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Abstract—Characteristic predictions of the chiral soliton models (the Skyrme model and its extensions) are
discussed. The chiral soliton model predictions of low-lying dibaryon states qualitatively agree with recent evi-
dence for the existence of narrow dibaryons in reactions of the inelastic proton scattering on deuterons and the
double photon radiation pp  ppγγ. The connection between magnetic moment operators and inertia tensors
valid for arbitrary SU(2) skyrmion configurations allows us to estimate the electromagnetic decay width of
some states of interest. Predictions of a different type are multibaryons with a nontrivial flavor (strangeness,
charm, or bottom), which can be found, in particular, in high-energy heavy ion collisions. It is shown that the
large-B multiskyrmions given by the rational map ansatz can be described within the domain-wall approxima-
tion or as a spherical bag with the energy and the baryon number density concentrated at the boundary. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The chiral soliton approach provides a very eco-
nomical method of describing baryonic systems with
different baryon numbers, starting with several basic
concepts and ingredients incorporated in the model
Lagrangian [1, 2]. The latter is the truncated
Lagrangian of effective field theories widely used in
describing low-energy meson and baryon interactions
[3]. Within this approach, baryons or baryonic systems
appear as quantized solitonic solutions of the equations
of motion characterized by the so-called winding num-
ber or topological charge. If the concept of topological
soliton models is accepted and the baryons are indeed
skyrmions, it is clear why isospin exists in nature: the
number 3 of the SU(2) isospin group generators coin-
cides with the number of space dimensions, thereby
allowing for a correlation between SU(2) chiral fields
and space coordinates resulting in the appearance of
topological solitons.

It has been found numerically that the lowest energy
chiral field configurations possess different topological
properties—the shape of the mass and B-number distri-
bution—for different values of B. A sphere occurs for
the B = 1 hedgehog [1], a torus for B = 2 [4], a tetrahe-
dron for B = 3, a cube for B = 4 [5], and higher polyhe-
drons for greater baryon numbers [5–7]. A paradoxical
feature of the approach is that the baryon/nucleon indi-
viduality is absent in the lowest energy static configura-
tions (we note that any of the known lowest energy con-
figurations can be made of a number of slightly
deformed tori). It is believed that the standard picture of
nuclei must emerge when the nonzero modes motion
(vibration and breathing) is taken into account. Finding
the relative position of states with different quantum

¶This article was submitted by the author in English.
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numbers (spin, isospin, flavor, SU(3) representation,
etc.) requires calculating the zero-mode quantum cor-
rections to the energy of a baryonic system. Corrections
of this type were first calculated for configurations of
the “hedgehog” type [8] and, later, for axially symmet-
ric configurations [9, 10] and for more general configu-
rations for the SU(2) [11] and SU(3) symmetry groups
[12, 13].

The chiral soliton approach provides the concept of
nuclear matter that is different from the commonly
accepted assumption that the nuclear matter is con-
structed from separate nucleons only. To find the
“smoking gun” for this unusual concept, it is necessary
to find some states that cannot be made of separate
nucleons, e.g., because of the Pauli exclusion principle.
The simplest possibility is to consider the B = 2 system,
where the Pauli principle strictly and unambiguously
forbids definite sets of quantum numbers for the system
consisting of separate nucleons.

In this paper, we first discuss the SU(2) case (Sec-
tion 2), where supernarrow low-lying dibaryons were
predicted [14], and estimate their electromagnetic
decay width. We next consider the SU(3) extension of
the chiral soliton model and extend the previous esti-
mates of the spectra of multibaryons with flavor
(strangeness, charm, or bottom quantum number) to
higher baryon numbers, where the necessary theoreti-
cal information on multiskyrmions is available [7]. A
simplified model for large-B multiskyrmions given by
rational maps (RM) [15] is presented that allows us to
establish the relation to the domain-wall or bag approx-
imation (Section 4). The technical details required for
calculations are available in the literature; some of them
are given in the Appendices, where several statements
valid for any chiral soliton are proved and useful
001 MAIK “Nauka/Interperiodica”
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expressions for the SU(2) skyrmion inertia tensors (still
lacking in the literature) are presented.

2. NARROW DIBARYONS 
BELOW THE NNπ THRESHOLD

The topological chiral solitons (skyrmions) are clas-
sical configurations of chiral fields incorporated in a
unitary matrix U ∈  SU(2) or SU(3) and characterized
by the topological or winding number identified with
the baryon number B. The classical energy (mass) of
these configurations Mcl is usually found by minimizing
the energy functional that depends on chiral fields. As
any extended object, skyrmions also possess other char-
acteristics, e.g., inertia moments Θ (inertia tensors in
the general case, see Appendix A), mean square radii of
the mass and baryon number distribution, etc. The
quantization of the zero modes of chiral solitons allows
obtaining the spectrum of states with different values of
quantum numbers: spin, isospin, strangeness, etc. [8–
13]. Because this approach leads to a reasonable
description of various properties of baryons, nucleons,
and hyperons, it is interesting to consider predictions of
the models of this type for baryonic systems with B ≥ 2.
The energy of SU(2) quantized states with the axial
symmetry can be written as [9, 10]

(1)

where I and J are the isospin and the spin of the system,

 is the body-fixed third (or z) component of the
angular momentum, which can be considered as an
additional internal quantum number of the system, and
B = n is the azimuthal winding number for the lowest
energy axially symmetric configurations. This formula,
rigorously obtained from a model Lagrangian [9, 10],
has a very transparent physical interpretation. The tech-
nical details involving the known Lagrangian of the
Skyrme model, expressions for Mcl, inertia tensors, and
some other formulas can be found in Appendix A.

The (generalized) axial symmetry of the configura-
tion with B = 2 leads to a certain constraint on the body-
fixed third components of the isospin and the angular
momentum:

(see [9, 10]). For the states with I = 1 and J = 0, or I = 0
and J = 1, and also I = J = 1, it then follows that

Therefore, the last term in (1), which is proportional to

, is absent in these cases. Because the parity of the
configuration is equal to P = (–1)L [10], all the above

E Mcl
I I 1+( )

2ΘI

-----------------
J J 1+( )

2ΘJ

-------------------+ +=

+
J3

bf( )2

2B2Θ3

---------------- 1
Θ3

ΘI

------– B2Θ3

ΘJ

------– 
  ,

J3
bf

J3
bf nI3

bf– nL–= =

I3
bf J3

bf L 0.= = =

J3
bf 2
JOURNAL OF EXPERIMENTAL
states have a positive parity. For the state with I = 0 and
J = 2, we can have

or

At large B, it can also be shown (see Appendix A) that
only the first two terms in (1), those proportional to
I(I + 1) and J(J + 1), are important in the quantum cor-
rection to the energy.

It was noted a long time ago [9] that the quantum
correction for the deuteron-like state with I = 0, J = 1 given

by  = 1/ΘJ(B = 2) is by approximately 30 MeV smaller
than the correction for the “quasi-deuteron” state with I = 1,

J = 0 given by . This occurs for all
known versions of the model, without any tuning of the
parameters, and can therefore be considered as an
intrinsic property of the chiral soliton models originat-
ing from effective field theories. Further investigations
of nonzero modes of the two-nucleon system have
shown that with many (albeit not all) of them taken into
account, the binding energy of the deuteron can be
reduced to ~6 MeV [16] if it is considered as a differ-
ence between states with the deuteron and the quasi-
deuteron quantum numbers. As previously, we consider
here the differences of the quantized state energies
because they are free of many uncertainties, e.g., those
due to unknown loop corrections to the masses of skyr-
mions (see [17, 18] and discussions below).

In accordance with Eq. (1), some dibaryons are pre-
dicted to be decoupled from the 2-nucleon channel as a
consequence of the Pauli principle [14]. For example,
there is a prediction for the state with the isospin I =
J = 1, positive parity, and the energy below the thresh-
old for the decay into NNπ with

This dibaryon cannot be seen in nucleon–nucleon inter-
actions directly, but can be observed in the reaction
NN  NNγγ, where one photon is required to produce
D and the second appears from the decay of D, e.g.,

The chiral soliton models predict the state D with the
isospin I = J = 1 at the energy about 50–60 MeV above
the NN threshold [14].

In [10], it was shown that the states for which the
sum I + J is even (0, 2, etc.) and the parity is positive
are forbidden by constraints of the Finkelstein–Rubin-
stein type arising as a consequence of the requirement
that the configuration can be presented as a system of
two unit hedgehogs at large relative distances such that
these unit skyrmions possess fermionic properties. This
implies that the configurations that cannot be consid-
ered as consisting of two nucleons were ignored in [10].

I3
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In [14], on the contrary, we abandoned this require-
ment. We also note that the state with I = 0, J = 2, which
was forbidden in [10], can in fact be the 3D2 state of two
nucleons and should not be forbidden by the FR con-
straint. This particular case should therefore be ana-
lyzed more carefully.

It is possible to estimate the width of the radiative
decay D  NNγ. Electromagnetic nucleon form fac-
tors can be described sufficiently well within the
Skyrme soliton model in a wide interval of momentum
transfers [19]. A reasonable agreement with the data
takes place for the deuteron and 2N systems [10], and
therefore, one can expect reasonable predictions for
systems with greater baryon numbers or with unusual
properties. The dimensional estimate of the narrow
dibaryon decay width was made in [14] providing the
lower bound for the decay width given by several eV. To
make a more realistic estimate, one can consider a tran-
sition of the magnetic type, D  NNγ or dγ. The
amplitude of the direct process due to the magnetic
dipole transition can be written as

(2)

where  is the value of the transition magnetic moment
assumed to be of the same order as µp; Fik = eiqk – ekqi

is the electromagnetic field strength; and , φ1, and φ2

are the respective wave functions of the dibaryon and
the nucleons. For the width of this direct decay, we then
obtain

, (3)

which is numerically less than 0.1 eV for

here, ∆ = MD – 2M is the energy release, or the maxi-
mum energy of the emitted photon. This estimate
agrees with that made previously [14], but the final state
interaction could increase it by several orders of magni-
tude.

To roughly take it into account, one must consider
the transition D  d ', where d ' is the spin-zero quasi-
deuteron, or D+  d. At this point, an important state-
ment is that the isovector magnetic transition operator
for any skyrmion is simply related to its mixed, or inter-

ference, inertia tensor . This statement, known in
some particular cases [8, 10], is proved in Appendix B
for arbitrary skyrmions and for any type of chiral soli-
ton models: we show that

(4)

where Raj =  = Tr(A†τaAτj)/2,  are the final rota-
tion matrices, and a is the isotopical (octet in SU(3))
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Dφ1

†φ2,=

µ̃

Ψl
D

Γ D NNγ→ α∆ M2µ̃D NN→
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index (for electromagnetic interaction, we must set a = 3).

 is given in Appendix A.

For configurations with the generalized axial sym-
metry and for several known multiskyrmions, only the
diagonal elements of Θint are different from zero, and
moreover, only the 33-component remains in the axi-
ally symmetric case; we then have

(5)

where  = 2  = 14.8 GeV–1 for B = 2 and the
accepted values of model parameters (see also Table 1).
To obtain numerical values of the transition magnetic
moments, we must calculate the rotation matrix ele-
ments between the wave functions of the initial and

final states. In terms of the final rotation matrices ,
these are given by (see, e.g., [20])

(6)

For the D state, we have I = J = 1 and L = 0, and for the

final d ' state, I = 1 and J = 0. Because R33 = , the
isotopical part of the matrix element for the D  d '
transition is proportional to

(7)

One of the Clebsch–Gordan coefficients vanishes,

 = 0, and therefore, the D  d ' transition
magnetic moment is equal to zero for all states includ-
ing D++ and D0, not only for D+  d '+ (which is triv-
ial); this is a consequence of symmetry properties of the
rotator wave function with L = 0.

For the transition D  dγ, the isotopical part of the

matrix element differs from zero,  = 1/3,
but the angular momentum part proportional to

 is again equal to zero. However, the

decay D+  np is possible as a result of the second-
order isospin violation in the electromagnetic interac-
tion, due to a virtual emission and reabsorption of the
photon and due to the isospin violation by the mass dif-
ference of the u and d quarks. The order of magnitude
estimate of the width of this decay due to the virtual
electromagnetic process is

(8)

which is about ~1 keV. We note that, for the compo-
nents of D with the charge +2 or 0, the decay into the
pp or nn final states is strictly forbidden by the rigorous
conservation of the angular momentum and by the Pauli
principle.
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Table 1.  Characteristics of the bound states of skyrmions with the baryon numbers up to B = 22

B Mcl ΘI ΘI, 3 Γ 〈 r0〉 ωs ωc ωb

1 1.702 2.05 5.55 5.55 5.55 4.80 15 2.51 0.309 1.542 4.82

2 3.26 4.18 11.5 7.38 23 9.35 22 3.46 0.293 1.511 4.76

3 4.80 6.34 14.4 14.4 49 14.0 27 4.10 0.289 1.504 4.75

4 6.20 8.27 16.8 20.3 78 18.0 31 4.53 0.283 1.493 4.74

5 7.78 10.8 23.5 19.5 126 23.8 35 5.10 0.287 1.505 4.75

6 9.24 13.1 25.4 27.7 178 29.0 38 5.48 0.287 1.504 4.75

7 10.6 14.7 28.9 28.9 220 32.3 43 5.72 0.282 1.497 4.75

8 12.2 17.4 33.4 31.4 298 8.9 46 6.15 0.288 1.510 4.79

9 13.9 20.5 37.7 37.7 375 46 47 6.49 0.291 1.517 4.77

12 18.4 28.0 48.5 48.5 636 64 54 7.31 0.294 1.526 4.79

16 24.5 38.9 63.1 63.1 1107 91 63 8.31 0.301 1.543 4.81

17 25.9 41.2 66.1 66.1 1219 96 65 8.48 0.300 1.542 4.81

22 33.7 56.0 84.2 84.2 2027 135 73 9.55 0.308 1.560 4.84

32* 49.1 86.7 118 118 4154 218 87 11.3 0.319 1.585 4.84

The classical mass of solutions Mcl is expressed in GeV; the moments of inertia ΘF, ΘI and ΘI, 3, ΘJ, 〈r0〉 , Γ, and  in GeV–1; and the exci-

tation frequencies for flavor F, ωs, c, b in GeV; 〈r0〉  = ; ΘJ defines the value of the multiskyrmion isoscalar magnetic moment. For higher

baryon numbers, beginning with B = 9, calculations are made using the RM ansatz. For B = 32, it was assumed that the ratio (/B2 = 1.28 as
for the RM B = 22 skyrmion. The external parameters of the model are Fπ = 186 MeV and e = 4.12. The accuracy of calculation is better
than 1% for the masses and several percent for other quantities.

ΘF
0( ) ΘJ Γ̃

Γ̃

rB
2

For the transitions

D++  ppγ, D0  nnγ,

and

D+  (pn)I = 1γ,

the isoscalar magnetic moment operator gives a non-
zero contribution. The corresponding matrix element is

(9)

For the rational map parameterization, we have the
approximate relation

(10)

where  is the mean square radius of the B-number
distribution. Equation (10) coincides with the result in
[8] for B = 1 and is close to the result in [10] for B = 2.
The derivation of (10) that is valid for the rational map
parametrization of skyrmions will be given elsewhere.
The coefficient after J3 in (10) has a remarkably weak
dependence on the baryon number, as can be seen from
Table 1. However, numerically, Eq. (10) gives about

MD d'γ→ ieµ̃D d'→
0

eiklFikΨl
DΨd'†.=

µ̃3
0 J3

B r0
2〈 〉

3ΘJ
--------------,≈

r0
2〈 〉
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half the result for B = 1 in [8] for the parameters taken
here. We thus have

(11)

For the decay width, we then obtain

(12)

Numerically,  ≈ 0.35 GeV–1, and it follows from
(12) that  ≈ 0.3 keV (∆/60 MeV)3. The same
estimate is valid for the decay rate of D+  npγ with
the np system in the I = 1 isospin state.

The experimental evidence for the existence of the
narrow dibaryon D in the reaction pp  ppγγ has
been obtained in Dubna [21], although these data have
not been confirmed in the Uppsala bremsstrahlung
experiment [22]. Even clearer indications for the exist-
ence of low-lying dibaryons were obtained in the exper-
iment at the Moscow meson factory in the reaction
pd  pX [23]. As regards its importance, the confir-
mation of these results is comparable to the discovery
of a new elementary particle. The absence of such states
would provide definite restrictions on the applicability of
the chiral soliton approach and effective field theories.

It should be noted that the model involves a problem
with the lowest state with I = J = 0, which should be

µ̃D d'→
0 2 r0

2〈 〉
3ΘJ

-------------.≈

Γ D d'γ→ α
4µ̃D d'→

2 ∆3

3
------------------------.=

µ̃D d'→

Γ D d'γ→
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lower than the deuteron-like state. The deuteron must
therefore decay into this (0, 0) state and a photon, but a
two-nucleon system in the singlet 1S0 state cannot
decay because the 0  0 transition is forbidden for
the electromagnetic interaction. The loop corrections to
the energy of states, or the Casimir energy [16], are dif-
ferent for states that can go over into two nucleons and
for states that cannot. Their contribution can change the
relative position of these states and shift the (0, 0) state
above the deuteron, but a highly nontrivial calculation
must be done to verify this.

Some low-lying states with strangeness are also pre-
dicted that cannot decay strongly due to the parity and
isospin conservation in strong interactions [14]. For
example, the dibaryon with the strangeness S = –2, I = 0,
and J = 1 and with positive parity has the energy
≈0.17 GeV above the ΛΛ threshold [24], and it cannot
decay into two Λ hyperons because of the Pauli princi-
ple or into the ΛΛ final state by the isospin conserva-
tion. Therefore, the width of the electromagnetic decay
of this state must not exceed several tenths of keV. It is,
of course, a special case. Other possible states with the
flavor s, c, or b are discussed in the next section.

The masses of neutron-rich light nuclides, such as
the tetra-neutron, sexta-neutron, etc., can be estimated
using Eq. (1). For the multineutron state with I = B/2,
the isorotation energy is

and these nuclides are predicted well above the thresh-
old for the strong decay into final nucleons. With
increasing the baryon numbers, the energies of neutron-
rich states with a fixed difference N – Z decrease, and
their widths can therefore be very small. The mass dif-
ference of states with the isospin I and the ground states
with I = 0 (for even B) is equal to

For the pairs of nuclei such as 8Li–8Be, 12B–12C, and
16N–16O, it is equal to

and decreases with increasing B (i.e., the atomic num-
ber), both theoretically (see Table 1 below) and accord-
ing to data. For B = 16, this difference is 10.9 MeV; this
is to be compared with the theoretical value of 15.8 MeV,
which is not bad for such a crude model.

3. FLAVORED MULTIBARYONS

Another characteristic prediction is that of multi-
baryons with different values of flavors, such as the
strangeness, charm, or bottom quantum numbers. The
bound-state approach of multiskyrmions with different

Erot B B 2+( )
8ΘI

----------------------,=

∆E B I,( )
I I 1+( )
2ΘI B,

-------------------.=

∆E B 1,( ) 1
ΘI B,
----------=
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flavors is an adequate method to calculate the binding
energies of states with quantum numbers s, c, or b. The
so-called rigid oscillator model is the most transparent
and controllable version of this method [25]. The refer-
ences to the pioneering papers can also be found in
[26]. For the strangeness quantum numbers, the pre-
dicted binding energies of flavored states are smaller
than the binding energies of ordinary nuclei. For the
charm or bottom quantum numbers, the relation is
reversed. We now present the main results for flavored
multibaryons following [26] and extending them to
higher values of the baryon numbers.

To quantize solitons in the SU(3) configuration
space in the spirit of the bound-state approach to the
description of strangeness, we consider the collective
coordinate motion of the meson fields incorporated into
a matrix U ∈  SU(3) (see Appendix A),

(13)

where U0 is the SU(2) soliton embedded into SU(3) in
the standard way (into the upper left corner); A(t) ∈
SU(2) describes SU(2) rotations; S(t) ∈  SU(3)
describes rotations in the “strange,” “charm,” or “bot-
tom” directions; and O(t) describes rigid rotations in
real space. We have

(14)

where λa are the Gell–Mann matrices of the (u, d, s),
(u, d, c), or (u, d, b) SU(3) groups. The (u, d, c) and
(u, d, b) SU(3) groups are totally similar to the (u, d, s)
one. For the (u, d, c) group, a simple redefinition of the
hypercharge must be made. For the (u, d, s) group,

etc., and for the (u, d, c) group,

etc.
The angular velocities of the isospin rotations are

defined in the standard way as

We do not consider the usual space rotations explicitly
because the corresponding inertia moments for bary-
onic systems are much greater than the isospin inertia
moments (see Table 1), and for the lowest possible val-
ues of the angular momentum J, the corresponding
quantum correction is either exactly zero (for even B) or
small.

The magnitude of the D field is small, at least of the

order 1/ , where Nc is the number of QCD colors.

U r t,( ) R t( )U0 O t( )r( )R† t( ),=

R t( ) A t( )S t( ),=

S t( ) i$ t( )( ), $ t( )exp Da t( )λa,
a 4 … 7, ,=
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D4
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2
-------------------, D5 i

K+ K––

2
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D4
D0 D

0
+

2
-------------------,=

A† Ȧ iw t/2.⋅–=

Nc
SICS      Vol. 93      No. 3      2001



440 KOPELIOVICH
We can therefore safely expand the matrix S in D. To
the lowest order in D, the Lagrangian of the model in
Eq. (A.1) can be written as

(15)

where

Here and below, D is the doublet K+, K0 (D0, D– or B+,
B0) and ΘF is the inertia moment for the rotation into
the “flavor” direction (with F = s, c, or b and the index
c denoting the charm quantum number, except in Nc),

(16)

where f is the profile function of the skyrmion; FD is the
flavor decay constant, i.e., kaon, D meson, or B meson
decay constant; and

(17)

The mass term contribution to the static soliton energy
is related to Γ by

The quantity  arises when the flavor symmetry
breaking is taken into account in flavor decay constants:

(18)

It is related to other calculated quantities by

where  is the second-order contribution to static

mass of the soliton and  is the Skyrme term contri-
bution to the flavor inertia moment. The contribution

proportional to  is suppressed in (15) compared to

the term ~Γ by the small factor ~  and is more
important for strangeness. The term proportional to NcB
arises in (15) from the Wess–Zumino term in the action
and is responsible for the difference of the strangeness
and antistrangeness (in the general case, flavor and anti-
flavor) excitation energies [25, 26].
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Following the canonical quantization procedure, we
write the Hamiltonian of the system including the terms

of the order  as [25]

(19)

where Π is the canonically conjugate momentum to the
variable D that describes the oscillator-type motion of
the (u, d) SU(2) soliton in the SU(3) configuration
space. After the diagonalization that can be done
explicitly [25], the normal-ordered Hamiltonian can be
written as

(20)

where a† and b† are the creation operators of the
strangeness (i.e., of antikaons) and antistrangeness (fla-
vor and antiflavor) quantum numbers, and ωF, B and

 are the frequencies of flavor (antiflavor) excita-
tions. D and Π are related to a and b by [25]

(21)

with

For the lowest states, the values of D are small:

they increase as (2|F | + 1)1/2 with increasing flavor
number |F |. As noted in [25], deviations of the field D
from the vacuum decrease with increasing mass mD, as
well as with increasing number of colors Nc, and the
method works for any mD (and also for charm and bot-
tom quantum numbers). We have

(22)

It was observed in [26] that, to the leading order in Nc,
the difference

Nc
0
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1
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+ Γ BmD
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2 Fπ
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HB Mcl B, ωF B, a†a ωF B, b†b O 1/Nc( ),+ + +=
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Di bi a†i
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-------------------------, Π i NcBκF B, bi a†i
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Table 2.  The binding energy differences ∆es, c, b for the states with the isospin I = Tr + |F|/2

B ∆es = –1 ∆ec = 1 ∆eb = –1 ∆es = –2 ∆ec = 2 ∆eb = –2

2 –0.047 –0.03 0.02 –0.053 –0.07 0.02

3 –0.042 –0.01 0.04 –0.036 –0.03 0.06

4 –0.020 0.019 0.06 –0.051 0.022 0.10

5 –0.027 0.006 0.05 –0.063 0.001 0.08

6 –0.019 0.016 0.05 –0.045 0.023 0.10

7 –0.016 0.021 0.06 –0.041 0.033 0.11

8 –0.017 0.014 0.02 –0.040 0.021 0.03

9 –0.023 0.005 0.03 –0.10 –0.003 0.06

12 –0.021 0.003 0.02 –0.09 –0.004 0.04

17 –0.027 –0.013 0.00 –0.11 –0.03 –0.00

22 –0.034 –0.028 –0.03 –0.14 –0.06 –0.03

The binding energy differences ∆es, c, b are the changes of binding energies of the lowest baryon system with the flavor s, c, or b and the iso-
spin I = Tr + |F|/2 compared to the usual u, d nuclei, for the flavor numbers S = –1, –2, c = 1, 2, b = –1 and –2 (see Eq. (24)). The SU(3) mul-
tiplets are (p, q) = (0, 3B/2) for even B and (p, q) = (1, (3B – 1)/2) for odd B.
coincides with the expression obtained in the collective
coordinate approach [24].

The flavor symmetry breaking (FSB) in the flavor
decay constants, i.e., the fact that FK/Fπ ≈ 1.22 and
FD/Fπ = 1.7 ± 0.2 (where we take FD/Fπ = 1.5 and
FB/Fπ = 2), leads to the increase in the flavor excitation
frequencies, in better agreement with the data for charm
and bottom. It also leads to some increase in the binding
energies of baryon system [26].

The values of  shown in Table 1 are 1/3 of the
trace of the corresponding inertia tensor (see Appendix A).
As can be seen from Table 1, the flavor excitation ener-
gies increase again for the largest value B = 22, and the
important property of binding becomes weaker for
higher B. However, this can be an artifact of the RM
approximation discussed in the next section. In particu-
lar, for B ≥ 9, the inertia moments ΘI and Θ3 are 1/3 of
the trace of the corresponding inertia tensors (see
Appendix A).

For large values of FD/Fπ = ρD and the mass mD, the
following approximate formula for the flavor excitation
frequencies can be obtained:

(23)

with  =  + /ΓB. It is clear from (23) that ω’s
are smaller than the meson masses mD, and therefore,
the binding always occurs and is to a large degree due
to the contribution of the Skyrme term to the flavor iner-

tia . As ρD  ∞, it follows that ωF  mD.

Because the ratio  decreases with increasing B
and ΘF, B/ΓB increases as B increases from 1 to 4–7, the

ΘJ

ωF B, m̃D 1 2
ΘF B,

Sk

ρD
2 Γ B

-------------–
 
 
  NcB

2ρD
2 Γ B

----------------–≈

m̃D
2 mD

2 Fπ
2 Γ̃ B

ΘF
Sk

Γ̃ B/Γ B
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energies ωF, B decrease for these B numbers, thereby
leading to the increase in the binding of flavored
mesons by SU(2) solitons with increasing B up to 4–7.
However, for B = 22 and 32, the ratio ΘF, B/ΓB is smaller
than for B = 1, and indeed, ω’s are the same and even
larger than for B = 1.

The binding energy differences between flavored
multibaryons and ordinary nuclei in the rigid oscillator
approximation are given by

(24)

and the lowest SU(3) multiplets are considered with the
isospin of the flavorless component Tr = 0 for even B
and Tr = 1/2 for odd B. This formula is correct for |F| = 1
and for any |F | if the baryon number is sufficiently large
to ensure the isospin balance.

The values of ∆e shown in Table 2 must be consid-
ered as an estimate. They illustrate the restricted possi-
bilities of the RM approximation for large-B multiskyr-
mions.

The isosinglet baryon systems, in particular, those
with |F | = B, are of special interest. As argued in [26],
these states do not belong to the lowest possible SU(3)
irreducible representations; they must have Tr = |F |/2.
It makes sense to calculate the difference between
the binding energy of this state and the minimal state

∆eB F, F ωF 1, ωF B,
3 κF 1, 1–( )
8κF 1,

2 ΘF 1,

---------------------------––=

–
Tr κF B, 1–( )
4κF B, ΘF B,

----------------------------
F 2+( ) κF B, 1–( )2

8κF B,
2 ΘF B,

-----------------------------------------------– ,
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Table 3.  The binding energy differences for the states with the isospin I = 0

B ∆es = –1 ∆ec = 1 ∆eb = –1 ∆es = –2 ∆ec = 2 ∆eb = –2 ∆es = –3 ∆ec = 3 ∆eb = –3 ∆eb = –B

2 – – – –0.075 –0.03 0.02 – – – –0.07

3 0.000 0.034 0.07 – – – –0.08 0.002 0.09 –0.08

4 – – – –0.047 0.030 0.09 – – – –0.13

5 –0.003 0.032 0.06 – – – –0.06 0.035 0.12 –0.15

6 – – – –0.044 0.025 0.09 – – – –0.21

7 0.000 0.040 0.07 – – – –0.04 0.068 0.15 –0.20

8 – – – –0.039 0.023 0.03 – – – –0.28

12 – – – –0.046 0.00 0.03 – – – –0.50

17 –0.020 –0.01 –0.00 – – – –0.08 –0.04 –0.01 –0.82

22 – – – –0.073 –0.06 –0.06 – – – –1.3

32* – – – –0.088 –0.11 –0.13 – – – –

The binding energy differences between the lowest flavored baryon system with the isospin I = 0 and the ground state with the same value
of B and I = 0 or I = 1/2. The first three columns are for |F| = 1, the next three columns for |F| = 2, and the next three for |F| = 3. The state
with the flavor value |F| belongs to the SU(3) multiplet with Tr = |F|/2. In the last column, the binding energy differences are shown for the
isoscalar electrically neutral states with S = –B. For |F| ≥ 3, all estimates are very approximate.
(pmin, qmin) with zero flavor, which we identify with the
standard nucleus (the ground state). We have

(25)

where  = 0, or 1/2 as above.

According to Table 3, the total binding energy, e.g.,
of the state with B = 22 and S = –2 is smaller than that
of the nucleus with A = 22 by 73 MeV, and this state
must therefore be well bound. The model used here is
too crude for large flavor values, and the results
obtained can be used only as an illustration and as a
starting point for further investigations. Similar results
are also obtained in other versions of the model [27], in
particular, in the quark-meson soliton model [28]. For
the baryon numbers B = 3, 4, estimates of the spectra of
baryonic systems with the charm quantum number
were made in [29] within the conventional quark
model. They are in a relatively good agreement with
ours.

In the channel with B = 2, the near-threshold state
with the strangeness S = –1 was observed a long time
ago in the reaction pp  pΛK+ [30] and recently con-
firmed in the COSY experiment [31]. A similar near-
threshold ΛΛ state was observed by the KEK PS E224
collaboration [32]. The Skyrme model explains these
near-threshold states with B = 2 and predicts similar
states for higher values of B. For some values of B

∆eB F, F ωF 1, ωF B,
3 κF 1, 1–( )
8κF 1,

2 ΘF 1,

--------------------------––=

+
F 2+( ) κF B, 1–( )

8κF B,
2 ΘF B,

---------------------------------------------

–
1

2ΘT B,
-------------- F F 2+( )

4
--------------------------- Tr

min Tr
min 1+( )– ,

Tr
min
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beginning with B ≥ 5, 6, such states with several units
of strangeness can be stable with respect to strong inter-
actions. Because of the well-known relation Q = I3 +
(B + S)/2 between the charge, the isospin, and the
hypercharge of hadrons, the baryon system with several
units of strangeness can appear as negatively charged
nuclear fragments. For even B and the minimal multiplets
(p, q) = (0, 3B/2), the strangeness is S = –2I, and the con-
dition for the Q = –1 fragment to appear is –1 = S + B/2 or
−S = B/2 + 1. For B = 6, this gives S = –4; for B = 8,
S = –5; etc. For odd B, the Q = –1 state must have the
strangeness

i.e., –3, –4, and –5 for B = 5, 7, and 9, etc.
The negatively charged long-lived nuclear fragment

with the mass about 7.4 GeV observed in the NA52
CERN experiment in a Pb + Pb collision at the energy
158A GeV [33] can be, within the chiral soliton mod-
els, a fragment with B = 7 or 6 and the strangeness S =
–4 or –5, –6. The confirmation of this result and the
search for other negatively charged fragments would be
of great importance. For the charm or bottom quantum
numbers, the binding energies are greater, but observ-
ing these states requires considerably higher incident
energies.

4. LARGE-B MULTISKYRMIONS 
FROM RATIONAL MAPS

IN THE DOMAIN-WALL APPROXIMATION

The treatment of multiskyrmions was considerably
simplified by extensively using the rational map ansatz
proposed in [15] (and also adopted in the present
paper). At the same time, this ansatz leads to the picture
of the multibaryon system at large B that is probably

S B 1–( )/2 1,+=
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incompatible with the picture for ordinary nuclei. To
clarify this point, we here consider large-B multiskyr-
mions in some kind of a toy model—in the domain-wall
approximation; in spite of its simplicity, this model
gives relatively good numerical results for the known
RM multiskyrmions except those with B = 1, 2. Within
the rational map ansatz [15], the energy of the skyrmion
is given by

(26)

in the universal units 3π2Fπ/e.

The coefficient AN = 2(N – 1)/N corresponds to the
symmetry group SU(N) [34]. For SU(2), the quantity (
is given in Appendix A. There is the inequality ( ≥ B2.
Direct numerical calculations have shown and our ana-
lytical treatment supports that, at large B and, hence,
large (, the multiskyrmion looks like a spherical ball
with the profile given by f = π inside and f = 0 outside
the ball. The energy and the B-number density of this
configuration is concentrated at its boundary, similarly
to the domain wall system considered in [35] in connec-
tion with cosmological problems.

We consider such a large-B skyrmion within the
“inclined step” approximation. If W is the width of the
step and r0 is the radius of the skyrmion (where the pro-
file is given by f = π/2), we have

f = π/2 – (r – r0)π/W for r0 – W/2 ≤ r ≤ r0 + W/2.

We note that this approximation describes the usual
domain wall energy [35] with the accuracy ~9%.

We write the energy in terms of W and r0 and then
minimize it with respect to both these parameters and
find the minimum energy value. With

(27)

this gives

(28)

and, after the minimization,

In dimensional units, we then have

Because ( ≥ B2, the radius of the minimized configura-

tion grows at least as . It follows that Wmin = π,
which is therefore independent of B for any SU(N). The
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energy is given by

(29)

For the SU(2) model, AN = 1 and the energy Mmin =

(2B + )/3 should be compared with the lower

bound MLB = (2B + )/3. The formula gives the num-
bers for B = 3, …, 22 in a remarkably good agreement
(within 2–3%) with the calculation within the RM
approximation [7].

It is not difficult to calculate the corrections to these
expressions, of the relative order 1/B, 1/B2, …:

(30)

where

It follows that

(31)

However, the first-order correction in W does not
improve the description of masses, and the summation
of all terms seems to be required.1 

We thus see that a very simple approximation con-
firms the picture emerging from the numerical calcula-
tion of the RM skyrmion as a two-phase object, a spher-
ical ball with the profile f = π inside and f = 0 outside
the ball, and a fixed-width envelope with the fixed sur-
face energy density,

We also consider the effect of the mass term. It gives
the contribution

(32)

where

1 Detailed analytical treatment of multiskyrmions performed by the
author in Pis’ma v ZhETF 73, 667 (2001) [JETP Lett. 73, 587
(2001)] confirms the results and conclusions of this section.
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For the strangeness, charm, or bottom, the masses mK,
mD, or mB must be inserted instead of mπ. In the
“inclined step” approximation, we then obtain

(33)

In view of this structure of the mass term, it does not
affect the width of the step W in the lowest order, but the
dimension of the soliton r0 becomes smaller:

(34)

As was expected from general grounds, dimensions of
the soliton decrease with increasing . However, even
for large values of , the structure of the multiskyr-
mion remains the same at large B: it is given by the
phase with the broken chiral symmetry inside the
spherical wall where the main contribution to the mass
and topological charge is concentrated. The behavior of
the energy density for B = 22 at different values of µ is
shown in the figure. The value of the mass density
inside the ball is completely determined by the mass
term with 1 – cf = 2. The baryon number density distri-
bution is quite similar, with the only difference that it is
equal to zero inside the bag. It follows from these
results that the RM-approximated multiskyrmions can-
not model real nuclei at large B, probably for B > 12–20,
and configurations of the skyrmion crystal type may be
more appropriate for this purpose.

In addition to the simple one-shell configurations
considered in [7, 15] and here, multishell configura-
tions can also be interesting. Some examples of two-
shell configurations with B = 12, 13, 14 were consid-
ered recently [36]. For these configurations, the profile
is given by f = 2π at r = 0 and decreases to f = 0 as r 
∞. We can also model this two-shell configuration in
the domain-wall or spherical bag approximation with
the result

(35)

M.t. m̃
2
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---r0

3 O W2( )+ .≈

r0 r0 m̃
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2 B ANr0
2+( )

4πB
-------------------------------.–
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3
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r, 1/Fπe

2
ρ M

c

b

a

The mass density distribution of the rational map multiskyr-
mion with B = 22 as a function of the distance from the cen-
ter of the skyrmion for different values of mass in the chiral
symmetry-breaking term; (a) pion mass in the mass term;
(b) kaon mass, (c) D-meson mass; the mass density is
divided by 10.
JOURNAL OF EXPERIMENTAL
with the total baryon number B = B1 + B2. The profile f
decreases from 2π to π in the first shell and from π to 0
in the second. The radii of both shells must satisfy the
condition

and the external shell must therefore be sufficiently
large, with the baryon number B2 given by several tens
at least. Because the ratio (/B2 is larger for smaller B,
the energy in Eq. (35) is greater than the energy of the
one-shell configuration considered before. Calculations
performed in [36] also did not improve the results
obtained for the one-shell configuration. However, a
more refined analysis would be of interest. The obser-
vation concerning the structure of large-B multiskyrmi-
ons made above can be useful in view of possible cos-
mological applications of Skyrme-type models.

5. CONCLUDING REMARKS

We have restricted ourselves to the Skyrme model
and its straightforward extensions. However, many of
the result are valid in other versions of the model, e.g.,
in the model with solitons stabilized by the explicit vec-
tor (ω) meson or by the baryon number density squared,
in the chiral perturbation theory, etc.; see the discussion
in the second paper in [14]. The B = 2 toruslike config-
uration has been obtained within these models and in
the chiral quark-meson model [28], and it would be
interesting to check if there also exist multiskyrmions
with B ≥ 3.

We did not discuss a special class of SU(3) skyrmi-
ons, the SO(3) solitons and the problem of their obser-
vation. The relevant discussion can be found in [12, 13].

To conclude, the study of some processes, including
those at intermediate energies, which to some extent are
out of fashion now, can provide a very important check
of fundamental principles and concepts of the elemen-
tary particle theory including the confinement of quarks
and gluons. Confirming the predictions of the chiral
soliton approach would give a qualitatively new under-
standing of the origin of nuclear forces. If the existence
of low-energy radiatively decaying dibaryons is reli-
ably established, it will change the long-standing belief
that nuclear matter fragments necessarily consist of
separate nucleons bound by their interactions. It is
therefore extremely important to confirm and check the
results of experiments on the dibaryon production and
on the production of fragments of flavored matter. This
would be possible at accelerators of moderate energies,
like COSY (Juelich, Germany), KEK (Japan), Moscow
meson factory (Troitsk, Russia), ITEP (Moscow), and
several others. The production of multistrange states
and the states with charm or bottom quantum numbers
is possible in heavy ion collisions and also in accelera-
tors like the Japan Hadron Facility to be built in the near
future.

r0
2( ) r0

1( ) W ,+≥
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The multiple flavor production realized in the pro-
duction of flavored multibaryons that is possible, e.g.,
in heavy ion collisions certainly requires higher energy,
but multiple interaction processes and the normal Fermi
motion of nucleons inside the nuclei make the effective
thresholds much lower [37]. It would allow more com-
plete and reliable verification of the model predictions.

We finally note that low-energy dibaryons were
recently obtained in [38] using a quantization proce-
dure different from ours.
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APPENDIX A

Inertia Tensors of Multiskyrmions

The Lagrangian density of the SU(2) Skyrme model
is given by

(A.1)

where Lµ = ∂µUU† is the left chiral derivative, Lµ =
iLµ, kτk, τk are the Pauli matrices, and Gµν = ∂µLν – ∂νLµ
is the chiral field strength. The Wess–Zumino term
present in the action was discussed in detail in [13], and
we omit this discussion here.

We first give the expression for the energy of the
SU(2) skyrmion as a function of the profile f and the
unit vector n, which is especially useful in some cases.
Using the definition U = cf + isfn · t and the relation

(A.2)

we obtain

(A.3)

For the ansatz based on rational maps, the profile f
depends on only the variable r, and components of n
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depend on only the angular variables θ, φ. We have

where R is a rational function of the variable z =
exp(iφ) defining a map S2  S2. In this case,

the gradients of f and n are orthogonal (recall that ∇ r =
nr∂r + nθ∂θ/r + nφ∂φ/(rsθ), nr = r/r = (sθcφ, sθsφ, cθ),
nθ = (–cθcφ, –cθsφ, sθ), and nφ = (sφ, –cφ, 0)) and [∇ f ×
∇ n1]2 = f '2(∇ n1)2, etc. Using the relations

(A.4)

we can rewrite (A.3) as

(A.5)

Introducing the notation

(A.6)

and using the equation

(A.7)

we finally obtain

(A.8)

To find the minimum energy configuration at fixed 1 =
B, one minimizes ( and then finds the profile f(r) by
minimizing energy (A.8).

To quantize zero modes, we use the ansatz
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and the obvious relation

(A.9)

where ri(t) = Oik(t)rk are body-fixed coordinates.

The angular velocities of spatial (or orbital) rota-
tions are introduced as

and the integration is performed in the coordinate sys-
tem bound to the soliton (body-fixed).

The rotation or the zero-mode energy of SU(2) skyr-
mions as a function of the angular velocities is

(A.10)

The isotopic inertia tensor for an arbitrary SU(2) skyr-
mion is given by

(A.11)

For the RM ansatz, the trace of this inertia tensor is

(A.12)

The orbital inertia tensor gives the contribution to

the energy ; using the same notation for an
arbitrary configuration, we have

(A.13)
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†

+= =

+ ṙt t( )A∂iU r t( )( )A†,
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For the RM ansatz, this expression can be simplified as

(A.14)

This allows us to obtain the trace of the inertia tensor

(A.15)

It is easy to establish the inequality for traces of iso-
topic and orbital inertia tensors

(A.16)

because ( ≥ B2. The interference (mixed) inertia tensor,
which also defines the isovector part of the magnetic
transition operator, is equal to

(A.17)

The components of the spatial angular velocities inter-
fere only with the components ω1, ω2, ω3 of the angular
rotation velocities in configuration space.

Numerically, the components of the mixed inertia
tensor are much smaller than those of the isotopic or
orbital inertia tensor, except in special cases of “hedge-
hogs,” where

and the axially symmetric configurations where the
third components of inertia tensors satisfy the relations

We finally note that the most general formulas for
inertia tensors are presented here for the first time. For
the RM configurations, they differ in some details from
those given in the literature.
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APPENDIX B

Electromagnetic Transition Operators

For completeness, we here prove some statements
concerning the isovector (octet in the SU(3) case) vec-
tor charge and the isovector magnetic moment operator
in the general form.

The isovector current and the isospin generator are
related by

(B.1)

where in the body-fixed coordinate system (connected
with the soliton), the isospin generator is

(B.2)

We have a, b = 1, 2, 3 for the SU(2) model and a, b =
1, …, 8 for the SU(3) model. To prove this, we consider
the ansatz

(B.3)

The Noether vector current is the coefficient before the
derivative of the probe function, ∂µα. In the lowest
order in α, we obtain the chiral derivative

(B.4)

Using the definition of the rotation angular velocities
ωa in configuration space, we obtain

(B.5)

where

(B.6)

is a real orthogonal matrix. Because the dependence on
 reduces to a simple addition to angular velocity in

accordance with (B.5), Eq. (B.1) follows immediately.
Because of the well known relation

(B.7)

the baryonic (topological) charge and the third compo-
nent of the isospin generator contribute to the charge of
the quantized skyrmion.

We also prove that there is a simple relation between
the isovector (octet for the SU(3) model) magnetic
momentum operator of the skyrmion and the mixed
(interference) inertia tensor. We first note that because
of the Lorentz invariance, the Lagrangian of an arbi-
trary chiral model, not only the Skyrme model, can be

V0 a,
1
2
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V0 3,
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presented as a linear combination of contributions of
the form

(B.8)

where M and N are some matrices. For example, M =
N = 1 for the second-order term. The contribution of the
first term in (B.8) to the rotational energy that is propor-
tional to Ω and ω and therefore defines the mixed
(interference) inertia tensor is (see (A.9))

(B.9)

where  = A†MA and  = A†NA. Thus,

(B.10)

where rj(t) and ∂k are body-fixed. From the second term
in (B.8), we obtain the spatial components of the vector
current,

(B.11)

Recalling that

we obtain

(B.12)

By definition,

(B.13)

or

(B.14)

Because

we obtain the sought relation between components of
the magnetic moment operator and the mixed inertia
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tensor in the body-fixed coordinate system:

(B.15)

In some particular cases, this relation was used pre-
viously [8, 10].

To calculate the transition matrix elements, it is nec-
essary to average this expression over wave functions
of some initial and final states (see Section 2).
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Abstract—We completely analyze the model-independent leading radiative corrections to the cross section and
polarization observables in the semi-inclusive deep-inelastic electron–nucleus scattering with the detection of
a proton and the scattered electron in coincidence. The calculations are based on representing the spin-indepen-
dent and spin-dependent parts of the cross section in terms of the electron structure functions similarly to the
Drell–Yan-like representation in electrodynamics. As the applications, we consider the polarization transfer
effect from a longitudinally polarized electron beam to the detected proton and the scattering by a polarized
target. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Current experiments at the new-generation electron
accelerators have reached a new level of precision. This
precision requires a new approach to the data analysis
and the inclusion of all possible systematic uncertain-
ties. One of the important sources of systematic uncer-
tainties is the electromagnetic radiative effects caused
by physics processes in the next orders of perturbation
theory.

The purpose of this paper is to develop a unified
approach to the computation of radiative effects for the
inelastic scattering of polarized electrons in the coinci-
dence setup, namely, in the case where one produced
hadron is detected in coincidence with the scattered
electron. A broad range of measurements fall into the
category of the coincidence electron scattering experi-
ments. This includes deep-inelastic semi-inclusive lep-
toproduction of hadrons, (e, e'h), and quasielastic
nucleon knock-out processes, (e, e'N). Experiments of
the former class give access to the flavor structure of
quark–parton distributions and fragmentation func-
tions. They are in the focus of experimental programs at
CERN, DESY, SLAC, and Jefferson Lab. Some exper-
iments have already been completed, and some are in
preparation. The detailed modern review of the activi-
ties can be found in [1]. The quasielastic nucleon
knock-out process allows studying single-nucleon
properties in nuclear medium and probing the nuclear
wave function [2, 3].

The different theoretical aspects of strong interac-
tions in the semi-inclusive deep-inelastic scattering

¶This article was submitted by the author in English.
1063-7761/01/9303- $21.00 © 20449
(DIS) were studied in a number of papers [4, 5]. The
most direct experimental probe of the momentum dis-
tribution in nuclei that is presently available is provided
by the reaction A(e, e'N)B (see reviews [6]). Specific
polarization effects in reactions of this type have been
investigated in [7] at the level of the Born approxima-
tion with respect to the electromagnetic interaction.

There are several papers dealing with radiative
effects for coincidence experiments. The lowest order
correction was treated in [8] using the approach of the
covariant cancellation of infrared divergences. The
leading logarithmic correction was studied in [9] for the
charm production. Finally, the radiative correction in
quasielastic scattering was recently studied in [10]. Dif-
ferent approaches were used in calculations, and differ-
ent approximations have been applied. These calcula-
tions adopted some specific models for the structure
functions. Because the current experimental data do not
cover sufficiently wide kinematical ranges, the extrap-
olation and interpolation procedures must be used in
calculating radiative effects. Therefore, the model
dependence of the results reduces their generality and
hence their applicability. Furthermore, higher order
effects, which are important at the current level of the
experimental accuracy, were not systematically consid-
ered.

The method of the electron structure functions [11]
allows the same treatment to be applied to the observed
cross section in the lowest order and in higher orders.
This results in clear and physically transparent formu-
las for radiative effects. In this paper, we restrict our
consideration to the leading accuracy. This allows us to
avoid choosing a preferred model for the hadron struc-
001 MAIK “Nauka/Interperiodica”
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ture functions and thus to obtain some general formulas
for a wide class of physical processes. Whenever needed,
the next-to-leading order correction to some specific pro-
cess can be obtained by the standard procedure. Good
examples are the recent calculations of the leading order
and the next-to-leading order corrections to polarization
observables in DIS [12] and elastic [13] processes.

In this paper, we consider the model-independent
radiative corrections to the cross section and polariza-
tion observables in the semi-inclusive deep-inelastic
scattering of the longitudinally polarized electron off
nucleus targets in the case where the target and the
detected hadron can be polarized. In Section 2, we use
the electron structure function approach to calculate the
radiative corrections and to derive the master formulas
for the radiatively corrected spin-independent and spin-
dependent parts of the corresponding cross sections in
the form of the Drell–Yan-type representation in elec-
trodynamics [14]. The result of this section is applica-
ble to leptonic variables if the scattered electron is
detected. In Section 3, we apply our master formulas to
the case where the polarization of the final nucleon is
measured. The radiative corrections to the semi-inclu-
sive DIS on the nucleus target with a vector polarization
are calculated in Section 4. In Section 5, we apply our
approach to describe the effects of the polarization
transfer from the target to the detected nucleon. These
effects include the double-spin (hadron–hadron) and
triple-spin (electron–hadron–hadron) correlations. In
Section 6, we derive the modification of the master for-
mulas for hadronic variables (when the total 4-momen-
tum of all the hadrons is measured instead of the scat-
tered electron) and consider some applications. In Con-
clusion, we briefly discuss the extension of our results
for the radiatively corrected polarization observables
beyond the leading-log accuracy.

2. THE MASTER FORMULA

In the recent experiment [15], the polarization trans-
fer to the detected proton was measured in the process

with the longitudinally polarized electron beam 16O( ,

e, )15N. This reaction is a particular case of the more
general semi-inclusive deep-inelastic polarized process

(1)

In this paper, we clarify the problem of calculating the
electromagnetic radiative corrections to the cross sec-
tion and polarization observables in a process of this
type within the framework of the electron structure
function approach.

For process (1) with a definite spin orientation of the
proton detected in the final state, we define the cross
section in terms of the leptonic and hadronic tensors as

(2)

e

p

e
–

k1( ) A p1( ) e– k2( ) p p2( ) X .+ + +

dσ α2

2SA 1+( )V 2π( )3
-----------------------------------------

LµνHµν

2q̂4
-----------------

d3k2

ε2
----------

d3 p2

E2
-----------,=
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where SA is the target spin, ε2(E2) is the energy of the
scattered electron (the detected proton), and  is the
4-momentum of the virtual photon that probes the had-
ron block. The hadronic tensor can be expressed
through the hadron electromagnetic current Jµ as

where Px is the total 4-momentum of the undetected
hadron system and Mx is its invariant mass.

The electron structure function approach leads to
the summation of the leading-log contributions to the
leptonic tensor in all orders of the perturbation theory.
These contributions arise because of the radiation of the
hard collinear as well as the soft and virtual photons
and the electron–positron pairs by electrons in the ini-
tial and final states. In the leading approximation, the
electron tensor on the right-hand side of Eq. (2) can be
written as [16]

(3)

where the respective structure functions D(x, Q2) and
Dλ(x, Q2) describe the radiation of the unpolarized and
the longitudinally polarized electrons. At the level of
the next-to-leading accuracy, these functions already
differ in the first order of the perturbation theory, but in
the framework of the leading approximation used here,
they only differ in the second order. This difference is
caused by the leading contribution of the e+e–-pair pro-
duction in the singlet channel to the D function (the
effect of the final electron identity). For the unpolarized
and longitudinally polarized electron, these contribu-
tions are different and are given by [16] (KMS), [17]

where me is the electron mass.
Taking the singlet channel contribution into account

usually leads to very small effects (of the order 10–4)

q̂
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B

k̂1 k̂2,( )+[ ] ,

Q2 k1 k2–( )2, k̂1– x1k1, k̂2
k2

x2
-----,= = =

DS αL
2π
------- 

 
2 2 1 x3–( )

3x
-------------------- 1 x–

2
----------- 1 x+( ) xln+ + ,=

L
Q2

me
2

------,=

Dλ
S αL

2π
------- 

 
2 5 1 x–( )

2
------------------- 1 x+( ) xln+ ,=
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because, as one can see, the terms inside the brackets
tend to compensate each other (see, e.g., [18]). In what
follows, we do not distinguish between D and Dλ,
which corresponds to taking only the nonsinglet chan-
nel contribution into account (for the corresponding D
functions, see [17, 18]). This approximation allows us
to write compact formulas for the radiatively corrected
cross sections. We also omit the quantity Q2 from the
arguments of the D functions.

The quantity λ entering the right-hand side of
Eq. (3) is the degree of the longitudinal polarization of
the electron beam. The integration limits are defined
below. Representation (3) follows from the quasireal
electron approximation [19]. The physical interpreta-
tion of the variables x1 and x2 is as follows: 1 – x1 = ω/ε1
is the ratio of the energy of all the collinear photons
and the e+e− pairs radiated by the initial electron to the
energy of that electron, and (1 – x2)/x2 is a similar ratio
for the scattered electron.

In the Born approximation, we have

(4)

In the general case, the hadronic tensor on the right-
hand side of Eq. (2) depends on the 4-momenta p1, p2,

the virtual photon 4-momentum  =  – , and the
4-vector of the hadron spin S that satisfies the condi-
tions S2 = –1 and (Sp2) = 0. For example, in the case
under consideration,

(5)

(6)

where hi (i = 1–18) are the hadron semi-inclusive struc-
ture functions that depend on four invariants in general.

Qµν
B k1 k2,( ) q2gµν 2 k1k2( )µν,+=

Eµν
B k1 k2,( ) 2 µνk1k2( ),=

µνk1k2( ) eµνρσk1ρk2σ,=

k1k2( )µν k1µk2ν k1νk2µ, q+ k1 k2.–= =

q̂ k̂1 k̂2

Hµν Hµν
u( ) Hµν

p( ),+=

Hµν
u( ) h1g̃µν h2 p̃1µ p̃1ν h3 p̃2µ p̃2ν+ +=

+ h4 p̃1 p̃2( )µν ih5 p̃1 p̃2[ ] µν,+

Hµν
p( ) S p1( ) h6 p̃1N( )µν ih7 p̃1N[ ] µν+[=

+ h8 p̃2N( )µν ih9 p̃2N[ ] µν+ ] Sq̂( ) h10 p̃1N( )µν[+

+ ih11 p̃1N[ ] µν h12 p̃2N( )µν ih13 p̃2N[ ] µν+ + ]

+ SN( ) h14g̃µν h15 p̃1µ p̃1ν h16 p̃2µ p̃2ν+ +[
+ h17 p̃1 p̃2( )µν ih18 p̃1 p̃2[ ] µν+ ] ,

Nµ eµνρσ p1ν p2ρq̂σ µ p1 p2q̂( ),= =

ab[ ] µν aµbν aνbµ,–=

g̃µν gµν
q̂µq̂ν

q̂2
-----------, p̃iµ– piµ

q̂ pi( )q̂µ

q̂2
------------------, i– 1 2,,= = =
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These invariants can be taken as , ( p1), ( p2), and
(p1p2).

The j component of the proton polarization Pj that
could be measured experimentally is defined as the
ratio of the spin-dependent part of cross section (2)
(which is caused by the contraction of the leptonic ten-
sor with the spin-dependent part of the hadronic one

, with the given j component of the proton spin) to
the spin-independent one (which is caused by the con-

traction of Lµν with ),

(7)

We note that Pj is nonzero even if λ = 0 (the case of the
unpolarized electron beam) because of nonzero single-
spin correlations in semi-inclusive processes.

In principle, three independent components can be
measured in process (1): Pl (longitudinal), Pt (trans-
verse), and Pn (normal), which could be taken relative
to the definite physical directions and planes created by
3-momenta of the particles participating in the process.
If no additional particle (photons and e+e– pairs) radi-
ated by electrons with the 4-momenta k1 and k2 is
detected, there are three independent directions along
p2, k1, and k2. In this case, any component of the proton
polarization and the corresponding proton spin compo-
nents Sj are defined for the Born kinematics and their
directions are not affected by the radiation.

Combining formulas (2) for the cross section and
definitions (3) and (4) of the lepton and (5) and (6) of
the hadron tensors and taking the above discussion into
account, we can write the cross section of process (1) as

(8)

where j = l, t, n. The factor 1/x1 that enters the definition
of Lµν is absorbed into the flow in the reduced Born
cross section that is by definition given by (see Eq. (2))

where  = x1V. Within the chosen accuracy, represen-
tation (8) is valid for both the spin-dependent (dσ(p))
and spin-independent ((dσ(u)) parts of the cross section.

q̂2 q̂ q̂

Hµν
p( )

Hµν
u( )

P j dσ p( ) λ S j k1 k2 p1 p2, , , , ,( )

dσ u( ) λ k1 k2 p1 p2, , , ,( )
------------------------------------------------------------.=

ε2E2

dσ λ S j k1 k2 p1 p2, , , , ,( )
d3k2d3 p2

-------------------------------------------------------
x1 x2dd

x2
2

----------------D x1( )D x2( )∫∫=

× ε̂2E2

dσB λ S j k̂1 k̂2 p1 p2, , , , ,( )
d3k̂2d3 p2

----------------------------------------------------------,

ε̂2E2

dσB λ S j k̂1 k̂2 p1 p2, , , , ,( )
d3k̂2d3 p2

---------------------------------------------------------- α2

2SA 1+( )V̂ 2π( )
3

----------------------------------------=

×
Lµν

B k̂1 k̂2 λ, ,( )Hµν SJ q̂ p1 p2, , ,( )

2q̂4
-------------------------------------------------------------------------,

V̂
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In theoretical calculations, it is often useful to parame-
terize the proton spin 4-vector, which enters the definition
of the hadron tensor, in terms of the particle 4-momenta
[20]. In our case, we have four 4-momenta to express any
component of the proton spin Sj such that

(9)

We temporarily imagine that the chosen parametriza-
tion on the right-hand side of Eq. (9) is stabilized by the
relative substitution

(In what follows, we label such stabilized parametriza-
tions by an index with a lowercase letter.) In this case,
we can write the Born cross section in the integrand on
the right-hand side of Eq. (8) as

(10)

If the proton spin SJ is unstable under the above sub-
stitution (in this case, we use an uppercase index), it can
always be expressed in terms of the stabilized one by
means of an orthogonal matrix,

(11)

Using this formula and recalling that, in the class of
processes considered here, the hadron tensor depends
on the proton spin linearly, we can write the master rep-
resentation for the spin-dependent part (dσ(p)) of the
cross section of process (1) for an arbitrary orientation
of the proton spin as

(12)

where the summation over the index j = l, t, n is implied.
This representation is the electrodynamical ana-

logue of the Drell–Yan formula well known in QCD
[14], which has previously been applied to calculate the
electromagnetic radiative corrections to the total cross
section of the electron–positron annihilation into had-
rons [17], to the small-angle Bhabha scattering cross
section at LEP1 [18], to unpolarized [21] and polarized
deep-inelastic cross sections [12], and to the polarized
elastic electron–proton scattering [13]. In the next sec-
tion, we show how this representation can be used to
describe the leading radiative corrections in polarized

S j S j k1 k2 p1 p2, , ,( ).=

k1 k̂1, k2 k̂2,

S
js k1 k2 p1 p2, , ,( ) S

js k̂1 k̂2 p1 p2, , ,( ).=

ε̂2E2

dσB λ S j k̂1 k̂2 p1 p2, , , , ,( )
d3k̂2d3 p2

----------------------------------------------------------

=  ε̂2E2

dσ j
B λ k̂1 k̂2 p1 p2, , , ,( )

d3k̂2d3 p2

---------------------------------------------------.

SJ k1 k2 p1 p2, , ,( ) AJ j
k1 k2 p1 p2, , ,( )S j k̂1 k̂2 p1 p2, , ,( ),=

AJ j
SJS j.–=

ε2E2

dσ λ SJ k1 k2 p1 p2, , , , ,( )
d3k2d3 p2

-------------------------------------------------------- AJ j

x1 x2dd

x2
2

----------------∫∫=

× D x1( )D x2( )ε̂2E2

dσ j
B λ k̂1 k̂2 p1 p2, , , ,( )

d3k̂2d3 p2

-------------------------------------------------,
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semi-inclusive deep-inelastic events. Within the lead-
ing accuracy, we must find adequate parametrizations
of the proton spin 4-vector, calculate the elements of
the orthogonal matrix , derive the spin-independent
and spin-dependent parts of the Born cross section for
a given parametrization Sj, and determine the x1 and x2
integration limits in master formula (12).

3. THE ANALYSIS OF SEMI-INCLUSIVE
DEEP-INELASTIC EVENTS

WITH THE POLARIZATION TRANSFER
We begin with the parametrizations of the proton

spin 4-vector in process (1). To describe this process,
we use the set of invariant variables

(13)

It is physically justified to determine the longitudinal
component of the proton spin along the direction of –p1 as
seen from the rest frame of the detected proton. This direc-
tion is not affected by the lepton collinear radiation, and
the corresponding parametrization is given by 

(14)

where M(m) is the mass of the target nucleus (detected
proton). It is easy to verify that, in the rest frame of the
proton (p2 = (m, 0), this longitudinal component is
equal to (0, –n1), where n1 = p1/|p1|, and in the labora-
tory system (p1 = (M, 0), it is equal to (|p2|, E2n2)/m,
where n2 is the unit vector in the direction of the
detected proton 3-momentum.

For the fixed longitudinal component, we have sev-
eral possibilities to determine the transverse and normal
components. We first take the transverse component in
the plane (k1, p2) and the normal component in the
plane that is perpendicular to it. The orientations of
these planes do not change under the substitution

k1  , and we therefore have

(15)

Totally similarly to the above procedure, we can
determine another stabilized set of transverse and nor-
mal components relative to the plane (k2, p2),

AJ j

z
2 p1 p2

V
--------------, z1 2,

2k1 2, p2

V
-----------------, y

2 p1 k1 k2–( )
V

----------------------------,= = =

x
q2–

2 p1q
------------, V 2 p1k1, q k1 k2.–= = =

Sµ
l z p2µ 2τ2 p1µ–

m z2 4τ1τ2–
---------------------------------, τ1

M2

V
-------, τ2

m2

V
------,= = =

k̂1

Sµ
t

=  
z2 4τ1τ2–( )k1µ 2z1τ1 z–( )p2µ 2τ1 zz1–( )p1µ+ +

V z2 4τ1τ2–( ) 1[ ]
---------------------------------------------------------------------------------------------------------------------,

Sµ
n 2 µk1 p1 p2( )

V3 1[ ]
----------------------------,=

1[ ] zz1 τ2– z1
2τ1, S jSi( )– δji.–= =
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(16)

S̃µ
t z2 4τ1τ2–( )k2µ 2z2τ1 z 1 y–( )–( )p2µ 2τ2 1 y–( ) zz2–( )p1µ+ +

V z2 4τ1τ2–[ ] 2[ ]
-----------------------------------------------------------------------------------------------------------------------------------------------------,=

S̃µ
n 2 µk2 p1 p2( )

V3 2[ ]
---------------------------, 2[ ] zz2 1 y–( ) τ2 1 y–( )2– z2

2τ1.–= =
The sets in Eqs. (15) and (16) represent the complete
list of stabilized parametrizations of the proton spin
components under the condition that the longitudinal
component is chosen in accordance with Eq. (14).
There are many unstable parametrizations that can be
 EXPERIMENTAL AND THEORETICAL PHY
taken relative to an arbitrary plane (ak1 + bk2, p2) with
arbitrary numbers a and b. In what follows, we consider
only the physically favorable set with a = –b = 1. The
corresponding transverse and normal components are
given by
(17)

Sµ
T z2 4τ1τ2–( )qµ 2 z1 z2–( )τ1 zy–( )p2µ 2yτ2 z z1 z2–( )–( )p1µ+ +

V z2 4τ1τ2–( ) q[ ]
--------------------------------------------------------------------------------------------------------------------------------------------------------,=

Sµ
N 2 µq p1 p2( )

V3 q[ ]
--------------------------, q[ ] zy z1 z2–( ) xy z2 4τ1τ2–( ) z1 z2–( )2τ1– y2τ2.–+= =
We now consider the relation between the stabilized set
(for definiteness, we work with set (15)) and an unstable
one. It is obvious that this relation can be written as
(18)

where

SN  = Sn θ St θ, STsin+cos  = Sn θ St θ,cos+sin–
θcos SNSn( )– STSt( )–
z z1 1 y+( ) z2–( ) xy z2 4τ1τ2–( ) 2z1 z1 z2–( )τ1– 2yτ2–+

2 1[ ] q[ ]
---------------------------------------------------------------------------------------------------------------------------------------,= = =
One can verify that the necessary condition cos2θ +
sin2θ = 1 is satisfied.

We can now write the spin-independent part (which is
actually independent of the proton spin only) and the spin-
dependent part of the cross section of process (1) as

(19)

θsin SNSt( )– STSn( ) η
2
---

z2 4τ1τ2–
1[ ] q[ ]

-----------------------,= = =

η p1 p2k1k2( )[ ] 16

V4
------ p1 p2k1k2( )2,sgn=

p1 p2k1k2( ) eµνρσ p1µ p2νk1ρk2σ,=

16 p1 p2k1k2( )2

V4
----------------------------------- x2y2 4τ1τ2 z2–( )=

+ 2xy z z2 z1 1 y–( )–( ) 2z1z2τ1– 2 1 y–( )τ2–[ ]

– z2 z1 1 y–( )–( )2.

ε2E2

dσ u( ) L,

d3k2d3 p2

----------------------

=  
x1 x2dd

x2
2

----------------D x1( )D x2( )ε̂2E2
σ̂ u( ) l,

Bd

k̂
3

2 p3
2dd

--------------------,∫∫
(20)

(21)

where  with any lowercase index denotes the cor-
responding Born cross section given at the shifted val-

ues of k1, 2  . The corresponding shifted dimen-
sionless variables introduced by relation (13) are given
by

(22)

ε2E2

σNd

d3k2d3 p2

----------------------
x1 x2dd

x2
2

----------------D x1( )D x2( )∫∫=

× ε̂2E2 θ
σ̂n

Bd

d3k̂2d3 p2

----------------------cos θ
dσ̂t

B

d3k̂2d3 p2

----------------------sin+ ,

ε2E2

σTd

d3k2d3 p2

----------------------
x1 x2dd

x2
2

----------------D x1( )D x2( )∫∫=

× ε̂2E2 – θ
σ̂n

Bd

d3k̂2d3 p2

----------------------sin θcos
dσ̂t

B

d3k̂2d3 p2

----------------------+ ,

σ̂Bd

k̂1 2,

x̂
x1xy

x1x2 y 1–+
----------------------------, ŷ

x1x2 y 1–+
x1x2

----------------------------, V̂ x1V ,= = =

ẑ
z
x1
-----, ẑ1 z1, ẑ2

z2

x1x2
----------.= = =
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Equations (19)–(21) are the straightforward conse-
quences of master representation (12). Obviously, in
order to obtain dσn and dσt in the left-hand sides of
Eqs. (20) and (21), we must set cosθ = 1, sinθ = 0.

Next, we must derive the Born cross sections that
enter the right-hand sides of Eqs. (19)–(21). The spin-
independent part of the cross section for the longitudi-
nally polarized electron beam (with the degree λ) is
expressed in terms of the hadron structure functions
h1, …, h5 as

(23)

We note that the phase space of the detected proton can
also be expressed in terms of invariant variables (13) as

(24)

If the proton spin is directed along Sl, the spin-
dependent part of the Born cross section is given by

(25)

For the transverse orientation of the spin (along St), we
have

(26)

ε2E2

dσ u( )
B

d3k2d3 p2

---------------------- α2V

2 2SA 1+( ) 2π( )3q4
----------------------------------------------H1,=

H1
2xy
V

---------h1– 1 y– xyτ1–( )h2 z1z2 xyτ2–( )h3+ +=

+ z2 z1 1 y–( ) xyz–+( )h4 λη h5.–

d3 p2

E2
-----------

V
2 η
---------dz1dz2dz.=

ε2E2

dσl
B

d3k2d3 p2

----------------------
α2V3η z2 4τ1τ2–

8 2SA 1+( )m 2π( )3q4
--------------------------------------------------–=

× H2

z z1 z2–( ) 2yτ2–

z2 4τ1τ2–
---------------------------------------H3+ ,

H2 2 y–( )h6 z1 z2+( )h8
λ
η
--- η1h7 η2h9+( ),+ +=

H3 2 y–( )h10 z1 z2+( )h12
λ
η
--- η1h11 η2h13+( ),+ +=

η1 y z2 z1 1 y–( ) xz 2 y–( )– 2x z1 z2+( )τ1+–[ ] ,=

η2 z1 z2–( ) z2 z1 1 y–( )–( )=

+ xyz z1 z2+( ) 2xy 2 y–( )τ2.–

ε2E2

dσt
B

d3k2d3 p2

---------------------- α2V2η
8 2SA 1+( ) 2π( )3q4
----------------------------------------------=

× V

z2 4τ1τ2–
----------------------- ψH3

z2 4τ1τ2–

1[ ]
-----------------------H4– ,
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where H4 can be obtained from H1 by the simple
replacement hi  hi + 13.

Finally, for the normal orientation of the proton spin
(along Sn), the spin-dependent part of the cross section
of process (1) is given by

(27)

We must also determine the integration limits for x1

and x2 in master representation (12). They can be
obtained from the condition that the semi-inclusive
deep-inelastic process occurs. For the electron–proton
scattering, this is possible under the condition that the
hadron state involves at least a proton and a pion. This
leads to the inequality

(28)

where mπ is the pion mass. For the integration limits,
we then have

(29)

For the electron–nucleus scattering process (1) consid-
ered here, we must change the pion mass entering the
definition of δ by the bound energy of the ejected pro-
ton in a given nucleus.

It is interesting to note that, in the case where the
final proton polarizations are measured relative to sta-
bilized orientations, the corresponding Born values and
the leading radiative corrections to them are expressed
in terms of the same hadron structure functions. The sit-
uation changes radically if the polarizations are mea-
sured relative to unstable orientations. In this case, the
contributions to the polarizations caused by the radia-
tive corrections due to the hard collinear radiation are
expressed in terms of different sets of hadron structure
functions compared to those used in the Born polariza-
tions. To make this more transparent, we write the spin-
dependent part of the Born cross section for the orien-
tations of the proton spin along SN and ST,

ψ

=  
xy z2 4τ1τ2–( ) z 2z1τ1–( ) z1 z2–( ) zz1 2τ2–( )y+ +

1[ ]
--------------------------------------------------------------------------------------------------------------------------

=  2 q[ ] θ ,cos

ε2E2

dσn
B

d3k2d3 p2

----------------------

=  
α2V2 V

8 2SA 1+( ) 2π( )3q4
---------------------------------------------- η2

q[ ]
------------H3– ψH4– .

x1x2 y 1– x1xy x2δ, δ≥–+
m mπ+( )2 m2–

V
------------------------------------,=

1 x2

1 y– xyx1+
x1 δ–

-----------------------------, 1 x1
1 δ y–+

1 xy–
---------------------.> >> >
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(30)

(31)

These formulas can be derived from Eqs. (20) and (21)
if the D(xi) functions are taken to be the δ function,
which corresponds to the radiationless process (or to
the Born approximation).

4. SEMI-INCLUSIVE DEEP-INELASTIC 
SCATTERING ON A POLARIZED TARGET

In this section, we apply the master representation to
the analysis of polarized phenomena in the semi-inclu-
sive deep-inelastic scattering of the polarized nucleus,

(32)

where H is an arbitrary hadron and the nucleus A has a
definite vector polarization P. In this case, the leptonic
tensor is the same as above (see Eqs. (3) and (4)) and
the hadronic tensor has the same structure as defined by
Eqs. (5) and (6), where the nucleus polarization P must
be used instead of the proton spin S and (Sp1) must be
replaced with (Pp2). We also use the notation g1, …, g18
for the corresponding hadron structure functions.

To find the various asymmetries measured in study-
ing the polarization phenomena, it is necessary to know
the polarization-independent and polarization-depen-
dent parts of the cross section at different orientations
of the target polarization. The corresponding analysis
can therefore be performed in the same way as in Sec-
tion 3.

We first define parametrizations of the nucleus
polarization 4-vector in terms of the 4-momenta. As a
stabilized set, we can choose the longitudinal and trans-
verse components given in [12],

(33)

and for the normal component, we use

(34)

It is easy to verify that parametrizations (33) and
(34) are not changed after the substitution k1, 2 

. In the laboratory system, this set corresponds to

ε2E2

dσT
B

d3k2d3 p2

---------------------- α2V2η
4 2SA 1+( ) 2π( )3q4
----------------------------------------------=

× V q[ ]
z2 4τ1τ2–
-----------------------H3,

ε2E2

dσN
B

d3k2d3 p2

---------------------- α2V2 V q[ ]
4 2SA 1+( ) 2π( )3q4
----------------------------------------------H4.–=

e
–

k1( ) A p1( ) e– k2( ) H p2( ) X ,+ + +

Pµ
l 2τ1k1µ p1µ–

M
-----------------------------,=

Pµ
t k2µ 1 y– 2xyτ1–( )k1µ– xy p1µ–

Vxy 1 y– xyτ1–( )
------------------------------------------------------------------------------,=

Pµ
n 2 µk1k2 p1( )

V3xy 1 y– xyτ1–( )
--------------------------------------------------.=

k̂1 2,
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the longitudinal polarization directed along k1, the
transverse polarization in the plane (k1, k2), and the
normal one in the plane that is perpendicular to the (k1,
k2) plane.

Another set of polarizations can be chosen such that
the longitudinal component is along the q direction in
the laboratory system and the transverse one is in the
plane (q, k1). In this case, the normal component coin-
cides with (34) and

(35)

The transformation between sets (35) and (33) is
implemented by the orthogonal matrix

(36)

Master equation (12) can be applied to the polariza-
tion-independent part of cross section (32) and to the
polarization-dependent part. Therefore, we must derive
the Born cross section for the stabilized set. A simple
calculation gives

(37)

We note that the numerical coefficient in front of G1 is
twice the coefficient in front of H1 on the right-hand
side of Eq. (23). The reason is that we do not fix the spin
state of the final hadron H in this case.

The polarization-dependent part of the cross section
for the longitudinal stabilized polarization is given by

(38)

where the functions Gi, i = 1, …, 4, can be derived from
Hi by replacing the hadron structure functions hj with gj.

Pµ
L 2τ1 k1µ k2µ–( ) y p1µ–

M y2 4xyτ1+
-------------------------------------------------,=

Pµ
T

=  
1 2xτ1+( )k2µ 1 y– 2xτ1–( )k1µ– x 2 y–( )p1µ–

V x 1 y– xyτ1–( ) y 4xτ1+( )
------------------------------------------------------------------------------------------------------------------.

PL θ1Pl θ1Pt,sin+cos=

PT – θ1Pl θ1cos Pt,+sin=

θ1cos
y 1 2xτ1+( )

y y 4xτ1+( )
--------------------------------,=

θ1sin 2
xτ1 1 y– xyτ1–( )

y 4xτ1+
-----------------------------------------.–=

ε2E2

dσ u( )
B

d3k2d3 p2

---------------------- α2V

2SA 1+( ) 2π( )3q4
------------------------------------------G1.=

ε2E2

dσl
B

d3k2d3 p2

---------------------- α2V3η
4 2SA 1+( )M 2π( )3q4
---------------------------------------------------–=

× 2τ1z1 z–( )G2 y 1 2xτ1+( )G3– 2τ1G4+[ ] ,
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For the transverse polarization, the corresponding
part of the cross section can be written as

(39)

For the normal polarization, the spin-dependent part
of the cross section is

(40)

Using master representation (12) leads to the radia-
tively corrected contributions (within the leading accu-
racy) to the cross section of process (32),

(41)

(42)

(43)

We also write the cross sections on the left-hand
sides of Eqs. (42) and (43) in the Born approximation,

(44)

ε2E2

dσt
B

d3k2d3 p2

----------------------
α2V2η Vxy 1 y– xyτ1–( )

4 2SA 1+( ) 2π( )3q4
----------------------------------------------------------------–=

×
z2 xyz– z1 1 y– 2xyτ1–( )–

xy 1 y– xyτ1–( )
------------------------------------------------------------------G2

+ 2G3

1 2xτ1+
x 1 y– xyτ1–( )
------------------------------------G4+ .

ε2E2

dσn
B

d3k2d3 p2

---------------------- α2V2

4 2SA 1+( ) 2π( )3q4
----------------------------------------------=

× V
xy 1 y– xyτ1–( )
--------------------------------------- η2G2 y z2 1 2xτ1+( )(–[

– z1 1 y– 2xτ1–( ) xz 2 y–( )– )G4 ] .

ε2E2

dσ u( ) N,

d3k2d3 p2

----------------------

=  
x1 x2dd

x2
2

----------------D x1( )D x2( )ε̂2E2
σ̂ u( ) n,

Bd

k̂
3

2 p3
2dd

--------------------,∫∫

ε2E2

dσL

d3k2d3 p2

----------------------
x1 x2dd

x2
2

----------------D x1( )D x2( )∫∫=

× ε̂2E2 θ1
dσ̂l

B

d k̂
3

2d3 p2

---------------------cos θ1sin
dσ̂t

B

d3k̂2d3 p2

----------------------+ ,

ε2E2

dσT

d3k2d3 p2

----------------------
x1 x2dd

x2
2

----------------D x1( )D x2( )∫∫=

× ε̂2E2 –sinθ1
dσ̂l

B

d k̂
3

2d3 p2

--------------------- θ1cos
dσ̂t

B

d3k̂2d3 p2

----------------------+ .

ε2E2

dσL
B

d3k2d3 p2

---------------------- α2V3η
4 2SA 1+( ) 2π( )3Mq4
---------------------------------------------------=

×
yz 2 z1 z2–( )τ1–

y y 4xτ1+( )
---------------------------------------G2 y y 4xτ1+( )G3+ ,
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(45)

Thus, the polarization-dependent parts of the Born
cross section involve fewer hadron structure functions
than the radiatively corrected cross sections.

We can also use the 4-vector p2 to parametrize the
nucleus polarization 4-vector. With the longitudinal
polarization chosen along p2 in the laboratory system,
the stabilized set can be defined with respect to the
plane (k1, p2) and the unstable set with respect to the
plane (q, p2) as in Section 3; the corresponding calcula-
tions are very similar to those in Section 3. But the
parametrizations used in this section look more physi-
cal and can also be used to describe the polarization
phenomena in inclusive deep-inelastic events.

5. POLARIZATION TRANSFER 
FROM THE TARGET 

TO THE DETECTED PROTON

We now consider the effects of the polarization
transfer from the vector polarized target to the detected
proton in the process

(46)

for the longitudinally polarized electron beam and the
vector polarization of the target. In this case, the gen-
eral form of the hadronic tensor is given by

(47)

where S(W) labels the vector polarization of the target
(the spin of the detected proton). All the effects caused
by the first three terms on the right-hand side of Eq.
(47) were considered in previous sections, and we now
investigate the radiative corrections to the hadron dou-
ble-spin correlations that precisely arise due to the last
term,

ε2E2

dσT
B

d3k2d3 p2

---------------------- α2V3η V

4 2SA 1+( ) 2π( )3q4
----------------------------------------------=

×
y 4xτ1+

x 1 y– xyτ1–( )
------------------------------------G4–

+
xz 2 y–( ) z2– z1 1 y–( ) 2xτ1 z1 z2+( )–+

x y 4xτ1+( ) 1 y– xyτ1–( )
-------------------------------------------------------------------------------------------------G2 .

e
–

k1( ) A p1( ) e– k2( ) p p2( ) X+ ++

Hµν Hµν
u( ) Hµν

S( ) Hµν
W( ) Hµν

SW( ),+ + +=

Hµν
SW( ) S p2( ) W p1( ) f 1g̃µνν f 2 p̃1µ p̃1ν+[=

+ f 3 p̃2µ p̃2ν f 4 p̃1 p̃2( )µν i f 5 p̃1 p̃2[ ] µν+ + ]

+ S p2( ) Wq( ) f 6g̃µν f 7 p̃1µ p̃1ν f 8 p̃2µ p̃2ν+ +[

+ f 9 p̃1 p2( )µν i f 10 p̃1 p̃2[ ] µν+ ]

+ S p2( ) WN( ) f 11 p̃1N( )µν i f 12 p̃1N[ ] µν+[

+ f 13 p̃2N( )µν i f 14 p̃2N[ ] µν+ ]

+ Sq( ) W p1( ) f 15g̃µν f 16 p̃1µ p̃1ν f 17 p̃2µ p̃2ν+ +[
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(48)

Thus, the coefficients of the polarization transfer from
the target to the detected proton are described, in gen-
eral, by 41 structure functions. If the electron beam is
unpolarized, only the symmetric part of the hadronic
tensor contributes, which corresponds to double-spin
(hadron–hadron) correlations in the cross section of
process (46). The antisymmetric part of the hadron ten-
sor contributes in the case of the longitudinally polar-
ized electron beam due to triple-spin (electron–hadron–
hadron) correlations.

The corresponding radiatively corrected parts of the
cross section for the unstable orientations of the target
nucleus polarization SJ (given by Eq. (35)) and the
detected proton spin WI (given by Eq. (17)) can be writ-
ten as

(49)

where the Born cross section in the integrand is defined
for the stable orientations of Sj (given by Eqs. (33) and
(34)) and Wi (given by Eqs. (14) and (15)) and depends
on the shifted variables

In accordance with the calculations in Sections 3
and 4, the matrices AJj and BIi are given by

+ f 18 p̃1 p2( )µν i f 19 p̃1 p̃2[ ] µν+ ]

+ Sq( ) Wq( ) f 20g̃µν f 21 p̃1µ p̃1ν f 22 p̃2µ p̃2ν+ +[
+ f 23 p̃1 p̃2( )µν i f 24 p̃1 p̃2[ ] µν+ ]

+ Sq( ) WN( ) f 25 p̃1N( )µν i f 26 p̃1N[ ] µν+[

+ f 27 p̃2N( )µν i f 28 p̃2N[ ] µν+ ]

+ SN( ) W p1( ) f 29 p̃1N( )µν i f 30 p̃1N[ ] µν+[

+ f 31 p̃2N( )µν i f 32 p̃2N[ ] µν+ ]

+ SN( ) Wq( ) f 33 p̃1N( )µν i f 34 p̃1N[ ] µν+[

+ f 35 p̃2N( )µν i f 36 p̃2N[ ] µν+ ]

+ SN( ) WN( ) f 37g̃µν f 38 p̃1µ p̃1ν f 39 p̃2µ p̃2ν+ +[
+ f 40 p̃1 p̃2( )µν i f 41 p̃1 p̃2[ ] µν+ ] .

ε2E2

dσJI

d3k2d3 p2

---------------------- AJjBIi

j i,
∑=

×
x1d x2d

x2
2

----------------D x1( )D x2( )ε̂2E2
σ̂ ji

Bd

k̂
3

2 p3
2dd

--------------------,∫∫

ε̂2E2
dσ̂ ji

B

d3k̂2d3 p2

---------------------- ε̂2E2

dσB λ S j Wi k̂1 k̂2 p1 p2, , , , , ,( )
d3k̂2d3 p2

--------------------------------------------------------------------.=
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(50)

If we write the hadron–hadron spin correlations
entering the Born cross section as

(51)

the quantities Xji can be written as

(52)

(53)

(54)

(55)

(56)

(57)

AJj

1 0 0

0 θcos θsin–

0 θsin θcos 
 
 
 
 

,=

BIi

θ1cos θ1sin 0

– θ1sin θ1cos 0

0 0 1 
 
 
 
 

,=

I J, L T N, , ; i j, l t n., ,= =

ε2E2

dσ ji
B

d k2
2d3 p2

---------------------
α2V4X ji

16 2π( )32 2SA 1+( )q4
----------------------------------------------------,=

Xll 2
f τ1

τ2
-------- η2 R29 ξ R33+( )---





=

+
2

V2τ1

----------- b F1 ξF6+( ) d F15 ξF20+( )–[ ]




,

Xlt η2 f
τ1 1[ ]
------------ bR11 dR25 2τ1F37---+–=

–
2ψ

η2V2 f
--------------- 1[ ] 2bF6 2dF20 η2V2τ1R33+–( ) ,

Xln
η
τ1

-------- ψ bR11 dR25 2τ1F37+–( )---=

+
2

V2 1[ ]
------------------ 2bF6 2dF20– η2V2τ1R33+( ) ,

Xtl
f

rτ2
------- η2d R29 ξ R33+( ) ---





=

+
4

V2
------ 2r F15 ξF20+( ) ζ F1 ξF6+( )+[ ]





,

Xtt η2 f
r 1[ ]
---------- ζ R11 2rR25 dF37 ---+ +=

–
ψ 1[ ]
η2V2 f
---------------- η2V2dR33 4ζF6 8rF20++( ) ,

Xtn
η
r

------ ψ ζR11 2rR25 dE37+ +( ) ---=

+
1

V2 1[ ]
------------------ η2V2dR33 4ζF6 8rF20+ +( ) ,
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(58)

(59)

(60)

where we used the notation

The functions Rl and Fl entering the expressions for
Xji are defined by the hadron structure functions fn in
Eq. (48) as

(61)

(62)

6. HADRONIC VARIABLES

There exists the experimental possibility of measur-
ing the total 4-momentum of the hadron system X
instead of recording the scattered electron in semi-
inclusive reactions. In such experiments, the momen-
tum qh of the heavy intermediate photon that probes the
hadron structure can be determined explicitly. The cor-
responding set of dynamical variables is usually
referred to as the hadronic one.

For the hadronic variables, we must eliminate the
phase space of the scattered electron and introduce the

Xnl η f
rτ2
------- η1 R29 ξ R33+( ) 4

V2
------ F1 ξF6+( )– ,=

Xnt
η
fr

---------=

× ψ 4

V2
------F6 η1R33– 

  f

1[ ]
------------ η1F37 η2R11–( )+ ,

Xnn –
η2

r
------=

× 1

1[ ]
------------ 4

V2
------F6 η1R33– 

  ψ
η1

η2
-----F37 R11– 

 – ,

b 2z1τ1 z, d– y 1 2xτ1+( ),= =

f z2 4τ1τ2, r– xy 1 y– xyτ1–( ),= =

ζ z2 z1 1 y– 2xyτ1–( )– xyz,–=

ξ
z z1 z2–( ) 2yτ2–

z2 4τ1τ2–
---------------------------------------.=

Rl 2 y–( ) f l z1 z2+( ) f l 2++=

+
λ
η
--- η1 f l 1+ η2 f l 3++( ),

Fl
2xy
V

--------- f l– 1 y– xyτ1–( ) f l 1++=

+ z1z2 xyτ2–( ) f l 2+

+ z2 z1 1 y–( ) xyz–+( ) f l 3+ λη f l 4+ .–
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heavy photon phase space using the identities

(63)

Therefore, combining this with representation (3)
for the leptonic tensor and also bearing in mind that the
hadronic tensor is independent of x2, we can express the
quantity Lµνd3k2/ε2 through the hadronic variables as

(64)

We note that, for the events with the undetected scat-
tered electron, the lower integration limit with respect
to x2 in Eq. (3) is equal to 0. In accordance with the
Kinoshita–Lee–Nauenberg theorem [22], the mass sin-
gularities caused by the final-state radiation must disap-
pear in this case. In the language of the electron struc-
ture functions, this fact exhibits itself due to the relation

which was used in writing Eq. (64).

In the Born approximation, the lepton tensor can be
rewritten as

(65)

and the physically justified parametrizations for Sj in
process (1) and for Pj in process (32) remain stable with
respect to the scaling transformation k1  xnk1. For
example, one set can be chosen as in Eqs. (14) and (15)
and the other as

d3k2

ε2
---------- 2x2

2xh

d4qh

Qh
2

----------δ x1 xh–( ),=

d4qh

Qh
2

----------
dQh

2dxhdyhdzh

4xh
2 ηh

-----------------------------------, xh = 
Qh

2

2k1qh

-------------,–=

yh

2 p1qh

V
--------------, zh

2 p2qh

V
--------------, Qh

2 qh
2,–= = =

ηh
2 Qh

2

V
------ 4τ1τ2 z2–( )

Qh
2

xh
2V

--------- 2 1
yh

xh

-----– 
  zz1 2τ2–( )+=

-----+ 2 z1
zh

xh

-----– 
  z 2z1τ1–( ) zh z1yh–( )2.–

d3k2

ε2
----------Lµν

D xh Qh
2,( )

xh
2

----------------------Lµν
B k̂1 k̂1 qh λ,–,( )=

×
dxhdyhdzhdQh

2

2 ηh

-----------------------------------.

D x Q2,( ) xd

0

1

∫ 1,=

Lµν
B k1 k1 qh–,( ) 2 k1qh( )g̃µν=

+ 4k̃1µk̃1ν 2iλ µνk1qh( ),–
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(66)

Shµ
L Sµ

l , Shµ
T z2 4τ1τ2–( )qhµ 2zhτ1 zyh–( )p2µ 2yhτ2 zzh–( )p1µ+ +

V z2 τ1τ2–( ) qh[ ]
--------------------------------------------------------------------------------------------------------------------------------,==

Shµ
N 2 µqh p1 p2( )

V3 qh[ ]
----------------------------, qh[ ] zzhyh

Qh
2

V
------ z2 4τ1τ2–( ) zh

2τ1– yh
2τ2,–+= =
with the transverse component belonging to the plane
(qh, p2) in the laboratory system.

Two physical sets of the target polarizations, each
with the normal component perpendicular to the plane
(k1, qh), can be chosen as

(67)

with the longitudinal component along k1 in the labora-
tory system, and

(68)

with the longitudinal component along qh. The different

components of  in the laboratory system are

Phµ
l 2τ1k1µ p1µ–

M
-----------------------------,=

Phµ
t –qhµ yh

2Qh
2τ1

xhV
--------------+ 

  k1µ
Qh

2

xhV
--------- p1µ–+ K 1– ,=

Phµ
n –

2 µk1qh p1( )
VK

----------------------------,=

Phµ
L 2τ1qhµ yh p1µ–

MG
-----------------------------------,=

Phµ
T yh

2 4τ1

Qh
2

V
------+ 

  k1µ yh

2Qh
2τ1

xhV
--------------+ 

  qhµ–=

–
Qh

2

V
------ 2

yh

xh

-----– 
  p1µ KG( ) 1– ,

Phµ
N Phµ

n , K Qh
2 1

yh

xh

-----–
Qh

2τ1

xh
2V

-----------–
 
 
 

,= =

G yh
2 4

Qh
2τ1

V
-----------+ ,=

Ph
J

Ph
L 0 nq,( ), Ph

T 0
n1 n1 nq⋅( )nq–

1 n1 nq⋅( )2–
-------------------------------------,

 
 
 

,= =

Ph
N 0

nq n1×

1 n1 nq⋅( )2–
-----------------------------------,

 
 
 

,=

nq

qh

qh

--------, n1

k1

k1
--------.= =
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All these sets of the proton spin and target polariza-
tions given by Eqs. (66), (67), and (68) are stable with
respect to the initial-state collinear radiation. This can
be verified by replacing k1 with xhk1, which implies

(69)

To make the invariance of Pj ( j = l, t, n) and PJ (J = L,
T, N) under replacement (69) more transparent, we

express xh in terms of  and (k1qh). Then, e.g.,

and it is easy to see that this quantity is not changed
under substitution (69). We also note that the quantity
ηh can be derived using the rule

where η* is determined from η with xy replaced by

/V, z2 replaced with z1 – zh, and with the subsequent
replacement (69).

For hadronic variables, the cross section for both the
spin-independent and the spin-dependent parts can
therefore be written as

(70)

where

and C is equal to 1/2 or 1 for the respective process (1)
or (32).

Representation (70) shows that using the hadron
variables allows us to tag the initial-state radiated pho-
ton. Indeed, for a fixed 4-momentum Px, we can recon-
struct the 4-momentum qh and, consequently, the vari-
able xh that is the energy fraction of the photon radiated
by the initial electron (see Eq. (63)).

k1 xhk1, xh 1, yh

yh

xh

-----,

zh

zh

xh

-----, z
z
zh

----, V xhV , τ1 2,
τ1 2,

xh

--------.

Qh
2

K Qh
2 yh2 k1qh( )

4 k1qh( )2τ1

V
-------------------------–+ ,=

ηh xhη∗ ,=

Qh
2

E2
dσ j

d3 p2dQh
2dxhdyhdzh

-----------------------------------------------

=  
D xh Qh

2,( )

xh
2

----------------------E2
dσ̂ j

B

d3 p2dQh
2dŷhdẑh

--------------------------------------,

E2
dσ̂ j

B

d3 p2dQh
2dŷhdẑh

-------------------------------------- α2C

2π( )3 2SA 1+( )V̂Qh
42 η∗

-------------------------------------------------------------=

× Lµν k̂1 k̂1 qh λ,–,( )Hµν qh p1 p2; S j P j( ), ,( )
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The Born cross section on the right-hand side of
Eq. (70) has the form that is very similar to the corre-
sponding cross section for the leptonic variables. We
can formulate the following rules to write it:

(i) change the phase space differentials on the left-
hand sides of the expressions valid for the leptonic vari-
ables as

(ii) apply the substitution

to the right-hand sides.
These rules lead, e.g., to the formula for the spin-

dependent part of the cross section of process (1) in the
case of the longitudinal polarization (which follows
from Eq. (25))

(71)

where  is derived from  by the replacement
hi  hi + 4.

