibits pronounced oscillations also for the
lower mode numbers 1 ≤ l < 30 (see Fig. 1).

From the behavior of the dependence of Rg on l
described above, it follows that when the sound veloc-
ity in the sediment layer decreases to a certain value cs =
c0, one should expect a slight narrowing of the spatial
regions of the diffraction focusing while the diffraction
focusing itself should be slightly enhanced. However, a
further decrease in cs should lead to a considerable wid-
ening and weakening of the zones of diffraction focus-
ing down to their total disappearance. These conclu-
sions are confirmed by the results of the numerical

Π s ρ/ρs, Π ρ/ρb, v ul
2 1– /ul,= = =

v s 1 b2ul
2– /ul, v b 1 a2ul

2– /ul,= =

b c/cs, a c/cb.= =

kHv( ) Πbv b v s khv s( )tan–[ ]tan

=  –
v

Π sv s

------------ v s Πbv b khv s( )tan+[ ] ,

Πb Π /Π s ρs/ρb.= =
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calculations performed for the spatial distribution of
the normalized intensity of the acoustic field, J0(r, z)
(Eq. (8)). The calculated distributions are represented
in Fig. 2 in the form of brightness pictures with a
dynamic range of 18 dB. From the numerical simula-
tion of the spatial distributions J0(r, z) in the waveguide
under study, we also approximately determined the
characteristic optimal value of the sound velocity in the
sediment layer cs = c0 ≈ 1.55 km/s, which corresponds
to the formation of the diffraction focusing zones with
maximal contrast (see Fig. 2).

The analysis of the results of numerical simulations
(see Figs. 1, 2) suggests that as the difference in the
sound velocities in the water and sediment layers
decreases, the formation of the zones of diffraction
focusing of the acoustic field is more and more strongly
affected by the density stratification of the of the
medium in the oceanic waveguide. Naturally, the value
of c0 will also depend on the density stratification of the
medium in the waveguide, and to a greater extent it will
depend on the density drop at the upper boundary of the
sediment layer σ than on the density drop at its lower
boundary δ:

(13)

When cs  c, the predominance of the effect of the
parameter σ on the spatial structure of the diffraction
focusing zones over the effect of δ should also manifest
itself in the corresponding effects of these parameters
on the phase velocities of the modes. Therefore, to
determine the sensitivity of the quantity ul to the varia-
tions in the parameters σ and δ, we analytically analyze
the possible behavior of the solutions of the dispersion
equation (11) for the particular cases cs = c and cs = cb .

At cs = c, when b = 1 and v  = v s , Eq. (11) can be
reduced to the form

(14)

where

(15)

From Eq. (14), it follows that as the density drop at
the upper boundary of the sediment layer decreases (σ

 0), this equation tends to the dispersion equation
P1(ul) = 0 characteristic of a Pekeris waveguide with the
effective depth of the water layer being equal to H + h.
However, even for small values of the parameter σ ! 1
and for sufficiently high radiation frequencies kh @ 1,
the right-hand side of Eq. (14) will always differ from

σ 1
Π s

------ 1, δ– 1
Πb

------ 1.–= =

P1 ul( ) σF1 ul( ),=

P1 ul( ) k H h+( )v[ ]tan
v

Πv b

-----------,+=

F1 ul( )
1

v 1 δ+( )
v b

--------------------- kHv( )tan+

kHv( ) khv( )tantan 1–
---------------------------------------------------------.=
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zero by a quantity of the same order of magnitude as σ.
In fact, for modes with relatively low numbers, we have
ul  1 for kH  ∞ and l  1. Then, from Eq. (15),
we obtain F1(ul) ≈ –1. The latter means that at cs = c, the
effect of the parameter σ on the dependence of kl on l
and, hence, on the dependences Rl, l + 1(l) and Rg(l) pre-
dominates over the effect of the parameter δ for the
modes of relatively low numbers. Since it is these
modes that determine the formation of the diffraction
focusing zones, the spatial structure of the latter is also
governed by a density drop at the upper boundary of the
sediment layer.

In the other limiting case, cs = cb, Eq. (11) at b = a
and v s = v b is reduced to the form

(16)P2 ul( ) δF2 ul( ),=

102

0 10 l20 30 40 50 60

101

(c)

102
(b)

101

103
(a)

102

Rg, km

Fig. 1. Dependences of the spatial period Rg (Eq. (4)) on the
mode number l for cs = (a) 1.45, (b) 1.55, and (c) 1.7 km/s.
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where

(17)

Naturally, as the density drop at the lower boundary of
the sediment layer decreases (δ  0), Eq. (16) tends
to the dispersion equation for a Pekeris waveguide
P2(ul) = 0 with the depth H of the water layer.

From Eqs. (16) and (17), it follows that in the same
high-frequency range kh @ 1 for modes with relatively
low numbers, we have F2(ul)  0 for kH  ∞,
because ul  1 when kH  ∞ and l  1. There-
fore, in the case under consideration, cs = cb, the effect
of the variations of the parameter δ on the dependences
kl(l), Rl, l + 1(l), and Rg(l) for the low-number modes will
be weaker than the effect of the variations of σ on the
corresponding dependences in the case cs = c.

P2 ul( ) kHv( )tan
v

Πv b

-----------,+=

F2 ul( ) v
Πv b

-----------
khv b( )tanh 1–

1 1 σ+( ) khv b( )tanh+
-------------------------------------------------------- kHv( )tan .–=
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Fig. 2. Spatial dependences of the normalized intensity
J0(r, z) for a point source at zs = 4.5 m: cs = (a) 1.45,
(b) 1.55, and (c) 1.7 km/s.
The effect of the parameters σ and δ on the forma-
tion of the zones of the diffraction focusing of an acous-
tic field can be illustrated by using the source of radia-
tion in the form of a continuous vertical antenna with
aperture D and with the center at the depth z0 = H/2.
Then, assuming that the amplitude distribution of the
excitation coefficient over the antenna aperture is con-
stant and the corresponding phase distribution is
absent, we obtain an expression for the mode ampli-
tudes in the form of Eq. (9) with the factor sin(kzsv )
replaced by the quantity Sl:

(18)

Naturally, in a free space, the direction of the major
maximum of such an antenna should coincide with the
direction of the r axis corresponding to the angle Θ = 0.
The width of this maximum can be estimated as ∆Θ ≈
2π/kD ! 1.

The advantage of a vertical transmitting antenna
over a point source in the waveguide under study con-
sists in that it allows one to reduce the amplitudes of
modes of relatively high numbers, which mask the
effect of the diffraction focusing of the acoustic field
[12]. For this purpose, it is necessary that the range of
variation of the grazing angles ∆Θl of the low-number
modes, which determine the spatial structure of the dif-
fraction focusing zones, be limited by the correspond-
ing value of the quantity ∆Θ. The approximate equality
expressing this condition,

(19)

where

(20)

makes it possible, at fixed values of l, to determine the
optimal aperture size D = Dopt for which the diffraction
focusing of the acoustic field should be most pro-
nounced.

For example, in the case of a homogeneous
waveguide with a perfectly rigid bottom, from Eq. (19)
we obtain an illustrative relationship for the antenna
aperture

(21)

which does not depend on the radiation frequency when
2π/kDopt ! 1.

The approximate equality (21) also allows one to
select an antenna aperture fairly close to the optimal
one, Dopt, for the waveguide considered in this paper.
This fact is quite important, because, when D > Dopt, the
amplitudes of the low-number modes will noticeably
decrease and, when D < Dopt, the modes with relatively
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Fig. 3. Spatial dependences of the normalized intensity J0(r, z) for a vertical antenna at z0 = 150 m: cs = (a) 1.7 and (b, c) 1.45 km/s;
ρs = (a, b) 1.4ρ and (c) 1.1ρ.
high numbers will make a substantial contribution to the
total field, which will result in the suppression or mask-
ing of the effect of diffraction focusing, respectively.

With allowance for the aforesaid, the spatial distri-
bution of the normalized intensity J0(r, z) of the acous-
tic field produced by a vertical transmitting antenna
was numerically calculated with parameter values
2π/kD = 0.1 and z0 = H/2 that made it possible to illus-
trate more clearly both the diffraction focusing in the
z – r plane and its dependence on the density stratifica-
tion of the medium in the oceanic waveguide. Here, it
should be noted that the depth of the antenna center
z0 = H/2 was selected so that the diffraction could man-

ifest itself with the spatial period R = Rmax ≈ H2.

Such a situation is characteristic of the case cs = cb =
1.7 km/s (see Fig. 3a). In this case, the numerical calcu-
lations show (see also [18]) that the typical distribution
J0(r, z) presented in Fig. 3a is practically independent of
the density variations in the sediment layer on the con-
dition that ρ ≤ ρs ≤ ρb. If the antenna is positioned closer
to the surface (z0 < H/2) or to the bottom (z0 > H/2) of
the oceanic waveguide, the diffraction focusing mani-
fests itself clearly only with the maximal spatial period

R = Rmax ≈ H2.

The spatial distributions J0(r, z) shown in Figs. 3b
and 3c in the form of brightness pictures with a

1
4
--- k

2π
------

2k
π
------
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dynamic range of 18 dB confirm that a considerable
effect of the density stratification of the medium on the
formation of the diffraction focusing zones is observed
only in the case of a very small difference between the
sound velocities in the water and sediment layers of the
oceanic waveguide.

In addition, the results shown in Fig. 3 offer another
quite important conclusion. Since a vertical transmit-
ting antenna allows one to make the diffraction focus-
ing more prominent, the aforementioned features of
this phenomenon can be used intentionally for focusing
an acoustic radiation in an oceanic waveguide. For
example, the positions of the diffraction focusing zones
can be controlled along the horizontal direction by
varying the radiation frequency and in the vertical
direction by varying the antenna depth. Such an
approach to focusing acoustic radiation in a shallow-
water oceanic waveguide can in some conditions be
preferable to the approach based on the phase conjuga-
tion method [19–23], which requires the use of an
extended aperture with fairly complex amplitude and
phase distributions of the excitation coefficients.

In closing, we briefly formulate the main results of
this study.

It was shown that with a decrease in the difference
between the sound velocities in the water and sediment
isovelocity layers of an oceanic waveguide, the forma-
tion of the zones of diffraction focusing of the acoustic
field is more and more strongly affected by the magni-
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tude of the density drop between the corresponding
media. Therefore, in certain conditions specified above,
practically a complete spread of the diffraction focus-
ing zones is possible in a shallow-water oceanic
waveguide.
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Abstract—Simple ray-approximation formulas are obtained for the mode amplitudes in a waveguide with
range-dependent parameters. The idea of the proposed approach is based on the mode expansion of the complex
field amplitude determined using the geometrical-optics approximation. A specific example of calculating
mode amplitudes is analyzed for a deep-water sound channel with a sound speed profile nonadiabatically vary-
ing with distance. The results of the calculation are compared with the numerical solution obtained for the same
problem by the parabolic equation method. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The WKB approximation is known to yield a simple
analytical description of the field mode structure in
both a planar stratified waveguide and a waveguide adi-
abatically varying along the path [1–3]. If the condition
of adiabaticity is violated, i.e., the waveguide parame-
ters change too quickly with distance, the mode ampli-
tudes are usually calculated numerically [2, 4, 5]. The
lack of analytical description hinders the study of the
effects produced by varying parameters of the medium
on the mode structure of the sound field. The greatest
difficulties arise in solving inverse problems. That is
why, in acoustic mode tomography, the sound field is
often described in the framework of the adiabatic
approximation [6], which is of limited validity in real
conditions.

Here, we present an attempt to lift the aforemen-
tioned restrictions of the method of normal waves and
to obtain analytical expressions that can be used for cal-
culating the mode amplitudes in a range-dependent
waveguide regardless of the validity of the adiabatic
approximation. The idea consists in using the advan-
tages of the ray approach, which, in contrast to the
mode approach, does not loose its simplicity and phys-
ical clarity when the adiabatic approximation fails. The
geometrical-optics formulas for the amplitude and the
eikonal remain valid in a nonadiabatic waveguide.

We expand the geometrical-optics solution of the
wave equation into normal waves and calculate the inte-
grals by using the stationary phase method. The proce-
dure results in relatively simple relations that express
the mode amplitudes through the parameters of the ray
trajectories. Earlier, we [7, 8] used a similar approach
to study the variations in the mode structure of the
sound field in response to a sound speed profile distur-
bance varying along the path (see also [9], where the
approach was applied to the problems of quantum
1063-7710/01/4705- $21.00 © 20517
chaos). At each distance, the field was expanded into
the modes of the undisturbed planar stratified
waveguide, and simple ray formulas were found for the
mode amplitudes. In practice, this approach works
when the range-dependent waveguide only slightly dif-
fers from the planar stratified one. In underwater acous-
tics, especially in the problems of long-range sound
propagation in the ocean, the waveguide parameters
often change dramatically along the path and the pro-
posed approach [7, 8] needs to be generalized.

Such a generalization is presented below. The formu-
las are obtained for the amplitudes of the so-called local
modes or, in other words, for the modes of the reference
waveguide [1]. In the considered approach, the refractive
index is not broken into undisturbed and disturbed com-
ponents. In the particular case of a two-layer waveguide
whose thickness changes along the path, the results of
this study coincide with the results obtained in [10].

We neglect the horizontal refraction of the waves and
restrict ourselves to the cylindrically symmetric prob-
lem. Let us use a cylindrical coordinate system (r, ϑ, z)
with the z axis oriented vertically downwards (the plane
z = 0 coincides with the water surface). We assume that
the sound speed c does not depend on the azimuthal
angle ϑ . The complex amplitude of the monochro-
matic (cw) sound field u(r, z) obeys the Helmholtz
equation [1, 2]

(1)

where n is the refractive index, k = 2πf/c0, f is the car-
rier frequency, and c0 is constant.

In the small-angle approximation, a simplified
description can be obtained by changing to a parabolic
equation for the smooth envelope v (r, z) of the wave field,

∂2u

∂r2
--------

1
r
---

r∂
∂u ∂2u

∂z2
-------- k2n2 r z,( )u+ + + 0,=

n r z,( ) c0/c r z,( ),=
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which is related to u(r, z) by the expression u(r, z) =

v (r, z)exp(ikv)/ . By substituting this expression
into Eq. (1) and neglecting the second derivative with
respect to the longitudinal coordinate r, we arrive at the
parabolic equation [1, 2, 11]

(2)

We analyze the mode structure of the sound field for
both Eqs. (1) and (2). For each equation, we consider
the relationships that express the Hamiltonian formal-
ism for calculating the ray pattern. In doing so, we use
the same notations for the ray and mode parameters in
both cases. (Identical notations cannot lead to confu-
sion, because the solutions of the Helmholtz and the
parabolic equations are considered in different sections
of the paper.)

At first glance, one could restrict the consideration
to analyzing only Eq. (1), especially because the small-
angle approximation does not lead to any significant
simplification. However, there are two reasons to con-
sider Eq. (2). First, in contrast to Eq. (1), this equation
can be simply solved by numerical means, even for a
waveguide changing along the path. There are a number
of accurate and fast computer codes that solve the par-
abolic equation, one of which (UMPE [13]) we used to
quantitatively estimate the accuracy of approximate
expressions. Such a comparison would be much more
difficult for Eq. (1). The second reason is that parabolic
equation (2) coincides with the Schröedinger equation
in its form, and our results can be applied to quantum-
mechanics problems for analyzing wave functions in
potential wells whose parameters vary with time.

RAYS AND MODES IN THE APPROXIMATION 
OF A PARABOLIC EQUATION

Ray Representation for the Field

In the geometrical-optics approximation, the solu-
tion to Eq. (2) is represented in the form v  = Aexp(ikS),
where A and S are the amplitude and eikonal for the ray,
respectively. Before analyzing the explicit expressions
for S and A [12], let us briefly consider the Hamiltonian
formalism that will be used to describe the ray pattern
of the field. According to this formalism, the ray trajec-
tory is quite similar to a particle trajectory in classical
mechanics, with the longitudinal coordinate r being the
analog of time. For the mechanical momentum, its ana-
log is the quantity p = dz/dr = , where χ is the
grazing angle. The Hamiltonian is given by the follow-
ing expression:

(3)

r

2ik
r∂

∂v ∂2v

∂z2
--------- 2k2U r z,( )v–+ 0,=

U r z,( ) 1
2
--- 1 n2 r z,( )–( ).=

χtan

H
p2

2
----- U r z,( ).+=
In our case, the Hamilton equations that describe the
motion of a mechanical particle [14] are the ray equa-
tions and have the form

(4)

The eikonal S that serves as the analog of the
mechanical action is expressed as

(5)

where the integration is performed along the ray trajec-
tory (the solution to the system of ray equations (4)).
There are two formulas [14],

(6)

which are well known in mechanics and useful to us.
The eikonal S is assumed here to be a function of the
starting depth z0, the final depth z, and the range r.

The ray trajectories oscillate in a waveguide. There-
fore, to describe them, it is convenient to complement
the momentum–coordinate variables ( p, z) with the
action–angle variables related to ( p, z) by the well-
known canonical transformation [14]. In this paper, we
need only the action variable (this quantity should not
be confused with the eikonal S, which is the analog of
the mechanical action). The action variable is intro-
duced in the following way.

To begin with, we consider a planar stratified
waveguide (U = U(z)) where the Hamiltonian does not
change along the ray trajectory:

(7)

In mechanics, Eq. (7) expresses the energy conserva-
tion law. In geometrical optics, it represents the Snell
law in the small-angle approximation. The action vari-
able I is given by the expression

(8)

where zmax and zmin are the roots of the equation U(z) =
E, which determine the turning horizons for the ray tra-
jectory. In fact, Eq. (8) establishes the relation between
the variables E and I, i.e., it determines the function
E(I), as well as its inverse function I(E).

The following relation is well known from classical
mechanics [14]:

(9)

where D is the cycle length for the ray (the trajectory
period along the coordinate r).

In a waveguide varying along the path, the relation
between E and I is specified by using the concept of a
reference waveguide [1]. By this term, an imaginary

r∂
∂z

p∂
∂H

,
r∂

∂p ∂H
∂z
-------.–= =

S p z H xd–d( ),∫=

z∂
∂S

p,
∂S
∂z0
------- p0,–= =

H E const.= =

I
1

2π
------ p zd∫°

1
π
--- z 2 E U z( )–( ),d

zmin

zmax

∫= =

dE
dI
-------

2π
D
------,=
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planar stratified waveguide is meant, whose vertical
cross section coincides with that of the waveguide to be
studied at the same distance. For a realistic range-depen-
dent waveguide, an appropriate reference waveguide
should be constructed at each distance. For all reference
waveguides (at all distances r), Eq. (8), in general,
determines different relations between the energy E and
the action I with different functions E(I) and I(E). Thus,
in a waveguide varying along the path, these functions
are replaced by the functions E(I, r) and I(E, r). By
specifying the distance, the additional variable r deter-
mines the parameters of the reference waveguide.
Expressions (9) are still valid if the full derivative with
respect to I is replaced by the partial derivative and D is
treated as the length of the ray cycle in the reference
waveguide.

The function I(E, r) introduced in this way deter-
mines the action variable for the ray that carries the
energy E at the distance r. Here, the range dependence
of the waveguide parameters is not assumed to be
smooth, and the well-known concept [14] of adiabatic
invariance is not used for the action variable.

In conclusion for this subsection, we introduce the
expression for the complex amplitude of the sound field
of a point source [12], which is known from the geo-
metrical-optics approximation. The field obeys Eq. (2)
with the right-hand side in the form 2ikδ(z – z0)δ(r).
When r  0, the solution coincides with the Green
function for free space:

(10)

At an arbitrary distance from the source, the situation is
typical with several rays arriving at the receiver. To find
the total field, the contributions of all rays should be
combined according to the formula [12]:

(11)

where the superscript ν indicates the number of a
received ray; µν is the trajectory index for the νth ray,
which is equal to the number of caustics touched by this
ray on its way to the reception point (all caustics are
assumed to be nonsingular); and the subscript p0
denotes the partial derivative with respect to the starting
value of the momentum.

Mode Representation for the Field

At each distance r, we expand the field in the modes
of the reference waveguide, which are also called local
modes. In this subsection, we present the main expres-
sions for the eigenfunctions of a planar stratified
waveguide in the WKB approximation [1]. By defini-
tion, every reference waveguide can be considered as a

v
k

2πir
----------- i

k z z0–( )2

2r
---------------------- .exp=

v
k

2πi zp0

ν------------------ ikSν iµνπ/2–[ ] ,exp
ν
∑=
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planar stratified waveguide. The eigenfunctions are the
solutions to the equation

with the appropriate boundary conditions. The eigen-
values of the energy Em are found from the relation
Em = E(Im) in view of the function E(I) determined by
Eq. (8) and the value of the action variable that corre-
sponds to the mth mode determined by the Bohr–Som-
merfeld quantization rule [1]:

(12)

In this expression, φs and φb are the phases of the reflec-
tion coefficients in the upper (closest to the surface) and
lower (closest to the bottom) turning points, respec-
tively. If the turning point is within the water bulk, the
phase of the reflection coefficient is φ = –π/2. When the
reflection occurs from a pressure-release surface, φ = π,
and in the case of the reflection from a perfectly rigid
boundary, φ = 0.

In the region between the turning points, the WKB
approximation yields the following representation for
the eigenfunction:

(13)

where

(14)

(15)

(16)

(17)

(18)

In the WKB approximation, the eigenfunction is
expressed through the parameters of the ray with the
energy E = Em. In particular, Dm is the cycle length of
the ray, and pm(z) is the ray momentum at the depth z.

Expansion of Ray Representation 
of the Field in the Local Modes

For an inhomogeneous waveguide, the mode repre-
sentation of the field has the form

(19)

1
2
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Here, we explicitly introduced the variable r for the
local mode, which was omitted in the previous subsec-
tion. By using the orthogonality of the eigenfunctions
of the local modes, we express the mode amplitude as
follows:

(20)

In view of Eqs. (13) and (14), we break this amplitude

into two components,  and , where

(21)

The parameter σ takes two values, +1 and –1, or simply
a plus and a minus if it is used as a superscript.

To obtain explicit expressions for the mode ampli-
tudes, we use the WKB approximation for the eigen-
functions and the ray representation of the field v (r, z).
Substituting Eqs. (11) and (14) into Eq. (21), we obtain
the following integral:

(22)

To calculate it, we use the stationary-phase method [1].
The stationary-phase point of the integrand

Φ = k(S + σSm)

is determined by equating the derivative

(23)

to zero. Here, the derivative was calculated using Eqs. (6)
and (15).

Formula (23) means that the main contribution to
the field of the mth mode is made by the ray whose
momentum meets the condition

Bm zv r z,( )ϕm r z,( ).d∫=

Bm
+ Bm

–

Bm
σ zv r z,( )ϕm

σ r z,( ).d∫=

Bm
σ zAQσ ik S σSm+( )[ ] .expd∫=

∂Φ
∂z
------- k p σpm+( ).=

p σpm z( ).–=

0
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Fig. 1. Sound speed profiles in six vertical waveguide cross
sections taken at six equidistant points of the path 141 km
in length. On the left: profile at the reception point. On the
right: profile at the maximal distance from the receiver.
This condition can be expressed in the form

(24)
where I is the action variable for the ray that hits the sta-
tionary point.

For the rays that meet condition (24), we will use the
term mode rays. Their number can be arbitrary [7, 8].
These rays determine the amplitude of the mode at a
given distance. By evaluating integral (22) with the sta-
tionary phase method, we obtain the following expres-
sion for the contribution of a single mode ray:

(25)

where γ is the sign of the second derivative ∂2Φ/∂z2. To
calculate this derivative, we differentiate Eq. (23) with
respect to z. In doing so, we treat the momentum p on
the right-hand side as a function of z and r. In other
words, we interpret p as the momentum of the ray that
hits a point z at a distance r. With the use of the relation

we find the value of the second derivative at the station-
ary point:

(26)

Substituting this relation into Eq. (25), we obtain an
explicit expression for the contribution of a single mode
ray to the mode amplitude:

(27)

In view of Eq. (9), we represent this expression in the
form

(28)

To conclude with calculating the amplitude of the mth
mode, all mode ray contributions given by Eqs. (27) or
(28) should be combined.

Example of Calculating Mode Amplitudes

To illustrate the results obtained above, let us con-
sider a deep-water acoustic waveguide that varies along
the path. Figure 1 shows several sound speed profiles
along a path 141 km in length. According to the plots,

I Im,=
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σ 2π
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Fig. 2. Mode amplitudes (squares) at the distances 1 (top), 91 (middle), and 141 km (bottom), as calculated with the proposed ray
formulas, and the depatures of these amplitudes (dots) from those calculated by the method of parabolic equation.
the profile considerably changes with distance. In par-
ticular, the channel axis rises from a depth of 915 km at
r = 0 to 388 m at r = 141 km.

The point sound source (which is assumed to lie at
the channel axis at r = 0) transmits a carrier frequency
of 200 Hz. The sound field was calculated in the
approximation of the parabolic equation by means of
the UMPE program [13]. At chosen distances, vertical
cross sections of the field were expanded in local
modes, which were computed with the use of the WAN
program [15]. The field amplitudes proved to signifi-
cantly vary with distance; i.e., the adiabatic approxima-
tion was undoubtedly violated for the waveguide at
hand.

In Fig. 2, the squares indicate the amplitudes of the
first 160 propagating modes that are calculated accord-
ing to Eq. (27) for three distances: 1, 91, and 141 km.
At each distance, the amplitude of each mode was
formed by the contributions of two eigenrays. The dots
show the absolute values of the differences between the
mode amplitudes found by the UMPE program and
those calculated according to Eq. (27). The differences
characterize the errors in estimating the amplitudes
with our ray method. On average, these errors reach 6%
(0.5 dB), 8% (0.7 dB), and 15% (1.4 dB) at the dis-
tances 1, 91, and 141 km, respectively. In parentheses,
the differences in decibels are indicated between the
exact and approximate values of the amplitude. At a
distance of 1 km, the error is actually caused by the dif-
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
ference between the exact values of ϕm at the source
depth, which determine the starting mode amplitudes,
and the WKB-approximated values of these functions,
which are used in our ray calculations.

RAYS AND MODES FOR THE FIELD 
SATISFYING THE HELMHOLTZ EQUATION

All results presented in the previous section can be
easily generalized to the case when the field is governed
by the Helmholtz equation (1) without assuming that
the grazing angles of the propagating waves (and rays)
are small. Here, we briefly consider the generalized for-
mulas and make some relevant comments.

The complex field amplitude is again expressed
through the amplitude A and the eikonal S of the ray:

(29)

In turn, the quantities A and S can be expressed through
the parameters of the ray trajectory. As above, the latter
can be denoted as z(r). Let us use the Hamiltonian for-
malism again. The ray equations have the form of the
Hamilton equations (4), but the Hamiltonian itself now
is given by the expression [16]

(30)

u
A

r
------ ikS( )exp .=

H n2 p2–– n χ .cos–= =
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The symbol χ stands for the grazing angle. The relation
between the momentum and the velocity dz/dr now
takes the form

(31)

The expression for the eikonal is again specified by
integral (5), but the new form of the Hamiltonian
should be used in it. Formula (6) also remains valid.

For a planar stratified waveguide with n = n(z), the
analog of the energy conservation law, i.e., Snell’s law
[1], now takes the form

(32)

The relation between the action variable and the energy
is given by the integral that is similar to Eq. (8):

(33)

The field produced by a point source is described by
the Helmholtz equation (1) with the right-hand side

δ(r)δ(z – z0). Transforming the well-known expres-

sion for the field of a point source [1] to our notation,
we obtain an approximate solution for the Helmholtz
equation:

(34)

where, as in Eq. (11), the superscript ν represents the
numbers of all rays that hit the point (r, z).

Let us consider the mode representation of the field.
The eigenfunctions of the planar stratified waveguide
are the solutions to the equation

with the appropriate boundary conditions. The eigen-
values are again determined by the quantization rule
given by Eq. (12), while the relation between Im and Em
is now specified by Eq. (33).

Between the turning points, the eigenfunction is
again represented as a sum of two components, accord-
ing to Eqs. (13) and (14), whereas the explicit expres-

sions for Sm, , and Dm now take the form

(35)
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(38)

By analogy with the approximation of parabolic
equation, the mode field representation has the form of
a sum of local modes:

(39)

The next step consists in expanding the ray field rep-
resentation given by Eq. (34) in the local modes. To
do so, we follow the procedure described above.
Namely, the mode amplitude Bm is again broken into
two components, which are calculated by using the
method of stationary phase. As a result, we arrive at
expressions (19)–(24) in which (to be more specific, in
Eqs. (19–(21)) v  is replaced by u.

An important fact should be mentioned: the mode
amplitude is again formed by the contributions of the
rays whose action variables satisfy Eq. (24).

The explicit expression for the second derivative of
the phase with respect to the vertical coordinate is as
follows:

The analogs of Eqs. (27) and (28) have the forms

(40)

and

(41)

As in the previous considerations, γ denotes the sign of
the second derivative of the phase with respect to z at
the stationary point.

CONCLUSIONS
The set of formulas presented above specifies the

procedure of calculating the mode amplitudes for a
waveguide varying along the path on the basis of solv-
ing ordinary ray equations. In many aspects, this proce-
dure is similar to that of standard geometrical-optics
calculations for the field amplitude at a given point. The
procedure involves finding the mode rays that have the
given value of the action variable at a given distance
(the analog of the standard problem of targeting, i.e.,
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finding the rays that hit a given spatial point) and calcu-
lating the parameters of the ray trajectories along with
their derivatives with respect to the initial conditions.
As in the expressions for the ray amplitudes (Eqs. (11)
and (34)), in Eqs. (27), (28), (40), and (41) for the mode
amplitudes, the denominators of the integrands can take
zero values. Thus, there are analogs of caustics in this
case (for more detail, see [8]). It is worth mentioning
that the validity domain of proposed approach actually
coincides with that of the ray approximation.

The results of this study provide a deeper under-
standing of the relationship between the mode and ray
representations of the sound field in an inhomogeneous
waveguide. An important conclusion from Eq. (24) is
that, at a given distance, the main contribution to the
field of the mth mode is made by the mode rays whose
action variables are equal to the action variable of the
given mode, Im. In a planar stratified waveguide, there
are two mode rays for each mode at each distance. They
leave the source at the angles that are equal to the graz-
ing angles of the Brillouin waves that form the mode.
Along its mode rays, a mode in the planar stratified
waveguide is combined in phase (constructively inter-
feres) with adjacent modes [17, 18].

In a waveguide that changes along its path, an arbi-
trary number of mode rays can exist [8]. For the case of
ray chaos, this number exponentially increases with
distance, and the range dependence of the mode ampli-
tude becomes irregular. The proposed approach estab-
lishes an unexpectedly simple relation between rays
and modes for an inhomogeneous waveguide and
allows one to understand how the chaotic behavior of
ray trajectories manifests itself in the resulting wave
pattern at a finite wavelength. This problem is central in
studying wave chaos [16].

Another application of proposed approach can be
the problem of the validity limits for the adiabatic
approximation. On the basis of the analysis described
above, we can indicate at least two mechanisms that
violate this approximation. The first one consists in the
nonconservation of the action variable along the mode
ray. The second is related to the possibility of a multi-
plication of the mode rays. Both mechanisms can be
studied with the proposed approach. In particular, the
first mechanism was realized in the example considered
in this paper. The second mechanism manifests itself in
the example analyzed in [10].
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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Abstract—The amount and degree of detail of the initial information are analyzed as applied to the new
method of ocean bottom mapping on the basis of the fine structure of the bottom-reflected sound field at nor-
mal incidence. For the mapping data obtained with a planar multielement receiving array, the distortions
caused by insufficiently detailed information derived from discrete measurements of the bottom-reflected
amplitude are considered. The relations between the number of receivers, the receiver spacing, the array
aperture, and the horizontal correlation length of the sound field are determined. The problem is solved by
computer simulation with the use of generalized quantitative data obtained in deep-water ocean experiments.
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The sound field reflected by the bottom of the deep
ocean at normal incidence is known to exhibit three
spatial scales in the horizontal plane. Experiments
show that, for each of these scales, the reflected field
can be mapped. In other words, the field parameters
(the amplitude, for instance) can be represented as a
two-coordinate function in a relative fixed or (with the
appropriate reference) geographic coordinate system
[1–5]. The possibility of such mapping is very impor-
tant, especially for the high-frequency scale of the field
variability, because it opens up new possibilities for
solving a number of practical problems, such as the
independent determination of the parameters of motion
for surface and underwater marine vehicles relative to
the bottom, as well as other problems of navigation.
The principle underlying such methods differs from the
traditional ones [5–7] and seems to be highly promising
[2–4]. However, the feasibility and quality of mapping
is directly concerned with the time stability of the
acquired data, i.e., with the data insensitivity to the real
disturbing factors that change within the time interval
required for solving a specific problem. In real condi-
tions, these intervals vary over wide limits, from several
seconds to the values characterizing the seasonal vari-
ability of the hydrological environment.

In our previous publication [8], we considered the
effect of the disturbing factors on the stability of the
acoustic maps. These factors included small-scale tur-
bulent inhomogeneities of the ocean waters, fine-struc-
ture irregularities, lenses, and general changes in the
sound speed profile. The analysis was applied to the
highest-frequency variability scale (of the order of the
sound wavelength) of the reflected field, because this
variability governs the fine structure of the sound field,
which has a phase nature and suffers from the disturb-
1063-7710/01/4705- $21.00 © 0524
ing factors to the maximal extent [2, 8]. In [8], we also
specified when and what disturbing factors can be
neglected, and in what cases preliminary estimates are
needed to solve practical problems.

However, in practice, hydrological factors are not
the only ones that influence the quality of the mapping
data: disturbing factors of instrumental and methodical
nature can be involved as well.

Let us consider the effect of the details of the initial
data used for mapping on the resulting maps. The con-
sideration is restricted to the aforementioned fine spa-
tial structure of the reflected field. We use a computer
simulation with the available generalized data of long-
standing in-sea experiments on sound reflection from
the ocean bottom [2].

The most advantageous way to obtain information
on the fine spatial structure of the sound field reflected
from the bottom of the deep ocean is to use horizontal
multielement receiving antenna arrays. In this case, the
data are collected from a finite number of discrete
sound receivers distributed over the array aperture, with
an independent and separate reception of the reflected
signal by each receiving element. Then, by using purely
computational procedures, one can construct a map for
the parameter of interest, e.g., in a coordinate system
whose axes are parallel to the mutually perpendicular
array sides. To convert the discrete data to isolines, one
can use standard computer software. By using a set of
data obtained with the horizontal displacement of the
array, provided that the apertures partially overlap at
different array positions, an area can be covered that far
exceeds that of the aperture. The latter fact was demon-
strated in [4] for a coordinate system rigidly fixed to the
bottom. It is worth mentioning that, nowadays, spatially
2001 MAIK “Nauka/Interperiodica”
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spaced arrays (with different data processing systems)
are accepted [2, 4, 9, 10] as the most advantageous tools
for receiving bottom-reflected (bottom-scattered) sig-
nals in various applications.

As for the required degree of detailing in the initial
data, it is obvious that the spacing of the adjacent recep-
tion points should be sufficiently small, at least smaller
than the horizontal correlation length of the reflected
signal. On the other hand, the closer the reception
points, the better the accuracy of mapping. However,
starting from a certain spatial step, the information
becomes excessive along with sharply increasing
instrumental difficulties in the measuring procedure
and with a rise in the cost of the bottom mapping.

To solve the problem of the effect of the spacing of
the reception points on the quality of the collected data,
a computer simulation is the most advantageous
method. In the experiments, the receiving array is a
solid structure with fixed receiving elements [2–4].
Then, with a constant array aperture, the only possibil-
ity to change the step of the data collection is a multi-
ple-step decrease in the number of receivers along the
array sides. One cannot thoroughly analyze the situa-
tion in this way. A computer simulation is free from
such limitations, however, it requires the solution of the
following problems:

(1) to obtain numerical realizations for the distribu-
tion of the amplitudes of the reflected signal over the
array aperture for arbitrary spacings of the receivers in
the rectangular coordinate system formed by the array
sides at an arbitrary ratio of the correlation radius of the
reflected amplitude to the receiver spacing ρ/d;

(2) to provide for the agreement between the gener-
ated realizations and the generalized experimental data
(the Rayleigh and Rice laws for the amplitude probabil-
ity density and the Gaussian form for the amplitude
autocorrelation function [2]) for the given ratios ρ/d of
the correlation radius to the minimal receiver spacing,
and to permanently check that the obtained numerical
data fit the corresponding characteristics;

(3) to calculate and reproduce the isolines of the
measured parameter (the sound amplitude) for an arbi-
trary number and spacing of the curves;

(4) to select a quantitative criterion that character-
izes the extent of map distortion caused by a change in
the number of the receivers;

(5) to choose the necessary relations between the
parameters of a rectangular array: the size (the aperture
area), the number of receivers, and the correlation
radius of the reflected signal.

The first three of these problems were solved with
standard software. However, the case of an arbitrary
number of receivers required a modification of the stan-
dard computer programs on the basis of the existing
methods of interpolation.

Figure 1 shows maps of the same numerically mod-
eled amplitude of the reflected signal, which corre-
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
spond to different numbers of the reception points
within the aperture of a square array, i.e., to different
receiver spacings. As a basis for modeling (Fig. 1a), a
situation was chosen that is characteristic for deep-
water measurements with the GRANAT receiving sys-
tem [2, 3]: 16 × 16 receivers, an array size of 4.2 × 4.2 m,
and the frequency 10.0 kHz. The correlation radius ρ of
the reflected amplitude was specified to be three times
greater than the spacing d of the adjacent receivers. The
isolines are represented in relative units that are com-
mon for all data with a step of 10 relative units. The iso-
lines are numbered in order of increasing relative
amplitudes. Note that in our computer simulation, the
values of ρ and ρ/d are governed by the filtering of the
sound field, which is initially specified as uncorrelated
white noise with a Gaussian distribution of instant

Fig. 1. Amplitude distributions of the reflected signals over
the array aperture for different numbers of receivers: (a) 16 ×
16 and (b) 6 × 6.
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amplitudes and a Rayleigh distribution of envelope
values.

The data presented show that an increase in the
receiver spacing leads to a deformation of the signal
pattern (though its general features remain unchanged):
the number of isolines decreases, and their shapes are
distorted. In other words, the quality of the mapping
data decreases. However, this decrease depends not
only on the number of receivers but also on the nature
of the surface to be mapped: smoother surfaces can be
satisfactorily represented by a smaller number of points
than rougher surfaces. In our numerical simulation, this
feature of the process is determined by the filtering
band used for the generated data sequence and by the
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Fig. 2. Amplitude distributions of the reflected signals over
the array aperture at a fixed number (12 × 12) of receivers for
different extents of filtering of the initial signal: ρ/d = (a) 2
and (b) 4.
ratio of the correlation radius of the obtained realization
to the minimal hydrophone spacing.

Figure 2 shows the maps obtained with a fixed num-
ber (12 × 12) of receivers for different ratios ρ/d. The
data reveal an obvious tendency for simplification of
the map structure with increasing correlation radius.
According to the calculations, with a further increase in
the correlation radius, the details in the map structure
exhibit saturation. The latter fact evidences that, with
the given number of receivers and the array size, the
mapping resolution is exhausted.

A question arises about the quantitative criterion of
the correctness of the obtained mapping data in the case
of a varying number of receivers within the array aper-
ture. A natural criterion is the correlation coefficient
characterizing the relation between the centered values
of the initial amplitude (16 × 16) and those formed at
the same points with a decreased number of receivers.

Figure 3 presents the dependence of such a correla-
tion coefficient on the number of receivers at each array
side. The data correspond to several numerical realiza-
tions, which agree with the aforementioned average
parameters and serve to illustrate the typical statistical
spread of the chosen criterion. The low spread obtained
for the data shown evidences the sufficient representa-
tiveness of the chosen realizations. The form of the
dependence is quite understandable: as the number of
the receivers increases, the correlation coefficient
asymptotically tends to unity (the maps fully coincide);
when the number of the receivers decreases to a certain
value, the correlation sharply drops down to zero (the
maps are different).

Figures 3a and 3b present the plots for two different
values of ρ/d. As this ratio increases, the correlation
coefficient decreases slower for a greater number of the
receivers and more rapidly for a smaller number of
them. An acceptable drop of the correlation coefficient,
which is caused by a decrease in the number of the
array receivers, is determined by the specific problem
to be solved with the help of the map. If the problem of
high-sensitivity positioning of a vessel relative to the
bottom is to be solved, one should refer to special-pur-
pose publications [2, 3, 9, 11] that analyze the errors of
the positioning process.

In [12], a simplified situation of a piecewise linear
vessel motion relative to the bottom is considered.1

This simplification, which fully corresponds to the
problem at hand, leads to the following estimate for the
error in determining the vessel displacement relative to
the bottom due to the disturbing factors:

(1)

where ρ is the horizontal correlation radius of the
amplitude of the reflected signal, L is the side length of

1 A more complicated situation when, in addition to the transla-
tional motion, angular displacements of the array take place (the
vessel yaws on the tack) is analyzed in [11].

δrandom ρ2/ 2π1/2Lr( ),=
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Fig. 3. Correlation coefficients versus the number of the array receivers for different ratios of the signal correlation radius to the
receiver spacing (different realizations): ρ/d = (a) 2 and (b) 4.
the square receiving array, and r is correlation coeffi-
cient for two successive realizations of the signal
received by the array. This formula is universal in the
sense that it does not depend on the nature of the dis-
turbing factors that lead to a decrease in the correlation
coefficient. Such factors may include interfering noise,
temporal fluctuations of the signal amplitudes received
by separate hydrophones due to the processes of hydro-
logical nature, offsets of the actual hydrophone posi-
tions from the horizontal plane, a spread in the transfer
characteristics of separate receiving channels, etc. Ear-
lier [12], we analyzed the effects of these factors and
presented the corresponding explicit expressions and
computational formulas. At the same time, Eq. (1) is
quite adequate for our problem on the insufficient ini-
tial information, with the exception that this time there
was no displacement of the realizations along the array
sides.
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
With the introduced notations ρ/d and L = d(N – 1),
simple transformations lead to the result:

(2)

This expression determines the minimal acceptable
value of the correlation coefficient for which the given
error δrandom is provided in measuring the vessel dis-
placement relative to the bottom. To find the required
spacing of the receiving elements, one should use a set
of plots similar to those shown in Fig. 3.

