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Abstract—The field formed by the second harmonics in the case of the nonlinear scattering of interacting plane
acoustic waves by a rigid cylinder is considered. The method of successive approximations is used to obtain the
solutions to the inhomogeneous wave equation in the first and second approximations. Asymptotic expressions
are derived for the components of the total acoustic pressure of the second harmonics, and the scattering dia-
grams for these components are presented. © 2001 MAIK “Nauka/Interperiodica”.
The problem of nonlinear scattering of acoustic
waves by bodies of regular geometric shape is a refer-
ence problem in the theory of nonlinear interaction of
sound waves. This problem was studied in [1, 2]. The
use of parametric radiators in studying the scattering of
sound by discrete inhomogeneities of the water medium
at the difference frequency was considered in [3]. The
field of the second harmonic in the case of scattering of
focused ultrasound by a straight edge was studied both
theoretically and experimentally in [4]. The problem on
the nonlinear scattering of interacting plane acoustic
waves by spherical bodies was considered in [5, 6]. The
secondary field of the difference-frequency wave
caused by the nonlinear scattering of interacting acous-
tic waves by a cylinder was studied in [7]. The field of
the second harmonics of the initial waves is of special
interest, because it covers the geometric scattering
region and can supplement the information obtained
from a received signal.

This paper presents a study of the field of the second
harmonics formed in the case of the scattering of inter-
acting plane acoustic waves by a rigid cylinder. Let us
consider the propagation of high-frequency plane
waves in a homogeneous medium and assume that their
velocity potentials are

where ψn0 is the amplitude of the velocity potential
function; n = 1 and 2 for the waves with the frequencies
ω1 and ω2, respectively; kn is the wave number; and ϕ =
π corresponds to the propagation direction of the inci-
dent wave.

The geometry of the problem is presented in Fig. 1.
The axis of the cylinder of infinite length coincides with
the z axis of the cylindrical coordinate system. Plane
waves are incident on the cylinder normally to the z
axis. The scattering of the plane waves by the cylinder

ψni ψn0 i ωnt knr ϕcos+( )[ ] ,exp=
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gives rise to scattered cylindrical waves with the veloc-
ity potential

where (knr) is the mth-order Hankel cylindrical

function of the second kind and  is determined by
the boundary conditions; in our case, the cylinder is
perfectly rigid and satisfies the Neumann boundary
conditions

where Jm(kna) is the mth-order Bessel cylindrical func-
tion and a is the cylinder radius.

To proceed with the transformations, we expand the
plane waves in cylindrical functions [8]:

where l is the number of cylindrical functions and

εl = 

Then, the velocity potential function of the total pri-
mary acoustic field ψn will have the form
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Fig. 1. Geometry of the problem.
To solve the problem on the interaction of the pri-
mary high-frequency waves, Eq. (1) is represented with
a complex conjugate part [9]:

where  and  are the magnitude and phase of the

Hankel cylindrical function (knr) = –i exp(–i ).

The total primary field of acoustic pressure will
then consist of the fields with two frequencies ω1
and ω2:

(2)

where  = εlJl(knr)coslϕ and  = cosmϕ.
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This scattering problem can be solved using the
inhomogeneous wave equation that describes the non-
linear processes in the primary field [10]:

(3)

where Q is the volume density of the sources of second-
ary waves, c0 is the sound velocity in the medium, ε is
the quadratic nonlinearity parameter, ρ0 is the density
of the unperturbed medium, and p(1) and p(2) are the
total acoustic pressures of the primary and secondary
fields.

This wave equation can be solved by the method of
successive approximations. In the first approximation,
the solution is represented by expression (2) for the
acoustic pressure of the primary field p(1). In the case of
the determination of the solution in the second approx-
imation p(2), the right-hand side of Eq. (3) will consist
of four frequency components: 2ω1, 2ω2, ω1 + ω2, and
ω2 – ω1 = Ω .

For the second harmonic 2ω1 of the pumping wave
ω1, the expression for the volume density of the sources
of secondary waves has the form

(4)
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To solve the inhomogeneous wave equation (3) with
the right-hand side given by Eq. (4) in the second
approximation, it is convenient to seek the solution in
the complex form [10]

(5)

With the use of Eq. (5), the inhomogeneous wave
equation (3) is reduced to the inhomogeneous Helm-
holtz equation

(6)

where

and k2ω = 2k1 is the wave number of the second har-
monic 2ω1. Here and below, the time factor exp(i2ω1t)
is omitted.

The solution to the inhomogeneous Helmholtz
equation (6) has the form of a volume integral of the
product of the Green function by the density of the sec-
ondary wave sources [10, 11]:

(7)

where G(r1) = exp(–ik2ωr1)/r1 is the Green function.
In the far zone r' ! r, the Green function is deter-

mined by the asymptotic expression

where r is the distance to the observation point M(r, ϕ, z),
r', ϕ', and z' are the coordinates of the current point
M '(r', ϕ', z') of the volume; and r1 is the distance
between the current point of the volume M '(r', ϕ', z')
and the observation point M(r, ϕ, z) (Fig. 1).

The integration in Eq. (7) is performed over the
volume V occupied by the secondary wave sources.
In the cylindrical coordinates, this volume is
bounded by the relations a ≤ r' ≤ d, 0 ≤ ϕ ' ≤ π, and
−zλ ≤ z' ≤ zλ (zλ @ λ, λ is the initial high-frequency
wavelength) and has the form of a cylindrical layer of
the medium surrounding the scatterer and having the
inner radius a (the cylinder radius) and the outer radius
d (Fig. 1). The distance d is the length of the region of
nonlinear interaction between the initial high-fre-
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quency waves, and beyond this distance d, the initial
waves are assumed to completely attenuate.

The problem is considered in the high-frequency
limit, and, hence, after the integration with respect to
the coordinates ϕ' and z' with allowance for the asymp-
totic expansions of the Bessel function [12, 13], Eq. (7)
takes the form

(8)

where C2ω = –exp(–ik2ωr)K2ω/ .

As one can see from expression (8) for the total

acoustic pressure of the second harmonic , it con-
sists of three spatial components. It should be noted that
the expression for the acoustic pressure of the differ-
ence-frequency wave consists of four spatial compo-
nents [7], and, therefore, for the second harmonic, the
contribution of each spatial component is considerably

increased. The first component  of Eq. (8) corre-
sponds to the part of the acoustic pressure of the second
harmonic that is formed in the cylindrical layer of the
nonlinear interaction region by the incident high-fre-

quency plane wave ω1. The second component 
describes the interaction of the incident plane wave ω1
with the scattered cylindrical wave ω1. The third com-

ponent  corresponds to the self-action of the scat-
tered cylindrical wave ω1. It should be noted that the
nonlinear interaction occurs between the waves with
both identical and different wave front configurations.

To obtain the final expression for the acoustic pres-

sure of the second harmonic , we consider the first
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the nonlinear self-action of the incident high-frequency
plane wave:

(9)

Taking into account the expansion of the plane wave
in cylindrical functions [9] and performing some trigo-
nometric transformations [14], we represent Eq. (9) in
the form
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Fig. 2. Scattering diagram of the spatial component 

of the total acoustic pressure produced by the second har-
monic in the case of the scattering by a rigid cylinder for
2 f1 = 1520 kHz, k2ωa = 64, d = 0.17 m, and a = 0.01 m (d =
a + 0.5lD , lD = 0.31 m is the quasi-diffraction distance of the
scatterer, and the values of the second harmonic are selected
from the set of initial frequencies given in [7]).
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After the final integration in Eq. (9), the component

 takes the form

(10)

where

From Eq. (10), it follows that the scattering diagram

of the first component  of the total acoustic pres-
sure produced by the second harmonic of the incident
wave is determined by the behavior of the functions
1/(cosϕ ± 1). The scattering diagram of the component

 is shown in Fig. 2. It characterizes the geometric
scattering, since the scattering of the second harmonics
is of purely geometric character k2ωa @ 1. This diagram
is symmetric with respect to the angle ϕ = π/2 and has
the major maximums in the directions ϕ = 0 and π, which
is a result of the effect of the functions 1/(cosϕ ± 1).

To test the result obtained for the problem under

study, we consider the component  in the case
when the cylinder radius tends to zero (i.e., the scatterer
is absent) and the region of nonlinear interaction is
transformed from the cylindrical layer to a full cylinder
of radius d:

(11)

where (k2ω(cosϕ + 1)d) is a zero-order Hankel
cylindrical function of the first kind. Expression (11)
characterizes a diverging cylindrical wave with some
amplitude coefficient that depends on the angle ϕ [15].
This confirms the physical meaning of this spatial com-
ponent of the total acoustic pressure.

Now, we consider the second component of the total

acoustic pressure of the second harmonic , which
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characterizes the interaction of the incident plane wave
with the scattered cylindrical wave:

(12)

After similar transformations with allowance for the
asymptotic values of the Hankel functions [8, 14] and
after integration, Eq. (12) takes the form

(13)

where

An analysis of Eq. (13) shows that the effect of the
function 1/(cosϕ + 1) is dominant for the scattering dia-

gram of the component . The scattering diagram
is presented in Fig. 3. It has a single major maximum in
the direction ϕ = π and very small lateral maximums,
which are related to the behavior of the function
1/cosϕ. The appearance of the major maximum in the
forward direction is caused by the coincidence of the
wave fronts of the incident plane wave and the scattered
cylindrical wave in this direction.
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component characterizes the self-action of the scattered
cylindrical wave and has the form
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After some transformations and the final integration

[14, 16], the expression for the component  takes
the form

where erfi(x) = dt is the probability inte-

gral with complex argument [14].
The scattering diagram of the third component

 is shown in Fig. 4. Its form is determined by the
behavior of the function 1/cos2ϕ, which results in the
appearance of the major maxim in the directions ϕ =
±ϕ/2 without any additional levels.

Figure 5 presents the scattering diagrams of the total

acoustic pressure of the second harmonic . From
these diagrams, one can see that they have major max-
imums in the directions ϕ = 0, ±π/2, and π, which cor-
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Fig. 3. Scattering diagram of the spatial component 

of the total acoustic pressure of the second harmonic for
2 f1 = 1520 kHz, k2ωa = 64, d = 0.17 m, and a = 0.01 m.

P2ω II
2( )



638 ABBASOV
–90°

+90°

180°0°
1.01.0

1.0

0.5

0.5

1.0

0.5 0.5

|P2ω
(2)

 ΙΙΙ | × const

–90°

+90°

180°0°

1.0

0.5

1.0

1.00.51.0 0.5

0.5

|P2ω
(2)| 10–2 × const

Fig. 4. Scattering diagram of the spatial component

 of the total acoustic pressure of the second har-

monic for 2 f1 = 1520 kHz, k2ωa = 64, d = 0.17 m, and a =
0.01 m.
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Fig. 5. Scattering diagrams of the total acoustic pressure of

the second harmonic  in the case of scattering by a

rigid cylinder for 2f1 = (1) 1520 and (2) 1952 kHz, k2ωa =
(1) 64 and (2) 82, a = 0.01 m, and d = (1, —) 0.17, (1, ••• )
3.21, (2, —) 0.2, and (2, ••• ) 4.1 m.

P2ω
2( )
respond to the directions of the minimal phase differ-
ences between the nonlinearly interacting initial
high-frequency waves. An increase in the wave size
of the cylindrical scatterer leads to insignificant
changes in the scattering diagram because of the geo-
metric character of the scattering process. An increase
in the width of the cylindrical volume around the
scatterer leads to a narrowing of the major maxi-
mums, which is characteristic of parametric antennas,
because the dimensions of the reradiating volume
become increased.

It should be noted that, because of the different spatial
configurations of the wave fronts of the initial interacting
waves, the contributions of individual spatial compo-
nents to the total scattering field become unequal. There-

fore, the effect of the spatial component  on the
total acoustic pressure field proves to be insignificant,
since the interaction is of a counter character.

On the whole, one can conclude that the theoretical
model under consideration provides a sufficiently
detailed description of the physical processes that
accompany the scattering of nonlinearly interacting
plane acoustic waves by a rigid cylinder.

ACKNOWLEDGMENTS

I am grateful to N.P. Zagraœ for supervising this
study.

REFERENCES

1. J. C. Piquette and A. L. van Buren, J. Acoust. Soc. Am.
76, 880 (1984).

2. L. M. Lyamshev and P. V. Sakov, Akust. Zh. 38, 100
(1992) [Sov. Phys. Acoust. 38, 51 (1992)].

3. P. A. Chinnery, V. E. Humphrey, and J. Zhang, J. Acoust.
Soc. Am. 101, 2571 (1997).

4. S. Shigemi and K. Jung-Soon, Jpn. J. Appl. Phys., Part 1
38 (5B), 3085 (1999).

5. I. B. Abbasov and N. P. Zagraœ, Akust. Zh. 40, 535 (1994)
[Acoust. Phys. 40, 473 (1994)].

6. I. B. Abbasov and N. P. Zagrai, J. Sound Vibr. 216, 194
(1998).

7. I. B. Abbasov and N. P. Zagraœ, Akust. Zh. 45, 590 (1999)
[Acoust. Phys. 45, 523 (1999)].

8. L. F. Lependin, Acoustics (Vysshaya Shkola, Moscow,
1978).

9. L. K. Zarembo and V. I. Timoshenko, Nonlinear Acous-
tics (Mosk. Gos. Univ., Moscow, 1984).

10. B. K. Novikov, O. V. Rudenko, and V. I. Timoshenko,
Nonlinear Underwater Acoustics (Sudostroenie, Lenin-

P2ω II
2( )
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001



STUDY OF THE SECOND HARMONICS IN NONLINEAR SCATTERING 639
grad, 1981; Acoustical Society of America, New York,
1987).

11. L. W. Dean, J. Acoust. Soc. Am. 34, 1039 (1962).

12. Handbook of Mathematical Functions, Ed. by M. Abra-
mowitz and I. A. Stegun (Dover, New York, 1971;
Nauka, Moscow, 1979).

13. E. Skudrzyk, The Foundations of Acoustics. Basic Math-
ematics and Basic Acoustics (Springer, New York, 1971;
Mir, Moscow, 1976), Vol. 2.
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
14. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,
Integrals and Series. Elementary Functions (Nauka,
Moscow, 1981).

15. E. P. Shenderov, Wave Problems in Hydroacoustics
(Sudostroenie, Leningrad, 1972).

16. H. B. Dwight, Tables of Integrals and Other Mathemat-
ical Data, 4th ed. (Macmillan, London, 1961; Nauka,
Moscow, 1983).

Translated by E. Golyamina



  

Acoustical Physics, Vol. 47, No. 6, 2001, pp. 640–643. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 47, No. 6, 2001, pp. 732–735.
Original Russian Text Copyright © 2001 by Averbakh, Artel’ny

 

œ

 

, Bogolyubov, Dolinin, Zaslavski

 

œ

 

, Maryshev, Postoenko, Talanov.

                
Application of a Mobile Seismoacoustic System
for Studying Geological Structure and Prospecting

for Inhomogeneities to a Depth of 100 m
V. S. Averbakh, V. V. Artel’nyœ, B. N. Bogolyubov, 
D. V. Dolinin, Yu. M. Zaslavskiœ, A. P. Maryshev,

Yu. K. Postoenko, and V. I. Talanov
Institute of Applied Physics, Russian Academy of Sciences,

ul. Ul’yanova 46, Nizhni Novgorod, 603155 Russia
e-mail: zaslav@hydro.appl.sci-nnov.ru

Received October 2, 2000

Abstract—The results of a practical evaluation of a mobile seismoacoustic system intended for the search for
underground engineering structures and their imaging are presented. The system was designed at the Institute
of Applied Physics of the Russian Academy of Sciences and consists of an electrodynamic radiator of seismoa-
coustic waves that operates in the frequency range 200–800 Hz, an array of receivers, and a computer-based con-
trol unit. The signal is controlled digitally, which allows the system to store up to 103 realizations. The signal is
received by high-sensitivity seismic sensors, amplified by low-noise amplifiers, supplied to a 16-channel A/D con-
verter, and displayed on the computer monitor. The system was used in a field experiment to determine the loca-
tion of an antilandslide drainage adit. © 2001 MAIK “Nauka/Interperiodica”.
This paper presents the results of the field experi-
ments carried out to evaluate the 3D imaging of
underground engineering structures by using a spe-
cial-purpose mobile high-frequency seismoacoustic
system designed and manufactured at the Institute of
Applied Physics of the Russian Academy of Sciences
in 1999 and intended for active sounding under the
ground surface. Seismic monitoring and imaging of
inhomogeneities in the uppermost subsurface layers
of the ground is quite an urgent problem, which was
addressed repeatedly using various approaches and
physical fields [1]. The most burning problem is that
of imaging for the depths from a few meters to several
tens of meters. At these depths, the medium is char-
acterized by a high friability, instability, and even
strong variability of its structure. These factors,
together with the high content of underground water
at these depths, determine the most unfavorable prop-
agation conditions due to high coefficients of attenu-
ation of elastic seismoacoustic fields. Therefore, in
solving routine problems of geophysical prospecting,
the presence of such regions is taken into account by
introducing the corresponding corrections in the cal-
culations. At greater depths, the structure of the
ground medium in the direction of the horizontal
coordinates is characterized by a much smaller vari-
ability and, as a consequence, the developed geo-
physical methods and the facilities available in prac-
tice make it possible, as a rule, to trace only smooth
1063-7710/01/4706- $21.00 © 20640
changes in the subsurface structure. The imaging of
local inhomogeneities located in the upper part of the
profile is currently carried out in rare cases by con-
ventional methods of surveying with the use of min-
iature explosion sources and with seismic braids
repeatedly repositioned on the ground surface. The
repeated repositioning makes it possible to provide
the incoherent storage of signals with the use of
explosion sources.

In our case, the sounding of an antilandslide drain-
age adit located in the ground thickness was carried
out by using a special-purpose mobile high-frequency
seismic system generating a coherent seismoacoustic
illuminating field. The high stability of the generated
seismic field allows one to use all the advantages of
modern means and methods of signal processing in
application to signals scattered by inhomogeneities.
Among the most efficient methods is the method of
focusing the fields received by one- and two-dimen-
sional arrays, which makes it possible to obtain high-
resolution images of a given volume of the ground
medium potentially containing a local inhomogeneity.

The field experiment was carried out in a bank
region near the Volga slope, where the ground surface
makes an angle of 30° with the horizontal and the soil
has the tendency to landslide. As a consequence, in the
lower part of the slope, in the built-up area, drainage
adits are present. The length of an adit is several hun-
001 MAIK “Nauka/Interperiodica”
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dred meters, and its cross section has the form of a trap-
ezoid slightly narrowed at the top with a height of 1.8 m
and a lower base width of 1.2 m. The interior of the adit
is faced with concrete tiles. Thus, the problem of the
seismic imaging of the adit is additionally complicated
by the character of the geological structure in the exper-
imental area. It should be noted that seismoacoustic
monitoring of regions including landslide hazard zones
is a complicated technical problem, and many attempts
were made to solve it by using pulsed sounding tech-
niques [2–5].

The receiving–transmitting part of the system was
installed above the entrance to the adit (see the sche-
matic view of the experiment in Fig. 1). The vertical
distance from the nearest point of the linear chain of the
receiving antenna to the level of the adit ceiling was
3.5  m. The antenna array consisted of an eight-channel
chain of geophones–accelerometers. The output of the
preamplifier of every geophone was connected to the
corresponding input of an eight-channel A/D converter.
The receiving aperture was synthesized by the four suc-
cessive lengthwise displacements of the eight-chan-
nel antenna, i.e., it consisted of 32 points of measure-
ment. The realization of such an antenna consisting of
32 points of measurement with a step of 0.5 m was pos-
sible only due to the high coherence of the generated
field. The reconstructed projection of the line of adit on
the inclined ground surface passed through the geomet-
ric center of the synthesized aperture. The signal source
was a vibrator with a vertical polarization of a variable
force action. The source was installed at a leveled hori-
zontal site (0.3 × 0.3 m). The site was 1 m away from
the line of the receiving antenna and displaced from the
aperture center by 2 m to the left. The source excited
signals of a complex form in the frequency range 100–
1000 Hz with an adjustable force, the maximal value of
which was 250 N.

The recording and controlling instruments con-
nected with the receivers and the source by cables was
installed in a vehicle located near the entrance to the
adit. The dynamic range of measurement, i.e., the dif-
ference in the levels of the maximal linear signal and
the electron noise relative to the input of the amplifier,
was 100 dB. The recorded signals were stored by a
PC-Note Book (Pentium 150).

Below, we consider only the results of sounding by
pulsed tone signals, although the control equipment and
the electromechanical unit make it possible to generate
signals of various forms. In the described experiment,
as the driving signals, we used short sequences consist-
ing of three periods of the carrier frequency equal to
300 Hz. The quality of the reproduction of these signals
by the mechanical unit was monitored by an accelerom-
eter mounted vertically on the operating plate of the
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
source, and this plate was in contact with the ground.
The signal from this accelerometer was transmitted by
an auxiliary channel and was also stored in the com-
puter memory.

The experiments were preceded by preliminary
measurements aimed at evaluating the attenuation of
the desired signal along the path of the primary beam to
determine the necessary amplification of the input
channel. These measurements showed that, at a fre-
quency of about 300 Hz and at a distance of 4 m, the
primary beam attenuated in level by 50 dB. Such a
strong decrease in level due to the high dissipative loss
is evidence of the friability of the soil in the landslide
zone, which is confirmed below by the low values of the
propagation velocities of the corresponding seismoa-
coustic waves [2, 5].

Figure 2 shows the general pattern of the wave field
recorded by the antenna array. This pattern reveals the
presence of weakly pronounced (against the noise
background) equiphase axes corresponding to the
arrival of some regularly excited surface waves at the
receiver chain. Initially, these are the waves propagat-
ing through the air (with a velocity of 340 m/s), which
are recorded by the four or five geophones nearest to
the source. Then, it is possible to distinguish two more
equiphase axes corresponding to “pure” seismic
waves: the Rayleigh wave (with a velocity of 200 m/s)
and the wave refracted by a deeper boundary (with a
velocity of 500 m/s), which are recorded by the sen-
sors lying at the points away from the aperture center.
Due to the attenuation, the level of signals received by
the sensors away from the aperture center is much
lower than the level of signals received at the center.
As a result, the actual aperture decreases to 16 m,

3.5 m

Fig. 1. Position of the receiving–transmitting system in the
experiment on seismoacoustic sounding of an adit in the
region of the Volga slope.
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eight meters on both sides of the center of the
antenna. It should be noted that the irregularities of
the microprofile of the surface and the variability of
the elastic parameters, i.e., the fluctuations of the acous-
tic characteristics at various points of the ground
medium near the surface, are quite considerable. As
a result, in the wave field presented in Fig. 2 with a
rather chaotic form, it is difficult to detect any regu-
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Fig. 2. Wave field recorded by a linear antenna array in the
sounding area.
lar distinctions between the upper and lower parts of
the pattern, although it was known beforehand that,
in the region of the left wing of the array (the lower
half of the figure), an artificial inhomogeneity would
be present.

By using the value of the propagation velocity of the
signal 200 m/s, we performed the procedure of focus-
ing at the region of the medium under the antenna at a
depth of about 20 m. The picture obtained in this case
is presented in Fig. 3, which shows the “image” of a
portion of a depth profile near the vertical cross section
of the adit. In Fig. 3a, the picture of the inhomogeneity
distribution corresponds to the focusing of pulsed tone
signals in the frequency band with a central frequency
of 300 Hz, and in Fig. 3b, with a central frequency of
400 Hz. Figure 3c displays the result of the multipli-
cation of the two aforementioned focusings. The last
procedure makes it possible to sharpen the outline of
the inhomogeneity, although within the area of focus-
ing it is easy to see that, in addition to the main spot
corresponding to the location of the adit, some side
spots are observed because of the interference of the
incident wave field and the wave field scattered by the
obstacle.

Thus, on the basis of the experiments on seismic
sounding by a mobile receiving–transmitting system,
it is possible to conclude that the imaging of local
inhomogeneities at high frequencies of the seismic
survey range can be realized in practice. The created
system accomplishes all stages of sounding, including
the algorithmic procedures of processing the recorded
signal and displaying the results in the form of a
–1.5

–2

–2.5

–3.5

–4.5

–5.5
–1 0 1 2

DF_300

(a)

–2 –1 0 1 2
DF_400

(b)

–2 –1 0 1 2
DF_å

(c)

Fig. 3. Picture representing the distribution of the inhomogeneity (the vertical profile); the picture is obtained by focusing at the adit
region: at a frequency of (a) 300 and (b) 400 Hz and (c) the product of the above two focusings.
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brightness picture corresponding to the spatial distribu-
tion of the physical parameters of the ground medium.
In the future, we plan to modify the system so as to
enhance the efficiency of its application.
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Abstract—The transverse stability and the amplitude variations of soliton-like wave motions in the presence
of nonlinearity, dispersion, diffraction, and dissipation in the medium are studied. The wave process is
described by a quintic nonlinear evolution equation. It is demonstrated that the stability of the solution does not
depend on the dissipation when the dissipation, diffraction, and dispersion are of the same order of magnitude.
It depends on the sign of the ratio of the diffraction and dispersion coefficients. When the sign is positive, the
soliton is stable. This result coincides with the stability condition for a nonlinear modulation wave. For the case
of strong dissipation, an expression describing the soliton amplitude is obtained and the dissipation is shown to
have no effect on the soliton stability. © 2001 MAIK “Nauka/Interperiodica”.
Several papers [1–4] studying waves in the media,
where nonlinearity, dispersion, diffraction, and dissipa-
tion exist simultaneously, appeared in the recent years.
Examples of such media are soil, an absorbing medium
with cavities, a composite with piezoelectric properties,
a conducting nonsymmetric liquid with gas bubbles,
etc. A nonlinear evolution equation of the following
form is used to describe the waves studied in these
papers:

(1)

where ∆⊥  is the Laplacian with respect to the y and z

coordinates; τ = x  – t, cn is the linear normal velocity
of the wave; u is the perturbed particle velocity normal
to the wave; x is the Cartesian coordinate along which
the wave propagates; and L, p, E, D, and N are the dif-
fraction, nonlinear, dispersion, and dissipation coeffi-
cients, respectively.

A soliton solution was obtained in our previous
papers [2, 5], and Karpman and Maslov [6] obtained the
solution to the one-dimensional Korteveg-de-Vries–
Burgers equation. In the book [7], the Korteveg-de-Vries
equation with the right-hand side proportional to u is
solved. The absorption is artificially taken into account
in this way. A question about the stability of the soliton
solutions to transverse perturbations was formulated
for the first time by Kadomtsev and Petviashvili [8].
This problem was also solved by Zakharov [9] using
the method of an inverse problem. In the book [7] cited

∂2u
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above, a general approach was developed for solving
the problem of the transverse stability of solitons, and this
approach was applied to the Kadomtsev–Petviashvili
equation.

Below, we consider the transverse stability of soli-
tons for the complex dissipation laws given by Eq. (1).

Let us first discuss the problem of the stability of
soliton solutions to Eq. (1) on the assumption that the
diffraction and dissipative terms are small and are of the
same order of magnitude. Following [7], we introduce
the notation

(2)

where β is a constant small parameter characterizing
the deviation of the solution to a three-dimensional dis-
sipative evolution equation from a one-dimensional
nondissipative solution to the corresponding equation;
T is the slowly varying time; 4η2 is the propagation
velocity of a soliton; and, in this case, 2η2 is its ampli-
tude, as it will be demonstrated below. Using Eqs. (2),
Eq. (1) in the unknowns θ, T, y, and z can be repre-
sented in the form

(3)

v pu 6E( ) 1– , L 2E( ) 1– 3β2σ, σ 1,±= = =

x E 1– t, T βt, τ∂
∂θ

1,
t∂

∂θ
4η2,–= = = =

DE 1– β2κ , NE 1– β2ξ ,= =

θ∂
∂ –4η2

θ∂
∂v

6v θ∂
∂v ∂3v

∂θ3
---------+ + 

 

=  –β ∂2v
∂T∂θ
------------- 3β2σ∆⊥ v– κβ2∂3v

∂θ3
--------- β2ξ∂5v

∂θ5
---------.+ +
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We try a solution to Eq. (3) in the form

. (4)

Substituting Eq. (4) into Eq. (3) in the zeroth order, we
obtain

(5)

Equation (5) has the soliton solution of the following
type [7]:

(6)

where θ0 is a certain additional phase that characterizes
small transverse and dissipative perturbations and is to
be determined. One can easily see that, in the case of
the selected orders of Eqs. (2), we can assume η to be
constant [7, 8].

From Eq. (3), in the orders of β and β2, we obtain

(7)

By virtue of Eq. (6), we can write the expressions for F1
and F2:

(8)

(9)

We introduce the operator L* conjugate to L and
assume that L*(v 0) = –L0(v 0) = 0. It is possible to dem-
onstrate that the expression v 0L(v n) – v nL*(v 0) is the
derivative with respect to θ of a certain function con-
taining the products of v 0, v n, and their derivatives [7].
Then, assuming that v n are finite at infinity, we obtain
the following conditions:

(10)

(11)

As shown in [7], a solution to Eq. (7) at n = 1 has the
form

(12)
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Taking into account that only even functions of θ2 con-
tribute to Eq. (11), because

we can substitute in Eq. (9)

Then, after partial integration, the condition given by
Eq. (11) yields

(13)

where

Taking into account Eq. (6) for f0, f1, and f2, we obtain

(14)

Using the expression

we represent Eq. (13) in the form

(15)

Since θ0–θ1 does not depend on time T, it does not affect
the stability. Dependence of θ0 on the transverse coor-
dinates leads to only a phase shift for both Eq. (6) and
Eq. (12). From Eq. (15), one can judge the soliton sta-
bility. At σ = 1, this equation is of a hyperbolic type and
θ1 is finite, which corresponds to a stable soliton, i.e., to
a small initial perturbation of the zeroth solution causes
a small variation of the solution at a given moment. At
σ = –1, Eq. (15) is of elliptical type, i.e., when T 
∞, we have θ1  ∞, and the soliton solution [Eqs. (6)
and (12)] is unstable. A stability condition follows from
Eqs. (2):

(16)

The physical meaning of Eq. (16) is that the transverse
stability of a soliton in the presence of dissipation is
determined by the sign of the ratio of the coefficients of
diffraction L1 and dispersion E. It also follows from ine-
quality (16) that, in the presence of the orders given by
Eq. (2), the dissipation does not affect the transverse
stability of a soliton. It is interesting to note that
Eq. (16) coincides with the stability condition for mod-
ulation waves [3] in the adiabatic approximation.
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In the case of a conducting liquid with gas bubbles
in a magnetic field that is close in its direction to the
wave normal, condition (16) has the form [3]

(17)

where a1 is the Alfven velocity.
Now, let us consider the absorption that is assumed

to be strong compared to diffraction. The two last
equalities in Eqs. (2) for this absorption have the form

(18)

In this case, Eq. (3) takes the form

(19)

Equations (4)–(6) stay valid, while in Eq. (7), we have
to assume that

(20)

(21)

By virtue of the new orders of dissipation [Eqs. (18)],
we consider η = η(T) as a variable. Then, taking into
account Eqs. (6), we obtain

(22)

Taking into account Eqs. (20), (22), and (14), from
Eq. (10), we derive the following equation for η:

(23)

In the case of a conducting but nonmicropolar liquid
with gas bubbles, we have ξ = 0. Then, from Eq. (23),
we obtain the solution

(24)

Expression (24) was obtained using a different tech-
nique by Karpman and Maslov [6]. Since, by virtue of
Eqs. (2), κT > 0 for the media under consideration, the
soliton amplitude decreases in space, in the course of
the soliton propagation, according to the law given by
Eq. (24).
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In a general case when ξ ≠ 0, a solution to Eq. (23)
has the form

(25)

This equation can be solved numerically. However, one
can see already from Eq. (23) that, when ξη2 < 7κ/20,
an attenuation of η takes place; i.e., for T  ∞, we
have η  0. At the same time, an approximate solu-
tion of Eq. (25) for small ξ/η shows that, for sufficiently
large values of η(0) and finite values of T, an increase
in the soliton amplitude is possible.

We try the solution to Eq. (7) at n = 1 in the form

, (26)

where v 2 is the solution to Eq. (7) for n = 1, when
only the first terms are taken on the right-hand side of
Eq. (20) and in Eqs. (22). In this case, v 2 has the form
of Eq. (12). The quantity q is a solution to the equation

(27)

The operator L(q) is given by the left-hand side of Eq. (7)
at n = 1 by the substitution of q for v 1. The quantity µ
can be obtained from Eqs. (22) and (23) and is
expressed as

To determine the contribution of v 2 to Eqs. (11) and
(21) according to the fact that a nonzero contribution to
Eq. (11) is made by only the even terms of ∂v 2/∂T, we
obtain
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Following [7], we introduce y1 = θ2. Then,
from Eq. (27), we obtain the following equation for q:

(29)

The solution to Eq. (29) for the case ξ = 0, which is
true for a wide class of media (e.g., a conducting sym-
metric mixture), has the form

(30)

The contribution of q to Eqs. (11) and (21) gives

(31)

Now, the equation for θ0 takes the form

(32)

The expression for q2 is not given here because of its
awkwardness, especially as this quantity does not affect
the stability, because it does not depend on θ2. This fact
was revealed in the derivation of Eqs. (15) and (13).

The quantity χ in Eq. (32) has the form

(33)

The integral P has a numerical value of –0.33. How-
ever, the term added to Eq. (33) on this account is

smaller than , and, as one can see from Eq. (33),

the condition χκ–1 > 0 still holds.

As in the derivation of Eq. (15), we assume that
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We obtain the following relation for θ1:

(34)

At σ = –1, Eq. (34) is of elliptical type, which leads to
the instability of the solution at constant η [12].

Let us show that this is also true for η determined by
Eq. (24).

We recast Eq. (34) using the substitution

where  +  = k2. In this case, Eq. (34) is reduced to
the equation

(35)

where a = , b = χ2ση–2(0), X1 = 1 +

χTη2(0), and

(36)

Since β > 0 and D > 0, we have κE > 0 also for large
values of x; moreover, x > 0 and TE–1 > 0 by virtue of
Eqs. (2). Therefore, we obtain X1 > 0, and it is large.

A solution to the equation for b > 0 has the form [13]

(37)

where Zν is the Bessel function and ν = |1 – a|.
The asymptotics of Eq. (37) at X1  ∞ with b > 0

is as follows [14]:

(38)

Thus, for b > 0 or σ = 1 and a > 1/2, when X1 
∞, we have A  0, and the solution is stable. It is pos-
sible to demonstrate that, according to Eq. (36), we
have a > 1/2 and, therefore, at σ = 1 a dissipative soliton
is stable. A nondissipative soliton at σ = 1 is also stable.
Therefore, the dissipation does not affect the transverse
stability.

In the case of b < 0 or σ = –1, one can see from
Eq. (37) that

(39)

i.e., A  ∞ when X1  ∞, and a dissipative soliton
is unstable, as well as a non-dissipative soliton.

It is necessary to note that condition (16) obtained in
this way from the condition σ = 1 agrees well with the
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condition of the transverse stability of modulation
waves [3, 10, 11]. The solutions in this paper also agree
with the results by Averkiou and Hamilton [15].

Thus, we arrive at the conclusion that the dissipation
does not affect the transverse stability of the soliton
determined by the solution of the quintic evolution
equations of the type of Eqs. (1) or (2) in the case of
both weak dissipation (when dissipation and diffraction
are of the same order of magnitude) and strong dissipa-
tion. The stability depends on the sign of the ratio of the
diffraction and dispersion coefficients, a soliton being
stable in the case of the positive sign. This result coin-
cides with the condition of the modulation stability of
nonlinear waves.

Above, we derived the expressions for the soliton
amplitude and the solution to the soliton-type equa-
tions, including the first-order ones. The soliton ampli-
tude proves to be weakly attenuating with time, and its
variations do not affect the transverse stability of the
soliton.

The term quadratic in the transverse coordinates that
is present in the additional phase does not affect the
transverse stability and leads only to a phase shift in the
first- and second-order solutions.
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Abstract—Derivation of a formula for double scanning, when a radiator and a receiver move independently
along parallel straight lines, is presented. Advantages of this technique are discussed in comparison with the
method of projection in the spectral space, which is also used for a coherent reconstruction of a scatterer image.
The efficiency of the double scanning technique in suppressing the phantom images produced by transformed
and rescattered pulses is demonstrated in a numerical experiment. © 2001 MAIK “Nauka/Interperiodica”.
Methods of ultrasonic flaw detection are widely
used in various industries for nondestructive testing of
equipment. The major shortcomings of the conven-
tional methods of ultrasonic flaw detection are a low
precision of the determination of defect size and the
problem of defect classification. Moreover, a conven-
tional testing does not guarantee the detection of the
most dangerous defects like cracks because of the com-
plex character of ultrasonic diffraction by them. This
results in unjustified strict standards of testing that are
adopted in various fields. Meanwhile, just the correct
information on the type of a defect and its size and posi-
tion determines the possibility of operation and the ser-
vice life of an object under test. To obtain high-resolu-
tion images of scatterers, various systems incorporating
a coherent processing of the measured echo-signals are
used in industry. For example, the Avgur 4.2 system is
used in Russia to test welds of pipelines at nuclear
power stations [1], and the Masera system by the Tech-
noatom company and the µ+ system by the Sonomatic
company are used for testing critical parts abroad.
Rather simple algorithms based on the solution of an
inverse scalar problem of scattering in the Born approx-
imation are used in such industrial systems to obtain the
images of scatterers [2, 3]. The SAFT technique [4, 5]
and the method of projection in the spectral space [6–8]
are examples of such algorithms. The practical realiza-
tion of the latter method is especially efficient owing to
the high rate of image generation from a set of echo-
signals measured in a combined mode, when both radi-
ation and reception of ultrasonic pulses is performed by
a single transducer.

The other side of the simplicity of the algorithms
used is the fact that sometimes the images of scatterers
have insufficiently high quality. The level of phantom
images formed by rescattered pulses and pulses result-
ing from the transformation of the wave types in the
1063-7710/01/4706- $21.00 © 20649
process of scattering by inhomogeneities is sufficiently
high. Moreover, it is not always possible to unambigu-
ously determine the scatterer shape, since the image of
only the part of its boundary is reconstructed that
reflects the pulses detected later in the reception region.
A separate scheme of echo-signal detection, when the
radiator is stationary and the detector moves, is used to
obtain additional information on the shape of a scatterer
[3]. In another case, the radiator and the detector move
synchronously along a receiving aperture [9]. In the
first case, it is necessary for an emitted wave to be plane
in order to reconstruct the scatterer images correctly.
Unfortunately, this condition cannot be satisfied in the
practice of ultrasonic testing. In the second case, the
data processing is conducted not in the spectral space
using the fast Fourier transform [4], but directly, and,
therefore, it is rather time consuming. We also note that
the increase in the signal-to-noise ratio achieved with
the use of a coherent system of the Avgur 4.2 type for
ultrasonic testing of austenitic materials is not large
enough [10].

A scheme of ultrasonic testing and processing of
measured echo-signals was proposed [11] with a radia-
tor and a receiver moving independently along parallel
straight lines; in this case, it is not necessary that the
radiated field be a plane-wave one. If the lines of
motion of the radiator and receiver are located on the
same side of the region where the scatterers are located
(Fig. 1), a reflection scheme is realized that is charac-
teristic of ultrasonic testing. If they are positioned on
different sides (the dashed line in Fig. 1), a transmission
scheme is realized that is characteristic of tomography.
Such a mode of echo-signal detection that is equivalent
to multiply repeated measurements in the separate
scheme we will call the mode of double scanning. Its
application can improve the quality of the reconstructed
image on account of a decrease in the amplitude of the
001 MAIK “Nauka/Interperiodica”
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phantom images produced by transformed and rescat-
tered pulses, because their coherent accumulation does
not occur in contrast to the singly reflected pulses [3].
It is possible to additionally increase the signal-to-noise
ratio in materials with a well-defined structure, where
the principal background noise is produced just by the
rescattered pulses. From the algorithmic point of view,
this approach is very convenient for a computer realiza-
tion, because it ideally suits the principles of spectral
projection and the technique of the fast Fourier trans-
form and does not need plane incident waves. Consid-
erable excessive information and an increase in the time
of echo-signal detection can be considered disadvan-
tages of the double scanning technique.

Further, we will discuss the derivation of a formula
for double scanning, when a radiator and a receiver
move independently along parallel straight lines. Let us
consider its advantages and disadvantages in compari-
son with the technique of projection in the spectral
space that is also used in the case of coherent recon-
struction of scatterer images. The efficiency of the
application of the double scanning technique for the
suppression of the phantom images caused by the trans-
formed and rescattered pulses is demonstrated numeri-
cally.

As is well known, the solution of the problem of dif-
fraction tomography in the Born approximation in the

case of the radiation at a single frequency k0 = ,

where λ0 is the wavelength at the frequency f0 in a
medium with the sound velocity c, is reduced to the
solution of the following equation:

where ΨS(r) is the scattered field, Ψi(r) is the irradia-
tion field, g(r/r0) is the Green function, ξ(r0) is the

2π
λ0
------

ΨS r( ) ξ r0( )Ψi r0( )g r/r0( )r0 r0,d

S

∫∫=

(xt, zt)

zt zr

S r0

r Region of detection R
for the reflection scheme

Region of detection R
for the transmission scheme

xt

xr

xr

x

z
(xr, zr)

Fig. 1. Scheme of the experiment in the double scanning
mode: measurement of the scattered field by using a radiator
and a receiver moving along a line independently of each
other.

ri
function characterizing the refractive inhomogeneity of
the medium, and S is the region of scatterers.

Let us consider a particular two-dimensional case
when the line xt (the line of radiator motion) is at the
distance zt from the origin of an absolute coordinate
system and the line xr (the line of receiver motion) is at
the distance zr from the center of the absolute coordi-
nate system, xz (Fig. 1). The scattered field is described
in the Born approximation by the expression

where H0(k0|r – r0|) is the zero-order Hankel function.
Let ΨS(r; xt , zt) be the scattered field and Ψi(r0; xt , zt)
be the irradiation field at the point r0 = (x, z) ∈ S at the
moment when the radiator is located at the point (xt , zt).
At xt = 0, the incident field Ψi(rt; 0, zt) on the radiation
line can be represented in the form

where k = (kx , kz), kz =  is the wave vector, and
At(kx; 0, zt) is the function representing the complex
amplitude of the angular spectrum of the incident field.
This function is the Fourier transform of the incident
field on the line zt:

If the radiator is positioned at another point xt of the
radiation line zt , the angular spectrum of the incident
field Ψi(x; xt , zt) has the form

From the equality Ψi(z; xt , zt) = Ψi(x – xt; 0, zt), it fol-
lows that

The field from the radiation line can be recalculated to
the origin of the xz absolute coordinate system, which
allows us to write down the last formula in the form

Using it, we can represent the incident field Ψi(r0; xt) in
the form

where At(kx) ≡ At(kx; 0, zt).
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The Green function for a free space at |r| > |r0| can
be expanded in plane waves

where L is the wave vector of the scattered field, L =

(α, β), β = , and ΨS(xr , zr; xt). Let the scat-
tered field be

where r0 = (x, z) ∈ S is a point belonging to the scatterer
region and r = (xr , zr) ∈ R is a point belonging to the
detection region of the scattered field. Ignoring the con-
stant factor, after the transformation of the integrand,
we obtain the following expression for calculating the
incident field on the detection line:

Thus, we obtained a basic expression that provides an
opportunity to determine the relation through the spec-
tral space between the measured field ΨS(xr , xt) and the
function ξ(r0) characterizing the scatterers. If we per-
form its two-dimensional Fourier transformation with
respect to xr and xt , we obtain the expression

where

Thus, the algorithm for generating the scatterer images
consists of the following steps.
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(1) The scattered field ΨS(xr, xt) is measured in the
double scanning mode.

(2) Then, its two-dimensional spectrum (α, kx) is
determined.

(3) After that, the function (α, kx) is divided by

At(kx)  for correcting the

phase relationships. It should be noted that the function
At(kx) is identical to a reference hologram. The tech-
nique of application and measurement of this hologram
is considered in [12]. If one does not intend to addition-
allly increase the resolution, it is possible to assume
that At(kx) = 1. A characteristic case in the practice of
ultrasonic nondestructive testing is when the radiation
line and the detection line of the scattered field coin-
cide, i.e., xr = xt = d.

(4) The projection in the spectral space is obtained
in the same way as in the scheme with a fixed detection
line of the scattered field and a plane sound wave inson-
ifying the scattering region at various angles. The gray
areas in Figs. 2 and 3 indicate the regions of the spectral
space, the information on which can be obtained using
ideal point transducers operating by the transmission
and reflection schemes (Figs. 2 and 3, respectively).
One can see that the utilization of even a single irradia-
tion frequency provides an opportunity to obtain the
information on the spectrum of the function ξ(r0) in a
rather wide region and, therefore, to obtain an image of
a rather high quality. The application of a multifre-
quency version of the double scanning technique pro-
vides an opportunity to considerably extend the range
of spatial frequencies, where the spectrum of the func-
tion ξ(r0) is known, and to increase the quality of the
reconstructed images of scatterers.

A numerical experiment and the reconstruction of
defect images in the double scanning mode was con-
ducted using the software of a coherent ultrasonic
defectoscope of the Avgur 4.2 series developed and
manufactured by the Echo+ Research and Production
Center. Four point scatterers with the coordinates (–4; 0),
(0; 0), (3; 0), and (5; 0) mm in an absolute coordinate
system were used as a model. The detection and radia-
tion lines coincided and were located at a distance of
15 mm from the origin of the absolute coordinate sys-
tem, i.e., the reflection scheme of detection was consid-
ered. The fourfold rescattering and wave transforma-
tion at the point scatterers were taken into account in
calculating the echo-signals. To make the situation
approach reality, it was assumed that the opening half-
angle of a direct transducer was 40°, its resonance fre-
quency was 2.5 MHz, and the pulse length was equal to
1 µs. It was assumed that the transducer emitted a trans-
verse wave. The spatial aperture, along which the trans-
ducer moved, started from the point –25.6 mm and con-
sisted of 256 samples with the interval 0.2 mm; the time

Ψ̃S

Ψ̃S

i k0
2 kx

2– zt i k0
2 α2– zr+( )exp

k0
2 α2–

-------------------------------------------------------------------------
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21
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Fig. 2. Data structure in the spectral space for the transmis-
sion scheme in the double scanning mode.

Fig. 3. Data structure in the spectral space for the reflection
scheme in the double scanning mode.