For the normal target polarization that follows from
Eq. (40), the spin-dependent part of the cross section of
process (32) is given by

(72)

ε2

d3k2

----------
2 η1h

dQh
2dyhdzh

---------------------------, η1h ηh xh 1=( );=

xy
Qh

2

V
------, y yh, z2 z1 zh–

E2

dσL
B

d3 p2dQh
2dyhdzh

--------------------------------------
α2V3η1h z2 4τ1τ2–

8m 2SA 1+( ) 2π( )3Qh
42 η1h

------------------------------------------------------------------–=

× H2
h( ) zzh 2yhτ2–

z2 4τ1τ2–
--------------------------H3

h( )+ ,

H2
h( ) 2 yh–( )h6 2z1 zh–( )h8+=

+
λ

η1h

------- η1
h( )h7 η2

h( )h9+( ),

η1
h( ) Qh

2

V
------ 2 2z1 zh–( )τ1 z 2 yh–( )–[ ] z1yh

2 zhyh,–+=

η2
h( ) Qh

2

V
------ z 2z1 zh–( ) 2 2 yh–( )τ2–[ ] zh

2– z1zhyh,+=

H3
h( ) H2

h( )

E2

dσN
B

d3 p2dQh
2dyhdzh

--------------------------------------

=  
α2V3

4 2SA 1+( ) 2π( )3Qh
4K xh 1=( )2 η1h

--------------------------------------------------------------------------------------–

× η1h
2 G2

h( ) yh z1yh zh–( ) ---–




+
Qh

2

V
------ 2τ1 2z1 zh–( ) z 2 yh–( )–( ) G4

h( )





.
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The remaining spin-dependent and spin-independent
parts of the cross sections for processes (1) and (32) can
be obtained totally similarly using the above rules and
the results in Sections 3 and 4.

The variable xh characterizes the inelasticity of the
initial-state electron and is equal to 1 in the absence of

radiation. The electron structure function D(xh, ) has
a singularity at xh = 1, and representation (70) shows
that this singularity is such that

(73)

because, in this limiting case, the left-hand side of
Eq. (70) multiplied by dxh must coincide with the Born
cross section.

7. CONCLUSION

In this paper, we consider radiative corrections to
the polarization observables in a wide class of semi-
inclusive deep-inelastic processes. We restrict our-
selves to the leading-log accuracy and neglect the con-
tribution of the pair production in the singlet channel.
This allows us to write compact formulas for the radia-
tively corrected spin-independent and spin-dependent
parts of the corresponding cross sections in the form of
the Drell–Yan representation in electrodynamics by
means of the electron structure functions. The parame-
trization of the hadron spin 4-vectors in terms of the
particle 4-momenta is very important in the calcula-
tions. If the momentum of the intermediate photon that
probes the hadron structure is determined in terms of
the hadronic variables, the traces of the final-state radi-
ation disappear in the final result within the adopted
approximation.

In practice, the corrections can be computed adopt-
ing some specific model for the structure functions. The
correction then acquires some model dependence that
can contribute to the systematic error in experimental
measurements. Another possibility is related to some
iteration procedure, where the fit of the processed
experimental data is used for the chosen model. We
note that the obtained leading-log formulas have a
partly factorized form, which is very convenient for this
procedure. The examples for the DIS case can be found
in [20, 23].

Apart from the classes of experiments discussed
above, the results can also be adopted to exclusive elec-
troproduction processes, where the unobservable had-
ron state is one particle. In this case, the structure func-
tions involve an additional δ function, and therefore,
some analytical manipulations could be necessary.

Accuracy higher than the leading one sometimes
becomes necessary. To go beyond the leading accuracy,
one must modify the master representations. This mod-
ification affects both the electron structure function and
the cross section (the hard part) that depends on the

Qh
2

D xh Qh
2,( )dxh

xh 1→
lim 1,=
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shifted variables. To improve the hard part, it suffices to
take the radiation of a single additional noncollinear
photon into account and to add the nonleading part of
the one-loop correction. The corresponding procedure
is described in [21] for the unpolarized deep-inelastic
scattering and in the second of [20] for the quasi-elastic
polarized electron–proton scattering. To be complete,
one must also improve the structure functions by adding
the second-order next-to-leading contributions of the
double collinear photon emission and the pair produc-
tion. The nonleading contributions to the D function
caused by the one-loop corrected collinear single-pho-
ton emission and the two-loop correction must also be
added properly. These contributions are different for
symmetric and asymmetric parts of the leptonic tensor
and can be extracted from the results in [16] (for the
two-loop correction, see [24]). In this case, we must
therefore distinguish between D and Dλ at the level of
the nonsinglet channel contribution. The specific calcu-
lations will be done elsewhere.
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Abstract—The interaction of a two-level atom uniformly moving along a classical trajectory with a high-Q
cavity quantum mode is analyzed. The dressed-state method is used to derive a recurrence formula for the tran-
sition probability of the atom with photon emission; the temporal dynamics of this probability qualitatively
depends on the Doppler shift of the atomic transition frequency, on the Rabi frequency of the atom–field system,
and on the detuning of the atomic transition frequency from the field mode frequency. The emission dynamics
of a moving atom is very sensitive to the detuning. Rabi-type oscillations with a frequency equal to the Doppler
shift can arise under certain conditions. At resonance, the emission probability of a moving atom can consider-
ably exceed the emission probability of an atom at rest. A plane-parallel-mirror cavity and a confocal spherical-
mirror cavity are considered. It is shown that the peculiarities of Doppler–Rabi oscillations must be taken into
account in micromaser theory. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The effects attributable to the motion of the center of
mass of an emitting atom or molecule include well-
studied phenomena such as inhomogeneous spectral-
line broadening for an ensemble of particles (Doppler
broadening), hole burning in the frequency distribution
of population inversion for a two-level system, and the
Lamb dip in the output power dependence on the work-
ing frequency of a gas laser. The influence of the posi-
tion of an atom interacting with the field in a cavity also
manifests itself in spatial hole burning, which plays a
major role in the generation dynamics of a multimode
laser.

For a moving atom placed in a cavity whose eigen-
modes are standing waves, both the Doppler shift of the
atomic transition frequency and the spatial field depen-
dence must be taken into account, which makes it much
more difficult to theoretically study the above phenom-
ena. Using the Jaynes–Cummings model [1], which
describes the interaction of a two-level atom with a sin-
gle-mode field, and extending it to a moving atom
allows a number of mathematical difficulties that arise
in this case to be overcome. At present, only a few
papers are devoted to solving the quantum-mechanical
problem of the emission of a classically moving atom.
Most current studies of atomic motion in a field are
concerned with ultracold atoms interacting with a cav-
ity field and involve laser cooling. In this case, the
atomic center-of-mass motion must be considered in
terms of quantum mechanics with recoil. This adds fur-
ther complications to the problem, which have not yet
been completely overcome. However, even when the
particle velocity and mass are large enough to use clas-
sical center-of-mass trajectories, the papers are few in
number. By numerically solving the Schrödinger equa-
1063-7761/01/9303- $21.00 © 20462
tion, Meystre [2] obtained separate data on the proba-
bility of an atom moving along a classical trajectory in
a cavity being in an initial state. The author considered
time variations of this probability for various Doppler
shifts of the cavity mode frequency in a coordinate sys-
tem associated with the atom. In [3, 4], the authors cal-
culated fluorescence spectra for a two-level atom mov-
ing along a classical trajectory when the atomic transi-
tion frequency was equal to the cavity field mode
frequency. In [5], the atomic center-of-mass motion
was considered from a quantum-mechanical stand-
point.

In this paper, we use the dressed-state method to
derive a simple, convenient (for calculations) recur-
rence formula for the transition probability of an
excited atom moving along a classical trajectory with
photon emission into a high-Q cavity mode. An analy-
sis of the data obtained with this formula has revealed
qualitative dependences of the temporal field oscilla-
tions inside the cavity on the Doppler atomic frequency
shift and on the detuning of the atomic and field fre-
quencies. We show that, depending on the relations
between system parameters, the periodic energy
exchange between atom and field can be fundamentally
different from the case of an atom at rest and qualita-
tively similar to ordinary Rabi oscillations. Further
development of the theory for the micromaser [4–7],
whose experimental studies are currently being carried
out [8–10], requires that the motion be taken into
account.

2. TRANSITION PROBABILITY

We consider the Hamiltonian of a nonconservative
system composed of a two-level atom uniformly mov-
ing along a classical trajectory and a single mode of a
001 MAIK “Nauka/Interperiodica”
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quantized cavity electromagnetic field in the form

(1)

where the atom–field interaction operator in the rotat-
ing-wave approximation,

is written by using the following operators for the tran-
sition between upper (|↑〉 ) and lower (|↓〉 ) atomic states:
σ– = |↓〉〈↑|  and σ+ = |↑〉〈↓| ; the inversion operator is σz =
|↑〉〈↑|  – |↓〉〈↓| ; and a+ and a are the field production and
destruction operators, respectively. The coupling
parameter of an atom moving along trajectory x(t) with
the field is

(2)

where ωc and kc = ωc/c are the frequency and wave vec-
tor of the cavity mode, respectively; d is the dipole
moment of the two-level atomic transition; and V is the
cavity volume. This form of coupling parameter is
characterized by the spatial field distribution in a plane-
parallel-mirror cavity when the atom moves along the
cavity axis. For the atomic center of mass uniformly
moving at velocity v  considered here, the coupling
parameter is

(3)

where ΩD is the Doppler shift of the atomic transition
frequency, and ∆ω = ωc – ωa is the detuning of the cav-
ity mode frequency from the atomic transition fre-
quency.

We will also consider atomic motion across a confo-
cal spherical-mirror cavity. In this case, the coupling
parameter is

(4)

the coordinate origin is assumed to be at the cavity cen-
ter. The quantity w0 is the waist length of the Gaussian
field distribution.

Hamiltonian (1) can be written as a sum,

(5)

of the terms

(6)

It is easy to verify that the operators C1 and C2(t) com-
mute with one another for any time t:

(7)

H t( ) "ωca
+a

"ωa

2
---------σz

"g t( )B,+ +=

B a+σ–= σ+a,+

g t( ) g0 kcx t( )[ ] , g0cos d
2πωa

"V
-------------,= =

g t( ) g0 ΩDt ∆Ωt+( ),cos=

ΩD
v
c
----ωa, ∆Ω v

c
----∆ω,= =

g x t( )( ) g0
x t( )
w0

--------- 
  2

– ;exp=

H t( ) " C1 C2 t( )+[ ] ,=

C1 ωc a+a
σz

2
-----+ 

  , C2 t( ) ∆ω
2

--------σz g t( )B.+–= =

C1 C2 t( ),[ ] 0.=
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By applying the operators C1 and C2(t) to the basis of
state vectors |n, j 〉 ≡ |n〉| j〉 , where |n〉 is the Fock basis of
field states and j = ↓ , ↑ , it is easy to see that C1 is diag-
onal in the basis |n, j 〉  with the eigenvalue spectrum
ωc(n ± 1/2), while C2(t) is nondiagonal. Using the basis
of eigenvectors for C1, we could find a basis in which
both operators C1 and C2(t) would be diagonal [1]. In
this case, the Hamiltonian H(t) would clearly also be
diagonal. As such a basis, we use the following linear
combinations of elements from the basis |n, j 〉:

(8)

where θn is the state mixing parameter.

In the absence of a field in the cavity at initial time
t = 0, we have n = 0, |+, 0〉 t and |–, 0〉 t. For the ground
state, when there are no field quanta and when the atom
is in a lower state, we have

Applying the operator C1 to the elements of this
basis of dressed states yields

(9)

i.e., |±, n〉 t are the degenerate eigenstates of this opera-
tor. Let us apply the operator C2(t) to |±, n〉 t and require
that C2(t) be diagonal in this basis, i.e.,

(10)

Using definition (8), we then obtain from (10) with the
aid of (6) for the Rabi frequency

(11)

for the mixing angles in (8), we have

(12)

For the ground state,

In the basis of dressed states that diagonalize the
Hamiltonian H(t), we have

(13)

+ n,| 〉 t θn t( ) n 1 ↓,+| 〉cos= n ↑,| 〉 θn t( ),sin+

– n,| 〉 t θn t( ) n 1 ↓,+| 〉 n ↑,| 〉 θn t( ),cos+sin–=

C1 0 ↓,| 〉
ωc

2
------ 0 ↓,| 〉 .–=

C1 ± n,| 〉 t ωc n
1
2
---+ 

  ± n,| 〉 t;=

C2 t( ) ± n,| 〉 t Ω± n,
R t( ) ± n,| 〉 t.=

Ω+ n,
R t( ) Ω– n,

R t( )–=

=  
∆ω
2

-------- 
 

2

g2 t( ) n 1+( )+ Ωn
R t( );≡

θn t( ) 1
2
--- 2g t( )

∆ω
------------- n 1+ .arctan=

C2 t( ) 0 ↓,| 〉 ∆ω
2

-------- 0 ↓,| 〉 .=

H t( ) ± n,| 〉 t "ωc n
1
2
---+ 

  "Ωn
R t( )± ± n,| 〉 t=

≡ "Ω± n, t( ) ± n,| 〉 t,
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(14)

From (8) and from the property of the basis of dressed
states being orthonormal, we derive a relation between
the bases |±, n〉 t and |n, j〉  at a fixed time:

(15)

The elements of the parametrically time-dependent
basis of dressed states derived in this way for different
times are not orthonormal, which must be borne in
mind in subsequent calculations. The relations between
the elements of the basis of dressed states for various
times t1 ≠ t2 are

(16)

In the Schrödinger representation, the time evolution of
an atom interacting with a field is described by the
propagator (evolution operator)

(17)

with the state vector at time t being

(18)

Let us break down the finite time interval [t0, t] into
a large number M @ 1 of small segments ∆t and assume
that the time dependence of the system Hamiltonian
within each of these segments may be disregarded. The
time evolution of the system in each of these segments
is then described by the propagator

(19)

and the state vector of the system at the final time
instant t is

(20)

H t( ) 0 ↓,| 〉
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--------- 0 ↓,| 〉 .–=
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,sin
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sin=
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.cos
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i
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t
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ψ t( )| 〉 U t t0,( ) ψ t0( )| 〉 .=

ψ t j( )| 〉 i
"
---– H t j( )∆t ψ t j 1–( )| 〉 ,exp=

t j t j 1–= ∆t, j+ 1 M,,=
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---– H tM( )∆texp=

× i
"
---H tM 1–( )∆t–  …exp

… exp
i
"
---H t1( )∆t– ψ t0( )| 〉 , ∆t

t
M
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JOURNAL OF EXPERIMENTAL
Below, we consider the case where the atom at initial
time t0 = 0 was in an excited state and the field was in a
vacuum state, i.e., |ψ(t0 = 0)〉  = |0, ↑〉 .

Using (19), (20), (13) and applying (15), (16), we
obtain the following recurrence formula for the sys-
tem’s state vector at a finite time:

(21)

where A±, M are given by the recurrence relations

(22)

for any 1 < j ≤ M and

(23)

The probability of the atomic transition to a lower state
with photon emission into the cavity mode is then

(24)

It is easy to see that, in calculations with (24), Ω±, 0(t)

may be substituted for in (22) and (23) without
affecting the result.

Our assumption of classical atomic motion in a cav-
ity constrains the atomic velocity and mass. In our cal-
culations using the above formulas, we assume the de
Broglie wavelength Â = h/mv, where m is the atomic
mass, to be much shorter than the cavity mode field
wavelength λ = 2π/kc; i.e., the atomic mass and/or cen-
ter-of-mass velocity are large. The assumption of uni-
form atomic motion, i.e., disregarding the recoil
momentum when a photon is emitted, also requires that
the binding energy "g0 be small compared to the kinetic
energy of the atomic center of mass mv 2/2. Applicabil-
ity of the classical approximation to the problem of the
interaction of a moving atom in a cavity was analyzed
in detail, for example, by Ren et al. [3].

We also assume that the cavity Q factor is high
enough for the atom–field interaction time to be smaller
than γ–1, where γ is the rate of field dissipation through
mirror losses. The conditions under consideration, in
particular, correspond to the micromaser configuration
from [6, 7], where the standard Jaynes–Cummings
model was used.

ψ t tM=( )| 〉
=  A+ M, + 0,| 〉 t tM= A– M, – 0,| 〉 t tM= ,+

A+ t j, iΩ+ n, t j( )∆t–[ ]exp=

× ∆θ0 j,( )A+ t j 1–,cos ∆θ0 j,( )A– t j 1–,sin+[ ] ,

A– t j, iΩ– n, t j( )∆t–[ ]exp=

× ∆θ0 j,( )sin– A+ t j 1–, ∆θ0 j,( )cos A– t j 1–,+[ ] ,

∆θ0 j, θ0 t j( ) θ0 t j 1–( )–≡

A+ t1, θ0 ∆t( )[ ] iΩ+ 0, ∆t( )∆t–[ ] ,expsin=

A– t1, θ0 ∆t( )[ ]cos iΩ– 0, ∆t( )∆t–[ ] .exp=

P↓ t( ) 1, ↓ ψ t( )〈 | 〉 2=

=  θ0 t( )[ ]cos A+ t, θ0 t( )[ ]sin A– t,– 2.

Ω0
R t( )±
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The iteration formula for the evolution operator (17)
in the interaction representation is

(25)

where T denotes the operation of time ordering of the
product of the operators under the integrals. Since the
operator C2(t) commutes with itself for any ti ≠ tj, the
time ordering in the right-hand part of Eq. (25) is not
necessary in our case.

Let us now assume that the atom–field coupling
parameter is given by (3). Using (6) and (25), we then
derive for the transition probability at t0 = 0

(26)

where we designated

If the detuning of the atomic transition frequency
from the field mode frequency is ∆ω ! g0, then, in our
case of a vacuum initial field state in the cavity, the fol-
lowing simple relation can be derived from (26) for the
transition probability, which is equal to the average
number of photons in the cavity:

(27)

This relation is in close agreement with the results from
[2, 3]. As follows from (27), the probability of photon
emission by an atom at rest in an electromagnetic vac-
uum oscillates in time with the Rabi vacuum frequency

as

(28)

Let us now consider the case where a moving atom
crosses a confocal spherical-mirror cavity along its
transverse x axis. Assuming the atomic motion along
this axis passing through the cavity center to be
described by x(t) = v t, we place the coordinate origin
(x = 0) at distance L/2 from the cavity center. The time
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t
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dependence of coupling parameter (4) then takes the
form

(29)

Applying Eq. (26) and using (29) in (6), we find that the
transition probability can be written as a series

(30)

where

(31)

For an exact resonance, ∆ω = 0, we derive from (30)
and (31)

(32)

Since the cavity field decreases exponentially with
increasing distance from the cavity center, we may take
L  ∞ (L @ 2w0), 0 ≤ v t ≤ L in the expression for I(t).
This expression can then be written as

(33)

where erf z is the error integral; erf 0 = 0 and erf ∞ = 1.
Let us now calculate the probability of photon emis-

sion by an atom as it passes through the cavity, i.e.,
P↓(t) for t = L/v  on condition that L @ 2w0, by using
(32). Clearly, this probability is

(34)

it thus follows that the atom leaves the cavity in a lower

state if g0w0/v  = n + 1/2, n = 0, 1, 2, …, while, for

g0w0/v  = n, the state of the atom after its passage
through the cavity does not change.

When g0w0 /v  ! 1 and v  @ g0w0 , the energy
exchange between the excited atom and the cavity can-
not take place, and the atomic and field states remain
unchanged during the entire passage of the atom
through the cavity.

3. DOPPLER–RABI OSCILLATIONS

As our calculations with formula (24) show, the time
dependence of the transition probability for a moving
atom basically depends on the center-of-mass velocity,
coupling constant, and the detuning of the transition
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frequency from the cavity mode frequency. Depending
on the ratio ξ = ΩR/ΩD of the Doppler and Rabi fre-

quencies, ΩR = , there can be no Rabi
oscillations in the time dependence of the emission
probability. For ξ ! 1 and ∆ω ! g0, the probability of
photon emission by the atom and photon escape from
the cavity in the lowest state can be low even at large
coupling constants (Fig. 1). In this case, the frequency
of oscillations in the transition probability corresponds
to the 1/ξth Rabi harmonic, while the probability
decreases as ξ2. As follows from Eq. (27), for ξ ! 1 and
∆ω ! g0, the transition probability

g0
2 ∆ω/2( )2+

P↓ t( ) a+ t( )a t( )〈 〉 ξ 2 ΩDt( )sin
2

= =

2.0

1.5

1.0

0.5

0 1 2 3 4 5
tD

P
↓ 

× 
10

2

Fig. 1. Probability P↓  for the transition of an excited atom
to a lower state with photon emission as it moves in a plane-
parallel-mirror cavity versus dimensionless time tD =
ΩDt/π, ΩD = vωa/c at ∆ω ! g0, ξ = ΩR/ΩD = 0.1. The upper
curve represents the dependence cos(kcx(tR)).
JOURNAL OF EXPERIMENTAL
oscillates with the frequency equal to the Doppler shift
rather than with the Rabi frequency.

For a small detuning, the condition for the presence
of Rabi-type probability oscillations is a Doppler reso-
nance, when ξ = 1 (Fig. 2); in this case, P↓ ≤ sin2(1 rad).

If ξ > 1 and ∆ω ! g0, i.e., if the Doppler shift is
smaller than the Rabi frequency, the transition proba-
bility at maxima is unity, as with an atom at rest. As we
see from Fig. 3a, there are no Rabi oscillations for ξ =
2. However, Rabi oscillations are restored near the field
antinodes (Figs. 3b and 3c). As one might expect, ordi-
nary Rabi oscillations take place for ξ @ 1, but only
near the field antinodes in the cavity at a finite atomic
velocity.

When the detuning of the atomic transition fre-
quency from the field mode eigenfrequency is compa-
rable in magnitude to the coupling constant, ∆ω ≥ g0,
the average number of photons in the cavity generally
decreases with increasing detuning and exhibits a com-
plex time dependence on detuning. In Fig. 4, P↓(t) is
plotted for a small detuning, ∆ω = g0, at ξ= 2.2. As we
see from the plot, the maximum number of photons dif-
fers little from the corresponding value for an atom at
rest. The shape of the oscillations in photon number
proves to be very sensitive to the detuning even if the
latter is small but comparable to the coupling constant
g0.

If ξ ! 1 and ∆ω > g0, as with a small detuning, the
transition probability oscillates in time with ΩD. In this
case, the transition probability exhibits a dependence
on the Doppler frequency shift, coupling constant, and
time similar to (28) for an atom at rest with the change
ΩR  ΩD, i.e.,

(35)P↓ t( )
g0

2

ΩD
2 g0

2+
------------------- ΩDt( ).sin

2
=

1.00

0.75

0.50

0.25

0 1 2 3 4 5
tR

P
↓

2

0

–2

0 1 2 3 4
tR

R

(a) (b)

Fig. 2. (a) Probability P↓  for the transition of an excited atom to a lower state with photon emission as it moves in a plane-parallel-

mirror cavity versus dimensionless time tR = ΩRt/π, ΩR =  at Doppler–Rabi resonance, ξ = ΩR/ΩD = 1. The upper

curve represents the dependence cos(kcx(tR)). (b) Transition rate R(tR) = dP↓(tR)/dtR.

g0
2 ∆ω/2( )+

2
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As we see from (35), the frequency of energy exchange
between atom and field is determined by the Doppler
shift of the atomic transition frequency if ξ ! 1.

At resonance, ξ = 1, the transition probability
decreases as the detuning increases and the oscillation
frequency for ∆ω @ g0 is ΩR/2 (Fig. 5). At the same
time, when there is a detuning and ξ < 1, oscillations
similar in shape to Rabi oscillations can be restored on
reaching a resonance ∆ω ≈ ΩD(or ∆ω ≈ ωcv /c [2]). Fig-
ure 6 shows the photon emission probability for an
exact resonance, ∆ω = ΩD = 102g0, at ξ = 0.5. As we see
from Fig. 6a, there are Rabi-type oscillations with a unit
amplitude but with a frequency that is a factor of ∆ω/g0

lower than the frequency of ordinary Rabi oscillations
at a given detuning. Consequently, at Doppler reso-
nance ∆ω ≈ ΩD, the Doppler frequency shift effec-
tively offsets the effect of detuning on the transition
probability.

As we see from Fig. 6b, the dependence P↓(t) is
modulated by shallow oscillations with twice the Rabi
frequency, which results in a deep modulation of the
transition rate dP↓ /dt (Fig. 6c).
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Fig. 3. Same as in Fig. 2a, but for ξ = 2 (a), 3 (b), and 10 (c).
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Figure 7 shows a plot of P↓(t) for the detuning ∆ω =
20g0 at ξ = 10. In this typical case for ξ @ 1, ordinary
Rabi oscillations turn out to be modulated in amplitude
with the period 2/∆ω much as the frequency modulation
takes place in the absence of a detuning (see Fig. 3).

Our calculations of the transition probability by the
summation of series (26) show that the alternating
series converges very slowly for large δ(t) and at a large
detuning ∆ω or coupling constant g0. In these cases,
calculations can easily be performed with the recur-
rence formula (24).

Currently, the Jaynes–Cummings model for an atom
at rest is used in micromaser theory [6–9]. A compari-
son of theory with experiment [10–12] shows that pre-
dictions of this theory are not always consistent with
experiment. For example, by experimentally analyzing
the photon statistics for a micromaser, Rempe et al.
[12] pointed out qualitative disagreement between the-
ory and experiment for the atomic transition frequency
ωa = 21.5 GHz, cavity length L = 2.4 cm, coupling
parameter g0= 10 kHz, and the time it takes for the atom
to pass through the cavity L/v  = 50 µs. At the same
time, agreement with theory is achieved by changing
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Fig. 4. Same as Fig. 2a for the detuning ∆ω = g0 at ξ = 2.2.
Dashed curve shows the Rabi oscillations of a resting atom
for the same g0 and ∆ω values.
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Fig. 5. Same as in Fig. 2a, but for the detuning ∆ω = 2 ×
105g0 at ξ = 1.
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micromaser parameters, decreasing the atom–field
interaction time to L/v  = 35 µs and increasing the cou-
pling parameter to g0 ≈ 44 kHz. Calculations with for-
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Fig. 6. (a, b) Same as in Fig. 2a, but for the detuning ∆ω =
100g0 at ξ = 0.5; (c) same as Fig. 2b.
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mula (24), which includes the effect of atomic center-
of-mass motion on the atom–field interaction, indicate
that, in the latter case, the system’s state is close to Dop-
pler–Rabi resonance (ξ ≈ 1) and the variations in tran-
sition probability follow a law similar to ordinary Rabi
oscillations (see Fig. 2) for an atom at rest. At the same
time, for the other experimental conditions given
above, the ratio of the Rabi frequency to the Doppler
shift is much smaller (ξ ≈ 0.3), and a pattern of energy
exchange between atom and field (similar to that in
Fig. 1 at ξ ! 1) that differs sharply from the pattern at
resonance (ξ = 1) takes place. The detuning of the cav-
ity frequency from the atomic transition frequency sig-
nificantly affects the pattern of oscillations in transition
probability. The time dependence of probability in Fig. 4,
which corresponds to micromaser conditions [12],
shows that the transition probability is very sensitive to
the detuning for a moving atom.

The above analysis leads us to conclude that the
effects attributable to atomic motion in the cavity, in
our view, must be taken into account in micromaser the-
ory and for some microlaser schemes.

Next, consider the situation when a moving atom
crosses a confocal spherical-mirror cavity through its
center transversally. In our calculations, we use the cav-
ity parameters, atomic transition frequency, coupling
constant, and atomic velocities from [13], where the
quantum Rabi oscillations of Rydberg atoms were stud-
ied experimentally.

Let the detuning be negligible, ∆ω ! g0 [formulas
(32) and (33)]. The time dependence of the transition
probability (average photon number) for an initially
excited atom passing through the cavity (see Fig. 8)
illustrates the resonance conditions found in the pre-
ceding section. Figure 8a shows the transition probabil-
ity when
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Fig. 7. (a) Same as in Fig. 2a, but for the detuning ∆ω = 20g0 at ξ = 10; (b) the same dependence near tR = 5.
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in this case, the atom after its passage through the cav-
ity proves to be in a lower state and the cavity field con-
tains a single photon with a unit probability. Figure 8b
shows the dynamics of the transition probability for a
different resonance condition,

in this case, the cavity is transparent for the excited
atom; i.e., the state of the atom does not change as it
leaves the cavity.

The dynamics of the transition probability when
there is a detuning of the cavity mode frequency from
the atomic transition frequency is shown in Fig. 9 for
various detunings. As we see from the plots, the transi-
tion probability is very sensitive to the detuning: even a
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Fig. 8. Probability P↓  for the transition of an excited atom
to a lower state with photon emission versus dimensionless

time tR = ΩRt/π, ΩR = , as the atom passes

through a confocal spherical-mirror cavity with a Gaussian
transverse field distribution for the atomic center-of-mass
velocities (a) v  = 8.122 × 103 cm s–1, ΩD = 8.67 × 104 s–1

and (b) v  = 8.799 × 103 cm s–1, ΩD = 9.39 × 104 s–1. The
dashed curves represent the time dependence of the cavity
transverse field distribution, and the dotted curves represent
the Rabi oscillations of an atom at rest for the same coupling
constant g0 and detuning ∆ω ! g0.
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small detuning compared to the coupling constant,
∆ω = 0.2g0, causes the transition probability to
decrease sharply both inside the cavity and at its exit
(Fig. 9a). A comparison indicates that the maximum
transition probability for an atom at rest decreases with
increasing detuning much more slowly than for a mov-
ing atom. For the detuning ∆ω = g0, the deexcitation
probability of the atom as it leaves the cavity is nearly
zero (Fig. 9b) for any values of the coupling constant g0
and atomic velocity.

4. CONCLUSION

We have analyzed the interaction of a uniformly
moving two-level atom with a high-Q cavity field. Our
calculations for a plane-parallel-mirror cavity lead us to
the following conclusions.

We considered the conditions for spontaneous emis-
sion when the atom was initially in an excited state and
the cavity field was in a vacuum state. We established
that, if the ratio of the Rabi frequency to the Doppler
shift of the atomic transition frequency, ξ = ΩR/ΩD, is
much less than unity, then the average number of pho-
tons in the cavity is small when the cavity mode fre-
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Fig. 9. Same as in Fig. 8, but at v  = 8.122 × 103 cm s–1 for
various detunings: (a) ∆ω = 0.2g0 (ΩR = 1.58 × 105 s–1)

and (b) ∆ω = g0 (ΩR = 1.76 × 105 s–1).
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quency is close to the atomic frequency, ∆ω ! g0. In
this case, the average number of photons (transition
probability) oscillates in time with Doppler frequency
rather than with Rabi frequency; the oscillation ampli-
tude is proportional to ξ2 ! 1.

For a Doppler resonance (ξ = 1), the photon number
oscillates with Rabi frequency, with the average num-
ber of photons being no larger than sin2(1 rad) ≈ 0.708.

If the Rabi frequency is larger than the Doppler fre-
quency shift (ξ > 1), then the average number of pho-
tons in the cavity can reach unity when the atom is near
the antinodes of the spatial field distribution in the cav-
ity and is much smaller than unity near the field nodes.
The ordinary Rabi oscillations characteristic of an atom
at rest take place for finite atomic center-of-mass veloc-
ities if ξ @ 1 only near the field antinodes.

When there is a detuning of the atomic transition
frequency from the field mode eigenfrequency, ∆ω ≥ g0,
the average number of photons in the cavity decreases
with increasing detuning and exhibits a complex time
dependence for each specific detuning. The shape of the
oscillations in photon number proves to be very sensi-
tive to the detuning even if the latter is small but com-
parable to the coupling constant g0.

The photon emission probability for an exact reso-
nance (∆ω = ΩD, ξ < 1) increases sharply. Under these
conditions, there are Rabi-type oscillations with a unit
amplitude but with a frequency that is a factor of ∆ω/g0
lower than the frequency of ordinary Rabi oscillations
for a given detuning. Thus, at Doppler resonance ∆ω ≈
ΩD, the Doppler frequency shift effectively offsets the
effect of detuning on the transition probability.

Rabi-type oscillations with twice the period and
with an amplitude much smaller than unity occur at ξ = 1
and ∆ω @ g0.

Our calculations for a Gaussian confocal-cavity
mode showed that the probability of photon emission
by the atom and its deexcitation after it passes through
the cavity decreases sharply as the detuning increases
JOURNAL OF EXPERIMENTAL
and is nearly zero at ∆ω = g0, irrespective of the atomic
velocity.

Our analysis for the two types of cavities leads us to
conclude that the effects attributable to atomic center-
of-mass motion must be taken into account to theoreti-
cally interpret experiments with micromasers [13, 14]
and microlasers.
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Abstract—A quasipotential method is formulated for calculating relativistic and radiative corrections to the
magnetic moment of a two-particle bound state in the case of particles of arbitrary spin. It is shown that expres-
sions for the g factors of bound particles contain terms of order O(α2) that depend on the spin of particles.
Numerical values of the g factor of an electron in the hydrogen and deuterium atoms are obtained. © 2001
MAIK “Nauka/Interperiodica”.
The study of electromagnetic properties of hydro-
gen-like atoms and ions in quantum electrodynamics is
one of the basic problems in the theory of two-particle
bound states. The experimental verification of the cal-
culation of the g factors of particles in a bound state has
been carried out over many years [1, 2]. The measured
values of the g factors of an electron in hydrogen, deu-
terium, and helium (4He+) are in good agreement with
the relevant theoretical results. Recently, the field of
experimental investigations of hydrogen-like ions has
been substantially expanded [3, 4]. These experiments
call for new theoretical calculations of different contri-
butions to the g factors of bound particles [5–7]. The
most precise measurements of the electron g factor
have been performed for the hydrogen-like ion of car-
bon, 12C5+ (Z = 6) [3, 4, 7]:

(1)

where the numbers in parentheses stand for the statisti-
cal error (8), systematic error (6), and the error associ-
ated with the mass of electron (40). The theoretical
investigations of the electromagnetic properties of
hydrogen-like atoms carried out in [8–14] have shown
that the gyromagnetic factors of bound particles can be
represented by the series

. (2)

In [8, 9], the relativistic (∆grel), radiative (∆grad), and
recoil (∆grec) corrections were calculated up to the
terms of order α3(m/M) and α2(m/M)2 within the quasi-
potential method for spin-1/2 particles that form a
bound system. The dots in (2) stand for other possible
terms in the g factor. At the same time, the experiments
with deuterium and with hydrogen-like ions whose
nuclei have different spins call for the methods for cal-
culating the g factors in this case. Eides and Grotch [15]
proposed a method, based on the Bargmann–Michel–

ge
exp C12 5+( ) 2.001 041 596 4 8( ) 6( ) 40( ),=

g H atom( ) 2 ∆grel+= ∆grad ∆grec …+ + +
1063-7761/01/9303- $21.00 © 20471
Telegdi (BMT) equation [16], for calculating the cor-
rections to the gyromagnetic factors and suggested that
these factors are independent of the spins of the constit-
uents. In this paper, we formulate a quasipotential
method for calculating the magnetic moment of the
bound state of two particles of arbitrary spin and calcu-
late the basic contributions to the corrections in (2) of
order O(α2) and O(α3) that arise in the approximation
of one-photon interaction of particles in the bound state
(see figure).

The interaction of massive particles of arbitrary spin
with an electromagnetic field have been investigated by
various methods over a long period of time [17–27];
however, this problem is still far from its final solution.
In [18–20], it was shown that, within a tree approxima-
tion, a particle of arbitrary spin must have a gyromag-
netic factor of g = 2. In the general case, the matrix ele-
ment of electromagnetic current for a particle of spin S
is determined by (2S + 1) form factors (the charge,
magnetic, quadrupole, etc., form factors). When study-
ing the magnetic moments of simple atomic systems,
one can restrict the analysis to the form factors with the
lowest multipolarity that determine the distributions of
charge and magnetic moment by representing the
matrix element Jµ of the operator of electromagnetic
current between states with momenta p and q as

(3)

where kν = (p – q)ν. The wave function U(p) of a particle
of arbitrary spin involved in (3) can be represented as
follows [26, 27]:

(4)

Jµ U p( ) ΓµF1
D 1

2m
-------ΣµνkνF2
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where the spin tensors ξ and η are symmetric with
respect to the upper and lower indices. For a particle of
half-integer spin, we have

whereas, in the case of an integer spin, we have

The Lorentz transformation for the spinors ξ and η is
given by [27, 28]

(5)

here, ξ0 is the spinor in the rest frame of reference, the
direction of the vector f coincides with the velocity
direction of the particle,  = v, and the generator
S of the Lorentz transformation is given by

(6)

The matrix si acts on the ith index of the spinor ξ0 as
follows:

(7)

The components of the antisymmetric tensor Σµν in (3)
represent the generators of boosts and rotations [27,
28]:

(8)

In the standard representation, which is introduced by
analogy with the case of spin 1/2, the wave function (4)

p S 1/2+ , q S 1/2,–= =

p q S.= =

ξ S f⋅
2

----------- 
  ξ0, ηexp S f⋅

2
-----------– 

  ξ0;exp= =

φtanh

S si

i 1=

p

∑= si.
i p 1+=

p q+

∑–

siξ0 si( )α iβi
= ξ0( )…βi…

.
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Σmn 2iemnk
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Generalized vertex functions Γµ of two particles: (graph a)

 and (graph b) . The heavy line represents the neg-

ative-frequency part of the propagator of a particle.

Γµ
0( ) Γµ

1( )
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of a free particle is expressed up to terms of order (v /c)2

as

(9)

The magnetic moment of a bound state of two parti-
cles of arbitrary spin is determined as [8, 9]

(10)

where the matrix element of the operator of electro-
magnetic current between two bound states is
expressed in terms of the wave functions (p) of the
bound system and the generalized vertex function Γµ
shown in the figure:

(11)

The vertex function Γµ is determined by the five-point
function

(12)

projected onto positive-frequency states:

(13)

where G is the two-particle Green’s function. Since we
deal with a weakly bound two-particle system, the
quantities Γ, R, and G–1 can be expanded in series
according to perturbation theory:

(14)

(15)

(16)

where G0 is the Green’s function of two noninteracting
particles and V1 is a quasipotential of one-photon inter-
action (see Eq. (19)).

When passing from the rest frame to a moving frame
of reference with the momentum KB, the wave function
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(p) of a system of particles with spins s1 and s2 is
transformed as [29]

(17)

where DS(R) are rotation matrices and RW is the Wigner
rotation associated with the Lorentz transformation

:

The exact expression for the rotation matrix is [9]

(18)

where S(p) is the matrix of the Lorentz transformation
of the spinor wave function (4). The quasipotential
wave function Ψ0(p0) in the rest frame of the bound
state satisfies the following quasipotential equation
[30]:

(19)

where µR is the relativistic reduced mass:

M = E1 + E2 is the mass of the bound state, and

In the nonrelativistic limit, Eq. (19) reduces to the
Schrödinger equation with the Coulomb potential.
Using (5), we can obtain the following approximate
expressions for the functions DS in (18):

(20)
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The main contribution to the vertex function Γµ, which
is determined by graph a in the figure, can be repre-
sented (in the Breit frame) as follows:

(21)

where (0) = e1, 2, (0) = e1, 2κ1, 2, and the matrix

(22)

is a natural generalization of the Dirac γ matrix for spin
1/2 in standard representation. To simplify individual
terms in (20), it is convenient to apply the following
commutation relations [27]:

(23)

When constructing the vertex function G(0)(p, q) with
regard to the terms of order (v /c)2, we avail ourselves of
the explicit expression of the wave function (9) and
transform the individual terms of the matrix element
(21) using the equations of motion for the spinors U(p).
Taking into account δ(p2 – q2), we obtain

(24)

(25)

(26)

The bound-state effects in the vertex function Γµ are
determined by graph b in the figure. Taking into consid-
eration the iterative terms of the quasipotential, we can
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conveniently represent the corresponding expression as
follows [8, 9]:

(27)

(28)

where the one-particle operator of projection onto neg-
ative-frequency states is given by

and κ1, 2 are anomalous magnetic moments of the parti-
cles. The matrices A1, 2 and @1, 2 also represent natural
generalizations of a1, 2 and β1, 2 to the case of spin-1/2
particles (by analogy with (22)):

(29)

To order (v /c)2, both terms of potential (28) contribute
to the magnetic moment of the system. Substituting
(27), (28), and (9) into (11) and calculating the deriva-
tive with respect to D in (10), we obtain

(30)

where
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In the case of S states, expression (30) is substantially
simplified:

(32)

where the g factors of bound particles are given by

(33)

For a hydrogen-like ion (index 1 corresponds to the
electron, and index 2 to the nucleus), we have

(34)

so that the g factors of the electron and nucleus in the
bound state are given by

(35)
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where we retained the coefficients  and  in the
general form to demonstrate the symmetry of relations
(35) and (36) with respect to the replacement 1  2.
Expressions (35) and (36), which are obtained from
graphs a and b in the figure, contain the corrections of
order O(α2) and O(α3) associated with the bound-state
effects. Here, the interaction of particles in the bound
state are considered in the one-photon approximation.
The corrections of order O(α3) are attributed to the
terms of the quasipotential that are proportional to the
anomalous magnetic moments κ1 and κ2 of the parti-
cles. Formulas (30), (35), and (36) are the generaliza-
tions of the expression for the magnetic moment of a
hydrogen-like atom and gyromagnetic factors for spin-
1/2 particles, obtained in [8, 9], to the case of particles
of arbitrary spin. Expression (30) for the magnetic
moment contains the terms corresponding to the inter-
action of free nonrelativistic charged point particles
with an external electromagnetic field, as well as a
number of corrections to these terms associated with
the bound-state effects. Some of these corrections, qua-
dratic in the spin operator S (the terms proportional to
~Ni), are determined by the transformation properties
of the spinors ξ and η (5) and can be interpreted as the
relativistic corrections for a particle of spin s. Other
corrections, which are associated with the general
structure of the matrix element of current Jµ in (3),
relate to the dipole interaction. Our calculations by for-
mulas (35) and (36) show that the terms of order O(α3)
in the expressions for ge bound and gN bound depend on the
spin of the second particle, the nucleus, in contrast to
[15], where no such dependence was observed. From
the experimental point of view, of special interest are
the electron g factors of the hydrogen, deuterium, and
tritium atoms, as well as the ratios of these factors [1].
The experimental value of the ratio ge H/ge D obtained in
[13] is given by

(37)

to a high degree of accuracy. An analytical expression
for this ratio is obtained from (35):

(38)

The numerical value of (38) is given by

which is in good agreement with (37).
The problem of relativistic description of the inter-

action of a massive particle of arbitrary spin with an
electromagnetic field has been studied over a long
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period of time [17–25]; however, this problem has not
yet been solved completely. It is well known that the
application of the minimal coupling principle

(39)

to relativistic equations for particles of spin 

 

s

 

 

 

≥

 

 1 leads
to the following fundamental difficulties [17–27]:

1. The system of partial differential equations
describing a spin particle may become inconsistent
after substitution (39). For example, such a situation
occurs with the Proca equation for a vector particle.

2. The introduction of minimal coupling into the
equation describing a free particle of fixed spin 

 

s

 

 may
lead to an equation that cannot be interpreted as the
equation of motion of an object with spin 

 

s

 

, since the
corresponding wave function has redundant compo-
nents.

3. The equation for a particle of spin 

 

s

 

 > 1 that min-
imally interacts with an electromagnetic field is relativ-
istically invariant; however, it still describes the propa-
gation of a wave with velocity 

 

v

 

 > 

 

c

 

.
In the nonrelativistic limit, different relativistic

wave functions for a particle of spin 

 

s 

 

lead to different
Pauli-type equations. As we noted above, Eides and
Grotch [15] proposed a method for calculating the con-
tributions of different orders to the magnetic moment of
a weakly coupled system on the basis of a relativistic
semiclassical equation of motion of spin. The Hamilto-
nian of interaction of a particle of arbitrary spin with an
external electromagnetic field constructed in [15] on
the basis of the above equation yields the 

 

g 

 

factors of
particles in the bound state that are independent of their
spins. The BMT equation is approximate: it is linear in
the spin of the particle and the field 

 

F

 

µ

 

v

 

; the dependence
of the field on the coordinates is neglected. When a par-
ticle of spin 

 

s 

 

is in a bound state in a uniform external
magnetic field, the terms neglected in the approxima-
tion of the BMT equation may make a certain contribu-
tion to the 

 

g 

 

factors of bound particles. In this paper,
when calculating the contributions (depending on the
spin of the nucleus) to the 

 

g 

 

factors of bound particles
of a hydrogen-like ion, we applied the method proposed
in [26, 27] for describing the interaction of a particle of
arbitrary spin with an electromagnetic field. New (as
compared with [8]) contributions to (35), (36), and (38)
have appeared as a result of the substitution of opera-
tors (29) for ordinary generators of boosts 

 

α 

 

in the case
of a spin-1/2 particle. Thus, our approach to the
description of the interaction of a particle of arbitrary
spin with an electromagnetic field is based on the appli-
cation of the matrix element of electromagnetic current
(11) and the Lorentz transformation of the spinor wave
functions 

 

ξ 

 

and 

 

η

 

 (5). We obtained additional spin-
dependent terms in the expressions for the 

 

g 

 

factors of
bound particles (see (33)) that arise when one takes into
account the terms nonlinear in the spin operator 

 

S 

 

in the
operator of interaction of particles. The Hamiltonian
obtained in [15] does not contain such nonlinear terms

∂µφ ∂µφ ieAµφ+ Dµφ=
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of order O((v /c)2) for particles of arbitrary spin s. The
terms thus calculated in the expressions for the gyro-
magnetic factors of particles actually represent the con-
tribution of contact terms of the quadrupole interaction
investigated in [26, 27]. In the case of spin-1/2 parti-
cles, these terms correctly reproduce the well-known
result obtained independently in [8, 10, 11, 22] by dif-
ferent approaches. The correction to rth associated with
the spin of a deuteron, such that I = 1, Z = 1, m = 2m2
(m2 is the mass of a proton), is given by

and, as follows from (37), lies within experimental
error bounds. The corrections to (35) and (36) associ-
ated with the spin of the nucleus also depend on Z and
N, the number of nucleons in the nucleus. In spite of the
fact that these terms increase (∝ Z3) with Z, an increase
in the number N of nucleons in the nucleus leads to the
opposite effect. Therefore, in the case of ions of the
type 12C5+ with the spin I ≠ 0, the numerical values of
these corrections also lie beyond experimental error
bounds. The spin I of the 12C5+ ion itself is equal to zero;
therefore, KI = 0, and the corresponding spin correction
also vanishes. At present, there are experimental data
on the electron g factor in 16O7+ and 32S14+ ions [4],
whose nuclei also have spin I = 0. In our opinion, it
would be interesting to measure the g factors of parti-
cles using Penning traps [3, 4] for such ions in which,
on the one hand, the spin I ≠ 0 and, on the other hand,
the ratio Z3/N2 attains large values. The 59Co26+ ion with
I = 7/2 and Z3/N2 ≈ 5.65 and the spin-dependent correc-
tion to (35) equal to 0.1 × 10–9 can serve as one of such
ions. As was pointed out in the report made by Quint
[4], one can expect that the g factor of a bound electron
will be measured to an accuracy higher than 1 ppb in
the nearest future.
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Abstract—The contribution of vacuum polarization to the g factor of a bound electron is considered for the
ground state of a hydrogen-like atom. A final expression for the correction is obtained in terms of generalized
hypergeometric functions and represents a function of parameter Zα and the ratio of the mass of the orbital par-
ticle (electron or muon) to the mass of a particle in the vacuum loop. Different asymptotic forms of this expres-
sion are derived for both common and muon atoms. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There exist several characteristics of simple atoms
of theoretical interest that can be determined experi-
mentally to a high degree of accuracy. Until recently,
one considered only the Lamb shift and hyperfine split-
ting among these characteristics, as well as certain
associated intervals of fine and gross structure of the
atomic spectrum. Recently, precision measurements of
the g factor of a bound electron have been carried out in
the hydrogen-like ion of carbon (12C5+) [1]. A number
of corrections to the g factor of a bound electron are
presented in [2–6] (see also the recent studies [7, 8] and
references therein). However, the state of the art of the
theory cannot be regarded as quite satisfactory. In par-
ticular, this circumstance is attributed to the fact that the
experiments in [1, 9] allow one to obtain the results for
different ions; at present, the processing of data for a
hydrogen-like oxygen is approaching the end [10]. The
requirements imposed on the theory also depend on the
nuclear charge Z. For instance, the accuracy of the
experiments carried out about 30 years ago with hydro-
gen [11], deuterium [11, 12], tritium [13], and the
helium ion [14] was sufficiently high: the relative error
was 10–8 for hydrogen (Z = 1) [11, 15] and 3 × 10–7 for
helium (Z = 2) [14, 16]. Since the nuclear charge Z in
this case is small, the nontrivial corrections of order
α(Zα)4 or higher associated with the quantum electro-
dynamics (QED) of bound states did not play any
appreciable role. However, the accuracy of the experi-
ments with hydrogen-like ions of carbon and oxygen [9] is
several times higher (the error amounts to 2 × 10–9), and,
which is more important, for Z = 6 and 8, the nontrivial
QED corrections of order α(Zα)4 prove to be three
orders of magnitude greater. This fact radically changes
the situation, and the g factor of a bound electron in
1063-7761/01/9303- $21.00 © 20477
such ions proves to be highly sensitive to the effects of
quantum electrodynamics of bound states. Further
experimental plans involve the hydrogen-like ions of cal-
cium (Z = 20); in this case, the measurements of the
g factor of a bound electron are as sensitive to higher
order QED corrections as the standard experiments on
the determination of the Lamb shift in hydrogen [17].

To facilitate the comparison of the theory with
experiment, one should analyze a number of higher
order corrections and carry out calculations without
expanding in terms of the parameter Zα. Similar calcu-
lations were carried out numerically in the one-loop
approximation [5, 6, 8]. At the same time, it is known
that various phenomena associated with the free polar-
ization of vacuum admit analytical calculations for a
Dirac electron [18–21]. The present study is devoted to
the exact (without expanding in terms of Zα) analytical
calculation of the contribution of the vacuum polariza-
tion to the g factor of a bound electron (some prelimi-
nary results were briefly presented in [22]) and is a con-
tinuation of our studies [19, 21],1 where we obtained
expressions for the contribution of vacuum polarization
to the Lamb shift and the hyperfine structure of a hydro-
gen-like atom. In this paper, we present an exact (with
respect to Zα) analytical result concerning the correc-
tion, induced by the free polarization of vacuum, to the
g factor of a bound particle in the ground state of a two-
particle atomic system. All calculations are performed
under the assumption of an infinitely heavy point
nucleus. For medium values of the nuclear charge Z that
correspond to the experiments of [1, 9], one can easily
take into account, when necessary, the finiteness of the
nucleus size as a perturbation [23]. The results obtained
apply to both electron and muon atoms.

1 Certain misprints made in [19] are discussed in the Appendix.
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In this work, we also found certain useful asymp-
totic expressions. In particular, the polarization correc-
tion to the g factor of an electron in the ground state for
medium values of Z can be represented as

(1)

to a sufficient degree of accuracy. This expression
reproduces the known contribution of order α(Zα)4 [23]
and contains new expansion terms. The results obtained
agree with the numerical results for an electron atom
[6]. This fact is illustrated in Fig. 1, which reproduces
the analytical results obtained below and the results of
numerical calculations performed in [6]. One can easily
see that asymptotics (1) is in good agreement both with
the full analytical expression and with the numerical
results. The latter results involve an additional contribu-
tion due to the Wichmann–Kroll potential. For small Z,
this contribution is of order α(Zα)6, which explains the
small difference between our data and the numerical
results (they have the same order of magnitude). In
view of certain physical reasons, one should expect that
this contribution, which takes into account the photon–
photon interaction (the so-called scattering of light by
light), has small numerical coefficients. It is this fact
that explains the good agreement between asymptotics
(1) and the results of analytical and numerical calcula-
tions.
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Fig. 1. Comparison of numerical data [6] (dots) for gVP(Z) and
analytical results obtained in this paper; the heavy curve repre-
sents the full analytical expression (see (17)), while the thin
lines represent the asymptotics (1) g(a) = –16α(Zα)4/15π [23],
(2) g(b) = g(a) + 5α(Zα)5/9, and (3) g(c) = g(b) +
[(16/15)ln(2Zα) – 2012/525]α(Zα)6/π (cf. (1)).
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The structure of this paper is as follows. In Section 2,
we derive a general expression for the correction to the
g factor of a bound electron (muon) as a function of two
parameters: the nuclear charge Z and the ratio of the
mass m of the particle bound in the atom (electron or
muon) to the mass me of the particle in the polarization
loop (electron). In this paper, we follow the notation of
[19, 21]. In particular, we use the following quantities
instead of the two aforementioned parameters:

and

which better correspond to the physical sense of the
problem. In Section 3, we analyze various asymptotics
corresponding to various limit values of the parameters
e and κ. In this paper, we use the relativistic system of
units " = c = 1.

2. GENERAL EXPRESSION

The energy levels of an electron in an external mag-
netic field H are determined by the effective Hamilto-
nian

(2)

where µB is the Bohr magneton of the electron (muon);
j is the total angular momentum of the electron; and g
is its g factor, which depends on the electron configura-
tion. In this paper, we consider the ground state of a
hydrogen-like ion with the spinless nucleus, so that the
total momentum of the ion, the total momentum of the
electron, and its spin are identical.

In the ground state of a hydrogen-like atom, the g
factor of a relativistic bound electron

(3)

differs from its free value

(4)

which is determined by the Dirac equation, even in the
absence of radiative phenomena such as the vacuum
polarization. This situation is attributed to the fact that
the effective Hamiltonian (2) has a nonrelativistic form;
therefore, all relativistic phenomena are contained in
the parameter g, which depends on the state of the sys-
tem. In general, Hamiltonian (2) also has off-diagonal
matrix elements; however, in the problem of relativistic
corrections to the electron energy in a weak external
magnetic field, it suffices to restrict the analysis to the
diagonal elements.

e 1 1 Zα( )2––
Zα( )2

2
--------------≈=

κ Zαm
me

------------,=

∆H gµB j H⋅( ),–=

g 2 1 a b+ +( )=

gDirac
0( ) 2,=
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For the ground state, the leading correction for the
binding phenomena is given by the Breit formula [2]

(5)

The consideration of the QED phenomena changes the
value of the g factor in the case of a free electron,

(6)

(where an is an n-loop contribution to the anomalous
magnetic moment of electron [24]), as well as in the
case of a bound electron [3, 4],

(7)

(where M is the nuclear mass). It should be noted that
all corrections of order (Zα)2 have a purely kinematic
character [3, 4] and represent a solution of a two-parti-
cle problem in which a free electron (muon) has a non-
zero anomalous magnetic moment a and the nuclear
mass M is finite. The nontrivial QED phenomena corre-
sponding to the quantum electrodynamics of bounded
states only conribute to the terms of order α(Zα)4;
therefore, it suffices to take into account these terms in
the limit of external field, when m/M = 0. In particular,
one of such corrections is attributed to the effects of
vacuum polarization.

The correction to the g factor of a bound electron
induced by the free polarization of vacuum corresponds
to the Feynman graphs shown in Fig. 2. These graphs
correspond to the second-order terms of perturbation
theory; one should apply the Coulomb Green’s function
of a relativistic electron to calculate these graphs. How-
ever, instead of calculating the second-order cross con-
tribution for two perturbations, those of an external
magnetic field and of the Uehling potential, we can
reduce the problem to two first-order calculations (cf.
the calculation of the correction to the hyperfine split-
ting in [21]). Namely, we first solve the problem of per-
turbation of the Dirac equation by an external homoge-
neous time-independent magnetic field H and deter-
mine the correction linear in this field to the wave
functions and then calculate the matrix element of the
Uehling potential over the perturbed wave functions
(cf. (15) in [21]).

2.1. Wave Function with Regard 
to the External Magnetic Field

The correction linear in an external magnetic field to
the relativistic Coulomb wave function of an s state in

gBr
8m
3

-------– f 1sg1sr
3 rd
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2 3 2e–( )

3
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the hydrogen atom, which is given by [25]

in the absence of the magnetic field, can be determined
by the method of generalized virial relations. This
method was developed in [26]; we used it in [21]. The
correction to the wave function, induced by an external
dc magnetic field H, contains terms with different
angular dependence (l = 0 and l = 2). Note that the cor-
rection to the wave function is needed in this study only
for calculating the matrix element of the central poten-
tial; therefore, it suffices to consider only the s compo-
nent of the correction in the first order of perturbation
due to the magnetic field H. This component of the cor-
rection to the wave function is given by

(8)

where

(9)

and

(10)

is the energy of level ns. In particular, for the radial
components of the ground state, we obtain

(11)

Ψnsm x( )
f ns r( )
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5 2e–

2m
--------------r

Zα
m2
-------+ g1s

3
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Y1s
1 2e–

2m
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Zα
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m
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U H UH

Fig. 2. The contribution of the vacuum polarization to the g
factor of a bound electron. The heavy line corresponds to
the reduced Green’s function of a particle in the Coulomb
field of the nucleus; the wavy line with a square attached to
its end corresponds to the external dc magnetic field H, and
the dashed line represents the Coulomb field perturbed by
the Uehling potential (U).
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2.2. Matrix Element for the g Factor 
of a Bound Electron

The next step consists in calculating the matrix ele-
ment of the Uehling potential

(12)

where

(13)

over the wave functions perturbed by an external dc
magnetic field. The correction to the g factor for an
arbitrary ns state can be expressed as

(14)

In particular, for n = 1, we can rewrite the numerator of
the right-hand side of (14) as (cf. [19, 21])

(15)

and represent the correction in terms of the base inte-
gral introduced in [18, 19]:

(16)
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The final result for the ground level is given by

(17)

3. ASYMPTOTICS

The result obtained contains two free parameters:
the nuclear charge Z and the ratio of the mass of the
orbital particle to that of the particle in the vacuum
loop. This result can be applied to common (electron)
atoms,

(18)

as well as to muon atoms,

(19)

Expression (17) is rather cumbersome; therefore, it is
expedient to consider certain of its asymptotic forms.

3.1. Corrections to the g Factor for Zα ! 1

We begin with the asymptotic form of the expres-
sion obtained for small values of Zα corresponding to
nonrelativistic kinematics. Expanding Iabc in powers of
e (cf. [19, 21]),

(20)

we obtain

(21)

where we introduced the following notation (cf. [27,
28]):
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and (cf. [28])

In the case of an ordinary (electron) atom (18), from
the general expression (17), we can readily obtain the
following asymptotic expansion for small Zα:

(22)

The first coefficient of the expansion reproduces the
earlier result [23], while the higher order terms are
obtained for the first time. Figure 1 shows the results of
numerical calculations of gVP(Z) for a bound electron,
an exact analytical expression, and several approximate
formulas for Zα ! 1. The first approximation corre-
sponds to the term of order (Zα)4 [23], while the second
and third approximations contain the terms of order
(Zα)5 and (Zα)6, respectively.

3.2. The g Factor of a Bound Muon: κ @ 1

In the case of muon atoms, we are interested in the
asymptotics of the expression obtained for large ratio of
the mass of the orbital particle to that of the electron.
Passing to the limit in the exact formula (17), we
readily obtain the following asymptotics for large κ:

(23)

A particular case of formula (23) is the expression
for the double limit for Zα ! 1 and κ @ 1, which is of
practical interest for moderately light muon atoms (19):

(24)
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where ψ(x) = Γ'(x)/Γ(x) is the logarithmic derivative of
the gamma function. The first two terms of this asymp-
totics (the leading contribution and the correction of
relative order ((Zα)2) can also be obtained by passing to
the limit for large κ in expression (21).

3.3. Logarithmic Contributions for κ @ 1

Expressions (24) and (23) contain a number of log-
arithmic terms. An independent calculation of these
terms may serve as another method for verifying the
asymptotics. All logarithmic terms have a transparent
physical meaning in the limit lnκ @ 1 and can easily be
determined from renormalization-group consider-
ations; this proves to be useful for the verification of the
asymptotics obtained. Indeed, to calculate these terms,
it suffices to take into account the known expression for
the running coupling constant

in the relativistic g factor (5). In the nonrelativistic case
Zα ! 1, we obtain the following expression for the log-
arithmic part of expansion (24):

(25)

which coincides with the result of direct calculation.
Similarly, the logarithmic part gVP of formula (23),

which is exact in Zα, proves to be equal to (cf. [19, 21])

(26)

The reproduction of the logarithmic terms justifies the
asymptotics (23) and (24) obtained above.

4. DISCUSSION OF THE RESULTS

Above, we obtained general expression (17), which
applies both to ordinary (electron) and muon atoms.
The results for the g factor of a bound electron obtained
here are in agreement with the analytical [23] and
numerical [6] results obtained earlier. We derived com-
pact asymptotics for the g factor of a bound electron
(22) and muon (24) in two-particle atomic systems.

In the case of a muon atom, the correction obtained is
a leading quantum-electrodynamic correction. For moder-
ately large values of the nuclear charge (i.e., when Zα ! 1
and Zαm/me @ 1), the g factor of a muon atom is given by
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(27)

Let us briefly discuss the importance of studying the
g factor of a bound electron in hydrogen-like systems
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for experimental investigations. The most precise
experimental results were obtained for the carbon ion
(12C5+) [1], while the experiment with the oxygen ion
(16O7+) [10] is nearing completion. The comparison of
the theory with experimental results is illustrated in the
table, which summarizes all theoretical expressions for
the contributions to the g factor. The anomalous mag-
netic moment a of a free electron involved in expres-
Contributions to the g factor of a bound electron in hydrogen-like ions of carbon (12C5+) and oxygen (16O7+)

Contribution Expression Reference g(12C5+), 10–9 g(16O7+), 10–9

[2] –639322.8 –1136998.5

[4] 43.8 58.4

a1ba [3] 371.0 659.7

a2ba [3, 7] –0.6 –1.0

Estimate [7] ±0.2 ±0.4

[23, 7] 0.2 0.8

This paper –4.3 –13.3

[23] 0.0 0.0

[29, 8] 55.3(4) 151.5(5)

[23] –0.0 –0.1

Estimate [7] ±0.1 ±0.3

b Total contribution This paper –638857.3(5) –1136142.5(7)
a Total contribution [24] 1159652.2 1159652.2

(g(th) – 2)/2 This paper 520794.9(5) 23509.7(7)
(g(exp) – 2)/2 520798(2), [1] 23509(30), [10]

Note: In certain cases, an error is not explicitly given in the cited papers. In [29, 8], the uncertainties associated with the calculation of the
recoil corrections and one- and two-loop contributions were presented separately; we added them as independent errors. The value
of the contribution  is borrowed from [23], whereas the error is estimated by the value α(Zα)7 of the contribution  obtained

in this paper. In our calculations, we used the value α–1 = 137.03599976(50) [30] and the values of nuclear charge radii [31].

b1
rel –

1
3
--- Zα( )2 1

12
------ Zα( )4 1

24
------ Zα( )6––

5
192
--------- Zα( )8–

b1
rec 1

2
--- m

M
----- 1 Z+

2
------------ m

M
----- 

  2

– Zα( )2

1
2
---α

π
--- Zα( )2 1

6
---

1
3
--- m

M
-----–

–
0.328…

6
------------------- α

π
--- 

  2

Zα( )2

b1
h.o. Zα( )4 m

M
-----±

bNS
' 4

3
--- Zα( )4 mRN( )2

bVP
' α

π
--- –

8
15
------ Zα( )4 5π

18
------ Zα( )5+

+ Zα( )6 8
15
------ 2Zα( ) 1006

525
------------–ln 

 

+ Zα( )7 –
5π
18
------ Zα

2
------- 

  125π
432

------------+ln 
 

bWK
' 38

45
------ 2π2

27
--------– 

  α Zα( )6

π
------------------ ± …

bSE
' α

π
--- Zα( )4BSE Zα( )

bVP2
' –

164
81
--------- α

π
--- 

  2

Zα( )4

bSE2
' ± α

π
--- 

  2

Zα( )4BSE Zα( )

bWK
' bVP'
AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001



VACUUM POLARIZATION IN A HYDROGEN-LIKE RELATIVISTIC ATOM 483
sion (3) is well known (see, for example, the survey
[24]). The correction b due to the binding phenomena
can be represented as a sum of several terms:

(28)

which have a simple physical sense: the first two terms
correspond to ordinary kinematic corrections to the
Dirac magnetic moment (b1) [2, 3] and to the anoma-
lous magnetic moment (ba) [4]. Originally, the calcula-
tions of the corrections [4] were performed for the
hydrogen, deuterium, and helium-3 ion, which were
measured to a high degree of accuracy [11–14]; there-
fore, since the contribution of the term aba is small, the
first term of the expansion, α/2π, was substituted into
the final expressions as the quantity a. This could make
an impression that a contribution of order α2(Zα)2 is not
known; therefore, the theoretical error was substan-
tially overestimated (see, for example, [29]). However,
one can easily verify [7] that all contributions of order
(Zα)2 have a purely kinematic character, and the correc-
tion α2(Zα)2 is actually contained in [4].

The last term in (28) involves all nontrivial correc-
tions

(29)

such as the corrections to the finite size of the nucleus
( ) and to the one-loop free polarization of vacuum

( ), the contribution of the graphs involving the

blocks of scattering of light by light ( ) and the one-

loop self-energy of electron ( ), and the contribu-

tions of certain two-loop graphs (  =  +

). Explicit analytical expressions and numerical
values of the contributions to the g factors of hydrogen-
like ions of carbon and oxygen are presented in the
table for all types of corrections.
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APPENDIX

Certain Misprints Made in [19]

The base integrals necessary for calculating the
matrix elements of the Uehling potential were consid-

b b1 Zα m/M,( )= aba Zα m/M,( )+

+ b ' α Zα m/M, mRN, ,( ),

b ' bNS'= bVP' bWK' bSE' b2 loop–' ,+ + + +

bNS'

bVP'

bWK'

bSE'

b2 loop–' bVP2'

bSE2'
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ered in [19], where we made several misprints. In par-
ticular, the recurrence relation (43) must have the form

(A.1)

whereas the general expression for the Lamb shift of an
arbitrary circular state in terms of the result for the
ground state (44) has the form

(A.2)

In [19], we omitted en in both exponents of κn in both
expressions. These equalities were not used in the
sequel; therefore, these misprints did not affect the sub-
sequent calculations. However, an error was made in
the terms of order 1/κ2 in the asymptotics of different
contributions to R ([19], formulas (36)–(38)); this error
resulted in an incorrect expression for this term in the
case of R(n) (formula (46)). In particular, the asymptot-
ics of the incomplete beta function is incorrect (the
denominator of the last term in the expression for
B1 − δ(c – 2e, 0) must be equal to 4κ2). In the general
case, the corrected expression (46) is as follows:

(A.3)

The corrected expression (38) is obtained from (A3) for
n = 1. We are grateful to Joan Soto for drawing our
attention to this misprint.
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Abstract—A SiO2 aerogel with absorbed deuterium is proposed as a target for the fusion reaction d + d 
He3 + n induced by a superintense ultrashort laser pulse. The multiple inner ionization of oxygen and silicon
atoms in the aerogel skeleton occurs in the superintense laser field. All the formed free electrons are heated and
removed from the aerogel skeleton by the laser field at the front edge of the laser pulse. The subsequent Cou-
lomb explosion of the deuterated charged aerogel skeleton propels the deuterium ions up to kinetic energies of
ten keV and higher. The neutron yield is estimated at up to 105 neutrons per laser pulse for ~200–500 ps if the
peak intensity is 1018 W/cm2 and the pulse duration is 35 fs. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A new laser technique with the generation of femto-
second superintense pulses is a basis of new methods
for the generation of neutrons. Several schemes have
been suggested [1–5] with the usage of tabletop lasers.
Schwoerer et al. [5] demonstrated a two-step scheme of
neutron generation. At the first stage, X-ray photons are
emitted by a target irradiated by a superintense laser
pulse, and at the second stage, X-ray photons create
neutrons as a result of the interaction with the nucleus
Be9. The approach of Ditmire et al. [1–4] used the
fusion reaction between two deuterium nuclei (deuter-
ons) that proceeds in accordance with the classical
scheme

In this method, large clusters of deuterium molecules
are irradiated by a superintense ultrashort laser pulse,
and explosion of the produced positively charged clus-
ters consisting of deuterons only leads to the formation
of a plasma where the electrons and deuterons have the
energy of several keV. The fusion reaction between
deuterons proceeds both during the explosion of the
charged clusters and after their decay before the total
plasma expansion out of the laser focal volume.

The neutron yield up to nn ~ 104 neutrons per laser
pulse was observed in experiments [3, 4] at the peak
laser intensity I ~ 1017 W/cm2 and the pulse width 35 fs.
For the laser focal volume V with the focal spot 2r =
200 µm and the length l = 2 mm [4], we have

d d He3 n.+ +

V 6.3 10 5–  cm3;×=

¶This article was submitted by the authors in English.
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the number density of deuterons is then found to be

Hence, the total number of deuterons in this plasma fil-
ament is of the order nd ~ 1015. Thus, only one of the
nd/nn = 1011 deuterons takes part in the nuclear fusion
reaction! This extremely low efficiency is explained by
a small tunneling rate constant of the fusion reaction
and by a small lifetime of the formed plasma involving
the deuteron filament (~200–500 ps).

The neutron yield could be increased by increasing
the typical kinetic energy of deuterons, which is small
compared to the classical threshold energy 180 keV of
the fusion reaction involving two deuterons. In turn, the
cluster expansion leads to the formation of fast deuter-
ons under the action of the positive electric potential of
the cluster consisting of deuterons. But there is an opti-
mum cluster size for given parameters of the laser
pulse. Indeed, a small cluster size leads to a small elec-
tric potential and, hence, to a small energy of deuterons
in a plasma, whereas the laser signal cannot fully ionize
a large deuterium cluster. In particular, under condi-
tions of the experiments [3, 4], the optimum cluster
radius is approximately R ~ 25 Å, which corresponds to
the cluster charge ~+3000e after the field removal of all
electrons and provides the typical kinetic energy of
deuterons of several keV [6] (although the fusion reac-
tions are mainly produced from clusters with the radii
80 Å and greater).

One can increase the typical deuteron kinetic energy
by increasing the laser intensity. We now suggest an
alternative approach where the aerogel with absorbed
deuterium is used as a target for the laser irradiation
instead of the deuterium cluster beam. The character of

Nd 2–3( ) 1019 cm 3– .×=
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processes with the formation of fast deuterons is similar
in both cases, but the aerogel method can provide a
higher deuteron kinetic energy, in our opinion. In this
paper, we analyze the processes resulting from the irra-
diation of a typical SiO2 aerogel with absorbed deute-
rium by an ultrashort superintense laser pulse.

2. PROPERTIES OF THE AEROGEL TARGET

We thus consider an aerogel with absorbed deute-
rium as a target for a power laser pulse. An aerogel can
be described within a simple model where the aerogel
matter consists of bound solid balls of identical radii a.
These balls form a stable rigid skeleton due to contacts
between the neighboring balls. At small distances from
a ball, the aerogel has a fractal structure with the fractal
dimension D. The aerogel matter is a homogeneous
structure starting from a distance Rc @ a called the cor-
relation radius. The aerogel consists of a fractal matter
at distances r < Rc. These quantities are the basic aero-
gel parameters [7].

We note that the radius a of the individual ball is
related to the specific internal aerogel surface S (which
is usually measured in m2/g) by [7]

(1)

where ρ0 is the (solid) mass density of the individual
aerogel balls. Another relation between aerogel param-
eters that follows from its fractal structure is given by

(2)

where ρ ! ρ0 is the average aerogel mass density. For
definiteness, we use the typical SiO2 aerogel parame-
ters [7] in what follows:

Because the solid density of the SiO2 aerogel material
is ρ0 = 2.1 g/cm3, we obtain a = 20 Å from Eq. (1) and
Rc = 3 µm from Eq. (2).

We note that the maximum amount of absorbed deu-
terium matter obviously corresponds to its solid mass
density ρd = 0.17 g/cm3 inside the aerogel, because
pores occupy the main part of the aerogel volume. The
maximum amount of absorbed deuterium is therefore
given by ρd/ρ = 14gd/ga (gram of deuterium matter per
aerogel gram). However, the optimum amount of
absorbed deuterium must be chosen at a much smaller
value. We assume that the internal aerogel surface S can
be covered by three deuterium layers. This assumption
agrees with the surface laws in physical chemistry [8].
Because the average distance between deuterium mole-
cules is 3.5 Å in solid deuterium matter, the thickness of
deuterium matter is approximately equal to ld = 10.5 Å on

S
3

aρ0
--------,=

ρ
ρ0
-----

a
Rc

----- 
  3 D–

,=

S 715 m2/g, ρ 0.012 g/cm3, D 2.3.= = =
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the surface of the aerogel. The amount of absorbed deu-
terium is then given by

, (3)

and the laser radiation is mainly absorbed by the aero-
gel rather than deuterium. Each individual SiO2 ball is
covered by

deuterium molecules. Here, Md = 6.7 × 10–24 g is the
mass of one deuterium molecule.

The individual aerogel elements can also be
described by approximating these elements by cylindri-
cal fibers that have common knots. In this model, the
fiber radius af  follows from the fractal approach rela-
tion (instead of Eq. (1)),

For the same specific area S = 715 m2/g of the internal
aerogel surface, we then obtain the value af ≈ 13 Å. The
amount of absorbed deuterium is given by the same
expression (3). We assume that the average aerogel
mass density is the same as in the ball model, i.e., ρ =
0.012 g/cm3. Using Eq. (2), we find the correlation
radius Rc = 2.1 µm. The total length L of all the fibers
in the plasma filament having the volume V is found
from the relation

This gives L = 68 km. We now estimate the total length
lc of all the fibers inside the correlation sphere with the
radius Rc. We have the obvious relation

Inserting the above values of V, L, and Rc, we find that
lc = 4.2 cm.

We now estimate the average distance δ @ af

between the neighboring fibers in the correlation
sphere. The average length of one fiber in this sphere is
Rc. The quantity δ2Rc is the volume referring to one
fiber in this sphere. The quantity

is the number of fibers in this sphere, and therefore, lc =
RcNf. We thus find

In what follows, we consider the aerogel model consist-
ing of individual balls and cylindrical fibers.

ρdldS 0.13gd/ga=

n0 4πρd

ld a+( )3 a3–
3Md

------------------------------- 2150= =

S
2

a f ρ0
-----------.=

ρ0πa f
2 L ρV .=

lc

4πRc
2/3( )

V
----------------------L.=

N f

Rc
3

δ2Rc

-----------=

δ Rc

Rc

lc

----- 
 

1/2

0.015 µm.≈=
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3. AEROGEL IN A LASER FIELD

As a result of irradiating the aerogel by a super-
intense ultrashort laser pulse, the following processes
proceed. After a certain period of time, electrons are
liberated from the aerogel skeleton by the laser field
and occupy aerogel pores. The aerogel skeleton then
consists of multicharged atomic ions of silicon and
oxygen; deuterium nuclei (deuterons) are located on
the internal skeleton surface. At the next evolution
stage, all the atomic ions fly into the surrounding space
forming a uniform plasma that fills all the aerogel
space; deuterons fly first because they are light parti-
cles. They are located on the skeleton surface, and
therefore, deuterons have the maximum kinetic energy.

The general character of the interaction of a power
laser pulse with the aerogel system is similar to that for
deuterium clusters. In what follows, we thus use the
estimates that were obtained for the explosion of deute-
rium clusters under the action of a superintense ultra-
short laser pulse [6].

The mass of the individual SiO2 ball is equal to

,

and the SiO2 molecule mass is m0 = 1.0 × 10–22 g. The
number density of SiO2 molecules in the ball is

Hence, one ball contains approximately n = m/m0 =
700 SiO2 molecules, and n0 = 2150 deuterium mole-
cules are located on its surface (see the previous sec-
tion). We assume that the laser peak intensity is Imax =
1018 W/cm2, the laser wavelength is λ = 800 nm, and the
pulse width is τ = 35 fs (defined as the full width at half
maximum; see [9]). The laser field strength F(t) is then
defined as

(with t measured in fs), and the peak laser field strength
is Fmax = 5.25 a.u. (the linear polarization of the laser
field is considered; the atomic units correspond to e =
me = " = 1). The laser focal volume is equal to V =
6.3 × 10–5 cm3 (see the Introduction). The mass of the
aerogel in this volume is

Hence, the number of the aerogel solid balls in the
plasma filament can be estimated as

4. INNER AND OUTER IONIZATION
OF THE AEROGEL

We now consider the processes that occur during the
interaction of laser light with the aerogel. A multiple

m ρ0 4πa3/3( ) 7.0 10 20–  g×= =

N0
ρ0

m0
------ 2.1 1022 cm 3– .×= =

f t( ) Fmax t/30( )2–[ ]exp=

M ρV 7.6 10 7–  g.×= =

nb M/m 1.1 1013× .= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
inner ionization of silicon, oxygen, and deuterium
atoms first occurs in this laser field (of course, the
molecular bonds are destroyed very quickly). Taking
the known values of the ionization potentials EZ of mul-
ticharged Si and O atomic ions into account (where Z is
the charge multiplicity of the respective atomic ion), we
find that the above-barrier inner multiple field ioniza-
tion occurs in the laser field when the Bethe condition
is satisfied [10]:

(4)

Here, F(t) is the amplitude of the laser field strength at
the time moment t.

Using the known values of the ionization potentials
of atomic ions [11], we find from Eq. (4) that, at the
leading edge of the laser pulse, the charge multiplicity
is Z = 6 for oxygen atomic ions. Each oxygen atomic
ion preserves only two electrons of the K shell because
the K-shell ionization potentials are very high, 739 and
871 eV, respectively. Further, Z = 9 for silicon atomic
ions, which means that each Si atomic ion preserves
only two K-shell electrons and three L-shell electrons.
The ionization potential of the Si atomic ion with Z = 9
is equal to 401 eV, and this quantity does not satisfy
condition (4) even at F(t) = Fmax.

We thus conclude that 9 + 2 × 6 = 21 electrons are
removed at the leading edge of the laser pulse from
each SiO2 molecule inside the individual ball during the
inner atomic ionization process. We neglect the quan-
tum-mechanical tunneling atomic ionization at the start
of the laser pulse because its probability is too small
compared to the probability of the classical above-bar-
rier ionization [12]. Therefore, each individual ball
contains

free electrons after irradiation by the laser pulse (here,
we also accounted for two electrons ejected from each
deuterium molecule on the surface of the individual
aerogel ball).

Simultaneously, the outer above-barrier ionization
proceeds at the leading edge of the laser pulse, which
means that the electrons leave the individual aerogel
ball. We can calculate the number Q of electrons
removed from the ball by the laser field by applying the
Bethe model again. Instead of Eq. (4), we have a similar
condition based on the Coulomb binding potential EQ

for electrons in the individual ball with the positive
charge Q; for Q @ 1, the potential is given by EQ = Q/a,
and therefore (see the review paper [13] for details),

(5)

The thermal mechanism of the outer ionization for a
femtosecond time range and for moderate dimensions
of the individual aerogel balls gives an additional con-

F t( )
EZ

2

4Z
------.>

ne 21 n 2n0+× 14 700 4300+ 19 000= = =

F t( ) Q

4a2
--------.>
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tribution (see estimates in [14] and the discussion
below). The amplitude of electron oscillations in the
laser field is

and therefore, the electrons do not return to the individ-
ual ball after such oscillations with high probability.

We note that Eq. (5) for the outer ionization is not so
obvious as Eq. (4) for the inner ionization. The relation
EQ = Q/a becomes invalid when a few electrons remain
in the center of the ball. Assuming that positive atomic
ions are homogeneously distributed in the ball, we find
that EQ = 3Q/2a. Finally, if the stronger inequality
F(t) > Q/a2 is satisfied (the laser force is stronger than
the Coulomb force), then electrons are definitely
removed from the individual aerogel ball.

We now evaluate the number of electrons Q that are
released from an aerogel ball under the action of the
laser field. From Eq. (5), we obtain Q = 30 000 released
electrons for F(t) = Fmax; this means that all the ne =
19 000 free electrons are liberated in the outer ioniza-
tion from each aerogel ball at the leading edge of the
laser pulse. These free electrons are then uniformly dis-
tributed in the plasma filament. The total number of free
electrons in the plasma filament is equal to

The concentration of these free electrons in the plasma
filament is estimated as

Free electrons inside the individual ball are heated
during the laser pulse. First, each electron acquires a
large kinetic energy equal to the average oscillation
energy F2/4ω2. This quiver energy is equal to 58 keV
for the peak intensity I = Imax. However, after the end of
the laser pulse, the electron loses all its quiver energy,
because the kinetic energy of the electron adiabatically
follows the envelope of the laser pulse. According to
[12] in the case of the above-barrier ionization, the final
kinetic energy of electrons is on the order of 10–20 eV
only. Indeed, for the above-barrier ionization (and also
for tunneling ionization), the real energy spectrum of elec-
trons is determined by the simple exponential law [12]

(6)

The quantity

is the so-called Keldysh parameter (see [12] for details)
for the ejection of electrons from the individual ball by
the laser field. For the maximum value F = 5.25 a.u., we
obtain from Eq. (6) that γ = 0.4. Because γ < 1, we find
that the above-barrier outer ionization by a quasistatic

a0 Fmax= /ω2 860 Å @ a,=

nt nenb 2.1 1017.×= =

Ne nt/V 3.3 1021 cm 3– .×= =

w E( )
2Eeγ

3

3ω
--------------– 

  , γexp∝ ω 8a
F t( )
----------.=

γ
ω 2EQ

F t( )
------------------=
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laser field is indeed realized. It then follows from
Eq. (6) that the typical electron kinetic energy is

Therefore, free electrons remain quite cold immedi-
ately after the outer ionization. But then free electrons
can again significantly increase their kinetic energy in
the ball expansion process. The Coulomb potential
energy of electrons is transformed into their kinetic
energy [6]. As a result, the electron temperature
increases up to the final value Te ~ 1 keV. In addition to
this, the induced inverse bremsstrahlung [14, 15] in the
plasma filament can contribute to the increase in the
electron kinetic energy when electrons are scattered by
the charged individual balls before the laser pulse is
depleted. The amount of this contribution is unclear
because of quick expansion of these balls.

We note that the Coulomb expansion of an individ-
ual ball proceeds slowly in comparison with the elec-
tron release; therefore, it is insignificant during the pro-
cess of the outer field ionization. Indeed, the time t for
doubling the ball radius can be estimated from a simple
energy balance for the silicon atomic ion at the ball sur-
face (see [15] for details),

where M0 is the mass of a single silicon atomic ion and
v  is its velocity at the time instance t. In this estimate,
we used the typical time instance when a half of the free
electrons (Q/2) are removed from an individual ball. It
follows from this relation that the ball radius a is dou-
bled during the time

(7)

Hence, we can neglect the expansion of the individual
ball before the total ejection of all the Q = 30 000 elec-
trons from an individual ball at the leading edge of the
ultrashort laser pulse. Estimates for the oxygen atomic
ion lead to a similar conclusion.

The laser energy is absorbed by free electrons in the
plasma filament. In accordance with Eq. (6), each elec-
tron acquires the energy Ee ≈ 35 eV from the laser field
(another part of the electron energy ~1 keV is acquired
from the Coulomb potential energy of the electrons in
the ball). If the laser energy in the pulse is, e.g., E = 1 J =
6.2 × 1018 eV, it follows that nl = E/Ee = 1.8 × 1017 elec-
trons absorb the entire energy of the laser pulse. But we
have found above that the total number of free electrons
in the plasma filament is nt = 2.1 × 1017, which is
approximately equal to nl. Thus, we conclude that, for
the high-intensity laser field, a low-frequency electro-
magnetic wave penetrates into the entire plasma fila-
ment.

Ee
3ω
2γ3
-------- 35 eV.≈ ≈

Q/2( )
a

-------------- Q/2( )
2a

--------------–
1
2
---M0v

2 1
2
---M0

2a
t

------ 
 

2

,= =

t
8M0a3

Q
---------------- 20 fs.= =
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The analysis leads to the following conclusions.
First, a standard concept that the electromagnetic wave
with the frequency ω < ωp cannot propagate in a plasma
(see, e.g., [16]) is not valid at a high intensity of the
electromagnetic field. Second, the propagation of a
strong electromagnetic wave causes a redistribution of
plasma charges, and the interaction of the electromag-
netic wave with a forming nonuniform plasma may be
important for plasma heating. We note that we
neglected this interaction, in the above analysis, and
formation of the plasma under the action of the electro-
magnetic wave results only in the separation of elec-
trons and ions of the aerogel skeleton by the wave. A
partial absorption of the electromagnetic wave by a
forming plasma as a result of collective excitations in
this plasma may contribute an additional heating of the
plasma.

Deep penetration of the ultrahigh-intensity laser
pulse into a dense plasma is also confirmed by theoret-
ical results in [17].

5. FUSION PROCESSES

We finally estimate the number of fusion neutrons
produced in the plasma after the end of the laser pulse.
During the preliminary diffusion of the deuterium gas
through the aerogel, the deuterium molecules penetrate
inside the pores of the aerogel; then they adhere to the
surface of individual balls. Of course, large pores in the
fractal structure of the aerogel allow several layers of
deuterium molecules to cover each of the SiO2 balls.
We estimated above that n0 ~ 2150 deuterium mole-
cules adhere to each SiO2 ball surface. This estimate
corresponds to three layers of deuterium molecules at
the ball surface with the radius a = 20 Å. Deuterons are
attracted to the free ends of the oxygen radicals. It must
be noted that it is probably better to use heavy water
instead of deuterium gas, because the polar D2O mole-
cule is better attached to the skeleton surface than the
nonpolar D2 molecule.

We now derive the number density of deuterons in
the laser focal volume V:

It is ten times greater than in experiments [1–4] with
deuterium clusters (see the Introduction).

At the Coulomb explosion of the individual aerogel
balls, each deuteron acquires the maximum kinetic
energy

We note that the hydrodynamic expansion of the ball
with the ion sound velocity is negligibly small com-
pared to the Coulomb expansion, in contrast to the
expansion of large Xe clusters [15].

Nd

2n0nb

V
------------- 7.5 1020 cm 3– .×= =

Q
a ld+
------------- 13.5 keV.=
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We now consider the Coulomb explosion in the
model of cylindrical fibers. The number density of SiO2
molecules in the solid fiber matter (see above) is N0 =
2.1 × 1022 cm–3. After the inner ionization, the unit of
the fiber length contains the electric charge

According to the Gauss electrostatic theorem, the elec-
tric field strength F(r) at the distance r from the fiber
axis is found from the relation

On the surface of the fiber, the field strength is

Hence, the difference of electric potentials between the
surface of the given fiber and the neighboring fiber is

This quantity is equal to the maximum kinetic energy of
the deuteron. It is seen that the models of fibers and of
balls give similar values of the deuteron kinetic energy.

The cross section of the fusion reaction

is σ = 10−30 cm2 for the deuteron kinetic energy Ed =
10 keV [18] (the reaction d + d  t + p has the same
cross section, but we are not interested in this reaction
channel here). The rate for this nuclear reaction is w =
σNdv, where v  is the deuteron velocity. The time for the
nuclear fusion is determined by the flight time T of the
deuteron from the axis of the laser focal volume to its
radial boundary, i.e., T = r/v. Hence, each deuteron pro-
duces

at the collisions with other deuterons. The total yield of
neutrons nn per laser pulse can be obtained by multiply-
ing this quantity with the number nd = n0nb of deuteron
pairs in the laser focal volume:

These estimates refer to the ball model of aerogel.
We now make a similar estimate in the fiber model

of aerogel. If the quantity S = 715 m2/g is the specific
area of the aerogel (Section 2) and M = ρV is the mass
of the aerogel (ρ = 0.012 g/cm3 is the mass density of
the aerogel and V is the volume of the plasma filament),
then the quantity MS is the total area of the aerogel in
the plasma filament. This area is covered by three layers
of deuterium molecules. The thickness of this layer is
ld = 10.5 Å (Section 2). Hence, the quantity MSld is the
volume of the deuterium layer, and the quantity ρdMSld

is its mass (ρd = 0.17 g/cm3 is the mass density of the

Z 21N0πa f
2 2.3 1010 e/cm.×= =

2πrF r( ) 4πZ .=

F0 F a f( ) 2Z
a f

------ 10.0 a.e.= = =

∆ϕ F0a f δ/a f( )ln 16 keV.= =

d d He3 n+ +

wT σNdr 7.5 10 12–
 ! 1 neutron×= =

nn wTn0nb= 105.≈
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solid deuterium matter). The number of deuterium mol-
ecules in the plasma filament is

(Md = 6.7 × 10–24 g is the mass of one deuterium mole-
cule). Thus, the number density of deuterons in the
plasma filament is

It is seen that this estimate is nearly the same as the cor-
responding estimate in the ball model of aerogel (see
above). Hence, the estimate of nn is also the same as
above.

It should be noted that the cross section σ increases
by several decimal orders compared to the case of the
experiments of Ditmire et al. [1–4] with deuterium
clusters, and the number of deuterons in the plasma fil-
ament 2n0nb = 4.7 × 1016 is larger than the number of
deuterons nd ≈ (2–3) × 1015 (see the Introduction) in the
plasma filament of the same dimensions used in the
experiments [1–4]. Nevertheless, the neutron yield
increases by only ten times. In our opinion, the reason
is that, in the experiments of Ditmire et al., only deuter-
ons with large radii R ≈ 80 Å take part in the nuclear
fusion, while, in our approach, the radius of the individ-
ual aerogel ball is only a = 20 Å.

We can conclude that the yield of neutrons is greater
by approximately ten times compared to the yield of
neutrons at the irradiation of deuterium clusters by a
superintense ultrashort laser pulse observed in the
experiments [1–4] (see also recent theoretical calcula-
tions for deuterated clusters in [19]). Thus, an aerogel
saturated by deuterium can be used for the production
of powerful sources of ultrashort pulses (about T =
200–500 ps) of monochromatic neutrons (2.45 MeV).

6. CONCLUSION

Developing the method by Ditmire et al. [3, 4] for
the production of neutrons under the action of a super-
intense ultrashort laser pulse, we propose to use the
aerogel skeleton with absorbed deuterium instead of
the deuterium cluster in the experiments by Ditmire
et al. This allows increasing the neutron yield per laser
pulse by one order of magnitude because of a higher
kinetic energy of deuterons liberated at the Coulomb
explosion of the charged aerogel skeleton. It should be
noted that an interesting theoretical approach was
recently proposed in [20]: it is suggested to use hetero-
nuclear clusters containing deuterium, e.g., clusters
from D2O molecules.

It is possible that the tungsten aerogel [21] has an
advantage compared to the SiO2 aerogel considered in
our paper, due to a high charge of the tungsten nucleus.

nd

ρdMSld

Md

------------------=

Nd

nd

V
----- = 

ρdρSld

Md

---------------- 4.6 1020 cm 3– .×= =
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We note in conclusion that the Lawson criterion is
~10–5 for deuterium clusters and ~10–4–10–3 for the
aerogel. The proposed method can be discussed as a
version for the basis of the laser thermonuclear reactor.
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Abstract—A compact expression is derived for the cross section of scattering of arbitrarily polarized light by
oriented atomic systems, in which the dependence on the geometric parameters and on the Stokes parameters
preassigning the state of partial polarization of incident radiation is explicitly separated. It is found that the cross
section of any photoprocess accompanied by photon absorption (stimulated emission) contains the sum of the
products of the circular and linear dichroisms of the process by the respective Stokes parameters. The effect of
the atomic orientation and of the dissipation of light energy on the polarization singularities and angular distri-
bution of scattered light is investigated. In particular, it is demonstrated that, in the case of an open dissipation
channel, the angular distribution remains dependent on the atomic orientation even in the case of zero degree
of circular polarization of scattered radiation. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Under regular conditions of free orientation, the
magnetic sublevels of an atom are populated uniformly.
Such a nonpolarized atom is a symmetric system. The
nonuniformity of populations of states with different
values of momentum projection (atomic polarization)
disturbs the symmetry, which affects considerably the
processes of interaction between a polarized atom and
electromagnetic radiation. An atom polarizes during
light absorption, collisions, and other processes. A spe-
cial method of optical pumping has been developed for
the polarization of atoms (see review papers [1, 2]), and
some elementary photoprocesses on polarized atoms
(photoeffect, light emission and absorption) have been
well studied (see [3] and the references given there, as
well as [4, 5]).

It will be recalled that, in the general case, a polar-
ized atom is in a mixed quantum-mechanical state. The
decomposition of its density matrix to irreducible com-
ponents referred to as multipoles of state (statistical ten-
sors) [3] enables one to identify different types of polariza-
tion. A multipole of state ρKQ, with K = 0, 1, …, 2j1 (where
j1 is the quantum number of total momentum of atom in
polarized state) and Q = –K, –K + 1, …, K, is an irre-
ducible tensor of the Kth order. In this case,

and, in the absence of polarization, all of the remaining
multipoles of state go to zero. An atom is referred to as
oriented if the tensor ρ1Q proportional to the spherical
components of the mean momentum j of a polarized
atom is other than zero. At ρ2Q ≠ 0, an atom is referred
to as aligned.

ρ00 2 j1 1+( ) 1/2– ,=
1063-7761/01/9303- $21.00 © 20491
The general theory of light scattering by a polarized
atom was developed in [6]. It has been demonstrated, in
particular, that the differential cross section of dipole
scattering may contain multipoles of state up to the
fourth order inclusive, and the total cross section, up to
the second order. In the expression for scattering cross
section, the dependence on geometric parameters was
separated; however, the cross section was written in a
fairly cumbersome form containing irreducible tensors
made up of polarization vectors of incident and scat-
tered photons (see formula (2) below). With this repre-
sentation of the cross section, it proved difficult to ana-
lyze numerous effects which may be observed experi-
mentally. Subsequent studies dealt with the so-called
dissipatively induced effects during light scattering by
oriented [7] and aligned [8] atoms, caused by channels
of dissipation of light energy opened in the process of
scattering. The respective cross sections for the case of
complete polarization of incident light could be repre-
sented in a simpler form containing both scalar and vec-
tor products of vectors.

I have derived a compact expression for the cross
section of scattering of partially polarized light by ori-
ented atoms. In the cross section, the dependence on the
Stokes parameters preassigning the polarization of light
and on the geometric parameters is separated. The
effect of the atomic orientation and of dissipatively
induced effects on the polarization singularities and on
the angular distribution of scattered light is investi-
gated. In particular, it is demonstrated that the orienta-
tion brings about the dependence of the angular distri-
bution of scattered radiation on the degree of circular
polarization of incident light, and that the orientation-
related dependence of angular distribution on the
degree of linear polarization of light is dissipatively
001 MAIK “Nauka/Interperiodica”



 

492

        

AGRE

                                                                                                                
induced. For definiteness, in what follows, we will refer
to atoms, but the results of this study relate to the scat-
tering of light by oriented molecules as well, because
the entire information about the internal structure of the
target is contained in the reduced matrix elements of the
scattering tensor.