The estimates show that to obtain acceptable results
in deep-ocean measurements with the GRANAT sys-
tem (an accuracy of about several centimeters for a
once measured vessel displacement), a decrease down
to 0.7 in the correlation coefficient is allowed. The
aforementioned considerations confirm that an array

rmin
ρ
d
--- 

 
2 d
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whose parameters are close to those of the GRANAT
system can be effectively used in all deep-water regions
of the ocean.
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Abstract—Acoustic streaming accompanying acoustic resonance oscillations of gas in a tube is considered.
The effect of both the Prandtl number and the wall loss on the velocity of acoustic streaming in a viscous heat-
conducting medium is investigated. Expressions for the longitudinal and transverse components of the flow
velocity are obtained. © 2001 MAIK “Nauka/Interperiodica”.
Acoustic oscillations of gas in a channel give rise to
stationary acoustic streaming, the study of which is
important because of its role in the intensification of
heat and mass transfer processes [1].

Rayleigh [2] was the first to consider the streaming
that occurs in the case of the imposition of an acoustic
field on a channel consisting of two plane-parallel
plates. Later, acoustic streaming became the subject of
numerous studies [3–7]. The limited validity of the the-
ories developed in the cited publications is determined
by the following facts: (a) the authors neglect the
effects of the geometry of the volume and the way of
excitation on the particle velocity in the flow core,
where gas is assumed to be ideal [1–7]; (b) within the
boundary layer, gas is assumed to possess a low viscos-
ity and a zero heat conductivity [1–6]; and (c) the sound
absorption by the walls is neglected.

The purpose of this paper is to study the effect of the
Prandtl number on acoustic streaming in the case of
oscillations of a real gas with absorption.

Oscillations excited in a long cylindrical tube (L/R @
1, where R is the radius of the tube and L is its length)
by a piston performing harmonic oscillations with the
amplitude l0 ! L are characterized by the following
parameters [8]:

(1)

where c0 is the sound velocity in an unperturbed gas, ν
is the kinematic viscosity coefficient, V is the amplitude
of the velocity oscillations at the open end, and ω is the
cyclic frequency of oscillations. We assume that H @ 1,
Mp ! 1, ε ! 1, and Sh ! 1. Then, instead of the full
equations of motion, we can write the equations for the
boundary layer, and, for R/L ! 1, we also can neglect
part of the terms in the energy equation. The solutions
to the equations for ε ! 1 can be sought in the form of
a series expansion in the small parameter ε, where the

Mp = ωl0/c0, ε = V /ωL, Sh = ωR/V ,

H  = R ω/ν ,
1063-7710/01/4705- $21.00 © 20529
subscript indicates the number of the approximation: 1
corresponds to the first (acoustic) approximation, 2 cor-
responds to the second approximation, etc.

The equations of the first approximation have the
form

(2)

where ρ is the density; p is the pressure; T is the tem-
perature; R is the universal gas constant; Cp is the spe-
cific heat at constant pressure; µ is the dynamic viscos-
ity coefficient; u and v  are the axial and radial velocity
components, respectively; x and r are the axial and
radial coordinates; and t is time.

We consider the boundary conditions used in solv-
ing the equations of the first approximation. At the end
at which the periodically oscillating piston is located,
the condition considered in [9] is satisfied. In the case
of a harmonically oscillating piston, the following rela-
tion is valid:

(3)

At the open end, a nonlinear boundary condition is
set [10]:

(4)

where m is a constant, which can be calculated accord-
ing to the method described in [10]. We consider the
case of an isothermal wall with Tw = const.
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The system of equations (2) describes the oscilla-
tory motion in a narrow cylindrical tube and corre-
sponds to the so-called case of a “low reduced fre-
quency.” The general solution to the equations of the
first approximation is presented in [10]. When H @ 1,
this solution takes the form

(5)

Here, r1 and ψ are the magnitude and the principal
value of the argument of the dimensionless oscillation

amplitude; k = k0[(1 + β') + iβ''], where k0 = , β'' =

–β' = – , δ = , η = ; α and β

are constants; σ is the Prandtl number; and κ = Cp/Cv ,
where Cv is the specific heat at constant volume.

To determine r1, ψ, α, and β, it is necessary to aver-
age the second equation of Eqs. (5) over the tube cross-
section [8]:

(6)

where µ1 and ϕ are the magnitude and the principal
value of the argument of the function Φ = Φ(H) [8],

 = p1/ρ0 , and  = u1e/c0. For H @ 1, we have
µ1 ≈ 1 and ϕ ≈ 0. The substitution of Eqs. (6) in the
boundary conditions (3) and (4) yields [10]

(7)

The equations of the second approximation describe
the oscillatory motion with the frequency 2ω and the
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secondary stationary motion. To separate the latter, we
average these equations over time:

(8)

Here, the angular brackets denote the time averaging.
We substitute Eqs. (5) in Eqs. (8) on their right-hand
sides. In doing so, we take into account that, according
to Eqs. (7), the quantity β is a first-order quantity. The
resulting equations should be integrated with allowance
for the boundary conditions

(9)

The integration of the first equation of Eqs. (8) yields

(10)

(11)

,

where z = k0x(1 + β') + α0.
To calculate 〈v 2〉 , we differentiate Eq. (10) with

respect to x, then substitute the result into the second
equation of Eqs. (8) and integrate it once with respect
to r with allowance for the fact that, near the wall, we
have

Then, for 〈v 2〉 , we obtain
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where

(13)

The constants C1 and C2 are determined from the
boundary conditions at the wall (Eqs. (9)). Finally, we
obtain

(14)
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Let us consider the behavior of acoustic streaming
near the axis of the tube. We note that Eqs. (14) exactly
satisfy the conditions set at the tube axis. According to
the statement of the problem, we have δ/R ! 1 and, in
addition, g1(η, δ)  0. Therefore, without any con-
siderable error, at the tube axis we have

(15)

In a liquid without heat conduction (σ = ∞), we have
g1(0, σ) = 3/2. In this case, we obtain a result that coin-
cides with the result presented in [5]. Similarly, at σ =
1, we have g1(0, 1) = (2 + κ)/2, and Eqs. (15) yield a
result that agrees with [9].

Exactly at resonance, the maximum of sin2z is in
the middle of the tube, x = 0.5L. Then, at the tube axis,
we obtain

(16)

where the superscript 0 indicates the tube axis and the
subscript m indicates the maximum corresponding to
x = 0.5L.

The dependence of  on σ for the parameter of
the setup described in [11] is shown in Fig. 1. One can
see that a decrease in the Prandtl number leads to an

increase in  and vice versa.

Figure 2 presents the dependences of  on the
quantity (R – r)/R for three values of σ (0.1, 0.7, and
1.0) in the flow core. One can see that a decrease in the
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Fig. 1. Dependence of  on the Prandtl number σ for the

parameter of the setup used in [11].
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Prandtl number leads to a considerable (almost two-
fold) increase in the absolute value of  near the
wall.

The maximums of |cos2z| correspond to the ends
of the tube, x = 0 and x = L. The dependence of 
on (R – r)/R in the flow core at x = 0 is shown in Fig. 3
for different Prandtl numbers (σ = 0.1, 0.7, and 1.0).
One can see that a decrease in σ leads to an increase in
the absolute value of  and a shift of the maximum

of  toward the tube wall.

The dependence of  on the dimensionless radial
coordinate (R – r)/R for three values of σ (0.1, 0.7, and
1.0) in the near-wall region at x = L/2 is presented in
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coordinate (R – r)/R in the near-wall region at x = L/2 for
σ = 0.1, 0.7, and 1.0.
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ũ2m
Fig. 4. One can see that, in the near-wall vortex, which
corresponds to the regions with  > 0, the axial

velocity component is much less than in the flow core.
A decrease in the Prandtl number leads to a decrease in
the size of the region occupied by the near-wall vortex,
down to a total disappearance of the latter. The depen-
dence of  on (R – r)/R in the near-wall region at x =
0 is shown in Fig. 5 for three values of σ (σ = 0.1, 0.7,
and 1.0). As one would expect, the size of the region
occupied by the near-wall vortex decreases with
decreasing σ. The distance within which  vanishes
is approximately twice as long as the corresponding
distance for .
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The effect of the wall loss on the acoustic streaming

can be revealed by considering the factor c0 /4 from
Eqs. (14) to the piston velocity uP . Taking into account
Eqs. (7), we obtain

(17)

where m is a parameter, which in the conditions defined
in [11] is equal to 0.346. One can see that the axial com-
ponent of the velocity of acoustic streaming is deter-
mined by the parameter N: for the parameters of the
setup described in [11], the variation of N from 0.309 to

0.715 leads to a decrease in /4Mp from 1.719 to
0.914.

Thus, it is evident that the flow velocity strongly
depends on the Prandtl number and on the wall loss.
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Abstract—The spatial correlation of explosive signals received by hydrophones lying on the bottom of a shelf
zone is studied as a function of the length of the propagation path. The correlation coefficient is found to exhibit
quasi-periodic variations with increasing distance to the explosive source of sound. It is shown that the value of
the correlation coefficient noticeably increases and its periodic variations practically disappear when the mea-
surements are performed for the signals arriving by individual rays or narrow ray bundles. The low efficiency
of a linear horizontal receiving array is pointed out. © 2001 MAIK “Nauka/Interperiodica”.
In recent years, the problems related to monitoring
the ocean are often solved with the use of small self-
contained sonar systems positioned in the sea away
from the shore. However, because of the short lifetime
and small detection range of such systems, a certain
number of stationary zonal observation systems are
also used for these purposes. The receiving arrays of
such systems are placed in coastal waters, and the data
received through the communication lines are supplied
for further processing to computer systems installed at
onshore laboratories. Since the construction of such
sonar systems is quite expensive, it is important to have
some justified predictions concerning the efficiency of
their operation. Such predictions are impossible with-
out considering the specific features of the sound field
formation by signals and noise in the coastal wedge
conditions. One of the important parameters of a sound
1063-7710/01/4705- $21.00 © 20534
field is the spatial correlation radius of the field and its
variation with distance to the sound source.

Below, we describe the results obtained by studying
the spatial correlation of the sound field in a coastal
wedge of the Pacific coast of Kamchatka. The experi-
ment was carried out in summer (in July). Figures 1 and
2 present the experimental site and the characteristics
of the waveguide along the ~300-km-long propagation
path used in the experiment. The conditions of the
sound propagation varied along the path: the depth of
the underwater sound channel axis was 100–105 m
within the deep-water part of the path, decreased in the
coastal wedge, and, finally, reached 60 m at the recep-
tion point. In addition, the sound velocity gradients
above and below the sound channel axis differed
greatly in the deep-water and shallow-water parts of the
path.
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The propagation path was approximately perpendic-
ular to the general isobath line. The angle made by the
path with the normal to the receiving base was ~8°, and
the point of intersection of the path with the line con-
necting the hydrophones was not at the center of the
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Fig. 2. Bottom profile along the path and the sound velocity
c versus the depth z at four points of the path.
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base, but away from it (at a distance of 4 km from the
nearest hydrophone). The major part of the path ran
through a deep-water region (where the ocean depth
was greater than 2 km), and the rest of the path
belonged to the continental slope and the shelf zone.
The bottom slope angle varied from 5°–6° in the conti-
nental slope region to 0.5° near the hydrophones.

The sources of sound were explosive charges of
mass ~300 g, which exploded at a depth of 150 ± 3 m.
The charges were dropped into water from the board of
a moving ship at 14-km intervals along the path. The
explosion signals were received by two hydrophones
positioned at the bottom along the 300-m isobath at a
distance of ~6 km from each other. The signals received
by the hydrophones were transmitted through radio
channels (radio buoys) to a computer installed on a
research ship. There, the structure of multiray signals
was analyzed and the spatial correlation of the signals
was studied as a function of the distance to the sound
source. In particular, the cross-correlation coefficient
was calculated for the signals received by the hydro-
phones in the frequency band 40–60 Hz.

Figure 3 shows the form of the signals received by
one of the hydrophones (in a wide frequency band from
~20 to ~500 Hz) for different distances to the transmit-
ting ship. From this figure, it follows that the duration
of the signals received at long (greater than 100 km)
and short (smaller than 30 km) distances exceeds the
signal duration observed for the part of the path
between 30 and 60 km. This occurs, because the varia-
tion of the time structure of a multiray signal with dis-
tance is governed by fundamentally different mecha-
nisms within the deep-water and shallow-water parts of
the path.

When the explosions occur near the hydrophones,
i.e., in the shallow-water region, most signals experience
a

b

c

d

0 1 2 3 4
t, s

Fig. 3. Form of the received explosion signals for different distances to the explosion point: (a) 286, (b) 216, (c) 48, and (d) 6 km.
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bottom–surface reflections before they reach the hydro-
phones. The steeper the rays by which the explosion
sound propagates, the greater the number of reflections
experienced by the corresponding signal and the greater
its delay time relative to the arrivals of signals propa-
gating by less steep rays. As the distance from the
hydrophones to the explosion points increases and the
thickness of the water layer increases simultaneously;
the number of signals that experience reflections from
the boundaries of the water layer, as well as the number
of reflections themselves, decreases, and the delays in
the arrivals of these signals relative to the arrivals of
signals propagating by the least steep rays decrease.

As the explosion points are shifted to the deep-water
part of the path, the formation of the time structure of
the received multiray signals becomes more strongly
affected by the depth dependence of the sound velocity
than by the boundaries of the water layer. In the hydro-
logical conditions under consideration, most signals
experience no reflections from the boundaries, and the
sequence of the signal arrivals corresponds to the con-
ditions of sound propagation in a deep ocean. In this
case, the signals propagating by the water rays with
maximal grazing angles arrive before the signals prop-
agating by the rays with small grazing angles. In the
experiment described in this paper, a distance to the
explosion point of about 50 km corresponds to the dis-
tance at which the spreading of a multiray signal in the
shallow-water and deep-water parts of the path com-
pensate each other, and the resulting spreading time of
the received multiray explosion signal is minimal.

Let us analyze the behavior of the cross-correlation
coefficient R of the signals received by the bottom-
moored hydrophones as a function of the distance to the
point of explosion. Figure 4 presents the values of R
versus the path length r (for the distances from 70 to
300 km). These data were obtained with the averaging
time T equal to the spreading time of the explosion sig-
nal T, i.e., with allowance for all signals arriving to the
spatially separated points of reception. The curve in
Fig. 4 reveals the variations of R within 0.2–0.5 with
a modulation depth of 0.15–0.20 and a period of
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Fig. 4. Dependence of the cross-correlation coefficient R of
the explosion signals received by two bottom-moored hydro-
phones on the distance to the explosion point. The averaging
time T coincides with the signal spreading time ∆T.
about 50 km. The average value of R taken with allow-
ance for the results of measurements on the whole path
(from 6 to 300 km) is equal to 0.3 ± 0.1. Unfortunately,
it was impossible in the experiment to repeat the mea-
surements by passing along the path several times in
order to obtain a more reliable average value.

Let us dwell on the explanation of the experimental
results. The correlation of sound signals can be dis-
turbed by a variety of factors. In the conditions under
study, the main factors presumably are as follows: the
uncorrelated signal fluctuations due to the inhomogene-
ities of the ocean medium and the boundaries of the
water layer; the difference in the acoustogeological
characteristics of the path near each of the hydro-
phones; and the multiray character of the sound propa-
gation, which leads to a difference in the sound field
structure at the spatially separated reception points and,
hence, to the absence of a single phase front of the total
arriving signal.

The quasi-periodic variations of R with increasing
path length can hardly be explained by the phase fluc-
tuations caused by random inhomogeneities of the
medium, because the rms fluctuation of the propagation
time of an individual signal monotonically increases
with distance [1]. However, this process evidently
makes some contribution to the decrease in the
“smoothed” value of R with increasing distance. The
difference in the acoustogeological characteristics in
the region of reception are practically independent of
distance for sufficiently large values of r (r @ l, where
l = 6 km is the distance between the hydrophones), and,
hence, this difference also cannot explain the behavior
of R shown in Fig. 4.

The variations of the angular (in the vertical plane)
and time spectra of the signal at the hydrophone sites
can be caused by the presence of the longitudinal com-
ponent of the receiving base ∆r and by the variations of
the range of the vertical angles of signal arrivals by dif-
ferent rays because of the difference in the conditions
of the signal entry into the coastal wedge for different
distances r. We note that, even when ∆r = 0, the varia-
tions observed in the angular spectrum of the received
signals can be caused by an inaccurate positioning of
the bottom-moored hydrophones in depth. In the case
under consideration, ∆r not only was nonzero, but also
varied with the distance r, because the path ran on the
side of the hydrophone base.

The geometry of the experiment determined first a
monotone and fast decrease in ∆r with increasing dis-
tance to the source (up to r ≈ 58 km, where ∆r is close
to zero) and then a slow increase in ∆r with a further
increase in r. A change in ∆r leads to a transformation
of the interference structure of the field at the reception
points. However, the periodicity of the interference
transformations and the corresponding variations of R
must depend on the distance r. Such a dependence is not
observed for the variations of R shown in Fig. 4.
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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If a kind of zonal field structure exists in the deep
ocean, the changes in the conditions of the signal entry
into the coastal wedge should be almost periodic. To
justify this statement, we calculated the field parame-
ters in the region of reception for different distances to
the point of explosion with allowance for the following
data obtained in the course of the experiment: the sound
velocity profiles c(z) measured at six points along the
path, the echo-sounding data on the bottom profile
along the path, and the probability estimates made for
the parameters of the ground on the basis of single mea-
surements. The calculation showed that, as the distance
to the source increases, considerable and almost peri-
odic changes occur in both the range of the vertical
angles of signal arrivals by different rays and the rela-
tive part of energy transferred along the water rays, i.e.,
rays that experience no bottom or surface reflections
(we took into account the signals with the focusing fac-
tors no less than unity). As for the signals that experi-
ence bottom–surface reflections, their arrival times at
the hydrophones are random to a considerable extent
(specifically, the arrival time of such a signal depends
on the parameters of the bottom roughness), and the
corresponding part of the sound energy should be
treated as a “signal” noise. One can plot an approximate
dependence of the signal-to-“signal” noise ratio on the
distance r and compare it with the curve R(r).

Figure 5 presents the calculated ratio (in percent) of
the energy E of the signals arriving by water rays to the
total energy E0 incident on a hydrophone versus the dis-
tance to the source r. The calculations were performed
with a step of 14 km in distance, which corresponded to
the experimental conditions. In terms of the periodicity
of the process, the calculated curve agrees well with the
dependence shown in Fig. 4. Thus, the main factor
responsible for the specific features observed in the
behavior of the function R(r) is the multiray nature of
the sound propagation in the ocean and the ensuing
complex structure of the field at the reception points.
However, the relatively large interval used for the field
measurements in the experiment could prevent the
detection of the details in the dependence of the spatial
correlation coefficient on the distance to the sound
source. To test this assumption, we calculated the field
with a smaller step in distance (5 km). The analysis of
the results of this calculation shows that the periodicity
characterizing the variation of the conditions of the
multiray signal entrance into the coastal wedge with
distance (i.e., with r varying from 100 to 300 km) is
about 25–30 km and is not observed in the experimental
curve (Fig. 4) precisely because of the distance between
the adjacent explosion points was too large.

The results presented above referred to the case
when the signal averaging time T was equal to the
whole length of the realization of the received explo-
sion signal, i.e., was equal to the spreading time ∆T.
There exists a possibility for a more detailed analysis of
the changes that occur in the time structure of the
received signals with distance from the source. The
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
point is that the pulsed character of the transmitted sig-
nal makes it possible to resolve in time a major part of
the signal arrivals by individual rays or narrow ray bun-
dles. Then, by measuring the short-time correlation
function R*(t) for t varying within the duration of the
explosion signals received by the hydrophones (t ≤ ∆T),
it is possible to reveal the changes in the time structure
of the signal within fractions of the period of the mean
frequency of the analysis. The changes in the angular
spectrum, which is usually related to the arrival times of
signals propagating by the rays, can also be estimated
to some extent. The technique used for such measure-
ments is described in the literature [2, 3].

Figure 6 shows examples of the time dependence of
the short-time correlation function R* for different
explosions. The delay time of the signal received by
one of the hydrophones relative to the signal arriving at
the other hydrophone is selected for the processing so
as to obtain absolute maximums of the function R*(t) in
this figure. The curves shown in Fig. 6 correspond to
explosions fired at the following points: (a) at one of the
end points of the path, (d) at a distance of ~48 km from
the starting point of the path (this distance is close to the
minimal value of ∆r), and (e) in the vicinity of the
300-m isobath; (b, c) the remaining two curves corre-
spond to intermediate path lengths. The averaging time
T was chosen to be equal to one fourth of the spreading
time ∆T. With such a choice of T, the analysis is possi-
ble at any distances within close angular ranges of the
signal arrivals by individual rays. However, the accu-
racy of the estimates of R*(t), which is known to be pro-

portional to , proves to be different for different
parts of the path: the upper bound of the possible mea-
surement error varies from 0.10–0.15 for the most dis-
tant explosions (T = 1 s) to ~0.6 for the distances that
correspond to the minimal spreading time (T = 0.37 s).

A characteristic feature of the curves is the change
of sign of the function R*(t) within the duration of each
of the explosions under study. In a deep sea, such a
change can be caused by either the vertical separation
of the hydrophones ∆h or their separation along the
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Fig. 5. Calculated ratio (percent) of the acoustic energy E
arriving by the water rays to the total energy E0 incident on
a hydrophone as a function of the distance to the sound
source r.
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Fig. 6. Variation of the short-time correlation function R* with time t for explosions fired at different distances from the hydro-
phones: (a) 286, (b) 216, (c) 160, (d) 48, and (e) 34 km.
path ∆r. In the coastal wedge, a contributory factor can
be the spatial variability of the parameters of the bottom
at the reception site. In the measurements under consid-
eration, the change of sign of the correlation function
results from the combination of all three factors. The
inaccuracy in positioning the bottom-moored hydro-
phones leads to a scatter in the reception depths and to
the presence of a vertical component of the receiving
base ∆h [4].

Since the receiving base practically never coincided
with the phase fronts of the arriving signal, the longitu-
dinal component of this base ∆r was always present.
When the explosions occur at distant points of the path,
∆r weakly depends on r. At the points belonging to the
initial part of the path, i.e., in the coastal wedge, the
variations of R* with t become substantial (see curve e
in Fig. 6), and noticeable changes in the behavior of the
function R*(t) are observed even for adjacent explosion
points. The latter fact is presumably related to the fast
variation of ∆r with r within this part of the path, as
well as to the spatial variability of the parameters of the
bottom at the reception site. The same is true for the
variability of the range of the angular spectra of arriving
signals. For example, for an explosion that occurs at a
distance of ~28 km from the hydrophones, the range of

R*
1

0

–1
0 0.5 1.0 1.5 t, s

Fig. 7. Envelope of the curves R*(t) for τ varying within the
period of the mean frequency of analysis. The path length is
~48 km.
arrival angles in the vertical plane is 13° (according to
the calculation with allowance for only the rays whose
focusing factor is no less than 0.5), whereas for the
adjacent explosion (at r = 14 km), the corresponding
angular range is 32°.

The plots in Fig. 6 show that the peak value of R*(t)
is within 0.8–0.9 for practically all distances. There-
fore, one should expect that the spatial correlation coef-
ficient of signals arriving by a narrow bundle of rays
within any part of the range of vertical arrival angles
will be sufficiently large for the corresponding values
of the signal delay between the two hydrophones. To
verify this statement, we consider the signals from an
explosive source located at a distance of 48 km and
obtain a set of curves R*(t) for different delays τ within
the period of the mean frequency of analysis ∆τ (curve d
in Fig. 6 represents one of these curves for the delay τ0
corresponding to the absolute maximum of the function
R*(t)). In the case under consideration, fav = 50 Hz, and,
hence, we have ∆τ = 1/fav = 20 ms {(τ0 – 10 ms) ≤ τ ≤
(τ0 + 10 ms)}. The envelope of these curves is shown in
Fig. 7. One can see that, for the arrivals by a narrow
bundle of rays (here, T = 0.37 s) at any possible vertical
angles, the maximal values of R*(t) are no less than 0.8.
Hence, the value of the spatial correlation coefficient
obtained in the absence of the resolution of signal arriv-
als by individual rays (in our case, it is ten times
smaller) does not reflect the potential coherence of the
sound field. As one can see from Fig. 6, a substantial
part of the signal proves to be negatively correlated at
all distances. Therefore, the value of the correlation
coefficient can be considerably smaller when the time
of averaging coincides with the spreading time. For
example, at the distance r = 48 km, the value of R at T =
∆T was as small as 0.08. In most practically important
cases, when continuous signals are used rather than sig-
nals from a pulsed source, the length of the realization
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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to be analyzed and the corresponding averaging time T
can noticeably exceed the spreading time in an oceanic
waveguide. Therefore, the signals arriving by different
rays cannot be resolved in time without special process-
ing. In this case, the value of the spatial correlation
coefficient of a multiray signal received by omnidirec-
tional hydrophones proves to be much smaller than the
corresponding values for the signals arriving by narrow
ray bundles [5].

From the studies described above, we draw the fol-
lowing conclusions.

For explosive signals received by two omnidirec-
tional hydrophones positioned at the bottom of a shelf
zone at a distance of 6 km from each other, the cross-
correlation coefficient, which was obtained with the
averaging time equal to or greater than the spreading
time of the multiray signals in the frequency band 40–
60 Hz, exhibited amplitude variations within 0.08–0.45
with increasing distance to the explosion point (up to
300 km) with a period of about 50 km.

The sound field calculations corresponding to the
experimental conditions showed that the main factor
responsible for the amplitude variations of the spatial
correlation coefficient is the almost periodic variation
of the range of vertical angles of signal arrivals by dif-
ferent rays with increasing distance to the sound
source. Simultaneously, the conditions of the signal
entry into the coastal wedge and the relative amount of
acoustic energy transferred by the water rays (without
reflections) also vary. The period of these variations is
about 20–25 km. The difference between the results of
calculations and the experimental data is explained by
the fact that, in the full-scale measurements, the dis-
tance between the adjacent explosion points was too
large (14 km).

The short-time correlation coefficient of the
received explosion signals (when the signals arriving
by individual rays or narrow ray bundles are resolved in
time) exhibits practically no amplitude variations, and
its value obtained by the averaging time equal to one
fourth of the signal spreading time in the frequency
band 40–60 Hz is 0.8–0.9. The delay times, at which
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
the aforementioned values of the correlation coefficient
are observed, are different for different ray bundles.

The use of an extended horizontal cable-like array
for monitoring ocean areas can be not very effective,
because the spatial correlation of the sound field at the
array aperture can be too low. In addition, the value of
the correlation coefficient will vary with varying path
length, and the period of such variations of the correla-
tion coefficient will change with the source azimuth
angle in different ways for different parts of the cable-
like array. One of the possible methods to increase the
efficiency of a receiving array is to develop it in the ver-
tical plane, i.e., to use of a planar array. With the help of
the latter, it is possible to obtain a directional pattern in
the form of a vertical fan of narrow lobes. In this case,
the value of the spatial correlation coefficient of the
sound field can be high for each lobe, and, hence, its
variations with distance from the source will be
reduced.
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Abstract—The regional variability of the phenomenon of the shadow zone insonification in the ocean is man-
ifested in the variability of the main parameters of the sound signals that penetrate into these zones because of
the scattering by the fine-structure inhomogeneities of the refractive index. The intensity of the phenomenon is
governed by a combination of the vertical distribution of intensity of the fine-structure inhomogeneities and the
caustics that exist in the insonified domains, along with the caustic intensity and position, both of which depend
on the mean sound speed profile and on the geometry of the experiment. For the chosen typical regions of the
ocean, the characteristics of the fine structure are systematized, and the phenomenon under study is analyzed.
The results obtained offer a justified approach to solving inverse problems and a way to perform practical-pur-
pose studies aimed at improving the ultimate performance of underwater observation and monitoring systems.
© 2001 MAIK “Nauka/Interperiodica”.
Sharply anisotropic inhomogeneities of a fine struc-
ture can be treated as irregular (stochastic) in depth and
regular (deterministic) in horizontal. These features
lead to the Bragg scattering of sound and, hence, to
such phenomena as sound penetration into shadow
zones, prereverberation, and stochastic channeling. In
other words, because of the sound reradiation by inho-
mogeneities, sound penetrates into domains (spatial,
time, and angular ones) that are prohibited by the geo-
metric acoustics. The intensity of insonification of the
shadow zones depends both on the strength of the fine-
structure inhomogeneities and on the presence and
positions of caustics in the initial sound field, the caus-
tics significantly enhancing the effect at hand. There-
fore, to study the regional variability of the phenome-
non of shadow-zone insonification, one should use the
classification of ocean regions by both the vertical
sound speed profiles and the fine-structure stratifica-
tion.

The pattern of caustics in the initial sound field is
governed by the sound speed profile and the depth of
the source. The sound penetration into shadow zones
has been successfully observed and studied many times
in the tropical regions of the Indian and Pacific oceans
and in the central region of the Atlantic Ocean [1–3]. In
these regions, the vertical sound speed profiles are typ-
ical of tropical waters with a monotone decrease in the
sound speed down to the depth of the sound channel
axis and with a rather high gradient in the discontinuity
layer. The phenomenon of sound penetration was most
pronounced when the source was at depths of 0.2–0.3 km,
while, for smaller source depths, the signals penetrating
1063-7710/01/4705- $21.00 © 20540
into the shadow zone became lower in their levels,
nearly reaching the level of the ambient ocean noise.

We [4] have shown that, with certain assumptions,
one can calculate the sound scattering by anisotropic
fine-structure inhomogeneities from the only known
characteristic: the one-dimensional vertical spectrum
of sound speed fluctuations around the sound speed
profile averaged over many realizations. In this case,
the sound scattering by highly anisotropic, horizontally
elongated inhomogeneities of the fine structure follows
the Bragg diffraction law. A considerable level of scat-
tering corresponds to the direction of specular reflec-
tion relative to the horizontal layered inhomogeneities.
To calculate the squared pressure amplitude of the scat-
tered wave, one can use the formula

(1)

Here, k and P0 are the wave number and pressure ampli-
tude in the sound wave that is incident on the scattering
structure, En(kz) is the vertical spatial spectrum of the
fine-structure inhomogeinity, S is the area of the first
Fresnel zone, V is the scattering volume, and r is the
distance from it to the reception point. The argument of
the vertical spectrum is taken to be equal in magnitude
to the scattering vector, which, in the case of specular
reflection, has only the vertical component: kz =
2ksinϕ, where ϕ is the angle of the incidence direction
relative to the horizon.

To estimate the expected intensity of the phenome-
non, one should multiply the quantity P2(r) by the prod-
uct of focusing factors Fs and FI at the points of scatter-

P2 r( ) k4P0
2En kz( )SV /2πr2.=
001 MAIK “Nauka/Interperiodica”
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ing and reception. Then, for symmetric positions of the
source and receiver, the received intensity can be calcu-
lated relative to the reference point that is located at a
1-km distance from the source (this procedure is con-
sidered in [1]). For the tropical region of the Indian
Ocean, the intensity was experimentally measured with
a sound source that was deployed to a depth of 0.2 km
and emitted cw sound signals at frequencies from 0.63
to 3.15 kHz. For a distance of 10 km and a reception
depth of 0.3 km, this relative intensity proved to be –40
to –50 dB, which agreed well with the calculated esti-
mates.

The validity condition of the aforementioned
approximation consists in the requirement for resonant
inhomogeneity of the vertical scale 2π/kz to horizon-
tally extend for at least the length of the Fresnel zone
[5]. For instance, in the case of backscattering at verti-
cal incidence, the required value of the anisotropy ratio
α = Ix/Iz can be found as α = 8(z/λ)1/2, where Ix and Iz are
the horizontal and vertical scales of the inhomogene-
ities, respectively, and λ is the incident wavelength. For
the frequency 1 kHz and depth z = 1 km, one obtains
α ≈ 2 × 102, this value being consistent with the anisot-
ropy ratios for inhomogeneities observed in the ocean.

The fine-structure inhomogeneities manifest them-
selves in small deviations of the measured sound speed
profiles from the general averaged one. The ocean
medium is stratified in the form of more or less pro-
nounced layers, 10 cm to 100 m thick, with lower ver-
tical gradients of the thermohalinic parameters. These
layers are separated by interlayers within which the
vertical gradients can be much higher than the mean
ones and have the same sign.

In addition, a situation is common (especially in the
regions of thermohalinic fronts) when the fine-structure
inhomogeneities are nearly compensated in the density
field and inversion layers exist in the profiles T(z) or
S(z) (or in both of them), where the gradients of T and
S have the signs opposite to those of the mean gradi-
ents. According to [6], the first case corresponds to a
stepped fine structure, while the second case is charac-
teristic of a fine structure of intrusion type. These two
types nearly exhaust the variety of the fine thermo-
halinic ocean structure, which, in turn, unambiguously
determines the fine structure of the sound speed (of the
refractive index).

In practice, a convenient way to describe the fine-
structure inhomogeneities is to use statistical terms.
With such a description, the sound speed field is broken
into a large-scale deterministic component and a small-
scale component of statistical nature. Garret and Munk
[7] were the first to substantiate the possibility for the
oceanic pycnocline to have a universal spectrum of the
particle displacements ξ: Eξ(κ), where κ is the vertical
wave number. On the background of the mean gradients
of temperature, salinity, and sound speed, the field of
internal waves, which has a universal space-time spec-
trum [7], must lead to universal spectra ET(κ) and ES(κ)
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
that are equal to Eξ(κ) multiplied by the products of the
corresponding gradients Tz and Sz. This statement has
been experimentally confirmed [8–11] for the tempera-
ture spectra. Gregg [12] averaged 40 normalized spec-

tra ETN(κ) = ET(κ)/  to construct the spectrum

 that corresponds to the model from [7] in its
universality (for the wave numbers within 6 × 10−4 ≤ κ ≤
6 × 10−2 cm–1), but differs from this model in that it has
two (rather than one) pronounced bands of wave num-
bers, which are separated by the scale Lc = 2π/κc ≈ 10 m
and has different exponents in the approximations
ET(κ) ≈ κ–ρ. According to [12], ρ = 2 for κ ≤ κc and ρ =
3 for κ ≥ κc and ρ = 3 for κ ≥ κc, while, according to [7],
ρ = 2.5 for the entire range of κ and ρ = 2 in the latest
modifications of the model [9, 10].

The fine-structure inhomogeneities of the sound
speed or the refractive index, which are decisive for the
acoustic models, have the same properties as the afore-
mentioned temperature and salinity inhomogeneities.
Small fluctuations n' of the refractive index can be esti-
mated from the fluctuations of temperature T ' as n' =
2 × 10−3T '.

We [4] directly measured the refractive index of the
sea medium with the use of the cyclic velocitymeter
that had a sensitivity of ~10–6 in units of the refractive
index and a spatial resolution of approximately 1.5 m.
We statistically processed the realizations of small dis-
turbances n'(z) in the vertical profile of the refractive
index, which were obtained in different regions of the
Atlantic and Indian oceans, down to a depth of about
3 km. The small-scale component was extracted by fil-
tering with the cosine filter whose half-width was 30 m.
The vertical spectra En(κz) were calculated for the
300-m segments, which were sequentially shifted in
depth. At all depths, the spectra obtained in this way
exhibited approximately the same power-law depen-

dence: En(κz) = Cn (2 < ρ < 3), the value of ρ was
equal to two in most cases. With ρ = 2, the experimental
profiles of Cn were obtained that characterize the inten-
sity of the fine-structure inhomogeneities of the refrac-
tive index at different depths in three typical ocean
regions [4]: the tropical type (Figs. 1a and 1b) that is
characteristic of the regions to the south from 20° N in
the (a) Atlantic and (b) Indian oceans; the northern sub-
tropical type (Fig. 1c) that is characteristic of the central
region of the Atlantic Ocean (along the 30° W merid-
ian, between 20° N and 40°–50° N, the warm half-
year); and the Mediterranean type (Fig. 1d) that is
characteristic of the ample area of the Mediterranean
waters in the northern regions of the Atlantic Ocean (to
the east of 30° W).

The experimental dependences presented in Fig. 1
offer the following quantitative conclusions:

(1) The fine structure of the sound speed (the refrac-
tive index) is most pronounced in the upper ocean layer,

Tz
2

ETN κ( )〈 〉

κ z
ρ–
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Fig. 1. Experimental profiles Cn(z) for different ocean regions. At the left: average sound speed profiles.
down to the depth of the axis of the underwater sound
channel (USC). At greater depths, the fine structure
degenerates, and, in all regions, the value of Cn tends to
10–12 m–1, which is of the order of the instrumental
error.

(2) In the discontinuity layer, the quantity Cn
depends on the vertical gradient of the refractive index:
it reaches (2–3) × 10–9 m–1 in tropical regions with high
gradients of the refractive index within the discontinu-
ity layer, whereas, in subtropical regions, it is by an
order of magnitude smaller.

(3) In the Mediterranean-type region of the Atlantic
Ocean, at intermediate depths of 1.0–1.5 km, Cn
increases up to the values typical of the discontinuity
layer, which occurs because of the intense structuring
processes in the water bulk and at the boundaries of the
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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core of Mediterranean waters entering the Atlantic
Ocean.

(4) The depth dependences of Cn are monotone for
the two other regions (Figs. 1a, 1c) of the Atlantic
Ocean.

In our numerical calculations of the insonification of
the shadow zones, we used a computer code [1] based
on the ray approximation for the sound field. Most
attention was paid to the calculation of caustic patterns.
For this purpose, the calculation program was properly
modified and supplied with additional tools of graphi-
cal representation of the computed data. An additional
block of the software was developed to calculate and
graphically represent the angular and time structures of
the signals which, upon their specular reflection from
the fine-structure inhomogeneities, arrive at a given
point of the shadow zone. The modified software also
allowed one to determine the positions of the domains
from which the reflected signals originate. In the ray
calculations of the initial sound field, we used different
mean vertical profiles of the sound field, which provide
a zonal structure of sound propagation with deep
shadow zones. In view of the generalized experimental
data on the vertical distribution of the fine structure, one
can study the degree to which the shadow-zone insoni-
fication manifests itself.

To illustrate the above considerations, let us con-
sider the shadow-zone insonification phenomenon for
the subtropical region of the Central Atlantic (Fig. 1c).
Figure 2a presents the vertical sound speed distribution
down to a depth of 1 km, which governs the refraction
of the channel-captured rays and the geometry of
shadow zones. Figure 2b shows the arrival times for the
signals propagating over the rays which leave the
source (at a depth of 0.3 km) upwards and are specu-
larly reflected by the horizontally elongated fine-struc-
ture layers presumably existing at all depths. These
rays arrive at the given reception point, which lies in
the shadow zone at the distance 15 km and at the depth
0.3 km, from above (curve 1) and from below (curve 2).
The arrival times are plotted against the departure
angle. In Fig. 2c, the depths of the specular reflections
are presented for the rays that arrive at the receiver from
above (curve 1) and from below (curve 2). According to
Fig. 2b, both curve 1 and curve 2 have local extremums
S1', S2', S, S1, and S2. These extremums correspond to
the local extremums of Fig. 2c at certain departure
angles. The latter extremums can be related to the caus-
tics of the initial field, which are shown in Fig. 2d. For
all rays that were uniformly emitted from the source
upwards, the points were found (with a step of 0.02°) at
which the ray was tangent to the caustic. As a result, we
obtain a set of dots that represent the caustics of the ini-
tial field and illustrate the strength of the caustics in the
form of the dot concentration. In addition, Fig. 2d
shows two reference rays that demonstrate the refrac-
tion and zonal structure of the propagating sound field.
The domains of specular reflection are shown as well
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
for the extreme rays, which, according to Figs. 2b and
2c, hit the reception point. Figures 2e and 2f illustrate
the focusing at the reception point for 1° wide bundles
of rays that are specularly reflected from the surfaces S
and S2'.

From the aforementioned data, it follows that, for
the situation at hand, the reception point coincides with
the crossing point of the caustics formed by the rays
that are specularly reflected from the boundaries shown
in Fig. 2c (S1', S2', S, S1, and S2). These domains make
the major contribution to the resulting sound field in the
shadow zone. The presented consideration explains the
multiray character of signals in shadow zones, which
was observed in ocean experiments [13]. It is also clear
that the multiray pattern is governed by the complexity
(the presence of caustics) of the initial field, and this
complexity, in turn, is determined by the vertical distri-
bution of the sound speed. In the case of a linear sound
speed profile, the only depth of the boundary of the
fine-structure inhomogeinity can be found for the rays
that leave the source upwards and arrive at the receiver
in the shadow zone, this boundary serving to reflect the
rays that arrive at the receiver from below and form the
caustic.

From the presented kinematic consideration, the
conclusion can be drawn that, in a shadow zone, the
sound field is formed by the signals that are reflected or
scattered from the fine-structure inhomogeneities of the
ocean water, which exist within local domains deter-
mined by the geometry of the experiment and by the
vertical sound speed profile. Therefore, the degree to
which the insonification phenomenon manifests itself
depends on the intensity of the fine structure in these
domains. Turning to Fig. 1c, one can see that, for the
region at hand, the value of Cn is rather small in the
upper layers and decreases to 10−11 m–1 at a depth of
0.5 km. According to Fig. 2, at distances of 15 km and
more, the shadow-zone sound field is formed by the
domains that are as deep as 0.5 km or more, and, with-
out using more sophisticated techniques, one cannot
observe more pronounced manifestations of the phe-
nomenon against the background of the ambient noise.
At shorter distances, the degree of insonification may
increase. However, at such distances, the phenomenon
can be masked with the initial field.