Fig. 4. Images of four point scatterers: the method of projection in the spectral space (left) and the double scanning technique (right).
Fourfold rescattering and wave transformation at the point scatterers were taken into account in the calculations.
aperture started from 6 µs and contained 256 samples
measured at 0.05 µs intervals. The transducer coordi-
nates changed 64 times at a step of 0.4 mm, starting
from the point 12.8 mm.

An image obtained by the method of projection in
the spectral space with the use of echo-signals mea-
sured in a combined mode is shown in the left part of
Fig. 4. Phantom flashes with the amplitude reaching
100% of the amplitude of the direct scatterer images
can be seen clearly together with the direct images of
the four point scatterers. An image obtained using the
echo-signals measured in the double scanning mode is
given in the right part of Fig. 4. One can see that the
phantom flashes produced by the echo-signals that
were transformed and rescattered by the point inhomo-
geneities decreased in amplitude. This result can be
explained by the fact that the double scanning tech-
nique has a very important feature. Despite the fact that
this technique of generating the scatterer images is
based on the Born approximation, which does not take
into account multiple rescattering, the phantom flashes
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
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formed by the rescattered echo-signals are present in
the reconstructed image. This follows from the property
that measurements in the double scanning mode are
equivalent to a multiple repetition of the detection of
the scattered field in a separate mode, and the combined
processing of their data leads to the situation when the
flashes corresponding to singly reflected echo-pulses
are added in phase and their amplitude increases by a
factor of Ntrm, where Ntrm = 64 is the number of the radi-
ator positions. The phantom images generated by trans-
formed and rescattered echo-signals are not in phase,
and their combined amplitude increases by a factor of

 = 8 [3].

Thus, we considered the possibility of using the
double scanning technique for improving the quality of
the scatterer images in ultrasonic flaw detection. By a
numerical experiment, it was demonstrated that, in the
reconstruction of the scatterer images, the phantom
flashes produced by the echo-signals transformed and
rescattered by inhomogeneities are considerably reduced
in amplitude. This property of the double scanning
technique can be useful for the practice of ultrasonic
testing in the analysis of coherent images of defects.
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Abstract—The excitation of a tube wave in an infinite fluid-filled borehole by an external isotropic point source
is considered. The solution to the problem is obtained in the form of a double integral with respect to the ray
parameter (slowness) and frequency. The integral with respect to the slowness is transformed to a contour inte-
gral in the complex slowness plane and then reduced to the integral over the edges of the cut of the vertical slow-
ness function and the semiresidues at the poles. An asymptotic expression for the wave field in the borehole is
obtained with allowance for the radiation condition at infinity. It is shown that, when a longitudinal spherical
wave is incident on the borehole, only one low-frequency Stoneley wave is excited and not two, as was assumed
earlier [1]. © 2001 MAIK “Nauka/Interperiodica”.
The dynamic and kinematic characteristics of tube
waves in a borehole provide information on the proper-
ties of the geological formations surrounding the bore-
hole. The tube wave field carries information on all
exchange waves that appear at the borehole interfaces.
There exist a great number of publications concerned
with the theory of the tube wave propagation in fluid-
filled boreholes [2–7]. In particular, some of them [2, 3]
consider the modeling of tube waves in relation to the
borehole and cross-well sounding. Recently, much
attention has been given to the propagation of tube
waves in the boreholes embedded in anisotropic geo-
logical formations [5, 6] and in irregular boreholes [4].

If a borehole is driven by external seismic sources,
the tube waves caused by the incident bulk and guided
waves and the borehole eigenmodes (the so-called
Stoneley waves) are excited in the borehole fluid. In the
limit of a long-wave excitation of the fluid by an exter-
nal source, only the lowest mode can be excited [7]. In
Russian literature, this mode is referred to as the “hyd-
rowave” [8].

The problem on the excitation of tube waves in an
infinite fluid-filled borehole by an external isotropic
point source was first solved in [1]. It was shown that,
in contrast to the incidence of a plane longitudinal
wave, a spherical P-wave propagating in the surround-
ing medium generates not only a tube P-wave in the
borehole, but also two Stoneley waves travelling along
the borehole in opposite directions. However, the
expression obtained in [1] for the Stoneley wave field
does not satisfy the radiation condition at infinity,
because one of the poles makes a parasitic contribution
to the solution. The goal of this paper is to remedy this
flaw. As will be shown below, a longitudinal spherical
1063-7710/01/4706- $21.00 © 20654
wave incident on the borehole generates a single Stone-
ley wave rather than two Stoneley waves.

In the long-wave approximation (which means that
the wavelength of the seismic field far exceeds the bore-
hole diameter), the equation describing the Stoneley
wave excitation and propagation in a borehole driven
by an external seismic source has the form [7, 9]

(1)

where ctw is the low-frequency limit of the Stoneley
wave velocity at the interface between the fluid and the
surrounding formation, ρf is the density of the borehole
fluid, E is the Young modulus of the surrounding elastic

medium, and  is the effective stress caused by the
isotropic point source.

To solve Eq. (1), we perform the Fourier transforma-
tion with respect to time t and to the vertical coordinate
z. As a result, we obtain a formal solution for the Fou-
rier-transform of the pressure

(2)

The effective stress  produced by the seismic iso-
tropic point source characterized by the source function
Ψs(t) at the borehole axis can be represented as the
Sommerfeld expansion in cylindrical waves [10]

(3)
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where the integration variable p can be considered as

the slowness parameter [11]; ζ = , J0(x) is
the zero-order Bessel function; and α and β are the
velocities of the transverse and longitudinal waves in
the surrounding elastic medium, respectively.

Performing the Fourier transformation with respect
to the vertical coordinate z in Eq. (3), we obtain the fol-

lowing expression for (r, k, ω):

(4)

Substituting Eq. (4) into solution (2), we obtain the
pressure field excited by an isotropic point source in the
fluid-filled borehole in the form of a double integral:

(5)

Note that solution (5) is an even function of the vertical
coordinate z, which follows from the symmetry of the
problem. At this step, solution (5) is formal, because the
rules of bypassing the poles are not yet determined.

We will use the residue theorem to calculate the
integral in Eq. (5) with respect to the variable k,

To move the poles away from the real axis, we apply the
limiting absorption principle [12]. As can be easily
seen, for ω > 0, this principle moves the poles k1 = +ωζ
and k2 = +ω/ctw to the upper half-plane Imk > 0. Simul-
taneously, the poles k3 = –ωζ and k4 = –ω/ctw are shifted
to the lower half-plane Imk < 0 for ω > 0. Closing the
integration contour in the upper half-plane Imk > 0 for
z > 0 and the lower half-plane Imk < 0 for z < 0, we
obtain the following result for the integral I:

(6)

Figure 1 shows the integration contour and the pole
positions for z < 0. Using the relationships J0(x) =

[ (x) + (x)] and (–x) = (x), where

(x) are the zero-order Hankel functions of the
first and second kinds, we represent the desired solution
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in the form of an integral with respect to the slowness p
over the whole real axis:

(7)

One can see that solution (7) consists of two terms.
The first term I1 allows an exact calculation in the com-
plex plane p by using the residue theorem. Taking into
account the asymptotic behavior of the Hankel function

for large arguments (w)  exp(iw – iπ/4),
we close the integration contour in the upper half-plane
Imp > 0, where the integrand decreases according to an
exponential law: exp(iωpr) = exp(iωr(Rep + iImp)) ~
exp(–ωrImp). In this case, the first integral is reduced

to the residue at the pole p1 = +i . As a result,
we obtain

(8)

where the expression (ix) = 2(πi)K0(x) is used and
K0(x) is the zero-order Macdonald function.

The rearrangement of the second term I2 in Eq. (7)
appears somewhat more complicated. In this case, to
perform the rearrangement in the complex plane of the
integration variable p, it is necessary for the integrand
to simultaneously satisfy two conditions: Imp > 0 (the
upper half-plane) and Imζ > 0 (the proper cut in the
complex plane p). The cut should be as follows.
According to the limiting absorption principle, in the

expression ζ = , we must replace 1/α by 1/α +
iε (ε > 0). Then, we obtain

(9)
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Fig. 1. Integration contour in the complex plane of the vari-
able k and the rule of bypassing the poles for z < 0.
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Separating Eq. (9) into the real and imaginary parts, we
arrive at the system of equations

(10)

Since the cut is determined by the condition Imζ = 0,
the second equation of system (10) determines a hyper-
bola for the cut in the complex plane p:

(11)

Note that, for ε  0, the cut consists of the positive
imaginary half-axis Imp > 0 (Rep = 0) and the segment
of the real axis 0 < Rep < 1/α (Imp = 0). Additionally,
we note that the passage from the upper edge of the cut
to the lower edge is accompanied by a jump in the func-
tion Reζ(p). Thus, the integration path of the second
term I2 along the whole real axis can be transformed to
the integration contour in the complex plane of the vari-
able p shown in Fig. 2. It consists of the real axis, the
upper and lower edges of the cut, and the semicircle of
an infinite radius in the upper half-plane. Inside this
contour, the integrand is an analytical function of the
complex variable p everywhere excluding the simple

pole at the point p1 = +i .

Taking this fact into account, we use the analytical
function theorem to represent the integral over the
closed contour shown in Fig. 2 in the form
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Fig. 2. Integration contour in the complex plane of the slow-
ness (ray) parameter p and the positions of the poles and
cuts.
where  is the integral along the cut edges,

 is the integral along the semicircle of an infi-

nite radius in the upper half-plane, and Res(p1 =

i ) is the residue of the integrand at the simple
pole p1 located in the upper half-plane. To avoid misun-
derstanding in what follows, we emphasize that the inte-
grand in the contour integrals appearing in Eq. (12) is
determined solely by the second term in Eq. (7). Taking

into account the fact that  = 0 and

we obtain that solution (7) is representable as the inte-
gral over the cut

. (13)

To rearrange the integral over the cut, we replace the
integration variable p with ζ. Taking into consideration
that pdp = –ζdζ, we obtain

(14)

One can easily see that the integrand in Eq. (14) con-
tains poles on the integration path. Representing the
denominator of the integrand in the form

applying the limiting absorption principle, and using
the Sokhotsky formulas [12]
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desired solution as the sum of an integral principal
value and a pole contribution:

(15)

As can be easily seen from Eq. (15), the principal
value of the integral includes pole singularities. This
integral cannot be calculated exactly; however, it allows
an asymptotic evaluation using appropriate methods
[13]. As will be shown in what follows, the asymptotic
expression for this integral consists of the contributions
formed near the poles and at the stationary point. The
pole singularities produce additional contributions to
the Stoneley wave field, while the stationary point con-
tributes to the tube P-wave generated by the external
dynamic field incident on the borehole.

The field of the tube P-wave can be found by an
asymptotic calculation of the first term in Eq. (15)
according to the method of stationary phase. Taking
into account the asymptotic behavior of the Hankel
function for large arguments, we obtain the following
expression for the phase of the integrand:

(16)

The stationary point is the point where the first deriva-
tive of phase (16) vanishes, and it is equal to

where R =  and cosγ = |z|/R. Taking into account
the fact that ϑ(ζ0) = iωR/α and ϑ ''(ζ0) = –iωαR3/r2, we
obtain the following asymptotic expression for the field
induced in the fluid-filled borehole by a longitudinal
wave [1]:
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of Eq. (15). Decomposing the denominator of the inte-
grand into simple fractions and taking into account the
relationship between the Hankel and Macdonald func-
tions, we obtain the following expression after the cor-
responding substitutions ζ ± 1/ctw  x in integrals:

(18)

To determine the asymptotic contributions of the points
near x = 0 to integrals (18), we factor out of the integral
sign the slowly varying functions. Since we have

where γ is the real parameter, we obtain the following
asymptotic estimator for the pole contributions to the
integral under consideration:

(19)

Combining results (19) and (17) and substituting them
in Eq. (15) as an asymptotic estimator of the principal
value of the integral, we obtain the final result for the
tube wave field generated in a fluid-filled borehole by
the isotropic point source:

(20)

The first term in Eq. (20) describes the tube P-wave,
and the second term describes the Stoneley wave. This
asymptotic estimator is applicable when the P-wave
and the Stoneley wave are separated in space. In con-
trast to the result obtained earlier [1], which contained
two Stoneley waves and violated the radiation condi-
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tion, the result obtained above shows that only one
Stoneley wave exists in the borehole, and it travels
along the borehole in the upward and downward direc-
tions from the region where it is generated by the
external action. Unlike the solution obtained in [1],
solution (20) satisfies the radiation condition at infinity.
Additionally, we note that asymptotic estimator (20)
obtained for the field in the borehole can be derived
immediately from representation (7).

Thus, in this paper, using the method of integral
transformations, we solved the problem on the tube
waves excited in a fluid-filled borehole by an external
isotropic source. The integral with respect to the slow-
ness (ray) parameter was transformed to a contour inte-
gral in the complex plane and then reduced to an inte-
gral over the edges of the cut of the vertical slowness
function and the semi-residues at the poles.

The representation obtained for the solution to the
problem under consideration allows an asymptotic
solution in the form of the tube P-wave and the Stone-
ley wave traveling along the borehole in the upward and
downward directions. This solution is shown to satisfy
the radiation condition at infinity (the Sommerfeld con-
dition), in contrast to the solution obtained in [1]. From
the solution obtained above, it follows that only one
Stoneley wave is generated and not two Stoneley
waves.

The procedure developed in this paper for calculat-
ing the tube waves in a borehole appears quite useful in
analyzing the dynamic field of pressure in a borehole
driven by more complex external sources and, in partic-
ular, by a point force. In this case, the wave field in the
borehole becomes much more complex, especially if
the velocity of the shear waves in the formation is
smaller than the low-frequency Stoneley wave velocity.

REFERENCES
1. A. M. Ionov and G. A. Maksimov, Akust. Zh. 45, 354

(1999) [Acoust. Phys. 45, 311 (1999)].
2. R. T. Coates, Geophys. Prospect. 46, 153 (1998).
3. A. L. Kurkjian, R. T. Coates, J. E. White, and H. Schmidt,

Geophysics 59, 1053 (1994).
4. K. Tezuka, C. H. Cheng, and X. M. Tang, Geophysics 62,

1047 (1997).
5. W. Dong and M. N. Toksöz, Geophysics 60, 29 (1995).
6. W. Dong and M. N. Toksöz, Geophysics 60, 748 (1995).
7. J. E. White, Underground Sound. Application of Seismic

Waves (Elsevier, Amsterdam, 1983; Nedra, Moscow,
1986).

8. A. S. Ibatov and P. V. Krauklis, in Problems of the
Dynamic Theory of Seismic Wave Propagation (Mos-
cow, 1982), Issue 22, pp. 221–226.

9. A. M. Ionov, Fiz. Zemli, Nos. 7–8, 152 (1994).
10. A. M. Ionov and G. A. Maximov, Geophys. J. Int. 124

(3), 888 (1996).
11. K. Aki and P. G. Richards, Quantitative Seismology:

Theory and Methods (Freeman, San Francisco, 1980;
Mir, Moscow, 1983).

12. V. S. Vladimirov, Equations of Mathematical Physics,
4th ed. (Nauka, Moscow, 1981; Dekker, New York,
1971).

13. M. V. Fedoryuk, Asymptotics: Integrals and Series
(Nauka, Moscow, 1987).

Translated by A. Vinogradov
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001



  

Acoustical Physics, Vol. 47, No. 6, 2001, pp. 659–664. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 47, No. 6, 2001, pp. 751–756.
Original Russian Text Copyright © 2001 by Burov, Morozov.

                                                                                
Relationship between the Amplitude and Phase of a Signal 
Scattered by a Point-Like Acoustic Inhomogeneity

V. A. Burov and S. A. Morozov
Moscow State University, Vorob’evy gory, Moscow, 119899 Russia

e-mail: burov@phys.msu.su
Received February 21, 2001

Abstract—Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimen-
sions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different
algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and
phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type
equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an
increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relation-
ship between the phases of the corresponding scattered waves. © 2001 MAIK “Nauka/Interperiodica”.
The concept of an infinitesimal but rather strong
inhomogeneity is a natural and convenient idealization
the use of which provides information on the point-
spread functions of various algorithms and systems
intended for reconstructing the internal structure of
objects. However, closer consideration of this concept
shows that it requires certain refinement and caution in
its use.

It appears that the amplitude and phase of the sec-
ondary source formed by such a concentrated inhomo-
geneity cannot be chosen arbitrarily: the factor that we
introduce in what follows to characterize the secondary
source has a finite magnitude, and its phase uniquely
determines its amplitude. Two approaches can be used
to deduce this inference.

The first, more formal approach is related to the
Marchenko-type relationship that governs the Green
function for an inhomogeneous medium. The deriva-
tion of this relationship is fairly short, and we present it
here following Budreck and Rose [1].

We assume that a finite region R containing an inho-
mogeneity of the phase velocity c(r),

appears in a homogeneous infinite medium character-
ized by constant values of velocity and density. Closed
smooth contours (surfaces, in the three-dimensional
case) filled with sources and receivers enclose the scat-
terer, as is shown in the figure. For the sake of definite-
ness, we assume that the contour of receivers Ωy is
totally inside the region Vz bounded by the contour of
sources Ωz and outside the region R containing the
inhomogeneity. (If Ωy is outside Vz , the reasoning
remains similar, though the final relationship has a
somewhat different form. The only important point is

c r( )
c r( ), r R∈
c0, r R,∉




=
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that the region R lies inside the regions bounded by the
contours Ωz and Ωy .)

For an inhomogeneous medium, we introduce a
retarded Green function G+ that satisfies the Sommer-
feld radiation condition and an advanced Green func-
tion G– that does not satisfy this condition. These func-
tions satisfy the Helmholtz equations

(1)

(2)

The difference between Eq. (1) multiplied by G–(ω, r, x)
and Eq. (2) multiplied by G+(ω, r, y) does not involve

∆rG
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------------G+ ω r y, ,( )+ δ r y–( ),=
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y ∈ Ω y

z ∈ Ω z

Scattering
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R

Geometry of the problem for the derivation of the March-
enko-type equation.
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the sound velocity c(r). If we integrate the difference
relationship with respect to dr over the region Vz and
use the Gauss theorem to transform the integral over the
region Vz to an integral along the contour Ωz, we obtain
a Marchenko-type equation

(3)

Here,  is the derivative along the external

normal nz to the contour Ωz at a point z ∈ Ω z, and dσz is
the element of the contour Ωz.

Equation (3) holds in both two- and three-dimen-
sional cases. It gives an integral relationship between
the unknown fields G±, which are generated at an arbi-
trary point x ∈  R by point sources located in the inhomo-
geneous medium, and the scattered fields G+(ω, z, y),
which can be obtained by measuring the field of the
point sources located on the contour Ωz by the point
receivers located on the contour Ωy . If we replace the
functions G+(ω, r, y) and G–(ω, r, x) appearing in
Eqs. (1) and (2) by G−(ω, r, y) and G+(ω, r, x), respec-
tively, we obtain another similar equation for G+ and G–:

(4)

According to the reciprocity theorem, G±(ω, y, x) =
G±(ω, x, y).

Now, we assume that the inhomogeneity is com-
posed of a sole point-like scatterer located at the point
x0 ∈  R. Then, the total fields G± satisfy the Lippman–
Schwinger equation

(5)

where  is the Green function of a homogeneous

space and ε(r) ≡  –  is the scatterer function.

On the other hand, for the point scatterer that is

G– ω y x, ,( ) G+ ω x y, ,( )–

=  σz
∂G+ ω z y, ,( )

∂nz

------------------------------G– ω z x, ,( )




d

Ωz

∫°

– G+ ω z y, ,( )∂G– ω z x, ,( )
∂nz

------------------------------




.

∂G ω z ·, ,( )
∂nz

---------------------------

G+ ω y x, ,( ) G– ω x y, ,( )–

=  σz
∂G– ω z y, ,( )

∂nz

------------------------------G+ ω z x, ,( )




d

Ωz

∫°

– G– ω z y, ,( )∂G+ ω z x, ,( )
∂nz

------------------------------




.

G± ω y x, ,( ) G0
± ω y x, ,( )=

+ G0
± ω y r, ,( )ε r( )G± ω r x, ,( ) r,d

R

∫

G0
±

ω2

c0
2

------ ω2

c2 r( )
------------
assumed to scatter as a monopole, one can try to repre-
sent the secondary sources generated in the scatterer

region by the incident fields  in the following form:

(6)

Indeed, the delta-function on the right-hand side of
Eq. (6) takes into account the point-like nature of the

scatterer, the functions  represent the monopole
behavior of the scattered field, and the effective factors
β± describe the wave rescattering that occurs in the
region occupied by the point-like scatterer. These fac-
tors, which hereafter will be called the rescattering fac-
tors, will be shown to be complex quantities. They
determine the amplitude and phase of the field scattered

by the inhomogeneity (ω, y, x) ≡ G±(ω, y, x) –

(ω, y, x).

In view of Eq. (6), the limiting solution to Eq. (5)
takes the form

(7)

Physically, Eq. (7) means that the scattering component

 of the corresponding Green function is the wave
arriving at the observation point y from the secondary

point source generated by the field (ω, x0, x) inci-
dent on the point scatterer. The rescattering coefficients
β+ and β– must not coincide, because the secondary
source has internal degrees of freedom due to the res-
cattering processes in a certain limiting sense.

Now, we find the relationship between β+ and β–. If
the absorption is absent in both the background medium
and the scattering region, the functions G±(ω, y, x) are
complex conjugated. Then, from Eq. (6) it follows that
the rescattering coefficients β+ and β– are also complex
conjugate: β– = (β+)*.

The substitution of the Green functions in the form
of Eq. (7) into Eq. (4) yields the relationship

(8)

G0
±

ε r( )G± ω r x, ,( ) β±δ r x0–( )G0
± ω r x, ,( ).=

G0
±

Gsc
±

G0
±

G± ω y x, ,( ) G0
± ω y x, ,( )=

+ G0
± ω y x0, ,( )β±G0

± ω x0 x, ,( ).

Gsc
±

G0
±

G0
+ ω y x0, ,( )β+G0

+ ω x0 x, ,( )

– G0
– ω y x0, ,( )β–G0

– ω x0 x, ,( )

=  σz

∂G0
– ω z x0, ,( )

∂nz

--------------------------------G0
+ ω z x, ,( )





d

Ωz

∫°

– G0
– ω z x0, ,( )

∂G0
+ ω z x, ,( )

∂nz

------------------------------



β–G0

– ω x0 y, ,( )

+ σz

∂G0
– ω z y, ,( )

∂nz

------------------------------G0
+ ω z x0, ,( )





d

Ωz

∫°
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Deriving relationship (8), we took into account the fact

that the Green functions of the homogeneous space 
satisfy an equation similar to Eq. (4); we also factored
out the functions independent of the integration vari-
able from under the integrals. On the right-hand side of
Eq. (8), the first two integral terms coincide with the
right-hand sides of Eqs. (3) and (4) for the Green func-

tions (ω, x, x0) and (ω, y, x0), respectively,

and

The integral in the third term is independent of the inte-
gration contour; it is determined by the dimension of
the problem and can be directly calculated

– G0
– ω z y, ,( )

∂G0
+ ω z x0, ,( )

∂nz

---------------------------------



β+G0

+ ω x0 x, ,( )

+ σz

∂G0
– ω z x0, ,( )

∂nz

--------------------------------G0
+ ω z x0, ,( )





d

Ωz

∫°

– G0
– ω z x0, ,( )

∂G0
+ ω z x0, ,( )

∂nz

---------------------------------




× β+G0
+ ω x0 x, ,( )β–G0

– ω x0 y, ,( ).

G0
±

G0
± G0

±

G0
+ ω x x0, ,( ) G0

– ω x x0, ,( )–

=  σz

∂G0
– ω z x0, ,( )

∂nz

--------------------------------G0
+ ω z x, ,( )





d

Ωz

∫°

– G0
– ω z x0, ,( )

∂G0
+ ω z x, ,( )

∂nz

------------------------------




G0
+ ω y x0, ,( ) G0

– ω y x0, ,( )–

=  σz

∂G0
– ω z y, ,( )

∂nz

------------------------------G0
+ ω z x0, ,( )





d

Ωz

∫°

– G0
– ω z y, ,( )

∂G0
+ ω z x0, ,( )

∂nz

---------------------------------




.

σz

∂G0
– ω z x0, ,( )

∂nz

--------------------------------G0
+ ω z x0, ,( )





d

Ωz

∫°

– G0
– ω z x0, ,( )

∂G0
+ ω z x0, ,( )

∂nz

---------------------------------




constdim,=
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
where the subscript dim denotes the dimension of the

problem; constdim = 2 =  and constdim = 3 = +  [the time

dependence is exp(iωt)]. Therefore, Eq. (8) takes the
form

Collecting similar terms and eliminating the common

factor (ω, x0, x) (ω, x0, y), we obtain that the res-
cattering factors β± must satisfy the relationship

(9)

For the sake of definiteness and simplicity of
expressions appearing in the second approach
described below, we will only consider the two-dimen-
sional case. The fact that the rescattering factors are
complex conjugate makes it possible to seek these fac-
tors in the form

β± = βe±iψ, where β = |β+| = |β–|.
Then, Eq. (9) yields the relationship β = 4sin(ψ) that

has two families of solutions

(10)

Because the phase ψ is a real quantity, the ampli-
tude β varies from 0 to 4 and the phase lies in the seg-

ments ψ ∈   in the first case and ψ ∈

 in the second case.

The rigorous relationship between the phase and the
amplitude of the scattered wave and the limitation on
the maximal possible amplitude were obtained above
from Eqs. (3) and (4). They can also be derived using
another, more physical approach, in which one ana-
lyzes the scattering by a scatterer whose size decreases
simultaneously with an increase in its contrast. How-
ever, this passage to the limit is not trivial, because its
result depends on a number of additional accompany-
ing assumptions. Thus, to find the field scattered by a

i
2
---

ik0

2π
------

G0
+ ω y x0, ,( )β+G0

+ ω x0 x, ,( )

– G0
– ω y x0, ,( )β–G0

– ω x0 x, ,( )

=  G0
+ ω x x0, ,( ) G0

– ω x x0, ,( )–[ ]β –G0
– ω x0 y, ,( )

+ G0
+ ω y x0, ,( ) G0

– ω y x0, ,( )–[ ]β +G0
+ ω x0 x, ,( )

+ constdimβ+G0
+ ω x0 x, ,( )β–G0

– ω x0 y, ,( ).

G0
+ G0

–

1

β–
----- 1

β+
-----–

i
2
---  in the two-dimensional case,=

1

β–
----- 1

β+
-----– +

ik0

2π
------ in the three-dimensional case.=

ψ = 

β
4
--- 

 arcsin 2πk+

π β
4
--- 

 arcsin– 2πk.

k is an integral( )
+

2πk; 2πk
π
2
---+

2πk
π
2
---; 2πk π+ +
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point-like inhomogeneity, one should perform the pas-
sage to the limit in the expression for the Green func-
tion of a space containing a scatterer of a finite size
under the condition that its maximal dimension tends to
zero. In the two-dimensional case, such an inhomoge-
neity can be represented by a cylindrical inhomogene-
ity, in which the sound velocity differs from that of the
background space:

where c1 and c0 are the sound velocities inside and out-
side the inhomogeneity, respectively, and R1 is the
radius of the cylinder. In this case, the Green function
satisfies the equations [2] (in what follows, we omit the
frequency ω in the function arguments for brevity):

(11)

The solution of system (11) with the boundary condi-
tions (the continuity of the field and its normal deriva-
tive at the boundary)

and with the Sommerfeld radiation condition is repre-
sentable as a sum of angular harmonics [2] (the
expression below is given in the polar reference sys-
tem r = {r, ϕ}, y = {y, ϕy}; the time dependence is

c r( )
c1, r R1<
c0, r R1> ,

r r ,≡




=

∆G r y,( ) k1
2G r y,( )+ δ r y–( ) for r R1<=

∆G r y,( ) k0
2G r y,( )+ δ r y–( ) for r R1.>=




G ω r y, ,( )
r R1 0–→ G ω r y, ,( )

r R1 0+→=

∂G ω r y, ,( )
∂nr

----------------------------
r R1 0–→

∂G ω r y, ,( )
∂nr

----------------------------
r R1 0+→

,=






given by the factor ~exp(iωt); and the point source is
assumed to be at the point y = {y, ϕy = 0}, where y >
r > R1):

(12)

where 

Here, the functions Jn and  are the Bessel and Han-
kel functions of order n, and the prime denotes the
derivative with respect to the whole argument. The
known representation of the Green function of the
homogeneous space in the form of a series in angular
harmonics for y > r and ϕy = 0 [3],

allows one to separate from Eq. (12) the scattered com-

ponent of the Green function  ≡ G+ – :

G+ r ϕ ; y ϕ y 0=, ,( )

=  
i
4
--- einϕ Hn

2( ) k0y( ) Jn k0r( ) Hn
2( ) k0r( )βn

+–[ ] ,
n ∞–=

∞

∑

βn
+

=  
k1Jn' k1R1( )Jn k0R1( ) k0Jn k1R1( )Jn' k0R1( )–

k1Jn' k1R1( )Hn
2( ) k0R1( ) k0Jn k1R1( ) Hn

2( ) k0R1( )[ ] '–
-----------------------------------------------------------------------------------------------------------------------.

Hn
2( )

G0
+ r ϕ ; y ϕ y 0=, ,( ) i

4
---H0

2( ) k0 r y–( )≡

=  
i
4
--- einϕ Hn

2( ) k0y( )Jn k0r( ),
n ∞–=

∞

∑

Gsc
+ G0

+

(13)

A similar expression holds for the advanced Green function (the function  ≡ G– –  is complex conjugate to

function ):

(14)

Gsc
+ r ϕ ; y ϕ y 0=, ,( ) i

4
--- einϕ Hn

2( ) k0y( )Hn
2( ) k0r( )βn

+

n ∞–=

∞

∑– einϕ i
4
---Hn

2( ) k0y( ) i
4
---Hn

2( ) k0r( )β̃n
+

n ∞–=

∞

∑= =

β̃n
+

4iβn
+≡ 4i

k1Jn' k1R1( )Jn k0R1( ) k0Jn k1R1( )Jn' k0R1( )–

k1Jn' k1R1( )Hn
2( ) k0R1( ) k0Jn k1R1( ) Hn

2( ) k0R1( )[ ] '–
-----------------------------------------------------------------------------------------------------------------------.=

Gsc
– G0

–

Gsc
+

Gsc
– r ϕ ; y ϕ y 0=, ,( ) einϕ i

4
---– 

  Hn
1( ) k0y( ) i

4
---– 

  Hn
1( ) k0r( )β̃n

–

n ∞–=

∞

∑=

β̃n
–

4– iβn
–≡ 4– i

k1Jn' k1R1( )Jn k0R1( ) k0Jn k1R1( )Jn' k0R1( )–

k1Jn' k1R1( )Hn
1( ) k0R1( ) k0Jn k1R1( ) Hn

1( ) k0R1( )[ ] '–
-----------------------------------------------------------------------------------------------------------------------.=
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In the approximation of a monopole scattering (this
approximation is valid due to the cylindrical symmetry
of the scatterer), the asymptotic behavior of the func-

tions  for R1  0 is governed exclusively by the
zero-order angular harmonic n = 0. For example,

(15)

This expression is similar to the above Eq. (7) for x0 =
0 and x = r.

One can assume that not only the cylinder radius R1
varies under the passage to the limit, but the wavenum-
ber k1 as well. The behavior of the wavenumber k1 at
R1  0 depends on the internal structure of the point-
like scatterer and, in turn, governs the scattering char-
acteristics of the scatterer. Since the arguments of the
cylindrical functions in Eqs. (13) and (14) for the fac-

tors  are k0R1 (k0R1  0 for R1  0) and k1R1,

Gsc
±

Gsc
+ r ϕ ; yϕ y 0=,( )

R1 0→

i
4
---H0

2( ) k0y( ) i
4
---H0

2( ) k0r( )β̃0
+

≅

≡ G0
+ y 0,( )β̃0

+
G0

+ 0 r,( ).

β̃0
±
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one can obtain different limiting values for , depend-
ing on the asymptotic behavior of the quantity k1R1 at
R1  0, which hampers the analysis of the properties
of the point-like scatterer. However, we can achieve our
goal without such an analysis. Indeed, since the consid-
ered cylindrical scatterer is lossless, the retarded and
advanced Green functions are complex conjugate, as
was assumed earlier,

As a consequence, the factors  and  are complex
conjugate as well, which also follows from Eqs. (13)
and (14):

. (16)

To obtain the second relationship between  and ,
it is convenient to consider the inverse quantities

β̃0
±

G– G+( )* Gsc
–⇒ Gsc

+( )*.=

β̃0
–

β̃0
+

β̃0
–

β̃0
+

( )*=

β̃0
–

β̃0
+

1

β̃0
+

-----
1
4i
-----

k1J0' k1R1( )H0
2( ) k0R1( ) k0J0 k1R1( ) H0

2( ) k0R1( )[ ] '–
k1J0' k1R1( )J0 k0R1( ) k0J0 k1R1( )J0' k0R1( )–

-----------------------------------------------------------------------------------------------------------------------=

=  –
1
4
---

k1J0' k1R1( )N0 k0R1( ) k0J0 k1R1( )N0' k0R1( )–
k1J0' k1R1( )J0 k0R1( ) k0J0 k1R1( )J0' k0R1( )–
---------------------------------------------------------------------------------------------------------- 1

4i
-----+

1

β̃0
–

----- –
1
4
---

k1J0' k1R1( )N0 k0R1( ) k0J0 k1R1( )N0' k0R1( )–
k1J0' k1R1( )J0 k0R1( ) k0J0 k1R1( )J0' k0R1( )–
---------------------------------------------------------------------------------------------------------- 1

4i
-----.–=
The difference of  and  is independent of R1:

. (17)

Relationship (17) is similar to the above Eq. (9).

Using Eqs. (16) and (17), we can find the relation-
ship between the magnitude and the argument of the

complex factors  in the second approach. From
Eq. (16) it follows that

(18)

where  ≡  =  and ψ is the argument.

Substituting Eq. (18) into Eq. (17),

1

β̃0
–

----- 1

β̃0
+

-----

1

β̃0
–

----- 1

β̃0
+

-----– i
2
---=

β̃0
±

β̃0
±

β̃ iψ±( )exp ,=

β̃ β̃0
+

β̃0
–

1

β̃
--- +iψ( )exp iψ–( )exp–[ ] i

2
---=

β̃⇒ 4
+iψ( )exp iψ–( )exp–

2i
------------------------------------------------------=
we obtain the relationship

(19)

that corresponds to Eq. (10) presented above. Relation-
ship (19) means that the phase ψ uniquely determines

the magnitude . As for the reciprocal relationship
considering the phase ψ as a function of β, it appears to
be two-valued. For this reason, the magnitude of the
rescattering factor increases as the phase ψ increases

from 0 to  and decreases with a further increase in ψ.

Therefore, Eq. (19) limits the resulting efficiency of
rescattering inside the point-like scatterer; namely, the

magnitude of the rescattering factor  is limited and
cannot exceed four in the two-dimensional case.

It should be noted that, in solving an auxiliary prob-
lem of a plane wave incident on a thin but high-contrast
layer, Rudenko et al. [4] also found a rigorous relation-
ship between the amplitude and phase of the response
(i.e., the reflected and transmitted waves) whose values
were governed by two parameters of the passage to the
limit: the layer thickness and the layer contrast relative

β̃ 4 ψ( )sin=

β̃

π
2
---

β̃
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to the background medium. A rigorous relationship
between the amplitude and phase of the response is also
characteristic of nonlinear processes.

The result obtained above can be interpreted in
physical terms. The complex conjugation property of

the rescattering factors  means that the multiple scat-
tering processes occurring inside a point-like scatterer
appear to be different for the retarded and advanced
fields. In the case of a retarded field, the phase of the
scattered wave field increases (in comparison with the
phase of this field at the instant of its origination) in
each scattering event because of the time delays due to
the wave “propagation” in the scatterer after rescatter-
ing. At the same time, the phase of the scattered field
lags behind the phase of the incident field at a fixed
observation point. By contrast, for an advanced field,
the “propagation” of the scattered waves inside the
point-like scatterer results in a decrease in the phase of
the scattered field in comparison with the phase of this
field at the instant of its origination. As a result, the
phase of the scattered field gets advanced relative to the
phase of the incident field (because G– is a complex
conjugate to G+). In the time domain, this effect mani-

β̃0
±

fests itself as a time delay for the incident field and a
time advance for the scattered field.
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Abstract—An inverse problem on the reconstruction of the wave field of contact stresses produced by an exter-
nal load in an elastic layer from the displacements of its free surface is considered for the model of forced
steady-state vibrations in the approximation of plane deformations. The solution is constructed using two
approaches: (1) a reduction of the problem to the Fredholm integral equation of the first kind with the use of
the Tikhonov regularization and (2) an expansion of the solution in a discrete set of waves. It is shown that both
approaches are approximately equivalent in the model under consideration. Possibilities for an adequate recon-
struction of the source field from far-zone measurements of a finite number of propagating wave modes are ana-
lyzed. © 2001 MAIK “Nauka/Interperiodica”.
Inverse problems of restoring the stressed deformed
state of a medium from incomplete data specified at the
boundaries form a relatively new field of the theory of
elasticity [1–7]. The interest in these problems is
related to their practical applications in such fields as
structural intensimetry, vibration stability of structures,
and flaw detection. The boundary-value inverse prob-
lems of the theory of elasticity are ill-posed problems in
the sense of Tikhonov [8, 9], which links them to
inverse problems in other fields of science and engi-
neering [10].

The boundary-value problem on the reconstruction
of a time-harmonic acoustic field in a linear elastic
medium was first considered in [4, 5]. The problem
statement assumes that vibrations of the medium are
caused by external contact stresses, and the wave pat-
tern is to be reconstructed from the displacement ampli-
tudes measured at the free surface area accessible for
observation. The approach developed in [4, 5] for the
wave field reconstruction is based on the expansion of
the field in a discrete set of solutions; in this case, the
order of the reduced system of equations is the regular-
ization parameter, which is characteristic of the method
of singular expansions [11]. The problem allows
another approach [1, 2, 7], according to which it is
reduced to the Fredholm integral equation of the first
kind whose solution can be found using the Tikhonov
regularization [8, 9].
1063-7710/01/4706- $21.00 © 20665
The geometry of the particular model considered in
detail in [4, 5] allowed one to abstract from external
contact loads and to expand the solution in normal
waves. Unlike the cited papers [4, 5], this paper deals
with the reconstruction of the field in the region of the
surface contact. The goal of this paper is to test both
discrete expansion [4, 5] and Tikhonov regularization
methods with the use of model examples and to com-
pare their potentialities.

Consider an elastic layer occupying the region [–∞ <
x < ∞, 0 ≤ y ≤ h] and assume that it performes forced
steady-state vibrations under a plane deformation. We
assume that the lower boundary of the layer (y = 0) is
fixed and the upper boundary (y = h) is loaded by an
external force exp(–iωt)q(x) distributed over the seg-
ment x ∈  [X1, X2]. The dynamics of the layer is gov-
erned by the Lamé equations [12]. The basic parame-
ters of the model are the Poisson ratio ν and the dimen-

sionless frequency κ = ωh , where ρ is the
density and λ and µ are the Lamé coefficients. In what
follows, we use the layer thickness h as the length unit.
In all examples, we use ν = 0.3.

Let us formulate the problem on determining the
load q(x) from the normal displacements of the free sur-
face of the layer uy(x, h) ≡ u(x), where the function u(x)
is specified within the interval x ∈  [X3, X4] not intersect-
ing with the interval [X1, X2]. The function q(x) is

ρ/ λ 2µ+( )
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related to u(x) by the Fredholm integral equation of the
first kind with a smooth kernel:

(1)

where k(x – x ') is the corresponding component of the
Green matrix [13]. Using the Fourier representation, we
have

(2)

where ζ = x – x ', and σ is the integration contour pass-
ing along the real axis and bypassing the poles accord-
ing the rules following from the limiting absorption
principle [13]. The Fourier transform K(p), whose
explicit expression is given in monograph [13], is an
even meromorphic function (real for real p). Real poles
corresponding to continuous homogeneous waves
appear for frequencies exceeding the critical frequency;
their number increases with frequency but remains
finite [13].

Consider the solution in the far-zone approximation.
For nonresonance frequencies, all real poles of the
function K(p) are simple poles; hence, the asymptotic
estimator

is appropriate for the far zone (i.e., for |ζ|  ∞). In
Eqs. (3a) and (3b), Rm is the residue of the function K(p)
at the mth positive pole pm , the lower (minus) signs
are used for waves with the negative group velocity,
and c > 0 is the distance from the real axis p to the near-
est complex pole. Note that the main term (3b) of asymp-
totic expression (3) exactly describes the imaginary part
of kernel (2).

We simulated the load reconstruction using mainly
two frequencies, κ = 3 and 6, for which M = 3 and 6
homogeneous modes exist, respectively (the group
velocities of all modes are positive). The corresponding
wave numbers lie in the interval 1.6 < pm < 6 for κ = 3
and in the interval 2.7 < pm < 12 for κ = 6. The numer-
ical comparison of the kernel k(ζ), Eq. (2), with its
degenerate finite-dimension component (3b) showed
that the relative contribution of the residual term of
asymptotics (3a) is less than a few fractions of percent
and rapidly decreases with increasing |ζ| * 2 for both
frequencies (the calculated complex poles give c ≈ 3.8
for both frequencies). In the examples below, the seg-
ments [X1, X2] and [X3, X4] are chosen so as to satisfy
the inequality |ζ| ≥ 5, which made it possible to replace
the kernel by its finite-dimension part (3b). This substi-
tution is justified both technically and physically,

k x x'–( )q x'( ) x'd

X1

X2

∫ u x( ), x X3 X4,[ ] ,∈=

k ζ( ) 1
2π
------ K p( )eipζ p,d

σ
∫=

k ζ( ) k∞ ζ( ) O c ζ–( )exp[ ]+=

k∞ ζ( ) i Rm±( ) i pm± ζ( )exp
m 1=

M

∑=




 3a( )

3b( )
because the exponentially small inhomogeneous modes
responsible for the residual term in Eq. (3a) are indis-
tinguishable against the background of random errors.
In similar examples with shorter distances |ζ| ~ 1–2, we
directly checked that the load reconstruction gives
identical results for both exact kernel (2) and approxi-
mate kernel (3b).

In view of the kernel smoothness, the integral oper-
ator of Eq. (1) is completely continuous. This means
that the inverse operator is unbounded, so that the oper-
ator equation requires some regularization [8]. The
finite-difference regularization schemes for such equa-
tions are developed exhaustively in the Tikhonov
method [9]. We used the standard version of this algo-
rithm with the first-order stabilizer. In the calculations,
we specified the displacement function by a discrete set
of values {uj = u(xj), j = 1, …, J} corresponding to the
points xj chosen in the interval [X3, X4]. The initial
parameters of our algorithm include the initial data
array {xj , uj}, the regularization parameter α [8], and
the discrete parameter J ', the latter being the number of
nodes of the finite-difference grid in the interval [X1, X2].
The solution is constructed as an array of J ' values of
the function q(x) for equidistant points of the segment.

The most natural implementation of the method of
discrete expansions in the discussed model is as fol-
lows. Let {fn(x), n = 1, 2, …} be a complete orthonor-
mal set of functions in the space L2[X1, X2] and let qN(x)
be an approximation of the desired solution q(x) with
the segment of its generalized Fourier series:

(4)

Substituting formally Eq. (4) into Eq. (1), we obtain the
operator equation Aa = u, where a = {an}, u = {uj}, and
A = {Ajn} is the rectangular matrix with the elements

In accordance with the concept of the method [4, 5],
coefficients an are to be found from the condition that
the mismatch functional is minimal, i.e., from the self-
conjugated equation

(5)

where B = A*A, v = A*u, and A* is the Hermitian con-
jugated matrix. The optimal value of the parameter N
must fit the initial data errors (the corresponding proce-
dures are discussed in what follows); the limit N = ∞ cor-
responds to the exact right-hand side of Eq. (1). The fact
that this algorithm is the Tikhonov regularization algo-
rithm [8] is established in the projection method [10].

We used the Legendre polynomials orthonormalized
on the segment [X1, X2] as the basis functions fn(x).

qN x( ) an f n x( ).
n 1=

N

∑=

A jn k x j x'–( ) f n x'( ) x'd

X1

X2

∫=

n 1 … N ; j 1 … J, ,=, ,=( ).

Ba v,=
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To simplify the correlation of the results, we speci-
fied real-valued model loads q(x). For this reason, we
replaced Eq. (1) with its real-valued analog with the
kernel Re{θk∞(ζ)} and the right-hand side Re{θu(x)},
where θ = exp(–iωt) is the given phase factor. Equa-
tion (5) was modified in a similar manner. This modifi-
cation means that we a priori considered the load as a
real-valued function (thus approximately doubling the
efficiency of the algorithms).

Now, we discuss the results of our simulations. In
the calculations, we used two types of model loads q(x):
(I) a combination of sine-like and step functions speci-
fied within the segment [X1, X2] = [0, 1] and (II) the

function q(x) = 1/  specified within the segment
[X1, X2] = [–0.99, 0.99]. The latter models the action of
a rectangular punch in the static approximation [14].
We formed the arrays of initial data on the basis of the
numerical solution of the direct problem with a specific
load q(x) by adding the thus obtained uj with the ran-
dom error whose relative values were uniformly distrib-
uted in a given interval [–∆, ∆]. As is customary, the
numerical solution of the inverse problem was then cor-
related with the initial model function q(x). Figures 1–3
shows typical examples of such a correlation. The solid
lines correspond to the model functions, the circles cor-
respond to the solutions by the Tikhonov method, and
the dashed lines correspond to the solutions by the
method of discrete expansions. All curves were calcu-
lated for the frequency κ = 6 and are stable relative to
the choice of the phase ωt. These results were obtained
for random errors of about a percent, which corre-
sponds to the usual accuracy of modern measurement
techniques [4].

For the above examples, we used 12 observation
points xj uniformly spaced in the interval [X3, X4] = [6,
12]. The particular arrangement of these points and
their exact number J are inessential. It is only desirable
that the condition J ≥ 2M holds; otherwise, one can par-
tially lose the useful information (2M is the number of
real-valued parameters corresponding to M complex
amplitudes of inhomogeneous modes). If the initial
data consist of the complex amplitudes uj (rather than of
real-valued quantities Re{θuj}, as in the model exam-
ples), the condition for J takes on the form J ≥ M.