2. SCATTERING OF COMPLETELY
POLARIZED LIGHT

In [7], an expression was derived for the cross sec-
tion of light scattering by an oriented atom in the case
when all quantum numbers of the total momentum of
atom are in the initial and final states j1 = j2 = 1/2 (in the
case of j1 = 1/2 and j2 = 3/2, the respective expression is
given only for the linear polarization of incident and
scattered light). Therefore, we will treat the general
case of arbitrary values of j1 and j2 permitted by the
selection rules.

The formula for light scattering by a polarized atom
given in [6] assumes that the atom is polarized axi-
symmetrically relative to the symmetry axis preas-
signed by the unit vector n. In the coordinate system
with the z axis directed along the vector n, only zero

components ρK0 =  of all multipoles of state are other
than zero, and, accordingly, the density matrix of the
axisymmetrically polarized atom is diagonal over the
projection of momentum m [3]. The state of the polar-
ized atom in this case is an incoherent mixture of states
with different values of the projections of momentum m
onto the direction n. The polarization of this type
apparently arises when the external polarizing effect is
axisymmetric. The mean momentum of atom j in the
case of axisymmetric polarization is collinear with the

vector n and related to the orientation  by the relation

(1)

Note right away that all formulas derived for the
case of axisymmetric polarization, which describe ori-
entation effects, retain their form in the general case of
asymmetric atomic polarization. In accordance with
Eq. (1), the vector n is a unit vector collinear with the
mean momentum j of oriented atom. In the coordinate
system with the z axis directed along n, the components
of the multipoles of state of the first order are ρ1, ±1 = 0.
However, nonzero components of higher multipoles of
state are, generally speaking, other than zero, so that the
atomic density matrix will not be diagonal over m.1

1 The exception is provided by the case of j1 = 1/2, when the sys-
tem is characterized by only one multipole of state of nonzero
order ρ1Q, and the polarization reduces to orientation. The direc-
tion of the z axis over the vector n diagonalizes automatically the
density matrix of the system.

ρK
n

ρ1
n

ρ1
nn 3 2 j1 1+( ) j1 1+( ) j1[ ] 1/2– j.=
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We will use the expression for the differential cross
section of light scattering by a polarized atom, obtained
in [6],

(2)

Here, ω (ω') is the frequency, e (e') is the unit vector of
polarization of incident (scattered) light, α is the fine
structure constant (use is made of the atomic system of
units), and

are reduced matrix elements of irreducible parts of the
scattering tensor, which arise upon separation of the
dependence from the magnetic quantum numbers in the
irreducible components of the scattering tensor tkq

using the Wigner–Eckart theorem. The set of atomic
quantum numbers in the initial and final states (except
for the momentum and its projection) is denoted by
ν1, 2. Formula (2) includes also the spherical function

 and irreducible tensors made up of polarization
tensors. The irreducible tensor of the Kth order made up
of the irreducible tensors  and  of the orders
k1 and k2 is defined as

where  is the Klebsch–Gordan coefficient. For
the vector a, we have a1q = aq, where aq denotes its
spherical components,

The irreducible components of the scattering tensor
have the form

(3)

where dq denotes the spherical components of the
atomic dipole moment,

(4)

is the resolvent of the atomic Hamiltonian, and E1 is the
energy of the atom in the initial state.

dσ
dΩ'
--------- 4π( )1/2ωω'3α4 ρK

n 1–( )
j1 j2 k K+ + +

K k k', ,
∑=

× k k' K

j1 j1 j2 
 
 

2K 1+( ) 1/2– TkTk'*

× YKQ* n( ) e'* e⊗{ } k e' e*⊗{ } k'⊗{ } KQ.
Q

∑

Tk ν2 j2 tk ν1 j1〈 〉 , k 0 1 2,, ,= =

YKQ n( )

Ak1q1
Bk2q2

Ak1
Bk2

⊗{ } KQ Ck1q1k2q2

KQ Ak1q1
Bk2q2

,
q1 q2,
∑=

Ck1q1k2q2

KQ

a0 az, a 1±
1

2
------- ax iay±( ).+−= =

tkq Ck1q1k2q2

kq

q1 q2,
∑=

× dq1
ĜE1 ω+ dq2

dq2
ĜE1 ω'– dq1

+( ),

ĜE
n| 〉 n〈 |

En E– i0–
--------------------------

n

∑=
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Assume that the atom is oriented only, i.e.,  =
0. We will represent the light scattering cross section
given by Eq. (2) in a compact form containing scalar
and vector products of the polarization vectors e and e',
the unit vectors k and k' preassigning the direction of
propagation of incident and scattered photons, and the
unit vector n collinear with the mean momentum j of
the oriented atom. We will write the differential cross
section of light scattering by an oriented atom in the
form of the sum of two terms,

(5)

Here,

(6)

is the cross section of light scattering by a nonpolarized
atom (see [6] and [9, Para. 60]), consisting of scalar,
antisymmetric, and symmetric parts. The presence of
each one of these parts, which are proportional to the
squares of modules of reduced matrix elements Tk of
the respective irreducible parts of the scattering tensor,
k = 0, 1, 2, is possible only if the condition of triangle
∆( j1, j2, k) is valid. The second term in Eq. (5) propor-

tional to  defines the addition to the cross section
caused by the atomic orientation.

The spherical function Y1Q(n) is proportional to the
spherical component of the unit vector,

Therefore, at K = 1, the sum over Q in expression (2) is
a scalar product of the vector n and the vector (irreduc-
ible tensor of the first order) made up of polarization
vectors,

(7)

For all possible sets of numbers k and k' (k = 0, k' = 1;
k = 1, k' = 0; k = k' = 1; k = 1, k' = 2; k = 2, k' = 1; k =
k' = 2), the scalars given by Eq. (7) may be expressed in
terms of the scalar and vector products of the vectors
entering these scalars, using formulas from the refer-

ρK 1>
n

dσ
dΩ'
--------- dσ unp( )

dΩ'
----------------

dσ or( )

dΩ'
--------------.+=

dσ unp( )

dΩ'
----------------

ωω'3α4

2 j1 1+
------------------=

× 1
2
--- T0

2 e'* e⋅ 2 1
6
--- T1

2 1 e' e⋅ 2–( )+




+
1
10
------ T2

2 1 e' e⋅ 2 2
3
--- e'* e⋅ 2

–+ 
 





ρ1
n

Y1Q n( ) 3
4π
------nQ.=

1–( )QY1 Q– n( ) e'* e⊗{ } k e' e*⊗{ } k'⊗{ } 1Q

Q

∑

=  3
4π
------ n e'* e⊗{ } k e' e*⊗{ } k'⊗{ } 1⋅( ).
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ence book [10]. After separating out all of the vector
combinations, the expression for the second orientation
term in Eq. (5) is written as

(8)

Here,

(9)

has the meaning of the degree of circular polarization of
incident light. For right-hand (left-hand) polarization,
η2 = ±1. The parameter  is defined by the expression,
similar to Eq. (9),

To avoid misunderstanding, note that  is not the
degree of circular polarization of the scattered photon.
Scattered light, generally speaking, is in a mixed state
as regards polarization (is partially polarized), and its
Stokes parameters can readily be calculated using for-
mulas (5), (6), and (8) for the scattering cross section.
The coefficients a±, b±, c, and d are expressed in terms
of 6j symbols and reduced matrix elements of the scat-
tering tensor Tk,

(10)

The differential cross section given by Eq. (5), pro-
portional to the probability of detection of a scattered
photon in a state with certain polarization e', provides
the most comprehensive data on scattering and enables
one to predict the result of transmission of light scat-
tered in the given direction through a polarization filter.
If the polarization of scattered light is not recorded dur-
ing the experiment, one must only know the angular
distribution of scattered radiation. In order to find the
angular distribution, the differential scattering cross
section given by Eq. (5) is to be summed over two inde-

dσ or( )

dΩ'
-------------- ωω'3α4ρ1

n a+η2n k⋅ a–η2' n+ k'⋅{=

– b+η2Re n e'⋅( ) k e'*⋅( )[ ] b–η2' Re n e⋅( ) k' e*⋅( )[ ]–

+ cnRe e'* e×[ ] e' e*⋅( )[ ]  + dη2η2' n k' k×[ ] } .⋅

η2 ik e e*×[ ]⋅=

η2'

η2' ik' e' e'*×[ ] .⋅=

η2'

a±
1

6
-------R10

1

30
----------R12–

1

10
----------R22,±=

b±
1

6
-------R10

1

2 2
----------R11

2
15
------R12

1

2 10
-------------R22,±+±=

c
2
3
--- I10

2
15
------ I12, d– 3

10
------ I12,= =

Rkk' 1–( )
j1 j2+ j2 j1 k'

1 k j1 
 
 

Re TkTk'*( ),=

Ikk' 1–( )
j1 j2+ j2 j1 k'

1 k j1 
 
 

Im TkTk'*( ).=
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pendent polarizations of the scattered photon. In all
vector combinations containing the vector e' in formu-
las (6) and (8), the summation is readily performed
using identity [9, Para. 45],

(11)

and the parameter  after summation vanishes. As a
result, we derive the following expression for the angu-
lar distribution of scattered light:

where

(12)

is the angular distribution of light scattered by a nonpo-
larized atom, and

(13)

is an addition to the angular distribution caused by the
atomic orientation.

We integrate the angular distribution using known
identities

over all directions of scattering to find the total cross
section of light scattering by an oriented atom,

(14)

We will analyze the derived formulas from the gen-

eral considerations of symmetry. The orientation  is
a T-odd (changing sign upon time reversal) pseudosca-
lar, which follows directly from relation (1) relating this
parameter to the mean momentum of an oriented atom.
On the other hand, the scattering cross section must not
vary either upon space inversion or upon time reversal.
Therefore, the expressions in braces in Eqs. (8) and (13)
must be T-odd pseudoscalars. The degree of circular
polarization of incident light η2 given by Eq. (9) and the

parameter  are pseudoscalars, so that it is obvious

a eλ'⋅( ) b eλ'*⋅( )
λ
∑ k' a×[ ] k' b×[ ] ,⋅=

η2'

dσs

dΩ'
---------

dσs
unp( )

dΩ'
----------------

dσs
or( )

dΩ'
--------------,+=

dσs
unp( )

dΩ'
----------------

ωω'3α4

3 2 j1 1+( )
------------------------- T0

2 1
2
--- T1

2 7
10
------ T2

2+ +=

– T0
2 1

2
--- T1

2– 1
10
------+ T2

2

 
  k' e⋅ 2

dσs
or( )

dΩ'
-------------- ωω'3α4ρ1

n 2a+ b+–( )η2n k⋅{=

+ b+η2 k k'⋅( ) n k'⋅( ) cn+ Re e* k'×[ ] e k'⋅( )( ) }⋅

ki' Ω'd∫ 0, ki'k j' Ω'd∫ 4π
3

------δij= =

σ 8πωω'3α4 1
9 2 j1 1+( )
-------------------------





=

× Tk
2 ρ1

n a+
1
3
---b+– 

  η2n k⋅




.+
k 0=

2

∑

ρ1
n

η2'
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that the above-identified expressions are scalar. At the
same time, during the operation of time reversal, when
the vectors k and k' defining the direction of light prop-
agation change sign and each polarization vector is sub-
stituted by a complex-conjugate one, the pseudoscalar
combinations of vectors in the last two terms of Eq. (8)
and in the last term of Eq. (13) are not varied. There-
fore, it is the coefficients c and d entering these terms
that must be T-odd.

Physically, this T-oddness arises from the dissipa-
tion of light energy. Indeed, the coefficients c and d are
proportional to the quantity Im(Tk ) (see Eq. (10)),
which is strictly zero with the Hermitian scattering ten-
sor given by Eq. (3). The anti-Hermitian part of the
scattering tensor is other than zero only if a light energy
dissipation channel is opened in the process of light
scattering and this part is proportional to the T-odd dis-
sipative parameter defining the rate of this dissipation.
Manakov [11] was the first to pay attention to the part
played by dissipative processes in the light scattering
by a nonpolarized atom. However, in the case of a non-
polarized system, the dissipation shows up only if the
nondipole effects are taken into account. On the other
hand, under conditions of atomic orientation, the dissi-
patively induced effects show up even in the case of
dipole scattering [7].

Note that these effects must be observed during
above-threshold scattering (the photon energy is above
the ionization threshold of an atom or molecule, or
above the dissociation threshold of a molecule) and
during resonance scattering.2 In the case of above-
threshold scattering, the anti-Hermitian part of the scat-

tering tensor shows up owing to the fact that the 
resolvent given by Eq. (4) at E1 + ω > 0 is anti-Hermi-
tian, and it is the ionization (dissociation) width of the
initial level that is the T-odd parameter. In the case of
resonance scattering, the anti-Hermitian addition to the
scattering tensor given by Eq. (3) arises when the width
Γ of the resonance level (T-odd parameter) is intro-
duced into the pole part of the resolvent. The resonance
level must necessarily have a multiplet structure (with
resonance on the singlet Im(Tk ) = 0), and the dissi-
patively induced effects prove to be of the order of Γ/∆,
where ∆ has the order of fine splitting of resonance sub-
levels. Naturally, in the case of radiation broadening,
when Γ ~ α3, these effects make a contribution of the
order of α; however, their influence must increase with
the width of the resonance level, for example, due to
collisions. The importance of dissipatively induced
effects in the scattering of light by an oriented atom is
quite significant. In the absence of these effects, the
angular distribution of scattered light (see Eq. (13))

2 The dissipative effects associated with radiation corrections are
negligibly small outside of the resonance region [11]; in the case
of resonance scattering, the main part is taken into account by
introducing the radiation width of the resonance level.

Tk'*

ĜE1 ω+

Tk'*
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may depend on the atomic orientation only in the case
of nonzero degree of circular polarization η2 of incident
light.

3. SEPARATION OF EXPLICIT DEPENDENCE 
ON STOKES PARAMETERS IN THE CROSS 
SECTION OF ARBITRARY PHOTOPROCESS

In the case of partial polarization of an electromag-
netic wave, a photon is in a mixed (as regards polariza-
tion) quantum-mechanical state, which must be preas-
signed by a polarization density matrix [3, 9]. This is a
second-order Hermitian matrix with a unit trace. Its ele-
ments may be expressed in terms of three real parame-
ters which are usually provided by the Stokes parame-
ters ηi, i = 1, 2, 3. The parameter η2 defines the degree
of circular polarization, the parameter η3 preassigns the
degree of linear polarization along the x and y axes (the
z axis is directed along the wave propagation), and η1
preassigns the degree of linear polarization along the p
and q axes rotated in the xy plane through an angle of
45° relative to the x and y axes in the positive direction.

In the general case,  +  +  ≤ 1. With  +  +

 = 1, a photon is in the state of complete polarization
(pure state) which may be preassigned by the vector e.
In the case of nonpolarized light, η1 = η2 = η3 = 0.

The explicit form of the polarization density matrix
depends naturally on the choice of basis. In a helicity
basis, whose basis vectors are the vectors e± of the
right-hand and left-hand circular polarizations of a pho-
ton, the elements of this matrix are expressed in terms
of the Stokes parameters as [3]

(15)

The vectors e± are related to the vectors ex and ey of lin-
ear polarization along the x and y axes, which form the
basis of plane Cartesian coordinates,

(16)

In this Cartesian basis, the density matrix is written as
[9, 12]

(17)

We will demonstrate that the expression for the
cross section of any photoprocess accompanied by the
absorption or stimulated emission of a single partially
polarized photon contains the sum of products of the
Stokes parameters and the respective dichroisms of the
process, namely, circular dichroism and two linear
dichroisms.

η1
2 η2

2 η3
2 η1

2 η2
2

η3
2

ρ++ ρ+–

ρ–+ ρ– – 
 
  1

2
---

1 η2+ η3– iη1+

η3– iη1– 1 η2– 
 
 

.=

e±
1

2
------- ex iey±( ).+−=

ρxx ρxy

ρyx ρyy 
 
  1

2
---

1 η3+ η1 iη2–

η1 iη2+ 1 η3– 
 
 

.=
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If a photon is in the state of complete polarization
with the polarization vector e, then, in the first nonvan-
ishing order of perturbation theory, the matrix element
of transition is linear with respect to e. Therefore, the
cross section (total or differential) of the photoprocess
has the following structure:

(18)

where the vector A is independent of polarization of
light. The summation (averaging) over the atomic
quantum numbers, for example, magnetic quantum
numbers, which may be performed after transition to
partial polarization of light as well, causes no changes
in subsequent reasoning. The transition to partial polar-
ization of a photon consists in averaging the cross sec-
tion given by Eq. (18) over different realizations of
polarization e and reduces to the formal substitution

(19)

where ρλλ ' denotes the elements of the polarization den-
sity matrix of a photon in the basis {eλ}, and ej denotes
the Cartesian components of the polarization vectors.3

As a result, the cross section of a photoprocess is repre-
sented in the well-known form [3, 9]

(20)

The explicit form of the polarization density matrix
ρλλ ' in the spiral basis given by Eq. (15) demonstrates
that the Stokes parameter η2 in the expression for cross
section (20) is multiplied by the difference between the
cross sections for the right-hand and left-hand circular
polarizations of a photon (circular dichroism of the pro-
cess), and it follows from Eq. (17) that η3 is multiplied
by linear dichroism. Therefore, the photoprocess cross
section has the structure of

(21)

where

(22)

is the cross section of a photoprocess involving a non-
polarized photon,

3 Note that the partial polarization of an electromagnetic wave can-
not be preassigned by the polarization density matrix of photon if
the cross section of a process with absorption (emission) of N ≥ 2
photons is calculated. The number of necessary polarization
parameters in these cases turns out to be more than three and
depends on N [13].

σ e( ) A e⋅ 2,∝

e je j '* ρλλ 'eλ jeλ' j '* ,
λ λ ',
∑

σ A
λλ '

∑ eλρλλ ' A eλ'⋅( )*.⋅∝

σ σ0
1
2
--- η1σpq η2σ+– η3σxy+ +( ),+=

σ0
1
2
--- σ eλ( )

λ
∑=

σ+– σ e+( ) σ e–( )–=
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is the difference between the cross sections for the
right-hand and left-hand circular polarizations,

is the difference between the cross sections for the linear
polarization along the x and y axes (linear xy dichroism of
the process), and σpq is the linear pq dichroism of the pro-
cess. We can easily reduce the cross section given by
Eq. (20) to the form of (21) if we express the basis vec-
tors ex and ey in terms of the basis of the pq coordinate
system rotated through 45°,

and use Eq. (16) to write the sum given by Eq. (19) in
the form

The symmetric part of the matrix given by Eq. (17),

is reduced to a diagonal form

by rotating the coordinate axes. Here, the parameter

referred to as the degree of linear polarization of light
[12], has the meaning of the degree of linear polariza-
tion along the  and  axes rotated through an angle ϕ
relative to the x and y axes,

The state of partial polarization of photon is preas-
signed by three parameters, namely, η2, , and ϕ. The

Stokes parameter  in rotated coordinates is appar-
ently zero, so that the first term in brackets in Eq. (21)
disappears. It was in this form that Schaphorst et al.
[14] represented the dependence of the cross section of
two-electron photoionization on the Stokes parameters.

It must be emphasized that formula (21) is universal
and valid for the differential or total cross section of any
photoprocess, as well as for the probability of transition

σxy σ ex( ) σ ey( )–=

ex
1

2
------- ep eq–( ), ey

1

2
------- ep eq+( ),= =

ρλλ 'eλ jeλ' j '
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∑ 1

2
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1
2
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induced by absorption or stimulated emission of a par-
tially polarized photon.

4. SCATTERING OF PARTIALLY 
POLARIZED LIGHT

In accordance with Eq. (21), for transition from the
complete to partial polarization of incident light, one
must derive an expression for the scattering cross sec-
tion of nonpolarized light, as well as for the circular and
linear dichroisms of the process. The linear dichroism
may be found by substituting the respective real vectors
of linear polarization into the formulas for cross sec-
tion. The transition to nonpolarized light consists in
averaging expressions (6) and (8) over two orthogonal
polarization vectors (see Eq. (22)). In averaging, the
terms containing the parameter η2 disappear, and the
averaging of the remaining terms which contain the
vector e is easily performed with the aid of an identity
analogous to that given by Eq. (11).

When deriving a circular dichroism in the terms of
Eq. (8) which contain the degree of circular polariza-
tion η2 for completely polarized light, the parameter η2
will be replaced by 2. As a result, these terms will enter
Eq. (21) without alterations; however, η2 will already
have the meaning of the degree of circular polarization
of partially polarized light. In determining the contribu-
tion made to the circular dichroism by other terms
dependent on e in Eqs. (6) and (8), one can conve-
niently use the identity

We will give the final expression for the cross sec-
tion of scattering of partially polarized light by an ori-
ented atom. The cross section is written in the form of
Eq. (5), with the terms appearing as

(23)

where

a e±⋅( ) b e±⋅( ) = 
1
2
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(24)

where 

The angular distribution of scattered light may be
obtained by summing expressions (23) and (24) over its
polarizations or by making the transition from the
angular distribution obtained for complete polarization
of incident light (see Eqs. (12) and (13)) to partial
polarization using Eq. (21). As a result, the following
expressions are derived for the angular distribution of
radiation scattered by nonpolarized atoms and for the
addition due to orientation:

(25)

where

(26)

where

Formula (14) for the total cross section of light scat-
tering by an oriented atom, derived for the case of com-
plete polarization, retains its form upon transition to
partial polarization of incident radiation.

5. DISCUSSION OF THE RESULTS

The formulas obtained in this study enable one to
readily analyze any effects observed in the process of
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scattering of arbitrarily polarized light by oriented
atoms. We will examine some of those effects.

First of all, note that, in the case of polarization of

an atom in a state with j1 > 1/2, both the orientation 
and the subsequent multipoles of state up to the 2j1th
order inclusive are other than zero. For example, if j1 = 1,
then, generally speaking, both the orientation and
alignment are induced under conditions of polarization.
Higher multipoles of state may not be excited because
of certain selection rules for external effect that polar-
izes an atom. In the case of dipole absorption of light,
only the orientation and alignment are induced. In the
general case, the differential cross section of light scat-
tering given by Eq. (2) receives contributions, in addi-
tion to the orientation, from three multipoles of state as
well [6], so that the formulas derived above define only
the orientation part of the cross section of light scatter-
ing by a polarized atom. Nevertheless, in the cases in
which an atom is polarized axisymmetrically and only
the orientation and alignment are induced, the orienta-
tion effects may be observed in the pure form, because
the difference between the cross sections for two oppo-
site directions of the vector n depends on the atomic
orientation alone.

The atomic orientation affects considerably the
polarization of scattered light. Formulas (23) and (24)
enable one to calculate the Stokes parameters of scat-
tered radiation and determine the state of its polariza-
tion. For example, the degree of circular polarization of
scattered light (second Stokes parameter) is equal to the
ratio between the difference between the cross sections
for  = ±1 and the angular distribution. As follows
from Eqs. (23) and (24), nonzero degree of circular
polarization of scattered light at η2 = 0 is induced only
owing to the atomic orientation, when the system is

characterized by the pseudoscalar parameter . In

addition, at η2 = 0 and  = 0 (a linearly polarized pho-
ton is registered), the addition to the cross section due
to orientation, as given by Eq. (24), proves to be other
than zero because of the terms proportional to the T-odd
coefficient c. This means that, with zero degree of cir-
cular polarization of incident light, the degree of linear
polarization of scattered light depends on the atomic
orientation due to dissipative effects which show up in
the case of either above-threshold scattering or reso-
nance scattering (see [7] and the discussion at the end
of Section 2 of this paper).

The angular distribution of radiation scattered by a
nonpolarized atom, given by Eq. (25), is independent of
the degree of circular polarization  of incident light,
which is quite natural because η2 is a pseudoscalar, and
the vectors k and k' cannot make up a pseudoscalar
combination. No less natural is the emergence of the
dependence of angular distribution on η2 under condi-
tions of atomic orientation (see Eq. (26)). In the

ρ1
n

η2'

ρ1
n

η2'

η2
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absence of dissipative effects (coefficient c = 0), the ori-
entation part of the cross section given by Eq. (26) is
proportional to the Stokes parameter η2, so that the
dependence of angular distribution of scattered radia-
tion on atomic orientation arises only in the case of
nonzero degree of circular polarization of incident
light, as in the case of photon scattering by a free polar-
ized electron [9, Para. 87]. This dependence is retained
in the case of the total cross section given by Eq. (14).
However, the effects of dissipation of the light energy,
which show up during the scattering of light by an atom
(scattering by bound electrons), result in the depen-
dence of the angular distribution on the orientation at
η2 = 0 as well. These effects further bring about the
dependence of the orientation addition to the angular
distribution of scattered radiation, given by Eq. (26), on
the degree of linear polarization of the initial radiation
η1 and η3 and bring about the dependence of the angu-
lar distribution on the atomic orientation in the case of
scattering of nonpolarized light [7].

The expressions for cross sections (23)–(26) and
(14) derived in this study provide a complete solution to
the problem on dipole scattering of arbitrarily polarized
light by an oriented quantum system.
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Abstract—Physical principles behind the control of light localization and nonlinear-optical interactions in
micro- and nanostructured fibers are demonstrated. Transmission measurements on the cladding of nanostruc-
tured fibers having a form of a two-dimensional periodic structure with a pitch less than 500 nm have revealed
the existence of a photonic band gap tunable within the range from 930 to 1030 nm. The influence of the struc-
ture of the holey-fiber cladding on the effective area of the waveguide mode and the spectral broadening of
Ti:sapphire and Cr:forsterite femtosecond laser pulses is experimentally studied. It is shown that the increase
in the air-filling fraction of a holey-fiber cladding results in a considerable enhancement of spectral broadening
of short laser pulses due to the increase in the light localization degree in the fiber core. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

One of the prominent tendencies of the development
of natural sciences in recent years is the rapid growth of
interdisciplinary areas, arising on borderlines of differ-
ent fields of science and combining new ideas and
achievements of physics, chemistry, biology, and other
natural sciences. Whenever physics, chemistry, or biol-
ogy reaches its edge, it searches for its natural exten-
sion, resorting to the tools of other natural sciences.
This tendency has already resulted in many remarkable
achievements and discoveries. In particular, a fusion of
the achievements of modern laser physics and quantum
chemistry gave birth to such a highly promising and
rapidly growing area as femtochemistry [1], which
opened the way to set a control over ultrafast chemical
processes and to real-time monitoring of such pro-
cesses [2, 3]. Progress in solid-state physics, optics of
spatially nonuniform structures, and nanotechnologies
based on a variety of physical and chemical processes
has strongly stimulated and motivated research into the
properties of photonic crystals [4–6] and resulted in the
growth of applications of photonic band-gap (PBG)
materials, i.e., artificially structured materials where
optical parameters are periodically modulated in space
with a period of a unit photonic-crystal cell on the order
of the optical wavelength.

Presently, exciting prospects are open due to the
advantageous integration of impressive achievements
of photochemistry, including the use of ultrashort laser
1063-7761/01/9303- $21.00 © 20499
pulses for controlling the properties and the phase state
of matter, with broad opportunities of advanced laser
systems and nanostructure-fabrication technologies.
We, in fact, witness a buildup of a new promising direc-
tion of research—femtonanophotonics. This interdisci-
plinary area of science opens the way of purposeful
modifications of the properties of matter and a control
of fundamental (often ultrafast) processes in matter on
both physical and chemical levels by material nano-
structuring. Investigations in this direction have already
demonstrated the possibilities of luminescence control
in photonic crystals [7, 8]; creation of nanostructures,
including photonic crystals, by means of two-photon
polymerization [9]; and the use of electrochemical and
deep photoanodic etching [10–13] for the fabrication of
nanostructures, nanocrystals, and photonic crystals,
offering new avenues for controlling ultrashort pulses
and nonlinear-optical interactions.

One of the promising methods to control fundamen-
tal physical and chemical processes and to solve many
applied problems of ultrafast and nonlinear optics, opti-
cal technologies, high-precision optical measurements,
photochemistry, and biomedicine is to use nanostruc-
tured fibers [14–24]. Fibers of this new type, also
known as holey fibers (HFs) [21–24], are becoming
more and more widespread in modern optics and pho-
tonics. The cladding of such fibers (Fig. 1a) has a form
of a two-dimensional (often periodic) array of closely
packed glass capillaries drawn at a high temperature. A
fiber without a hole [14, 15] or holes corresponding to
001 MAIK “Nauka/Interperiodica”
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several missing capillaries [19] may serve as a core in a
holey fiber. In the former case, waveguiding is achieved
due to total internal reflection. In the latter case,
waveguide modes are similar to the modes of hollow
fibers, but, due to the presence of the photonic band gap
in the transmission of the cladding, optical losses of
hollow-core holey-fiber modes may be much lower
than the optical losses characteristic of conventional
hollow fibers.

One of the main advantages of holey fibers is that
they support single-mode waveguiding within a
remarkably broad spectral range [15, 16]. Fibers of this
type provide exciting opportunities for the generation
and control of ultrashort light pulses and for the control
of luminescence of molecules within a broad spectral
range [24]. Due to their properties, holey fibers offer
new elegant solutions to many problems of fiber optics
[14–24], nonlinear optics [21–26], the physics of pho-
tonic crystals and quantum electrodynamics [16, 27–
31], atomic optics [30, 31], creation of optical fre-
quency synthesizers and high-precision optical fre-
quency measurements [32], biomedical optics [33], and
optical data transmission [25].

In this paper, we develop and demonstrate the phys-
ical principles behind the control of light localization
and nonlinear-optical interactions in micro- and nano-
structured fibers. Transmission measurements on the
cladding of nanostructured fibers having a form of a
two-dimensional periodic structure with a pitch less
than 500 nm have revealed the existence of a photonic
band gap in transmission spectra of such claddings tun-
able within the range from 930 to 1030 nm. Below, we
present the results of plane-wave simulations of optical
properties of such fibers. We will also present the
results of our studies devoted to the influence of the
structure of the holey-fiber cladding on the effective
area of the waveguide mode and the spectral broaden-
ing of ultrashort laser pulses in holey fibers with differ-
ent structures of the core and the cladding and different
air-filling fractions of the cladding. Our experimental
results indicate that the increase in the air-filling frac-
tion of a holey-fiber cladding results in a considerable
enhancement of spectral broadening of short laser
pulses due to the increase in the light localization
degree in the fiber core.

2. TUNING THE PHOTONIC BAND GAP
OF A PHOTONIC-CRYSTAL CLADDING

OF NANOSTRUCTURED FIBERS

In the case of periodic arrangement of air holes in an
HF cladding, the transmission spectrum of such a struc-
ture measured in the direction perpendicular to the
direction of waveguiding displays photonic band gaps
for certain directions of the wave vector. Within these
frequency ranges, radiation cannot penetrate into the
fiber cladding. Whenever a fiber without a hole at the
center is used to produce a core in such a fiber, the fiber
core can be considered as a defect in an otherwise per-
JOURNAL OF EXPERIMENTAL 
fect two-dimensional photonic-crystal lattice. Such
structures are, in fact, one of the ways to solve the prob-
lem of fabrication of photonic crystals (see, e.g., [14,
24]), which can be employed to experimentally study
the control of emission of atoms and molecules and
light localization within the photonic band gap [4–6,
34–39].

Until recently, investigations of optical properties of
holey fibers have been restricted to propagation regimes
where the radiation wavelength is much less than the
pitch of the photonic-crystal cladding and the core
diameter. In this regime, the existence of a photonic
band gap has, in fact, no influence on the propagation
of light in a fiber. In this paper, we will demonstrate the
physical principles of holey fibers with a photonic band
gap (PBG) of the cladding tunable within the visible
and near-IR spectral ranges. In Section 2.1, we will
apply the method of plane-wave expansion to calculate
the dispersion of a two-dimensional photonic-crystal
structure in the cladding of a nanostructured fiber. The
results of these calculations will then be used to deter-
mine the position of the photonic band gap and to spec-
ify the requirements to a photonic-crystal fiber guiding
light due to the photonic band gap within the visible
and near-IR ranges. Section 2.2 presents the results of
experiments devoted to the observation of the photonic
band gap in the transmission spectrum of the HF clad-
ding and tuning of this photonic band gap.

2.1. Numerical Analysis of the Dispersion 
and Transmission Spectrum of Photonic-Crystal Fibers

To calculate the band structure of photonic energies
for a photonic-crystal cladding of holey fibers, we
employed a standard approach based on the plane-wave
expansion (see [40]). As a model of an HF cladding, we
considered an array of cylinders with a dielectric con-
stant ε2 and an infinite length arranged into a two-
dimensional periodic triangular-lattice structure in a
medium with a dielectric constant ε1 (Fig. 1b).

The nodes of such a two-dimensional lattice with
elementary translation vectors a1 and a2 (see Fig. 1b)
are defined by the following expression:

(1)

where i = {i1, i2}, i1 and i2 being integers.
Let us also introduce a reciprocal lattice (Fig. 1c),

defined by the vectors

(2)

where j = {j1, j2}, j1 and j2 are integers, and translation
vectors of the reciprocal lattice b1 and b2 can be found
from the relations

(3)

Since the dielectric constant of the system consid-
ered is a spatially periodic function, ε(r|| + ri) = ε(r||),

ri i1a1= i2a2,+

g j j1b1= j2b2,+

ai b j⋅ 2πδij, i j, 1 2.,= =
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Fig. 1. (a) A holey fiber. Dark areas correspond to a material with a higher refractive index. (b) A two-dimensional periodic structure
of the holey-fiber cladding. (c) The first Brillouin zone corresponding to a triangular lattice of air holes in a dielectric with charac-

teristic directions determined by the points Γ(0, 0), M(0, 2π/ ), and K(2π/3a, 2π/ ).3a 3a
where r|| is the radius vector in the XY plane, this quan-
tity can be represented as a two-dimensional Fourier
series:

(4)

In the case under study, expansion coefficients in
Eq. (4) can be determined with the use of the following
formula:

(5)

where R is the radius of cylinders; J1 is the first-order
Bessel function; and f is the filling fraction, which is
defined as the ratio of the cross-sectional area of a cyl-
inder in the XY plane (πR2) to the unit-cell area (|a1 ×
a2|). Note that the quantity ε–1(r||) is also periodic and
can be expanded as a Fourier series:

(6)

Expansion coefficients in Eq. (6) are given by formulas

similar to Eq. (5) where the replacement εi  
should be made.

Let us employ now the expressions derived above to
find the dispersion relation for the two-dimensional

ε r||( ) ε' g j( ) ig j r||⋅( ).exp
g j

∑=

ε' g j( )
ε1 ε2 ε1–( ) f , g j+ 0=

ε2 ε1–( ) f
2J1 g j R( )

g j R( )
-------------------------, g j 0,≠







=

ε 1– r||( ) α ' g j( ) ig j r||⋅( ).exp
g j

∑=

εi
1–
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periodic structure. We assume that a harmonic electric
field E propagating in the XY plane is polarized along
the axes of cylinders (E polarization) and is indepen-
dent of z. The fields E and H in this case can be written
as

(7)

(8)

Substituting Eqs. (7) and (8) into Maxwell equations,
we can derive the equation for Ez(r||):

(9)

Applying the Bloch theorem, we can represent the field
component Ez as a series

(10)

where k|| is the component of the wave vector lying in
the XY plane, k|| = {k1, k2, 0}. Substituting Eqs. (6) and
(10) into Eq. (9), we arrive at the following equation for
the function (gj):

(11)

E r|| t,( ) 0 0 Ez r||( ), ,{ }= iωt–( ),exp

H r|| t,( ) Hx r||( ) Hy r||( ), 0,{ } iωt–( ).exp=

ε 1– r||( ) ∂2

∂x2
-------- ∂2

∂y2
--------+ 

  Ez r||( ) ω2

c2
------Ez r||( )+ 0.=

Ez r||( ) Bk||

g j

∑ g j( ) i– k|| g j+( ) r||⋅( )exp ,=

Bk||

k|| gi+( )2α ' g j gi–( )Bk||
g j( )

g j

∑ ω2

c2
------Bk||

g j( ).=
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Introducing the notation

(12)Ak||

k|| g0+( )2α ' g0 g0–( ) … … …
… … … …

… k|| gi+( )2α ' gi 1– gi–( ) k|| gi+( )2α ' gi gi–( ) …
… … … …

,=

Fig. 2. The band structure of photon energies for (a) E- and (b) H-polarized radiation fields in a triangular-lattice cladding of a pho-
tonic-crystal fiber with the ratio of the hole radius to the pitch of the structure equal to 0.4 and the refractive index of glass equal to
n = 1.6. The transmission T measured for nanostructured fibers is shown on the left.
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and

(14)

and rewriting Eq. (11) as

(15)

we can find the relation between k|| and ω and the field
distribution by numerically solving the eigenvalue and
eigenfunction problems with the matrix  (15). Note
that, although formally the solution of this problem
requires an infinite number of matrix elements, an
accuracy of calculations no lower than 1% can be
achieved with matrices consisting of approximately
400 × 400 elements. In the case of an H-polarized field,
the problem can be solved in a similar way.

The band structure of photonic energies calculated
with the use of the above-described procedure for E-
and H-polarized radiation fields is presented in Figs. 2a
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…
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µ2 ω2
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------=

Ak||
Bk||

µBk||
,=
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and 2b, respectively. The results of our simulations
show that the creation of holey fibers with a photonic
band gap lying in the wavelength range accessible with
the available standard femtosecond Ti:sapphire and
forsterite lasers requires the fabrication of a two-
dimensional periodic fiber structure with a pitch less
than 500 nm. The results of these simulations qualita-
tively agree with the data of our experiments (presented
on the left of Figs. 2a and 2b), which will be discussed
in greater detail in the following section.

The results of simulations presented in Fig. 3 illus-
trate the possibility of tuning the photonic band gap by
filling air holes in an HF cladding with material whose
refractive index differs from the refractive index of the
air. Calculations were performed for the case when the
holes are filled with ethanol. Theoretical predictions
concerning the possibility of tuning the photonic band
gap are confirmed by our experimental data (see Sec-
tion 2.2).

Figures 4a–4c present the band structures of photo-
nic energies calculated for HF claddings with different
air-filling fractions f. As can be seen from the data pre-
sented in these figures, the photonic band gap of an HF
cladding can also be tuned by changing the content of air
and glass in the fiber cladding. The experimental data pre-
sented in Section 3 of this paper indicate that the growth
ND THEORETICAL PHYSICS      Vol. 93      No. 3      2001
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in f also increases the light localization degree in the
core of micro- and nanostructured fibers, which allows
the efficiency of nonlinear-optical processes in a fiber
to be noticeably improved.

2.2. Transmission Measurements on the Cladding
of a Photonic-Crystal Fiber

Nanostructured fibers with a pitch of the cladding
less than 500 nm were fabricated at the Institute of
Technology and Processing of Glass Structures. The
technology employed to fabricate such fibers was sim-
ilar to the technology described in [14, 26–29] and was
based on the following procedure. Identical glass capil-
laries were stacked into a periodic structure, which was
then fused at a high temperature, in order to eliminate
air gaps between the capillaries, and drawn. The result-
ing structure was cut into segments. These segments
were also stacked into a periodic array, which under-
went the drawing process again.

The above-described procedure allowed a fabrica-
tion of fibers with different cladding geometries
(Fig. 5), a pitch ranging from 400 nm up to 32 µm (see
also [27–29]), and the ratio of the hole diameter to the
pitch of the structure variable within a broad range
(Fig. 5). The central fiber in the stack had no hole in it
and served as a core in the holey fiber.

The periodic structure in the cladding of a holey
fiber gives rise to photonic band gaps in transmission
spectra of the structure measured in the direction per-
pendicular to the direction of waveguiding (Figs. 2–4).
Sub-500-nm-pitch two-dimensional periodic structures
allowed us to observe photonic band gaps within the
wavelength range characteristic of widespread lasers.
The experimental setup for measuring the spectra of
holey fibers was based on a Hitachi-333 spectropho-
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É å ä É
ä ||

a/λ

Fig. 3. The band structure of photon energies for an E-polar-
ized radiation field in a triangular-lattice cladding of a pho-
tonic-crystal fiber with (solid curve) air- and (dashed curve)
ethanol-filled holes, the ratio of the hole radius to the pitch
of the structure equal to 0.4, and the refractive index of glass
equal to n = 1.6.
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tometer and included the signal and reference channels.
A 5-cm-focal-length quartz lens was used in the signal
channel to ensure the predominant illumination of the
central part of the sample having a photonic-crystal
structure. This lens focused the light beam on a slit dia-
phragm with an aperture d = 250 µm. A holey-fiber
sample was placed behind the diaphragm. Radiation
transmitted through the sample was collimated with a
quartz lens, which was identical to the focusing lens.
Transmission spectra were measured within the range
of wavelengths from 400 to 1400 nm. A mercury lamp
in the spectrometer was replaced by a tungsten lamp
around 870 nm. To be able to measure transmission
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Fig. 4. The band structure of photon energies calculated for
an E-polarized radiation field in a triangular-lattice cladding
of a photonic-crystal fiber with the air-filling fraction (a) f =
0.2, (b) 0.4, and (c) 0.58. The holes of the HF cladding are
filled with (solid curve) air and (dashed curve) ethanol.
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Fig. 5. Cross-sectional microscope images of holey fibers with a photonic-crystal cladding.
spectra of a photonic-crystal sample for different direc-
tions of the wave vector in the first Brillouin zone of the
photonic-crystal lattice, we rotated the sample around
its axis corresponding to the direction of waveguiding.

Transmission spectra measured for a holey fiber
with a period of the PBG structure less than 500 nm are
presented in Fig. 6. The photonic band gap in the trans-
mission spectra of such samples was observed within
the range of wavelengths from 930 to 1030 nm. Since
air holes periodically arranged in the fiber cladding
form a hexagonal lattice, the position of the photonic
band gap in the transmission spectrum changes,
depending on the rotation angle of the structure with
respect to incident radiation. Comparison of the results
of simulations and experimental data (Figs. 2a and 2b)
shows that the position of the photonic band gap can be
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Fig. 6. Transmission spectra of a photonic-crystal fiber
measured for different directions of the wave vector in the
first Brillouin zone of the photonic-crystal lattice of the
PBG cladding for (thin curves 1–3) silica–air and (thick
curves 4–6) silica–ethanol PBG structures.
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satisfactorily described within the framework of the
plane-wave-expansion approach.

The structure of the photonic band gap in the trans-
mission spectrum of a photonic-crystal structure
depends on the ratio of the refractive indices of materi-
als forming the structure (Fig. 3). In the case of holey
fibers, this circumstance opens up the opportunity of
tuning the photonic band gap by filling the air holes in
the PBG structure with various materials whose refrac-
tive indices differ from unity.

We have studied changes in the photonic band gap
of holey-fiber samples arising when the air holes of the
structure were filled with ethanol. Both the position and
the width of the photonic band gap noticeably changed
in this case (curves 4–6 in Fig. 6). The experimentally
demonstrated possibility of tuning the photonic band
gap of a photonic-crystal cladding in holey fibers by
using various materials to fill air holes in the fiber clad-
ding offers broad opportunities for tuning the disper-
sion of holey fibers and controlling the luminescence of
molecules within a broad spectral range.

3. NONLINEAR-OPTICAL INTERACTIONS 
OF ULTRASHORT PULSES

IN MICROSTRUCTURED FIBERS

3.1. The Waveguide Mode Area and the Efficiency 
of Self-Phase Modulation in a Holey Fiber

Micro- and nanostructured fibers offer vast opportu-
nities for enhancing nonlinear-optical interactions and
for using the methods of nonlinear optics to produce
ultrashort light pulses. Recent experiments [25, 26]
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have demonstrated that holey fibers can be employed to
control the spectrum of ultrashort laser pulses and to
generate a supercontinuum starting with very low ener-
gies of laser radiation.

The efficiency of nonlinear-optical processes in
HFs, including the processes resulting in spectral
broadening of femtosecond pulses, can be controlled by
changing the localization degree of the light field in the
fiber core. The calculation of the light-field distribution
in the cross section of a holey fiber is a rather compli-
cated problem. Several numerical methods have been
recently developed for such simulations (e.g., see [21,
41–43]). Below, we will illustrate our idea of control-
ling field localization in an HF core using a simple
qualitative approach. A microstructured cladding of an
HF will be characterized by the effective refractive
index [15]

(16)

where βcl is the propagation constant of the fundamen-
tal space-filling mode, i.e., the fundamental mode of an
infinite structure obtained by periodically translating a
unit cell of the HF cladding; k = 2π/λ; and λ is the radi-
ation wavelength. Representing the effective refractive
index of the cladding in the form of Eq. (16), we take
into consideration the real spatial distribution of the
light field in the fiber cladding. The profile of such a
distribution can be estimated from two-dimensional
images of radiation intensity distribution in the cross
section of an HF.

To provide a rough estimate for the effective radius
r of the waveguide mode in the HF core, we will
employ the following formula for the radius of the
waveguide mode in a conventional step-index fiber with
a solid cladding [44]:

(17)

where w is understood as the HF core radius;

is the transverse component of the wave vector in the
fiber core;

(18)

is the propagation constant of the waveguide mode in
the fiber core, which meets the conditions

(19)

nc is the refractive index of the fiber core; and ϕ is the
incidence angle characteristic of the considered
waveguide mode.

Using Eqs. (16)–(18), we arrive at the following
estimate for the radius of the waveguide mode:

(20)

ncl βcl/k,=

r w 1/ p,+=

p2 βc
2= βcl

2–

βc nck ϕcos=

nck βc βcl;≥ ≥

r w=
λ

2π nc
2 ϕcos ncl

2–
-----------------------------------------.+
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As can be seen from Eq. (20), the localization degree of
light field in a fiber core can be increased and, conse-
quently, the efficiency of nonlinear-optical processes
can be improved by increasing the difference between
the refractive index of the core nc and the effective
refractive index of the cladding neff. Physically, the field
localization degree can be increased in fibers with large
differences between nc and neff due to the fact that
modes with large differences of propagation constants
may exist in the core and the cladding of such fibers.
The transverse component p of the wave vector of the
mode propagating in the fiber core decreases under
these conditions, which implies higher localization
degrees of light field in the fiber core.

The relative deviation w of the frequency of a laser
pulse induced by self-phase modulation (SPM) due to
the nonlinear additive to the refractive index ∆n = n2I
can be estimated with the use of the formula [45]

(21)

where c is the speed of light, P0 is the peak power of the
laser pulse, S = πr2 is the effective waveguide mode
area, τ is the pulse duration, and L is the fiber length.

As can be seen from Eq. (21), a decrease in S due to
the increase in the air-filling fraction in a fiber core
enhances the SPM-induced spectral broadening of a
laser pulse. The difference between the refractive indi-
ces of the core and the cladding in HFs can be increased
by changing the structure of the cladding and making
the air holes in the cladding larger (Fig. 7). Note that the
results of simulations presented in Section 2.1 indicate
that the growth in the air-filling fraction f of the HF
cladding results also in a shift of the photonic band gap
of a two-dimensional periodic structure of the HF clad-
ding (see Figs. 4a–4c). In our study, we employed this
method to control light localization in the fiber core and
to enhance nonlinear-optical processes in holey fibers.

3.2. Experimental

Titanium–sapphire and forsterite laser systems were
employed in our experiments as sources of ultrashort
light pulses. A Ti:sapphire laser consisted of an oscilla-
tor and a multipass amplifier pumped by the second
harmonic of a pulsed Nd:YAG laser, operating at a rep-
etition rate of 1 kHz. Laser pulses produced by this sys-
tem had a duration ~70 fs and an energy up to 1 mJ.

Experiments were also performed with an all-solid-
state self-starting Cr4+:forsterite laser [33, 46], which
allowed light pulses with durations less than 40 fs and
radiation wavelength tunable within the range from
1.21 to 1.29 µm to be produced. A nonlinear crystal was
used to double the frequency of this radiation. The mas-
ter oscillator of this laser system included a Nd:YAG-
pumped 19-mm Cr4+:forsterite crystal, mirrors with a
radius of curvature equal to 100 mm, and a 4.5% output

∆ω
ω

--------
n2

c
-----=

P0

Sτ
-----L,
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Fig. 7. Cross-sectional microscope images of holey fibers with a pitch of the photonic-crystal cladding equal to 2 µm. The air-filling
fraction is (a) 65% and (b) 16%.
coupler. As an option, a semiconductor-saturable-
absorber reflector could be used as a rear cavity mirror.
Self-starting mode locking in the created system can be
implemented both with and without semiconductor sat-
urable-absorber mirrors.

The energy of laser radiation in our experiments was
varied with the use of a half-wave plate and a Glan
prism. A microobjective used to couple laser radiation
into a holey fiber provided a coupling efficiency of 10–
25%, depending on the size of the fiber core. The spec-
tra of light pulses emerging from the fiber were ana-
lyzed with the use of a spectrometer and a CCD camera.

3.3. Results and Discussion

To study the possibilities of controlling nonlinear-
optical processes in holey fibers by changing the ratio
of refractive indices of the core and the microstructured
cladding, we employed short HF samples with a length
of 3–4 cm. Spectral broadening was investigated for
70-fs Ti:sapphire laser pulses coupled into HF samples
within the range of radiation energies where no super-
continuum generation was observed. The values of
pulse energy and power presented in figures and in the
text are corrected for the input losses estimated using
the light pulse energy measured of the holey fiber out-
put. In particular, the appearance of the anti-Stokes
component in the spectrum of a pulse emerging from a
holey fiber, indicating the initial phase of supercontin-
uum generation, was observed with laser pulse powers
on the order of 10 kW (Fig. 8). The length of fibers was
also chosen sufficiently small in order to avoid effects
JOURNAL OF EXPERIMENTAL 
related to group-velocity dispersion, which would oth-
erwise have a considerable influence on short pulses.

The bandwidth of laser pulses transmitted through a
holey fiber increased with the growth in the energy of
laser pulses (Fig. 9). At the initial phase, this process
can be approximately described by Eq. (21), which
allows an estimation of the influence of the cladding
structure and the air-filling fraction of the cladding on
the efficiency of SPM, resulting in the spectral broaden-
ing of laser pulses.

Figure 9 presents the spectral broadening of Ti:sap-
phire laser pulses with a wavelength of 800 nm and a
pulse duration of 70 fs at the output of a 2-µm-pitch HF
sample with a length of 3 cm and different air-filling
fractions of the cladding as a function of radiation
energy coupled into the fiber. The results of these mea-
surements show that the increase in the air-filling frac-
tion of the HF cladding leads to a considerable
enhancement of self-phase modulation. In particular,
increasing the air-filling fraction of the cladding f from
16 (curve 2) up to 65% (curve 1), we observed the
enhancement of spectral broadening of Ti:sapphire
laser pulses by a factor of about 1.5.

The ratio of the effective mode areas in holey fibers
with different structures can be estimated, in accor-
dance with Eq. (21), as the ratio of the slopes of the
spectral broadening of laser pulses at the output of a
fiber as a function of radiation energy coupled into the
fiber (Fig. 9). Such estimates for the contraction ratio of
the effective waveguide mode area in a holey fiber
agree well with the results of measurements based on
the imaging of the output fiber end. This circumstance
AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001



CONTROLLED LIGHT LOCALIZATION AND NONLINEAR-OPTICAL INTERACTIONS 507
500 600 700 800 900 1000
λ, nm

100

10–1

10–2

10–3

Signal power, arb. units

1

2

3

4

Fig. 8. The spectra of Ti:sapphire laser pulses with τ = 70 fs (1) at the input and (2–4) at the output of a holey fiber with a length of
3 cm and the pitch of the cladding equal to 3 µm for pulse energies of (2) 0.7, (3) 15, and (4) 35 nJ.
indicates that the enhancement of spectral broadening
of laser pulses in our experiments is mainly due to the
decrease in the effective mode area of radiation propa-
gating in a holey fiber.

4. CONCLUSION

Thus, the analysis of optical properties of micro-
and nanostructured fibers performed in this paper dem-
onstrates the possibility of creating holey fibers with a
photonic-crystal cladding whose photonic band gap lies
within the frequency range characteristic of the avail-
able convenient femtosecond Ti:sapphire and forsterite
lasers if a two-dimensional periodic structure with a
period less than 500 nm is employed as a cladding in
such fibers. The fabrication of holey fibers meeting this
requirement allowed us to experimentally demonstrate
the existence of a photonic band gap for such structures
within the range of 930–1030 nm by measuring the
transmission spectra of holey fibers in the direction per-
pendicular to the direction of waveguiding. This photo-
nic band gap is satisfactorily described within the
framework of the numerical approach based on the
plane-wave expansion. The experimentally demon-
strated possibility of tuning the photonic band gap of a
photonic-crystal cladding in holey fibers by using vari-
ous materials to fill air holes in the fiber cladding offers
broad opportunities for tuning the dispersion of holey
fibers and controlling radiative and photochemical pro-
cesses within a broad spectral range.

The results of our experiments also demonstrate the
possibility of controlling light localization and the effi-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ciency of nonlinear-optical interactions of ultrashort
laser pulses in holey fibers by changing the fiber struc-
ture. By increasing the air-filling fraction of HF clad-
ding from 16 up to 65%, we were able to improve the
efficiency of spectral broadening of 70-fs pulses of a
Ti:sapphire laser by a factor of about 1.5 due to the
increase in the light-localization degree in the core of
the fiber.

The possibility of controlling the properties of
waveguide modes in holey fibers by changing the struc-
ture of the HF cladding, which was demonstrated in this
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Fig. 9. The spectral broadening of 70-fs pulses of 800-nm
Ti:sapphire laser radiation transmitted through a 2-µm-
pitch HF sample with a length of 3 cm and the air-filling
fraction equal to (1) 65% and (2) 16% as a function of the
radiation energy coupled into the fiber.
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paper, also seems to offer much promise as a method of
tuning the dispersion of holey fibers. This dispersion
tunability makes holey and photonic-crystal fibers very
useful for the solution of many problems of fiber optics,
information technologies, telecommunications, optics
of ultrashort pulses, and nonlinear optics and spectros-
copy.
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Abstract—We consider the nonlinear excitation of small-scale electron-density perturbations when two iden-
tical short laser pulses propagating toward each other collide in plasma. Pulses with duration τ of the order of
the plasma-oscillation period (ωpτ ≤ 1, ωp is the plasma frequency) are shown to excite long-lived localized
plasma oscillations in the collision region. The energy conservation laws for the nonlinear mixing of short laser
pulses in plasma are analyzed. We investigate the scattering of a sounding wave by the electron-density perturba-
tions produced in the pulse collision region (short-lived Bragg mirror). © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The excitation of plasma oscillations during the
nonlinear mixing of two high-frequency electromag-
netic waves [1, 2] is of considerable interest in diagnos-
ing laboratory [3, 4] and ionospheric [5] plasma and
electron acceleration [6], as well as in maintaining a
quasi-steady current in controlled thermonuclear fusion
(CTF) studies [7]. When these issues are discussed, the
amplitudes of reference electromagnetic waves are
commonly assumed to change only slightly over the
period of plasma oscillations; the latter are excited by
the resonant force that arises because the reference-
wave frequencies differ by the plasma frequency.
Recently, interest in studying the various nonlinear
effects that emerge when short (subpicosecond) laser
pulses, whose duration is often shorter than the plasma-
oscillation period, propagate in plasma has increased
considerably [8]. Clearly, for the nonlinear mixing of
such pulses, the concept of resonant plasma-wave exci-
tation loses its meaning.

In this paper, we consider the nonlinear mixing that
arises when two identical short laser pulses collide in
plasma. The standing electromagnetic wave generated
when the pulses overlap produces small-scale pondero-
motive forces whose action gives rise to electron-den-
sity modulation. If the pulse duration τ is much longer
than the plasma period (ωpτ @ 1, where ωp is the
plasma frequency), then the electron-density perturba-
tions in the collision region persist only during the col-
lision and disappear as the pulses move apart. The inter-
action causes the pulse shape to change only slightly,
while the pulse energy is essentially constant. If, alter-
natively, the duration of the collision is shorter than the
plasma-oscillation period (ωpτ ≤ 1), then, after its com-
pletion and pulse divergence, long-lived localized
1063-7761/01/9303- $21.00 © 20510
plasma oscillations remain in the collision region,
while the pulse energy decreases by the energy of these
oscillations. In this case, the excitation of plasma oscil-
lations by counterpropagating pulses with equal fre-
quencies can be said to be an impact one. Such an
impact excitation of natural oscillations and waves dur-
ing the nonlinear mixing of short pulses with equal fre-
quencies can also take place in other material media
and in the case of other physical mechanisms responsi-
ble for nonlinear mixing. The impact excitation of
acoustic waves during the nonlinear mixing of picosec-
ond laser pulses, which produce spatially periodic mat-
ter heating, seems to have been first observed in molec-
ular crystals [9, 10].

The excitation of plasma waves when two laser
pulses collide is considered in Section 1. The collision
effect on the pulse shape and energy is analyzed in Sec-
tion 2. The scattering of a sounding wave by the short-
lived Bragg mirror that emerges in the pulse collision
region is studied in Section 3. In Conclusion, we dis-
cuss the possible applications of the effects considered.

1. THE EXCITATION OF SMALL-SCALE 
ELECTRON-DENSITY PERTURBATIONS 

AS LASER PULSES COLLIDE

Consider two identical short laser pulses with a car-
rier frequency ω0 that propagate along the z axis toward
each other in rarefied plasma with an electron density
N0e (Fig. 1a). We write the electric field of the laser
pulses as

(1.1)
EL r t,( ) =̇ 

1
2
--- iω0t–( ) E+ r t,( ) ik0z( )exp[exp{

+ E– r t,( ) ik0z–( ) ] c.c.+ } ,exp
001 MAIK “Nauka/Interperiodica”
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where

is the plasma frequency; e and m are the electron charge
and mass; c is the speed of light; and E±(r, t) are the
complex amplitudes of the laser pulses propagating
from left to right and from right to left, respectively.
E±(r, t) are assumed to vary slowly on scales  in

space and  in time. We assume the pulse lengths to
be small compared to the diffraction length and write
the pulse shape in the interaction region as

(1.2)

where

Vg = (k0/ω0)c2 is the group velocity of the pulses, L is
their length, and the vector E⊥ (ρ) characterizes the

pulse polarization and radial (ρ = ) shape. The
pulses are assumed to be linearly polarized (e is the
polarization vector) and axially symmetric. We chose
the coordinate system and the initial time in such a way
that, in the absence of interaction at t = 0, the pulses
exactly overlap and the maxima of functions E+ and E–
are at z = 0 (Fig. 1b).

Note that, while propagating in plasma, the laser pulses
also generate low-frequency and large-scale plasma fields,
including wake waves [11]. The role of such fields in the
pulse collision will be studied separately.

As the pulses approach each other, a small-scale
(with wave number 2k0) ponderomotive force arises
when they begin to overlap. This force produces the
corresponding electron-density perturbations (indi-
cated in Fig. 1b by the heavy solid curve),

(1.3)

with the perturbation amplitude n2 slowly varying in

time and space on scales  and (2k0)–1, respectively.
In the linear approximation, which holds for |n2| <

N0e, and disregarding the thermal electron motion, the
equation for n2 is (see, e.g., [1])

(1.4)

k0

ω0

c
------ ε ω0( ), ε ω( ) 1

ωp
2

ω2
------,–= =

ωp 4πe2N0e/m=

k0
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ω0
1–

E+ r t,( ) E⊥ ρ( ) ξ2

2L2
---------– 

  ,exp=

E– r t,( ) E⊥ ρ( ) η2

2L2
---------– 

  ,exp=

ξ z Vgt, η– z Vgt,+= =

x2 y2+

δn n2 2ik0z( )exp= n2* 2ik0z–( ),exp+

ω0
1–

∂2

∂t2
------- ωp

2+ 
  n2

N0e

-------- e2

m2ω0
2

------------- k0
2 ik0

∂
∂z
-----–

1
4
---∆⊥– 

 –=

× E+ E–*⋅ i
ω0
------+ E+

∂E–*

∂t
---------- E–*

∂E+

∂t
---------⋅–⋅ 

 
 
 
 

,
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where

We assume the pulses to be changed only slightly by the
collision and ignore this change when calculating δn
(the validity condition is given below). Substituting
expressions (1.2) into (1.4) yields the solution of Eq.
(1.4) that satisfies the condition for the absence of elec-
tron-density perturbations before the pulse arrival to the
interaction region:

(1.5)

Here, the time dependence of n2 is described by the
function

(1.6)

where τ = L/Vg is the pulse duration.

The time evolution of the plasma-electron-density
perturbations is described by function (1.6). This func-
tion includes both the plasma oscillations that remain
after the pulse divergence and the induced density per-
turbations that persist only during the pulse collision.

∆⊥
1
ρ
--- ∂

∂ρ
------ ρ ∂

∂ρ
------ 

  .=

n2

N0e

--------
e2

m2ω0
2ωp

2
------------------- z2

L2
-----– 

 exp–=

× k0
2 2ik0

z

L2
-----

ωp
2

ω0
2

------ 1
4
---∆⊥–+

 
 
 

E⊥ ρ( ) 2Φ t
τ
-- ωpτ, 

  .

Φ x a,( ) a a x y–( )[ ] y2–( )expsin y,d

∞–

x

∫=

0 z

(‡)

(b)

(c)

Fig. 1. A diagram for the collision of two laser pulses. (a)
The pulses before the collision move toward each other; the
laser-pulse electric-field envelope and the high-frequency
filling are indicated by a thin solid line and dots, respec-
tively. (b) The time of complete pulse overlapping; the
small-scale (2k0) electron-density perturbations are repre-
sented by a heavy solid curve. (c) The pulses after the colli-
sion; the small-scale plasma oscillations (heavy solid curve)
remain in the collision region.
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Bearing in mind the discussion of the energy conser-
vation law for the laser-pulse collision, we write the
equation for the energy density wp of small-scale
plasma perturbations as

(1.7)

Using Eq. (1.5), we derive from (1.7)

(1.8)

To calculate the total energy of the plasma oscilla-
tions, we assume the pulses to have a Gaussian distribu-
tion in the transverse direction:

(1.9)

where E0 is the maximum electric-field amplitude and
R is the characteristic pulse width. Integrating expres-
sion (1.8) over volume then yields the total energy

(1.10)

where WL is the laser-pulse energy,

(1.11)

As follows from (1.10), our assumption that the elec-
tron-density perturbations have a weak effect on the
laser pulses holds if VE/c ! 1, where VE = eE0/mω0 is
the electron oscillation velocity in the laser field.

To analyze expressions (1.5) and (1.10), we use the
standard function in plasma theory (see, e.g., [12]):

Using this function, we represent (1.6) as

(1.12)
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where

(1.13)

Since x = t/τ and a = ωpτ in expressions (1.5) and (1.10),
the real parts of β± characterize the ratio of the pulse
duration to the plasma-oscillation period, while the
imaginary parts of β± give the time, in units of the pulse
duration. Values of |β''| ≤ 1 correspond to the interaction
(collision) time.

When analyzing the evolution of the perturbations
in electron density (1.5) and energy (1.10), it can be
broken down into several stages. The function J+(β)
becomes simplified after the collision, when the pulses
have moved far apart (t @ τ and t @ ωpτ2/2) [12].
According to (1.12), we have

(1.14)

As we see from (1.14), the plasma oscillations excited

by pulses with duration τ = /ωp have the largest
amplitude.

For long laser pulses (ωpτ > ), both during (t < τ)
and after (t > τ) their interaction on condition that t <
ωpτ2/2, the evolution of the density perturbations is
described by the function

(1.15)

As follows from (1.15), the first term, which
describes quasi-static density perturbations, becomes
exponentially small after the pulse collision (t > τ); the
second term, which describes the excitation of plasma
oscillations, is exponentially small for all times.

Let us now turn to expression (1.10) for the total
energy of small-scale plasma perturbations. After the
collision (t/τ > 1), we find using (1.14) that

(1.16)

In the general case, time variations in the total
energy of plasma perturbations for various ωpτ are

shown in Fig. 2. For long pulses (ωpτ > ), the energy
is seen to reach a maximum during the collision and to
decrease after this process. This is because, at the initial
collision stage, the laser pulses spend part of their

β± i 2x–=
a

2
-------± iβ''– β'.±=

Φ t
τ
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=  πωpτ
ωp

2τ2
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πωp
2τ2

2
---------------

k0
2VE

2

4ω0
2

-----------WL

ωp
2τ2

2
-----------– 

  .exp=

2

AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001



COLLISION OF TWO SHORT LASER PULSES IN PLASMA 513
energy on the excitation of quasi-static electron-density
perturbations. Subsequently, since the phase difference
between the driving force and the oscillations changes,
this energy almost completely returns to the laser
pulses at the final collision stage. By contrast, when

short pulses (ωpτ ≤ ) collide, part of their energy
remains in the interaction region as small-scale plasma
oscillations.

2. CHANGES IN THE SHAPE AND ENERGY
OF LASER PULSES AS THEY COLLIDE

In our approach, the change in the shape and energy
of the laser pulses caused by their collision is small.
However, we consider this issue in more detail, bearing
in mind an additional possibility for detecting the
pulse-excited plasma perturbations. Substituting (1.1)
and (1.3) into the equations for the electric field yields
expressions for the E+ and E– amplitudes:

(2.1)

(2.2)

Here, we included small terms with the second deriva-
tives of the slowly varying amplitudes, because they
determine the change in pulse energy [13]. Small terms
with the time derivatives of the density-perturbation
amplitude were also included in the right-hand parts of
Eqs. (2.1) and (2.2). They describe the energy transfer
from laser emission to plasma oscillations.

To derive equations for the laser-pulse energy from
Eqs. (2.1) and (2.2), we must define the time-averaged
energy density and energy flux density S to within
terms of the first order of smallness in the slow spatial
and time derivatives. Let us first consider the definitions
of these quantities:

(2.3)

where V is the electron velocity and the angular brack-
ets denote averaging over the rapidly varying time
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dependence. Substituting E, B, and V, which are
expressed in terms of the complex amplitude of electric
field %%%% slowly varying on scales ω–1 and k–1,

into (2.3), we obtain, to within terms of the first order
of smallness in the slow derivatives,

(2.4)

(2.5)

(2.6)

where ∇ ⊥  is the transverse part of the nabla operator.

Multiplying Eqs. (2.1) and (2.2) by  and ,
respectively, and using definitions (2.4)–(2.6), we
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Fig. 2. Dimensionless plasma-perturbation energy Fe =

(Wp/WL)( ) versus time (x = t/τ). Curves 1–4

correspond to ωpτ = 0.5, , 3, and 5.
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derive equations for the change in laser-pulse energy
density w+ and w–:

(2.7)

(2.8)

Adding up expressions (2.7) and (2.8) yields an
equation for the change in the total energy of the two
pulses:

(2.9)
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Fig. 3. Dimensionless pulse energy density FW =

32πm2  after the collision versus
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from left to right. Curves 1–4 correspond to the same values
of ωpτ as in Fig. 2.
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The right-hand side of Eq. (2.9) describes the
change in the energy of the laser pulses because of their
interaction, which gives rise to plasma perturbations.
Clearly, the total energy of the pulses and plasma oscil-
lations must be conserved in this case. This directly fol-
lows from Eqs. (2.9) and (1.7), whose addition yields

(2.10)

where the interaction energy density is

(2.11)

To determine the change in the energy and shape of
the pulses after their collision, we turn to Eqs. (2.7) and
(2.8). Let us consider the times t that, on the one hand,
are large compared to the pulse duration (t @ τ) but, on
the other hand, are small compared to k0R2/2c. In this
case, the change in the shape of the pulses because of
their diffraction may be disregarded.

Bearing in mind that the collision causes the initial
energy density distributions in the pulses, w0± ,
to change by small values δw±(ρ, z, t), we find from
(2.7) that

(2.12)

A similar equation for δw–  follows from (2.8).
Using Eq. (1.4) to determine n2 in (2.12), after some

mathematical operations, we obtain for the change in
pulse energy after the collision (t @ τ)

(2.13)

Figure 3 shows a plot of pulse energy density after
the collision against accompanying variable ξ. The pat-
tern of energy-density variations is seen to depend sig-

nificantly on pulse duration. Short pulses (ωpτ ≤ )
lose their energy over the entire pulse length, more
effectively in its second half (curves 1 and 2), through
the excitation of plasma oscillations, which remain in
the collision region. For longer pulses (or for a denser
plasma), quasi-static small-scale electron-density per-
turbations appear during the collision and disappear
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after its completion. During the first half of the colli-
sion, the pulses lose their energy, while, during its sec-
ond half, the energy from the density perturbations
returns to the pulses (curves 3 and 4). As a result, the
total energy of the pulses is virtually constant, while
their shape changes.

To determine the change in the total energy of the
pulse through its collision, let us integrate expression
(2.13) over volume by using formula (1.9) for E⊥ (ρ). As
might be expected, we then obtain an energy that is half
the plasma-oscillation energy (1.16). The second half
of the energy is transferred to the plasma oscillations by
the oppositely moving pulse.

Note that, while propagating in plasma, the laser
pulses also lose their energy and change their shape
through other linear and nonlinear processes (Coulomb
collisions, dispersion, stimulated Raman scattering,
etc.). As the pulses collide, an additional mechanism
for the change in their shape and energy arises.

3. THE SCATTERING OF A SOUNDING 
ELECTROMAGNETIC WAVE BY SMALL-SCALE 

LOCALIZED PLASMA PERTURBATIONS

In this section, we investigate the reflection (scatter-
ing) of a sounding electromagnetic wave from the elec-
tron-density perturbations excited when two counter-
propagating laser pulses collide in plasma. Let a plane
electromagnetic wave with frequency ω1 (ω1 @ ωp) and
amplitude E1, whose electric field is

(3.1)

propagate at angle α to the z axis along the wave vector

where

ex and ez are the unit vectors of a Cartesian coordinate
system. The interaction of field (3.1) with the density
perturbations results in the excitation of a scattered
wave, whose electric field ES(r, t) satisfies the standard
equation in the scattering theory [14]:

(3.2)

By performing a Fourier transformation in time and
coordinates in (3.2) and, subsequently, an inverse Fourier
transformation in coordinates, we derive the following
expression for ES(ω, r) in the wave zone (r @ R, L)
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far from the collision region using formulas (1.3) and
(1.5):

(3.3)

where

(3.4)

Here,

is the unit vector along the radius vector r;

is the projection of vector er onto the xy plane; θ and φ
are the azimuthal and polar angles, respectively; and

To avoid singularities, formula (3.4) includes the damp-
ing of small-scale plasma oscillations with a decrement
γL ! ωp.

One of the main characteristics of scattered emis-
sion is the spectral energy flux density vector p(ω, r).
This vector can be expressed in terms of Fourier com-
ponents of the electric and magnetic fields for positive
frequencies ω > 0 as follows [15]:

(3.5)

Vector (3.5) gives the energy emitted into unit solid
angle dO = sinθdθdφ in frequency interval dω:
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When ω1τ @ 1, k1R @ 1, and k1L @ 1, taking into
account relations (3.3)–(3.5), the scattered energy (3.6)
can be written in the form

(3.7)

where e1 is the polarization vector of the incident wave,
and the functions g(ω) and F(θ, φ) describe the fre-
quency and angular dependences, respectively:

(3.8)

(3.9)

Note that WS(ω) is the spectral density of the energy
scattered during the entire lifetime of the density per-
turbations. If the damping of plasma oscillations is
ignored, they live infinitely long and WS(ω) at ω = ω1 ±
ωp has a singularity. Taking into account the dissipa-
tion, the scattering time is limited by the lifetime of the

dWS ω( )
dωdO

-------------------- c ε ω1( ) e1 er×[ ] 2
E1

2R2=

× τ2 k0R( )2 k0L( )2 VE

4c
------ 

 
4

g ω( )F2 θ φ,( ),

g ω( )
ωp

4

ω ω1–( )2 ωp
2–{ } 2

4γL
2 ωp

2+
------------------------------------------------------------------=

×
ω ω1–( )2τ2

2
----------------------------–

 
 
 

,exp

F θ φ,( )
k1

2R2

4
-----------–





exp=

× θsin
2 αsin

2
2 θ α φcossinsin–+( )

–
k1

2L2

4
---------- θ αcos–cos

2k0

k1
--------+ 

  2





.

1

2
3

–1–2 0 1 2
0

1

2

3

4

∆

5

g

Fig. 4. Spectral density of the scattered radiation energy
g(ω) (3.8) versus dimensionless frequency ∆ = (ω – ω1)/ωp
for γL/ωp = 0.15 and various ωpτ. Curves 1–3 correspond to

ωpτ = , 3, and 5, respectively.2
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plasma oscillations, and the spectral density character-
ized by function (3.8) is finite at ω = ω1 ± ωp.

The scattered spectrum [function (3.8)] is shown in
Fig. 4 at various ωpτ. For long pulses (or for a dense
plasma), when ωpτ @ 1, the radiation at frequency ω ≈ ω1
dominates the spectrum. When short pulses (ωpτ ≤ 1)
collide, the scattered spectrum exhibits two narrow
lines with frequencies ω = ω1 ± ωp.

The angular distribution of the scattered radiation is
described by function (3.9). The direction for which the
scattered energy is at a maximum is characterized by
the angles φ = 0 and θ = π – α, which corresponds to the
satisfaction of the Bragg condition:

(3.10)

The scattered radiation has a narrow directivity dia-
gram, and if

,

the function F(θ, φ) takes a Gaussian shape with the
angular widths

Integrating expression (3.7) over frequency yields
the total energy scattered into an element of solid angle
dO,

(3.11)

where

is generally complex in form. It is significantly simpli-
fied in the limit of short (ωpτ ! 1) and long (ωpτ @ 1)

pulses. In the former case, G ≈ /2γL and is deter-
mined by the damping of plasma oscillations γL. In the

latter case, G ≈ /τ and depends on the pulse colli-
sion duration.

So far, we have considered the spectral properties of
the radiation scattered during the entire lifetime of the
electron-density perturbations. Let us now analyze the
spatiotemporal structure of the electric field for the
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scattered radiation in a far zone. Using an inverse Fou-
rier transformation in time in formula (3.3), we obtain

(3.12)

Here, the function ΦS is a generalization of formula
(1.6) to damped plasma oscillations, and it can be rep-
resented in a form similar to (1.12):

(3.13)

where

and V1 =  is the group velocity of the scattered
wave in plasma. Using an asymptotic expansion for
J±(γ±), we find that the electric field (3.12) for short
pulses (ωpτ < 1) takes the form

(3.14)

Expression (3.14) describes two damped (with time)
electromagnetic waves with frequencies (ω1 ± ωp),
which result from the scattering of the sounding radia-
tion by excited plasma oscillations in the laser-pulse
collision region. By contrast, the electric field of the
scattered wave when longer pulses (ωpτ > 1) collide has
the shape of a pulse with duration τ and, according to
(3.12) and (3.13), is given by
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(3.15)

In this case, the sounding electromagnetic wave is
reflected from the quasi-static electron-density pertur-
bations only during the pulse collision time, and the
radiation frequency is virtually constant.

The concept of effective cross section, which is defined
as the ratio of the average radiation intensity to the energy

flux density of the incident wave , is
commonly used to consider scattering by localized
structures. Using formula (3.12) to determine the radi-
ation intensity, we obtain the differential cross section

(3.16)

where functions (3.13) and (3.9) introduced above
describe the time and angular dependences. For rela-
tively long laser pulses (ωpτ > 1), the efficiency of the
reflection from a Bragg mirror can be characterized by
the total time-averaged cross section, which can be cal-
culated from formula (3.16) by integration over solid
angle and time and by dividing the result by the refer-
ence-pulse duration τ:

(3.17)

where the coefficient β is equal to unity for a sounding
wave polarized along the y axis (s polarization) and β =
cos2(2α) if the polarization vector lies in the xz plane
(p polarization). The total scattered energy WS can be
easily determined either from expression (3.17) by
multiplying it by energy flux density in the sounding
wave and by the scattering time τ or from formula
(3.11) by integration over solid angle.
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CONCLUSION

Below, we make several remarks concerning the
possible applications of the effects considered above.

Let us estimate the reflectivity of a Bragg mirror for
relatively long laser pulses (ωpτ > 1), when no shift of
the reflected radiation frequency occurs. Let two laser
pulses with an energy of 1 J, duration τ = 400 fs (L =
120 µm), frequency ω0 = 2.4 × 1015 s–1 (λ0 = 0.8 µm), and
width R = 100 µm collide in plasma with electron den-
sity N0e = 1.3 × 1019 cm–3. The corresponding intensities
are 4.5 × 1015 W/cm2, and the amplitude of the small-
scale electron-density perturbations is (n2/N0e) ≈ 0.3.
For these plasma and pulse parameters, ωpτ ≈ 80 @ 1,
and quasi-static electron-density perturbations are
excited in the collision region. If the sounding wave
with s polarization is the second harmonic of the refer-
ence waves (k1 = 2k0), and if the angle of incidence α is
60°, then the total scattered energy at the angle θ = π –
α = 120° is

where VL = π3/2R2L is the volume occupied by the refer-
ence pulse; the total scattering cross section is σ =
0.44πR2. It can be said that 25% of the sounding-wave
energy contained in the volume where the scattering
occurs is reflected from the Bragg mirror. The fre-
quency of the scattered wave can be tuned by changing
the angle of incidence of the sounding wave. This opens
up possibilities for using a short-lived Bragg mirror to
“cut out” short pulses from longer laser pulses with dif-
ferent frequencies.

Note that, since we assume the electron-density pertur-
bations to be linear [Eq. (1.4)], our analysis is restricted to
reference-wave intensities of 1015–1016 W/cm2 at λ0 ≈
1 µm. The intensities of currently available lasers can
be much higher when the corresponding electron-den-
sity perturbations become nonlinear. By measuring the
dependence of spectral and angular characteristics of
the scattered sounding wave on the intensity of refer-
ence laser pulses, we can investigate the transition from
linear to nonlinear excited plasma oscillations and their
subsequent evolution.

In particular, the small-scale localized coherent
plasma oscillations excited by short laser pulses (ωpτ ≤ 1)
in the collision region can be an appealing object for
studying the destruction of coherence and the growth of
strong Langmuir turbulence in laser experiments.

As was already pointed out in the Introduction, the
impact excitation of oscillations and waves when short
laser pulses with equal frequencies collide is possible

WS 0.25
E1

2

8π
------V L,=
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not only in plasma but also in other material media. Our
analysis leads us to conclude that the impact excitation
mechanism is most efficient for oscillations and waves
whose period is close to the pulse collision duration.
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Abstract—The physical and mathematical aspects of the theory of a detonation wave containing heavy inert
particles are considered. The detonation wave intensity and structure are determined by the relaxation of veloc-
ities of both the reactive explosive and the inert admixture. The generalized Jouguet condition is formulated for
the velocity of a self-sustained detonation wave. The results of analytical treatment and the model numerical
solutions of the problem of the detonation wave velocity selection and the wave structure determination are pre-
sented as a function of the ratio of the characteristic times of the heat evolution and the two-component flow
velocity relaxation. A limiting case of the fast particle drag is represented by the shock wave structure deter-
mined by relaxation of the two-component flow velocity. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to the classical detonation theory of
Chapman–Jouguet and Zeldovich–Neiman–Dering
(ZND), the parameters of a self-sustained detonation
regime are determined on the pressure–specific volume
(p, v) plane by the coordinates of a tangency point of
the Michelson–Rayleigh line (MRL) and a detonation
adiabat of the final reaction products (the Jouguet con-
dition) [1, 2]. This regime is frequently referred to as
“normal detonation,” which is explained by the fact that
a usual adiabat of the final reaction products is lying on
the (p, v) plane above all intermediate adiabats corre-
sponding to incomplete heat evolution. The above tan-
gency condition also refers to such a case. If the posi-
tion of a detonation adiabat in the course of the heat
evolution changes in a nonmonotonic manner (which
may be caused, for example, by a nonmonotonic heat
evolution), the tangency condition still remains valid
but refers (instead of the equilibrium adiabat) to an
intermediate detonation adiabat lying on the (p, v)
plane above all other adiabats (Fig. 1) [2–4]. In this
case, unlike the normal detonation regime, the terminal
point of the wave relaxation zone does not coincide with
the MRL–adiabat tangency point, but is situated on the
equilibrium detonation adiabat at a lower pressure and
smaller compression (Fig. 1, point 4). Detonation with
such a reduced compression is naturally referred to as
undercompressed detonation [4]. For the same final
heat evolution (corresponding to a transition to the ther-
modynamically equilibrium state), the velocity of an
undercompressed detonation is higher than that of the
normal detonation.

The case of a self-sustained undercompressed deto-
nation, which was originally studied in connection to
the possible nonmonotonic heat evolution during
1063-7761/01/9303- $21.00 © 20519
chemical reactions [3], can be also controlled by some
other factors of nonmonotonic heat evolution, for
example, by sufficiently slow (compared to exothermal
chemical reactions) endothermal relaxation processes
such as heating and fusion of inert additives [5–9].

Another possible reason for an undercompressed
detonation development is a slow relaxation of the
velocity of heavy particles of the inert admixtures in
blend systems (for brevity, this case will be hereinafter
referred to as detonation with relaxing velocities) [7–10].
The self-sustained detonation velocity in such systems
depends on the ratios of the characteristic times of
relaxation of the temperature (τT) and of the impurity
particle velocity (τU) to the characteristic time of the
heat evolution (τq). For τT/τq ! 1 and τU/τq ! 1, the sys-
tem features a normal detonation at a velocity dJ deter-
mined by the Jouguet condition. The combination of
inequalities τT/τq > 1, τU/τq ! 1 correspond to an under-
compressed detonation controlled by nonmonotonic
heat evolution. A more complicated variant of the
undercompressed detonation is represented by the con-
dition τU/τq > 1. In this case, the component velocities
in a relaxation zone of the detonation wave (more
exactly, in that part of the zone where maximum heat
evolution takes place) are not equal and a change in the
state of the relaxing substance in the detonation wave is
no longer described by the MRL. As a result, the above
simple and illustrative interpretation of the detonation
velocity selection using the MRL becomes inapplicable.

Approximate calculations of the relationship
between the particle velocity relaxation and the
observed detonation velocity for the experiments [7]
with an explosive blend containing a variable amount
of a tungsten powder were performed in [8, 11].
Al’tshuler et al. [11] estimated the velocity of impurity
001 MAIK “Nauka/Interperiodica”
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(tungsten) particles for each experimental variant [7] at
a certain conditional time instant corresponding to a
virtually complete heat evolution. Davydova et al. [10]
performed calculations of the detonation wave velocity
depending on the τU/τq ratio using the principle of min-
imum detonation velocity.

For consistently solving the problem of determina-
tion of the parameters of an undercompressed detona-
tion with relaxing velocities, it is necessary (i) to estab-
lish the physical and gasdynamic factors determining
the selection of a certain velocity of the self-sustained
detonation from a set of possible velocities and (ii) to
find a mathematical expression for this selection, that
is, to formulate an analog of the Jouguet condition in
the case under consideration.

This study aimed at answering the above questions
and solving the problems by carrying out a mathemati-
cal analysis of the relationship between the velocity and
structure of the detonation wave and the τU/τq ratio. On
this mathematical basis, we developed a method for the
numerical calculation of the velocity and structure of
the detonation wave and applied this formalism to the
model equations of state and heat evolution kinetics.
Our first purpose is to establish the qualitative laws
independent (or weakly dependent) on special features
of the equation of state of the explosive and the detona-
tion products. For this formulation of the problem, we
may use a simple model equation of state for a con-
densed explosive and the corresponding products, in
particular, a common equation of state of the ideal gas
with a large adiabatic exponent γ and a large initial den-
sity (~1 g/cm3). The problem parameters, such as the
mass concentration of impurity particles and the ratio
K ≡ τU/τq, can be varied in a broad range without
restrictions corresponding to certain experimental con-
ditions.

In Section 2, we will consider the features of the
problem of determining the structure of a self-sustained
detonation wave and formulate a generalized principle
of minimum detonation velocity, known in detonation
theory, for the velocity of a self-sustained detonation
with relaxing velocities. Sections 3 and 4 are devoted to
mathematical formulation of the problem and qualita-
tive analysis of the solution. Sections 5 and 6 present
the results of an analytical treatment and the model
numerical calculations of the velocity and structure of
a detonation wave as functions of the parameter K. In
Section 7, we will consider the structure of a shock
wave in the initial explosive (or in the chemically inert
substance) containing an admixture of heavy particles.
This section supplements Section 5 by providing an
illustrative interpretation of the structure of a detona-
tion wave with small K. In addition, Section 7 may
present independent interest from the standpoint of the
shock wave structure. A part of mathematical transfor-
mations and a study of the relationship between the
boundary of real solutions of a differential equation for
JOURNAL OF EXPERIMENTAL 
the impurity particle velocity relaxation and the saddle-
type singular point are presented in the Appendices.

2. QUALITATIVE FEATURES 
OF A SELF-SUSTAINED DETONATION WAVE 

AND THE PRINCIPLE OF MINIMUM 
DETONATION VELOCITY

In this section we will qualitatively analyze the
properties and structure of a detonation wave based on
the well-known laws of the theory of shock waves and
detonation. Upon a sufficiently powerful initiation, the
detonation wave occurs at the first instant in an over-
compressed state, while a flow behind the wave is sub-
sonic.1 The front edge of a wave of rarefaction linking
the shock wave to the flow far behind (where the den-
sity of substance under the conditions of particular
problems is several times or several orders of magni-
tude lower than that in the detonation wave) coincides
with the shock wave front of the detonation complex
and leads gradually to a decrease in its intensity. In
order to exclude this mechanism leading to a decrease
in the wave velocity d, it is necessary to provide that the
stationary relaxation wave zone would propagate in the
substance at a velocity not smaller than the local equi-
librium sound velocity c at the rear boundary of the
zone:

(1)

where U is the velocity of substance at the rear bound-
ary of the zone in the laboratory frame.

A phase trajectory describing the structure of the
stationary relaxation wave zone in the system with
relaxing velocities does not coincide with the MRL, but
the end point of the trajectory (corresponding to the
boundary of the relaxation zone) occurs at the intersec-
tion of the detonation adiabat with the MRL. For d > dJ,
there are two such intersections for each MRL (see Fig. 1).
However, a physical problem must possess a single
solution. A principal qualitative difference between
points 3, 3' and 4, 4' (Fig. 1) is that the latter pair obeys
inequality (1), while the former pair satisfies the reverse
condition. In other words, only points 4, 4' are super-
sonic, and, hence, the relaxation zone of a nondecaying
(self-sustained) wave must terminate at point 4 [2, 4].
Since condition (1) is quantitatively uncertain, this rela-
tionship cannot be used to determine the velocity of the
self-sustained detonation. For this purpose, an addi-
tional physical relationship and the corresponding
mathematical expression are necessary. In the case of a
normal detonation, this is provided by the Jouguet con-
dition (detonation adiabat–MRL tangency).

For determining an analogous condition, let us turn
to a mental experiment with an overcompressed deto-
nation wave maintained by a piston. Starting with a

1 The leading front of the detonation wave, where the heat evolu-
tion is initially absent or relatively small, represents a shock wave
followed (as is well known) by a subsonic flow.

d U c,≥–
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strong overcompression, we will sufficiently slowly (so
as not to violate stationary or quasi-stationary character
of the flow) decrease the piston velocity. As a result, the
degree of overcompression decreases and the relaxation
zone boundary (Fig. 1, point 3') moves down along the
detonation adiabat. In the course of this process, how-
ever, the detonation velocity cannot become lower than
the velocity d* of the self-sustained detonation wave
(which can exist without any piston). Obviously, the
effect of the piston on the wave velocity would cease at
a piston velocity  corresponding to the detonation
wave velocity decreased to d = d*. From the standpoint
of gasdynamics, termination of the effect of the piston
on the wave velocity implies that a sound point appears
in the relaxation zone, through which perturbations
originating from the piston cannot pass to the shock
wave front. At a piston velocity , the stationary
relaxation zone terminates at the sound point and the
subsequent transition to thermodynamic equilibrium
(including accomplished velocity relaxation) proceeds
via a nonstationary gasdynamic process relating the
sound point to the boundary condition at the piston
(preset velocity). When the piston velocity decreases
further, the detonation wave velocity and the structure
of the stationary relaxation zone between the shock
wave front and sound point remain unchanged, but the
length of this zone grows as the boundary shifts away
from the wave front behind the sound point (Fig. 2).
Finally, when the piston velocity decreases down to the
value corresponding to the equilibrium stationary flow
at point 4 (Fig. 1), the boundary of the stationary relax-
ation zone coincides with the equilibrium point 4. Thus,
the relaxation in the stationary zone is completed. The
region between sound point and the piston (with the
length uniformly increasing with time) represents con-
stant equilibrium flow with the same parameters (veloc-
ity, pressure, density) as in point 4 [9]. Further decrease
in the piston velocity (even stopping or reverse motion)
affects neither the detonation wave velocity nor the
relaxation zone (this behavior is similar to the case of a
normal detonation initiated at a tube edge, whereby the
detonation velocity far from the edge does not depend
on whether the tube is open or closed [2, 4]).

For a given detonation velocity (e.g., d = d*), the
problem of determining the structure of the stationary
wave zone represents, from the mathematical stand-
point, a Cauchy problem for a system of equations with
the initial conditions on the wave front. A solution to
this problem is represented by an integral curve inde-
pendent of the piston velocity (Up < ). This velocity
only determines whether the curve reaches the equilib-
rium point 4 (Fig. 1) or the stationary zone terminates
before this point. Anyhow, the curve does not lead to
point 3 (in contrast to the integral curves corresponding
to d > d*). Therefore, the relaxation wave structure
considered as a function of the wave velocity d exhibits
a qualitative change at the point d = d*. Indeed, the

U p*

U p*

U p*
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
boundary of the relaxation zone terminates on the upper
branch of the detonation adiabat for d > d* and on the
lower branch (at the lower intersection of the detona-
tion adiabat and MRL) for d = d*.

As is known from the theory of differential equa-
tions, this qualitative change takes place when the inte-
gral curve becomes a separatrix of the saddle-type sin-
gular point. Thus, the problem of determining the
velocity of a self-sustained detonation can be reduced
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Fig. 1. Detonation adiabats: (I) equilibrium detonation adi-
abat; (II) detonation adiabat of maximum heat evolution;
(III, IV) Michelson–Rayleigh lines (MRLs); 0 is the point
corresponding to the state of substance in front of the wave;
(2) tangency point; (3, 3' and 4, 4') upper and lower intersec-
tion points between MRL and the equilibrium detonation
adiabat.
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Fig. 2. A qualitative relationship between the parameters of
a nonstationary flow between boundaries of the stationary
zone (points 2a, 2b, and 2c in the generalized Michelson–
Rayleigh line II) and the corresponding boundaries corre-
sponding to termination of the relaxation processes (points
r) for three values of the piston velocity U = Ua > Ub > Uc
(Ua = U*, Uc = Umin). The piston pressures p are the same
as at points r; I is the equilibrium detonation adiabat; 0 is
the point corresponding to the state of substance in front of
the wave.
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522 KUZNETSOV, DAVYDOVA
to the problem of finding a wave velocity d = d* such that
the wave structure is described by a separatrix converting
the initial subsonic flow into a supersonic one in a station-
ary relaxation zone. This concept, established in the clas-
sical detonation theory for single-component systems
(see, e.g. [4]), is equally applicable to the case of detonation
with relaxing velocities. The quantity d* is related to the
undercompressed detonation velocity by the relationship

(2)

Besides this method of determining the velocity of a
self-sustained detonation, it is interesting from both the
theoretical and the practical standpoint to approach the
problem in a different way. An alternative is suggested
by the condition of existence of a stationary wave struc-
ture in which the explosive passes from the initial non-
equilibrium state to the state of detonation products in
complete thermodynamic equilibrium, including equal
velocities of the directed motion of all components. For
a fixed finite heat of explosion q, there exists a certain
minimum value of the wave velocity dmin1 (exceeding
the sound velocity in the initial explosive) below which
no real solutions exist for the stationary wave structure.
This is well known from the classical ZND theory and
can be proved for any relationship between the charac-
teristic times τT, τq, and τU.

According to the definition of dmin1, detonation
waves with a stable one-dimensional structure satisfy
the condition

The fact that the velocities d* and dmin1 possess certain
minimum properties (see condition (2)) suggests that,
in the case of a unique self-sustained detonation
regime, these velocities are equal (so that we only deal
with different notations of the velocity of the same det-
onation wave). This suggestion is known to be valid
both for the normal Jouguet detonation and for the det-
onation with nonmonotonic heat evolution. Validity of
this suggestion in the general case of undercompressed
detonation is confirmed in Appendix 1, where it is
proved that for d = dmin1 the integral curve describing a
stationary structure of the wave with relaxation of the
component velocity is a separatrix passing through a
saddle-type singular point.

The like properties of the detonation regimes and
the corresponding solutions of the problem of the sta-
tionary wave structure description for d = d* and d =
dmin1 indicate that, under the condition of uniqueness of
the dmin1 value,2

(3)

2 A nonunique detonation regime in an infinite medium is possible,
but this poses some additional conditions on the relaxation
parameters (concerning the kinetics of the nonmonotonic heat
evolution [5] or a special type of dependence of the coefficient of
friction between the system components during the velocity
relaxation on the detonation wave velocity).

d* d .<

d* dmin1≥ .

d* dmin1= .
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In the space of complex variables, a solution to the
problem of the stationary wave structure does not van-
ish at d < dmin1, but becomes a complex quantity, not
satisfying a physical formulation of the problem.
Accordingly, the value of dmin1 can be found based on
the condition of tangency between the integral curve
(describing a stationary detonation wave structure) and
the boundary of the domain of real solutions. This tan-
gency condition will be used below (Section 4) in for-
mulating the necessary generalized Jouguet condition.

3. MATHEMATICAL FORMULATION
OF THE PROBLEM

The detonation wave structure, calculated with an
allowance for both the heat evolution and the relaxation
of velocities of the impurity particles, is described by a
system of five equations of a stationary two-component
flow (including two equations reflecting conservation
of the mass of components, the equations of conserva-
tion of momentum and energy, and a differential equa-
tion for the velocity relaxation of impurity particles)
with five unknowns (density and velocity of each com-
ponent and the pressure).