For the central region of the Indian Ocean (Fig. 1b),
higher intensity of the fine structure is typical with Cn
ranging within (1 – 30) × 10–10 m–1, down to a depth of
1 km. According to Eq. (1), such an intensity can lead
to 10–15 dB higher sound field levels in the shadow-
zone, as compared to the aforementioned region. Fig-
ure 3 shows the vertical sound speed distributions
(Fig. 3a) and the caustic patterns for the source depths
0.07, 0.2, and 0.3 km (Figs. 3b, 3c, and 3d, respec-
tively). One can see that the caustics become smoother
for deeper sources. For a source depth of 0.3 km, the
caustics are at the depths of an intense fine structure, up
to the distances 7–10 km from the source. Therefore,
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Fig. 2. Mechanism of sound penetration into a geometric shadow zone for the subtropical region of the Atlantic Ocean.
the phenomenon can be reliably measured at a recep-
tion depth of 0.3 km, up to the distances 20 km or more,
which was confirmed in our experiments [1]. We
numerically estimated the energy levels for the sound
signals penetrating into the shadow zone in order to
compare these levels with those measured experimen-
tally. In the calculations, the value Cn = 10–10 m–1 was
specified. The complicated caustic pattern leads to sev-
eral local domains that form the shadow-zone sound field
and to a multiray structure of the received signal. These
features were experimentally confirmed as well [13].
By applying the proposed approach to other
regions, one can conclude that, for the tropical Atlan-
tic regions, the high intensity of the fine structure is
characteristic at small depths with a rapid intensity
decrease at greater depths. This depth dependence can
restrict the distances at which the phenomenon mani-
fests itself, as compared to the considered central
region of the Indian Ocean. In addition, the aforemen-
tioned features in the general sound speed profile (the
uniform layer at the depths about 0.2 km, which is
caused by the equatorial countercurrent) can mask the
shadow zone insonification.
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Finally, the large region of the Mediterranean waters
in the Atlantic Ocean (Fig. 1d) can be studied to
observe the fine-structure inhomogeneities in deeper
ocean layers (depths of 1.0–1.5 km, Cn = 10–10 m–1). In
addition, short shadow zones can exist in this region.
Sound can penetrate in these zones through both the
surface channel and microchannels in the water bulk.
The separation of these two effects in the time domain
can be impossible.

The combined analysis performed for the sound
field and the fine-structure characteristics in different
regions of the ocean show the variety of manifestations
of the phenomenon of sound penetration into shadow
zones. The tropical region of the Indian Ocean, among
the others presented in Fig. 1, can be mentioned as the
most advantageous for the observation and study of the
phenomenon itself and for diagnosing the parameters
and variability of the fine structure by means of the
shadow zone insonification.

Another interesting ocean region should be men-
tioned. In Fig. 4, the fine structure of the sound speed
profile is presented that was measured by us in the west-
ern region of the tropical Atlantic, at 10° N and 52° W
(the region of the Guiana Hollow). Here, two types of
the fine structure simultaneously occur: a pronounced
stepped structure (depths of 0.2–0.4 km) and an intru-
sion-caused one (deeper than 0.5 km). The fine struc-
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ture has high intensity and reaches the depth of the
underwater sound channel whose axis is at a depth of
1.0 km. Many researchers [14] measured the fine struc-
ture in this region to study the mechanisms of its forma-
tion.
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Fig. 4. Fine structure of the sound speed profile in the north-
western region of the tropical Atlantic Ocean.
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Figure 5a shows the average vertical distribution of
the sound speed in this region. With this distribution,
the pattern of caustics (Fig. 5b) was calculated for the
source depth 0.3 km. The boundary of the shadow zone
is produced by the powerful, nearly horizontal caustic
that covers the depths where the fine structure exists, up
to a distance of 15 km from the source. The existence
of the fine structure and the caustic allows one to expect
the insonification of the shadow zone in this region up
to distances of 30 km or more. By using up-to-date
experimental instruments like those described in [15] to
obtain vertical or horizontal cross sections of the sound
field in the shadow zone, one can extract the informa-
tion on the fine-structure inhomogeneities for different
depths at which the caustic exists from the analysis of
the sound signals penetrating into the shadow zone. By
long-term observations of the sound signals in the
shadow zone at a fixed experimental geometry, one can
observe the variability of the parameters of the fine-
structure inhomogeneities within a fixed volume of the
oceanic medium.
In the second shadow zone, the sound field is mainly
formed by the caustic domains of the first convergence
zone, the caustics of groups 1 and 2 (Figs. 6a, 6b) con-
tributing to the sound field at the beginning and at the
end of the shadow zone, respectively. From the compar-
ison of the caustic patterns observed for the central
regions of the Atlantic (Figs. 6a and 1c) and Indian
(Figs. 6b and 1b) oceans, one can conclude that the con-
centration of caustics in the convergence zone is much
lower in the first region than in the second one. In view
of the low value of quantity Cn in the subtropical region
(Fig. 1c), the sound penetration into the second shadow
zone should be less pronounced, as compared to the
tropical region (Fig. 1b) [2]. Nevertheless, in the sec-
ond shadow zone of subtropics, the penetration phe-
nomenon can be enhanced in comparison with the first
zone, because, according to Fig. 6a, the convergence
zone is enriched with caustics in the upper ocean layers,
where Cn is at a level of 10–10 m–1, which is sufficient
for the phenomenon to be observed.
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The presented study of the effect of sound penetra-
tion into the shadow zone, along with the established
regional variability of this phenomenon, offers a justi-
fied approach to solving the inverse problems of deter-
mining the main fine-structure parameters. The results
obtained above can also be used in the practical-pur-
pose studies aimed at improving the ultimate perfor-
mance of acoustic systems for underwater observation
and monitoring [16, 17].
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Abstract—The Young modulus of a thin layer consisting of densely packed carbon nanotubes oriented nor-
mally to a substrate is measured using a scanning probe atomic force microscope. It is found that the adhesion
of the film and the silicon substrate is not very strong, and, at certain conditions, this may lead to an intense
energy dissipation in an oscillatory system loaded by the film. © 2001 MAIK “Nauka/Interperiodica”.
A great number of papers on the synthesis of carbon
nanotubes and on the investigation of their physical
properties were published after their discovery in 1991
[1, 2]. The interest to these objects is not incidental,
since the prospects of their applications in technology
are quite evident. Carbon nanotubes have unique elec-
tric, elastic, and mechanical properties; their cavities
can be filled by atoms of various elements. For exam-
ple, it was reported that an isolated nanotube can have
a Young modulus along its axis greater than 1 TPa and
a shear modulus of only 1 GPa simultaneously. The
data reported by different authors strongly vary, which
is most probably connected with the defects present in
nanotubes. Now, it is possible to manufacture dense
layers of nanotubes oriented normally to a substrate [3,
4]. Such layers proved to be effective cathodes for auto-
electronic emission [5, 6]. At the same time, the inves-
tigation of the elastic and mechanical properties of
dense layers of nanotubes is just at its starting point and
is mainly of a theoretical character [7, 8]. In this paper,
we report on the experimental studies of the elasticity
of dense nanotube layers and the dissipation of the
energy of elastic vibrations in them. First, we describe
the results of measurements performed with the help of
a scanning probe atomic force microscope and, then,
the results of measurements of the Q factor of a macro-
scopic oscillating system loaded on a sample with a car-
bon nanotube film.

A nanotube layer with the thickness 142 nm was
obtained by the deposition of carbon atoms on a silicon
surface in the process of electron-beam evaporation of
pure graphite in vacuum. The layer was a mixture of
multilayer nanotubes with the diameters from 3 to 5 nm
and single-layer tubes with the diameter of 1.1 nm. The
tubes formed a fiber texture with the axis normal to the
substrate surface.
1063-7710/01/4705- $21.00 © 0548
A NanoScan measuring device was used in the stud-
ies by scanning probe microscopy. The device is
described in detail in a review [9]. An oscillating sys-
tem (a tuning fork) operating at a frequency of 20 kHz
was loaded through a vibrating diamond stylus on var-
ious materials. The stylus pressing upon the substrate
could be smoothly adjusted with the help of a piezo-
electric control system. The displacement of the tuning
fork reed, to which the stylus was fixed, was monitored
with the precision up to 0.1 nm. The device could oper-
ate in two modes. In the first case, the shift of the reso-
nance frequency in a self-oscillating system was mea-
sured. Here, the major contribution to the response (the
frequency change) was provided by the elastic proper-
ties of the sample under test. Further, we will refer to
this case as to the mode of “elasticity measurements.”
In the second case, the decrease that occurs in the vibra-
tion amplitude due to the contact with the substrate is
measured. The dissipative processes are very important
in this case, and, hence, it will be conditionally referred
to as the mode of “viscosity measurements.”

A stylus with a large enough curving radius was
selected to measure the macroscopic characteristics of
the sample by averaging over the area of tens of nanom-
eters (this is important while working with nanotubes).
The study of the surface relief showed that the surface
of the nanotube film was smooth. There were single
steps, protrusions, and indents with the height of sev-
eral nanometers (Fig. 1). Small areas with special prop-
erties can sometimes be observed, which can be identi-
fied as the specks of the graphite phase.

The main results of the measurements are as fol-
lows. The dependences of the parameters of the oscil-
lating system on the deformation (deepening of the sty-
lus into the sample) were recorded. Generally speaking,
the dependences of this type, which describe the
response of various parameters of the system to the
2001 MAIK “Nauka/Interperiodica”
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change of conditions at contact are usually called the
loading curves. (The most standard case of a loading
curve is the dependence of the sample deformation on
the load.) A diamond stylus was pressed into the sample
under a smoothly varying external load and deformed
it. In the mode of elasticity measurements, a smooth
change of the resonance frequency f relative to the res-
onance frequency f0 in air is observed in the process of
stylus pressing. We proceed from the standard Hertz
approximation [10]. We assume that the stylus point
can be treated as a hemisphere with the radius R. We
also assume that its Young modulus is greater than the
corresponding moduli of the materials under test. In the
case of a nanotube layer, this assumption is substanti-
ated by [8]. Moreover, the validity of this assumption is
substantiated by the results of measurements. Under
these conditions, the frequency shift is equal to

(1)

Here, k0 is the elasticity coefficient of the oscillating
system, E is the Young modulus of the tested sample, ν
is the Poisson ratio of the sample, and h is the displace-
ment of the tuning fork reed in the process of the stylus
pressing.

Figure 2 presents the dependence of the quantity
( f – f0)2 on the displacement of the tuning fork reed for
three different samples. In the plot under consideration,
this dependence for a homogeneous sample must be
linear. In fact a dependence close to a linear one is
observed for a (100)-cut silicon plate and glass. One
has to keep in mind that the stylus point can be treated
as a hemisphere only with a certain reservation. The
relationship between the elastic constants, which is
obtained from Eq. (1) and Fig. 2 for silicon and glass,
agrees well with reference data. This allows one to con-
duct measurements on samples with unknown elastic
moduli and determine their elastic parameters using
Eq. (1) from the comparison with reference samples.

The properties of a nanotube layer deposited on sil-
icon are of a major interest for us. In this case, a difficult
problem that is not yet solved arises, namely, the prob-
lem of the relative contributions to the loading curve
from the film and the substrate in the case of a layered
system. We proceed from the fact that the penetration
depth H of the deformation into a sample is about the
radius of the contact area between the stylus and the
sample in order of magnitude. Then, according to the
Hertz theory, we have

(2)

When H ≤ d, where d is the film thickness, the behavior
of the system is determined by the properties of the
nanotube layer. When H @ d, the system properties are
governed by the substrate elasticity.

We observe this behavior in Fig. 2. The inclination
angle of the loading curve for the layered structure is
constant at small loads, and it is greater than the angle

f f 0–
f 0

k0
----- R

E

1 ν2–( )
------------------- h.=

H Rh.≈
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for glass but smaller than in the case of silicon. Only the
elastic properties of the film are important in this
region. In the case of large values of h, the inclination
of the loading curve becomes the same as for silicon,
and the elastic reaction of silicon becomes decisive.

10 nm

(a)

(b)

10

8

6

4

2
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h, nm
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( f – f0)2, arb. units

Fig. 1. (a) Surface relief of a carbon nanotube film observed
by a scanning atomic force microscope. The area is 5 ×
7 µm2, and the height difference is about 10 nm. (b) Surface
relief of a carbon nanotube film observed by a scanning tun-
neling microscope with a resolution of 1 nm, which pro-
vides the observation of individual nanotubes.

Fig. 2. Square of the frequency shift in an atomic force
microscope versus the pressing depth for (1) silicon, (2) sil-
icon with a nanotube layer, and (3) glass.
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Using h = 4 nm as an approximate limiting point of the
region where the role of the substrate is not yet signifi-
cant, we can estimate the order of magnitude of the
effective curving radius of our stylus from the condi-
tion H ≈ d: R ≈ 5 µm, which agrees qualitatively with
our data on the stylus.

The comparison of the loading curve for silicon
and the loading curve for the nanotube layer at small
loads (when the role of the substrate is small) gives
E/(1 – ν2) ≈ 140 GPa for the nanotubes. According to
the theoretical calculations [8], the Poisson ratio for a
layer of nanotubes oriented normally to the surface,
when the pressure is also normal to the surface, is
small enough (ν ! 1). This means that it is possible to
estimate E ≈ 140 GPa. It is interesting to compare at
least qualitatively this result with the theory. The Young
modulus was calculated in [8], but it was obtained for a
“crystal” of ideal single-layer nanotubes arranged in a
triangular grid and oriented strictly parallel to each
other. It turned out that, in the case of an experimental
geometry analogous that used by us, the Young modu-
lus along the axes of single-layer tubes 3 nm in diame-
ter is close to 300 GPa, and, when the tube diameter is
equal to 5 nm, the corresponding Young modulus is
approximately 200 GPa. At the same time, the Young
modulus across the tubes is as small as several gigapas-
cals. Such a disagreement with our experiment is natu-
ral. Although the investigated film belongs to the best
samples manufactured up to now, it consists of a mix-
ture of multilayer tubes of different diameters with an
admixture of single-layer tubes. Therefore, the tubes do

1.00
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Oscillation amplitude, arb. units

0 1 2 3 4 5
Load, N

Fig. 3. Oscillation amplitude of a macroscopic oscillatory
circuit versus the load: (+) silicon, (m) silicon with a nano-
tube layer, and (×) plexiglas.
not form an ideal triangular grid. Moreover, the stylus
in the atomic force microscope is inclined to a certain
extent with respect to the substrate plane, which intro-
duces some distortions due to the strong asymmetry of
the Young modulus.

It is necessary to note the excellent mechanical
properties of the nanotube layer. Visible fracture of the
film was observed only in the case of pressing of the
stylus approximately to a depth of 100 nm, which was
comparable with the film thickness.

Measurements of the oscillation amplitude as a
function of the penetration of the stylus into the sample
were also conducted. It is difficult here to obtain unam-
biguous information on the film properties. Several dis-
sipation mechanisms come into play simultaneously
(the adhesive friction, the water layer at the boundary,
the viscoelasticity, etc.). In certain conditions, the pro-
cesses caused not by the dissipation but by the equip-
ment-related factors can also be partially responsible
for the amplitude decrease in the atomic force micro-
scope [11]. Here, we only note the following important
fact. The amplitude decrease that occurred at the con-
tact with the nanotube film turned out to be comparable
to the decrease observed in the case of pure silicon. This
means that we did not observe any unusually strong loss
mechanisms by the atomic force microscopy.

We measured dissipative losses in a series of mate-
rials by a device that was a macroscopic analog of the
probe of our microscope and that was developed much
earlier under the name of a contact impedance meter
[12]. An oscillatory circuit with the Q factor at least one
order of magnitude higher than that of the atomic force
microscope was loaded on a test sample through a steel
ball. It was possible to detect the changes in both fre-
quency and amplitude and to determine the elastic and
dissipative parameters of the material. The region of
deformation was greater than the film thickness
because of the large diameter of the ball that was in
contact with the sample (about 0.5 mm), and our oscil-
latory system was not suitable for the determination of
the elastic constants of the layer. Therefore, the study
was conducted only in the viscosity measurement mode
(the measurement of the oscillation amplitude with the
ball being pressed into the sample). The results are pre-
sented in Fig. 3. The load is plotted along the abscissa
axis, and the oscillation amplitude reduced to the
amplitude of the unloaded oscillatory system is plotted
along the ordinate axis.

We stress that our device measured the dissipation in
the sample rather than its elastic properties, and this
fact was specially verified in our experiments. Figure 3
gives the data for silicon. However, they coincide
within the precision of measurements with the data for
the materials that are quite different in their elastic
properties, such as glass, aluminum, and brass. It would
be impossible to distinguish them in our plot. We took
also viscoelastic materials for comparison. The data for
plexiglas are given in Fig. 3 as an example.
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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Now let us consider the basic result, i.e., the mea-
surements performed for a nanotube layer on silicon. In
the case of a weak pressing, the dissipative losses are
not large, though they are distinctly larger than for pure
silicon. However, when the load increases, a sharp
growth of losses was observed (a sharp decrease in
amplitude is indicated by the line connecting neighbor-
ing points in the drop region). Regretfully, it was
impossible to use loads greater than 2.5 N without tak-
ing the risk to smash the sample. It was possible only to
use a load of 5 N with the application of a special gad-
get. That is why only a small number of points was
obtained in the most interesting region.

Such a sharp growth of losses can be connected with
the temporary local separation of the nanotube layer
from the silicon substrate because of the insufficiently
strong adhesion. The most probable reason for such sep-
aration is the presence of the tangential component in the
forces caused by the ball pressure on the sample. Elastic
vibrations of the system lead to a relative motion of the
film and the substrate in the separation region and to
energy losses due to the friction. Since the contact region
is large in our case, the energy losses can be consider-
able. Moreover, the film separation from the substrate
also leads to the displacement of nanotubes with respect
to each other (the lower part of a tube is no more fixed to
the substrate, and the bond between the tubes is fairly
weak). We also cannot exclude the influence of this fac-
tor on the absorption of the elastic vibrations.

Qualitative estimates show that a sharp growth of
losses occurs in our experiment when the tangential
stresses at the film–substrate interface reach several
tens of megapascals. In view of the high normal pres-
sure applied at the symmetry axis of the system (up to
several gigapascals), this result indicates a not very
strong adhesion of the film and the substrate. Neverthe-
less, it is necessary to take into account that the separa-
tion can occur away from the symmetry axis, i.e., out-
side the region of the strongest pressing.

Performing repeated measurements, we obtained
the same results as in the first measurement (for all val-
ues of the pressing force). If the film were unable to
restore its initial bonds with the substrate, the subse-
quent measurements would differ from the initial ones.
A good review of a very complex and interesting prob-
lem of adhesive friction, which may help to understand
the problem, can be found in [13].

Measurements with a separated nanotube film of an
analogous composition were also conducted. As expected,
we observed a strong absorption, which far exceeded the
absorption given in Fig. 3 already at small loads. This fact
demonstrates once more that, if the separation were
retained after the first measurement, the absorption in the
repeated measurements would be greater.

It is important to note that, in some regions on the
surface, no noticeable damping of vibrations could be
observed at any applied loads. This is the evidence of a
strong adhesion of the film and the substrate in these
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
regions. Therefore, it is possible to obtain a strong
adhesion of a nanotube film and a substrate with
improved technology. The technique used in this study
can be a good method of monitoring the film adhesion.

As a result of the investigation of a thin film of
densely packed carbon nanotubes, it became possible to
measure the Young modulus of the film, which is an
important parameter from the point of view of future
applications and which widely differs from the Young
modulus of individual nanotubes and nanotube ropes
[14, 15]. It was demonstrated that the adhesive bond
between a film and a silicon substrate was not very
strong for the major part of our sample. However, in
some regions, this bond is strong enough, which means
that it is possible to create layered structures with high
mechanical stability by introducing the necessary
improvements in the growth technology.
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Abstract—The possibility of the existence of a leaky Stoneley wave at a uniformly moving interphase bound-
ary defined as a jump in the acoustic parameters of an isotropic elastic medium is discussed. It is shown that the
motion of the interphase boundary exerts dissimilar effects on the orientation of the wave normals of partial
waves forming the Stoneley wave, and this results in different Doppler shifts of the frequencies of the partial
waves in the laboratory frame of reference. © 2001 MAIK “Nauka/Interperiodica”.
The parametric transformation of surface acoustic
waves (SAWs) under the effect of a transverse motion
of guiding boundaries was considered in earlier publi-
cations [1, 2] for the case of electroacoustic waves
guided by 180° domain walls in ferroelectrics and by a
step of the polarizing field in electrostrictive materials.
The main result of these studies was the prediction of
the “weathercock effect,” that is, an acute-angle turn of
the wave-front normal vector of an electroacoustic
wave towards the direction of the boundary motion.
The thus induced noncollinearity (more precisely, non-
coplanarity) of the wave vector of an electroacoustic
wave with the boundary does not affect the capability of
this wave for an interfacial localization and a stationary
(undamped) propagation along the boundary.

Now we consider the peculiarities of mode localiza-
tion for other types of SAWs and for other types of
moving boundaries in solids. The capability for a high-
speed, self-sustained (in the autowave regime), or
forced motion with Mach numbers β < 10–1 (β = V/c,
where V is the velocity of the boundary motion and c is
the characteristic sound speed in the solid) is character-
istic of, for example, the walls of elastic domains at
martensite or ferroelastic phase transitions [3], an
explosive crystallization front in an amorphous mate-
rial [4], and the combustion surface of a nongasifiable
solid explosive [5].

In most cases it is acceptable to ignore the details of
a phase transition that is not accompanied by a change
in aggregate state and to assume that the motion of the
interphase boundary (IB) is predetermined and uni-
form. We use the model of a geometrically thin (on a
wavelength scale) moving boundary between isotropic
1063-7710/01/4705- $21.00 © 20552
media, at which the elastic moduli and the density of
the material undergo steplike changes. For example, if
the IB in question is a plane front of explosive crystal-
lization in an amorphous material [4], the elastic mod-
uli and the density of the amorphous phase can be
assumed to be lower than the respective values for the
crystalline phase in view of the fact that the amorphous
substance has an excessive free volume and that the
crystallization leads to an increase in the average force
of atomic interaction.

In the adopted model of a travelling step of acoustic
parameters, it is the Stoneley waves [6] that are the
alternative to electroacoustic waves [1, 2]; no special
assumptions are being made concerning the nature of
the boundary conditions at the moving IB.1 As distinct
from electroacoustic waves and Rayleigh SAWs, the
Stoneley waves do not pertain to the category of uncon-
ditionally existing waves, and so their direct experi-
mental observation is especially important (see [7, 8]).

We assume that the IB with the coordinate zs = Vt
(t is time) separates the region z < zs occupied by the
medium with the density ρ and the Lame coefficients λ
and µ from the region z > zs characterized by the respec-
tive parameters ρ0, λ0, and µ0. The Galilean relations
between the laboratory reference coordinate system
x0yz and the rest system 0  allow us to write the

1 For example, it appears that, in consequence of the dislocation
mechanism of possible breaks of elastic bonds, the exclusion of
slipping at the wall of elastic domains should be abolished, and
the shearing stresses should be replaced by the effect of the fric-
tional force at slipping.

x̃ ỹ z̃
001 MAIK “Nauka/Interperiodica”
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equations for the scalar potentials ϕ(z < zs), ϕ0(z > zs)
and the vector potentials ψ(z < zs), ψ0(z > zs) in the form

(1)

where  is time;  = ∂2/∂  + ∂2/∂ ; cl and  are

the velocities of longitudinal waves; and ct and  are
the velocities of transverse waves in the regions z < zs

(  < 0) and z > zs (  > 0), respectively.

For the waves propagating along the IB in the direc-
tion of the  axis, the solutions to Eqs. (1) have a com-
mon phase factor exp(iφ). Here, φ = k  – Ω , where k
is the wave number and Ω is the frequency of a Stone-
ley wave in the rest system. Therefore, taking into
account the requirement of finiteness of the potentials,
we obtain

(2)

The characteristic coefficients ql, t and  in Eqs. (2)
are defined by the formula

(3)

where ks = Ω/cs are the wave numbers; βs = V/cs are the
Mach numbers of the partial waves with the index s tak-
ing on the values l, t, l0, and t0; and m = 2 for s = l, t and
m = 1 for s = l0, t0.

The boundary conditions of continuity for the dis-
placements and stresses, when expressed in a standard
way in terms of potentials (see [6]), do not contain time
derivatives and, hence, do not undergo any changes
under the transformation from the laboratory reference
system to the rest system. Substituting Eqs. (2) into
these boundary conditions, we obtain a system of
homogeneous algebraic equations, whose solvability
condition yields the dispersion relation for the Stoneley
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wave at a moving boundary in the form of the determi-
nant ∆ST being equal to zero:

(4)

The quantities  and  in Eq. (4) are the Rayleigh
determinants modified by the IB motion. Namely,

(5)

where ∆R = (2k2 – )2 – 4k2qlqt and  = (2k2 – )2 –

4k2  are the common Rayleigh determinants [6].

The function $(k, V) is an additive correction to the
Stoneley determinant because of the IB motion. This
function is defined by the equation

(6)

In Eqs. (5) and (6), Γs = iβsqs(2ks – iβsqs).
In spite of the cumbersome form, Eqs. (2)–(6)

clearly show that, in the absence of the IB motion, when
all the coefficients βs and Γs are equal to zero, the con-
structed solution describes a classical Stoneley wave.

Indeed, in this case   , $(k, V)  0,
and ∆ST takes the form of a standard Stoneley determi-
nant [6] with positively defined characteristic coeffi-
cients (3), which take on the meaning of the amplitude
decay coefficients of partial waves (2). It also follows
from Eqs. (2) and (3) that, as in the case of electroa-
coustic waves guided by moving 180° domain walls in
a ferroelectric [1, 2], the partial waves under the effect
of the IB motion acquire corrections to the wave vec-
tors, these corrections being oriented in the direction of
the boundary motion. The corrections are determined
by the imaginary parts of the characteristic coefficients
and express the weathercock effect, which consists in
the deflection of the wave-front normals of partial
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waves from the boundary, i.e., from the line of intersec-
tion of the x0z sagittal plane with the boundary plane.
The resulting fan of wave vectors with a common pro-
jection on the boundary allows us to classify the Stone-
ley wave as a noncollinear boundary wave, which, in
the general case, has a multicomponent spatial spec-
trum.

Due to the relativity of the spectral representation
with respect to the observer’s position, the single-fre-
quency nature of the Stoneley wave spectrum disap-
pears with the transformation to the laboratory refer-
ence system: the Ω spectral line undergoes Doppler

splitting into the doublets ωl, t = Ω/(1 – ) and  =

Ω/(1 – ). The presence of these doublets in the fre-
quency spectrum of the recorded signal and their
replacing one another with the IB crossing the receiver
position appear to be decisive arguments for the identi-
fication of the Stoneley wave at a moving IB. The sig-
nificance of similar Doppler effects was pointed out in
the acoustic holography of flows with noise sources.
The contrast of these sources considerably changes
with the transformation to the coordinate system mov-
ing with the flow [9].

The common orientation of the z-components of the
wave vectors of all partial waves (2) along the direction
of IB motion allows one to consider the Stoneley wave
as a combination of leaking-in (  < 0) and leaking-out
waves (  > 0). Then, because of the difference between
the wave vectors of identical partial waves on opposite
sides of the IB, the time-average total energy fluxes p+

βl t,
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2
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Parametric transformation of the spectrum of a leaky Stone-
ley wave at a moving interphase boundary in an isotropic
solid.
and p– directed towards the IB (  < 0) and away from it
(  > 0), respectively, should be expected to be unbal-
anced. This implies the necessity of solving Eq. (4) in
the complex plane k = k' + ik'' when the problem of
numerical calculation is reduced to the standard proce-
dure of searching for the zero minimum of |∆ST|.

Depending on the ratio between p+ and p–, the fol-
lowing variants are possible: when p+ > p– and k'' < 0,
the Stoneley wave is amplified by the IB motion and
belongs, on the whole, to the leaking-in type; when
p+ < p–, and k'' > 0, the Stoneley wave attenuates due to
the energy transfer to the IB and proves to be a leaky
wave; if p+ ≡ p– and k'' ≡ 0, it is a stationary Stoneley
wave, similar in this quality to the electroacoustic wave
on a moving 180° domain wall [1, 2].

The figure demonstrates the dependences of ξ' =
k'/  (curve 1) and ξ'' = k''/  (curve 2) on , which
represent the results of a numerical solution of Eq. (4)
by the method of descent by coordinates to the point of
zero minimum of |∆ST| with the parameters ρ/ρ0 = 1.25,
E/E0 = 1.001, σ = 0.001, and σ0 = 0.21 (E and E0 are
Young’s moduli and σ and σ0 are Poisson’s coefficients
of the material for  < 0 and  > 0). This dependence
permits the existence of a classical Stoneley wave on a
stationary boundary (the corresponding value of ξ for
k > 0 is marked by a cross). The correctness of the cal-
culations was verified by checking the condition ∆ST ≈
0, which was satisfied with sufficient accuracy for  >

0.4. At smaller values of , the equality ξ'' = 0 was
always satisfied, which testifies to the existence of a sta-
tionary Stoneley wave in this region. However, in view
of the noticeable inequality ∆ST ≠ 0, which is revealed
by the form of the dependences of ∆ST on  (see the
lower dashed curve for the ξ calculation by the descent
method, or the succession of open points for the case of
minimization of ∆ST as a one-dimensional function,
using the golden section scheme), the result of the solu-
tion cannot be considered as satisfactory (see the upper
dashed curve, which is an extension of curve 1 to the
region of small values of , or the succession of bold
points obtained by minimization of the one-dimen-
sional function).

The correct form of the dependence ξ' = ξ'( ), ξ'' =

0 at  < 0.4 can be obtained by taking into account the
additional stationarity relation for the Stoneley wave
p+ = p–, which plays the role of a limiting condition typ-
ical of optimization problems [10] and is imposed on
the objective function. A detailed consideration of this
issue is beyond the limits of this publication.

Thus, the calculations described above testify to the
existence of leaky Stoneley waves on moving IBs in
solids. It is significant that the lower limit of the Mach
number range,  ≈ 0.4, at which the leaky Stoneley
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wave is presumably transformed to a stationary Stone-
ley wave, proves to be the point of total delocalization
of the leaking-in transverse partial wave. This is dem-
onstrated by curve 3 of the dependence of the ratio
Re(qt)/  on .
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Abstract—The Mill Race experiment is used as an example to demonstrate the possibility of calculating the
propagation characteristics of acoustic impulses generated by surface point explosions up to ionospheric
heights with the use of the models that are based on the known exact solutions for homogeneous media with
corrections for inhomogeneity. It is shown that, in the terrestrial atmosphere, the height where the amplitude of
the particle velocity of an acoustic impulse reaches its maximum is independent of both the explosion power
and the angle of departure of an acoustic ray. This height is about 120 km and depends mainly on the vertical
atmospheric density profile. © 2001 MAIK “Nauka/Interperiodica”.
The knowledge of the laws governing the forma-
tion of the spatial structure of acoustic waves gener-
ated by different sources of natural and man-made ori-
gin is required for solving the problems of the energy
transfer by these waves from the earth surface to
space. From the applied point of view, the knowledge
of the spatial structure of the field is required to
choose the optimal conditions for radio sounding of
the ionosphere in regions lying above acoustic energy
sources (such as surface and underground explosions,
missile launches, earthquakes, and volcano eruptions)
with the aim of their remote control.

To date, no empirical relationship is known for
describing the pattern of an acoustic field as a function
of time and spatial coordinates from the earth surface to
the ionospheric heights [1]. The only possibility of
obtaining such a pattern of an acoustic field consists in
using theoretical models whose development is the sub-
ject of a number of works (see, e.g., [2–7]). Consider-
able variations of the atmospheric characteristics with
height and the large spatial scales require that the mod-
els take into account multiple factors, such as the inho-
mogeneity of the atmosphere, the nonlinear transfor-
mations of the impulse envelope during the propaga-
tion, the absorption and diffraction of waves, etc. Exact
solutions to the equations of fluid dynamics with allow-
ance for the above processes are hardly possible. For
this reason, various approximations are used in deriving
and in solving the wave equation. Specifically, Razin
and Fridman [2] calculated the spatial structure of the
acoustic field up to a height of 120 km without includ-
ing the atmospheric absorption. Fitzgerald and Carlos
[3] calculated the variations in the amplitude and length
1063-7710/01/4705- $21.00 © 20556
of an N-shaped acoustic impulse generated by an explo-
sion with a trinitrotoluene charge of 500 kg to a height
of 130 km without considering the height dependence
of the sound velocity and the diffraction effects. Orlov
and Uralov [4] described the spatial structure of the
acoustic field for the heights 100–400 km; however,
they considered the effect of atmospheric absorption on
the acoustic impulse only in the first approximation,
namely, they neglected the absorption for the propaga-
tion of an N-shaped impulse to ionospheric heights and
then used a hyperbolic tangent function to smooth out
the edges of the N-shaped impulse. Warshaw [5]
derived the wave equation in the framework of the lin-
ear geometric acoustics and then extended this equation
to the case of an acoustic impulse propagating along a
ray path in a moving inhomogeneous absorbing
medium with allowance for the nonlinear processes.
Rudenko and Sukhorukova [6] obtained a modified
Burgers-type equation that describes the evolution of
an arbitrary impulse profile in an inhomogeneous
absorbing medium. However, finding the solution to
this equation in the general case remains a complicated
problem despite the simplifications suggested in [6]. In
the review devoted to nonlinear saw-tooth waves,
Rudenko [7] outlined the difficulties encountered in
solving the wave equation for inhomogeneous media
and stated that specific solutions are few in number. It
is obvious that the validity of solutions and models can
be estimated only experimentally. Unfortunately, most
publications contain either no correlation with the
experiments or only qualitative estimates for a limited
range of heights. In particular, only two height regions
are usually considered for correlating the theoretical
001 MAIK “Nauka/Interperiodica”
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and experimental data. The first region is located near
the earth surface where the characteristics of the acous-
tic field can be measured directly, using sensors sus-
pended, for example, on parachutes. The second region
is the ionosphere whose response to the acoustic action
can be observed using the Doppler sounding with radio
signals. Both types of experiments are few in number,
and the situations in which they are carried out simulta-
neously are much more rare. In this connection, the
Mill Race experiment [8, 9] is unique. A point surface
explosion of a chemical charge with a trinitrotoluene
equivalent of 500 t was performed on September 16,
1981. During this experiment, acoustic measurements
with probes suspended on four parachutes (heights
about 10 km) and a Doppler sounding with radio sig-
nals of several frequencies were carried out simulta-
neously. Using the theory developed by Warshaw [5],
Warshaw and Dubois [8] quantitatively correlated the
response of the ionosphere to the acoustic impulse pro-
duced by this explosion with the results simulated for
the heights 151, 221, and 262 km. Figure 1 illustrates
this correlation: the circles correspond to the experi-
ment and the crosses represent the simulations. For the
height 151 km, the difference in duration is about 30%
and the difference in the peak-to-peak amplitude is
about 11%; for the height 221 km, these differences are
38 and 34%, respectively; and for the height 262 km, 36
and 5%, respectively. Such a difference between simu-
lations and the experiment may be caused, among other
factors, by the fact that simulations were performed
using 1976 U.S. Standard Atmosphere, while the Mill
Race experiment was carried out in the period of the
high solar activity. In particular, on September 16 the
solar activity index F10.7 was as high as 204.8, which
resulted in a temperature profile essentially different
from the standard profile above a height of 100 km
(Fig. 2). In addition, Warshaw and Dubois [8] used the
initial impulse in the form of the Reed impulse, which
inadequately describes the rarefaction phase and must
be modified for the Mill Race experiments (see
Drobzheva and Krasnov [10]). To verify the results of
the calculations performed by Warshaw and Dubois [8]
with taking into account the above notes is a nontrivial
problem. Warshaw [5] reported his final theoretical
result in the form of a partial differential equation. The
solution of this equation (as the solution of the general-
ized Burgers equation [6]) requires further simplifica-
tions or computations based on approximate numerical
methods with the corresponding consideration for the
solution stability. In this connection, it is of interest to
consider the possibility of interpreting the Mill Race
experiment using the known exact solutions for a
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
homogeneous atmosphere (Rudenko and Soluyan [11])
with corrections for the inhomogeneity and, if this
approach appears to fit the experiment, to determine the
laws governing the signature of the acoustic field.
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Fig. 1. Doppler frequency response of the radio-sounding
signal to an acoustic impulse: the experimental data (cir-
cles), the calculations by Warshow and Dubois [8]
(crosses), our calculations for the initial temperature profile
(triangles), and our calculations for the corrected profile
(the solid line).
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We will use the initial acoustic impulse in the form
of the modified Reed impulse that was empirically
determined in [10]:

where p is the pressure disturbance, ∆p is the peak
value of the shock wave, τg is the total duration of the
Reed impulse, t+ is the duration of the compression
phase, t is the time variable, τs is the time instant for
which the area of the wave in the rarefaction phase is
equal to the area of the wave in the compression phase,
d = p(0.4τg) – 0.4kτg, and k = ∂p/∂t for t = 0.4τg.

Describing the propagation of acoustic waves in the
atmosphere, we used the following approximations. We
calculated the acoustic field along acoustic rays whose
trajectories were obtained taking into account inhomo-
geneity of the atmosphere and the ray deformation. In
so doing, we considered the wave as a plane one for
every small ray segment located at a sufficiently large
distance from the source. We assumed that the atmo-
sphere is inhomogeneous only in the vertical direction.
In the calculations, we used two models. The first
model is described in detail in [10]. It includes the non-
linear effects, the spherical divergence of rays, and the
corrections for the inhomogeneity. We used this model

p t( ) ∆p 1 t/t+–( ) 1 t/τg–( ) 1 t/τg( )2–( )=

0 t 0.4τg≤ ≤
p t( ) kt d 0.4τg t τ s≤ ≤+=
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Fig. 2. Temperature profiles: the profile calculated by the
MSIS model (circles), the profile calculated from the sound
speed profile given by Warshaw and Dubois [8] for the stan-
dard atmosphere (crosses), and the corrected profile (the
solid line).
for calculating the initial signatures of impulses and
their subsequent propagation to heights of about 10 km
(i.e., to heights for which the acoustic field was mea-
sured with parachute probes during the Mill Race
experiment). We approximated the vertical profiles of
atmospheric parameters by stepped functions; i.e., the
atmosphere was considered as homogeneous for each
layer. The correlation with the parachute experiment
showed (see [10]) that the height of an atmospheric
layer equal to 0.1 km is a proper choice for which the
experimental and theoretical results for acoustic
impulses coincide within several percent in both dura-
tion and amplitude.

The second model was used for interpreting the
Doppler shift measured during the Mill Race experi-
ment for the ionospheric heights. In contrast to the first
model, it takes into account the absorption and is devel-
oped on the basis of the Burgers equation [11],

 –  –  = 0,

where V is the velocity of hydrodynamic particles, ρ is
the density of the atmosphere, c is the velocity of
sound, ε = (γ + 1)/2, γ is the ratio of specific heat at con-
stant pressure (cp) to specific heat at constant volume

(cv), b =  + χ; ζ and η are the bulk

and shear viscosity coefficients, χ is the heat conductiv-
ity coefficient, the s axis is directed along the ray, and
τ = t – s/c.

With the substitution

(1)

the Burgers equation is reduced to the equation  =

 whose solution is [11]

(2)

where a = b/2c3ρ.
In numerical simulations, we first used Eq. (2) to

obtain the function U and then we used substitution (1)
to calculate the function V(τ). When a ray passed from
one atmospheric layer to another, we introduced a cor-
rection in V(τ) to take into account the spherical diver-
gence of the ray and the inhomogeneity of the atmo-
sphere in the vertical direction. This correction was cal-
culated using the results reported in [10] where the
following expression was obtained with consideration
for the area of the positive or negative unit acoustic
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the atmospheric inhomogeneity for a spherically diver-
gent wave:

(3)

Here, T is the duration of the acoustic impulse and L is
the distance along the ray from the point of explosion
to the observation point; the quantities with the asterisk
correspond to the initial front of the acoustic wave and
the quantities without asterisk correspond to an arbi-
trary point on the ray.

We used this formula to calculate the area of the
impulse in the compression phase (the area of the
impulse in the rarefaction phase is assumed to be equal
to the area of the impulse in the compression phase by
virtue of the momentum conservation). Then, we calcu-
lated the area of the impulse in the compression phase
P1 by integrating the solution V(τ) from Eq. (1). From
these data, we determined the correction factor for V(τ)
as k = Iv /P1. This correction to the quantity V(τ) was
introduced for every passage from one layer to another;
in particular, we multiplied the velocity profile V(τ) by
k at the upper boundary of each layer. It is obvious that
such multiplication at the layer boundaries modifies
only the impulse amplitude, and not the impulse dura-
tion. However, substitution (1) shows that this multipli-
cation results in the corresponding correction to the
amplitude of the function U(t). In turn, the time interval
essential for convolution (2) calculated for the subse-
quent layer depends on the amplitude of the function
U(t), so that the variation of this amplitude changes the
impulse duration in comparison with the case of k = 1.
Thus, we took into account the inhomogeneity of the
atmosphere by the correction factor k for the passages
from one layer to another and by the use of actual
height-dependent atmospheric parameters at the lower
boundary of each layer. The correlation with the exper-
iment showed that 1 km is a proper choice for the height
of an atmospheric layer in this case. To calculate the
vertical profiles ρ(z), c(z), b(z), γ(z), cp(z), and cv(z), we
used the MSIS-90 model [12] of the neutral atmosphere
for the following parameters: the explosion date was
September 16, 1981; the explosion time was 12:45:40
LT; the explosion coordinates were 33.62° N, 253.53° E;
the solar activity index averaged over three months was
F10.7 = 190.2; the solar activity index for the day pre-
ceding the explosion was F10.7 = 207.4; and the index
of geomagnetic activity was Ap = 7. The coefficients of
heat conductivity and shear viscosity were set accord-
ing to the formulas [13]: χ = k0T3/2/M and η =

, where k0 = 0.015 J K–1 m–1 s–1, T is the

temperature, and M is the molecular weight. The bulk
viscosity was set as ζ = 2/3η [14].