In the calculations by the Tikhonov method, we
used the parameter J ' = 30 (increasing the parameter by
a factor of 3 changed nothing in the calculated results).
The ways of determining the parameter α are described
in [8, 9, 15].

In the simulations, we smoothly increased the
parameter ∆ (appropriately fitting the regularization
parameters α and N) to determine roughly (on the order
of magnitude) the upper boundary of the parameter ∆,
beginning from which the quality of the reconstructed
pattern was drastically degraded (the average relative
error measured about 100%, the extremums of the
model function cease to be distinguishable, false

1 x2–
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extrema appear, and so on). For all our examples, this
upper limit was approximately the same for both algo-
rithms, i.e., for the method of discrete expansions and
the Thikhonov method. Indeed, for the model function
of type I with two extremums (Fig. 1), the above upper
limit can be estimated as ∆ = 0.005 and 0.05 for the fre-
quencies κ = 3 and 6, respectively. For the function of
type I with four extremums and for the function of
type II at the frequency κ = 6, these limits are close to
∆ = 0.02 and 0.005 (the corresponding curves are
shown in Figs. 2 and 3). To sum up these simulations,
we deduce that both algorithms are of approximately
identical efficiency.

It is noteworthy that the random error smallness by
itself does not assure an adequate reconstruction. There
are additional factors that govern the reconstruction
quality, namely, the number of homogeneous modes M
and the configuration of the contact stress field, which
must be relatively simple (this simplicity meaning will
be given later). The following example is a good illus-
tration of this fact. At the frequency κ = 3, for which
only three modes exist, both algorithms reconstruct
with confidence the model load function of type I with
two extremums (Fig. 1) with random errors up to ∆ ≈
0.005. At the same time, both algorithms fail to recon-
struct a similar curve with four extremums (Fig. 2) even
at ∆ = 0 (they approximate the desired function by the
curves that do not reproduce the positions of the extre-
mums). However, the algorithms reconstruct this func-
tion at the frequency κ = 6, for which the number of
modes is greater by a factor of two (see Fig. 2). The
explanation consists in the fact that kernel (3) is degen-
erate in the far zone.

q
3

2

1

0 0.5 1.0
x

Fig. 1. Reconstruction of a load of type I for ∆ = 0.02; N =
7, and α = 10–7.
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Special care must be given to the choice of the
parameter N in the method of discrete expansions. The
reason is that, for ∆ * 10–2, the optimal values of N are
usually small, about 5–10 (see [4, 5] for comparison).
As a result, even small deviations [say, by ±(1–2)] of
the parameter N from its optimal value can appreciably
decrease the reconstruction quality (note that the insta-
bility of the results drastically increases when the value
of N is too high).

To estimate the greatest admissible value of the
parameter N, one should proceed from the result sensi-
tivity to random errors. Let u and u + δu be two vectors
of the initial data obtained in independent measure-
ments. We will use the following notation: a and a + δa
for the corresponding vectors of the solution of prob-
lem (5) for certain N, u' = Aa for the approximate direct
problem solution reconstructed from the solution of the
inverse problem, σ1 > σ2 > … > σN > 0 for the singular
values [4, 11] of the matrix B, CN = σ1/σN for the con-

ditionality number of this matrix, and SN =  + … +

. Using the singular expansion formalism [4, 11],
one can easily prove the inequality ||δa|| ≤ SN||δu||, or,
what is the same,

(6a)

where ∆a = ||δa||/||a||, ∆u = ||δu||/||u||, and the norms are
calculated in the Euclidean spaces RN and RJ. In view of
the orthonormality of the set {fn} in Eq. (4), ∆a is the
characteristic error of the solution qN(x) (the quantity of
our interest), and the quantity ∆u can be identified with
the average error of the initial data ∆. From the singular

σ1
1–

σN
1–

∆a SN∆u u / a ,≤

q
3

2

1

0 0.5 1.0
x

Fig. 2. Reconstruction of a load of type I for ∆ = 0.02, N =
7, and α = 10–9.
expansion for a, we have ||a|| ≥ ||u||. Since the
sequence of singular values decreases rapidly accord-
ing to the quasi-exponential law [4], we can set SN ≈

; in addition, we can use ||u'|| ≈ ||u||. Substituting these
results in inequality (6a), we obtain a restriction on the
order of magnitude:

(6b)

The right-hand sides of inequalities (6) give too high an
estimator for ∆a. As long as these sides are below unity,
the error ∆a still appears reasonable. From these consid-
erations, two interchangeable criteria follow for deter-
mining the optimal N from the given error ∆u = ∆.
Namely, the optimum is the maximal value of N for
which (A) the right-hand side of inequality (6a) or (B)
the right-hand side of inequality (6b) is less than unity.
Criterion (A) based on the accuracy loss SN ensures that
the statistical scatter of the results is below 100%. The
more convenient criterion (B) was stated earlier [4]
from empirical considerations. Using a large number of
simulated examples, we checked that, despite the non-
strict character of the estimator, both criteria usually
give identical (or differing by unity) values for N, and
these values coincide with the optimal values obtained
from the condition of the best correspondence between
the model function and the reconstruction. Such effi-
ciency of the criteria follows from the fact that singular
values strongly depend on their order number (Fig. 4).

As was mentioned above, the features of the kernel
in the far zone impose specific restrictions on the recon-
struction. The essence of these restrictions can be easily
clarified using the discrete approach. For this purpose,

σ1
1–

σN
1–

∆a & CN∆u.

q
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0

3

0.50 0.99–0.99 –0.50
x

1

Fig. 3. Reconstruction of a load of type II for ∆ = 0.005, N =
9, and α = 10–9.
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we consider complex-valued loads; in the version with
a priory real-valued functions q(x), all subsequent rela-
tionships hold with the number of modes M being
replaced by the corresponding number of the real-val-
ued parameters 2M. In the far zone approximation, i.e.,
in the problem with a degenerate kernel, Eq. (3b),
admissible values of the regularization parameter N are
limited from above by the dimension of the vector
u-space, which coincides with the number of homoge-
neous modes M (for N > M, higher singular values of
the matrix B appear to be zero, and the solution
becomes unstable). Let N[q] be the characteristic mini-
mal number of terms in the Fourier expansion (4) that
is required for an acceptable approximation of the given
function q(x) in accordance with the norm C[X1, X2]. In
this case, a successful reconstruction assumes that the
condition

(7)

must hold. In the limit ∆  0, the necessary condi-
tion (7) of the reconstruction becomes, in a certain
sense, the sufficient condition as well. Indeed, in the
class of functions q(x) representable by finite Fourier
series (4) with N ≤ M, the solution to the inverse prob-
lem with kernel (3b) is unique and stable to distur-
bances in the initial data u. In the case of loads given in
the general form, the contributions of higher terms of
the Fourier series (with n > M) can be considered as
small disturbances under condition (7), which ensures
the reconstruction of the lower terms of the series by the
method given in [4, 5]. Hence, condition (7) is the
desired estimation criterion that determines the possi-
bility of an adequate reconstruction for moderate
errors ∆. According to inequality (7), a decrease in the
number of homogeneous modes M narrows the class of
admissible functions q(x) rather than deteriorates the
general quality of the reconstructed patterns. Precisely
this effect was observed in the above simulations.

Since N[q] is only an order-of-magnitude estimator,
it can be treated as a characteristic intrinsic in the func-
tion q(x), which only weakly depends on the choice of
the basis functions in Eq. (4). Therefore, it is not sur-
prising that criterion (7) appears to be empirically jus-
tified not only in the discrete approach, but also in the
Tichonov method in which the basis is not fixed. Con-
sidering condition (7), it is pertinent to additionally
emphasize that, in the far zone approximation, the limit
∆  0 corresponds physically to a small, but finite
measurement error that exceeds the contribution of
inhomogeneous waves.

Thus, in this paper, we investigated the reconstruction
of the dynamic contact stresses acting on an elastic layer
in the context of the general problem of the field recon-
struction [4, 5]. The reconstruction can be performed by
both the method of discrete expansions [4, 5] and the
method of an integral operator equation with the Tikho-
nov regularization. The efficiency of both approaches
appeared to be approximately equal, which indicates that
it is close to the fundamentally attainable one.

N q[ ] M≤
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A disadvantage of the discrete approach is its low
stability to variations in the order N of the reduced sys-
tem of equations. As was shown, this difficulty is not
insuperable. Discussing this point, we mathematically
explained the origin of the empirical estimator [4] for
the optimal values of the parameter N, determined an
alternative estimator, and showed that both estimators
are quite practicable.

A reconstruction of the contact load appears to be
possible even when the measurements are carried out in
the far zone and the experimental information is scarce
because of the low number of modes existing in this
zone. In this case, the degeneracy of the kernel in the
integral Fredholm equation imposes natural restrictions
on the reconstruction of the stress field: the configura-
tion of the field must a priori be sufficiently simple. For
simple fields satisfying condition (7), we predict a sta-
ble reconstruction with the reproduction of the spatial
features of the wave pattern, provided that the measure-
ment errors are not too large.
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Abstract—The problem of the velocity of sound in a medium containing cylindrical voids is solved with the
use of the theory describing coupled vibrations of a tube of finite height, which serves as a model of the
medium. The expression for the velocity of sound is derived with allowance for the dynamic correction sim-
ilar to the Rayleigh correction for an infinitely long rod. Good agreement is obtained between the calcula-
tions (by the formulas derived for the velocity) and the experimental characteristics of the reflection and
transmission coefficients of multilayer samples made of rubber with cylindrical voids, which were measured
in the Low-Frequency Acoustic Pipe system in the frequency range 100–5000 Hz under hydrostatic pressures
up to 30 kg/cm2. © 2001 MAIK “Nauka/Interperiodica”.
Artificial voided media are used in underwater acous-
tics for making sound-insulating and sound-absorbing
coatings and screens [1–4]. For example, layers made of
rubber with cylindrical voids, first described by Tyutekin
[5], have found wide application. Theoretical methods
for calculating the acoustic and elastic parameters of the
aforementioned media are considered in many publica-
tions, the most comprehensive reviews of which can be
found in [3, 6]. In this paper, we propose and justify a
method for calculating the velocity of sound in a layer of
rubber with cylindrical voids with allowance made for
dynamic correction. It is well known that the static
approximation used for calculating the velocity of sound
in a medium with cylindrical voids is valid for frequen-
cies well below the resonance of the tube with a radially
fixed outer surface, which serves as a model of the
medium under consideration (below, we will call it “the
tube” for brevity). Therefore, at higher frequencies, it is
necessary to introduce a correction that is similar to the
Rayleigh dynamic correction for infinitely long solid
rods [7] or tubes [6]. As noted in [7], the method of cou-
pled vibrations developed in [8] yields a result that is
closer to reality than the result obtained with the Ray-
leigh correction. Hence, we calculate the velocity of
sound in rubber with cylindrical voids by taking into
account the dynamic correction and using the results
obtained in [8]. To justify the proposed method, we first
consider a thin cylindrical shell of radius a and height h
with its lateral surface and ends being free from stress.
The equation describing the vibrations of this shell [9]
can be represented in the form

(1)F4 F2 1

1 ν2–
-------------- n f z( )2 f r

2+[ ]– n f z( )2 f r
2 1

1 ν2–
--------------+ 0,=
1063-7710/01/4706- $21.00 © 20671
where

(2)

is the radial natural frequency of the shell vibrating at
the zeroth mode;

(3)

is the axial natural frequency of the shell vibrations
along the z axis; F is the natural frequency of the com-
bined radial and axial vibrations of the shell; and E, ν,
and ρ are the Young modulus, the Poisson ratio, and the
density of the shell material.

Following the approach used in [8], we calculate the
velocity with allowance for the dynamic correction on
the basis of the theory of natural vibrations in a system
with two degrees of freedom. The most complete and
mathematically correct description of this theory can be
found in [10]. Expressing the equations of motion of
the system through the Lagrange equations for each of
the two coordinates, we obtain

(4)

Here, q is the inertial coupling coefficient and p is the
elastic coupling coefficient.

The roots of Eq. (4), F1 and F2, are always real, and
the partial frequencies f1 and f2 lie between F1 and F2.
This means that, in the presence of coupling, the high-
est natural frequency of the system lies above the
higher natural partial frequency and the lowest natural
frequency is below the lower partial one; i.e., the pres-
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ence of the coupling between the vibrations of two iso-
lated systems leads to an increase in the higher partial
frequency and a decrease in the lower one. If we choose
two oscillatory systems with widely separated natural
frequencies, the inertial coupling will predominate, and
the elastic coupling can be neglected. (We note that in
[8] this statement is proved only experimentally.) In
this case, p = 0, and the coupling coefficient q, which is
to be determined for a specific oscillatory system, is a
finite quantity.

Following [8, 10], we apply the theory of coupled
vibrations to the calculation of the natural frequencies
of a thin cylindrical shell of finite height. To use Eq. (4),
it is necessary to understand what are the frequencies f1
and f2 in the case of the shell vibrations. If the shell is
very long or has a very small diameter, we have f2 @ f1,
and, for vibrations propagating along the shell axis,
Eq. (3) must be used. If the shell length is small com-
pared to the shell diameter and, in the axial direction,
the shell degenerates into a thin ring, we have f1 @ f2; in
this case, for the frequency of natural vibrations, we
must use Eq. (2). Therefore, if in Eq. (4), we replace the
frequencies f1 and f2 by the determining frequencies
given by Eqs. (3) and (2), i.e., f1 = nfz and f2 = fr , and
assume that p = 0, we obtain the solution for the natural
frequency of the first series of vibrations in the form of
the expression

(5)

Below, this expression will be used for calculating the
velocity in the tube. From Eq. (4), it follows that

(a) at z = 0, i.e., for a very short tube (fz ≈ ∞), we
have

(6)

which is the natural frequency of radial vibrations of a
thin ring;

(b) at z ≈ ∞ (fz = 0), we have

(7)

which is the natural frequency of radial vibrations of an
infinitely long shell;

(c) at the resonance between the axial and radial
vibrations, when nfz = fr , we obtain the so-called dead
zone [8]: no tensile vibrations can be excited in the
shell at a given radius and elastic waves cannot propa-
gate along the tube axis in this case.

From Eqs. (6) and (7), we determine the coupling
coefficient

(8)
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Hence, the coupling coefficient can be calculated from
the radial natural frequency of a thin ring F1 = fr and
the radial frequency of an infinitely long tube

(9)

Substituting Eqs. (6), (7) and (9) in Eq. (8) and tak-
ing into account Eq. (2), we obtain

(10)

Thus, the coupling coefficient for the axial and
radial vibrations of a thin cylindrical shell with stress-
free lateral surfaces proves to be equal to the Poisson
ratio ν. Substituting q = ν in Eq. (4) and correlating it
with Eq. (1), one can easily show that these equations
fully coincide. This allows one to use the theory of cou-
pled vibrations in other cases and, specifically, in the
problem on the vibrations of a tube with a radially fixed
outer surface, which is (as noted above) a model of a
medium with cylindrical voids.

The velocity of the elastic wave propagation in the
tube is analogous to the velocity in a rod with the Ray-
leigh dynamic correction, and it can be determined
from the relation

(11)

which yields

(12)

where ΛF is the wavelength in the tube at the natural
frequency of the tube with allowance for its axial and
radial vibrations Ftu, and h is the tube height. The value
of Ftu can be determined from Eq. (5) (by setting F1 =
Ftu), if the coupling coefficient q is known. The reso-
nance frequencies of a thin (h = 0) and an infinitely long
(h = ∞) tube of radius a with the radially fixed outer sur-
face of radius b are determined by the expressions [11]

(13)

(14)

F2
1

2πa
--------- E

ρ 1 ν2–( )
----------------------.=

q 1
1

2πa( )2
----------------E

ρ
--- 2πa( )2ρ 1 ν2–( )

E
----------------------------------------–=

=  1 1 ν2–( )– ν .=

h n
ΛF

2
------ n

c
2Ftu
---------- n 1 2 3…, ,=( ),= =

c
2hFtu

n
-------------,=

ω0
2 2πF1( )2=

=  
4E

ρ0 1 ν2–( )a2
------------------------------ 1 ν+( )ε2 1 ν–( )+

L
---------------------------------------------;

ω∞
2 2πF2( )2=

=  
4E

ρ0 1 ν+( ) 1 2ν–( )a2
-------------------------------------------------1 2ν– ε2+

L
--------------------------,
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001



CALCULATION OF THE VELOCITY OF SOUND 673
where

(15)

and ε2 =  is the perforation coefficient. Knowing

these two frequencies, we obtain

(16)

For rubber (for ν  0.5), from Eq. (16) it follows that

  0. Then, according to Eq. (8), the coupling

coefficient between the longitudinal and radial vibra-
tions of a rubber tube of arbitrary height with a radially
fixed outer surface is q = 1.

To calculate the velocity by Eq. (12) with allowance
for Eq. (5), we introduce the notation

(17)

where s =  is a dimensionless parameter; cef is the

effective velocity in the tube, as calculated in the static
approximation; ct is the velocity of shear waves in the

basic rubber material; kt =  is the wave number for

shear waves; and (kta)0 is the resonance wave radius of
the tube of an infinitely small height.

Setting

(18)

and taking into account Eqs. (12), (17), and (18), we
obtain

(19)

Then, from Eqs. (5) and (19), we obtain the expression
for the velocity c:

(20)

Since, for the rubber tube in the case under study, the
coupling coefficient is q = 1, Eq. (20) takes the form

(21)
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From Eq. (18), it follows that, to determine Q, it is
necessary to know (kta)0. The values of the resonance
wave radii for a tube of arbitrary height, which were
calculated in [3] with allowance for Eqs. (13) and (14),
can be represented in the form:

(a) for a tube with “sliding” (not radially fixed) ends,

(22)

(b) for a tube with radially fixed ends,

(23)

For h  0, we have

(24)

  ∞, (25)

where L is determined from Eq. (15).

As was shown in [3], for tubes with  ≥ 1, the dif-

ference between the propagation velocities of elastic
waves in the static approximation in the cases of free
and fixed ends is insignificant. Therefore, in calculating
the dynamic correction, we will use Eq. (24). However,
we note that, since the compression diagrams for tubes
with free and fixed ends are noticeably different, the
dependence of the tube parameters on the hydrostatic
pressure will be calculated below on the basis of the
theory of large deformations for tubes with radially
fixed ends [3].

Since, as the tube is compressed, its radius a varies,
and, hence, the perforation coefficient ε2 also varies, we
introduce the dependence on the pressure P (the index p)
in Eqs. (18) and (24) and represent them in the form

(26)

(27)

where

(28)

(29)

and δ is the relative deformation of the tube along its
axis.
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Substituting Eq. (28) in Eqs. (27) and (29), Eqs. (27)
and (29) in Eq. (26), and then the resulting expressions
in Eqs. (18) and (21), we can calculate the velocity in
rubber with cylindrical voids with allowance for the
dynamic correction at a given pressure P. Taking into
account Eqs. (18) and (26), we represent Eq. (21) in the
form

(30)

We note that the curve given by Eq. (30) has the form

of part of a circle. At low frequencies   0 ,

the velocity in the tube is determined by the static

approximation  ≅ 1 . As the frequency increases,

 decreases and, when   1, we have

  0. Thus, Eq. (30) is valid only for  < 1.

When  ≥ 1, no wave propagation occurs in a

tube of finite height because of the presence of a “dead
zone” (see above), unlike the case of infinitely long
tubes [2, 6] when the velocity becomes equal to the
Rayleigh wave velocity.

To calculate the velocity in a tube with radially fixed
ends under large static deformations in the static
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Fig. 1. Frequency dependence of the velocity of sound in
rubber with cylindrical voids under different hydrostatic
pressures: P = (1) 10, (2) 20, (3) 30, and (4) 40 kg/cm2.

cef
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10–4 cm/s,×
 approximation, it is necessary to use the following
refined formulas from [3]:

(31)

where the terms ∂G/∂δ and ∂2G/∂δ2 are determined by
the expressions

Let us compare our theoretical results with experi-
mental data. At the Andreev Acoustics Institute, mea-
surements of the reflection and transmission coeffi-
cients were performed for rubber samples with cylin-
drical voids under different hydrostatic pressures by
using the Low-Frequency Acoustic Pipe system [12, 13].
(The measurements were performed by A.E. Vovk,
T.B. Golikova, and T.B. Gromova.) Samples nos. 1 and
2 made of rubber with cylindrical voids were studied.
The samples had a diameter of 150 mm. Sample no. 1
consisted of three layers of voided rubber with the
thickness of each layer h = 1.35 cm and with titanium
interlayers vulcanized to rubber between them and tita-
nium straps covering the outer surfaces of the sample.
The thickness of the interlayers was ∆1 = 0.1 cm, and
the strap thickness was ∆2 = 0.4 cm. The diameter of
the channel was 2a = 1 cm, the outer radius of the tube
was b = 0.85 cm, the perforation coefficient of the rub-
ber with cylindrical voids was ε2 = 0.35, and the rela-

tive height of the rubber tube was  = 1.6. The static

shear modulus of the basic rubber material was µst =
(13–15) kg/cm2, and the shear wave velocity was ct ≅
0.5 × 104 cm/s. The total thickness of sample no. 1 was
H1 ≅ 5 cm. Sample no. 2 consisted of two samples
no. 1, and its thickness was H2 = 2H1 ≅ 10 cm.

Figure 1 presents the frequency dependences of the

velocity  calculated from Eq. (30) with allowance
for Eq. (31) for the rubber structure under study with
the parameters specified above. One can see that, in the
frequency range up to 5000 Hz, the velocity curves do
not intersect the frequency axis; i.e., in the frequency
range under study, the elastic waves can propagate
along the tube axis. Figures 2 and 3 present the charac-
teristics of the absolute values of the reflection and
transmission factors, r and t, calculated by the theory of
multilayer systems [14]. In the computational program,

cef
p( )

ct

--------
1 ε2–

1 εp
2–

------------- 1
4
3
--- ∂2G

∂δ2
--------- 1 GN+( ) N δ∂

∂G
 
 

2

++
 
 
 

,=

δ∂
∂G

3
4
---

1 δ2–( ) 1
4
5
---1 ε2–

ε2
-------------G– 

 
-------------------------------------------------------;=

N 2
2
5
---1 ε2+

ε2
-------------- b

h
--- 

 
2

ε2 3– 2 ε2ln

1 ε2–
-------------– 

 + ;=

∂2G

∂δ2
--------- 2 1 δ–( )2

δ∂
∂G

1 δ–( ) 8
15
------1 ε2–

ε2
-------------

δ∂
∂G

 
 

2

+ .=

h
b
---

cef
p( )
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001



CALCULATION OF THE VELOCITY OF SOUND 675
the multilayer system was represented as a cascade
connection of quadripoles. The loss coefficients were
taken to be ηc = 0.05, 0.1, and 0.15, because ηc could
depend on frequency. The experimental values of r and
t are represented by dots (squares for the reflection
coefficient and circles for the transmission coeffi-
cients). The measurements were performed for the
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Fig. 2. Frequency dependences of the absolute values of the
reflection coefficient r and the transmission coefficient t
measured for a three-layer sample made of rubber with
cylindrical voids (sample no. 1) under pressures P = (a) 10,
(b) 20, and (c) 30 kg/cm2 and the corresponding calculated
characteristics for ηc = (····) 0.05, (----) 0.1, and (—) 0.15.
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hydrostatic pressures P = 10, 20, 30, and 40 kg/cm2 in
the frequency range from 100 (or 300) to 5000 Hz. The
water in the experiment was at room temperature. For
the pressures P = 10, 20, and 30 kg/cm2, the calcula-
tions agree well with the experimental data. At low fre-
quencies, the curves calculated for the loss coefficient
ηc = 0.05 show the best agreement with the measured
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Fig. 3. Frequency dependences of the absolute values of the
reflection coefficient r and the transmission coefficient t
measured for a six-layer sample made of rubber with cylin-
drical voids (sample no. 2) under pressures P = (a) 10,
(b) 20, and (c) 40 kg/cm2 and the corresponding calculated
characteristics (the notation for the curves is the same as in
Fig. 2).
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characteristics, whereas, at frequencies above 1000 Hz,
a better agreement is observed for ηc = (0.1–0.15). We
note that, since the measurements of ηc for monolithic
rubber by the known techniques (specifically, using
instrument 3930 by the Bruel and Kjer company for
measuring the complex Young modulus [15]) can be
performed only for frequencies f < 500–600 Hz, the
results obtained provide an indirect estimate of the loss
coefficient ηc at frequencies above 1000 Hz. At the
pressure P = 40 kg/cm2, the difference between the cal-
culations and the experiment proves to be large. Pre-
sumably, this can be explained by the effect of the
deformations caused by the three-dimensional com-
pression of the voided rubber sample placed in the mea-
suring pipe, because these deformations are not
described by the theory [3] of large static deformations
of the tube.

Thus, the proposed model, which is developed for
the determination of the velocity in a medium contain-
ing cylindrical voids with allowance for the dynamic
correction on the basis of the previously developed the-
ory [3] of large deformations of the medium under con-
sideration, is experimentally justified. This follows
from the fair agreement between the characteristics cal-
culated (using the above-derived formulas for the
velocity) for the reflection and transmission coeffi-
cients of multilayer samples made of rubber with cylin-
drical voids and the corresponding experimental data
obtained from the measurements in the Low-Frequency
Acoustic Pipe in the frequency range 100–5000 Hz
under hydrostatic pressures up to 30 kg/cm2.
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Abstract—The statistical problem of the scattering of wideband pulses by a random layered medium at normal
incidence is considered in the framework of the wave approach in the space–time domain. Simulated correlation
functions and power spectral densities of the backscattered field are presented. They extend the earlier findings
concerning the backscattered field formation and also confirm and refine a number of conclusions drawn earlier
from the behavior of the field’s statistical moments. The simulation technique is free from approximations com-
monly used in the statistical analysis of the propagation problems and can be used to study the statistical prop-
erties of the scattered field in a wide range of time intervals, as well as to find the limits of applicability of the
approximate methods. © 2001 MAIK “Nauka/Interperiodica”.
Our earlier papers [1–3] addressed the problem of
the pulse and signal scattering from a randomly layered
medium at normal incidence in the framework of the
classical wave approach in the space–time domain. The
time behavior of the statistical moments of the back-
scattered field was studied for the sound velocity fluc-
tuations described by the Markovian process. The sto-
chastic modeling relied on the exact numerical scheme
that was based on a combination of analytical and
numerical techniques developed earlier for determinis-
tic problems [4]. It should be noted that, although a suf-
ficiently large number of studies are devoted to pulse
propagation in inhomogeneous media, the number of
papers that address this problem in the framework of
the statistical wave theory is not very large. Among
these, studies [5–7] are most close to our approach in
the initial statement of the problem and in the purpose.
In these papers, certain analytical results were obtained
for the scattering of smooth pulses: the asymptotic
decay behavior of the average intensity, the time evolu-
tion of the initial wave form, the probability distribution
of the backscattered field, etc. However, studies [5, 6]
are mostly mathematical and contain a large number of
overlapping assumptions, which make it difficult to
understand the final results and limits of their applica-
bility. These circumstances are primarily associated
with efforts to convert the results of the approximate
analysis of the scattering processes in the frequency
domain to the time domain with the help of the Fourier
transform. Undoubtedly, of great interest is paper [7],
which, in particular, derives the main results obtained
in [5, 6] from the asymptotic analysis using a physically
clear and elegant approach—an analytical extension of
the solution to the steady-state problem with respect to
1063-7710/01/4706- $21.00 © 20677
the absorption parameter. Our approach to the problem
employs a rigorous simulation technique and removes
the limitations imposed on the characteristics of the
incident pulses and on the statistical properties of the
fluctuating medium. However, the key feature is that
this approach is capable of studying the process in arbi-
trary time domains. In particular, it can derive the tran-
sient behavior of the statistical characteristics of the
backscattered field, whereas the studies mentioned
above describe the processes that evolve mostly in far
time regions, in which asymptotic calculations are
valid. This paper presents the simulated correlation
functions and spectral densities of the backscattered
field for two important cases of wideband pulses inci-
dent on a random medium: the θ pulse (a constant-
amplitude pulse of an infinite duration) and the δ pulse
(an infinitely short pulse). It is questionable whether the
approximate analysis methods developed in [5–7] can
be applied to these pulses.

As previously [1–3], we consider the boundary-
value problem of the normal incidence of a pulse
ϕ(|z – L| + c2t on a randomly layered medium, which
occupies part of the uniform space L0 < z < L:
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We assume that the pulse arrives from the right-hand
homogeneous semi-infinite space, where c(z) = c2, at
the interface z = L at the instant t = +0. At times t > 0,
the fluctuating medium creates the backscattered field r
(|z – L| – c2t) in this semi-infinite space so that r(t) =
U(L, t) – ϕ(t). The subject of inquiry is the time behav-
ior of the statistical characteristics of this field.

The behavior of the statistical moments of the back-
scattered field for incident pulses of various durations
was analyzed in [1, 2]. The scattered field was shown to
be nonstationary and was described quantitatively. In
this paper, we study the correlation functions and the
power spectral densities of the random field r(t) and
present the results that extend and refine the earlier
findings.

Let the fluctuations of the sound velocity profile be
described by the zero-mean Gaussian random process
c(z) = c0(1 + ε(z)) with the correlation function

〈ε(z)ε(z')〉 = exp(–|z – z'|/l), where the intensity of the

fluctuations is  ! 1 and the correlation distance l is
the smallest spatial scale of the problem. Based on the
previous analysis [1–3], we introduce the parameters
that relate the random process to a certain reference
narrowband signal with the carrier frequency Ω: the
diffusion coefficient D(Ω) for this frequency [7] and the
respective diffusion time scale T = D–1/c0. If c(z) is a
deterministic function, a solution to the problem given
by Eqs. (1) and (2) at z = L, i.e., the field r(t), can be
written analytically using a piecewise approximation of
the profile c(z) in terms of the appropriate functions to
any desired degree of precision. This expression was
presented in [1–3] and was used for calculating the field
for each realization of the random function ε(z) speci-
fied by its ensemble. Let us consider the results of sim-
ulations. As previously [2, 3], in the further analysis, we
use only the normalized time variables: Ω* = ΩT, τ =

t/T, ξ(z) = T–1 c–1(ζ), h = ξ(L), and R(τ) = r(t)/T. In

our calculations, we used the following values: Ω* =

100, h = 20 and 40, and  = 0.025. Note that the cho-
sen frequency of the reference harmonic corresponds to
a large number of oscillations that occur on the scale of
the diffusion coefficient and also to small inhomogene-
ity fluctuations. The quantity h determines the thick-
ness of the inhomogeneous layer; it equals the average
time for the wave to pass through the layer [2]. The
above values of h (it must be h @ 1; see, e.g., [7]) refer
to the case, in which a monochromatic wave with the
frequency Ω is totally reflected by the layer of the fluc-
tuating medium with probability approaching unity.

We considered incident pulses belonging to two lim-
iting cases: a pulse of a very long duration η (the time
the pulse acts on the layer interface), in particular, the
Heaviside unit step function θ(τ), and a very short pulse
(a model of the δ pulse). From the viewpoint of speci-
fying the parameters of the problem, the term short

σε
2

σε
2

ζd
L0

z∫
σε

2

pulse means that its duration is η ! 1 < h and, in gen-
eral, η can be comparable with or even less than the
time for the leading edge of the pulse to travel a dis-
tance equal to the correlation distance of the inhomoge-
neous medium. Conversely, a pulse of a very long dura-
tion means that η > 2h. These cases basically differ
from the situations in which efforts were made earlier
to obtain asymptotic results by approximate methods
[5–7]. These works assumed the incident pulse to be
narrowband and to have a smooth wave form. Impor-
tantly, the function that describes the propagation of the
step [ϕ(t) = θ(t)] is the Green function of problem (1),
(2). Therefore, it can be used to study the problem with
any other ϕ(t). It was shown earlier [2, 3, 8] that the
backscattering process is essentially nonstationary and
that this nonstationary time interval is considerably
long. In particular, for the δ pulse, the transient domain
lies in the time interval 0 < τ < 20, during which the
major part of the energy of the incident pulse is emitted
back from the medium. As for the Green function, the
region of its pronounced nonstationary behavior
expands to τ ~ 35–40. As is known, the correlation
function and the power spectral density of the backscat-
tered field for the general nonstationary process can be
written, respectively, as

We consider the power spectral density as a function of
time characterized by its instantaneous values. The evo-
lution of Sω(τ) shows the frequency content of the back-
scattered field at a particular time moment.

In the process of simulations, we averaged the
results over an ensemble of N = 1000 random field real-
izations, which is quite sufficient for obtaining reliable
statistical results in this problem. The qualitative
behavior of the moments of the field R(τ) is clearly seen
even with a considerably smaller number of realiza-
tions. Figure 1 shows the correlation coefficient of the
backscattered field versus time in the interval δ ∈  [–2, 2]
for the incident θ pulse. It is seen that, in the region of
the nonstationary behavior, not only the amplitude of
the correlation function Ψ(τ, 0) = 〈R2(τ)〉  decreases [3],
but also the correlation scale of the backscattered field
changes (the relative width of the correlation coefficient
gradually grows and its small-scale fluctuations disap-
pear). The increase in the width of the correlation coef-
ficient means that the power spectral density of the pro-
cess becomes narrower. In fact, with increasing the
observation time τ, the high-frequency components dis-
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Fig. 1. Correlation coefficient of the backscattered field versus time for the incident θ pulse at the observation times (from left to
right) τ = 0.2, 2, and 35.
appear from the power spectrum of the backscattered
field and the spectrum gradually moves to the low-fre-
quency region, as shown in Fig. 2. Simultaneously, its
amplitude increases near ω* ~ 0. This behavior vali-
dates the qualitative considerations presented in [3].
The low-frequency components of the spectrum form
the infinite tail of the θ pulse and penetrate deep into the
medium without being scattered. These are the compo-
nents that cause the second moment of the backscat-
tered field to decay as the power-law function, which
was established in [5–7] as the asymptotic limit for the
narrowband or video pulses incident on the medium.
The power-law field decay in the region of transient
processes was also studied in [8], where the law ~τ–0.5,
τ ∈  (20, 40), was obtained for the θ pulse. Figures 1 and
2 thus show that the scattering process for the case of
the Green function does not become stationary in this
problem, and only a certain quasi-stationary mode can
be observed within the time interval τ ~ (30–40), in
which Ψ(τ, 0) = 〈R2(τ)〉  reaches a level of ≅ 0.8 × 10–3

[3] and slowly decays further as ~τ–0.5. It was supposed
in [3] that, beginning with these times, the backscat-
tered field can be considered as stationary. The above
analysis however shows that this supposition is not
completely valid. To a good accuracy, it is valid only for
the mean 〈R(τ)〉 . To illustrate this statement, Figs. 3a
and 3b present the functions 〈R2(τ)〉  for very long obser-
vation times up to τ ~ 80 [they correspond to the layer
dimensions of (L – L0) ~ 4000l] and the monotone curve
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
~τ–0.5, which approximates it in terms of the least-
squares approach.

Consider the incident pulse in the form of the δ pulse.
The correlation functions are similar to those shown in
Fig. 4. However, they feature a much smaller relative
width, i.e., in this case, the correlation in the backscat-
tered field covers much shorter times and only very
weakly tends to grow with τ. The power spectrum of the
process at different observation times is shown in Fig. 4.
Its specific feature is that the high-frequency compo-
nents decrease with time. In this case, the amplitude of
the low-frequency components (ω* ~ 0) is very small,
which indicates that they carry a small portion of the
backscattered energy. The frequency spectrum of the
δ pulse is uniform. Therefore, the backscattered field is
to a greater degree (than for the θ pulse) determined by
high frequencies, which are scattered by the medium.
The same behavior as for the θ pulse is observed: the
high-frequency harmonics are intensely emitted back
from the medium, carrying away almost all of the
energy of the incident δ pulse by the instant of time
τ ~ 20.

The results of the statistical simulations presented in
this paper describe the time interval of pronounced
transient processes in the backscattered field, in which
approximate asymptotic formulas [5–7] for the second
statistical moment of the field R(τ) for τ  ∞ fail. We
have also noted that these formulas can prove to be of
little use for the analysis of such incident pulses as the
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Fig. 4. Power spectra of the backscattered field for the incident δ pulse at the observation times (from left to right) τ = 0.2, 10, and 35.
wideband δ and θ pulses, because they are obtained
under the assumption that the pulse incident on the ran-
dom medium is smooth and bandlimited. These consid-
erations are corroborated by the above-mentioned
power-law time behavior of the moments of the back-
scattered field studied in [8]. Even for sufficiently long
observation times τ, exponents of these functions often
differ from those predicted by the asymptotic analysis
[5–7]. We observed these differences in the function
〈R2(τ)〉  for the δ and θ incident pulses and for a finite
rectangular pulse [8]. We have also found that the cor-
relation time of the backscattered field is longer than
previously considered, which is particularly pro-
nounced in the case of the Green function. This case is
most complex from the viewpoint of simulations. Cal-
culations with the accuracy required for the generalized
θ function are only possible due to the numerical
scheme based on explicit analytical expressions [2, 3],
which describe the solution to the boundary-value
problem given by Eqs. (1) and (2).
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Abstract—Various search procedures for finding the global extremum of a multivariate target function (TF)
necessary for calculating the characteristics of surface acoustic waves (SAW) and leaky surface acoustic waves
(LSAW) in crystals are analyzed. The search procedures aimed at determining the optimal orientations for SAW
in crystals are considered. A comparative analysis of the promising methods for finding the global extremum
of the TF is performed. © 2001 MAIK “Nauka/Interperiodica”.
One of the specific features of the SAW technology
is that, prior to designing any SAW device (a generator,
delay line, filter, etc.), it is necessary to determine the
orientation in the piezocrystal space for the wave prop-
agation with optimal characteristics. The optimal char-
acteristics of SAW and leaky SAW (LSAW) are known
to be as follows [1]: thermal stability in a wide range of
temperatures (expressed by the temperature coefficient
of frequency TCF), a high electromechanical coupling
factor K2, a small angle between the directions of the
group and phase velocities pfa, and a small diffraction
loss characterized by the anisotropy factor (γ = –1). In
the case of LSAW, it is also necessary to have a low
damping factor δ along the direction of wave propaga-
tion. It is well known that, to find the wave parameters
K2, pfa, γ, and TCF, one should first determine the
phase velocity of the wave V and the damping factor δ.

To determine V and δ, and also the optimal orienta-
tion for SAW and LSAW in the piezocrystal space, var-
ious search procedures for finding the global extremum
of a multidimensional target function (TF) can be used
[2–7]. The value of TF depends on the three Euler
angles, f1, f2, and f3; [8] describing the crystal cut and
the direction of wave propagation; and also on the val-
ues of material constants of the piezocrystal. The
parameters of the TF are the wave velocity V and the
damping factor δ. In its turn, finding the extremum of
the TF in terms of the optimal characteristics of SAW
and LSAW is a separate complicated computational
problem of a multiparameter search for the extremum
of the TF [2, 9].

The object of this work is to perform a comparative
analysis of several search methods for finding the glo-
bal extremum of a multivariate function with the aim to
solve the above-mentioned problems.
1063-7710/01/4706- $21.00 © 20682
We use the equations describing the propagation of
an acoustic wave in a piezocrystal [1]:

(1)

Here, Cijkl , eikl , and εik are the material constants of the
piezocrystal, ui are the mechanical displacements, ϕ is
the potential, ρ is the substrate density, t is time, and
xj are the spatial coordinates. The indices are i, j, k, l =
1, 2, 3.

To calculate the characteristics of SAW and LSAW
propagating at the free surface of a piezocrystal, we
should solve the system of equations (1) formulated for
an anisotropic piezoelectric medium. If a layer of finite
thickness covers the surface of the piezocrystal, a prob-
lem of the propagation of SAW in the layer–piezoelec-
tric substrate structure should be solved. In this case,
we have two systems of equations (1) relating respec-
tively to the layer material and the substrate material. In
both cases, the equations that describe the wave propa-
gation cannot be solved analytically and require the uti-
lization of numerical methods.

Directing the x1 axis along the wave propagation at
the surface (the x3 axis is normal to the surface), we can
write the required solutions for the displacement ampli-
tudes and for the potential in the piezocrystal space as
follows:

(2)

Here, k = ω/V is the wave number, and ω is the circular
frequency. The first exponents in Eqs. (2) describe the
decrease in amplitude along the x3 direction with the

ρ
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damping factors β determined by their imaginary parts,
and α1 and α4 are the unknown amplitude factors.

The substitution of Eqs. (2) into Eqs. (1) leads to a
system of dispersion equations, which is a homoge-
neous system of algebraic equations in the unknown
variables β for the predetermined values of V and δ.
Further, it is necessary to use the boundary conditions
at the mechanically and electrically free surface of the
crystal [1]: the zero values of the normal components of
the stress tensor T3i and the continuity of the normal
component of the electric displacement D3. As a result,
we obtain a system of homogeneous complex equa-
tions, which has a nontrivial solution only when its
determinant, depending on the velocity V and the coef-
ficient δ, is zero:

(3)

Here, F(V, δ) is the determinant or the function of the
boundary conditions. Generally, F(V, δ) is a complex
function of two real variables, V and δ. According to
Eq. (3), the values of V and δ should be found for which
both real and imaginary parts of the function F(V, δ)
become zero. The function of the boundary conditions
F(V, δ) is taken as the TF. To solve the Eq. (3), we use
a variety of techniques to search for the global extre-
mum of the multivariate target function. We seek the
global extremum (the zero minimum) of the TF that is
the square of the magnitude of the complex function
F(V, δ). Note that, in the case of the SAW solution (δ =
0), one should minimize the function of one variable
|F(V)|2, and in the LSAW case, the function of two vari-
ables |F(V, δ)|2 should be minimized.

The most used search procedures for finding the glo-
bal extremum of the TF can be classified as follows [5]:

(1) methods of transition from one local minimum
to another;

(2) random search methods;
(3) methods based on statistical models of the TF;
(4) covering methods; and
(5) methods of an incomplete directed scanning of

the search area.
The main problem in the development of efficient

procedures for global search is related to the necessity
of assessing a great number of variants. It is generally
recognized [5] that none of the search methods pos-
sesses such advantages over the other ones to be consid-
ered a universal means for solving any problems.
Besides, the total number of the TF calculations
required to determine the coordinates of the extremum
point grows as a power function of the dimensionality
of the search area for the majority of the global search
procedures.

For the solution of complex optimization problems,
such search procedures are required that possess the
following set of necessary features:

(1) a high reliability of the extremum search;

F V δ,( ) 0.=
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(2) the minimal sensitivity to the details of the TF
relief, including the ravine situations, the small-slope
regions, and the local-extremum regions;

(3) the ability to work in a space of high dimension-
ality;

(4) the minimal number of adjustable parameters; and
(5) low cost of the search.
This combination of features of the search proce-

dures is contradictory to a considerable extent and,
hence, difficult to realize.

The LSAW, contrary to SAW, attenuate along the
direction of wave propagation x1 at the surface (δ > 0).
Two types of LSAW are known [9]: the pseudosurface
acoustic waves (PSAW) and the high-velocity pseudo-
surface acoustic waves (HVPSAW). In the SAW and
LSAW search area, the TF is almost always a multiex-
tremal function. Furthermore, a complex behavior of
the TF for some orientations is attributable to the fact
that, for these orientations, the system of dispersion
equations becomes ill-conditioned, the corresponding
matrix is almost singular, and the problem as a whole
becomes ill-posed.

The complications arising in the search for the
LSAW solutions in piezocrystals can be illustrated by a
specific example. Figures 1 and 2 demonstrate the
reliefs of the TF, F(V, δ) = 0, calculated for a LiNbO3
crystal cut with the (0°, –49°, 0°) orientation and cov-
ered with an aluminium layer (h = 0.01λ, where λ is the
wavelength) in the velocity V and damping factor δ
domain. Figures 1 and 2 relate to the PSAW and to the
HVPSAW cases, respectively. It is seen from the fig-
ures that the TF reliefs have a rather intricate shape
(with many deep and narrow local extremums). This
fact limits the possibility of the application of many
currently known procedures of global search [5, 6]. The
methods of transition from one local minimum to
another use in most cases the derivatives of the TF,
which is inefficient in the flat-plateau situations. The
methods based on statistical models of the TF and the
random search methods too strongly depend on the
adjustable parameters in the situations with a large num-
ber of narrow deep extremums, which makes them inop-
erative in the absence of a priori information on the TF
behavior. It only remains to rely on some specific ver-
sions of the covering methods and on the methods of an
incomplete directed scanning of the search area. In
deciding on a particular search procedure, one should
also take into account one more specific criterion of
efficiency, the computational speed. The search proce-
dures should quickly process their specific information.
The high speed requirement for a search procedure is
reduced to its software implementation possessing such
operating speed that allows the absolutely predominant
share of computation time to be allocated to the fulfil-
ment of the model procedure of the user.

Below, we briefly describe three search proce-
dures for finding the global extremum of the TF given
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Fig. 1. Relief of the target function F(V, δ) used in the search for an LSAW solution in a LiNbO3 crystal with the (0°, –49°, 0°)
orientation.

Fig. 2. Relief of the target function F(V, δ) used in the search for an HVPSAW solution in a LiNbO3 crystal with the (0°, –49°, 0°)
orientation.
by Eq. (3) in the calculation of the main characteris-
tics of LSAW.

(1) One of the possible implementations of the cov-
ering method is the Hooke–Jeeves Search (HJS) [2–4].
The HJS is a version of the local extremum search by
the method of configurations in space. However, this
technique can also be adapted for seeking the global
extremum of the TF by performing a global exhaustive
search over a determinate searching mesh in combina-
tion with the local search over the promising points.
The local search can be performed by the HJS with the
automatic inclusion of the Mudgel procedure in the
case of the configuration method failure in ravine situ-
ations [4]. The investigated area is covered by a uni-
form searching mesh. Then, a local search is per-
formed, beginning from an arbitrary point in the area
and leading to a local extremum. The values of the TF
at the mesh nodes are compared with the values at the
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
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local extremum found. If a point is found that is better
than the previous one, the local search is continued
from this point on, leading to a new better local extre-
mum, and so on. As a result, after the exhaustive search
over the whole mesh is completed, the last of the extre-
mums found will be the global one. A distinctive fea-
ture of this procedure is its simplicity, which makes it
possible to create a short program implementing this
algorithm. In the HJS procedure, the search is per-
formed over a large number of points, but only once and
without any additional processing.