To write these equations, we introduce the following
notation: d, the detonation wave velocity in the labora-
tory frame of reference; x and y, velocities of the gas
and impurity particles behind the shock wave front of
the detonation complex in the frame of the front; α and
β, mass concentrations of the gas and impurity in the
initial blend (β = 1 – α); Rex and rp, densities of the
explosive component and impurity in the initial state;
R0 and r0, densities (mass to volume ratios) of the gas
and impurity in the initial mixture) defined as

R and r, densities of the gas and impurity behind the
shock wave front; v 0, specific volume of the initial
blend related to the densities of individual components
as

C1 and C2, gas and impurity fluxes; p and v, pressure
and specific volume of the blend behind the shock wave
front; p0, pressure in front of the shock wave; H1 and
H2, specific enthalpies (without latent heat of explo-
sion) of the gas and impurity behind the shock wave
front; H1, 0 and H2, 0, specific enthalpies (without latent
heat of explosion) of the gas and impurity before the
shock wave front; q0, specific heat of explosion of the ini-
tial explosive; q, current evolved heat (i.e., the amount
of heat evolved by a given time instant).

R0
α
v 0
------, r0

β
v 0
------;= =

v 0
α

Rex

-------
β
rp

----;+=
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The first four equations, expressing the conservation
laws for a stationary two-component flow, can be writ-
ten as follows:

(4)

(5)

(6)

(7)

where C1, C2, C3, and C4 are constants depending on the
detonation wave velocity and on the initial blend com-
position and state:

(8)

Below, we will consider only strong detonation
waves, for which the terms involving p0, H1, 0, and H2, 0
in Eqs. (4)–(8) can be omitted. In addition, we make the
following simplifying assumptions not essentially
affecting the solution of the problem under consider-
ation. We assume that the impurity particles are incom-
pressible and their thermal relaxation times are either
infinitely large or negligibly small (in these limiting
cases, the kinetics of particle heating can be ignored
and the difference between the cases reduces to a rela-
tively small heat change q0). Using these simplifying
assumptions, substituting an expression for the
enthalpy of the ideal gas

(9)

into Eq. (7), expressing p according to Eq. (6), and
accomplishing simple transformations, we arrive at the
following equation:

(10)

This equation determines, for a given wave velocity d
and the heat evolution law q = q(t), a time-dependent
relationship between the component velocities in the
relaxation zone of the detonation wave. The system is
closed, allowing the component velocities x, y and the
other unknowns (R, r, p) to be determined by a relax-
ation equation for the particle acceleration:

(11)

where F is a force depending on the difference of com-
ponent velocities and m is the particle mass. The form
of Eq. (11) may vary depending on the Reynolds num-
ber Re. For Re ≤ 10, the system features a Stokes
streamlining, whereby the force is a linear function of
the relative velocity: F ∝  x – y; for Re @ 10, the relax-

xR C1,=

yr C2,=

p C1x C2y+ + C3,=

C1 H1 q–( ) C2H2 C1
x2

2
----- C2+

y2

2
----+ + C4,=

C1 R0d , C2 r0d , C3 p0 C1 C2+( )d ,+= = =

C4 C1H1 0,= C2H2 0, C1 C2+( )d2

2
-----.+ +

H1
Sp
R
------, S

γ
γ 1–
-----------,≡=

d2

p
----- d αx βy+( )–[ ] Sx αq– α x2

2
----- βy2

2
----.++=

m
dy
dt
------ F,=
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ation equation becomes more complicated. This behav-
ior can be approximately described by a sum of linear
and nonlinear terms [12, 13]

(12)

where ρ and ν are the density and kinematic viscosity
of the detonation products, respectively, and dp is the
particle diameter. In comparison to the velocity differ-
ence, the density can be considered as a constant and set
equal to the value in the beginning or at the end of the
relaxation zone. The coefficients A and B in Eq. (12)
depend on n: for n = 1/3, A = 24 and B = 5.9. The non-
linear term in Eq. (12) does not qualitatively change the
integral curves of the system of equations under consid-
eration (this was previously established for a particular
case, where numerical calculations were performed for
an analogous system comprising a water-saturated hex-
ogen blend with a tungsten powder [10]). This term
should be taken into account mostly in the quantitative
calculations of the detonation parameters for particular
explosive blends using sufficiently precise equations of
state of the explosive and detonation products. Our
analysis will be restricted to a linear approximation
with respect to the force F.

Equation (11) has to be solved with the initial con-
dition

(13)

which implies that the velocity of particles exhibits no
break at the shock wave.

The heat evolution law, that is, the quantity q as a
function of time, is set in the following form:

(14)

where q0 is the total evolved heat (heat of explosion).
For the convenient comparison of the characteristic
times of the heat evolution and the velocity relaxation,
the relaxation equation obtained upon substituting an
expression for F from (12) into (11) in the linear
approximation (B = 0) can be transformed as follows:

(15)

For the exponential heat evolution (14), we obtain

F
1
8
---πAρνd p x y–( ) 1

B
A
--- Re( )n+ ,≈

1
3
--- n
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---≤ ≤ , Re x y–

d p
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x y–
K

-----------,=
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524 KUZNETSOV, DAVYDOVA
Using this equation and formula (14) to exclude the
dimensionless time T, we arrive at the differential equa-
tion describing the dependence of y on q:

(16)

The initial condition (13) is expressed as

(17)

4. THE GENERAL SCHEME AND A PRACTICAL 
METHOD FOR SOLVING THE PROBLEM 
OF DETERMINING THE PARAMETERS

AND STRUCTURE OF A SELF-SUSTAINED 
DETONATION WAVE

Depending on the parameter d (detonation wave
velocity), the system of Eqs. (10) and (16) describes
both the self-sustained detonation and the overcom-
pressed detonation waves which, similar to the shock
waves, can propagate with a constant amplitude only in
the presence of an appropriate external action (e.g.,
under the action of a piston). Otherwise, the wave
velocity decreases to a level of the self-sustained deto-
nation d*. The calculation of d* according to Eq. (3)
reduces to determining the value dmin1 below which no
real solutions exist for the stationary detonation wave
structure. This value depends on the parameter K of the
relaxation equation (16). Determining the velocity of a
self-sustained undercompressed detonation wave is a
kind of eigenvalue problem: among the manifold of
solutions describing the wave structure, we have to find
one solution corresponding to a preset value of the
parameter K, such that d = dmin1(K), which is described
in the variables (q, x) by a separatrix passing through a
saddle-type singular point (see Section 2). For brevity,
dmin1(K) will be written below as dmin1.

For the real initial conditions, the boundary of the real
solutions (integral curves) for the system of Eqs. (10) and
(16), (in which the detonation velocity d is a parameter)
satisfying the initial condition (17) and leading to a
local thermodynamic equilibrium

(18)

is determined by two surfaces in a three-dimensional
space (y, q, d). One of these surfaces corresponds to the
requirement for the integral curves to be real, while the
other surface reflects the condition of existence of the
points of equilibrium (18) for a given value of the
parameter d. Let us consider these surfaces.

1. The first surface is a boundary of the real values
of the function x = x(y, q, d) determined by Eq. (10).
This function (a solution to Eq. (10) with respect to x)
is considered in Appendix 2. Equating the determinant
of the solution to zero, we obtain an equation for this
boundary:

(19)

dy
dq
------

x y–
K q0 q–( )
-----------------------.=

y d q 0= .=

q q0, y x,= =

Z y q d, ,( ) 0,=
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which is referred to below as the boundary surface. An
explicit expression for the function Z(y, q, d) and the
equation for the boundary surface in the form

(20)

are also presented in Appendix 2, where it is shown that
the domain of real solutions satisfies the condition

(21)

This domain contains the real integral curves of the sys-
tem of Eqs. (10) and (16), which correspond to various
values of the parameters d and K such that

(22)

Consider a three-dimensional space with the Carte-
sian coordinates (y, q, d), where the d axis is vertical.
Then condition (21) implies that the integral curves of
the system (10) and (16), which by definition are lying
in the planes d = const, must not fall below the bound-
ary surface (20). A minimum value of the velocity d
(denoted by dmin1) among all values satisfying condition
(21) corresponds to tangency between the integral
curve and the boundary surface. The problem of deter-
mining dmin1 will be considered below.

2. The second surface is the plane d = dmin2 dividing
the (y, q, d) space (i.e., the manifold of planes d = const)
into two parts. In one of these, each d value corresponds
to at least one point (y, q0) such that equilibrium (18) is
a solution to Eq. (10). In the other part, no such points
exist for any d value. According to the classical detona-
tion theory, the manifold of points (18) corresponds to
an equilibrium detonation adiabat on the (p, v) plane
and there are two points (18) satisfying Eq. (10) for
each value of d > dJ. These points are determined by
two intersections of the detonation adiabat with the
MRL. For d = dJ, the two intersection points merge at a
tangency point. For d < dJ, the MRL has no common
points with the detonation adiabat; that is, Eq. (10) has
no real solutions (18). From this and the above defini-
tion of the plane d = dmin2, we infer that

(23)

The dmin2 value is determined from the equation

(24)

where Det(d, q0) is the determinant of Eq. (10) with
respect to x under condition (18), that is, of the equation

Solving this equation with respect to d yields a well-
known formula of detonation theory:

(25)

d F y q,( )=

d F y q,( ) 0.≥–

f y q,( )d K, 0.=

dmin2 dJ .≡

Det d q0,( ) 0,=

d2

2
----- d x–( )Sx– q0αx
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2
-----–+ 0.=

dmin2 dJ≡ 2 γ2 1–( )αq0= ,
 AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001



DETONATION OF EXPLOSIVES CONTAINING HEAVY INERT PARTICLES 525
where α is the factor taking into account a decrease in
the specific heat of explosion related to the presence of
an inert admixture.

Note that the variable y disappears from Eq. (20) for
β = 0 (see the explicit form of F(y, q) in Appendix 2)
and substituting q = q0 into this equation yields, as
expected, formula (25). Figure 3 gives a qualitative
illustration of the relative arrangement of the surface
(20) and the plane (23), bounding the domain of real
solutions to Eqs. (10) and (16), with the integral curves
containing equilibrium points (18). Figure 4 shows sec-
tions of the boundary surface (20) by the planes d =
const (curves y1–y4 are discussed in Section 5).

Since the detonation velocity cannot be lower than
dmin1 and dJ, a condition of minimum for the detonation
velocity dmin can be written as

(26)

This is the generalized Jouguet condition. The first
quantity compared in (26) depends on (and is a contin-
uous function of) the parameter K in Eq. (16), while the
second quantity dJ is independent of K. In the limit of
K  0, which corresponds to the classical Jouguet
detonation, we have dmin = dJ. Therefore, according to
condition (26), this limit corresponds to dmin1 < dJ (the
other possibility dmin1 = dJ admitted by this condition is
realized only in the limit of β = 0). For K  ∞, which
corresponds to the most pronounced case of undercom-
pressed detonation, we have dmin > dJ and, according to
(26), dmin1 > dJ. The difference between dmin1 and dJ in
the two limits implies that the sense of the inequality
between dmin1 and dJ changes when the parameter K
passes through a certain intermediate finite value K*. In
other words, the normal Jouguet detonation under the
exact condition dmin1 = dJ corresponds to the limit K = 0
and to a certain finite interval

(27)

A physical meaning of this relationship is considered in
Section 4. For finding the detonation velocity dmin cor-
responding to (26) in the entire range of K, we must first
calculate dJ and K* and then determine the dependence
of dmin1 on K for K > K*.

Now let us derive an equation determining dmin1 and
consider a method for the practical calculation of K*
and dmin1. As pointed out above, the integral curve for
d = dmin1 touches the boundary surface (20), that is, has
a single common point with this surface (below, such
curves will be referred to as “intrinsic”). This point is
the point of tangency between two curves lying in the
plane d = dmin1(K). One is the intrinsic integral curve

(28)

dmin max dmin1 dJ,{ } .=

0 K K*.≤ ≤

f y q,( )dmin1
0,=
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while the other is the section of the boundary surface
(20) by the plane d = dmin1:

(29)

The condition of tangency is expressed by the equality
of two derivatives dy/dq at the same point with the coor-
dinates (y, q, dmin1). One of these derivatives is taken
along the integral curve (28), and the other, along the
line (29). The equality is written as

(30)

The three equations (28)–(30) determine three
unknowns, the y and q values at the tangency point and
dmin1, for a given value of the parameter K. Once dmin1
is known, the value of dmin is determined from (26).
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Fig. 3. Mutual arrangement of (I) the boundary surface (20)
and (II) the plane d = dJ = 5.759 km/s (q = 3 + 0.027i kJ/g;
y = 0.2k km/s).
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Fig. 4. Cross sections of the boundary surface (20) by the
planes d = const = 5.759 (1), 6.33 (2), 6.9 (3), 7.413 km/s
(4). Points 1e–4e denote the boundaries of the correspond-
ing stationary zones in the self-sustained detonation wave
structure (point 4 in Fig. 1); q0 = 3.455 kJ/g; β = 0.4; γ = 3;
y1–y4 are the corresponding intrinsic integral curves.
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Formally, the procedure of determining the intrinsic
value of dmin1 and the corresponding intrinsic curve (28)
consists in selecting a function f in the manifold (22)
with a d value satisfying the condition of tangency (30).
When the integral curve (28) is found (or in the course
of the calculation), we determine x as a function of q (or
y) from Eqs. (28) and (10), which represents the deto-
nation wave structure in these variables. Then the wave
structure can be expressed in the (p, v ) variables using
the formulas (see Eqs. (4)–(9))

The above scheme for determining the detonation
wave velocity d(K) and the intrinsic integral curve (28)
gives a general notion of the mathematical structure of
the solution and offers a geometric interpretation. How-
ever, this pathway is rather difficult for practical imple-
mentation. In practice, numerical solution of the prob-
lem for a given K > K* is significantly facilitated if,
instead of searching for the tangency point according to
Eq. (30), one performs the equivalent search for a min-
imum value of the parameter d in Eq. (10), such that a
smallest (to within a preset accuracy) decrease in this
value transfers a solution to Eqs. (10) and (16) into the
complex plane. The point q = q* corresponding to the
appearance (disappearance) of this complex character
for a smallest decrease (increase) in the parameter d
coincides (to within a preset accuracy) with the
required tangency point. By way of such calculations
for a series of K = Ki values, we determine the function
dmin1(Ki). Owing to a monotonic character of this func-
tion and a weak dependence on the argument (when K
grows from K* to ∞, the velocity dmin1 increases by a fac-

tor of 1/  for an ideal gas and approximately to the
same extent for any other equation of state), it is sufficient
to perform these calculations for several (about ten) Ki val-
ues for restoring the continuous function dmin1(K) with a
satisfactory accuracy. In practice, the calculations are con-
veniently carried out by exchanging argument and func-
tion, that is, by setting the values d = di at a constant

step in the entire range (from dJ to ≈dJ/ ) and deter-
mining the corresponding maximum values of K = Ki

from Eq. (16) such that a solution to Eqs. (10) and (16)
becomes complex after even a smallest (to within a pre-
set accuracy) increase in K. The K* value is determined
as a maximum of K for d = dJ. The results of numerical
calculations are presented in Section 6.

5. DEPENDENCE OF THE TANGENCY POINT 
COORDINATES ON THE RATIO (K) 
OF THE CHARACTERISTIC TIMES 

OF RELAXATION OF THE PARTICLE VELOCITY 
AND HEAT EVOLUTION

Since the system of Eqs. (10), (16), and (30) cannot
be solved analytically, dependence of the tangency

p C3= C1x– C2y, v–
xy

C1y C2x+
------------------------.=

α

α
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point coordinates on the parameter K cannot be studied
analytically either. However, a qualitative notion about
this dependence can be obtained based on the analysis
of asymptotics for small and large K values.

a. The case of K  0 corresponds to the normal
(classical) detonation, whereby the velocity relaxation
terminates at q = 0 and the heat evolution stage corre-
sponds to x = y. In this limit, the detonation velocity is
given by formula (25).

In Section 4, where a qualitative analysis of the
velocity of a self-sustained detonation as a function of
the parameter K was performed and the limiting values
were calculated, it was demonstrated that the classical
expression for the detonation velocity is valid not only
in the limit K  0, but within a certain finite interval
(27) of small K values as well. Let us consider the phys-
ical reasons for this behavior of the detonation wave.

At a finite but small value of the parameter K, the
relaxation of the component velocities is comparatively
fast and the main stage of the heat evolution proceeds
under the conditions of approximately equal velocities
of the explosive blend components, which can be
expressed by the relationships

In addition,

where xe (and ye) is the flow velocity for the equal com-
ponent velocities and the quantity ∆ is determined by
the relaxation equation (16) with dy/dq in the left-hand
part replaced by dxe/dq:

(31)

The dependence of xe on q for a given wave velocity
d, determined by Eqs. (10) and the condition x = y, can
be expressed as

Substituting d = dJ (see Eq. (25)), we obtain

(32)

Differentiating (32) with respect to q and substituting
the result into (31), we find

(33)

In considering a dependence of the self-sustained
detonation velocity on the small parameter K, a key
point is that the difference of the component velocities
∆ is negative in the main and final stage of heat evolu-
tion, which is qualitatively evident in (31) and is quan-
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titatively expressed by formula (33) (see also the results
of numerical calculations in Section 6 and in Fig. 6a).
The negative value of ∆ indicates that the impurity par-
ticles move faster than the detonation products in the
laboratory frame of reference. Therefore, the subse-
quent relaxation of velocities is accompanied by redis-
tribution of the kinetic energy from impurity particles
to detonation products, so that the latter obtain an addi-
tional energy besides the evolved heat. Since the signs
of the energy fluxes supplied to the detonation products
due to the heat evolution and the relative retardation of
particles are the same (positive), the transferred energy
reaches a maximum upon completion of the heat evolu-
tion and the velocity relaxation. In the (p, v ) plane, the
corresponding point is situated on the equilibrium det-
onation adiabat. Appendix 3 provides a proof of the fact
that this point is determined by the classical MRL tan-
gency condition. In a finite interval (27) of small K val-
ues, the self-sustained detonation velocity is indepen-
dent of K and determined by formula (25).

b. For K = ∞, the velocity of impurity particles dur-
ing the heat evolution does not change, remaining equal
to the initial value y = d. In this limit (corresponding to
a zero viscosity ν), the dmin1 value is determined,
according to Eq. (20), from an equation d = F(d, q0). A
solution to this equation has the form

(34)

coinciding with the known formula for the velocity of a
detonation wave from an individual explosive [2]. The
absence of the factor α under the root sign in (34) is
explained by the fact that the inert impurity particles,
not changing momentum in the course of the heat evo-
lution, do not affect the detonation wave parameters (to
within the effects related to the thermal relaxation of
particles) and the wave propagates as in the individual
explosive.

For K @ 1, the velocity relaxation takes place after
virtually complete heat evolution. For this reason, we
may leave only maximum terms in the equations deter-
mining the tangency point, expanded in powers of Q* – 1
(Q* ≡ q*/q0), and find an explicit expression for the tan-
gency condition (30). The corresponding calculations,
performed in Appendix 4, lead to the following final
result:

(35)

The dependence of Q* on K in the entire range of this
parameter is considered in Section 6.

dmin1 2 γ2 1–( )q0,=
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6. CALCULATI0N OF THE DETONATION 
VELOCITY AND DETONATION WAVE 

STRUCTURE AS FUNCTIONS
OF THE PARAMETER K

The problem of determining the minimum detona-
tion velocity and the detonation wave structure as func-
tions of K, formulated in Section 3, was solved by
numerical methods using the following initial data:
explosion heat q0 = 3.455 kJ/g; individual explosive
density Rex = 1.45 g/cm3 (approximately equal to the
values for water-saturated hexogen [10, 14]; impurity
particle (tungsten) density rp = 19.35 g/cm3; mass con-
centration of impurity (tungsten) in the initial blend,
0 ≤ β ≤ 0.5. The caloric equation of state of the explo-
sive was assumed not to depend on the degree of con-
version and was modeled in two variants: variant 1, for-
mula (9) (ideal gas); variant 2, equation of state of the
detonation products of water-saturated hexogen [14].
For example, Figs. 4–6 show the results of these mode
calculations: (i) detonation velocity versus K (Fig. 5);
(ii) detonation wave structure in the variables (x, y, q)
for several values of K and the corresponding intrinsic
detonation velocities dK (Figs. 4 and 6). In addition,
Fig. 4 shows the boundary lines (29) corresponding to
these dK values and the equilibrium points (16) (each
equilibrium point corresponds to point 4 in Fig. 1).
These illustrations correspond to the following variant:
equation of state (9) with adiabatic exponent γ = 3 for a
blend with the tungsten concentration β = 0.4. For this
tungsten content, the specific volume of the initial
blend is v 0 = 0.435 cm3/g. Note that the saddle-point
coordinate q* in the case of undercompressed detona-
tion coincides with q0 only for K = ∞. The variation of
q*(K) is nonmonotonic: as K increases in the interval
(17), the value of q* initially decreases and then begins
to grow asymptotically approaching q0 in accordance
with (35).
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m
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Fig. 5. Dependence of the detonation wave velocity on the
ratio K of the characteristic times of the velocity relaxation
and heat evolution calculated for q0 = 3.455 kJ/g, β = 0.4,
and γ = 3. In the asymptotics of large K, the wave velocity
approaches d = 7.43 km/s (dashed line).
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Fig. 6. Plots of the (1) gas and (2) particle velocity versus the heat evolution q calculated for q0 = 3.455 kJ/g, β = 0.4, γ = 3, and (a)
d = 5.759 km/s, K = 0.5; (b) d = 6.328 km/s, K = 5.5; (c) d = 6.92 km/s, K = 16; (d) d = 7.435 km/s, K = ∞. Point e is the boundary
of the stationary zone (q = q0, x = y = 4.392 (a), 5.403 (b), 6.15 (c), 6.75 km/s (d)); s is the saddle singularity on the (q, x) plane;
sy is the point in the (y, q) plane corresponding to saddle s (tangency point, see lines in Fig. 4: 2 and y2 (b), 3 and y3 (c), 4 and y4 (d)).
7. THE STRUCTURE OF STRONG SHOCK WAVES 
RELATED TO COMPONENT VELOCITY 

RELAXATION

For K ! 1, the component velocity relaxation begins
and terminates in the stage where the heat evolution is
negligibly small. (This statement does not apply to very
special cases when a considerable part (~10%) of the
heat is liberated in the stage of the shock wave com-
pression [15].) The zones of relaxation of the compo-
nent velocities and the heat evolution in the detonation
wave structure are spatially separated, and the former
belongs to the shock weave of the detonation complex.
Investigation of the structure of this zone presents inde-
pendent interest as a problem of the theory of shock
waves in disperse media (gas or liquid containing solid
particles). The shock wave structure in such systems
was studied predominantly in the case of weak shock
waves with an extended viscous profile [16–18]. In con-
trast, we are considering a strong shock wave in which
the viscous jump is formed before the velocity relax-
ation and can be considered as a break, followed by the
velocity relaxation. It is important to note that a small
specific heat of the heavy impurity particles allows the
heat exchange kinetics to be ignored and the effect of
velocity relaxation on the shock wave structure to be
studied separately (not masked by other processes).
JOURNAL OF EXPERIMENTAL A
In a strong shock wave, the gas component (ideal
gas) is compressed by factor of

.

Since the velocity and density of impurity particles
(mass per unit blend volume) in this stage remain
unchanged, the total degree of compression is αθ + β.
After leveling of the component velocities, the total
degree of compression is θ. Important characteristic
features of the velocity relaxation zone are as follows:
(i) a nonmonotonic dependence of the gas velocity on
the particle velocity and the time of particle residence
behind the shock wave front (and on the distance trav-
eled by particles behind the shock wave); the nonmono-
tonic character is weakly pronounced, but exists for any
value of the adiabatic exponent γ and the particle con-
centration β; (ii) the generalized Michelson–Rayleigh
line v(p) is a convex curve asymptotically (for t/τv @ 1)
tending to a straight line. In the vicinity of the onset of
the velocity relaxation zone, the v(p) line exhibits a
maximum (compression preceded by a small expansion
of the blend); an example of the calculated wave struc-
ture is given in Figs. 7 and 8.

In the other limit, K @1, the stages of velocity relax-
ation and heat evolution are also separated in time, but
the velocity relaxation takes place after the heat evolu-

θ γ 1+
γ 1–
------------≡
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tion and forms the final part of the stationary zone of the
detonation wave (in a charge of unlimited diameter).
Here, a relationship between the component velocities
x and y is determined by Eq. (10) with q = q0. In contrast
to the case of K ! 1, the functions x(y) and p(v ) exhibit
no anomalies in the intrinsic integral curves and the x
and y values approach one another varying in the oppo-
site directions: dx/dt ≥ 0, dy/dt ≤ 0; dp/dt ≤ 0, dv /dt ≥ 0
(the sign of equality corresponds to the point on the
equilibrium detonation adiabat).

8. CONCLUSIONS

The physical and mathematical interpretation was
provided for the principle of minimum for the velocity
of self-sustained detonation with relaxing component
velocities in a two-component flow. It was proved that
the formula of the classical detonation theory express-
ing the detonation wave velocity as a function of the
heat of explosion is valid not only in the asymptotics of
small ratio K of the characteristic relaxation times of
the component velocities and heat evolution, but in a
certain finite interval ∆K adjacent to this asymptotics as
well. For K ~ 1, the characteristic time of leveling of the
component velocities (i.e., the time of attaining the
point of intersection of the curves x(q) and y(q) (Fig. 6a) is
smaller than the characteristic time τU entering into the
relaxation equation (15), because the component veloc-
ities vary during relaxation at approximately the same
rate in the opposite directions. For this reason, a change
in the detonation regime from normal to undercom-
pressed takes place at K ≈ 2, rather than at K ≈ 1 (see
Fig. 5). The transition to undercompressed detonation
is manifested by the appearance of a saddle-type singu-
lar point in the integral curve describing the detonation
wave structure on the (x, q) plane. In the (y, q) plane,
this transition corresponds to the point of tangency of
the integral curve y(q) and the boundary of real x values
(velocity of the explosive) as a function of the variables
y, q and the parameter d (detonation wave velocity)
(Fig. 4). This correspondence of the saddle point and

0.53

0.52

0.51

0.50

0.5 0.6 0.7 0.8 0.9 1.0
y/d

x/
d

Fig. 7. Structure of the zone of velocity relaxation in the (x,
y) plane for a two-component flow in a strong shock wave
(γ = 3).
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the tangency point takes place in the entire domain of
existence of the undercompressed detonation. For this
detonation regime, the saddle point coordinate q* coin-
cides with q0 only for K = ∞. The function q*(K) is non-
monotonic: as K increases in the interval (27), q* ini-
tially decreases and then begins to grow asymptotically,
approaching q0 in accordance with (35).

For K ! 1, we have determined some characteristic
features of the wave structures related to relaxation of
the component velocities in a two-component flow.

APPENDIX 1

Let us prove that a real integral curve x = x(q) at the
boundary of the region of complex solution to Eqs. (10)
and (16) is a separatrix of a saddle-type singular point.

Consider a segment

(A.1)

and an integral curve satisfying certain initial condi-
tions (e.g. y = d|q = 0), which is a solution to the differen-
tial equation

(A.2)

in which x is a root of the equation3

(A.3)

where ϕd(x, y q) is a differentiable function with real
coefficients (parameters) and d is a parameter. In this
paper, Eq. (A.2) was represented by Eq. (16). For the
subsequent analysis, a particular form of the function
fk(x, y, q) is insignificant. It is only assumed that this is
a real continuous function of the parameter K, which
allows the derivative dy/dq to be infinitely varied at a
fixed value of the arguments. Of the two variables y and

3 If there are several such roots, one has to be selected in accor-
dance with the physical conditions.

0 q q0≤ ≤

dy
dq
------ f K x y q, ,( ),=

ϕd x y q, ,( ) 0,=
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Fig. 8. Structure of the zone of velocity relaxation in the (v,
p) plane for a two-component flow in a strong shock wave
(γ = 3). Dashed line shows the Michelson–Rayleigh line.
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q in Eq. (A.3), only one is independent since the inte-
gral curve is such that

(A.4)

Substituting (A.4) into (A.3) yields an equation that can
be written as

(A.5)

Equation (A.5) determines the dependence of x on q on
the integral curve for preset values of the parameters d
and K. Let us assume that there exists a boundary value
dK of the parameter d, such that, on one side of dK (for
certainty, at d > dK), the root of Eq. (A.5) is real in the
whole interval (A.1), while on the other side (d < dK) in
a certain subinterval of q from (A.1) the root is com-
plex. Since the coefficients of Eq. (A.5) are real, the
passage of d through dK leads to the disappearance of
two real roots (and the appearance of two complex-con-
jugate roots). At the point d = dK, both these roots
merge into one (denoted by xK) for a certain value of
q = qK, and the function ΨdK(x, q) exhibits an extremum4

At this point on the (q, y) plane, the integral curve
touches the boundary line

(A.6)

separating the regions of real and complex roots of
Eq. (A.3) on the plane d = dK.

Representing the function Ψd, K(x, q) in the vicinity
of the point (xK, qK) by a parabola, we write

(A.7)

where the coefficients a and b depend on q and d. For
d = dK and q = qK,

In the vicinity of the point (dK, qK), we have (to within
terms of higher order of smallness)

(A.8)

where αK and βK and constant quantities the sign of
which is the same at that of b0. Expansion (A.8) follows
from the aforementioned conditions of existence of the
real roots of Eq. (A.5).

From Eqs. (A.5), (A.7), and (A.8), it follows that

4 The second derivative also turning into zero at this point would
be an incredible accident.

y y q( ).=

Ψd K, x q,( ) 0.=

dΨd , K x qK,( )
dx

-------------------------------- 0.=

D y q dK, ,( ) 0,=

Ψd , K x q,( ) a b x xK–( )2,+=

a 0, b b0 0.≠= =

a αK d dK–( )–= βK q qK–( )2, b– b0,=

x xK
a
b0
-----– ,

dx
dq
------± da

dq
------ 1

2 ab0–
-------------------.±= =
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This, together with (A.8), yields for d = dK

(A.9)

Now we will demonstrate that the point (xK, qK) on
the plane of variables (q, x) is a saddle-type singular
point for Eq. (16) and (A.3) for d = dK and, hence, the
integral curve

(A.10)

passing through this point is a separatrix of the family
of integral curves of these equations. (The first equa-
tion (A.9) represents the segments of two separatrices.)
For this purpose, let us consider the behavior of any two
integral curves in the vicinity of the point (xK, qK). The
curves are assumed to be arbitrarily close to the integral
curve (A.10) with respect to the initial data and situated
on different sides of this curve, so as to obey the initial
conditions

(A.11)

where δ is an arbitrarily small positive quantity.
Since the intrinsic integral curve is touching the

boundary (A.6) of the domain of real roots, one of the
adjacent integral curves will double-intersect the
boundary (A.6) in the vicinity of the tangential point
(qK, yK), while the other adjacent integral curve has no
common points with this boundary. Therefore, the root
x of Eq. (A.5) is real on the second integral curve every-
where in the vicinity of the point (qK, yK).

Let us introduce for these two integral curves the
function (A.5) and its parabolic representation (A.7) by
analogy with what was done for the intrinsic integral
curve (i.e., at δ = 0). As a result, all parameters of
the parabola would shift by small values propor-
tional to δ:

where λa, λb, λK are certain constant coefficients.
Accordingly, instead of (A.9), we obtain (to within
terms of higher order of smallness)

(A.12)

From (A.12), it follows that the integral curves in the
vicinity of the point q = qK on the plane (q, x) exhibit a
qualitative change with the sign of ∆1/βK: for ∆1/βK > 0,
the curves pass at point q = qK through the zero isocline,
while for ∆1/βK < 0 these curves reach the infinity iso-

x xK=
βK

b0
------ q qK–( ),

dx
dq
------±

βK

b0
------.±=

x f K q( )=

y0 dK= δ q 0= ,±

a a1 a λaδ, b b1 b λbδ,±≡±≡
xK xK1 xK λKδ,±≡

x xK1=
βK q qK–( )2 ∆1+

b0
----------------------------------------,±

dx
dq
------

βK

b0
------

q qK–

q qK–( )2 ∆1/βK+
----------------------------------------------,±=

∆1 λaδ.±≡
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cline at the points q = qK ± . As can be readily
seen, the four subfamilies of the integral curves (corre-
sponding to two signs of the square root in (A.12) and
two ∆1 values) form together with separatrices (A.9)
a characteristic saddle pattern with the singularity at
(qK, xK).

APPENDIX 2

Let us consider the boundary of real solutions in the
problem of the detonation wave structure. Solving the
quadratic Eq. (10) relative to x, we obtain

(A.13)

where Z(y, q, d) is the determinant that can be explicitly
written as

(A.14)

Substituting (A.14) into (19) and solving this equation
relative to d yields after simple transformations the fol-
lowing expression for F(y, q) at d ≥ 0:

(A.15)

where

The coefficients E and L are positive; for E, this is seen
from the identical transformation

Let us demonstrate that Z(y, q, d) with fixed y and q val-
ues is an increasing function of d. To this end, it suffices
to show that the partial derivative of Z with respect to d
is positive. The result of differentiating with renormal-
ization α + β = 1 can be written as

(A.16)

Now the positiveness of the right-hand part of (A.16) is
obvious because d > 0, y ≤ d, and α ≥ 0 for the problem
under consideration.

APPENDIX 3

Let us prove that the detonation velocity is indepen-
dent of K for small values of this parameter. Upon the
identical change of variables y ≡ x + ∆, Eq. (10) takes
the form

(A.17)

∆1/βK–

x
Sd Sβy– Z y q d, ,( )+

2S 1–( )α
--------------------------------------------------------= ,

Z y q d, ,( ) S2 2Sα– α+( )d2=

+ β S2β 2Sα α–+( )y2 2S2βdy 2α2 1 2S–( )q.+–

F y q,( ) 1
E
---=

× S2βy α 2S 1–( ) 2Eq Ly2–( )+[ ] ,

E S2= 2Sα– α , L+ S 1–( )2β.=

E S2= 2Sα– α+ S α–( )2 αβ .+=

1
2
--- ∂Z

∂d
------ 

 
y q,

S 1–( )2αd S+
2β d y–( ).=

d2

2
----- = d β∆ x+( )–[ ] Sx αq– x2

2
----- β∆2

2
----- βx∆.++ +
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(It should be recalled that the heat evolution q is a
monotonic function of time; see Eq. (14).) For small K
or, accordingly, –∆/x ! 1, Eq. (A.17) can be trans-
formed (to within terms of higher order of smallness in
–∆/x) to the following form:

(A.18)

Let us introduce the following heat evolution function:

(A.19)

In the right-hand part of (A.19), the quantities xe and ∆
are expressed in the form of (32) and (33) and Q = q/q0.
The function q1 at small K monotonically increases
with time and, similar to q, has a maximum value q0.
(Since γ > 1, the monotonic behavior of q1 in the entire
range of Q from 0 to 1 is ensured by the condition K ≤ 3/2.)

Equation (A.18) can be converted using the identity
(A.19) into an equation of the classical detonation the-
ory with a monotonic heat evolution function q1:

(A.20)

For any sufficiently small value of K for which the
heat evolution function is monotonic and, hence, exhib-
its a K-independent maximum value of q0, Eq. (A.20)
gives the same result (25) for the minimum detonation
velocity.

APPENDIX 4

Let us derive the asymptotic formula (35). The
right-hand part of (30) expresses the derivative dy/dq
along the line (29), that is, along the direction in which
dF(y, q) = 0. Differentiating (A.15) along this direction
yields

(A.21)

For K @ 1, all values in the right-hand part of (A.21)
depend weakly on K and are close to their asymptotic
values corresponding to K = ∞:

(A.22)

where d∞ is determined by formula (34). For these val-
ues of q and y, taking into account (34) and

d2

2
----- Sdx S 1–( )βxe∆– αq– S

1
2
---– 

  x2.–=

q1 q
1
α
--- S 1–( )βxe∆+≡

=  q0 Q 2K 1 Q– γ 1 Q––( )+[ ] .

d2

2
----- Sdx αq1– S 1/2–( )x2.–=

dy
dq
------ ΛE

S2β 2Eq Ly2– ΛLy–
-------------------------------------------------------– ,=

Λ α 2S 1– .≡

q q0, y d∞,= =

α β+ 1, S
γ

γ 1–
-----------= =
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and accomplishing simple transformations, we obtain

(A.23)

The left-hand part of (30) expresses the derivative dy/dq
along the integral curve. This derivative satisfies
Eq. (16), in which the gas velocity x (with an allowance
for (A.22)) is related to d∞ by the relationship

(This expression is analogous to the relationship
between the gas velocity and the detonation wave
velocity known in the theory of normal detonation,
which can be derived from Eq. (10).) Taking into
account that

we obtain for the derivative along the integral curve

(A.24)

Equating, according to (30), the expressions for deriva-
tives (A.21) and (A.24) and taking into account (A.23),
we arrive at (35) (see Section 5). Since the derivation
procedure employed the asymptotic formulas (A.23)
and (A.24), the result is valid to within O[(Q* – 1)2] or
O(1/K2).

2Eq Ly2–
2q0

γ 1–( )2
------------------,=

ΛLy 2q0αβ γ 1+

γ 1–( )2
------------------.=

x γ
d∞

γ 1+
------------.=

y x–
d∞

γ 1+
------------,=

dy
dq
------ –

d∞

K γ 1+( ) q0 q–( )
----------------------------------------.=
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Abstract—Experimental data on the optical reflectance of free-standing smectic C films were analyzed within
the framework of a phenomenological Landau approach. At a certain temperature T0N (determined from exper-
imental data), which exceeds the known temperature Tc of the volume phase transition from smectic A to smec-
tic C state, a surface phase transition takes place whereby molecules in the surface layer become sloped relative

to the normal of the smectic layers. The transition temperatures  for N-layer films possessing synclinic
(symmetric) and anticlinic (antisymmetric) textures of the order parameter (tilt angle θ) were determined. A
comparison of the theoretical and experimental data allowed all parameters of the model to be determined
(including critical indices of the correlation length and the surface order parameter). Three possible models of
the transition from the state with transverse polarization (perpendicular to the molecular tilt plane) to the state
with longitudinal polarization (parallel to this plane) are analyzed. The transition takes place at low (1°–2°) val-
ues of the order parameter θ in the middle layer of the film. © 2001 MAIK “Nauka/Interperiodica”.

T0N
s a,
1. INTRODUCTION

Free-standing smectic films were discovered by
Friedel as long ago as in 1922 [1], but detailed physical
characterization of these objects began only in the late
1970s, when a large number of theoretical and experi-
mental investigations were performed providing data
on the structure, mechanical properties, and thermody-
namics of the films (see, e.g., monograph [2]). Of spe-
cial interest are the so-called liquid smectic films in
which the layers can be considered as representing a
two-dimensional (2D) liquid phase (smectic A) or a 2D
nematic crystal (Smectic C).

Smectic A (SmA) phases possess a rather simple
structure, with a director n (the unit vector determining
a local axis of the average orientation of long axes of
the molecules) orthogonal to the smectic layers. As a
result, the only additional (with respect to an isotropic
liquid) degree of freedom is related to the “solid-state”
(i.e., sufficiently rigid) order in the smectic layers [3].

In smectic C (SmC) phases, the director n is inclined
to make a certain polar angle θ with the normal n of the
layers, while the azimuthal angle ϕ represents a “soft”
(in the Goldstone sense) part of the order parameter.

Although the above classification refers to the vol-
ume smectic phases, this approach can be applied to
description of the freer standing films as well. A signif-
1063-7761/01/9303- $21.00 © 20533
icant difference of films from volume phases consists in
that finiteness of the former systems makes the order
parameter of the films essentially inhomogeneous. In
the case of SmC films, to which our study is devoted,
this implies that the angles θ and ϕ vary across the film
thickness. Until very recently, the only known texture
in SmC films was the so-called synclinic (or symmetric)
configuration (s configuration) characterized by a zero
difference of the azimuthal angles in the adjacent smec-
tic layers (δϕ = 0). However, oblique smectic phases
were reported in the past few years (see [4–7]) in which
an anticlinic texture (a configuration) may exist under
certain conditions. The latter texture may either corre-
spond to a microscopically anticlinic structure with
δϕ = π for each pair of adjacent layers or represent a
macroscopic structure in which an overall difference of
the azimuthal angles for the whole film is

,

where N is the total number of smectic layers in the
film.

Note also a significant distinction of the free-stand-
ing films composed of oblique smectic layers from the
smectic films bounded (and oriented) by solid surfaces.
In the latter case, the energy of the director and polar-

∆ϕ δϕ i 1+ i,

i 1=
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∑≡ π=
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ization binding to the boundary may significantly vary
with position over the interface, whereas the free-stand-
ing films may readily acquire orientation homogeneous
in the film plane.

The purpose of this study was to theoretically inter-
pret and process the experimental data available on the
optical reflectance of free-standing films of a ferroelec-
tric SmC phase. In Section 2, we formulate a model of
the phase transition from s to a film configuration and
present a phenomenological (in the Landau theory
sense) description of this phase transition. In Section 3,
a comparison of the theoretical profiles of the order
parameter to the experimental data allows the values of
all parameters involved in the theory to be determined
(including indices and amplitudes characterizing the
critical behavior of the surface and volume order
parameters). In Section 4, these critical parameters are
used to determine the temperature of the phase transi-
tion between states of the film with transverse and lon-
gitudinal polarizations. The results of these calcula-
tions agree satisfactorily with the experimental data
and provide reasonable estimates for the material
parameters of a liquid crystal employed in the model.
Finally, Section 5 summarizes the main results of this
study.

2. THEORETICAL MODEL

In order to describe the order parameter in an
oblique liquid smectic phase (see, e.g., [3, 8]), it is nec-
essary to determine the polar angle θ (measuring tilt of
the director n relative to the normal n of the smectic
layers) and the azimuthal angle ϕ (phase). These two
real parameters form a two-component complex order
parameter ψ = θexp(iϕ) equivalent to the so-called
c director representing a projection of the director n
onto the plane of the smectic layer. The phase ϕ is the
Goldstone part (degeneracy parameter) of the order
parameter for all oblique smectic phases.

In the case of free-standing films (bounded by an
isotropic medium—air), only the polar angle θ can be
preset at the interface for the symmetry considerations.
Therefore, it is this angle θ (modulus of the complex
order parameter) that may exhibit inhomogeneous dis-
tribution across the film thickness. As for the azimuthal
angle, both the experimental data [4–7] and the absence
(for the symmetry considerations) of the surface bind-
ing energy for ϕ allow us to consider two possibilities:
(i) s configuration, in which δϕ = 0, and (ii) a configu-
ration, in which either each pair of adjacent layers has
δϕ = π or the total phase difference across the film is
∆ϕ = π. For certainty, following conclusions formu-
lated in [5], we will restrict the consideration to the sec-
ond type of the a configuration.

The existence of both s and a configurations in the
same material implies that at least two minima of the
thermodynamic potential exist and, hence, a phase tran-
JOURNAL OF EXPERIMENTAL 
sition between these states is possible. It is important
to note that the s and a configurations differ not only
in the geometric structure of the order parameter but
in their physical properties as well. It is known [3, 8]
that spatially inhomogeneous director distribution
unavoidably results in the so-called flexoelectric
polarization Pf

(1)

where the coefficients e1 and e3 in most of the real smec-
tic liquid crystals are on the order of 10–10–10–11 C/m.
Due to the uniaxial symmetry breakage in SmC films,
the expression for Pf  acquires a much more compli-
cated form than Eq. (1), but this simple relationship
between Pf  and n is sufficient for our analysis.

Naturally, distributions of the flexoelectric dipole
moments in the s and a configurations are different (see
formula (1)). For this reason, a phase transition
between s and a configurations can be induced by an
external electric field. This scenario was studied by
Link et al. [6] in free-standing achiral smectic films.
Below, we will generalize this phase transition mecha-
nism so as to include the chiral smectic phases (pos-
sessing a ferroelectric polarization along the axis per-
pendicular to the molecular tilt plane). In Section 3, the-
oretical expressions derived within the framework of
the general model are compared to the experimental
data.

First of all, it is necessary to demonstrate theoreti-
cally the possibility of existence of the s and a configu-
rations in free-standing films composed of oblique
smectic layers. According to the above remarks, a
description of the order in the films of oblique smectic
layers can be performed in terms of the polar angle θ
alone. In this case, the free energy of the film (in the
sense of the Landau theory) can be presented as the
expansion

(2)

where A, B, and C are some phenomenological coeffi-
cients. Note that the coefficient  A must be zero at the point
Tc of the volume phase transition from SmA to SmC. The
gradient term takes into account the unavoidable inhomo-
geneity of the order parameter across the film thickness,1

and Fs (surface energy) describes a physical modification
of the system at the boundaries. By analogy with for-

1 Within the framework of the Landau theory, we may neglect
inhomogeneity of the order parameter in the plane of the layer,
but the inhomogeneity across the film that is inherent in the finite
system has to be taken into account in this theory.
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mula (2), the surface energy Fs can also be presented as
the expansion

(3)

where A' and B' are coefficients related to the surface
properties of the film. The quantity B' can be considered
as constant, while A' must go to zero at the point T0 of
the surface phase transition: A' = α'(T – T0), where α' is
independent of the temperature T.

The theory outlined above (in particular, formula
(3)) is a modification of the de Gennes theory [9],
which assumes that the surface induces ordering due to
an interaction of the external field type (linear with
respect to the order parameter). The linear interaction
implies that molecules on the surface are always
sloped. The surface energy (3) corresponds to a basi-
cally different situation: the tilt of molecules appears at
a certain temperature exceeding Tc (for T0 > Tc), and a
decrease in the temperature leads to ordering in the
inner layers. The experimental data agree with this sce-
nario of a phase transition in free-standing films. For
this reason, Eq. (3) is written with the neglect of inter-
actions of the external field type.

Usually [9], the influence of the surface is described
in terms of the so-called extrapolation length. Using the
notation adopted in Eqs. (2) and (3), this quantity can
be determined as λ = C/A'. Depending on the sign of λ,
the phase transitions are conventionally divided into (i)
ordinary (when λ > 0 and, hence, the surface suppresses
the volume phase transition), (ii) extraordinary (λ < 0
and the surface stimulates the phase transition), and (iii)
special (intermediate between ordinary and extraordi-
nary, corresponding to λ = ∞, when, in the main
approximation, the surface does not influence the phase
transition). Note that even in the latter case the phase
transition temperature in the film may differ from Tc

because of the presence of the gradient term (reflecting
purely geometric effects) in Eq. (2).

According to the experimental data, all the free-
standing oblique smectic films studied to the present
[4–7] exhibit the SmA–SmC phase transition at temper-
atures 20–30°C above the point (Tc) of the volume
phase transition. This fact indicates that we deal with an
extraordinary phase transition, for which λ < 0. On the
other hand, according to Eq. (3), the surface phase tran-
sition for λ < 0 (i.e., for A' < 0) takes place at a higher
temperature than the volume transition (T0 > Tc). Obvi-
ously, the volume order established at T = Tc will result
in that the surface properties will also exhibit a certain
critical behavior. In the interval Tc < T < T0 (which is of
most interest in this study), the volume correlation

Fs
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length is finite. This implies that the order parameter is
described by a certain profile with a maximum on the
surface. Minimization of the energy functional (2)
leads to the following Euler–Lagrange equation:

(4)

Here x and m are the dimensionless variables defined as

(5)

where the quantities ξb and θb are expressed, within the
framework of the mean field theory with the free energy
(2), as

Equation (4) must be supplemented by the boundary
conditions

(6)

where 2l ≡ L/ξb is the dimensionless film thickness.

Let us consider the case (describing our experimen-
tal data) of a free-standing film in which the surface
phase transition is completed at a given temperature,
while the volume phase still occurs in the SmA state. In
describing the SmC phase, it is usually important to
take into account the term with θ6 in the volume free
energy expansion. However, in any case (provided the
temperature deviates significantly from Tc toward
increase), we may ignore the nonlinear terms in Eq. (4)
and find a symmetric solution to this equation in the
form

(7)

Substituting expression (7) into the boundary condi-
tions (6), we obtain an equation for the temperature

 below which the symmetric solution (7) corre-
sponds to an ordered state of a smectic film composed
of N layers:

(8)

By the same token, we can find an antisymmetric solu-
tion

(9)
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This configuration also minimizes the free energy of
the film and satisfies the boundary conditions below the

temperature  determined from the equation

(10)

The solutions to both transcendental equations were
obtained numerically, indicating that the transition tem-

perature is always higher in the s configuration:  >

. In the experiments with thin free-standing films,
the transition from the SmA phase with decreasing tem-
perature always leads to the s configuration. As can be
readily seen from expansion (2), the a configuration is
always metastable (in the absence of dipole–dipole
interactions and external fields).

Strictly speaking, the continuous Landau–de
Gennes theory expressed by Eqs. (2) and (3) must not
describe the systems composed of a small number of
clearly pronounced layers. This circumstance might be
especially significant for thin SmC films in the temper-
ature interval where the bulk correlation length is on the
order of the film thickness. However, an analysis of the
experimental data shows that the continuum approxi-
mation provides a sufficiently good qualitative descrip-
tion of the observed behavior. This is partly due to the
fact that smectic liquid crystals grow, as a rule, by the
so-called weak crystallization mechanism [10] in
which case the smectic density modulation related to
the discreteness is small as compared to the average
density.

Another expression that will be required in the sub-
sequent analysis is the order parameter profile in the s

T0N
a

T0N
a T0=

C

α 'ξb T0N
a( )
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2ξb T0N
a( )
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  .coth–

T0N
s

T0N
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Fig. 1. Temperature dependence of the average polar angle
θ of molecules in the free-standing NOBAMBC films con-
taining N = 3 (open circles) and 50 (black circles) smectic
layers. Crosses present the temperature variation of the
slope of molecules in a bulk sample [5]. Solid curves show
the results of fitting by formula (12).
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configuration. Using the notation adopted in Eqs. (2)
and (3), this profile can be written as

(11)

where θN is the value of the order parameter on the film
surface. In the next section, the theoretical model
described above is applied to processing of the experi-
mental data.

3. EXPERIMENTAL DATA TREATMENT
The angle of the director tilt in a free-standing SmC*

liquid crystal film can be determined by measuring the
optical reflectance for two polarizations of the incident
light beam, parallel and perpendicular to the molecular
tilt plane. Since the indices of refraction in this plane
(ne) and in the perpendicular direction (n0) are different,
the intensity of reflection measured for the two polar-
izations allows us to determine the optical anisotropy of
the film, which depends on the inclination of molecules
in the smectic layer. The procedure of determination of
the tilt angle of molecules in the films of arbitrary thick-
ness is described in detail elsewhere [5]. It must be
noted that, since the tilt angle depends on the distance
to the film surface, the experimental data provide for an
average value of the angle, with the type of averaging
depending both on the film thickness and on the exper-
imental method employed.

The simplest situation is observed for superthin
films in which the correlation length of the surface
ordering exceeds half of the film thickness (ξb > L/2). In
this case, the tilt angle is virtually constant across the
film and the experimental data can be treated in terms
of a simple expression

(12)

where T0N is the temperature of the transition to the
SmA phase in an N-layer film. Here and below, the tem-
peratures in power expressions are measured relative to
the absolute scale.

Figure 1 shows the results of our measurements [5]
of the average molecular tilt angle in the films contain-
ing N = 3 and 50 smectic layers. As demonstrated
below, the film with N = 3 is characterized by ξ > L/2 in
the entire temperature range. Therefore, the tempera-
ture dependence can be described using expression
(12). The solid curve in Fig. 1 shows the results of fit-
ting with β = 0.46, θ(0) = 89.4°, and T0N = 116.2°C.

The situation with thick films is more complicated
and requires special analysis. Here, an expression for
the spectral dependence of the optical reflection inten-
sity can be written as follows [11]:

(13)
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where λ is the light wavelength in vacuum. For thick
SmC* films (N > 40), the average tilt angle can be deter-
mined from the spectral position of the reflection mini-
mum λmC. If the measurements are performed for the
polarization perpendicular to the molecular tilt plane,
the refractive index (n0, the ordinary index of refrac-
tion) is independent of the slope. In this case, the tem-
perature shift of the reflection minimum is related to a
change in the film thickness,

where dCi is the thickness of the ith smectic layer. For
molecules modeled by rigid ellipsoids, the layer thick-
ness dCi in the SmC* phase can be represented as

(14)

where dA = LA/N is the layer thickness in the SmA phase
with equal interplanar spacings. A condition for the
minimum phase difference at the minimum of the
reflection intensity can be written as

(15)

According to this relationship, the experimentally
determined ratio of wavelengths lmC/lmA corresponding
to the reflection minima for the oblique and nonoblique
structures is

(16)

from which it follows that the tilt angle determined in a
thick film represents the root-mean-square value 〈θ〉 ≡

, or

(17)

The expression for 〈θ〉  can be readily obtained from the
profile (11) of the order parameter in the SmC* film:

(18)

where ξ = ξ(0)[(Tc/(T – Tc)]ν is the volume correlation
length for the tilt angle θ of molecules in the smectic
layers (ξ is expressed in units of the layer thickness).
Upon fitting formula (18) to the experimental data for a
film with N = 50, we employed the parameters θ(0) =
89.4°, β = 0.46 (determined for a thin film) and the tem-
perature of the transition to the SmA phase T0N = 104°C.
The fitting results (Fig. 1) correspond to ξ(0) = 0.75 and
ν = 0.37. Using these values of θ(0), β, ξ(0), and ν, it is
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possible to calculate all structural and polarization
characteristics of the film and to model the temperature
dependence of the transition from transverse to longitu-
dinal ferroelectric polarization in free-standing smectic
films of various thicknesses.

The subsequent analysis will also require an expres-
sion for the arithmetic mean of the tilt angle in the s
configuration. This formula is also readily obtained
from expression (11):

(19)

4. THE TRANSITION BETWEEN STATES
WITH TRANSVERSE AND LONGITUDINAL 

POLARIZATIONS

In the SmC, SmC* (chiral ferroelectric), and SmA*
(chiral antiferroelectric) phases, the energy minima
corresponding to an oblique orientation of molecules
can take place at δϕ = 0 and δϕ = π. Which particular
type of the structure (synclinic versus anticlinic) is
formed depends on the relative magnitudes of these
minima.

Now we will consider several models of the transi-
tion of the SmC* film from the transverse to the longi-
tudinal polarization state, which is possible for films
with an antisymmetric profile of the order parameter. In
contrast to [4, 5], where this structure was called the C
configuration and remained undetermined, the first two
models will consider transitions between the s configu-
ration and the “inverted” s configuration with the tilt
angle described in one half of the film (e.g., that with
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Fig. 2. Temperature dependence of the average polar angle

 (solid curves) of molecules and the longitudinal polariza-
tion P0f (dashed curves) calculated for free-standing films
possessing various thicknesses (numbers of smectic layers)
N = 12, 14, 19, 25, 31, and 50. Points of intersection (indi-
cated by open squares) of the solid and dashed curves
corresponding to the same N give the temperatures at
which the longitudinal polarization is equal to the trans-

verse polarization (for e3 = 2.5 × 10–12 C/m and  =  ×
2.1 × 10–5 C/m2).
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x > 0) by the “normal” formula (11), according to
which θ(x) ∝  , and in the other half (x < 0) by the
relationship θ(–x) = –θ(x). This anticlinic ( ) configu-
ration, corresponding to a break in the order parameter
at x = 0, is not described as a whole by the Landau the-
ory in the form of Eqs. (2) and (3). The point is that the
chiral ferroelectric liquid crystals exposed to an exter-
nal electric field or oriented by solid surfaces feature a
competition between chirality [the contribution of
which to the system energy is minimum for an inhomo-
geneous (spiral) orientation of molecules] and the
polarization–field interaction that tends to establish a
homogeneous order of the molecules; the system under
such conditions is referred to as frustrated. The compet-
ing trends are especially significant in system of lower
dimension (films) where one of the possible mecha-
nisms for eliminating the frustration is the formation of
defects such as domain walls analogous to the Abriko-
sov vortices in superconductors.

In the first model, we assume that the phase transi-
tion takes place when the magnitude of the longitudinal
flexoelectric polarization becomes equal to the classical
ferroelectric polarization of the film. According to for-
mula (1), the average (over the film) longitudinal flexo-

electric polarization  for small angles in the  con-
figuration depends on the difference θN – θ(0) between
the tilt angle of molecules on the surface and in the
middle layer of the film and on the flexoelectric coef-
ficient e3:

(20)

xcosh
ã

P f ã
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2e3 θN θ 0( )–( )
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Fig. 3. The experimental temperatures of the phase transi-
tions between the states of transverse and longitudinal
polarizations in films of various thicknesses. The uncer-
tainty (indicated by horizontal bars) is due to the tempera-
ture hysteresis revealed by experiment [5]. Symbols ×, s,
and j present the results of calculations using various mod-
els of the phase transition.
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where

(21)

and d ≈ 3 × 10–9 m is the smectic layer thickness.

Figure 2 (dashed curves) shows the temperature
dependence of the value P0f = (θN – θ(0))/N propor-
tional to the average flexoelectric polarization calcu-
lated for various film thicknesses N = 50, 31, 25, 19, 14,
and 12. As is seen, the longitudinal flexoelectric polar-
ization goes to zero at the temperatures of the volume
and surface phase transitions. Solid curves in Fig. 2
show the temperature dependence of the average tilt
angle  calculated by formula (19), which is assumed
to be proportional to the transverse ferroelectric polar-
ization. Reorientation of the film with N = 50 in the
electric field and the transition from transverse to lon-
gitudinal polarization take place at T ≈ 92°C, which
corresponds to the average tilt angle  ≈ 4.7°. The mag-
nitude of polarization at this angle for a related
DOBAMBC liquid crystal is P0 < 10–5 C/m2 [12, 13].
For equal transverse and longitudinal polarizations, the
flexoelectric coefficient is e3 < 2.5 × 10–12 C/m, which
is significantly smaller as compared to typical values in
liquid crystals (10–10–10–11 C/m). These estimates indi-
cate that the flexoelectric polarization during this tran-
sition markedly exceeds the spontaneous ferroelectric
polarization P0.

The final evidence that no transition takes place at

 =  is provided by a comparison of the experi-
mental [5] and calculated temperatures of transitions in
the films of various thicknesses. This comparison is
illustrated in Fig. 3, where temperature intervals featur-
ing the transition from transverse to longitudinal polar-
ization are indicated by horizontal bars, since the exper-
iment [5] revealed certain temperature hysteresis. The
proposed model fails to describe the experimental data
even provided that an unreasonably small flexoelectric
coefficient e3 is employed. For illustration, let us deter-
mine the upper estimate of the transition temperature
assuming that e3 = 2.5 × 10–12 C/m and  =  × 2.1 ×
10–5 C/m2. This example corresponds to the scale used
in Fig. 2, where the points of intersection of the solid
and dashed curves calculated for the same N give the
temperatures at which the longitudinal polarization

 in the  configuration becomes equal to the trans-

verse polarization  in the s configuration. These
points of intersection are plotted by crosses in Fig. 3.
Although the transition temperature increases, as
expected, with decreasing film thickness, the tempera-
ture dependence for any e3 is much less pronounced as
compared to the observed behavior. Taking into
account a nonlinearity in the P0(θ) value at small angles
[14] even increases the discrepancy between this theo-
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retical model and experiment. It should be recalled that
the longitudinal flexoelectric polarization was calcu-
lated for the  configuration. In the case of the anti-
clinic a configuration (9), the longitudinal polarization
will be still greater because θ(0) = 0.

The second proposed model assumes that the elec-
tric field produces reorientation of the molecules, driv-
ing them from an energy minimum corresponding to
the synclinic configuration (s) to the state with anti-
clinic configuration ( ). Since the depth of these
energy minima increases with the slope of molecules,
the reorientation may take place at the middle of the
film where θ is small. In accordance with the Landau
theory, it is natural to assume that the energy differ-
ence between  and s configurations is proportional to
the square polar angle θ2(0) in the middle of the film:
∆F = γθ2(0)S, where S is the film area. As was men-

tioned above,  @  for the temperature interval of
interest and the values of flexoelectric coefficients typ-
ical of liquid crystals; therefore, the  configuration
possesses a lower energy in an electric field with the
strength E, provided that

from which it follows that the moment of transition cor-
responds to the relationship

Figure 4 presents the plots of yN ≡ (θN – θ(0))/θ2(0)
versus temperature constructed for various N values
using the parameters θ(0), β, ξ(0), and ν determined as
described above. Considering the coefficient γ in this
model as the fitting parameter, we may reach agreement
between the experimental data and the calculated tran-
sition temperatures (plotted by squares in Fig. 3) deter-
mined as the points of intersection of the curves for var-
ious N and the line y ≈ 3.5 in Fig. 4. For E = 103 V/m
and e3 = 10–11 C/m, the coefficient γ is 1.2 × 10–9 J/m2

and the energy difference between the synclinic and
anticlinic orientations in this films approximately
amounts to 8 × 10–5 K per pair of adjacent molecules
(for the number density of molecules in the smectic
layer of about 6 × 1018 m–2). For the second model, it is
important that the state with longitudinal polarization
corresponds exactly to the  configuration.

In the third model to be considered, it is assumed
that the phase transition takes place at a certain small
tilt angle in the middle layer of the film. The transition
can be induced, for example, by competition of the
interaction between adjacent layers and the next to
adjacent layers [15, 16]. These interactions stabilize
different mutual orientations of molecules in the smec-
tic layers and, hence, may lead to the reorientation of
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molecules in the middle layers of the film. Such a tran-
sition may also be caused by an electrostatic interaction
of charges induced by the polarization gradient
between the upper and lower parts of the free-standing
film [17]. The signs of electric charges induced in the
two halves of the film are the same for the s configura-
tion and are opposite in the antisymmetric case. In the
latter case, a decrease in the electrostatic energy of the
film may lead to the reorientation of molecules in the
smectic layers.

Figure 5 presents the temperature dependence of the
tilt angle in the middle layer versus temperature con-
structed for various N values using formula (21). The
transition temperatures, determined as the points of
intersection of the curves for various N and the line θ =
2.04°, are plotted by open squares in Fig. 3 showing
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Fig. 4. Calculated temperature dependence of the quantity
yN ≡ (θN – θ(0))/θ2(0) for free-standing films with various
numbers of smectic layers N = 12, 14, 19, 25, 31, and 50.
Black squares indicate the points of intersection of the
curves with the straight line y = 3.5.
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Fig. 5. Calculated temperature dependence of the tilt angle
of molecules in the middle plane of the free-standing films
with various numbers of smectic layers N = 12, 14, 19, 25,
31, and 50. Open circles indicate the points of intersection
of the curves with the straight line θ(0) = 2.04°.
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that a properly selected value of the θ(0) angle (corre-
sponding to the onset of the phase transition) provides
for a good agreement between this theoretical model
and experiment.

The latter two models, capable of adequately
describing the temperature dependence of the phase
transition, are characterized by different states of the
film in a zero field. In the third model, according to
which the transition takes place at a certain small value
of θ(0), the film must possess a nonzero longitudinal
polarization at a sufficiently high temperature even in a
zero field. In the second model, where the transition is
induced by the electric field, the film in a zero field at a
high temperature must possess a transverse polariza-
tion. This situation was observed in SmC* liquid crys-
tals possessing a small ferroelectric polarization [17].
This class of liquid crystals includes NOBAMBC.

Thus, the whole combination of the experimental
data allows us to select the model in which an applied
electric field drives a smectic structure from one energy
minimum, corresponding to a synclinic orientation of
molecules in the middle smectic layer, to another mini-
mum corresponding to the anticlinic orientation. This
transition takes place virtually at the same small values
of the tilt angle in the middle layer (1°–2°) as those in
the third model. The model in which the transition takes
place at a certain angle θ(0) may be applicable to sub-
stances with large values of the transverse ferroelectric
polarization. However, the absence of a sufficiently
large volume of experimental data (temperature depen-
dence of the tilt angle, repolarization temperatures) for
this class of substances hinders quantitative compari-
son of this model to experiment.

5. CONCLUSION

As demonstrated above, the available experimental
data on the temperature dependence of the slope of
molecules in free-standing can be adequately described
within the framework of a phenomenological model of
thin SmC* films. Parameters involved in the theory
(critical values of the correlation length, order parame-
ter, etc.) were determined by comparing the theory with
experiment. Using these empirical parameters, the
macroscopic characteristic of the films were calculated,
including the temperature dependence of the longitudi-
nal ferroelectric polarization. Three possible models of
the phase transition from the state with transverse
polarization (symmetric profile of the order parameter)
to the state with longitudinal polarization (antisymmet-
ric profile) were analyzed. The possibility of calculat-
ing the macroscopic characteristics of the films allowed
a model to be selected that most adequately describes
both the temperatures of the phase transitions in an
applied electric field and the state of the film in the
absence of external fields.

A special consideration is necessary for determining
the surface polarization and establishing the conditions
JOURNAL OF EXPERIMENTAL 
for this polarization. For example, the existence of a
polar binding at the boundaries must necessarily result
in the slope of molecules with opposite signs on the two
boundaries (a configuration). This configuration
unavoidably leads to the energy of elastic deformation
of the director being proportional to 1/L. This configu-
ration is energetically unfavorable for thin films, where
a transition to the s configuration must take place with
the gain in the deformation energy exceeding the loss in
the energy of polar binding.

In this study, the consideration was restricted to a
“minimal” model describing the transition from the
state with transverse polarization to that with longitudi-
nal polarization. However, the possibility of a micro-
scopic anticlinic configuration (with δϕ = π for the
adjacent layers) pointed out in the Introduction requires
taking into account both the ferroelectric polarization
P0 and the antiferroelectric polarization Pa. The possi-
bility of additional interactions and the manifestations
of discreteness in thin films may give rise to a richer
pattern of phenomena with finer effects as compared to
those described and explained in this paper. For exam-
ple, the observed dependence of the surface phase tem-
perature on the film thickness in thick samples cannot
be rationalized within the framework of a simple theory
describing only the a configuration. However, on
assuming the existence of an configuration, behavior
of the transition temperature—a quantity extremely
sensitive to the variation of parameters—can be
explained only by explicitly considering the corre-
sponding energy contributions.

Unfortunately, the experimental method employed
(in fact measuring only the tilt angle averaged over the
whole film) is incapable of distinguishing between
many microscopic configurations. For this reason, we
declined from considering such problems in more
detail.
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Abstract—A dynamic theory of heteronuclear spin systems in solids at high temperatures is developed. A sys-
tem of nonlinear integral equations for the spin time correlation functions is derived in the self-consistent fluc-
tuating local field approximation taking into account corrections for the correlated local field fluctuations in real
crystal lattices. The theory is applied to interpretation of the experimental data available for a LiF crystal rep-
resenting a system with the nuclei of two types. The signals of free precession for Li and F nuclei, as well as
the spectra of harmonic cross-relaxation, cross-polarization of the 6Li isotope, and depolarization of the 8Li iso-
tope, were calculated for the magnetic field oriented along the principal crystallographic axes of LiF. The results
of calculations show good agreement with experiment. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experiments involving NMR in solids provide,
depending on the selected method of signal registra-
tion, the spectra of various time correlation functions
(TCFs). In the simplest case, this is the NMR absorp-
tion spectrum representing the Fourier image of a TCF
called the signal of free precession, which can be
directly recorded in standard pulsed NMR spectrome-
ters. Using more sophisticated experimental schemes, it
is possible to measure different variants of the cross-
relaxation spectra.

The use of various cross-relaxation techniques
sharply increased the sensitivity of NMR measure-
ments, allowed the spectra of nuclear isotopes with low
natural occurrence to be studied, and led to the develop-
ment of two-dimensional (2D) and three-dimensional
(3D) NMR Fourier transform spectroscopy that are
very important for some applied (predominantly struc-
tural) investigations (see, e.g, [1]).

The cross-relaxation spectra, as well as all other
NMR spectra of solids, reflect the process of attaining
equilibrium in a system of many interacting bodies
under various conditions. Therefore, the problems of
describing the shapes of the TCF spectra measured by
various NMR techniques are essentially the partial
cases of a central problem of nonequilibrium statistical
mechanics. In heteronuclear systems (i.e., in substances
containing nuclei of various types with significantly
different Larmor frequencies), an important role in the
process of attaining equilibrium between various sub-
systems belongs to the shape of far branches (wings) of
the spectra, as characterized by the rate of decay with
increasing frequency detuning. The corresponding bib-
liography and an analysis of the relevant experimental
data can be found in [2].
1063-7761/01/9303- $21.00 © 20542
It must be noted that a correct calculation of the
shape of the wings poses significant additional require-
ments to the theory as compared to the approach to cal-
culation of the central part of the spectrum (cf. [3–5]
and [6]).

In 1969, McArthur, Hahn, and Walstedt [7] experi-
mentally observed for the first time an exponential
decay of the cross-relaxation rate with increasing
detuning under double resonance conditions at large
detunings (on the wing of the spectrum). Subse-
quently, the exponential shape of wings of the NMR
spectra was repeatedly observed in experiment for
numerous solids studied under various NMR tech-
niques (see, e.g., [2, 8]).

The first qualitative explanations of the observed
experimental facts were proposed in [6, 9] for homonu-
clear spin systems and in [2] for the heteronuclear case.
The theory developed in [2, 6] was based on the dia-
gram expansion of TCFs, with the main approximation
adopted there assuming the presence of an infinitely
large number Z of the equivalent nearest neighbors sur-
rounding a given nucleus in the sublattice, which was
achieved in the limit of the space of infinite dimension
(d  ∞). All characteristics of the system were
expressed through a single scaling parameter, the sec-
ond moment of the spectrum.

For a heteronuclear spin system considered in [2] in
the same approximation as that used for the homonu-
clear case in [6], we obtained analytical estimates of the
frequency asymptotes of the TCF spectra observed in
various NMR experiments involving Li nuclei, which
were performed predominantly with the external mag-
netic fields oriented along the [111] direction of a LiF
crystal—a traditional model crystal with a heteronu-
clear spin system. The agreement between theory and
001 MAIK “Nauka/Interperiodica”
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experiment was achieved in [2] only on a qualitative
level.

In this study, much more correct results were
obtained owing to the transition to real 3D lattices (d =
3). Now it is possible, in particular, to follow the pre-
asymptotic behavior of the wings. This is important in
most cases for description of the available experimental
data, for example, of the β-NMR spectra reported in
[10, 11].

2. MAIN EQUATIONS FOR TIME CORRELATION 
FUNCTIONS

As is well known [3], the main interaction responsi-
ble for broadening of the NMR spectra in nonmetallic
diamagnetic solids, thus determining both dynamic and
thermodynamic properties of the nuclear spin sub-
system, is the secular part of the magnetic dipole–
dipole interaction between nuclei:

(1)

(2)

Hamiltonian (2) describes the interaction inside a
(homogeneous) spin subsystem containing the nuclei of
type α, while

(3)

is the secular part of the (heterogeneous) magnetic
dipole–dipole interaction between nuclei of types α and

β. As usual, the dipole coefficients  and  are
determined by the mutual arrangement of interacting
spins and by the direction of external magnetic field [3]:

(4)

Here, we use the standard notation [3]: rij is the internu-
clear radius vector connecting ith and jth spins; θij is the
angle of this vector relative to the external magnetic
field; and γα and γβ are the gyromagnetic ratios of the
nuclei of types α and β, respectively.

The Fourier image of the NMR absorption spectrum
for the nuclei of type α, representing the free precession
signal arising upon application of a π/2 pulse to the
equilibrium spin system, is proportional to TCF:

(5)
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where  is the total x component of the spins of type

α and  function is a solution to the Heisenberg
equation

(6)

with Hamiltonian (1). Below, we will also use the sup-
plementary autocorrelation functions for the longitudi-
nal and transverse components of individual spins:

(7)

(8)

The transverse local field components are deter-
mined by the interaction with spins of the same type,

(9)

whereas the longitudinal local field components con-
tain a contribution due to the interaction (3) between
spins of different types,

(10)

Previously [2, 12–14], we demonstrated that the corre-
lation functions of the local field components (9) and
(10) in a system with large number Z (Z  ∞) of the
equivalent nearest neighbors surrounding a given spin
in the lattice are proportional to TCFs (7) and (8):

(11)

(12)

where E is the unit matrix and

(13)

are the average squares of the two contributions to the
local field component at the spin of type α. Analogous
expressions for the field components at the spins of type
β are obtained by the obvious change of indexes. A rea-
son for rejecting the cross-correlation contributions
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proportional to terms of the type Sp{ } in
TCFs (11) and (12) is the structure of the coefficients of
expansion in powers of time for these functions.

A coefficient at the zero power of time in the cross
TCF is zero, while that at the autocorrelation TCF is
unity. The ratio of the quadratic terms is determined by
the ratio of lattice sums of the type [2]

(14)

For cubic lattices of the NaF and LiF types in an exter-
nal magnetic field oriented along the crystallographic
directions [100], [110], and [111], this ratio is very
small (see Table 2 below). The coefficients at high pow-
ers of time contain more complicated lattice sums.
However, the structure of the expansion coefficients for
the cross TCFs is such that the corresponding lattice
sums necessarily contain a loop of bonds, while the
contributions to the autocorrelation functions involve
the terms possessing a treelike (loopless) structure.
Estimates and numerical calculations showed [2] that,
for large Z (d  ∞), an increase in the size or number
of loops in the lattice sum only increases the difference
of values of the lattice sums of the two types.

In the case of a heteronuclear spin–spin interaction
described by Hamiltonian (1), a TCF of the product of

more than two local field operators  represents a
sum of the products of all possible pairwise averages
(11) and (12) [2], analogous to those in the homonu-
clear case [12, 13].

This property, together with the independence of
various contributions to the local field, is essentially a
definition of the Gaussian stochastic process [15]. In
the case when the time variation of contributions to the
local field is caused by the spin–spin interaction (1), it
is the rejection of lattice loops that leads to the indepen-
dence of fluctuations. The condition of absolute inde-
pendence of the time fluctuations of the local field com-
ponents is, strictly speaking, valid only for the model
lattices in which the infinite limit with respect to the
number of nearest neighbors Z is achieved in the infi-
nite limit of the space dimension (i.e., in hypercubic lat-
tices of large dimensionality), rather than in the limit of,
for example, infinite radius of the interaction.

Nevertheless, we will assume (based on the afore-
mentioned numerical estimates and the results of lattice
sum calculations in various cases) that the local mag-
netic field acting upon a spin in a cubic lattice is a three-
dimensional (three-component) Gaussian stochastic
field.

Equations for the TCF of a spin precessing in an
arbitrary Gaussian stochastic field were derived in [13].
Taking into account that, in a heteronuclear spin sys-
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tem, such equations should be written for the spins of
each type, we arrive at a system of integral equations

(15)

where index α enumerates the spin subsystems and
index q = 0, z, … refers to the spin projections (0 is the
x component of the spin; the x component of the total
spin enters into these equations without index). The

memory function  is determined by an infinite
series [2]. Without losing generality, below we will
assume the system to contain the spins of only two
types.

Equations (15) were derived for the interaction with
an arbitrary magnetic anisotropy. Using axially sym-
metric Hamiltonian (1), with the purpose of taking into
account predominantly the longitudinal local field com-
ponent, significantly improves convergence of the
series for the memory function in a homonuclear spin
system [5, 6, 16–18].

In connection with this, by analogy with [2, 6, 17],
it is expedient to transform Eqs. (15) to the following
form:

(16)

where

(17)

is the TCF of a spin rotating in a local field possessing
only the longitudinal component (analogous to that
employed in the Anderson model [19]). Equations for

 are used without transformations.

With a view to describing the experimental results
for LiF crystals, we explicitly write the main equations
for a nuclear spin subsystem of this crystal in the lowest
approximation for the memory function:
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(18)

Here and in what follows, indexes 1 and 2 refer to lith-
ium and fluorine nuclei, respectively.

Table 1 presents the quantities  in Eqs. (11)–
(13) and (18) calculated for three main orientations of
the constant magnetic field relative to the principal
crystallographic axes using the lattice sums taken from
[20]. The moments were calculated with neglect of the
6Li isotope. Consequences of the presence of a small
amount of 6Li nuclei (natural occurrence, 7.2%) in a
LiF crystal will be discussed below.

3. THE SHAPE OF THE NMR ABSORPTION 
SPECTRA IN LITHIUM FLUORIDE

The orientation dependence of the NMR absorption
spectra of the β-active 8Li nuclei in a LiF crystal was
thoroughly studied in [10, 11]. An extremely high sen-
sitivity of the method employed allowed the shape of
wings of the spectra to be determined with high preci-
sion: this point was given special attention in the papers
cited.
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Since the sensitivity of the β-NMR spectroscopy
allows the absorption signals to be measured for a sin-
gle nucleus (under real experimental conditions, the
number of 8Li nuclei simultaneously present in the
sample does not exceed 108), we will assume that a
local field acting upon the 8Li nuclei has only the longi-
tudinal component. Therefore, the 8Li NMR absorption
signal is adequately determined by the Anderson TCF
of the type G(1)(t) from system (18), since the probabil-
ity of finding nearest neighbors of the same type is very
small (due to the small concentration of 6Li and 8Li in
the sample).

At the same time, we should take into account a dif-
ference between the time scales of decay of the TCF

G(1)(t) for 7Li and 8Li. The ratio of the  values for
these nuclei is

(19)

The same value is obtained for the ratio of exponents of
TCFs in system (18). From this, we derive a simple
relationship between the correlation functions proper:

(20)

For calculating the β-NMR absorption spectra, we
numerically solved the system of interrelated integral
equations (18). The solution was obtained by the itera-
tion method, with the initial approximation for G(α)(t)
functions taken in the following form:

(21)

Upon substituting functions (21) into system (18), we
may start the iterative procedure. For large times, a dif-
ference between the decay rates of TCFs of the trans-
verse and longitudinal spin components may lead to the
instability development. When the signs of instability
appeared, the iterative procedure was terminated and
new initial TCFs were taken equal to the G(α)(t) func-
tions numerically calculated by that time instant, which
significantly increased the time interval for stable cal-
culations. In this way, the TCFs were calculated over
the time interval from 0 to 800 µs for the three main ori-
entations of the constant magnetic field relative to the
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Table 1.  Average squares of the homo- and heteronuclear
contributions to the longitudinal local fields in LiF

Quantity H0 || [111] H0 || [110] H0 || [100]

, (rad/s)2 2838 × 106 2581 × 106 1809 × 106

/ 0.3065 1.9559 9.7209

/ 0.0613 0.3912 1.9444

/ 0.1455 0.1455 0.1455
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Fig. 1. The β-NMR spectra of 8Li nuclei in LiF for the external magnetic field oriented along (a) [100], (b) [110], and (c) [111]
crystallographic directions. Points present the experimental data taken from [10, 11]; solid curves1 show the Fourier images of the
right-hand part of formula (20) for the TCFs calculated using system (18); dashed curves 2 and 3 are calculated using an asymptotic
formula from [2] with τ0 = 55 and 45 µs, respectively.
t, µs
0

1 2

3
4

3

4

×10
(c)1

40 80 120 160 200

2

1

–1

0

0

1

24

3

4

×10

(b)1.0

40

1, 2, 3

–0.5

0

20 60

0.5

É
(1

)

0

1

23

4

3

4

×10(a)0.8

40 80 120 160

2
1

–0.8

0

É
(1

)
É

(1
)

t, µs

t, µs

Fig. 2. Free precession signals of 7Li nuclei in LiF for H0 ||
[100] (a), [110] (b), and [111] (c). Curves 1 present the
experimental data from [22]; curves (2–4) show the results
of calculations using (2) formula (28), (3) formula (25) with

A2 = 1.25 , and (4) formula (25) with A2 = 0.5 . Since

some of the curves virtually coincide, amplitudes behind the
vertical dashed lines are increased by a factor of 10.

∆11
2 ∆11

2

JOURNAL OF EXPERIMENTAL
principal crystallographic axes. Then the NMR absorp-
tion spectra were numerically calculated by conducting
the Fourier transformation. The results of calculations
are presented in comparison to the experimental data in
Fig. 1. As can be seen, the calculated shape of wings in
the TCF G(1)(t) spectra fits well to the experimentally
measured values [10, 11].

Unfortunately, no detailed experimental investiga-
tions of the ordinary NMR absorption spectrum shape
(including wings) were performed on a level compara-
ble to that achieved for the homonuclear system of
spins [8, 21] in a simple cubic lattice of the CaF2 type.
However, the signals of free precession from 7Li and
fluorine nuclei measured over a time interval contain-
ing 2–3 zeros for the main orientations of the constant
magnetic field were reported in [22]. The observed sig-
nals were described by the correlation functions Γ(t).
For calculating these functions, system (18) must be
supplemented by a pair of the corresponding equations.
The necessary equations can be obtained from the two
last equations in system (18) by substituting 5/4 for the
coefficient at the integral. Figures 2 and 3 show the free
precession signals calculated using these equations and
system (18) in comparison to the experimental data
taken from [22]. As is seen, there is only a qualitative
agreement between the experiment and our calculation.
This result is by no means surprising because, in con-
trast to the wings the character of which is determined
predominantly by the multispin combination processes
involving only spins in a far environment [6, 17], the
central part of the NMR spectrum (responsible for
oscillations in the free precession signal) is determined
by interactions with the nearest neighbors, the number
of which Z is finite rather than infinite, as was assumed
in deriving system (18). For example, the spectrum of
the longitudinal component of the local field created by
such neighbors is binomial (rather than Gaussian) with
considerable discreteness (ignoring the transverse flip-
flop interaction [23, 24]).
 AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001
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For this reason, the “free-particle Green’s func-
tions” introduced in [16, 17] have to be replaced for the
nearest neighbors, in the simplest case (see the consid-
erations below), by TCFs corresponding to a binomial
distribution

(22)

(23)

(24)

where subscript 0 refers to a certain fixed spin type α
and indexes f and l run over values corresponding to the
fluorine and lithium positions, respectively.

By analogy with what was done for the homonu-
clear spin system [6, 17], Eqs. (18) derived for a heter-
onuclear system can be linearized. For the free preces-
sion signals, we obtain an equation of the pairwise
interaction model [5, 6, 17, 23, 25]:

(25)

It should be emphasized that the nonlinearity of sys-
tem (18) was of principal significance for correct
description of the wings of the TCF spectra [2, 6,
17].

Generally speaking, the binomial spectral compo-
nents of TCFs (23) and (24) must be broadened as a
result of the transverse interactions of spins creating a
local field at the selected spin. Methods of taking into
account the effect of the transverse interaction on the
longitudinal local field component are considered
below (see the section devoted to the three-spin cross-
relaxation, Eqs. (43)–(46)).

The simple Eq. (25) provides for a quite good agree-
ment with experiment when a binomial distribution is
used as the initial spectrum in the iterative procedure.
However, the agreement can be improved by taking into
account corrections to the irreducible operator G(α)(t)
due to the four-vertex irreducible diagrams [6, 17].
Since the structure of these corrections is rather compli-
cated [6] and depends significantly on the selection of
the initial approximation, we will employ a modified
equation for the free precession signal in LiF with a
much simpler form of corrections:

(26)
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where Rαα(t) is obtained from  entering into (22)

by substituting λ  for . Correctness of the sec-
ond moment of the spectrum is ensured by a strict rela-
tionship between the parameters k(α) and λ in Eq. (26):

(27)

Equation (26), which was originally used for
description of the free precession signal in [18, 26, 27],
satisfactorily described this signal in CaF2 with λ =
1.225 and 1.19.

For determining the corrections to Eq. (26), we rep-
resent (by analogy with what was done in the case of a
homonuclear system [8]) G(α)(t) as a solution to
Eq. (15) with the nucleus Q(α)(t) determined by the
series K(α)(t) with rejected terms due to the vertices cor-

Rαα' t( )

b0k
αβ( ) b0k

αβ( )

k α( ) 9

4λ2 1–
-----------------.=

0

É
(2

)

t,  µs
20 40 60 80

1

2

3

4

3
4

×10
(c)

1.0

0.5

0

–0.5

0

É
(2

)

20 40 50

12

3
4

3

4 ×10
(b)0.8

0.4

0

60 703010

–0.4

–0.8

0

É
(2

)

10 20 30 40

12

3
4

×10

(a)0.8

1

20.4

–0.4

0

t,  µs

t, µs

Fig. 3. Free precession signals of 19F nuclei in LiF. Notation

is the same as in Fig. 2, except for A2 = 1.25  (3) and

0.5  (4).

∆22
2

∆22
2

SICS      Vol. 93      No. 3      2001



548 ZOBOV et al.
responding to the interaction between transverse spin
projections and the longitudinal projections multiplied
by the factor λ. Combining the Laplace transforms of
Eq. (15) and (26), we obtain

(28)

where

Equation (28) is formally exact, provided that complete
series are retained for K(α)(t) and Q(α)(t), and allows the
required corrections to be determined. Acting as in the
case of the homonuclear system [8], we obtain for the
contribution of four-vertex diagrams to Φ(α)(t)

(29)

Appendix B gives expressions that can be used for com-
paring the exact contributions to the fourth moment of
the spectrum to the approximate contributions deter-
mined using Eq. (28).

The parameter k4, ensuring correctness of the homo-
nuclear contribution to the fourth moment of the spec-

trum, is k4 = 9S3/8 , where S3 and S1 are the lattice
sums calculated in [20] (see also Appendix B). Explicit
expressions for the nucleus of Eq. (28) employed in the
calculations for three main orientations of the external
magnetic field are presented with the corresponding
constants in Appendix A.

As can be seen in Fig. 2, the solution of Eq. (28) pro-
vides for a rather good agreement with experimental
data for the free precession signal [22].

4. THE RATE OF THREE-SPIN 
CROSS-RELAXATION IN LITHIUM FLUORIDE

Here, we will consider the process of three-spin
cross-relaxation in LiF between the Zeeman sub-
systems of 7Li and 19F nuclei depending on the applied
constant magnetic field H0. This process was experi-
mentally studied by Pershan [28]. According to the
thermodynamic theory [29, 30], employing methods of

Γ α( ) t( ) Rαβ t( )Rαα t( )=

+ k α( ) Rαβ t'( )Ṙαα t'( )Γ α( ) t t'–( ) t'd

0

t

∫

– Φ α( )

0

t

∫ t t'–( )Γ α( ) t'( )dt',

Φ α( ) t( ) K α( ) t'( ) Q α( ) t'( )–{ } G α( ) t t'–( ) t'd

0

t

∫=

+ k α( )Rαβ t( )Ṙαα t( ).
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perturbation theory (the applicability of which
improves with increasing detuning), the cross-relax-
ation rate is described by the expression

(30)

where

(31)

(32)

. (33)

Here V+ is the operator responsible for the cross-relax-
ation processes [28, 30] in the second order of pertur-
bation theory and V– is the Hermitian conjugate to V+.
The coefficients Cij/k represent the products of various
coefficients of the nonsecular part of the dipole–dipole
interaction inducing the process of simultaneous rever-
sal of two 7Li nuclei and one fluorine nucleus. In the
notation of [28], these coefficients are as follows:

(34)

where ω1 = γ1H0 and ω2 = γ2H0. The quantity A in for-
mula (30) is the square modulus of the matrix perturba-
tion element (33). The frequency ω in Eq. (31) is deter-
mined by the relationship

(35)

and f(ω) is the form function of the cross-relaxation
spectrum, which is normalized to unity with respect to
the area under curve. The time dependence of operator
V+(t) in formula (32) is determined by the secular part
of the dipole–dipole interaction (1).

Upon rejecting the lattice sums with loops and other
small terms, we arrive at an expression [2]

(36)

which is valid in the same approximation as is system
(19). The TCF spectrum calculated by Eq. (36) with the
aid of system (18) is presented in Fig. 4; as is seen, this
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Fig. 4. Wings of the three-spin cross-relaxation spectra of LiF calculated for the external magnetic field oriented along (a) [100],
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ν1'
approximation provides for only a qualitative agree-
ment with experiment [28].

The main reason for the lack of a quantitative fit of
this theory to experiment is that the three-center corre-
lation function (32) exhibits an extremely high sensitiv-
ity (related to spatial correlations of the local fields)
with respect to details of the crystal lattice topology
(this sensitivity is much more pronounced as compared
to that of the one-center function G(1)(t) in system (18)).
For a limited number of nearest neighbors, the descrip-
tion of NMR spectra for a particular LiF lattice in terms
of Eq. (19) requires certain corrections.

First, it is necessary to modify the second moment
of the resulting spectrum as indicated by Pershan [28].
Let us study how much it is necessary to calculate cor-
rections in the simplest case of a constant longitudinal
field, that is, when the analysis is restricted to only the
Hzz interaction in Hamiltonian (1):

(37)
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In Eq. (37), indexes f and k run over values correspond-
ing to the positions of fluorine nuclei, while l, i, and j
refer to the lithium positions. The dipole–dipole inter-
action coefficients {bmn(k)} are obviously expressed
through the above-introduced coefficients of Hamilto-
nian (1). These coefficients are proportional to the val-
ues introduced by Pershan [28]:

In this approximation, the resulting cross-relaxation
spectrum is obtained by summing all three-center func-

tions  over the lattice with the weights

, where an asterisk denotes the com-
plex conjugate. Of course, the presence of a transverse
interaction and local field fluctuations will result in
replacing cosines in (37) by much more complicated
constructions varying depending on the particular tri-
ads. However, the aforementioned correlation effect is
qualitatively well illustrated by relationship (37).

The approximation of uncorrelated local fields implies
that we ignore in (37) both the interaction between spins i,
j, k and the interaction of these spins with nearest neigh-
bors. Since each of the spins i, j, k in this approximation is
surrounded by a different set of neighbors, the TCFs
G0(i, j, k, F|t) and G0(i, j, k, L|t) split into the products of
separate contributions due to spins i, j, k:

(38)

where Rαβ(t) are the functions determined above (see
also Appendix B).
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Table 2.  Parameters of the local field fluctuation decrease and the corresponding lattice sum ratios

Quantity
H0 || [100] H0 || [110] H0 || [111]

fcc fcc' fcc fcc' fcc fcc'

S2/ 0.068 – 0.225 – 0.066 –

/ – 0.239 – 0.182 – 0.126

S3/ 0.226 – 0.099 – 0.144 –

/ – 0.071 – 0.087 – 0.288

ν 0.71 – 0.68 – 0.79 –

ν' – 0.93 – 0.91 – 0.71

S1
2

S2
' S1

'2

S1
2

S3
' S1

' S1
Taking into account the spatial correlation effects
for the ratio of second TCF moments (37) and (38), we
obtain (see Appendix B)

depending on the external field orientation (  is the
second moment determined with the corrections
described above). As can be seen in Fig. 3, introduction
of the scaling factor significantly improves the agree-
ment of theory and experiment.

Besides changing the second moment of the TCF
spectrum, the aforementioned correlation effect leads
to a decrease in the magnitude of fluctuations in the
local field acting upon the selected spin in a real lattice
[8] as compared to that determined in the approxima-
tion of an infinite number of neighbors. For elucidating
this effect, let us consider the TCF of a longitudinal
local field component in a lattice of finite dimension:

(39)
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Table 3.  Parameters of the second moment decrease due to
the correlation effects and the corresponding lattice sum
ratios

Quantity H0 || [111] H0 || [110] H0 || [100]

C 1.14 1.35 2.35

C' 20.71 2.74 0.0742

E 5.276 5.70 7.708

/ 0.0378 0.148 0.0499

/ 0.741 0.179 –0.0410

δ 0.73 0.64 0.86

S3
'' S1

'2

S3
''' S1

'2
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The first term in (39) contains the autocorrelation func-
tion of the z projection of spin j for the β-type nuclei.
The second term contains the cross TCF of two spins j
and k of the same type β, since the flip-flop transitions
between spins of various types were ignored. The slash
in the subscript denotes exclusion of the interaction
with the selected spin i. Expression (12) for the main
approximation is obtained from Eq. (39) upon exclud-
ing restrictions concerning the interaction and rejecting
the second term.

For evaluating the effect, let us expand (39) in pow-
ers of time

(40)

where a is the lattice constant (see Appendix B). The

terms S3,  characterize the correlation of contribu-
tions to the local field. Estimates of the correlation
effect with respect to the lattice sums for the second
moment are presented in Tables 2 and 3. Notations for
the lattice sums {Si} are taken from [20]. The effect of
the fluctuation decrease is most readily taken into
account by retaining the form of the field correlator (12)

and taking TCF  in a power of νβ (νβ < 1):

(41)
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The exponents in Eq. (41) can be determined by equat-
ing the coefficients at t2 in the TCF expansions (41) and
(40):

The results of calculations of the parameter of fluctua-
tion decrease are presented in Table 2.

Introduction of the scaling factor δ and/or the expo-
nent ν describing the local field fluctuation decrease
hardly complicates calculation of the spectra as com-
pared to the procedure of solving the initial system
(18). As can be seen from the spectra calculated for the
field oriented along [110] and [111] in Fig. 3, this mod-
ification of the basic theory leads to a good coincidence
with the experimental results. However, description of
the wings for the field oriented in the [100] direction
requires further correction taking into account the crys-
tal structure in more detail.

As demonstrated in Appendix B, the main contribu-
tion to the cross-relaxation rate is due to the spin triads
in Eq. (37) in which two lithium nuclei are connected to
fluorine. For the [100] field orientation, the main con-
tribution in the lattice sum (B.3) is due to the triads of
nearest neighbors with the interaction  directed

along the [100] axis and the interaction  along the
cube diagonal. For the external field oriented along the
[100] direction, the local field from the nuclei of other
type significantly exceeds the homonuclear contribu-
tion. In this heteronuclear interaction, 98% of the con-
tribution to the second moment is provided by the inter-
action with six nearest neighbors. For this reason, the
main correlation effect in (37) consists in excluding the
heteronuclear interaction with spin triad from (38).
Taking these considerations into account, we replace
expression (38) by the following:

(42)

The so-modified functions {R(t)} are determined below
(see formulas (43), (45), and (47)). The homonuclear
contributions to the longitudinal local field component
are still determined using TCFs in the form of Eq. (17).
For the contributions of lithium nuclei to the local field
at fluorine nuclei, let us replace the component G(2)(t)
due to cross interaction by the product of contributions
due to six neighbors (by analogy with formula (24)) and
exclude the “forbidden” contributions from this prod-
uct. As a result, we obtain

(43)

For calculating TCFs {Fql(t)} according to (39) [where
q = 2 for the spins whose internuclear vectors to the
selected spin are parallel to the external field (there are
two such spins) and q = 1 for the spins with perpendic-
ular internuclear vectors (there are four such spins); the
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spin projection is l/2 = 1/2 or 3/2], we use equations of
the type (15):

(44)

where m2 = λ /60 is the dipole–dipole interaction
coefficient renormalized to the factor λ and expressed
in terms of the second moment.