To determine the effect of the acoustic wave on the
ionosphere and, correspondingly, on the Doppler fre-
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quency of the sounding radio signal, we used the
expression derived in [15]

where fd is the Doppler frequency, cr is the speed of
light, the integration is carried out over the ray trajec-
tory from the transmitter T to the receiver R, n is the
refraction index of radio waves, Nf is the ionosphere
electron concentration such as to reflect a wave of fre-
quency f incident on the ionosphere in the vertical
direction, N is the electron concentration along the
radio ray trajectory, θ is the angle between the direction
of the geomagnetic field and the direction of the acous-
tic ray, and ψ is the angle between the direction of the
geomagnetic field and the z axis.

This expression was derived in the geometrical optics
approximation, and, for this reason, it fails in the region
where radio waves are reflected. Near the reflection
point, we used the linear approximation for the height-
dependent electron concentration, which allowed us to
obtain rigorous expressions. As a result, we obtained the
following formula for the Doppler frequency shift near
the reflection point of radio waves:

where zr is the height of reflection of the radio wave, zb
is the height within which the calculations according to
geometrical optics formulas are adequate, ϕ is the angle
of incidence of the radio wave on the ionospheric layer
at a point zb, and Nd = N(zr) – N(zb). In the calculations,
the values of V and ∂V/∂s were averaged over the
heights from zb to zr .

We calculated the profile of the electron concentra-
tion in the ionosphere from an ionogram recorded in the
region of the Mill Race explosion. The radio wave tra-
jectories for the vertical sounding of the ionosphere at
the frequencies 5.37, 7.98, and 10.3 MHz were calcu-
lated by taking into account the geomagnetic field. The
corresponding heights of reflection of the radio waves
appeared to be equal to 151, 222, and 263 km.

The calculated values of fd(t) are shown in Fig. 1 by
triangles. As can be seen, the curves calculated for the
heights 222 and 263 km are closer to the experimental
curves than the curves by Warshaw and Dubois [8]; at
the same time, for the height 151 km, our results, as the
results of Warshaw and Dubois [8], significantly differ
from the experiment in impulse duration. It can be
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Fig. 3. Simulated maximal amplitude of the particle velocity of the acoustic impulse (Vmax) versus the height for explosions with
the equivalent trinitrotoluene charge of 1 and 500 t and for the zenith angles of ray departure 0°, 10°, 20°, 30°, 40°, 50°, and 60°
(the upper end of the curves in the interval 120–170 km corresponds to the ray reflection height).
shown that these differences in duration can be reduced
by decreasing the velocity of the acoustic wave (or the
temperature) for the heights above 100 km. Figure 2
shows the temperature profile constructed by the MSIS-90
model and the corrected profile that goes slightly above
the initial curve. The curve for fd(t) calculated for the
corrected profile is shown in Fig. 1 by the solid line.
The coincidence of the calculated curves with the
experimental ones has become better for all three
heights. An interesting point is that a considerable
increase in the duration of the disturbance at the height
of 151 km only slightly changes the duration for the
heights of 222 and 263 km. A possible explanation is as
follows. The duration of the disturbance in fd(t) is gov-
erned by the spatial size of the acoustic impulse and its
velocity near the height of reflection of the radio wave.
The height of 151 km lies in the region of a high tem-
perature gradient (see Fig. 2), and a slight upward dis-
placement of the curve considerably decreases the tem-
perature and, correspondingly, the velocity of sound.
For the heights of 222 and 263 km, the temperature gra-
dient is small and the upward shift of the curve only
slightly affects the velocity of sound.

Thus, using the models based on the known exact
solutions for the homogeneous atmosphere with correc-
tions for inhomogeneity [10, 11], the MSIS-90 atmo-
sphere model, and the initial impulse in the form of the
modified Reed impulse, we obtained a better agreement
between the theoretical and experimental results, as
compared to the calculations by Warshaw [5]. For this
reason, the models suggested here are preferable for
studying the formation of the spatial structure of an
actual acoustic field in the atmosphere. The calculated
acoustic fields are shown in Figs. 3 and 4. In particular,
we calculated the height-dependent amplitude of the
particle velocity for the acoustic impulses generated by
explosions with equivalent trinitrotoluene charges of 1,
4, 20, 100, and 500 t for different zenith angles of ray
departure. As an example, Fig. 3 shows the results cal-
culated for the explosions with equivalent charges of
1 and 500 t. As seen from this figure, an acoustic
impulse generated by a surface explosion and charac-
terized by the initial amplitude of the particle velocity
exceeding fractions of meter per second can penetrate
the whole thickness of the atmosphere and ionosphere
with significant velocity values. Simulations show that
this fact follows primarily from the decrease in the
atmosphere density with height and from the momen-
tum conservation law (Eq. (3)). An increase in the
amplitude of the particle velocity of an acoustic
impulse with height is a feature favorable for a remote
control of acoustic sources by the Doppler radio sound-
ing of the ionosphere.

The above calculations offer an important con-
clusion: the height where the amplitude of the parti-
cle velocity of an acoustic impulse reaches its max-
imum is independent of the angle of ray departure
and the equivalent explosion charge and lies at a
height of about 120 km. Let us consider the factors
that govern the formation of the velocity maximum
at just these heights. Differentiating Eq. (1) and
determining the velocity V at the instant τm corre-
sponding to the positive maximum of the impulse,
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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Fig. 4. Duration of the compression phase of the acoustic impulse versus the height for explosions with the equivalent charge of 1
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50° (full triangles), and 60° (full circles). The duration was determined at a level of 0.1 of Vmax.
one can obtain the relationship Vm = k1k2k3, where

k1 =  k2 =  (τ')exp (τ' – τm)dτ',

and k3 = 1/ (τ')exp dτ'.

The numerical analysis of the height dependence
of these coefficients shows that the coefficient k1 is
minimal near the height 100 km and then monotoni-
cally increases, while the coefficients k2 and k3 are
maximal for the heights 110–120 km. This means that
the height of the maximum of the acoustic impulse is
mainly governed by coefficients k2 and k3. Both these
coefficients are calculated by the convolution of the
function U(τ') with the respective time windows O2 =

exp (τ' – τm) and O3 = exp  at

the instant τm. The function U(τ') is a positive function
that monotonically increases from zero to a maximum
during the compression phase of the impulse V(t) and
then, during the rarefaction phase, monotonically
decreases to zero. The window O3 is a bell-shaped
impulse with a unit maximum, and the window O2 is an
impulse with a negative peak followed by a positive
one. The amplitude of the window O2 increases with the
quantity as. Both windows are of infinite duration;
however, one can select significant intervals that yield
the dominant contributions to the integrals. The effec-
tive duration of these windows is proportional to the

quantity τ0 = . Using the coefficient k2 as an
example, let us consider in detail how the convolution
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is performed. In the general case, the window O2 moves
along the function U(τ'); in the course of this motion,
the window is multiplied by U(τ') and the result is inte-
grated over the window duration. In this process, the
segment where U(τ') increases determines the positive
phase of the acoustic signal, and the segment where
U(τ') decreases determines the negative phase; as a
result, the impulse duration increases. Let us determine
the instant corresponding to the maximum in the
impulse V(t). In the course of the integration, the terms
corresponding to the positive and negative phases of the
window O2 are, clearly, subtracted. Hence, we can
expect that the integral for k2 will be maximal at the
instant when the difference between the positive and
negative terms in the integral will be maximal. It
appears that this situation is realized when the positive
portion of the window O2 totally overlaps the function
U(τ'). With increasing height, the parameter as
increases and, correspondingly, an increase occurs in
the magnitude and duration of the positive peak in the
window O2. As a result, the area of integration
increases, and the coefficient k2 grows. Along with this
effect, the opposite process can affect the coefficient k2

with increasing height. Since the amplitude of the win-
dow is less than unity and the window is composed of
positive and negative segments, the convolution proce-
dure decreases the amplitude of the curve U(τ'), which
eventually results in an absorption of the acoustic
impulse. An important point is that going from one
layer to another can be accompanied by an increase in
the integration area and, correspondingly, in the
impulse amplitude, if the effect of the increase in the
window duration and magnitude will exceed the effect
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of the decay of the function U(τ'). A similar consider-
ation can be easily carried out for the coefficient k3.

The existence of the maxima in the height-depen-
dent coefficients k2 and k3 for heights of about 120 km
indicates that the decrease in the function U(τ') miti-
gates the tendency of the impulse amplitude to increase
with increasing parameter as. Now, we determine what
atmospheric parameter plays the key role in this pro-
cess. For simplicity, we consider the case of equithick
atmospheric layers and an acoustic ray propagating in
the vertical direction. In this case, the quantity s has a
fixed value for all layers, and all height-dependent vari-
ations of the coefficients k2 and k3 depend only on the
height dependence of the parameter a. In addition, the
propagation path of the acoustic impulse will grow pro-
portionally to the layer number. 

An analysis of the height dependence of the param-
eter a = b/(2c3ρ) shows that all its variations are pre-
dominantly related to the variations in the atmospheric
density (because the density varies according to an
exponential law, while the velocity of sound c(z) and
the quantity b(z) are relatively slow functions); the
height dependence of the velocity c(z) appreciably
affects the profile a(z) beginning from a height of about
100 km where a high positive gradient of the velocity of
sound occurs (see Fig. 2). The effect of the height-
dependent quantity b(z) on the gradient of a(z) is even
smaller. It is known (see [12]) that temporal and spatial
variations in the vertical profile of the atmospheric den-
sity are less prominent than those in the temperature
profile. In addition, the rate of the decrease in the atmo-
spheric density begins to decrease appreciably for
heights of about 120 km. Correspondingly, smaller
height-dependent variations in the density cause a
smaller increase in the parameter a, which, as was
shown above, reduces the factors governing the
increase in the coefficients k2 and k3. 

In line with this effect, the function U(τ') continues
to decay from one layer to another along the acoustic
ray despite a certain decrease in the decay rate. As a
result, this factor acquires an increasing role in the pro-
cess of the impulse formation. It can be easily seen that
an increase in the gradient of the velocity of sound near
a height of 100 km has similar consequences. Indeed,
an increase in the velocity of sound with height causes
a decrease in the parameter a, whereas a decrease in the
density increases this parameter; in other words, the
decrease in the sound velocity slows down the increase
in the parameter a due to the decrease in the atmo-
spheric density with height. Therefore, we can expect
that an increase in the sound velocity will reduce the
impulse amplitude and slightly (since the profile c(z),
unlike ρ(z), only slightly affects the behavior of a(z))
reduce the height of the maximum in comparison with
the case of the absence of this gradient at a height of
100 km. Determine now the role played in this process
by the coefficient k1 = c2/εs. In contrast to the above
consideration, an increase in the velocity of sound
should increase the impulse amplitude. However, sim-
ulations show that the effect of an increase in the veloc-
ity of sound on the amplitude is caused predominantly
by the parameter a, because it strongly depends on the
variations in the velocity profile c and appears in the
exponent. Therefore, an increase in the velocity of
sound causes the impulse amplitude to decrease.

Now, we consider the effect of the explosion power
on the impulse amplitude and on the height correspond-
ing to its maximum. An increase in the explosion
charge increases the initial amplitude and duration of
the impulse and, correspondingly, the amplitude and
duration of the initial function U(τ'), which leads to an
increase in the area of significant values of the inte-
grand in the convolution integral and an increase in the
impulse amplitude for greater heights, all other factors
being the same. However, the increase in the integration
area and the impulse decay with height depend predom-
inantly on the exponential behavior of the parameter a.
For explosions with equivalent trinitrotoluene charges
from 1 to 500 t, the increase in the integration area
appeared to be a small additive that only slightly affects
the position of the amplitude maximum. However, as
we noted above, the rate of increase in the parameter a
considerably decreases for heights above 120 km, and
this additive begins to play an increasingly important
role. As a result, the impulse decay becomes slower,
which is shown in Fig. 3 with the simulated results.

The effect of the angle of departure of the acoustic
ray on the impulse magnitude (Fig. 3) can be explained
by the behavior of the height-dependent parameter s,
which determines the length of the ray path in the layer
as a function of the angle of wave incidence α, s =
∆z/cosα, where ∆z is the thickness of the layer. Consid-
ering the angles α ≠ 0 and taking into account the fact
that a sharp increase in the gradient of the velocity of
sound near a height of 100 km results in a faster
decrease in the refraction coefficient and, consequently,
in a faster increase in the angle α along with the fact
that the angle α and the parameter s are related through
a nonlinear relationship, we find that the ray path length
in the layer becomes appreciably longer. As a result, the
absorption of the impulse increases from one layer to
another along the ray, and a clearly pronounced depen-
dence of the amplitude on the initial angle of ray depar-
ture is observed in the region of the maximum (Fig. 3).

Thus, we can conclude that, for the considered
explosions with the equivalent trinitrotoluene charges
from 1 to 500 t, the height dependence of the density in
an inhomogeneous atmosphere is the key factor that
predominantly determines the height-dependent behav-
ior of an acoustic impulse and the formation of its max-
imum at a height of about 120 km. On the one hand, the
decreased density of the atmosphere results, according
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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to the momentum conservation law, in an increase in
the amplitude of the acoustic impulse. On the other
hand, the decay of the impulse mitigates this increase
near a height of 120 km. As a result, a maximum is
formed in the amplitude V(t). The effect of the sharp
increase in the sound velocity at heights above 100 km
is reduced to a decrease in the impulse amplitude and a
small shift of the amplitude maximum in the downward
direction. This result differs qualitatively from the
result of Orlov and Uralov [4] who reported that the
height of the maximal amplitude strongly depends on
the angle of the ray departure and varies from 300 to
150 km for angles of departure from 0° to 25°, respec-
tively. In addition, these authors also noted that the
height of the maximum is independent of the explosion
power; however, they presented only the result for the
zero angle of departure and obtained a value of 300 km
for the height of the amplitude maximum.

As for the fact that, for a fixed height of the point of
observation, the field amplitude is independent of the
angle of ray departure from the point source (this phe-
nomenon was revealed by Razin and Fridman [2]), our
study demonstrated that, with the inclusion of the atmo-
spheric absorption, this statement holds only for
heights below 80–100 km (Fig. 3). Above this region,
the amplitude of the impulse depends on the angle of
ray departure. The weak dependence of the impulse
amplitude on the angle of ray departure that occurs for
heights below 80–100 km can serve as an indicator of a
chemical point explosion.

Figure 4 shows the duration of the compression
phase of the acoustic impulse versus the height for
explosions with equivalent trinitrotoluene charges of 1
and 500 t and for different angles of ray departure. It
can be seen that the duration of the compression phase
increases with height and, to a height of about 120 km,
is almost independent of the initial angle of ray depar-
ture. As was shown earlier, the height-dependent
parameter as varies predominantly due to the variations
in the atmospheric density, which causes a nearly expo-
nential increase in the parameter as and, correspond-
ingly, in the amplitude of the window O2 and the dura-
tion of the windows O2 and O3. As a result, both the
area significant for integrating in the convolution and
the impulse duration increase according to an exponen-
tial law. The rate of variation of the compression phase
appreciably increases for the heights 80–120 km. This
increase is caused, primarily, by the fact that, for these
heights, the variation of the atmospheric density is char-
acterized by a higher rate. For heights above 120 km, the
rate of variation of the density decreases and, corre-
spondingly, the rate of the increase in the duration of
the impulse compression phase also decreases with
increasing height. The stronger dependence of the
impulse duration on the angle of ray departure for
heights above 120 km is caused by the same reason as
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
the increase in the impulse amplitude, namely, by a
faster increase in the parameter s with height.

Let us consider the effect of the absorption coeffi-
cient b on the impulse duration. It is clear that an
increase in b with height, as well as a decrease in ρ with
increasing height, will increase parameter a. However,
in the case of increasing absorption, the parameter a
varies much slower than in the case of decreasing den-
sity. As a result, the windows O2 and O3 only slightly
increase in their durations, whereas the function U(τ')
continues to decay from one layer to another. Conse-
quently, calculating the convolution, we obtain a slower
rate of increase in the impulse duration with increasing
height. The highest positive gradient of the absorption
coefficient b(z) occurs near a height of 120 km with a fol-
lowing monotonic increase. In this connection, the
increase in the absorption coefficient b is an additional
factor that slows down the growth of the impulse dura-
tion at heights above 120 km (Fig. 4).

As seen from Fig. 4, for a fixed height, the impulse
duration in the case of the explosion with the charge of
500 t appears to be longer than in the case of a charge
of 1 t. This fact is primarily related to the longer initial
duration of the impulse in the first case and to the rates
of the following increase in the durations of both
impulses. Nevertheless, it is seen that the impulse pro-
duced by the powerful explosion is generally character-
ized by a slower increase in its duration. This fact can
be explained as follows. Relationship (3) shows that the
increase in the impulse area with height is independent
of its initial area. At the same time, the amplitude of the
impulse produced by the more powerful explosion, as
we showed earlier, decreases slower with increasing
height. Consequently, its duration should increase
slower to conserve the impulse area for a fixed height.

The increase in the impulse duration at a fixed
height with increasing charge of explosion qualitatively
confirms the results obtained in [4]. This result makes it
possible to determine the explosion power from the
impulse duration measured at ionospheric heights. In
addition, the fact that, as was shown above, the duration
of the compression phase only weakly depends on the
angle of ray departure offers an opportunity to omit the
angle of departure in the calculations and, hence, to
simplify the procedure of determining the explosion
charge.
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Abstract—The problem on the diffraction of an acoustic wave by a finite-size scatterer (inclusion) located in
a halfspace is considered. The method of solving this problem is based on the use of the scattering amplitude
of the inclusion. A formula analogous to the Green formula is presented. It allows one to determine the scatter-
ing amplitude of the inclusion for an arbitrary incident wave (determined by the directional pattern of the source
of primary waves) from the scattering amplitude corresponding to plane incident waves. The algorithm is pre-
sented for solving the problem on the operation of an acoustically opaque radiator in a halfspace whose bound-
ary is characterized by an arbitrary reflection coefficient. As an example, the problem is solved on the genera-
tion of low-frequency oscillations by a sphere with an acoustically soft boundary near an acoustically hard or
soft boundary of the halfspace. © 2001 MAIK “Nauka/Interperiodica”.
The literature on the scattering problems is quite
extensive. Here, we only mention some publications
that are concerned with the problems of the sound scat-
tering in acoustic waveguides [1–7] and that describe
numerical or asymptotic methods for their solution.
A two-dimensional acoustic scattering problem formu-
lated in terms of regular integral equations was solved
by Yang [17]. Ochmann [18] studied a two-dimensional
problem on the scattering by an arbitrary body located
near an impedance boundary. This problem was solved
by the boundary-element method. Bishop [19] obtained
a three-dimensional solution to the problem on the scat-
tering by elastic bodies located near a boundary
between two homogeneous halfspaces one of which
was assumed to be liquid and the other elastic. The
problem was solved by the T-matrix method, which was
cumbersome, yet approximate. In this paper, for solv-
ing the problems on the scattering in bounded media,
we use an extension of the domain of definition of the
scattering amplitude to the whole complex plane of the
angles of incidence. The technique used to realize this
approach is described in, e.g., [8–10]. We obtain an
expression that is similar to the Green formula and that
allows one to determine the scattering amplitude of an
inclusion for an arbitrary incident wave (given by the
directional pattern of the source of primary waves)
from the scattering amplitude corresponding to plane
incident waves.

We present the algorithm for solving the problem on
the operation of an acoustically opaque source in a half-
space whose boundary is characterized by an arbitrary
reflection coefficient. As an example, we solve the
problem on the generation of low-frequency oscilla-
1063-7710/01/4705- $21.00 © 20565
tions by a sphere with an acoustically soft surface near
an acoustically hard or soft boundary of the halfspace.

Let us consider the problems of steady-state scatter-
ing from a volume scatterer and a surface scatterer in
R3. We consider a bounded region E ∈  R3 with the
boundary ∂E = S. The volume scatterer is determined by
the perturbation of the refraction index in the region E
(for simplicity, we assume that the density of the
medium in E is constant and coincides with the density
of the medium in the surrounding homogeneous space
R3). The surface scatterer is characterized by the bound-
ary conditions at the surface S.

The total field U can be represented in the form of a
sum of the incident U0 and scattered US fields. The
source of the incident field can be either a radiator con-
centrated in a region B, which in the general case does
not coincide with the region E, or a plane wave arriving
from infinity [11, 12]. For example, in the case of a vol-
ume scatterer when the source of the incident field is a
radiator with a volume density F, suppF = B, the fol-
lowing expression is valid (when F = 0, the source of
the incident field is a plane wave arriving from infinity):

(1)

(2)

Here, V(x) = k2(n2 – 1), where n is the refraction index
in the region E; in the region R3 \ E, n(x) ≡ 1; and k is the
wave number.

∆U k2U+ –V x( )U F, x R3,∈+=

suppV E, suppF B,= =

US x( ) O x 1–( ),=
∂US

∂ x
--------- jkUS– o x 1–( ) for x ∞.=
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The incident field U0 must not necessarily satisfy
conditions (2) (e.g., in the case of a plane incident
wave). Analogously, for a surface scatterer, when the
source of the incident field is a plane wave arriving
from infinity, we have

(3)

(4)

where US again satisfies conditions (2). Here, the func-
tions α(x) and β(x) are related by an integral equation
following from the Kirchhoff formula [11]:

where the function G is defined below.

The solution to the problem given by Eqs. (1) and
(2) at F ≡ 0 can be represented (using the Green for-
mula) in the form

(5)

(see, e.g., [11]). The solution to the problem given by
Eqs. (3), (4), and (2) can be represented as follows:

(6)

(see [11]).

In Eqs. (5) and (6), G(x, y) = exp(jk|x – y|)/(4π|x –
y|) and n is the inner normal to S. Expressions (5) and
(6) are integral equations for the determination of the
resulting field U(x).

Using Eqs. (5) and (6) and the technique described
in [8], we can express the scattering field through the
function Ti:

(7)

Here, i = 1 and 2 for the upper and lower halfspaces,
respectively; x = (kx, ky) ∈  R2; ki = (kx, ky, (–1)iα(kx, ky));

dξ = dkxdky; and α(kx , ky) = , where we
consider the branch of the root with Re(α) ≥ 0. The
quantity Ti can be determined by the formulas

(8)
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∫+=

U x( ) U0x=

+ G x y,( )∂U y( )
∂n

--------------- U y( )∂G x y,( )
∂n y( )

---------------------– S y( ), x E∉d

S

∫

US
i x( ) j

2π
------

Ti x( )
α x( )
------------- jkix( )exp ξ , id

R
2

∫ 1 2.,= =

k2 kx
2– ky

2–

Ti x( ) 1
4π
------ V x( )U x( ) j kix( )–( )exp x,d

E

∫=
(9)

for the volume and surface scatterers, respectively.

In the theory of scattering, the function Ti defined in
the region |x| ∈  [0, k] (the so-called visible region where
the angle of incidence is θ ∈ [0, π]) is called the scatter-
ing amplitude or the scattering diagram (see, e.g., [11,
12]). For the function Ti defined in the region |x| ∈  [0, ∞)

(the angle of incidence is θ ∈ [0,  – j∞)), we will also

use the term scattering amplitude. The necessity to
extend the domain of definition of this function follows
from Eq. (7). For a correct description of the scattering
field by Eq. (7), the domain of definition of the scatter-
ing amplitude of a scatterer should be extended to the
region |x| ∈  [0, ∞), which is equivalent to the region θ ∈
[0,  – j∞), ϕ ∈ [0, 2π] in the polar coordinate system.

Naturally, Ti depends on the incident wave. In view of
this, the scattering amplitude corresponding to a plane
incident wave is of particular interest, because the scat-
tering amplitude corresponding to an arbitrary incident
wave can be expressed through the directivity pattern of
the incident wave and the scattering amplitude of the
scatterer for plane incident waves. To prove this state-
ment, we consider an incident wave U0 = exp( j(kpmx))
(this is the amplitude of a plane wave with the wave
front normal to the vector kpm). Here, the subscript p
indicates that it is an incident wave and the subscript m
corresponds to the propagation direction of this wave
relative to the Oz axis: m = 1 when the plane wave prop-
agates in the direction of increasing z, and m = 2 when
it propagates in the opposite direction. Evidently, we
have kp1 = (xp, αp) and kp2 = (xp, –αp). Thus, the wave
U0 characterized by the vector kp1 is incident on the
scatterer from above (the Oz axis is directed down-
ward), and the wave with the vector kp2 is incident from
below.

We denote the scattering amplitude corresponding
to the wave U0 by (xp, xs) (in quantum mechanics, a
similar function is called the scattering matrix (see

p. 893 in [13])). Hence, (xp, xs) is the scattering
amplitude in the following case: the incident wave is
characterized by the vector kpm and the scattered wave
is considered in the halfspace lying above (i = 1) or
below (i = 2) the scatterer in R3. The scattered plane
waves are characterized by the vectors ks1 = (xs, –αs)
and ks2 = (xs, αs) for the upper and lower (relative to the
scatterer) halfspaces in R3, respectively (note that pre-
cisely these vectors are involved Eq. (8)).

From the physical point of view, the meaning of the
function  is as follows: when a wave with the vector

Ti x( ) 1
4π
------ ∂U y( )

∂n
--------------- j kin( )U y( )+

S

∫=

× j kiy( )–( dS x( ), where y S∈exp

π
2
---

π
2
---

Ti
m

Ti
m

Ti
m
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kp arrives at the input of the system, a sum of plane
waves with the vectors ks is formed at its output.

We express the arbitrary incident field of a source
located at the origin of coordinates through the direc-
tional pattern of the source [8]:

(10)

We introduce the operators

The superscripts v and s indicate the type of scatter-
ing—the volume and surface scattering, respectively.
From Eqs. (5) and (6), we obtain (the superscripts v and
s are omitted): (I – A)U = U0 and U = (I – A)–1U0, where
the operator (I – A)–1 is an integral one and the proper-

U0m x( ) j
2π
------

Dm x( )
α x( )

--------------- j kmx( )( )exp x,d

R
2

∫=

m 1 2.,=

Av U V y( )G x y,( )U y( ) y,d

E

∫=

AsU
∂U y( )
∂n y( )
---------------G x y,( ) U y( )∂G x y,( )

∂n y( )
---------------------– s y( ),d

S

∫=

Bi
v U

1
4π
------ V y( )U y( ) j kiy( )–( )exp y,d

E

∫=

Bi
sU

1
4π
------ ∂U y( )

∂n y( )
---------------

S

∫=

+ j kin y( )U y( )( ) j kiy( )–( )exp s y( ).d
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ties of its kernel allow subsequent operations. Expres-
sions (8) and (9) yield

(11)

Now, using representation (10) for U0, we derive

At the same time, from Eq. (11), it follows that (xp,
xs) = Bi(I – A)–1exp( jkpmx), and, hence, we have

(12)

This means that the scattering matrix in the theory
of scattering has the same meaning as the Green func-
tion in the theory of boundary-value problems. The
Green function represents the field of point sources and
allows one to reconstruct the field of an arbitrary
source, whereas the scattering matrix represents the
scattering amplitude of a scatterer in the case of plane
incident waves and allows one to determine the scatter-
ing amplitude for an arbitrary incident wave.

After the scattering amplitude of the scatterer for a
given incident wave is determined, the scattering field
can be obtained from Eq. (7). However, a more simple
way is to use the field expansion in powers of 1/kR
(see [9]):

, (13)

where

Ti BiU Bi I A–( ) 1– U0.= =

Ti xs( ) j
2π
------

Dm xp( )
α xp( )

------------------Bi I A–( ) 1– jkpmx( )exp xp.d

R
2

∫=

T p
m

Ti xs( ) j
2π
------

Dm xp( )
α xp( )

------------------Ti
m xp xs,( ) xp,d

R
2

∫=

i m, 1 2.,=

Us x( ) jkR( )exp
R

-----------------------
Tn' ϑ ϕ,( )

kR( )n
---------------------

n 0=

∞

∑=
(14)
T0' π ϑ– ϕ,( ) T1 x( )=

T0' ϑ ϕ,( ) T2 x( )= 

 x k ϑ ϕcossin k ϑ ϕsinsin,( ),=

ϑ 0 π/2 j∞–,[ ]∈ , ϕ 0 2π,[ ] ,∈
and the quantities  for n > 0 are obtained from 
using the recurrence relation (see [9]).

Let us use the technique considered above for solv-
ing the following problem: an acoustically opaque radi-
ator determined by the region E, the directional pattern
Di(x), and the scattering matrix (xp, xS) is placed in
a homogeneous halfspace. The reflecting boundary z =
0 is characterized by the reflection coefficient V(x). The
source E generates a wave U0. We denote the contrac-

tion of  in Ωi (i = 1, 2) (Ω1 = {(x, y) ∈  R2, z ≤ z0},
Ω2 = {(x, y) ∈  R2, z ≥ z0}, where z0 is the ordinate of the

radiator center) by . The quantity  can be
expressed through Di(x) (see [11]):

Tn' T0'

Ti
m

U0
i

U0
i U0

i

(15)

Here, x0 = (0, 0, z0). The phase additive exp[ j(−1)iα(ξ)(z –
z0)] is caused by the fact that Di is calculated for the
radiator position with the origin of coordinates at x0 =

(0, 0, z0) (see [8]). The direct wave  produces no
scattering wave, because it propagates from the source
directly into the lower halfspace Ω2.

The wave  behaves in a different way. It reaches
the boundary z = 0 where it is reflected and propagates

U0
i x( )

=  
j

2π
------

Di x( ) j 1–( )iα ξ( ) z z0–( )( )exp
α ξ( )

-------------------------------------------------------------------------- jξr( )exp ξ .d

R
2

∫

U0
2

U0
1
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downward into Ω2 giving rise to waves scattered by E,
which propagate upward (into Ω1) and downward (into
Ω2). The primary wave scattered upward is reflected
from the boundary z = 0, then it propagates downward
causing secondary scattering in the upward and down-
ward directions, and so on. To determine the field in Ωi

(i = 1, 2), it is necessary to combine all waves multiply
scattered from E and reflected from the boundary.

We introduce the operators

(16)

Here, (xp, xs) is the scattering matrix of the radi-
ator E when the plane wave is incident on E from above
and is scattered upward (i = 1) or downward (i = 2).
Combining all multiply scattered waves, we obtain the
resulting field in Ωi in the form

(17)

(18)

The operator series in Eqs. (17) and (18) converge,

if the norm of the operator  is less than unity. The lat-
ter can be easily proved using the energy consider-
ations. We introduce the notation

(19)

Convolving the Neumann operator series in Eq. (19),
we obtain

(20)

A2
i D1[ ] xs( )

=  T2
i xp xs,( ) 2 jα xp( )z0[ ] V xp( )

D1 xp( )
α xp( )
-----------------exp ξ p.d

R
2

∫

T2
i

U1 x( ) = 
j

2π
------ A2

1( )n
D1[ ] xs( ) j z z0–( )α xs( )–( )exp[

n 0=

∞

∑
R

2

∫

+ V xS( ) j z z0+( )α xS( )( )exp ]
jxSr( )exp

α xS( )
-------------------------dξS,

x Ω1∈

U2 x( ) = 
j

2π
------ A2

1( )n
D1[ ] xs( )V xs( )

n 0=

∞

∑
R

2

∫
× j z z0+( )α xs( )( )exp

+ A2
2 A2

1( )n
D1[ ] xS( ) D2 xS( )+

n 0=

∞

∑

× j z z0–( )α xS( )( )exp ]
jxSr( )exp

α xS( )
-------------------------dξS,

x Ω2.∈

A2
1

T̃1 x( ) = A2
1( )n

D1[ ] x( ), T̃2 x( )
n 0=

∞

∑  = A2
2 T̃1[ ] x( ).

T̃1 x( ) I A2
1–( ) 1–

D1[ ] x( ).=
Inverting Eq. (20), we obtain a Fredholm integral
equation of the second kind

(21)

which can be solved by conventional means. With
allowance for Eq. (19), we represent Eqs. (17) and (18)
in a compact form

(22)

(23)

As one can see from Eqs. (22) and (23), the func-
tions Ti can be interpreted as the directional diagram of
some transparent radiator that is equivalent to the given
radiator. The structure of expressions (22) and (23)
shows that the field is formed by a real and an imagi-
nary source. The coincidence with the classical form
will be complete, if in a particular case we take D1 ≡ D2

and  = . Then, as one can see form Eq. (18), the
pre-exponential of exp( j(z – z0)α) will transform to T1.
Constructing the series of type (13) by the method
described in [9], we obtain the field in the halfspace
under consideration in the form

(24)

Here,

The leading terms are determined from the recurrence
relation [10]

I A2
1–( ) T̃1[ ] x( ) D1 x( ),=

U1 x( ) j
2π
------ T̃1 xs( ) j z z0–( )α xs( )–( )exp[

R
2

∫=

+ V xs( ) j z z0+( )α xs( )( )exp ]
jxsr( )exp

α xs( )
-------------------------dξ s,

U2 x( ) j
2π
------ T̃1 xs( )V xs( ) j z z0+( )α xs( )( )exp[

R
2

∫=

+ T̃2 xS( ) D2 xS( )+[ ] j z z0–( )α xS( )( )exp ]

×
jxSr( )exp

α xS( )
-------------------------dξS.

A2
2 A2

1

Us x( ) jkR( )exp
R

-----------------------
D1n ϑ ϕ,( )

kR( )n
------------------------

n 0=

∞

∑=

+
jkR'( )exp

R'
-------------------------

D2n ϑ ' ϕ',( )
kR'( )n

--------------------------.
n 0=

∞

∑

D1 0, π ϑ– ϕ,( ) T̃1 x( )=

D1 0, ϑ ϕ,( ) T̃2 x( ) D2 x( )+=

D2 0, ϑ ϕ,( ) T̃1 x( )V x( )= 



 ϑ ϑ ' 0 π

2
--- j'∞–, ,∈,

ϕ 0 2π,[ ] .∈

D1 n 1+, ϑ ϕ,( )
∆ϑ ϕ, n n 1+( )+

2 j n 1+( )
-------------------------------------D1 n, ϑ ϕ,( ),=

∆ϑϕ
1

ϑsin
-----------

ϑ∂
∂ ϑ ∂

∂ϑ
-------sin

1
ϑsin

----------- ∂2

∂ϕ2
---------+ 

  .=
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The coordinates (R, ϑ , ϕ) and (R', ϑ ', ϕ) characterize
the position x relative to the real and the imaginary
sources.

Let us calculate the field in the following simple
case.

We consider a sphere, which has a radius R0 and its
center at the point x0 = (0, 0, z0), in a homogeneous half-
space with a plane boundary characterized by the
reflection coefficient V(ξ) ≡ 1 (a hard boundary) or
V(ξ) ≡ –1 (a soft boundary). We assume that the
Dirichlet condition is satisfied at the sphere surface. In
addition, the density of the sound sources uniformly
distributed over the sphere surface satisfies the condi-
tion D1 = D2 ≡ 1. In the low-frequency approximation
(correct to O(k3)), the scattering matrix of such a sphere
has the following form in polar coordinates (see p. 86
in [11]):

(25)

Substituting Eq. (16) in Eq. (21) and changing to the
spherical coordinate system, we arrive at the integral
equation

T ϑ ϕ ϑ 0 ϕ0, , ,( ) A B ϑ ϑ 0coscos+=

+ ϑ ϑ 0 ϕ ϕ 0–( ),cossinsin

A –R0
2
3
---k2R0

3 jkR0
2, B+ + k2R0

3.–= =
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(26)

Here, the minus sign before cosϑ  indicates that we

consider the scattering matrix , and the sign 
selected before the integral means that the minus sign is
taken in the case of a hard bottom and the plus sign in
the case of a soft bottom. We note that Eq. (26) is an
integral equation with a degenerate kernel. Hence, the
solutions should be sought in the form [12]

(27)

(27')

Here, ai(ci) characterize a hard (soft) boundary. The
coefficients ai and ci with i = 1, 4 are determined from
the system of linear algebraic equations obtained from
Eq. (26) by a standard procedure. The resulting solution
has the form

T̃1 ϑ ϕ,( )

−+ k A B – ϑ ϑ 0coscos ϑ ϑ 0sinsin+( )+[
0

π
2
--- j∞–

∫
0

2π

∫
× ϕ ϕ0–( )cos ] j2k ϑ 0z0cos( )exp

× ϑ0T̃1 ϑ 0 ϕ0,( )dϑ 0dϕ0sin 1.=

T2
1 +−

T̃1 0 ϕ,( ) 1 a1 a2 ϑcos+ +=

+ a3 ϑ ϕcossin a4 ϑ ϕ ,sinsin+

T̃1 0 ϕ,( ) 1 c1– c2 ϑcos–=

– c3 ϑ ϕcossin c4 ϑ ϕ .sinsin–
(28)

a1 c1( )

2πkA
α

-------------eα 2πk( )2

α4
----------------ABe2α±

1
2πk
α

---------Aeα 2πkB

α3
-------------eα α2 2α– 2+( ) 2πk( )2

α4
----------------ABe2α–±+−

-------------------------------------------------------------------------------------------------------------------------------,=

a2 c2( )

2πk

α2
---------Beα 1 α–( )

1
2πk
α

---------Aeα 2πkB

α3
-------------eα α2 2α– 2+( ) 2πk( )2

α4
----------------ABe2α–±+−

-------------------------------------------------------------------------------------------------------------------------------,=

a3 c3 a4 c4 0; α j2kz0.= = = = =
Here, the upper (lower) signs correspond to a hard
(soft) bottom. The coefficients a3, c3, a4, and c4 are
exactly zero, which is a consequence of the azimuthal
symmetry of the problem.

Substituting the expressions for a1, a2, c1, and c2 in
Eq. (27), we derive the low-frequency approximation for

the scattering amplitude ; the function  can be cal-

culated from Eqs. (19) through  in the following way:

T̃1 T̃2

T̃1
(29)

Here, all terms containing the angle ϕ are zero (as
above) because of the azimuthal symmetry of the

T̃2 ϑ( ) 2πk A B ϑ ϑ 0coscos+( )
0

π
2
--- j∞–

∫=

× α ϑ 0cos( ) ϑ 0T̃1 ϑ 0( )dϑ 0.sinexp
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Fig. 1. Sound field amplitude versus the distance with and
without allowance for the scattering; R0 = 4 m and Z0 = 5 m.

Fig. 2. Sound field amplitude versus the distance with and
without allowance for the scattering; R0 = 4 m and Z0 =
100 m.

Fig. 3. Sound field amplitude versus the distance with
and without allowance for the scattering; R0 = 0.4 m and
Z0 = 5 m.
problem. The calculation by Eq. (29) yields the
expressions

(30)

for a hard and a soft bottom, respectively.
Substituting Eqs. (27) and (30) with allowance for

Eqs. (28) in Eq. (24), we obtain the total field. In these
calculations, it is necessary to take into account the
relations

(30')

(31)

where V(ϑ) ≡ 1 in the case of a perfectly hard boundary
and V(ϑ) ≡ –1 in the case of a soft boundary.

Figures 1–3 present the results of the calculations
for the amplitude of the sound field U with allowance
for the scattering; the plots are presented for different
depths of the source (scatterer) and also for different
values of the scatterer radius. The independent vari-
able in the plots is the horizontal distance between the
source and the receiver. The field was calculated by
Eq. (24) with allowance for only the leading terms of
the series (with n = 0). The current values of the angles
ϑ  and ϑ ' were determined from the geometry of the
problem.

The corresponding values of D1, 0(ϑ) and D2, 0(ϑ ')
were calculated from Eqs. (31), (27), and (30). The sub-
script 0 corresponds to a hard boundary, and the sub-
script 1, to a soft boundary.

For comparison, the same figures present similar
dependences P(x) obtained by the method of imaginary
sources (without taking into account the scattering). All
calculations were performed for a frequency of 100 Hz
and a receiver depth of 105 m. The values along the
ordinate axis are normalized by the field amplitude of
the same source at a unit distance in a homogeneous
unbounded space.

The analysis of the plots shows that the field scatter-
ing from the source considerably affects the total sound
field, and this effect is most pronounced when the

T̃2 ϑ( ) = 2πk A 1 a1+( )
eα

α
----- Aa2 B 1 a1+( ) ϑcos+[ ]+





× eα

α2
----- α 1–( ) Ba2 ϑ eα

α3
----- α 2

2α– 2+( )cos+




T̃2 ϑ( ) = 2πk A 1 c1–( )
eα

α
-----





+ A c– 2( ) B 1 c1–( ) ϑcos+[ ]

× eα

α2
----- α 1–( ) B c– 2( ) ϑ eα

α3
----- α 2

2α– 2+( )cos+




,

D1 0, π ϑ–( ) T̃1 ϑ( )=

D1 0, ϑ( ) T̃2 ϑ( ) 1+=

D2 0, ϑ( ) T̃1 ϑ( )V ϑ( )=

ϑ 0 π/2,[ ] ,∈
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dimensions of the source are comparable with the depth
of its immersion.