(2) Another global-search implementation of the
covering method is the Nelder–Meed Search (NMS).
This procedure implies the definition of a mesh of start-
ing points followed by the search for a local extremum
on the basis of the deformed-polyhedron technique [6].
The local search consists in the determination of the TF
values at sampling points belonging to the search area
and being the vertices of a polyhedron. The special
operations that deform the polyhedron in the space of
variables and shift it to the region of the most probable
location of an extremum finally result in an exact deter-
mination of the coordinates of this extremum. A dis-
tinctive feature of the procedure is its low sensitivity to
the details of the TF relief: the ravines and the small-
slope regions are successfully overcome. The proce-
dure is reliable for the space dimensionality up to ten,
the cost of the search being very low. In terms of the
global search organization, the competition of starting
points is realized.

(3) One of the possible implementations of the
method of incomplete directed scanning of the search
area is the determinate procedure of seeking the global
extremum over the discrete mesh defined by the Grey
binary code, the Global Discrete Search (GDS) [7].
A characteristic feature of this procedure is the discret-
ization of variables. In this case, the whole space is cov-
ered with the regular mesh whose nodes characterize
definite states of the described object. The discretiza-
tion step in each variable represents the accuracy of the
extremum determination. Any discrete state of the
object can be unambiguously represented by the binary
numbers of the discrete states of each variable, these
numbers being recorded in series. In the search proce-
dure under consideration, the state of the object is
recorded in terms of the Grey reflexive binary code [7].
Thus, the problem of finding the minimum is reduced
to the combinatorial problem of finding a binary word
of predetermined length, which satisfies the condition
of the minimal value of the TF. The operation of the
search procedure consists in the creation of a set of
sampling points with an adjustable density of positions
relative to the point that is the best at the moment. The
specific processing of the information about the values
of the TF at the sampling points provides the advance
into the region of the most probable location of the glo-
bal extremum. The advance towards the extremum
takes place not along the relief of the TF, but within a
cloud that moves with all its points in the direction of
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
the expected position of the extremum. The program
implementing this algorithm provides an effective
operation in the space of high dimensionality (about
ten) and is characterized by a nearly linear growth of
the search cost with the number of dimensions of the
problem being solved. The only adjustable parameter is
the discreteness of the search space.

The comparison of the search procedures for finding
the global extremum of the TF was performed by the
example of the search of LSAW solutions at the open
surface of a LiNbO3 piezocrystal with the (0°, –49°, 0°)
orientation. For the LSAW problem, the search for the
global minimum was carried out in a two-parameter
region formed by the velocity V (km/s) and the damp-
ing factor δ (dB/λ, where λ is the wavelength). The
coordinates of the initial starting point were chosen at
random. The required accuracy of calculating the extre-
mum coordinates corresponded to the accuracy of real
data provided by the IBM PC.

In the course of the HJS search procedure for the
LSAW problem, after performing 281 calculations of
the TF, the parameters V = 4.7515 km/s and δ = 2.4 ×
10–4 dB/λ were found with the TF value about 1.2 × 10–18.
For the HVPSAW problem, after performing 4263 cal-
culations of the TF, the parameters V = 8.314 km/s and
δ = 0.531 dB/λ were found with the TF value of 1.2 ×
10–18. In both cases, the values obtained correspond to
the global optimal solutions for the respective types of
waves. The considerable search cost in the HJS proce-
dure is explained by the small spacing of the initial
searching mesh used for starting the procedure of the
local search.

The NMS search procedure was performed with ten
starting points. Their coordinates corresponded to a
uniform mesh superimposed on the search area. In the
course of the LSAW search, a total of 1510 calculations
of the TF were made, which corresponds to an average
of 151 calculations of the TF at each local descent. All
ten descents were completed in the accuracy-tolerable
vicinity of the global optimal point with the final values
of the TF being of the order of 10–17–10–19. For the
HVPSAW problem, 1700 calculations of the TF were
made, which corresponds to an average of 170 calcula-
tions of the TF at each local descent. As a result, a high
probability of hitting the basin of the global extremum
was demonstrated: nine out of ten descents were com-
pleted in the accuracy-tolerable vicinity of the global
optimal point with the final values of the TF being of
the order of 10–14–10–18, and only one led to the point of
a false local minimum.

In the case of the GDS procedure, the discretization
of variables corresponded to the required accuracy of
calculating the coordinates of the global extremum.
The search was performed with ten starting points,
which were generated by the program on the basis of a
predetermined initial point and scattered approximately
uniformly over the search area. In the course of the
LSAW search, a total of 2770 calculations of the TF
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Fig. 3. Lines of equal value for K2 in the LiNbO3 crystal (f1 = 0°, f2 = 0°–180°, and f3 = 95°–180°).
were made. In this case, the search of one extremum (or
the confirmation of one already found) took on average
about 214 calculations of the TF, and the check of the
width of a newly-found one took about 630 calcula-
tions. As a result of the search beginning from all ten
starting points, the global extremum was found. In the
course of the HVPSAW search, a total of 4915 calcula-
tions of the TF were made with the search of an extre-
mum taking on average about 304 calculations of the
TF and the check of its width taking about 625 calcula-
tions. The search using seven starting points resulted in
finding the global extremum with three of them leading
to the points of false local minimums. This allows us to
assess the reliability of the GDS procedure of seeking
the global extremum in the problems under consider-
ation at about 85%, which is a rather high value at a rel-
atively low cost of the search. The results presented
above confirmed once more that the GDS search proce-
dure provides a fast advance towards the extremum just
after the start from the initial point and a rather slow
refinement of its position. The refinement cost can be
several times higher than the cost of the approximate
determination of the extremum position.

The analysis of the costs of the global search by the
procedures chosen for solving the problems of acousto-
electronics confirms their effectiveness in solving prac-
tical problems. At the same time, the HJS procedure,
which uses a fine mesh of starting points, may well
prove to be insufficiently economical for the problems
of higher dimensionality. If the search space has four to
eight dimensions, the NMS procedure with a sparse
mesh of starting points is preferable. Its ability to move
towards the extremum with the set of sampling points
of a polyhedron appears to be better than any search
strategy of the configuration method. In the problems of
even higher dimensionality, the GDS procedure proves
to be the most effective one. However, by virtue of the
discrete nature of the search space, the user has to select
this discreteness rather carefully. A too minute repre-
sentation leads to unjustified search costs, whereas a
too rough representation can reduce the reliability of
the global search (i.e, increase the probability of miss-
ing the extremum).

The search for the spacial orientations correspond-
ing to the optimal value of some parameter of SAW or
their linear combination can also be efficiently per-
formed by the above-mentioned procedures of seeking
the global extremum of the TF. In this case, the global
search should be carried out over all three Euler angles.
The TF can be formed as a linear combination of the
main parameters of the wave with individual weighting
(expert) factors, which provide the variations of indi-
vidual contributions to the TF. It is hard to expect that
there exist orientations for which the values of all SAW
parameters become optimal at the same time. It is more
realistic to search for the optimal value of the parameter
that is most important for a given specific application
[2]. It is also possible to search for a compromise
between several TF-forming parameters of the wave.
An example of the solution of such a problem is the
result of the search for the maximal value of the elec-
tromechanical coupling factor K2 for SAW in a LiNbO3
piezoelectric crystal. Using the above-mentioned pro-
cedures for the TF extremum search, we calculated the
lines of equal value for K2 in the region of the Euler
angles f1 = 0°, f2 = 0°–180°, and f3 = 95°–180°. It is
seen from Fig. 3 that, in this case, the region of the max-
imal value of K2 (which is within 4–5%) lies in the
intervals of the Euler angles f2 = 60°–95°, f3 = 95° and
f2 = 30°–45°, f3 = 160°–180°.

The results presented allow us to conclude that the
procedures described above are suitable for seeking the
SAW and LSAW solutions in piezocrystals. A method
for the numerical calculation of the characteristics of
SAW and LSAW is proposed on the basis of different
search procedures for finding the global extremum of a
multivariate function. The procedures for seeking the
global extremum of the TF were used for the minimiza-
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
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tion of the function F(V, δ) of the boundary conditions
and for finding the spatial orientations that corre-
sponded to the optimal values of the SAW and LSAW
parameters.

The characteristic features of different methods
used for seeking the global extremum of the TF were
considered. It was shown that none of the search proce-
dures possesses such advantages over the other ones as
to be considered the universal means for solving prob-
lems. The calculations performed allow us to conclude
that, in the search for the LSAW solutions and also for
the optimal orientations of SAW in crystals, it is expe-
dient to use a diversity of global-search procedures. In
this case, the probability of finding the true solutions
will be drastically increased.

A promising idea is to increase the efficiency of
solving the search problems by using the dialog mode
of interaction with a computer. Then, choosing the opti-
mal search procedures at individual stages of the prob-
lem solution and possessing a wide variety of means,
one can quickly obtain the required results.
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
REFERENCES
1. Farnell, J., in Acoustic Surface Waves, Ed. by A. A. Oliner

(Springer, New York, 1978; Mir, Moscow, 1981).
2. M. Yu. Dvoesherstov, V. I. Cherednick, A. P. Chirimanov,

and S. G. Petrov, Proc. SPIE 3900, 283 (1999).
3. D. J. Wilde, Optimum Seeking Methods (Prentice-Hall,

Englewood Cliffs, N.J., 1964; Nauka, Moscow, 1967).
4. I. D. Hill, IEEE Trans. Syst. Sci. Cybern. SSC-S (1), 2

(1969).
5. A. Zhilinskas, Global Optimization (Mokslas, Vilnius,

1986).
6. D. M. Himmelblau, Applied Nonlinear Programming

(McGraw-Hill, New York, 1972; Mir, Moscow, 1975).
7. A. M. Botenkov, V. A. Vazin, B. S. Voinov, et al., Preprint

No. 8711, RTI AN SSSR (Radiotechnical Inst., USSR
Academy of Sciences, Moscow, 1988).

8. M. P. Shaskol’skaya, Acoustic Crystals (Nauka, Mos-
cow, 1982).

9. M. P. Cunha, in Proceedings of IEEE Ultrasonics Sym-
posium (1997), p. 97.

Translated by A. Kruglov



  

Acoustical Physics, Vol. 47, No. 6, 2001, pp. 688–694. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 47, No. 6, 2001, pp. 781–788.
Original Russian Text Copyright © 2001 by Eliseevnin, Tuzhilkin.

                    
Acoustic Power Flux in a Waveguide
V. A. Eliseevnin and Yu. I. Tuzhilkin

Andreev Acoustics Institute, Russian Academy of Sciences,
ul. Shvernika 4, Moscow, 117036 Russia

e-mail: bvp@akin.ru
Received June 14, 2000

Abstract—The acoustic power flux that occurs in an ideal waveguide in the presence of two modes propagating
in it is considered. Singular points of the saddle and vortex types are found for modes of different numbers. The
regions lying near the vortex-type points and characterized by the inverse direction of the power flux (i.e., from
the receiver to the source) are determined. When a low-number mode propagates together with a higher-number
one, the regions, where the power flux noticeably deviates from the general propagation direction, occupy a
considerable part of the longitudinal section area of the waveguide. © 2001 MAIK “Nauka/Interperiodica”.
In the last few decades, the progress in acoustic
measurement techniques caused a growing interest in
investigating acoustic power fluxes. Measurements are
carried out with combined receivers that are able to
measure the components of the particle velocity along
with the acoustic pressure. The first-in-Russia experi-
ments with receivers measuring the particle velocity
were carried out at the Acoustics Department of the
Moscow State University [1]. The studies of the energy
characteristics of sound fields that were performed
prior to the 1990s were described in [2]; more recent
investigations are summarized in the dissertation by
Gordienko [3]. Foreign investigations are reviewed in
[4]. The combined receivers are small in size; this
advantageous feature offers a possibility for measuring
fields with a complex configuration, such as near fields
of large sources [5–9]. In waveguides, the structure of
the energy fields is also complex. A possible approach
to calculating the energy flux through the waveguide
cross section and the total energy per unit length of the
waveguide was described in [10]. In [11], it was shown
that energy flow lines can form vortexes. The existence
of these vortexes is proved experimentally. The behav-
ior of the energy flow lines near singular points, in
which the field amplitude or the gradient of the field
phase vanish, was studied in [12]. The procedure of
finding the positions of the singular points (disloca-
tions) in an ideal waveguide under the assumption that
only a small number of modes propagate in it was con-
sidered in [17]. It was emphasized that the phase differ-
ence of the fields at the points close to a dislocation
strongly depends on the waveguide depth, which can
vary with rising and falling tides.

However, published works are insufficient to form a
complete pattern of an acoustic power flux in a
waveguide, while this pattern is of practical interest and is
measurable with the combined receivers. The goal of this
paper consists in calculating and analyzing this pattern.
1063-7710/01/4706- $21.00 © 20688
A vector field is usually represented as a set of
arrows with corresponding lengths and slopes and a set
of flow lines. The advantage of this representation is its
clarity. We will characterize the field by continuous
curves representing the vector components of the
power flux and its slope for a set of selected depths.
This approach is less obvious, but it describes the field
in more detail and corresponds to the customary repre-
sentations of a scalar field in the form of the horizontal
sections.

Primary attention is drawn to the case of a two-mode
propagation, because it allows a clear physical interpre-
tation of the results. We start from the basic definitions
and evaluations of the positions of singular points. The
type of singular points (the vortex or saddle type) is
determined according to the indications given in [13].
The size of the regions affected by vortexes essentially
depends on the numbers of the propagating modes. For
this reason, we consider two cases: low-number modes
with close numbers and a pair of modes whose numbers
are widely different. In the first case, we use simple
mathematics to interpret the results. In the second case,
we represent the results in a more obvious form of
curves.

Consider a waveguide of depth H with a hard bottom
and a soft surface and introduce the reference system
with the horizontal and vertical axes R and z and the ori-
gin at the bottom. In such a waveguide, the sound field
potential ψ for large distances from the source, which is
located at the point (0, Z0), is representable as [14]
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where V0 is the source strength, ω is the cyclic fre-

quency of the signal, ξ1 =  and bl = (l – 0.5)π/H
are the horizontal and vertical components of the wave
vector of the lth mode, and m is the total number of
modes propagating in the waveguide without attenua-
tion.

The sound field p and the particle velocity compo-
nents VR and Vz are expressed through the sound poten-
tial ψ and the density of the medium ρ according to the
following equalities:

(2)

The quantity of our interest is the power flux density
vector averaged over the signal period (below, we call
it the flux vector for brevity) [2, 13, 15]:

The flux components along the R and z axes are

(3)

and its magnitude and the angle of inclination to the R
axis are

(4)

The sound pressure and the velocity components
can be obtained from Eqs. (1) and (2)
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Using these expressions and Eqs. (3), we obtain the
components of the power flux in the form

(6)

In the general case, the calculations give a compli-
cated pattern for the power flux; however, it becomes
much simpler if only a few modes propagate in the
waveguide. In particular, for only two modes of num-
bers l and q propagating in the waveguide, the formulas
take on the form

(7)

The positions of the singular points are determined
from the system of equations 〈JR〉 = 〈Jz〉 = 0. From the
second equation of Eqs. (7), one can see that these
points can be subdivided into two groups. The first
group corresponds to the zero sine, and the second
group corresponds to the zero value of the expression in
the brackets. We begin our analysis with the singular
points of the first group. Their horizontal coordinates
are determined from the condition

(ξl – ξq)R = nπ (n = 1, 2…),

while the vertical coordinates are obtained from the
first equation (7), which, for these horizontal coordi-
nates R, can be rearranged to the form

(8)

The signs in Eq. (8) correspond to the value of
cos[(ξl – ξq)R], +1 or –1, at the zero sine. It should be
noted that α ! 1 for modes with adjacent numbers. For
example, for the third and fourth modes in a waveguide
of depth H = 150 m with a signal frequency of 50 Hz,
we have α = 0.2734 × 10–3. Using this fact, we first
determine the approximate coordinates and then refine
them. Setting α = 0 and rearranging the sum and the dif-
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ference of cosines in Eq. (8), we obtain for these modes
the equations

cos(3πz/H)cos(π/2z/H) = 0, (9)

sin(3πz/H)sin(π/2z/H) = 0. (10)

Equations (9) and (10) correspond to the values of
cos[(ξl – ξq)R] equal plus or minus unity, respectively.
From Eq. (9), we obtain z1/H = 1/6, 3/6, 5/6, and 1; from
Eq. (10), we have z1/H = 0, 1/3, and 2/3. In reality, α ≠
0; as a result, it appears that, at these points, 〈JR〉  < 0
(i.e., the power flux is directed toward the source).
Indeed, if the sign in (8) is the plus, the sum in the
brackets is equal to zero, because the cosines are equal
in magnitude and have opposite signs. If the sign is the
minus, the cosines are equal. In both cases, the second
term in Eq. (8) is negative. In particular, R〈JR〉/B = –α
for z = 0.

The refined vertical coordinates of the singular
points can be obtained by expanding the cosines in
series. For the points located near the bottom, cos(blz) =

1 – 0.5 z2. Substituting this expression in Eq. (8) with
the minus sign and performing some rearrangements,

we obtain z/H ≈ , which gives z/H ≅  0.0236
for the third and fourth modes in the waveguide under
consideration. Away from the waveguide boundaries,
the singular points form vertical pairs near the heights
z1/H, which were obtained for zero values of α. To esti-
mate the deviation ±∆z/H, we use the expansion in the
more general form

Substituting this expansion in Eq. (8) and taking into
account that cos(b3z1) = –cos(b4z1) and sin(b3z1) =
sin(b4z1) for the plus sign and cos(b3z1) = cos(b4z1) and

b1
2

α4 / π 3( )

blz( )cos bl z1 ∆z+( )[ ]cos=

=  1
bl∆z( )2

2
-----------------– blz1( )cos bl∆z blz1( ).sin–

1.0
z/H

0.5

0 R
cos(ξ3 – ξ4)R = –1 cos(ξ3 – ξ4)R = 1 cos(ξ3 – ξ4)R = –1

Fig. 1. Positions of the singular points for the third and
fourth modes.
sin(b3z1) = –sin(b4z1) for the minus sign, we can find the
estimator valid for both signs when z1 ≠ 0:

With this estimator, we obtain the refined values of the
vertical coordinates z/H of the singular points belong-
ing to the first group: z/H = 1/6 ± 2.35 × 10–4, 3/6 ±
8.77 × 10–4, and 5/6 ± 32.74 × 10–4 for cos[(ξ3 – ξ4)R] = 1
and z/H = 236 × 10–4, 1/3 ± 15.19 × 10–4, and 2/3 ±
5.06 × 10–4 for cos[(ξ3 – ξ4)R] = –1. One can see that
the near-bottom points are only slightly above the bot-
tom, and the points in pairs are close to each other. The
inversely directed flux occupies the space between
these points, so that its total width does not exceed sev-
eral percent of the waveguide width H.

Consider now the second group of points. Recall
that their vertical coordinates make the expression in
brackets in the second equation (7) equal to zero. For
the third and fourth modes, this condition yields the
equation

6sin(πz/H) + sin(6πz/H) = 0,

which has only two solutions: z = 0 and z = H. The sec-
ond solution is of no interest, because the field vanishes
at the waveguide surface, and the first solution can be
used to determine the horizontal coordinates of the
points of the second group. Substituting z = 0 in the first
equation (7), we obtain

R = [2πn + /(2 + α)]/(ξ3 – ξ4). (11)

Since α ! 1, arccosine in (11) is close to π, in which
case cos[(ξ3 – ξ4)R] ≅  –1.

The deviations ±∆R from the exact values of R cor-
responding to the exact equality can be found with the
use of the identity

As a result, we obtain

which makes only 0.5% of the period (950 m) of the
interference structure of the field.

Figure 1 schematically represents the positions of
the singular points in the waveguide under consider-
ation for the waveguide part between 7900 and 9400 m.
For the sake of obviousness, we distorted the scale in
this figure. As follows from the above analysis, the
actual distances between the points in pairs are much
shorter. Additionally, Fig. 1 shows the types of points:
the dots mark the vortex centers and the crosses mark
the saddle points. The types of points were determined
according to the criteria given in [13]. In addition to the

∆z
H
------ α

6π b3z1( )tan
------------------------------.±≈

2–(arccos

x( )arccos π x–( ).arccos–=

∆R
2/ 2 α+( )[ ]arccos

ξ3 ξ4–
--------------------------------------------±=

=  
π5.263 10 3–×
π2.0997 10 3–×
------------------------------------± 2.5 m,±=
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001



ACOUSTIC POWER FLUX IN A WAVEGUIDE 691
usual criterion according to which the singular point is
a vortex center when p = 0 and a saddle point when

 = 0, in the cited paper it was shown that the saddle
point also appears when the phase difference between p
and  measures an odd number multiplied by π/2. This
fact follows from the multiplication rule for complex
numbers. Indeed, if 〈Ji〉  is the ith component of the
power flux, then we have

(12)

where the prime and the double prime denote the real
and imaginary components of the functions, respec-
tively.

In the case under consideration, when the third and
the fourth modes propagate in the waveguide, we have

(13)

(14)

(15)

Substituting the calculated coordinates of the singu-
lar points in Eq. (13), one can check that the zero points
of the field coincide with the lower points of every pair
when cos[(ξ3 – ξ4)R] = 1 and with the upper points of
every pair when cos[(ξ3 – ξ4)R] = –1 (near the bottom,
pairs are transformed into triples). Since the power flux
between the points is directed toward the source, the
first case corresponds to vortexes rotating counter-
clockwise and the second case corresponds to vortexes
rotating clockwise. Other singular points are the saddle
points. At these points, VR = 0 and the phase difference
between p and Vz is equal to π/2 for z ≠ 0 [see Eqs. (13)
and (15)]. At z = 0, we have Vz = 0, because the sines in
Eq. (15) are equal to zero, whereas p and VR are non-
zero. Nevertheless, the singular points at the bottom are
the saddle points, because the phases of p and VR differ
by π/2 at these points. This fact can be easily verified by
calculating the sum of the products of the real and
imaginary parts of functions (13) and (14). This sum is
equal to zero, which, according to (12), corresponds to
the aforementioned phase difference.

The arrangement of singular points becomes more
complex when the mode numbers are widely different.
However, in this case, the distances between the
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points become longer, which makes it possible to rep-
resent the calculated results in the graphical form
without distorting the scale. As an example, we con-
sider the propagation of the first and the tenth modes
in the waveguide under consideration (H = 150 m). We
again assume that the source is located at the bottom
and the signal frequency is 50 Hz. As before, we start
with the first group of singular points. Recall that their
horizontal coordinates are determined from the condi-
tion sin[(ξ1 – ξ10)R] = 0 and the vertical coordinates,
from Eq. (8) under the condition that cos[(ξ1 – ξ10)R] =
±1. For this pair of modes, α = 0.3476 and the period of
the interference structure is 43.7 m. Figure 2 shows the
left-hand side of Eq. (8) as a function of z for both signs
of the cosine. One can see that the direct power flux is
periodically replaced by the inverse flux for different
depths. Near the bottom, the inverse flux occurs only for
the distances corresponding to the negative cosine. The
singular points of the first group lie at depths where 〈JR〉
vanishes. It should be noted that new branches of the
direct flux appear in the upper part of the waveguide.
They generate additional points at which 〈JR〉 = 0.

The vertical coordinates of the singular points of the
second group are determined from the condition that
the expression in the brackets in the second equation (7)
is equal to zero. This condition is satisfied at the bottom,
for eight intermediate depths, and at the waveguide sur-
face (to be more precise, for z/H close to 0, 0.105, 0.211,
0.316, 0.422, 0.530, 0.636, 0.741, 0.850, and 1.0). The
horizontal coordinates of these points can be found from
the expression following from the first equation (7):

(16)ξ1 ξ10–( )R[ ]cos
b1z( )cos

2
b10z( )cos

2
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2 α+( ) b1z( ) b10z( )coscos
---------------------------------------------------------------.–=
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z/H

Fig. 2. Flux component JR(z) for cos[(ξ1 – ξ2)R] equal to
(1) +1 and (2) –1.
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Substituting the above values of z in Eq. (16), we
obtain that, for α = 0.3476, solutions exist only for six
lower depths, including z = 0. For z/H > 0.53, the mag-
nitude of the ratio on the right-hand side exceeds unity,
and no solutions exist in this case. Figure 3 schemati-
cally shows the positions of the singular points of both
groups for the case of propagation of the first and tenth
modes generated in the waveguide by a near-bottom
source. The positions of the singular points of the first
group form columns corresponding to cos[(ξ1 – ξ10)R] =
±1. The vortex centers predominate among these
points, while pairs of saddle points occur in the upper
part of the waveguide. They are caused by additional
branches of direct fluxes, which were mentioned above
in discussing Fig. 2. The singular points of the second
group are now located not only at the bottom, but also
at five other depths, where they combine with pairs of
points of the first group, thus forming quartets of sad-
dles and vortexes. As can be easily seen, in this case, the
distances between singular points are comparable with
the waveguide depth and with the interference period of
the field structure. Therefore, the features in the behav-
ior of the power flux vector cannot be neglected. Below,
we consider some of these features in the lower (near-
bottom) and upper layers of the waveguide.

Figure 4 shows both components of the power flux
(JR and Jz) and its vertical angle γ as functions of the
horizontal coordinate R for z/H in the range from 0 to
0.10558. The range for the horizontal coordinate R is
between 8090 and 8165 m, which slightly exceeds the
period of the interference structure. The lines, along
which the horizontal sections of the vector field are cal-
culated, are given the numbers from 1 to 5 in Fig. 3.
Sections 4 and 5 nearly coincide in height and are
shown for this reason as a single line. As can be seen
from Fig. 4, near the bottom, the horizontal component
of the flux JR periodically changes its sign and becomes
negative between the saddle points. Since Jz = 0 at the

1.0

0

z/H

R

0.5

12 1110
9

876

4, 5
3 2 1

– + –
8106 8150

Fig. 3. Positions of the singular points for the first and
tenth modes. The horizontal sections are numbered from 1
to 12.
hard bottom, the angle γ can be equal to either 0 or
±180°, as it is the case in Fig. 4b for the depth z = 0. The
jump from 180° to –180° is a consequence of the choice
of the figure scale and actually means that the vector
passes counterclockwise through the direction corre-
sponding to 180°. For a smaller depth z/H = 0.01 (line 2),
the segments with the inverse flux (JR < 0) remain
almost intact, but Jz vanishes only for individual points.
Therefore, the variations become smoother. However,
the passage of the angle γ through the direction corre-
sponding to γ = 180° again takes place. This passage
disappears at the depth of the vortex centers (z/H =
0.0328, line 3). As can be seen from Fig. 4, JR = Jz = 0
at these points, and the angle γ jumps only from 90° to
–90°. The physical meaning of such a jump is quite
obvious: when the vortex is crossed along the diameter
on the left of center, the flux has an upward component,
and, when the vortex is crossed on the right of center,
the flux has a downward component.

To finish with the near-bottom region, consider the
flux at the depth of the saddle points forming a part of
the quartets (lines 4, 5). Vortexes with their centers
above and below the saddle points rotate in the opposite
directions: the upper vortexes rotate clockwise, and the
lower vortexes, counterclockwise. Inside the quartet,
they form an inverse flux well discernible in Fig. 4a.
The line separating these vortexes passes at the depth of
the saddle points. At this level, we have Jz = 0, and the
functions JR calculated slightly above and below this
line (z/H = 0.1055 and 0.1058) coincide in shape. How-
ever, the angle γ passes through the direction corre-
sponding to γ = 180° in opposite directions for these
depths (see Fig. 4b).

Finally, we consider the behavior of the power flux
vector for the depths where the quartets of singular
points form vertical columns rather than diamonds. For
brevity, we will discuss only the curves for the angle γ.
Figure 5 shows the horizontal sections for the angle γ
along the lines 6–12 (see Fig. 3). These sections cover
the depths z/H ranging from 0.5904 to 0.675. As can be
seen from Fig. 3, the depths limiting this range corre-
spond to the vortex centers. A characteristic feature of
these centers is the jump of the angle γ from 90° to –90°
at the lower depth and the inverse jump at the upper
depth, which means that the lower vortex rotates coun-
terclockwise and the upper vortex rotates clockwise
(curves 6 and 12). At the depth between the vortex cen-
ter and the lower saddle point (curve 7), the inverse flux
occurs and the angle γ jumps from –180° to 180°.
Slightly above the lower saddle point, the magnitude of
the jump decreases (curve 8). The depth z/H = 0.6343
corresponds to the line separating the system of fluxes.
Here, the flux is strictly horizontal (curve 9). Above this
line (curves 10 and 11), the behavior of the angle γ is
similar to that considered earlier, excluding the fact that
the functions are of opposite sign. Correlating the
curves in Figs. 4 and 5, one can easily see a certain dif-
ference in their behavior. In particular, the curves in the
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
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Fig. 4. Curves (a) for JR and Jz and (b) for γ versus R for sections 1–5.
form of rectangular pulses are absent in the upper part
of the waveguide, because the singular points are
arranged in columns rather than in diamonds in this
case.

Note that, in some cases, the above set of curves for
JR , Jz and γ can be a more convenient characteristic of
the power flux than its usual representation in the form
of a family of flow lines. Examples of this representa-
tion for quartets of singular points arranged in columns
or diamonds can be found in [12].
L PHYSICS      Vol. 47      No. 6      2001
Thus, the field of the acoustic power flux in a
waveguide has a complex structure, which is essentially
simplified when only a small number of modes propa-
gate in the waveguide. The power flux forms singular
points (saddle points and vortex centers). In the vicinity
of vortexes, the flux forms branches whose direction is
opposite to the general direction of the power flux. In
the case of the propagation of a pair of low-number
modes with successive numbers, the scales of the
inverse fluxes are small in comparison with the
waveguide depth and the period of the interference
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structure of the field. The situation is drastically
changed when the mode numbers are widely different.
The deviations of the flux from the general propagation
direction become the rule rather than the exception for
this case. The positions of the singular points can be
easily calculated for a pair of modes in an ideal
waveguide. There are no fundamental limitations that
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Fig. 5. Curves for γ for sections 6–12.
would impede the calculations for more complicated
models of the waveguide. For the determination of the
power fluxes in practice, one can use a combined
receiver that measures both the sound pressure and the
components of the particle velocity, or the specialized
sensor described in [16]. In the case of multimode prop-
agation, the desired pair of modes can be selected using
a vertical chain of combined receivers.
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Abstract—A property never considered before in acoustics is established: in the case of a sound wave incidence
on a plane layer bordered by two liquid media with identical elastic properties, the phase difference between the
reflected and transmitted waves is equal to π/2 irrespective of the physical constants of the layer and the media
contacting it, as well as of the frequency of the incident wave. © 2001 MAIK “Nauka/Interperiodica”.
Effects that accompany the elastic wave propagation
in plane-layered structures always obey certain phase
relations at the boundaries of an individual layer for the
waves reflected and transmitted through it. The phase
relations play an important role in such phenomena as
the resonance reflection of a sound wave from a moving
layer [1], the interference of counterpropagating waves
in a dissipative elastic medium [2–4], and the sound
absorption in layered systems [5, 6], as well as in the
problems on the waveguide propagation of elastic
waves [7]. In this paper, we study the property that con-
sists in the constancy of the phase difference between
the reflected and transmitted sound waves at the bound-
ary of a plane layer. In microwave engineering, a simi-
lar phenomenon is known: the transmission and reflec-
tion coefficients at the terminals of a lossless symmet-
rical quadripole have a phase difference equal to ±π/2
[8]. The analysis of the expressions for the transmission
1063-7710/01/4706- $21.00 © 20695
and reflection coefficients of electromagnetic waves in
the optical range confirms the validity of the aforemen-
tioned relation and other important phase relations con-
nected with it [9]. By virtue of the wave nature of these
relations, they should also be valid in acoustics. How-
ever, this issue had never been discussed in the litera-
ture.

We consider a plane sound wave incident at some
angle on a plane layer. We denote the frequency of the
wave by ν and the thickness of the layer by d, and we
ascribe the indices 1, 2, and 3 to the medium from
which the wave arrives, the layer, and the medium into
which the wave is transmitted, respectively. All media
are assumed to be homogeneous liquids. In this case,
the reflection and transmission coefficients r and t,
which relate the amplitudes of the reflected and trans-
mitted waves to the amplitude of the incident wave, can
be expressed in the form [10]
(1)

(2)

r
Z2 Z1–( ) Z2 Z3+( ) 2iϕ–( )exp Z1 Z2+( ) Z3 Z2–( )+
Z1 Z2+( ) Z2 Z3+( ) 2iϕ–( )exp Z2 Z1–( ) Z3 Z2–( )+

---------------------------------------------------------------------------------------------------------------------------,=

t
4Z2Z3

Z2 Z1–( ) Z3 Z2–( ) iϕ( )exp Z1 Z2+( ) Z2 Z3+( ) iϕ–( )exp+
--------------------------------------------------------------------------------------------------------------------------------------------,=
where Zj = ρjcj/cosθj (j = 1, 2, 3) are the impedances of
the plane wave in the three media, ρj and cj are the den-
sities of the corresponding media and the sound wave
velocities in them, and θj are the angles made by the
direction of the wave propagation in each of the media
with the normal to the layer boundaries. The quantity
ϕ = k2dcosθ2 has the meaning of the phase shift of the
plane wave at its propagation through the layer, where
k2 = 2πν/c2 is the wave number in the layer. Then, the
changes in the phase of the wave at its reflection from
the layer δr and at its transmission through the layer δt
can be represented in the form

(3)

(4)

δr

2Z1Z2 Z3
2 Z2

2–( ) ϕcot

Z2
4 Z1

2Z3
2–( ) Z2

2 Z3
2 Z1

2–( ) ϕcot
2

+
----------------------------------------------------------------------------- ,arctan=

δt

Z2
2 Z1Z3+( ) ϕtan
Z2 Z1 Z3+( )

---------------------------------------- .arctan=
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The analysis of Eqs. (3) and (4) shows that, in the
case of a “symmetric” layer, i.e., when the impedances
of the media bordering it are equal (Z1 = Z3), the phase
shifts at the reflection and transmission of the wave sat-
isfy a simple relation:

(5)

This relation is valid regardless of the parameters of
the layer and the media surrounding it. In the case Z1 ≠
Z3 or in the case of a layer with absorption, Eq. (5),
which determines a kind of phase matching at the
reflection and transmission of the plane wave incident
on the layer, ceases being valid.

In Figs. 1 and 2 we present the results of a numerical
analysis of the relations between the phase shifts of a
sound wave at its reflection δr (short dashes) and trans-
mission δt (long dashes) and their difference ∆ (the

∆ δr δt–
π
2
---.±= =

π/2

π/6

δr, δt, ∆

0

–π/2

π/3 θ1

(b)

π/2

π/6
0

–π/2

π/3

(a)

θ1

Fig. 1. Phase shifts at reflection δr (short dashes) and trans-
mission δt (long dashes) and their difference ∆ (the solid
line) versus the angle of the sound wave incidence on the
layer for two values of the layer thickness d = (a) 10 and
(b) 30 cm; c1 = c3 = 1482.7 m/s, ρ1 = ρ3 = 103 kg/m3, c2 =

1165 m/s, ρ2 = 798.3 kg/m3, and ν = 10 kHz.
solid line) for different parameters of the layered struc-
ture under consideration and for different angles of
incidence of the sound wave.

Figure 1 presents the dependences of the aforemen-
tioned quantities on the angle of the sound wave inci-
dence θ1 on the layer for two values of the layer thick-
ness. The parameters used for the calculations were
those of an ethyl alcohol layer in water [11]: c1 = c3 =
1482.7 m/s, ρ1 = ρ3 = 103 kg/m3, c2 = 1165 m/s, and
ρ2 = 798.3 kg/m3. From the curves presented in Fig. 1,
one can see that relation (5) holds for all angles θ1. The
jumps of the parameter ∆ by π are caused by the corre-
sponding changes in the argument of the amplitude
reflection or transmission coefficients. The analysis
shows that, with an increase in the layer thickness, the
number of such jumps within the whole interval of inci-
dence angles (0 ≤ θ1 < π/2) increases. For the most part,
such changes occur in the middle of the interval of θ1.

π/2

0

–π/2

0.4 d/λ1

(b)

0.60.2

π/2

0

–π/2

0.50 d/λ1

(a)

0.25

δr, δt, ∆

Fig. 2. Phase shifts at reflection δr (short dashes) and trans-
mission δt (long dashes) and their difference ∆ (the solid
line) versus the relative layer thickness d/λ1 for two values
of the incidence angle θ1 = (a) 10° and (b) 80°; c1 = c3 =

1482.7 m/s, ρ1 = ρ3 = 103 kg/m3, c2 = 1165 m/s, ρ2 =

798.3 kg/m3, and ν = 10 kHz.
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The dependences of the phase shifts δr and δt and the
quantity ∆ on the relative layer thickness d/λ1 are
shown in Fig. 3 for two values of the incidence angle.
Here, λ1 = c1/ν is the wavelength of the wave incident
on the layer. One can see that the parameter ∆ takes
only the values ±π/2 irrespective of the layer thickness.
The calculations show that, as the angle of incidence
increases, these dependences become more and more
nonlinear in the thickness intervals where they are
monotonic.

It should be noted that the curves presented in Fig. 3
exhibit a periodic behavior. The period η of the depen-
dences δr(d/λ1), δt(d/λ1), and ∆(d/λ1) increases with
increasing angle of incidence and with decreasing
refraction index of the layer n = c1/c2 with respect to the
surrounding media. This behavior is illustrated in Fig. 3.
On a reduced scale, Fig. 3 shows the dependence of the
period η on the incidence angle θ1 for the case c1 = c2 =
c3 and ρ1 = ρ3 ≠ ρ2. An analysis shows that the afore-
mentioned dependences are only determined by the rel-
ative refractive index of the layer and do not depend on
the densities of the three media and on the specific val-
ues of the velocity of sound in them.

Figure 4 shows the dependences of the number of
jumps N of the parameter ∆ on the refraction index of
the layer n and on the relative thickness of the layer d/λ1
for the whole interval of incidence angles. One can see
that the number of jumps has a tendency to decrease
nonlinearly with increasing refraction index and to
increase linearly with increasing normalized thickness
of the layer.

It is important to note that the property of a constant
phase difference ∆ = δr – δt also holds when the sound
wave is incident on an elastic plate placed in a liquid. In
this case, the amplitude reflection and transmission
coefficients r and t will have the form

(6)

(7)

where, in the absence of absorption, M and N are real
parameters determined by the impedances of the media,
the plate thickness, and the propagation directions and
wave numbers of the longitudinal and transverse waves
in the plate [10]. When the liquids on the two sides of
the plate are described by identical parameters (Z1 =
Z3), the ratio r/t is an imaginary number, which is equiv-
alent to Eq. (5). One can expect that the aforementioned
property will also hold for a more general case: the
reflection and transmission of a sound wave incident on
an arbitrary, but symmetric with respect to the middle
plane, stack of lossless elastic layers.

r
M Z3 Z1–( ) i N2 M2–( )Z1 Z3–[ ]+

M Z1 Z3+( ) i N2 M2–( )Z1 Z3+[ ]+
------------------------------------------------------------------------------------,=

t
ρ1

ρ3
-----

2NZ3

M Z1 Z3+( ) i N2 M2–( )Z1 Z3+[ ]+
------------------------------------------------------------------------------------,=
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Fig. 3. Dependences of the period of the curves δr(d/λ1),
δt(d/λ1), and ∆(d/λ1) on the angle of the wave incidence θ1
for different values of the refraction index of the layer: n =
(1) 1.1, (2) 1.2, (3) 1.4, (4) 1.6, and (5) 2.0. The curve shown
on the reduced scale corresponds to n = 1 and ρ1 = ρ3 ≠ ρ2.

Fig. 4. Number of jumps N of the parameter ∆ within the
whole interval of incidence angles (0 ≤ θ1 < π/2) of a wave of
frequency ν = 10 kHz (a) versus the refraction index of the
layer n for d = (1) 30 and (2) 70 cm and (b) versus the relative
thickness of the layer. The calculations are performed for the
parameters: c1 = c3 = 1482.7 m/s, (a) ρ1 = ρ2 = ρ3, (b) ρ1 =

ρ3 = 103 kg/m3, c2 = 1165 m/s, and ρ2 = 798.3 kg/m3.
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In closing, we note that, in our opinion, the property
of a constant phase difference ∆ is of both fundamental
and applied significance, and it can be used in the
development of different acoustic devices on the basis
of plane-layered structures.
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Abstract—Results of an experimental study of the directivity of noise produced by a turbulent vortex ring
(Re ≈ 105) are presented. The acoustic measurements were performed in an anechoic chamber by a circular
array of microphones with its center lying at the symmetry axis of the ring. A method of a synchronous pro-
cessing of acoustic signals is proposed. This method allows one to separate different quadrupole components
in the measured sound field of a turbulent vortex. © 2001 MAIK “Nauka/Interperiodica”.
Microphone arrays and the synchronous multichan-
nel analysis of signals are intensively used for studying
different kinds of acoustic noise, including noise of an
aerodynamic origin. For example, in [1], jet noise was
studied using longitudinal microphone arrays, which
made it possible to localize the dipole sources of noise
caused by a jet impinging on a thin cylinder. In [2], a
combination of polar and azimuthal microphone arrays
was used, and these arrays were located in the far field,
in the upper hemisphere relative to the nozzle. The
technical problems related to the accuracy of this kind
of measurement were considered in [3]. The measure-
ment of noise by a circular array with six microphones
was proposed in [4] and used in application to jet noise
in [5]. This method, which allows one to decompose a
flow noise into azimuthal components immediately
before averaging over an ensemble of realizations,
offered the possibility to separate individual azimuthal
components in jet noise. In this paper, we consider in
detail this approach in application to the noise produced
by the simplest three-dimensional aeroacoustic source
represented by a vortex ring.

A vortex ring is a well-known object in aerohydro-
dynamics [6, 7]. For years, it has been used by research-
ers as a “reference” object in aeroacoustics, because it
combines the possibility of a theoretical description in
the framework of the basic equations of continuum
mechanics, the simplicity of its construction in labora-
tory conditions, and the absence of the effect of outer
boundaries, which allows one to use it for studying
many problems of dynamics and acoustics of vortices
in the pure state. The first experimental study of noise
produced by a freely moving turbulent vortex ring was
described in [8]. It was found that a single vortex ring
truly generates sound, and the sound field of the ring is
concentrated in a narrow frequency band. Simulta-
neously, a thorough analysis of the sound signal
1063-7710/01/4706- $21.00 © 20699
showed that the radiation produced by even that simple
vortex structure is a random process localized in a nar-
row frequency band.

In [9], in the framework of the Euler equations, a
dynamic model of sound radiation by a thin vortex ring
was constructed to explain the main experimental char-
acteristics of the observed sound radiation: the presence
of a single peak in the radiation spectrum, the values of
the frequency and width of the peak, and the nature of
the random structure of the signal. It was found that the
main features of this radiation can be understood by
considering the natural oscillations of the vortex ring.
These oscillations are characterized by three integers
(l, n, j), which are called the frequency number (all fre-

quencies lie near the crowding points , where Ω0 is

the constant vorticity in the vortex core), the azimuthal
number [oscillations with the dependence on the azi-
muth angle in the form exp(inθ)], and the radial number
(responsible for the inhomogeneous spatial structure of
oscillations in the cross-section), respectively. The the-
ory predicts that the sound radiation by a vortex ring is
formed by only three families of its natural oscillations,
which have the form exp(inθ), where n = 0, 1, and 2.
Moreover, it was found that all eigenfrequencies of
effectively radiating modes lie near the common crowd-
ing point ω = Ω0/2 and, according to the terminology
introduced in [9], are called Bessel’s (|j| ≥ 1) or isolated
( j = 0) modes. These frequencies are determined by the
same frequency number l = 1 corresponding to the fre-
quency of the crowding point of the radiating modes. In
spite of the closeness of frequencies of all radiating
modes, the directivity of the radiation is different for
each family of oscillations in both the azimuthal and
longitudinal directions. In a spherical coordinate sys-
tem r, θ, χ connected with the vortex ring (Fig. 1), the

Ω0l
2

--------
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sound field formed by the family of oscillations with n
= 0 (the axially symmetric modes) has the form

(1)

The sound field formed by the family of oscillations
with n = 1 involves a dependence on the azimuth angle
θ and on the longitudinal angle χ in the form cosθsin2χ
and is determined by the following two expressions for
the isolated (j = 0) and Bessel’s (j ≥ 1) modes, respec-
tively:

(2)

The sound field corresponding to the family of oscil-
lations with n = 2 is characterized by the dependence on
the azimuth angle θ and the longitudinal angle χ in the
form cos2θsin2χ and is determined by the following
expressions for the isolated (j = 0) and Bessel’s (j ≥ 1)
modes:

(3)

In Eqs. (1)–(3), the oscillation amplitude of the vor-
tex boundary and the liquid density are set equal to
unity; µ = a/R0 is the thinness parameter of the ring,
which is determined by the ratio of the radius of the ring

p
πM2
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Fig. 1. The coordinate system.
cross-section a to the ring radius R0; M is the Mach
number of the flow, which is calculated from the veloc-
ity at the boundary of the vortex core V = Ω0a/2 and the

velocity of sound c;  are the zeros of the first and
second Bessel functions J1, 2(x) respectively; and

and

are the frequencies of natural oscillations. We use the
dimensionless form [9], in which the pressure is
divided by the quantity V2/2. Equations (1)–(3) deter-
mine the general form of the radiation dependence on
time t and on the azimuth angle θ. Thus, when natural
oscillations of the vortex core are excited, the sound
radiation of each mode is described by Eqs. (1)–(3). In
this case, each mode is characterized by its own direc-
tivity in two directions θ and χ.

Now, we consider the total quadrupole sound field
Pq that is generated by the vortex ring when all modes
are excited. The combination of a great number of close
oscillations leads to a total disappearance of the azi-
muthal inhomogeneity of the sound field (despite the
evident dependence of each mode on θ) and to a consid-
erable smoothing of the singularities in the longitudinal
direction χ. For definiteness, let us assume that all
modes have the same amplitude equal to unity. When
combining different harmonics, it is necessary to take
into account that each of them has a random orientation
with respect to the azimuth angle θ and is shifted in
time relative to any other mode by a random phase. This
means that the arguments of the trigonometric func-
tions of the azimuth angle θ must be supplemented with

a random azimuth phase  (owing to the azimuthal
symmetry of the vortex ring, all modes are randomly ori-
ented in the azimuthal direction and their phases should
be uniformly distributed within the segment [0, 2π]), and
a random initial phase δj must appear in the time depen-
dence. Then, the total quadrupole noise of the vortex
ring can be represented in the form

(4)

where P0, P1, Q1, P2, and Q2 are random functions of
time, which are obtained by combining the exponential
functions of time in Eqs. (1)–(3) multiplied by a ran-
dom amplitude function of the type sinθi or cosθi. In

this case, we have P1 ~  + δj)cos  and

P2 ~  + δj)cos . When a great number
of harmonics are combined, these functions are random

a j
1 2,( )

ω0
0 1 2, ,( ) Ω0

2
------ 1 O µ2( )+( )=

ωj
1 2,( ) Ω0

2
------ 1 µ/a j

1 2,( ) O µ2( )+ +( )=

θ j
1 2,( )

Pq P0 χcos
2

1/3–( ) P1 θ 2χsincos+=

+ Q1 θ 2χsinsin P2 2θ χsin
2

cos Q2 2θ χsin
2

,sin+ +
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functions of time. If the amplitudes of harmonics (1)–(3)
are unequal, additional factors corresponding to the
amplitude of each harmonic should appear in the sums
specified above.