For determining the contributions of fluorine nuclei
to the local field at lithium nuclei, we have to exclude
the local field contribution from a nucleus close to one
of the lithium nuclei (that occurring on the opposite end
of the cube diagonal, which has its own independent
environment). Here, we obtain the expression

(45)

where

(46)

As was noted in Section 3, Eqs. (43–(46) allow us to
adequately take into account the local field fluctuations
producing broadening of the components of binomial
distribution (24), In particular, we obtain an expression
describing the exponential wing of the NMR absorption
spectrum. In the approximation of constant local fields,
the TCFs {Fql(t), Lq(t)} represent usual cosines (Fourier
images of the binomial distribution components) and
R∆(t) is merely the function G0(i, j, k, |t) (for simplicity,
only a strong interaction of the neighboring lithium and
fluorine nuclei is retained):

(47)

The autocorrelation functions  in Eqs. (19) and
(36) are close in form to the Anderson TCFs (17), dif-
fering only in width of the spectrum (by 1/4 fraction of
a small homonuclear contribution to the second
moment). To simplify the calculation, we may replace

the TCF  in (36) by the Anderson functions (43),
(45), and (47) with corrected second moment.

Thus, we have arrived at Eq. (42). Note that, if the
spatial correlation effects in (43) were not taken into
account, this equation would evidently transform into
(38). The results of calculations are presented in
Fig. 3c. As can be seen, the experimental spectrum for
the [100] orientation decays on the wing more rapidly
than does the theoretical curve. A special feature of the
interaction for this orientation consists in that (see Table 1)
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the heteronuclear interaction significantly exceeds the
homonuclear one. The result is unexpected to even a
greater extent, since even the constant longitudinal
local field approximation (37) (essentially using a bino-
mial distribution for description of the spectrum) yields
a wider spectrum poorly coinciding with experiment.
Apparently, the spectrum measured at this orientation
acquires the properties of an inhomogeneously broad-
ened spectrum. The cross-relaxation at the wing
involves a few resonance triads, while the retardation is
related to an insufficient rate of the spectral diffusion of
the main fraction of nuclei toward these triads.

5. CROSS-POLARIZATION 
IN LITHIUM FLUORIDE

The single-spin cross-relaxation processes, usually
referred to as the cross-polarization, seem to be studied
most exhaustively [7, 32–36]. This is related to the fact
that conditions for the observation of this effect are cre-
ated much more readily than the conditions for, e.g.,
three-spin cross-relaxation.

As a rule, the cross-polarization is observed in a
rotating coordinate system. Such experiments are per-
formed with a crystal containing the isotope (with a low
natural occurrence) of a nucleus possessing a nonzero
magnetic moment. Engelsberg and Nordberg [34] stud-
ied the cross-polarization related to the interaction (3)
between nuclei of the rare isotope 6Li and the dipole–
dipole reservoir of 7Li and 19F nuclei. Orienting the spin
quantization axis of 6Li along the blocking field (x axis

0
v , kHz

2 4 6 8
–0.5

–0.9

–1.3

–2.1

–2.5

10

1, 2

3

4

–1.7

F

Fig. 5. A wing of the cross-polarization spectrum of LiF for
the external magnetic field oriented along the [111] direc-
tion. Points present the experimental data from [34]; curve
1 show the Fourier spectra approximated by formula (49)
with TCF calculated using system (19); curve 2 (virtually
coinciding with 1) and curves 3 and 4 are the same spectra
as 1, but calculated with scaling factors (δ) = 1 (2), 0.95 (3),
0.7 (4) and the parameters ν = 0.79,  ν' = 0.71 (2), ν =  ν' =
1 (3), and ν =  ν' = 0.44 (4).
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in the rotating coordinate system), we obtain the pertur-
bation in the following form:

(48)

For a sufficiently large amplitude of the blocking field,

γ3H1 @  (index 3 denotes 6Li nuclei), the
rate of the process is determined by expressions (30)
and (31) with the perturbation (48), ω = γ3H1, and A =

π( ). The correlation function F(t) according
to formula (39) is expressed through the correlation
function of the longitudinal local field at the 6Li
nucleus.

Ignoring the lattice sums with loops (d  ∞), we
obtain

(49)

In a real LiF lattice with the [111] field orientation, the
loops and, hence, the cross-correlation functions pro-
duce a significant contribution (see Table 2). The mag-
nitude of this contribution can be estimated using
expansion (40).

A correction related to the cross TCF is readily
introduced for a far wing of the function (49) deter-
mined by the nearest singular point on the imaginary
time axis [2]. This singularity is in common for all
TCFs related by Eqs. (18). The main parts of the TCF
in the vicinity of this singularity are determined by the
coefficients [2]

(50)

The quantities Czα, τ0, and ζα are determined in [2,
Table 2]. The form of coefficients in the right-hand part
of formulas (50) follows from the equations for this
correlation function and, as can be readily verified, sat-
isfies the condition of conservation of the total z projec-
tion of the total spin
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Substituting (50) into (39) and (31), we obtain

(51)

A decrease in the coefficients leads to lowering of
the wing as compared to the ideal case of the lattice of
infinite dimension. However, the observed results are
not adequately described by the asymptotic formula
(51), because the experiment still did not reach the fre-
quency range corresponding to the far wing of the spec-
trum. For this reason, we calculate the spectrum using
(by analogy to the previous section, see Eq. (41))
expression (49) for F(t) in the form of a sum of the auto-

correlation functions  in a power of να < 1.
Determining να by the first term of the expansion (40)
in powers of time, we obtain the values listed in Table 2.
As can be seen in Fig. 5, this approach provides for a
good agreement between theory and experiment for the
wing of the spectrum.

However, when the amplitude of the blocking field
decreases to a level comparable to the local fields at the
6Li nuclei, the experimental spectrum shows a signifi-
cant decrease in the cross-polarization rate as compared
to the result calculated using perturbation theory. This
is probably related to the fact that, in a weak field, only
a part of the (rather than the whole) perturbation
induces the cross-polarization transitions. Indeed, for a
time on the order of T2, the spin of 6Li rotates about the
effective field vector that is a sum of the field H1

directed along the x axis of the rotating coordinate sys-
tem and a local field directed along the z axis. The cor-
responding transient magnetization oscillations are
well known [37]. After the establishment of a quasi-
equilibrium, the spin of 6Li is directed along the effec-
tive field making an angle below 90° to the z axis. Thus,
rotations of the 6Li spin are induced by a part of the
local field perpendicular to the effective field, rather
than by the whole local field. However, it should be
noted that the local field consists of the components
created by the 19F and 7Li nuclei. As is seen from the
data in Table 1, the field of the 19F nuclei is smaller than

that of the 7Li nuclei (  < ) but varies at a much

greater rate in time (  ! ) The rapidly fluctuating
field generated by fluorine nuclei is not involved in the
effective field formation and does not contribute to
decrease in the magnitude of interaction (as it was in
the experiments with CaF2 [7]). At the same time, the
field created by the 7Li nuclei may well account for the
effects under consideration.
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6. CONCLUSION

In concluding, it should be noted that the approach
developed above offers a rigorous microscopic theory
for model lattices of infinite dimension. For real sys-
tems, the theory is essentially a self-consistent Gauss-
ian fluctuating local field approximation. The proposed
modification of the general theory allowed us to pass to
real three-dimensional lattices, and the introduced cor-
rections provided for an adequate description for
almost all of the classical experiments with LiF crystals
representing a heteronuclear spin system. Apparently,
only description of the three-spin cross-relaxation spec-
tra for the [100] field orientation requires some addi-
tional refinement.

A principal distinctive feature of the proposed
approach is that all results necessary for the description
(at least qualitative but, after small correction, quantita-
tive as well) of the TCF spectra (both considered above
and any other) immediately follow from the theory
without additional assumptions. Therefore, the theory
is closed. The proposed theory provides a common
basis for interpretation of the TCF spectra observed by
various methods, predicting an exponential decay on
the wing with a common exponent for all TCF of a
given crystal.
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APPENDIX A

Here we present explicit expressions for the mem-
ory function entering into Eq. (28) for various orienta-
tions of the external constant magnetic field relative to
the crystallographic axes used in our calculations.

Fluorine nuclei

H0 || [100]:

G 2( ) t( ) R21 t( )R22 t( ), R22 t( ) –λ2∆22
2

t2/2{ } ,exp=
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where d' = 0.98 is the fraction in the second moment
due to the six nearest neighbors selected. Here and
below, the dipole–dipole coefficients are expressed in
fractions of the second moment given in Table 1.

H0 || [110]:

H0 || [111]:

Lithium nuclei

H0 || [100]:
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H0 || [110]:

H0 || [111]:

APPENDIX B

Stokes and Ailion [20] calculated several lattice
sums that are important for understanding the spin–spin
relaxation processes taking place under the action of
homo- and heteronuclear interactions described by the
dipole–dipole Hamiltonian (1):
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(B.1)

where a is the lattice constant. For the LiF crystal under
consideration, the summation index in the expressions
for Si (B.1) corresponds to the sites of the fcc lattice
occupied by the spins of one type and that in the expres-
sions for , to the sites of the fcc' lattice occupied by
the spins of another type. Here and below, we retain the
notation as in [20]. Since the formulas for the cross-
relaxation (e.g., (33)) include the terms of the nonsecu-
lar interaction, we obtained the lattice sums with a dif-
ferent angular dependence:
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and the sum

corresponding to the previous angular dependence (not
presented in [20]). These lattice sums, calculated for
ten coordination spheres (containing 213 neighbors),
are presented in Table 3.

The three-spin interaction in (33) is represented by
the sums of two terms with the coefficients αik/j and βik/j
differing qualitatively by the positions of fluorine
nuclei: Li–F–Li and F–Li–Li. Using the above lattice
sums, we can estimate the ratio of the aforementioned
contributions to the square modulus of the matrix ele-
ment of the cross-relaxation interaction in (30) for these
lithium–fluorine configurations. This ratio amounts to
2.7 for H0 || [100], 6.3 for H0 || [110], and 1.4 for H0 ||
[111]. Therefore, the maximum contribution to the
cross-relaxation rate is due to the Li–F–Li configura-
tion. This contribution in (30) is proportional to the lat-
tice sum

(B.3)

In (B.3), the lattice sum with one summation is much
smaller compared to the first term and will be ignored
below.

Let us estimate a decrease in the second moment of
the cross-relaxation spectrum in the constant local field
approximation for the (B.3) contribution. Taking the
coefficient at t2/2 in the cosine expansion (37), multi-

plying this coefficient by , and summing over
i and j, we obtain a large number of lattice sums corre-
sponding to different schemes of bonding. For illustra-
tive purposes, we pass to the graph representation. The
sites occupied by lithium and fluorine atoms are
denoted by black and open circles, respectively. The

bonds , , and  = –4  are indicated by

solid lines, and , by dashed lines. In this notation,
the contributions of terms without loops are as follows:
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For the terms with a loop of three sites, we obtain

(B.5)

The terms with a loop of four sites will be ignored.
Expressing the terms in (B.4) through the lattice sums
presented above, we obtain

(B.6)

where the last term represents a sum of the last diagram
(B.4) with compensating corrections arising during the
transformation of the lattice sums to the first and penul-
timate diagrams. The other compensating corrections
are small and can be ignored.

By the same token, we obtain

(B.7)

As pointed out above, the correlations vanish in the

limit of {Z, d}  ∞. In this limit, the ratios ,

, , and the like go to zero. Therefore, in the
absence of correlations, we obtain

(B.8)

The coefficient δ describing a decrease in the second
moment due to the correlation effects is equal to the ratio
of the sum of contributions (B.6) and (B.7) to (B.8). Mak-
ing these calculations, we obtain (see Table 3):

(B.9)

In concluding, we also write for the convenience of
readers the expressions for the first two moments of the
NMR absorption spectrum [38] of LiF in the notation
adopted in this paper:
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and an expression for the fourth moment following
from the solution of Eq. (28):

This is the general result taking in account fluctuations
of the longitudinal local field component. A transition
to the static (binomial) distribution of the longitudinal
local fields is performed as νa tends to zero.
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Abstract—We studied the nature of the effect of medium-energy ion implantation on the defect system of a
crystal target over distances exceeding by three to four orders of magnitude the average projected range of ions
in the target material. Recently, we discovered an especially strong manifestation of this long-range effect in
crystal targets: argon ion bombardment stimulated the formation of a Si3N4 phase in nitrogen-saturated layers
of a silicon wafer, the effect being observed at a distance of up to 600 µm away from the ion stopping zone. An
analysis of changes in the electrical and optical properties of the nitrogen-saturated layer depending on the
argon ion dose, in comparison to the morphology development on the ion-irradiated silicon surface, suggests
that sufficiently effective pulsed sources of hypersonic (in the initial propagation stage) shock waves appear in
the Ar+ ion stopping zone. These shock waves arise as a result of the jumplike formation and evolution of a
network of dislocation loops and argon blisters, accompanied by explosions of the blisters. These processes
probably proceed in a self-synchronized or spontaneous manner. Argon in the blisters occurs at T = 773 K in a
solid state under a pressure of 4.5 × 109 Pa, the blister energy reaching up to 5 × 108 eV. Estimates show that
the synchronized explosions of blisters in the region of a nitrogen-saturated layer at the rear side of a 600-µm-
thick silicon wafer may produce a peak pressure at the wave front exceeding 108 Pa, which is sufficient to cause
the experimentally observed changes. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

About three decades ago, investigations involving sili-
con crystals irradiated by argon ions at an average energy
of 40 keV and an ion flux density of 5 × 1013 cm–2 s–1

revealed the motion of dislocations over distances of
several hundred microns, which is three to four orders
of magnitude larger than the average projected range Rp

of ions in the target material [1, 2]. Subsequently, it was
established that the long-range effect is also manifested
by a redistribution of interstitial impurity (chromium
and iron) atoms possessing diffusion mobility in silicon
at room temperature [3, 4]. Then, it was found that the
long-range effect can also lead to a redistribution of
impurities more tightly bound to a target crystal lattice,
in particular, impurity atoms of the iron group in A3B5

compounds (GaAs, InP, GaP) [5, 6]. It was established
that the irradiation with 40-keV argon ions can stimu-
late the process of oxygen redistribution in silicon [7]
and even the formation of a stoichiometric Si3N4 phase
in SixNy layers in silicon crystals saturated with nitro-
gen during preliminary irradiation with nitrogen ions
[8, 9].

In this paper, we will consider the nature of the long-
range effect of medium-energy ion irradiation taking
into account the laws of the Si3N4 phase formation and
the results of a recent atomic force microscopy (AFM)
investigation [10] of a silicon crystal surface irradiated
with argon ions. We believe that most probable is an
1063-7761/01/9303- $21.00 © 20558
acoustic mechanism of the long-range effect. A signifi-
cant increase in the electric resistance and the charac-
teristic (for Si3N4 phase) optical absorption in the nitro-
gen-saturated silicon layer is observed (together with
the aforementioned manifestations of the long-range
effect) in silicon crystals irradiated with inert gas ions to a
total dose of Φ ~ 1016–1017 cm–2. For Φ ≥ 1016 cm–2, a net-
work of dislocation semiloops arises under the argon-
implanted layer, while the coalescence of incorporated
argon in this layer leads to the formation of large gas bub-
bles called blisters. It is suggested that, as the ion dose Φ
increases, the jumplike processes of the formation and
evolution of the dislocation network and gas blisters and
the explosion of blisters give rise to the acoustic pressure
pulses. In all stages of this process, the pulsed pressure
exhibits amplification due to self-synchronized or sponta-
neous character of the jumplike events.

A comparative analysis of the visible dimensions of
blisters (or craters formed upon blister explosions) in
the AFM images, the balance of implanted argon, and
the melting and boiling temperatures of inert gases as
functions of the pressure indicates that a static pressure
of argon in a blister immediately before explosion may
reach up to 4.5 × 109 Pa. This peak pressure level is
close to that typical of the strongest packets of hyper-
sonic shock waves (in the initial propagation stage)
with a duration of 3 × 10–9 s detected after blister explo-
sions. Estimates showed that a peak pressure after a
001 MAIK “Nauka/Interperiodica”
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spontaneous blister explosion in the nitrogen-saturated
layer at the rear side of a 600-µm-thick silicon wafer
reaches 107–108 Pa. Thus, the known [11] threshold
pressure (107 Pa) of nitrogen necessary for initiating the
reaction of Si3N4 phase synthesis in a silicon powder
under static conditions at 300°C is reached.

It must be noted that successful experiments on the
synthesis of a dielectric Si3N4 phase, as well as elucida-
tion of the nature of the long-range effect of ion irradi-
ation, are important both for applications (development
of the silicon-on-insulator technology for microelec-
tronics) and for the fundamental knowledge of the ion
sputtering processes, radiation damage and fracture of
materials, and extremal properties of materials (high-
energy materials science).

Si3N4

Ar+N+

W = 600–700 µm

Fig. 1. Schematic diagrams illustrating the double sequen-
tial irradiation of silicon samples with nitrogen and argon.

Nitrogen saturation conditions: E = 150 keV;  = 370 nm;

∆Rp = 90 nm; Φ = (1–5) × 1017 cm–2; Timp, room tempera-

ture. Argon irradiation conditions: E = 40 keV;  = 41 nm;

∆Rp = 18.1 nm; Φ = (1015–3 × 1017) cm–2; Timp = 500°C.

Rp
N

Rp
N
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2. EXPERIMENT DESCRIPTION 
AND PRELIMINARY REMARKS

The experiments involving double sequential irradi-
ation with nitrogen and argon (Fig. 1) were performed
on 600- to 700-µm-thick single crystal silicon wafers,
representing the materials both with high resistance
(100 Ω cm n-Si or 2000 Ω cm p-Si) used for the optical
absorption measurements and with very low resistance
(0.005 Ω cm n-Si) for the electrical measurements. In
the first stage, a silicon wafer was irradiated from one
side with 40- or 150-keV nitrogen ions at a dose of up
to 5 × 1017 cm–2 at a temperature of 400°C for creating
a subsurface or buried nitrogen-saturated layer. Then,
the wafer was irradiated from the opposite side with
40-keV argon ions at a low flux density of 5 × 1013 cm–2 s–1

to a dose varied from 1015 to 3 × 1017 cm–2. This exposure
was performed at a target temperature of 500°C, which
was found in preliminary experiments to be sufficient
for the Si3N4 phase formation under the action of argon
ion bombardment.

The IR absorption spectra were measured on a
UR-20 spectrophotometer and Bruker IFS-113V Fou-
rier spectrometer in the wavenumber range from 650 to
1300 cm–1 containing all characteristic absorption
bands of the Si3N4 phase (the main peak observed in the
region of 850 cm–1). The IR absorption and electrical
(transverse resistance of the nitrogen-saturated silicon
layer) measurements were described in detail else-
where [8, 9].

Figure 2 shows the effect of increasing argon ion
dose on the intensity of the IR absorption band charac-
teristic of Si3N4 and the average electric resistivity of
the nitrogen-saturated silicon layer. As is seen, the two
curves correlate well with each other: significant
changes start at a dose Φ between 1016 and 3 × 1016 cm–2

and cease between 3 × 1016 and 1017 cm–2. It should be
noted that our experiments showed that similar changes
in the properties of the nitrogen-saturated silicon layer
subjected to thermal annealing in the absence of argon
ion irradiation were observed after treatment at a tem-
(a)40

30

20

1015
0

3 × 10151016
3 × 10161017

3 × 1017

10ρ,
 1

07  Ω
 c

m

(b)

1015
3 × 10151016

3 × 1016 1017
3 × 1017

–0.01

0.01

0.03

0.05

∆T

Φ, cm–2 Φ, cm–2

Fig. 2. Plots of the (a) average resistivity ρ and (b) intensity ∆T of the IR absorption band characteristic of Si3N4 versus increasing
argon ion dose Φ in the nitrogen-saturated silicon layer.
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Fig. 3. An AFM image of the surface of a nitrogen-saturated
silicon sample irradiated with 40-keV argon ions at T =
500°C to Φ = 1015 cm–2.

Fig. 4. An AFM image of the surface of a nitrogen-saturated
silicon sample irradiated with 40-keV argon ions at T =
500°C to Φ = 1016 cm–2.
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Fig. 5. An AFM image of the surface of a nitrogen-saturated
silicon sample irradiated with 40-keV argon ions at T =
500°C to Φ = 3 × 1016 cm–2 (the image is taken from an area
adjacent to the region shadowed by the sample holder dur-
ing ion irradiation).

Fig. 6. An AFM image of the surface of a nitrogen-saturated
silicon sample irradiated with 40-keV argon ions at T =
500°C to Φ = 3 × 1016 cm–2 and then stored for three
months in air at room temperature.
perature of 1000°C. Thus, ion irradiation of the rear
side of a 600- to 700-µm-thick silicon sample allows
the temperature required for a dielectric Si3N4 phase
formation to be reduced down to 500°C.

The surface of silicon samples irradiated with argon
ions under the same conditions (E = 40 keV, T = 500°C) as
the samples presented in Fig. 2 was studied by AFM on an
Accurex Topometrix scanning-probe microscope. The
measurements were performed using a silicon nitride
probe in a contact mode in air at room temperature.

It was found that ion irradiation to a dose as small as
Φ = 1015 cm–2 leads to the disappearance of small
(~2 nm deep) scratches present on the surface of unir-
radiated samples. The AFM image in Fig. 3 demon-
strates the well-known phenomenon of surface swell-
ing [12] related to the amorphization of silicon and the
JOURNAL OF EXPERIMENTAL
formation of clusters or small bubbles of dissolved
argon. The latter are manifested by fine surface rough-
nesses with dimensions on the order of 10 nm.

When the ion dose is increased to Φ = 1016 cm–2

(Fig. 4), large argon bubbles (blisters) appear, which
are similar to those observed in silicon irradiated with
neon ions [13]. As the irradiation dose grows further to
Φ = 3 × 1016 cm–2 (Fig. 5), the size and surface density
of blisters increase, while the swelling vanishes. The
surface between blisters exhibits smoothening (also
observed in [13]) up to a mirror finish.

Figure 6 demonstrates a remarkable pattern
observed on the surface of a silicon single crystal also (as
that presented in Fig. 4) irradiated to Φ = 3 × 1016 cm–2 and
then stored for three months in air at room temperature.
This image indicates that the process of coalescence
 AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001
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proceeds even at room temperature: the surface density
of blisters drops 100 times, while the average dimen-
sions increase to reach 250 nm in height and 1000 nm
in diameter; at the same time, the total volume of blis-
ters (i.e., the volume of encapsulated argon) remains
the same. These phenomena show evidence of, first, a
high mobility related to the process of blister evolution
and a high mobility of argon and silicon atoms and, sec-
ond, a superplasticity of the layer of silicon amorphized
as a result of the argon ion irradiation. Indeed, for a
blister cap thickness of 40 nm and a diameter of about
a fraction of micron, the deformation is on the order of
10%, which is far beyond the possible level of purely
elastic deformation in solids. Apparently, this super-
plasticity may also account for the aforementioned
smoothening of the sample surface between blisters.
Another remarkable phenomenon is the healing of the
amorphized layer surface at the sites where blisters
have disappeared. The angular shape of blisters observed
in Fig. 4 apparently indicates that argon in the blisters
occurs in a crystalline solid state, in agreement with the
experimental evidence at T ≈ 300 K [14] and the opin-
ion of Ezhevskiœ et al. [15].

A not less striking pattern is observed in Fig. 7
showing an AFM image of the silicon surface irradiated
with argon ions to a dose of Φ = 1017 cm–2. This image
displays holes (craters) remaining after opening of the
blisters. As can be seen, virtually all blisters in this sam-
ple are open. The surface density of blisters in this stage
(prior to explosion) is smaller, while the dimensions of
blisters are greater, as compared to those in Fig 5. The
craters exhibit sharp angles and edges, nearly vertical
walls, and almost flat bottom; the sample surface
between craters is smooth. Thus, the craters appear as
equally “young,” which indicates that the explosion
took place at Φ ~ 1017 cm–2 and, most probably, virtu-
ally simultaneously. The craters possess equal depths of

10
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0 0

5

10

144.67
0

nm

µm

µm
Fig. 7. An AFM image of the surface of a nitrogen-saturated
silicon sample irradiated with 40-keV argon ions at T =
500°C to Φ = 1017 cm–2.
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about 100 nm, which is approximately 2.5 times the
average projected range of 40-keV argon ions (Rp =
41 nm). As is well known, irradiated silicon wafers
contain, under the argon implanted layer, a layer
enriched with vacancies and a still deeper layer
enriched with intrinsic interstitial silicon atoms [16].
The crater depth of 100 nm suggests that implanted
argon in the samples irradiated to large doses migrates
toward the vacancy-rich layer and accumulates there, at
a depth of about 2.5Rp. The aforementioned high
mobility of blisters is indicative of a significant perme-
ability of this, apparently porous, silicon layer. Accord-
ing [13], a porous layer is also formed in the samples
irradiated with neon ions.

Finally, Fig. 8, showing data for a sample irradiated
to Φ = 3 × 1017 cm–2, indicates that an increase in the
ion dose above 1017 cm–2 does not lead to the appear-
ance of new large blisters. The AFM image shows evi-
dence of erosion in both smooth areas and craters,
which is based on the formation and explosion of small
argon blisters. This behavior is quite reasonable: the
existing craters allow the incorporated argon to escape
readily from the porous layer.

Table 1 summarizes the results of processing of the
experimental AFM data (Figs. 3–8), presenting the
parameters of blisters and craters. Also indicated is the
thickness Wr of a silicon layer sputtered during the irra-
diation, which was calculated according to [17]. Data in
the fifth column (lines 4 and 5) confirm almost exact
conservation of the total volume of blisters in the
course of their evolution (for crystals irradiated to the
same dose Φ = 3 × 1016 cm–2). The sixth line indicates
the proposed parameters of blisters immediately before
explosion (for Φ = 6 × 1016 cm–2 ), determined from a
comparison of the parameters of craters (two bottom
lines) assuming that virtually all implanted argon (for
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Fig. 8. An AFM image of the surface of a nitrogen-saturated
silicon sample irradiated with 40-keV argon ions at T =
500°C to Φ = 3 × 1017 cm–2.
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Φ = 1016 cm–2 ) is spent for the blister formation and
that the argon density in the blisters is constant. The lat-
ter assumption is valid if argon in the blisters occurs in
the least compressible solid state both at room temper-
ature (as in [14]) and during the irradiation at 500°C
(our case). It should be noted that this temperature
(500°C = 773 K) is much higher than the critical tem-
perature of Ar (Tc = 150.65 K) [18]. This implies that
only two states of argon may exist at 500°C (liquid and
gaseous states are indistinguishable).

Figure 9 shows a schematic diagram of the proposed
shape and size of blisters prior to explosion. The blister
cap thickness depicted in this figure is about 40 nm, as
estimated with an allowance for the crater depth
(100 nm at Φ = 1017 cm–2, which corresponds to the
lower boundary of a porous silicon layer), the porous
silicon layer thickness (∆Rp ≈ 20 nm), and shift of the sur-

100 nm

bb

Fig. 9. Schematic diagram illustrating a proposed shape of
the argon blister prior to explosion. Black and open arrows
show the distribution of mechanical stresses immediately
before and after explosion. Broken lines b indicate expected
sites of the blister cap fracture.
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face as a result of the atomic sputtering (~20 nm), and
a decrease in the cap thickness by a factor of about 1.5
as a result of the deformation to a nearly hemispherical
shape with a curvature radius of about 300 nm. The lat-
ter curvature radius at a blister cap thickness of 40 nm
corresponds to a 10% material deformation level (indi-
cated above to be far beyond the known elasticity limits
of solid materials).

Ezhevskiœ et al. [15] estimated the inert gas pressure
in a blister in silicon at T ≈ 300 K at approximately
2.5 × 109 Pa by considering the blister cap bent as an
elastic membrane. Under our experimental conditions
(T ~ 773 K), taking into account the aforementioned
superplasticity of amorphized silicon, this estimate
appears to be inadequate. We determined the upper pos-
sible limit for the static pressure in blisters from a
numerical analysis of the relationship between melting
point and pressure for inert gases. It was established
that all the known inert elements (except for helium)
obey a simple relationship (Fig. 10):

(1)

with the same exponent k = 0.9 and the parameters Tm0
and A indicated in Table 2. The higher the pressure, the
better the fit of experimental points (reference data
taken from [18]) to the relationship (1). These results
allow us to extrapolate Eq. (1) up to 773 K and estimate
the upper limit of the static pressure in a blister as p0b =
4.5 × 109 Pa; this estimate is not much higher than that
obtained in [15] for 300 K. For this pressure, with an
allowance for the compressibility of solid argon [18],
we can estimate the density ρ = 2.5 g/cm3 that is greater
approximately by half than the value (ρAr = 1.65 g/cm3)
at normal atmospheric pressure.

The estimated static pressure 4.5 × 109 Pa of argon
in a blister with the configuration depicted in Fig. 9 cor-

Tm Tm0= A pk+
Table 1.  Average parameters of blisters and craters in Si crystals irradiated with Ar ions

Φ, cm–2 Db, Dc, nm hb, dc , nm Nb , Nc , cm–2 NbVb, NcVc ,
nm cm2 Wr , nm ρ/ρAr

Blisters
1016 150 60 1.1 × 108 0.99 3.5 3

3 × 1016 200 40 4.5 × 108 5.9 10.5 1.4
*3 × 1016 1000 250 5 × 106 6.5 10.5 1.2

**6 × 1016 600 250 2.5 × 107 12 21 1.4
Craters

1017 450 100 2.5 × 107 5 35
3 × 1017 600 60 2 × 107 4.3 105

Note: Db and Dc are the diameters, Nb and Nc the surface densities, hb and dc the height and depth, Vb and Vc the volumes, and NbVb and

NcVc the total volumes of blisters and craters, respectively (Vb was calculated as the volume of hemisphere /6); Wr is the

thickness of the layer removed (sputtered) by ion irradiation; ρAr = 2.5 g/cm3 is the solid argon density under the static pressure of

ps = 4.5 × 109 Pa; ρ is the argon density calculated assuming that all implanted argon is spent for the blister formation; asterisk refers
to the parameters determined after a three-month room-temperature storage; double asterisk indicates predicted values.

πhbDb
2
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responds to a tensile stress of about 2.5 × 1010 Pa in the
blister cap. This value is ten times the ultimate strength
of silicon single crystals and approaches the value for
thin carbon or sapphire dislocation-free crystals (whis-
kers) [18]. This increased value of the argon-bombard-
ment-amorphized silicon seems to be quite realistic,
since the dislocation mechanism of fracture is inopera-
tive in the amorphous material and the surface micro-
cracks or, in our case, nanocracks (limiting the strength
of glasses) are healed under the action of ion irradia-
tion.

The unusual combination of superhigh plasticity
and strength is probably related to the presence of a
considerable amount of silicon monomers (similar to
carbon monomers), possessing a high tensile strength
and pliability with respect to bending deformation, in
the argon-bombardment-amorphized silicon. The exist-
ence of a quasi-one-dimensional allotropic form of sil-
icon was recently experimentally established [19, 20].
This allotropic form can appear in amorphous silicon at
500°C [19] and was observed in silicon samples irradi-
ated with neon ions [20].

The fact that argon escapes from blisters as a result
of explosion, rather than leaks gradually, is confirmed
by the well-known experimental phenomenon of peel-
ing observed in irradiated materials exhibiting blister-
ing [12]. Proceeding from the proposed blister shape
(Fig. 9), this mechanism can be explained by three rea-
sons. First, despite a high plasticity of the amorphized
silicon, some shear stresses are certainly developed in
this material, reaching a maximum at the base of the
blister cap. Second, the rate of silicon sputtering is
higher for an oblique incidence of the ion beam, which
also indicates that maximum sputtering takes place at
the cap base. Third, for a blister cap thickness close to
the average projected ion range Rp, the implanted argon
would “cut” the cap at the base (the site is indicated in
Fig. 9), where the cap thickness projection onto the
direction of normal to the crystal surface exceeds Rp.

3. DISCUSSION OF THE MECHANISM
OF THE LONG-RANGE EFFECT 

OF ION IRRADIATION

Incorporation of a single medium-energy ion into a
crystal leads to the development of extremely high peak
temperatures (~108 K) and pressures (1012 Pa). The pro-
cess of ion stopping gives rise to numerous factors act-
ing upon the crystal, including the production of elec-
tromagnetic radiation with a frequency spectrum up to
the X-ray range, electron–hole pairs, intrinsic defects
(vacancies and interstitial atoms), and acoustic pulses.
However, almost all these factors decay within a 15- to
20-µm-thick layer. Both highly and poorly conducting
crystals exhibit a universal maximum transparence for
the acoustic waves. However, a principal difficulty in
developing an acoustic model for the long-range effect
of ion irradiation is related to a very short time of action
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(the ion stopping time is 10–13–10–14 s [21]) and very
small size of a region of the acoustic wave emission (on
the order of a few nanometers). Estimates made in [22]
for the argon ions with a primary energy of E = 40 keV
and an ion flux density of 1014 cm–2 s–1, assuming the
displacement cascade of silicon atoms to be character-
ized by a relaxation time of 10–11 s and an excited
region radius of 5 nm, showed that the pressure of
acoustic pulses over distances of several hundred
microns can be only on the order of 105 Pa. This pres-
sure is insufficient even to overcome a threshold of the
dislocation mobility equal to 106–107 Pa [21]. 

The appearance of a silicon crystal surface with
traces of exploded blisters imaged in Fig. 7 gives some
grounds for explaining the long-range effect. First, the
ion irradiation of silicon leads to the formation of rather
large blisters with a high argon pressure, possessing a
considerable accumulated energy. Calculations show
that the potential energy of the compressed argon con-
tained in a blister prior to explosion amounts to 5 × 108 eV.
The duration of explosion, estimated at a few tenths of
nanosecond, corresponds to the lengths of acoustic
waves close to the blister size. Thus, all conditions are
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Fig. 10. Plots of the melting temperature versus pressure for
various inert gases. Points show the experimental data from
reference book [18]. Solid lines are calculated by the equa-
tion Tm = Tm0 + Apk with k = 0.9.

Table 2.  Parameters of the melting temperature–pressure
relationship for inert gases

Tm0, K A, Pa–0.9 K

He 0

Ne 24.4 7.5 × 10–7

Ar 83.8 1.4 × 10–6

Kr 116 1.78 × 10–6

Xe 161.3 2.34 × 10–6
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provided for a highly effective acoustic emission.
Moreover, such acoustic waves will readily pene-
trate, experiencing almost no absorption, through a
600-µm-thick crystal depicted in Fig. 1. The second
ground is the possibility that a self-synchronized or
spontaneous process of the blister explosion wave
propagation over the crystal surface may take place,
which would result in the formation of a wave front fea-
turing a peak pressure multiply enhanced as compared
to a single partial source.

The blisters begin to explode, as indicated above, in
the interval of ion doses from 3 × 1016 to 1017 cm–2,
while changes in the properties of the nitrogen-satu-
rated layer already take place (see Fig. 2) in the region
of doses between 1016 and 3 × 1016 cm– 2. We believe
that the formation and evolution of blisters prior to
explosion, as well as the formation and evolution of a
dislocation network under the ion-implanted layer, also
contribute to the pulsed acoustic emission. The crystal
region near the ion-irradiated surface represents a sys-
tem of alternating contracted and expanded layers. The
uppermost layer is contracted due to the incorporation
of excess argon; the next layer is rich in vacancies and,
hence, expanded; this is followed by another com-
pressed layer rich in interstitial silicon atoms. This dis-
tribution of stresses must lead to the formation of local-
ized near-surface dislocation loops or semiloops
emerging at the surface. The intrinsic dislocation den-
sity of a crystal is typically 104 cm–2, which is much
smaller as compared to the surface density of blisters
observed in Figs. 4–6. Probably, the centers of argon
coalescence are represented just by dislocation semi-
loops appearing as a result of the stress release near the
irradiated layer in the course of the argon ion dose
growth. Thus, the evolution of blisters and the forma-
tion of dislocations are interrelated processes that are
likely to possess a jumplike character. As the ion dose
increases, a close to critical state is developed before
each jumplike change. During the blister explosion, as
well as in all other stages of the system development, a
self-synchronized propagation of the wave of acoustic
source switching is highly probable.

The self-synchronized process is a variant of the
mechanism of a nondecaying acoustic wave propaga-
tion in a crystal proposed by Pavlov et al. [22]. In the
original variant, the wave energy losses were compen-
sated by the mechanical discharge of nonequilibrium
defects present in a real crystal occurring in a nearly
critical state. In our case, the potential sources occur-
ring in a subcritical state are distributed over a crystal
surface and are controlled and renewed by ion irradia-
tion of the crystal.

The problem of describing a fanlike wave of the
acoustic source switching (“domino effect”), propagat-
ing along the surface in which these sources reside, and
a superposition of the generated pulsed acoustic wave
packets is very interesting but complicated and requires
special analysis. Here, our aim is to obtain some esti-
JOURNAL OF EXPERIMENTAL 
mates within the framework of a simplified model. In
particular, we neglect the crystal anisotropy and con-
sider the simplest variant, when all sources are
switched on simultaneously. This is possible provided
that dispersion in attaining the critical state by numer-
ous sources would be sufficiently small, so that a subset
of the primary sources would almost simultaneously
operate under the action of thermal fluctuations or
impinging ions. Under these conditions, an almost
plane wave would form at a large distance inside the
crystal with a peak pressure

(2)

where p0 is the peak pressure on the surface of a hemi-
spherical source with the radius rS and γ is the geomet-
ric coefficient of the pressure attenuation. The latter
coefficient can be expressed as

(3)

where NS is the surface density of the acoustic emission
sources, which reflects a uniform distribution of the
pressure from individual sources over the wave front. In
the case of harmonic oscillations, the interference gives
rise to a nearly plane wave with the front parallel to the
surface featuring a uniform distribution of coherent
point sources. In a system of pulsed sources with the
upper frequency much lower compared to the Debye
frequency, the dispersion is negligibly small and all
phase relationships between the spectral components
are retained in the pulsed wave front. In other words,
the wave front repeats the time variation of the pressure
at the almost point sources.

Consider the case when the process starts with one
source S1, after which the sources switch one another
by the generated acoustic pulses. Here, a wave with a
cone-shaped front would form, at least at a large dis-
tance from the first source S1, which is analogous to the
wave from simultaneously switching imaginary
sources situated on the surface of a cone with the vertex
at the source S1. The cone angle is determined by the
ratio of the surface and volume waves. A special feature
of the system is that the geometric divergence of the
spherical wave from each individual source and the
physical attenuation due to the acoustic energy absorp-
tion are determined by the actual position of the source
on the crystal surface. At a large distance from S1, the
curvature of the wave front is small; that is, the front is
almost flat and is inclined at 45° to the crystal surface
(provided that the velocity of switching sources is equal
to the velocity of sound in the crystal volume). In this
case, the peak pressure at the wave front is determined
by expressions (2) and (3) because the projected den-
sity of sources per unit wave front area is the same.

Judging from the complicated pattern of mechanical
stresses schematically depicted in Fig. 9, each blister
explosion gives rise to a number of complex oscillation
modes. In particular, a wave with a concave front fea-
turing a caustic effect of the hypersound focusing is

p γp0,=

γ πrS
2NS,=
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Table 3.  Parameters of sources of acoustic pressure pulses

Source type Ns, 
107 cm–2 rs, nm p0, Pa τ, s Cpr pfs , Pa γ pf , Pa

Formation and evo-
lution of dislocation 
network

2.5–45 250–1000 106–107 (0.5–2) × 10–10 0.54–0.97 1.5 × 104 1 4 × 105–107

Formation and evo-
lution of clusters

2.0–45 75–300 2 × 109 (0.5–2) × 10–10 0.54–0.97 (1–10) × 105 0.05–0.08 4 × 107–1.4 × 108

Explosion of blisters 2.0–2.5 300 2 × 109 3 × 10–10 0.98 106 0.05–0.07 108–1.4 × 108

Note: Ns is the surface density of sources; rs is the source radius; p0 is the initial peak pressure; τ is the pressure pulse duration; Cpr =

10−αW/20 is the attenuation coefficient (W is the crystal thickness); pfs = (rs/W)Cpr p0 is the final peak pressure due to a single source;
γ is the geometric decay coefficient; pf = γCprp0 is the final peak pressure for self-synchronized sources. For dislocations: rs =

0.5  and τ = 2rs/v s (sound velocity v s = 5 × 105 cm/s).Ns
possible [23, 24]. However, at large distances from each
source, an almost spherical compression wave is likely
to be most important. This wave arises as a result of the
mechanical recoil reaction accompanying acceleration
of the gas (argon escaped from the exploding blister)
and the blister cap. In expression (1), we took p0 = 2 ×
109 Pa (rounded half of the static pressure estimate
p0b = 4.5 × 109 Pa obtained above) by analogy with the
case of exploding sphere [24] where half of the energy
is spent for the internal wave. The same p0 value was
used to characterize the formation and jumplike growth
of the argon blisters, where the gas volume also exhibits
a sharp increase. Selection of the initial pressure p0 ≈
2 × 109 Pa implies that evolution and explosion of the
blisters is accompanied by the formation of acoustic
wave packets representing, at least initially, “soft”
shock waves [23].

In order to provide for the motion of dislocations,
the pressure must be on the order of 106–107 Pa. This
implies that moving dislocations generate pressure
pulses of the same magnitude, that is, p0 = 106–107 Pa.
The radius of the region of dislocation stresses amounts
to 103–104 interatomic distances [21]. Judging by the
density of decorating blisters or craters (Figs. 4–7), the
dislocations are closely packed. For this reason, the
value of γ in (1) was taken equal to unity.

The physical attenuation caused by the acoustic
energy dissipation was evaluated at the upper frequency
of the spectrum,

(4)

in which most of the energy is transferred by an acous-
tic pulse with the duration τ. For the explosion of blis-
ters, an estimate of 3 × 10–10 s was calculated as the time
during which the center of mass of argon shifts by half
of the height of the blister under the action of an aver-
age accelerating pressure of 2 × 109 Pa. This displace-
ment corresponds to doubling of the volume of argon
escaped from the crater. For dislocations, which were

f
1

2πτ
---------,=
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assumed to move at a velocity of sound v s, the lower
boundary of τ was estimated as

(5)

where Nd is the density of dislocations; it was assumed
that this value is equal to Nd = Nb, that is, to the density
of decorating blisters. The average velocities of the
transverse and longitudinal acoustic waves in silicon
are 5 × 103 and 9 × 103 m/s, respectively [18]. Since the
motion of dislocation loops is likely to be limited by
slower transverse waves, we selected v s = 5 × 103 m/s.
The same value was taken for blisters, by virtue of the
aforementioned relationship in evolution of the disloca-
tions and blisters.

Estimated as described above, the τ values (pre-
sented in Table 3) correspond to a hypersonic frequency
range. Extrapolating of the temperature dependence of
the hypersound absorption coefficient α [25, Fig. 4.10]
for the longitudinal waves with a frequency of f ≈
0.5 GHz (according to Mason and Bateman [25,
(4.77)]) to the temperature of our samples (773 K) irra-
diated with argon ions, we obtained α = 2.5 dB/cm. For
smaller τ values (Table 2), we used the (most “unfavor-
able”) Akhiezer law α ~ f 2, although a comparison of
the data f = 0.48 GHz [25, Fig. 4.10] and f = 9 GHz
[25, Table 4.5] for 62 K rather suggests the Landau–
Rumer law α ~ f. When the temperature increases, the
situations (judging by [18, Fig. 7.47]) becomes inter-
mediate.

With an allowance for the hypersound attenuation
(see Eqs. (2) and (3)), the resulting final peak pressure
pf at the rear side of a silicon plate with the thickness W
is determined by the expression

(6)

where Cpr is the physical pressure attenuation coeffi-
cient (expressed in dB). According to standard defini-
tion, this coefficient obeys the relationship −20  =
αW. Table 3 gives the values of pf for W = 600 µm. For

τ 1

v sNd
1/2

---------------,=

p f Cpr p Cprγp0,= =

Cprlog
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comparison, Table 3 also gives the final pressure pfs of
a single source calculated by formula (6) with the geo-
metric factor γ = rs/W according to the law p ~ 1/r,
where r is the distance to the source. As demonstrated
in [22], this law is valid at a distance r @ rs for a source
generating sufficiently short pressure pulses such that
v sτ ! r.

As can be seen from the data in Table 3 for a single
source of hypersound, the pfs value may just reach a
threshold level for the dislocation motion in the region
of the nitrogen-saturated crystal layer in the variant
with a change in the state of blisters. With a self-syn-
chronization mechanism, this threshold is reached for
all three variants presented in Table 3. The increase in
the average pf value on the passage from top to bottom
line in the last column of Table 3 is consistent with vari-
ation of the physical properties of the nitrogen-satu-
rated layer (Fig. 2) and with the proposed sequence of
processes (based on the AFM image analysis, see
Figs. 3–7) from the formation and evolution of disloca-
tions and blisters to the explosion of blisters leading to
the generation of hypersonic pulses. The maximum
peak pressure (above 108 Pa) in Table 3 exceeds by at
least one order of magnitude the known [11] static
threshold nitrogen pressure (107 Pa) for ignition of the
Si3N4 phase synthesis using silicon powder in N2 atmo-
sphere at 300°C. Validity of the comparison of this pro-
cess to a reaction in the nitrogen-saturated silicon layer
may be related to the probable existence of nitrogen
bubbles in this layer. The gas pressure in such bubbles
can be high, much in excess of 107 Pa. A fraction of
nitrogen enters into a chemical reaction with silicon
already in the stage of nitrogen implantation. Another
fraction reacts with silicon in the course of the sample
heating to 500°C. The unreacted nitrogen remaining in
the bubbles at a subthreshold pressure is consumed
under the action of hypersonic pressure pulses gener-
ated in the argon stopping zone by sources with the
parameters indicated in Table 3.

Another possible contribution to the mechanism of
stimulation of the Si3N4 formation is related to the pres-
ence of stresses and a dislocation network in the region
of the nitrogen-saturated layer. This region must also
contain alternating contracted and expanded layers,
similar to those formed near the argon ion stopping
zone. Under the action of hypersonic pulses, the edge
and/or mixed dislocations migrate (see [21]) so as to
generate vacancies and interstitial atoms. This favors
increased mobility of silicon and nitrogen atoms, accel-
erates the formation of Si3N4 phase, and (which is of
special value from technological standpoint) leads to
leveling of the properties of the nitrogen-saturated layer
and to decreasing mechanical stresses in this layer and
in the neighboring silicon crystal regions. It is impor-
tant to note that the pressure effects are developed in a
dynamic regime. The geometric length v sτ of the
acoustic pulses is close to the size of individual disloca-
JOURNAL OF EXPERIMENTAL 
tion loops near the nitrogen-saturated layer. This layer,
together with dislocations, effectively absorbs a large
(due to small τ) acoustic power. For this reason, we did
not consider the reflection of hypersound from the
nitrogen-saturated layer of silicon. However, such a
reflection might play a significant role in the long-range
effect of ion irradiation observed, as mentioned in the
Introduction, under different experimental conditions.

4. CONCLUSION

Thus, an analysis of the experimental data concern-
ing variation of the properties of a nitrogen-saturated
silicon layer and the results of the AFM examination of
the argon blistering allowed a realistic explanation of
the long-range effect observed in nitrogen-saturated
single crystal silicon wafers at a distance of several
hundred microns from the surface irradiated with argon
ions. Realism of the proposed explanation is based
(besides a high initial pressure and large accumulated
energy) on (i) the optimum parameters of the sources
(size, duration of action) ensuring effective generation
of the pressure pulses reaching the rear side of a
600-µm-thick silicon wafer without significant absorp-
tion of the hypersound energy and (ii) the possibility of
self-synchronized or spontaneous source switching
leading to a strong amplification of the hypersound
pulses produced by the explosion of blisters, with a
peak pressure exceeding 108 Pa in the region of the
nitrogen-saturated layer.

It must be noted that argon seems to be an optimum
inert gas for the long-range effect of stimulated Si3N4
synthesis at 500°C. With neon ions of the same energy,
more readily penetrating into silicon and reaching a
greater depth, much greater doses will be required to
provide for the explosion of blisters. Irradiation with
the neon ions of lower energy would not ensure the for-
mation of blisters with same size and cap thickness as
those in the case of argon: according to Eq. (1) and
Fig. 10, neon at 500°C is characterized by a higher lim-
iting pressure. Difficulties in keeping neon under high
pressure at this temperature are also related to increased
permeability of silicon for smaller atoms. Our experi-
ments showed that irradiation of the samples at T =
500°C with neon or silicon (producing no blistering)
does not lead to a pronounced long-range effect. For
heavier krypton and especially xenon, the limiting gas
pressure in the blisters at 500°C will be significantly
lower (see Eq. (1) and Fig. 10). In order to provide for
a sufficient strength of the blister cap, higher ion ener-
gies will be required. With a lower pressure jump and a
greater atomic mass, the process of gas escape after
blister explosion will be slower and longer.

Besides the long-range effect, the unique possibility
of generating high-power hypersonic self-synchronized
pulses, the superplasticity and superstrength of silicon
amorphized by argon ion irradiation, and the possibility
of keeping an inert gas in a solid state up to T = 500°C,
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the phenomenon under consideration provides for a
deeper insight into the physics of ion sputtering of sol-
ids. For ion energies of about tens kiloelectronvolts, the
atomic sputtering by the well-known mechanism of the
cascade momentum transfer from projectile to target
atoms is supplemented by removal of the target mate-
rial in the form of large polyatomic particles represent-
ing the caps of exploded blisters. A decrease in the ion
energy leads to a decrease in the thickness of a mechan-
ically stressed layer and, hence, to an increase in the
density of dislocation loops and decorating blisters; the
blisters become smaller in size and possess thinner caps.
Therefore, the polyatomic particles sputtered from the
target decrease with the ion energy. In this context, it is
clear that the rate of ion sputtering of a given material
depends on the strength of the amorphized target layer.
For the sputtering by individual atoms, the effective pro-
cess involving heavy ions with minimum energies at an
oblique incidence is characterized by a smaller projec-
tion of the ion range onto the surface normal. Effective
sputtering is favored by using chemically inert gases fea-
turing most pronounced blistering.
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Abstract—The influence of the normal phonon–phonon scattering processes on the thermal conductivity was
theoretically studied for germanium crystals with various degrees of the isotope disorder. The theory takes into
account redistribution of the phonon momentum in the normal scattering processes both inside each oscillation
branch (Simons mechanism) and between various phonon oscillation branches (Herring mechanism). Contri-
butions to the thermal conductivity due to the drift mobility of the longitudinal and transverse phonons are ana-
lyzed. It is shown that the momentum redistribution between longitudinal and transverse phonons according to
the Herring relaxation mechanism leads to a significant suppression of the drift motions (and to the correspond-
ing drop in contribution to the thermal conductivity) of the longitudinal phonons in isotopically pure germa-
nium crystals. The results of the thermal conductivity calculations involving the Herring relaxation mechanism
agree well with the experimental data available for germanium crystals with various degrees of the isotope dis-
order. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Extensive development of modern semiconductor
technologies and microelectronics poses the task of
searching for new materials possessing unusual physi-
cal properties. In this context, of special interest are the
investigations in the field of isotope design [1] and the
study of the physical properties of isotope-enriched
germanium, silicon, and diamond crystals [2–9] widely
used in modern microelectronics. The experimental
investigations of thermal conductivity and thermal emf
[2–4] performed for germanium crystals with various
degrees of the isotope disorder showed that the maxi-
mum values of thermal conductivity in isotopically
pure samples containing 99.99% 70Ge are ten times and
the absolute values of thermal emf are two times greater
than the values observed in analogous crystals with the
natural isotope composition.

In recent investigations [2, 10], a detailed theoretical
analysis of the obtained experimental results was per-
formed within the framework of the generalized Calla-
way model [11]. Using this approach, Asen-Palmer
et al. [2] separated the contributions from longitudinal
and transverse phonons to the thermal conductivity and
determined the parameters characterizing various
mechanisms of the phonon scattering in germanium
crystals featuring the isotope disorder. The same gener-
alized Callaway model was employed for calculating
the thermal conductivity of isotope-enriched silicon
and diamond [5, 6, 8–10]. As will be demonstrated
below, this model corresponds to the assumption that
relaxation of the phonon momentum proceeds sepa-
rately inside each branch of the phonon spectrum. In
1063-7761/01/9303- $21.00 © 20568
[2], a difficulty (the same as in [11]) was encountered
in the attempt to interpret the experimental data taken
from [12] without separating the contributions from
longitudinal and transverse phonons. The problem was
that the values of the thermal conductivity of germa-
nium calculated in the region of maximum using both
the Callaway model [11] and the generalized variant [2]
were considerably greater than the experimentally mea-
sured values.

For this reason, Holland [13] rejected the Callaway
model [11] and demonstrated that, in calculating the
thermal conductivity of germanium and silicon crys-
tals, one must separate the contributions from longitu-
dinal and transverse phonons because the latter
phonons are characterized by a strong dispersion and
the Debye temperatures of the two oscillation branches
are significantly different. However, Holland included
the relaxation frequencies of the normal phonon–
phonon scattering processes (N processes) in the resis-
tive relaxation frequencies. He managed to describe
quite satisfactorily the temperature dependence of the
thermal conductivity of germanium and silicon crystals
with the natural isotope composition in a broad temper-
ature range by doubling the number of fitting parame-
ters. Despite this result, the Holland theory [13] was in
a definite sense inferior to the Callaway model [11],
because Holland did not take into account a special role
of the normal phonon–phonon scattering processes.

It is well known [11, 14, 15] that the momentum of
phonons involved in the N process is conserved and,
hence, these processes do not contribute to the momen-
tum relaxation and, hence, to the thermal resistance.
However, the N processes form a nonequilibrium
001 MAIK “Nauka/Interperiodica”
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phonon distribution function and provide for relaxation
of the phonon system to a locally equilibrium distribu-
tion at an average drift rate. By redistributing the
energy and momentum between various phonon
modes, the N processes prevent strong deviations of
each phonon mode from the equilibrium distribution.
These processes are accompanied by a change in the
relative role of various resistive processes of the
phonon momentum relaxation (scattering on defects
and boundaries of the sample, phonon–phonon
umklapp processes). Thus, this scattering mechanism
plays a significant role in relaxation of the total momen-
tum of the phonon system and produces a significant
effect on the thermal conductivity in isotopically pure
germanium samples at low temperatures, when the
phonon–phonon umklapp processes are inactivated to a
considerable extent.

However, in this case, an analysis of the role of N
processes in the scattering of phonons belonging to dif-
ferent oscillation branches must be performed more
thoroughly than was done previously [2–10]. It should
be noted that the two-parametric Holland approxima-
tion [13] is valid in cases when the phonon relaxation

frequencies in the N processes ( (q)) for each
branch λ of the phonon spectrum are significantly

smaller than the resistive frequencies ( (q)) of the
phonon relaxation related to the phonon scattering on
phonons in the umklapp processes and on the defects
and boundaries of the sample. In the opposite limiting
case realized (according to data in [2]) for the longitu-
dinal phonons in the germanium samples studied, it is
necessary to make an allowance for a drift in the
phonon system related to the N process. In taking this
factor into account, the nonequilibrium phonon sub-
system is described with the aid of six parameters

(including four relaxation frequencies, (q) and

(q)) and the drift velocity uλ. Description of the
nonequilibrium phonon system in an extended basis
provides for a more correct analysis of the phonon
momentum relaxation and the thermal conductivity in
isotopically pure germanium.

The purpose of this study was to elucidate the influ-
ence of the phonon drift related to the N process on the
thermal conductivity of germanium with isotope disor-
der. The main attention was paid to the analysis of var-
ious models and approximations used to describe the
relaxation and the momentum redistribution for the lon-
gitudinal and transverse phonons as a result of the N
process both inside each oscillation branch (Simons
mechanism [16]) and between various branches (Her-
ring mechanism [17]). The effects of the normal
phonon–phonon scattering on the mutual electron–
phonon drag in metals and degenerate semiconductors
were considered elsewhere [18, 19]. In this paper, in
contrast to [18, 19], we will consider in more detail the
Herring relaxation mechanism leading to redistribution

ν phN
λ

ν phR
λ

ν phN
λ

ν phR
λ
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of the phonon momentum between various oscillation
branches. The role of this mechanism, which plays a
major role in the N process in germanium, significantly
increases in the case of decrease in the isotope disorder.

It will be demonstrated that the problem considered
by Holland [13] and the problems arising in the treat-
ment of experimental data [2, 12] are removed if we
correctly take into account the N process involved in the
relaxation according to Herring. In this case, redistribu-
tion of the phonon momentum between transverse and
longitudinal phonons in the normal scattering pro-
cesses leads to a significant suppression of the drift of
longitudinal phonons in isotopically pure germanium
(99.99% Ge), mostly at the expense of the transverse
phonon scattering. This mechanism of the momentum
redistribution accounts for a significant decrease in the
contribution of longitudinal phonons to the thermal
conductivity. As a result, the maximum values of the
total thermal conductivity in isotopically pure germa-
nium (99.99% Ge) decrease 1.5 times as compared to
the values obtained in [2] within the framework of the
generalized Callaway model. Thus, there is no need in
introducing additional mechanisms of the phonon scat-
tering on dislocations [2] and/or increasing the number
of fitting parameters in the theory.

2. EFFECT OF THE NORMAL
PHONON–PHONON SCATTERING

ON THE MOMENTUM RELAXATION 
IN A NONEQUILIBRIUM PHONON SYSTEM

A kinetic equation for the nonequilibrium phonon
distribution function Nλ(q, r) with an allowance for the
N process is as follows [18]:

(1)

Here  = sλq/q is the group velocity of the acoustic
phonons with the polarization λ; uλ is the phonon drift
velocity; f0(εk) are the Fermi distribution functions;

(q) is the phonon relaxation frequency in the

N-process; (q) = (q) + (q) + (q) is
the frequency including all the nonelectron resistive
phonon relaxation frequencies, caused by the phonon
scattering on phonons in the umklapp processes and on
the defects and boundaries of the sample; and Iphe is the
phonon–electron collision integral [19]. Equation (1)
takes into account that the N process leads the phonon
system to a local equilibrium Planck distribution at an

vq
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average drift velocity uλ  that can be different for the
phonons possessing different polarizations λ [14, 15]:

(2)

(here  is the Planck function).

Figure 1 shows a schematic diagram illustrating the
redistribution and relaxation of momentum acquired by
the phonon system due to the temperature gradient. The
mechanisms of the electron–phonon relaxation charac-
terized by the frequencies νeph and νphe lead to the
momentum redistribution inside the electron–phonon
system, whereby electrons interact only with the long-
wave phonons. The problem of renormalization of the
phonon thermal conductivity related to the mutual
entraining of electrons and phonons is not considered
here. The magnitude of this effect is small because the
thermal conductivity is determined from the condition
of zero total current through the sample, in which case
the average velocity of the ordered motion of electrons
in any physically small volume of the sample is zero as
well. Therefore, a momentum transferred from this
ordered electron and phonon motion to the phonon sub-
system is small and the influence of the nonequilibrium
phonon motion on this subsystem through the conduc-
tion electron subsystem can be ignored [18, 19]. The
phonon scattering on the isotope disorder (νphi) and on
the boundaries (νphB) and the phonon–phonon umklapp
process (νphU) lead to the relaxation of momentum of
the phonon system. The N processes redistribute
momentum between various phonon modes, leading to
a phonon drift at an average velocity uλ. The phonon
drift velocity is determined by all thermally excited
phonons; the main contribution to this velocity (as well
as to the thermal conductivity) is due to the thermal
phonons.
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Fig. 1. A schematic diagram illustrating the phonon
momentum relaxation in an electron–phonon system with
an allowance for the normal phonon scattering within the
framework of the Herring mechanism.

Isotope
disorder (i)
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Let us write the phonon distribution function in the
standard form [14, 15, 18]:

(3)

where gλ(q) is the nonequilibrium additive to this func-
tion. Substituting expressions (2) and (3) into (1), we
obtain (by analogy with [18]) an expression for the
phonon distribution function gλ(q):

(4)

Here, (q) = (q) + (q) is the total relaxation
frequency of phonons with the wavevector q and the
polarization λ, while

is the resistive relaxation frequency. The first term in
the right-hand part of Eq. (4) is determined by the dif-
fusion motion of phonons under the action of a temper-
ature gradient. The second term takes into account the
phonon drift related to the N process. Thus, we describe
relaxation of the phonon system by six parameters (four

relaxation frequencies, (q), and (q)) and the
average drift velocity uλ (that can be different for the
phonons with different polarizations), rather than by

two parameters (q) representing the total relaxation
frequencies as in [13]. For determining uλ, the system
of kinetic equations (1) must be supplemented by the
equation of the phonon momentum balance, which is
obtained through multiplying Eq. (1) by the phonon
momentum vector "q and summing over all vectors q.
We will also take into account that the total momentum
of the phonon subsystem does not change in the course
of the N process:

(5)

The two known mechanisms of the normal three-
phonon scattering processes include the Herring mech-
anism [17] and the Simons mechanism [16]. According
to the Herring mechanism, the relaxation frequency of
the transverse phonons is determined by the three-
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phonon scattering process involving one transverse and
two longitudinal phonons (t + L  L):

(6a)

The relaxation frequency of the longitudinal phonons in
the anisotropic continuum model [15, 17] is determined
by the three-phonon processes, whereby either a longi-
tudinal phonon decays into two transverse phonons or
two transverse phonons combine to form a longitudinal
phonon (L  t1 + t2):

(6b)

Thus, the Herring N-process relaxation mechanism
involves the phonons possessing various polariza-
tions. This relaxation mechanism provides for a redis-
tribution of the drift momentum between longitudinal
and transverse phonons. The Herring three-phonon
processes in a nonequilibrium phonon system tend to
establish a local equilibrium distribution at an average
drift velocity equal for the phonons of both polariza-
tions: uL = ut = uH.

The Simons relaxation mechanism [16] involves
phonons of the same polarization. In this scattering

mechanism (  ≈ BλT4ωλ ), the law of the momentum
conservation in the N process is valid for each branch of
the phonon spectrum and, therefore, the drift velocities
of the longitudinal and transverse phonons are gener-
ally different. The resistive relaxation frequency is also
different for the longitudinal and transverse phonons.
For this reason, we will consider two variants of the
phonon momentum relaxation in the N process,
whereby the phonon scattering redistributes the
momentum (i) only inside each oscillation branch and
(ii) predominantly between various oscillation branches.
Now, we will demonstrate that a direct generalization of
the Callaway formula for the lattice thermal conductivity
[11, 14, 15] to the case of separated contributions of the
phonons with different polarizations [2–10] corre-
sponds to the Simons relaxation mechanism; this gen-
eralization is incorrect when the Herring mechanism
dominates in the N process.

Using Eq. (4) and the equation of balance of the
phonon momentum (5), we can express the average
phonon drift velocity uλ  for the relaxation mechanisms
according to Herring (uH) [17] and Simons (uS) [16]:

(7)
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Here,

(8)

(for germanium [2]: sL = 5.21 × 105
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tion function 
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for the Simons and Herring relaxation mechanisms,

respectively, and (

 

q

 

) is the effective relaxation fre-
quency of the phonon momentum, renormalized by the
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 processes. As is well known [11, 14, 15], the lattice
thermal conductivity (described with an allowance for
the 
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 processes) is determined by the effective relax-
ation frequency of the phonon momentum. We demon-
strated that this renormalization may be different for
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momentum redistribution in the 
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ence of the phonon drift on the momentum exchange in
the nonequilibrium phonon system has to be taken into
account. Thus, in cases when the N processes play a sig-
nificant role in the phonon momentum redistribution,
the phonon subsystem should be described in an
extended basis.

3. LATTICE THERMAL CONDUCTIVITY

An expression for the lattice thermal conductivity
with the separated contributions from various branches
of the phonon spectrum is as follows:

(12)

Here, an allowance for the N processes reduces, as well
as in the Callaway theory [11, 14, 15], to renormaliza-
tion of the phonon relaxation frequency entering into
the lattice conductivity. However, this renormalization
is different in the cases when the N process redistributes
the phonon momentum inside each branch of the
phonon spectrum (Simons mechanism [16]) or predom-
inantly between various oscillation branches (Herring
mechanism [17]).

For the Herring relaxation mechanism (ut = uL =
uph),

(13)

(14)

As is seen from these expressions, the contribution
from the transverse phonons to the drift terms signifi-
cantly increases due to the factor  (for germanium,

 = 1.65). If the momenta of both longitudinal and
transverse phonons relax in the N process only inside
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each oscillation branch (Simons mechanism),

(15)

This expression corresponds to the generalized Calla-
way model [11] widely used in the calculations of ther-
mal conductivity for isotope-enriched crystals of ger-
manium, silicon, and diamond [2, 5, 6, 8–10].

In the Ziman limit [20], when (q) @ (q),

we have (q) ≈ (q) and the total thermal con-
ductivity can be expressed through the effective phonon
relaxation frequency ν*:

(16)

where CV is the isochoric heat capacity

(17)

The effective phonon relaxation frequencies for the
Herring and Simons mechanisms are different:

(18)

Expression (15) for the additive lattice thermal conduc-
tivity representing a sum of contributions from the
phonons with different polarizations can be directly
obtained as a generalization of the Callaway formula
[11]. This expression is valid when the N processes
redistribute the phonon momentum only inside each
oscillation branch (Simons mechanism). However, a
dominating mechanism in the N process taking place in
germanium with isotope disorder is the Herring relax-
ation process that leads to the momentum redistribution
between various oscillation branches. Therefore, the
lattice thermal conductivity of germanium samples
with various degrees of isotope disorder should be cal-
culated using formulas (13) and (14). This calculation
refines the results of analysis performed in [2, 10]
within the framework of the generalized Callaway
model.

κ T( )
kB

6π2sλ

-------------
kBT

"
--------- 

 
3

z
z4ez

ez 1–( )2ν ph
λ q( )

------------------------------------d

0

zdλ

∫
λ
∑=

× 1 ν phN
λ q( )

ΨN
λ

ΨNR
λ----------+

 
 
 

.

ν phN
λ ν phR

λ

ν ph
λ ν phN

λ

κ H S, T( ) 1
3
---

CVsL
2

νH S,*
-----------,=

CV

kB

2π2
--------qTL

3 JL
4( ) 2S*

3 Jt
4( )+( ),=

Jλ
4( ) zz4ezd

ez 1–( )2
--------------------.

0

zdλ

∫=

νH*
ν phR

L〈 〉 2S*
5 ν phR

t〈 〉+

JL
4( ) 2S*

3 Jt
4( )+

------------------------------------------------,=

νS* CV

sλ

sL

---- 
 

2CVλ Jλ
4( )

ν phR
λ〈 〉

-----------------

–1

.
λ
∑=
AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001



NORMAL PHONON–PHONON SCATTERING PROCESSES 573
For the fitting parameters used in []2], the relaxation
frequency of the transverse phonons in the N process is
lower by three order of magnitude as compared to the
value for the longitudinal phonons:

(19)

For the phonon scattering on the isotope disorder, the
relaxation frequency of the transverse phonons is

almost five times greater (  ≈ 4.5) than that of the lon-
gitudinal phonons:

(20)

where g = 0.816 × 10–7 for 70Ge (99.99%), 7.57 × 10–5

for 70Ge (96.3%), and 5.87 × 10–4 for natGe with the nat-
ural isotope composition. For the phonon scattering on
the sample boundaries,

(21)

where LC is the Casimir length, l is the sample length,
and P is the mirror reflection probability for phonons.

In the germanium crystals studied [2–4], the  value
was typically about (1–2) × 106 s–1. The phonon relax-
ation rate in the umklapp processes was characterized
by the parameters obtained in [2]

where AL = 1.72 × 106 s–1, At = 8.6 × 106 s–1, CL = 180 K,
and Ct = 55 K.

As can be readily seen, the transverse phonons in the

whole temperature interval obey the inequality (q) !

(q), so that the contribution of the transverse
phonons to the thermal conductivity is determined pre-
dominantly by the diffusion motions. However, the lon-
gitudinal phonons are characterized by the ratio

(22)
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which is greater than unity for T > 10 K and is signifi-
cantly greater than unity in the interval 20 K < T < 100 K.
From this, we infer that the contribution of the longitu-
dinal phonons to the thermal conductivity is determined
to a considerable extent by the drift motion of phonons
in the isotope-enriched germanium crystals. Taking
into account the above inequalities, the thermal con-
ductivity can be expressed as

(23)

As can be seen from this formula, the effective relax-
ation frequency of the longitudinal phonons according
to the Herring mechanism (in contrast to the general-
ized Callaway model [2]) contains the contributions
from both the resistive processes of longitudinal
phonon scattering and the normal scattering of trans-
verse phonons. We will demonstrate that this leads to a
significant suppression of the drift motions of the trans-
verse phonons and, accordingly, to a decrease of the
corresponding contribution to the thermal conductivity
within the framework of the Herring relaxation mecha-
nism in isotopically pure germanium crystals.

Below, we present the results of calculating the ther-
mal conductivity κ(T) for the germanium samples with
various degrees of isotope disorder calculated using
two variants of the phonon momentum relaxation in the
N process described by formulas (13)–(15). All param-
eters of the theory were taken from [2]. The fitting with
the aid of a single parameter CBL characterizing the
scattering of the longitudinal phonons on the sample
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Fig. 2. Plots of the (1) total thermal conductivity and the
contributions of (2) transverse and (3) longitudinal phonons
versus temperature for a polished 99.99% 70Ge crystal [2]
(CBL = 1.6; P = 0.15) calculated using the Herring relax-
ation mechanism (H) and the generalized Callaway
model (S).
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boundaries (for the transverse phonons, CBt = CBL/S*)
was performed so as to provide for the best coincidence
of the theoretical κ(T) value and the experimental data
both in the region of the κ(T) maximum and at lower
temperatures.

Figure 2 shows the temperature dependence of the
thermal conductivity of a polished germanium crystal
(99.99% 70Ge) [2] and the contributions due to the
transverse and longitudinal phonons calculated for two
variants of the phonon momentum relaxation, repre-
senting the Herring mechanism and the generalized
Callaway model (Simons mechanism). All parameters
of the theory were taken from [2], CBL = 1.6, and P =
0.15. For the generalized Callaway model (“model 1”

in [2]),  exceeds  by a factor of 1.3 and the
maximum values of the total thermal conductivity are
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Fig. 3. Temperature dependence of the total thermal con-
ductivity for isotopically pure germanium crystals (99.99%
70Ge) with various degrees of surface finish: (1) (CBL = 1.6,
P = 0.15; (2) CBL = 1.9, P = 0.07; (3) CBL = 2.33, P = 0.
Symbols represent the experimental data from [2, 3]; solid
curves show the results of calculations for the Herring
mechanism.
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determined predominantly by the longitudinal
phonons. This result also agrees with the calculations
performed in [10]. For the same parameters used with

the Herring mechanism, the  value drops by a fac-

tor of 3.4 to become 2.8 times smaller than  (the
latter remains almost unchanged). For this reason, the
Herring mechanism corresponds to the dominating
contribution (reaching about 80% of the total thermal
conductivity) of the transverse phonons in the region of
maximum.

Thus, the two variants of the phonon momentum
relaxation in the N process lead to qualitatively differ-
ent results. As can be seen from Fig. 3, the κ(T) values
calculated for germanium samples with different sur-
face finish containing 99.99% 70Ge agree well with the
experimental data both in the region of maximum and
at higher temperatures. In the region of T < 10 K, the
calculated values of thermal conductivity are notice-
ably lower than the experimental values measured for a
polished sample (see the inset in Fig. 3). In [2, 10], this
discrepancy was explained within the framework of the
Ziman–Soffer theory [20, 21], according to which the
calculation of thermal conductivity in the low-tempera-
ture region must take into account dependence of the
probability P of mirror scattering (and, hence, of the
relaxation frequency νphB(q)) on the phonon wave-
length [2, 10, 20, 21].

We may note another effect that may also lead to a
discrepancy between calculated and measured values at
low temperatures. As is seen from Fig. 4, the bulk value
of the mean free path (MFP) of the phonons (Fig. 4b) at
low temperatures is significantly greater than the effec-
tive MFP for the phonons of both polarizations (Fig. 4a)
and the sample dimensions. For example, in the isoto-
pically pure germanium sample (99.99% 70Ge) (curves 1,
Fig. 4b), the bulk MFP of the transverse phonons
(curve 1t) already at T = 10 K (4.8 cm) exceeds the sample
length, while at T = 5 K this MFP is 250 times the sam-
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phonons and the diffusion mean free path of phonons (dashed curves) and (b) bulk mean free path of phonons with longitudinal (L)
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ple length. For this reason, a ballistic transport of
phonons is possible at T ≤ 8 K, which may also contrib-
ute to the thermal conductivity. The diffusion MFP of
the longitudinal phonons is determined predominantly
by the N processes and is not very sensitive to the
degree of isotope disorder. However, since the probabil-
ity of the N processes for the transverse phonons is
small, the contribution of these phonons to the thermal
conductivity is determined primarily by the diffusion
motion. Therefore, the diffusion MFP of these phonons
virtually coincides with the effective value and signifi-
cantly depends on the isotope disorder.

Figure 5 shows the results of calculations of the
thermal conductivity κ(T) performed using the same
parameters for the Herring relaxation mechanism. It is
seen that the theory agrees well with the experimental
data for germanium crystals with different degrees of
isotope disorder [2, 3, 12]. Obviously, an increase in the
isotope disorder leads to a decrease in the total thermal
conductivity κ(T). As a result, the difference between
the variants of the interbranch (Herring mechanism)
and intrabranch redistribution of the phonon momen-
tum decreases to become less than 1% for the samples
of germanium with the natural isotope composition.
However, the contribution due to the drift motions of
the longitudinal phonons to the thermal conductivity
κL(T) at T = 15 K exceeds the diffusion contribution by
a factor of 1.5 even for the natural isotope composition.
We have analyzed the contribution of the transverse
phonons to the total thermal conductivity in the sam-
ples of germanium with various degrees of isotope dis-
order. As can be seen from Fig. 6, the transverse
phonons make the main contribution to the thermal
conductivity. This contribution increases with the
degree of isotope disorder and accounts for more than
90% of the total thermal conductivity in the samples
with the natural isotope composition (natGe) in the tem-
perature interval from 15 to 60 K. A decrease in the iso-
tope disorder is accompanied by an increase in the
phonon drift velocity. In the isotopically pure samples
(99.99% 70Ge), the contribution of the longitudinal
phonons to the thermal conductivity increases, while
that of the transverse decreases to 55% at T = 29 K for
the Herring mechanism and to 30% at T = 23 K for the
generalized Callaway model.

We must also note an interesting fact related to the
influence of the Herring N-process relaxation on the
thermal conductivity of germanium samples with vari-
ous degrees of isotope disorder. For the phonon scatter-
ing on the isotope disorder, the relaxation frequency of
the transverse phonons (see Eq. (20)) is approximately
five times greater than that of the longitudinal phonons.
It might seem that the growth of the isotope disorder
must be accompanied by an increase in the contribution
of longitudinal phonons to the thermal conductivity.
However, the disorder growth leads to a sharp drop in
the drift velocity of the longitudinal phonons, the latter
value decreasing by almost two orders of magnitude in
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the composition range studied (see below). This cir-
cumstance significantly decreases the contribution of
the longitudinal phonons to the thermal conductivity in
natGe as compared to that in 99.99% 70Ge. The above
conditions account for the successful application of the
Holland theory [13] to interpretation of the thermal
conductivity of germanium crystals with the natural
isotope composition. Our results agree with the analy-
sis performed in [22] using the variation approach,
where the probabilities of phonon scattering were
determined using the experimental values of elastic
constants and a good coincidence was obtained with the
data reported in [12, 23]. According to [22], 80–90% of
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Fig. 5. Temperature dependence of the thermal conductivity
for germanium crystals with various isotope compositions:
(1) 95.8% 74Ge, g = 3.6 × 10–5, CBL = 3.43; (2) 96.3% 70Ge,

g = 7.57 × 10–5, CBL = 1.6; (3) natGe, g = 5.87 × 10–4, CBL =

1.2; (4) 70/76Ge, g = 1.53 × 10–3, CBL = 1.35. Symbols rep-
resent the experimental data from [2, 3, 12].
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the heat in germanium crystals in the temperature inter-
val from 2 to 300 K is transferred by the transverse
phonons.

Let us consider the ratio /  of the drift and dif-
fusion contributions for both branches of the phonon
spectrum and the role of this factor in the thermal con-
ductivity of germanium with various degrees of the iso-
tope disorder. As can be seen from Fig, 7, the contribu-
tion of the drift motion of the longitudinal phonons to
the thermal conductivity of 99.99% 70Ge in the region
of maximum decreases in the Herring mechanism
approximately by half as compared to the value
obtained for the generalized Callaway model (with all
parameters taken from [2]). However, even in this case,
the drift contribution of the longitudinal phonons is
higher by two orders of magnitude than their diffusion
contribution. Note that the contribution of the drift of
longitudinal phonons to the thermal conductivity of
99.99% 70Ge according to the Herring mechanism
reaches a maximum at 28 K, where this contribution is
270 times greater than the diffusion contribution. On
the other hand, the contribution due to the drift motion
of the transverse phonons in the region of the thermal
conductivity maximum amounts to 6% of the total
value κt for the generalized Callaway model (Simons
mechanism) and is less than 2% for the Herring mech-
anism. As the degree of the isotope disorder increases,

both the /  ratio for the two branches of the
phonon spectrum and the difference between the Her-
ring and Simons variants become negligibly small.

Figure 8 illustrates the dependence of the thermal
conductivity at maximum (κmax) on the degree of the
isotope disorder g in germanium crystals with various
phonon relaxation frequencies at the sample boundaries
(CBL). Apparently, the proposed model of the inter-
branch redistribution of the phonon moments by the
Herring N-process relaxation mechanism (curve 1) pro-
vides for a much better description of the experimental
data [2–4, 12] than does the generalized Callaway
model (curve 1') [2]. As can be seen from this figure for
g < 10–6 (which corresponds to 99.9% 70Ge), the κmax

reaches saturation with respect to the isotopic purity of
germanium crystals, but still significantly depends on
the magnitude and character of the boundary phonon
scattering. A comparison between curves 1 and 4 shows
that a twofold increase in the sample cross section area
must increase the κmax value by one-third for 99.9%
70Ge as compared to the maximum value of thermal
conductivity reached in [2] for 99.99% 70Ge. Since a
dominating contribution to the thermal conductivity of
germanium is due to the transverse phonons, it would
be of interest to study how sensitive the thermal con-
ductivity is in the region of maximum to the Debye
spectrum of the transverse phonons (wqt = stq). How-
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λ

κdr
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λ
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ever, these calculations are outside the scope of this
paper and require a special consideration.

4. CONCLUSION

We have considered the effect of the normal
phonon–phonon scattering (N process) on the thermal
conductivity of germanium crystals with various
degrees of isotope disorder. The contributions of the
drift motion of longitudinal and transverse phonons to
the thermal conductivity were thoroughly analyzed for
two variants of the phonon relaxation in the N process:
(i) the N process redistributes the phonon momentum
only inside each oscillation branch (Simons mecha-
nism), and (ii) the momentum redistribution takes place
predominantly between various oscillation branches
(Herring mechanism). It is shown that the N process
plays an important role in isotope-enriched germanium
crystals and the results of calculations significantly
depend on the mechanism of momentum relaxation in
the N process. For the generalized Callaway model, the
drift contribution of the longitudinal phonons to the
thermal conductivity is almost three orders of magni-
tude greater than the diffusion contribution and is the
main factor determining the total thermal conductivity
in the region of maximum. This result agrees with the
calculations performed in [10]. In this case, the contri-
bution of the transverse phonons to the thermal conduc-
tivity is determined by their diffusion motions.

However, the main mechanism of the N process in
germanium crystals is the Herring mechanism [2, 11,
13, 14, 17, 22]. An analysis of the thermal conductivity
of germanium crystals with various degrees of isotope
disorder once again confirmed this fact. We succeeded
in matching the results of calculations of the thermal
conductivity of germanium to experiment for the same
parameters as in [2], without recourse to an additional
mechanism of the phonon scattering on dislocations
(the concentration of which [24] is four orders of mag-
nitude lower than required in [2] for fitting the calcu-
lated values to the results of measurement).

It must be noted that the results of calculation of the
thermal conductivity of germanium crystals for two
variants of the phonon momentum relaxation in the
N process differ both quantitatively and qualitatively.
According to the generalized Callaway model (Simons
mechanism), the thermal conductivity of germanium in
the region of maximum is determined mostly by the
longitudinal phonons, while in the Herring mechanism
the major role belongs to the transverse phonons. We
demonstrated that redistribution of the phonon momen-
tum between the longitudinal and transverse phonons in
the Herring N-process relaxation leads to a significant
decrease in the drift motions of the longitudinal
phonons and, accordingly, in the contribution of these
phonons to the thermal conductivity.

We hope that the approach developed in this paper
can be useful for studying the thermal conductivity in
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
other systems with isotope disorder. Apparently, an
increase in the degree of isotope disorder in crystals
such as silicon and diamond (where the Debye frequen-
cies of the transverse phonons are significantly higher
than in germanium), would lead to a stringent depen-
dence of the thermal conductivity on the isotope com-
position as a result of the “earlier” inactivation of the
phonon–phonon umklapp processes.

The theory proposed in this study is based on the
features of three-phonon Herring and Simons relax-
ation processes, while developing the general concepts
introduced by Callaway [1]. The further development
of the theory of lattice thermal conductivity requires
analysis of the microscopic kinetic equation for the
nonequilibrium phonon distribution function, with sep-
aration of the matrix of the relaxation frequencies

(q), describing redistribution of the phonon
momentum both inside and between the oscillation
branches, from the three-phonon collision integral.
Extensive investigations into the physical properties of
isotopically pure crystals [1–10] indicate that the solu-
tion of this problem is a currently important task in
solid state physics.
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Abstract—A phenomenological theory of the sequence of two second-order phase transitions with close tem-
peratures is considered; such transitions occur in the Ni–Br boracite. The thermodynamic potential is written
as a function of polarization Pi, magnetization Mi, and toroidal moment Ti vectors and fields Ei and Hi; Ti is

treated as an order parameter. It is assumed that only one coefficient of  passes through zero as T decreases.
The possibility of a sequence of two proper ferrotoroidal phase transitions along the T1 and T2 components is
demonstrated. Spontaneous Ti, Pi, and Mi vector values and equations for susceptibility tensors (dielectric χij =
dPi/dEj, magnetic kij = dMi/dHj, and magnetoelectric αij = dPi/dHj = dMj/dEi) were obtained for three phases.
Some of these values have well-defined anomalies in the vicinity of transitions. All possible sequences of fer-
rotoroidal phase transitions in boracites are considered. Depending on two potential coefficient values, these
sequences may consist of one, two, or three such transitions. © 2001 MAIK “Nauka/Interperiodica”.

Ti
2

1. INTRODUCTION

A sequence of phase transitions is observed in the
Ni–Br boracite (Ni3B7O13Br); this sequence can conve-
niently be denoted by G0  G1  G2  G3. The
high-temperature first-order phase transition occurs at

T = 398 K from group  =  of the G0 cubic

phase to group  = mm21' of the G1 orthorhombic
phase. Further, a sequence of two low-temperature sec-
ond-order phase transitions occurs, from the G1 phase
to another orthorhombic phase G2, symmetry group
C2v(Cs) = m'm2', at T = 30 K and from G2 to the G3
phase, symmetry group C1 = 1, at T = 21 K [1]. Note
that the last result (group C1 = 1) is questionable (see
below).

In several other boracites (Co–Br [2], Co–I [3], and
Ni–Cl [4]), one low-temperature second-order phase
transition G1  G2 was observed with the same
change in symmetry groups. This transition was identi-
fied [5] as a proper ferrotoroidal phase transition (the
order parameter was the T1 component of the Ti toroidal
moment), which explained the narrow temperature
peak of the α32 component of the αij magnetoelectric
tensor in the vicinity of the G1  G2 phase transition
in the G2 phase (and the absence of a similar peak for
the α23 component). Note that phase transitions with
the Ti order parameter were for the first time described
as a separate class of transitions in [6] (also see [7]). A
phenomenological approach to the phase transition in
the Ni–I boracite as a ferrotoroidal (or toroidal, there is

Td' 43m1'

C2v'
1063-7761/01/9303- $21.00 © 20579
no settled terminology yet) transition was for the first
time considered in [8]. The existence of two transitions
close in temperature in the Ni–Br boracite allows us to
suggest that these transitions occur by the same mech-
anism. In other words, they can be described by a uni-
fied thermodynamic potential in which only one coeffi-

cient A of  depends on temperature and passes
through zero as temperature decreases. This means that
both transitions are assumed to be proper ferrotoroidal
phase transitions: the first is the G1  G2 transition
along the T1 component, and the second is the G2 
G3 transition along the T2 component of the Ti vector. In
addition, we will consider all other possible sequences
of ferrotoroidal phase transitions in boracites.

Note that the use of the same symbol, T, to denote
temperature and the Ti toroidal moments should not
cause confusion because Ti are always written with
indices.

2. THERMODYNAMIC POTENTIAL

We will start with writing the thermodynamic poten-
tial. The x1, x2, x3 coordinate system of the orthorhom-
bic G1 phase is convenient from the point of view of
experiment. This system is rotated through 45° about
the z axis of the x, y, z coordinate system of the G0 cubic
phase. The coordinates are therefore related as

(1)

Ti
2

x1
1

2
------- x y–( ), x2

1

2
------- x y+( ), x3 z.= = =
001 MAIK “Nauka/Interperiodica”
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The potential will be written based on cubic G0 phase
symmetry. In this way, it is simpler to construct invari-
ants and further use their coefficients to compare the
orders of values in the obtained equations for the Pi, Mi,
and Ti spontaneous vectors and the χij, kij, and αij sus-
ceptibility tensors in the G0, G1, G2, and G3 phases.

The thermodynamic potential will be written in the
form

(2)

Here, R2 is the square of the order parameter for the
G0  G1 transition. This six-component Ri parameter
transforms under the six-dimensional representation of

the  =  space group of the G0 cubic phase [9].
A mixed invariant proportional to P3R2 (and certain
invariants fourth- and sixth-order in Ri) should contain
angular variables in the Ri space. We assume that the
minimization with respect to the angular variables have
already been performed. Strictly speaking, we must
take into account the R6 invariant, because the G0 
G1 transition is first-order. It is assumed that spontane-
ous polarization in the G1 phase is directed along the x3
axis and that P3 > 0 (the crystal is single-domain). The

σ, β, and γ coefficients are positive, σ > 0,  > 0, and
γ > 0. The structural invariants have coefficients
denoted by Greek letters, the coefficients of exchange
invariants are denoted by capital Latin letters, and rela-
tivistic invariants, by small Latin letters. The relativistic
invariants in (2) have the form

(3)

More details concerning the selection of invariants
and the form of the thermodynamic potential are given
in [5].

Let us eliminate the R2 variable, which is of no inter-
est for the further analysis, from the Φ potential to sim-
plify it. The α coefficient, which depends on tempera-
ture T, will be replaced by a value known from experi-
ments; for this purpose, spontaneous polarization can

Φ αR2=
1
2
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3
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4
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4+++–

– DR2Ti
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conveniently be used. Varying potential (2) with respect
to the R2 and P3 variables, using the P3 = P0(T) solution
for the G1 phase, and applying expansions usual for
first-order transitions, we obtain

(4)

Here and throughout, we use the notation

(5)

Note that this result [Eqs. (4), (5)] only differs from that
obtained in [5], where the γR6 invariant was not taken
into account, in the expression for Φ0, which does not
enter into any of the subsequent formulas and is there-
fore of little significance. Equation (4) was derived
using the solution for the G1 phase, and potential (4),
unlike (2), is therefore not valid for the G0 phase. To
simplify the further equations, the D coefficient is
replaced in this work (as distinguished from [5]) by ,

and a new D coefficient expressed through  is intro-
duced.

For the G1  G2 ferrotoroidal phase transition to

occur, it is necessary that coefficient  [more exactly,

, see (5)] change sign as temperature T decreases. As
usual, it is assumed that this coefficient depends lin-
early on T,

(6)

The other coefficients are assumed to be independent of
T (although their temperature dependence may follow
from experimental data, and this dependence should
then be taken into account). The P0(T) dependence is
determined experimentally for the G1 phase (and by
extrapolation for the G2 and G3 phases). It follows from
potentials (2) and (4) [also see (5) and (6)] that β > 0,

 > 0, κ > 0,  > 0,  > 0, B > 0, and αT > 0. The D,
a, b, c, and d coefficients may have arbitrary signs.
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3. PHASE DIAGRAM

An analysis of potential (4) shows that, if condition
(6) is met, various sequences of ferrotoroidal phase
transitions are possible depending on the signs of the c
and Dd coefficients. The diagram given in Fig. 1 visu-
ally represents four such possibilities corresponding to
regions I–IV in the c, Dd plane. Consider them one by
one. In region I, c > 0, c – Dd > 0, and the G1 
G2  G3 sequence of two transitions is possible, at
T = θ1 along T1 and at T = θ2 along T2. Note that here
and throughout, we say “is possible” rather than
“occurs” because the θ1, θ2, , and θ3 transition tem-
peratures may formally be lower than absolute zero.

In region II, c + Dd < 0, c – 2Dd < 0, and the G1 

G2   sequence of two transitions is possible, at

T = θ1 along T1 and at T =  along T3. In region III, c < 0,
c – 2Dd > 0, and a sequence of three transitions, G1 

G2    G4 is possible, at T = θ1 along T1, at T =

 along T3, and at T = θ3 along T2. In region IV, c – Dd <
0, c + Dd > 0, and only one G1  G2 transition at T =
θ1 along T1 is possible. This situation has already been
considered in [5]. In this work, a detailed analysis of
cases I and II is performed.

Throughout this paper, it is assumed that P0 is com-
paratively small (although the P0 values are considered
far from the G0  G1 transition in which P0 arises,
P0 grows insignificantly as temperature decreases). We
also assume spontaneous Ti values to be small in the
whole region of ferrotoroidal transitions. The a, b, c,
and d coefficients of relativistic invariants are also
small compared with the B, C, and D coefficients of

exchange invariants. Expansions in all these P0, , a,
b, c, and d values will be performed and only the high-
est expansion terms will as a rule be taken into account.

Note that the expansion in P0 and  is inherent already
in potentials (2) and (4), where the invariants contain-

ing the higher powers of P0 and  are not taken into
account. Any coefficient in all expressions considered
below can be replaced, for instance, coefficient κ by κ +

κ'P0 + κ''  (if spontaneous P0 and  do exist in the
phase under consideration).

4. SEQUENCE OF TWO TRANSITIONS
ALONG T1 AND T2

Consider case I. Varying thermodynamic potential
(4) with respect to Pi, Mi, and Ti at Ei = Hi = 0 and solv-
ing the resulting equations, we obtain the following
expressions for the Pi, Mi, and Ti spontaneous values in
the G1, G2, and G3 phases (everywhere, only nonzero
components are given).

θ2'

G3
'

θ2'

G3
'

θ2'

Ti
2

Ti
2

Ti
2

Ti
2 Ti

2
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For the G1 phase,

(7)

For the G2 phase,

(8)

It follows from (8) that the T1 component takes on a
spontaneous value in the G1  G2 proper phase tran-
sition. According to (6), its square linearly depends on
temperature T. Spontaneous polarization P3 acquires a
new term in the G2 phase compared with G1; this term

is proportional to  and arises because potential (4)
includes a mixed invariant with coefficient D. The
G1  G2 transition is therefore simultaneously an
improper ferroelectric transition (with an f = 2 weak-
ness index). A spontaneous M2 magnetization value
also arises in the G2 phase. The second term in the

expression for M2 is caused by the bM2 , DP3 ,
and aM2P3T1 mixed invariants, which linearly relate M2

to . The G1  G2 transition is therefore improper
ferromagnetic (with an f = 3 weakness index; latent fer-
romagnetism according to the terminology of [10]).
The first M2 term in (8) is caused by a linear relation
between M2 and T1 in potential (4) because of the
aP3M2T1 invariant and the P3 = P0 spontaneous value in
the G1 phase. The G1  G2 transition is therefore a
weak ferromagnetic transition (the aP0 coupling con-
stant is small). The G1  G2 transition can be treated
as weak ferromagnetic because of the preceding
G0  G1 transition, in which P0 takes on a spontane-
ous value.

P3 P0.=

T1
2 Ã

C̃
----–

AT

C̃
------ θ1 T–( ), P3 P0 DT1

2,+= = =

M2

aP0

B
---------T1

Da b+
B

-----------------T1
3.+=

T1
2

T1
3 κ̃ T1

2

T1
3

I

II

III

IV

c = 0

c

c = Ddc = –Dd

c = 2Dd

Dd

Fig. 1. Diagram in the plane of c and Dd coefficients repre-
senting four possible sequences of ferrotoroidal phase tran-
sitions in boracites.
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In the G3 phase,

(9)

According to (9), the G2  G3 transition results in the
appearance of a spontaneous T2 component value,
which is the order parameter for this transition. The
transition is therefore a proper toroidal phase transition.
Like the G1  G2 transition considered above, the
G2  G3 transition is simultaneously improper ferro-
electric ( f = 2) with respect to the P3 component,
improper ferromagnetic ( f = 2) with respect to M2, and
weak ferromagnetic with respect to the M1 component,
which takes on a spontaneous value in the G3 phase
along with and because of the arising of a T2 spontane-
ous value. The θ1 – θ2 temperature difference between
the two ferrotoroidal transitions is small because of the
smallness of P0 [see (9)]. For simplicity, the a, b, c, and
d coefficients will be assumed to be of the same order
of smallness (although this may not be the case).

5. SUSCEPTIBILITIES

We continue our analysis of case I. Let us calculate
the dielectric χij = dPi/dEj, magnetic kij = dMi/dHj, and
magnetoelectric αij = dPi/dHj = dMj/dEi susceptibili-
ties. For this purpose, we will vary potential (4) twice,
first with respect to Pi, Mi, and Ti and then with respect
to fields Ei and Hi. Solving the equations obtained
yields the following results.