We note that the latter problem formulated in a sim-
ilar way was considered in a number of publications
(e.g., [14–16]). The problem on the scattering by two
spheres was considered in application to electrodynam-
ics [14]. The resulting scattering diagram of the two
spheres was calculated. The scattering field of a sphere
with a perfectly hard surface in a homogeneous halfs-
pace was studied in [15, 16]. In this case, the scattering
gives rise to a plane incident wave.

In the example considered above, we used the scat-
tering matrix calculated approximately. In the two-
dimensional case, the scattering matrix can be calcu-
lated exactly for a large class of scatterers by the
Wiener–Hopf method, because this matrix represents
the Fourier transform of the scattering field of a plane
incident wave. In more complex cases, it is necessary to
use numerical methods for both the determination of
the scattering matrix and the solution of the integral
equation (21). The method described in this paper can
be also used in solving scattering problems in a plane-
layered waveguide.
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Abstract—It is demonstrated that the determination of the relative positions of two signals on the time axis
with the help of cepstral analysis is characterized by higher immunity to signal fluctuations than a direct mea-
surement of their positions. The theory of the cepstral approach and the results of numerical calculations that
demonstrate its potentialities are presented. The cepstral analysis is applied to the processing of signals obtained
in a full-scale tomographic experiment in the Mediterranean Sea in 1994. Refined values of the time intervals
between the arrivals of signals transmitted through a 200-km-long propagation path are determined. It is dem-
onstrated that the method used for the determination of the signal propagation times is immune to noise asso-
ciated with the distortions of the signal wave form. © 2001 MAIK “Nauka/Interperiodica”.
Acoustic methods are successfully used for the
determination of many oceanological parameters. Fluc-
tuations that occur in wave propagation because of the
internal waves in the ocean, as well as the effect of the
gradients of sound velocity on this phenomenon, were
studied in [1]. Today, the most well known and complex
problem of the determination of oceanic parameters is
the program of acoustic thermometry (ATOC). The
determination of the propagation times of pulses also
forms the basis of the ocean tomography [2]. The range
of problems that can be solved by the determination of
the propagation time of an acoustic signal essentially
depends on the precision of its measurement. Inaccura-
cies caused by the multipath character of an acoustic
channel were considered in [3]. In order to avoid the
errors caused by the multipath propagation, it is pro-
posed to increase the time resolution of signals by
broadening the effective frequency range of the mea-
surements. The optimal (from the point of view of pre-
cision) degree of smoothing of the signal frequency
characteristic is determined by taking into account
additive noise.

This paper (as in [3]) is devoted to the problem of
increasing the precision of the estimates of the pulse
propagation time in a sound channel characterized by
multipath propagation. We consider the case of a very
high signal-to-noise ratio, which allows one to deter-
mine the pulse propagation time with a precision better
than within the inverse width of the pulse spectrum, as
was obtained in [4]. A large excess of a signal over the
noise level provides an opportunity to estimate the posi-
tions of the signal maximum with the precision better
than within the interval of the signal discretization in
time. The last condition excludes the possibility of
increasing the time resolution of the received signals.
Therefore, not only does the problem of controlling the
1063-7710/01/4705- $21.00 © 20572
multipath character of the channel become important,
but also does the problem of finding a way to reduce the
errors in the determination of a pulse position in the
conditions of multipath propagation. The major source
of such errors is the change in the pulse form due to
small fluctuations of the pulse propagation time along
different ray paths of interfering signals. The purpose
of this work is the investigation of the possibility of
eliminating the errors caused by the fluctuations of the
pulse form by transferring the measurements from the
time domain to the spectral one. In the absence of fluc-
tuations (the source of errors lies not in the presence of
multipath propagation, but in the fluctuations), the
time-domain and spectral-domain determinations of
the signal propagation time are fully equivalent. In the
conditions of a multipath channel, the situation is dif-
ferent. By processing the experimental data with these
two techniques (in the time domain and in the spectral
domain), we obtained a difference in the determination
of the pulse propagation time, and this difference far
exceeded the error due to additive noise. The difference
is a consequence of the error obtained with the time-
domain technique. On the basis of the theoretical con-
siderations and numerical estimates relying on the
experimental data, it is demonstrated that the spectral
method of the determination of the pulse propagation
time is much less sensitive (by several orders of magni-
tude) to the fluctuations of pulse form.

Let us explain the essence of the spectral method.
Consider two almost identical signals “a” and “b”
delayed with respect to each other. The signal spectrum
taken within the interval including both signals can be
represented as

(1)Gy ω( ) Ga ω( ) iωτa( ) Gb ω( ) iωτb( ).exp+exp=
001 MAIK “Nauka/Interperiodica”
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Here, Ga, b(ω) are the spectra of each of the signals
taken within the same interval as their summary spec-
trum; the position of each signal is indicated on the time
axis τa, b in these spectra.

Let us transform Eq. (1) by factoring out the param-
eters of the signal “a.” We obtain

(2)

where

(3)

It follows from Eq. (2) that, in the case of spectrum
measurement, the difference in the forms of the signals
“a” and “b” (more precisely, their spectra) affects only
the coefficient α that characterizes such changes and
does not contain any information on the delay of the
signals. More precisely, the change of spectra can lead
to a difference in the measured signal delay from τ =
(τb – τa) only if an imaginary part proportional to ω is
present in α. The presence of such a term in α is not a
disadvantage but a consequence of the fluctuations of
the signal position, which must be taken into account.
If we measure the time position of a signal according to
the position of its maximum, there will be no guarantee
that it will not change in the case of a small random
deformation of the signal form.

In order to use the advantage of the separation of the
amplitude and time factors in Eq. (2), it is necessary to
use this relation as the basis of the method of measure-
ment of the quantity τ = (τb – τa). Such a method is the
cepstral analysis [5]. Let us write down the logarithm of
the modulus of Eq. (2):

(4)

It follows from Eq. (4) that the logarithm of the
spectrum modulus contains two terms. The first one is
the logarithm of the modulus of the spectrum of one
pulse with the Fourier transform consisting of almost
only low-frequency components. The spectrum of the
second term contains harmonic terms with the frequen-
cies being multiples of τ. Thus, the Fourier transform of
Eq. (4) (the cepstrum) contains low-frequency compo-
nents and a harmonic series with the period τ. The delay
between the pulses is determined according to the posi-
tion of the first harmonic of this series. The spectral
analysis must be performed for a sufficiently long fre-
quency interval. The larger the window of the spectral
analysis, the more reliable the separation of the fre-
quency (quefrency) τ in the cepstrum (4). In order to
determine the value of τ with the precision better than
within the signal quantization interval, the function
given by Eq. (4) must be supplemented by zeros before
taking the spectrum (cepstrum) from it.

Supplementing the function spectrum by zeros does
not increase the resolution of the method. In this sense,
this operation is useless. This is just a necessary proce-

Gy ω( )
=  Ga ω( ) iωτa( ) 1 α iω τb τa–( )[ ]exp+{ ,exp

α Gb ω( )/Ga ω( ).=

Gy ω( )[ ]ln Ga ω( )[ ] 1 α iωτ( )exp+[ ] .ln+ln=
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dure for the numerical calculation. The point is that, in
the case of numerical calculations, the axis of delays
consists of a series of discrete values. The discretization
interval is the limit of the time resolution. However, in
the case of large signal-to-noise ratios, the time position
of a pulse (without application of any special tech-
niques) is obtained with a much higher precision. In
order to use this opportunity, it is necessary to increase
the number of points on the delay axis. This can be
achieved by supplementing the function by zeros. It is
necessary to note that supplementing the function by
zeros smoothes the differences that occur between the
numerically obtained cepstra with an integral or nonin-
tegral number of the function periods constituting the
interval of the function setting.

The form of the cepstrum obtained in this case is
given in Fig. 1. If Eq. (4) is not supplemented with
zeros, the distance between the reading points of the
function cepstrum in Fig. 1 corresponds to the distance
between the readings of this function. As a result, it is
possible to measure the value of τ only with the error
equal to the quantization period of the pulses being
investigated. Supplementing Eq. (4) with zeros, we
introduce additional readings into the cepstrum. Their
number is proportional to the supplemented number of
zeros. It is pointless to infinitely increase the number of
supplemented zeros. The precise determination of the
maximum of the function given in Fig. 1 is impeded by
additive noise in the function given by Eq. (4). One can
see from Fig. 1 that the lower the noise level shown in
Fig. 1 by the segment ∆η, the higher the precision in the
determination of the position of the maximum ∆ξ. The
value of ∆ξ determines the expedient number of zeros
that should be introduced into Eq. (4). Proceeding from
the fact that the plot in Fig. 1 in the vicinity of the max-
imum has the form sin(x)/x, we give in Fig. 2 the plot of
the ratio of the number of expediently supplemented
zeros to the length of the initial spectrum depending on
the noise level in Eq. (4). This noise level is given in deci-
bels relative to the modulus of α with allowance for the
gain in the case of the spectral analysis of 1024 points of
the spectrum (30 dB). One can see from the plot that it
is expedient to increase the spectrum length by a factor
of 16, supplementing it with zeros when the pulse
already exceeds the noise level by 20 dB or more. This
means that such an important parameter as the pulse

∆η

∆ξ

Fig. 1. Form of the cepstrum for two pulses separated in
time, at the delay quefrency.
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position with respect to the reference pulse can be
determined to within 1/16 of the distance between the
reading points on the time axis. The distance between
the reading points is usually much smaller than the
interval of the signal resolution, which is determined as
the inverse value of the signal bandwidth. Here and
below, we discuss the problem of increasing the resolu-
tion relative to the time interval of signal quantization
and not to the inverse value of the signal spectrum.

Let us indicate two important points. First, we do
not suggest any superhigh resolution. It is necessary to
supplement the signal spectrum not with zeros but with
the values of its real spectrum obtained by estimating it
in a sophisticated way [6] to obtain a superhigh resolu-
tion. Instead of superhigh resolution, we use a more
accurate determination of the position of the cepstrum
maximum obtained in a common way, as it is shown in
Fig. 1. Second, Fig. 1 and the plot presented in Fig. 2
are only an illustration of the possibilities rather than
the basis for their realization. The feasibility of the
technique used here becomes clear directly in the pro-
cess of its realization, on the basis of the form of spec-
trum (4) (cepstrum) observed in reality. The technique
is feasible if the cepstrum form is smooth in the vicinity
of the maximum and close to the form shown in Fig. 1.

The complex coefficient α is estimated on the basis
of the already determined value of τ. We present two
such ways as examples.

For the first way, let us write a relation containing
both α and τ:

(5)

where S(t) is the form of the initial signal containing
both signals “a” and “b” and k is the yet arbitrary com-
plex factor. Both pulses are superposed in Eq. (5) at a
certain instant: the direct pulse multiplied by k and the
delayed one. It is possible to observe their interference.
The minimum amplitude of the combined pulse is
observed under the condition

(6)

M t( ) S t( ) kS t τ–( ),–=

k α .=

20

0

Noise level (dB)

968872 80645648403224168
Supplementing by zeros (times)

0

–20

–40

–60

–80

Fig. 2. Ratio of the number of possible zeros to the length
of the initial spectrum versus the noise level in Eq. (4). The
noise level is given in decibels relative to the modulus of α
with allowance for the gain in the case of the spectral anal-
ysis of 1024 points of the spectrum (30 dB).
Proceeding from this condition, the real and imagi-
nary parts of α are determined at the minimum of the
combined pulse.

Now, for the second way, let us write down the fol-
lowing relation:

(7)

If the condition given by Eq. (6) is valid, Eq. (7)
transforms into

(8)

Therefore, the spectrum given by Eq. (7) (the cep-
strum of S(t)) reaches its minimum at the quefrency τ
under the condition given by Eq. (6). This technique is
integral. It should be preferred if one wants to exclude
or reduce the influence of local changes of the signal
form. It is valid on the condition that the denominator
in Eq. (7) is never equal to zero. If this happens, it is
necessary to exclude these points from the consider-
ation.

We used the technique described above for process-
ing the data of a full-scale hydroacoustic experiment to
demonstrate its applicability to hydroacoustic measure-
ments.

The experiment was conducted under the program
of the THETIS-II international tomographic experi-
ment in the Mediterranean Sea, in the summer of 1994.

Phase-manipulated pulses with phase manipulation
according to a pseudo random law (an M-sequence)
were studied in the course of this experiment. The
results of processing the signals from one of the sources
that operated at a carrier frequency of 400 Hz are given
below. The length of the phase-modulating pseudo-ran-
dom sequence was equal to 511 units (5.11 s), each unit
containing four periods of the carrier frequency (0.01 s).
A series of 40 identical pulses were emitted several
times a day. The total length of each series was 204.4 s.

The signals were received by a vertical array of
omnidirectional hydrophones submerged from a drift-
ing research vessel Akademik Sergeœ Vavilov. The
receiving ship was positioned at a distance of about
200 km from the emission point.

The compression of the received pulses by their cor-
relation with the copy of the initially emitted signal was
conducted in the course of the preliminary processing.
The idea of this standard procedure, which is also
called matched filtering, is based on the fact that the
effective width of the autocorrelation function of the
emitted signal is equal to the length of the unit of the
pseudo-random sequence modulating the phase (0.01 s
in our case). Therefore, by virtue of the problem linear-
ity, a compressed signal is equivalent to the signal that
was received after the emission of a short pulse with the
form of the autocorrelation function of the signal emit-
ted in reality. Thus, at the correlator output, we obtained
a sequence of pulses with the time distribution corre-

GM ω( )
Gy ω( )

1 k iωτ( )exp+
-----------------------------------.=

GM ω( ) Ga ω( ).=
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Time (readings) ×0.0001 

0

Fig. 3. Form of the processed sequence of pulses. Time (in reading points) is represented by the horizontal axis, and the vertical axis
represents the pulse amplitude on a linear scale.
sponding to the distribution of arrival times of short
pulses propagating along different ray paths. These
pulses we call ray pulses. The distribution of the arrival
times of rays and the parameters of the emitted signal
are such that the ray pulses can be resolved either com-
pletely, or partially, or not resolved at all.

The special feature of the preliminary processing in
this case was the transformation of the time scale due to
the Doppler effect caused by the drift of the vessel.
Since the ambiguity function of an emitted signal in the
delay–Doppler shift coordinates has a so called needle
shape, the reference signal used for matched filtering
must be transformed according to the Doppler change.
The autocorrelation of the received signal was used to
evaluate the real transformation of the signal, and the
average change of the period and the corresponding
Doppler distortion was evaluated from the first signifi-
cant maximum at the nonzero delay (close to the period
of the M-sequences). It is evident that, in real condi-
tions, the drift velocity of the hydrophones of the array
can change even during the time of a single session.
Moreover, there is a series of physical processes in the
ocean that lead to analogous changes of the propagation
time, e.g., internal waves. The measurement of the
exact value of the propagation time fluctuations is
important. The used technique has good prospects for
such estimations.

The conditions of the signal reception from a drift-
ing ship make it impossible to conduct a full-scale
tomographic experiment. In the case under consider-
ation, this test was used only to adjust the technique of
such experiments.

We used five groups of pulses from the correlator
output, produced by five sequences following each
other. The fixed velocity of the receiver motion was
used to partly compensate for the Doppler distortions.
The signal was received by one of the hydrophones of
the vertical array. The above example was given in
order to demonstrate the possibilities for refining the
pulse repetition period using the described technique.

The processing was as follows. We conducted the
spectral analysis of the signal realization including two
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
pulses (Fig. 3). After that, we took the logarithm of the
modulus of the obtained spectrum. We roughly evalu-
ated (with the precision up to one reading point) the
delay with respect to the cepstrum maximum by the
spectrum of this modulus (the cepstrum). After that, the
coordinate of the cepstrum maximum was refined by
either adding zeros to the spectrum modulus, or in
another way. We performed the common Fourier trans-
formation with respect to a small number of points (six-
teen) in the vicinity of the maximum. In this case, the
points were taken with the interval of one thousandth of
the quantization interval. Then, we determined the rel-
ative amplitude of pulses by applying it to Eqs. (5) or
(7) according to Eq. (6) up to the point of minimization
of the second pulse in Eq. (5) or in the spectrum given
by Eq. (7). In this way, we determined the delays and
the relative amplitude values for the neighboring pairs
of the pulses shown in Fig. 3.

The results obtained in this study are presented in
the table and illustrated by the figures.

The first column of the table indicates the numbers
of the intervals between the pulses from the sequence
used for processing. The plot of this pulse sequence is
given in Fig. 3. The next column of the table shows the
difference between the values of the pulse spacing,
which were determined with the precision of one thou-
sandth of the quantization period, and the value 8176
(the repetition period of the M-sequences) determined
within one quantization unit. The third column of the
table presents the values of the relative pulse amplitude
in the sequence. It is necessary to note that the form of
compressed pulses was close to a triangle with a base of
32 quantization units.

Figures 4–6 illustrate the basic stages of the signal
processing for the full-scale experiment. Figures 4 and
5 show the determination of the relative amplitudes of
pulses by the technique utilizing the subtraction of a
signal and its delayed copy according to Eq. (5). The
form of the function M(t) is shown in Figs. 4a and 5a,
and Figs. 4b and 5b show the form of the function S(t)
involved in Eq. (5).
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Fig. 4. Determination of the relative pulse amplitude. (a) The difference M(t) (Eq. (5)) in the case of validity of Eq. (6); (b) S(t), one
of the terms of this sum. The horizontal axis represents time in thousands of reading points.

Fig. 5. Same as in Fig. 4, but on a different time scale.
Figure 6 demonstrates the determination of the
refined value of the delay between the pulses. Sixteen
values of the cepstrum (the spectrum given by Eq. (4))
taken per one thousandth of the quantization interval in
the vicinity of the maximum of the modulus of this
function are given in this figure. A smooth regular
shape of this curve shows that noise practically does not

Table

Number of interval 
between pulses

Deviation
of interval length Relative amplitude

1 0.092 1.08

2 0.242 1.13

3 0.119 1.06

4 –0.105 0.95
affect the result of the determination of the maximum
position.

We compared the technique used by us with the
method of the delay determination by the maximum of
a correlation function (see, e.g., [4]). The relative delay
in the second pair of pulses was measured according to
the difference of the positions of the maximums of cor-
relation functions, which were measured up to several
thousandths of the resolution interval. This value dif-
fers by 0.311 of the quantization interval from the value
given in the table.

The correctness of the result given in the table is ver-
ified by a numerical experiment utilizing the full-scale
initial data. A fluctuation of the pulse amplitude near
the maximum was simulated. This was done by multi-
plying (multiplicative noise was simulated) the signal
by 1.001 at two points near the maximum of one of the
correlation functions, the time interval between which
was to be evaluated. Figure 7a shows the form of the
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
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correlation function portion close to the maximum with
the curve, which contained the aforementioned changes,
superimposed upon it. Figure 7b demonstrates the same
portion on the scale increased by a factor of 20. As the
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4 6 8
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5.2

0
Quefrency (readings)

2 4 6

34.558

0
Quefrency (readings) ×0.001
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16

(a)

(c)
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0
Quefrency (readings) ×0.05
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(b)

Fig. 7. Result of the simulation of a real signal fluctuation.
The solid line shows the unperturbed signal in the vicinity
of its maximum, and the dashed line shows its fluctuation.
(a) The signal oscillogram at reading points; (b) the signal
oscillogram at 0.05 of a reading point; (c) the oscillogram
of the cepstrum of Eq. (4) taken at 0.001 of a reading point.
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34.558

0
Quefrency (readings) ×0.001

Fig. 6. Oscillogram of the cepstrum of Eq. (4) in the vicinity
of the maximum. The horizontal axis represents τ in 0.001
of a reading point.
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result of the introduction of the fluctuation, the position
of the maximum of the correlation function, as deter-
mined on the basis of the shape of the correlation curve
peak (this is the common procedure), was shifted by
approximately 0.34 of the resolution interval. A part of
the cepstrum of the same function is shown in Fig. 7c
on an even more extended (by a factor of 1000) scale.
In this case, the delay measured using the spectral
method described above and determined within 0.001
of the quantization unit did not change. This demon-
strates the immunity of the spectral method to pulse
form fluctuations caused by the multipath propaga-
tion.
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Abstract—A new method for the visualization of flowing liquids is suggested. The method makes it possible
to obtain images of dynamic objects located in an inhomogeneous medium. The main requirement for the
realization of this method is the stability of the field during two successive measurements. The dimensions
of the irradiating beam depend on the value of the spatial correlation interval characterizing the inhomoge-
neities of the medium, while the amplitude distribution in the beam can be arbitrary. A numerical modeling
of the method is performed, and images of the models of blood vessels lying under an inhomogeneous layer
are presented. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Ultrasound diagnostics is now the most common
method of blood vessel examination. The main advan-
tages of the ultrasound method, compared to X-ray
examination, are the noninvasivenessvity, the absolute
safety, and the portability of the ultrasonic equipment.
Unlike the X-ray examination, ultrasound makes it pos-
sible to obtain information on the structure of external
and internal vessel walls and on the parameters of the
blood flow. There are two ways of gaining information
on blood vessels by using ultrasound. The first is based
on estimating the blood flow parameters (integral and
local ones) by the Doppler method. This method pro-
vides no direct image of the blood flow but allows one
to make only indirect judgments by the form and some
parameters of the spectrum of scattered signals. There-
fore, in many cases this method is subjective and the
quality of the diagnostics depends on the experience of
the physician performing the examination. The second
method, which received the names of “B-Flow” or
“Speckle Tracking” in American literature [1, 2],
makes it possible to obtain a dynamic ultrasonic image
of the blood flow due to the scattering of ultrasonic sig-
nals by erythrocytes or an echo contrast liquid injected
into an artery. This method is based on the well-known
algorithm of alternate-period subtraction of signals at
every element of the spatial resolution of the antenna.
In this case, the ultrasonic images of stationary struc-
tures are subtracted, whereas the images of moving
scatterers are not subtracted or are compensated only
partially, which makes it possible to obtain the image of
the blood flow. This subtraction is necessary, because
the signals reflected from the walls of vessels are many
times greater than the echo signals from erythrocytes
and, in a conventional processing, the weak signals will
1063-7710/01/4705- $21.00 © 20578
be suppressed by the responses from strong echo sig-
nals and by their side lobes. The mentioned methods of
ultrasound diagnosis are successfully used for examin-
ing the so-called “open” organs, when blood vessels are
located in the medium that can be considered as an ana-
log of free space and the distortions of the wave fronts
of the propagating signals due to inhomogeneities of
the biological medium are insignificant. Therefore, for
phasing ultrasonic antenna arrays, the conventional
methods of focused processing are used.

However, for examining the blood vessels of brain,
today’s possibilities of ultrasound diagnosis are very
limited because of the presence of thick skull bones
which greatly distort the sounding and echo signals
and, in addition, introduce a high attenuation. For these
reasons, transcranial ultrasound diagnostics is per-
formed only through the so-called “windows of acous-
tic transparency,” that is, through such parts of the skull
where the bones are either thin (the temple area) or are
lacking (the eye-socket and the large occipital open-
ing). However, the anatomical location of these win-
dows does not make it possible to obtain detailed ultra-
sonic images of deep brain vessels.

In papers [3, 4], a method of ultrasonic visualization
of brain vessels through thick skull bones was devel-
oped and experimentally tested. This method is based
on the use of complex superwideband signals (to com-
pensate the attenuation) and on the spatial processing
matched with the medium for the compensation of the
distorting effect of the skull bone.

In this paper, we consider a new possibility of
obtaining ultrasonic images of blood flow by echoloca-
tion through such inhomogeneous media on the basis of
the methods of acoustic speckle interferometry [5–9].
001 MAIK “Nauka/Interperiodica”
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ALGORITHM OF THE IMAGE 
RECONSTRUCTION

In the previous papers [5–7], it was shown that the
methods of acoustic speckle interferometry allows one
to reconstruct the image of a point source, moving or
stationary, through a layered inhomogeneous or
strongly scattering medium without using the matched-
field processing. To be more specific, it is not the point
source function, which is reconstructed in the conven-
tional method of a wave front inversion in a homoge-
neous medium, but a certain functional of this function,
and, in the strict sense, this functional is not the image
of the point source. In particular, it was shown that by
using the method of the correlation speckle interferom-
etry it is possible to reconstruct the autocorrelation
function of a point source, the angular dimensions of
which practically coincide with the angular dimensions
of the response of the antenna array to a plane or spher-
ical wave [5].

A key property of the methods of speckle interfer-
ometry is that they do not require any detailed mathe-
matical description (or measurement) of the parameters
of the inhomogeneous and scattering medium, which,
in view of the considered problem, is the determining
factor.

Below we will show that, using the ideas of speckle
interferometry, it is possible, under certain conditions,
to produce ultrasonic images of blood flow with the
elimination or minimization of the effect of the layered
inhomogeneous medium (such as the bone tissues and
internal structures of the brain). In this respect, the pro-
posed method of obtaining ultrasonic images can be
considered as a full analog of X-ray angiography, since
only the blood flow is visualized.

Let us now turn to the formulation of the problem:
the blood moves with a certain velocity along a vessel
of an arbitrary shape and, possibly, of varying diameter.
The vessel is located in an acoustically inhomogeneous
medium: the outer layer is a bone tissue and then come
the soft structures of brain in which the blood vessel is
located (Fig. 1). On the surface of the bone, a linear
multielement array and an ultrasonic radiator are
placed (they may be combined or separated).

The signals transmitted through the inhomogeneous
medium and reflected from the blood flow pass through
the inhomogeneous medium once more and then arrive
at the receiving array. We a priori consider the medium
to be random and unknown. Therefore, the ultrasonic
field received by the array receivers has a random spa-
tial distribution of amplitude and phase. Since the inho-
mogeneous medium is stationary, the received random
amplitude–phase distribution is stable: for the same
radiated signal and constant positions of the receiver
and radiator, we will obtain the same random distribu-
tion of the field over the array.

Blood is an essentially inhomogeneous liquid con-
sisting of plasma (a water solution of salts) and, mainly,
erythrocytes, which are randomly oriented in plasma.
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
The erythrocytes are similar to biconcave disks with a
mean diameter of the order of 7 µm and a thickness of
1 µm at the center and 2 µm at the periphery. Thus,
from the acoustic point of view, blood can be consid-
ered as a liquid filled with random scatterers, the sizes
of which are small compared to the wavelength of ultra-
sound. Since this liquid moves, the ultrasonic field scat-
tered by the erythrocytes is a random function not only
of spatial coordinates but also of time, and the interval
of time correlation of the scattered field fluctuations
depends on the velocity of the liquid motion. This prop-
erty is used in the suggested method of visualization: in
the field received by the array, two spatial interference
structures are present, namely, a constant structure
formed by the stationary inhomogeneous layer and a
time-variable structure formed by the signals scattered
by the moving blood. The speckle-interferometric pro-
cessing selects only the dynamic part of the spatial
interference structure, which makes it possible to elim-
inate the distortions introduced by the inhomogeneous
layer.

We consider now in more detail how this method
can be realized by the example of a harmonic signal.
Suppose we have recorded a complex instantaneous
distribution of the ultrasonic field over the receiving
antenna at some instant of time. We designate this dis-
tribution as

(1)

where x is the coordinate of the array (the number of
receiver), A(x) is the amplitude distribution, φ(x) is the
phase distribution, and ω is the angular frequency of the
signal. Let us determine the amplitudes and phases of the
signals separately. It can be done in various ways, for
instance, the desired phase distribution φ(x), x ∈  (0, D),
can be obtained by the Fourier transform of P(x, t) with
respect to time at every receiver of the array. Then, its
real part ReP(x, t) is equal to

(2)

P x t,( ) A x( ) ωt φ x( )+[ ] ,cos=

A x( ) φ x( )cos P x t,( ) ωtcos td

0

τ /n

∫=

D

RadiatorReceiving 
array

Fig. 1. Arrangement of sensors and vessels.
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and its imaginary part ImP(x, t) is equal to

(3)

where n is an integer.
The time interval τ should be less or equal to the

phase correlation interval of signals at their reflection
from the flow. The medium should be stable at least
during the double interval 2τ.

Then the amplitude and phase of the field are found
from the known relations

(4)

Now we describe the algorithm of the signal pro-
cessing. Let us record the distribution Φ1(x) at the
moment t1 and store it. The next measurement will be
made after a time interval t2 – t1 = τ, and its result will
be denoted as Φ2(x). These two phase distributions dif-
fer from each other, because, in the field scattered from
a certain part of the vessel, which is divided into the ele-
ments of the angular resolution of the receiving array,
the signal phases will change completely within the
time τ, and Φ2(x) will be an entirely different phase dis-
tribution. We will form the new function

(5)

and invert the wave front according to function (5). The
reconstructed image, if we use a holographic analogy,
will be the image reconstructed from the phase holo-
gram (or “bleached” hologram) where only the phase
information is retained and the amplitude information
is ignored. In our case, this is necessary because our
goal is to obtain the image of a dynamic object located
under a stationary layer of inhomogeneities and to
eliminate the distortions introduced by this layer. Since
this layer introduces multiplicative distortions into the
spatial distribution of the signal, the operation [Φ1(x) –
Φ2(x)] subtracts all constant phase shifts gained by the
signal during its propagation through the inhomoge-
neous layer, while the amplitude distortions Asl(x)
introduced by the layer under the operation of division
of signals P1(x)/P2(x), which yields the distribution
∆Φ(x) = Φ1(x) – Φ2(x), cancel each other

(6)

Note that the considered method of processing, from
the point of view of using the operation of subtraction,
looks like the B-Flow method [1, 2]. However, the latter
does not work in an inhomogeneous medium, because
the whole temporal compensation is performed after
the formation of the ultrasonic image, that is, after the
formation of directional patterns (the spatial process-

A x( ) φ x( )sin P x t,( ) ωtsin t,d

0

τ /n

∫=

A x( ) Re
2
P x( ) Im

2
P x( )+ ,=

φ x( ) arc ImP x( )
ReP x( )
------------------tan .=

∆Φ x( ) Φ1 x( ) Φ2 x( )–=

A1 x( )Asl x( )
A2 x( )Asl x( )
-----------------------------

A1 x( )
A2 x( )
--------------.=
ing). When there is an inhomogeneous interfering layer
between the array and the vessel, its high-quality image
cannot be formed and, consequently, the image of the
blood flow cannot be obtained. As is known, the images
reconstructed by using phase holograms almost do not
differ from the images reconstructed by using ampli-
tude–phase holograms.

The information on the position of an object in the
plane of image is retained owing to the two nonlinear
operations given by Eqs. (4).

If now we try to reconstruct the image by using the
distribution ∆Φ(x), it will not correspond to the vessel
image (in this case, to its one-dimensional cross sec-
tion, because we consider a one-dimensional case). The
reconstructed image will consist of separate peaks with
random positions and random amplitudes, and the num-
ber of these peaks will also be random. The most
important fact is that the peaks will be located only in
the area determined by the blood flow cross section, or
by the internal diameter of the vessel. Therefore, if we
periodically repeat these measurements and average
(combine) the resulting images, the pattern of the peaks
will smooth out. The peaks will appear at random
places and will fill the whole area where the scatterers
occur, that is, the cross section of the vessel interior. As
a result, after a certain number of cycles of averaging
and the following square-law detection, we will obtain
the image of an envelope whose width will be equal to
the cross section of the blood flow, or to the internal
diameter of the vessel. This image is the image of the
blood flow. In spite of the fact that, in a classical sense,
the described procedure is not the procedure of the
image reconstruction in a homogeneous space, the
resulting ultrasonic image of the envelope is com-
pletely analogous to an X-ray angiographic image: only
the blood flow is visualized and other (stationary) struc-
tures are absent in the image.

We note that, if we use pulsed signals, or wide-band
signals with subsequent compression (similar to
B-scanning), or a two-dimensional array, then, using a
similar procedure, we will obtain two-dimensional
{I(x, R), I(x, y)} and, in the general case, three-dimen-
sional {I(x, y, R)} images of vessels by combining a
two-dimensional receiving array and a pulsed signal.

The algorithm of reconstruction or the wave front
inversion according to the function ∆Φ(x) can be real-
ized on the basis of the Fourier–Fresnel transforms. For
the case of a far-field zone of the array, when the condi-
tion R0 @ D2/λ is satisfied, where R0 is the distance to
the vessel and D is the size of the receiving array, the
algorithm of reconstruction can be represented as fol-
lows:

(7)

where F is the Fourier operator and the variable ξ is the
coordinate of the axis in the plane of the image of the
vessel, which in this case is parallel to the x axis.

I ξ( ) Fξ φ1 x( ) φ2 x( )–[ ] 2,=
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If the vessel is located in the Fresnel zone of the
receiving array, then either the Fresnel transform is per-
formed or the exact wave front inversion is carried out
according to the expression

(8)

Here, k = 2π/λ is the wave number, and the distance R
to every element of the ξ axis is calculated by the for-
mula

Below, in the numerical modeling of the considered
method of visualization, the field was calculated by tak-
ing the sign of the second exponential function in Eq. (9)
to be opposite to the sign of the exponential function in
Eq. (8):

(9)

Here, Am is the amplitude of the signal reflected from
the mth element of the scattering volume of the vessel
and ϕm is the phase shift of the signal at its reflection
from the mth element. The amplitude coefficient 1/R
multiplying exp(–ikR) is omitted.

THE RELATION BETWEEN THE PARAMETERS
OF THE ARRAY, THE INHOMOGENEOUS 

LAYER, AND THE VESSEL

Consider now for what relative positions of the
inhomogeneous layer, the vessel, and the receiving
array is the suggested algorithm, which actually sub-
tracts the distortions introduced by the inhomogeneous
layer into the image, valid.

Let the length of the vessel consist of K elements of
the array resolution, the length of these elements being
equal to λR/D = ∆ξ (Fig. 2).

We will take into account only the direct rays trans-
mitted through the layer and acquiring a phase shift ∆ϕi
at the ith receiver of the array. If the distance from the
array to the lower boundary of the layer is Rs (see Fig. 2),
all the rays forming the shift ∆ϕi at the ith receiver
should pass through the same portion of the layer, oth-
erwise the subtraction will not occur—this is the main
condition. In other words, the interval of correlation of
the layer inhomogeneities should be no less than a cer-
tain quantity, which we designate by ∆s. If this condi-
tion fails, then, with the change of the initial phases at
every mth element of the object, the total field from all
K elements of resolution of the vessel at the ith receiver
will not have the form of the product

I ξ( ) φ1 x( ) φ2 x( )–{ } ikR( )exp xd

0

D

∫
2

.=

R R0
2 ξ x–( )2+ .=

P x( ) Am ξm( ) iϕmξm{ }exp
m 0=

K

∑=

× ik R0
2 ξm x–( )2+–{ } .exp
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,

where P(xi) is the field at the ith receiver in the absence
of the inhomogeneous layer, since the cosines of the
phase shifts for every ray are combined, and this oper-
ation is nonlinear by itself. So, we can formulate the
following condition

or

(10)

For the vessel length equal to g = ∆ξK, the condition for
the interval of correlation of the inhomogeneities is as
follows:

(11)

This relation is more valid, the less the length of the
observed part of the vessel. It is desirable that the cor-
relation interval of inhomogeneities be as large as pos-
sible (in this case, the layer smoothly changes its
parameters) and the distance from the array to the lower
boundary of the layer Rs be as short as possible, com-
pared to the distance to the vessel R0. The best situation
is when the layer is close to the array and has a small
thickness. In this case, all rays arriving at one receiver
at various paired instants will pass through the same
element of the layer ∆s. Evidently, this is a limiting sit-
uation, when ∆s = λ/2 is the minimal interval of corre-
lation and Rs = λ/2. In this case, the possible size of the
observed part of the vessel is g ≈ R0, and K = N/2, where
N is the number of receivers in the array.

If the stated conditions are not satisfied, the output
image component that is determined by the uncompen-
sated signals transmitted through different regions of
the inhomogeneous medium will grow.

P xi( )Asl x( )e
i∆ϕ i

∆ξK /R0 ∆s/Rs=

∆s Rs λ /D( )K .=

ρsl ∆s≥ g
Rs

R0
-----.=

D

x

ξ
∆ξ

R0∆s

Rs

Fig. 2. Position of a vessel under an inhomogeneous layer.
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TEMPORAL RELATIONS

We consider two limiting cases: (i) the vessel is ori-
ented along the ξ axis parallel to the array, which
extends along the x axis (Fig. 1), and (ii) the vessel is
perpendicular to the ξ axis.

In the first case, the information carried by the
amplitudes and phases of signals reflected from the
blood flow changes with the velocity of the blood flow
transporting the erythrocytes, from which the incident
ultrasonic wave is scattered. We assume that the infor-
mation is completely renewed when the blood flow is
displaced by one element of resolution of the array. We
designate the corresponding time interval by τ. If the ele-
ment of the linear resolution of the array equals ∆ξ =
λR0/D and the velocity of the blood flow is V, we have
the first case:

(12)

The time τ found in this way is the minimal required
time interval between two phase measurements Φ1(x, t)
and Φ2(x, t + τ). This interval determines the necessary
operation speed of the system. However, the time dur-
ing which the distribution of the signal phase over the
array must be measured with sufficient accuracy should
be n times shorter. For example, n = 10 for the calcula-
tions to be made with reliably stable signals.

In the second case, when the flow is perpendicular to
the array, the information changes instantaneously on
the whole length of the vessel (and over its whole cross
section), this length consisting of several elements of
resolution. The directional pattern of single receivers of
ultrasonic antenna arrays is usually sufficiently wide.
We assume that the main energy arrives from the angu-
lar sector of more than 60°, or from the part of a tube of
length R0. Then, the time during which the blood flow
travels the distance R0 is τ = R0/V, and it determines the
interval between adjacent samples for measuring Φ1(x, t)
and Φ2(x, t + τ).

τ⇒
∆ξ
ϑ ⇒
-------

λ R0

Dϑ ⇒
------------.= =

Size of the element of resolution

Actual width
of the vessel

Envelope
of the reconstructed
image

I

Fig. 3. Reconstructed image of a vessel in the far-field zone.
The inhomogeneous layer is absent. The width of the vessel
is equal to five elements of the array resolution.
RESULTS OF NUMERICAL MODELING

Numerical modeling of the suggested method was
performed on the basis of Eq. (9). In this equation, the
amplitudes Am(ξm) and phases ϕm(ξm ) of the signals
scattered by the mth element of the vessel were set as
an amplitude–phase distribution of secondary sources.
The amplitudes Am(ξm , t) and phases ϕm(ξm , t) form
random time sequences of numbers, which change
from one sample to another. First of all, the distribu-
tions of the phase fields over the array were calculated
by Eqs. (5) and (6) for two samples of random quanti-
ties {Am(ξm , t), ϕm(ξm , t)}1, 2 , and then the wave front
inversion was performed by Eqs. (7) or (8), depending
on the type of the wave zone of the array. The final
expression for the averaged image was written as

(13)

for 2L realizations of the random quantities Am(ξm),
ϕm(ξm). In all examples, the linear array consisted of
128 receivers located at half-wave intervals λ/2.

Figure 3 shows the reconstructed image of a vessel
whose size was equal to five elements of the array res-
olution. The number of averaged exposures was L =
100, and the vessel was located in the Fraunhofer zone
of the array. The image is symmetric about the axis,
since the amplitude of the Fourier transform of the real
function {Φ1(x) – Φ2(x)} is an even function. It is most
convenient to place the object at the center of the angu-
lar field of view of the receiving array. For the case of
the far-field, we consider the angular field of view as the
N angles of resolution of the array α (α = λ/D =
λ/(λ/2*N) = 2/N), which are measured relative to the
axis perpendicular to the array and passing through its
center. The position of the object in the middle of the
field clears the image from additional images appearing
as diffraction orders with the period equal to the dis-
tance between the object and the central axis.

Il ξ( )
l 1=

L

∑

=  φ1l xi( ) φ2l xi( )–{ } ik R0
2 ξ xi–( )2+[ ]exp

i 1=

N

∑
2

l 1=

L

∑

Size of the element of resolution

Actual width
of the vesselI

Envelope
of the reconstructed
image

Fig. 4. Reconstructed image of a vessel in the near-field
zone of the array; the image is averaged over 100 exposures.
The inhomogeneous layer is absent. The width of vessel is
equal to nine elements of resolution.
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In the near-field, the real and imaginary images are
not separated on the sides of the traverse of the array.
Their positions are symmetric with respect to the array,
and the divergent beam of rays from the imaginary
image somewhat increases (compared to Fig. 3) the
background pedestal (Fig. 4).

Figure 5 shows the reconstructed image of the
cross sections of vessels located in the near-field zone
for R0 = 66λ and D = 64λ, for the case when the array
and the vessels were separated by an inhomogeneous
layer whose parameters smoothly varied introducing
random phase shifts from 0 to 2π into the scattered sig-
nals. The layer was at a distance of 25λ from the receiv-
ing array. Two vessels were modeled with the cross sec-

Fig. 6. Image of the same vessels as in Fig. 5; the image is
obtained through an inhomogeneous layer with a standard
focusing of the array in the Fresnel zone. The image cannot
be reconstructed.

Fig. 7. Two-dimensional image of the cross section of a
model of a vessel with bifurcation; the image is obtained
through an inhomogeneous layer by the method of speckle
interferometry in the near-field zone. Averaging is per-
formed over 100 exposures.

Size of the element of resolution

I

Fig. 5. Reconstructed image of two vessels in the near-field
zone; the image is obtained through a random inhomoge-
neous layer. Averaging is performed over 50 exposures.
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tion diameter of one of them being equal to five ele-
ments of resolution and the corresponding diameter of
the other being equal to seven elements of resolution.
The distance between the vessels was chosen to be
equal to 10λ. For comparison of the efficiency of the
suggested method of visualization with the conven-
tional (classical) methods of image reconstruction,
Fig. 6 displays the image of the same vessels recon-
structed by using conventional echo sounding through
an inhomogeneous layer, when a sample of the field is
subjected to the Fresnel transform. As could be
expected, no image can be obtained in this case.