Let us calculate the mean value  by using the ran-
dom character of the time dependence of each of the
coefficients Pi and Qi. Since the signal is a narrow-band
one, we perform the averaging over a time interval much
greater than 1/∆ω (where ∆ω ~ Ω0µ is the interval filled
with eigenfrequencies near the crowding point Ω0/2)
and, simultaneously, much smaller than the characteris-

tic time of the ring displacement . Such an interval

can always be selected, because  ~  @ Ω0µ.

Taking into account that the random phases θj , which
determine the orientation of each mode relative to the
symmetry axis, are uniformly distributed within the
segment [0, 2π], we easily obtain the relationships

(5)

where the coefficients qi reflect the contributions of dif-
ferent azimuthal components to the total noise. The

equality of the corresponding mean values  = 

and  =  reflects the aforementioned symmetry
property of the vortex ring, i.e., the absence of a
selected azimuthal direction. All cross terms disappear
after averaging, because each mode radiates indepen-
dently. As a result, we obtain

(6)

The first term in this expression describes the contri-
bution of the axially symmetric modes to the total
sound field, the second term describes the contribution
of the modes of the type expiθ, and the third term cor-
responds to the modes of the type exp2iθ. The relation
between the quantities q0, q1, and q2 in the vortex ring
is preliminarily unknown and is only associated with
the processes of the oscillation instability growth at the
nonlinear stage and the establishment of self-sustained
oscillations. One can easily see that, independently of
this relation, after averaging over t, the radiation ceases
to depend on the azimuth angle θ.

The dependence on the longitudinal angle χ is deter-
mined by Eq. (6). The contribution of each azimuth
component is given by the expressions
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(7)

Expression (6) can depend on χ rather weakly. One
can easily derive the condition at which the radiation of
the vortex ring will be fully isotropic. Changing to mul-
tiple angles in Eq. (6) and setting the coefficients of the
trigonometric harmonics of χ equal to zero, we obtain
q1 = q2 = 1/3q0. Thus, when the squared amplitude of
noise formed by the first and second azimuthal harmon-
ics makes 1/3 of the contribution of the axially symmet-
ric modes, the radiation is fully isotropic. In this case,
the contribution of each of the azimuthal harmonics is
nonisotropic and is described by Eqs. (7).

The analysis performed above explains why the
sound field generated by turbulence (a turbulent vortex
or a turbulent jet) is found to be almost isotropic and the
azimuthal components are not revealed in the case of
regular measurements. Such a result is related to the
averaging of randomly oriented quadrupoles in the azi-
muthal direction and to the smoothing of the singulari-
ties of the fields of individual quadrupoles in the longi-
tudinal direction. Therefore, for the identification of the
radiation of individual modes in the experiment, it is
necessary to perform the decomposition of noise into
azimuthal components before its averaging. This con-
sideration lies at the basis of the experimental study
described below.

To measure the directivity in the azimuthal and lon-
gitudinal directions, one needs the information on the
sound field at the surface surrounding the ring. Taking
into account that the ring itself moves along the x axis,
it is convenient to use the surface of a cylinder sur-
rounding the trajectory of the moving vortex ring. In
this case, it is sufficient to have the information for only
one cross-section x = L0 rather than for the whole cylin-
der surface simultaneously. Then, a change in the
angle χ will correspond to a change in the x coordinate
of the moving ring; i.e., with increasing x, each azi-
muthal component will vary according to Eqs. (7) with
allowance for the equality  = R/(x – L0), where R
is the radius of the cylindrical surface. Thus, if we con-
struct a system capable of measuring individual azi-
muthal components and place it in a given cross-section
x = L0 relative to the trajectory of the ring motion, then,
in the course of the vortex motion, the measuring sys-
tem will provide a record of the variations of the rela-
tive contributions of individual components given by
Eqs. (7). It was found that such a system can easily be
realized using a synchronous analysis of signals taken
from only six microphones placed in a circle relative to
the trajectory of the ring motion (Fig. 2). However, it is
necessary to take into account that the properties of the
vortex ring can vary in the course of its motion (e.g., the
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velocity, the geometric dimensions, and the total radia-
tion power). Therefore, the real relative contributions to
the radiation of the type of Eqs. (7) will be observed
only when the ratio between the amplitudes of the radi-
ating oscillations remains constant.

One more problem is the choice of the averaging
interval. On the one hand, it must be sufficiently small
for the ring not to be displaced by a considerable dis-
tance, and, on the other hand, it must be sufficiently
large for the averaging to be possible. To some extent,
this contradiction was eliminated, and we managed to
obtain the desired directivity of the radiation for indi-
vidual azimuthal components.

The experimental study of the directivity of noise
produced by a freely moving turbulent vortex ring was
performed in the anechoic acoustic chamber of the
Central Aerohydrodynamics Institute. The dimensions
of the chamber were 10 × 5.5 × 4.2 m3. The acoustic
measurements in the far field of the vortex ring were
performed by an array of six condenser microphones of
the type 4165 by the Bruel and Kjer company (Fig. 2).
The microphones were placed in a circle whose radius
was R = 0.4 m and center lay on the Ox axis (L0 = 2.08 m).

1
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4
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6
3

0 L0 x

a b

R

0.4

0 1

t, s

0.3

0.2

0.1

2 3 4

Array

∆t ≈ 90 ms

Screen with silk threads

x, m

Fig. 2. Schematic representation of the experiment: (a) the
microphone array and (b) the screen with silk threads.

Fig. 3. Dependence of the traveled distance on time for dif-
ferent vortex rings and the mean trajectory (the thick line).
The circle plane was perpendicular to the direction of
the vortex motion. To visualize the trajectory of the vor-
tex ring, we used a rectangular screen with the dimen-
sions 120 × 60 cm made of a thin wire with silk threads
glued to it. The screen was installed 6 m away from the
outlet of the generator nozzle, so that the screen center
was at the generator axis. When the vortex ring moved
through the screen, the silk threads deviated making the
ring position visible, which allowed us to chose for our
study those realizations in which the vortex ring was
not shifted noticeably from the axis and, hence, moved
near the center of the microphone array. At the same
time, even a small shift of the ring on the screen, which
always takes place, shows which of the microphones is
closer to the moving ring. This information proved to
be important for the identification of the instant of the
vortex passage through the plane of the microphone
array (see below).

The signal was obtained by preliminarily recording
the acoustic signals by a Sony KS 616 multichannel
tape recorder. The total number of realizations recorded
in one series of experiments was 40 to 50. In addition to
the six acoustic signals, the signal from a microphone
installed in the plane of the generator nozzle was
recorded simultaneously. This microphone determined
the instant of the vortex ring formation, and its signal
was used to set the zero time for each realization.

The vortex rings formed in the experiment had a nat-
ural scatter in the velocities of their motion, which was
related to the somewhat different (uncontrolled) condi-
tions of the rolling-up of the vortex sheet at the instant
of its formation. These slight differences lead to an
accumulating difference in the travel times of the vortex
rings from the instant of their formation to their passage
through the screen with silk threads, so that this differ-
ence reached 300 to 400 ms (Fig. 3). The trajectory
measurement technique used for determining the law of
motion x(t) with the help of pressure transducers is
described in [4].

To determine the directivity of the sound field
produced by the vortex ring, we used the following
technique for the experimental data processing [4].
Let us consider the signals sp(t) of each of the six
acoustic microphones. These signals are in fact the
measured values of the pressure field P(θ, χ, t) for six
values of the angle θp = pπ/3, where p = 1, 2, …, 6; i.e.,
P(θp , χ, t) = sp(t). We represent the sound field of the
vortex ring in the form of a series expansion in azi-
muthal harmonics:

(8)

where the coefficients Ai and Bi are functions of χ and t.
The remaining terms of the expansion, which are
denoted by the ellipsis, have the multipolarity next after
quadrupole and, generally speaking, should be small.
Considering Eq. (11) at θ = θp for each number p as an
equation in the unknown amplitudes Ai and Bi with the

P θ χ t, ,( ) A0 A1 θcos B1 θsin+ +=

+ A2 2θcos B2 2θsin …,+ +
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known right-hand side sp(t), we obtain a system of six
equations. Owing to the symmetry of the microphone
positions, this system can be easily solved for the
unknown amplitudes in an explicit form. In fact,
because of the symmetry of the choice of θp, all combi-

nations of the type of  and ,
where l is a nonzero integer, are equal to zero except for
the combination  = 6, where n is an inte-
ger including zero. Successively multiplying Eq. (8) by
1, cosθp, sinθp, cos2θp, sin2θp, and cos3θp at θ = θp and
summing the result over p from 0 to 6 with allowance
for the relations specified above, we obtain six other
quantities instead of sp:

(9)

Since, in the far field, the contribution of higher
multipole components must be small, the harmonics A3,
B3, …, which belong to the radiation characterized by a
multipolarity higher than quadrupole, must also be
small. Therefore, the signals ai and bi obtained through
the linear combinations of the measured signals sp are
close to the amplitudes of true azimuthal harmonics Ai

and Bi. In this case, the real contribution of the octopole
component to the measured signal can be easily esti-
mated using the relative value of a3. One can easily ver-

ify that the identity S2 =  +  +  +  +  +  =

 is valid; i.e., the power of the six transformed
signals is equal to the power of the six initial signals.
Let us introduce the relative contributions of the azi-
muthal harmonics to the total energy of the sound field:
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the quantity  = /S2 represents the experimental
estimate of the axisymmetric radiation component; the

quantity  = (  + )/S2 is the estimate of the con-

tribution of the first harmonic; the quantity  =

(  + )/S2 corresponds to the contribution of the sec-

ond harmonic; and the quantity  = /S2 corre-
sponds to the contribution of the third harmonic and, in

view of the evident condition  = , makes half of

this contribution. The estimates , , and 
differ from the exact expressions (7) by the presence of
higher multipoles in Eqs. (9).

Let us consider a model example. We assume that an
ideal harmonic source moves through the microphone
array. As the signals Ai(χ, t) i = 0, 1, 2, we take the
quadrupole components determined by Eqs. (7), and
we replace the sum of higher multipoles O(Ai , Bi) in
Eqs. (9) by a constant q, which, generally speaking, is
the same for all qi and bi. Then, the analogs to the exper-
imental estimates specified above will be the quantities:

(10)

where q0, q1, and q2 are the preset amplitudes of the
zeroth, first, and second azimuthal modes; L0 is the
coordinate of the array center; x(t) is the coordinate of
the source on a trajectory representing the ring trajec-
tory averaged over many realizations (Fig. 3). The evo-
lution of the relative contributions of multipoles given
by Eqs. (10) is presented in Fig. 4 for q0 = 0.6, q1 = 0.4,
q2 = 0.1, and q = 0.07.

Now, we consider the evolution of the relative con-
tributions of azimuthal harmonics in the experiment,

. In comparison with the model example consid-

ered above ( ), the situation is more complicated,
because the coefficients ai and bi in Eqs. (9) contain not
only the quadrupole components but also higher mul-
tipoles with the same azimuthal dependence. In addi-
tion, these functions are random functions of time and
are measured with errors. Let us consider a single
realization from the instant the vortex ring leaves the
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nozzle to the instant it hits the screen with silk threads.
The initial part of the realization (0–110 ms) is unsuit-
able for analyzing the vortex noise, because the low-
frequency noise in the chamber and the structural noise
of the experimental setup, which are associated with the
condition of the initiation of vortex rings (see [4, 8]),
are dominant and considerably exceed the weak noise
produced by the ring. The noise of the setup rapidly
decreases owing to the use of oscillation-damping
means, and the ring noise becomes distinguishable
within 110 ms. This noise is localized within the fre-
quency band 800–1500 Hz with a pronounced peak
near a frequency of 1200 Hz. The typical form of the
spectrum averaged over several realizations obtained
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Fig. 4. Contributions of different azimuthal components to
the total quadrupole radiation of an ideal vortex ring.
A model harmonic source; n = (1) 0, (2) 1, (3) 2, and (4) 3.
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Fig. 5. Average spectrum of sound pressure (a) for the vor-
tex ring and (b) for the background noise. The delay time
relative to the instant of ring initiation is τ = 220 ms.
220 ms after the ring initiation is shown in Fig. 5 [8].
The low-frequency noise (0–500 Hz) multiply exceed-
ing the ring noise (by more than 20 dB) cannot be com-
pletely damped, and its effect on the measuring system
(this noise fills the dynamic range to a considerable
extent) inevitably leads to an increase in uncontrolled
errors. Thus, for analyzing the vortex noise, we have a
realization part approximately 200 ms long (from 110
to 300–400 ms). If we divide it into 30 ms long seg-
ments and take the total acoustic power of the process at
each segment in the frequency band from 800 to 1500 Hz
(most radiation power of the ring is concentrated in this
frequency range, see Fig. 5), we obtain six to eight
points, which illustrate the variations of the total power
of noise S2 and the contributions of the azimuthal har-

monics  in the course of the vortex ring motion.
We note that, in the determination of the spectral power,
each 30-ms segment of the time realization was multi-
plied by the smoothing Henning weighting function.
An introduction of the overlapping between the adja-
cent intervals allows one to increase the number of sta-
tistically independent spectra, because it partially com-
pensates the property of the Henning weighting win-
dow, which considerably reduces the signal near the
boundaries of the analysis interval. Thus, to obtain a
more detailed picture, one can use the data of the anal-
ysis with a 50% overlapping of intervals, which makes
it possible to obtain up to 15 points per realization. The
typical behavior of the relative contributions in one
realization is shown in Fig. 6. Let us estimate the rms
error of these measurements. As was noted above, to
calculate the evolution of the amplitudes of azimuthal
harmonics, we used 30-ms-long time intervals in the
frequency band from 800 to 1500 Hz. Within the time
of analysis, the ring travels a distance of 25 cm, and the
experimental point in Fig. 6 corresponds to the middle
of this segment. For the realization length T ~ 30 ms,
within a bandwidth ∆ω ≈ 30 Hz, the normalized rms
error in the spectral power estimate is 100% (this fol-
lows from the known condition ∆ωT ~ 1, see [10, 11]).
Since we are interested in the spectrum estimate in a
wider frequency band ∆ω0 ≈ 600 Hz, the error in the esti-
mate of the spectral power of pressure will be ε ≈ 20%.

The main possibility of reducing the error is related
to using the averaging over an ensemble of realizations.
By accumulating N realizations, it is possible to

improve the estimate obtained above by a factor of .
However, in this way, we encounter the following diffi-
culty. Above (Fig. 6), we presented the curves that
approximate the law of motion of the vortex ring x(t)
for the realizations that were selected for the ensemble
used for averaging. One can see that the difference in
the instants at which different rings pass through the
plane of the microphone array reaches up to 90 ms. This
means that, at the instant one ring crosses the array
plane, the ring of another realization can be 0.5 m away
from this plane, upstream or downstream. Since the

piexp
2

N
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main characteristic features of the desired curves lie
near the microphone array plane (χ ≈ π/2), a conven-
tional averaging leads to a total smearing of the direc-
tivity pattern. For an appropriate averaging, it is neces-
sary to be able to determine exactly the instant when the
ring crosses the array plane and to use this instant as a
reference point.

It was found that this information can be obtained
from the analysis of low-frequency acoustic data. The
screen with silk threads (Fig. 2) shows which micro-
phone appears to be closest to the moving ring in a
given realization. When the readings of any two micro-
phones of the array are subtracted from each other, the
low-frequency chamber noise is eliminated. At the
same time, each microphone measures the inhomoge-
neous near field of pressure associated with the flow
around the moving ring. This axisymmetric field is not
completely compensated by the subtraction of the read-
ings of two microphones, because the ring moves closer
to one of them (microphone 1 in our case). The maxi-
mal value of the difference is obtained for two opposite
microphones (microphone 1 and microphone 4). Fig-
ure 7 shows the signals of two microphones positioned
symmetrically around the array center. At the instant
the ring passes through the array, the difference in the
signals exhibits a characteristic peak whose shape cor-
responds to the pseudosound near field of the ring. The
minimum in ∆s1–4 corresponds to the instant when the
ring crosses the plane of the microphone array. Thus,
we managed to determine with reasonable accuracy the
instants at which the vortex rings passed through the
array plane and to perform the averaging over the time
intervals equally separated from this instant. The aver-
age curves characterizing the directivity of different
azimuthal components of the sound field produced by a
turbulent vortex ring are shown in Fig. 8; the curves are
obtained on the basis of seven selected realizations.

Thus, the radiation of a vortex ring really consists of
three different quadrupoles predicted by the theory. It is
of interest to compare this result with our previous pub-
lication [12] where it was found that, near t = 245 ms,
the first azimuthal mode dominates. One can easily see
that, in this region, the radiation of the zeroth and sec-
ond modes is small (Fig. 8), and therefore, in [12] it was
possible to extract the first mode by a pair-correlation
analysis without using the approach described in this
paper.

It should be noted that, in the noise of the vortex
ring, the zeroth, first, and second azimuthal harmonics
dominate, whereas the higher harmonics corresponding
to higher-order multipoles have a much lower level.

Their total level can be judged from the values of 

and  observed away from the array coordinate x =
L0. As one would expect, the total noise level is the
same (and considerable), although it consists of differ-

p2exp
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p3exp
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ent azimuthal components O(Ai, Bi) (we note that 
corresponds to only half of the third harmonic). At the
same time, near x = L0, the third harmonic exhibits a
noticeable increase, which testifies to the real presence
of an octopole component with a level above that of the
background in the noise of the vortex ring. Presumably,
this result is related to the incomplete fulfillment of the
far field condition, which is most strongly violated
when the ring travels near the array (by the way, it is
precisely the violation of the far field condition that
allowed us to perform the averaging of the vortex rings
by using the instant of the ring crossing the array plane
as the reference point).
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Fig. 6. Contribution of different azimuthal components to the
noise of the vortex ring (a single realization) for n = (1) 0,
(2) 1, (3) 2, and (4) 3.
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vortex ring. The difference in the readings of the opposite
microphones is ∆s1–4.
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The proposed measuring technique allows one to
extract individual quadrupole components from the
total noise of the vortex ring. As predicted by the theory
[9], the noise of a vortex ring consists of three different
quadrupoles with close frequencies localized near a
single value. The proposed method of analysis, which
consists in the separation of azimuthal components
before averaging the random signal, seems to be a quite
promising method for studying the acoustics of turbu-
lent flows. We also note that, despite the nonstationary
character of the average flow (the dimensions and the
translational velocity of the ring vary), the dependence
of the azimuthal harmonics on the angle χ can be
obtained from the analysis of the time evolution of the
relative contributions of these harmonics. This indi-
cates that the physical processes leading to the gener-
ation of acoustic fluctuations remain invariable in the
course of the evolution of the vortex ring; i.e., the rela-
tion between the radiating modes is of universal char-
acter.
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Fig. 8. Average contributions of different azimuthal compo-
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Abstract—An expansion of the field of a vertical antenna located in an inhomogeneous waveguide in terms of the
normal waves of a homogeneous reference waveguide is obtained. The frequency dependence of the radiation
resistance is analyzed numerically for various antenna depths and sound velocity profiles. Variations in the radia-
tion resistance are correlated with the variations in the sound velocity. © 2001 MAIK “Nauka/Interperiodica”.
A rather large number of works are devoted to the
analysis of acoustic fields of directional antennas oper-
ating in waveguides (see, e.g., [1–4]). However, these
works provide few (if any) numerical estimates or par-
ticular practical recommendations, while the problem
itself remains topical. A formalized approach to the
analysis of directional antennas operating in the Pekeris
waveguide was given in [5]. Particular numerical esti-
mates of the energy and field characteristics of different
antennas were obtained in [6].

The purpose of this paper is to generalize the
approach proposed in [5] to the more complex case of
an inhomogeneous waveguide characterized by a given
sound velocity profile c1(z) and lying on a liquid half-
space. The corresponding boundary-value problem is
represented as

(1)

where ∆ is the Laplacian; ϕ and p are the velocity
potential and the pressure in the liquid layer z ∈  (0, h)
characterized by the parameters ρ1 and c1(z) and lying
on a liquid halfspace with the parameters ρ2 and c2 (ρ
and c are the density and the sound velocity, respec-
tively); ω is the circular frequency; θ2 is the angle of
refraction; and ξ is the propagation constant.

If the solution to the boundary-value problem given
by Eqs. (1) is sought for in the form of a cylindrical

∆ϕ k1
2 z( )ϕ+ 0,=

z 0, p 0,= =

z h, p Z in z∂
∂ϕ

+ 0,= =

Z in
ρ2c2

θ2cos
--------------

ωρ2

k2
2 ξ2–

--------------------, k2= =
ω
c2
----, k1

ω
c1 z( )
------------,= =
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wave ϕ(r, z) = ϕ(z) (ξr), the unknown function of
the vertical coordinate ϕ(z) satisfies the equation

(2)

Let us introduce a reference waveguide with a constant
sound velocity  = const. Then, Eq. (2) can be written
in a form convenient for the further application of the
perturbation technique:

(3)

Let (z, ξn) and ξn be the eigenfunctions and the
eigenvalues of the propagation constant corresponding to
the reference waveguide (the Pekeris waveguide). Then,
the left-hand side can be written as the expansion [6]

(4)

where  = ,  = ,

 are the real propagation constants corresponding to

H0
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the transverse wave number k32, n =  = ±iαn in

the lower half-space (αn =  > 0),  are the
complex propagation constants corresponding to the nor-

mal leaky waves (Imξn < 0, Rek32, n > 0), (z, ξn) =
sin(k31, nz),

and

In expansion (4), M– is the number of normal waves

with the real propagation constant  (k32, n = –iαn) and
M+ is the number of generalized normal waves with the

real propagation constant  (k32, n = iαn); both these
waves are the eigenfunctions of the adjoint operators
of problem (1). It is necessary to use the eigenfunc-
tions of both adjoint operators, because only a combi-
nation of these functions is a complete orthogonal sys-
tem of eigenfunctions in the respective regions, the
intersection of which is the segment z ∈  (0, h) [6].

With Eq. (4), a solution to Eq. (3) has the form

(5)

Here, δnm is the Kronecker delta; the summation is per-
formed over all the eigenvalues of the propagation con-

stant , , and  (the asterisk means complex conju-

gation); and bnn = 1 + βnn/2, where βnn = .

Expansion (5) should be supplemented with the defini-
tion of the wave number of the reference waveguide

(6)

which shows that each normal wave is associated with
its own reference waveguide with the average sound

k2
2 ξn
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2 k2
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ϕn
0( ) ϕn
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velocity  = , the dependence of the average veloc-
ity on mode index being however sufficiently weak.

Assume that linear transform (5), in which the refer-
ence waveguide is defined by Eq. (6) averaged over the
set of the normal waves as

(7)

can be taken as an approximate solution to the problem
given by Eqs. (3) and (6).

Note that the perturbation technique is often suc-
cessfully used for solving inhomogeneous and irregular
waveguide problems. A list of publications concerned
with this issue can be found, for example, in [7]. How-
ever, as far as we know, linear transform (5) of the

orthogonal bases ϕn(z, ξn) and (z, ξn) in approxima-
tion (7) was never used to describe acoustic fields in
inhomogeneous waveguides.

Consider a class of profiles c1(z) described by the
bilinear squared refractive index

(8)

where the constants a1 > 0, b1 > 0, and b2 > 0 are deter-
mined from the respective function c1(z)

(9)

in which the gradients of the sound velocity g1 > 0 and
g2 > 0 are assumed to be given and the transformation
formulas are

Consider boundary-value problem (1) with a solu-
tion given by Eqs. (5) and (7) when a source is present
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in the form of a vertical cylindrical antenna enclosed in
a rigid baffle with the boundary condition

(10)

on its side surface r = a, where v 0 is the normal compo-
nent of the vibrational particle velocity, a is the radius
of the cylinder, and z0 is the depth of the antenna.

The source function F(z) can be expanded as

(11)

where the coefficients  of expansion in terms of
the eigenfunctions of the reference waveguide are
known [6]:

(12)

and the coefficients an are determined by the inverse
transform

(13)

where  are the elements of the inverse matrix.

With Eqs. (12) and (13), the general solution to the
problem given by Eqs. (1) and (10) can be written as

(14)

where
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= Φn(ξn)εn (ξnr) 

is the acoustic field of the directional antenna in the ref-
erence waveguide (the Pekeris waveguide),
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(15)

and the summation in Eqs. (14) and (15) is performed
over all normal waves with the propagation constants

 and .

Let us apply solutions (14) and (15) to calculate the
radiation resistance of the antenna. According to [6],
we have

where ∆c =  – c1(0) and S = 4πla is the antenna area,

(16)

is the normalized radiation resistance of the antenna
placed into the reference waveguide, and

(17)

is the change in the normalized radiation resistance due
to the inhomogeneity of the waveguide.

The overall change in the normalized radiation
resistance consists of two components:

of which the first component ∆  is proportional to the

total change in the sound velocity  relative to a cer-
tain reference value (∆Z1 ~ ∆c) and the second compo-
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Fig. 1. Real part of the radiation resistance of the antenna  versus frequency for l/h = 5 × 10–3; l = a; and z0/h = (1) 0.005,

(2) 0.05, (3) 0.5, (4) 0.95, and (5) 0.99.

rR'
0( )
nent ∆  = ∆  is determined by the local features of
the velocity profile and by the antenna depth.

Consider an example of a numerical analysis
assuming that b1 = b2 = 10–3 m–1 (g1 = g2 = 0.75 s–1),
c12 = /c2 = 1.5/1.75, ρ12 = 1/1.6, and h = 100 m,
which corresponds to a sandy bottom and to the sound
velocity gradient in the near-surface layers in summer.

Figure 1 shows the frequency dependence of the real
part of the radiation resistance of the antenna at l1 = 5 ×
10–3 and a = l in the reference waveguide with the
antenna depth z0 as a parameter. Let us consider the spe-
cific features of the curves shown in the figure.

In all curves, the small-scale variations in the radia-
tion resistance are associated with the field’s mode
structure; the medium-scale variations are associated
with the interference processes near the closest inter-
face; and the large-scale variations, with the antenna
size in terms of the wavelength. For example, for a
small antenna ( 2l ! 1) operating near the free sur-

face ( z0 ! 1), the frequency dependence of the real
part of the radiation resistance is similar to that of a
dipole antenna (  ~ ω4). As the antenna moves away
from the free surface, the interference maximums cor-
responding to the condition 2 z0 = (2n + 1)π (z0 =

(2n + 1), where λ1 is the wavelength) are clearly pro-

nounced. When the antenna approaches the bottom, the
medium-scale variations with frequency are deter-
mined by the interference processes near this interface

Z2' ZR'

c1

k1

k1

rR'

k1

λ1

4
-----
and the interference maxima comply with the condition

2 (h – z0) = 2πn, i.e., (h – z0) = n .

Figure 2 illustrates the effect of the velocity profile
c(z) on the horizontal structure of the acoustic field.
The calculations are performed for z = z0 = 0.5h and
h0 = 1, which correspond to a linear sound velocity
profile and a negative refraction. The figure presents
the normalized sound pressure on the logarithmic
scale calculated for the inhomogeneous and reference
waveguides

with the averaging window ∆r1 = 1.

At relatively low frequencies (k1h = 100, curves 1
and 2), the refraction effects are rather small and the
horizontal behavior of the field in the inhomogeneous
waveguide, p(r1), does not significantly differ from that
in the reference waveguide, p(0)(r1). With increasing fre-
quency (k1h = 400, curves 3 and 4), the directional
properties of the transmitter (receiver) and the refrac-
tion effects start contributing to the formation of the
zone structure of the acoustic field, and the horizontal
sections p(r1) and p(0)(r1) acquire the corresponding dis-
tinctions in their behavior. To make the plots more con-
venient to perceive, curves 3 and 4 in Fig. 2 are shifted
by +10 dB.

k1
λ1

2
-----

A 20
p r1( )

ρ1c1v 0
-----------------,  A 0( )log 20

p 0( ) r1( )
ρ1c1v 0

---------------------,  r1log r
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Fig. 2. Horizontal sections of the acoustic field in the inhomogeneous waveguide (A(r1), curves 1 and 3) and in the reference

waveguide (A(0)(r1), curves 2 and 4) for k1h = (1, 2) 100 and (3, 4) 400.

Fig. 3. Real part of the correction ∆  to the radiation resistance versus frequency for h0 = 0 and z0/h = (1) 0.05, (2) 0.5, and

(3) 0.95.

rR'
Figures 3–5 show the real part of the correction ∆
versus the frequency for various antenna depths and the
parameters h0 of the sound velocity profile.

The main features of this function are as follows.
For each sound velocity profile associated with a partic-
ular value of the parameter h0, the frequency behavior

of the correction ∆  is in good agreement with the fre-

quency behavior of , and its sign and the maximal
value are determined by the antenna depth. Both quan-

rR'

rR'

rR'
0( )
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tities ∆  and  exhibit similar behavior associated
with the interference effects due to the interface closest
to the antenna.

Another feature of the data we analyze is that the
corrections ∆  corresponding to the velocity profile
with h0 = 0 (positive refraction) and 1 (negative refrac-
tion) are in antiphase, which can be explained by the
corresponding change in the sign of the deviation in the
local sound velocity at the antenna depth from the aver-
age value [∆  ~ (c1(z0) – )].

rR' rR'
0( )

rR'

rR' c1
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Fig. 4. Real part of the correction ∆  to the radiation resistance versus frequency for h0 = 0.5h and z0/h = (1) 0.05, (2) 0.5, and

(3) 0.95.

rR'

Fig. 5. Real part of the correction ∆  to the radiation resistance versus frequency for h0 = h and z0/h = (1) 0.05, (2) 0.5, and

(3) 0.95.

rR'
Since both components, ∆  and ∆ , exhibit a sim-
ilar frequency dependence and similar features of the
interference behavior, the total correction ∆  can be
analyzed as a function of the parameters h0 and z0 at a
fixed frequency. Figure 6 illustrates this dependence in
the limiting case k1h @ 1.

It should be noted that, for a near-surface source, the
components ∆  and ∆  are in antiphase for any h0

and the total correction is small, whereas, for a near-
bottom source, the corrections are combined being in
phase. In all cases, the total correction is in good agree-

r1' r2'

rΣ'

r1' r2'
ment with the variations in the average sound velocity
at the source depth.

This fact allows us to use the well-established meth-
ods for measuring the radiation resistance and its vari-
ations for monitoring the variations in the sound veloc-
ity; i.e., the impedance acoustic thermometry method
can be realized virtually without any radiation. The
absence of both high-intensity low-frequency radiation
and long stationary specially equipped acoustic tracks
is an important advantage of the impedance acoustic
thermometry over the known methods used, for exam-
ple, in the ATOS project [8, 9]. The operating frequency
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
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at which the radiation resistance of such a source and its
variation are measured must be sufficiently low in order
to increase the efficiency of the spatial averaging of the
sound velocity over the waveguide depth, and, at the
same time, it must be sufficiently high to reduce the
measurement error. The antenna must be placed at a
depth where the sound velocity experiences the maxi-
mal variation.
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0
0.2

∆r'Σ, ∆c/c1(0)

0.02

–0.02

–0.04

0.8 h0/h

1

3

4
2

0.4 0.6

Fig. 6. The quantities (1–3) ∆  and (4) ∆c/c1(0) versus the

parameter h0 for z0/h = (1) 0.05, (2) 0.5, and (3) 0.95.

rΣ'
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Abstract—The finite-element method is used to analyze the thickness-symmetric vibrations of piezoelectric
plates with partial electrodes. The spectra of the natural vibrations at resonance and antiresonance, the dynamic
electromechanical coupling coefficient, and the vibration modes of these plates are studied for a wide range of geo-
metric dimensions of both the plates and the partial electrodes. The optimal dimensions of the plates and elec-
trodes, which correspond to the maximal values of the coupling coefficient, are determined. The increase in the
coupling coefficient due to the utilization of the partial electrodes is considered for piezoelectric plates made of
ceramics of various compositions. It is shown that all piezoceramic compositions can be divided into two groups.
For the first group, the utilization of the partial electrodes can increase the coupling coefficient of the thickness
vibrations by 7–23%, depending on the vibration mode. For the second group of piezoceramics, the coupling coef-
ficient cannot be increased in this way; in other words, complete electrodes are optimal for the thickness vibrations
of plates made of piezoceramics that belongs to the second group. © 2001 MAIK “Nauka/Interperiodica”.
Circular piezoceramic plates of commensurable
dimensions are widely used in various acoustic devices.
The natural vibrations of finite isotropic plates are
described in detail in the monograph [1]. Vibrations of
circular piezoceramic plates with complete electrodes
were investigated experimentally [2, 3] and by the vari-
ational [4] and finite-element [5–7] methods.

It is well known from the experiment that the shape
of the electrodes of piezoelectric transducers affects
their resonance frequencies and the efficiency of exci-
tation of different modes. An approximate mathemati-
cal model suitable for describing the radial vibrations
of thin disks with axisymmetric partial circular elec-
trodes was developed in [8]. It was shown that the res-
onance and antiresonance frequencies of the first radial
mode increase as the electrode size decreases. It also
follows from the presented dependences that the opti-
mal (maximal) value of the dynamic electromechanical
coupling coefficient (DCC), which is proportional to
the difference between the antiresonance and resonance
frequencies [3], is attained for the first mode when the
large disk surfaces are not completely covered with
electrodes.

A universal method for analyzing commensurable-
size piezoelectric transducers, including those with par-
tial electrodes, is the finite-element method [9–15].
Finite-element models were developed [9, 10] for piezo-
electric quartz plates with partial electrodes, which are
used in energy-trapped electromechanical resonators;
shear and torsional modes of vibration were investi-
gated. In [11, 12] the finite-element method was used to
calculate the nonuniform electric and acoustic fields in
measuring piezoelectric transducers in the two-dimen-
1063-7710/01/4706- $21.00 © 20714
sional (flat) approximation. Thick piezoelectric trans-
ducers with unconventionally positioned electrodes
were considered.

The purpose of this paper is as follows: the analysis
of thickness-symmetric vibrations of circular piezo-
electric plates with partial electrodes, the investigation
of the natural frequency spectra in the resonance and
antiresonance regimes, and the study of the displace-
ment distribution over the radiating surface (the vibra-
tional modes) and the DCC for different geometric
dimensions of the plates and partial electrodes. The
final objective is the determination of the optimal
dimensions of the piezoelectric plates and the elec-
trodes, which correspond to the maximal DCC, and the
investigation of the possibilities for increasing the DCC
of thickness vibrations of piezoelectric plates for the
plates made of piezoceramics of different composi-
tions.

The study is performed by using the finite-element
method, which takes into account two components of
the displacement and the electric field. This approach
makes it possible to study the natural vibrations of cir-
cular piezoelectric plates with partial axisymmetric
electrodes [6, 7, 16].

Consider a circular piezoelectric plate with the
radius a and thickness 2l. From here on, the plate size
will be defined by the ratio l/a. The complete electrodes
(Fig. 1a) fully cover the planes z = l and z = –l. We study
two main variants of the arrangement of axisymmetric
partial electrodes. The first is the annular peripheral
electrodes leaving the central part (of radius b) of the
plate free. The size of the annular electrodes is deter-
mined by the ratio b/a, the case b/a = 0 corresponding
001 MAIK “Nauka/Interperiodica”
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to the complete electrodes. The second variant is the
partial circular electrodes of radius h. Their size is
defined by the ratio h/a, and the case h/a = 1 corre-
sponds to the complete electrodes.

We assume that the whole surface of the piezoelec-
tric plate is free from mechanical stresses. At the sur-
faces that are not covered by the electrodes, the nor-
mal component of the electric induction is equal to
zero; the electrodes are equipotential surfaces. It is
shown in [6, 16, 17] that, taking into account the indi-
cated boundary conditions for the resonance (short cir-
cuit) and antiresonance (idling) regimes, we obtain the
generalized matrix eigenvalue problems of high dimen-
sionality

(1)

(2)

where M is the global dimensionless mass matrix; Huu,
Huv , and Hvv  are the global dimensionless matrices of
stiffness, piezoelectric “stiffness,” and dielectric “stiff-
ness” with allowance for the boundary conditions at the
electrodes and for the condensation (the exclusion of
nodal electric potentials outside the electrodes); c44 is
the element of the dimensionless matrix of elastic con-
stants of piezoceramics; kt is the wave number of the
transverse wave; and |ui〉 is the vector of the dimension-
less (normalized to a) nodal displacements [6, 16].

The solution of problems (1) and (2) provides the
eigenvalues, i.e., the dimensionless resonance and anti-
resonance frequency parameters kta, and the eigenvec-
tors, i.e., the dimensionless nodal displacements |ui 〉 .
Knowing the eigenvalues and the eigenvectors of prob-
lem (1), the DCC (k) can be calculated for each vibra-
tional mode as the ratio of the mutual energy to the geo-
metric mean of the elastic and electric energy [16, 17]

In the calculations, the quarter of the axial section of
the piezoelectric plate, which lies in the first quadrant at
l/a ∈  [0.01; 0.5], was divided into 48 annular, rectangu-
lar in shape, second-order finite elements. Depending
on the plate width, three variants of approximation
were used: 12 × 4 for thick plates (12 finite elements
along the radius, and four elements in the thickness
direction), 24 × 2 for thin plates, and the intermediate
variant 16 × 3. The number of equidistant nodes on the
flat surface was 25, 49, and 33, respectively. To single
out the thickness-symmetric vibrational modes, a
boundary condition was introduced: the axial nodal dis-
placement components were set equal to zero at the
plane of symmetry z = 0 of the piezoelectric plate.

The results of the numerical calculations for the first
radial mode were compared with the analytical solution
[8] tested experimentally. Figure 2 presents the depen-
dences of the resonance and antiresonance frequencies

Huu kta( )2c44M–( ) ui| 〉 0,=

Huu Huv Huv
T /Hvv– kta( )2c44M–( ) ui| 〉 0,=

k2 k1
2

1 k1
2+

--------------, k1
2 ui〈 |Huv( )2Hvv

1–

kta( )2c44 ui〈 |M ui| 〉
------------------------------------------.= =
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of the first mode of radial vibrations on the size of cir-
cular electrodes. The radius of the piezoelectric plate is
a = 25 mm, the thickness, which is ignored within the
framework of the rough analytical model, is 2l = 1mm,
this value corresponding to the dimensionless ratio
l/a = 0.02. The plate was made of TsTBS-3 piezocer-
amics whose parameters correspond to the reference
data [18].

Qualitatively, the curves are similar to those
obtained in [8] (for P1-60 piezoceramics, all parame-
ters of which were not specified in the paper). It follows
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Fig. 1. Circular finite piezoelectric plate: (a) with complete
electrodes; (b) with annular electrodes; (c) with circular
electrodes.

Fig. 2. Dependences of the (1) resonance and (2) antireso-
nance frequencies of the first mode of a TsTBS-3 piezocer-
amic plate on the radius of the circular electrodes.
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partial electrodes: (a) (1) the first radial mode, l/a = 0.02; (2) the tenth mode, l/a = 0.15; (3) the thirteenth mode, l/a = 0.115; and
(b) the fourth mode, l/a = (1) 0.34 and (2) 0.36.

Fig. 4. Spectrum of the natural frequencies of a TsTBS-3 piezoceramic plate with annular electrodes, b/a = 0.75.

k

from Fig. 2 that the maximal difference between the
resonance and antiresonance frequencies, which is pro-
portional to the DCC, is reached at h/a ≈ 0.9 (as in [8])
rather than in the complete-electrode case. This also
validates our numerical results. Fig. 3a (curve 1) dem-
onstrates the dependence of the first-mode DCC on the
size of the circular electrodes. The optimal (maximal)
value of the DCC is reached at h/a ≈ 0.9: kmax = 0.51,
while for the complete electrodes, k = 0.50. Thus, at the
first radial mode, the plate with the optimal partial elec-
trodes operates somewhat more efficiently than the
complete-electrode plate.

We made a great number of numerical computations
for the natural frequency spectra and for the depen-
dences of the DCC on the thickness of the piezoelectric
plate in a wide range of the thickness values and the
partial-electrode radii. One of the calculation variants is
presented in Figs. 4 and 5. Figure 4 demonstrates the
spectrum of natural frequencies in the resonance (the
solid lines) and antiresonance (the dashed lines)
regimes for a piezoelectric plate with annular elec-
trodes at l/a ∈ [0.01, 0.5] and b/a = 0.75. As for the case
of the plate with complete electrodes [6, 7], the spec-
trum is represented in the coordinates x = kta and y = ktl;
the mode numbers are indicated near the curves. Each
ray issuing from the origin of coordinates corresponds
to a certain value of the plate thickness l/a. The piezo-
active regions, i.e., the regions where the difference
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
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Fig. 5. Dependences of the dynamic electromechanical coupling coefficient of a TsTBS-3 piezoceramic plate with annular elec-
trodes on the plate thickness, b/a = 0.75.
between the resonance and antiresonance frequencies is
considerable and visible in the figure (which corre-
sponds to a considerable value of the DCC), are not
shaded in the computer-made figures, unlike the figures
made earlier “by hand” in [6, 7]. Figure 5 demonstrates
the dependences of the DCC on the piezoelectric plate
thickness for the same variant; the mode numbers are
indicated near the curves. The sixth and the ninth
modes with a small value of the DCC are absent. The
first mode has a large value of the DCC overstepping
the limits of Fig. 5 and, therefore, is not presented in
this figure. As the plate thickness increases, the DCC of
the first mode grows almost linearly; for example, in the
case of complete electrodes, the DCC increases from
0.504 to 0.581 for l/a ∈  [0.01, 0.5].

Let us consider the change in the natural frequency
spectra and the DCC of the piezoplates with annular
electrodes compared to the complete-electrode case [6, 7].
The natural frequencies increase as the size of the elec-
trodes is reduced. This is particularly clear for the first
five radial modes for l/a ∈  [0.01, 0.05]. A pronounced
increase is observed in the frequencies of the second,
third, and fourth modes in the interval l/a ∈  [0.01, 0.15]
with a corresponding increase in the DCC of these
modes for thin plates. The DCC of the fourth (quasi-
thickness) mode increases at l/a ≈ 0.36; the DCCs of the
two other quasi-thickness modes decrease. The modes
called in [6] the quasi-thickness ones are those whose
axial components of the displacement uz have cophased
distributions at the face plane of the piezoelectric plate
and dominate over the radial components ur . It was also
noted in [6] that the uniform (piston-like) distribution
of uz over the plate face, which corresponds to the one-
dimensional theory, is observed for only the principal
mode of a piezoelectric rod with l/a > 1 and is not
observed for finite circular plates. That is why these
modes were called the quasi-thickness ones. It was
shown [6] that the quasi-thickness vibrations are
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
formed by the fourth, seventh, tenth, thirteenth, and the
subsequent modes at certain values of the plate thick-
ness. Note also that the typical distributions of uz pre-
sented for the complete-electrode piezoelectric plate in
[6, 7] and in this paper are in good agreement with the
experimental distributions reported in [2, 3], which val-
idates the numerical results obtained here.

The distributions of uz and ur of the seventh and
tenth mode over the face plane of the complete-elec-
trode piezoelectric plate at the optimal (corresponding
to the maximal DCC) values of the plate thickness are
displayed in Fig. 6. In this figure, the displacement
components are normalized to the value of uz at the
plate center. The abscissa axis represents the number of
equidistant nodal points, where point 1 corresponds to
the axis of symmetry of the plate (r = 0) and the last
point (point 33 or 49, depending on the finite-element
approximation of the piezoelectric plate) corresponds
to r = a.

Let us consider the variant of increasing the DCC of
the fourth mode, which has one minimum of uz [6, 7],
by disconnecting the electrode region corresponding to
this minimum. This variant is not presented in Fig. 1.
We disconnect the annular region that is centered at the
point n = 13 (with 25 nodal points). We denote the step,
i.e., the distance between adjacent nodes, by h1. As the
width of the disconnected region increases, the DCC
grows monotonically (from the value k = 0.286 for the
complete electrodes, l/a = 0.36) and reaches the maxi-
mal value k = 0.348 at the ring width 18h1. In this case,
the electrodes occupy only a small central part with the
radius 3h1 and a peripheral annular part with the width
3h1. As the plate thickness decreases from l/a = 0.36 to
0.34, the DCC grows slightly and reaches its maximal
value k = 0.353, which is 0.86 of the static coupling
coefficient kt of this ceramics. Thus, by disconnecting a
considerable part of the electrode near the minimum of
uz, we can raise the fourth-mode DCC by δ4 = 23.4%.
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The distributions of the displacement components in
the case of such an optimal electrode differ only
slightly from the distributions in the complete-elec-
trode case [6, 7]. The main difference consists in a
small increase in the minimal value of uz. This effect
will be more pronounced for higher quasi-thickness
modes.

A similar result can be obtained with only annular
peripheral electrodes (see Fig. 3b). In this case, at b/a =
0.83, the DCC reaches the values k = 0.346 at l/a = 0.36
and k = 0.351 at l/a = 0.34. Note that the DCC can be
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Fig. 6. Distributions of the (1, 3) axial and (2, 4) radial com-
ponents of the displacement over the face of a TsTBS-3
piezoceramic plate of optimal thickness (1, 2) with com-
plete electrodes and (3, 4) with optimal circular electrodes:
(a) the seventh mode for (1, 2) l/a = 0.21 and k = 0.273 and
for (3, 4) l/a = 0.23, h/a = 0.63, and k = 0.292; (b) the tenth
mode for l/a = 0.15, k = (1, 2) 0.277 and (3, 4) 0.323, and
(3, 4) h/a = 0.72.

n

raised even higher by placing the annular electrode on
the cylindrical surface close to the face plane of the
piezoelectric plate. If the electrode occupies the upper
half of the cylindrical surface (i.e., z ∈  [l/2, l]), the max-
imal DCC value k = 0.379 is reached. The same result
is obtained in the total absence of electrodes at the plate
face and in the case of annular peripheral electrodes of
the width 2h1 with l/a = 0.34.