For the G0 phase,

(10)

This result is obtained from potential (2).
For the G1 phase,

(11)

It follows from a comparison of (10) and (11) that the
χ33 component jumps up as a result of the G0  G1
transition, as should be in an improper transition ( f = 2)
ferroelectric with respect to the P3 component. The k22

T1
2 d

c'
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2
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component obeys the Curie–Weiss law in the vicinity of
the G1  G2 transition in the G2 phase with a very low

Curie constant proportional to a2  and, similarly, in
the G2 phase with a two times lower constant (see
below). For this reason, the temperature peak of k22
should be very narrow in the vicinity of the G1  G2
transition (Fig. 2).

For the G2 phase, we have

(12)

Comparing (11) and (12) shows that, as expected, the
χ33 component jumps up in the G1  G2 transition
(the jump does not contain small values). The k11 com-
ponent obeys the Curie–Weiss law in the vicinity of the
G2  G3 transition, which causes the appearance of
an M1 ∝  T2 spontaneous value (see (9)), with a small

Curie constant proportional to  and, similarly, in
the G3 phase with a two times smaller Curie constant
(see below). The k11 temperature peak in the vicinity of
the G2  G3 transition should therefore be narrow
(Fig. 2).

The G1  G2 transition causes the appearance of
the α23 and α32 off-diagonal components of the αij mag-
netoelectric effect tensor, which is a distinguishing fea-
ture of ferrotoroidal phase transitions. This property is
related to the presence of the aI3 = a[P × M]T invariant,
which always exists because of the transformation
properties of the Pi, Mi, and Ti vectors. Unlike α23, the
α32 component has a narrow (∝ aP0) temperature peak

(∝ ) in the vicinity of the G1  G2 transition in the
G2 phase (Fig. 2). The difference between the tempera-
ture dependences of the α32 and α23 components can be
explained as follows. According to (4), the equation for

P3 contains the  term (no such term is present in
the equation for P2), and the equation for T1 contains

the  – aP3M2 + DP3T1 sum. For this reason, an
additional term proportional to 1/T1 appears as a result
of the differentiation of P3 with respect to H2 (as distin-
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guished from the differentiation of P2 with respect to
H3). Similar conclusions follow from a comparison of
the results obtained in differentiating M2 and M3 with
respect to E3 and E2, respectively.

Narrow α32 component temperature peaks were
observed for the G1  G2 transition in several borac-
ites (Co–Br, Co–I, and Ni–Cl [2–4]), which is evidence
in favor of treating this transition as ferrotoroidal [5]. It
is more difficult to explain strong changes in α32 (this
component passes through zero two times and then
increases sharply in the Co–I boracite as temperature
decreases) and α23 (passes through zero and increases
sharply in the Co–Br boracite under the same condi-
tions). These changes may be related to sign reversal of
one of the D, a, b, and c coefficients or to anomalously
large values of some coefficients of the κ', κ'' type (see
above). An attempt at explaining this behavior of the
α32 and α23 components taking into account invariants
of higher orders in Pi and Ti, which was undertaken in
[5], should be considered unsuccessful.

For the G3 phase, we have

(13)
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Note that the terms proportional to  are too cum-
bersome to be given; in addition, they are of no signifi-
cance experimentally. A comparison of (12) and (13)
shows that the G2  G3 transition causes an addi-
tional, though small, jump of χ33 proportional to d
(improper transition with f = 2, ferroelectric with
respect to P3) and the appearance of new χ12 = χ21 ∝  T2
components. We also have new k12 = k21 components.
They have a narrow temperature peak proportional to

 with a small constant proportional to aP0T1 in the
G3 phase. In addition, new α13 and α31 components
arise, and α31, unlike α13, has a narrow temperature

peak proportional to  with a small constant propor-
tional to aP0 (Fig. 2). Comparing (12) and (13) shows
that the α23 and α32 components have no singularities
caused by the G2  G3 transition.

As the G2  G3 phase transition is a proper ferro-
toroidal transition with respect to the T2 component, the
symmetry group of the G3 phase should be C2(C1) = 2'.
It follows from a comparison with case II (see below)
that case I is closer than II to the experimental data on
the Ni–Br boracite [1]. The observation of the well-
defined temperature anomalies of the k11, k12 = k21, and
α31 component predicted to accompany the G2  G3
transition might serve as a test of the correctness of the
suggested theory. The C1 group of the G3 phase deter-
mined experimentally [1] is not the closest subgroup of
the C2v(Cs) = m'm2' group of the G2 phase. Strictly
speaking, the G2  G3 second-order phase transition
cannot be in phase with the C1 = 1 symmetry group.
This also requires experimental verification.

P0
1– T2

2

T2
1–

T2
1–

k22

k11

α32

α31

θ1θ2 T

θ1θ2 Tθ1θ2 T

θ1θ2 T

Fig. 2. Schematic drawing of temperature T dependences of
k22, α32, k11, and α31 in the vicinity of the G1  G2 (T =
θ1) and G2  G3 (T = θ2) phase transitions.
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6. A SEQUENCE OF TWO TRANSITIONS 
ALONG T1 AND T3

We will consider case II only going into details of its
differences from case I. Let the sequence of transitions
be denoted by G0  G1  G2  , and let the

corresponding temperatures be θ0, θ1, and .

Instead of (9) for the G3 phase, we have for 

(14)

Instead of spontaneous T2, spontaneous T3 appears (T3

is the order parameter of the G2   phase transi-
tion). In addition, we have spontaneous P1 but not spon-

taneous M1. The G2   phase transition, like
G2  G3, is improper ferroelectric with respect to the
P3 component ( f = 2) and improper ferromagnetic with

respect to M2 ( f = 2). The θ1 –  difference of the tran-
sition temperatures is small because of smallness of P0.

The expressions for the χij, kij, and αij susceptibili-
ties differ from those obtained in case I already in the
G2 phase [cf. (8)],

(15)

The expressions for the other components coincide
with (8). The χ11 susceptibility obeys the Curie–Weiss
law with a small Curie constant proportional to dP0 in

the vicinity of the G2   phase transition in the G2

phase and similarly in the  phase with a two times
smaller constant (see below). At the same time, the k11
component remains unchanged.

For the  phase, we have
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(16)

Again, the terms proportional to  are not given
because they are too cumbersome and useless experi-
mentally. The χ13 = χ31 components appear; they have a

temperature peak proportional to  with a constant
proportional to T1. The k11 component does not obey the
Curie–Weiss law [cf. (8)]. The α12 and α21 components
replace α13 and α31, and α12 (like α31 in the G2  G3

transition) has a temperature peak proportional to 
with a constant proportional to dP0. The α23 and α32
components exhibit regular behavior, as in (8). The
G2   phase transition is a proper ferrotoroidal
transition with respect to the T3 component, and the

symmetry group of the  phase should therefore be
Cs = m.

7. CONCLUSION

We will not consider case III because, experimen-
tally, the G0  G1  G2    G4 sequence
was not observed in any of the boracites. Note only that

(17)

where θ3 is the temperature of the   G4 proper
transition ferrotoroidal with respect to the T2 compo-

nent. The  – θ3 difference is small in so far as P0 is

small. The   G4 transition causes the appearance
of all Pi , Mi, and Ti vectors and χij, kij, and αij tensor

components lacking in the  phase. The symmetry
group of the G4 phase is C1 = 1.

Case IV was considered in [5] and virtually repro-
duced in this work (see (7), (8), and (10)–(12)). It was
stressed in [5] that a closed system of spins formed a
structure with a spontaneous toroidal moment normal
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to the plane of spins and that, consequently, such a
structure of spins should be sought in boracites. How-
ever, a system of antiparallel spins should also have a
toroidal moment normal to their plane if the distances
between oppositely directed spins are not equal. Note
that the explanation of the α32 temperature peak in
boracites was given earlier [11]. The G1  G2 phase
transition was treated in [11] as an antiferromagnetic
transition. We would like to stress that, from the point
of view of the phenomenological theory of phase tran-
sitions [12], an important thing is the transformation
properties rather than the physical meaning of the order
parameter that is, the representation of the initial sym-
metry group of the crystal that governs order parameter
transformations. For instance, consider the highest
magnetic symmetry group . The Mi magnetization
vector transforms according to one of four magnetic
three-dimensional representations, and the Li antiferro-
magnetic vectors transform according to the remaining
three representations. In other words, there exist three
antiferromagnetic vectors that differ from each other in
their transformation properties. The Ti toroidal moment
vector transforms as one of them. It follows that Ti can
be said to be a special case of Li in its transformation
properties.
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Abstract—A method is suggested of successive solution of the problem on the conductivity of two-dimen-
sional periodic systems with inclusions of arbitrary shape. The complex potential outside of the inclusions is
expressed in terms of the Weierstrass zeta function and its derivatives. The field induced on a separate inclusion
is described using the matrix of multipole polarizabilities. The “joining” of potentials is performed at a distance
ρ such that R < ρ < a, where R is the characteristic dimension (maximum “radius”) of the inclusion and a is the
half-period of the lattice. The approach suggested enables one to find exact virial expansions for the conductiv-
ity of other effective characteristics of similar systems as well. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of the conductivity and other electro-
physical characteristics of inhomogeneous unordered sys-
tems (in particular, composites) involves certain mathe-
matical difficulties [1]. Therefore, the results available for
the electrical conductivity of such media have largely
been obtained using model and numerical experiments.
In the case of composites with a periodic structure, the
situation is more favorable from the theoretical stand-
point, especially, as regards two-dimensional systems.
In this case, it is sufficient to find the potential within a
single elementary cell, whereby the problem is simpli-
fied considerably (though still remaining fairly com-
plex). Note that the study of the electrical properties of
composites with a periodic structure is of considerable
interest from both the generally physical (the problem
of metal-dielectric phase transition) and applied
(microelectronics) standpoints.

The analytical solution to the problem on conductiv-
ity is given for a number of two-dimensional doubly
periodic systems [1–3] using the methods of the theory
of functions of complex variables. Treated in [1–3] are
various models of systems with dielectric or ideally
conducting inclusions, whereby it is possible to restrict
oneself to solving the external problem. A closed solu-
tion in the case of finite (nonzero) conductivity of both
components is given in [1] for a model with a chess-
board structure. In [4, 5], a scheme is developed for
successively finding virial expansions for various effec-
tive characteristics of the model (first treated by Ray-
leigh [6]) of a thin film with circular inclusions that
form a square (rectangular) lattice. Note that each of the
methods used in [1–6] is valid for some single model
with inclusions of a concrete shape. At the same time,
no unified approach exists to this problem.
1063-7761/01/9303- $21.00 © 20586
In this paper, I suggest a method of successively
obtaining virial expansions for the conductivity and
other effective characteristics of composites with a two-
dimensional periodic structure formed by inclusions of
arbitrary shape. The complex potential outside of the
inclusions is expressed in terms of the Weierstrass zeta
function [7, 8] and its derivatives. As to the properties
of concrete inclusion, they enter the solution of the
problem in the form of multipole polarizabilities of this
inclusion, i.e., of respective coefficients in “responses”
to various external fields.

This approach enables one to fully solve the “lat-
tice” part of the problem by reducing the initial problem
of “inclusion in elementary cell” to the problem of find-
ing the response of solitary inclusion to an external field
with the asymptotic forms preassigned at infinity. As to
the problem of finding multipole polarizabilities, it
must be solved as an independent problem in each con-
crete case using analytical or numerical methods. I
found, by way of example, a complete matrix of polar-
izabilities for inclusions of elliptic shape. Note that I
have treated the case of a square lattice that is the sim-
plest for analysis, although the method suggested is
valid for lattices of different symmetry as well. The
treatment is performed within the framework of macro-
scopic electrodynamics, so that it is assumed, in partic-
ular, that the characteristic dimensions of inclusions are
large compared with the free path of carriers.

2. MULTIPOLE POLARIZABILITIES

In what follows, we will require the solution of the
problem on the response of separate inclusion (body) to
the external electric field. If a uniform field of intensity
E0 is applied, the electric potential ϕ in a dipole approx-
001 MAIK “Nauka/Interperiodica”
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imation has the following form (two-dimensional case)
at large distances from the body:

(1)

Here,

(2)

is the dipole moment of the inclusion, and  is the ten-
sor of dipolar polarizability.

If E0 is directed along one of the principal axes of

the tensor  (we will select this axis as the coordinate
axis x), then

(3)

where Λ(x) is the corresponding principal value of ten-

sor . The value of Λ(x) (as well tensor Λ itself) is pro-
portional to the area (volume in the 3D case) of inclu-
sion s:

(4)

where α(x) is the dimensionless dipolar polarizability
depending on the shape of the body and on the argu-
ment h = σ2/σ1, and σ2 and σ1 denote the conductivity
of the inclusion and of the surrounding medium,
respectively.

Below, it will be convenient to use the complex
potential Φ(z), the derivative of which is related to the
components of the electric field intensity E as

(5)

The real part of Φ(z) gives the electric potential ϕ(r),

(6)

The complex potential corresponding to expression (3)
has the form

(7)

with the real constant Λ(x).
When the higher order (multipole) moments are

included, the expression for Φ(z) at high values of z
takes the form

(8)

In Eq. (8), the common factor is omitted; for simplify-
ing the computation, it is assumed that the inclusion has
a fairly symmetric shape, so that the complex potential
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is even with respect to z, and the quantities  are
real. A comparison of Eq. (8) with (7) reveals that

(9)

In what follows, we will further require the response
of inclusion to a nonuniform external field of the form

where θ is the polar angle. In this case, we have, simi-
larly to Eq. (8),

(10)

with real constants , which will be referred
to as multipole polarizabilities. Note that equality (10)
may also be represented as

(11)

The even–even multipole polarizabilities Λ2n, 2m are
introduced in a similar manner.

Note that Dykhne’s symmetry transformation [9]
enables one to relate the complex potentials of the ini-
tial and so-called reciprocal (differing from the initial

one by the replacement h  1/h)  systems (com-
pare with [3]),

(12)

Here, the superscript ν = x at  implies that, in the
asymptotic forms of the electric potential ϕ =
ReΦ(ν)(z), the leading term has the form of Rez2n + 1,
and ν = y implies accordingly the form Imz2n + 1 for this
leading term. Here and below, the tilde indicates the
quantities pertaining to the reciprocal system. For
Φ(y)(z), we have an expansion similar to that given by
Eq. (10),

(13)

The substitution of Eqs. (10) and (13) into (12) gives
the relation

(14)

The even–even polarizabilities Λ2n, 2m are related by the
same relation.

From considerations of dimensionality, it follows
from Eq. (10) that

(15)
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where R is the characteristic dimension (in the xy plane)
of inclusion, and αnm denotes dimensionless quantities
dependent on the shape of inclusion and on the argu-
ment h.

3. ELECTRIC FIELD IN A MEDIUM
We will treat a two-dimensional system with identi-

cal (and identically oriented) inclusions forming a
square lattice with a period of 2a. We will assume that
the principal axes of the tensors of polarizability of
inclusions coincide with the axes of the lattice and with
the x and y coordinate axes. Then, if the average (with
respect to the elementary cell area) intensity of electric
field 〈E〉  is directed along the x axis, all quantities Λnm

in Eqs. (8) and (10) are real. The problem of finding the
potential is solved with the aid of expansion in terms of
the formally small parameter R/a, where, in this case, R
is the maximum “radius” of inclusion.

In zero approximation, the complex potential corre-
sponding to the uniform external field applied along the
x axis has the form

(16)
The response of the inclusion located at the origin of
coordinates to the field given by Eq. (16) is given,
according to Eq. (8), by the expression

(17)

Here and below, we omit the superscript x at . We
add up all responses of the type given by Eq. (17) from
all inclusions to derive the following expression for the
first-approximation correction to Eq. (16):

(18)

(19)

In equality (18),

(20)

is the Weierstrass zeta function [7, 8], ζ(2n)(z) is the
derivative of the order 2n of ζ(z), and zkl = 2(k + il)a.
The function ζ(z) (the term with n = 0 in Eq. (18)) arises
as a result of summation of the dipole potentials
induced by the external field. In this case, as in [4, 5],
the respective sum is regularized, which provides for its
convergence. The terms with n ≥ 1 in Eq. (18) corre-
spond to higher order multipoles.

In the next approximation, the external (with respect
to the selected inclusion) potential is provided by the
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quantity Φ(1)(z) from Eq. (18) less the eigenfield, i.e.,

the potential  from Eq. (17),

(21)

According to [7], the expansion

(22)

holds for the zeta function.
Expressions for the coefficients cm are given, for

example, in [7] (see also [4, 5]). In particular, for a
square lattice, all coefficients cm with odd subscripts are
zero. Equation (22) yields, for ζ(2n)(z),

(23)

so that Eq. (21) takes the form

(24)

According to Eq. (11), the response of selected inclu-
sion to the external stimulation given by Eq. (24) is

(25)

The summation of responses of the form of (25) from
all inclusions gives the contribution of the second
approximation to the total potential

(26)

where

(27)

with  from Eq. (19) and

(28)
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We continue this procedure to conclude that the total
potential outside of the inclusions has exactly the same
form as in the case of circular inclusions [4, 5],

(29)

Here, the corrections to the coefficients B2n of the
(N + 1)th and Nth approximations are related by

(30)

so that

(31)

or

(32)

It is easy to check that the quantities B2n from Eq. (32)
satisfy the equation

(33)

with  from Eq. (19) and Pnm from Eq. (28). Expres-
sions (29) and (33) with (28) give a formal solution to
the problem set.

The case when 〈E〉  is directed along the y axis is
treated analogously. The appropriate quantities will be
provided with an overscribed bar, so that Φ(y)(z) =

,  = , and so on. We use formula (13) for
searching for the response and derive the following
expression for the potential outside of the inclusions:

(34)

where the coefficients  satisfy the equation
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Here,

(36)

the matrix  coincides in shape with Pnm from
Eq. (28) and differs from the latter only by the substitu-
tion of Λ2k + 1, 2n + 1 by . Note that the substi-
tution of Eqs. (29) and (34) into equality (12) written in

the form  = i  gives the correlation between
the coefficients

(37)

For circular inclusions of radius R, the matrix of
polarizabilities has a diagonal form,

(38)

In this case, from Eq. (33) follows the equation

(39)

which coincides with equality (A.6) from [4].

4. EFFECTIVE CHARACTERISTICS

4.1. Conductivity

We use the complex potential Φ(z) from Eq. (29) to
calculate the drop of voltage Ux on an elementary cell
and the total current Ix through the latter in the direction
of the x axis to derive, analogously with [4, 5],

(40)

We find

(41)

for the effective conductivity σxe = Ix/Ux in the direction
of the x axis (i.e., for the respective principal value σxe

of the effective conductivity tensor ).

If the inclusion “radius” R is small compared with
the lattice half-period a, then, according to Eqs. (19)
and (9), we have
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so that, in a linear (with respect to the concentration c =
s/(2a)2) approximation, from Eq. (41) follows

(42)

Expression (42) coincides with the respective formula
in [10] (with due regard for the fact that α(x) in [10] is
two times greater in magnitude).

Within the terms of ~R10 inclusive, we find for the
coefficient B0 from Eqs. (32), (28), and (19)

(43)

For circular inclusions, it follows from Eq. (43) in view
of (38) that

(44)

which is in agreement with [4].
The terms written out in Eq. (43) are the first terms

of the virial expansion for the coefficient B0 and,
thereby, for the conductivity σxe. Note that it is a quan-
tity of the order of R/a, where R is the maximum
“radius” of inclusion, that is the expansion parameter in
Eq. (43) rather than the concentration (the fraction of
the area being taken up) of inclusions. One can expect,
however, that, as in the case of circular inclusions [4],
the approximation given by Eq. (43) describes ade-
quately the conductivity of the system for all values of
R/a & 1. As R approaches a, an ever larger number of
terms is to be taken into account in the expansion given
by Eq. (43). One is inclined to think that the respective
series will be convergent if the expansions given by
Eqs. (8) and (10) converge (at |z| > R).

In the case when 〈E〉  is directed along the y axis, we
derive for the effective conductivity σye, similarly to
Eq. (41),

(45)

with the coefficient  from Eq. (34). For a reciprocal
system (h  1/h), it follows from Eq. (37), in partic-

ular, that  = – . Therefore, a comparison between
σye and  gives

, (46)
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which is the reciprocity relation [11].

4.2. Thermal Electromotive Force

In the case of a weak thermoelectric coupling, the
following general expression [12] is valid for the prin-
cipal value αxe of the effective tensor of thermal emf 
of a two-component medium with structural anisot-
ropy:

(47)

where

(48)

Here, αi is the thermoelectric coefficient of the ith com-
ponent, and 〈…〉 (2) is the integral over the area of inclu-
sion, divided by the area of elementary cell. In Eq. (48),
E(x) = –∇ϕ  is the electric field intensity and G(x) = –∇ T
is the temperature field “intensity,” which are calcu-
lated in the absence of thermoelectric coupling at 〈E〉  ||
x and 〈G〉  || x.

The problems on electrical conductivity and thermal
conductivity in the absence of thermoelectric effects
change one into the other in the case of permutations
σ  κ, E  G, and j  q, where κ is the ther-
mal conductivity and q = κG is the heat flux density.
Therefore, the results given in Sections 2 and 3 and in
Subsection 4.1 are extended to the problem on thermal
conductivity by means of substitutions σi  κi and
σαe  καe, so that, for example,

(49)

Here, two bars mark the coefficient obtained from B0 at
σi  κi.

In order to calculate Ψ(x), we will use formula (A.5)
from Appendix A. In doing this, note that the electric
potential

with Φ(z) from Eq. (29) assumes, in view of Eq. (23),
the form

(50)
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The substitution of Eq. (50) and a similar expansion for

T(r) (in which B2n should be replaced by ) into for-
mula (A.5) gives

(51)

We substitute into Eq. (48) expression (51),  =
Ux/(2a) with Ux from Eq. (40), and an analogous (with

substitutions of B0 by  and β by ) expression for

 to derive

(52)

We use Eqs. (41) and (49) to eliminate the coefficients

B0 and  from Eq. (52) and finally derive

(53)

Expression (53) is a generalization of the respective
isotropic formula (see [13]) to the case of structurally
(geometrically) anisotropic media.

4.3. Partial Quadratic Characteristics

Directly related to the effective conductivity tensor
 are the partial quadratic characteristics of the elec-

tric field intensity [14],

(54)

Here, σαe (where α = x, y, z) denotes the principal val-
ues of the tensor , and E(α)(r) is the electric field
intensity in the medium; the index α implies that 〈E(α)〉
is directed along the axis α; and 〈…〉 (i) is the integral
over the area (volume, in the three-dimensional case) of
the ith component, divided by the area (volume) of
sample.

We will use formula (51) in order to calculate .

We assume in Eq. (51) that κ1 = σ1 and  = β and then
perform the limiting transition κ2  σ2 to derive

(55)
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From Eq. (55), in view of  = Ux/(2a) (with Ux
from Eq. (40)), we find

(56)

One can readily see that the right-hand part of Eq. (56)
is a derivative of σxe from Eq. (41),

(57)

which coincides with Eq. (54) at α = x and i = 2.

4.4. Hall Coefficient

The effective Hall coefficient Re in a low magnetic
field H is expressed in terms of the Hall component σae

of the effective conductivity tensor  as follows:

(58)

Here, it is taken into account that the system being
treated is, generally speaking, structurally anisotropic.
In turn, σae may be expressed in terms of the Hall com-
ponents of individual components of σai [14],

(59)

where

(60)

Here, 〈…〉 (2) is the same as in Eq. (48).
We substitute into Eq. (B.12) ϕ(x) = ReΦ(z), A(x) =

−ImΦ(z), and ϕ(y) = Re  with Φ(z) from Eq. (29)

and  from Eq. (34) to derive

(61)

We use relation (61) to derive from Eq. (60)

(62)

which is a generalization of the respective isotropic for-
mula from [14] to the case of a system with structural
anisotropy.

5. INCLUSION OF ELLIPTIC SHAPE

The problem on multipole polarizabilities of elliptic
cylinder is solved in elliptic coordinates (µ, θ) [15],

(63)
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The equation for the boundary of inclusion is preas-
signed by the equality µ = µ0, so that z0  = a0 and

z0  = b0 are the major and minor semiaxes of the
ellipse, respectively. Hence,

(64)

The ellipse matrix of polarizabilities is found in Appen-
dix C. The following expression holds for its elements:

(65)

The expression for  at m ≥ n differs from
Eq. (65) only in that the summation over k proceeds

from zero to n. In Eq. (65),  is the binomial coeffi-
cient, and

(66)

In particular, for k = n, we have, in view of Eq. (64),

(67)

so that

(68)

The quantities  may be found by the

known values of  using relation (14) written
as

(69)

where the tilde indicates the substitution h  1/h.

APPENDIX A

In order to calculate the quantity entering the
expression for the thermal emf,

where the integration is performed over the area s of the
inclusion, we will treat the integral

(A.1)
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taken over the area of a circle of radius ρ (R < ρ < a).
Note that the integrand in Eq. (A.1) is other than zero
only inside the inclusion, so that

(A.2)

On the other hand, in view of the equations divj = 0
and divq = 0, we have

(A.3)

where it is taken that E = –∇ϕ  and G = –∇ T. In view of
Eq. (A.3), the integral in Eq. (A.1) may be transformed
to a “surface” integral taken over the circumference of
radius ρ that lies fully outside of the inclusion. As a
result, from Eq. (A.1) follows

(A.4)

We equate Eqs. (A.2) and (A.4) to find

(A.5)

For a solitary inclusion, we use the asymptotic
forms given by Eq. (3) for the potential ϕ(r) (and anal-
ogous asymptotic forms for T(r)) to derive from
Eq. (A.5), in the limit ρ  ∞,

(A.6)

where h = σ2/σ1,  = κ2/κ1, and  = Λ(x) . In the

limit   h, from Eq. (A.6) follows

(A.7)

where Λ(x) is the principal value of the dipolar polariz-

ability tensor . In the case of arbitrary orientation of
the inclusion, we have, instead of Eq. (A.7),

(A.8)

J σ1κ2 σ2κ1–( ) E G⋅ r.d

s

∫=

σ1qE κ1 jG– ∇ σ 1ϕq κ1Tj–( ),–=

J σ1κ1 ϕ∂T
∂r
------ T

∂ϕ
∂r
------– 

 
r ρ=

ρ θ.d

0

2π

∫=

E G⋅ rd

s

∫
κ2

κ1
-----

σ2

σ1
-----– 

  –1

=

× ϕ∂T
∂r
------ T

∂ϕ
∂r
------– 

 
r ρ=

ρ θ.d

0

2π

∫

E G⋅ rd

s

∫ 4πΛ
x( )

Λ x( )–

h h–
------------------------E0

2,=

h Λ
x( )

h

h

E2 rd

s

∫ 4π∂Λ x( )

∂h
------------E0

2,=

Λ̂

E2 rd

s

∫ 4π E0
∂Λ̂
∂h
-------E0 

  .=
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In the three-dimensional case, an analogous treat-
ment using the asymptotic forms of the potential

(A.9)

also leads (for an integral over the volume of inclusion)
to expressions (A.7) and (A.8).

APPENDIX B

In order to calculate the integral

entering the expression for the function ϕa in Eqs. (59)
and (60), we will treat the quantity

(B.1)

where the integration is performed over the circular
area r ≤ ρ (R < ρ < a). Because the integrand is other
than zero only inside the inclusion, then

(B.2)

Here, the integration is performed over the area s of the
inclusion.

On the other hand, the integral in Eq. (B.1) may be
transformed to a “surface” integral (contour integral, in
the two-dimensional case being treated). In doing this,
note that, by virtue of the equation curl E = 0, we have
the equality

(B.3)

where it is taken into account that E(x) = –∇ϕ (x). There-
fore,

(B.4)

where the vector element dS of the area is directed
along the z axis. The Stokes theorem is used to trans-

ϕ br( ) E0r pr

r3
------ …,+ +–=

r ∞, p Λ̂E0,=

E x( ) E y( )×[ ] z r,d

s

∫

I σ1
2 E x( ) E y( )×[ ] z j x( ) j y( )×[ ] z–{ } r,d

r ρ≤
∫=

I σ1
2 σ2

2–( ) E x( ) E y( )×[ ] z r.d

s

∫=

E x( ) E y( )× curl ϕ x( )E y( ){ } ,–=

I1

σ1
2

----- E x( ) E y( )×[ ] z rd

r ρ≤
∫≡

=  curl ϕ x( )E y( ){ } S,d

r ρ≤
∫–
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form the integral over the surface of a circle of radius ρ
into the integral over its contour,

(B.5)

For the tangential component of intensity E(y) = –∇ϕ (y),
we have

at r = ρ, so that from Eq. (B.5) follows

(B.6)

We will further introduce the vector potential
according to

(B.7)

where Ax = Ay = 0 and Az = A, so that

(B.8)

Then, for the quantity

(B.9)

in view of the equation divj = 0, we have

(B.10)

Therefore,

(B.11)

Here, jN is the normal (to the r = ρ contour) component
of j.

From Eqs. (B.6) and (B.11), we find the quantity I =
I1 + I2, whose comparison with Eq. (B.2) ultimately
produces

(B.12)

where h = σ2/σ1.
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2
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2π
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APPENDIX C

In solving the problem on multipole polarizabilities
of an elliptic cylinder, it is convenient to use a complex
representation. In so doing, the coupling of coordinates
given by Eq. (63) takes the form

(C.1)

with z0 from Eq. (64). For the complex potential of the
external field, we have

(C.2)

According to [8],

(C.3)

Therefore, the complex potentials outside and inside
the ellipse are sought in the form

(C.4)

(C.5)

with the real coefficients  and . We
separate the real parts in Eqs. (C.4) and (C.5) and sat-
isfy the boundary conditions

(C.6)

to find the coefficients  (see formula (66)) and

,

(C.7)

Then, we use the expansion

(C.8)

z x iy+ z0 w, wcosh µ iθ+= = =

Φ0 z( ) z2n 1+ z0
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22n
------- C2n 1+
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k 0=

n

∑

Φ e( ) z( ) 2
z0

2
---- 

 
2n 1+

C2n 1+
k 2n 2k– 1+ )w[ ]cosh{
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∑=

+ D2n 1+
2n 2k– 1+ e 2n 2k– 1+( )w– } ,

Φ i( ) z( ) 2
z0

2
---- 

 
2n 1+

=

× C2n 1+
k B2n 1+

2n 2k– 1+ 2n 2k– 1+( )w[ ]cosh
k 0=

n

∑
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2n 2k– 1+ B2n 1+

2n 2k– 1+
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∂µ
----------- h

∂ϕ i( )

∂µ
-----------, µ µ0= = =

D2n 1+
2n 2k– 1+

B2n 1+
2n 2k– 1+
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2n 2k– 1+ eξ

ξcosh h ξsinh+
--------------------------------------,=

ξ 2n 2k– 1+( )µ0.=

1 1 x––( )n

=  n
x
2
--- 

 
n 1

2k n+
---------------C2k n+

k x
4
--- 

 
k

k 0=

∞

∑
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to find

(C.9)

In view of Eqs. (C.2), (C.3), and (C.9), expression (C.4)
takes the form

(C.10)

After the change of the order of summation in (C.10)
and comparison with the general formula (10), we

derive expressions (65) and (66) for .

The even–even multipole polarizabilities  are
sought analogously. As a result,

(C.11)

where

(C.12)

The expression for  at m ≥ n differs from (C.11)
in that the summation over k proceeds from zero to n – 1.

The polarizabilities  are found from formulas of
the type of (69).
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Abstract—SBN crystals doped with rare-earth metal ions were studied to show that relaxor ferroelectrics had
pronounced anomalies, which manifested themselves by the noncoincidence of the trajectories of the first sev-
eral cycles of dielectric hysteresis loops, the absence of an unambiguous coercive field, and other special fea-
tures of the kinetics of polarization. These anomalies were related to structural disorder of the crystals and a
random internal electric field distribution and could only be observed in constant and quasi-static electric fields.
A phenomenological analysis of the thermal activation stages of polarization relaxation was performed. The
spectra of the energy distribution of potential barriers were reproduced in the approximation of their indepen-
dence. Electric conductivity was shown to play an important role in the formation of giant barriers. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Relaxor ferroelectrics (relaxors) are solid oxide
solutions with perovskite [1–3] or tungsten bronze [2–
4] structures. The best studied representatives of the lat-
ter are SrxBa1 – xNb2O6 (SBN) crystals with Sr concen-
trations in the range 0.75 ≥ x ≥ 0.25 [4]. A characteristic
feature of relaxors is substantial structural disordering
caused by various reasons. For instance, Ba and Sr
atoms in SBN only fill 5/6 of basis sites and are statis-
tically distributed over two available structural chan-
nels [5]. As distinguished from usual uniform ferro-
electrics, the phase transition to the polarized state
and physical property anomalies in relaxors are
spread over a wide temperature region (the Curie
region). For instance, the permittivity ε function has
a flat maximum and a noticeable dispersion at some Tm

temperature [1–3].

Relaxors are characterized by high dielectric, piezo-
electric, pyroelectric, electrooptical, and nonlinear
optical characteristic values with substantial nonlinear-
ity and weak temperature dependences because of
phase transition smearing. For this reason, relaxors are
promising materials for use in optics and piezoelectric
devices. An attractive feature of these materials is also
the possibility of modifying their properties by chang-
ing the chemical composition. For instance, increasing
the concentration of Sr in SBN [2–4] and doping SBN
with rare-earth metals [6–8] substantially decrease the
Tm temperature, increase several parameters important
for practical applications, and make characteristic
relaxor properties more pronounced. SBN crystals have
certain practical applications, for instance, in hologra-
1063-7761/01/9303- $21.00 © 20596
phy [9], because, when doped with Ce, Cr, and Co, they
acquire a high sensitivity to recording and high cou-
pling constants (“amplification factors”) of light waves
in multiwave interactions. SBN crystals with certain
rare-earth metal admixtures also offer promise for use
in piezoelectric devices [6, 8]. One of the new possibil-
ities of applying SBN is optical frequency conversion
under quasi-phase matching conditions on regular
domain structures [10–12].

The weak point common to all relaxors including
SBN is irreproducibility of properties and their deterio-
ration under external actions, in the first place, electric
field actions. Detailed studies of polarization processes
are therefore of great importance. The dielectric prop-
erties of relaxors were studied in alternating electric
fields [1–3]. In this work, we report polarization mea-
surements in constant and slowly varying (quasi-static)
fields, which allows the contribution of long-lived
metastable states characteristic of all nonuniform struc-
tures [13] to be taken into account. Our preliminary
data on SBN of one composition showed [7, 14] that
polarization processes in relaxors had very special
properties and could not be described in terms of the
traditional concepts of their occurrence in usual uni-
form ferroelectrics. The purpose of this work was to
perform a comparative experimental analysis of the
kinetics of polarization of crystals with different
relaxor properties and a model uniform ferroelectric,
triglycine sulfate (TGS).
001 MAIK “Nauka/Interperiodica”
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2. CRYSTALS AND EXPERIMENTAL 
PROCEDURE

The relation between the observed polarization and
relaxor characteristics was studied for two SBN single
crystals with 0.61 at. % Sr doped by various rare-earth
metal admixtures, which allowed us to vary the degree
of phase transition smearing and electric conductivity.
The basis composition of SBN is congruent and pos-
sesses the best optical quality compared with other
SBN crystals [4]. The crystals were grown using a mod-
ified Stepanov procedure at the Scientific Center for
Laser Materials and Technologies, Institute of General
Physics (Russian Academy of Sciences) [15]. One sam-
ple, SBN:(La + Ce), was doped with 1 wt % La2O3 and
0.1 wt % Ce2O3 in the molten state (the concentrations
of the admixtures in the crystal were 0.44 at. % La and
0.023 at. % Ce according to measurements on a Come-
bax microanalyzer). The other sample, SBN:Nd, was
doped with 0.5 wt % Nd2O3 (the concentration of the
admixture in the crystals was roughly estimated at
0.7−0.8 at. % Nd).

The type of doping was selected from consider-
ations of the possibility to control the phase transition
temperature and the degree of its smearing upon the
introduction of rare-earth admixtures [8]. The SBN:(La +
Ce) crystal has the most smeared ε maximum at a com-
paratively low temperature Tm = (310–314) K [7, 8]; this
crystal is a promising material for dynamic holography
[16] because of its high electrooptical and light ampli-
fication coefficients. For this reason, expected anoma-
lous polarization behavior near Tm was easier to study
by the precision electrometric recording technique that
we used thanks to a comparatively high electric resis-
tance, which is known to increase as temperature
decreases. The Tm temperature (340 K) is higher and the
electric resistance lower for the SBN:Nd crystal, which
makes it possible to estimate the influence of free
charge carriers on polarization. Our interest in this
composition stems from the observation that it exhibits
the self-doubling effect of the generation frequency
excited on Nd3+ ions in ferroelectric microdomains [12].

The samples were polished 2.5 × 3 × 0.7 mm3 plates
of the polar z cut of crystals. The large faces were
coated by a silver paste. The temperature of the sam-
ples was maintained constant to 0.03 K with the use of
a cryostat.

Crystal polarization P was determined by precision
compensation electrometric measurements. The key
element of the scheme for measurements was an equal-
arm bridge. The sample, reference capacitance C, and
the low-resistance sources of constant voltage, V and v
(applied to the sample and capacitor, respectively) were
placed in the first, second, third, and fourth bridge arms.
A V7-29 electrometer in the bridge diagonal was used
as a null indicator. When the bridge is balanced, the
voltage drop across the electrometer is zero, and the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
electric charge Q density on the electrodes of a sam-
ple of area S at time t is

(1)

where E = V/d, d is the sample thickness, and ρ is the
specific electric resistance. If ρ is large and the second
term in (1) can be ignored, σ(t) charge variations in
time are only related to changes in P(t). This condition
is met in good dielectrics with high ρ values, and cor-
rections for electric conductivity effects are virtually
unnecessary.

The highest voltage and charge sensitivities of the
bridge were 20 µV and 2 × 10–9 µC (at C = 10 pF),
respectively. Voltage compensation in the bridge diago-
nal was performed with the use of a computer, which
controlled peripheral devices. The v(t) dependence of
compensation voltage was displayed on a monitor in
the real-time mode. A detailed description of the unit
can be found in [13].

Polarization P was recorded using the following
three measurement schemes: during continuously cool-
ing and heating crystals in field E = 0 (pyroelectric
effect), in quasi-static field E at T = const (dielectric
hysteresis), and in the presence or absence of field E =
const at T = const (polarization relaxation). In pyroelec-
tric effect measurements, the rate of temperature varia-
tions was 0.3 deg/min. In dielectric hysteresis measure-
ments, voltage V, which was varied from +300 to –300 V,
was supplied from a B5-50 source controlled by a pro-
gram block. Several repolarization cycles were
recorded in voltage and time intervals multiple to 1 V
and 1 s, respectively; the largest number of steps was
1200. Studies of the kinetics of polarization and depo-
larization were performed by measuring P changes in
intervals of 0.25 to 1 min.

Electric resistance R was estimated at long times,
when P relaxation virtually ceased, and the time depen-
dence of charge Q was a straight line, dQ/dt = V/R. All
measurements were performed for nonpolarized crys-
tals; samples were heated above Tm and then cooled to
the required temperature in the field E = 0.

3.RESULTS AND DISCUSSION

3.1. Pyroelectric effect and dielectric hysteresis
in relaxor ferroelectrics. The temperature depen-
dences of permittivity ε in an alternating field with a
1-kHz frequency are shown in Fig. 1. For SBN:(La + Ce),
the ε maximum is lower and the phase transition in
more smeared than for SBN:Nd. This observation and
a noticeable frequency dispersion of temperature Tm

corresponding to the e maximum in SBN:(La + Ce) [7, 8]
are evidence that this composition has more pro-
nounced relaxor properties. The temperature depen-
dences of ∆P changes in nonpolarized SBN:(La + Ce)
and SBN:Nd crystals are shown in Fig. 2. Numbers at
curve points correspond to the sequence of temperature

σ t( ) Q t( )
S

----------- Cv t( )
S

--------------- P t( ) E
ρ
---t,+= = =
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and polarization changes with time. The ∆P(T) depen-
dences in Fig. 2 correlate with the ε(T) dependences in
Fig. 1. The first relaxor exhibits a smeared ε maximum
and smooth ∆P variations at T < Tm, whereas a more
pronounced ε maximum at Tm in the second relaxor cor-
responds with comparatively sharp ∆P changes. It is
easy to verify that ∆P has a parabolic temperature
dependence, ∆P = 0.18(θ – T)1/2 (inset in Fig. 2b). The
θ = 317 K temperature is somewhat lower than Tm,
which is likely to be related to the well-known low-fre-
quency dispersion of ε [2].

The pyroelectric effect observed in nonpolarized
crystals (Fig. 2) is, in the first place, evidence of the uni-
polar character of the samples, that is, of unequal vol-
umes of regions with mutually opposite spontaneous
polarization Ps directions. The stronger relaxor,
SBN:(La + Ce), is much more unipolar (Fig. 2a). The
∆P(T) dependences recorded during cooling and heat-
ing do not coincide, and the temperature hysteresis
magnitude depends on the rate of temperature varia-
tions. This is illustrated by relaxation of ∆P from point 4
to 5 at some fixed temperature in Fig. 2b (inset). Relax-
ation of ∆P is evidence of the formation of long-lived
metastable states in the crystals after cooling. More
details will be given below.

The quasi-static dielectric hysteresis loops of the
relaxors are shown in Fig. 3. Solid circles correspond to
the onset of repolarization. Numbers at the curves
denote the sequence of P changes. As distinguished
from the usual uniform ferroelectrics, the first loop
cycles are open and noncoinciding curves with a
decreasing P amplitude. After several cycles, the P
amplitude virtually ceases to decrease, and all subse-
quent P trajectories coincide; that is, they become
reproducible, and the loops acquire the familiar form.
These low-frequency repolarization anomalies are
more expressed in the first crystal, which, as men-
tioned, has other more pronounced relaxor properties.

280

ε33, 103

T, K
300 320 340 360 380

12

3

30

20

10

0

Fig. 1. Temperature dependences of permittivity ε33 of SBN
crystals: (1) undoped, (2) doped by Nd, and (3) doped by La
and Ce; measurements at 1 kHz.
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The unusual shape of the loops is a direct substanti-
ation of the earlier suggestions concerning the special
features of the polar structure of relaxors [3] and can be
phenomenologically explained as follows. Disordering
of certain ions over various positions in the structure
(for instance, disordering of Ba and Sr over two cation
sites in SBN [4, 5]) should result in their concentration
gradients, local internal electric fields Ei, and, as a con-
sequence, a decrease in local symmetry. Local free
energy should be an asymmetric two-minimum func-
tion of polarization in such a system,

(2)

where E is the external field [2, 3]. Free energy F for
Ei + E < 0 is schematically shown in the inset in Fig. 3.
Field Ei, the depth of the minima, and the potential bar-
riers between them are random values distributed over
the crystal volume in a wide range of values. At E = 0,
various crystal regions are in stable or metastable states
corresponding to deep and shallow F minima, respec-
tively, both with P > 0 and with P < 0. In an alternating
field of a certain amplitude E, transitions of some crys-
tal regions to the stable state may be observed, because
fields lower barriers and accelerate relaxation. The
reverse process is virtually impossible until |E| ≤ |Ei|.
These regions therefore do not participate in further
repolarization, and the P amplitude decreases. The dif-
ference of the P values at the beginning and at the end
of the cycle of E variations can serve as a measure of the
relative volume of the regions that do not participate in
repolarization (are “quenched”). For instance, the rela-
tive volume of quenched regions in Fig. 3a approxi-
mately equals 40%. Qualitatively similar results were
obtained for SBN in pulsed fields [8]. When tempera-
ture or field E decreases, all potential barriers become
higher and the amplitude of P variations decreases [7].
Complete reproducible repolarization of the whole
crystal volume is only possible in field E that exceeds
the highest Ei field in the sample; it appears that the
highest Ei value is fairly large.

3.2. Polarization relaxation in relaxor ferroelec-
trics. More complete information about the structure of
the barriers can be obtained by analyzing polarization P
relaxation in various constant fields E. Recall how such
relaxation occurs in a usual uniform ferroelectric. In a
uniform ferroelectric, Ei = 0 everywhere, F in (2) is a
symmetrical function of P at E = 0, spontaneous polar-
ization Ps = (α/2β)1/2, and the coercive field Ec =
(2α/3)[(2α/3)/β]1/2 coincides with the half-width of the
loop and is well defined. At E > Ec, fast avalanche-like
polarization occurs, and at arbitrary E < Ec, polarization
is a slow thermally activated process without an initial
P jump. Under both conditions, equilibrium polariza-
tion equals Ps, and the rate of relaxation increases as E
grows [2]. By way of example, relaxation P of a TGS
crystal in fields lower than Ec [13] is shown in Fig. 4a.

F –αP2 βP4+ Ei E+( )P,–=
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Polarization relaxation in the studied SBN crystals
has basically other characteristics. Switching on field
E, both larger and smaller than the loop half-width (for-
mally, larger and smaller than Ec), causes P to change
first jumpwise and then in a thermally activated manner
(Fig. 4b). Jumps observed in a wide range of E values
are evidence of the absence of an unambiguous coer-
cive field Ec, which takes on different values at different
crystal points. The P jump, naturally, increases at
higher E fields because a larger crystal volume is polar-
ized. A phenomenological analysis of the thermally
activated relaxation stages shows that the concept of a
certain equilibrium polarization Pe is also inapplicable
to relaxors. Indeed, a certain limiting Pe value corre-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sponds to each field E. This value increases as E grows,
when crystal regions that remained “quenched” in
lower fields become involved in the polarization pro-
cess (Fig. 4b).

An analysis of the thermally activated relaxation
stages was performed as in [17], in the approximation
of independent relaxation centers whose contributions
to polarization can be considered additive. Dimension-
less polarization can then be written as

(3)p t( )
Pe P t( )–
Pe P0–

---------------------- f τ( ) t
τ
--– 

 exp τ .d

0

∞

∫= =
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Here, P0 is the initial polarization, Pe is the equilibrium
polarization, P(t) is the polarization at time t, and f(τ) is
the normalized relaxation time τ distribution function.
The τ2f(τ) and p(t) functions are related to each other by
the Laplace integral transformation.

Our experimental data are described by the power
time law

(4)

The P(t) measurement results were approximated by
(3) and (4) with three free parameters, P, a, and n, using
the method of least squares and a standard program.
The calculation results and experimental data are
shown in Figs. 4a and 4b by solid curves and open cir-
cles, respectively. The deviation of the experimental
values from the curves does not exceed 0.5%. Impor-
tantly, the larger the time interval of relaxation record-
ing, the smaller the errors of determining the Pe, a, and

p t( ) 1/ 1 t/a+( )n.=
JOURNAL OF EXPERIMENTAL
n parameters [17]. The parameter values for TGS and
SBN:(La + Ce) are listed in Table 1.

Empirical law (4) is likely to be universal for non-
uniform systems of various types. Many of the nonex-
ponential dependences observed earlier are its particu-
lar cases. For instance, p(t) ~ 1/tn at t @a, p(t) ~ 1 –
(n/a)t at t ! a [18], and p(t) ~ 1 – nln(1 + t/a) at n ! 1
[19]. Relaxation p(t) in mixed K1 – xLixTaO3 crystals in
the vitreous state also obeys law (4) [20]. Compared
with the long-known Kohlrausch law

which is also valid for our crystals at long times, law (4)
has two advantages. First, it correctly describes relax-
ation even at short times. Secondly, a simple f(τ) func-
tion corresponds to this law no matter what the a and n
parameter values.

p t( ) t
τ
--– 

  β
    β 1<( ),exp∼
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Table 1.  Relaxation and distribution spectrum g(τ) parameters for polarization of TGS and SBN:(La + Ce) crystals

Crystal T, K E, V/cm Pe, µC/cm2 a, min n τm, min ∆U, eV S

TGS 293 5.6 3.0 242.2 0.063 3800 ± 270 0.14 0.013

16 269.4 0.220 1225 ± 85 0.09 0.027

25 223.6 0.589 380 ± 30 0.06 0.168

SBN 274 300 24.5 ± 0.016 3.724 ± 0.012 0.045 ± 0.001 82.2 ± 0.3 0.15 0.14

400 26.97 ± 0.019 4.35 ± 0.013 0.038 ± 0.001 114.5 ± 0.4 0.16 0.11

600 38.41 ± 0.013 4.799 ± 0.07 0.058 ± 0.001 82.74 ± 0.15 0.14 0.16
Potential barrier U for a relaxation center is related
to time τ by the Arrhenius equation U = kTln(τ/τ0),
where τ0 is the kinetic coefficient. For this reason, the
g(lnτ) = τf(τ) dimensionless function can conveniently
be used instead of f(τ); this function describes the dis-
tribution of lnτ or the energy U distribution of barriers.
For law (4), this function has the form [21]

(5)

where Γ(n) is the gamma function.
The g(lnτ) function has a maximum at τm = a/n. If

relaxation is slow, n ! 1, the whole spectrum shifts to
larger U and τ values, its width increases, and its max-
imum becomes lower. The width of the spectrum can be
measured by the difference

∆(lnτ) = lnτ2 – lnτ1

or
∆U = kTln(τ2/τ1),

where τ2 and τ1 are the relaxation times τ corresponding
to the inflection points of the g(lnτ) curve, at which
d2g/d(lnτ)2 = 0. Using (5) then gives

or

The solid circles in Fig. 4 correspond to τ values
equal to relaxation recording times tmax. The spectra at
τ > tmax were obtained by extrapolating the experimen-
tal data to long times. For instance, for ln(τ/t0) = 10 (t0=
1 min), τ = 15 days, and for ln(τ/t0) = 30, τ = 10 years.
Clearly, the fraction of experimentally recorded relax-
ation processes, which equals area S bounded by the
g(lnτ) curve up to the ln(tmax/t0) point, is as a rule fairly
small. The spectral parameters and areas S are listed in
Table 1.

The g(lnτ) spectrum of TGS is obviously different
from that of SBN relaxors. The g spectrum of TGS
monotonically shifts to small τ values and sharply nar-
rows as field E increases within the range of values not
exceeding the half-width of the hysteresis loop. Its

g
1

Γ n( )
----------- a

τ
--- 

 
n a

τ
---– 

  ,exp=

∆U 2kT
2n 1+( ) 4n 1+( )1/2+

2n
----------------------------------------------------ln=

∆U 2kT n for n ! 1.ln–=
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behavior demonstrates a tendency toward simultaneous
leveling and narrowing of energies U of all barriers as
E approaches Ec (Fig. 4c). SBN does not exhibit such a
clear-cut dependence (Fig. 4d), and its spectra for two
different E values virtually coincide. This is a conse-
quence of the participation of only some part of the
crystal in polarization within the interval of E values
used in our experiments. This part, certainly, increases
as E grows, but the contributions of slow processes may
fortuitously be almost equal.

3.3. Electric conductivity effects on polarization
relaxation. If measurement processes are slow, the ∆Q
contribution of electric conductivity to the observed
charges should be noticeable. The ∆Q contribution and
specific resistance ρ can be estimated by separating the
linear and nonlinear constituents of charge Q relax-
ation. For SBN:(La + Ce) and SBN:Nd crystals, such
estimates equal ρ = 2 × 1013 and 5 × 1011 Ω cm and
∆Q = Et/ρ = 0.03 and 0.7 µC/cm2, respectively, when
field E = 600 V/cm is switched on for 15 min at T = 273 K.
For SBN:(La + Ce), the electric conductivity ∆Q con-
tribution is small compared with the recorded polariza-
tion P value, whereas, for SBN:Nd, this contribution is
fairly large (see Fig. 3). The polarization data shown in
Figs. 3 and 4 take into account corrections for conduc-
tivity. For SBN:Nd, polarization relaxation curves are
neither given nor analyzed because of the large conduc-
tivity-induced error involved in separating the linear
and nonlinear observed charge components.

The role played by electric conductivity in the for-
mation of potential barriers for relaxation centers is
quite obvious in depolarization processes. The external
field is then zero, E = 0, and through conductance,
which masks relaxation, is then absent. Relaxation can
therefore very accurately be recorded and analyzed.
Crystals were polarized in various electric fields E for
5 min. The field was then switched off, and depolariza-
tion was recorded (Fig. 5, inset). As during polariza-
tion, changes in P after the initial jump followed power
time law (4). Circles in the figures are the experimental
data, the calculation results are given by solid curves,
and the equilibrium Pe values are given, by dashed
lines. The higher field E, the larger the Pe value. Solid
circles in the g(lnτ) spectra signify the end of depolar-
ization measurements.
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~~

~~

~~
The spectrum of SBN:Nd is broader and includes
giant relaxation times. The spectra of SBN:(La + Ce)
and SBN:Nd crystals obtained after preliminary polar-
ization in a 1-kV field at temperatures 60°C below
those corresponding to ε maxima are compared in
Fig. 5e. The relaxation and spectrum parameters are
listed in Table 2.

The role played by free charge carriers in spectrum
broadening and the appearance of giant barriers and
relaxation times is obvious. Indeed, the screening times
JOURNAL OF EXPERIMENTAL
τs = ερ/4π are 1000 and 10 min for SBN:(La + Ce) and
SBN:Nd, respectively. During measurements for t =
120 min after preliminary polarization, screening is
only observed for the second crystal. This results in
spatial charge redistribution and the appearance of an
additional internal field, which increases asymmetry of
local free energy F. It follows that screening in a crystal
with a lower resistance decelerates depolarization and
increases the equilibrium Pe value (crystal memory). In
the SBN:(La + Ce) crystal with a larger resistance, the
Table 2.  Relaxation and distribution spectrum g(τ) parameters for depolarization of SBN crystals

Admixture T, K E, V/cm P0,
µC/cm2 Py, µC/cm2 a, min n τm , min ∆U, eV S

La, Ce 274 500 1.75 1.217 ± 0.003 0.82 ± 0.06 0.273 ± 0.004 2.98 ± 0.26 0.061 0.65

800 4.328 2.866 ± 0.006 0.094 ± 0.004 0.081 ± 0.001 1.16 ± 0.06 0.118 0.29

Nd 273 1000 4.432 1.312 ± 0.11 1.998 ± 0.3 0.012 ± 0.0004 166.5 ± 30 0.208 0.043

2000 18.26 13.198 ± 0.057 2.92 ± 0.128 0.022 ± 0.0003 132.7 ± 7.4 0.18 0.076
 AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001
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role played by screening is insignificant. The data
shown in Fig. 3 were used to estimate τs for the static
permittivity ε = 4πP/E. Note in addition that screening
is likely also to be responsible for the larger width of
the hysteresis loop of SBN:Nd.

4. CONCLUSION

The observed anomalies of the kinetics of polariza-
tion and depolarization of relaxor ferroelectrics (nonco-
incidence of the first several cycles of dielectric hyster-
esis loops, the absence of an unambiguous coercive
field, etc.) increase as relaxor properties become more
pronounced and are obvious indications and a measure
of structural disorder in these materials, which are char-
acterized by the presence of long-lived metastable
states. It is important that, for this reason, the anomalies
only manifest themselves in constant or slowly varying
(quasi-static) electric fields and have not been detected
earlier, we believe, because of the use of overly fast
measurement processes. The anomalies of SBN polar-
ization can be used to qualitatively explain irreproduc-
ibility of properties and their deterioration under the
action of fields known from the literature. The results of
this work can be used in studies of transformations of
arbitrary relaxor physical properties in electric fields
and for the purpose of controlling their structural state.
The structure of relaxors grows stabler, and the experi-
mental data become reproducible after several slow
repolarization cycles. Note also that similar disorder
manifestations can, in a less pronounced form, be
observed in ordinary uniform ferroelectric materials.
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Abstract—Third-harmonic microwave radiation of the BiSrCaCuO superconducting single crystal was stud-
ied. Two modes of microwave field–sample interactions were observed. In a weak field, a strong increase in the
intensity of radiation after switching on a constant magnetic field, a hysteresis between opposite scan directions,
and different harmonic amplitudes depending on the conditions of cooling (in the presence or absence of a mag-
netic field) were observed. These observations can be described by the generalized Ginzburg–Landau func-
tional taking into account higher spatial derivatives of the order parameter. At a high intensity of incident waves,
a magnetic field almost did not influence third-harmonic radiation, and, accordingly, hysteresis was absent. This
is likely to be evidence that, at high powers, third-harmonic radiation arises as a result of generation of vortices
under the action of a high-frequency magnetic field. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The microwave properties of the layered strongly
anisotropic BiSrCaCuO superconductor have been
studied from different points of view. A large number of
studies have been concerned with interpreting micro-
wave absorption in terms of the Josephson plasma res-
onance model [1–8]. The main idea of Josephson cou-
pling between cuprate planes has also been experimen-
tally verified by microwave measurements [9]. Owens
[10] endeavored to determine the fractions of the liquid
and solid phases in the vortex lattice of the BiSrCaCuO
single crystals by measuring microwave absorption in a
magnetic field. In [11], the authors were able to deter-
mine the temperature dependence of the λab and λc pen-
etration depths at a 10-GHz frequency from surface
impedance measurements. Such measurements allow
certain conclusions to be drawn on the character of
interactions responsible for the formation of supercon-
ducting pairs, in particular, the quality of describing
measurement results in terms of s or d models of order
parameter symmetry. In all these investigations, a linear
microwave response was studied. At the same time, it
has been shown in several studies [12–14] that the
greatest difference in the microscopic properties corre-
sponding to different order parameter symmetry mod-
els manifests itself in the nonlinear response of the
anisotropic high-Tc superconductor. For instance, the
third-order response in the microwave region contains
a singularity near the transition temperature in the
s-pairing model, whereas an additional singularity of
the 1/T type appears in the d-pairing model [14]. Stud-
ies of the nonlinear response of superconductors are
also important for practical applications [15–17].
1063-7761/01/9303- $21.00 © 20604
2. EXPERIMENTAL

In this work, we observed and studied radiation at
the triple microwave frequency in the BiSrCaCuO
superconducting crystal. The experiment was per-
formed as follows. A 3 × 3 × 0.2 mm3 BiSrCaCuO sin-
gle crystal with a Tc = 90 K transition temperature and
a 1–1.5 K transition width (according to magnetic sus-
ceptibility measurements) was placed at the bottom of
a bimodal cylindrical resonator with a 9-GHz funda-
mental frequency and a 27-GHz receiver frequency.
The resonator was placed in a cryostat and, together
with the cryostat, in an electromagnet. A system of
Helmholtz coils and additional coils for compensating
the earth field were used for measurements in a weak
field (up to 180 Oe). A stronger field (up to 7 kOe) was
generated by a Kapitsa magnet, into which the resona-
tor could be introduced without remounting the sample.
The system for stabilizing and varying temperature
allowed measurements to be taken with a sufficient
accuracy at a fixed temperature or the sample to be
heated or cooled at the required rate. The microwave
magnetic fields of both modes and the external mag-
netic field were collinear and lay in the plane normal to
the c axis. Measurements were taken at temperatures
from nitrogen (77 K) to temperatures substantially
exceeding the transition point. The microwave part of
the measuring circuit consisted of a high-power gener-
ator (a pulsed magnetron with a 0.8–10 µs pulse width),
tuning and measuring devices (klystron generators,
wavemeters, attenuators, and a power meter), and a
superheterodyne receiver set to a frequency of 27 GHz.
The harmonic radiation signal from the output of the
superheterodyne receiver was fed to the input of an
oscilloscope for visual observation and, simulta-
001 MAIK “Nauka/Interperiodica”
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neously, to the input of a stroboscopic integrator and,
from the integrator, to a computer. The magnetron gen-
erator gave 50–100 pulses per second, which prevented
heating of the single crystal by microwave currents. For
weak signals at the integrator, averaging over many
pulses could be performed to increase the signal-to-
noise ratio. The unit allowed the rate of magnetic field
sweep to be varied in a wide range both in the Helm-
holtz coils and in the Kapitsa magnet. The amplitude of
the harmonic was recorded as a function of tempera-
ture, external magnetic field, and incident wave ampli-
tude.

3. RESULTS

Odd harmonic radiation as distinguished from even
harmonics is not forbidden by symmetry in a zero mag-
netic field. We observed radiation at the third-harmonic
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Fig. 1. Triple-frequency wave amplitude versus the cube of
the incident wave amplitude in the absence (solid curve) and
presence (dashed curve) of an external magnetic field
(100 Oe) at 78 K.
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Fig. 3. Hysteresis character of the dependence of radiation
intensity on a constant magnetic field. Solid and dashed
curves were recorded while increasing and decreasing the
field, respectively. Incident wave amplitude 1 Oe, T = 78 K.
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frequency. An unexpected finding was a strong depen-
dence of the intensity of radiation at low incident wave
amplitudes on constant magnetic field (Figs. 1 and 2).
The curves shown in these figures were obtained with a
single difference: when the curve shown in Fig. 2 was
recorded, a 30 dB damping was introduced between the
attenuator and the receiver input. Therefore, in the
region of incident wave amplitudes shown in Fig. 1, the
signal in Fig. 2 was either small or undetectable. With-
out a magnetic field, generation in Fig. 2 started at 7 Oe.
Weak radiation was also observed at smaller ampli-
tudes (Fig. 1); it is likely that, at a 7-Oe amplitude, a
new and much stronger generation mechanism was
switched on. At small pumping amplitudes, a well-
defined hysteresis was observed (Fig. 3). The influence
of the magnetic field on the intensity of harmonic radi-
ation at large incident wave amplitudes was insignifi-
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Fig. 2. Triple-frequency wave amplitude versus the incident
wave amplitude in the absence (solid curve) and presence of
weak (100 Oe, dashed curve) and strong (1200 Oe, thin
solid curve) external magnetic fields at 78 K.
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Fig. 4. External magnetic field dependence of triple-fre-
quency wave amplitude. Incident wave amplitude 12 Oe,
temperature 78 K.
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cant, as follows from Fig. 4. This record was made
while changing the magnetic field scan direction; it
shows that hysteresis was absent. The temperature
dependences of the intensity of frequency radiation in
the absence and presence of a field are shown in Figs. 5
and 6, respectively. The record in Fig. 6 was made at a
1-Oe incident wave amplitude, and this was the reason
for a strong influence of the external magnetic field on
the shape of the curve. According to Fig. 6, the signal
disappeared when the sample was heated to 85 K in the
magnetic field and reappeared before the transition.
The signal near the transition was independent of the
field. Measurements were also performed using a dif-
ferent geometry, when all magnetic fields (microwave
at the fundamental and harmonic frequencies and exter-
nal) were oriented along the c axis of the crystal. In this
geometry, we did not observe radiation stimulation by
an external magnetic field.

78

H3ω, arb. units

T, K
80 82 84 86 88 90

1.0

0.8

0.6

0.4

0.2

0

Fig. 5. Temperature dependence of triple-frequency wave
amplitude in the absence of an external magnetic field. Inci-
dent wave amplitude 5 Oe.
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Fig. 6. Temperature dependence of triple-frequency wave
amplitude in the presence of an external magnetic field
(100 Oe). Incident wave amplitude 1 Oe.
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4. DISCUSSION
First, consider experiments at small incident wave

amplitudes, when the dependence of the intensity of tri-
ple-frequency radiation on the incident wave intensity
can be considered cubic. The most interesting result is,
we believe, a strong increase in the third-harmonic
amplitude in the presence of a magnetic field. No such
dependence was observed for YBaCuO single crystals
[18]. In ceramic samples with a branched system of
Josephson couplings between granules, even a weak
magnetic field suppressed generation, and in fields of
15 Oe the signal was difficult to observe. Introducing a
field into the sample at a temperature below the transi-
tion point has two consequences: a surface current
related to the magnetization jump and vortices in the
bulk arise. We believe that the intensity of radiation
increases precisely because of the surface current. The
following experiment lends support to this conclusion.
A magnetic field was introduced at a low temperature,
radiation arose, and the sample was heated to a temper-
ature above the transition point to the normal state, in
which radiation was absent. After this, the sample was
cooled without varying the external magnetic field to
the initial low temperature. The intensity of triple-fre-
quency radiation was then several times lower than the
initial intensity, although the number of vortices did not
change during cooling. The distribution of vortices dur-
ing cooling in a field is more uniform than when the
field is introduced at a low temperature. This, however,
does not refer to the thin layer near the surface, where
the distribution of vortices is always strongly nonuni-
form [19, 20]. Precisely the smallness of this layer
determines weak harmonic radiation during cooling in
an external field.1 Further, we suggest a phenomeno-
logical description of stimulation of harmonic radiation
by the current based on the Ginzburg–Landau func-
tional, which takes into account higher spatial deriva-
tives of the order parameter than those used in consid-
ering a linear response. Let us write free energy f of a
superconductor in the form

(1)

1 A similar situation arose in experiments with YBaCuO single
crystals, in which, however, second-harmonic radiation was
observed [18].
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where ψ is the complex order parameter; A is the vector
potential; α, β, and δ are the phenomenological expan-
sion coefficients; e is the charge of the electron; and ma

and mc are the effective masses along the crystal axes.
The terms in the expansion of energy in powers of spa-
tial derivatives that are proportional to the δ parameter
are usually ignored in describing microwave responses.
Let us assume that A = 0 and write the order parameter
in the form

(2)

with a constant φ modulus. The k(kx, ky) and r(x, y) vec-
tors are two-dimensional. At such an order parameter,
the current is given by the equation

(3)

Minimizing the free energy functional with respect
to φ yields (4) (an algebraic relation between the order
parameter and the α, β, and δ coefficients) and (5) (an
expression for the current of superconducting elec-
trons):

(4)

(5)

where φ0 = –α/β is the equilibrium order parameter
value corresponding to k = 0. Set k = k0 + q, where k0
is determined by the constant constituent of the super-
conducting current, and q = –2eAω/c is determined by
the Aω high-frequency vector potential. Contributions
to the third-harmonic amplitude are made by the terms

of (5) that are proportional to . These terms have the
form

where γ = δma . The first two terms give the harmonic
amplitude independent of a constant current in the sam-
ple, and the last two terms describe radiation which
only appears in the presence of a constant current. If γ > 1,
the nonlinear current is determined by the last term in
(5),

(6)

and we observe an increase in the intensity of radiation
in the presence of a constant current. Equation (6) for a
nonlinear source can be used to find the angular depen-
dence of the current

(7)

where θ is the angle made by k0 and q. Figure 7 shows
that dependence (7) satisfactorily correlates with the
experimental angular dependence of the intensity of
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radiation. As has been mentioned above, stimulation of
radiation by current is absent when the fields are ori-
ented along the c axis. Within the framework of the phe-
nomenological approach that we use, this corresponds
to the smallness of spatial derivatives in this geometry
because of the strong anisotropy of BiSrCaCuO.

5. CONCLUSION
We showed that the intensity of the third harmonic

emitted by a BiSrCaCuO superconducting single crys-
tal in a microwave field could strongly increase in the
presence of a constant magnetic field. An important
role in radiation was played by the screening surface
current. The experimental results can be understood
using the Ginzburg–Landau theory with a generalized
functional including higher spatial derivatives of the
order parameter.
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Abstract—All iron ions in the Cu1 and Cu2 local lattice sites of the YBa2(Cu0.9
57Fe0.1)3O7.01 superconductor

with Tc = 31 K experienced magnetic ordering below Tm = 22 K. Therefore, at T < Tm, magnetic ordering coex-
isted with superconductivity. According to the Mössbauer spectroscopy data, iron ions in Cu2 (Fe2) sites were
in the low-spin state at T < Tm (S = 3/2 or 1/2), whereas an equal number of iron ions in Cu1 (Fe1) sites were
in the high-spin Fe3+ state (S = 5/2). The magnetic transition near Tm changed iron ion spin states—low-spin
ions turned into high-spin ions, and vice versa. This preserved the spin balance between iron ions in the Cu1
and Cu2 layers. Control measurements on other samples of the YBa2(Cu1 – xFex)3O7 ± δ series substantiated
these conclusions. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimentally studying correlations and competi-
tion between magnetism and superconductivity with
theoretically analyzing magnetic pairing mechanisms
is one of the main directions in studies of the nature of
high-temperature superconductivity [1, 2]. The discov-
ery of magnetic ordering of Fe ions in the supercon-
ducting compound YBa2(Cu1 – xFex)3O7 aroused much
interest [3–10]. This effect was observed in the Möss-
bauer spectra of 57Fe nuclei, whereas neutron diffrac-
tion did not detect any long-range magnetic order in the
superconducting state [11–13]. Slow spin relaxation of
Fe ions and spin glass-type ordering were considered as
possible reasons for magnetic hyperfine interactions in
these compounds [7, 8, 10, 12, 14]. In addition, the pos-
sibility of formation of iron ion clusters in Cu1 sites
was analyzed [15–17]. It was, however, shown recently
[13] that Fe ions in Cu1 regular copper sites with a
square-planar oxygen coordination also experienced
magnetic ordering, although these sites are usually not
involved in clustering. It follows that the problem of
coexistence, correlation, and competition between
magnetism and superconductivity still remains unclari-
fied and intriguing.

It was found with definiteness from the Mössbauer
hyperfine interaction parameters (see [18] and the ref-
erences therein) that, at room temperature, Fe ions in
Cu2 sites of the YBa2Cu3O7 (Y-1-2-3) superconductor
doped with iron were in the Fe3+ high-spin state (S =
5/2), whereas Fe3+ ions in Cu1 sites were in a state with
a lower spin (S = 3/2 and/or 1/2). Nor could the pres-
ence of Fe4+ in Cu1 sites be ruled out [19, 20]. At low
temperatures (in the superconducting state), iron ions
1063-7761/01/9303- $21.00 © 20609
were magnetically ordered in all Cu1 and Cu2 local
sites. The Mössbauer lines of Fe in Cu1 sites were
unambiguously identified in the Zeeman spectra,
whereas the lines of Fe in Cu2 sites were difficult to
observe because of complex superposition of several
subspectra (see discussion in [21]).

In this work, we thoroughly studied the transforma-
tion of the Mössbauer spectrum magnetic components
into paramagnetic doublets in YBa2(Cu1 – x

57Fex)3O7 ± δ
superconductors caused by the low-temperature mag-
netic transition near the Tm point. We observed that, at
T < Tm, Fe ions in Cu2 sites were in a state with a low-
ered spin, whereas an equal number of Fe ions in Cu1
sites had the high spin. At T > Tm, spin crossover was
observed: iron ions of both types changed their spin
states and high-spin ions turned low-spin and vice
versa.

2. EXPERIMENTAL

The YBa2(Cu0.9
57Fe0.1)3O7.01 sample enriched in the

57Fe isotope by 96% was prepared by the standard
ceramic procedure [22, 23] with final annealing in oxy-
gen at 450°C for 24 h followed by cooling to room tem-
perature in oxygen at a rate of 1 K/min. The content of
oxygen was determined iodometrically and refined by
processing the neutron diffraction data according to
Rietweld [11, 18]. The sample was superconducting
and had a Tc = 31 K superconducting transition temper-
ature determined by measuring the electrical resistance
by the inductive method [23]. The 57Fe Mössbauer
absorption spectra were recorded on a standard spec-
trometer with a constant acceleration in the transmis-
001 MAIK “Nauka/Interperiodica”
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sion geometry. A 57Co(Rh) source of gamma quanta
had room temperature. Measurements at 4.2–295 K
were performed using a flow helium cryostat. The
Mössbauer spectra were treated in terms of theoretical
models by the method of least squares with the use of
computer programs described in [18, 21, 22–26].
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Fig. 1. Mössbauer spectra of 57Fe nuclei in the
YBa2(Cu0.9

57Fe0.1)3O7.01 superconductor at several tem-
peratures below the Tm magnetic transition point.
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3. RESULTS AND DISCUSSION

A typical Mössbauer spectrum recorded at room
temperature consisted of three quadrupole doublets
(D1, D2, and D3). Their isomer shifts (ISs) and quadru-
pole splittings (QSs) are listed in Table 1. It was reliably
established [18, 27] that the D3 doublet should be
assigned to Fe3+ ions in Cu2 sites; its hyperfine interac-
tion parameters were evidence of the high-spin state of
these ions, S = 5/2. The D1 and D2 doublets corre-
sponded to Cu1 local sites with Fe3+ ions in an interme-
diate (S = 3/2) and/or low-spin (S = 1/2) state [19, 23,
27]. The D2 doublet had broadened lines and in reality
might contain several additional components (see [18]).
Nor could the presence of Fe4+ ions in Cu1 sites be
ruled out [19, 20].

The low-temperature Mössbauer spectra exhibited
hyperfine magnetic splitting (Fig. 1). This was evidence
that Fe ions were magnetically ordered in all local sites
that they occupied in the 1-2-3 structure and that this
magnetic order coexisted with superconductivity. The
spectra could be described by three Zeeman subspectra
M1, M2, and M4 (we use the notation introduced in [25,
26, 28]) with the mean hyperfine magnetic saturation
fields Hhf(4.2 K) = 211, 265, and 464 kOe, respectively.
These subspectra corresponded to Fe ions in various
Cu1 and Cu2 sublattice sites; their hyperfine coupling
parameters are listed in Table 1. Their values closely
agree with the data obtained by other authors [19, 29–
31]. The resonance lines of the M1 and M2 magnetic
components (with low Hhf field values) were broadened
and overlapped each other. For this reason, we only
estimated the mean values of their hyperfine coupling
parameters with the use of special models (see [21, 24,
30, 32, 33]). The mechanisms of line broadening such
as distribution of magnetic fields caused by chemical
disordering, spin relaxation and spin glass-type behav-
ior, and zero spin fluctuations in low-dimensional mag-
netic systems were discussed in [7, 9, 26, 29, 32, 34].
Table 1.  Hyperfine interaction parameters for Mi magnetic components at T = 4.2 K and for Di paramagnetic doublets at room
temperature obtained from the Mössbauer spectra of  YBa2( 57Fe0.1)3O7.01 superconductor

T, K Di , Mi IS, mm/s ε, mm/s QS, mm/s Γ, mm/s Arel, % Hhf, kOe

4.2 M1 +0.10(4) +0.59(5) – 0.64(5) 29.5 211
M2 +0.16(4) +0.53(5) – 1.22(5) 56.2 265
M4 +0.56(3) –0.54(5) – 0.74(5) 14.3 464

298 D1 +0.057 – 1.993 0.354 33.5 –
D2 –0.022 – 0.981 0.530 54.8 –
D3 +0.369 – 0.651 0.337 11.7 –

Note: IS is the isomer shift with respect to iron metal, QS is the quadrupole splitting of paramagnetic spectra, ε is the quadrupole shift in
magnetic spectra (ε = (QS/4)(3cos2 θ – 1), where θ is the angle made by Hhf and the principal electric field gradient axis Vzz), Γ is
the line half-width, Arel is the relative area of the subspectrum, Hhf is the mean magnetic field on the iron nucleus. Parenthesized
values are errors of measurements; if the latter are not given, they have typical values of ±0.005 for IS, QS, and Γ; ±1.5% for Arel;
and ±2 kOe for Hhf.

Cu0.9
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Field Hhf is usually related to the spin quantum num-
ber of iron (S) by the approximate equality Hhf ≈
220〈Sz〉  kOe [13, 19, 26, 29, 32, 34], which as a rule
holds in magnetic oxides, to describe the contribution
to the field of ionic core spin polarization [35]. Consid-
ering that field Hhf  can be lowered because of cova-
lency or spin fluctuation effects [35], both Hhf field val-
ues for the M1 and M2 components (211 and 265 kOe)
can correspond to the (S = 3/2) state of Fe3+. The
Hhf(M1) value is also consistent with an intermediate
spin state of Fe4+. The low field values for the M1 and
M2 components were explained on the assumption of
the low-spin state of iron ions [8, 19, 21, 29, 31]. In this
work, we found that not only fields Hhf  had low values
but also the isomer shifts of the M1 and M2 components
were small (see Table 1, taking into account the temper-
ature shift estimated below). A similar effect was
recently observed by Prasanna et al. [31]. This is addi-
tional evidence that Fe ions in M1 and M2 local sites are
in a state with a lowered spin (the S = 3/2 intermediate
state is most probable [19]).

Consider the behavior of the less intense M4 compo-
nent with the highest local magnetic field (the left and
right outermost spectrum lines, Fig. 1). In the supercon-
ducting state, the M4 component has a large positive
isomer shift, IS(4.2 K) ≈ +0.56 mm/s (with respect to
iron metal at room temperature). Similar hyperfine
parameters were obtained for this component in other
studies [13, 19, 21, 24, 25, 29, 31, 34]. A further analy-
sis can conveniently be performed after recalculating
the IS(4.2 K) value to room temperature. It was shown
in [19, 25] that, in 1-2-3-type compounds, the tempera-
ture dependence of the “center of gravity” of the Möss-
bauer spectrum was largely caused by the second-order
Doppler shift, δR, and that ∂δR/∂T approximately
equaled −7 × 10–4 mm/(s K). It follows that the IS(M4)
value reduced to room temperature should approxi-
mately equal +0.35 mm/s. This value is typical of the
high-spin state of Fe3+ (S = 5/2). The hyperfine field
value for the M4 component, Hhf = 464 kOe, is also typ-
ical of the high-spin state of Fe3+ and is consistent with
the IS value. This proves that the low-temperature
Mössbauer spectra contain a component corresponding
to Fe3+ ions in the high-spin state. It will, however, be
shown that this component cannot be assigned to iron
in Cu2 sites.

The intensity of the M4 component gradually
decreases as temperature increases, whereas the
Hhf(M4) field value changes insignificantly. The tem-
perature dependence of Hhf(M4) was analyzed in terms
of theoretical models in [13, 21, 28, 29, 31, 34] and
explained on the assumption of low-dimensional mag-
netic ordering in these local sites. It was suggested in
several studies [19, 21, 29] that the M4 component
should be assigned to iron in Cu1 sites, which were in
all likelihood coordinated by six oxygen ions [19, 21].
Recently, it was suggested that the M4 component cor-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
responded to iron in Cu2 sites [31]. In the vicinity of
Tm ≈ 20 K (Figs. 1, 2), the Mössbauer spectra change
sharply, which is evidence of the transition to the para-
magnetic state. This transition is extended over some
temperature interval and is accompanied by the appear-
ance of paramagnetic doublets in the spectrum because
of a decrease in the intensity of the magnetic compo-
nents. Figure 2 clearly shows that the M4 magnetic
component completely disappears at 19.7 K, whereas
the D3 paramagnetic doublet (shown by arrows in Fig. 2)
still does not appear at this temperature. The conclusion
can be drawn that M4 does not transform into D3 as a
result of the magnetic transition. It follows that the M4
and D3 components should be assigned to Fe ions in
different local sites. The D3 doublet appears at a higher
temperature (Fig. 2) from the magnetic component with
a low Hhf < 265 kOe field; that is, it corresponds to iron
ions with lower spins at T < Tm. The appearance of D3
from low Hhf field magnetic components was also
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Fig. 2. Mössbauer spectra of 57Fe nuclei in the
YBa2(Cu0.9

57Fe0.1)3O7.01 superconductor at several tem-
peratures near the Tm magnetic transition point. The posi-
tions of the D3 doublet lines are indicated by arrows. Veloc-
ity scales are different in the top and bottom parts of the fig-
ure.
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observed in samples with a different iron concentration
[13, 21].

A detailed analysis of the spectra recorded near Tm

shows that the M4 component transforms into a
D2-type component of iron in Cu1 sites, and its isomer
shift at room temperature approximately equals
−0.02 mm/s (see Table 1). It follows that, as a result of
the magnetic transition at the Tm temperature, the IS
value for Fe ions in (M4/D2) · Cu1 local sites decreases
approximately by 0.37 mm/s. The D3 paramagnetic
doublet of iron in Cu2 sites appears from magnetic
components with low Hhf and IS values. Estimates tak-
ing into account the temperature shift (see Table 1)
show that the IS value for Fe ions in D3-Cu2 sites
increases as a result of the magnetic transition by a
value equal to the decrease in IS for iron ions in
M4-Cu1 sites. Several very important conclusions fol-
low from this result.
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Fig. 3. Mössbauer spectra of 57Fe nuclei in the
YBa2(Cu0.9

57Fe0.1)3O7.07 superconductor at several tem-
peratures near the Tm magnetic transition point. The posi-
tions of the D3 doublet lines are indicated by arrows.
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(1) At T < Tm, the magnetic moments of iron ions in
Cu2 sites are “frozen” even in the superconducting
region, but these ions occur in a state with a lowered
spin, most likely, with an intermediate Fe3+ spin value
(S = 3/2). The suggestion of lowered spins of Fe3+ ions
in Cu2 sites in the superconducting region was also
made in [20].

(2) The M4 magnetic component with the highest
Hhf field and a large isomer shift value corresponds to
iron ions in Cu1 sites. Below Tm, iron ions of this type
are in the high-spin Fe3+ state (S = 5/2).

(3) Fe3+ ions in Cu2 sites experience a transition
from the magnetically ordered state with a lowered
(intermediate) spin to the paramagnetic high-spin state
(the D3 doublet) as temperature increases and the mag-
netic phase transition occurs at Tm. At the same time the
high-spin Fe3+ state of ions in Cu1 sites (the M4 mag-
netic component) transforms into the low-spin para-
magnetic state.

A thorough analysis of correlations between isomer
shift values and the spin state of iron ions in various
oxygen environments in the 1-2-3 phase was performed
by Lines and Eibschutz [19], who used the data
reported by Menil [36]. According to the diagrams
given in [19], a change in the spin of Fe3+ ions from S =
5/2 to S = 3/2 without a change in the coordination
number of iron causes an approximately 0.3 mm/s
increase in the IS value. This value agrees closely with
our experimental data and, therefore, substantiates the
occurrence of the spin crossover suggested above.

It is likely that a certain number of Fe ions in Cu1
and Cu2 sites change their spins from low to high and
vice versa as a result of the magnetic transition. This
preserves the spin balance between the M4 and D3 local
sites. We found that the areas below the M4 and D3
Mössbauer components were close to each other; that
is, the numbers of iron ions in the corresponding sites
were approximately equal (for this reason, the M4 com-
ponent was erroneously assigned to iron in Cu2 sites in
several studies). This leads us to conclude that each Fe
ion in the Cu2 layer (Fe2 ion) has a paired Fe ion in the
Cu1 layer (Fe1 ion); that is, Fe2–Fe1 iron ion pairs are
formed. The total spin of such a pair is constant, but the
spins of each pair member are different at temperatures
above and below Tm. The spin state of the Fe1(S = 5/2) +
Fe2(S = 3/2) pair existing at T < Tm transforms into the
Fe1(S = 3/2) + Fe2(S = 5/2) state at T > Tm. Curiously,
two pair members occur in different copper layers, Cu1
and Cu2. This raises the question whether similar pair-
ing of copper ions takes place and whether the observed
effect has a bearing on pairing of superconducting elec-
trons. In any event, iron ions in Cu2 planes have lower
spins in the superconducting than in the normal (nonsu-
perconducting) state.

Note that the Tc temperature (Tc = 31 K) of the
YBa2(Cu0.9

57Fe0.1)3O7.01 sample studied in this work
was fairly close to Tm ≈ 22 K. It is therefore not quite
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Table 2.  Hyperfine interaction parameters for the M4 magnetic component at 4.2 K and for the D3 paramagnetic component
at room temperature for YBa2(Cu1 – xFex)3Oy superconductors saturated with oxygen

x y Tc Di, Mi IS, mm/s ε, mm/s QS, mm/s Γ, mm/s Arel, % Hhf, kOe

0.07 6.93 44 M4 +0.59(5) –0.48(5) – 0.88(5) 10.9(1.5) 452(3)

D3 +0.355(5) – 0.638 0.305(5) 10.7(1.5) –

0.10 7.07 43 M4 +0.58(5) –0.45(5) – 0.71(5) 16.8(1.5) 457(1)

D3 +0.300(5) – 0.592 0.341(5) 15.5(1.5) –

0.15 7.15 9 M4 +0.53(5) –0.48(5) – 0.82(3) 20.8(1.5) 483(1)

D3 +0.360(5) – 0.632 0.355(5) 20.3(1.5) –

Note: The notation is the same as in Table 1.
clear whether the superconducting or the magnetic
transition is responsible for the observed spin cross-
over. To elucidate this point, we studied another sam-
ple, YBa2(Cu0.9

57Fe0.1)3O7.07, which was prepared simi-
larly to the first one but annealed in oxygen for a longer
time. Because of the higher oxygen content in the sec-
ond sample, its Tc temperature increased to 43 K,
whereas the Tm temperature decreased approximately
to 16 K (some properties of the first and second samples
were described in [13] and [28], respectively). The
Mössbauer spectra of the second sample in the region
of the low-temperature magnetic transition are shown
in Fig. 3. These results allow us to draw two conclu-
sions.

(1) The D3 doublet is observed in the second sam-
ple, as in the first one, at a higher temperature than that
at which the M4 component disappears. The D3 doublet
appears from the magnetically split background which
remains after the major fraction of iron ions experi-
ences the transition to the paramagnetic state. This
lends support to the conclusion that the D3 and M4
components should be assigned to iron in different
local sites.

(2) The spin crossover described above occurs in the
magnetic rather than the superconducting transition.

The hyperfine coupling parameters for the M4 com-
ponent in YBa2(Cu1 – xFex)3O7 ± δ are given in Table 2 for
x = 0.07 and 0.15. These data were obtained in our pre-
ceding work [13], but have not been published yet. The
data given in Table 2 substantiate the high IS value for
the M4 component and closeness of the areas under the
M4 and D3 components. This is evidence that the con-
clusions made above are valid for a wide range of iron
concentrations in the 1-2-3 phase.

The magnetic behavior of 1-2-3 samples depleted of
oxygen lent additional support to the idea of pairing
Fe1 and Fe2 ions in M4–Cu1 and D3–Cu2 sites. The
magnetic behavior of the M4 component under temper-
ature variations was found [13, 21, 37] to follow the law
characteristic of three-dimensional magnetic order,
which was typical of the Cu2 sublattice. At the same
time, iron ions in the other (Cu1) local sites did not
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
obey this law, and their magnetic behavior including
order parameter crossover [13, 21] was more complex.

4. CONCLUSION

In YBa2(Cu1 – xFex)3O7 ± δ superconductors, the M4
magnetic component with the highest Hhf ≈ 470 kOe
field value and the largest positive isomer  shift IS
should be assigned to high-spin Fe3+ ions in Cu1 sites.
Iron ions in Cu2 sites have smaller Hhf and IS values,
which is evidence of their low-spin state at T < Tm. The
magnetic phase transition at the Tm point changes spins
of all iron ions in Cu2 sites from low (S = 3/2) to high
(S = 5/2). Simultaneously, an equal number of iron ions
in Cu1 sites exchange their high spins (S = 5/2) for low
spins (S = 3/2). It can be suggested that Fe3+ ions in Cu2
and Cu1 layers form pairs in superconducting com-
pounds. Each pair member has different spin at temper-
atures above and below Tm, but the total spin of the pair
remains constant as temperature varies.
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Abstract—We propose a new scenario for the metal–insulator phase transition and superconductivity in the
perovskite-like bismuthates Ba1 – xKxBiO3 (BKBO) based on our EXAFS studies. We show that two types of
charge carriers, the local pairs (real-space bosons) and the itinerant electrons, exist in the metallic compound
Ba1 – xKxBiO3 (x ≥ 0.37). The real-space bosons are responsible for the charge transport in semiconducting
BaBiO3 and for superconductivity in the metallic BKBO. The appearance of the Fermi liquid state as the per-
colation threshold is overcome (x ≥ 0.37) explains the observed metal–insulator phase transition. Because
bosons and fermions occupy different types of the octahedral BiO6 complexes, they are separated in real space,
and therefore, the spatially separated Fermi–Bose mixture of a new type is likely to be realized in the bismuth-
ates. The nature of superconductivity is consistently explained in the framework of this scenario. A new super-
conducting oxide Ba1 – xLaxPbO3 has been successfully synthesized to check our conclusions. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The concept of the extremely strong-coupling
superconductivity with preexisted local pairs was first
introduced by Shafroth [1] in the middle of the 1950s.
His statement was that in the extremely type-II super-
conductors, where ξ0kF & 1, the nature of the supercon-
ducting transition corresponds to the local pair forma-
tion (pairing in the real, rather than in the momentum
space) at some relatively high temperature T* and to the
Bose–Einstein condensation (BEC) of pairs at a lower
critical temperature Tc < T*. Later on, Alexandrov and
Ranninger [2] developed this concept for narrowband
materials with an extremely strong electron–phonon
coupling constant (λ @ 1), where the standard Eliash-
berg theory [3] becomes inadequate. The key issue of
their approach was the statement that in narrow bands,
where the polaron formation is important, it is possible,
in principle, to create the conditions for two polarons to
effectively occupy the same potential well prepared
within a self-consistent procedure.

At approximately the same time, Leggett and
Nozieres [4, 5] developed a general theory that
described a smooth interpolation between the BCS-
type pairing in the momentum space for a weak elec-
tron–electron attraction and the pairing in the real space
for a strong electron–electron attraction. There were
two crucial points in their papers [4, 5]. (i) The results
are valid independently of the actual nature of the short-
range effective attraction between electrons; (ii) they
have self-consistently investigated the standard equa-

¶This article was submitted by the authors in English.
1063-7761/01/9303- $21.00 © 20615
tion for the superconducting gap and the equation for
the conservation of the number of particles. The most
important result of Nozieres and Leggett is that for T* >
Tc (in other words, for the binding energy of a local pair
|Eb | > εF), one has a normal bosonic metal that is
responsible for the electron transport. Later on, Ran-
ninger [6, 7] introduced the concept of the two-band
Fermi–Bose mixture. His scenario involves the contri-
butions of fermionic and bosonic quasiparticles to the
electron transport for Tc < T < T*.

Shortly after the discovery of high-Tc superconduc-
tors, Anderson [8] reintroduced the concept of local
pairs. He also used two bands of the fermionic and
bosonic quasiparticles. In his approach, the supercon-
ducting transition was related to the BEC in the bosonic
band of charge excitations, the holons, while the pres-
ence of a large Fermi surface was guaranteed by the fer-
mionic band of spin excitations, the spinons. Unfortu-
nately, even this beautiful approach was not totally suc-
cessful because, at least in one layer, the BEC of holons
yields a superconducting pair with the charge e instead
of 2e measured experimentally.

Later on, Geshkenbein, Ioffe, and Larkin [9] phenom-
enologically reconsidered the model of the Fermi–Bose
mixture at the level of the Ginzburg–Landau expansion
coefficients and showed that several important experi-
ments in the underdoped high-Tc materials can be natu-
rally explained within this form of the Ginzburg–Landau
functional. At present, therefore, the question of whether a
two-band Fermi–Bose mixture scenario is applicable to
high-temperature superconducting (HTSC) materials
remains open. The materials that can be best described
001 MAIK “Nauka/Interperiodica”
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by this scenario are the bismuth family of high-Tc

superconductors Bi2Sr2CaCu2O8 + δ, where kFξ0 ≈ 2,
and the tunneling experiments of Rener et al. [10] sig-
nal the formation of a sufficiently large and stable
pseudogap at temperatures well above Tc.

In this paper, we discuss the possibility of a two-
band Fermi–Bose mixture scenario in an entirely differ-
ent class of superconductors with a relatively high crit-
ical temperature Tc ~ 30 K, namely, in the barium bis-
muthates Ba1 – xKxBiO3. The key issue of our paper is
the possibility of the existence of spatially separated
subsystems of fermionic and bosonic quasiparticles in
these materials. The cubic perovskites BaPb1 – xBixO3
(BPBO) and Ba1 – xKxBiO3 (BKBO) have been known
and extensively studied since 1975 and 1988, respec-
tively. A large number of the first-principle calculations
have been carried out [11–17] to explain the high-tem-
perature superconductivity in these compounds. How-
ever, most of the unusual properties of the BaBiO3-fam-
ily compounds mentioned in the early review by
Uchida et al. [18] still remain unexplained. From our
point of view, the reason is that these calculations were
done in the mean-field approximation, and therefore,
they adequately describe crystal structures with transla-
tional symmetry but cannot explain the peculiarities of
the electron properties of BPBO and BKBO following
from the local structure distortions. Such distortions,
which were observed by the local sensitive methods
such as the XPS [19], Raman scattering [20], and
EXAFS [21–24], destroy the translation symmetry.
Therefore, the mean-field approximation cannot
describe the local electron structure.

Based on the low-temperature EXAFS study of the
BKBO and BPBO compounds, the motion of the local
electron pairs correlated with the lattice vibrations was
established in our recent work [22]. We found that dif-
ferent electron fillings of the upper antibonding
Bi6s-O2pσ* orbital of the BiO6 octahedra lead to the
formation of a double-well potential for the vibration of
some part of the oxygen ions. The observed anomalies
have been discussed in the framework of different the-
oretical models of superconductivity. We found that
none of them can fully explain our experimental results
and proposed a phenomenological model of the rela-
tionship between the local crystal and the local electron
structures.

We present here a relatively new concept of super-
conductivity in bismuthates based on an interplay between
spatially separated Fermi and Bose subsystems. In con-
trast to the previous theoretical models and calculations,
we take the results obtained in a number of local sensitive
measurements into account [19–24].

The paper is organized as follows. In Section 2, we
present the basic experimental facts pertaining to the
local electron and crystal structure peculiarities and
consider their relation to the superconducting and the
normal transport properties of BKBO. We then show
JOURNAL OF EXPERIMENTAL
how these basic facts can naturally be explained within
the scenario of two spatially separated bands of the fer-
mionic and bosonic quasiparticles. In Section 3, conse-
quently, we discuss the nature of superconductivity in
the bismuthates within this scenario. We conclude the
paper by summarizing our model and discussing sev-
eral additional experiments that would help give a def-
inite answer as to whether our proposal is the only pos-
sibility for a superconducting pairing in bismuthates.

2. SPATIALLY SEPARATED 
FERMI–BOSE MIXTURE

BaBiO3, which is a parent compound for the bis-
muthates Ba1 – xKxBiO3 and BaPb1 – xBixO3, represents a
charge-density-wave (CDW) insulator having two
gaps: an optical gap with Eg = 1.9 eV and an activation
(transport) gap with Ea = 0.24 eV [18]. A partial
replacement of Ba by K in BKBO causes the decrease
if the gaps, and as a result, the insulator–metal transi-
tion and superconductivity are observed at the doping
levels x * 0.37. The superconductivity remains up to
the doping level x ≈ 0.5 corresponding to the solubility
limit of K in BKBO, but the maximum critical temper-
ature Tc ≈ 30 K is achieved for x ≈ 0.4 [25, 26].