In conclusion, we present the results of the recon-
struction of a two-dimensional image of the blood flow
for a model of a vessel with bifurcation (Fig. 7). The
averaging was made over 100 exposures. It is seen that
the shape of the inner walls of the vessel is visualized
with a sufficiently high quality. The irregularities of the
contour are of the size of one quantization element of
the image, which is equal to λ/2, whereas the element
of resolution of the array is equal to λ.

CONCLUSIONS

1. The numerical modeling described above showed
that the suggested new method of ultrasonic visualiza-
tion makes it possible to obtain the images of blood
flow through an inhomogeneous medium, which allows
one to visualize the internal structure of blood vessels.
Since this method provides the image only of flowing
blood, there is a good reason to consider it as an ana-
logue of X-ray angiography, i.e., as an ultrasound
angiography.

2. The influence of the inhomogeneous medium on
the image of the blood flow appears as an additive to the
steady component, and the greater its magnitude is, the
more condition (11) for the interval of spatial correla-
tion of the field scattered by the blood flow is violated.

3. The spatial (angular) resolution of the method is
the same as the resolution of a conventional antenna
array, and, therefore, the receiving array must have suf-
ficiently large wave dimensions, so that the required
minimal diameter of the vessel be equal to several ele-
ments of spatial resolution. This requirement is the
same as for the conventional B-type ultrasound sys-
tems.

4. The quality of the image can be considerably
enhanced by using irradiation with a wideband signal.
In this case, narrowband filtering is carried out before-
hand, the reconstruction of images is performed at sep-
arate frequencies, and, then, the resulting images are
incoherently combined.

5. The suggested method permits the use of two-
dimensional arrays and the irradiation by pulsed sig-
nals, which, in principle, offers a possibility for recon-
structing three-dimensional images.

6. In view of the relatively low velocities of the
blood flow and with the temporal relations obtained for
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the maximal frequency of sampling, the requirements
imposed on the speed of operation do not go beyond the
possibilities of parallel signal processing with today’s
ultrasonic diagnostic equipment operating in the range
of several megahertz.
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Abstract—Flexural vibrations of a plate contacting on one side with an ideal compressible liquid are con-
sidered. The plate is driven by a harmonic force uniformly distributed along a straight line. The transient
admittance of the plate as a function of the distance from the line of the force application is shown to be
representable as a sum of an integer function and an integer function multiplied by a logarithmic function.
A procedure for determining the power series expansions of these functions is described, and the initial terms
of the expansions are derived. The approximations formed by these initial terms and the asymptotic expan-
sion at infinity are compared with the results of numerical calculations for several particular values of the
parameters. Vibrations of a liquid with an impedance load at its surface are considered as an auxiliary prob-
lem, and, in the framework of this problem, the initial terms of the power series expansions of the integer
functions, which appear in the expression for the transient admittance, are determined. The expansions
obtained make it possible to raise the speed of the admittance calculations near the points of application of
the driving force. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The input and transient admittance of a plate con-
tacting with an acoustic medium on one or two sides
and driven by a harmonic force distributed along a
straight line were first calculated in connection with the
study of the external acoustic field of a homogeneous
plate [1–3]. Later on, interest in these quantities was
mainly concerned with studying the external acoustic
fields of plates whose elastic properties were disturbed
(by cracks, supports, stiffening ribs, etc.) along a
straight line or a set of straight lines [4–6]. Here, we
mentioned only the first papers whose authors used
exact analytical representations for the input and tran-
sient admittances of the plate vibrating in a medium.
The literature on the second of these two objects is
quite extensive, and the main body of works falls within
1970s to 1980s. However, this topic remains urgent
[7−12]. In what follows, we restrict our consideration to
the case of a plate whose one side is in contact with a
liquid, and we consider only flexural motions of the
plate by using the Kirchhoff equation. A two-side con-
tact can be considered in a similar manner; the final
results will differ from the results given below by a fac-
tor of two for certain parameters. Note that the proce-
dure suggested for obtaining the power series expan-
sions is applicable to a fairly wide variety of problems.
In particular, it is applicable to any known model of
plate vibrations, including the models taking into
account the longitudinal motions.

Figure 1 schematically illustrates the model. An
integral representation for the velocity of flexural dis-
1063-7710/01/4705- $21.00 © 20585
placements of a plate is well known and can be easily
obtained using the Fourier transform [13]:

where the quantity

(1)

is the transient admittance of the plate vibrating in a
medium. Here, m is the plate surface density, B is the
flexural rigidity of the plate, µ = ρ/m, ρ is the density of

the medium, kp = (mω2/B)1/4, γ(λ) = , and k0 is
the acoustic wave number. The radical is assumed to
take on arithmetic values for λ > k0 and λ < –k0, and its
other values are determined using its analytical exten-
sion in λ. The time dependence in the form exp(–iωt)
will be omitted in the following calculations. The inte-
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A x( ) iω
2πB
---------- γ λ( ) iλx( )exp

λ4 kp
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∞
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Fig. 1. Schematic representation of the model.
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gration is carried out along the real axis; in accordance
with the limiting absorption principle, the integrand
singularities corresponding to the negative part of the
real axis are bypassed from above and the singularities
corresponding to the positive part are bypassed from
below. For reasons of convenience, we use the exponent
in Eq. (1) with the sign opposite to that used in [13].
This change of sign is possible since the function A(x)
is an even function.

From Eq. (1) it follows that a successive differentia-
tion of the integral appearing on the right-hand side
with respect to x yields a divergent integral. This means
that the standard approach used for constructing power
expansions is inapplicable in the case of a transient
admittance near the zero point, and this is the reason
why its analytical properties in the vicinity of zero have
been poorly understood. Some progress in studying the
analytical properties of the transient admittance of a
plate as a function of the distance from the line of appli-
cation of a harmonic force was achieved by Crighton
[13] who showed that the asymptotic representation of
this admittance for small distances from the source con-
tains power and logarithmic terms. Crighton described
a factorization-based procedure for obtaining the initial
terms of the asymptotic series. However, he obtained
the numerical values only for the expansion coefficients
that could be evaluated from elementary considerations
(see the discussion in [14, 15]). Below, we show that the
series suggested by Crighton are not only asymptotic
ones. They converge for arbitrary argument values,
which means that the transient admittance of a plate as
a function of distance from the line of application of a
disturbing force is a sum of an integer function and an
integer function multiplied by a logarithmic function.

VIBRATIONS OF A LIQUID 
WITH AN IMPEDANCE LOAD ON ITS SURFACE

We consider vibrations of a liquid loaded by an
impedance on its surface and assume that the driving
force is a time-harmonic force distributed along a
straight line. Namely, we assume that the driving force
is distributed along the Oz axis and has a linear density
F0. In this case, the transient admittance has the form

(2)

If the distributed mass of density µ is responsible for
the impedance on the surface, as it was the case in [13],
we have α = –µ. In the following section, we will show
that studying the properties of the transient admittance
of a plate can be reduced to analyzing the integrals of
this type. In what follows, we will consider only posi-
tive values of the x coordinate, because A0(x) = A0(|x|)
by virtue of the symmetry of the problem under consid-
eration.

A0 x( ) γ λ( ) iλx( )exp
γ λ( ) α–

---------------------------------- λ , α C.∈d

∞–

∞

∫=
Following [13], we represent integral (2) as a sum of
three terms

(3)

where

Here, a is the value of  belonging to set C+ that
is a subset of points in the complex plane C determined
as the upper half-plane Imλ > 0 united with the positive
part of the real axis.

For I3 in Eq. (3), we have

where

(4)

Similar to the integral on the right-hand side of
Eq. (1), the function u(x) has no power series expansion
in the vicinity of zero, because the integral in Eq. (4)
becomes divergent after being twice differentiated.

In order to investigate the function u(x) in more
detail, we consider its analytical extension to the com-
plex half-plane Rez > 0.

For large arguments, an asymptotic expansion of the
obtained function can be found using the Watson
lemma. The first three terms of this expansion are as
follows:

(5)
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To determine the behavior of the function u(z) in the
near zone, we consider its variation in bypassing the
point z = 0 along a closed contour. As  varies from
0 to 2π, the direction of the fastest decrease of the
integrand in the expression for u(z) varies from π/2
to –3π/2. This issue was considered in [16]; later, it was
studied it in more detail in [17]. As a result, we have

where

(6)

and L is the closed contour passing clockwise around
the branch points and both poles of the integrand.

Thus, we have

In this formula, u1(z) is an integer function of the argu-
ment z and u0(z) determined by Eq. (6) is also an inte-
ger function of z. One can easily show that u0(0) =

(0) = 0.

For the function u(z), we can write a differential
equation:

(7)

Complementing this equation with two obvious initial
conditions,

(8)

we obtain a closed problem for the function u(z).

We will use the method of undetermined coeffi-
cients to seek the function u(z) in the form

(9)

where  and  are the undetermined coefficients to
be found. Substituting Eq. (9) into Eqs. (7) and (8), we
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obtain the following expressions for the initial terms of
the expansion:

The subsequent terms can be found using the recur-
sion relations

(10)

The coefficients  can be also found immediately
from Eq. (6) by evaluating the residue of the integrand
at infinity:
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Here,

Returning to Eq. (2), in view of Eqs. (10), we obtain
A0(x) in the form
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Fig. 2. Curve Imu(x).

Fig. 3. Curve Reu(x).
where

The first three coefficients were obtained by Crighton
[13] as the coefficients of the asymptotic representation
at x  0.

As follows from the above consideration, the tran-
sient admittance is representable in this case as a com-
bination of the Hankel function and the function u(x)
(the exponential terms are canceled). The curves given
in Figs. 2 and 3 make it possible to visually estimate the
region of applicability of the obtained exact expansion
of the function u(x), as well as the region where this
expansion transforms to an asymptotic one at certain,
arbitrarily chosen values of the impedance (m = 1500)
and frequency (ω = 500) for vibrations propagating in
water. Here and below, index 1 labels the result com-
puted using the integral representation, index 2 corre-
sponds to the result computed using the above series,
and index 3 corresponds to the result computed using
the asymptotic expansion. The data given in Tables 1
and 2 demonstrate that the first terms of the constructed
series taken for the same parameter values ensure a suf-
ficient accuracy. Despite the fact that the rate of conver-
gence of the constructed expansions rapidly decreases
with increasing distance from zero (in constructing the
curves and calculating the data for the tables, we used
the first 40 terms), the suggested series appear to be
useful. First, they allow one to avoid cumbersome cal-
culations of the oscillating integrals appearing in the
integral expression (1). Second, even a short initial seg-
ment of the series ensures a good approximation for the
admittance near the excitation line. Third, these series
make computations faster when the admittance is cal-
culated for several points of a plate, because the expan-
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2
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Table 1

Imu(x) x = 0.1 x = 1.0 x = 2.0 x = 5.0 x = 7.0 x = 10.0 x = 12.0 x = 20.0 x = 50.0

1 –2.82547 –2.63424 –2.09152 0.41195 1.34888 0.50509 –0.60165 0.87032 –0.3496

2 –2.82547 –2.63424 –2.09152 0.41195 1.34888 0.50509 –0.60171 –3.52011 –1.3E+09

3 4519.57 14.0254 0.89774 0.51416 1.31221 0.47557 –0.60881 0.86953 –0.3497
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Table 2

Reu(x) x = 0.1 x = 1.0 x = 2.0 x = 5.0 x = 7.0 x = 10.0 x = 12.0 x = 20.0 x = 50.0

1 –1.75833 –0.2978 0.80858 1.58732 0.47096 –1.1126 –0.9498 0.148829 –0.44131

2 –1.75833 –0.2979 0.80856 1.58731 0.47052 –1.9149 –36.178 –1.4E+06 –2.2E+14

3 4237.597 7.75179 1.06703 1.37286 0.39003 –1.1062 –0.9342 0.145603 –0.44120
sion coefficients are calculated only once, whereas the
use of representation (1) requires a recalculation of
integrals at every point.

TRANSIENT ADMITTANCE OF A PLATE

Now, we return to the consideration of vibrations of
a plate. If we represent the denominator in Eq. (1) as a
fifth-order polynomial in γ, factorize this polynomial,
and then decompose the integrand into partial fractions,
then Eq. (1) takes the form

(11)

where

and αn are the roots of the denominator in the integrand
of Eq. (1).

It is obvious that the integrals on the right-hand side
of Eq. (11) are the integrals of the same type as in Eq. (2);
consequently, they can be expanded into series
described in the previous section. Carrying out formal
transformations, we obtain

(12)

where

an = , and   U(x) = 

In the expression for U(x), the functions un(x) are
determined by Eq. (4), where αn is substituted for α.

Taking into account the equalities
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Eq. (12) can be simplified and finally takes the form:

(13)

The last term in Eq. (13) is obviously of greatest
interest. Using the method described in the previous
section, it can be represented as a sum of an integer
function and an integer function multiplied by a loga-
rithmic function and find the coefficients in the power
series expansions of these functions.

Figures 4 and 5 show the curves for the function
A(x). These curves make it possible to estimate the
region where the approximation of the function U(x)
with the initial terms of the constructed expansions
(again, we consider the first 40 terms) is applicable for
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Fig. 4. Curve ImA(x).

Fig. 5. Curve ReA(x).
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Table 3

ImA(x) x = 0.01 x = 0.1 x = 1.0 x = 2.0 x = 3.0 x = 4.0 x = 5.0 x = 6.0 x = 7.0

1 –5945.74 818.933 2576.65 2310.95 –409.465 –2684.32 –2047.58 810.1223 2789.075

2 –5945.74 818.932 2581.54 1.5E+07 6.4E+10 2.4E+13 2.4E+15 1.1E+17 2.6E+18

3 –3.0E+08 –859.587 2349.92 2561.08 –273.825 –2615.82 –2013.82 825.7273 2795.145

Table 4

ReA(x) x = 0.01 x = 0.1 x = 1.0 x = 2.0 x = 3.0 x = 4.0 x = 5.0 x = 6.0 x = 7.0

1 6121.326 4066.22 1312.24 –1650.6 –2808.3 –921.19 1965.10 2719.90 524.462

2 6121.326 4066.22 1312.24 –1650.6 –2808.3 –921.59 1938.34 1799.774 –18839.3

3 3.1E+08 1.0E+06 4942.61 –1177.1 –2714.4 –909.85 1956.39 2707.974 514.1173
the case of vibrations of a steel plate on the water sur-
face (the cyclic frequency is ω = 500 and the plate
thickness is h = 0.01 m). The data given in Tables 3 and
4 allow one to judge the accuracy of the approximations
under consideration. For the case of such a plate, Nayak
[18] reported the values of the input admittance com-
puted for a fairly wide range of cyclic frequencies.

It should be noted that, in calculating the data given
in the tables and curves, we evaluated the first term in
Eq. (13) using standard methods characterized by a
very high accuracy; for this reason, the only errors were
those caused by the approximations of the function
U(x).

CONCLUSION

To conclude, we note the essential similarity
between the behavior of the considered transient admit-
tance and the behavior of cylindrical functions (the
Hankel functions, primarily). Clearly, this similarity is
explained not only by the formal fact that the Hankel
function appears on the right-hand side of the linear dif-
ferential equation (7) for the function u(x), but also by
the similarity of the physical situations in which they
appear in the theoretical consideration.

As can be seen from the study described in this
paper, the well-known computational procedures for
obtaining numerical values of cylindrical functions (an
exact series for the near field and an asymptotic expan-
sion for the far field, both coinciding in the intermediate
zone) can also be used for calculating the transient
admittance of a plate.
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Abstract—The applicability conditions for the concept of a directivity pattern (a scattering amplitude) in the
problems of waveguide propagation are formulated. The consideration is based on the solution of the Sturm–
Liouville problem. The results of the comparison between these conditions and the analogous conditions
obtained earlier in the ray approximation are discussed. The expression for the scattering matrix of waveguide
modes is modified on the basis of the suggested conditions in such a way that it involves only the quantities
determined from the solution of the Schrödinger equation. This makes it possible to perform numerical calcu-
lations by using the results of numerous studies of the propagation in inhomogeneous waveguides and the dif-
fraction by complex-structured bodies in free space. © 2001 MAIK “Nauka/Interperiodica”.
A tendency to extend customary concepts and meth-
ods beyond their lawful domain of applicability is often
observed in science and, especially, in practical engi-
neering. Hence, it is no wonder that in considering such
problems as the sound radiation by extended arrays and
the scattering of sound by bodies in oceanic
waveguides many authors try to describe these phe-
nomena within the framework of customary ideas that
are conventional for free space. Since it was clear from
the beginning that the concept of a directivity pattern (a
scattering amplitude) in waveguides has a restricted
domain of applicability, the efforts were directed at
solving the problem approximately and determining the
limits of applicability of the corresponding approxima-
tions. Such a problem was considered earlier [1–3] in
the framework of the WKB approximation.

This paper is a further development of the aforemen-
tioned studies. The applicability conditions for the con-
cept of a locally homogeneous medium in a multimode
plane-layered waveguide are discussed on the basis of
the solution to the Sturm–Liouville problem. The term
“locally homogeneous medium with the characteristic
dimension ρ” will be understood as an inhomogeneous
medium where normal waves can be considered as
quasi-plane within a layer with the thickness ρ. If the
array aperture or the vertical dimension of a body does
not exceed the thickness of such a quasi-homogeneous
layer, the directivity pattern (the scattering amplitude)
is an adequate characteristic of radiation (scattering) in
the stratified waveguide. These conditions are com-
pared with the analogous conditions obtained earlier
using the ray approximation. On the basis of these con-
ditions, a modified expression, which contains only the
values determined by solving the Sturm–Liouville
1063-7710/01/4705- $21.00 © 20591
problem, is suggested for the scattering matrix of
waveguide modes.

First of all, we consider the applicability conditions
for the concept of a locally homogeneous medium
within the framework of the ray approximation. Let a
vertical linear array with the length l be positioned
between the levels z1 = z0 – l/2 and z2 = z0 + l/2, where
z0 is the coordinate of the array center. In the WKB
approximation, which is one of the forms of the geo-
metric acoustics approximation, the mode amplitudes
in an inhomogeneous waveguide are represented with
the help of a directivity pattern in the case of validity of
the following inequalities:

(1)

(2)

(3)

where n0 = n(z0) is the refraction index of the medium
at the level z = z0; λ is the sound wavelength; Ln =
n0/|∇ zn(z0)| is the characteristic vertical scale of the
inhomogeneity variation in the medium; and βm(z) is
the grazing angle of the Brillouin ray corresponding to
the mth mode [1, 2]. The first inequality (1) corresponds
to the condition of smallness of the nonlinear phase
variations of normal modes in depth within the aper-
ture, and the second inequality (2) corresponds to the
smallness of the amplitude variations [1]. Inequalities (1)
and (2) are equivalent to the requirement that normal
modes be treated as quasi-plane waves within a layer
with the vertical dimension l; i.e., one can ignore the
amplitude variations and the nonlinear phase changes
in such a layer. It should be noted that, as a rule, in esti-
mating the array fields in oceanic waveguides, one can
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ignore the amplitude variations of normal modes [4].
The only exclusion is the case when the turning point
corresponding to the mth mode falls within an array and
the WKB approximation becomes invalid. Inequality (3)
can be interpreted as the condition at which the normal
modes excited within the angular width of the major
lobe of the directivity pattern can be considered as
quasi-plane [2]. Condition (3) is a consequence of ine-
qualities (1) and (2), but it is more illustrative and con-
venient in the case of the determination of the applica-
bility limits for the concept of a locally inhomogeneous
medium when the major part of radiation energy is con-
centrated within the major lobe of the directivity pat-
tern; therefore, this condition is important by itself.
In the particular case of a homogeneous waveguide
(n(z) = const), we have Ln = ∞, and normal waves are
plane within the entire depth of the waveguide.

The quantity l1 has the meaning of the vertical
dimension dFr of the Fresnel volume of the Brillouin
ray, and condition (1) can also be interpreted as the cri-
terion of the far wave field of an array in a layered inho-
mogeneous medium. Indeed, the horizontal dimension
of the Fresnel volume of a ray is equal to (see [5])

(4)

where (r, z) is the observation point, (r', z') is the current
point of the boundary of the Fresnel volume, and  is
the coordinate of the point of intersection of the “refer-
ence” ray with the plane  = const; am = n( )cosβm is
the parameter characterizing the ray; and βm is the angle
between the ray and the horizontal axis  (Fig. 1a).
The general view of the Fresnel volume of the ray is
shown in Fig. 1b. We write Eq. (4) in the form bFr =
{λ(dr/dam)}1/2. Representing the derivative dr/dam as
dr/dam = (dr/dz)(dz/dam) and taking into account that
dam/dz = n( )sinβm(dβm/dz) and dr/dz = , we
arrive at the expression for the quantity bFr:
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Fig. 1. Schematic diagram of the Fresnel volume.
It is clear from geometric reasons (Fig. 1a) that the pro-
jections of the Fresnel volume onto the z and r axes are
interrelated by the dependence dFr = bFr . In this
case, from the expression obtained for the vertical
dimension dFr , we easily derive

(5)

Equation (5) agrees well with condition (1) for l1.

Now, let us formulate the applicability conditions
for the concept of a locally homogeneous medium in a
multimode plane-layered waveguide without using the
WKB asymptotics of eigenfunctions in the vicinity of
the array. We represent the field of a linear array as a
sum of normal modes

where

(6)

is the amplitude of the mth mode, E(z) is the distribution

of the particle velocity over the aperture, and (x) is
the zero-order Hankel function of the first kind. Follow-
ing [1], we determine the conditions at which the
amplitude cm is expressed with the help of the directiv-
ity pattern of the array.

The orthonormal eigenfunctions ψm(z) (see Eq. (6))
of the Sturm–Liouville problem, which correspond to
the spectrum of the propagation constants hm , satisfy
the Schrödinger equation

(7)

with the appropriate boundary conditions at the bottom
and the surface [6]. If we use the analogy between
oscillatory and wave processes [7], it is possible to treat
the waveguide as a linear filter transmitting a discrete
set of frequencies. The spectrum of the signal transmit-
ted through the filter is equal to the product of the filter
spectra (the frequency response) and the initial signal.
In the considered case, the spatial spectrum of eigen-
functions determines the transmission of the spatial
spectral components of the field of a directional radia-

βmtan
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--- cm z0( )ψm z( )H0
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m
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tor. According to the known theorem on the spectrum of

the integral (θ)x2(θ – τ)dθ [7], we have

(8)

where E(γ)) and ψm(γ) are the Fourier transforms of the
functions E(z) and ψm(z):

It is rather difficult to determine the spectrum of
eigenfunctions in a general case. Therefore, we proceed
as follows. We compare the function ψm(z) to the func-
tion φm(z), which is its approximation for a homoge-
neous medium and for which it is easy to determine the
Fourier transform. In a homogeneous layer (n(z) = n0 =
const), Eq. (7) is a differential equation with constant

coefficients  –  =  and k0 = k(z0):

(9)

and with a known solution [6]:

(10)

We require that the functions ψm(z) and φm(z) be close
to each other within such a homogeneous layer whose
thickness can be as small as desired. We determine the

constants  from the initial conditions that the values
of these functions and their first derivatives at the point
z = z0 are equal to

(11)

As a result, we obtain

(12)

where (z0) = . It should be noted that

the constants  (Eq. (12)) can be determined not only

x1*∞–

+∞∫
E z z0–( )ψm z( ) zd

∞–

∞

∫

=  2π E γ( )ψm γ( ) iγz0( )exp γ,d

∞–

∞

∫

E γ( ) 1
2π
------ E z( )e iγz– z,d

∞–

∞

∫=

ψm γ( ) 1
2π
------ ψm z( )e iγz– z.d

∞–

∞

∫=

k0
2 hm

2 γm
2

d2

dz2
------- γm

2+ φm z( ) 0=

φm z( ) am
+ iγmz( )exp am

– iγmz–( ).exp+=

am
±

φm z0( ) ψm z0( ),=

dφm z( )
dz

-----------------
z z0=

dψm z( )
dz

------------------
z z0=

.=

am
+ 1

2iγm

----------- iγmψm z0( ) ψm' z0( )+[ ] iγmz0–( ),exp=

am
– 1

2iγm

----------- iγmψm z0( ) ψm' z0( )–[ ] iγmz0( ),exp=

ψm'
dψm z( )

dz
------------------

z z0=

am
±

ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
from the initial conditions (Eq. (11)), but also in some
other ways. For example, in inequalities (1)–(3), the
sum of two linearly independent solutions (Eq. (7)) in
the WKB approximation of two quasi-plane waves at
the point z0 was used as the function ψm(z) [1, 2]. The
Fourier transform of φm(z) is equal to

(13)

where δ(x) is the Dirac delta-function. In Eq. (13), the
representation of the function δ(x) by the Fourier inte-
gral [2] was used:

We write Eq. (6) in the form of two terms

(14)

where

(15)

(16)

is the correction to the amplitude of the mth mode that
is caused by the inhomogeneity of the medium. The
integration limits in Eqs. (15) and (16) are extended in
comparison with Eq. (6) up to infinity, which does not
change the integral values, because, outside the array
aperture, E(z) = 0. Using Eq. (8), we represent Eq. (15)
in the form

(17)

Applying Eq. (10) to Eq. (17), with allowance for
Eqs. (12) we obtain

(18)

As is known [7], the Fourier transform E(γ) is propor-
tional to the directivity pattern of the array D(β) in the
far wave field:

Thus, the first term  (Eq. (18)) in Eq. (14) is deter-
mined by the directivity pattern of the array in the
homogeneous medium and by the eigenfunctions and
their derivatives at the array aperture. The second term

 (Eq. (16)) is determined by the difference between
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the eigenfunctions ψm(z) and φm(z) weighted with the
distribution E(z – z0) within the array aperture.

Let us estimate the accuracy of the field representa-
tion in an inhomogeneous waveguide with the help of
the array directivity pattern in a homogeneous medium.
For this purpose, we expand the difference ϑm(z) =
ψm(z) – φm(z) into the Taylor series in the vicinity of the
array center z = z0:

(19)

where

(20)

It follows immediately from the initial conditions (11)
that b0 = b1 = 0. From Eqs. (7), (9), and (11), we obtain
b2 = 0. Finally, we obtain for ϑm(z) (Eq. (19)):

(21)

Let us determine the value of b3. The third derivatives
of the functions ψm(z) and φm(z) can be determined by
differentiating Eqs. (7) and (9) with respect to z, which
yields

Now, if we expand φm(z) into the Taylor series in the
vicinity of the array center z = z0 and take into account
the fact that, according to Eq. (10), (z) = –γ2φm(z)

and (z) = –γ2 (z), the expression for the amplitude
of the mth mode (Eq. (14)) in the approximation of the
third-order correction will have the form

(22)

We can preset, for example, a certain form of the distri-
bution of the initial field E(z) and consider in such a
way the influence of the correction term due to the
inhomogeneity of the oceanic medium. However, it is
possible to proceed in a different way without losing
the generality. If γml < 1, the terms of the series (22)
decrease rapidly with their number, and we can restrict
ourselves to the first terms only. In this case, in order to
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dz.
make valid the condition of smallness of the correction

(z0) (Eq. (16)) relative to  (Eq. (15)), it is
enough to require the validity of the inequality

(23)

which is close to inequality (3). When γml > 1, the
series (22) converges slowly and, in order to use the

approximation of smallness of the quantity (z0), it is
necessary for the correction term to be much smaller
than its closest neighbor on the left [8]. This require-
ment leads to the inequality

(24)

which differs from condition (2) only by a factor of 1.3.
Here, βm(z0) = γm(z0)/k0] is the grazing angle of
the Brillouin ray of the mth mode at the level z = z0. The
validity of this inequality guarantees that the correction
term will always be smaller than any predominant term
of the sequence given by Eq. (22). When γml > 1, it is
necessary in the general case to take into account the
terms of higher orders in Eq. (22). However, if the ine-
qualities

(25)

are satisfied, the inclusion of additional terms in the
expansion (22) does not change the estimate given by
Eq. (24). Thus, if conditions (23) and (24) are satis-
fied, the directivity pattern adequately describes the
angular distribution of the radiated power in an inho-
mogeneous waveguide. However, in a locally homo-
geneous medium these inequalities must be comple-
mented with the condition of smallness of the directiv-
ity pattern variations due to the variations of the phase
of normal modes over the whole aperture. The restric-
tions imposed on the array length in this case can be
estimated as follows.

Let us expand the exponent γm(z) of the Fourier
transform E(γm) into the Taylor series in the powers of
the distance ξ = z – z0 from the array center by taking
into account only the linear term

where dγm(z0)/dz = k0 /Lnsinβm(z0). The angular dis-
placement δβm(l) of the directivity pattern as a whole,
because of the variations of γm(z) at the aperture,
δγm(l) = γm(l/2) – γm(–l/2), is estimated as δβm(l) ≈

/Lnsinβm(z0). For the field variations to be small, the
angular distance must be much smaller than the width
of the directivity pattern λ/l, δβm(l) ! λ/l. Finally, we
obtain

(26)
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Table

Correspondence table

 ⇒  F( , ) ⇒  F( , )

 ⇒  F( , ) ⇒  F( , )

 ⇒  F( , ) ⇒  F( , )
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+
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km
–

kµ
+

kµ
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km
+
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–

kµ
–

km
+

km
+ km

–
kµ

–
kµ

+
km

+

km
+

kµ
–

km
–

kµ
+

km
+

kµ
–

kµ
+

km
–

km
+

kµ
+

km
–

kµ
– km

+
kµ

+
kµ

+
km

–

Inequality (26), which plays the role of the condition
of the far wave field of the array in a layered inhomo-
geneous medium (see Eq. (5)), coincides with condi-
tion (1).

Thus, the restrictions expressed by inequalities (1)–
(3) and obtained earlier within the framework of the ray
theory are of a diffractive on nature. This result is evi-
dent, because, in solving the differential equation (6), it
was assumed that Eq. (25) is valid, which is in fact the
condition of applicability of the WKB asymptotics of
eigenfunctions in the vicinity of the array center in an
inhomogeneous medium.

Now let us consider the scattering matrix of
waveguide modes. We assume that the following condi-
tions are satisfied:

(i) The effects of multiple scattering are small, i.e.,
we can ignore the fields that are scattered by a body
after their reflection from the waveguide walls. As the
analysis of numerical calculations [9] and the analytical
estimates [10] show, the condition of smallness of
repeatedly scattered fields is satisfied for bodies located
at distances greater than their equivalent radii from the
waveguide boundaries. In this case, the intensity of
multiply scattered fields does not exceed 10% of the
total energy of the perturbed field. For example, in the
case of a reflecting sphere, the equivalent radius coin-
cides with the radius of a large circle, and, in the case
of a spheroid extended in the horizontal plane, it is the
minimal radius of a circle circumscribed around the
spheroid in the direction of the wave incidence.

(ii) Normal modes are quasi-plane within the verti-
cal dimension of the scatterer, which means that ine-
qualities (1)–(3) or (23), (24), and (26) are satisfied.

According to [3], the expression for the scattering
matrix of waveguide modes, Sµm, in the framework of
these approximations has the form

(27)

Sµm
1

4 ϕm ϕµsinsin
-------------------------------- F km

+ kµ
+,( ) i ϕm ϕµ–( )[ ]exp{=

+ F km
– kµ

–,( ) i ϕµ ϕm–( )[ ]exp

– F km
+ kµ

–,( ) i ϕm ϕµ+( )[ ]exp

– F km
– kµ

+,( ) i– ϕm ϕµ+( )[ ]exp } ,
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where

Here,  = (hm ± γm) are the local wave vectors of the
Brillouin ray with the horizontal hm and vertical γm

components corresponding to the mth mode;  is the
turning point that can lie at the waveguide boundary; δm

is the caustic phase shift; z0 is the depth of the scatterer

center; F( , ) is the scattering amplitude in a
homogeneous medium, which describes the amplitude
and phase of a scattered wave in the far wave field in the

 direction on condition that a plane wave propagat-

ing in the  direction is incident on the body. Equa-
tion (27) for the scattering matrix is modified to some
extent for convenience, as compared to the initial
expression [3]. The scattering matrix in the new formu-
lation, as well as the scattering amplitude, is measured
in meters, which is more adequate in terms of the phys-
ical meaning. As one can see, Eq. (27) is symmetric
with respect to the interchange of indices, Sµm = Smµ,
which agrees with the reciprocity theorem for
waveguides [11]. Examining the reciprocity properties,
one has to take into account the equality

where the indices α and β can take the values +1 and
–1. All four possible combinations of indices are shown
in the table. Thus, the matrix S ' transposed with respect
to the scattering matrix S is equal to the matrix S, S ' =

S. In the case of an isotropic scattering (F( , ) =
F0 = const), the value of Sµm is equal to the scattering
amplitude F0, Sµm = F0, as it should be expected.

Equation (27) is obtained using the WKB asymptot-
ics of eigenfunctions in the vicinity of the scatterer
position [3], which is inconvenient for numerical calcu-
lations. It is desirable that any code developed for cal-
culating the sound field in a waveguide on the basis of
the mode approach (i.e., calculating the eigenfunctions

ϕm z0( ) γm z'( ) z'd
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zm

∫ δm.+=
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zm

km
± kµ

±
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±
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α kµ

β,( ) F kµ
β– km

α–,( ),=

km
± kµ

±



596 KUZ’KIN
and eigenvalues of the Sturm–Liouville problem for an
unperturbed waveguide) could be included as a part
into a code for calculating the sound diffraction by bod-
ies in a waveguide. For this purpose, it is necessary to
recast Eq. (27) for the scattering matrix S in such a way
that it contain only the necessary quantities. This can be
performed in various ways. One of the methods based
on solving the Schrödinger equation is given in [12].
Another method is described below.

As it was demonstrated earlier, the restrictions for
the vertical dimension of an array (a body), at which the
use of a directivity pattern (a scattering amplitude) is
possible in the problems on the waveguide propagation
and which are obtained in the WKB approximation
(inequalities (1)–(3)) and on the basis of the solution of
the Sturm–Liouville problem (inequalities (23), (24),
and (26)) are equivalent. From the results obtained
above, it follows that it is possible to proceed from the
ray representation of S-matrix to the mode representa-
tion, if in Eq. (27) we formally change from the WKB
asymptotics of the eigenfunctions to their mode repre-
sentation. According to [6], in the WKB approximation
the eigenfunctions ψm(z) are determined by the relation

(28)

where

Here, H is the waveguide depth. Now, if we ignore the
weak dependence sm(z) as compared to sinϕm(z), which
is quite admissible, Eq. (27) can be represented in the
form

(29)

where

This result coincides with the modified expression for
the scattering matrix S obtained in [12]. If a symmetry
of the scattering amplitude takes place (e.g., in the case
of a body of revolution),

we can reduce Eq. (29) to the form
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Thus, the coefficients  or  determining the
scattering matrix are formulated directly for the quanti-
ties to be calculated, such as the eigenfunctions, their
derivatives, and the eigenvalues. This allows one to
match the codes for numerical calculation of the wave
fields and diffraction by bodies in a waveguide. How-
ever, it is necessary to keep in mind that, within the
framework of the considered approach [3], Eqs. (27)
and (29) are equivalent and differ only in notation. This
is caused by the fact that the representation of the
S-matrix with the help of the scattering amplitude is one
of the necessary conditions of applicability of the WKB
asymptotics of eigenfunctions in the vicinity of the
scatterer. Therefore, if a body is located in the region of
shadow of the incident or (and) scattered modes, such
modes are excluded from consideration.

Thus, the applicability conditions for the concept of
a locally homogeneous medium in the problems of
waveguide propagation are obtained on the basis of the
solution of the Sturm–Liouville problem. It is demon-
strated that they are close to the analogous conditions
obtained earlier in the WKB approximation. Depending
on the character of the inhomogeneity variation in the
water medium, the sound wavelength, and the mode
number, these conditions impose certain restrictions
upon the thickness of the water layer within which the
normal modes can be considered as quasi-plane. It is
convenient to analyze the wave pattern of the field with
the help of these conditions, because a directivity pat-
tern (a scattering amplitude) is an adequate characteris-
tic of radiation (scattering) within such a quasi-homo-
geneous layer.

A new formulation for the scattering matrix of
waveguide modes, which contains only the quantities
(and their derivatives) calculated by solving the
Schrödinger equation, is proposed. It provides an
opportunity not only to adequately calculate the mode
components of the scattered fields, but also to use the
results of numerous studies of the diffraction by bodies
in a free space.
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Abstract—Equations of nonlinear acoustics are derived from the micromechanical representation of a granular
medium as a system of elastically interacting particles possessing translational and rotational degrees of free-
dom. The structure of the equations is invariant with respect to the shape and size of the particles. The changes
in the latter affect only the coefficients in the equations. The inclusion of microrotations and moment interac-
tions of particles leads to the formation of a new type of waves in the medium—microrotational waves. Their
dispersion properties are similar to those of spin waves propagating in a magnetoelastic medium. In the low-
frequency approximation, the microrotational waves disappear, and the equation describing the transverse
waves acquires a term with quadratic nonlinearity. The latter provides an explanation for the generation of the
second shear harmonic that is observed in real solids contrary to the predictions of the nonlinear theory of elas-
ticity, which prohibits such phenomena. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, the micromechanics of granular
media has been rapidly developed in connection with
the numerous technological applications of composite
and polymer materials [1–4]. The structure of the
medium and, specifically, the grain size is one of the
most important characteristics of the material quality
that immediately affects the strength and the viscoelas-
tic properties of the material [5–7]. In many cases, the
dynamic behavior of such media at high rates of defor-
mation cannot be explained in terms of the classical
mechanics of deformed solids. Therefore, new
approaches have been proposed for the development of
the theories to describe granular and structure-sensitive
materials with allowance for the discrete medium struc-
ture, the additional internal degrees of freedom, and the
nonlocal and nonlinear character of particle interac-
tions [6–12].

The continuum theory proceeds from the assump-
tion that a continuous medium can be represented as a
system of material particles. However, the relation
between the continuous models and a system of mate-
rial particles is still not fully understood. In the classical
limit, which originates from the works of O. Cauchy, a
material particle is represented as a material point.
However, this representation does not always fit the
reality. The classical model contains no spatial scales,
and, therefore, it cannot describe the effects related to
the dispersion of elastic waves. In this model, the only
internal interactions are the forces of the contact char-
1063-7710/01/4705- $21.00 © 20598
acter. A real material usually has a hierarchically orga-
nized complex structure, which evolves in different
ways under external actions. For an adequate descrip-
tion of the dynamic processes in a structurally inhomo-
geneous material, it is necessary to consider at least the
micro-, meso-, and macrostructural levels, which con-
tinuously interact with each other due to the internal
constraints [1, 3, 4]. At the microstructural level, the
deformation of individual fragments of the structure is
considered. At the mesostructural level, the presence of
structural formations such as grains, domains, and
blocks is taken into account and the dynamic behavior
of the medium is described with allowance for their
force and moment interactions. At the macrostructural
level, the properties of the medium are “homogenized.”

The mechanical properties of a granular medium,
like ground or ceramic material, depend on the geome-
try of microparticles, their arrangement, and the inter-
action forces acting between them. In the mathematical
modeling of such media, one of the main problems is
the derivation of the equations of motion and equations
of state that can adequately describe the discrete char-
acter of the medium. In this connection, a series of stud-
ies were performed to describe the dynamic behavior of
granular media with regular and random packings with-
out taking into account the rotation of particles [10, 12–
16]. The models of granular media that included parti-
cle rotation were considered in [6–9, 17, 18]. In the
general case, the field of displacements and the field of
microrotations are related to each other. If this relation
001 MAIK “Nauka/Interperiodica”
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is determined by the dynamic equations of the field
theory, the corresponding model is called a micropolar
model [2, 3, 7, 11], and its structure is close to the
Cosserat micropolar continuum.

Discrete and continuous variable systems are related
to each other by the Taylor expansions that establish the
correspondence between the functions given at discrete
points and their power-series approximations. When
the number of the expansion terms is sufficiently large,
a continuum can reflect the properties of a discrete sys-
tem with an accuracy sufficient for practical applica-
tions. Such are the so-called weakly-nonlocal (gradient
or moment) models [2, 5, 8, 12]. The classical theory
operates with the continuous-medium models in which
the expression for the internal energy involves only the
first-order gradients of the displacement field. If the
internal energy depends on the second-order or higher-
order gradients, one obtains the gradient models of the
second order, fourth order, etc. [5, 8]. The presence of
higher gradients in a mathematical model means that
scales with the length dimension occur in the medium.
A theoretical description of a medium with internal
structure can be based on the following types of mod-
els: a complex crystal lattice [5, 11, 18], a continuum of
solid particles–bodies [6–8], a generalization of the lat-
ter to a continuum consisting of deformed particles [3,
15–17], or statistical models of microinhomogeneous
media [19]. Each of the aforementioned approaches has
its own advantages and disadvantages.

In this paper, which is an extended version of our
earlier publication [18], the granular material is consid-
ered as a set of particles interacting with each other
through elastic contacts [6, 7]. The rigidity of the parti-
cles far exceeds that of the contacts, and the particles
can be considered as perfectly rigid bodies separated by
elastic layers through which the force and moment
actions are transmitted. The motion of each particle
consists of the displacements of its center of mass and
rotations about the center of mass. Hence, in the general
case, a particle has six degrees of freedom: three trans-
lational and three angular. In the case of two-dimen-
sional motions, the number of degrees of freedom is
reduced to three: two translational and one angular.
When the particles move relative to each other, forces
transmitted through the contacts act along both the nor-
mal and the tangent to the contact plane. These forces
can be modeled by elastic springs transmitting the
forces and the moments.