It is characteristic of the piezoplate with partial cir-
cular electrodes that the fourth-mode DCC drops with
decreasing radius of the partial electrodes, whereas the
DCC of two other quasi-thickness modes (seventh and
tenth) rises. Let us consider the possibility for increas-
ing the DCC of quasi-thickness modes by the utiliza-
tion of partial circular electrodes.

The maximal DCC of the seventh mode of the com-
plete-electrode piezoelectric plate is reached at the
optimal thickness l/a = 0.21 and equals k = 0.273.
Using the partial electrodes, one can slightly increase
the DCC, so that it takes the maximal value k = 0.288 at
the optimal electrode radius h/a = 0.69 for the same
thickness of the plate. Changing the plate thickness to
l/a = 0.23, one can obtain a somewhat higher value of
the DCC: k = 0.292 at the optimal radius of the elec-
trodes h/a = 0.63. Thus, the partial electrodes allow one
to raise the seventh-mode DCC by only δ7 = 7%.

The distributions of displacement components of
the seventh mode are shown in Fig. 6a for the case of
complete electrodes and optimal thickness and also for
the optimal electrodes and optimal thickness. It is char-
acteristic of the seventh and subsequent quasi-thickness
modes that, in the case of partial optimal electrodes, the
distributions of the displacement components, particu-
larly, that of uz, change considerably compared to the
case of the complete-electrode piezoelectric plate. The
optimal electrodes lead to an increase in the extremal
values of uz , particularly, the minimal ones; the ampli-
tude of oscillations of uz is reduced, and the antiphase
region is absent in the minimum of uz. This leads to the
smoothing of the uz distribution. Consequently, the
average value of the function uz = uz(r), which can be

defined as uzav = a–1 (r)dr, grows. The extremal

absolute values of ur are also reduced.
For the tenth mode, the optimal radius of partial

electrodes is h/a = 0.72, the DCC reaching the value k =
0.323 (Fig. 3a, curve 2) and increasing by δ10 = 16.6%.
The tenth-mode distributions of the displacement com-
ponents at the optimal plate thickness and complete
electrodes and also at the optimal partial electrodes and
optimal thickness are presented in Fig. 6b. As in the
case of the seventh mode with the optimal electrodes,
the amplitude of oscillations of uz is reduced, and the
average value increases.

The thirteenth quasi-thickness mode was also inves-
tigated. Its optimal piezoplate thickness is l/a = 0.115.
The optimal electrode size also exists in this case (even
two sizes, see Fig. 3a, curve 3).The maximal value of

uz0

a∫
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the DCC is k = 0.336 for the optimal electrode size
h/a = 0.63. The distribution of the displacement com-
ponents retain its behavior indicated above, and the
DCC increases by δ13 = 18.7%.

Thus, the utilization of the optimal partial electrodes
can raise the DCC of the quasi-thickness modes by the
values varying from 7% for the seventh mode to 23%
for the fourth mode. The distribution of the normal dis-
placement component uz changes: the amplitude of its
oscillations decreases and the average value increases.

As was noted in [6], the main compositions of
piezoceramics can be divided into two types, according
to the type of the spectrum and the value of the DCC of
quasi-thickness vibrations. The TsTBS-3 piezoceram-
ics belongs to the first type determined by this classifi-
cation system [6]. For this kind of ceramics, the maxi-
mal value of the DCC of quasi-thickness vibrations is
k ≈ 0.7kt (kt is the static coupling coefficient of thick-
ness vibrations) at the optimal value of the piezoelectric
plate thickness. Taking the average DCC of quasi-
thickness vibrations as k ≈ 0.32 in the case of optimal
partial electrodes, one can roughly assess the DCC in
terms of kt: k ≈ 0.78kt ≈ 0.8kt. Consequently, the
TsTBS-3 piezoceramics (belonging to the first type)
approaches in this index the second-type piezoceram-
ics, which has k ≈ 0.8kt [6].

Consider now the effect of the partial electrodes on
the characteristics of piezoelectric plates made of the
NBS-1 ceramics, which belongs to the second type.
The DCC of the first radial mode slightly increases
when the partial electrodes are used, as in the case of
the TsTBS-3 ceramics. At l/a = 0.12 and the optimal
electrode size h/a ≈ 0.9, it reaches the maximal value
k = 0.341, while in the case of complete electrodes, k =
0.334. The effect of partial electrodes on the character-
istics of the quasi-thickness modes was studied for the
optimal piezoelectric plate thickness. The partial elec-
trodes proved to be unable to provide an increase in the
DCC of any of the quasi-thickness modes.

It is evident that the process of energy transforma-
tion in the piezoelectric element is rather complex. It
depends on the geometric shape of the element and the
electrodes, on their size, and on the parameters of
piezoceramics (its elastic, piezoelectric, and dielectric
constants and its density). In every particular case, the
full understanding of all features requires a detailed
investigation of the distributions of the electric and
elastic fields in the whole volume of the piezoelectric
element and their conformity with the driving field. The
practical conclusions are more easily made with the
help of integral characteristics, which are necessary in
the use of piezoelectric elements and can be tested
experimentally. The integral characteristics are the
value of the DCC and the distribution of the normal dis-
placement component at the radiating surface, the latter
being important for the analysis of the operation of an
acoustically loaded piezoelectric element.
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
The analysis of the distributions of the displacement
components of quasi-thickness modes in an NBS-1
piezoceramic plate (of the second type) at the optimal
values of plate thickness and with complete electrodes
shows [7] that they are different from the corresponding
distributions obtained for the first-type TsTBS-3 piezo-
ceramic plate. It is significant that the distributions
obtained for the NBS-1 plate are closer to those for the
TsTBS-3 plates with the optimal electrodes rather than
with complete ones. In this case, the normal displace-
ment component uz has no negative regions near the
minimum, and the average value of uz is greater than
that for the TsTBS-3 piezoceramic plate.

Thus, the two-type classification of piezoceramic
compositions, which was proposed earlier, also proves
to be useful in the analysis of the effect of partial elec-
trodes on the characteristics of the quasi-thickness
modes of piezoelectric plates. To verify this assump-
tion, the characteristics of the quasi-thickness vibra-
tions of piezoelectric plates made of other piezocer-
amic compositions were also investigated. They were
the TsTSNV-1 (the first type) and the TBKS (the sec-
ond type) piezoceramics. The above-mentioned differ-
ences in the distributions of the displacement compo-
nents of the quasi-thickness modes of piezoelectric
plates persist in both cases. For the TsTSNV-1 ceram-
ics, the optimal partial electrodes can increase the DCC
of the quasi-thickness modes: for example, the seventh-
mode DCC increases by δ7 = 10%. For the TBKS
ceramics, the partial electrodes cannot increase the
DCC of the quasi-thickness modes.

Consequently, for the piezoelectric plates made of
the first-type piezoceramics (TsTBS-3, TsTSNV-1, or
TsTS-19), their incomplete covering with electrodes
can increase the DCC of the quasi-thickness modes up
to k ≈ 0.8kt. For the piezoplates made of the second-
type piezoceramics (NBS-1, TBKS, or TBK-3), the
partial electrodes fail to increase the DCC of the afore-
mentioned modes, the value of this coefficient being
approximately the same in this case: k ≈ 0.8kt. In other
words, complete electrodes are optimal for the quasi-
thickness modes of piezoelectric plates made of the
second-type piezoceramics.
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Abstract—Interference of longitudinal acoustic waves propagating in opposite directions in a homogeneous
isotropic absorbing plate and a periodic structure with a defect is considered theoretically. The periodic struc-
ture consists of alternating absorbing solid and transparent liquid layers. The defect is modeled by replacing a
solid layer by a liquid layer of the same thickness. The dependences of the transmission spectrum of the energy
flux on the amplitude ratio and phase difference of the interacting waves are studied. It is shown that, by varying
the parameters of the opposite pressure wave, it is possible to change the transmission spectrum of the direct
wave in a wide frequency range. An expression is obtained to determine the extremums of the wave amplitude
transmitted through an absorbing plate depending on the amplitude ratio of the interacting waves. The results
of studying a one-dimensional periodic structure demonstrate the possibility to considerably change the trans-
mission spectrum of the pressure wave leaving the structure and also to eliminate the invariance of this spectrum
under the interchange of the kth and (n – k + 1)th layers (where n is the total number of layers in the structure).
© 2001 MAIK “Nauka/Interperiodica”.
The effect of a transmission enhancement in thin
metal films as a result of the interaction of electromag-
netic waves propagating in opposite directions was stud-
ied in many papers. Later on, it was given the name of
“tunnel” interference. Both the general laws of the inter-
action of opposing electromagnetic waves in absorbing
crystalline and isotropic media and the possibilities to
use the effect of tunnel interference in technology and
various research problems were studied [1–4]. The most
interesting results were the dependences of the intensity
of a wave transmitted through an absorbing medium on
the amplitude and phase of the opposite wave and on the
coefficient of light absorption [2].

Drawing an analogy between electromagnetic and
elastic waves, Efimov and Sementsov [5] demonstrated
theoretically the possibility of increasing the transmit-
tance of an absorbing elastic medium due to the inter-
ference of opposing longitudinal acoustic waves. This
problem is undoubtedly important and interesting from
the point of view of investigation of both absorbing
media and multilayer structures, in which the interac-
tion of opposing waves occurs as a result of multiple
reflections of elastic waves from the boundaries [6]. In
the cited paper [5], the dependence of the interference
flux of waves propagating in opposite directions on the
phase difference and layer thickness was studied.

We investigate the dependence of the transmission
spectrum of a pressure wave transmitted through an
1063-7710/01/4706- $21.00 © 20721
absorbing medium on the amplitude and phase of a
wave propagating in the opposite direction for two
cases. In the first case, a homogeneous plane-parallel
plate is considered, and in the second, a one-dimen-
sional periodic structure consisting of alternating layers
of a transparent liquid and an absorbing solid.

Let us consider the interference of longitudinal
acoustic waves propagating in opposite directions in an
isotropic absorbing plate. We assume that there are two
ultrasonic sources in an immersion liquid with a plane-
parallel plate between them. The plate plane is per-
pendicular to the line segment connecting the sources
(Fig. 1). Two longitudinal monochromatic pressure
waves, which have different amplitudes and a phase
difference ϕ between them at the plate boundaries,
propagate from the immersion liquid toward the plate
normally to the plate surface. Mathematically, this can
be expressed as follows:

(1)

Here, pf and pb are the amplitudes of the direct and
opposite pressure waves, respectively; k is the wave
number; and ω is the cyclic frequency.

Assuming that the waves under study have a plane
wave front, we can ignore the formation of shear waves
at the liquid–solid interface [7, 8]. Longitudinal acous-

p f p f i ωt kx–( )( ),exp=

pb pb i ωt kx ϕ+ +( )( ).exp=
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tic waves are multiply reflected and interfere in the pro-
cess of their propagation inside the plate. A result of
such an interaction in the plate can be described by two
waves, each of them being a superposition of single
waves propagating in the same direction (see Fig. 1). To
simplify the problem, we assume that the amplitudes of
pressure waves are sufficiently small and nonlinear
effects do not manifest themselves, which in its turn
allows us to ignore the time dependence. The relation
between the amplitude of a pressure wave and the par-
ticle velocity for a one-dimensional case with a disper-
sion-free medium is given by the expression [9]

(2)

where ρ is the density of the medium and ν is the veloc-
ity of the medium particles.

From the boundary conditions implying equal pres-
sures and particle velocities at the plate boundaries x = 0
and x = d, we obtain the following set of equations:

(3)
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Fig. 1. Scheme of the interference interaction of longitudi-
nal acoustic waves propagating in opposite directions in an
isotropic absorbing plate.
Here, ρ0, ρ, c0, and c are the densities and the velocities
of sound propagation for the immersion liquid and the
plate, respectively. The pressure amplitudes of all inter-
acting waves are determined from the solution to the set
of Eqs. (3). From the practical point of view, the most
interesting parameters are the amplitudes of the pres-
sure waves propagating from the plate into region I
( ) and into region III ( ), which can be represented
in the form of a sum of waves transmitted through the
plate and reflected from it [10].

The power flux density S of an acoustic wave can be
represented as [9]

(4)

It is easy to demonstrate that, in the case of a transpar-
ent plate, the difference between the energy fluxes car-
ried by the waves toward the plate and away from it is
equal to zero, which testifies to the conservation of the
total flux and provides an opportunity to apply the
obtained results in theoretical studies of absorbing
media.

It is necessary to analyze the dependence of the
energy carried by the wave  into region III on the
amplitude of the opposite wave pb by fixing the total
amount of energy supplied to the plate. Otherwise, it is
irrelevant to discuss the energy gain resulting from the
interaction of opposing waves [5]. For this purpose, we
introduce the parameter a varying in the range from 0
to π/4 (the choice is determined by the problem geom-
etry and by the absence of qualitatively new solutions
in the range π/4–π/2) and represent the pressure ampli-
tudes in the form pf = cosa and pb = sina. Then, we
obtain a sequence of amplitudes of the pressure waves
from the case of a unidirectional propagation (a = 0) to
the case of opposing waves with equal amplitudes (at
a = π/4).

We assume that, if the distances from the sources to
the closest boundaries of the plate are different, a prop-
agation path-length difference exists between the inter-
acting waves, i.e., the phase difference in the studied
frequency range is directly proportional to frequency.
In the absence of the path-length difference, all waves
of the selected spectral range approach the plate bound-
aries in phase. In this case, the transmission coefficient
TE for the energy flux (normalized to the total energy
flux supplied to the plate by the waves of one fre-
quency) that is carried by the wave  into region III
can be expressed as

p f' pb'

S pν p 2

ρc
--------.= =

pb'

pb'
(5)TE

16z2z0
2 p f

2 16zz0 z2 z0
2–( )p f pb 2πν/ν0( ) ϕ( )sinsin– 2 z2 z0

2–( )2
pb

2 1 4πν/ν0( )cos–( )+

z z0+( )4 2 z z0+( )2 z0 z–( )2 4πν/ν0( )cos– z0 z–( )4+
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=
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where z = ρc and z0 = ρ0c0 are the acoustic impedances
of the plate and the immersion liquid, ϕ = 2πν∆l/c0, ∆l
is the path-length difference, and ν0 = c/d is the fre-
quency at which the acoustic wavelength is equal to the
plate thickness.

As one can see, the calculated transmission coeffi-
cient summarizes three fluxes, namely, the flux arriving
from the source pf in region I and transmitted through
the plate, the flux resulting from the interaction of
opposing waves, and the flux arriving from the source
pb and reflected by the plate. If the amplitude of the
pressure wave generated by one of the opposite sources
is equal to zero, Eq. (5) describes a reflected flux or a
flux transmitted through the plate for the unidirectional
case. The flux resulting from the interaction of oppos-
ing waves is described by the expression 16zz0(z2 –

)sin(2πν/ν0)sin(ϕ)pf pb . The phase difference is of
key importance for the determination of the value and
direction of the opposite flux. An increase or decrease
of the flux in region III is determined by the sign of this
expression. If the phase difference between the interact-
ing waves is a multiple of π (the absence of the phase dif-
ference is a particular case), the total flux to region III is
equal to the sum of the fluxes transmitted through the
plate and reflected from it.

The dependence of the energy flux carried by the
wave  through a transparent plate into region III on
the frequency and on the ratio of the pressure ampli-
tudes (the parameter a) in the case when a path-length
difference occurs between the interacting waves is
given in Fig. 2a. The parameters of the plate and the
immersion liquid were taken to be those of plexiglas
and water: d = 1.6 × 10–3 m, ρ = 1.12 × 103 kg/m3, c =
2.65 × 103 m/s, ρ0 = 1 × 103 kg/m3, c0 = 1.49 × 103 m/s,
∆l = 2 × 10–3 m, and ν0 = c/d.

The peaks of the flux transmitted through the plate
in the case of a unidirectional interaction occur when
the plate thickness is equal to a whole number of half-
waves. The transmission through a transparent plate at
the corresponding frequencies (ν = ν0(m + 1)/2, where
m is a whole number) does not depend on the phase dif-
ference between the interacting opposing waves. We
will demonstrate below that this is not true in the pres-
ence of absorption.

In the case of an absorbing plate, we represent the
sound velocity in the medium in the form of a complex
quantity with the imaginary part describing the absorp-
tion:

(6)

where Q is the Q-factor relating the absorption to the
acoustic wavelength (frequency). Absorption in plexi-
glas grows linearly with frequency in the studied fre-
quency range 0.5–5 MHz: Q = 1/αλ ≈ 30 [11]. Absorp-

z0
2

pb'

c
c

1 i/2πQ–( )
-----------------------------,=
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tion in water in the considered frequency range is insig-
nificant.

The results of the studies performed for an absorb-
ing plate are presented in Fig. 2b. The inclusion of
absorption in the medium leads a decrease in the trans-
mission with increasing frequency. However, one can
notice that the dependence TE(ν) for an absorbing plate
is not a monotonic, exponentially damped dependence.
Taking into account only the first-order terms in the
absorption coefficient, we can express the energy trans-
mission coefficient as

(7)

TE 16z2z0
2 p f

2 2ν/ν0Q–( )exp Int α a,( )+[=
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Fig. 2. Dependence of the transmission spectrum TE of the

energy flux carried by the pressure wave  into region III

on the amplitude ratio  of opposing waves with the

path-length difference ∆l = 2 × 10–3 m: (a) a transparent
plate and (b) an absorbing plate (Q = 1/αλ  = 30).
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where

As one can see from Eq. (7), the absorption on the
whole leads to a transmission decrease. The term pro-

Int α a,( ) 8zz0 z2 z0
2–( ) ν/ν0Q–( )exp(=
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+ z z0–( )4 4ν/ν0Q–( ).exp
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Fig. 3. Dependence of the transmission spectrum Tp of the

pressure wave  propagating into region III on the nor-

malized frequency ν/ν0 in the case of the interaction of
opposing waves with different amplitudes (a = π/7) and
with the path-length difference ∆l = 0.5 × 10–3 m for a trans-
parent plate (the thin line) and an absorbing plate (the
dashed line) and 2 × 10–3 m for an absorbing plate (the thick
line).

pb'
portional to the absorption coefficient is present in the
expression describing the interferential interaction.
However, it cannot considerably affect the transmis-
sion, because it is very small. The change in the trans-
mission has a damping-oscillating character that is
determined by the Q-factor Q and the relationships
between the amplitudes and phases of the interacting
waves.

If the path-length difference ∆l of the interacting
waves changes, the amplitude of the pressure wave
propagating into region III also changes. The results
obtained by studying the dependences of the wave
amplitude transmitted through the plate on the path-
length difference in a wide frequency range are pre-
sented in Fig. 3. The value of  is determined by the
ratio of the pressure amplitudes of the opposing waves
and by their phase difference ϕ. In the general case of
an arbitrary ratio of the opposing wave amplitudes, this
value is limited by their sum and difference. An
increase in the path-length difference between the inter-

acting waves increases the phase difference ϕ = ∆l

and, consequently, changes the value and the direction
of the flux given by Eqs. (5) and (7). In the ultrasonic
transmission spectrum of the plate, an increase in the
path-length difference between the interacting waves
leads to more frequent changes of the flux direction
with varying frequency. If the path-length difference
between the interacting waves is absent and the ampli-
tudes of opposing waves are equal in the whole fre-
quency range, half of the total energy flux supplied to
the plate will propagate into region III (this is a predict-
able result, which can be obtained from the symmetry
of the considered problem).

It is interesting to study the dependence of ultra-
sonic transmission on the ratio of the amplitudes of
opposing waves with fixed frequency and phase differ-
ence. Taking into account the absorption in the plate
according to Eq. (6), the condition for the extremums of
the amplitude of the transmitted pressure wave can be
written in the form

pb'

2πν
c

----------
(8)atan
i2πν/ν0 ν/ν0Q+( )exp –i2πν/ν0 ν/ν0Q–( )exp–

4
------------------------------------------------------------------------------------------------------------------------- z

z0
---- 1 i/2πQ+

1 1/4π2Q2+
------------------------------
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z
---- 1 i

2πQ
-----------– 

 – 
  iϕ( ).exp=
Let us compare it with the condition for the extremums
in the case of a transparent plate, which can be obtained
from Eq. (8) by passing to the limit Q = ∞:

(9)

One can see from Eq. (9) that, in the case of an arbitrary
ratio of the wavelengths of the interacting waves and
the thickness of the plate, the extremums manifest

atan
i 2πν/ν0( )sin

2
-------------------------------- z

z0
----

z0

z
----– 

  iϕ( ).exp=
themselves at ϕ = (2m + 1), because  is real

(here, m is a whole number). Moreover, if a whole num-
ber of half-wavelengths fits into the plate thickness, the
phase difference does not affect the amplitude of the
transmitted wave. In the case of an absorbing plate, all
other conditions being the same, a phase shift appears
in the indicated dependence in comparison with the
case of a transparent plate. The shift value includes a
constant component [the term in parenthesis in Eq. (8)]

π
2
--- atan
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and a component that depends on the wavelength (fre-
quency) and is essential only for strong absorption. The
amplitude of the wave transmitted through an absorb-
ing plate is smaller than the amplitude of the wave
transmitted through a transparent plate. However, it is
possible to increase the transmission by changing the
phase difference in certain regions (see Fig. 3). Thus,
with the variation of the phase difference and the ratio
of amplitudes of the interacting waves, the interaction
of opposing waves provides an opportunity to change
the transmission spectrum of an absorbing plate.

Now let us consider the interaction of waves propa-
gating in opposite directions in one-dimensional peri-
odic structures. In the case of unidirectional propaga-
tion of ultrasonic waves through a one-dimensional
periodic structure, the transmission spectrum consists
of transparency and opacity regions [12–15]. If a defect
occurs in the structure (a layer disturbing the structure
periodicity), a local maximum arises in the opacity
region of the transmission spectrum [12, 16]. Experi-
mental data on the transmission spectra in the case of
unidirectional interaction agree well with the calcula-
tions [12]. On this basis, it was suggested to apply a
nondestructive testing technique based on broadband
acoustic spectroscopy [17] with a laser source of ultra-
sound [18]. In solving this problem, it is necessary to
stress that the transmission spectra obtained for direct
and inverse positions of a periodic structure with a
defect are identical in the case of unidirectional propa-
gation. As it will be demonstrated below, the interaction
of opposing acoustic waves eliminates this ambiguity.

We assume that a multilayer structure consists of n
isotropic layers with known physical constants and
thicknesses. Longitudinal acoustic waves propagate
toward the structure from opposite directions. The
boundary conditions written for each boundary of the
multilayer structure yield a set of equations analogous
to Eqs. (3):
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where xk is the thickness of the kth layer; ρk and ck are
the density and the sound velocity in the layer located
to the left of the boundary; ρk + 1 and ck + 1 are those in

the layer located to the right of it, respectively;  and

 are the amplitudes of pressure waves within the kth
layer; k varies from 0 (the first boundary) to n (the last
boundary); and ρ0 and c0 are the density and the sound
velocity in the immersion liquid. Thus, we have a set of
2n + 2 equations with the same number of unknowns.
Solving this set, one can obtain the amplitudes of pres-
sure waves. From the practical point of view, we are
interested in the amplitudes of the waves propagating
away from the structure. As in the case of a plate, we
consider the transmission dependences with a fixed
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Fig. 4. Dependence of the spectrum of ultrasonic transmis-
sion Tp for a periodic structure consisting of ten plexiglas

layers and nine water layers (d = 1.6 × 10–3 m, c = 2.65 ×
103 m/s, d0 = 1 × 10–3 m, and c0 = 1.49 × 103 m/s) with a
modeled defect; the path-length difference between the
interacting waves is ∆l = 0.2 × 10–3 m; the defect is (a) the
7th layer and (b) the 13th layer.
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total energy flux in the whole frequency range (we use
the parameter a).

Here, we present the data obtained for the amplitude
of a pressure wave (it is denoted as Tp in the figure). The
periodic structure under study consisted of ten plexiglas
layers (d = 1.6 × 10–3 m) and nine water layers (d0 = 1 ×
10–3 m). The modeled defect was a plexiglas layer
replaced by a water layer of the same thickness.
Absorption in plexiglas was taken into account in the
same way as in the case of a plate, and ultrasonic
absorption in water was ignored. The numerical analy-
sis was performed with the help of the MATLAB soft-
ware.

Figure 4 presents the dependences of the transmis-
sion spectra of periodic structures with defects (the sev-
enth and thirteenth layers) for different ratios of the
amplitudes of opposing waves with the path-length dif-
ference between them equal to 0.2 mm. It is important
to note that, in the case of a unidirectional interaction
(a = 0), the transmission spectra of the structures under
consideration are identical and a local peak arises in the
opacity region, which corresponds approximately to a
frequency of 3.52 MHz in the plot. The interaction of
opposing waves eliminates such an ambiguity: at a ≠ 0,
the ultrasonic transmission spectra of a periodic struc-
ture are different (the difference is most pronounced at
the frequency close to the local maximum). An increase
in the path-length difference between the interacting
waves does not produce new results in comparison with
a plane-parallel plate, but it changes the character of
transmission in a broad frequency band, including the
opacity region.

Thus, the considered problem of the interaction of
waves propagating in opposite directions has an inter-
ference nature. We can consider the transmitted flux
increase due to the changes in the parameters of the sec-
ond source as an energy gain. The interaction of oppos-
ing waves provides an opportunity to model the flux
transmitted through a plate in a broad frequency band.
We obtained an expression for the extremums of the
amplitude of the ultrasonic wave transmitted through
an absorbing plate. The results of simulation for one-
dimensional periodic structures demonstrated the dif-
ference in the ultrasonic transmission spectra of struc-
tures with defect layers symmetric with respect to the
center (Fig. 4), these spectra being identical in the case
of a single source. The results obtained can be useful
for nondestructive testing. One can expect that similar
dependences will occur in the case of the interaction of
opposing electromagnetic waves.
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Abstract—The noise immunity of the procedures used for extracting the local maximums of the autocorrela-
tion and cross-correlation functions of a wideband noise signal produced by a sea object is studied. The auto-
correlation and cross-correlation functions refer to the outputs of one or two spatial channels formed by a
hydroacoustic array in the vertical plane. The limiting cases of low and high signal-to-noise ratios are consid-
ered. The noise immunity of extracting the maximums of the correlation function is compared with the noise
immunity of the signal detection. © 2001 MAIK “Nauka/Interperiodica”.
Local maximums that occur in the correlation func-
tion (CF) of a wideband noise signal at the output of a
sonar because of the multipath propagation in water
carry the information on the coordinates of the source of
the signal, and this fact is used in practice [1, 2]. The effi-
ciency of using this information strongly depends on the
noise immunity of the procedure used for extracting the
aforementioned maximums (the noise immunity is
understood as the possibility of extracting the maxi-
mums at a small signal-to-noise ratio (SNR) [3]).

The noise immunity of the CF maximum extraction
procedures has been studied intensively (see, e.g., [4,
5]). Nevertheless, it is of interest to return to this issue
and consider it from the viewpoint of the practical
application of hydroacoustic devices under various
operating conditions. This paper compares two CF
maximum extraction algorithms and proposes conve-
nient engineering formulas. The problem is solved for
the case of a multipath hydroacoustic channel with con-
stant (nonfluctuating) parameters.

Two algorithms for calculating the CF in order to
localize its multipath maximums are used in practice.
The first algorithm calculates the CF as the cross-corre-
lation function (CCF) between the outputs of two spa-
tial channels formed in the receiver. Horizontally, both
channels look in the direction toward the noise source.
Vertically, they are oriented in different directions
toward the maximums of the spatial spectrum of the
received signal. The second algorithm calculates the CF
as the autocorrelation function (ACF) at the output of
one of the spatial channels. This algorithm is used when
the receiver has only one spatial channel in the vertical
plane (e.g., when the sonar uses a horizontal linear
array) or when the spatial spectrum of the signal has no
more than one maximum in the vertical plane. Below,
we consider these two algorithms separately.
1063-7710/01/4706- $21.00 © 20727
The inverse fast Fourier transform (IFFT) applied to
the real part of the cross spectrum of two spatial chan-
nel outputs

(1)

is known to be the most efficient digital technique for

calculating the CF [6]. Here, (τ) is the accumulated

CCF estimate; (f ) is the accumulated estimate of
the real part of the cross spectrum of the outputs of the
first and second spatial channels:

(2)

( f ) is the estimate of the complex spectrum at the out-

put of the first spatial channel; (f ) is the complex
conjugate of the estimate of the complex spectrum at the
output of the second spatial channel; H(f ) is the weight-
ing function (the frequency filter); Φ–1{*} means the
IFFT; and the function Re{*} equals the real part of its
argument. The overbar symbol in Eq. (2) means the
accumulation or, to be more precise, the time-averaging.

Note that, since the IFFT is linear, the averaging can
be applied either to the real part of the cross spectrum
or to the estimate of the CCF. However, the accumula-
tion of the real part of the cross spectrum is more
advantageous from the viewpoint of the calculation
complexity.

The complex spectrum of a superposition of the
multipath signal and noise at the output of the ith spatial
channel can be represented as

(3)
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where Gco(f ) is the complex spectrum of the transmit-
ted signal normalized by its amplitude spectrum (to put
it differently, the complex spectrum of white noise with
the unit amplitude spectrum); L is the number of paths
the signal travels from the source to the receiving array;
Ami(f ) is the amplitude spectrum of the output of the ith
spatial channel due to the signal arriving through the
mth path; tm is the time for the signal to travel the mth
path from the source to the receiving array; and (f )
is the complex spectrum of the noise at the output of the
ith spatial channel.

By substituting Eq. (3) into Eq. (2), we obtain

(4)

where τmn = tm – tn is the time difference between the
signals coming through the mth and nth paths; (f )
is the real part of the cross spectrum of noise at the out-
puts of the first and second spatial channels; ∆S12(f ) is
the error in the estimate of the real part of the cross
spectrum of the superposition of the signal and noise,
which has a zero expectation and variance determined
as [7]

(5)

Si(f ) is the signal-plus-noise power spectrum at the out-
put of the ith spatial channel:

(6)

(f ) is the noise power spectrum at the output of the
ith spatial channel; ∆ f is the frequency resolution of the
spectra Gi(f ), which is defined as [6]

(7)

T1 is the length of the realization subjected to the IFFT;
and TCCF is the CCF accumulation time.

For simplicity sake, we henceforth refer to the signal
that came through the mth path as the mth signal.

It is known [8] that the noise immunity of proce-
dures for extracting the local maximums of a spectrum
(the CF, the indicative process) is completely deter-
mined by the so-called output (indicative) SNR, which
in our problem is defined as

(8)

Gni
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L

∑
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L

∑=

+ Sn12
f( ) ∆S12 f( ),+
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σ2 ∆S12 f( )[ ]
S1 f( )S2 f( ) S12

2 f( )+
2∆f TCCF

-------------------------------------------------;=

Si f( ) Ami f( )Ani f( ) 2πf τmn( )cos
n 1=

L

∑
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L

∑ Sni
f( );+=

Sni

∆f
1
T1
-----;=

QCCFmn

M K̃ τmn( )[ ] M K̃ τΦmn
( )[ ]–

σ K̃ τΦmn
( )[ ]

---------------------------------------------------------------,=
where  is the output SNR for a local CCF max-
imum due to the correlation between the mth and nth
signals; τmn is the abscissa of this maximum;

M[ (τmn)] is the expectation of the ordinate of this

maximum; and M[ ] and σ2[ ] are the
expectation and variance of the background component
of the CCF near the local maximum associated with
correlation between the mth and nth signals.

Formula (8) assumes that

(9)

where ∆τ is the signal correlation interval and, at the
same time, the CCF resolution given, due to the sym-
metry of the frequency spectrum and CCF, by the for-
mula similar to Eq. (7) [6]:

(10)

with flow and fup being the lower and the upper bound-
aries of the spectrum of the signal subjected to the
IFFT.

Let us calculate the numerator and denominator in
Eq. (8) separately. We begin with the numerator and
designate it by X. For simplicity, we assume that the rel-
ative time differences of any two signal pairs, for exam-
ple, τmn and τts, differ by no more than ∆τ, i.e., the CF
maximums due to the correlation between any two sig-
nals are separated.

By definition of the IFFT and in view of its property
of being linear, we have

(11)

We substitute Eq. (4) into Eq. (11), replace the prod-
uct of cosines with a sum of these, and collect similar
terms. As a result, we obtain

(12)

By virtue of Eq. (9), all terms of this expression are
integrals of the functions oscillating about zero and,
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X
1
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–( )( )cos 2πf τ ts τΦmn
+( )( )cos– ]df
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therefore, they tend to zero. Only two terms of the sum
in the integrand of the first integral at t = m and s = n
and at t = n and s = m are an exception. As a result,
Eq. (12) takes the form

(13)

Since the estimates of the spectral components are
mutually independent, the denominator in Eq. (8) can
be written as

(14)

Manipulations similar to those applied to the numer-
ator yield

X H f( ) Am1 f( )An2 f( ) Am2 f( )An1 f( )+[ ] f .d

f low

f up

∫=

Y ∆f H2 f( )σ2 S̃12 f( )[ ] 2πf τΦmn
( )cos

2
fd

f low

f up

∫
1
2
---

.=
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(15)

where (f ) = (f ) is the sum of the power
spectra of signals arriving through all L paths and
observed at the output of the ith spatial channel (we call
it the power spectrum of the signal) and (f ) =

(f )At2(f ) is the sum of the real parts of the
cross spectra of signals arriving through L paths and
observed at the outputs of the first and second spatial
channels (we call it the signal cross spectrum).

With Eqs. (13) and (15), Eq. (8) yields
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∫
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2
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----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
Let us find the frequency response H(f ) of the filter
that maximizes the . Using the integral form of
the Cauchy–Schwartz (Schwartz–Bunyakowsky) ine-
quality [9], we obtain

(17)
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∫
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--------------- fd
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∫ ,≤
where H(f ), C(f ), and D(f ) are arbitrary functions.

The equality is attained in Eq. (17) when

(18)

where l is an arbitrary nonzero constant.

With Eqs. (17) and (18), Eq. (16) yields
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Expressions (16), (19), and (20) are obtained for the
most general case of extracting the local maximums of
the CCF. In practice, of primary interest is the noise
immunity of the CCF maximum extraction at low SNRs
qi(f ), where qi(f ) is understood as the signal-to-noise
ratio at the output of the ith spatial channel:

(21)

At a low input SNR, the first terms in all three brack-
ets in the denominators of expressions (16), (19), and
(20) are less than the second terms. Taking into account
that the spatial channels are oriented in the vertical
plane so that the signal that came through one of the
paths (e.g., the mth path) is better extracted at the output
of the first spatial channel and the signal that came
through another path (the nth path) is better extracted at
the output of the second spatial channel, formulas (16),
(19), and (20) can be represented in the form

(22)

(23)

(24)

where ( f ) is the normalized cross spectrum (the
correlation coefficient at the frequency f ) of noise at the
outputs of the first and second spatial channels:

The analysis of formula (23) gives two practical rec-
ommendations aimed at increasing the noise immunity
of the extraction of the CCF maximums:

(i) The spatial channels should be pointed towards
the strongest (in order to maximize the numerator) and,
simultaneously, associated with the most distant
sources (in order to decrease the noise correlation coef-
ficient and, thereby, minimize the denominator) maxi-
mums of the signal spatial spectrum;
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(ii) Since the integrand in Eq. (23) is nonnegative,
the CCF should be calculated over the whole band-
width of the receiver.

Under the assumption that the signal and noise spec-
tra in Eq. (23) are frequency independent, we obtain the
approximate formula for estimating the noise immunity
of extracting the CCF maximums at low input SNRs:

(25)

As follows from Eq. (25), the noise immunity of
extracting the CCF maximums increases with increas-
ing signal frequency band over which the CCF is calcu-
lated, CCF accumulation time, and SNR in each spatial
channel and with decreasing noise correlation coeffi-
cient at the outputs of the two spatial channels.

Formula (24) shows that, if the spectra of both sig-
nals and the noise spectrum at the outputs of both spa-
tial channels have similar shapes (which usually occurs
in practice), the optimum filter given by Eq. (24) takes
the form of the Eckart filter [8]:

(26)

In practice, it is convenient to calculate the numera-
tor in Eq. (26) as the power spectrum of the signal esti-
mated for the current hydroacoustic conditions and the
expected distance to the source, and the denominator,
as the squared noise power spectrum measured at the
output of one of the spatial channels.

Let us compare the noise immunity of extracting the
CCF maximums with the noise immunity of the signal
detection. For this purpose, we assume that the signal is
detected by the spatial channel, in which the signal
power (and the SNR) is maximal. Then, according to
[8], the noise immunity of detecting the signal can be
calculated as

(27)

Under the assumptions used for deriving Eq. (26),
Eq. (23) takes the form

(28)

where wmn =  ≤ 1 is the power ratio between the

nth and mth signals.
Using the same assumptions, we determine the

ratio of expressions (28) and (27), which we will call
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the relative noise immunity of extracting the CCF
maximums:

(29)

where kmi =  ≤ 1 is the relative portion of power

of the mth signal in the total signal power at the output
of the ith spatial channel.

The analysis of Eq. (29) shows that the relative
noise immunity of extracting the CCF maximums
increases with increasing the ratio of the accumulation
times for the CCF calculation and the signal detection,
with decreasing difference in the amplitudes of the nth
and mth signals at the output of the spatial channel
(wmn  1), and with increasing the power contribu-
tion of each of these signals to the total power of the
signal at the output of the spatial channel in which it
is detected (km1  1). In the most favorable situation
of extracting the maximums of the CCF of the signal, in
which both of the two spatial channels pointed at differ-
ent directions receive signals of the same power (which
can occur when the source is in the far-field region and
the vertical dimension of the array is large in terms of the
wavelength), Eq. (29) takes the form

Therefore, theoretically, the accumulation times can be
chosen in this case to provide the noise immunity of
extracting the CCF maximums at least as high as the
noise immunity of the signal detection.

In practice, to bring the distance of the CCF maxi-
mum extraction closer to the signal detection distance,
one should not only orient the spatial channels in the ver-
tical plane as described above, but also increase the accu-
mulation time while calculating the CCF (each doubling
of the TCCF increases the noise immunity of the CCF
maximums extraction by 1.5 dB). One should keep in
mind that, for the coherent CCF accumulation, a limit
exists associated with a change in the abscissas of the
extracted signals in time due the relative motion of the
source and the receiver. This limit can be calculated as

(30)

where  is the maximal possible rate of change of the
abscissas of the CCF maximums (a dimensionless quan-
tity), which depends on the current hydroacoustic condi-
tions, the source and receiver depths, the distance
between them, and the relative radial speed of the source.

When, to achieve the required noise immunity of the
CCF maximum extraction, it is necessary to increase
the CCF accumulation time above , this should
be done using ranges (as in the known LOFAR and
DEMON techniques).

δCCFmaxmn

TCCF

Tdet
-----------wmnkm1

2 ,=

Ami
2 f( )

Asi
f( )

----------------

δCCFmaxmn

TCCF

Tdet
-----------.=

TCCFmax

∆τ
τ̇max

---------,=

τ̇max

TCCFmax
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It should be noted that, as the input SNR (21) in
Eq. (19) increases, the output SNR for extracting the
CCF maximums does not grow without limit (in con-
trast to the output SNR for the detection procedure), but
rather tends to the limit

(31)

the frequency response of the optimum frequency filter
having the form

(32)

As follows from Eq. (31), the noise immunity of the
CCF maximum extraction increases with increasing the
portion of the power contributed to the total signal
power at the output of each spatial channel by the sig-
nals that form the CCF maximum under consideration.
If we assume that the spectra of the signals that travel
different paths (and, hence, the total signals) have the
same form, Eq. (31) yields the approximate formula for
estimating the noise immunity of extracting the CCF
maximums at high input SNRs:

(33)

Formula (33) explains, in particular, that the local
CCF maximums are difficult to extract when the hydro-
logical conditions are such that the signal arrives at the
receiving array through a large number of paths (e.g., in
a totally illuminated shallow sea), because, in this case,
all quantities kmi can take very small values.

Let us consider the ACF. From the viewpoint of cal-
culations, the ACF is a particular case of the CCF.
Therefore, we can use the results obtained for the CCF.
To this end, we drop indices associated with the spatial
channel numbers in Eqs. (16), (19), and (20) and take
into account that both the signal and the noise at the
output of the same spatial channel are completely cor-
related. As a result, we obtain:
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When the SNRs are small, the term Ss(f ) in the
denominators of expressions (34)–(36) can be omitted.

When the SNRs are large, Eq. (35) can be reduced to

(37)

Under the assumptions used to derive Eq. (33),
Eq. (37) can be reduced to

(38)

As applied to the ACF, Eq. (29) takes the form

(39)

As follows from Eq. (39), the most favorable situa-
tion for extracting the maximums in the ACF of the sig-
nal is when the total signal in the respective spatial
channel is formed by two equal-power signals traveling
along different paths (which can be observed when the
source is in the far-field region of the array, as in the
case of the CCF). Then, Eq. (39) takes the same form as
for the cross-correlated reception (29) in the situation
most favorable for extracting the maximums in the CCF
of the signal:

Thus, the main factor that limits the noise immunity
of extracting the multipath maximums of the CF is the
signal-to-noise ratio in the frequency band within
which the CF is calculated and the number of paths that
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Tdet
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form the signal field. To bring the distance, at which the
maximums of the CF of the signal can be extracted,
closer to the distance at which the signal can be
detected, one should increase the CF accumulation time
taking into account limitation (30) on the coherent
accumulation time due to the relative motion of the
source and the receiver.
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Abstract—The results of experimental investigation and analytical description of the self-action of acoustic
waves in a glass tube filled with dry and water saturated river sand are presented. On the basis of the analysis
of experimental results, phenomenological equations of state that describe such systems are derived and the val-
ues of their parameters are determined. © 2001 MAIK “Nauka/Interperiodica”.
Experimental investigations of nonlinear acoustic
effects provide the basis for revealing the mechanisms
of acoustic nonlinearity of various media and for devel-
oping nonlinear methods of diagnostics of their struc-
ture and state. A promising line of investigation for
solving such problems is connected with the search for
media and materials, as well as with the design of sys-
tems (e.g., resonators or sound ducts), in which nonlin-
ear effects are most conspicuous, all other factors being
the same. These properties are characteristic of micro-
inhomogeneous media (in particular, some rocks [1, 2]
and metals [3]) and also of systems designed on the
basis of these media. Their acoustic nonlinearity often
contains both elastic (reactive) and inelastic (dissipa-
tive) components, and the inelastic nonlinearity in a
number of cases significantly exceeds the elastic com-
ponent. For instance, in papers [4, 5] it was found that
the propagation of acoustic waves in a glass tube filled
with river sand is accompanied by the effect of self-
clarification, which appears as a decrease in the attenu-
ation constant of the wave with increasing wave ampli-
tude. The experiments described in the cited papers
were carried out with dry and fully water saturated
sand. For an analytical description of the self-clarifica-
tion at small and large amplitudes of acoustic waves,
the equation of state involving dissipative nonlinearity
in the form of a power function of the strain rate was
used.

This paper presents the results of an extensive
experimental investigation and analytical description of
the effect of self-clarification in a similar system for
various degrees of water saturation of sand. On the
basis of the analysis of experimentally measured ampli-
tude dependences, the equations of state describing
such systems are proposed and the values of their
parameters are determined.

The schematic diagram of the experimental setup is
shown in Fig. 1. In the experiment, a glass tube 1 with
1063-7710/01/4706- $21.00 © 20733
an inner diameter of 9 mm, an outer diameter of 11 mm,
and a length of 37 cm was used. At the beginning, the
tube was filled with compressed dry sand, and the upper
and lower ends of the tube were closed tightly with
metal plugs 2 and sealed. The mean size of sand grains
was about 2 × 10–2 cm. At the top and at the bottom of
the tube, two openings about 2.5 mm in diameter were
made in the tube wall, and flexible tubes 5 were pasted
in each of these openings. A syringe connected with
one of the flexible tubes was used to control the content
of water in the sand. The degree of water saturation of
sand ξ was determined as the ratio of the volume of
water in the tube to its maximal possible value and was
varied in the range from 100 to 44%. For fully water
saturated sand, the volume content of water in the tube
was 5.9 cm3, while the calculated porosity of sand was
about 31%. The lower plug was glued to an acoustic

1

2

3

4

5

2

5

Fig. 1. Schematic diagram of the experimental setup.
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radiator 3 producing longitudinal waves. The radiator was
fed from a power amplifier with high-frequency pulses
characterized by the carrier frequency f = 100 kHz, the
duration τ = 300 µs, and the repetition frequency F =
30 Hz. The acoustic pulses transmitted through the tube
were received by a piezoelectric accelerometer 4 glued
to the upper plug. The amplitudes A1 and A2 of the radi-
ated and received signals were measured by a two-
channel oscilloscope. In our experiments, these ampli-
tudes were proportional to the amplitudes of the dis-
placements U0 and U(L) in the radiated and received
acoustic pulses. A preliminary checking of the radia-
tor–receiver system showed its linearity, i.e., A2 ~ A1. In
the reference experiments with a glass rod and a tube
without sand, no departure from this dependence was
observed. The propagation velocity of an acoustic wave
in such a system, when measured by the time delay of
the received signal relative to the radiated one, was
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Fig. 2. Amplitude dependences for dry (ξ = 0), fully (ξ = 1),
and partially (ξ = 0.59) water saturated sand.

Fig. 3. Coefficient G and the ratio γ/β as functions of the rel-
ative water saturation of sand.
approximately 3.7 × 105 cm/s and depended only
weakly on the water content in sand and on the pulse
amplitude.

Figure 2 shows the dependence of the amplitude A2
of the received signal on the amplitude A1 of the radi-
ated signal for a tube filled with dry (ξ = 0) and water
saturated river sand. One can see that, with an increase
in the amplitude of the radiated pulse, the amplitude of
the received pulse increases as follows: for small and
large amplitudes, a linear dependence of A2 on A1 is
observed, and for medium amplitudes, A2 grows faster
than A1. In a system with dry sand, the amplitude of the
received pulse increases by a factor of 1.4 × 103 with the
increase in amplitude of the radiated pulse by a factor
of 3 × 102, i.e., the coefficient G characterizing the
increase in the received signal relative to the radiated
signal is about 4.5. This effect is called self-clarifica-
tion. It results from the dissipative nonlinearity of the
medium and appears in the fact that the attenuation con-
stant of an acoustic wave decreases with an increase in
its amplitude. Figure 2 also displays the experimental
dependences of the amplitude A2 of the received signal
on the amplitude A1 of the radiated signal for partially
(ξ = 0.59) and fully (ξ = 1) water saturated sand. It is
seen from this figure that, in the tube containing water
saturated river sand, the self-clarification effect also
exists, and the coefficient G changes (depending on the
degree of water saturation of sand) in the range from
4.5 for the tube with dry sand to 7 × 103 for the tube
with partially water saturated sand (ξ = 0.49). The
dependence of the coefficient G on the degree of water
saturation of sand ξ is shown in Fig. 3.