A. Local Crystal Structure Peculiarities

A three-dimensional nature of the cubic perovskite-
like structure of the bismuthates differs from the two-
dimensional one in the HTSC cuprates. The building
block in the bismuthates is the BiO6 octahedral com-
plex (the analogue of CuOn (n = 4, 5, 6) in HTSC mate-
rials). The octahedral complexes are the most tightly
bound items of the structure because of a strong cova-
lence of the Bi6s–O2pσ bonds. According to the crys-
tallographic data [27], the crystal structure of a parent
BaBiO3 compound represents the alternating arrange-
ment of the expanded and contracted BiO6 octahedra
(referred to as the “breathing” distortion) in the barium
lattice. This alternation and the static rotation of the
octahedra around the axis [110] produce a monoclinic
distortion of the cubic lattice. As shown in [21, 22, 28],
the larger soft octahedron corresponds to the BiO6 com-
plex with the completely filled Bi6s–O2p orbitals and
the smaller rigid octahedron corresponds to the BiL2O6

complex. Here, L2 denotes the free level in the anti-
bonding Bi6s–O2pσ* orbital of the smaller octahedral
complex.

The K doping of BaBiO3 is equivalent to the hole
doping and leads to a partial replacement of the larger
soft octahedra BiO6 by the smaller rigid octahedra
BiL2O6 [22]. This causes the decrease and the eventual
disappearance of the static breathing and tilting distor-
tions; the lattice must therefore contract despite the
practically equal ionic radii of K+ and Ba2+. As a result,
the average structure becomes a simple cubic one at the
 AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001



SUPERCONDUCTIVITY IN Ba1 – xKxBiO3 617
doping level x = 0.37 in accordance with the neutron
diffraction data [29]. However, the local EXAFS probes
[21, 22, 24] showed a significant difference of the local
crystal structure from the average one. We found that
the oxygen ions belonging to the different BiO6 and
BiL2O6 octahedra vibrate in a double-well potential,
while those having an equivalent environment of the
two equal BiL2O6 octahedra oscillate in a simple har-
monic potential [21, 22]. This very unusual behavior is
closely related to the local electron structure of BKBO.

B. Local Electron Structure

The coexistence of the two types of the octahedra in
BaBiO3 with different Bi–O bond lengths and strengths
reflects the different electron structures of BiO6 com-
plexes. The valence band of BaBiO3 is determined by
the overlap of the Bi6s and O2p orbitals [11, 30], and
because of a strong Bi6s–O2pσ hybridization, the octa-
hedra can be considered as quasimolecular complexes
[31]. Each complex involves ten electron levels consist-
ing of four bonding–antibonding Bi6s–O2pσ orbitals
and six nonbonding O2pπ orbitals. A monoclinic unit
cell includes two octahedra and contains 38 valence
electrons (10 from two bismuth ions, 4 from two bar-
ium ions, and 24 from six oxygen ions). All the Bi–O
bond lengths must be equal and local magnetic
moments must be present for the equal electron filling
of the nearest octahedra (BiL1O6 + BiL1O6). However,
the presence of two types of octahedral complexes and
the absence of any local magnetic moment were
observed experimentally [18, 32]. A scheme of the
valence disproportionation 2BiL1O6  BiL2O6 +
BiO6 was then proposed [22] in which the numbers of
occupied states are different in the neighboring octahe-
dral complexes: the octahedron BiL2O6 contains 18 elec-
trons and has one free level or a hole pair L2 in the upper
antibonding Bi6s–O2pσ* orbital, while, in the octahe-
dron BiO6 with 20 electrons, the antibonding orbital is
filled as shown in Fig. 1. It is quite natural that the
BiL2O6 octahedra have stiff quasimolecular Bi–O
bonds and a smaller radius, while the BiO6 octahedra
represent unstable molecules with the filled antibond-
ing orbital and a larger radius.

Thus, in BaBiO3, one has an alternating system of
the two types of octahedral complexes filled with local
pairs: the hole pairs in BiL2O6 complexes and the elec-
tron pairs in BiO6 complexes. In other words, the parent
compound is a system with the real-space [33] or hard-
core [16] bosons (i.e., with at most one boson per site).

The local pair formation in BaBiO3 was advocated
previously, e.g., in [15, 16, 18, 34–38]. The binding
mechanism for the pairs is probably of an electron
nature [16, 35] in accordance with Varma’s picture of
the pairing due to the skipping of the valence “4+” by
the Bi ion [35]. However, one cannot fully exclude the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lattice mediated pairing [18, 34, 37] in accordance with
de Jongh’s statement [36] that the preference to retain
the close-shell structures overcomes the Coulomb
repulsion related to the intrasite bipolaron formation.

The local electron structure of BaBiO3 combined
with the real-space local crystal structure is presented
in Fig. 2a. There are no free fermionic carriers in this
system, and the conductivity is only due to the transfer
of the carrier pairs [18, 28]. Experimentally, BaBiO3
shows a semiconducting-type behavior with the energy
gap Ea = 0.24 eV. This transport gap does not show up
in photoconductivity, optical absorption, or photo-
acoustic measurements [39] and can be explained only
as a two-particle transport with the activation energy
2Ea due to the delocalization of pairs. From our point of
view, the transport gap value is defined by the com-
bined effect of the intersite Coulomb repulsion and the
local lattice deformation due to the static breathing dis-
tortion.

The optical gap, in similarity with the Varma [35]
suggestion, costs the energy

(1)

and is observed experimentally as the optical conduc-
tivity peak at the photon energy hν = 1.9 eV [18]. (Here,
Eb is the pair binding energy related to the dissociation
of pairs.)

In accordance with Eq. (1), the optical excitation
must produce a local lattice deformation via the trans-
formation of the two different octahedra into equivalent

ones: BiL2O6 + BiO6  2BiL1O6. Consequently, this
dynamical local lattice deformation is manifested in the
Raman spectra as an abnormally large amplitude of
breathing-type vibrations of the oxygen octahedra if the
resonance laser excitation with hν = Eg is used [31, 37,
40]. The abrupt decrease of the mode amplitude was
observed when lasers with different wavelengths were
used [40].

It is important to emphasize that there are no free
fermions in the system. Only the excited fermions can

Eg Eb 2Ea = 2E BiL1O6( )+=

– E BiO6( ) E BiL2O6( )+[ ]

hν

20 electrons
18 electrons

π π

σ σ
6[O2p]

BiO6 BiL2O6

Bi6s Bi6s

σσ

σ∗ σ∗

Fig. 1. The scheme of the electron structure formation for
the different octahedral BiO6 complexes.
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BiO6BiL2O6

BiO6 BiL2O6

Bi6s-O2p Bi6s-O2p

BiL2O6

Bi6s-O2p Bi6s-O2p

x < 0.37 semiconductorx = 0 insulator

x = 1 metalx > 0.37 superconducting metal

EF

(a) (b)

(c) (d)

BiL2O6

2Ea L2

Fig. 2. The scheme of the insulator–metal phase transition for the K doping of Ba1 – xKxBiO3 in the framework of the relationship
between the local crystal and the local electron structures. The local crystal structure of the octahedral complexes (at the top) and
the local electron structure (at the bottom) are shown in pictures (a)–(d). The occupied states of the Bi6s–O2p valence band are
marked by gray. 2Ea is the activation gap. Black and white circles with arrows denote, respectively, the electrons and the holes with
the opposite spin orientations. (a) The monoclinic phase of the insulator BaBiO3 compound. (b) The orthorhombic phase of a semi-

conducting BKBO at 0 < x < 0.37. The splitting of the free level L2 at the spatial overlap of the BiL2O6 octahedra is sketched. (c) The
undistorted cubic phase of a superconducting metal at x > 0.37. The formation of a Fermi iquid state is shown arising due to the
overlap of the unoccupied fermionic band F with the occupied Bi6s–O2p valence band as the percolation threshold is reached.
(d) The undistorted cubic phase of a nonsuperconducting metal at x = 1. A Fermi liquid state with the Fermi level EF is shown.

BiO6

2Ea

EF
be produced by the unpairing, and they do not give any
contribution to the charge transport because of a high
value of Eb. The bosonic and the fermionic subsystems
are therefore separated both spatially and energetically,
and hence, the Fermi–Bose mixture is absent in the par-
ent compound.

This situation is illustrated in Fig. 3a, where we
schematically present the one-particle density of states.
For x = 0, the filled bosonic band is separated from the
empty fermionic band (the excited band F ') by the large
optical gap Eg and from the empty bosonic band B by
the smaller transport gap 2Ea. The bosonic band plays
the role of a conduction band for bosonic quasiparticles
involved in the activation transport. In accordance with
[41], the filled and empty bosonic bands have, respec-
tively, the hole-like and electron-like dispersions in the
representation of the one-particle density of states.
Because bosons and fermions are always spatially sep-
arated (i.e., belong to different octahedra complexes),
we show their densities of states in the different sides of
the pictures.

C. Formation of the Fermi–Bose Mixture

The substitution of the two K+ ions for two Ba2+

ones modifies the BiO6 complex to the BiL2O6 one. As
a result, the number of small stiff BiL2O6 octahedra
JOURNAL OF EXPERIMENTAL 
increases as n0(1 + x)/2 and the number of large soft
BiO6 octahedra decreases as n0(1 – x)/2, where n0 = 1/a3

is the number of unit cells and a is the lattice parameter.
Clusters of the BiL2O6 complexes are formed with dop-
ing, which contracts the lattice because of small radii
and the rigid bonds of the BiL2O6 complexes.

The changes in the crystal structure are accompa-
nied by essential changes in the local electron structure.
A spatial overlap of the L2 levels leads to their split-
ting into an empty fermionic-like band F inside the
BiL2O6 – … –BiL2O6 Fermi cluster (see Fig. 2b). In the
doping range x < 0.37, this sufficiently narrow band is
still separated from the occupied Bi6s–O2p subband.
The number of empty electron states in the F band
increases with x as  = n0(1 + x), while the number of
local electron pairs decreases as nB = n0(1 – x)/2.

The free motion of the pairs is still prevented by the
intersite Coulomb repulsion (Ea ≠ 0), which is screened
inside the clusters, however. When the Fermi clusters
are formed, the conductivity occurs because of the
motion of the pairs through the clusters of different
lengths. The BKBO compounds demonstrate a semi-
conducting-type conductivity changing from a simple
activation type to Mott’s law with variable-range hop-
ping [42].

n̂F
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x = 0
insulator

x < 0.37
semiconductor

x > 0.37
superconducting metal

x = 1
metal

NB(E) NF(E) NF(E)NF(E)NB(E)NB(E) NF(E)

E E
E

E
F '

Eg

2Ea

EF

F
F

EF

F

Eg

F '

Eg

F '

2Ea

(a) (b) (c) (d)

Fig. 3. A sketch of the one-particle density of states for Ba1 – xKxBiO3. The contributions of the bosons NB(E) and the fermions
NF(E) are depicted separately because bosonic and fermionic states are spatially separated. The filled (dark gray) and the unoccu-
pied (transparent) bosonic bands correspond, respectively, to the contributions of the electron and the hole pairs. The bands are sep-
arated by the activation gap 2Ea, which is lowered with the doping level x. An empty fermionic band F' corresponding to the destruc-
tion of pairs is separated from the occupied bosonic band by the optical gap Eg. An empty fermionic band F is formed due to the

splitting of the free level L2, which arises from the spatial overlap of the BiL2O6 octahedra. The filled fermionic band (gray) repre-
sents the Bi6s–O2p valence band. The band F' and bosonic bands decrease as the doping increases, because the number of the electron
pairs decreases, while the band F grows due to the increase in the number of free levels. A Fermi liquid state is formed (c, d) as a result
of the overlap between the F band and the Bi6s–O2p valence band.
At the doping level x ≈ 0.37 (see Fig. 2c and Fig. 3c),
the following cardinal changes occur.

(i) The breathing and the rotational static lattice dis-
tortions transform to the dynamic ones. At the Bose and
the Fermi cluster borders, where all the oxygen ions
belong to both the BiO6 and the BiL2O6 octahedra, the
local breathing dynamic distortion is observed as the
oxygen ion vibration in a double-well potential [21,
22].

(ii) The infinite three-dimensional percolating
Fermi cluster is formed from the BiL2O6 octahedra
along the [100]-type directions. The empty fermionic
band overlaps the filled one, and F therefore becomes a
conduction band. Overcoming the percolation thresh-
old provides the insulator-metal phase transition and
the formation of the Fermi liquid state for x ≥ 0.37. The
valence electrons previously localized in the BiL2O6
complexes become itinerant inside the infinite Fermi
cluster.

(iii) The pair localization energy disappears, Ea ≈ 0,
and therefore, local electron pairs originating from the
BiO6 complexes can move freely providing a bosonic
contribution to the conductivity. In the metallic phase,
two types of carriers are present: the itinerant electrons
from the BiL2O6 complexes (fermions) and the delocal-
ized electron pairs from the BiO6 complexes (bosons).
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Although the normal state conductivity is mainly due to
the fermionic subsystem, the contribution of the
bosonic subsystem was also observed by Hellman and
Hartford [43] as the two-particle normal state tunnel-
ing.

As a result, at doping levels x ≥ 0.37, we have a new
type of a spatially separated mixture of the bosonic and
fermionic subsystems describing both metallic and
superconducting properties of BKBO. We stress that
because fermions and bosons belong to the complexes
with different electron structures, the Fermi and Bose
subsystems are spatially separated at any doping level.
These subsystems are related by

(2)

and

(3)

The pair destruction is prevented by a sufficiently high
value of the binding energy, which becomes apparent as
the pseudogap Eb = Eg ≈ 0.5 eV [44] in superconducting
compositions. The unpairing is possible only under the
optical excitation to the band F ' (see Fig. 3c), which
does not play any role in the charge transport.

2nB n̂F+ 2n0=

2nB

n̂F

---------
1 x–
1 x+
------------.=
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At x = 1, all the BiO6 octahedra are transformed into
the BiL2O6 ones. The Bose system disappears (nB = 0)
together with the excited fermionic band F'. Therefore,
KBiO3 must be a nonsuperconducting Fermi liquid
metal (see Fig. 2d and Fig. 3d).

We note that a metallic KBiO3 compound exists
only hypothetically because the potassium solubility
limit x ≈ 0.5 is exceeded in BKBO. However, BaPbO3,
which can be viewed as an electron analogue of KBiO3,
demonstrates metallic but not superconducting proper-
ties. Recent attempts to synthesize KBiO3 at a high
pressure have shown that only K1 – yBiyBiO3 with a par-
tial replacement of the K+ ions by the Bi3+ ones is
formed [45]. This replacement must lead to the appear-
ance of the BiO6 octahedra with the local electron pairs,
and the compound K1 – yBiyBiO3 must therefore be
superconducting in accordance with the above discus-
sion. Indeed, superconductivity with Tc = 10.2 K was
experimentally observed in this compound [45].

Our analysis implies that BaPbO3 must be supercon-
ducting at a partial substitution of the Ba2+ ions for the
trivalent ions because this substitution produces local
electron pairs as in the case of K1 – yBiyBiO3. Thus,
using the La3+ doping, it is possible to obtain the spa-
tially separated Fermi–Bose mixture in BaPbO3.
Recently, we have successfully produced Ba1 – xLaxPbO3
using the high-pressure synthesis technique. Supercon-
ductivity at Tc = 11 K observed in this new compound
[46] is a direct evidence in favor of the above scenario.

At the end of this section, we note that our under-
standing of the insulating state in the parent BaBiO3 is
very similar to the theoretical model by Taraphder et al.
[15, 16]. We agree with the authors of [15, 16] on the
following principal positions: (i) the presence of the
electron-mediated (Varma’s type) pairing mechanism;
(ii) the existence of the charge ±2e bosonic bound
states that dominate transport properties of BaBiO3;
(iii) the explanation of the nature of both the transport
and the optical gaps.

However, our description of the K-doped systems
strongly differs from their model. Going from insulat-
ing BaBiO3 to superconducting BKBO (x ≥ 0.37),
Taraphder et al. were forced to change the nature of the
pairing mechanism from the real-space pairing to the
k-space one. Thus their description of the supercon-
ducting state does not differ from the traditional BCS
description that has been discussed for BKBO, e.g., in
[12, 13, 47].

Using our EXAFS results [21, 22], we consistently
explain the insulating and the superconducting states in
BKBO within a single approach. In contrast to [15, 16],
we showed that the real-space bosons do not disappear
in the metalic region of BKBO and that they are respon-
sible for superconductivity. At the same time, the Fermi
liquid appears in the BKBO system because of the
overlapping of the occupied valence band levels and the
JOURNAL OF EXPERIMENTAL
free ones when the percolation threshold x = 0.37 is
overcome. An interplay of these Bose and Fermi sub-
systems explains the main properties of BKBO.

3. DISCUSSION
Taking the existence of the double-well potential in

Ba1 – xKxBiO3 into account, one can consider supercon-
ductivity in this compound in the framework of the
anharmonic models for HTSC [48, 49]. As shown in
these models, if the oxygen ions move in a double-well
potential, an order-of-magnitude enhancement of the
electron-lattice coupling constant follows automati-
cally from a consistent treatment of this motion.

However, as shown above, the double-well potential
arises in the bismuthates from different electron fillings
of the nearest octahedra and the tunneling of local pairs
between them. The existence of the double-well poten-
tial in the metallic phase of BKBO (x ≥ 0.37) therefore
indicates that the real-space bosons do not decay with
doping. There are at least two additional experimental
confirmations of this fact: (i) the observation of the
optical pseudogap in superconducting composition
[44]; (ii) the existence of two types of charge carriers
with heavy and light masses [43, 50]. These experimen-
tal facts allow us to consider superconductivity in the
bismuthates as the motion of local electron pairs. This
motion is correlated with the oxygen ion vibrations in
the double-well potential and leads to the transforma-
tion of the Bose octahedral complexes to the Fermi
ones and vice versa in the dynamical exchange process
BiO6  BiL2O6. The interplay between the Bose and
the Fermi subsystems is closely related to the supercon-
ductivity analyzed below in more detail.

A. The Fermi–Bose Mixture Hamiltonian

We first consider the Hamiltonian of the Fermi–
Bose mixture (see, e.g., [51])

(4)

in the spatially separated case,

(5)

     

H HB HF HFB+ +=

HB d3rΦ* r( ) "
2

2mB

----------∇ 2– Φ r( )∫=

+
1
2
---UBB d3rd3r 'Φ r( )Φ* r'( )δ r r'–( )Φ r'( )Φ r( ),∫

HF d3RΨα* R( ) "
2

2mF

----------∇ 2– Ψα R( )∫=

+
1
2
---UFF d3Rd3R 'Ψα* R( )Ψβ* R'( )∫

× δ R R'–( )Ψβ R'( )Ψα R( ),

HFB d3Rd3rΦ* r( )Ψα*R∫=

× UFB r R–( )Φ r( )Ψα R( ),
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where Φ and Ψα are bosonic and fermionic operators,
and mB and mF are the effective masses of bosons and
fermions. The most important property of Eq. (5) is that
fermions and bosons are spatially separated, and more-
over, the potential UFB has a double-well shape at the
boundary between the bosonic and fermionic sub-
systems. This fact is crucial for matching our model
with experimental data on the local structure and for the
explanation of superconductivity. Obviously, realistic
Hamiltonians are more complicated, and the quantities
UBB, UFF, and UFB include not only the direct interac-
tions between bosons and fermions, but also indirect
interactions via the lattice. The last contribution could
be dynamical in principle, and the picture could there-
fore change in time, thereby leading to a dynamical ver-
sion of the real-space separation. We note that the
bosonic Hamiltonian HB in Eq. (4) is generated from
the electron band with a strong attraction between elec-
trons (see [15, 16, 41]). We thus have two generic spa-
tially separated electron bands: one with a strong attrac-
tion between electrons and the other with a repulsion.

We must solve Hamiltonian (4) together with the
equation for the particle number conservation obtained
from Eqs. (2),

(6)

where

(7)

and Ω is the volume of the system. In accordance with
Eqs. (3), we also have 2nB/  = (1 – x)/(1 + x).

We consider the system of equations (4)–(7) in the
Hartree–Fock approximation. By analogy with the
Fermi–Bose mixture 7Li–6Li in a magnetic trap [51], it
is convenient to introduce the effective external poten-
tials for fermions Uext(R) and bosons Uext(r) as

(8)

(9)

Following [52], we then obtain

(10)

2n
2N
Ω

-------
1
Ω
---- 2nB r( )d3r

1
Ω
---- n̂F R( )d3R,∫+∫= =

nB r( ) Φ* r( )Φ r( )〈 〉 ,=

n̂F R( ) Ψα* R( )Ψα R( )〈 〉 ,
α
∑=

n̂F

Uext r( ) 1
Ω
---- UFB r R–( )n̂F R( )d3R∫ ,=

Uext R( ) 1
Ω
---- UFB r R–( )nB r( )d3r.∫=

HHF H̃B H̃F,+=

H̃B d3rΦ∗ r( ) "
2

2mB

---------- ∂2

∂r2
--------–∫=

---+ UBB r( )nB r( ) Uext r( )+ Φ r( ),
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(11)

Equations (10) and (11) self-consistently describe the
interaction between the Fermi and Bose subsystems.
However, in contrast to the Fermi–Bose mixture mod-
els discussed previously (see Section 1), the relation
between the concentration of the bosonic and fermionic
quasiparticles is independent of the temperature and
depends only on the doping level x in accordance with
Eq. (3).

The theoretical analysis of the above equations is
beyond the scope of this paper and will be published
elsewhere. We only note that the potential Uext(r) in
(10), which is the contraction of the Fermi–Bose inter-
action potential UFB(r – R) with the fermionic density

H̃F d3RΨα* R( ) "
2

2mF

---------- ∂2

∂R2
---------–∫=

--+ UFF R( )n̂F R( ) Uext R( )+ Ψα R( ).

BiO6 BiL2O6

E1

E0
U ω0

d

BiL2O6 BiO6 BiL2O6

BiL2O6 BiO6 BiL2O6

(a) (b)

(c)

Fig. 4. A sketch of the dynamic exchange BiO6 

BiL2O6 is shown in the BiO2 plane of the octahedra. (a) The
breathing mode of the vibrations along the [100]-type direc-
tion of two neighboring octahedra with different electron
structures. The BiO6 octahedron transforms to the BiL2O6
one and vice versa due to the electron pair tunneling
between the octahedra. An oxygen ion belonging to these
octahedra oscillates in the double-well potential. An oxygen
ion belonging to the equivalent neighboring BiL2O6 octahe-
dra oscillates in a simple parabolic potential. (b) The dou-
ble-well potential with the energy levels for the vibration of
the oxygen ion. The following parameters describe the tun-
neling barrier between the wells in Ba0.6K0.4BiO3 at low
temperatures [22]: the tunneling frequency ω0 ≈ 200 K, the
barrier height U ≈ 500 K, the barrier width d ≈ 0.07 Å.
(c) The motion of a local electron pair centered on the BiO6

octahedron through the BiL2O6 … BiL2O6 Fermi cluster.
For detailed explanations, see the text.
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, also has a double-well shape, and the real-
space bosons therefore live in the effective double-well
external potential. The maximum of this external poten-
tial corresponds to the point r = R at the boundary
between the Fermi and the Bose clusters. Our estimate
for the superconductivity critical temperature is heavily
based on this fact.

B. Superconductivity in Ba1 – xKxBiO3

Taking the existence of the double-well potential in
Ba1 – xKxBiO3 into account, one can consider supercon-
ductivity in this compound as a long-range order that is
established via the local pair tunneling from one Bose
cluster to a nearest one over the Fermi cluster along
[100]-type directions.

The pair transfer process correlated with the oxygen
vibration (in other words, the dynamic exchange) is
illustrated in Fig. 4. The oxygen belonging to the two
neighboring octahedra BiO6 and BiL2O6 vibrates in the
double-well potential, and hence, the electron pair tun-
neling between the neighboring octahedra occurs when
the ion tunnels through the potential barriers between
the wells. Because of this interconnection between the
pair and the oxygen tunneling processes, we can esti-
mate the matrix element of the pair tunneling as tB ∝
ω0e–D, where ω0 is the tunneling frequency,

is the semiclassical transparency of the barrier in the
double-well potential, U and d are the barrier height
and width, and M is the oxygen ion mass. We note that
the relatively small tunneling frequency ω0 = 200 K
(see Fig. 4) already incorporates all the polaronic
effects.

A local pair is transferred from one Bose cluster to
the nearest one over a Fermi cluster, which, depending
on the doping level, consists of several octahedra. The
pairs overcome the Fermi cluster step by step. A single
step corresponding to the pair transfer into a neighbor-
ing octahedron occurs simultaneously with the oxygen
ion tunneling in the double-well potential. The tunnel-
ing frequency ω0 is therefore the same for each step.
Assuming that the steps are independent events, the
probability of overcoming the Fermi cluster can be
obtained as the product of the probabilities of each step.
The matrix element of the pair tunneling through the
Fermi cluster can then be estimated as  ∝ ω 0e– 〈N 〉D,
where the average number of steps (which is propor-
tional to the Fermi cluster linear size) can be obtained

n̂F R( )

D
1
"
--- p xd

x0

x1

∫ d
"
--- 2MU≈=

t̂B
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from the ratio of the concentrations of the BiL2O6 and
BiO6 octahedra. This gives the number of steps

A natural assumption is that the critical temperature
of the onset of superconductivity is of the order of the

Bose–Einstein condensation temperature Tc ∝  
in the bosonic system with the large effective mass

mB ∝  1/ . We recall that a3nB = (1 – x)/2 in our case.
For the parameters of the double-well potential
obtained in [22] (see also Fig. 4), we estimated Tc ~
50 K in Ba0.6K0.4BiO3, which is larger than the mea-
sured Tc ≈ 30 K.

However, this estimate does not account for the
phase coherence arising due to the relation between the
vibrations of oxygen ions and the transfer of pairs.
When a pair is transferred from one octahedron to
another, the lattice has sufficient time to relax due to the
longitudinal stretching phonons, each time forming a
new configuration before the next tunneling event
occurs. Taking the breathing like character of the oxy-
gen ion vibrations in the double-well potential into
account (see Fig. 4), it is natural to suppose that the
breathing mode of each octahedron is coordinated with
its neighbors to guarantee a resonant tunneling along
[100]-type axes in the system.

From the dispersion of longitudinal phonon modes
studied by the inelastic neutron scattering [53], it fol-
lows that the breathing-type vibrations with the wave
vector qb = (π/a, 0) are energetically favorable in the
superconducting compositions of BKBO. Hence, a
long-range correlation of vibrations must occur at low
temperatures when only the low-energy states are occu-
pied. The bandwidth of the longitudinal stretching
mode is of the order 100 K, and the temperature T ~ Tc

is sufficiently high to excite the nonbreathing-type lon-
gitudinal stretching phonons with the wave vectors
shorter than qb. The thermal excitation of these phonons
leads to the destruction of the long-range correlation
between the breathing-type vibrations and hence
destructively affects the long-range phase coherency of
the local pair transfer.

We note that the anomalous dispersion of the longi-
tudinal stretching phonons observed in [53] reflects the
lattice softening with the decrease in temperature due to
the existence of a double-well potential in the super-
conducting compositions of BKBO. A similar disper-
sion was also observed in the high-Tc cuprates
La1.85Sr0.15CuO4 and YBa2Cu3O7 [54]. The problem of
the Tc limitation due to the phase coherence destruction
is now extensively discussed (see [55] for a review). In
view of the recent experimental evidence by Müller
et al. [56] for the coexistence of small bosonic and fer-
mionic charge carriers in La2 – xSrxCuO4, we also envis-
age applying our scenario to HTSC cuprates. Because

N〈 〉 1 x+
1 x–
------------ 

 
1/3

.≈

t̂Ba2nB
2/3

t̂Ba2
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the underdoped HTSC materials are similar to the
phase separation on antiferromagnetic (AFM) and
paramagnetic (PM) clusters [57–59], we suppose that
the lattice here can play an assistant role by providing a
pair tunneling between the superconducting PM metal-
lic clusters via the insulating AFM barrier. It can also
serve as a limitation for the estimate of the effective
critical temperature for the superconducting transition
in cuprates.

4. CONCLUSIONS

We briefly summarize the key positions of our con-
ception.

1. The parent compound BaBiO3 represents a sys-
tem with the initially preformed local electron and hole
pairs. Each pair is spatially and energetically localized
inside the octahedron volume. The localization energy
of a pair determines the transport activation gap Ea. The
binding energy of a pair is given by Eb = Eg – 2Ea,
where Egis the optical gap.

2. The spatially separated Fermi–Bose mixture of a
new type is possibly realized in the superconducting
compositions Ba1 – xKxBiO3 for x ≥ 0.37. The bosonic
bands are responsible for the two-particle normal state
conductivity. The overlap of the empty fermionic band
F with the occupied valence band Bi6s–O2p provides
the insulator–metal phase transition and produces the
Fermi liquid state. This state strongly shunts the normal
state conductivity arising from the two-particle Bose
transport.

3. The fermionic band F ' connected with the pair
destruction does not play any role in the transport. The
excitation energy is sufficiently high to guarantee against
the destruction of bosons (the pair binding energy for
superconducting compositions is Eb ≈ 0.5 eV).

4. The pair localization energy is absent for x ≥ 0.37
(Ea = 0), and therefore, the bosonic and the fermionic
subsystems are separated only spatially. The inter-
play between them is due to the dynamic exchange
BiL2O6  BiO6, which causes the free motion of
local pairs in the real space.

5. The pairing mechanism in the bismuthates is
more likely of the Varma type (because of skipping the
“4+” valence by the Bi ion) rather than of phonon-
mediated origin. The existence of local pairs and their
tunneling between the neighboring octahedra is closely
related to the presence of a double-well potential that
describes the vibration of the oxygen ions. The lattice
is more likely involved in the superconductivity by pro-
viding the phase coherence for the motion of local pairs
in the real space.

We finally emphasize that the scenario of the Fermi–
Bose mixture allows us to qualitatively describe the
insulator–metal phase transition and the superconduct-
ing state in BKBO in the framework of a single
approach. To some extent, this scenario explains the
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contradictions between the result of the local sensitive
and integral experimental methods [18–24, 31, 40, 53].
In addition, we successfully synthesized a new super-
conducting oxide Ba1 – xLaxPbO3 that can be considered
as direct evidence in favor of our model.

Nevertheless, additional experiments are required to
make a definite conclusion about the nature of super-
conductivity in these systems.

We propose two direct experiments to test our
model. (i) To provide the Raman scattering experiment
of the superconducting Ba0.6K0.4BiO3 compound using
a resonance optical excitation in the range of the optical
pseudogap Eg ≈ 0.5 eV. In this case, a sharp increase in
the amplitudes of some Raman modes due to local
dynamic distortions must be observed at the pair
destruction energy in accordance with our model. (ii)
To provide measurements of the inelastic neutron scat-
tering in the Ba0.5K0.5BiO3 and BaPbO3 samples. We
expect that the dispersion of the longitudinal stretching
mode should decrease with a change in the K doping
from x = 0.4 to x = 0.5 and should be absent in the
metallic BaPbO3 compound.

Moreover, it is important to carry out more precise
measurements of the specific heat in the bismuthates
for T ~ Tc. In the three-dimensional Bose gas, the spe-
cific heat behaves as CB ~ (T/Tc)3/2 for the temperatures
T < Tc and CB = const for T @ Tc. As a result, there is a
λ-point behavior of the specific heat for T ~ Tc. How-
ever, the Fermi–Bose mixture gives an additional con-
tribution from the Fermi gas, CF ~ γT. This contribution
could in principle destroy the λ-point behavior of the
specific heat in the Fermi–Bose mixture. We note that
the currently available experimental results in the bis-
muthates [60] signal a smooth behavior of the specific
heat near Tc

 

, because, in all the experiments, the contri-
butions of the Fermi and Bose gases are masked by a
larger lattice contribution.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with N.M. Pla-
kida, Yu. Kagan, P. Fulde, P. Woelfe, and A.N. Mitin.
This work was supported by the Russian Foundation for
Basic Research (project no. 99-02-17343) and the Fed-
eral Program “Superconductivity” (project no. 99010).
M.Yu.K. is grateful for the grant no. 96-15-96942 from
the President of Russia.

REFERENCES

 

1. M. R. Shafroth, Phys. Rev. B 

 

100

 

, 463 (1955); Solid
State Phys. 

 

10

 

, 422 (1960).
2. A. S. Alexandrov and J. Ranninger, Phys. Rev. B 

 

23

 

,
1796 (1981).

3. G. M. Eliashberg, Zh. Éksp. Teor. Fiz. 

 

43

 

, 1105 (1963)
[Sov. Phys. JETP 

 

16

 

, 780 (1963)].
4. A. J. Leggett, in 

 

Modern Trends in Theory of Condensed
Matter: Lecture Notes of the 1979 Karpatz Winter
SICS      Vol. 93      No. 3      2001



624 MENUSHENKOV et al.

                  
School, Ed. by A. Pekalski and J. Przystowa (Springer-
Verlag, Berlin, 1980), p. 14.

5. P. Nozieres and S. Schmitt-Rink, J. Low-Temp. Phys. 59,
195 (1985).

6. J. Ranninger and S. Robaszkiewicz, Physica B (Amster-
dam) 135, 468 (1985).

7. B. K. Chakraverty, J. Ranninger, and D. Feinberg, Phys.
Rev. Lett. 81, 433 (1998).

8. P. W. Anderson, Science 235, 1196 (1987).
9. V. B. Geshkenbein, L. B. Ioffe, and A. I. Larkin, Phys.

Rev. B 55, 3173 (1997).
10. Ch. Rener, B. Revaz, J.-Y. Genoud, et al., Phys. Rev.

Lett. 80, 149 (1998).
11. L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 28, 4227

(1983).
12. M. Shirai, N. Suzuki, and K. Motizuki, J. Phys.: Con-

dens. Matter 2, 3553 (1990).
13. G. Vielsack and W. Weber, Phys. Rev. B 54, 6614 (1996).
14. A. I. Liechtenstein, I. I. Mazin, C. O. Rodriguez, et al.,

Phys. Rev. B 44, 5388 (1991).
15. A. Taraphder, H. R. Krishamurthy, R. Pandit, et al.,

Europhys. Lett. 21, 79 (1993).
16. A. Taraphder, H. R. Krishamurthy, R. Pandit, et al.,

Phys. Rev. B 52, 1368 (1995).
17. V. Meregalli and S. Y. Savrasov, Phys. Rev. B 57, 14453

(1998).
18. S. Uchida, K. Kitazawa, and S. Tanaka, Phase Transit. 8,

95 (1987).
19. M. Qvarford, V. G. Nazin, A. A. Zakharov, et al., Phys.

Rev. B 54, 6700 (1996).
20. N. V. Anshukova, A. I. Golovashkin, V. S. Gorelik, et al.,

J. Mol. Struct. 219, 147 (1990).
21. A. P. Menushenkov, K. V. Klementev, P. V. Konarev, et

al., Pis’ma Zh. Éksp. Teor. Fiz. 67, 977 (1998) [JETP
Lett. 67, 1034 (1998)].

22. A. P. Menushenkov and K. V. Klementev, J. Phys.: Con-
dens. Matter 12, 3767 (2000).

23. S. Salem-Sugui, Jr., E. E. Alp, S. M. Mini, et al., Phys.
Rev. B 43, 5511 (1991).

24. Y. Yacoby, S. M. Heald, and E. A. Stern, Solid State
Commun. 101, 801 (1997).

25. R. J. Cava, B. Batlogg, J. J. Krajewski, et al., Nature 332,
814 (1988).

26. Shiyou Pei, J. D. Jorgensen, B. Dabrowski, et al., Phys.
Rev. B 41, 4126 (1990).

27. D. E. Cox and A. W. Sleight, Acta Crystallogr., Sect. B:
Struct. Cryst. Chem. B35, 1 (1989).

28. A. P. Menushenkov, Nucl. Instrum. Methods Phys. Res.
A 405, 365 (1998).

29. Shiyou Pei, J. D. Jorgensen, B. Dabrowski, et al., Phys.
Rev. B 41, 4126 (1990).

30. A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, Solid
State Commun. 17, 27 (1975).

31. Shunji Sugai, Jpn. J. Appl. Phys., Suppl. 26, 1123
(1987).

32. Y. J. Uemura, B. J. Sternlieb, D. E. Cox, et al., Nature
335, 151 (1988).

33. N. Mott, Supercond. Sci. Technol. 4, S59 (1991).
JOURNAL OF EXPERIMENTAL 
                                                                                          

34. T. M. Rice and L. Sneddon, Phys. Rev. Lett. 47, 689
(1981).

35. C. M. Varma, Phys. Rev. Lett. 61, 2713 (1988).

36. L. J. De Jongh, Physica C (Amsterdam) 152, 171 (1998).

37. S. Sugai, Solid State Commun. 72, 1187 (1989).

38. J. Yu, X. Y. Chen, and W. P. Su, Phys. Rev. B 41, 344
(1990).

39. S. Tajima, S. Uchida, A. Masaki, et al., Phys. Rev. B 32,
6302 (1985).

40. S. Tajima, M. Yoshida, N. Koshizuka, et al., Phys. Rev.
B 46, 1232 (1992).

41. M. Yu. Kagan, R. Frésard, M. Capezzali, and H. Beck,
Phys. Rev. B 57, 5995 (1998).

42. E. S. Hellman, B. Miller, J. M. Rosamilia, et al., Phys.
Rev. B 44, 9719 (1991).

43. E. S. Hellman and E. H. Hartford, Jr., Phys. Rev. B 52,
6822 (1995).

44. S. H. Blanton, R. T. Collins, K. H. Kelleher, et al., Phys.
Rev. B 47, 996 (1993).

45. N. R. Khasanova, A. Yamamoto, S. Tajima, et al., Phys-
ica C (Amsterdam) 305, 275 (1998).

46. A. P. Menushenkov, A. V. Tsvyashchenko, D. V. Ere-
menko, et al., Fiz. Tverd. Tela (St. Petersburg) 43, 591
(2001) [Phys. Solid State 43, 613 (2001)].

47. Wei Jin, M. H. Degani, R. K. Kalia, et al., Phys. Rev. B
45, 5535 (1992).

48. N. M. Plakida, V. L. Aksenov, and S. L. Drechsler, Euro-
phys. Lett. 4, 1309 (1987).

49. J. R. Hardy and J. W. Flocken, Phys. Rev. Lett. 60, 2191
(1988).

50. J. H. Lee, K. Char, Y. W. Park, et al., Phys. Rev. B 61,
14815 (2000).

51. T. Mijakawa, T. Suzuki, and H. Yabu, Phys. Rev. A 62,
063613 (2000).

52. M. J. Bijlsma, B. A. Heringa, and H. T. C. Stoof, Phys.
Rev. A 61, 053601 (2000).

53. M. Braden, W. Reichardt, W. Schmidbauer, et al., J.
Supercond. 8, 595 (1995).

54. L. Pintschovius and W. Reichardt, in Physical Properties of
High Temperature Superconductors, Ed. by D. M. Gins-
berg (World Scientific, Singapore, 1994), Vol. IV.

55. J. Orenstein and A. J. Mills, Science 288, 468 (2000).

56. K. A. Müller, Guo-Meng Zhao, K. Conder, et al.,
J. Phys.: Condens. Matter 10, L291 (1998).

57. D. Jorgensen, B. Dabrowski, S. Pei, et al., Phys. Rev. B
38, 11337 (1988).

58. V. Yu. Pomyakushin, A. A. Zakharov, A. M. Balagurov,
et al., Phys. Rev. B 58, 12350 (1998).

59. V. J. Emery and S. A. Kivel’son, Physica C (Amsterdam)
209, 597 (1993).

60. S. E. Stupp, M. E. Reeves, D. M. Ginsberg, et al., Phys.
Rev. B 40, 10878 (1989).
AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001



  

Journal of Experimental and Theoretical Physics, Vol. 93, No. 3, 2001, pp. 625–629.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 120, No. 3, 2001, pp. 712–717.
Original Russian Text Copyright © 2001 by Meilikhov.

                                                                            

SOLIDS
Electronic Properties
High-Temperature Conduction of Granular Metals
E. Z. Meilikhov

Institute of Molecular Physics, Kurchatov Institute Russian Research Centre, 
pl. Kurchatova 1, Moscow, 123182 Russia

e-mail: meilikhov@imp.kiae
Received March 26, 2001

Abstract—In theoretical and experimental studies of conductivity associated with intergranular tunneling of
electrons in nanocomposites (granular metals), only the range of relatively low temperatures was traditionally
investigated, in which only electron transitions involving singly-charged metal granules are significant. In this
mode, the temperature dependence of conductivity is exponential. However, experiments show that the type of
conduction of nanocomposites at high temperatures changes significantly. In the model proposed in this article,
the features of conduction of granular metals at high temperatures are attributed to multiply charged granules
with a large spread of the size. The conclusions of the model are in good agreement with the experimental
results. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Granular metals (metal–insulator nanocomposites),
which have the form of small metallic inclusions (with
a radius r = 1–100 nm) in an insulator matrix, possess a
number of unique properties determined by the volume
concentration x of the conducting phase [1–3]. There
exists a critical value of xc such that the material pos-
sesses metallic properties for x > xc and is an insulator
with thermally activated conduction for x < xc. It was
found that the conduction is associated with tunnel
transitions of charge carriers between granules. In this
respect, its mechanism is close to the well-known hop-
ping conduction over impurities in doped semiconduc-
tors. However, in contrast to “pointlike” impurity cen-
ters in a semiconductor, granules in a nanocomposite
have a finite size. For this reason, only the tunnel tran-
sitions between nearest (or next to nearest) granules are
“geometrically” allowed. This distinguishes the mech-
anism of tunnel conduction of nanocomposites from
the hopping conduction of impurity semiconductors
with a variable range, in which jumps of any length are
admissible in principle.

In addition, we must take into account the fact that
only an insignificant part of granules in a nanocompos-
ite effectively participate in the low-temperature con-
duction in the case of a large spread of grain size. As a
matter of fact, the equilibrium concentration of singly
charged granules (and the more so multiply charged
granules) is small at low temperatures. Consequently,
the conductivity of a nanocomposite is determined by
tunnel transitions of electrons only between singly
charged granules and the most abundant neutral gran-
ules. The probability of such transitions depends on
their activation energy ∆ and the distance l between
granules. Usually, these factors produce opposite
effects: upon a decrease in the granule radius r, the
1063-7761/01/9303- $21.00 © 20625
energy ∆ ~ e2/εr increases and the distance l decreases.
For this reason, the current mainly flows over granules
of the so-called optimal size ropt which decreases upon
heating [4]. Hence the low-temperature conductivity G
is described by the well-known “1/2 law”

where T0 = T0(x) is a certain characteristic temperature.

Experiments show, however, that the “1/2 law” is
violated at relatively high temperatures [5]: the conduc-
tivity starts increasing much more rapidly with temper-
ature. In all probability, this is due to the fact that the
number of multiply charged granules increases signifi-
cantly upon an increase in temperature and their contri-
bution to the conductivity cannot be neglected any
longer. The present work is devoted to an analysis of
precisely this mode of conduction of nanocomposites.

2. EQUILIBRIUM IONIZATION
OF NANOCOMPOSITE GRANULES

In the following analysis, we will assume that the
temperature is sufficiently high so that the interaction
of charges at granules, which leads to charge correla-
tions and to the emergence of the Coulomb gap in the
density of charged states, can be disregarded [6]. In
actual practice, this means that T * 1 K.

We begin the analysis of the equilibrium ionization
of nanocomposite granules with a system consisting of
granules of the same radius r. The concentration Nm of
granules with charge me (e is the absolute value of the
electron charge and m = 0, ±1, ±2, …) and with the

G T0/T( )1/2– ),[exp∝
001 MAIK “Nauka/Interperiodica”
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Coulomb energy (me)2/εr (ε is the permittivity of the
medium) is obviously given by

(1)

where N is the total concentration of granules and ρ =
r(εkT/e2) is the reduced radius of granules.

Relation (1) shows that the charge distribution of
granules in our case is Gaussian. The width of this dis-
tribution is determined by parameter ρ (i.e., the relation
between the thermal and Coulomb energies) and
increases with temperature. At low temperatures (ρ ! 1),
we have predominantly singly ionized granules (m = ±1),
while, at high temperatures (ρ @ 1), the charge spec-
trum of granules may be very broad. For example, the
fraction of doubly ionized granules for ρ = 4 is only half
the fraction of singly ionized granules (Fig. 1).

Another important consequence of relation (1) is
that the concentration Nm of granules with a certain
charge me is a nonmonotonic function of temperature.
It can be seen from Fig. 1 that the initial increase in this
concentration with temperature is replaced by its subse-
quent decrease. Clearly, all these circumstances must
be taken into account while calculating the high-tem-
perature conductivity of a nanocomposite.

3. CONDUCTIVITY OF A NANOCOMPOSITE 
WITH GRANULES OF THE SAME SIZE

If we introduce the symbol Zm denoting a granule
with a charge me, all intergranular electron transitions

Nm

N
-------

m2/ρ–( )exp

m2/ρ–( )exp
m ∞–=

∞

∑
------------------------------------------,=

2

Nm

ρ ∝  T
4 6 8 100

10–1

10–2

10–3

10–4

2

1

3

4

m = 0

Fig. 1. Temperature dependences of concentration Nm of
granules with charge me. Singularities in the temperature
dependence of conductance should be expected for the
value of ρ ≈ 0.5 corresponding to the maximum concentra-
tion of singly charged granules.
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occurring in the system can be presented in the form of
a set of “reactions”

(2)

each of which makes a “feasible” contribution Gmn to
the total conductivity G. The change in energy as a
result of such a transition is given by

(3)

In the case when a “reaction” is endothermic (i.e.,
∆mn > 0), the lacking energy is supplied by phonons.
Consequently, the conductance of the system can be
written in the form

(4)

where the factor Pmn is connected with the Planck dis-
tribution of phonons. Here, lmn ∝  N–1/3 is the mean dis-
tance between neighboring granules, which determines
the typical width of the potential barrier overcome by
tunneling electrons and λ ~ "/(mW)1/2 is the electron
wavelength in the insulator (W is the height of the tun-
nel barrier, which virtually coincides with the half-
width of the band gap in the insulator).

It can be seen from relations (4) that the largest con-
tribution to the total conductivity comes from (m, n)
transitions between granules whose charges are not
very large. However, the range of “admissible” charges
expands with increasing temperature. As a result, the
set of dominant transitions becomes richer and richer
upon heating. This is illustrated in Fig. 2, showing sche-
matically the sets of the most significant transitions for
three values of the parameter ρ ∝  T. The height of each
vertical segment is proportional to the contribution Gmn

of the corresponding transition, and its position x on the
abscissa axis on all the diagrams is chosen so that each
value of x corresponds to a transition (m, n), where m =
[x] and n = 10(x – [x]), [x] being the integer closest to x.

The temperature dependence of the total conduc-
tance for the given case is presented in Fig. 3. In accor-
dance with Fig. 2, only transitions (–1, 0) and (0, 1) for
which ∆mn = 0 are significant at low temperatures. For
this reason, we have

At high temperatures, this simple exponential depen-
dence is violated. On the one hand, we can expect a

Zm Zn+ Zm 1+ Zn 1– ,+

∆mn

kT
--------

m n– 1+
ρ

----------------------.=

G Gmn,
m n,
∑=

Gmn NmNnPmn

lmn

λ
------– 

  ,exp∝

Pmn

∆mn/kT
∆mn/kT( )exp 1–

-----------------------------------------, ∆mn 0≥

1,                           ∆ mn 0, <





 

=

G N 1– N0 N0N1+( ) e2/εrkT( ).exp∝ ∝
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decrease in conductance due to the above-mentioned
decrease in the concentration of granules with a fixed
charge upon heating (see Fig. 1). On the other hand, it
must increase due to the contribution of multiply ion-
ized granules to conductance. As a result, the tempera-
ture dependence of the total conductivity of a nanocom-
posite deviates considerably (in the downward direc-
tion) from the exponential dependence in the range of
high temperatures. This deviation starts at ρ ≈ 0.5, i.e.,
at the temperature for which transitions with a nonzero
energy balance start playing a significant role in accor-
dance with Fig. 2. At a still higher temperature (ρ @ 1),
the total conductivity approaches saturation.

4. CONDUCTIVITY OF A NANOCOMPOSITE 
WITH GRANULES OF VARIOUS SIZES

Let us now calculate the conductivity of a nanocom-
posite in a more realistic system formed by granules of
various sizes whose spread is characterized by the dis-
tribution function f(ρ). By virtue of the detailed balance
principle, the concentration of the m-fold ionized gran-
ules with radii ranging from ρ to ρ + dρ is defined, as
before, by a formula of type (1):

(5)

where Nf(ρ)dρ is the total concentration of such gran-
ules.

Let us consider the reaction

(6)

in which an electron passes from a granule of radius ρ1

to a granule of radius ρ2. The energy effect  of
such a reaction is given by

(7)

The contribution  of such transitions to the total
conductivity is expressed by the formula

(8)

where  and  are defined by formula (5).

Let us first analyze the case of low temperatures (ρ1,
ρ2 @ 1), when the conductance is associated with the
electron transitions (–1, 0) and (0, 1) making identical

dNm
ρ( ) Nf ρ( )dρ m2– /ρ( )exp

m2/ρ–( )exp
m ∞–=

∞

∑
------------------------------------------,=

Zm
1( ) Zn

2( ) Zm 1+
1( ) Zn 1–

2( ) ,++

∆mn
12( )

∆mn
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---------- m 1/2+

ρ1
------------------

n 1/2–
ρ2

----------------.–=

dGmn
12( )

dGmn
12( ) dNm

ρ1( )
dNn

ρ2( )
Pmn

12( ),∝

Pmn
12( )

∆mn
12( )/kT

∆mn
12( )/kT( )exp 1–

-------------------------------------------, ∆mn
12( ) 0≥
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12
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=

dNm
ρ1( )

dNn
ρ2( )
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contributions to it. In this case, we have

and, hence, transitions (–1, 0) occur only for ρ1 < ρ2
(electron transition from a small granule with a single
negative charge to a larger neutral granule), while tran-
sitions (0, 1) take place only for ρ1 > ρ2 (electron tran-
sition from a large neutral granule to a small granule with
a single positive charge). In both cases, we can assume that

 = 1. Let us estimate, for example, the contribution

 =  from the second of these transitions,
assuming, for the sake of definiteness, that the size distri-
bution function for granules has the form f(ρ) =
(1/ρ0)exp(–ρ/

 

ρ

 

0

 

) [7]. Using relations (8), we obtain

(9)
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Fig. 2. Contributions Gmn of significant intergranular tran-
sitions at various temperatures (the temperature increases
from the lower to the upper diagram).
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The integrand function attains its maximum value for

ρ2 =  (this is the so-called optimal size of gran-
ules) and the estimate obtained by the steepest descent
method is given by

The same contribution to the conductance comes from
transitions (–1, 0) so that the low-temperature depen-
dence of the total conductance has the form

(10)

where r0 is the mean radius of granules, which deter-
mines their size distribution function:

Thus, the conductance at low temperatures is
described by the “1/2 law”:1

In the model under investigation, this law is observed
due to the fact that the size of singly charged (positive
or negative) granules through which the conduction
predominantly takes place increases upon cooling. Nat-
urally, this occurs as long as the optimal granule radius

1 It is well known that this law is also preserved for other types of
size distribution functions for granules under the condition
∂f(r)∂r < 0 [4].

ρ0/2

G 0 1,( )
12( ) 8/ρ0–[ ] .exp∝

G
8e2

εr0kT
--------------– ,exp∝

f r( ) 1
r0
---- r

r0
----– 

  .exp=

∂ Glnln
∂T

------------------
1
2
---.–=

ropt r0 e2/εr0kT ,=

0

G, rel. units

1/ρ ∝  1/T
2 4 6 8 10

100

10–1

10–2

10–3

10–4

Fig. 3. Temperature dependence (solid curve) of the con-
ductance of a nanocomposite with granules of the same
size. The dashed line corresponds to the exponential depen-
dence G ∝  exp(–const/T).
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is below their maximum size rmax (for a given system),

i.e., for kT > e2r0/ε . At lower temperatures, we have

Let us now consider the case of high temperatures
(ρ1, ρ2 @ 1) for which the electron transitions involving
multiply charged granules become significant. In this
case, for the former distribution function

,

we obtain from (4) and (7)

(11)

where

(for u @ 1, we can use the asymptotic relation ψ(u) =
2.37u3/2).

The temperature dependence of conductance deter-
mined with the help of relation (11) is presented in Fig. 4.
The strong variation in the conduction in the high-tem-

perature range (  ! 1) is associated with the gradual
inclusion of new conduction channels through multiply
charged granules. The same dependence presented in

rmax
2

G e2/εrmaxkT( )–[ ] .exp∝

f ρ( ) 1/ρ0( ) ρ/ρ0–( )exp=

G
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m n,
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------------------------------------------------------Pmn
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ψ u( ) m2
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 exp
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Fig. 4. Temperature dependence (solid curves) of the con-
ductance of a nanocomposite with granules of different
sizes. The dashed line in the upper inset corresponds to the
linear dependence G ∝  ρ0 ∝  T. The lower inset shows the
experimental curve from [5].

10–4

10–6
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different coordinates (solid curve in the upper inset in
Fig. 4) shows that, at high temperatures, the conduc-
tance is a power (and not exponential) function of tem-
perature. For ρ0 ~ 10, the temperature dependence of
the conductance attains the asymptotic form (dashed
line in the upper inset) corresponding to the linear func-
tion G ∝  ρ0 ∝  T.

For the sake of comparison, the lower inset in Fig. 4
shows the experimental temperature dependence of the
conductivity of the nanocomposite Fex(SiO2)1 – x (x ≈
0.4) from [5]. While comparing this dependence with
the theoretical curve, it should be borne in mind that the
granule size in the nanocomposite under investigation
lies in the interval 10 Å < r < 1000 Å in accordance with
electron-microscopic data, the number of small gran-
ules being much larger than the number of large gran-
ules. This means that r0 ~ 100 Å. In addition, we must
take into account the fact that the effective permittivity
ε of the nanocomposite is much higher2 than the per-
mittivity εd ≈ 3.5 of its dielectric component SiO2 due
to the closeness to the percolation transition. Setting
ε = 50, we find that ρ0 ≈ 0.25 (or 1/ρ0 ≈ 4) corresponds
to T = 4 K. It can be seen from Fig. 4 that the matching
between the theoretical and experimental dependences
is satisfactory.

2 According to [4], ε ≈ εd/[1 – (x/xc)
1/3] ≈ 15εd for x/xc = 0.8.
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Abstract—A new phenomenon of anomalous transparency of a metallic plate upon the passage of a strong
transport current is predicted. It is shown that the electromagnetic field of an incident wave may be carried from
the skin layer to the opposite face by electrons trapped by the alternating intrinsic magnetic field of the transport
current even under the conditions of the extremely anomalous skin effect for which the skin depth is the smallest
parameter having the dimensions of length. The mechanism of the rf field transport effectively operates at low
temperature, when the mean free path of charge carriers is large. The wave field distribution in the plate is ana-
lyzed. The cyclotron resonance at trapped electrons, which emerges due to their periodic return to the skin layer,
is predicted and qualitatively analyzed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
It is well known that normal metals under standard

conditions are opaque to electromagnetic radiation:
waves are localized in the skin layer due to the skin
effect. If, however, a strong constant magnetic field is
applied parallel to the sample surface, the electromag-
netic field may be transferred from the skin layer to the
bulk of the metal. In plates of a finite thickness, the
transport of the field of a wave from the surface of inci-
dence to the opposite face makes the sample transpar-
ent. Similar effects, which are known as the effects of
anomalous penetration, are caused by individual move-
ment of charged particles in a magnetic field. An elec-
tromagnetic field penetrates into the bulk of the metal
owing to electrons “carrying” the rf field from the skin
layer and then “reproducing” it in the bulk of the metal.
Azbel [1] was the first to pay attention to such effects.
He considered the field transport along a chain of elec-
tron trajectories under cyclotron resonance conditions.
The theory of anomalous penetration was developed
further by Kaner and coauthors. They proved that the
transport along a trajectory in a magnetic field parallel
to the metal surface is observed in a wide frequency
range of electromagnetic field and not only under
cyclotron resonance conditions [2]. Other mechanisms
of anomalous penetration other than that predicted in
[1] were also considered. The variety of the trajectory-
type anomalous penetration effects was analyzed in
review [3].

The dynamics of charge carriers in a metal can be
affected not only by an external constant magnetic
field, but also by the magnetic component of the field of
a wave or the intrinsic magnetic field of the transport
current. The magnetic field of the wave, which is much
1063-7761/01/9303- $21.00 © 20630
stronger than the electric field in the bulk of the metal,
is responsible for the nonlinearity in the Maxwell equa-
tions owing to the dependence of conductivity on the
magnetic field. The mechanism of this type of nonlin-
earity is effective at low temperatures, for which the
mean free path of charge carriers is quite large. This
mechanism is not associated with a strong deviation of
the electron subsystem from equilibrium as, for exam-
ple, in semiconductors and is known as the magnetody-
namic mechanism. Various manifestations of magneto-
dynamic nonlinearity are considered in reviews [4, 5].
A nontrivial example of a magnetodynamic nonlinear-
ity is the generation of so-called current states discov-
ered experimentally for some metals [6]. A consider-
able deviation of static current–voltage characteristics
(IVC) for thin metallic plates from Ohm’s law towards
a decrease in resistance associated with the magnetody-
namic nonlinearity mechanism was theoretically pre-
dicted in [7] and experimentally observed in [8]. The
nonlinear interaction of an electromagnetic wave inci-
dent on a metallic plate with the transport current pass-
ing through it was analyzed in [9]. It was proved that
under the conditions of weak spatial dispersion, when
the electromagnetic field penetration depth δ is much
larger than the sample thickness d, the electrodynamic
response of the metal exhibits a number of peculiarities.
For example, the time dependence of the electric field
at the plate surface is characterized by a series of kinks
and peaks.

The variety of the above-mentioned effects indicates
that the influence of the intrinsic magnetic field of a
wave or the transport current on the dynamics of charge
carriers may be significant. For this reason, it would be
interesting to find out whether the magnetodynamic
001 MAIK “Nauka/Interperiodica”
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nonlinearity may lead to the penetration of a radio wave
to large distances from the irradiated surface as in an
external constant magnetic field.

In the present work, a new effect of anomalous pen-
etration of an electromagnetic field into a metallic plate
upon the passage of a strong transport current is pre-
dicted. We consider thin samples and the extremely
anomalous skin effect, for which the following inequal-
ities are satisfied:

(1)

Here, δ is the electromagnetic field penetration depth, d
is the plate thickness, and l is the mean free path of
charge carriers. One of the sample faces is exposed to a
plane monochromatic wave of a preset frequency and
amplitude. In the absence of transport current, the field
of the wave is mainly localized in the skin layer of
thickness δ. It was proved long ago by Pippard [10] that
the main contribution of the rf conductivity in the
anomalous skin effect comes only from a small fraction
of electrons (“effective” electrons) moving at small
angles ~δ/l ! 1 to the sample surface. In zero magnetic
field, effective electrons are obviously unable to carry
the field of the wave from the skin layer since they
remain in this layer during the entire mean free time.
The transport of the rf field to the bulk of the sample is
carried out only by noneffective electrons moving at
large angles to the faces of the plate (as compared to
d/l). However, such electrons receive from the field a
much smaller amount of energy than “grazing” parti-
cles, and the electromagnetic field created by them at
the opposite face of the sample is much weaker than on
the irradiated surface.

It will be shown below that the situation changes
radically if a strong transport current I passes through
the sample (the geometry of the problem is depicted in
Fig. 1). The electron trajectories start experiencing a
considerable effect of the intrinsic magnetic field of the
current, which is distributed antisymmetrically over the
sample thickness. It is equal to zero at the middle of the
plate and assumes equal and opposite values (H and −H)
at the opposite faces:

(2)

Here, D is the plate width (the size in the direction of
the magnetic field of the current) and c is the velocity
of light. The alternating field of the transport current
leads to the emergence of a new group of charge carri-
ers (in addition to conventional “flying” electrons),
which are trapped in an effective potential well. The tra-
jectories of flying and trapped electrons are presented
schematically in Fig. 1, where these trajectories are
marked as 1 and 2, respectively. Trapped carriers move
in almost planar periodic curves “oscillating” about the
plane x = 0 at which the field of the current changes its
sign. It can be seen from Fig. 1 that a fraction of trapped
electrons (namely, those which get into the skin layer)

δ ! d  ! l.

H
2πI
cD
---------.=
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are able to carry the rf field to the opposite surface of
the sample. In this way, the field of the wave penetrates
anomalously owing to its transport by the trapped elec-
trons. The physical pattern of this phenomenon is sim-
ilar to the transport of an rf field along a chain of elec-
tron orbits in a uniform magnetic field [3].

In the next section, we will formulate the problem
and write the Maxwell equations with the boundary
conditions for the total electric and magnetic fields of
the current and the wave. In Section 3, the conductivity
operators for flying and trapped electrons are analyzed
and the Maxwell equations are linearized in the rela-
tively weak field of a radio wave. The specific nature of
the conductivity operator for trapped electrons, as well
as the requirements imposed by the boundary condi-
tions, leads to a complex distribution of the electromag-
netic field in the plate: it turns out that the symmetric
and antisymmetric electric field components (over the
sample thickness) differ significantly in magnitude and
are characterized by different penetration depths.
Under the strong nonlinearity conditions, the electric
field of the wave is practically antisymmetric, which
means that it is carried by trapped electrons from the
skin layer to the opposite surface of the metal without
attenuation. The asymptotic forms of the conductivity
operator are obtained in Section 4 for a strong spatial
dispersion (δ ! d), and a linear integrodifferential
equation describing the electric field distribution in the
plate is derived. In Section 5, a consistent qualitative
analysis of the problem is carried out on the basis of the
noneffectiveness concept; correct order-of-magnitude
estimates for the signal penetration depth and for the
surface impedance of the plate are obtained without
solving the complex integrodifferential equation. The
pattern of electric field distribution in the sample is
numerically analyzed in Section 6. In Section 7, the
possibility of observing the cyclotron resonance at
trapped electrons is indicated and the necessary condi-
tions for observing such an effect are formulated. Qual-
itative formulas describing the resonance oscillations
of the surface impedance are also given in this section.

δ

H

–H d/2

1

2

I
y

x

h(–d/2, t) = hm cosωt–d/2

hm , ω

0

h(d/2, t) = ε(d/2, t)

Fig. 1. Geometry of the problem. Schematic diagram of the
trajectories of flying (1) and trapped (2) particles.
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The range of applicability of the obtained results is
outlined in Conclusions, where some considerations
concerning the possibility of experimental observation
of the predicted effects are put forth.

2. FORMULATION OF THE PROBLEM

Let us consider a thin metallic plate of thickness d
carrying a direct transport current I. We choose the x
axis along the normal to the metal surface so that the
plane x = 0 coincides with the middle of the sample.
The boundary x = –d/2 is exposed to a plane electro-
magnetic wave whose magnetic vector is collinear to
the magnetic field vector of the current. We direct the y
axis along the current and the z axis parallel to the mag-
netic fields of the current and of the wave (see Fig. 1).
The magnetic field in the metal is the sum of the intrin-
sic field H(x) of the transport current and the field h(x,
t) of the wave:

(3)

The electric field E(x, t) in the sample has only the y
component which can also be naturally presented as the
sum of the uniform potential field E0(t), which is
responsible for the passage of the transport current, and
the nonuniform vortex component %(x, t) of the field of
the electromagnetic wave:

(4)

We assume that the length L and width D of the plate
(i.e., its dimensions along the y and z axes, respectively)
are much larger than thickness d. In addition, we con-
sider the diffuse scattering of electrons at the sample
surface.

In the geometry adopted by us, the Maxwell equa-
tions have the form

(5)

where j(x, t) is the y component of current density. The
boundary condition for Eqs. (5) at the irradiated bound-
ary x = –d/2 has the form

(6)

where H = 2πI/cD is the magnetic field of the current at
the plate surface and hm is the amplitude of the wave. At
the opposite face of the sample, the magnetic and elec-
tric components of the wave transmitted through the
sample must coincide; i.e., the following equality must
hold:

(7)

The signal incident on the plate is assumed to be
weak; i.e., the magnetic and electric components h and
% of the wave field are much smaller than the intrinsic

H x t,( ) 0 0 * x t,( ), ,{ } 0 0 H x( ), , h x t,( )+{ } .= =

E x t,( ) 0 E x t,( ) 0,,{ } 0 E0 t( ), % x t,( )+ 0,{ }= = .

∂* x t,( )
∂x

---------------------–
4π
c

------ j x t,( ),=

∂E x t,( )
∂x

-------------------
1
c
---

∂* x t,( )
∂t

---------------------,–=

* d/2– t,( ) hm ωtcos= H ,+

h d/2 t,( ) % d/2 t,( ).=
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field H(x) of the current and the potential electric field
E0(t), respectively. Consequently, Maxwell’s equations
can be linearized in the fields h(x, t) and %(x, t). In addi-
tion, we will disregard time dispersion; i.e., we assume
that the frequency ω of the alternating field is much
smaller than the relaxation frequency ν of charge carri-
ers:

(8)

3. DYNAMICS OF CHARGE CARRIERS. 
ASYMPTOTIC FORMS OF CONDUCTIVITY 

OPERATORS

Owing to the relative weakness of the radiowave
field, we can study the electron dynamics disregarding
the effect of this field on electron trajectories and,
hence, simplify the problem as compared to that con-
sidered in [7] and [9]. Following the general algorithm
proposed in [9], we chose the vector potential gauge of
the field induced by the transport current in the form

(9)

It was mentioned above that the magnetic field of the
current is distributed antisymmetrically and vanishes at
the middle of the plate:

The vector potential A(x), however, is a symmetric
function of coordinate x. It is negative almost every-
where and attains its maximum value equal to zero only
at point x = 0. The integrals of motion of an electron in
the antisymmetric field of the current are the total
energy equal to the Fermi energy and the generalized
momenta

(m is the electron mass). The generalized momenta can
be used to express the electron velocity components
v x(x) and v y(x) in a plane perpendicular to the magnetic
field. In the case of a spherical Fermi surface of radius
pF = mv, we have

(10)

It is well known [7, 9] that electrons can be divided
into the following three groups depending on the mag-
nitude and sign of the integral of motion py: trapped,
flying, and surface carriers. The last group is insignifi-
cant in the case of diffuse scattering of charge carriers
at the sample boundaries considered here (these elec-
trons play a significant role only in the case of specular
reflection).

ω ! ν .

A x( ) H x '( ) x '.d

0

x

∫=

H 0( ) 0.=

pz mv z, py mv y= = eA x( )/c–

v y x( )
py eA x( )/c+

m
-------------------------------= ,

v x x( ) v ⊥
2 v y

2 x( )–[ ] 1/2
, v ⊥ v 2 v z

2–[ ] 1/2
.= =
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The conductivity of trapped electrons depends to a
considerable extent on the transport current. In the
static case, when the external varying field is equal to
zero, the strong nonlinearity mode corresponds to the
values of current for which the contribution from the
trapped electrons to conductivity is much larger than
the contribution of flying electrons. According to [7],
the nonlinearity parameter r determining the relative
contribution of trapped electrons coincides with the
ratio of the mean free path l to the characteristic length
of the arc of the trajectory of a trapped particle:

(11)

Here, R is the characteristic radius of curvature of an
electron trajectory in the magnetic field of the current,
and e is the elementary charge. Thus, the nonlinearity
parameter r is equal to the number of oscillations per-
formed by a trapped electron relative to the plane x = 0
before it experiences a scattering act. Henceforth, we
will consider only the case of strong nonlinearity, i.e.,

(12)

In order to find the conductivity operators for flying
and trapped electrons, we must carry out a rather com-
plicated and cumbersome procedure of solving the
Boltzmann kinetic equation. We will not present the
corresponding calculations here since they are
described in detail in [7]. It should only be noted that
the current density in [7] was obtained for a uniform
electric field. In the case of strong spatial dispersion
considered by us here, the expression for current den-
sity is different since the electric field cannot be taken
out of the symbol of the conductivity operator. The cor-
responding formulas for the current density jfl of flying
and jtr of trapped electrons have the form

(13)

(14)

r
l

Rd( )1/2
-----------------, R

c pF

eH
---------.= =

r @ 1.

j fl σ̂ fl% x t,( )
3σ0

2πl
---------

v zd
v

--------

0

v

∫= =

×
pyd

pF

--------
v y x( )
v x x( )
----------------- x 'd

v y x '( )
v x x '( )
------------------

/2d–

/2d

∫
py*

mv ⊥

∫
× ν τ x x ',( )–( )% x '( ),exp

jtr x( ) σ̂tr x t,( )
3σ0

πl
---------

v zd
v

--------

0

v

∫= =

×
pyd

pF

--------
v y x( )
v x x( )
-----------------

ντ x1 x,( )cosh
νTsinh

----------------------------------




–mv ⊥ e/c( )A x( )–

py*

∫

× x '
v y x '( )
v x x '( )
------------------ ντ x ' x2,( )% x '( )coshd

x1

x2

∫
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where

(15)

x1 = –x2 ≡ –x* are the turning points for electron trajec-
tories (which are the roots of the equation |v x| = 0)

(16)

is the upper boundary (in momenta py) of the region of
existence of the trapped electrons (the lower boundary
of this region is py = –mv ⊥ ), and σ0 is the conductivity
of a bulk sample. The quantity 2T ≡ 2τ(x1, x2) is equal
to the period of motion of a trapped electron.

In the zeroth approximation, the Maxwell equa-
tions (5) give a nonlinear current–voltage characteristic
of the plate considered in [7]. We are interested in the
expansion terms linear in the field of the wave, which
are responsible for the electrodynamic response. In the
linear approximation, we seek the solutions in the form

In this case, Maxwell’s equations assume the form

(17)

The boundary conditions (6) and (7) can be written in
the form

(18)

The strong nonlinearity mode presumes large values
of currents. However, we will assume that the current is
not very large, so that the condition

(19)

which allows us to disregard the curvature of the trajec-
tories of the flying electrons, holds along with inequal-
ity (12). Inequality (19) allows us to take all the quanti-
ties in zero magnetic field in expression (13) for the
conductivity operator for flying electrons. In this case,
formulas (10), (15), and (16) are transformed to

(20)

+ x 'd
v y x '( )
v x x '( )
------------------ ντ x x ',( )% x '( )sinh

x1

x

∫ 



,

τ x x ',( ) x ''d
v x x ''( )
-------------------,

x

x '

∫=

py* mv ⊥–= e/c( )A d/2( )–

% x t,( ) % x( ) iωt–( ), h x t,( )exp h x( ) iωt–( ).exp= =

% ' x( ) iω
c

------h x( ),=

h ' x( )–
4π
c

------ σ̂tr% x( ) σ̂ fl% x( )+[ ] .=

h d/2–( ) hm, h d/2( ) % d/2( ).= =

d  ! R,

py* mv ⊥ , v y–
py

m
-----, v x v ⊥

2 py
2/m

2
– .= = =
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Consequently, the conductivity operator (13) can be
written in the form

(21)

In this integral, we carry out the substitution t = py/mv ⊥ .
This gives

(22)

We change the order of integrations with respect to t
and x. In this case, the internal integral assumes the
form

(23)

This integral is equal to the Macdonald function K0(α)
to within exponentially small terms. The quantity α is
defined as

Everywhere except close neighborhoods of the refer-
ence points on the Fermi surface, where the value of v
is close to zero, we have

A simple analysis shows that the contribution to the
conductivity of flying electrons from a narrow region in
the vicinity of the reference points on the Fermi sphere,
where α * 1, is small as compared to the contribution
of the remaining part of the Fermi surface in parameter
r–3/2. Generally speaking, only the neighborhood of the
extremal cross section of the Fermi surface, where v ⊥  ≈
v, is significant in the outer integral in Eq. (21). Conse-
quently, the conductivity operator of flying electrons
can be written in the form

(24)

j fl

3σ0

2πl
---------=

v zd
v

--------
pyd

pF

--------
py

2/m2

v ⊥
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/2d
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  % x'( ) x'.d

/2d–
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∫=
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Since the argument of the Macdonald function in this
equation is a small quantity, we can use the following
asymptotic form:

where γ ≈ 0.577216 is the Euler constant. In addition, it
should be noted that the double integral in Eq. (24) is
reduced to the iterated integral. The outer integral with
respect to v z can be evaluated and is equal to π/4. Con-
sequently, we ultimately have

(25)

Let us now write the asymptotic form of the conduc-
tivity operator for trapped electrons. In the main
approximation in r–1 ~ ντ ! 1, formula (14) gives

(26)

In contrast to the conductivity operator for flying elec-
trons, the conductivity operator for trapped electrons is
a complex function of the distribution of the magnetic
field induced by the transport current.

The simple estimates presented in Section 5 show
that the conductivity of trapped particles is higher than
the conductivity of flying electrons by a factor of r2/3 @ 1.
Nevertheless, as will be shown in the next section, the
current of flying electrons must be taken into account
while solving the Maxwell equations in order to satisfy
the boundary conditions (18).

4. TWO-COMPONENT ELECTROMAGNETIC 
FIELD DISTRIBUTION IN A PLATE

In spite of the complex form of the conductivity
operators (25) and (26), a number of conclusions con-
cerning the field distributions in a metal can be drawn
simply from a qualitative analysis of the Maxwell equa-
tions with the current density jtr + jfl, without actually
solving these equations. To begin with, we note that for-
mulas (9) and (10) imply that the vector potential A(x)
and, hence, the velocities v y(x) and v x(x) are even func-
tions of coordinate x. This means that the current den-
sity jtr(x) is also an even function of x in the main
approximation in parameter r–1. Consequently, if we
neglect the contribution of flying electrons, the total
current density j(x) = jtr(x) in the Maxwell equations (17)
is an even function. The second equation from (17) then
implies that the varying magnetic field h(x) must be dis-

K0 t( ) t
2
---ln γ+

 
 
 

, t 0,–=

j fl x( )
3σ0

4l
--------- x x'–
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---------------ln γ+ % x'( ) x'.d
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tributed antisymmetrically. However, this contradicts
the boundary conditions. Indeed, in accordance with
Eqs. (18), the magnetic field at the boundary x = −d/2
must be equal to the preset value hm, while at the oppo-
site boundary it must practically vanish. The latter
statement is the main consequence of the fact that the
electric field in a metal is much smaller than the mag-
netic field in parameter ωδ/c, which in turn follows
from the first of Eqs. (17) (see estimate (57) in Section 5).
Therefore, in order to satisfy the boundary conditions
(18), the magnetic field h(x) must contain commensu-
rate even and odd components.

This means that, in order to solve the formulated
boundary value problem correctly, we must take into
account the contribution of flying electrons, which
allows us to satisfy both the equations and the boundary
conditions.

Let us present the electric field %(x) of the wave as
the sum of symmetric %+(x) and antisymmetric %–(x)
components. It should be observed that the conductiv-
ity operator (26) for trapped electrons nullifies the anti-
symmetric component of the field. On the other hand,
the conductivity operator (25) for flying electrons does
not nullify this component, and the presence of odd
terms in the rf current density is due only to flying elec-
trons.1 It turns out that the boundary conditions (18)
and Eqs. (17) can be satisfied simultaneously only if the
antisymmetric component of the electric field is much
larger than the symmetric component:

(27)

In order to verify this, we write the Maxwell equa-
tions (17) separating even and odd components in all
the quantities. In doing so, we take into account the fact
that, in view of the specific nature of the conductivity
operator (25) for flying electrons (whose kernel
depends only on the modulus of the difference x – x '),
the antisymmetric component of the current density for
flying particles is determined only by the antisymmet-
ric component of the electric field, while the symmetric
current density component for flying electrons is deter-
mined only by the symmetric component of the electric
field and is much smaller than the current density (26)
for trapped electrons (see Section 5 for details). As a
result, we have

(28)

1 Generally speaking, the next terms in the expansion of the con-
ductivity operator (14) for trapped electrons in parameter r –1 also
possess the same property. However, an analysis shows that these
terms have a higher order of smallness as compared to the con-
ductivity operator (25) for flying electrons.

% %+= %–+ , %– @ %+.

h+'– x( ) 4π/c( ) j– x( ) 4π/c( )σ̂ fl%–,= =

h–'– x( ) 4π/c( ) j+ x( ) 4π/c( )σ̂tr%+,= =

%+' x( ) iω/c( )h– x( ),=

%–' x( ) iω/c( )h+ x( ).=
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Substituting now the expressions for h– and h+ from
the third and fourth equations in (28) into the first and
second equations, respectively, we obtain the following
couple of equations for the symmetric and antisymmet-
ric components of the electric field:

(29)

(30)

It can be seen that the penetration depth δ– for the anti-
symmetric electric field component %– is determined
by the relatively low conductivity of flying electrons,
while the penetration depth δ+ for the symmetric elec-
tric field component %+ is determined by the high con-
ductivity of trapped electrons. Since the penetration
depth is inversely proportional to the square root of the
conductivity, the following inequality holds:

(31)

The boundary conditions (18) imply that the right-hand
sides of the third and fourth equations in (28) are of the
same order of magnitude. Consequently, it follows
from inequality (31) that the antisymmetric component
of the electric field is much larger than the symmetric
component; i.e., inequality (27) holds.

Thus, in the strong current mode, when r @ 1, the
electric field practically contains only the antisymmet-
ric component. This means that the field of the skin
layer is carried by trapped electrons to the opposite face
of the plate without attenuation:

It is interesting to note that in this case, in accordance
with Eq. (29), the penetration depth and the magnitude
of the electric field are determined not by trapped, but
by flying electrons. This is due to the fact that the con-
ductivity operator (26) for trapped electrons, acting on
the purely antisymmetric electric field %–, gives zero
current density. Physically, this is a consequence of the
fact that the trajectories of trapped electrons are sym-
metric relative to the middle of the sample. A trapped
particle getting into the skin layer and acquiring a cer-
tain energy from the electric field encounters an electric
field of opposite sign at the opposite face of the plate
and gives away the entire energy acquired by it earlier.

In order to derive an integrodifferential equation for
field %–(x), we substitute the conductivity operator (25)
for flying electrons into Eq. (29). In the kernel of oper-
ator (25), we retain only the component antisymmetric

d2%–

dx2
-----------

4πiω
c2

-------------σ̂ fl%–,–=

d2%+

dx2
------------

4πiω
c2

-------------σ̂tr%+.–=

δ+ ! δ–.

% d/2–( ) % d/2( ) .=
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in x' since the symmetric component makes zero contri-
bution to current density. This gives

(32)

In view of symmetry, we can obviously consider this
equation on the interval (0, d/2). Let us now consider
the boundary conditions (18), which can be written in
the form

Using the fact that

we present this system in the form

It follows hence that
(33)

to within terms of the order of (ωδ–/c)hm ! hm. Using
the last equation from (28), we can write this condition
for the electric field %–:

(34)

The second boundary condition for Eq. (32) is the con-
dition of vanishing of the antisymmetric component
%−(x) at the origin x = 0:

(35)
Let us introduce the dimensionless coordinate ξ and

the dimensionless field f(ξ):

(36)

In the new notation, our boundary value problem
assumes the form

(37)

Here, parameter β is defined as

(38)

The last equality defines the quantity

(39)

This quantity obviously has the meaning of the com-
plex penetration depth δ– and coincides in order of

d2%–

dx2
------------

3iπωσ0

2lc2
------------------- x x '–

x x '+
----------------%– x'( )ln x'.d

/2d–

/2d

∫=

h+ d/2–( ) h– d/2–( )+ hm,=

h+ d/2( ) h– d/2( )+ %+ d/2( )= %– d/2( ).+



%+ ! %– ωδ–/c( )h+,∼

h+ d/2( ) h– d/2( )– hm,=

h+ d/2( ) h– d/2( )+ O ωδ–/c( )h+[ ] .=
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%–d
xd
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x d /2=

iω
2c
------hm.=

%– 0( ) 0.=
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4c

---------hm.= =
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1
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16c2l
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3πωσ0
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magnitude with the result which will be obtained below
from a qualitative analysis (see formula (55)).

5. QUALITATIVE MODEL
OF THE ANOMALOUS PENETRATION EFFECT

The boundary value problem considered in Sections 3
and 4 is rather cumbersome and leads to a complex
integrodifferential equation (37). In many problems of
this type, a qualitative method based on the Pippard
concept of noneffectiveness [10] was found to be quite
useful. In accordance with this concept, the main con-
tribution to the rf conductivity of a metal comes from
electrons that stay in the skin layer for most of the time.
In order to estimate the conductivity of the main groups
of charge carriers, the so-called effective conductivity
is introduced, which is calculated for each group of
electrons by the formula

(40)

Here, Neff and τeff are the concentration of “effective”
electrons and the time of their residence in the skin
layer, respectively. The essence of the noneffectiveness
concept is that the integral conductivity operators (25)
and (26) for flying and trapped electrons are simply
replaced by the operators of multiplication by the cor-
responding effective conductivity.

Let us begin by estimating the conductivity of flying
carriers (i.e., estimating, in fact, the right-hand side of
Eq. (29)). As in Section 3, we disregard the bending of
the trajectories of flying electrons by the magnetic field
by virtue of inequality (19). In this case, the group of elec-
trons incident on the surface at small angles ϕ ~ δ–/l and
spending the entire mean free time in the skin layer
proves to be effective. For the effective conductivity of
such carriers, we obtain the following qualitative for-
mula:

(41)

where σ0 = Ne2/mν is the conductivity of a bulk sample
(we disregard here spatial dispersion, i.e., the complex
correction –iω to ν in view of relation (8)). Except for
the logarithmic factor, this expression coincides with
the conductivity estimate obtained under the conditions
of the conventional anomalous skin effect in a semi-
infinite sample in zero magnetic field.

Let us now estimate the conductivity of trapped
charge carriers (i.e., the operator on the right-hand side
of Eq. (30)). We assume that the magnetic field of the
current is strong enough and the magnetodynamic non-
linearity is noticeable, r @ 1. The angle at which
trapped electrons enter the skin layer is equal to ψ ~
(δ+/R)1/2 in order of magnitude. The length of the arc
described by a trapped electron in the skin layer is L ~
(Rδ+)1/2. Consequently, the time spent by the electron in

σeff
Neffe

2τeff

m
---------------------= .

σ fl σ0

δ–

l
-----,=
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the skin layer over a period of its oscillatory motion is
(Rδ+)1/2/v. We must now take into account multiple
returns of electrons to the skin layer. Since the proba-
bility of a return is equal to exp[–2(Rd)1/2/l], the effec-
tive time of the electron residence in the skin layer can
be estimated as

(42)

The factor 2 appears in front of the sum in this relation
due to the fact that the time of the first residence of an
electron in the skin layer is on the average half as long
as the next residence periods. Consequently, the follow-
ing formula is valid for the effective conductivity of
trapped carriers:

(43)

In the strong-nonlinearity mode (r = l/(Rd)1/2 @ 1), this
expression can be written as

(44)

Having obtained the estimates for the conductivities
of flying and trapped electrons, we can now analyze
qualitatively the Maxwell equations (28) together with
the boundary conditions (18) and get correct order-of-
magnitude estimates for the fields %± and penetration
depths δ±.

Let us begin with integrating the first two equations
from (28) with respect to x from 0 to d/2, taking into
account relations (33). This gives the following order-
of-magnitude estimates:

(45)

(46)

where currents j± are defined as

(47)

(48)

The effective conductivities σfl and σtr appearing in
these formulas are defined by relations (41) and (44).
The third and fourth equations in (28) assume the form

(49)

(50)

τ tr
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The six equations (45)–(50) and the two relations
(33) form a system containing eight unknowns: δ±, j±,
h±, and %±. Thus, the solution of this system makes it
possible to estimate all the quantities we are interested
in. For example, Eqs. (49), (50) and relations (33) lead
to

(51)

Here, %+ and %– have opposite signs. At the same time,
Eqs. (45) and (46) imply that

Substituting into this relation the values of j± from
Eqs. (47) and (48) with conductivities (41) and (44), we
obtain

Using relation (51), we now obtain

(52)

Thus, the qualitative analysis proves that the symmetric
and antisymmetric electric field components have differ-
ent scales and vary over different distances, which com-
pletely agrees with the results obtained in Section 4.

Further, from Eqs. (46), (47), and (49), we obtain the
equality

It follows hence that the penetration depth δ+ is given by

(53)

where

(54)

is the skin depth in the conventional anomalous skin
effect in the absence of transport current. Using formu-
las (52), we arrive at

(55)

(56)

The ratios of the electric and magnetic field compo-
nents (e.g., %–/h+) can be obtained from Eqs. (28):

(57)
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This ratio is always small owing to large values of the
conductivity δ0 for pure metals.

Formulas (56) solve, in principle, the formulated
problem, providing a qualitative estimate for the elec-
tric field carried by trapped electrons from the skin
layer to the opposite face of the sample. However, a
more precise description of the spatial distribution of
the electric field in a plate under the conditions of
anomalous transparency requires a numerical solution
of the problem, which will be given in the next section.

6. NUMERICAL SOLUTION OF THE EQUATION 
FOR SPATIAL DISTRIBUTION OF ELECTRIC 

FIELD

After certain transformations, the integrodifferential
equation (37) can be reduced to Fredholm’s integral
equation of the second kind, in which the boundary
conditions have already been taken into account:

(58)

where the kernel K(ξ, ξ') is given by

(59)

Since the magnitude of the spectral parameter β is
much greater than unity, the series of successive
approximations diverges. For this reason, the equation
was solved by the discretization method. Figure 2
shows a typical distribution of the electric field %–
obtained as a result of numerical solution of Eq. (58). It
can be seen that the order of magnitude of the skin
depth coincides with the quantity |δ–| defined by for-
mula (39), which in turn coincides with that obtained in
Section 5. The distributions of the symmetric and anti-
symmetric components of electric and magnetic fields

f ξ( ) β K ξ ξ ',( ) f ξ'( ) ξ'd

0

1

∫– ξ ,=

K ξ ξ ',( ) ξ 1 ξ'–( ) 1 ξ'–( )ln 1 ξ'+( ) 1 ξ'+( )ln–[ ]=

+
1
2
--- ξ ξ '+( )2 ξ ξ '+( )ln

1
2
--- ξ ξ '–( )2 ξ ξ '– ξξ '.–ln–

f

ξ

0.008

0.004

0

–0.004

–0.008
–1.0 –0.5 0 0.5 1.0

Fig. 2. Distribution of the dimensionless electric field f(ξ)
(see (36)) in a plate, which is obtained as a result of numer-
ical solution of Eq. (58) for the ratio d/ |δ–| = 10.
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in a metal as well as the current density components are
shown schematically in Fig. 3.

Knowing the electric field distribution, we can cal-
culate the quantity characterizing the electromagnetic
response of the plate, viz., surface impedance. It is
defined as

(60)

In the main approximation in parameter r–1, in which
only the antisymmetric electric field component %– is
taken into account, we obtain the following formula for
impedance using the dimensionless characteristics ξ
and f(ξ) (see formulas (36)):

(61)

For I = 0, we are dealing with the conventional anoma-
lous skin effect in zero magnetic field. In this case, the
complex penetration depth δa for the field of the wave
is given by formula (54). The expression (39) for the
skin depth implies that the penetration depth in the
strong nonlinearity mode is of the same order of mag-
nitude as in the absence of transport current.

The first equation from (17) shows that the surface
impedance (60) can be presented in the form

(62)

Consequently, the quantity Z can be estimated by order
of magnitude as

(63)

Thus, the surface impedance under the strong nonlin-
earity conditions (for strong currents) is of the same
order of magnitude as for I = 0. However, in the inter-
mediate range (for r ~ 1), the surface impedance as a
function of current I may vary significantly.

7. CYCLOTRON RESONANCE 
AT TRAPPED ELECTRONS

In the previous sections, we considered the anoma-
lous penetration of the electromagnetic field of a wave
in a metal, associated with a group of trapped electrons.
The phenomenon of anomalous penetration of a wave
into a metal is closely related to another remarkable
effect, viz., cyclotron resonance. In a uniform magnetic
field, the cyclotron resonance emerges due to periodic
returns of electrons in the skin layer provided that the
wave frequency is a multiple of the Larmor frequency
of an electron moving in a cyclotron orbit.

In the problem under investigation, trapped elec-
trons experience a similar periodic return in the skin
layer. They oscillate relative to the plane x = 0 with a
period 2T (15). Consequently, if the period 2T of oscil-
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lations of a trapped electron is a multiple of the wave
period 2π/ω, we can expect a resonance similar to the
ordinary cyclotron resonance in a uniform magnetic
field.

For the sake of simplicity, we assume that both faces
of the sample are exposed symmetrically to a radiation
in a magnetic field. In this case, the initial distribution
of the electric field over the sample thickness is anti-
symmetric and localized near the plate boundaries. The
resonance condition in such a formulation of the prob-
lem is that an electron must be accelerated after getting
into each skin layer. This means that the half-period T
of oscillations of a trapped electron must be equal to an
odd number of half-periods of the wave, (2n + 1)π/ω,
since its phase must change by π during the motion of
the electron through the plate in the case of the antisym-
metric distribution of the electric field.

The cyclotron resonance at trapped electrons can be
observed only if a number of important conditions are
satisfied. The first of these conditions is that the half-
period T of trapped electron oscillations must be much
smaller than the charge carrier relaxation time τ. In
other words, the characteristic length (Rd)1/2 of an arc
on the electron trajectory must be much smaller than
the mean free path l. This requirement obviously coin-
cides with the strong nonlinearity condition r @ l. The
second important condition for observing the resonance
is the requirement of strong time dispersion. This fol-
lows from the fact that the wave period 2π/ω under the
resonance conditions must be of the order of the period
of oscillations of a trapped electron. It was mentioned
above that the half-period of oscillations of trapped car-
riers in the strong nonlinearity mode is much shorter
than the relaxation time τ. This means that, under
cyclotron resonance conditions, the inequality ω @ ν
opposite to inequality (8) must hold. The inclusion of
time dispersion necessitates the replacement of the
relaxation frequency ν by ν* = ν – iω in expression (14)
for the conductivity operator. Since the imaginary com-
ponents dominate in the complex-valued quantity ν*,
the asymptotic forms of the current density and field
distributions in the plate under cyclotron resonance
conditions differ significantly from those considered by
us earlier.

We will analyze the predicted effect only by using a
qualitative model. The conductivity of trapped elec-
trons will be estimated using formula (40). The effec-
tive relaxation time is described by the same formula
(42) in which, however, we must replace ν by ν*. For
the effective conductivity, we have formula (43) in
which the quantity l is replaced by l* = v /(ν – iω).

The complex penetration depth δ satisfies the equa-
tion

(64)δ2 ic2

4πσtrω
------------------.=
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This gives

(65)

where

is the penetration depth for the normal and anomalous
skin effects in a semi-infinite sample in the absence of
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Fig. 3. Schematic diagram of the spatial distribution of even
and odd components of (a) electric field, (b) magnetic field,
and (c) current density.
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current (see formula (54)). In order to calculate the sur-
face impedance, we will use formula (63) which is
transformed, after the substitution of δ from relation
(65), into

(66)

Here, Za is the surface impedance of a bulk metal under
the conditions of the conventional anomalous skin
effect. It was mentioned above that a strong time dis-
persion ω @ ν is required for observing the resonance.
Taking this circumstance into account, we can write
Eq. (66) in the form

(67)

This formula provides a qualitatively correct
description of the cyclotron resonance in metals with a
cylindrical Fermi surface whose axis is directed along
the magnetic field. In metals with a convex Fermi sur-
face of the elliptical type, the resonance is blurred since
the radius of curvature of electron trajectories and,
hence, the frequency T–1 with which trapped electrons
get into the skin layer are functions of the momentum
component pz. The main contribution to the conductiv-
ity of such metals is determined by the relatively small
number of electrons located in the vicinity of the central
cross section of the Fermi surface, for which the quan-
tity T as a function of pz has an extremum. As a result,
the conductivity under the resonance conditions
decreases by a factor of (νT)–1/2 ~ r1/2 @ 1 as compared
to the case of a cylindrical Fermi surface. Accordingly,
the surface impedance (67) at the resonance acquires
the additional factor r1/6.

8. CONCLUSIONS

The anomalous penetration of an electromagnetic
wave into a metallic current-carrying plate considered
in this work is an example of the possible effect of the
magnetodynamic nonlinearity on the transparency of
metallic plates. This effect is similar in many respects
to the well-known penetration of a field along a chain
of electron trajectories in a constant uniform magnetic
field. However, there are fundamental differences
between these two effects.

For one, the anomalous penetration of a field into a
plate in a uniform magnetic field leads to the so-called
rf size effect (see, for example, [3]). If we denote by 2R
the diameter of an electron orbit (for the sake of sim-
plicity, we assume that the Fermi surface is cylindrical),
the nth spike of the field occurs at a depth 2nR from the
surface. If the resonance condition 2nR = d is satisfied,
the spike appears at the opposite face of the plate and
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the sample becomes transparent to the incident wave.
Naturally, if the Fermi surface is not cylindrical, the
resonance is blurred and the role of 2R is played by the
diameter of the orbit corresponding to the extremal
cross section of the Fermi surface. However, the anom-
alous transparency which is in resonance in the mag-
netic field is preserved in this case also. In addition, the
rf size effect is of a clearly manifested threshold type.
Indeed, the necessary condition for transparency in the
case of closed orbits in a uniform magnetic field is that
at least one orbit must fit into the sample thickness,
which means that the magnetic field much exceed a cer-
tain threshold value. In our situation of field penetration
due to oscillating electron orbits, the sample is trans-
parent for any values of current corresponding to r * 1.
The number of trapped electrons and, hence, the con-
ductivity are smooth functions of the current irrespec-
tive of the geometry of the Fermi surface. Thus, in the
case when the field is carried by trapped electrons, the
sample is transparent for any values of the transport
current and for any shape of the Fermi surface.