The analysis of the theoretical and experimental stud-
ies carried out in this field of research shows that, despite
the variety of theories developed for describing com-
plexly structured media, there is a need for new models
to describe the dynamic behavior of granular media.
These models must satisfy the following conditions:

(i) They must use minimal generalizations that lead to
new qualitative consequences. The number of new param-
eters included in a model must be as small as possible.
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
(ii) The relation between the parameters of a micro-
model and the basic physical-mechanical characteris-
tics of the medium (such as density, porosity, elastic
moduli, etc.) should be clearly defined.

(iii) In the limiting cases, a new model should as a
rule pass into the known classical theories of solids.

Below, we discuss a one-dimensional model of a
granular medium that satisfies the aforementioned
requirements.

DISCRETE MODEL

We consider a one-dimensional chain formed by rect-
angular grains with the dimensions 2l × 2b. In the initial
state, the distance between the centers of mass of the par-
ticles is equal to ‡ (a > 2b). Each particle has three degrees
of freedom: displacements of the center of mass of a par-
ticle along the x and y axes (the translational degrees of
freedom un and wn) and rotation about the center of mass
(the rotational degree of freedom ϕn) (Figs. 1, 2).

The central springs have a rigidity k0, and the upper
and lower horizontal springs have a rigidity k1/2.
Together, they determine the force interactions in the
material under compression and tension, and the
springs k1/2 provide the transfer of moments in the case
of the particle rotations. The diagonal springs with a
rigidity k2/2 characterize the force interactions of parti-
cles in the case of shear deformations of the material
(Fig. 2). The elongations of the springs Dj are determined
by the relative variations of the distances between the
corresponding points of the bodies–particles:

(1)

D0 a 1– xn 1+ xn–( )2 yn 1+ yn–( )2+ 1,–=

D1 δ 1– xD xA–( )2 yD yA–( )2+ 1,–=

D2 δ 1– xC xB–( )2 yC yB–( )2+ 1– ,=

D3 δ1
1– xD xB–( )2 yD yB–( )2+ 1,–=

D4 δ1
1– xC xA–( )2 yC yA–( )2+ 1,–=

y

x

n – 2 n – 1 n n + 1 n + 2

2l
2b

a

ϕn

Fig. 1. Functional diagram of a granular medium.
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where δ = a – 2b is the gap between the particles,
which is equal to the initial length of the horizontal

springs; δ1 =  is the initial length of the diag-
onal springs; and the coordinates of the points A, B, C,
and D are determined through the displacements and
rotations of the particles:

(2)

Here, d =  is the characteristic size of a parti-
cle, which is equal to half of the length of its diagonal,
and the parameter l/b =  characterizes the shape
of the particle (the ratio of its dimensions in two orthog-
onal directions).

Substituting Eqs. (2) in Eqs. (1) and expanding the
radicals into power series in the small quantities ∆un =
(un + 1 – un)/a ~ ∆wn = (wn + 1 – wn)/a ~ ε ! 1 and Φn =
(ϕn + 1 + ϕn)/2 ! π/2, we obtain approximate expres-
sions for the elongations:

δ2 4l2+

xon na un, xon 1++ n 1+( )a un 1+ ,+= =

yon wn, yon 1+ wn 1+ ,= =

xB un ϕn ϕ0+( )sind+ xA 2l ϕn,sin+= =

yB wn ϕn ϕ0+( )cosd+ yA 2l ϕn,cos+= =

xC un 1+ d ϕn 1+ ϕ0–( )sin a+ + xD 2l ϕn 1+ ,sin+= =

yC wn 1+ d ϕn 1+ ϕ0–( )cos+ yD 2l ϕn 1+ .cos+= =

b2 l2+

ϕ0tan

D0 ∆un
1
2
---∆un

2 1
2
---∆wn

2+ + ,=

D1 a/δ( ) ∆un l∆ϕn–
1
2
---∆un

2 1
2
---∆wn

2 b
δ
---∆wnΦn+ + + ,=

ϕ0

x

y

C

B

A

Dun

un + 1

wn + 1

ϕ n 
+ 

1

w0

ϕn

On

On + 1

Fig. 2. Schematic representation of the force interaction of
particles.
(3)

Here, we retained only the linear and the principal qua-
dratic terms for the spring elongations.

The potential energy associated with the deforma-
tion of the springs lying to the right of the particle n is
determined by the formula

(4)

In choosing the form of the function Un, we assumed
that the major force is applied to the central springs
connecting the centers of mass of the particles, and,
therefore, in the expression for the energy of the central

springs, we retained the cubic term . The horizon-
tal springs (k1) and the diagonal springs (k2) are respon-
sible for the relatively weak moment interactions of
particles, which are related to rotations, and their
energy is represented by only the quadratic terms.
Then, correct to cubic terms, the expression for the
potential energy per unit cell of the structure under
study has the form

(5)

Here, the first two terms describe the energy related to
the longitudinal and shear deformations, the third and
fourth terms describe the energy related to the noncen-
tral (moment) interactions of particles, and the fifth
term describes the coupling energy of the transverse
and rotational degrees of freedom of the particles. The
remaining terms with the coefficients hn (n = 1–4)
describe the energy of nonlinear interactions. We note
that, owing to the symmetry of the system, Eq. (5) con-

tains no cubic term proportional to Φn. The coeffi-
cients responsible for the linear effects are expressed

D2 = a/δ( ) ∆un l∆ϕn
1
2
---∆un

2 1
2
---∆wn

2 b
δ
---∆wnΦn+ ++ + ,

D3 a/δ1( ) δ
δ1
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l
a
---Φn– 

  2l
δ1
----- ∆wn

b
a
---Φn+ 

 –=

+
b
δ1
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l
b
---∆unΦn+ 

  ,

D4 a/δ1( ) δ
δ1
----- ∆un

l
a
---Φn+ 

  2l
δ1
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b
a
---Φn+ 

 +=

–
b
δ1
----- ∆wnΦn

l
b
---∆unΦn+ 

  .

Un = 
k0

2
---- D0

2 γD0
3+( )

k1

2
---- D1

2 D2
2+( )

k2

2
---- D3

2 D4
2+( ).+ +

γD0
3
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1
2
--- K1∆un

2 K2∆wn
2 K3l2∆ϕn

2 K2
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through the parameters of the micromodel and the elas-
tic constants of the springs: 

(6)

The coefficients responsible for the nonlinear interac-
tions have the form

(7)

It should be noted that, in the approximation under
study, the nonlinear interaction constants h3 and h4 are
of a “geometric” nature and originate from the presence
of noncentral (moment) interactions of particles in the
granular medium. The same interactions give rise to the
corrections proportional to K3 to the nonlinear con-
stants h1 and h2 of the classical theory of elasticity. The
shape of the microparticles strongly affects the values of
the nonlinear interaction constants h3 and h4. For exam-
ple, when the width of a particle decreases (b  0)
while l ≠ 0, the constant h4 tends to zero and the con-
stant h3 changes sign. If the particles are material points
(b = 0 and l = 0), the elastic constants K2, h3, and h4 are
equal to zero.

The differential-difference equations describing
the nonlinear dynamic processes in the system under
consideration can be derived from the Hamilton vari-
ational principle using the Lagrange function L =

, where Tn is the kinetic energy per unit
cell of the chain:

Here, m is the grain mass and J = m(l2 + b2)/3 = md2/3
is the grain moment of inertia about the axis passing
through the center of mass. The point above a symbol
denotes the derivative with respect to time. The differ-
ential-difference equations, which are not presented
here because of their rather cumbersome explicit form,
are convenient for a numerical simulation of the
response of the system to external dynamic actions. In
addition, on the basis of these equations, it is possible

K1 k0 2
a2

δ2
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a2δ2

δ1
4

----------k2+ + k0
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4δ2
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a2l2
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4
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a2

δ2
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2
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a2
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2
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2
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1
2
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2
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δ3
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l2
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-----k2–
 
 
  b

δ
---K3 K2,–= =

h4 8
a2lb
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4
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b
l
---K2.= =

Tn Un–( )∑

Tn
m
2
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2 ẇn
2+( ) J

2
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2.+=
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
to construct the hierarchy of the quasi-continuous mod-
els of a granular medium.

CONTINUOUS MODEL OF A GRANULAR 
MEDIUM

In a typical case, the characteristic spatial scale of
deformation (e.g., the elastic wavelength λ) is much
greater than the chain period (λ @ a). In this case, it is
possible to change from the discrete variable j, which
determines the cell number, to a continuous spatial vari-
able x = ja, and the functions determined at discrete
points can be interpolated by continuous expressions.
The conditions of a one-to-one correspondence
between the functions of the discrete argument and the
continuous analytical functions, as applied to the theory
of media with microstructure, are considered in detail
in [2, 5].

If we consider the expansion up to the terms of the
order of O(a2), the linear density of the Lagrange func-
tion L takes the form

(10)

Here, ρ = m/a is the effective linear density of the gran-

ular medium, r =  = d/  is the radius of inertia
of the particles of the medium with respect to the cen-
ter of mass, d is the length of the particle diagonal, and

 = K3 + (a2/16l2)K2. From the Lagrangian (10), we
easily derive a system of differential equations, which
describe the interaction of different types of waves in a
granular medium:

(11)

The physical meaning of the constants involved in these
equations is as follows:

(12)
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is the propagation velocity of longitudinal waves,

(13)

is the propagation velocity of shear waves,

(14)

is the propagation velocity of particle microrotation

waves (the spin waves), ω0 =  = c2/2r is the
critical frequency of a spin wave, and β = c2 is the linear
coupling parameter of the transverse and spin waves.

From the equations derived above, one can see that
the shear and rotational waves interact with each other
already in the linear approximation, and the longitudi-
nal waves are coupled with them by only the nonlinear
effects. The nonlinear coupling of waves is also asym-
metric. The nonlinear coupling coefficients have the
form α i = hi/ρa (i = 1–4). In a granular medium, in
addition to the known second-order (K1 and K2) and
third-order (h1 and h2) elastic constants, we have three
new constants: one second-order constant  and two
third-order constants h3 and h4, which are absent in the
classical theory of nonlinear elastic media.

EFFECT OF MICROSTRUCTURE 
ON THE ACOUSTIC CHARACTERISTICS

OF A MEDIUM

A granular material can be considered as a continu-
ous medium consisting of two components (or phases)
[20]. One component is represented by rigid particles
of mass m and inertia J, and the other component is the
porous space between the particles. In the model under
consideration, the porous space is a massless nonlinear
elastic medium through which the force and moment
actions are transferred. To reveal the relation between
the microscopic and macroscopic properties of a gran-
ular medium, we analyze the dependence of the veloc-
ities of acoustic waves on the parameters of the micro-
model (microstructure). The structure of a granular
medium is characterized by the distance between the
particle centers a (the chain period) and by the geomet-
ric dimensions of the particles, b and l. However, these
quantities are not always convenient for consideration.
To correlate the theoretical calculations with the exper-
imental data, it is more convenient to use the dimen-
sionless parameters characterizing the shape of the par-
ticles f = l/b and the volume porosity of the medium q,
which is determined as the ratio of the cavity volume to
the representative volume of the medium:

(15)

c2 K2/ρa 2
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----= =

c3 l/r( ) K3*/ρa
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rδ
----- 2
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a2δ2
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----------k2+
 
 
 

= =

K2/4aρr2

K3*

q
δ
a
--- 1 2b

a
------– 

  .= =
The porosity of the medium under consideration varies
from zero to unity and coincides with the porosity
parameter of a two-phase medium [20]. From
Eq. (15), it follows that the quantities q, f, and the
characteristic grain size d are related to each other by
the formula:

(16)

From this expression, one can see that, as the grain size
increases, the porosity of the medium decreases and
can even become zero, which is physically incorrect.
This result is related to the adopted rectangular shape of
the particles and their ordered orientation. For another
particle shape, relation (16) can be different.

The effective line density of the medium ρ, which is
determined as the mass of the substance per unit length
of the chain ρ = m/a, is related to the porosity and the
line density of the grains ρ1 = m/2b by the relation ρ =
(1 – q)ρ1. In terms of these parameters, expressions
(12)–(14) for the velocities of elastic waves in a granu-
lar medium have the form:

(17)

(18)

(19)

Here, c10 =  and c20 =  are the longitu-
dinal and transverse wave velocities, respectively, in the
absence of moment interactions between the particles
of the medium, i.e., when q = 0 and f = 0.

The graphical analysis of the dependences of the
acoustic wave velocities c1, c2, and c3 on the porosity of
the medium q and the shape parameter f is shown in
Figs. 3–6. The values of the coefficients k1 and k2 in
Eqs. (17)–(19) are chosen in an arbitrary way for a
qualitative study of the properties of the model.

Figure 3 presents the relative value of the longitu-
dinal wave velocity c1/c10 as a function of q and f for
k1/k0 = k2/k0 = 0.3. One can see that, as the porosity
increases, the longitudinal wave velocity monotoni-
cally decreases and tends to a limiting value, which
depends on the force constants k1 and k2. Since, at a
fixed shape parameter f, the porosity of the medium q
and the characteristic grain size d are linearly related by
Eq. (16), one can use this plot to qualitatively estimate
the dependence of the longitudinal wave velocity on
grain size. As the shape parameter f increases (when
f < 1, the particles are elongated in the direction of the
x axis, and when f > 1, they are elongated along the
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y axis), the longitudinal wave velocity decreases.
Simultaneously, the region of the transition from higher
values of c1/c10 to lower ones with increasing porosity
is shifted to the right.

Figure 4 presents the behavior of the relative value
of the shear wave velocity c2/c20. One can see that this
behavior is of a “resonance” character, i.e., the depen-
dences c2(q, f = const) and c2( f, q = const) reach their
maximums and then decrease practically down to
zero.1 The plot also reveals the changes in the critical
frequency of the rotational wave ω0, because it is
related to the quantity c2 by a simple algebraic depen-
dence given by Eq. (18).

Figure 5 presents the relative velocity of rotational
waves c3/c20 at equal values of the force constants k1 =
k2 responsible for the moment interaction. One can see
that c3 monotonically decreases with the increasing
porosity of the material q, and, for q > 0.5, it flattens out
at a constant value, which depends on the particle
shape. At low porosity values q < 0.15, the depen-
dence c3( f, q = const) exhibits a local maximum and a
local minimum in the region where the shape of the par-
ticles is close to square (i.e., when f ≈ 1).

Figure 6 shows the ratio of the shear wave velocity
to the longitudinal wave velocity c2/c1 as a function of
the porosity of the medium and the particle shape. The
behavior of this quantity is also of a “resonance” char-

1 The values of the porosity parameter q close to unity are physi-
cally meaningless, because in this case the granular medium must
be a vacuum.
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acter. It should be noted that, at some values of q and f,
the ratio c2/c1 can be higher than unity. However, from
experience it is well known that, in any material, the
shear wave velocity never exceeds the longitudinal
wave velocity. Hence, presumably, the ratio between
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the parameters q and f cannot be arbitrary and must sat-
isfy some additional physical conditions, which are
absent in the given model of the medium.

The behavior of the ratio of the rotational wave
velocity to the shear wave velocity c3/c2 is shown in
Fig. 7. This behavior is more complex than that of c2/c1.
For f < 1, this ratio monotonically increases with
increasing porosity, and for f > 1, the dependence c2(q)
has a minimum whose magnitude and position are
determined by the ratio of the parameters q and f.

Experimental data reported in [21] testify that, in
artificially manufactured granular materials, the veloc-
ity of rotational waves can exceed the shear wave veloc-
ity. However, it should be noted that the virtual absence
of experimental data on the material constants of struc-
tured media [21] and the lack of adequate methods for
their study [22–24] represent one of the main factors
that hinder the development of the models of nonclassi-
cal media and their application for calculating the
dynamic and strength characteristics of composite and
microinhomogeneous materials.

APPROXIMATION 
OF THE COSSERAT THEORY 

OF ELASTICITY

If the frequencies of acoustic waves are lower than
ω0, the spin wave does not propagate, i.e., the microro-
tations of particles in the medium are not free and are
determined by the displacement field. By the method of
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successive approximations, we determine the approxi-
mate relationship between ϕ and w:2

In this approximation, the local rotations of the parti-
cles (the microrotations of structural elements) differ
from the curl of the displacement field, and the relative
value of this difference is determined by the small
parameter of the particle “microinertia” (r2 = I/ρ). Sub-
stituting Eq. (18) in the first two equations of Eqs. (11),
we obtain

(21)

where  is the shear wave

velocity, ,  =

, and γ1  and

γ2 =  are the nonlinearity coefficients.

2 Here, the nonlinear terms are neglected, because they cause cor-
rections of a higher order of smallness.
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Equations of the type of Eqs. (21) are called equa-
tions of the Cosserat theory of elasticity. Their form is
similar to that of the nonlinear equations describing
longitudinal and flexural vibrations of a beam under
tension with allowance for the inertia of rotations of
transverse cross sections. The essential difference is
that the equation describing the transverse waves in our
model involves a quadratic nonlinearity, which is
absent in the classical theory of elasticity. From the
nonlinear elasticity theory, it is known that, in a homo-
geneous isotropic solid, the generation of the second
shear harmonic of acoustic waves is forbidden for sym-
metry reasons. At the same time, in real materials, such
a generation is observed in the experiment. This fact is
usually explained by the presence of defects in the
medium [25].

SUMMARY

From the micromechanical representation of a gran-
ular medium as a system of elastically interacting par-
ticles, we derived the equations of nonlinear acoustics,
which take into account both translational and rota-
tional degrees of freedom. The structure of these equa-
tions is invariant with respect to the shape and dimen-
sions of the particles. The changes in the latter affect
only the values of the coefficients involved in the equa-
tions. The inclusion of microrotations and the related
moment interactions of particles leads to the formation
of a microrotational wave in the medium. The disper-
sion properties of this wave are similar to the dispersion
properties of a spin wave in a magnetoelastic medium
[26]. Therefore, the microrotational wave propagating
in a granular medium can also be called a spin wave.
The spin wave exists when its frequency is higher than
some threshold value. At frequencies below the thresh-
old one, the wave becomes nonpropagating (forced),
and the three-mode model of a granular medium is
transformed to a two-mode model. In this case, higher
derivatives and terms with a quadratic nonlinearity
appear in the equation for the transverse mode, whereas
such components are absent in the classical limit of the
nonlinear elasticity theory. The quadratic nonlinearity
is associated with the block structure of the medium
and occurs because of the violation of symmetry in the
moment interactions of blocks (particles) in the pres-
ence of transverse displacements and rotations. The
nonlinearity vanishes when the particle width tends to
zero and the symmetry of the moment interactions is
restored (b > 0 and α4 > 0). This result agrees with the
fact that, in a layered crystal formed as a chain of
mechanical dipoles with b = 0 and l > 0, the quadratic
nonlinearity of the transverse mode is not observed
[11]. Thus, the proposed model allows one to explain
the presence of the second shear harmonic in a medium
with a block structure and to relate the characteristics of
a wave to the structural parameters of the medium. The
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
latter property opens up possibilities for obtaining addi-
tional information on the structure of a medium.
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Abstract—The scattering of flexural waves by small statistical fractal inhomogeneities in a thin plate is con-
sidered. An expression for the average intensity of the fluctuations of the scattered wave field is obtained. A
relation of the intensity to the plate parameters and to the fractal dimension of the inhomogeneities is deter-
mined. An expected frequency dependence of the attenuation of flexural waves in a plate due to the scattering
by fractal inhomogeneities is discussed. © 2001 MAIK “Nauka/Interperiodica”.
Scattering of flexural waves by random inhomoge-
neities in a plate was considered earlier [1, 2]. Kra-
sil’nikov studied the scattering of flexural waves by
weak random inhomogeneities in a plate lying on a
halfspace filled with an incompressible liquid [1]. The
effect of fluctuations of the plate rigidity that were
caused by the variability of the plate thickness (rough-
ness of its surface) and the elastic properties of its mate-
rial on the propagation and attenuation of flexural
vibrations in the ice cover of the Arctic seas was stud-
ied. The scattering field was calculated using the pertur-
bation method. It was assumed that the correlation
function of inhomogeneities obeyed the Gaussian law.
The propagation of flexural waves in a plate with ran-
dom delta-correlated inhomogeneities was studied in
[2] under the assumption of multiple scattering. A one-
dimensional problem was solved. 

Now there is evidence in favor of the fact that inho-
mogeneities of an ice cover are fractal [3]. Fractal
properties are also characteristic of random inhomo-
geneities in thin films. Films of various materials with
different physical properties form the basis of modern
electronic devices and laser technology. Considerable
advances has been made in their production. For
example, it is possible to grow diamond films of a
large area (up to thousands of square centimeters)
with the thickness of the order of 1–2 mm [4]. Dia-
mond films can be used for the production of diamond
windows for powerful CO2 lasers. The surface of any
film is rough (uneven). Specifically, this is connected
with the technological processes of the film growth
from the gas phase of the growing substance. The film
roughness can reach up to 10% of the film thickness.
It is necessary to note that the surfaces of real bodies
are always rough. Even when they seem perfectly
1063-7710/01/4705- $21.00 © 0607
even (smooth), they are rough in reality. The point is
only the scale of this roughness [5]. For example, it
was reported recently that statistical roughness with
fractal properties is always present at the surfaces of
computer hard disks along with the regular uneven-
ness carrying the signal information [6]. The physical
properties (mechanical, electrical, magnetic, and
other properties) of films are largely affected by their
internal structure. The microscopic structure of films
is often disordered and fractal. This is quite true for a
film (a layer) of an amorphous semiconductor, for
example [7]. 

From the acoustical point of view, films and an ice
cover can be treated as thin plates with surface rough-
ness and microscopic inhomogeneities of internal
structure. Here, we consider the scattering of flexural
waves by inhomogeneities in a thin plate. The inhomo-
geneities are assumed to be random, statistically homo-
geneous, and small (weak). The perturbation method is
used to solve the problem. The results obtained can be
of interest in connection with acoustic diagnostics of
inhomogeneities in films, as applied to the nondestruc-
tive testing of films and the investigation of the effect of
random inhomogeneities on the propagation of flexural
vibrations in an ice cover. 

As one can see, inhomogeneities in both films and
an ice cover have fractal properties. Fractal structures
are characterized by scaling. As a consequence, the cor-
relation functions and the spectra of statistical fractals
are described by power laws with fractional exponents
[5]. The statistical models of inhomogeneities that are
adopted in [1, 2] can be inadequate to real inhomogene-
ities in plates and films. 
2001 MAIK “Nauka/Interperiodica”
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Let the displacements u(x, y) of a plate performing
flexural vibrations be described by an equation [8] 

(1)

where

g is the flexural rigidity, E is the Young modulus, σ is
the Poisson ratio, 2h is the thickness, ρ is the density of
the plate material, ω is the circular frequency of modu-
lation of the laser radiation intensity, k is the wave num-
ber of propagating flexural waves (vibrations) in the
plate, µ(x, y) is the random statistically homogeneous
function characterizing the inhomogeneities in the
plate, 〈µ(x, y)〉  = 0, |µ(x, y)| ! 1, and F(x, y) is the exter-
nal force set at a limited part of the plate at its center. 

Let us represent the plate displacements in the form 

, (2)

where u1(x, y) represents the displacements caused by
the scattering of flexural waves of “zero” approxima-
tion with the displacements u0(x, y). 

Substituting Eq. (2) into Eq. (1), we obtain the fol-
lowing equations for u0(x, y) and u1(x, y): 

(3)

(4)

Using the Green function method, we can write down
the solution to Eqs. (3) and (4) in the form 

(5)

where Qi(x, y) are the functions describing the right-
hand sides of Eqs. (3) and (4) and G(x0y0/x, y) is the
Green function, which is the solution to the equation 

(6)

and satisfies the condition of radiation at infinity. 
Let us assume that the curvature of the wave front of

the “zero” flexural wave incident on inhomogeneities
does not affect the scattering process, and the wave
front can be considered as plane on the correlation
scales of inhomogeneities. We consider the field of the
scattered waves in the Fraunhofer zone with respect to
the values of the correlation radii of inhomogeneities.

∆2 k4 x y,( )–[ ] u x y,( ) F x y,( )
g

-----------------,=

∆ ∂2

∂x2
--------

∂2

∂y2
--------; g+≡ Eh3

3 1 σ2–( )
----------------------,=

k4 x y,( ) k4 1 µ x y,( )+( )4,=

k4 3ω2ρ 1 σ2–( )[ ] /Eh2,=

u x y,( ) u0 x y,( ) u1 x y,( ) …+ +=

∆2 k4–( )u0 x y,( ) F x y,( )
g

-----------------,=

∆2 k4–( )u1 x y,( ) 4k4µ x y,( )u0 x y,( ).–=

ui x y,( ) Qi x0 y0,( )G x0 y0/x y, ,( ) s x0 y0,( ),d

S

∫=

∆2 k4–( )G x0 y0/x y, ,( ) δ x0 x–( )δ y y0–( )=
In this case, as it follows from the reciprocity theorem,
it is sufficient to know the asymptotics of the Green
function in order to determine the plate displacements
u1(x, y), as well as u0(x, y) [9]. The asymptotics of the
Green function has the form [8] 

(7)

where R = , (x, y) are the coordinates of the
observation point, (x0, y0) are the coordinates of the

source, and k2 =  + . 

Thus, we consider the fluctuations of the plate dis-
placements in the field of a scattered wave under the
assumption that the wave front of the incident zero
wave is plane in the region with correlated inhomoge-
neities. 

The solution to Eq. (4) can be represented by the
expression 

(8)

Here, A0 ≡ u0(x, y) characterizes the amplitude of the
incident zero wave in the region of inhomogeneities,
r0(x0, y0) represents the coordinates of the point with
inhomogeneities, and r1(x1, y1) are the coordinates of
the point of observation of the scattered wave. 

Multiplying Eq. (8) by the complex conjugate, we
obtain for the mean square fluctuation of the plate dis-
placements in a scattered wave 

(9)

where B( , , , ) ≡ 〈µ( , )µ*( , )〉  is
the correlation function of random inhomogeneities
and n and n' are the vectors characterizing the direc-
tions of the incident (zero) and scattered (first-approxi-
mation) waves, respectively. 

We introduce the relative coordinates ξ =  – 

and η =  –  and the coordinates of the gravity cen-

ter ρ1 = 1/2(  + ) and ρ2 = 1/2(  + ). Taking into
account that the correlation function of statistically
homogeneous processes depends only on the difference
of the coordinates and integration over the coordinates

G x0 y0/x y, ,( ) ikR( )exp

32πik5R
------------------------- ikxx0 ikyy0+( ),exp–=

x2 y2+

kx
2 ky

2

u1 x1 y1,( ) A0
k2

2πik
---------------

ikR1( )exp

R1

------------------------- µ x0 y0,( )
S

∫=

× ikxx0 ikyy0+[ ] –ikxx0 ikyy0–[ ] ds x0 y0,( ).expexp

u1 x1 y1,( ) 2〈 〉 A0
2 k3

2πR1
------------ B x0' y0' x0'' y0'', , ,( )

S

∫∫=

× ik n n'–( ) r0' r0''–( )[ ] ds x0' y0',( )ds x0'' y0'',( ),exp

x0' y0' x0'' y0'' x0' y0' x0'' y0''

x0' x0''
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of the gravity center gives the value of the plate area S,
we obtain 

(10)

The finite integration limits determined by the value of
the plate area S are replaced in Eq. (10) by ±∞ by virtue
of the fact that the value of the correlation function rap-
idly tends to zero beyond the limits of the correlation
region of inhomogeneities, and we have 

(11)

The integral in Eq. (10) is the spatial energy spec-
trum of the inhomogeneity fluctuations, to within the
factor (2π)–2: 

(12)

Now, as is done commonly in statistical wave the-
ory, we determine the scattering coefficient ms , which
is determined by the energy flux through the boundary
of a closed contour with the radius R at the plate sur-
face. Taking into account Eqs. (10) and (12), we obtain 

(13)

The most important feature of fractal models of
inhomogeneities is the power-law form of the fluctua-
tion spectrum, which can be represented as 

(14)

where the index α is characterized by a fractional value
and, for inhomogeneities with a fractal boundary (frac-
tal surface), it is determined by the expression 

(15)

Here D is the fractal dimension and d is the dimension
of the embedding space. In order to describe random
fractal inhomogeneities, we take the correlation func-
tion in the form (see [10] for example) 

(16)

where Γ(ν) is the gamma function, Kν(u) is the Mac-
donald function of order ν, and r0 is the correlation
radius of inhomogeneities. 

For the energy spectrum, we have the expression 

(17)

Substituting Eq. (16) into Eq. (13), we obtain for the
scattering coefficient 

(18)

u1 x1 y1,( ) 2〈 〉  = A0
2 k3

2πR1
------------S B r'( ) iqr'( )exp r'.d
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∫
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∫=
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α D 2d .–=
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r/r0( )νKν r/r0( ),=

G q( ) µ2〈 〉 ν r0
2 π 1 q2r0
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ms µ2〈 〉 2πνk3r0
2 π 1 q2r0
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It follows from Eq. (18) that, for q2  ! 1, the frac-
tal properties of inhomogeneities do not play any role
in wave scattering. On the contrary, for qr0 @ 1, we
obtain 

(19)

Let us evaluate the frequency dependence of the
attenuation of flexural waves that is caused by the scat-
tering by inhomogeneities: 

(20)

Let us consider the case of inhomogeneities in the form
of structures with fractal boundaries. It is known that,
in the case of such structures, the fractal dimension can
lie within the limits D ≈ 1.3–1.7 (see [2] for example).
Substituting this value of fractal dimension into Eq. (15)
and taking into account the fact that d = 2, we obtain
α = –(2.7–2.3). Setting α equal to the value of the
exponent of q in Eq. (19), we obtain the value of ν
characterizing the order of the Macdonald function: ν =
0.35–0.15. Taking into account that q ~ k, we obtain the
following frequency dependence of the attenuation
coefficient: 

(21)

One can see that the exponent in the frequency
dependence of scattering is fractional. This is caused by
the fractal properties of inhomogeneities. The exponent
can be a measure of fractality of the inhomogeneities
[11]. It is necessary to note that the theory of ultrasonic
attenuation in solids that is caused by the presence of
dislocations leads to the dependence β(ω) ~ ω–1, i.e., to
a nonfractal dependence: the exponent in the frequency
dependence of attenuation is equal to an integer. It fol-
lows from Krasil’nikov’s result [1] that the scattering of
flexural waves by random inhomogeneities in an ice
cover, when the inhomogeneities are described by a
Gaussian correlation function, leads to a quadratic fre-
quency dependence of attenuation, i.e., also to a non-
fractal dependence. 
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Abstract—A diagnostic technique for receiving hydroacoustic antenna arrays operating in a shallow sea is pre-
sented. The technique reconstructs the hydrophone transfer coefficients, the array profile, and its position rela-
tive to the surface and the bottom. A stepped-frequency source and a special receiving element with a known
transfer coefficient are used. The technique is illustrated by experimental hydroacoustic data, and the error in
reconstructing each of the parameters is estimated. © 2001 MAIK “Nauka/Interperiodica”.
After a stationary receiving hydroacoustic antenna
array is deployed, its characteristics—the transfer coef-
ficients of all hydrophones and their coordinates rela-
tive to the bottom (including the array profile as a
whole)—are usually measured. Although the transfer
coefficients, which relate the acoustic pressure (in pas-
cals) at the input of the hydrophone to the voltage (in
volts) at its output, are first measured in laboratory con-
ditions, they may change after the deployment, because
the temperature and other conditions may be different
and because of the effect of various structural compo-
nents of the array (the frame, the mechanical bindings,
etc.), which are rather difficult to take into account in
laboratory measurements. It is also clear that, if the
array is flexible or semirigid, its shape after the deploy-
ment may differ from the desired one. At the same time,
modern signal processing methods (see, e.g., [1])
require that the transfer coefficients, as well as the posi-
tions of the receiving elements, should be known to a
sufficiently high accuracy. For example, if the error in
the element positions exceeds λ/10 (where λ is the
wavelength), the antenna gain decreases on the average
by 1 dB [2].

Various techniques for retrieving the transfer coeffi-
cients of the receiving elements [3, 4] and the array pro-
file [5–8] are known and currently used in practice.
These techniques determine the positions of the receiv-
ing elements using a set of acoustic sources (usually
explosive) placed at a sufficiently long distance from
the array. This circumstance significantly limits the
accuracy achieved with these methods, because the
medium strongly affects the propagation of sound,
which makes it difficult to predict the distribution of the
received signal over the antenna [9].

This paper reports on the results of a theoretical and
experimental study of a diagnostic technique for linear
hydroacoustic antenna arrays operating in a shallow
sea. The technique uses a stepped-frequency acoustic
1063-7710/01/4705- $21.00 © 20611
source placed at a small (smaller than the depth of the
sea) distance from the antenna and an additional hydro-
phone with a known transfer coefficient. The advantage
of this technique is that the source resides at a small dis-
tance from the antenna. Reverberation is also present in
this arrangement, and it is more regular and predictable.
Therefore, it can be efficiently suppressed.

One of the simplest methods for determining the
transfer coefficients of the hydrophones is the so-called
comparison method. This method compares the acous-
tic signals received by the array elements with the sig-
nal received by a special reference hydrophone whose
transfer coefficient is known exactly. The complex
transfer coefficient Kn of the nth array element (|Kn| is
measured in pascals per volt) is then determined as

(1)

where Kref is the known transfer coefficient of the refer-
ence hydrophone; Un and Uref are the voltages at the
outputs of the nth element and the reference hydro-
phone, respectively; and Gn and Gref (both measured in
m–1) are the acoustic transmission coefficients from the
source to the nth element and to the reference hydro-
phone, respectively. In free space, Gn/Gref =
(rref /rn)expik(rn – rref), where rn and rref are the distances
from the source to the nth element and to the reference
hydrophone, respectively; k = 2πf/c; f is the frequency
of the transmitted tone signal; and c is the sound veloc-
ity. To describe the transmission coefficients G in a
shallow sea, we use the multipath propagation model.
In particular, for the receiving array elements,

(2)

Kn

UnGref

UrefGn

---------------K ref,=

Gn Vn
l( ) ikrn

l( )( )exp
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where  is the distance from the lth image source to

the nth hydrophone;  is the product of the reflection
coefficients for the lth ray; and L is the number of rays
taken into account (l = 1 refers to the direct ray; l = 2
and 3, to the first-order reflections from the surface and
bottom, respectively, etc.). We assume that the source,
the receiving elements, and the reference hydrophone
are omnidirectional. We have also neglected the ray
curvature due to the vertical profile of the sound veloc-
ity in Eq. (2), because the distances between the source
and the receiving elements are small.1 It can be
assumed that Eq. (2) describes the actual transfer coef-
ficients as a function of distance, frequency, etc., to a
sufficient accuracy, unlike the case of the long-range
propagation of sound in a shallow sea, in which the
interference structure of the field is difficult to predict
(see, e.g., [9]).

Although the comparison method, which uses
Eqs. (1) and (2), allows one to obtain the transfer coef-
ficients of all hydrophones as a function of not only the
hydrophone index but also frequency, it has a signifi-
cant drawback when applied to an array operating in a
shallow sea: it is sensitive to a possible mismatch
between the parameters used in Eq. (2) and their true
values (this refers in particular to various geometric
parameters, such as depths, distances, etc.) and to a dis-
agreement between model (2) and real conditions.
Therefore, it is reasonable first to assume that the trans-
fer coefficients of the receiving elements weakly
depend on frequency (which is usually valid in prac-
tice) and to develop a procedure that will be capable of
determining the average transfer coefficients in a cer-
tain frequency band, as well as the profile of the
antenna array and the position of an element relative to
the antenna. After that, Eqs. (1) and (2) can be used to
refine the frequency dependence of the transfer coeffi-
cients.

1 Nevertheless, if the vertical profile of the sound velocity c(z) is
known, it may partially be taken into account by characterizing
each ray in Eq. (2) by its particular averaged sound velocity.
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Fig. 1. Geometry of the experiment.
The appropriate measurement procedure can be as
follows. At a distance of ~0.2 to 0.5 of the sea depth H
from the array, an acoustic source is placed. The source
is stepped in frequency with a fixed step size ∆f in the
range from fb to fe. Each mth frequency fm is transmitted
during a time interval sufficiently long for the narrow-
band filtering. A reference hydrophone is placed at a
small known distance rref from the source (at a different
depth), as shown in Fig. 1.

With the above assumption that the transfer coeffi-
cients of the receiving elements are weakly dependent
on frequency, we construct the output Un, m of the nar-
row-band filter versus the indexes of the receiving ele-
ment, n, and of frequency, m, and normalize the func-
tion by the output Uref, m of the reference hydrophone in
order to compensate for the irregularity of the fre-

quency characteristic of the source:2  =
Un, m/Uref, m. Further, we calculate the Fourier transform
Yn, k:

(3)

which turns the frequency dependences of the output
signals into time samples taken at the moments tk =
k∆t – rref/c, where ∆t = (Jf∆)–1 and f∆ = fe – fb. Formula (3)
actually synthesizes a pulse with the waveform
exp(2πifavt)sinc(πf∆t), where fav = ( fb + fe)/2. Next, we
apply a time window to select the entries of the array
Yn, k produced by the direct signal. We use the delay

time  of the direct signal to calculate the distances

 = c  + rref between the source and each nth
hydrophone. Subsequently, we calculate the magni-
tudes |Kn| of the transfer coefficients from Eq. (1) with

the maximum  =  taken as the ratio

|Un/Uref| at each n, and |Gn/Gref| = rref / ; here, one
should take into account that the signals are normalized
by the output of the reference hydrophone. Clearly, the
result represents the transfer coefficients averaged over
the frequency range from fb, to fe.

To reconstruct the three-dimensional profile of the

array, in addition to , one should use at least one

more set of distances, for example,  (associated
with rays reflected from the surface). Consider the Car-
tesian coordinate system (x, y, z) with the z axis looking
downward and passing through the source, the y axis
directed from the source to the nearest array element,

2 Although the signals reflected from the surface and bottom will
contribute to Uref, m less than Un, m, because the reference hydro-
phone is close to the source, the reverberation component should
be preliminarily suppressed, for example, by smoothing the fre-
quency dependences of the amplitude and phase of Uref, m in
order to increase the accuracy.
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Yn k,
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-------–
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and the origin residing at the surface. Then, the source
has the coordinates (0, 0, zs), where zs is the depth of the
source, which we consider to be known. The array pro-
file will be characterized by the coordinates of its ele-
ments, (xn , yn , zn), n = 1, …, N. For example, for an
ideal horizontal array with elements uniformly spaced
a distance d apart, we have xn = (n – n0 + ν)d, yn = y0,
and zn = z0, where z0 is the array depth, y0 is the horizon-
tal distance between the source and the line passing
through the array elements, n0 is the index of the ele-
ment that is closest to the source, and the parameter ν
allows for the fact that the perpendicular, dropped from
the source to the line that carries the array elements,
may intersect it between the hydrophones (|ν| ≤ 0.5).
Using the evident relationships

(4)

we find zn = (  – )/4zs and ρn. To find xn and
yn, one can use the recurrent procedure for calculating
the node coordinates of a polygonal line with a given
distance d between the nodes, which can be derived
from simple geometrical considerations:

(5)

where

The procedure begins with the index n = n0 and the

coordinates  = –νd and  = . The
parameter ν is calculated by minimizing the differences
between the determined values of yn(ν) and a constant.
Note that this procedure is very sensitive to even small

random errors in each of the distances . Therefore,
prior to using it, one should smooth the experimental

 and  as a function of the index n.

It can often be assumed that the profile of horizontal
arrays with neutral buoyancy differs from a straight line
mostly in the vertical plane and that it can be approxi-
mated by a catenary curve

(6)

where the parameters A, B, and C are to be estimated.
They can be determined along with the unknown posi-
tion of the source relative to the array in the horizontal
plane by minimizing the rms deviation between the

rn
1( ) ρn

2 zn zs–( )2+ , rn
2( ) ρn

2 zn zs+( )2+ ,= =

ρn
2 xn

2 yn
2,+=

rn
2( )( )2

rn
1( )( )2

xn 1+
1

ρn
2

----- xnan 1+
2 ynbn 1+

2+( ),=

yn 1+ ρn 1+
2 xn 1+

2– ,=

an 1+
2 1

2
--- ρn 1+

2 ρn
2 zn 1+ zn–( )2 d2–+ +( ),=

bn 1+
2 ρn 1+ ρn( )2 an 1+

4– .=

xn0
yn0

ρn0

2 νd( )2–

rn
1 2,( )

rn
1( ) rn

2( )

zn A
xn B–

A
--------------cosh C,+=
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
experimental distances , l = 1, 2, … and the dis-
tances calculated from Eq. (6).

As we noted above, the frequency dependences of
the transfer coefficients Kn can be refined through sub-
stituting the estimates xn , yn , and zn obtained at the fre-
quencies fb, …, fe into Eqs. (1) and (2). Note that, unlike
the above procedures for estimating the average trans-
fer coefficients and the array profile, the procedure for
calculating the frequency dependences of the transfer
coefficients is more sensitive to the model of the
medium.

The technique described above was used to recon-
struct the parameters of 64-element linear hydroacous-
tic arrays with elements spaced a distance d = 0.19 m
apart (with a total length of ~12 m) deployed in the ver-
tical or horizontal position in a lake. The arrays had the
form of piezoceramic hydrophones with preamplifiers
built in a cable. The cable was attached with foam plas-
tic fasteners to an aluminum pipe 0.05 m in diameter in
order to impart a certain rigidity to the system (the array
as a whole, had almost neutral buoyancy). The experi-
ments were carried out in the Sankhar lake (Vladimir
oblast) in 1997–1999. At the place where the arrays
were deployed, the depth was ~15 m and the bottom
(sand covered with silt) was sufficiently flat. The exper-
iments differed mostly in the array arrangement (hori-
zontal or vertical) and in the technique used to attach
the array to the pipe (in size and number of foam plastic
fasteners).