For the analytical description of the effect of self-
clarification, we use the equation of state for a medium
equivalent to the glass tube–river sand system [4, 5]:

(1)

where σ is the longitudinal stress; σ1(ε) and σ2( ) are
the elastic and inelastic parts of the equation of state,
respectively; ε = Ux is the longitudinal strain;  is the
strain rate; and U is the longitudinal displacement.

We neglect the elastic nonlinearity of the system and
assume that σ1(ε) = Eε, where E is the elastic modulus.
For describing the dissipative properties of the system,
we take into account not only the usual linear viscous
stress, but also the nonlinear stress. In hydrodynamics,
the media exhibiting such properties are called non-
Newtonian (or Bingham) ones [6, 7]. At first, we will
use an exponential approximation of the nonlinear
dependence σ2 = σ2( ), which is rather general and
adequately describes the initial and terminal (i.e., cor-
responding to low and high strain rates) parts of the
self-clarification process [4, 5]:

(2)

where ρ is the density and α, g, and m are the constant
coefficients determining the linear and nonlinear vis-

σ ε ε̇,( ) σ1 ε( ) σ2 ε̇( ),+=

ε̇

ε̇

ε̇

σ2 ε̇( ) ρ α g ε̇ m+( )ε̇,=
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001



EXPERIMENTAL INVESTIGATION OF THE SELF-ACTION OF ACOUSTIC WAVES 735
cous stresses in the system. Depending on the coeffi-
cient g and the exponent m, the dissipative function
behaves in essentially different ways: for g > 0, the
effective viscosity of the medium increases with an
increase in the deformation velocity for m > 0 and
decreases for m < 0; for g < 0, the effective viscosity of
the medium decreases for m > 0 and grows for m < 0.
Note that, for m < 0, Eq. (2) is, generally speaking,
inappropriate for describing the nonlinear viscous
stress near the point  ≈ 0, because σ2(  = 0)  ∞.
Consequently, for m < 0 and  < d [d is a certain criti-
cal strain rate, beginning from which the viscous stress
can be described by Eq. (2)], the nonlinear dissipative
stress should be finite. As it will be seen from the fol-
lowing, when m > –3, Eq. (2) can be used for any ,
because no singularities occur in the final expressions.

In the one-dimensional case, the equation of state
(2), together with the equation of motion [11]

(3)

and the boundary condition at the radiator

(4)

describes the nonlinear propagation of longitudinal
acoustic waves and, in particular, the self-clarification
of the medium. Substituting Eqs. (1) and (2) into Eq. (3),
we obtain the nonlinear wave equation for the displace-
ments U:

(5)

where  = E/ρ.

We assume that the nonlinearity of Eq. (5) is small
and the equation can be solved by perturbation method.
For this purpose, the condition

(6)

should be satisfied. In this case, the solution to Eq. (5)
can be found in the form of a harmonic wave at the fun-
damental frequency with slowly varying amplitude U(x)
and phase Φ(x):

(7)

Substituting Eq. (7) into Eq. (5), expanding the nonlin-
ear term on the right-hand side of Eq. (5) into Fourier
series, and retaining the terms corresponding to the fun-
damental frequency, we obtain

(8)

where δ = αω2/2 , µ = , ϑ =

ωt – kx + Φ(x), and m > –3.

ε̇ ε̇
ε̇

ε̇

ρUtt σx ε ε̇,( ),=

U x 0 t,=( ) U0 ωt,sin=

Utt C0
2Uxx– αUtxx g Uxt

mUxt[ ] x,+=

C0
2

gU0
mω2m 1– /C0

m 2+
 ! 1

U x t,( ) U x( ) ωt kx– Φ x( )+[ ] ,sin=

ω C0k.=

Ux ϑcos UΦx ϑsin– –δU ϑcos µUm 1+ ϑ ,cos–=

C0
3 gΓ m/2 3/2+( )ω2 m 1+( )

π1/2Γ m/2 2+( )C0
m 3+

-------------------------------------------------------
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The solution to this equation with the boundary con-
dition (4) has the form [12]

(9)

where a = µ/δ.

By comparing Eq. (9) with the results of measure-
ments (Fig. 2), it is possible, in principle, to determine
the parameters of the system, namely, the coefficient g
and the index m of dissipative nonlinearity. However,
since the measurements were relative, it is possible to
determine only the index m [4, 5]. Nevertheless, from
the general form of the dependences A2 = A2(A1), it fol-
lows that, for low strain rates, we have g < 0 and m > 0,
and for high strain rates, we have g > 0 and m < 0; i.e.,
at small wave amplitudes, the investigated system
has the properties of a pseudoplastic medium, and at
large amplitudes, it has the properties of a dilatant
medium [6, 7].

For a small amplitude  of the wave produced by
radiator, when the influence of nonlinearity is negligi-
ble, Eq. (9) can be reduced to

(10)

Dividing Eq. (9) by Eq. (10) and introducing the
designations M = U(x)/U*(x), N = U0/ , and b =

a [1 – exp(–mδx)] < 0, we obtain

(11)

Taking the logarithm of this equation for |bNm| ! 1 two
times, we derive the expression for determining the
index m of dissipative nonlinearity in Eq. (2) at low
strain rates:

(12)

By using the results of measurements (Fig. 2), the
dependences of ln(ln(M/N)) on lnN were constructed
for the system with various degrees of water saturation
of sand (Fig. 4). From this figure, by the slope of the
dependence of ln(ln(M/N)) on lnN, the index of dissipa-
tive nonlinearity m was determined as a function of the
percentage of water in the sand ξ. The dependence of m
on ξ is given in Fig. 5. From this figure, it follows that,
for a tube with dry sand, m = 1, and, with the change of
the water content in sand from 44 to 100% (fully water
saturated sand), the index of dissipative nonlinearity
changes from m = 1 to 2.

At large amplitudes  of the wave produced by
the radiator, the influence of nonlinearity is also small,
and from Eq. (9) we have

(13)

U x( ) = U0 δx–( ) 1 aU0
m 1 δxm–( )exp–[ ]+{ } 1/m–

,exp

Φx 0,=

U0*

U* x( ) U0* δx–( ).exp=

U0*

U0*
m

M/N 1 bNm+[ ] 1/m–
.=

M/N( )ln( )ln b/m–( )ln m N .ln+=

U0*

U* x( ) U0* δx–( ).exp=
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Fig. 4. Amplitude dependences for dry, partially, and fully
water saturated sand for small amplitudes.
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Fig. 5. Index of dissipative nonlinearity m as a function of
the relative water saturation of sand.

Fig. 6. Amplitude dependences for dry, partially, and fully
water saturated sand for large amplitudes.
As before, we divide Eq. (13) by Eq. (9), introduce the
designations P = U*(x)/U(x), R = /U0, and b =

a [1 – exp(–mδx)] < 0, and derive (for |bR–m| ! 1)

(14)

For this case, using the results of measurements (Fig. 2),
we also constructed the dependences of ln(ln(P/R)) on
lnR for a tube with sand with various degrees of water
saturation (Fig. 6). From this figure, it follows that, for
high strain rates, m ≅ –2 and does not depend on the
water content in sand.

Thus, in choosing the dissipative component in the
equation of the state of a system with dry and water sat-
urated sand to describe the process of self-clarification
in the whole range of amplitudes of acoustic waves, it
is necessary to take into consideration the following
requirements:

(i) at low and high strain rates, the system is linear
and characterized by two different attenuation con-
stants, the ratio of which determines the coefficient G of
relative growth of amplitudes at the output and input of
the system;

(ii) at low strain rates, the parameter of dissipative
nonlinearity is g < 0 and the index m changes (depend-
ing on the water content) from m = 1 to m = 2; and

(iii) at high strain rates, the parameter of dissipative
nonlinearity is g > 0 and the index m is m = –2 (regard-
less of the water content).

We now consider the equations of state describing
the system under study. The most simple expression for
the dissipative component complying with the afore-
mentioned requirements corresponds to the system
with fully water saturated sand. It can be written as

(15)

where β and γ are positive coefficients. Substituting
Eq. (15) into Eq. (3), we obtain, similarly to Eq. (8), the
following equation for the wave amplitude U(x):

(16)

Due to the complex nonlinearity of this equation, it is
impossible to obtain its analytical solution. Therefore,
we will consider the limiting cases of small and large
amplitudes. For small amplitudes (βω2k2U2 ! 1), from
Eq. (16) we derive the equation

U0*

U0*

P/R( )ln( )ln b/m( )ln m R.ln–=

σ2 ε̇( ) αρε̇ γ ε̇ 2

1 β ε̇ 2+
--------------------ρε̇,–=

xd
dU αω2

2C0
3

----------U–=

× 1
γ

αβ
------- 1

2

β ωkU( )2
---------------------- 1 1

1 β ωkU( )2+
------------------------------------– 

 – 
 – .

xd
dU αω2

2C0
3

----------U 1 a1 kU( )2–[ ] ,–=
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which has the solution

or

(17)

where a1 = 3γω2/4α.
It is readily seen that, for a = –a1 and m = 2, Eqs. (9)

and (17) coincide.
For large amplitudes (βω2k2U2 @ 1), from Eq. (17)

we obtain

and this equation has the solution

or

(18)

where a2 = 2γ/αβ2ω2 and ν = 1 – γ/αβ. From the com-
parison of Eqs. (9) and (18), it follows that, when δ =

ναω2/2 , a = a2/ν, and m = –2, they coincide and, con-
sequently, the equation of state (15) satisfies the above
requirements and can be used for describing the process
of self-clarification in a tube with fully water saturated
sand.

Now it is possible to determine the coefficient G
equal to the ratio U2/U1, where U2 and U1 are the ampli-
tudes of the displacements at the receiver, which are
chosen on the linear portions of the curves given by
Eqs. (18) and (17), respectively, for the same value of
the amplitude U0 at the radiator:

(19)

From Eq. (19), it follows that the coefficient G is deter-
mined by the ratio of the parameters γ and β.

U2 1 a1k2U0
2–( )

U0
2 1 a1k2U2–( )

--------------------------------------
αω2

C0
2

----------x–
 
 
 

exp=

U x( ) U0
αω2

2C0
3

----------x–
 
 
 

exp=

× 1 a1k2U0
2 1

αω2

C0
3

----------x–
 
 
 

exp–
 
 
 

–
1/2–

,

xd
dU αω2k

2C0
3

------------- 1 γ
αβ
-------– 2γ

α βωkU( )2
--------------------------+ ,–=

U2 γ/ν+

U0
2 γ/ν+

---------------------
ναω2

C0
3

-------------x–
 
 
 

exp=

U x( ) U0
ναω2

2C0
3
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× 1
a2

νε0
2
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ναω2

C0
3
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C0
3

G
γω2

2βC0
3
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For the system with dry and partially water saturated
sand, the dissipative component of the equation of state
has a more complex form, as compared to Eq. (15). It
can be represented by the expression

(20)

where H( ) is the Heaviside function,  is a certain

threshold value of  at which a continuous transition
from one nonlinearity [the second term in Eq. (20)] to
the other (the third term) occurs. It can be easily
shown that, for low and high strain rates, Eqs. (2) and
(20) coincide qualitatively. Consequently, the solu-
tion to the equation of motion with this kind of non-
linearity in the limiting cases of small and large
amplitudes will coincide with solution (9). In this
case, in Eq. (9) it is necessary to assume that, at low

strain rates, a = , and at high strain

rates, a = , where δ = .

Then, the coefficient G will be determined by Eq. (19)
from which it is possible to extract the ratio of the
parameters γ and β. Figure 3 shows the ratio γ/β as a
function of water saturation of sand ξ. From this figure,
it follows that the ratio γ/β varies most rapidly in the
range 0 ≤ ξ ≤ 0.44, and in the range 0.44 ≤ ξ ≤ 1, the
ratio γ/β ≈ const and the index m grows steadily from
m = 1 to 2.

Thus, in this paper, we presented the results of the
experimental study of the self-action of acoustic waves
in a glass tube filled with dry and water saturated river
sand: with increasing wave amplitude, the effect of self-
clarification was observed in this system. On the basis
of the amplitude relations obtained in the experiment,
the phenomenological equations of state were proposed
for these systems and the values of their parameters
were determined. It was found that the parameters of
dissipative nonlinearity of the system depend on the
degree of water saturation of sand. This suggests that
the effect of self-clarification can be used for the diag-
nostics of the state of porous gas and water saturated
media.

In conclusion, we note that the choice of the dissipa-
tive nonlinearity in equations of state (2), (15), and (20)
is not unambiguous in the sense that the coefficient
determining the nonlinear viscosity of the system may
depend not only on the strain rate but also on the strain.
However, this will not affect the results of the analytical
calculations of the index m of dissipative nonlinearity
(because the amplitude dependences do not change in

σ2 ε̇( ) αρε̇ γ ε̇ m

1 β ε̇ m+
---------------------ρε̇ H ε̇ ε̇th+( ) H ε̇ ε̇th–( )–{ }–=

–
γ
β
--- 1

ε̇th
2

ε̇ 2 1 βε̇th
m+( )

------------------------------–
 
 
 

ρε̇ 1 H ε̇ ε̇th+( )– H ε̇ ε̇th+( )+{ } ,

ε̇ ε̇th

ε̇

γωm

απ1/2
-------------Γ m/2 3/2+( )

Γ m/2 2+( )
---------------------------------

3γ
4βδ
---------

ε̇th
2

1 βε̇th
m+( )

-----------------------– α γ
β
---– 

  ω2

2C0
3
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this case) and will only lead to a renormalization of the
constant coefficients g, γ, and β. To determine on which
parameters (ε or ) the nonlinear viscosity of the sys-
tem depends, it is necessary to carry out an experiment
that will reveal the frequency dependence of the dissi-
pative nonlinearity [3]. The results of this experiment
will be presented in the following paper.
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Abstract—Transverse acoustic waves that occur at the boundary of two piezoelectric halfspaces separated by
a viscoelastic liquid layer are studied theoretically. Three variants of layered structures with different numbers
of metallized interfaces are considered. It is demonstrated that two types of waves exist in each of these struc-
tures. The waves are localized near the boundaries and differ in both their structure and the dependences of the
complex wave numbers on the frequency or the gap width. The properties of this family of shear horizontal
waves are described. © 2001 MAIK “Nauka/Interperiodica”.
The so-called shear horizontal waves can exist at the
boundaries of two piezoelectric halfspaces divided by a
gap [1–3]. They are transverse acoustic waves with dis-
placements in the plane of the boundary. The waves are
piezoactive. Their energy is localized at the boundaries
of the halfspaces and decreases exponentially with dis-
tance away from the gap on both sides of the latter
towards the medium depth. Shear mechanical strains in
the medium on both sides of the gap are related through
only the electrostatic piezoelectric field accompanying
the waves.

If the gap is filled with a liquid, the properties of the
waves and their phase velocity, attenuation, and local-
ization depth change depending on the properties of the
liquid, its permittivity, viscosity, and elasticity. The
variety of wave types increases. In this case, shear hor-
izontal waves also exist when one or both surfaces are
metallized. Metallization leads to the separation of the
piezoelectric fields in the two halfspaces, but it does not
destroy the mechanical coupling of oscillations in these
halfspaces.

The waves of this type can be practically useful for
the development of sensors for mechanical and electric
properties of liquids [4]. Prototypes of such sensors are
described in [5–8].

This paper presents a theoretical analysis of shear
horizontal waves at the boundary of two piezoelectric
halfspaces separated by a viscoelastic liquid layer.

We consider a layered structure consisting of two
halfspaces filled with a medium with the same piezo-
electric properties as class 6 crystals (Fig. 1). The crys-
tallographic Z axis coincident with the hexagonal axis
is directed perpendicularly to the figure plane and to the
direction of wave propagation. At these conditions, the
mechanical displacements U along the Z axis and the
1063-7710/01/4706- $21.00 © 20739
electrostatic field potential ϕ in the two media satisfy
the wave equation and the Laplace equation, respec-
tively. These equations are a consequence of the general
equations of the theory of elasticity and electrostatics
for media 1 and 2:

(1)

where ∆ =  +  is the operator, K2 = e15 is

the piezoelectric constant, ε11 is the permittivity, and c44

is the elastic constant. Below, we will mark all quanti-
ties relating to media 1 and 2 with the corresponding
indices 1 and 2 and omit the tensor indices for the mate-
rial parameters (see Fig. 1). The mechanical displace-
ments U0 and the electric field potential ϕ0 satisfy the
wave equation and the Laplace equation, respectively,

(2)

where ρ0 is the liquid density, ε0 is the permittivity of
the liquid, and c0 =  + i  is the elastic constant of
the viscoelastic liquid. In the particular case of a vis-
cous liquid, we have c0 = iωη, where ω is the cyclic fre-
quency and η is the viscosity of the liquid. The condi-
tions of continuity of mechanical displacement and

ρ∂2U

∂t2
--------- c44 1 K2+( )∆U ,=

∆ ε11ϕ e15U–( ) 0,=

∂2

∂x2
-------- ∂2

∂y2
--------

e15
2

ε11c44
-------------

ρ0

∂2U0

∂t2
------------ c0∆U0,=

∆ϕ0 0,=

c0' c0''
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shear stress are satisfied at the boundaries of the half-
spaces 1 and 2 and the liquid (y = 0, h):

(3)

A metallized surface is characterized by a zero value of
the electric potential:

(4)

The conditions for continuity of the potential and the
normal component of the electric induction vector must
be satisfied at an boundary without metallization:

(5)

We first consider a nonmetallized surface. The
determination of the solutions satisfying Eqs. (1) and
(2) with the boundary conditions given by Eqs. (3) and
(5), which correspond to nonmetallized surfaces, is per-
formed in a standard way (see [3] for example). Solu-
tions to Eqs. (1) and (2) in the form

(6)

and

(7)

are substituted into the boundary conditions given by
Eqs. (3) and (5). The following notations are introduced
in Eqs. (6) and (7):

Thus, we have a set of eight linear equations with eight
unknowns. The conditions for the existence of a non-
trivial solution to this set of equations, i.e., the zero
value of the determinant of this set, yields a dispersion
equation in the unknown wave number k:

(8)
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κ i k2 ki
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d1d2 d12d21– 0,=
where

(9)

(10)

(11)

The coefficients in Eqs. (6) and (7) are as follows:

(12)

(13)

where A is an arbitrary constant.
Two cases of mutual orientation of the crystallo-

graphic Z axes of the crystals are possible: (1) the axes
have the same direction and (2) the directions of the
axes are opposite. To change from the first case to the
second, we have to change the sign of the piezoelectric
constant in Eqs. (8)–(13): e2 ⇒  –e2.

When media 1 and 2 are identical, from Eqs. (9)–(13),
we obtain α = 1, A1 = ±A2, and a1 = ±a2. The distribu-
tions of mechanical and electric fields in halfspaces 1
and 2 are identical and can differ only in their sign. The
plus sign corresponds to a symmetric wave (an s-wave),
and the minus sign, to an antisymmetric wave (an
a-wave). The distribution of mechanical displacements
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Table

Parameter Bi12GeO20 Water 90% solution Glycerol

C [kg/(ms2)] 2.7 × 1010 1.97 × 105 i 4.5 × 107 i 2.6 × 108 i

ε 44 80 58 56

ρ, 103 [kg/m3] 9.23 1 1.23 1.26
is shown schematically in Fig. 1. The dispersion equa-
tion (8) is reduced and takes on the form

(14)

The constant is δ = 1 when the Z axes of the crystals
have the same direction and δ = –1 when their direc-
tions are opposite. The first term on the right-hand side
of the equation represents the piezoelectric effect and
the second term corresponds to the contribution of the
mechanical load caused by the liquid in the gap
between the halfspaces.

Let us denote the right-hand side of Eq. (14) as
k1 f (h, k). If the solution to Eq. (14) differs little from
k1, then, as one can see from Eq. (14), its is approxi-
mately equal to

This expression gives good agreement with the
exact values for the real part of the wave number, but it
can give a rather large deviation for the imaginary part.
The expression is inapplicable in the case of a small gap
width, when the wave number is split in two values and
can differ widely from k1.

There are no exact analytical solutions to the tran-
scendental equation (8). The results of computation for
the frequency 30 MHz are given in Figs. 2 and 3. It was
assumed during the computation that media 1 and 2 are
bismuth germanate (Bi12GeO20) crystals characterized
by the symmetry class 23, the cut (110), and the propa-

gation direction [ ]. The liquid layer is glycerol,
water, and a 90% solution of glycerol in water. The
parameters of solids and liquids used for computation
are given in the table.

As the plots show, the wave numbers of all shear
horizontal waves are complex quantities, i.e., the waves
are damped. As a rule, the real parts of the wave num-
bers are greater than the wave number of a bulk trans-
verse wave k1 = 1.1088 × 105 m–1. Therefore, the waves
are of the surface type, and their mechanical displace-
ments and electric fields are localized near the bound-
aries. In the case of a rather large thickness of the layer,
the symmetric (s-waves) and antisymmetric (a-waves)
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waves are indistinguishable and their wave numbers
almost coincide and correspond to transverse surface
waves at the interface between a piezoelectric and a liq-
uid. The behavior of the wave numbers as functions of
the thickness of the liquid layer depends on both the
wave type (s- or a-wave) and the mutual orientation of
the crystallographic Z axes. Let us treat the cases (1)
and (2) separately.

Case (1). The Z axes are co-directed (Figs. 2a and
2b). As the layer thickness decreases, antisymmetric
waves slow down at first (Rek increases) and, at a very
small thickness (about one micron at a frequency of
30 MHz), their phase velocity increases sharply (Rek
decreases). As h  0, a symmetric wave transforms
to a bulk transverse wave propagating along the sur-
face. It is interesting to note that, at small h, the phase
velocities of s- and a-waves can be equal (Rek are equal
in Fig. 2a). However, in this case, the imaginary parts of
the wave numbers Imk stay unequal, and no complete
degeneration of the waves takes place. Damping of s-
waves at h  0 tends to zero, while damping of a-
waves increases sharply. Damping of shear horizontal
waves is caused only by the viscosity of the liquid when
the phase velocity of the waves is smaller than the
phase velocity of a bulk transverse wave. If the latter
condition is violated, as it is observed in the case of a-
waves, additional damping occurs due to the energy
radiation into a halfspace, and the wave becomes a
leaky one.

Case (2). The Z axes have opposite directions
(Figs. 3a and 3b). In this case, if the thickness of the liq-

1

2

y

s a

hz

ρ1, ε1, c1, e1

ρ0, ε0, c0

ρ2, ε2, c2, e2

Fig. 1. Geometry of the problem.
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uid layer decreases, symmetric waves (s-waves) slow
down and, in the limit h  0, they transform to a sur-
face wave at the interface of two crystals, which is
described in [8]. As h decreases, antisymmetric waves
degenerate into a bulk transverse wave propagating to
the boundary, as in the first case. Damping of s-waves
tends to zero as the layer thickness decreases.

If both surfaces of the solid are metallized, then, evi-
dently, the electric coupling between the halfspaces
vanishes. The dispersion equation becomes simplified
to a certain extent:

(15)

where d1, 2 = (1 + )κ1, 2 – |k| + κ0

and d = .

d1d2 d2– 0,=

K1 2,
2 K1 2,

2 c0
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Fig. 2. Dependences of the (a) real and (b) imaginary parts
of the wave number on the thickness of the liquid layer for
(1–3) symmetric and (4–6) antisymmetric shear horizontal
waves. The liquid is (1, 4) glycerol, (2, 5) a 90% solution of
glycerol in water, and (4, 6) water. Two nonmetallized half-
spaces have identically directed Z axes.
The wave structure is determined by Eqs. (6) and
(7), where

(16)

In the case of identical properties of media 1 and 2,
d1 = d2 and the dispersion equation takes the form

(17)

ϕ0 0,=
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Fig. 3. Dependences of the (a) real and (b) imaginary parts
of the wave number on the thickness of the liquid layer for
(1–3) symmetric and (4–6) antisymmetric shear horizontal
waves. The liquid is (1, 4) glycerol, (2, 5) a 90% solution of
glycerol in water, and (4, 6) water. Two nonmetallized half-
spaces have opposite directions of their Z axes.
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Denoting the right-hand side of Eq. (17) as k1 fm(h, k),
we determine an approximate solution to this equation:

The numerical calculation of the roots of Eq. (17) for
the parameters specified above yields the results pre-
sented in Figs. 4a and 4b.

All differences in the behavior of the wave numbers
of shear horizontal waves in the two analyzed cases are
caused by the different character of coupling. In the
case of free boundaries, the two halfspaces are coupled
both mechanically (possibly, viscoelastically as well)
and electrically, which occurs due to the penetration of
piezoelectric fields from one halfspace into another.
The metallization breaks the electric coupling, and,
when the gap width varies, the parameters of the shear
horizontal waves are affected only by the mechanical
properties of the liquid.

Let us indicate the major differences. A liquid with
small viscosity, e.g., water, does not cause any notice-
able splitting of the dispersion curves into s- and a-
waves in the case of metallized surfaces (Figs. 4a and
4b), whereas in the first case, this splitting clearly man-
ifests itself at the metal-free boundaries. The splitting
into s- and a-waves in the case of free boundaries
occurs for a thicker liquid layer, as compared to the case
of metallized surfaces. This fact indicates “a longer-
range” character of the electric coupling compared to
that of viscous coupling.

Let only the surface of the second halfspace be met-
allized. The dispersion equation has the form of Eq. (15):
d1d2 – d2 = 0, where

(18)

The wave structure is determined by Eqs. (6) and (7)
with the coefficients

(19)
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(20)

In the case of a single metallized surface, as well as in
the case of two ones, there is no direct electric coupling
between the halfspaces. However, in this case, the
dielectric properties of the liquid still affect the wave
numbers of shear horizontal waves. This follows from
the dependence of d1 on ε0.

Shear horizontal waves in a layered structure with a
single metallized surface have their own distinctive fea-
tures. First of all, we should note that the structure itself
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e k h
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-------------------------------------------------------------------A,=
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Fig. 4. Dependences of the (a) real and (b) imaginary parts
of the wave number on the thickness of the liquid layer for
(1–3) symmetric and (4–6) antisymmetric shear horizontal
waves. The liquid is (1, 4) glycerol, (2, 5) a 90% solution of
glycerol in water, and (3, 6) water. Two metallized surfaces.
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is nonsymmetric and the coefficient α ≠ 1 [see Eq. (19)]
even when media 1 and 2 are identical. A consequence
of this is the absence of strictly symmetric and antisym-
metric waves in this structure. Although by analogy
with the preceding cases, we assume that the upper sign
in Eqs. (19) and (20) determines a “symmetric” wave
and the lower sign, the “antisymmetric” one. The anal-
ysis of Eqs. (18) and the results of the numerical solu-
tion indicate the following particular features of the
wave numbers as functions of the liquid layer thickness
(Fig. 5). For large values of h, the wave numbers of
“symmetric” and “antisymmetric” waves do not coin-
cide and become closer in their values as h decreases.
The difference between Re(k) for s- and a-waves
reaches its minimum at the value of the gap width h0,
which is definite for each liquid, and increases sharply
as the width h decreases further. The higher the value of
the liquid viscosity, the greater is the width h0. When
h  0, a “symmetric” shear horizontal wave trans-
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Fig. 5. Dependences of the (a) real and (b) imaginary parts
of the wave number on the thickness of the liquid layer for
(1–3) symmetric and (4–6) antisymmetric shear horizontal
waves. The liquid is (1, 4) glycerol, (2, 5) a 90% solution of
glycerol in water, and (3, 6) water. One metallized surface.
forms to a purely transverse surface wave, as in the case
of two metallized surfaces, the latter wave being local-
ized near the metallized surface.

Now let us consider the properties of shear horizon-
tal waves that are caused by the piezoelectric effect. An
important feature of piezoactive surface waves is the

coefficient of electromechanical coupling  = 2∆v /v f,
where ∆v  = (v f – vm). This coefficient is equal to the
double relative difference of phase velocities for the
waves at the free (v f) and metallized (vm) surfaces. This
parameter determines the efficiency of the wave excita-
tion by the electrode transducers positioned at the sur-
face. In contrast to surface waves, shear horizontal
waves are localized in the region adjacent to the two
surfaces. Hence, it is possible to associate two coeffi-
cients of electromechanical coupling with each shear
horizontal wave: one coefficient corresponds to one

metallized surface  =  and the other corre-

sponds to two surfaces,  = , where vm and

vmm are the wave numbers of shear horizontal waves in
structures with one and two metallized surfaces,
respectively. We also introduce the coefficient of elec-
tromechanical coupling for a shear horizontal wave in a

structure with a single metallized surface,  =

. Each of these parameters depends on the

wave type, the mechanical and dielectric properties of
the liquid, and the thickness of the layer occupied by it.

Figure 6 illustrates the dependences of  on the thick-
ness h of a glycerol layer for certain shear horizontal
waves.

Numerical analysis and Fig. 6 demonstrate that the

maximal coefficient of electromechanical coupling 
corresponds to a symmetric wave in the case of identi-
cally oriented crystallographic axes in two halfspaces
and to an antisymmetric wave in the case of their oppo-
site orientations, the value of this maximal coefficient

weakly depending on h. The coefficient , which
corresponds to one metallized surface, exhibits similar
properties only for a symmetric wave in a structure with
identically directed axes. It is also necessary to note the

dependences (h). In the case of large values of the
thickness h, the coefficient of electromechanical cou-
pling is nonzero only for an “antisymmetric” wave.

Noticeable values of  for a “symmetric” wave are
observed only at a certain value of the liquid layer
thickness.

Thus, we considered shear horizontal waves in a
layered structure consisting of two piezoelectric half-
spaces with a liquid layer between them. Expressions
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completely describing the structure of waves are
derived, and the dependences of the complex wave
numbers on the layer thickness and on the type of liquid
are analyzed. It is demonstrated that these parameters
depend either on the mechanical properties of liquids,
as in the case of two metallized surfaces, or on their
mechanical and dielectric properties. Two coefficients
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Fig. 6. Coefficients of electromechanical coupling:

(1) , an s-wave, and identical directions of the axes;

(2) , an a-wave, and opposite directions of the axes;

(3) , an s-wave, and identical directions of the axes;

(4) , an a-wave, and opposite directions of the axes;

(5) , an s-wave, and opposite directions of the axes; and

(6) , an s-wave, and any mutual orientation of the axes.
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of electromechanical coupling, which correspond to the
relative changes of phase velocities in the cases of met-
allization of one or two surfaces, are introduced and
calculated for shear horizontal waves.

The knowledge of all these particular features of the
propagation of shear horizontal waves can be useful for
the development of a new technique for measuring the
viscoelastic and dielectric properties of liquids.
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Abstract—The effect of errors in the technique implementation on the precision of measurements using the
Acoustic Low-Frequency Pipe system that is based on the principle of unidirectional sound reception is con-
sidered. Errors in determination of the complex reflection and transmission coefficients of sound for samples
tested are calculated theoretically. A numerical analysis of these errors is performed using standard samples as
examples. © 2001 MAIK “Nauka/Interperiodica”.
Development of low-frequency underwater echo-
ranging techniques (see, e.g., [1, 2]) needed the devel-
opment and implementation of adequate methods for
measuring the acoustic parameters of materials and
structures that are made of these materials and used in
underwater acoustics. The structures used for sound-
proofing and sound absorption, reflection, etc., belong
to such objects. Their basic acoustic parameters are the
complex values of impedances, reflection and transmis-
sion coefficients for sound, etc.

The measuring techniques used for this purpose
earlier (e.g., a “pulsed pipe” [3] and some other meth-
ods [4]) provide the measurements starting from the
frequency of several kilohertz. To lower the frequency
range down to 50–100 Hz would require the elongation
of a setup by several tens of times.

The measuring system called the Acoustic Low-Fre-
quency Pipe (ALP) (some of its particular features are
presented here) is described in detail in literature [5–9].
Its major property consists in the fact that, at a relatively
small length of the pipe (it is equal approximately to
0.2λ at the lower frequency of the range), it provides an
opportunity to measure the mentioned acoustic param-
eters in the traveling-wave mode. It should be noted
that its modification intended for analogous measure-
ments in air has been developed recently [10].

For clarity, we give here a brief description of both
the method and the ALP system implementing it (Fig. 1).
The measurements are conducted at different values of
temperature and static pressure within (4) a thick-
walled separable cylindrical pipe with a total length of
3.5 m that is filled with water. A sample under measure-
ment is positioned in the middle of the pipe and fixed
using a pendant at the upper flange plate of the lower
half of the pipe. The sound field incident on the sample
is excited by (6) a radiator fed from (7) a generator at
fixed frequencies in the range 100–5000 Hz (divided in
1063-7710/01/4706- $21.00 © 20746
two sub-ranges, 100–1000 and 1000–5000 Hz) in a
continuous radiation mode.

One of the characteristic features of the ALP is the
utilization of the so-called unidirectional reception
realizing the Huygens reception surface and widely
used in one-dimensional systems of sound suppression.
In the described system, the unidirectional reception of
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Fig. 1. Block diagram of the ALP measuring system.
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the fields incident on and reflected from a sample is per-
formed by a receiving system consisting of two minia-
ture hydrophones [(0) and (1)] and conducting alter-
nately a unidirectional reception. In this case, the data
from each of the hydrophones are subjected to com-
bined processing with the introduction of a correspond-
ing phase shift. This provides an opportunity to sepa-
rately measure the complex amplitudes of an incident
wave  and a wave reflected from the sample .
Their ratio gives the value of the complex reflection

coefficient  = .

The process of measurement is performed using an
analog–digital technique. The radiation and reception
are conducted by analog equipment (a generator, ampli-
fiers, etc.). The signal processing, including the adjust-
ment of a sound absorber, is performed by (9) a com-
puter using specially designed codes. The mutual con-
nection is realized using (10) an analog-to-digital
converter and (11) a digital-to-analog converter.

The value of soundproofing is measured in the trav-
eling wave mode, i.e., the wave transmitted through a
sample is absorbed at the upper end of the pipe. An aux-
iliary radiator (8) exited coherently with the basic radi-
ator is positioned there for this purpose. The parame-
ters of the radiated sound field are selected with the
help of (12) an amplitude-phase control unit in such a
way that the field reflected from the surface of the aux-
iliary radiator is damped completely. Thus, the auxil-
iary radiator plays the role of an active sound absorber.
The adjustment of the radiation and measurement of the
sound field transmitted through a sample is performed
by the second reception system consisting of two
hydrophones [(2) and (3)]. This reception system is
completely analogous to the first system [(0) and (1)]
and separately measures the amplitudes of the transmit-

ted  and reflected  waves. The quantity D = 

gives the value of the soundproofing coefficient. The
adjustment of the active sound absorber consists in the

minimization of the quantity  =  = min. Special

computer codes provide an opportunity to perform the
relative calibration of the hydrophone sensitivity, the
measurements of the velocity and damping of sound in
the pipe, etc.

At present, there is no detailed analysis of the effect
of possible errors of the technique implementation on
the precision of measurements of the complex coeffi-
cients of sound reflection and transmission in literature
despite the fact that publications devoted to the ALP are
fairly numerous and the ALP system is applied widely
in the measurement practice. Such an analysis may help
reveal the most significant errors and maximize the pre-
cision of measurements owing to the elimination or
decrease of errors.
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This paper treats the effect of the possible errors that
are most essential in our point of view, first of all, errors
in the hydrophone calibration. These errors lead to
inconsistency between the sensitivities of the hydro-
phones, which form in pairs of unidirectional combined
receivers.

Let us consider the problem of the effect of errors in
hydrophone calibration on the precision of measure-
ments; i.e., to what extent the measured complex coef-
ficients of sound reflection and transmission differ from
their corresponding “true” values. It will be possible to
determine the value of permissible errors in calibration
on the basis of the obtained results proceeding from the
calculated and measured values for some standard sam-
ples.

Figure 1 demonstrates the block-scheme of the
setup and the coordinate system used for further calcu-
lation. The coordinate origin corresponds to half of the
distance between the hydrophones forming the lower
reception system and positioned at the points with the

coordinates x0 =  and x1 = , where l is the distance

between hydrophones 0 and 1. The lower surface of the
sample has the coordinate x = L = L0 – l0, where L0 is the
distance to the pipe center and l0 is the sample thick-
ness.

The median plane of the upper reception system is
located at x = L1, where L1 = 2L0 is the distance between
the median planes of the upper and lower systems. The
hydrophones of the upper system with the numbers 2

and 3 have the coordinates x2 = L1 –  and x3 = L1 + .

The distance from x = L1 to the water surface is equal
to L0.

The pressure pi in an incident plane wave of unit
amplitude and the pressure pr in a reflected wave can be
written in the form

(1)

Here, k =  is the wave number, ω = 2πf is the circu-

lar frequency, c0 is the sound velocity, and  is the com-
plex coefficient of sound reflection from the sample.
The latter quantity is reduced to the section x = 0 and is
determined by the relation

(2)

where r = r0exp(iϕ) and r0 and ϕ are the modulus and
phase of the reflection coefficient.

The sound pressures pi and pr determined by Eq. (1)
are received by each hydrophone and transformed by

l
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--- l
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l
2
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2
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ω
c0
----

r̂
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them to corresponding voltages that can be calculated
by the formulas

(3‡)

(3b)

It is assumed in these formulas that hydrophone 0 is
the reference one and its sensitivity is equal to unity.
In this case, the sensitivity of hydrophone 1 is equal to

 = uexp(iϕu). Further, according to the algorithm
applied in the measuring technique for the formation of
unidirectional reception, the following operation is
used:

(4‡)

(4b)

Here, U1 is the voltage corresponding to the “incident
wave” channel and U2 is the same for the “reflected
wave” channel. The factor exp(ikl) in Eqs. (4a) and (4b)
describes the delay line introduced into the processing
system.

Substituting Eqs. (3a) and (3b) into Eqs. (4a) and
(4b) and performing the necessary transformations, we
obtain

(5‡)

(5b)

Taking into account the that the quantity i2sinkl deter-
mines the sensitivity of a combined receiver and intro-

ducing the value of the offset ratio ∆  = , we

can write down a formula for the measured value of the
reflection coefficient in the form

(6)

Here,  = Rexp(i2kL), R = R0exp(iϕ0), and R0 and ϕ0
are the modulus and phase of the measured reflection
coefficient.

It follows from Eq. (6) that, at ∆  = 0, i.e., in the

case of identical hydrophones,  = , and, therefore,
the measured reflection coefficient exactly coincides
with the true one. In other cases, the relationship
between these quantities is of a complex functional
character. We can also note that, since we have ∆  ~
(sinkl)–1, we can expect larger discrepancies in the
reflection coefficients at the boundaries of each fre-
quency sub-range, as compared to their central parts.

V0 pi l/2( ) pr l/2( )+=

=  ikl/2( )exp r ikl/2–( ),exp+ )

V1 u pi l/2–( ) pr l/2–( )+[ ]=
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u)

U1 V1 V0 i kl π+( )( ),exp+=
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× 〉 i r 2 klsin u 1–( ) 1 r ikl( )exp+[ ]〈.+ ) ))

û
û 1–
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R
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------------------------------------------------------.= =

)

) ) )

) )

R

)

u)

R

)

r)
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Using Eq. (6), it is possible in principle to correct
the calibration of the hydrophones. For example, if the
theoretical and experimental values of the reflection
coefficient for some standard sample are known, one
can determine the value of the offset ∆  from this for-
mula:

(7)

Then, on this basis, we can determine the true value of
 and enter it into the program window of the calibra-

tion coefficients.

The formulas for the complex transmission coeffi-
cient are derived in the same way as for the complex
reflection coefficient. The wave incident on the sample
pi is determined by Eq. (1). A transmitted wave can be
represented in the form

(8)

where  is the true transmission coefficient. In the case
of the reflection coefficient of an electroacoustic
absorber  = βexp(i2kL), the wave reflected from it
has the form

(9)

The sound pressures pi and pd determined by Eqs. (1)
and (8) are received by hydrophones 2 and 3 and trans-
formed by them to the corresponding voltages that can
be calculated by the formulas

(10‡)

(10b)

Here, the quantities  and  are the sensitivities of
hydrophones 2 and 3 relative to hydrophone 0. The
voltage in the transmitted wave channel is calculated
according to the formula analogous to Eq. (4a) and
determined by the formula analogous to Eq. (5a):

(11)

where  = . The factor exp(ikL1) is absent in Eq. (11),

because it is involved on both sides of the formula. We
obtain the measured value of the complex transmission
coefficient from Eqs. (5a) and (11):

. (12)
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--------------------------------------------------------------------------------.=)

) )

) ) ))

u)

pd d ikx( ),exp=

)

d

)
β

)

pβ βd ikx–( ).exp=

))

V2 u2 pd L1 l/2–( ) pβ L1 l/2–( )+[ ]=

=  u2d ikL1( ) ikl/2–( )exp β ikl/2( )exp+[ ] ,exp

)

) ) )

V3 u3 pd L1 l/2+( ) pβ L1 l/2+( )+[ ]=

=  u3d ikL1( ) ikl/2( )exp β i– kl/2( )exp+[ ] .exp

)

) ) )

u2

) u3

)

U3 u3d ikl/2( )exp–=

× 〉 i2 klsin ud 1–( ) i– kl( )exp β+[ ]〈– ,) )

) )

ud

) u2

u3
-----

)
)

D
U3

U1
------ du3

1 ∆ud ikl–( )exp β+[ ]–
1 ∆u ikl–( )exp r+[ ]–

---------------------------------------------------------= =

)

) )

) )

) )
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001



ACOU

PRECISION OF THE MATERIAL PARAMETER MEASUREMENTS 749
R
1.2

1.0

0.8

0.6

0.4

0.2

0 1000 2000 3000 4000 5000

ϕu > 0

ϕu < 0

f, Hz

Fig. 2. Effect of the phase offset ϕu = ±0.015 on the modulus of the reflection coefficient for a standard sample.
Here, ∆  =  is the offset ratio of the upper

combined receiver. One can see from Eq. (12) that the
condition  =  is valid at ∆  = ∆  = 0 and  = 1.

Since Eq. (6) holds also for the upper receiving sys-
tem (with the substitution of the quantity  for ), it
is possible to obtain the true coefficient of reflection
from the electroacoustic absorber . Since the latter is
adjusted according to the preset value of the modulus of
β0 measured in the process of adjustment, the quantity

of interest  is determined by the formula

(13)

It is possible to calculate the measurement error for
any case only using the examples of specific measured
samples with acoustic characteristics that can be deter-
mined theoretically. Metal (more often, steel) disks of
different thickness, small compared to the wavelength,
are used as such standard samples. The impedances of
such disks can be assumed to be purely inertial. Below,
we present the calculation of the complex reflection and
transmission coefficients for such samples loaded on a
water column (which imitates the upper half of the pipe)
with an ideal sound absorber at the end [Eqs. (18)].
A standard steel sample with a thickness of 7 cm is
selected for the calculation.

The results of calculations by Eqs. (6) and (18b),
which are of illustrative character, are given in Figs. 2

ud

) ud 1–
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-----------------------------------------------------------------.=

)

)
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and 3 for the modulus and phase of the reflection coef-
ficient, respectively. The offset from a purely unidirec-
tional case is given by the values u = 1 ± 0.05 and ϕu =
±0.015 (≈±1°). The dashed lines represent the case u =
0 and ϕu = 0. Here, the values of R in the first case and
ϕR in the second are not given, since the effect of the
corresponding offsets on these values is very small.
One can see from the figures that the offsets transform
smooth (theoretical) curves into oscillating ones. It is
essential to note that all observed frequency oscillations
are almost periodic with the period ∆f ≈ 1000 Hz corre-
sponding to the expression ∆(kL) = π, where L is the dis-
tance from the center of the lower receiving system to the
lower surface of the sample. We also note that the offset
u mainly affects the value of the phase and the offset ϕu,
the value of the modulus.

Similar results are obtained for the transmission
coefficient.

Now, let us consider the effect of the efficiency of an
active sound absorber. Another reason for possible
errors in the measurement of the complex values of the
reflection and transmission coefficients can be the
insufficient efficiency of the active sound absorber
ensuring the traveling wave mode in the ALP. With the
usually set threshold value of the reflection coefficient
β0 = 0.05, the true efficiency of the absorber can be
lower because of the departure of the upper receiving
system from unidirectional reception. The true coef-
ficient of reflection from the absorber  is given by
Eq. (13).

β

)
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Fig. 3. Effect of the amplitude offset u = 1 ± 0.05 on the phase of the reflection coefficient.
Let us use the standard samples described above to
evaluate the effect of this factor and calculate the com-
plex reflection and transmission coefficients of such
samples loaded on a water column with a sound
absorber characterized by the reflection coefficient  at
the end. (At β = 0, the traveling wave mode is realized.)

The parameters of a standard sample are its density
ρ and thickness l. We assume that the conditions of an
ideal “lubrication” (see below) are satisfied at its cylin-
drical lateral surface.

The sound field in the region before the sample can
be represented as follows:
the sound pressure

(14‡)

the particle velocity

(14b)

where  is the complex reflection coefficient of the
sample.

For the sound field in the region behind the sample,
we have, respectively,

(15‡)

(15b)

β

)

P1 ikx( )exp R ikx–( );exp+= )

V1
1
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---------- ikx( ) R ikx–( )exp–exp( ),= )

R

)

P2 D ikx( )exp β ikx–( )exp+( ),=

) )

V2
D

ρ0c0
---------- ikx( )exp β ikx–( )exp–( ),=

)

)

where  is the complex transmission coefficient of the

sample and  = β0exp(i2kL) is the reflection coeffi-
cient of the absorber, its value being reduced to the sec-
tion x = 0.

To determine the unknown quantities  and , we
jointly write the boundary conditions at the boundaries
x = 0 and x = l:

P2(l) – P1(0) = –iωρlV1(0) is the condition at the
boundaries of the mass load and V1(0) = V2(l) is the con-
dition of equality of particle velocities.

Substituting Eqs. (14) and (15) into these equalities,
we obtain the following set of equations:

(16‡)

(16b)

where  = exp(ikl), α± = 1 ± β0exp(i2k(L – l)), and

X =  is the dimensionless inertial impedance of the

sample.

We obtain from Eqs. (16):

(17‡)

(17b)
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Fig. 4. Effect of the imperfection of the active absorber on the values of R and D; β = ±0.1.
For an ideal absorber β0 = 0, we have α− = 1, and,
therefore, we can write

(18‡)

(18b)

The influence of the quantity β0 on the characteristics of
standard samples under measurement is illustrated in
the figures described below. Figures 4 and 5 present the
plots of the frequency dependences of R and D1 and
respective phases ϕR and ϕD for a standard steel sample
with the thickness l = 7 cm for the values β = 0 and
±0.1.

We can make the following conclusions by analyz-
ing these figures.

(a) For β ≠ 0, all curves exhibit an oscillating char-
acter. In this case, the period of oscillations is ∆ f ≅
500 Hz, which corresponds to the expression ∆(kL1) =
π, where L1 is the distance from the sample to the
absorber surface.

(b) The change of the sign of β leads to a “swing” of
the oscillation phase.

(c) When |β| increases, the oscillation amplitude
increases also.

(d) The maximal deviation is observed for both the
modulus and the phase at small values of R (at low fre-
quencies).

It is necessary to note that the application of an
active sound absorber provides an opportunity to con-

D1
2

2 iX+
---------------,=

)

R
iX

2 iX+
---------------.=

)
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duct measurements not only in the traveling wave
mode, but also to form almost any complex load upon a
sample in order to measure the complex reflection coef-
ficient. Since  = exp(i2kL1) is the absorber reflec-
tion coefficient reduced to the section x = L0 (the upper
surface of the sample), it is possible to determine the
complex reflection coefficient of the absorber  that
provides the preset value of the load impedance Z0
according to the following formula:

One more source of measurement errors can be a cylin-
drical slot between the lateral surface of the sample and
the pipe wall. The following evident physical factors
should be mentioned:

(a) a possible viscous loss; and
(b) a sound “leakage” through the slot.
The first mechanism will be treated below as applied

to the above-mentioned standard samples in the form of
metal disks. The slot size h is usually small compared
to the pipe radius a and the wavelength λ (h/a ≡ 0.01–
0.02, h/λ ≤ 0.003).

The equations of motion for a standard sample can
be written in the form

(19)

where V0 is the particle velocity, m = ρlS is the sample
mass, F1 = p1S and F2 = p2S are the summary forces pro-
duced by sound pressure and acting on the front and

β

)

β0

)

β0

)

β0

Z0 1–
Z0 1+
--------------- i2kL1–( ).exp=

)

iωmV0– F2 F1– σ,+=
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Fig. 5. Effect of the imperfection of the active absorber on the values of ϕR and ϕD; β = ±0.1.
rear surfaces of the sample S = πa2, σ = σ0S1 is the sum-
mary viscosity force acting on the lateral surface of the
sample S1 = 2πal, and σ0 is the viscous stress. Taking
into account these notations, Eq. (19) can be repre-
sented in the form

(20)

To calculate the value of the viscous stress σ0, we
use the Navier–Stokes equation for an incompressible
liquid [11]

(21)

where V is the particle velocity in a viscous wave, ν is
the viscosity coefficient of water, and y is the radial
coordinate (since h/a ! 1, the problem can be solved
in the Cartesian coordinates). Since we have V =
V(y)exp(–iωt), Eq. (21) transforms to the Helmholtz
equation for viscous waves

(22)

where  =  is the square of the wave number.

A solution to Eq. (22) and the boundary conditions can
be written down in the form

(23)

(24)
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V 0( ) V0; V h( ) 0.= =
Substituting Eq. (23) into Eqs. (24) we obtain the
solution

The viscous stress is σ = η , where η = νρ0 is the

kinematic viscosity and ρ0 is water density. Therefore,
the desired quantity is

(25)

Substituting Eq. (25) into Eq. (20), we obtain

or

(26)

It follows from here that a standard sample can be
described by a complex density

(27)

Since k1h > 1 and the quantity k1 is complex,
  1, and the loss coefficient α (  =

ρ(1 + iα)) can be written down in the form

(28)
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At the lowest frequency of the ALP operation range
( f = 100 Hz), we have |k1a| @ 1, and we obtain |α| ≈ 5 ×
10–5. At other frequencies, this value is even smaller.

Proceeding from the aforesaid, we can make a con-
clusion that the slot influence can be ignored from the
point of view of viscous losses.

In the case of an exact calculation of the sound
“leakage” through the slot with allowance for the pres-
ence of inhomogeneous waves, the problem can be
reduced to an infinite system of algebraic equations
[12], which can be solved using the reduction method.
However, since the slot width is usually small com-
pared to the pipe radius a and the wavelength λ (as indi-
cated above), the problem of determining the value of R
can be solved in the low-frequency approximation
using the impedance technique.

Ignoring the viscosity, we can write down the spe-
cific dimensionless (in units of wave conductivity of
water) conductivity of the slot in the form

, (29)

where s = 2h/a is the relative area occupied by the slot.
In this case, the specific conductivity of a measured
sample is expressed by the formula

(30)

where gsam is the impedance of the measured sample.
The total dimensionless conductivity

(31)

is connected with the measured reflection coefficient by
the known formula

(32)

which leads [taking into account Eq. (31)] to the
expression

(33)

where the parameter is a = .

It is possible to determine from Eq. (33) the value of
gsam and the true reflection coefficient  expressed

through :

(34)

Figures 6 and 7 present the results of calculations
for the values of R0 and ϕR0 for the same standard sam-
ple and the slot width h = 0, 0.1, and 0.2 cm (s = 0, 0.27,
and 0.054, respectively).

The design of a pendant (mounting) for a sample in
the pipe can affect considerably the precision of mea-
surements. Together with other factors, it can produce a

g0 s=

g 1 s–( )gsam,=
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2 1 a–( )R+
------------------------------.= )

)
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large systematic error. Since the sample is suspended in
the pipe center so that its lower surface lies on a grid
made of threads or wires that are fixed to the upper end
of the lower half of the pipe, such a pendant, from the
acoustic point of view, represents an elastic load con-
nected in series with the sample under measurement in
such a way that their impedances are added together:

(35)

Here, Z is the impedance of the sample + pendant sys-
tem, Z0 is the impedance of the sample under measure-
ment, and Zpen is the pendant impedance.

If we use at the beginning a standard sample of the
same mass as a sample for measurements, the quantity
Z0 in this case is defined by the formula

(36)

Here, X is the dimensionless impedance of a standard
sample and the unit term corresponds to the wave resis-
tance of water behind the sample (in the case of an
“ideal” absorber). Measuring the complex reflection
coefficient  of the mass + pendant system and taking
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Fig. 6. Effect of the slot width h on the value of R; h = (1) 0;
(2) 0.1; and (3) 0.2 cm.

Fig. 7. Effect of the slot width h on the value of ϕR0; h =
(1) 0; (2) 0.1; and (3) 0.2 cm.
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into account Eqs. (35) and (36), we can determine the
desired quantity Zpen:

(37)

On the other hand, introducing the notation  for the
coefficient of reflection from the sample of interest
(with the same pendant), we obtain from Eqs. (35)
and (37)

(38)

Here, Z0 is the true impedance of the sample under mea-
surement that serves as the basis for the determination
of the true complex reflection coefficient

(39)

The calculation of the true complex transmission
coefficient  is based on the condition of proportion-
ality

(40)

where u2 and u0 are the amplitudes of oscillations of the
sample surface on the side of the incident wave. Thus,
we have

(41)

where  is the complex transmission coefficient of
the mass + pendant system.

It is necessary to note that the design of a suffi-
ciently soft pendant that would not manifest itself
within the frequency range of measurements is a very
complex technological problem, especially in the case
of heavy samples. Therefore, the technique described
above seems to be the only method to eliminate the sys-
tematic error produced by the effect of the sample pen-
dant. The practical realization of this technique can be
computerized by introducing its algorithms into the
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operational software controlling the process of mea-
surements.

The precision attained in reality in measuring the
complex values of the reflection and transmission coef-
ficients is as follows:

(a) ≈±2 dB in modulus within the low-frequency
range and ≈±1 dB within the high-frequency range; and

(b) ≈±2°–3° in phase within the low-frequency
range and ≈±1.5°–2° within the high-frequency range.
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Earlier [1], the presence of shear elasticity in thin
layers of liquids several microns thick was observed at
a frequency of 74 × 103 Hz. This result attests that an
unknown low-frequency viscoelastic relaxation process
occurs in the liquids. The studies showed that the
mechanical loss tangent was less than unity. This sug-
gests that the relaxation frequency of this process was
less than the frequency used in the experiment. There-
fore, it is of interest to perform similar studies at lower
frequencies. The investigation at a frequency of 74 ×
103 Hz was carried out by the resonance method with
the resonator in the form of an X-18.5°-cut rectangular
piezoelectric quartz crystal whose dimensions were
34.7 × 12 × 5.5 mm3. The crystal cut was chosen so that
one of the lateral faces performed pure tangential
motion under the excitation of antisymmetric longitudi-
nal vibrations. A thin layer of the liquid under study
was spread between this face and an inertial cover plate
near one end of the resonator. Since near the ends the
tensile deformation is practically absent, the liquid is
subjected to a purely shear stress.

The solution of the problem on the interaction
between the resonator and the cover plate separated by
a liquid interlayer with consideration for damping in
the vibrating system yields the following expression for
the complex shift of the resonance frequency ∆ f * [2]:

(1)

where S is the area of the cover plate, k* = β – iα is the
complex wave number (β and α are the real and imagi-
nary components), G* = G' + iG'' is the complex shear
modulus of liquid, H is the thickness of the liquid inter-
layer, ϕ* is the complex phase shift at the wave reflec-
tion from the liquid–plate boundary, M is the mass of
the piezoelectric crystal, and f0 is its resonance fre-
quency. Equation (1) is simplified to the utmost degree
with the assumptions that, during the vibration of the
resonator, the cover plate is practically at rest (ϕ* = 0)
due to the weak coupling through the liquid interlayer
and that the interlayer thickness is much smaller than
the wavelength in liquid (H ! λ). Under these condi-

∆f *
Sk*G*

4π2M f 0

--------------------1 2k*H ϕ*–( )cos+
2k*H ϕ*–( )sin

--------------------------------------------------,=
1063-7710/01/4706- $21.00 © 20755
tions, the real shear modulus G' and the mechanical loss
tangent  are given by the following formulas

(2)

(3)

where ∆f ' and ∆f '' are the real and imaginary frequency
shifts and S is the area of the cover plate. The influence
of the asymmetry of the system that leads to a shift of
the node of crystal vibration from its central position is
considered in [3].

A reduction of the resonance frequency requires an
increase in the resonator length. To perform investiga-
tions at a frequency of 104 Hz, we used a resonator in the
form of a plate of polished glass, 240 × 15 × 1.2 mm3 in
size. The experimental setup is shown schematically in
Fig. 1. The glass plate was fixed at the center by two
rubber pads, 3 mm wide and 1.5 mm thick. The theoret-
ical analysis showed that, for a low rigidity of the pads,
the asymmetry of the system can be neglected. Let µ1
be the shear modulus of the pad, h1 be its height, S1 be
the area of pressing, E be the tensile modulus of the res-

θtan

G ' 4π2M f 0∆f 'H/S,=

θtan G ''/G ' ∆f ''/∆f ',= =
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Fig. 1. Experimental setup for determining the viscoelastic
properties of liquids by using resonators made of isotropic
materials, at a frequency of 10 kHz: (1) resonator for longi-
tudinal vibrations, (2) liquid layer, (3) cover plate, (4) rub-
ber pads, (5) permanent magnets, (6) exciting coils, and
(7) receiving coils.
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onator, and L and Sr be the length and area of the reso-
nator cross section, respectively. Then, the condition of
a low rigidity of the pad can be written as

(4)

Substituting into the dimensions of the resonator and
the pads into Eq. (4), we obtain µ1 < E/200, which is
always true for rubber.

The excitation and reception of vibrations were per-
formed by the electromagnetic method. For this pur-
pose, permanent ceramic magnets were glued to the
large surfaces of the glass plate. The magnets were
positioned symmetrically, on both sides of the plate
center, at a distance of 90 mm from it (see Fig. 1). The
polarities of the magnets on each side were coincident
and directed along the resonator axis. The magnets
were placed at some distance from the resonator ends to
make the application of the liquid under study and the
subsequent cleaning more convenient. Four fixed coils
serving for the excitation and reception of vibrations
were wound around dielectric cores 15 × 3 × 1.2 mm3

by a wire 0.12 mm in diameter. Each coil had 400 turns.
At each end of the resonator, the coils were connected
in series, so that their magnetic fields were opposite to
each other. The resultant force acting on the magnets
was directed along the resonator axis. This geometry of
magnetic fields was chosen to reduce the noise induced
in the receiving coils by the exciting coils and the exter-
nal fields. The coils were fed from an RC-type oscilla-
tor (G3-107). An additional variable resistor was
included in the oscillator circuit to provide a better
accuracy in setting the frequency, namely, to within
10–3%. The signal from the receiving coils was mea-
sured by a selective microvoltmeter. To increase the

µ1LS1( )/ Eh1Sp( ) 1.≤

50

1

∆f *, Hz

1/H, µm–1

1

2

Fig. 2. Dependences of the (1) real and (2) imaginary shifts
of the resonant frequency on the reciprocal of the thickness
of the liquid interlayer for diethylene glycol.
level of the input signal, a capacitor was connected in
parallel with the receiving coils, which formed an oscil-
latory circuit tuned to the resonator frequency with a
Q factor of about five.

The experimental setup had the following param-
eters: the frequency of the unloaded resonator was
9.84 × 103 Hz, the Q factor was 910, the level of noise
induced in the receiving coils was 113 dB, and the level
of the signal at the receiver input was 40 dB. Since the
resonator is a thin plate, transverse vibrations of consid-
erable amplitude can arise in it because of asymmetry
that occurs in the system of excitation and gives rise to
lateral forces, as well as the asymmetry of the load con-
sisting of the liquid layer and the cover plate, which
gives rise to a moment of force at the end of the plate.
The transverse vibrations can distort the results of mea-
surements by directly inducing an additional signal in
the receiving coils and by the inverse action of the
transverse vibrations of the liquid on the longitudinal
vibrations of the resonator. To determine the level of the
direct induced signal from transverse vibrations, the
resonator was excited in a wide range of frequencies,
from 63.5 to 20 × 103 Hz. Below the fundamental har-
monic of longitudinal vibrations equal to 9.84 × 103 Hz,
only transverse vibrations could be observed in the sys-
tem. The greatest signal was observed at 65.7 Hz, but it
was smaller than the value of the main signal at 9.8 ×
103 Hz by 36 dB. At the frequencies above 700 Hz, the
levels of signals did not exceed 56.4 dB and approached
the noise level of the amplifier, which operated in this
measurement in a wide-band mode. Thus, the error due
to the direct induction was less than 1.5%. The study of
the inverse effect of transverse vibrations on longitudi-
nal ones was performed theoretically, by solving a set
of simultaneous equations of motion for longitudinal
and transverse vibrations coupled by the boundary con-
ditions for the liquid layer. The calculations showed
that, even in the most unfavorable case of coincident
resonant frequencies of longitudinal and transverse
vibrations, the error introduced in this case did not
exceed 0.1%. The evaluation of the technique was per-
formed with the use of petroleum jelly and castor oil,
polymer liquids, and glycols. Figure 2 shows the
dependences of the (1) real and (2) imaginary fre-
quency shifts on the reciprocal of the thickness of the
liquid interlayer for diethylene glycol. The depen-
dences of the frequency shifts are linear, whence it fol-
lows that, according to Eqs. (2), at the frequency of
shear vibrations 9.84 × 103 Hz, the liquid under study
exhibits a shear elasticity. The calculations by Eqs. (2)
and (3) yield the following values of the real shear mod-
ulus and the mechanical loss tangent: G' = 0.15 × 105 Pa
and  = 0.72. For comparison, we present the cor-
responding parameters obtained at the frequency of
shear vibrations 74 × 103 Hz [4]: G' = 1.22 × 105 Pa
and  = 0.31. Similar dependences were observed
for all tested liquids.

θtan

θtan
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Comparing the results obtained at different frequen-
cies, we can conclude that the real part of the shear
modulus considerably decreases with decreasing fre-
quency, and the mechanical loss tangent grows but
remains less than unity. The mass of the resonator at the
frequency 9.84 × 103 Hz was 12.85 g, and the area of the
cover plate was 0.2 cm2. The thickness of the liquid
interlayer was measured by the interferometric method
to within 0.01 µm.

In conclusion, it should be noted that the measure-
ments of the viscoelastic properties of various liquids
by other measuring techniques [5, 6] provided results
that are in good agreement with our results.
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The problem of the operation of piezoelectric trans-
ducers in pulsed modes remains topical. For example,
Hole and Lewiner [1] considered the problem of the
generation of a unipolar pressure pulse by selecting the
form of the voltage pulse that excites the transducer
with allowance for the matching elements between the
transducer and the generator.

In our previous publications [2, 3], we considered
the possibility of obtaining short pulses in the cases of
transmission and reception with the help of quarter-
wave layers. It was shown that the minimal pulse dura-
tion is not achieved at the maximal bandwidth but cor-
responds to an amplitude–frequency characteristic that
is intermediate between single-peaked and double-
peaked ones.

In this paper, we consider the possibility of reducing
the pulse duration for signal reception by a piezoelec-
tric plate that operates in the fundamental mode of
thickness vibrations with an inductive–resistive electric
load connected in parallel to it. An active resistance R is
connected in series to an inductance L. The total resis-
tance is characterized by the parameter Q = ω0L/R,
where ω0 is the antiresonance frequency of the piezo-
electric plate. The capacitance ë of the piezoelectric
plate in combination with the inductance L of the load
forms an oscillatory circuit whose resonance frequency
is characterized by the parameter n = ωe/ω0, where ωe =

1/ .

By choosing different values of the parameters n and
Q, it is possible to obtain the amplitude–frequency
characteristic of the piezoelectric detector in the form
of a single-peaked or double-peaked curve. The acous-

LC
1063-7710/01/4706- $21.00 © 20758
tic load for the piezoelectric plate is water. For a
damper, we use the model of a semibounded medium.

From the numerical calculations of the voltage pulse
at the detector excited by a half-period of the particle
velocity sinusoid with a frequency ω0, it was found that
the shortest pulse duration is obtained when the ampli-
tude–frequency characteristic is intermediate between
single-peaked and double-peaked ones. The optimal
values of n and Q for TsTSNV-1 piezoelectric ceramics
(a PZT ceramics) are presented in the table for different
values of the acoustic impedance of the damper zd. The
relative bandwidth for the combinations presented in
the table lies within 50–65%.

Figure 1 shows the voltage pulses across the receiv-
ing plate in the absence of mechanical damping (zd = 0)
for two cases:

(a) a two-peaked amplitude–frequency characteris-
tic corresponding to the maximal bandwidth (n = 1.1
and Q = 3.8); and

(b) an amplitude–frequency characteristic that is
intermediate between single-peaked and two-peaked
ones (n = 1.1 and Q = 1.5).

The abscissa axis represents the number T of the
half-periods of the fundamental frequency of the piezo-
electric plate. The ordinate axis represents the voltages
normalized to the maximal values. The pulse duration
(as before) is assumed to be the time within which the
amplitude decreases by a factor of ten relative to the
maximal value (a decrease in level by 20 dB).

From Fig. 1, one can see that, in the case (a), the pulse
duration is Tp ≈ 10 whereas, in the case (b), Tp ≈ 5, which
is almost twice as small. In addition, in the second case,
Table

zd × 10–6 Pa s/m 0 1.5 3 5 8 12

n 1.10 1.11 1.12 1.13 1.15 1.23

Q 1.5 1.5 1.5 1.5 1.5 1.5
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the curve is smoother, while, in the first case, it resem-
bles a kind of beat.

Figure 2a presents the dependences of the pulse dura-
tion on zd with the optimal electric load for (1) a double-
peaked amplitude–frequency characteristic and (2) an
intermediate one. It is obvious that curve 2 has an
advantage over curve 1, especially when the damping is
weak or absent. The pulse duration is approximately
two times shorter in this case.

Figure 2b shows the maximal pulse amplitudes
expressed in arbitrary units as functions of zd. Here, the
curves are numbered as in Fig. 2a. One can see that, for
small values of zd, the amplitudes corresponding to
curve 1 exceed the amplitudes corresponding to curve 2.
For greater values of zd, the situation is reversed. One
can notice that curves 2 shown in Figs. 2a and 2b are
exhibit a weaker dependence on zd, as compared to
curves 1.

Thus, the calculations performed by us confirm the
criterion formulated earlier for matching layers: to
obtain the shortest possible pulse, the parameters of the
electric load should be chosen in such a way that the
amplitude–frequency characteristic be intermediate
between single-peaked and a double-peaked ones. In
this case, the resonance frequency of the tuning fre-
quency of the electric circuit somewhat exceeds the
antiresonance frequency of the piezoelectric plate (n ≈
1.1–1.2), and the Q factor of the inductance is Q ≈ 1.5,
which is lower than in the case of the maximal band-
width (Q ≈ 3).
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CHRONICLE

   
Andreœ Viktorovich Gaponov-Grekhov
(On His 75th Birthday)
In June 2001, the outstanding scientist Academi-
cian Andreœ Viktorovich Gaponov-Grekhov turned
75-years-old.

Gaponov-Grekhov is a former student and successor
of Academician A.A. Andronov, the founder of the
Gor’ki–Nizhni Novgorod scientific school in radio-
physics, which has gained worldwide recognition
among the scientific community. Today, Gaponov-
Grekhov is the leader of this school. His former stu-
dents and his students’ students carry out basic and
applied research in different fields of modern physics.
It is difficult to list here all the scientific results that
were obtained by Gaponov-Grekhov and that deter-
mined for years the development of the physics of non-
linear oscillation and wave processes. They include
outstanding achievements in electrodynamics, micro-
wave electronics, theory of oscillations of distributed
systems, and the dynamics of waves in nonlinear
media. The style of Gaponov-Grekhov’s work in
1063-7710/01/4706- $21.00 © 20760
research can be illustrated by the history of the devel-
opment of a new class of high-power generators and
amplifiers operating in the centimetric, millimetric, and
submillimetric wave bands, i.e., the cyclotron-reso-
nance masers. Gaponov-Grekhov’s versatile talent pro-
vided for the simultaneous and harmonic development
of the theory, the experiments, and the design of these
instruments, which proved to have record characteris-
tics in terms of power and efficiency. This work resulted
in the mass production of new instruments for techno-
logical purposes and for experiments on heating a
fusion plasma by microwave radiation.

In parallel with the studies in electrodynamics and
microwave electronics, Gaponov-Grekhov and his stu-
dents started research in the dynamics of waves in non-
linear media and in the theory of oscillations of distrib-
uted systems, which later formed one of the key direc-
tions of research in modern physics. The general
physical concepts of nonlinear wave processes and the
mathematically justified asymptotic and rigorous meth-
ods of nonlinear wave dynamics, which were proposed
by Gaponov-Grekhov, played an especially important
role. They served as a basis for the subsequent studies
of the dynamic chaos and self-organization in complex
dynamic systems.

The contribution made by Gaponov-Grekhov to the
development of underwater acoustics is less well
known. In fact, the participation of outstanding scien-
tists in solving the problems of shipbuilding and sea-
manship has become a tradition in Russia. The variety
of these problems and phenomena causing them, as
well as the urgency of their solution within limited
times and the a priori absence of trivial ways for such
a solution, has always been challenging and, therefore,
attractive for prominent scientists. Academician
A.N. Krylov, for example, combined basic research
with applied studies in shipbuilding. Later on, the prob-
lems of shipbuilding became the object of intensive
studies carried out by one of the founders of the
nuclear-powered fleet Academician A.P. Aleksandrov.
He called the attention of Gaponov-Grekhov to the
burning problems of shipbuilding and, specifically, to
the problem of “acoustic safety” and the related prob-
lems. Gaponov-Grekhov actively participated in the
work of the Scientific Council on the Complex Problem
of Hydrophysics, which was headed by Aleksandrov at
that time. Starting from 1991, Gaponov-Grekhov has
been the permanent chairman of this Council. The
Council united prominent scientists and engineers,
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navy specialists, and industrial managers, and it was
intended to provide scientific support to the develop-
ment of nuclear-powered submarines. With time,
acoustical problems have become one of the main
issues considered by the Council. Gaponov-Grekhov’s
broad education in physics and his ability to approach
different phenomena in a general manner allowed him
to achieve fundamental understanding of the problems
of ship acoustics.

On Gaponov-Grekhov’s initiative and with his
active participation, intensive studies of low-frequency
sound propagation in the ocean were carried out, and
the possibility of remote sensing of the underwater
medium on long-range (up to 1000 km) propagation
paths was proved experimentally. Under Gaponov-
Grekhov’s supervision, scientific and technological
foundations were laid for the design of low-frequency
coherent acoustic radiators, which were necessary for
the experimental studies of low-frequency coherent
acoustic phenomena in the ocean. Today, these radia-
tors developed at the Institute of Applied Physics of the
Russian Academy of Sciences are unsurpassed. They
were used in the joint Russian–American studies of
low-frequency transarctic propagation, which in fact
were a pilot experiment on the acoustic monitoring of
the global temperature variations in the ocean and,
hence, on the acoustic monitoring the climate of the
Earth.

Gaponov-Grekhov paid much attention to the prob-
lems of ship noise control. He has put forward the idea
of “acoustic design” in shipbuilding. Usually, the prob-
lem of noise suppression was addressed when a vessel
was already designed and it was necessary to reduce the
noise of a practically completed vessel. However, the
design was often chosen in such a way that noise reduc-
tion was fundamentally impossible. To avoid such situ-
ations, acoustic design should be introduced in the gen-
eral project. Gaponov-Grekhov supervised a number of
projects in which this principle was successfully imple-
mented.

However, perhaps the most important result of
Gaponov-Grekhov’s activity in acoustics is the forma-
tion of an acoustic scientific school in Nizhni Nov-
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
gorod, which has become one of the branches of the
Nizhni Novgorod radiophysics and which has made
substantial contributions to different fields of acoustics,
such as low-frequency ocean acoustics, nonlinear
acoustics, coherent seismoacoustics, vibration acous-
tics, and medical acoustics.

As a rule, the role of prominent scientists in the
development of science is not confined to the results
obtained by them personally or by their students.
Gaponov-Grekhov belongs to the type of scientist who
devotes much time and energy to organization activi-
ties. He is the permanent director of the Institute of
Applied Physics of the Russian Academy of Sciences.
This institute was founded more than quarter of a cen-
tury ago, and, under Gaponov-Grekhov’s supervision,
the Institute of Applied Physics has become one of the
large leading institutes of the Russian Academy of Sci-
ences. The work of this institute follows the style devel-
oped by Gaponov-Grekhov in combining fundamental
and applied studies. The institute occupies firm posi-
tions in hydrophysics and hydroacoustics, plasma
physics, high-power electronics, quantum radiophysics
and nonlinear optics, and physics of millimetric and
submillimetric waves. At the present time, which is
rather difficult for science, the Institute of Applied
Physics grows, acquires new young scientists, and
launches new projects in the new fields of the ever-
young physics.

Gaponov-Grekhov’s services for Russian science
and industry were honored many times with state
awards and prizes. The recognition of these services by
professionals resulted in awarding Gaponov-Grekhov
the Large Gold Medal of the Russian Academy of Sci-
ences in 2000 for outstanding contribution to the devel-
opment of the physics of oscillation and wave pro-
cesses.

We congratulate Andreœ Viktorovich Gaponov-
Grekhov and wish him health and further success in all
fields of his widely varied activities.

Translated by E. Golyamina
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CHRONICLE

 

Samuil Akivovich Rybak (On His 70th Birthday)
August 14, 2001, marked the 70th birthday of Sam-
uil Akivovich Rybak, one of the most prominent Rus-
sian acousticians, head of a sector of the Theoretical
department of the Andreev Acoustics Institute; Profes-
sor of the Moscow Institute of Physics and Technology;
Doctor of physics and mathematics; member of the
Russian, American, and European acoustical societies,
and laureate of the Russian Federation State Award.

Rybak began his career in science as a third-year
student of the Kiev Polytechnical Institute by studying
the behavior of the electrical resistance of alloys near
the point of the second-order phase transition under the
supervision of Professor A.A. Smirnov. Simulta-
neously, Rybak also carried out other investigations,
and, by the day of his graduation in 1953, he already
had several scientific publications. These first publica-
tions demonstrated Rybak’s solid background in phys-
ics and mathematics, which proved to be of a great ben-
efit to him in his following work. In the 1950s, Rybak
worked at the Laboratory of Special Alloys of the
Academy of Sciences of the Ukrainian Soviet Socialist
1063-7710/01/4706- $21.00 © 20762
Republic. There, in cooperation with M.A. Krivoglaz,
he studied the scattering of light near the critical point,
and the results of these studies are cited in literature to
this day.

In the following years, the scientific activity of
Rybak has been related to acoustics. In 1960, he
became a postgraduate student at the Acoustics Insti-
tute. Earlier, in Kiev, he took part in solving some prob-
lems of noise and vibration control in airplanes (at that
time, he worked at the Antonov Design Office as head
of the laboratory). Working at the Acoustics Institute,
he substantially contributed to solving the problems of
noise control on ships. In this connection, with the aim
to solve the problem of vibration damping for structural
noise, Rybak performed original theoretical studies of
wave propagation in laminated plates. As a result of a
thorough physical analysis, Rybak correctly formulated
the equations for the vibrations of plates consisting of
alternating metal and viscoelastic layers. The ideas
developed by Rybak at that time served as a basis for a
new direction in the studies of layered structures and
made it possible to develop reliable methods for pre-
dicting the efficiency of the use of such structures in
practice. In 1963, Rybak successfully defended his can-
didate dissertation, which was entitled “Vibrations of
Inhomogeneous Plates.”

After completing his postgraduate courses, Rybak
became involved in the development of new space-
rocket systems at the Korolev Design Office (now,
RKK Énergiya). He worked on the problems related to
the analysis of the dynamic stability of fuel systems of
liquid-propellant rocket engines. Later, the results of
this work were described in the monograph Dynamics
of the Fuel Systems of Liquid-Propellant Rocket
Engines (1975).

The following studies performed by Rybak were
concerned with the statistical characteristics of waves
in randomly inhomogeneous structures. Working in this
important field of acoustics, he developed the theory of
multiple scattering of waves in elastic structures in
which waves of different types are excited. It should be
noted that the development and the application of the
methods of the theory of wave scattering in acoustics
runs through the whole fifty-year-long scientific activ-
ity of Rybak. He considered this subject in one of his
early publications, and its thorough investigation can be
found in Rybak’s doctoral dissertation (1973).

Rybak was the first to notice that taking into account
loss is a necessary condition of applicability of the
energy transport equation in the case of the wave prop-
001 MAIK “Nauka/Interperiodica”
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agation through inhomogeneous structures. Rybak
developed a method for determining the distribution of
the wave energy in inhomogeneous structures and
derived the expressions for the stationary energy spec-
tra of different types of waves. The ideas put forward in
his doctoral dissertation gave an impetus to the devel-
opment of the new direction of research concerned with
wave propagation in inhomogeneous structures. These
ideas are close to those developed by the well-known
American acousticians, Prof. G. Maidanik and R. Lyon.
Later on, they formed the basis for the methods related
to the statistical energy analysis (SEA) in various com-
plex structures that are widely used in practice.

In the following years, Rybak, together with his
colleagues and students, studied different aspects of
the dynamic and statistical nonlinear interaction of
waves. In a number of publications (together with
K.A. Naugol’nykh), he determined the character of the
turbulent spectra of waves in dispersive media, he also
studied the problem of the attenuation and amplifica-
tion of waves in a noise field due to a nonlinear reso-
nance interaction and considered the conditions of the
excitation of surface capillary-gravity waves by sound.
He investigated nonlinear waves in media with random
parameters and the nonlinear fields and wave structures
that occur in stratified liquids because of shear instabil-
ity. Here, it is appropriate to mention the investigations
concerned with wave instabilities in a moving liquid
and in elastic structures in contact with it. Rybak ana-
lyzed the role of waves with negative energy in the
development of instabilities at the linear and nonlinear
stages of this development. He revealed the dipole
mechanism of sound generation in the boundary layer
due to the fluctuations of the tangential stresses at the
wall and estimated the intensity and directivity of the
resulting emission. In recent years, the results concern-
ing the fundamental role of viscosity in the energy dis-
tribution in elastic structures with random parameters
were further developed by other acousticians in appli-
cation to the new problem of the so-called fuzzy struc-
tures. In studying nonlinear waves in multiphase media,
Rybak also obtained quite important results. For exam-
ple, for nonlinear media with a strong (resonance) dis-
persion, he determined the structure of stationary soli-
tary and periodic waves and analyzed the relation
between their form and the acoustic and dissipative
parameters of media. The results of these studies find
their application in the problems of monitoring mul-
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
tiphase, e.g., bubbly, media. Today, the aforementioned
phenomena are the subject of the graduate projects car-
ried out by a number of students of the Moscow State
Institute of Physics and Technology.

Rybak is the author of more than 160 scientific pub-
lications. His versatile and deep knowledge made it
possible to explain some fairly complex and poorly
understood physical phenomena of mechanical, acous-
tic, and hydrodynamic natures and to solve new topical
practical problems. Rybak’s personal achievements and
the achievements of his scientific school in the afore-
mentioned directions of research in physical acoustics
gained worldwide recognition. In 1997, Rybak received
the Russian Federation State Award for his studies of
nonlinear wave processes in inhomogeneous mul-
tiphase media.

Rybak’s contribution to the education of a new gen-
eration of scientists is fairly large. He supervised the
work of 20 young scientists who successfully defended
candidate and doctoral dissertations. Currently, these
scientists are working successfully in Russia and in
other countries. The former students of Rybak have
become skilled researchers, not only in acoustics but
also in other fields of physics. Today, Rybak delivers
lectures to the graduate and postgraduate students of
the Moscow State Institute of Physics and Technology
and the Acoustics Institute. He conducts a regular sem-
inar on the topical problems of physical acoustics at the
Acoustics Institute, and many physicists from Moscow
and other Russian cities participate in the work of this
seminar. Rybak is the leader of a scientific school,
which includes both scientists from the Acoustics Insti-
tute and students from the Moscow State Institute of
Physics and Technology. Since 1993, Rybak has taken
part in the activities of the Russian Foundation for
Basic Research.

Rybak is one of the leading Russian acousticians
known not only among Russian scientists, but also
among the international scientific community. He cele-
brates his 70th birthday in the prime of his creative life,
he continues his scientific and tutorial activities and
develops new ideas and plans. The friends, colleagues,
and students of Samuil Akivovich Rybak congratulate
him on his birthday and wish him health, many happy
days, and further success in his creative work.

Translated by E. Golyamina
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International Symposium on Hydroacoustics
The Third International Symposium on Hydroa-
coustics was held May 28–31, 2001 in Jurata, a summer
resort town near the city of Gdansk (Poland). It was
organized by the Polish Naval Academy (Gdynia), the
Technical University of Gdansk, and the Technical Uni-
versity of Koszalin with the support from the Interna-
tional Commission on Acoustics, the European Acous-
tics Association, the Polish Acoustical Society, the
Committee on Acoustics of the Polish Academy of Sci-
ences, and other institutions. Professor E. Kozaczka
and Professor A. Stepnowski were the Symposium co-
chairmen. The Chairperson of the Organizing Commit-
tee was Dr. G. Grelowska.

The symposium program included both invited and
contributed papers and a poster session. All reports
were distributed in nine sections and covered the fol-
lowing fields of underwater acoustics: Acoustics in
Fisheries, Instrumentation and Measurements, Sea
Floor Characterization, Signal and Data Processing,
Sonar Systems, Sound Propagation in the Sea, and
Transducers and Antennas. Cultural events were also
organized.

To clarify the topics discussed at the Symposium,
we briefly describe the invited and some contributed
papers in the sequence determined by the symposium
program.

T.H. Neighbors (USA) and L. Bjorno (Denmark)
presented a paper “Anomalous Low Frequency Sea
Surface Reverberation.” It was noted that the results of
many experimental studies of sound scattering by the
sea surface agree well with the theory of sound scatter-
ing by an uneven surface within the frequency range
from several kilohertz to approximately 60 kHz. How-
ever, at frequencies below several kilohertz, the sound
backscattering by the sea surface, which was observed
in the experiments conducted by Chapman and Harris,
Chapman and Scott, Brown and Saenger, and Ogden
and Erskine during the period from the 1960s to 1990s
in deep seas, was considerably higher than that which
follows from the theory of sound scattering by an
uneven surface. The authors indicate an opportunity to
develop alternative theories taking into account the
sound scattering by not only an uneven surface, but also
by the bubble clouds generated by breaking sea surface
waves. It was found that the difference between the
results of measurements and the predictions of the the-
ory of sound scattering by an uneven surface depends
on the angle of incidence of a sound wave, the wind
speed, and the presence of “white plumes” on a rough
sea surface. A calculation of the sound scattering by an
uneven surface (a two-dimensional case) in the pres-
1063-7710/01/4706- $21.00 © 20764
ence of bubble clouds in the subsurface layer was per-
formed at the Danish Technical University (Lyngby,
Denmark). It follows from this theory that, in the case
of grazing angles of incidence of a sound wave on the
sea surface, the scattering from the bubble clouds must
increase. This result agrees well with the experimental
data. Models of bubble clouds in the form of cylinders
with ellipsoidal cross sections and the bubble concen-
tration 10–6, as well as spherical clouds with the bubble
concentrations 10–2–10–4 and symmetric and nonsym-
metric bubble formations (plumes) with the concentra-
tions 10–2–10–6, were considered. The authors expect
that the three-dimensional theory of sound scattering
by the sea surface with allowance for the formation of
subsurface bubble clouds will provide an opportunity to
explain in more detail the experimental data on the low-
frequency sound backscattering by the sea surface.

The problem of sound backscattering by the surface
and bottom of the ocean was also discussed in the paper
by L.M. Lyamshev (Russia) and A. Stepnowski
(Poland) “Fractal Laws of Sound Backscattering by the
Sea Surface and Bottom.” It was noted that dynamic
chaos and fractals occupy an important place among
the outstanding discoveries of the 20th century. They
are closely connected with each other. Dynamic chaos
is represented by chaotic oscillations similar to stochas-
tic oscillations that arise in deterministic nonlinear
dynamic systems. Chaotic oscillations have a dynamic
property, i.e., a fractal structure. In other words, chaotic
oscillations (phenomena) occur in nonlinear dynamic
systems described by regular laws and are not a “form-
less” chaos but a chaos with a hidden order, i.e., with a
fractal structure. Fractals are self-similar objects with
fractional dimension. They have a property of scaling.
The structural (correlation) functions and their spectra
characterizing fractal objects are described by power
laws with fractional indices. The concept of fractals and
dynamic chaos in many cases provides an opportunity
to more adequately describe the processes taking place
in nature, since nature is a nonlinear dynamic structure
in a certain sense. It was noted in the paper that fre-
quency–angular dependences of the sound backscatter-
ing by the sea surface, which were observed in many
experiments, are described by power laws with frac-
tional indices. This is characteristic of wave scattering
by a fractal surface. The authors of many theoretical
papers devoted to the wave scattering from a fractal
uneven surface demonstrated that a frequency–angular
dependence of the intensity of wave scattering obeys a
fractal law. The paper provides information on the
papers attesting to the fact that a real sea surface has
001 MAIK “Nauka/Interperiodica”
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fractal properties. Other papers were also cited, where
it was determined in many experiments that the uneven
surface of the ocean bottom and the volume inhomoge-
neities in the bottom sediments are also characterized
by fractal laws. It was shown in some recent experi-
ments that the observed sound scattering by the ocean
bottom in these cases is governed by power laws with
fractional indices. It was stressed in the paper that the
fractal laws of sound scattering by the sea surface and
bottom (bottom sediments) “work” in limited fre-
quency ranges, when the “fractal” scales characterizing
the surface and bottom of the sea are comparable to the
sound wavelength.

A paper by D. Brecht and B. Fedders (Germany)
“Detection of Objects Buried in the Sea Floor with a 3D
Sediment Sonar” was devoted to the important problem
of searching for mines and objects lying on the sea floor
and immersed in the bottom sediments, which were left
from World War II. It was shown that it is possible to
detect a buried object with the help of a sonar system
that was specially designed by the authors and has a
planar array and a special data processing unit that
forms a three-dimensional image of a certain volume of
the sediment layer. In particular, the sonar utilizes auto-
focusing of the sounding signal and the principle of
synthetic aperture. It has a classification system that
provides an opportunity to perform acoustic identifica-
tion of objects shaped as spheres, cylinders, and similar
objects in the bottom sediments. The sonar operates at
a frequency of 20 kHz. Its resolution is 3° × 3° × 10 cm
(in distance). It can be installed on a ship and is
intended for operation at small depths.

A paper “High Intensity Ultrasound Waves from a
Strongly Focused Circular Source” was delivered at the
section on Nonlinear Acoustics by T. Kamakura and
M. Akiyama (Japan). The authors conducted calcula-
tions and an experiment with focused ultrasound of
high intensity in the conditions when the technique based
on the Khokhlov–Zabolotskaya–Kuznetsov (KZK)
equation is inapplicable to the calculation of the field of
finite-amplitude waves. The spheroidal beam equation
(SBE) was used for the calculation. According to the
authors’ opinion, this equation can be applied to the cal-
culations of acoustic fields for the values exceeding the
limiting values for the KZK equation. The data of the
experiments conducted at a frequency of 1.6 MHz by
using a transducer with a circular cross section 73 mm
in diameter and with a focal distance of 75 mm in water
were presented. The experiments were conducted in a
pulsed mode. Pulses forming trains of three periods of
a signal at a frequency of 1.6 MHz were used. This pro-
vided an opportunity to observe in detail the nonlinear
distortions arising in the process of the pulse propaga-
tion. It was demonstrated that the experimental data
agree well with the results of calculations on the basis
of the SBE model.

A paper by N. N. Didenkulov, N. V. Mart’yanov,
D. A. Selivanovskiœ, and N. V. Pronchatov-Rubtsov
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001
(Russia) “Bubble Diagnostics with the Nonlinear
Acoustic Scattering Method” noted that a high nonlin-
ear response of a bubble in water to acoustic excitation
opens an opportunity for remote observation of bubbles
in the sea. A description of a series of nonlinear acous-
tic methods and their applications for the observation of
bubbles in the sea, including their distribution in size
and concentration, was presented. A description of a
device (a bubble counter) for the observation of bubbles
in the subsurface layer of the sea from a moving ship
was given. Experiments on the determination of the
size and concentration of bubbles were described. The
data obtained in these experiments were discussed.

A description of a SeaBat 8110 System multibeam
sonar was given in the paper by T. Avnstrom (Denmark)
“Advances in Practical Multibeam Sonar and Data Pro-
cessing Technology.” The block-scheme of the device
and a detailed description of its operation were pre-
sented. The processor unit, the monitor, the special
recorder, and the computer software incorporating the
commands corresponding to the modes of the sonar
operation were described. It is necessary to note that
sonars of the type presented in the paper are well known
in the market of these devices, and the report dealt not
just with scientific problems, but also with advertising.

N. Gorska (Poland) and D. Chu (United States) pre-
sented a paper “On Sound Extinction by Biological
Targets.” Sound damping in a medium with biological
scatterers and, namely, in the sea, due to the sound scat-
tering by fish shoals or zooplankton (the deep-scatter-
ing layers) is important for understanding the condi-
tions of sound scattering. Fish shoals and clouds of
zooplankton can affect the sound damping consider-
ably. In many cases, it is necessary to take this damping
into account in the process of acoustic measurements.
Theoretical methods for the evaluation of this damping
were discussed. The calculated values of damping were
compared with experimental data.

Several contributed papers should be noted. G. Gre-
lowsky, A. Grelowska, and E. Kozaczka (Poland) pre-
sented extensive data characterizing hydrology and
conditions of sound propagation in various regions of
the Baltic Sea for different seasons in their paper
“Short- and Long-Term Predictions of the Conditions
for the Sound Propagation in the Baltic Sea.” The com-
plexity of the “acoustic climatic conditions” was indi-
cated. It was noted that, in many cases, long-term fore-
casts for sound propagation are possible, although it is
a difficult problem. Many factors affect the conditions
of sound propagation in the sea. The general mecha-
nism of the formation of seasonal changes in the
“acoustic climate” in the sea is basically well known.
However, the diversity of random factors affecting
these changes is very wide. Long-term forecasts are
connected mainly with meteorological conditions,
while short-term forecasts, with local hydrological fac-
tors.
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A. Elminowicz (Poland) presented a poster “Multi-
beam Side-Scan Sonar.” Detailed descriptions of a
multibeam side-scan sonar and the principles of its
operation were given. It was noted that existing single-
beam side-scan sonars with the directivity pattern up to
1° are almost useless for detecting small objects on the
sea floor from a moving ship. Sonars with a very high
angular resolution of 0.1°–0.2° operate in the condi-
tions of the near wave field and need a low towing
speed. The multibeam side-scan sonar presented by the
author is free of these disadvantages.

Another paper devoted to a sonar description was
the paper “Stationary Sonar for Shallow Water” by
A. Elminowicz, E. Gorosinska, and A. Kotlowski
(Poland). A description of an active sonar permanently
installed aboard a ship (and not towed) and capable of
operating in the conditions of a shallow sea at depths
starting from 8–10 m was given. The device is intended
for the detection of small objects on the sea floor, at dis-
tances along the route up to several hundreds of meters.
Special attention was given to the utilization of the
methods of suppressing the surface and bottom rever-
beration in the sonar in order to secure its effective
operation.

The Symposium was well organized. The partici-
pants were very active. Almost all papers provoked
questions and animated discussions. The papers were
printed in a yearbook published by the Polish Naval
Academy in Gdynia and Technical University of
Gdansk: Hydroacoustics, Annual Journal, Vol. 4, 2001.

L. M. Lyamshev

Translated by M. Lyamshev
ACOUSTICAL PHYSICS      Vol. 47      No. 6      2001


	633_1.pdf
	640_1.pdf
	644_1.pdf
	649_1.pdf
	654_1.pdf
	659_1.pdf
	665_1.pdf
	671_1.pdf
	677_1.pdf
	682_1.pdf
	688_1.pdf
	695_1.pdf
	699_1.pdf
	707_1.pdf
	714_1.pdf
	721_1.pdf
	727_1.pdf
	733_1.pdf
	739_1.pdf
	746_1.pdf
	755_1.pdf
	758_1.pdf
	760_1.pdf
	762_1.pdf
	764_1.pdf