In compliance with the above reconstruction proce-
dure, a wideband acoustic source was placed at a dis-
tance of several meters from the array and an 8101 B&K
hydrophone with a known transfer coefficient was
placed 1 m above it. The source depth was chosen so as
to provide the maximal path-length difference between
the direct ray and the first-order reflections from the
surface and bottom. The source was either a ring piezo-
ceramic transmitter with a ~0.5-kHz bandwidth or a
second 8101 B&K hydrophone operated in the reversed
mode.3 The frequency was stepped within a range of
~1 to 3 kHz.

Figure 2 presents Yn, k calculated with procedure (3)
for the horizontal and vertical array arrangements. Both
plots clearly show the arrival times of the direct rays (1)
and of the rays arrived after one reflection from the sur-
face (2). The first-order bottom reflection (3) is less pro-
nounced, because the bottom reflection coefficient was
rather small. Note that, for the horizontal array, the
lines corresponding to different rays are almost paral-
lel, whereas, for the vertical array, the lines associated
with the surface and bottom rays always intersect.

The amplitude and phase of the frequency-averaged
transfer coefficients for two different antenna arrays are
given in Fig. 3. Each panel displays the results of three

3 The piezoceramic transmitter was not omnidirectional: in the ver-
tical direction, its radiation level was higher than in the horizontal
direction. This effect was taken into account in the calculations.
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Fig. 2. Amplitude of the received signal on the delay time–hydrophone index plane for the (a) horizontal and (b) vertical antennas:
(1) the direct ray and the first-order (2) surface and (3) bottom reflections.
independent measurements performed with different
positions of the source and the reference hydrophone
relative to the same antenna array. The spread in the
results represents an error associated primarily with
inaccurate calculation of the acoustic field transmission
coefficients (see below). The results of reconstructing
an improper arrangement of the receiving array are
shown in Fig. 3b: the amplitude and phase of the trans-
fer coefficients exhibit relatively strong periodic (with
a period of 3 hydrophones) variations, because, in this
experiment, we attached the antenna to the metal pipe
with larger fasteners applied at three-element intervals
(also refer to Fig. 2b). This effect was removed later on.

The error in reconstructing the transfer coefficients
by the above technique depends on many factors. For
example, the contributions made by the error in the
transfer coefficient of the reference hydrophone and the
error in the distance between the source and the refer-
ence hydrophone to the overall error can easily be cal-
culated. Most specific of this technique is the error
associated with incomplete suppression of all spurious
rays when extracting the direct signal, in particular,
because the frequency range of the stepped-frequency
signal is finite (terms determined by the sidelobe level
of the synthesized pulse for the surface, bottom, and

other reflected rays are added to ). This error
component was studied by numerical simulations. As
an example, we consider a horizontal array of length
D = H, where H is the sea depth at the array location.
Figure 4 shows the element-averaged rms error in the
transfer coefficients versus the dimensionless fre-
quency range ξ = f∆D/c (the antenna length in terms of
spatial resolution elements) for different source depths
zs (the horizontal distance between the source posi-

Yn
max( )
tioned opposite to the central element and the array, as
well as the antenna depth, were 0.5H). As can be seen
from Fig. 4, the accuracy of reconstructing the transfer
coefficients on average improves with increasing fre-
quency range, and the optimal source depth for this
arrangement is H/2. In this case, the surface and bottom
rays are at the maximal distance from the direct one.
When the source moves towards the surface or bottom,
the surface or bottom ray, respectively, moves closer to
the direct one and its sidelobes introduce a higher error
into the results of calibration. As follows from Fig. 4,
for a moderate frequency range of the stepped-fre-
quency signal (ξ = 10–20), the error is no higher than
5–10%.

Generally speaking, the effect of the sidelobes can
be reduced by using Fourier transform (3) with a win-
dow, for example, the cosine one. However, it was
shown that the use of these windows in processing real
data produces almost no effect on the noise level in Yn, k,
because it is determined not only by the sidelobe level,
but also by the limited applicability of model (2) in real
conditions. On the other hand, the window decreases
the time resolution, and, therefore, the use of such win-
dows for calculating the transfer coefficients is usually
unreasonable.

The total experimental error can be estimated by
comparing the transfer coefficients calculated for the
same antenna hydrophones with different source posi-
tions. These estimates obtained from the results similar
to those plotted in Fig. 3a show that the error is about
10–15%. This value is greater than that obtained from
simulations primarily due to the phase component (the
amplitude error is almost the same as that given by sim-
ulations).
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Fig. 3. Amplitude and phase of the transfer coefficients of the antenna arrays hydrophones for (a) horizontal and (b) vertical anten-
nas. Each panel presents the plots obtained for three different source positions with the same array arrangement.
Figure 5 displays the results of reconstructing the
profiles of horizontal arrays for two installation tech-
niques: (a) with the help of two wires under tension
directed at an angle and buoys creating the tensile
stress, as shown in Fig. 1, and (b) by attaching the pipe
to a Π-shaped vertical frame. The experimental esti-

mates of the distances  and  were smoothed with
second-order splines with one matching point, after
which procedure (5) was used. Clearly, the profile
reconstruction accuracy is determined only by the accu-
racy of the acoustic measurements of the distance, this
accuracy being proportional to the spatial resolution
∆r = c/f∆ (in the experiment, ∆r = 0.75 m). Since Eqs. (5)
represent a nonlinear algorithm, the profile reconstruc-
tion accuracy as a function of the distance error was
determined by numerical simulations. The errors were
generated as independent random variables with equal
standard deviations σr . For the array and source
arrangement used in the experiment, we obtained that,
when σr is within 0.05–0.3 m, the rms profile recon-
struction error is within 0.02–0.1 m; i.e., it is compara-
ble with the rms distance error (the maximal deviations
of the reconstructed profile from the true one were
higher than the rms error by a factor of 2.3–2.6).4 The
experimental rms distance error was estimated from the
deviations of the experimental data from a smooth
approximating function; it was 0.03–0.09 m (i.e., 4–12%
of the spatial resolution) for different arrangements.

4 A small reconstruction error due to the approximation of the dis-
tance as a function of the element index was also taken into
account.
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Based on these estimates and on the estimates obtained
from simulations, we can assume that the profiles pre-
sented in Fig. 5 are reconstructed with an rms error of
0.03 m. The results of the profile reconstruction with
different positions of the source relative to the same
array confirmed this estimate.

Formula (2) was obtained for a homogeneous
medium bounded by a flat surface and a flat bottom. Its
applicability in real conditions can be estimated as fol-
lows. Since the frequency characteristic of the source is
sufficiently smooth, we approximate the frequency
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Fig. 4. Root-mean-square error in the calculated transfer
coefficients normalized by the true value versus the
dimensionless parameter ξ for the source depths (1) 0.2H,
(2) 0.5H, and (3) 0.8H, as obtained from the simulations.
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Fig. 5. Experimentally reconstructed three-dimensional array profiles for two array arrangements.
dependence of the signal received by the reference
hydrophone with a smoothing function and divide the
received signal by this smooth frequency dependence.
Clearly, the result can be compared with calculations
from Eq. (2). Figure 6 shows the result of such a com-
parison for the reference hydrophone (Fig. 6a) and for
one of the antenna hydrophones (Fig. 6b). It can be seen
that, for the reference hydrophone, model (2) provides
a sufficiently good description of the received signal:
the experimental positions of the interference maxi-
mums and minimums and the depth of the interference-
related amplitude variations of the received signal are
in good agreement with the model. In the case of the
array hydrophone, the accuracy of the model is lower,
presumably, because the distance from the source to the
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Fig. 6. Amplitude of the received signal normalized by the
frequency dependence obtained by the spline approxima-
tion of the received signal (the black curves) and the simu-
lated signal (the gray curves) for (a) the reference hydro-
phone and (b) one of the array hydrophones (no. 30).
hydrophone is much longer than that to the reference
hydrophone, which results in an increase in the effect of
interference on the received signal and causes much
greater errors in the reconstruction of the geometrical
parameters. Errors in the low-order spline approxima-
tion of the frequency characteristics of the source and
the hydrophone can also affect the accuracy of the
result. Figure 6 illustrates the error in the reconstructed
frequency characteristic of an individual hydrophone.
Clearly, this error can be reduced by averaging the fre-
quency dependence of the transfer coefficients over all
hydrophones.

The above experimental results were obtained with
12-m-long arrays operated in the frequency range of
~0.3 to 3.0 kHz at a test site with a depth of ~15 m.
Clearly, due to the similitude principle and to the corre-
spondence between the lake and sea conditions [10],
similar results can be obtained for appropriately scaled
low-frequency hydroacoustic arrays at frequencies
from tens to hundreds of hertzs in a shallow sea at a
depth of 100–300 m.

Thus, in this paper, we described an integrated tech-
nique for reconstructing the parameters of receiving
hydroacoustic linear antenna arrays after they are
deployed: the transfer coefficients of individual receiv-
ing elements, the profile of the array, and its position
relative to the surface and the bottom. The technique
can also be used to answer an important practical ques-
tion concerning the applicability of the model that rep-
resents a shallow sea as a homogeneous medium
bounded by a flat surface and a flat bottom in real con-
ditions. The efficiency of the technique for the diagnos-
tics of receiving hydroacoustic antennas is confirmed
experimentally.
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Abstract—The properties of an acoustic object represented by a multichannel long line of the flexural type
are considered. Analytical formulas are obtained for the basic acoustic characteristics of a multichannel long
line with an arbitrary number of flexurally oscillating single lines constituting it: the input impedance, the
resonance frequencies, and the reflection and transmission coefficients are determined for an insulating mul-
tichannel long line, including the case of a cascade connection. Numerical calculations are performed and
the plots are presented for the frequency dependences of the reflection and transmission coefficients for var-
ious parameters of the constituting lines. It is demonstrated that the acoustic characteristics of insulating mul-
tichannel long lines have certain advantages in comparison with the characteristics of similar objects based
on single lines. © 2001 MAIK “Nauka/Interperiodica”.
The problem of absorption and insulation of sound
and vibration remains important from both theoretical
and practical points of view. Lately, the so-called active
methods have become popular in this field of acoustics
[1–7]. However, traditional methods of absorption and
insulation of waves continue to develop (see [8] for
example). One of such methods is described in a previ-
ous paper [9], which is devoted to the study of the char-
acteristics of a new acoustic object, namely, a so-called
multichannel long line for longitudinal waves.

This paper develops the method of multichannel
long lines for flexural waves. As in the previous paper
[9], we calculate the acoustic characteristics of multi-
channel long lines of the flexural type: the resonance
frequencies, the input impedance, and the reflection
and transmission coefficients for a flexural wave.

We assume that a multichannel long line of the flex-
ural type consists of single long lines in the form of flat
rods (strips) parallel to each other, which perform flex-
ural oscillations with the frequency ω. We characterize
1063-7710/01/4705- $21.00 © 20618
each single line by the following parameters: the length
l equal for all lines, the rod mass per its unit width mj =
ρjhj (it is assumed that the latter is much smaller then
the flexural wavelength), the density ρj, the thickness hj,

the flexural rigidity Bj = Ej /12, and the Young modu-
lus Ej, where j = 1–N is the rod number.

The considered model of a multichannel long line
presumes that the left ends of all lines (x = 0) are con-
nected to each other, as well as their right ends (x = l)
(see Fig. 1a). The connections are provided by weight-
less and undeformable plates in such a way that the
transverse displacements wj of each end are the same
for all lines and the values of  are equal to zero.

The latter condition can be provided by a large value
of the flexural rigidity of the multichannel long line,
which, in turn, can be achieved by setting the single
lines at a sufficient distance from the center line of the
multichannel long line.

h j
3

w j'
(a) (b)

F0 Z0

x = 0 x = l

j
D0

R0

l

x = 0 x = l

j

Fig. 1. Illustration of the derivation of the equations for the acoustic characteristics of multichannel long lines.
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In accordance with the selected model, we assume
that the transverse displacements wj in each single
long line satisfy the equation for the flexural vibra-
tions of a rod

(1)

the solution to which can be selected in the form

(2)

In Eqs. (1) and (2),  =  and kj is the wave num-

ber of flexural waves in the jth line. The boundary con-
ditions can be written in the form

(3)

(4)

d4w j

dx4
----------- k j

4w j– 0,=

w j a j k jxcos b j k jcosh x c j k jxsin d j k jsinh x.+ + +=

k j
4 m jω

2

B j

------------

w j 0( ) w0, w j l( ) wl,= =

w j' 0( ) w j' l( ) 0,= =
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(5)

where w0, wl and F0, Fl are the unknown displacements
and intersecting forces. Substituting the solution in the
form of Eq. (2) into the boundary conditions given by
Eqs. (3) and (4), we obtain (after simple transforma-
tions) the values of the unknown coefficients aj , bj , cj ,
and dj:

(6‡)

(6b)

(6c)

Here, we introduced the notations

F j 0( )
j 1=

N

∑ F0+ 0, F j l( ) Fl+
j 1=

N

∑ 0,= =

a j b j–
1

2∆ j

-------- T jw0 S jwl–( ),= =

c j
1

2∆ j
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–– w0 C jwl+( ),=

d j
1

2∆ j
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+w0 C jwl+( ).=
∆ j 1 ϕ jcosh ϕ j;cos–=

T j ϕ j ϕ jsincosh ϕ j ϕ j; S jsinhcos+ ϕ jsinh ϕ j;sin+= =
Substituting Eqs. (6a)–(6c) into Eq. (2), it is possible
in principle to obtain the fields of flexural waves in any

G j
± 1 ϕ j ϕ jcoscosh ϕ j ϕ jsinsinh±( );–=

C j ϕ jcosh ϕ j; ϕ jcos– k jl.= =
single long line. To determine the effect of all lines
combined in a multichannel long line, it is necessary to
use the boundary conditions given by Eqs. (5). The
intersecting forces in each single line are determined by
the known formula
(7)
F j x( ) B j

d3w j

dx3
-----------–=

=  –B jk j
3 –a j k jxcos b j k jxcosh c j k jxsin d j k jxsinh+ + +( ).
We introduce the parameters B0 and k0 of a “compar-
ison” line and the dimensionless quantities

for convenience of further consideration. Here,  are
the corresponding velocities of flexural waves. Taking
into account Eqs. (6), the expressions for Fj(0) and Fj(l)
can be represented in the form

(8‡)

(8b)

Substituting Eqs. (8) into Eqs. (5), we obtain

ψ j

B jk j
3

B0k0
3

-----------
m jcf

j

m0cf
0

-----------,= =

cf
j 0,

F j 0( )
B0k0

3
-------------

ψ j

∆ j

----- T jw0 S jwl–( );=

F j l( )
B0k0

3
------------

ψ j

∆ j

----- S jw0 T jwl–( ).=
(9‡)

(9b)

Here, Zik are the dimensionless impedances, which
have the values

(10)

We note that all formulas given above are obtained
under the assumption that all rods are of the same

F0

B0k0
3

----------- f 0 Z11w0 Z12wl;+= =

Fl

B0k0
3

----------- f l Z21w0 Z22wl.+= =

Z11 Z22–
ψ j

∆ j

-----T j;
j 1=

N

∑–= =

Z12 Z21–
ψ j

∆ j

-----S j.
j 1=

N

∑= =
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width. However, the variability of their widths can pro-
vide an opportunity to vary the values of ψj and, there-
fore, the impedances given by Eq. (10) in a wide range.
In this case, we have

Equations (9) and (10) are initial for the determina-
tion of the basic acoustic characteristics of multichan-
nel long lines of the flexural type.

Let us determine the input impedance of a multi-

channel long line. By definition, Zin =  is the input

impedance and Z0 =  is the impedance of the multi-

channel long line load. We note that the impedances
given above are scalar quantities due to the specific
boundary conditions, whereas, in the general case of
flexural vibrations, they have a matrix character. Equa-
tions (9) can be represented in the form

Taking into account Eqs. (10), we obtain from the
above formulas:

(11)

We should note that Eq. (11) coincides in its form
with the expression for the input impedance of a multi-
channel long line of the longitudinal type [10], but dif-
fers from it in the values of the impedances Zik. It is pos-
sible to determine the resonance frequencies from the
conditions Zin = 0 and Zin = ∞ (under the condition Z0 =
0) and the antiresonance frequencies from the relations
Z11 = ±Z12 and Z11 = 0.

Now, let us consider such acoustic characteristics of
multichannel long lines as the coefficients of reflection
and transmission of a flexural wave. The model selected
for the calculation is given in Fig. 1b. A single long line
is connected to a multichannel long line on the left and
on the right. We describe the parameters of this line, B0
and k0, by the index j = 0. (Physically, it can pass
through the multichannel line and be one of the compo-
nents of the latter.) A harmonic wave of unit amplitude
propagates along this line:

This wave produces two waves reflected from the sys-
tem: one homogeneous wave and one inhomogeneous
wave decreasing in amplitude as x  –∞:

ψ j

B jk j
3H j

B0k0
3H0

------------------
m jH jcf

j

m0H0cf
0

------------------.= =

f 0

w0
------

f l

wl

-----

Z in Z11 Z12

wl

w0
------,+=

Z0 Z21

w0

wl

------ Z22.+=

Z in Z11

Z12
2

Z11 Z0+
-------------------.–=

w ik0x( ).exp=

w1 R ik0x–( )exp G k0x( ).exp+=
The transmission through a multichannel long line is
accompanied by the formation of similar waves at its
output:

Here, R and D are the desired coefficients of reflection
and transmission of the flexural wave.

Using the boundary conditions (Eqs. (4) and (5)),
which are also valid for the reflected and transmitted
waves, we can obtain the relations for the displace-
ments

where D1 = Dexp(ikl), as well as relations for the inter-
secting forces and the impedance Z0: 

Using these relations, it is easy to obtain the expres-
sions for the reflection and transmission coefficients

(12)

(13)

Here, Z1 = 1 + i and the quantities Zin, Z11, and Z12 are
determined by Eqs. (10) and (11). It is evident that, in
the absence of losses, |R|2 + |D1|2 = 1.

It is interesting to consider a cascade connection (in
series) of several multichannel long lines with different
sets of single long lines. In this case, the latter can be
described by the parameters and functions with two
indices, for example:

and so on. Here, j = 1–N(n) and n is the number in the
sequence of multichannel long lines (they are counted
from the side of the transmitted wave).

A recurrent sequence for the quantities  can be
obtained from Eq. (11):

(14)

where, evidently,  = Z0. The expression for the
reflection coefficient R(n) is obtained from Eq. (12) by

replacing Zin by :

(15)

w2 D ik0 x l–( )[ ]exp E k0 x l–( )–[ ] .exp+=

w0 1 i+( )R 1 i–( ); wl+ 1 i+( )D1,= =

f 0 2i 1 R–( ); f l 2iD1; Z0 1 i.+= = =

R
iZ in Z1+
Z in Z1+
--------------------;=

D1

2Z12

Z in Z1+( ) Z11 Z0+( )
------------------------------------------------.–=

ϕ j
n( )

k j
n( )ln,=

T j
n( ) ϕ j

n( ) ϕ j
n( )

sincosh ϕ j
n( ) ϕ j

n( ),sinhcos+=

Z11
n( ) ψ j

n( )

∆ j
n( )---------T j

n( )

j 1=

N

∑–=

Z in
n( )

Z in
n( )

Z11
n( ) Z12

2( ) n( )

Z11
n( ) Z in

n 1–( )
+

-----------------------------,–=

Z in
0( )

Z in
n( )

R n( ) iZ in
n( ) Z1+

Z in
n( )

Z1+
----------------------.=
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It is possible to obtain the expression for the trans-
mission coefficient D(n) by taking Eq. (9a) for the inter-
secting forces at the “left” ends of each of multichannel
long line:

…………………………

(The value of l1 corresponds to the “right” end of the
terminal multichannel long line.)

Dividing each of these equalities by the value of the
displacement at the left end of each of the multichannel
long lines and taking into account the relation w(k)(lk) =
w(k – 1)(lk), we obtain a system of equalities

…………………………

f n( ) 0( ) Z11
n( )

ln( )w n( ) 0( ) Z12
n( ) ln( )w n( ) ln( );+=

f n 1–( ) ln( ) Z11
n 1–( ) ln 1–( )w n 1–( ) ln( )=

+ Z12
n 1–( ) ln 1–( )w n 1–( ) ln 1–( );

f 1( ) l2( ) Z11
1( ) l1( )w 1( ) l2( ) Z12

1( ) l1( )w 1( ) l1( ).+=

Z in
n( ) Z11

n( )
ln( ) Z12

n( )
ln( )

w n 1–( ) ln( )
w n( ) 0( )

-----------------------;+=

Z in
n 1–( ) Z11

n 1–( )
ln 1–( ) Z12

n 1–( )
ln 1–( )

w n 1–( ) ln 1–( )
w n 1–( ) ln( )

-----------------------------;+=

Z in
1( )

Z11
1( )

l1( ) Z12
1( )

l1( )
w 1( ) l1( )

w
1( )

l2( )
------------------.+=

R

D
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l/λ 0

Fig. 2. Absolute values of the reflection R and transmis-
sion D coefficients for a single-channel insulator with the
boundary conditions given by Eqs. (3)–(5).
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Determining the ratios of the displacements and per-
forming their multiplication, we obtain

(17)

Then, taking into account Eqs. (12), we obtain the
equalities

(18)

where

 = 

Substituting Eqs. (18) into Eq. (17) and taking into
account Eq. (15), we obtain the final expression for the

transmission coefficient :

(19)

One can easily see that, with allowance for Eq. (11), at
n = 1, Eq. (19) transforms to Eq. (13). It is necessary to
note that, deriving Eq. (19), we used the same technique
as in the book by Brekhovskikh [10].

In Figures 2–4, we give illustrative examples of the
characteristics of multichannel long lines of the flexural
type, which were calculated by Eqs. (12) and (13). Fig-
ure 2 presents the frequency dependences of the abso-
lute values of the reflection and transmission coeffi-
cients (R and D, respectively) for a single line of the
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Z in
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k( ) lk( )–

Z12
k( ) lk( )

--------------------------------.
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∏=
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n( ),=

w n( ) 0( ) 1 i+( )R n( ) 1 i–( ),+=

D1
n( ) D n( ) ik0 lk

k 1=

n

∑ 
 
 

.exp

D1
n( )

D1
n( ) 2
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Z1+
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k( )

Z11
k( ) lk( )–

Z12
k( )

lk( )
--------------------------------.

k 1=
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∏=

0 0.4 0.8 1.2 1.6 2.0
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D

Fig. 3. Same as in Fig. 2 for a two-channel long line:
(a) h1 = h2 = 2h0 and (b) h1 = h2 = 3h0.
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flexural type with the same parameters as the initial line
(Fig. 1b). In this case, the conditions given by Eqs. (3)–
(5) are set at the line ends. We note that such a model is
artificial, since it is impossible to implement these con-
ditions for a single line in practice, but this figure dem-
onstrates a specific result caused by them. The specific-
ity consists in the fact that, at k0l = 2πl/λ0  0, the
given quantities R and D tend not to zero and unity,
respectively, which is characteristic of single long lines,
but to the value 0.707. When the frequency increases,
we observe their common changes due to the interfer-
ence.

The same quantities for a two-channel line with the
thickness of the rods constituting it h1 = h2 = 2h0, where
h0 is the thickness of the initial line, are given in Fig. 3a.
Figure 3b presents the similar data for h1 = h2 = 3h0.
One can see from comparison of these figures and also
Fig. 2 that, as the thickness increases, the region of
large values of R (≈1) extends towards high frequencies
with a simultaneous decrease in the value of D.

It is possible to assume that the introduction of inter-
nal losses in multichannel long lines can improve their
frequency characteristics. Figures 4a and 4b present the

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

R

D

(b)

l/λ 0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

R

D

(‡)

Fig. 4. Same as in Fig. 2 for a two-channel long line with
internal losses η = 0.2: (a) h1 = h2 = h0 and (b) h1 = h2 = 2h0.
results for two-channel lines with the respective thick-
nesses h1 = h2 = h0 and h1 = h2 = 2h0. Internal losses in
the lines are characterized by the loss coefficient η
divided by the velocity of flexural waves: cfl = c0(1 –
iη). In both cases, we take the value η = 0.2. One can
see from Fig. 4 that the introduction of losses “stabi-
lizes” the value of R and causes a monotonic decrease
in the value of D.

The theoretical and calculated results presented
above demonstrate that, even in the case of two lines
constituting a multichannel long line, it is possible to
realize insulating multichannel long lines of the flexural
type that have much better acoustic characteristics than
analogous acoustic objects designed on the basis of sin-
gle flexural lines. Specific design parameters of multi-
channel long lines (in particular, their cascade connec-
tion) can be determined by the calculation according to
the given formulas, including the application of the
optimization techniques, depending on the specific pur-
poses.
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In the last few years, the construction of new
churches and cathedrals and the reconstruction of old
ones have become widespread in Russia. The most
prominent example is the reconstruction of the Cathe-
dral of Christ the Savior (CCS) in Moscow. This large
building can be divided into two parts. The first part, the
basement, is a new structure that contains the Council
Hall and the Transfiguration Church with a volume of
8380 m3. The acoustics of the latter was considered in
a special publication [1]. The second, upper, part
includes the reconstructed CCS, which is the object of
this study.

The CCS is a large cathedral with a volume of
88400 m3. It is built on the Greek-cross plan, with each

S

1

2

3

4

5

6
7

8

9 10

11

Symmetry axis

Fig. 1. Part of the cathedral plan with the points showing the
positions of the measuring microphone.
1063-7710/01/4705- $21.00 © 0623
of its four sides being about 36 m in length (Fig. 1). The
central section of the cathedral is covered by a dome
71 m in height. The history and architecture of the
cathedral are described in many publications (e.g., [2]).
The space-planning decision is schematically repre-
sented by the computer-simulated acoustic model
(Fig. 2). In planning the reconstruction of the cathedral,
the acoustical specialists had to find a design that would
reduce the reverberation time in the hall inside the
cathedral to the values providing an acceptable speech
intelligibility. Unfortunately, this problem was not
solved. The interior surfaces of the reconstructed room
were covered with the same materials as those used in
the previous cathedral (a stone floor; stone-covered

Fig. 2. Izometric representation of the CCS.
2001 MAIK “Nauka/Interperiodica”
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lower parts of the walls; and plastered surfaces of the
walls, arches, and the dome painted with frescoes).
Thus, the CCS should be considered as an example of a
large cathedral typical of the Russian architecture of the
nineteenth century rather than a building constructed
according to a modern architectural acoustic design.

The recent publication [3] devoted to the acoustics
of the CCS presents only the measured values of the
reverberation time (RT60), which is insufficient for an
objective evaluation of the sound quality in the cathe-
dral. The aim of our study is to determine speech intel-

Table 1.  Measured RASTI values

Point number
(the microphone 

position)

Measurement conditions

with sound
reinforcement

system off

with sound
reinforcement

system on

1 0.57 0.44

2 0.26 0.51

3 0.24 0.49

4 0.24 0.48

5 0.36 0.44

6 0.26 0.43

7 0.24 0.47

8 0.24 0.45

9 0.27

10 0.30

11 Less than 0.20 0.30
ligibility in the CCS. The measurements were per-
formed when the room was empty. To determine the
speech intelligibility in natural conditions, we used
Bruel & Kjer equipment. A type 4225 source, which
simulated a human voice, was positioned before the
holy gates (point S in Fig. 1), and a type 4419 receiver
whose display showed the RASTI values was posi-
tioned sequentially at eleven different points of the
cathedral, which are also shown in Fig. 1. The results
obtained after an appropriate averaging are presented in
the left column of Table 1.

To determine the speech intelligibility in the case of
the operation of the sound reinforcement system, a
microphone was installed in front of the type 4225
source. The signal from the microphone output was
supplied to the input of the system and, after an electric
amplification, was transmitted by the acoustic systems.
The hall was equipped with two acoustic systems pro-
duced by the DURAN company. Each system consisted
of a linear set of active radiators. The loudness levels of
the signal corresponded to the levels received in the
case of the sound reinforcement of a church service.
The measurements with the use of a type 4419 receiver
were performed at the same eleven points in the same
conditions. In addition, the RASTI values were mea-
sured for a test signal in the form of maximal-length
sequences (MLS) generated by the SIA SMAART PRO
program, which was fully installed on a computer with
a professional (24 bit) VX pocket sound card (produced
by the Digigram company). From the sound outputs of
the card, the signal was supplied to the two acoustic
systems installed in the hall. The measuring micro-
phone was placed in turn at the same eleven points of
–60
0 1000 1500 2000 2500 3000 t, ms500

–48

–36

–24

–12
dB

500 Hz

Fig. 3. Example of the impulse response of the room with the microphone placed at the point M2. The 500-Hz octave band.
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Table 2.  Values of the reverberation time measured in empty cathedrals (in seconds)

No. Room
Octave band frequencies, Hz

125 250 500 1000 2000 4000

1 Upper church of the CCS (V = 88400 m3) 9.6 9.1 8.7 8.3 7.2 4.2

2 Isaac Cathedral (V = 75400 m3) 8.3 8.1 7.9 7.4 6.5 4.9

3 Kazan Cathedral (V = 40000 m3) 6.7 6.3 5.9 5.1 4.5 4.0

4 Trinity-Izmailovo Cathedral (V = 52000 m3) 7.0 6.6 5.9 5.0 4.5 3.5
the hall, and the signal from the microphone output was
amplified and supplied to the input of the sound card,
after which it was processed by the program. As a
result, we calculated the RASTI values, the main
acoustic parameters of the room (RT60, C80, and C50),
and the structures of the sound reflections. It should be
noted that both aforementioned methods of intelligibil-
ity measurements performed with the sound reinforce-
ment system turned on provided practically identical
results within admissible error. These results are pre-
sented in the right column of Table 1. The RT60 values
averaged over the room are shown in row no. 1 of
Table 2. Figure 3 presents a typical example of the
impulse response of the cathedral.

Analyzing the results obtained from this study in
comparison with the results of acoustic measurements
performed earlier by M. Lannie and A. Chesnokov in
the three largest cathedrals of St. Petersburg, we arrive
at the following conclusions:

(1) Large Orthodox cathedrals with volumes greater
than 40000 m3 are characterized by a very long rever-
beration time, which tends to increase with increasing
volume (see Table 2). The RT60 values far exceed the
values that were recommended for Orthodox churches
in [4] and included in the standard documentation [5].
The calculations show that, even when the cathedrals
are full of people, the RT60 values taken at medium fre-
quencies exceed 3 s. Such a situation is also character-
istic of large churches of other confessions [6, 7].

(2) An acceptable speech intelligibility is observed
only in the immediate vicinity of the priest or the cho-
rus. At a distance of more than 10–12 m from the
source, the speech intelligibility becomes unacceptable
(RASTI < 0.35).

(3) When no special acoustic measures are taken to
reduce the reverberation time, an acceptable speech
intelligibility can be achieved only with the use of care-
fully designed sound amplification systems. The sys-
tem installed in the CCS is a good example of using
acoustic systems with narrow beams in the vertical
ACOUSTICAL PHYSICS      Vol. 47      No. 5      2001
plane. From Table 1, it follows that, even in the empty
room, this system provides an acceptable intelligibility.
An exception is the gallery zone (points 9–11 in Fig. 1),
which is not insonified.

(4) In designing new Orthodox churches, is neces-
sary to take special measures (which are known from
practical acoustics) to reduce the reverberation time.
This is important not only for large cathedrals such as
the one considered above, but also for smaller churches
with volumes of 5000–12000 m3 [4]. An exception can
be some of the space-planning solutions characteristic
of Russian church architecture. In particular, in tent-
shaped churches, when the horizontal dimensions of
the room are much smaller than the height, an accept-
able intelligibility (RASTI > 0.5) is obtained with rela-
tively high RT60 values, such as ~3–4 s [8].
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It is well known that flexural waves excited in a plate
can be insulated by attaching resonators to it [1–7]. The
simplest resonator has the form of a spring with a load
[8–10]. Such a resonator positioned normally to the
plate and connected to it by a spring causes an intense
scattering of flexural waves propagating in the plate.
The problem of the scattering of flexural waves by a
single resonator with dissipation was solved earlier
[11]. The scattering cross-section of a single resonator
without dissipation is equal to 2λ/π, where λ is the flex-
ural wavelength. An effective means for insulating flex-
ural waves in rods and plates are the waveguide insula-
tors [3–6]. A waveguide insulator mounted on a plate is
made in the form of an array of identical resonators
fixed to the plate at small distances from each other. It
is of interest to consider the problem of the scattering of
a flexural plane wave propagating in a plate from a
chain of resonators for any chain period in the case of
an oblique incidence. Below, this problem is solved and
it is shown that, when the period of the chain is less than

, where θ is the angle of incidence, the flexural

wave is totally reflected from the chain.

Let a plate lie in the xy plane and identical resona-
tors be attached to it at the points lying along the x axis:
x = xs ≡ sL, where s = 0, ±1, ±2, … . Each resonator has
a mass m and an elastic coefficient κ(1 – iε), where ε is
the dissipation factor. From the plate y > 0, a harmonic
flexural wave is incident on the resonators. The wave is
characterized by the displacement

(1)

where  and  are the projections of the wave vec-
tor of the incident wave on the x and y axes, respec-
tively; A is the wave amplitude; and ω is the circular
frequency. The wave causes the excitation of the reso-
nators, and the latter generate the field w(1)(x, y, t). The
total field w in the plate is equal to w(0) + w(1). We denote
the displacement of the load belonging to the resonator
of number s (and attached to the plate at the point (xs, 0))

λ
1 θsin+
--------------------

w 0( ) x y t, ,( ) A i kx
0x ky

0y– ωt–( )[ ] ,exp=

kx
0 ky

0–
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by (t). The equation of motion for this load has the
form

(2)

where the force Fs is determined by the formula

(3)

The equation for the plate connected with the reso-
nators can be represented in the form

(4)

where ρ and G are the surface density and the flexural
rigidity of the plate, respectively; ∆ is the Laplace oper-
ator; and δ(y) is the delta-function. Since the incident
wave w(0) is a free wave, the quantity w on the left-hand
side of Eq. (4) can be replaced by w(1).

The structure of the scattered field is determined by
the period of the scattering array (chain) of resonators,

and the quantity w(1)(x, y, t)exp(–i x) is a function
periodic in x with the period L. Then, in the presence of
the incident wave given by Eq. (1), the force Fs(t) can
be represented as

(5)

where F is the force amplitude at s = 0. The equation
describing the forced harmonic vibrations of the plate
can be recast as follows:

(6)

where k =  is the wave number of the flexural

wave.
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We seek the solution to Eq. (6) in the form of a Fou-
rier series

(7)

Substituting this series into Eq. (6) and applying the
inverse Fourier transform, we obtain an ordinary differ-
ential equation in un(y):

(8)

where  =  + n. Its solution has the form

where  = ; the upper and lower signs cor-
respond to y > 0 and y < 0, respectively.

Substituting un(y) in Eq. (7), we obtain an expres-
sion for w(1):

(9)

Here, the first term in the braces represents a homoge-

neous plane wave for  < k and an inhomogeneous

plane wave for  > k; the second term always repre-
sents an inhomogeneous wave.

We select the amplitude of the force F so as to sat-
isfy Eq. (3). According to Eq. (2), the displacement of
the load will be expressed as

(10)

Substituting Eqs. (1), (9), and (10) into Eq. (3), we
derive the desired force amplitude

(11)
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where

(12)

We determine the scattered field from Eq. (9) by
substituting the quantity F into it. The resonance scat-
tering occurs at the frequencies determined by the
equation

At a resonance frequency, the amplitude of the nth scat-
tered uniform spectrum (of a scattered homogeneous
plane wave) is equal to

(13)

where

(14)

the prime means that the summation is performed over

all s at which  is real. The amplitude of the transmit-
ted flexural wave is equal to (A + A0).

When the period of the chain is smaller than

, where θ =  is the angle of the wave

incidence and λ = , only the zero spectra are uni-

form in the scattered field (9). Then, from Eqs. (13) and
(14), we derive the relations

and the amplitude of the transmitted flexural wave is

approximately equal to ε k2GL A. In the absence of

dissipative loss in the resonators (ε = 0), the incident
wave (1) is totally reflected from the chain of resona-
tors.

When the period of the chain is greater than λ(1 +
sinθ)–1, the scattered field (9) contains nonzero homo-
geneous spectra. Then, the chain of resonators will be
unable to provide an effective reflection of flexural
waves.
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Pressure fluctuations that occur in a turbulent
boundary layer as a result of the nonlinear interactions
between the eddy field components are the object of
many theoretical and experimental studies (see, e.g.,
the review [1] and papers [2, 3]). At the same time, the
mechanism of the linear transformation of vortex waves
to longitudinal ones on a rigid or elastic wall is rather
poorly understood. This paper continues our previous
study [4] and considers the relation between the pres-
sure fluctuations and the shear (viscous) stresses on the
wall.

To describe the pressure field in a turbulent bound-
ary layer, we use the Lighthill equation

(1)

At the boundary, because of the adhesion condition, the
nonlinear terms on the right-hand side can be consid-
ered as negligibly small, as compared to the linear vis-
cous terms. Then, on the right-hand side of Eq. (1), we
first take into account only the linear term that describes
the shear viscosity:

(2)

where µ is the viscosity coefficient. One can easily see
that, for the shear (eddy) component of the velocity
field in which the turbulent energy is concentrated away
from the wall, the right-hand side of Eq. (1) is identi-
cally equal to zero, because the condition

(3)

is satisfied. Hence, in a turbulent flow, the right-hand
side of Eq. (1) is absent and, therefore, no generation of
pressure fluctuations by viscous stresses takes place.
Here, it should be noted that we consider a homoge-
neous liquid. If the viscous parameter µ(r) is inhomo-
geneous along the liquid flow, the above statement fails.
However, the situation is different near the wall,
because the reflection of the shear component from the

1
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∂2
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∂v k 2
3
---δik xs∂
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 – σik,–= =

xi∂
∂v i 0.=
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wall leads to the generation of the longitudinal compo-
nent of the velocity field U(xi , t) [4].

Using Green’s function for a free space, we obtain
an expression for the Fourier component p(ω, xi):

(4)

(5)

The zero value of the right-hand side of Eq. (4) is a
result of the combined contributions of the surface and
volume integrals.

Now, in the surface integral in Eq. (4), we consider

the contribution of the component , which corre-
sponds to the longitudinal field component [5]:

(6)

(ζ is the second viscosity). The pressure fluctuations

generated by the components of the viscous tensor 
are described by the expression

(7)

Here, the integration is performed over the wall plane.

The components of the velocity tensor can be
expressed in terms of the scalar potential

(8)
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Then, we have [5]

(9)

The relation between the pressure fluctuations and the
potential ϕ is determined from the Navier–Stokes equa-
tion:

(10)

From Eq. (10) and the continuity equation

(11)

we obtain the wave equation for longitudinal waves in
a viscous medium

(12)

Here, the operator is 

(13)

The relation of the Fourier transform to the correspond-
ing quantities at the wall is determined by the Kirchhoff
formula [6]:

(14)

The derivatives in Eq. (14) are taken along the normal
to the flow. It should be noted that, when an infinite
plane wall represents a single boundary of the flow,
Eq. (14) is replaced by a simpler expression

(15)

At the boundary z = 0, the resulting component of the
velocity vector, which is the sum of the shear incident
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v i and reflected wi components and the longitudinal
component ui, is zero:

(16)

In addition, the following equations are satisfied [5]:

(17)

for shear (viscous) waves and

(18)

for longitudinal waves.
We express all velocity components at the boundary

through the horizontal component of the incident shear
wave by using Eqs. (16)–(18):

(19)

Now, it is easy to relate the fluctuations of shear stresses
on the wall to the potential ϕ:

(20)

Using Eqs. (2), (6), (9), (10), (18), and (19), we derive

(21)

Combining all three components of σxz according to
Eq. (20), we obtain

(22)

Using Eq. (22), we can determine the pressure fluctua-
tions generated by the shear stresses arising on the wall
in a turbulent boundary layer:

(23)

Relationship (23) expresses the pressure fluctuations
directly and exclusively through the tangential stresses
on the wall, and the correlation structure of these
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stresses can be measured in the experiment (see [7]).
Thus, the relation between the pressure fluctuations in
a turbulent boundary layer and the fluctuations of the
tangential stresses has now become more evident, as
compared to previous publications (see e.g. [8]).

The expressions obtained above can be easily gener-
alized to the case of the incidence of a plane wave at an
arbitrary angle φ to the Cartesian coordinate system in
the XY plane. For this purpose, we apply the following
substitutions:

(24)

The relation between the spectral intensity of the wall
pressure fluctuations and the spectral intensity of the
components of the viscous stress tensor follows from
Eq. (23):

(25)

Here, the quantities σiz are determined according to
Eqs. (20)–(23).

We note that viscous stresses also occur at a compli-
ant boundary, e.g., when the boundary is represented by
an elastic plate. In this case, the flexural and longitudi-
nal vibrations of the plate are determined by the set of
the components of the viscous stress tensor σiz, accord-
ing to the right-hand sides of Eqs. (14) from our previ-
ous publication [9]:

(26)

Here, ν is the Poisson ratio. Relationships (26) refer to
the Fourier components of the longitudinal U and trans-
verse W displacements of the plate. In this case, the
right-hand sides of Eqs. (16) should involve the quanti-
ties iωU for the horizontal components of the velocity
field and iωW for the vertical ones.
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All quantities derived above can also be determined
in the case of the elastic wall by using Eqs. (26). In par-
ticular, the amplitude of the wall pressure fluctuations
will have the form

(27)

If we subject the elastic wall to additional external

stresses,  and , so as to make the numerator of
Eq. (27) equal to zero, the corresponding Fourier com-
ponent of the pressure fluctuations p(ω, k) will also
become zero. If the stresses satisfy the conditions

the longitudinal and transverse vibrations of the elas-
tic wall, U and W, will be zero for the same component
(ω, k).

Obviously, the possibility of such a compensation in
a given frequency band requires special analysis.
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