In order to observe the effect of anomalous penetra-
tion distinctly, the strong nonlinearity conditions (12)
must be satisfied. For samples of thickness d = 10–2 cm,
width D = 0.5 cm, the mean free path of charge carriers
l = 10–1 cm, the electron concentration N = 1023 cm–3,
and the Fermi momentum pF = 10–19 g cm/s, the strong
nonlinearity mode is realized for currents I ~ 10 A. The
required large values of mean free path are attained
only in pure metals at helium temperatures.

It should be noted that the results of this work were
obtained under the assumption of diffuse scattering of
charge carriers at the sample surface. It is well known,
however, that the electron scattering at the metal sur-
face is close to specular reflection in many cases. This
hampers the manifestations of a number of magnetody-
namic nonlinearity effects. For example, the experi-
mentally observed decrease in the plate resistance
under the strong nonlinearity conditions amounts to
only about ten percent [8], while the theory [7] predicts
a considerable deviation of the IVC for a metallic sam-
ple with diffuse faces from Ohm’s law. In the case of
specular reflection of electrons, the group of surface
particles starts playing a significant role. These carriers
experience collisions only with one of the plate faces,
and their contribution to conductivity, which is negligi-
bly small in the case of diffuse scattering, might be of
the order of the contribution from the remaining groups
of electrons in the case of specular reflection. In con-
trast to the static IVC whose shape is determined by all
electrons, the anomalous transparency of the plate pre-
dicted by us in this work is ensured only by trapped
charge carriers which do not collide with the sample
surface. For this reason, the mechanism of field pene-
tration in the bulk of a metal must have a low sensitivity
to the type of electron scattering at the surface. In all
probability, the effect of anomalous field penetration
and the cyclotron resonance at trapped electrons con-
AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001
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sidered by us here will be distinguishable in experi-
ments even in the case of a nearly specular reflection of
electrons from the surface.
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Abstract—Scanning tunneling spectroscopy of trigonal (0001) and “quasitrigonal” surfaces of a twin inter-
layer on a cleaved face of bismuth is performed. It is found that both surfaces are characterized by surface elec-
tron states with spectra exhibiting clearly defined singularities, namely, relatively narrow maxima and minima
of the density of states in the energy range of  eV. An analysis of the behavior of the current–voltage char-
acteristics at low (of the order of tens of millivolts) voltages has revealed the existence on the bismuth surface
of a two-dimensional layer, in which the density of states of electrons, unlike its anomalously small value in
the bulk of bismuth, is of the order of magnitude typical of metals. © 2001 MAIK “Nauka/Interperiodica”.

1+−
1. INTRODUCTION

The electronic properties of bismuth have been
investigated for many decades. The spectrum of con-
duction electrons in the bulk of metal has been studied
in great detail (see review paper [1]). Considerable
progress has been made toward the calculation of the
band structure [2]: remarkable agreement has been
attained with the experimental data in the most sensi-
tive region, i.e., in the vicinity of the Fermi surface,
which requires an accuracy of energy calculation
within a millielectronvolt. The situation is less favor-
able in what regards the investigation of the electronic
properties of surfaces. In the case of bismuth, from gen-
eral considerations, one can expect a radical rearrange-
ment of the electron spectrum in the vicinity of the sur-
face. The reason is obvious: the concentration of cur-
rent carriers in bismuth is low (of the order of 10–5 per
atom), and their wavelength and Debye screening
length exceed considerably the interatomic distance
and reach hundreds of angstroms, so that a total rear-
rangement of the entire system of conduction electrons
must occur at such distances from the surface. In view
of this, a discussion has been under way for several
decades of dimensional quantum phenomena in thin
bismuth films and transition to the semiconductor state
(see, for example, [3, 4]). For interpreting the results of
experiments with thin epitaxial films oriented in the
basal trigonal plane, one has to assume the presence of
a surface charge, whose magnitude, in terms of volume
with the layer thickness equal to the lattice constant
along the trigonal axis (≈1.2 nm), exceeds the bulk con-
centration of both electrons and holes by at least two
orders of magnitude. The assumption of the presence of
a surface bending of energy bands of the order of 0.1 eV
and of a surface charge must be invoked also in treating
the reflection of current carriers from the surface during
1063-7761/01/9303- $21.00 © 20642
the investigation of their transverse focusing in a mag-
netic field [5].

The presence of surface states or resonances with an
energy 0.4 eV below the Fermi level was evidenced by
the results of precision investigations of the photoeffect
[6]. However, these measurements are not quite precise
(the resolution of the method is only 0.25 eV) and can
produce information only about states below the Fermi
level.

Therefore, it appears of interest to investigate tun-
neling spectra of bismuth. Tunneling measurements in
sandwich structures were performed even when study-
ing the spectrum of bismuth in the bulk, when the
importance of the surface was not yet realized as clearly
as it is at present. Note that the results obtained by dif-
ferent researchers are so varied (see the discussion of
relevant studies in [1]) as to be hardly worth being
treated here. Most likely, of decisive importance is the
fact that the surface properties of film structures depend
strongly on the technology of their treatment.

The technique of scanning tunneling spectroscopy
(STS) consists in measuring the local current–voltage
characteristics and involves the use of a scanning tunnel
microscope; this technique enables one to investigate a
concrete surface, especially, if the samples are prepared
under high vacuum. Also, an advantage of the method
is that it enables one to investigate the electron spec-
trum with space resolution up to atomic and combines
naturally with scanning tunneling microscopy (STM),
whereby its results may be compared with the actual
surface structure. In so doing, it is desirable that the
investigations be performed at low temperatures in
order to avoid thermal broadening of spectral singular-
ities at low energies and reduce the probability of tun-
neling with phonon emission. In the case of bismuth, this
helps avoid complications associated with the thermal
001 MAIK “Nauka/Interperiodica”
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motion of the boundaries of atomic terraces [7]. It is
very important that the preparation of samples by cleav-
ing crystals in situ at low temperatures may be accom-
panied by the emergence of terraces with straight,
almost atomically smooth, boundaries [8], macroscopic
twins [8], and twin interlayers of quantized width with
ideal boundaries [9, 10]. All of these objects are well
defined physically; therefore, the possibilities for inves-
tigations are increased.

Some results of STS studies of atomically smooth
regions of the trigonal surface of a low-temperature
cleaved face of bismuth are given in [11]. It is demon-
strated that the electron states at characteristic energies
of the order of tens of millielectronvolts from the Fermi
level are inhomogeneous along the surface on scales of
the order of several interatomic distances, which is
indicative of the generation of point defects during the
cleaving of crystal.

We managed to perform the simultaneous spectros-
copy of two crystal planes, namely, a trigonal (0001)
plane (perpendicular to the Γ–T direction in conven-
tional notation [2]) and a twin surface (perpendicular to
one of three equivalent Γ–L directions). Their compar-
ison made it possible to relate the singularities of the
density of state determined from tunneling spectra to
surface, rather than to volume, states. As a result, a
direct proof of the existence of surface states was
obtained, and the energy parameters of the respective
electrons were determined.

2. EXPERIMENTAL SETUP AND PROCEDURE

Samples in the form of long sticks oriented along
the [001] axis and sized approximately 1 × 2 × 5 mm
were used for investigations. They were cut out in an
electric-spark discharge machine from single crystals
grown from the melt by the method of [12] using
99.99999% pure starting material. With this degree of
purity, the concentration of impurity atoms on the
cleavage surface must be of the order of ≈1 atom/µm2.
The dislocation density on the cleaved face of crystal,
determined by the pits of etching in dilute nitric acid,
was approximately 0.05 µm–2. When preparing out a
sample, a shallow notch was made in the middle, which
defined the position of the cleavage surface. The sam-
ples were etched in nitric acid to remove the impure
surface layer and rinsed in distilled water.

The investigations were performed in a low-temper-
ature setup [13] using a scanning tunnel microscope
[14]. The STM is characterized by the possibility of
computer-controlled displacement of the tip in three
directions with a step ranging from fractions of a
micron to several microns, which enables one to select
the surface region being investigated within typical
sizes of samples of the order of 1–2 mm. Thereby, tens
of regions may be investigated in a single cryogenic
experiment, or, in fact, tens of different samples. Unlike
the design described in [14], piezoinertial step motors
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
were replaced by a single unit of three-coordinate dis-
placement based on the effect of electrodynamic forces,
which resulted in a higher vibration resistance and
reduced noise due to mechanical shaking.

A sample placed in the microscope could be cleaved
in situ at low temperatures under high vacuum or in a
medium of heat-transfer gas such as helium and heated
to a temperature of hundreds of kelvin. The measure-
ments were performed at the sample temperature in the
vicinity of the boiling point of helium.

STM images and current–voltage characteristics
(CVC) were obtained under control of a computer
using an ADC–DAC plate manufactured by the L-card
company (Moscow, Russia) (this plate provides for dig-
ital feedback). In order to improve the signal-to-noise
ratio, each CVC was recorded repeatedly and the
results were averaged. Usually, 25 to 100 storing oper-
ations were performed, and the recording of a single
CVC took from 5 to 20 s. The currents being measured
were of the order of 1 nA, and the noise was of the order
of 1–2%.

The step of displacement of the tip and the number
of steps were preassigned when taking a set of CVCs
along a line on the surface. At every step, the coordinate
z (perpendicular to the surface) was recorded, and the
voltage dependence of tunnel current was measured
within the preassigned limits. As a result, an array of
points was obtained, which reflected the surface relief
along the selected line, and the respective CVCs. These
data were subsequently processed using the ORIGIN
computer codes which enabled one to perform mathe-
matical processing of data, including the differentiation
of the CVCs with smoothing. The resolution of the sin-
gularities of a CVC was defined by the number of
points on the CVC curve (usually, 128 or 256) and by
the smoothing parameter which was selected from the
compromise between adequate suppression of high-fre-
quency noise and slight broadening of narrow lines.

3. MEASUREMENT RESULTS

The observation of twins on a cleavage surface of
bismuth using a scanning tunnel microscope was
reported in [8–10]. A scheme of twinning is given in
Fig. 1 [15]. When cleaving a crystal with twins (or dur-
ing production of a twin in the process of cleaving), two
nonequivalent planes are opened. One of these is a trig-
onal plane perpendicular to the Γ–T direction of the
Brillouin band, and the other plane is perpendicular to
one of three equivalent Γ–L directions. For simplicity,
we will refer to such planes as quasitrigonal, because
three out of four trigonal planes make a transition to
these planes in the case of rhombohedral deformation
transforming a cubic into bismuth lattice.

Twins occur quite rarely on STM images, one or two
cases per hundred of examined frames sized 1 × 1 µm2,
and, apparently, in some cases they occur as a result of
mechanical effect on the surface during incidental con-
SICS      Vol. 93      No. 3      2001
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tact with the tip of the microscope. Otherwise, it would
be hard to conceive how to reach the immediate vicinity
of the point of termination of a twin interlayer of sub-
micron width (see Fig. 10 in [8]). Apparently, this was
the case in our study as well.

The twin interlayer was detected under conditions
of heating to room temperature and cooling a sample
cleaved in situ at helium temperature for the purpose of
tracing the transformation of the terrace boundaries,
after the tip touched the sample. The image of a surface
with twin interlayer is shown in Fig. 2. Its appearance
is quite classical: the horizontal region changes to a flat
inclined one, and then to horizontal again, at a different
level. The angle between the planes differs from 180°
by ±2.4°, with an accuracy of approximately 0.2° in
accordance with the scheme of Fig. 1. The interlayer is
wedge-shaped, with the wedge angle in projection onto
the plane being 10°–12°. Both boundaries are inclined
±(5°–6°) to the directions of the terrace boundaries,
which coincide with the direction of atomic series on
the surface [8]. Therefore, neither of them is coherent.

One can find out which planes are planes of the
(0001) type by comparing the heights of steps on the
terrace boundaries that are well seen in Fig. 2. Their

trigonal axis
cleavage plane

2.34°

(a) (b)
trigonal axis

twinning cleavage 
planeplane

Fig. 1. (a) The scheme of one of sublattices of bismuth;
(b) the scheme of arrangement of atoms in a plane of the
type of the hatched plane in (a) upon twinning.

3 nm

‡

‡

b

b Twin
boundary

Twin
boundary

78 nm

78 nm

Fig. 2. An STM image of a region of a cleaved face of bis-
muth with a twin interlayer: (a–a) and (b–b) lines along
which sets of current–voltage characteristics were regis-
tered. One can see terraces of diatomic height and (in the
lower right-hand corner) point defects.
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values, according to crystallographic data, must be
equal to 0.395 and 0.374 nm on the trigonal and qua-
sitrigonal planes, respectively. The average values of
height, measured for different steps at several points,
were 0.395 × 0.01 nm for the horizontal regions in Fig. 2
and 0.375 × 0.01 nm for the inclined plane region.
Thereby, the orientation of the interlayer may be
regarded to be reliably determined. (Note that it was by
the height of step on the (0001) plane that the absolute
calibration with respect to size was performed; how-
ever, this cannot affect the determination of orientation,
because the knowledge of relative values is sufficient
for this purpose.)

Arrays of CVC data were taken during the motion of
the Pt + 6% Rh tip of the microscope along the a–a and
b–b lines plotted in Fig. 2. Identical measurements
were repeated twice. Three series of measurements
were performed, namely, with the voltage U between
the sample and tip varying within ±0.65, ±1.2, and
±2.4 V. The tunneling gap was stabilized at a voltage
that was maximal for each range; after that, the STM
feedback was “frozen,” and the tunnel current was mea-
sured with decreasing voltage. After reaching the mini-
mal value, the voltage returned abruptly to the initial
value, the feedback operation was resumed, and the
procedure was repeated.

It turned out that, when removed 2–4 nm from the
twin boundary, the CVCs and their derivatives in both
trigonal regions coincided with one another within 1–
2% and approximately 5–10%, respectively. The same
was true of the interlayer. This enabled one to average
the CVCs (over approximately 40 curves at low volt-
ages and 20 curves at high voltages) and, thereby,
reduce the noise several times over. The thus obtained
CVCs and their derivatives are given in Figs. 3 and 4.
One can see that they differ considerably for crystallo-
graphically different planes, especially, in the voltage
range from −0.5 to +1 V. At high voltages, when they
become comparable with the work function W ≈ 4 eV,
the current increases rapidly with voltage. In this
region, only two diffuse singularities are observed at
U = –1.2 and +1.7 V, and the CVCs for different surface
regions converge with one another.

One can trace how the CVCs transform during tran-
sition from the trigonal to quasitrigonal plane by con-
structing the curves of dependence of tunnel current on
the surface coordinate y for several fixed values of volt-
age. Two such diagrams, in which the z(y) dependences
are also plotted, are given in Fig. 5. In constructing the
dependences, the values of current for 16 close values
of voltage were averaged for reducing the level of high-
frequency noise.

Note two interesting facts.
Firstly, the widths of the transition region both for

z(y) and for I(U, y) for the concave and convex bound-
aries differ somewhat and are 2–3 and 4–5 nm, respec-
tively. In the experiments described herein, we failed to
attain atomic resolution: apparently, the end of the tip
 AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001
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Fig. 3. The averaged current–voltage characteristics of tunneling gap between a sample and the Pt + 6% Rh tip of a microscope,
recorded in different ranges of voltage variation. Dark circles indicate a trigonal plane, and light circles indicate a quasitrigonal plane.
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U, V
–1 0 1 2 –0.4

dI/dU

–0.2 0 0.2 0.4 0.6–0.6
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Fig. 4. Differential CVCs obtained by differentiation with smoothing over seven points of the dependences similar to those given
in Fig. 3. Dark circles indicate a trigonal plane, and light circles indicate a quasitrigonal plane. Note that, because of the smoothing
procedure, the double peak in the right drawing at U = +0.2 V appears as the single peak in the left drawing.
from which the tunneling occurred was made up of sev-
eral atoms. However, point defects were observed on
the surface with a width of approximately 0.5 nm at
half-height (some of them are seen in Fig. 2). There-
fore, the numbers given are not strongly distorted
owing to the finite size of the tip. Note further that the
width of the region of transition from one flat face to
another in observing twin interlayers of quantized
width in [9, 10] with atomic resolution on the concave
boundary was approximately 1.5 nm, i.e., a value close
to that obtained by us.

Secondly, the transition region for currents is shifted
to the region of quasitrigonal surface, as one can see
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
especially clearly when studying the convex boundary.
In fact, the value of current characteristic of a trigonal
plane is maintained until the middle of the transition
region, and the value characteristic of a quasitrigonal
plane is obtained after shifting to the flat part of the sur-
face.

The spectra for the concave and convex boundaries
differ from one another both quantitatively and qualita-
tively. In the case of a convex boundary on differential
CVCs, note the behavior of the peaks of a doublet char-
acteristic of a quasitrigonal plane (Fig. 6a). Its compo-
nent corresponding to U = +0.22 V broadens gradually
and decreases with respect to amplitude to shift towards
SICS      Vol. 93      No. 3      2001
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higher voltage at a rate of approximately 50 mV/nm
and, apparently, changes to a poorly resolved maximum
at U = +(0.32–0.34) V for a trigonal plane. At the same
time, the component corresponding to the value of
+0.17 V also broadens and decreases with respect to
amplitude to shift toward a value of +0.2 V (on curve 16),
and changes to a component at U = +0.22 V which pre-
dominates for a trigonal plane. The peak at 0.7 V
changes to a peak at 0.48 V and shifts in the opposite
direction at a rate of about –0.1 V/nm.

This is not the end: it is only in the transition region
that a small peak emerges at U = +24 mV, and a strong
rise occurs of the amplitude of the peak at U = −0.13 V
which is observed on the CVC for the quasitrigonal
plane. It appears that this rise is associated with the shift
to this voltage of the peak at U = −0.22 V which is
replaced by a pronounced minimum. After this, one can
see the tendency of this peak to shift toward a peak of
similar shape on the trigonal plane at U = −0.11 V.

The differential CVCs (Fig. 6b) taken in the transi-
tion region for the concave boundary exhibit no clearly
defined singularities which would not be known to
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Fig. 5. The tip position z and the tunnel current as functions
of the coordinate along the surface for different values of
voltage (the currents are averaged over 16 close values of
voltage). The top horizontal axis indicates the numbers of
points along the y axis and of the respective CVCs.
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appear on the characteristics away from the boundary,
and these differential CVCs appear rather as the sum of
CVCs on the trigonal and quasitrigonal planes in some
or other proportion.

In conclusion of this section, note that the measure-
ments described above were performed under condi-
tions of true vacuum tunneling, as evidenced by the
extent of the shift of the tip of the microscope during
the variation of current from 0.1 to 1 nA. The shift with
respect to z, averaged over a frame of 64 × 64 points,
amounted to 0.125 ± 0.02 nm. The expected value with
the work function of approximately 4 eV is 0.115 nm,
i.e., coincides with the measured value within the error
of measurement.

4. DISCUSSION OF THE RESULTS

In analyzing the current–voltage characteristics of a
tunneling contact, we will use the formula for tunnel
current obtained in [16] and reflecting the qualitative
singularities of the effect,

(1)

where ρ(E) and T(E, U) denote the density of electron
states and the transparency of the tunneling barrier,
respectively, and EF is the Fermi energy. At U ! W, the
transparency of the barrier does not depend on the
applied voltage and, in this region, dI/dU ∝  ρ(EF + eU).

Formula (1) assumes that the density of states for the
tip in the energy range being treated exhibits no singu-
larities. It is usually rather difficult to validate this
assumption, especially, in view of the fact that the prop-
erties of the tip reflect its structure, which is not known.
Fortunately, in our case, one can state with assurance
that no singularities due to the electron spectrum of the
tip are observed on tunneling spectra. This is true
because, with the tip being unvaried, the appearances of
the differential CVCs for the trigonal and quasitrigonal
planes are totally different: either the minima and max-
ima do not coincide as regards their positions, or they
differ considerably in relative magnitude. For example,
the value of dI/dU at a low minimum at U = +0.4 V for
a quasitrigonal plane is approximately four times less
than at U = 0, and for a trigonal plane it is approxi-
mately half as much again.

The most interesting question arising during the
investigation of the bismuth surface is whether it pos-
sesses metallic conductivity or the surface states are
localized. The finite density of states ρ(E) = dN/dE ∝
dI/dU on the Fermi level, i.e., at U = 0, corresponds to
the former situation. For the latter case, dN/dE = 0. One
can see in Fig. 4 that the derivative of CVC at U = 0 for
both trigonal and quasitrigonal planes has a value of the
same order of magnitude as in the case of other volt-
ages. One must make clear, however, whether this
results from the fact that bismuth in the bulk is a metal.

I U( ) ρ E( )T E U,( ) E,d

EF

EF eU+

∫∝
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Fig. 6. Differential CVCs corresponding to (a) the top and (b) the bottom part of Fig. 5. The numerals by the curves correspond to
those in Fig. 5, and the angle brackets indicate the averaged CVCs with the respective values of n.
We will examine the possible behavior of the den-
sity of states under conditions of the well-known spec-
trum of bismuth electrons in the vicinity of the Fermi
level [1]. Bismuth has holes located in the neighbor-
hood of point T of the Brillouin zone with a spectrum
that is very close to quadratic,

(2)

where Eh0 = 12 meV is the energy above the Fermi
level; the symbols ⊥  and || indicate the directions per-
pendicular and parallel to the trigonal axis, respec-
tively; P denotes components of momentum; and the
respective masses are equal to 0.064 and 0.70 of the
mass of a free electron. With this spectrum, the density
of states must tend to zero at Eh0 as (Eh0 – Eh)1/2; i.e., a
kink must emerge on dI/dU curve at U = +12 mV. The
derivative of current must increase with decreasing U
and, at U = 0, reach a value corresponding to the den-
sity of states of 1.3 × 10–3/atom eV.

The conduction electrons are localized in the vicin-
ity of points L of the Brillouin zone, and their Fermi
surface consists of three ellipsoids (in a first approxi-
mation); however, their spectrum is strongly nonqua-
dratic. In the two-band model of Lax [1], which is quite
adequate in the case being treated, this spectrum is writ-
ten in the principal axes of each of the ellipsoids in the
form

(3)

Eh0 Eh– P⊥
2 /2m⊥= P||

2/2m||,+

E2 – Eg
2
/4

Eg

------------------------
P1

2

2mi

--------.∑=
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Here, the energy is counted off from the value of −35 meV
from the Fermi level (i.e., in our case, from the voltage
of −35 mV), and the gap energy is Eg ≈ 13 meV (the val-
ues of masses are not given and can be found in [1]).
Therefore, for the electron contribution, one can expect
root singularities at U = −29 and −41 mV. The current
derivative must increase for higher and lower values of
voltage; in so doing, at energies in the vicinity of the
Fermi level, the density of states varies as ∝ E2, because

/4 ! E2, and at the Fermi level the density of states

is equal to 0.93 × 10–3/atom eV.

On turning to Fig. 4, one can see that a kink in the
derivative is indeed observed in the vicinity of the volt-
age of +12 mV; however, as the voltage decreases, a
decrease in the derivative is observed with U tending to
zero, instead of an increase. No singularities are
observed in the case of negative values of voltage in the
vicinity of U = –29 and –41 mV. Therefore, the behav-
ior of a differential CVC is not what one should expect
for bulk electrons.

We will now turn to the quantitative aspect. As is
seen in Figs. 3 and 4, both the current and its derivative
increase rapidly at high voltages. This increase is asso-
ciated primarily with the variation in the transparency
of the tunneling barrier. If we assume that the barrier is
trapezoidal in shape, i.e., varies in the direction from

Eg
2
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the sample to the tip as (W – eUz/z0), where z0 is the
width of the tunneling gap, it is easy to estimate that

(4)

We substitute reasonable values of the vacuum tun-
neling gap z0 ≈ 1 nm and of the work function W ≈ 4 eV
to find that, at U = ±2 V, an increase in the transparency
of the tunneling barrier leads to a current increase by a
factor of 10 to 15. If this is taken into account, one can
see in Figs. 3 and 4 that the density of states in the entire
investigated voltage range does not differ too much
compared with its value at U = 0. Because the special
smallness of the density of states for bismuth (of the
order of 10–3 electron/atom eV) is associated with the
singularities of the spectrum of bulk electrons only in
the vicinity of the Fermi level, while for all other values
of energy the density of states must be of an ordinary
magnitude of 0.1 to 1 electron/atom eV, we come to a
conclusion that the density of states observed by us has
a regular order of magnitude characteristic of metals
even at U = 0. Therefore, in the vicinity of U = 0, the
bulk electrons must not make any appreciable contribu-
tion to the tunnel current.

The foregoing reasoning demonstrates that the
observed finite density of states at the Fermi level is
associated only with surface states which form a two-
dimensional metal with an ordinary electron density. It
would be interesting to see their contribution directly to
the conduction of a thin plate of bismuth; however, this
is not simple to do, because the electron mobility must
be several orders of magnitude lower than that of bulk
electrons. Firstly, their mass must be of an ordinary
magnitude and two orders of magnitude less than that
of conduction electrons. Secondly, their free path at low
temperatures must be limited by scattering from the ter-
race boundaries and amount to fractions of a microme-
ter in contrast to millimeters for bulk electrons.

One can see in Fig. 4 that numerous singularities are
observed in the tunneling spectrum. Unfortunately, we
are not aware of theoretical calculations devoted to sur-
face states in bismuth. However, it is safe to say that all
singularities in the voltage range of approximately −0.5
to +0.5 V are associated with surface states. This state-
ment is based both on the difference of spectra for the
trigonal and quasitrigonal planes and on the continuous
transition from one to the other on the twin boundary
(Fig. 6). Apparently, the maximum at U = −0.35 V cor-
responds to the peak at U = −0.4 V observed in [6].

As to the singularities at voltages of 1–2 V, they may
correspond to bulk electrons and, in this case, the quan-
titative difference in the density of states for different
planes may be due to the variation in the overlapping of
the electron wave functions of the sample and tip with
changing orientation. According to Liu and Allen [2],
extrema are observed at points Γ and T at U ≈ 1.2 eV;
the plateau observed on the curves in Fig. 4 may corre-
spond to these extrema. The maximum at U ≈ +1.7 V
may have two close bands at this energy at point Γ cor-

T U( ) W eU
z
z0
----– 

  1/2

zd∫∝ T U 0=( ) 1 eU
2W
--------– 

  .≈
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responding to it. However, further away from the Fermi
level and with increasing spatial localization of the
respective electrons, the difference between the sample
bulk and surface must be smoothed out.

Note yet another intriguing result. According to
Fig. 6, a continuous shift of parameters is observed for
some singularities when crossing the twin boundary. In
this case, the interplanar spacing apparently varies (this
spacing for a trigonal plane exceeds that for a quasitrig-
onal plane by 5.6%), and a uniaxial “tension” of the lat-
tice occurs normally to the twinning boundary by 5.8%
with the disappearance of third-order symmetry. There
is reason to believe that it will be possible to identify
the effect of each one of these factors individually, after
spectral calculations for this situation are performed.
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Abstract—We propose a simple, approximate theory of the fairly general mechanism for the separatrix con-
servation of nonlinear resonance, which leads to the complete suppression of global diffusion despite the strong
local chaos of motion. This theory allows the separatrix splitting angle to be plotted against system parameters
and, in particular, yields their values at which the separatrix remains unsplit. We present the results of our
numerical experiments confirming theoretical conclusions for a certain class of dynamical Hamiltonian sys-
tems. New features of chaos suppression have been found in such systems. In conclusion, we discuss the range
of application of the proposed theory. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: UNEXPECTED STABILITY 
OF THE SEPARATRIX OF NONLINEAR 

RESONANCE

The dynamics of nonlinear Hamiltonian systems is
governed by the interaction of nonlinear resonances,
with each of them, in contrast to a linear resonance,
occupying a relatively small region of phase space
bounded by the so-called separatrix under a small per-
turbation (see, e.g., [1-4]). For a single resonance, the
separatrix is the trajectory (in general, a surface) that
separates phase oscillations (inside the resonance) from
phase rotation (outside the resonance).1 In fact, these
are two spatially coincident branches corresponding to
going forward and backward in time, respectively. Each
branch is a continuous trajectory with an infinite period
of motion that goes out of an unstable equilibrium posi-
tion (saddle) and then asymptotically approaches it. In
a typical (i.e., nonintegrable) Hamiltonian system, any
arbitrarily small perturbation, for example, from other
(at least one) nonlinear resonances, causes the separa-
trix to split up into two intersecting branches, which go
out of the saddle toward each other as before but no
longer return to it. The free ends of the branches of the
split separatrix form an infinite number of loops with a
limitlessly increasing length; these loops fill a narrow
region near the unperturbed separatrix to form the so-
called chaotic layer. Overlapping of the chaotic layers
of all system resonances gives rise to global chaos and,
in particular, to diffusion bounded only by the exact
integrals of motion, for example, by a surface of con-
stant energy.

1 Below, we use the canonical action-phase variables.
1063-7761/01/9303- $21.00 © 20649
The conditions for the formation of global chaos
depend on both the magnitude and smoothness of the
perturbation (in phase). The latter is characterized by
the rate of decrease in its Fourier amplitudes. For an
analytic perturbation, the decrease is exponential. In
this case, there is always such a critical perturbation
magnitude ecr that global diffusion emerges only at e *
ecr. If, alternatively, e & ecr, chaos is localized in rela-
tively narrow chaotic layers that are formed at any e >
0. For N > 2 degrees of freedom, global diffusion is still
possible, but only for special initial conditions and with
a very low rate (the so-called Arnold diffusion [2]).
When e  0, both the rate of diffusion and the mea-
sure of its range decrease exponentially in parameter
1/e.

The pattern of motion significantly changes for a
smooth Hamiltonian perturbation, which has only a
finite number γ of continuous derivatives (see, e.g., [5]
and references therein). In this case, there is such a crit-
ical smoothness γcr that global diffusion is suppressed
under a sufficiently small perturbation only at γ > γcr
[6]. Significantly, the converse is generally not true; i.e.,
at γ < γcr, global diffusion is commonly observed in
numerical experiments, but we know examples when
the trajectory remained localized in a part of phase
space over the entire long computational time (see, e.g.,
[7, 8]).

Recently, Ovsyannikov [9] has found a relatively
simple, exactly solvable example [see (2.1) below] for
which he managed to prove the theorem on the conser-
vation of a single (unsplit) separatrix at special values
of the perturbation parameter. This theorem is given in
its entirety in [10] (Appendix). Intensive studies of
001 MAIK “Nauka/Interperiodica”
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model (2.1), which we call below a symmetric piece-
wise linear mapping, immediately showed that the con-
servation of the separatrix in strong chaos rather than in
the exceptional case of a completely integrable system
without any chaos whatsoever turned out to be the most
important and unexpected thing in this theorem. More-
over, at the special values of the perturbation parameter
found both by Ovsyannikov and by one of us [10–12],
the separatrices of nonlinear resonances not only
remain unsplit, but form impenetrable barriers for other
trajectories; i.e., they completely suppress global diffu-
sion. This takes place despite the fact that the perturba-
tion smoothness in the model of a symmetric piecewise
linear mapping is considerably smaller than its critical
value, and one might expect global diffusion at any per-
turbation magnitude.

Meanwhile, an examination of the literature has
shown that the same model was mathematically ana-
lyzed in detail by Bullett [13] (see also [14]) well
before. Although Ovsyannikov proved his theorem
independently, this coincidence of the models is not
fortuitous, because the solution of a linear (even if
piecewise) mapping considerably simplifies the prob-
lem. Note that even Ovsyannikov’s linear mapping can
be completely solved only when the separatrix is con-
served, because, otherwise, the two branches of the
split separatrix form random trajectories. For the same
reason, the model of a symmetric piecewise linear map-
ping cannot be simplified to a purely linear Arnold-type
mapping, in which the separatrices of nonlinear reso-
nances are always split (see Sect. 3). Bullett’s and
Ovsyannikov’s mathematical analyses are therefore
restricted to the invariant curves of a new type (with a

V(x) x

x

f(x)

0

–1/4

1

–1

d/2

–(1 – d)/4

1

Fig. 1. A scheme of the potential V(x) and force f(x) =
−dV/dx with a period of 1 for the family of models (2.2)
with parameter d.
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rational rotation number ν, including the separatrices)
themselves, whose first examples were given in [14].

In this paper (as in our previous papers on this sub-
ject [10-12]), we rely mainly on numerical experi-
ments, which also allow us to investigate the vicinities
of the invariant curves both under various initial condi-
tions of motion and for various model parameters. In
this regard, our approach is similar to the study of
Hénon and Wisdom [8] for a different model.

2. THE MODEL

Ovsyannikov considered a difference equation that
was equivalent to the following two-dimensional map-
ping in canonical variables “action p–phase x”:

(2.1)

Here, K = e > 0 is the perturbation parameter (not nec-
essarily small), and the “force” f(x) has the form of an
antisymmetric (f(–y) = –f(y), y = x – 1/2) piecewise lin-
ear “saw” with a period of 1 [see (2.2) below].

Perhaps, the most unexpected thing in this example
is that the smoothness of the Hamiltonian (generating
function) for mapping (2.1), γ = 1 < γcr ≤ 4 [6], is con-
siderably smaller than its critical value. In other words,
for a certain countable set of special values, K = Km, the
unsplit separatrix is “immersed in the sea” of strong
chaos; nevertheless, it is conserved and blocks global
diffusion [10, 11]!

Since an exact K cannot be specified on a computer,
the next crucial step was to analyze the behavior of the
(split) separatrix and other trajectories for a small devi-
ation, |K – Km|  0, which is possible only in numer-
ical experiments. Even the first studies [12] showed that
the separatrix splitting angle changed sign with differ-
ence K – Km; this angle smoothly passed through zero
at odd m and abruptly changed sign at even m (see Fig. 1
from [11] and Fig. 2 below). First, this allowed a set of
other special Km at which the separatrix was conserved
to be found immediately and easily. At the same time,
such an unusual behavior of the splitting angle also sug-
gested a dynamical mechanism for the conservation of
the separatrix, which is the main subject of our discus-
sion here.

It is convenient to simultaneously consider the
whole family of sawtooth perturbations specified by the
force2

(2.2)

where y = x – 1/2 and d < 1 is the distance between the
saw teeth |f(x)| = 1 at points y = y± = ±d/2. The best stud-
ied special case of a symmetric piecewise linear map-
ping corresponds to d = 1/2. At these two points, the

2 A similar family is briefly mentioned in [13].

p p Kf x( ), x+ x p.+= =

f x( )
2x/ 1 d–( ), if x 1 d–( )/2≤

2y– /d , if y d/2,≤



=
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force has a singularity, a discontinuity of the first deriv-
ative f ' = df/dx:

(2.3)

The original idea behind the separatrix conservation
mechanism is that the perturbation (force) has two sin-
gularities, which can interfere between themselves and,
in particular, can compensate each other or cancel out,
a term introduced in [8] where such a mechanism was
apparently first proposed and used. Our approach is
peculiar in that we are interested in the action of this
mechanism (and give a theory) directly for the separa-
trix of nonlinear resonance, whereas in [8] such cancel-
lations were determined for arbitrary trajectories and
used as a heuristic consideration to search for possible
invariant curves (not separatrices) among them by
numerical experiments.

To construct a theory, it is convenient to pass from the
initial mapping (2.1) to a continuous system with a Hamil-
tonian that explicitly depends on time (see [2–4, 10]):

(2.4)

where δ1(t) denotes the δ function of period 1. The
unperturbed Hamiltonian

(2.5)

describes the main (integer) resonance in (2.1), and

(2.6)

describes its perturbation (with the same period T1 = 1
and frequency Ω = 2π/T1 = 2π) from all the remaining
integer resonances.

The potential of force (2.2) is

(2.7)

The maximum potential Vmax = 0 determines the unper-
turbed separatrix of the main resonance:

(2.8)

while its minimum Vmin = –1/4 gives the total depth U
of the unperturbed potential well:

(2.9)

Perturbation (2.6) is peculiar in that it is of the order
of the unperturbed Hamiltonian, irrespective of the per-
turbation parameter K  0. Nevertheless, the pertur-

∆f '
2

d 1 d–( )
--------------------.±=

H x p t, ,( ) p2

2
-----= KV x( )δ1 t( )+

=  H0 x p,( ) H1 x t,( ),+

H0
p2

2
-----= KV x( )+

H1 x t,( ) KV x( ) δ1 t( ) 1–( )=

V x( ) f x( ) xd∫–=

=  
x– 2/ 1 d–( ), if x 1 d–( )/2≤

4y2 d–( )/4d , if y d/2.≤



ps x( ) 2KV x( )– ,±=

U K Vmax Vmin–( ) K
4
----.= =
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bation theory is generally applicable if the other pertur-
bation parameter is large,

. (2.10)

Here, ω0 =  is the frequency of small oscilla-
tions at the main resonance (2.5) and Ω = 2π is the fre-
quency of the external perturbation. This adiabaticity
parameter governs the separatrix splitting. Using the
term adiabaticity in this case emphasizes that the effect
of a high-frequency perturbation is qualitatively the
same as that of a low-frequency perturbation.

To investigate the motion near the separatrix, let us
first determine the change in unperturbed Hamiltonian
(2.5) for the period of motion in a close vicinity of the
unperturbed separatrix. Following [10], we obtain

(2.11)

In the latter expression, the motion along a trajectory
close to the separatrix was approximated by the motion
along the unperturbed separatrix (hence the infinite
integration limits).

Since the force f(x) has two singularities (2.3) at
points y± = ±d/2, we integrate (2.11) twice by parts, so
that

(2.12)

where p = dx/dt, and only the principal term with the δ
function was retained. As a result, we obtain

(2.13)

where t± are the passage times of the singularities at
points y±, and the function ψ(t) is given by

(2.14)

To calculate the difference ∆ψ = ψ(t+) – ψ(t–), we
change over to new variables ∆ and t0, where

(2.15)

λ Ω
ω0
------  @ 1=

2K /d

∆H0 t H1 H0,{ }d

∞–

∞

∫=

≈ K t ps f xs( ) δ1 t( ) 1–( ).d

∞–

∞

∫

d2 f t( )
dt2

--------------- d2 f y( )
dy2

---------------- p2≈ p2∆f 'δ1 y y±–( ),=

∆H0 K p±
2∆f ' ψ t+( ) ψ t–( )–[ ]≈ K2

d
------∆ψ,=

ψ̇̇ d2ψ
dt2
--------- δ1 t( )= = 1.–

∆
t+ t––

2
------------- d

2K
------- darcsin= =

=  
λ

2π
------ darcsin
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is half the time of motion between the singularities, and

(2.16)

is the time when the potential minimum is passed (y = 0),
where the intersection of the branches of the split sepa-
ratrix is usually analyzed.

In general, ∆ψ is not factorized in these variables,
but this is possible under an additional constraint: |t0| ≤
∆ (> 0). In that case,

(2.17)

The angle α ! 1 between the branches of the split
separatrix is given by an approximate formula (see [12,
15]),

(2.18)

Here, we use the following relations: dp = dH0/p, dy =
pdt, and

where all quantities are taken at the point of intersection
of the separatrix branches (y = 0). The dependence α(K,
d) assumes an extremely simple form:

(2.19)

t0
t+ t–+

2
--------------=

∆ψ t0 1 2∆–( ).=

α α dp
dy
------

dH0

p0
2dt0

------------- 2K
d

------- 1 2∆–( ).≈ ≈ ≈ ≈tan

dH0

dt
---------- ∆ψ̇ 1 2∆,–= =

α s 1 2λ s–( )≈

0

αs

λs

0.2 0.4 0.6 0.8 1.0

0.8

0.4

0

–0.4

–0.8

Fig. 2. Periodic dependence of the separatrix splitting angle
α on parameters K and d in normalized variables αs(λs)
(2.20): d = 0.25, 0.5, 0.75, 0.999 (dots), d = 0.01 (circles) as
constructed from our numerical calculations. The solid
straight line and the curve represent, respectively, theory
(2.19) and the first approximation δ1(t) – 1 ≈ 2cos(2πt) [see
(2.11)]. The argument λs is taken modulo 1, so all points
(but not circles!) represent many periods of the dependence
α(K, d) (see text).
JOURNAL OF EXPERIMENTAL
in the transformed variables

(2.20)

We emphasize that the oscillations of α(K) resulted
from the two interfering singularities in the Hamilto-
nian.

Relation (2.19) is the main result of our analysis. It
explains and describes the new phenomenon of the sup-
pression of separatrix chaos and, hence, global diffu-
sion in a certain class of Hamiltonian systems.

A comparison with the results of our numerical
experiments is shown in Fig. 2. The very high accuracy
of the simple theory (for K ! 1) is limited by a small
shift in critical values K = Km. In Ovsyannikov’s exam-
ple (a symmetric piecewise linear mapping, d = 1/2), it
can be derived even without numerical experiments by
using exact expressions for Km, both predicted in [9]
and found later in [12]:

(2.21)

The last term represents our theory, and a first-order
correction is given in parentheses. The theory also
explains the unexpected discontinuity of the function
α(λs) at λs = 0 (mod 1) (but not at λs = 1/2), which was
found and discussed from a different point of view in
[12].

Figure 2 also shows an even simpler approximation
with only the first term of the Fourier expansion δ1(t) –
1 ≈ 2cos(2πt) being retained; it represents the critical
values Km equally well, but does not reproduce the dis-
continuity in the function of angle α.

The simple relation (2.19) does not give a full pic-
ture for the entire family (2.2) either, as demonstrated
by the example with a small value of d = 0.01 in Fig. 2
(circles). The separatrix splitting is thus seen to be non-
symmetric when d  0 and d  1. On the other
hand, it follows from expression (2.2) for the force that
the symmetry is preserved when both parameters of the
mapping family change: d  1 – d and K  –K.
Consequently, changing the sign of K also causes the
behavior of the separatrix to change qualitatively. The
symmetry is preserved only in the special case of d =
1/2, i.e., for the model of a symmetric piecewise linear
mapping.

3. THE LIMIT d  0: DISCONTINUITY
IN FORCE

Let us first consider the limiting case d = 0, K > 0,
where the force function f(x) experiences a discontinu-
ity (see Fig. 1). The limit differs qualitatively in that the
two singularities of the potential at d > 0 now merge

α s α d
2K
------- α λ2

4π2
--------,= =

λ s ∆ λ
2π
------ d      (mod 1).arcsin= =

Km
π2

16m2
------------ 1 π2

48m2
------------– …+ 

  π2

16m2
------------.≈=
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into one. Consequently, according to our theory, the
separatrix splitting angle does not change sign; i.e., the
separatrix splits up at any K > 0.

Figure 3 shows the results of numerical experiments
both in the limit d = 0 itself (circles) and in its close
vicinity d = 0.001 (triangles) and d = 0.01 (dots). The
dependence α(K) proper is given, because the adiaba-

ticity parameter λ = π  = 0 loses its meaning at
d = 0. First, the passage to the limit d  0 in model
(2.2) is seen to be continuous with an empirical bound-
ary [by maximum α(K)] at

(3.1)

The physical reason why relation (2.18) becomes inap-
plicable for K * KB is that in deriving it, we ignored the
change in velocity between the two singularities
through the action of the first of them and the change in
transit time ∆ between them [see Eqs. (2.13) and
(2.15)]. In the previous variables, the transition
between the two modes is also shown in Fig. 2 for d =
0.01 (circles). We emphasize that there is a deviation
from (2.18) only for K * KB and that it is not repeated
periodically as dependence (2.18) (see the circle in the
upper left corner of Fig. 2). Thus, in the limit d = 0, the
function of splitting angle actually does not change
sign, and, consequently, the separatrix always splits up.

The same method as for d ≠ 0 (Sect. 2) may be used
for a quantitative analysis. The only difference is that
the force itself now has a discontinuity, ∆f(x) = –2, and
it will therefore suffice to integrate (2.11) by parts only
once. We have

(3.2)

Here, p0 ≈  as before and

(3.3)

[see (2.14)]. However, the simple expression (2.18) in
the small-angle approximation is now no longer appli-
cable, because the following singularity arises when
differentiating with respect to t0:

(3.4)

the derivative is taken at two values: t = t0 = 0 and 1/2
when ∆H0 = 0 [the intersection of the separatrix
branches, formula (3.3)]. Each of these values deter-
mines the inclination of the corresponding separatrix

2d/K

K KB 7d .∼ ∼

∆H0 K t ps f xs( ) δ1 t( ) 1–( )d

∞–

∞

∫≈

≈ K p0∆f ψ̇ t0( ) 2K3/2ψ̇ t0( ).–≈

K /2

ψ̇ t( ) 1
2
--- t     (mod 1)–=

dH0

dt
---------- K p0 δ1 t( ) 1–( ),–=
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branch with respect to the x axis (see Fig. 4). The sin-
gularity arises at t = 0 and corresponds to α0 = π/2
(  = ∞). The angle of the other branch β is given
by [cf. (2.18)]

. (3.5)

The factor 1/2 of the derivative emerges because ∆H0 is
calculated relative to the unperturbed separatrix (the
solid broken line in Fig. 4), while the angle β (as α0) is
taken relative to the x axis. The signs of the angles are
determined with the consideration that the branch with
α0 corresponds to moving forward in time, while the
other branch corresponds to moving backward in time
(see [11]). Finally, we obtain for the angle between the
separatrix branches

(3.6)

This simple dependence is indicated in Fig. 3 by the
solid line. It agrees well with our numerical experi-
ments for small K; however, the error increases with K,
reaching about 40% at K 

 

≈

 

 0.6. At larger 

 

K

 

, the entire
simple pattern of the separatrix splitting for an individ-
ual resonance loses its meaning because many reso-
nances overlap (see below).

The error at large 

 

K

 

 is attributable to the approxi-
mate use of the unperturbed separatrix [see (2.8) and
(2.7)]

(3.7)

with an amplitude 

 

p

 

0

 

 

 

≈

 

  when calculating integral
(3.2). An interesting feature of the system under consid-
eration is that the unperturbed separatrix (two straight

α0tan

βtan
dp
dx
------ 1

2
---

dH0

p0
2dt0

------------- K
p0
----- 2K≈ ≈≈=

α K( ) α0 β–= π
2
--- 2K .–≈

ps x( ) p0 1 2 y–( )±=

K /2

 

0

1.6

 

K

 

0.2 0.4 0.6 0.8

1.4

1.2

1.0

0.8

0.6

 

α

 

Fig. 3.

 

 A plot of separatrix splitting angle 

 

α 

 

versus parame-
ter 

 

K

 

 for 

 

d

 

 = 0.01 (dots), 0.001 (triangles), and 

 

d

 

 = 0 (circles)
as constructed from our numerical calculations. The lower
and upper curves represent the approximate theory (3.6) and
the exact theory (3.10), respectively.
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lines) retains its shape under the action of a perturbation
(Fig. 4). This allows an exact value of p0(K) to be cal-
culated for any K from the eigenvectors of initial map-
ping (2.1) at unstable fixed point x = p = 0. As a result,
we obtain

(3.8)

However, when this expression is substituted into (3.5),
the agreement even worsens rather than improving:

(3.9)

The reason lies in another approximation of integral
(3.2), retaining the contribution from the jump in force
∆f(x) alone. Again, because of the peculiar singularity
of the unperturbed separatrix at d = 0, the angle β can
be calculated exactly without any integration directly
from the results in Fig. 4:  = 2p0(K). We thus
obtain

(3.10)

This expression represents the most accurate result of
our theory (the upper solid line in Fig. 3), which is in
excellent agreement with the numerical experiment
(circles) up to the point at which the resonances begin
to overlap. Since mapping (2.1) is periodic not only in
x but also in p (and with the same period of 1), there is
an infinite set of integer resonances at p(0) = n and H0 =
n2/2, where n is any integer, positive, negative, or zero.
The latter special case is considered in this paper. The

p0 K( ) K

2K K2+ K+
-----------------------------------= .

βtan
K

p0 K( )
--------------- 2K .>≈

βtan

α K( ) π
2
---=

2

1 1 2/K++
-------------------------------- 

  .arctan–

0.44

p – p0

x
0.48 0.52 0.56

0.004

0

–0.004

–0.008

α
α0 β

β

Fig. 4. An example of the separatrix splitting at K = 0.005
and d = 0: the solid line broken at x = 0.5 indicates the
unperturbed separatrix (3.7); the separatrix branches are
represented by dots (forward in time) and circles (backward
in time); the breaks in the branches are connected by the
dotted line showing a sequence of points; p0 ≈ 0.04756 is
the ordinate of the point of intersection (3.8).
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separatrices of adjacent integer resonances begin to
overlap at p0 = 1/2, which destroys their structure. For-
mally, this occurs only in the limit K  ∞ (3.8). Actu-
ally, however, this destruction begins much earlier
because of the overlapping with intermediate fractional
resonances (see [11]). Note also that, formally, the
splitting angle is always α > π/4 ≈ 0.785 [see (3.10)];
however, actually and for the same reason, the regular
dependence α(K) abruptly cuts off even at α ≈ 0.96 ≈
55°, K = Kcr ≈ 0.8, and p0(Kcr) ≈ 1/3 (Fig. 3). For K >
Kcr, the separatrix branches become so unstable that the
splitting angle cannot be reliably measured. Interest-
ingly, the deviation of the ordinate of the point at which
the separatrix branches intersect p0(K), according to
(3.8), in this range (up to K = 1.24) does not exceed 1%.
However, this is enough for a strong and irregular dis-
tortion of the separatrix branches.

Thus, even at relatively large K < 0.8, the separatrix
splitting angle is far from reaching zero, let alone
changing sign; hence, the separatrix always splits up.

In [13], the limit d  0 was also considered briefly
but only for K < 0 (in our notation). The inverse limit,
d  1, loses its meaning in [13], because the family
of mappings is defined there in such a way that in this
case, the force f(x)  0 vanishes. In our case, depen-
dence (2.19) is preserved, at least up to d = 0.999 (Fig. 2).
It should be noted, however, that the pattern of motion
qualitatively changes in the limit itself (d = 1), because
the motion along the unperturbed separatrix represents
simple harmonic oscillations [see (2.7) and Fig. 1]

4. CONCLUSION: HOW TYPICAL
IS THE CONSERVATION OF THE SEPARATRIX?

We have proposed and tested a simple theory of a
new unexpected phenomenon—the conservation of the
separatrix of nonlinear resonance in strong chaos on
most of the phase plane of a dynamical system [9–13].
The mechanism of this phenomenon is based on a sim-
ple idea of the interference (in particular, cancellation
[8]) of several singularities in the Hamiltonian of a
dynamical system, which govern the separatrix split-
ting for nonlinear resonance. Numerical experiments
and theoretical analysis were carried out for the family
of 2D mappings (2.1) in the simplest case of two singu-
larities, which also included the first example of a sym-
metric piecewise linear mapping [9, 11, 13]. Our study
not only confirmed and explained this mechanism, but
also allowed a simple theory to be developed to calcu-
late both special values of K = Km and the dependence
of the separatrix splitting angle α(K) over wide ranges
of K and d [see (2.19), (3.6), and (3.10)].

We separately considered the passage to the limit
d  0, in which the separatrix splits up at any K > 0
(Sect. 3). In the opposite case d  1, relation (2.19)
remains valid, at least up to d = 0.999 (Fig. 2). It should
be noted, however, that the pattern of motion qualita-
tively changes in the limit itself (d = 1). First, the
AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001
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motion along the unperturbed separatrix represents
simple harmonic oscillations with a finite period, T1 =

π  [see (2.7) and Fig. 1]. In addition, the trajectory
inside the resonance (H0 < 0) does not reach the singu-
larity of the potential at point x = 0 (mod 1) at all.
Finally, our preliminary numerical experiments in this
limit strongly suggest that the measure of the chaotic
component decreases rapidly with decreasing K. It
would be of great interest to continue the analysis of
this special dynamical system.

We have considered only the integer resonances
with p(0) = n, where n is any integer. The fractional res-
onances with p(0) ≈ n/q are known (see, e.g., [2, 3, 11])
to have the same structure in appropriate variables.
Therefore, one might expect such a mechanism and its
simple theory to be also applicable to fractional reso-
nances. If confirmed, we hope in the immediate future,
this would allow the conservation of the separatrix for
fractional resonances predicted in [13] and revealed by
numerical experiments [10–12] to be explained.
Although the set of all fractional resonances on the p
axis is dense everywhere, the set of all special values of
K = Kqn at which the separatrix is conserved is not dense
[13]. However, its mean density is large enough, and
one might expect the strong (although incomplete) sup-
pression of global diffusion at any K. This hypothesis is
additionally confirmed by the large number of periodic
invariant curves predicted in [13], both ordinary ones
with an irrational rotation number ν and new ones with
a rational ν ≠ 0. We surmise that the emergence of the
latter can be interpreted as the suppression of the reso-
nances themselves together with their separatrices. One
such strange case for K = 1/4 with ν = 1/3 was observed
in [11], but its further analysis was postponed to the
future.

Of interest and importance is the following ques-
tion: How typical are the conservation of the separatrix
in general and its specific mechanism in particular? It is
well known that a large number of examples and even
whole families of the so-called completely integrable
nonlinear dynamical systems have been “constructed”
to date (see, e.g., [16]). There is absolutely no chaos in
such systems. However, they are definitely not typical
but, in a sense, form a set of measure zero in the space
of all possible dynamical systems. From this viewpoint,
the new phenomenon of the separatrix conservation in
a chaotic system seems more typical, despite the very
limited number of examples at present.

The condition for the existence of several singulari-
ties in the potential that we used as the basis for our
study is neither necessary nor sufficient for the separa-
trix conservation per se. On the one hand, a preliminary
analysis of other examples shows that the presence of
several singularities in the force does not yet guarantee
the separatrix conservation. For instance, if we simply
extend force (2.2) with d = 0 by another period, so that
two singularities will formally appear, the separatrix
will break up as before at any K. In the case under con-

2/K
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sideration, this takes place because the potential
assumes the form of two conjugate wells with an unsta-
ble fixed point exactly at the boundary between them.
As a result, the unperturbed separatrix always proves to
be localized at one of them (depending on initial condi-
tions) with the only singularity.

On the other hand, for an analytic potential, the sin-
gularities that determine the separatrix splitting can be
located not on the real time axis but in the complex
plane. Such a situation appears to have been actually
observed in a completely different problem of charged-
particle confinement in Cohen’s long magnetic trap
[17] (see also [18]).

Finally, the passage of the separatrix splitting angle
through zero depending on the system parameter and,
hence, the separatrix conservation at certain values of
this parameter are also possible in principle for a spe-
cial form of the potential with no singularities whatso-
ever. This all undoubtedly deserves a further study.

In conclusion, note that even though the new effect
of the separatrix conservation in chaos is not universal
(a favorite term in current studies of dynamic chaos),
nevertheless, we hope that the criterion for the interfer-
ence of singularities and the theory developed on its
basis (which can be easily generalized to an arbitrary
number of singularities) can significantly help in stud-
ies of a wide class of Hamiltonian dynamical systems.
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Abstract—A perturbation theory is developed for a system of evolution equations close to integrable systems
in the method of inverse scattering with a spectral parameter depending on variables. This theory is used for
analyzing the evolution features for soliton light pulses in a two-level medium with the upper level pumping
taking into account linear and nonlinear losses as well as dispersion. Various modes of soliton evolution (includ-
ing the random mode) in such a system are investigated numerically. It is shown that anomalies in the depen-
dence of soliton parameters on the length of the laser medium appear in the presence of nonuniform broadening
in the case when the upper level pumping rate and inverse population losses are functions of detuning. The con-
tribution from the radiative component of the solution is also analyzed taking into account perturbations; it is
shown that this contribution can be disregarded in a certain range of parameters. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Dynamics of solitons in nonlinear optics has been
studied by using several approaches, including com-
pletely integrable models (see, for example, [1] and
review [2]). The application of such models imposes, as
a rule, a number of physical limitations; however, these
models provide the most comprehensive description of
the evolution of ultrashort pulses in nonlinear media. If
the evolution equations differ from integrable equations
in small terms, these terms can be taken into account in
the perturbation theory which has been developed for
quasi-integrable systems [3, 4] (see also review [5]).
This perturbation theory was constructed for nearly
integrable systems on the basis of the method of inverse
scattering problem (MISP) [1] with a spectral parame-
ter independent of variables. However, each integrable
equation with constant coefficients to which the algo-
rithm of the inverse problem is applicable corresponds
to a whole class of equations with variable coefficients.
These equations are integrable in the MISP with a vari-
able spectral parameter and are referred to as “deforma-
tions” of the initial equations, or deformed integrable
models [6]. A detailed description of such models and
the method of their exact solution is given by Burtsev et
al. [6]. This class of deformed integrable models
includes a number of important physical models some
of which can be used in nonlinear optics [7, 8].

In this paper, the apparatus of perturbation theory
developed in [3, 4] for systems of equations close to
integrable equations in the MISP with a spectral param-
eter independent of variables is generalized for systems
close to deformed integrable models. This generaliza-
tion makes it possible to study analytically the strongly
1063-7761/01/9303- $21.00 © 20657
nonlinear stage of field evolution for new ranges of
physical parameters.

The system of Maxwell–Bloch evolution equations
with external pumping is used for simulating processes
in gaseous media, solids, and dyes [9, 10]. In such las-
ing media, three- or four-level pumping modes are
often used. Under certain conditions, these modes can
be reduced to the system of Maxwell–Bloch equations
for a two-level system with an additional term in the
dynamic equation for the difference in the populations
of levels, which describes the pumping rate (see
Eq. (9.106) in [9]).

The MISP apparatus was used earlier [12] for study-
ing the characteristics of a two-level laser amplifier
[11]. For the initial and boundary conditions corre-
sponding to the amplification of a small initial pulse or
fluctuations of the medium in an extended laser ampli-
fier, it was proved that the (quasi)radiative asymptotic
form of the field is completely determined by the con-
tinuous real spectrum in the Zakharov–Shabat problem
[12]. There is no external pumping in the laser ampli-
fier, and the system is initially assumed to be in the
inverted state. Medium fluctuations or a small initial
pulse of the field are amplified due to the conversion of
energy stored in the medium at the initial instant into
the energy of the light field. A formal analogy with the
Chu–Scott model for Raman scattering [13] is worth
noting. On the basis of this model, it is shown [14] that
the initial conditions corresponding to a partial initial
population inversion in an extended nonlinear medium
also lead to a quasi-radiative (nonsoliton) asymptotic
form.

At the same time, the model of a two-level lasing
transition with external pumping [9] is used much more
001 MAIK “Nauka/Interperiodica”
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frequently for describing laser generation in nonlinear
optics. In this connection, an analysis of qualitatively
new features of nonlinear modes of pulse evolution in
such models is of practical importance.

The integrability of the model of a two-level laser
with a constant pumping of levels in the MISP with a
variable spectral parameter was proved in [6, 8]. Under
the action of pumping, the upper level of the medium is
populated and lasing starts when population inversion
is created. For small initial pulses, laser generation can
be described asymptotically by a (quasi-)radiative solu-
tion associated with the real continuous spectrum of the
Zakharov–Shabat problem as in the case of an extended
laser amplifier [12]. The results of analytic [15–17] and
numerical [18] analyses proved that this solution con-
sists of nonlinear oscillations with an amplitude
increasing monotonically with coordinate z. However,
in contrast to a laser amplifier, the field amplitude aver-
aged over oscillations does not tend to zero, but

increases in proportion to .
A two-level lasing medium with pumping can also

be used for amplifying soliton pulses with a carrier fre-
quency close to the frequency of the transition. The
dynamics of a soliton pulse which is associated with the
isolated eigenvalue of the Zakharov–Shabat problem
with a positive imaginary component differs signifi-
cantly from the behavior of the radiative solution. Par-
tial soliton solutions of the Maxwell–Bloch integrable
system of equations with pumping were obtained in [6–
8, 15–19] for a pumping rate independent of z and of
frequency detuning.

In the present work, the developed apparatus of per-
turbation theory is applied for studying the soliton
dynamics in a model close to the deformed integrable
system of Maxwell–Bloch equations with pumping. A
distinguishing feature of this work as compared to [6–
8, 15–19] is that nonuniform broadening and the depen-
dence of pumping rate and inverse population losses on
the coordinate and frequency detuning are additionally
taken into account. The inclusion of this dependence is
essential in the presence of nonuniform broadening of
the laser transition which can be associated with the
motion of atoms, the interaction of atom with the ambi-
ent, and nonuniformity of electric or magnetic fields.
This formally simple generalization leads to a number
of new physical properties of the amplifying medium.
The additional inclusion of quadratic dispersion, linear
and nonlinear losses, and driving force using the pertur-
bation theory apparatus developed by us here leads to a
number of new features in the dependence of soliton
parameters on the laser medium length.

In the perturbation theory describing the nonlinear
dynamics of isolated pulses, robust soliton solutions of
the unperturbed integrable system of equations with
parameters independent of variables are used as nonlin-
ear modes [5]. In the present work, we choose exact
“deformed” soliton solutions with variable parameters
for such nonlinear modes. The inclusion of perturba-

z
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tions in the framework of the developed perturbation
theory leads to systems of equations including the con-
tribution of these deformations and perturbations.
Numerical and theoretical analysis of the obtained
equation makes it possible to reveal some peculiarities
in soliton enhancement in such a system, which may be
accompanied by an abrupt switching of amplification
modes, bifurcation, and randomization.

The soliton dynamics is affected by the radiative
solution whose contribution cannot be disregarded in
the amplifying medium. The soliton amplitudes deter-
mined from the solution of the equations in perturba-
tion theory are compared with that obtained from the
numerical solution of quasi-self-similar solution of the
initial system of evolution equations taking into
account weak perturbations. The effects of perturba-
tions on soliton dynamics and on the radiative solution
are qualitatively different. This allows us to discover a
range of parameters in which the amplitude of nonlin-
ear oscillations in the radiative solution is much smaller
than the amplitude of a soliton and, hence, the contribu-
tion of the radiative solution can be neglected.

The paper has the following structure. In Section 2,
the equations of the perturbation theory for a model
close to integrable are presented using the MISP appa-
ratus with the help of the Zakharov–Shabat spectral
problem with a variable spectral parameter. The model
of a two-level laser with a frequency-dependent pump-
ing and its derivation are described in Section 3. In Sec-
tion 4, the regimes of soliton propagation are deter-
mined for various conditions of pumping and perturba-
tions. The role of pumping (including periodically
modulated one) in the emergence of random dynamics
is analyzed numerically in Section 5. The last section is
devoted to an analysis of the contribution from the radi-
ative component of the solution to the general solution
of the model for various types of perturbations.

2. PERTURBATION THEORY FOR SYSTEMS 
CLOSE TO DEFORMED INTEGRABLE MODELS

The perturbation theory for nonlinear systems of
equations close to integrable was constructed by Kaup
[3] and Karpman and Maslov [4] on the basis of the
Zakharov–Shabat spectral problem. We will generalize
the results obtained by these authors to the case of
deformed integrable models.

We assume that an exactly integrable system of
equations can be presented in the form of the compati-
bility condition for the following linear systems of
equations:

(1)Φz UΦ, Φτ VΦ.= =
 AND THEORETICAL PHYSICS      Vol. 93      No. 3      2001
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Here, U, V, and Φ are matrix functions of τ, z, and the
spectral parameter λ. In the general case, U and V,
which are rational functions of λ, have the form

(2)

where the simple poles λn and µm do not coincide. The
compatibility condition has the form

(3)

The dependence of the spectral parameter on the
variables in the general case is determined by the fol-
lowing equations:

(4)

Taking these expressions into account, we can formally
write the compatibility condition (3) so that it does not
contain an explicit dependence of λ on z and τ:

(5)

Exact integrability requires that the last commutator on
the left-hand side of Eq. (5) be equal to zero, i.e.,

(6)

Let the functions F and G have the form

(7)

In this case, the evolution equations satisfying condi-
tions (5) and (6) can be reduced, using a gauge transfor-
mation, to the form [6]

(8)

In the first approximation in the small parameter e of
the perturbation theory which will be proposed below,
it is sufficient to require that

(9)

This condition is satisfied, for example, if F and G are
small and are slowly varying functions of one of the
variables:

(10)

U z τ ; λ,( ) u0=
un τ z,( )
λ λ n–

------------------,
n 1=

N1

∑+

V z τ ; λ,( ) v 0=
v n τ z,( )
λ µn–

-------------------,
n 1=

N2

∑+

Uz V τ– U V,[ ]+ 0.=

Dzλ ∂ z F λ( )∂λ–[ ]λ≡ 0,=

Dτλ ∂τ G λ( )∂λ–[ ]λ≡ 0.=

DzU DτV– U V,[ ] Dz Dτ,[ ]+ + 0.=

Fτ  – GFλ Gz=  – FGλ .

F
cm

λ λ m–
---------------, G

m 1=

N1

∑–
bm

λ µm–
---------------.

m 1=

N2

∑–= =

∂zu0 ∂τv 0– u0 v 0,[ ]+ 0,=

∂un

∂z
-------- un

v k

λn µk–
----------------

k 1=

N2

∑,+
bmun cnv m+

λn µm–( )2
-----------------------------,

m 1=

N2

∑=

∂v n

∂τ
--------- v n

uk

µn λ k–
----------------

k 1=

N1

∑,+
cmv n bnum+

λm µn–( )2
-----------------------------.

m 1=

N1

∑=

Dz Dτ,[ ] O e
2( ).∼

F e^ eτ z; λ,( ), G e& τ ez; λ,( )= =
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(11)

For the system of equations (8), conditions (10)
indicate that

(12)

i.e., the right-hand sides of the second and third equa-
tions in system (8) are of the order of O(e). Conditions
(11) are satisfied for

(13)

where the functions cn, λm, and µm as well as their deriv-
atives can be *O(1).

Let us suppose that the evolution equation has the
form

(14)

We assume that this equation is exactly integrable in the
MISP in the absence of a small perturbation eP[u], e !
1. Taking into account this perturbation, the compatibil-
ity condition (5) assumes the form

(15)

where  is a certain operator whose form depends on
the type of equation and perturbation.

In the case of the Zakharov–Shabat spectral prob-
lem [1], the equations in perturbation theory for a sys-
tem of equations close to the deformed integrable
model can be obtained by generalizing the known equa-
tions from [4]. In this case, u(τ, 0) is the potential (see
Eq. (14)).

It should be noted that, in the present work, the
space (z) and time (τ) variables are transposed as com-
pared to similar equations in [4]. This is dictated by the
specific physical examples considered by us here.

We assume that the evolution of scattering data 6 is
described by the following equation:

(16)

Here, Ω(λ) is an analogue of the dispersion relation. In
contrast to the similar expression presented in [4],
Eq. (16) is supplemented with the term ̂ . For the spec-
tral data corresponding to the continuous and discrete
spectra of the problem Φz = UΦ, we have ^ ≡ F. For
other spectral data, ̂  ≡ 0. Repeating the derivation car-
ried out in [4] and taking into account this term, we
arrive at the following system of equations for the evo-

G
∂

∂λ
------F & O e

2( ),
∂
∂τ
-----F & O e

2( ),

∂
∂z
-----G & O e

2( ),
∂

∂λ
------G & O e

2( ).

cn eCn eτ z,( ), bn e@n τ ez,( ),= =

λm λm eτ z,( ), µm µm τ ez,( ),= =

bn & O e
2( ),

∂
∂z
-----bn & O e

2( ),

uz 1 u[ ]= eP u[ ] .+

DτU DzV– U V,[ ]+ Dτ Dz,[ ]= eP̂ u[ ] ,+

P̂

∂
∂z
-----6 Ω λ( )6 ^ τ z; λ,( ).+=
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lution of scattering data in the first order in the small
parameter e characterizing the perturbation:

(17)

(18)

(19)

(20)

The asterisk indicates complex conjugation. It should
be noted that Eqs. (18) and (19) were derived in [3, 4]
for trivial boundary conditions (z = 0, ∞) corresponding
to the evolution of pulses against the background of the
stable state.

In the case when λ is a function of τ, the system of
equations (17)–(20) should be supplemented with the
equation

(21)

This equation is a consequence of the “deformation” of
the unperturbed model and does not change in the first
order of perturbation theory.

While deriving the system of equations (17)–(20),
we used standard assumptions concerning the applica-
bility of perturbation theory [4]. As compared to the
known equations in [4], the right-hand side of Eq. (20)
is supplemented with the term F(λn), and Eq. (21) is

∂a λ z,( )
∂z

-------------------- e τP u[ ]ψ 1( ) τ λ,( )ϕ 2( ) τ λ,( )d

∞–

+∞

∫=

+ e τP* u[ ]ψ 2( ) τ λ,( )ϕ 1( ) τ λ,( ),d

∞–

+∞

∫

∂b λ z,( )
∂z

-------------------- 2iΩ λ( ) e τP u[ ]ψ 2( )* τ λ,( )ϕ 1( ) τ λ,( )d

∞–

+∞

∫+=

– e* τP* u[ ]ψ 1( )* τ λ,( )ϕ 2( ) τ λ,( ),d

∞–

+∞

∫

∂bn λn z,( )
∂z

------------------------ 2iΩ λn( )
bn

a' λn( )
-------------- τd

∞–

+∞

∫+=

× eP u[ ] Q 1( ) τ λ n,( ) e*P* u[ ] Q 2( ) τ λ n,( )+{ } ,

Q m( ) τ λ n,( ) ∂
∂λ
------ ψ m( ) τ λ,( )ϕ m( ) τ λ,( )[=

---– ψ m( ) τ λ,( )ϕ m( ) τ λ,( ) ]
λ λ n=

, m 1 2,,=

∂λn z τ,( )
∂z

--------------------- F z τ ; λn,( )=
1

a' λn( )
--------------–

× τ eP u[ ]ψ 1( ) τ λ n,( )ϕ 2( ) τ λ n,( ){d

∞–

+∞

∫
+ e*P* u[ ]ψ 2( ) τ λ n,( )ϕ 1( ) τ λ n,( ) }

=  F Z τ ; λn,( ) Q z τ ; λn,( ).–

∂λn z τ,( )
∂τ

--------------------- G z τ ; λn,( ).=
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also added. It should be recalled that Eq. (20) without
the second term on the right-hand side and Eq. (21)
describe the dependence of the spectral parameter on
variables without resorting to perturbation theory.

In the general case, system (17)–(19) must be sup-
plemented with the equations

(22)

where λ belongs to the continuous real spectrum Φz =
UΦ of the problem. In the present work, we study the
dynamics of the discrete soliton spectrum without tak-
ing into account the contribution of the continuous
spectrum; i.e., the last pair of equations is not taken into
account. Below (in Section 5), we will analyze the con-
tribution from the continuous real spectrum and deter-
mine the conditions under which it can be neglected.

In the case when λn are functions of variable τ by
virtue of Eq. (21), this dependence must be taken into
account while deriving the functions ψ(k)(τ; λn) and
ϕ(k)(τ; λn) appearing on the right-hand sides of
Eqs. (17)–(20). This constitutes one of the main dis-
tinctions of the perturbation theory for systems close to
deformed integrable models from the known theory [4].
Since λn in the general case satisfy two equations (20)
and (21), we must find the compatibility condition for
these equations. In the case of perturbations, the depen-
dence of λn on z associated with this perturbation must
also be taken into consideration. Taking into account
Eqs. (20) and (21), we can write the approximate com-
mutativity condition for the derivatives of λ in the first
order of perturbation theory in the form

(23)

For Q ~ O(e), condition (23) holds, in particular, if con-
ditions (11) are valid. It should be noted that, when con-
dition (23) is satisfied and the commutator is small, [Dz,
Dτ] ~ O(e), the latter can be included in the perturba-
tion:

In this case, the fulfillment of condition (9) is not
required.

Relations following from the condition [Dz, Dτ] = 0
were obtained in [6] for a number of exactly integrable
models. The limitations imposed on the physical
parameters of models cannot be realized in most cases.
In the perturbed problem, condition (23) includes the
contribution of perturbation Q. In the first approxima-
tion in e, the difference between F and Q is only that Q
appears with a small parameter. This fact enables us to
use in the perturbation theory the results obtained in the
exact theory developed for systems with a variable
spectral parameter and vice versa. For example, it fol-

∂zλ F z τ ; λ,( ), ∂τλ G z τ ; λ,( ),= =

∂
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∂
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------ F Q–( ) ∂
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lows from (23) that in some cases this condition might
be satisfied approximately for a special choice of the
form of perturbation and the conditions imposed on the
functions F(z, τ; λ), G(z, τ; λ), and Q(z; λ).

3. MAXWELL–BLOCH EQUATIONS
FOR A TWO-LEVEL SYSTEM WITH PUMPING

We apply the perturbation theory constructed by us
for describing the dynamics of the soliton solution of
the system of Maxwell–Bloch equations for a two-level
medium with the upper level pumping. Some idealized
three- and four-level models of lasing in gas, ionic, and
other lasers can be reduced to this system of equations
[9].

We assume that the diagram of laser pumping has
the form of a four-level medium with energy levels 0, 1,
2, 3 (Fig. 1) and corresponding energies Wi such that

There exists a certain mechanism of pumping accord-
ing to which electrons are transferred from the ground
level 0 to level 3 with energy W3, thus populating it.

As a result of a fast transition of electrons from level
3 to the lower lying level 1, the difference in the popu-
lations of level 1 and level 2, having a lower energy,
increases; we assume that level 2 lies above the ground
level 0 and is empty at the initial instant. It is assumed
that the energy difference W1 – W0 is much larger than
kBTk (kB is the Boltzmann constant and Tk is the temper-
ature). This condition enables us to disregard the ther-
mal mechanism of populating level 2. The population
inversion is maintained in the case of rapid transition of
electrons from level 2 to the ground level 0. In such a
system, we can obtain population inversion of levels 1
and 2 and generation of a field with amplitude E12 in
this transition at frequency ω12 = (W1 – W2)/".

In order to describe the generation of ultrashort
pulses, many authors employ the system of Maxwell–
Bloch equations for a two-level medium, e.g., for
describing self-induced transparency [9]. The contribu-
tion of pumping is taken into account by adding a term
proportional to the difference in the pumping rates for
levels 1 and 2 to the equation describing the dynamics
of the difference in the populations of levels 1 and 2.
The pumping of the latter level can be executed by elec-
tron transfer between levels 3 and 2 (see Fig. 1). The
parity prohibition for such transitions can be removed
due to the interaction with surroundings in the solid
matrix or as a result of a cascade transition through an
intermediate level. This transition reduces the popula-
tion inversion like the electron transfer from level 0 to
level 2 and from level 1 to level i characterized by an
energy Wi < W1. If the relaxation times at these transi-
tions are much shorter than the characteristic duration
of pulses, the contribution of these transitions can also
be taken into account in the model described below. In
a three-level system, the lower laser level 2 coincides

W3 W1 W2 W0.> > >
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with the ground level [9]. In the idealized model which
will be solved below, these lasing diagrams differ only
in the initial conditions for the difference in the popula-
tions of the levels involved in the 1  2 lasing tran-
sition.

In the slow envelope approximation, the system of
Maxwell–Bloch equations can be presented in the form

(24)

Here, E = (2d/")E12, where E12 is the electric field
amplitude at the lasing transition;

N0, N3, and R are the density of active atoms, the differ-
ence in the populations of the levels, and the polariz-
ability of the transition in the two-level medium,
respectively; ω12 is the transition frequency; µ12 is the
dipole moment, x and t are the space and time variables;
eP is perturbation with a small parameter e; γ1, 2 = 1/T1, 2
are the relaxation constants; g(z; ω) is the function
describing nonuniform broadening, i.e., the distribution
of atoms over the frequency shift ω relative to the tran-
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Fig. 1. Diagram of a four-level laser: E12 is the field ampli-
tude on the 1  2 laser transition, and ω is the detuning.
Horizontal lines are energy levels. Inclined lines show pos-
sible transitions between the levels.
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sition frequency; (z; ω) is the pumping rate for  > 0

or the inverse population loss rate if  < 0.
We assume that E(0, τ) = 0 for all τ  ±∞ and

R+(z, 0) = 0, R3(z, 0) = –n0 < 0 for all z; i.e., the field is
absent at infinities, and the medium is in the ground
state at the instant τ = 0: n0 = 1 for a three-level lasing
system and n0 = 0 for a four-level system.

In the absence of perturbation (eP = 0) and for char-
acteristic times much shorter than T1, 2 (γ1, 2 = 0), the
system of equations (24) can be presented in the form
of compatibility condition (3) for the following linear
systems [8]:

(25)

(26)

Here, λ is the spectral parameter and Φ(z, t λ) is a two-
component function. The dependence of the spectral
parameter on variable z is determined by an additional
condition. This dependence, which was obtained in [6,
16] in the form

corresponds to pumping at a frequency exactly coincid-
ing with the transition frequency (disregarding the non-

uniform broadening of the transition) for (z; ω) ≡
const. The MISP apparatus was developed in [8] in the
Maxwell–Bloch model for a medium with pumping
taking into account nonuniform broadening. In the
present work, we propose the following new generali-
zation of this dependence:

(27)

where g(z; ν) and h(z; ν) = (z; ν)/2 are arbitrary real-
valued functions (in the general case). The dependence
h(z; ν) on the frequency detuning ν may be associated
with the physical origin of pumping and the structure of
the atomic system and emerges, for example, due to dif-
ferent relaxation rates of atomic transitions, the spectral
dependence of electron transport mechanisms, the fre-
quency dependence of the absorption cross section, the
effect of the motion of atoms and atomic collisions, and
the nonuniformity of the pumping field.

We will demonstrate the frequency dependence of
pumping using the following simple qualitative exam-

h̃ h̃

h̃

∂τΦ
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ple. Let us consider the four-level lasing system
depicted in Fig. 1. We assume that the dipole transitions
3  1 and 1  2 between the energy levels are
possible. The dynamics of population ρ11 of level 1 and
of the polarization ρ13 of the 1  3 transition are
described by the following equations from the Bloch
system:

(28)

(29)

Here, ρij are the elements of the density matrix of a mul-
tilevel system, µij are the dipole moments of the transi-
tions, ω is the frequency detuning, E12(z, τ) is the field
amplitude on the lasing transition, and E13(z) is the con-
stant preset field which transfers electrons from level 3
to level 1. Level 3 is permanently populated by elec-
trons from the ground level 0. In an ion laser, for exam-
ple, this process may be induced by the strong current
flowing through the gas. We assume that the relaxation

time  at the 1  3 transition is much shorter than
the characteristic times of the pulses being generated
and ρ33(z, 0) @ ρ11(z, τ)  ∀ z, τ. In this case, we obtain
from the system of equations (28), (29)

(30)

The last term on the right-hand side of this equation is

the pumping rate (z, ω). A similar expression (but
with opposite sign) corresponding to the population
inversion loss rate appears if the transition 3  2 and
(or) the transition from level 1 to an intermediate level
i with energy Wi such that W2 < Wi < W1 and with short
relaxation times can occur.

In the presence of nonuniform broadening, the
dependence of pumping rate on detuning ω may lead to
peculiarities and anomalies in the dependence of the
parameters of solitons propagating in a two-level
medium with pumping. The remaining part of this arti-
cle is devoted to an analysis of such features using a
model close to the deformed integrable system of Max-
well–Bloch equations.

4. SOLITON DYNAMICS
IN A TWO-LEVEL MEDIUM WITH PUMPING

In the example considered below, the function G(z,
τ; λ) ≡ 0 for γ1, 2 = 0. In this case, F is an arbitrary func-
tion of z and λ and Q = Q(z, λ) ~ O(e).
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Let us assume that the frequency distribution
describing nonuniform broadening is of Lorentzian
shape and is normalized to unity:

(31)

and h(z; ω) ≡ h1(z). The solution to Eq. (27) correspond-
ing to an isolated value of the spectral parameter λ =
iη + ξ has the form

(32)

Here,

The signs are chosen taking into account the fact that η
is real and positive.

For ξ(0) = 0 and h1(z) ≡ h = const, solution (32) can
be simplified and the soliton solution of the unper-
turbed model (24) (P = γ1, 2 = 0) has the form

(33)

This solution describes the nonmonotonic increase in
the soliton amplitude with increasing value of hz > 0,
which tends to infinity for z  ∞ In this case, the soli-
ton duration tends to zero and the group velocity of the
soliton tends to the velocity of light.

When small perturbations are taken into account,
the amplification dynamics may change qualitatively.
For example, a steady-state or attenuating asymptotic
form may appear for η(z), and soliton parameters
become qualitatively dependent on the spectral charac-
teristics of pumping and losses. These singularities can
be described in the perturbation theory developed by us
here.

Let a soliton associated with the spectral parameter
λ0 = ξ(0) + iη(0) and having the form

(34)

at point z = 0 be injected into the medium at this point.
Further, we consider the time scale on which relaxation
can be neglected: γ1, 2  0. In the perturbation theory
developed above, we analyze the evolution of soliton
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(34) in z, which can be described by the system of equa-
tions (24) with pumping and perturbation eP. We
assume that the latter includes losses to the first and
third powers in the field amplitude and linear dispersion
of the second order; i.e., the perturbation has the form

(35)

where αi are real coefficients. Solutions ψ(m)(τ, λ0) and
ϕ(m)(τ, λ0) of the Zakharov–Shabat spectral problem for
potential (34) are known (see, for example, [4, 5]). Sub-
stituting these expressions into Eq. (20) and integrating
with respect to variable τ, we obtain the following sys-
tem of equations for the imaginary and real components
of the spectral parameter in the first approximation of
perturbation theory:

(36)

The results of numerical solution of this system of
equations are presented in Fig. 2.

It turns out that a change in the spectral width (equal
to 2Γ0) might change qualitatively the dependence of
the soliton amplitude on the amplification length. For
example, this curve acquires a hump for α1 = 0.01, α2 =
0.01, α3 = 0.02, h1 = 0.1 and for a value of Γ0 lying in
the interval 0.6–5 (see Fig. 2). For Γ0 * 8.7, the soliton
amplitude asymptotically tends to zero. For smaller
spectral widths, the soliton amplitude increases to a
nonzero constant value upon an increase in z. The
amplification efficiency decreases with increasing
spectral width. Since the value of h depends on fre-
quency, this effect is associated with losses and disper-
sion effects included in the perturbation P.
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Fig. 2. Numerical solution of system (36): dependence of η
on the length of the medium z; α1 = 0.02, α2 = –0.02, α3 =
0.03, h1(z) = 0.1; Γ0 = 0.5 (1), 2 (2) and 5 (3).
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The asymptotic form of the solution of system (36)
is determined by the boundary values of the parameters
η(0) and ξ(0) since the system has more than one stable
focus in the phase space in the general case. The numer-
ical analysis carried out for h = 0.125, Γ0 = 0.1, α2 =
0.01, α1, 3 = 0, and various values of ξ(0) revealed the
existence of two stable foci η1 = 0, η2 ≈ 1.425, and
(η1, 2)z = 0 (see Fig. 3). It turned out that the phase tra-
jectories may diverge in the vicinity of ξc(η(0)) ≈
−0.115; i.e., for small variations of the boundary (for
z = 0) detuning ξ(0) of a soliton in the vicinity of ξc, the
soliton amplitude tends either to 2η ≈ 2.85 or to 0 upon
an increase in z. It was found using numerical methods
that a decrease in the initial value of the soliton ampli-
tude η(0) leads to a decrease in the critical value |ξc|.

In real resonance media, processes leading to popu-
lation inversion losses during the propagation of a soli-
ton in the medium are possible apart from the upper
level pumping. These losses may be caused by colli-
sions of atoms in the gas, by collisions of atoms in the
gas, and by the population of the lower level. In the gen-
eral case, the rates of pumping and losses are character-
ized by different frequency dependences, which is due

0

ηz

z
0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.6

0.4

0.2

0

Fig. 3. Phase portrait: dependence of ηz on η for various
values of ξ(0); η(0) = 0.1.
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Fig. 4. Numerical solution of system (38): dependence of
the soliton amplitude on the amplification length in the
absence of perturbations; Γ0 = 3.0, Γ1 = 3.0, Γ2 = 3.1, h1 =
33, h2 = 33 (1), 35 (2), and 38 (3).
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to different absorption cross sections, relaxation con-
stants, and other physical factors [9]. For this reason,
the frequency dependence of not only the pumping rate
but also the loss rate (cf. Eq. (30)) must be taken into
account. In the system of Maxwell–Bloch equations
under investigation, the losses in the population of level
1 are equivalent to the pumping of the lower lasing level
(see Fig. 1). This pumping may be due to transition
from level 3 to level 2 and may depend on frequency
just like the pumping of the upper laser level.

The numerical results presented below indicate that
the inclusion of the frequency dependence of pumping
rate leads to a number of peculiarities in soliton ampli-
fication. For example, in the presence of nonuniform
broadening, soliton amplification is also possible in the
case when the integral rates of pumping and losses in
the inverse population of a laser transition (i.e., the rates
integrated over the entire frequency spectrum) are iden-
tical. Under certain conditions, soliton amplification is
possible on a bounded segment when the integrated
losses prevail over the integrated pumping.

We choose the Lorentzian form of the frequency
dependence of rates of pumping and population inver-
sion losses (cf. (30)):

(37)

Here, h1 > 0 corresponds to the pumping of the upper
level, and h2 > 0 corresponds to the loss of the popula-
tion of the upper laser level 1 or the population of the
lower level 2.

Equations (36) for the same perturbation (35)
assume the form

(38)

Since the rates of pumping and losses depend on detun-
ing, their frequency characteristics play a significant
role. A numerical analysis of system (38) proved that
the soliton dynamics depends qualitatively on the rela-
tion between quantities h1 and h2 and the spectral
widths 2Γ0, 1, 2. The results of numerical solution of
Eqs. (38) obtained without taking into account pertur-
bations (α1, 2, 3 = 0) are presented in Fig. 4 for various
coefficients h1 and h2. For Γ2 < Γ1 and h1 = h2, the soli-
ton amplitude vanishes at a distance z ~(h1)–1. It can be
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seen from Fig. 4 that soliton amplification is possible in
the case when h1 = h2. Moreover, a numerical analysis
of Eqs. (38) revealed that an increase in the soliton
amplitude at a finite initial interval is also possible for
h1 < h2 provided that Γ1 < Γ2 and the laser transition is
broadened nonuniformly.

The inclusion of perturbation leads to a qualitative
change in the dependence of soliton parameters on z.
For α2 > 0, the soliton amplitude increases at the initial
stage and then tends to a constant asymptotic value. For
Γ2 < Γ1, the asymptotic forms change for a relatively
small variation of h1 (|∆h1| ! h1) and a fixed h2. The
soliton amplitude tend to a constant nonzero value for
h1 > h2 and tends to zero upon an increase in z for h2 <
h2 (see Fig. 5).

5. RANDOMIZATION
IN AN AMPLIFYING MEDIUM

The systems of equations including the Maxwell–
Bloch equations, linear and nonlinear dispersion, and
also cubic terms in the field amplitude are employed for
analyzing the effects of propagation of ultrashort soli-
tons in optical fibers [20]. Stable field pulses in an opti-
cal fiber appear as a result of balance between disper-
sion and nonlinearity. In order to compensate the losses
emerging during the propagation of a soliton in an opti-
cal fiber, various mechanisms are used, including those
associated with the amplification of pulses over finite
intervals of the fiber, arranged periodically over its
length. Soliton amplification takes place, for example,
when a soliton passes through a segment of the fiber
with implanted atoms of rare-earth metals with a reso-
nance two-level transition. Soliton dynamics in such a
medium can be described in a model close to the inte-
grable system of Maxwell–Bloch equations taking into
account pumping depending on the coordinate and fre-
quency. The dispersion and Kerr nonlinearity in the sys-
tem of Maxwell–Bloch equations can be taken into
account either in perturbation theory or by using a
model combining this system with the nonlinear
Schrödinger equation. The integrability of such a com-
bined model requires that a stringent condition be
imposed on physical parameters [2, 21, 22]. However,
the application of the combined model is expedient for
determining the qualitative features of the strongly non-
linear soliton dynamics, including the random behavior
of ultrashort pulses.

Nozaki and Bekki [23] investigated numerically the
emergence of random dynamics under the action of a
small driving force in the form of the sum of two har-
monics and quadratic dispersion for the soliton solution
of the nonlinear Schrödinger equation, which has the
following form in our notation:

(39)E z τ,( ) 2η iφ( )exp
2ητ( )cosh

--------------------------.=
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In our variables, this perturbation has the form

The authors of [23] solved equations for soliton param-
eters which emerge in the first order of perturbation the-
ory and found that period-doubling bifurcations take
place upon an increase in the values of parameters, fol-
lowed by the emergence of a random dependence of
these parameters on z. Under pumping conditions, we
can expect a change in the conditions for the emergence
of random dynamics in the model combining system
(24) and the nonlinear Schrödinger equation.

On account of the interaction with two-level atoms,
the evolution of ultrashort optical pulse in an optical
fiber can be described by the following Maxwell equa-
tion for a slow amplitude U of the light field:

(40)

Here, k '' and χ3 are the coefficients characterizing the
dispersion and Kerr nonlinearity, respectively, and L0 is
the resonance absorption length. The physical values of
these coefficients are given, for example, in [21, 22].

The integrable combination of the Maxwell–Bloch
equations and Eq. (40) was obtained in [21, 22] in the
absence of pumping. In the variables used in system
(24), the combined model has the form

(41)

(42)

(43)

The integrability of this combined system requires the
fulfillment of a certain additional condition imposed on
physical parameters, which emerges when the system
of Maxwell–Bloch equations and Eq. (40) is reduced to
the form (41)–(43). The physical situations in which
this condition holds were proposed in [21, 22]. Since
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Fig. 5. The same as in Fig. 4; Γ0 = 3.0, Γ1 = 3.0, Γ2 = 3.1,
α1 = α3 = 0, α2 = 0.02, h1 = 3.1, h2 = 3.0 (1), h1 = h2 = 3.1 (2),
and h1 = 3.0, h2 = 3.1 (3).
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the aim of this section is an analysis of qualitative char-
acteristics of soliton amplification in the presence of
pumping, we will not specify the physical conditions. It
should be noted that the existence of a soliton solution
of the combined model was proved numerically and
experimentally in [24, 25].

The Lax representation for system (41)–(43) has the
form

(44)

(45)

The fundamental difference of this Lax representation
from the similar representation given in [21, 22] lies
only in that the spectral parameter satisfies additionally
Eq. (27).

We assume that the dependence of the pumping rate

 on the coordinate and frequency is given by Eq. (31).
Let us suppose that perturbation eP has the form

(46)

This perturbation may describe the action of a constant
external field (or a combination of fields) with wave
detunings k1 and k2 from the wave vector of field E and
cubic nonlinear losses. In the framework of the pertur-
bation theory developed above, we obtain for perturba-
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Fig. 6. Numerical solution of system (47): dependence of η
on z for β = 1, h0 = 0.125, α3 = 0.03, Γ0 = 1, e1 = 0.04, e2 =
0, χ0 = 0.225, and k0 = k1 = 0.5.
JOURNAL OF EXPERIMENTAL 
tion (46) the following analog of the Nozaki–Bekki
equations [23] for the soliton parameters (39):

(47)

We choose the periodic dependence of the pumping
rate on z:

For the above expression (30) for the pumping rate, this
dependence corresponds to a standing wave of the field:

The periodic coordinate dependence of the pumping
rate leads to a qualitative difference of the conditions for a
transition to random dynamics from the corresponding
conditions given in [23]. In particular, for β ≠ 0, one
harmonic of the external force (e1 ≠ 0, e2 = 0) and the
coincidence of the wave vectors (k0 = k1) are sufficient
for the emergence of a random attractor. For h0 ≈ 0.12,
random dynamics was discovered for e1 = e2 = 0, k0 =
0.1, β = 1, and α3 = 0.01. It should be recalled that, in
the model analyzed in [23], a biharmonic driving force
is required for the emergence of random dynamics.

Figure 6 shows the results of the numerical solution
of system (47) for the soliton parameter η. A phase por-
trait demonstrating a random attractor for the same val-
ues of parameters as in Fig. 6 is presented in Fig. 7.

The numerical analysis proved that, for the pumping
rate h0 * 0.1, period-doubling bifurcations and random
dynamics appear for values of e1, 2 ≠ 0 two orders of
magnitude lower than in the absence of pumping. It was
found that, in the presence of pumping independent of
z, the amplitudes of random modulation do not
increase. On the contrary, the amplitudes of fluctua-
tions increase significantly (by a factor of several units)
when periodic coordinate dependence of the pumping
rate is taken into account.

For h0(z) = const, α3 > 0, and e1, 2 > 0.01, the soliton
amplitude for large values of z attains a quasi-stationary
regime, i.e., oscillates randomly about its mean value.
The results of numerical analysis proved that quasi-ran-
dom dynamics is also exhibited in the absence of per-
turbation of the form –αi|E|3E since the pumping rate is
a nonlinear function of parameter η. When linear losses
–α1E are taken into account, the amplitude of random
pulsations about the mean value decreases, but does not
attenuate upon an increase in z.

Concluding the section, we note that a similar ran-
dom dynamics may also be observed when the first and
second terms on the right-hand side of Eq. (41) are

∂
∂z
-----η 8

3
---α3η

3–=
π
2
--- e1 k1z ϕ–( )sin[–

+ e2 k2z ϕ–( ) ]
h1 z( )
η Γ 0+
---------------,+sin

∂
∂z
-----ϕ 4χ0η

2.=

h1 z( ) h0 1 β– β k0z( )cos+[ ] 2= 0.>

E13 z( ) E13 0( ) 1 β– β k0z( )cos+[ ] .=
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Fig. 7. Phase portrait: dependence of ηz on η. The values of parameters are the same as in Fig. 6.

–0.075
taken into account in the form of perturbations for the
small coefficients χ0 and a sufficiently high pumping
rate (~h0).

6. CONTRIBUTION OF RADIATIVE SOLUTION

In the course of field evolution in lasing media, non-
linear pulsations constituting the radiative component
of the solution are amplified along with solitons. In the
case of completely integrable model (24), this solution
is associated with the continuous real spectrum of the
Zakharov–Shabat problem (25) and may be initiated by
fluctuations of the medium. For the model (24) investi-
gated by us here, the radiative solution can make a sig-
nificant (and even dominant) contribution to the general
solution. In this connection, the analysis of the radiative
component of the solution is required when the dynam-
ics of solitons being amplified is investigated. It should
be noted that this case is similar to that of a long laser
amplifier in which, according to Manakov [12], the
asymptotic form of the solution in the model of field
amplitude under certain initial conditions is described
by the Painlevé III transcendent and is proportional to z.

One of the solutions of the exactly integrable ver-
sion of the Maxwell–Bloch equations with pumping
under certain initial conditions in the case when the
relations

(48)

hold is proportional to the self-similar solution which
can be expressed in terms of the Painlevé V transcen-
dent [15–17].

γ1 2, e 0, g ω( ) δ ω( ),= = =

h̃ z; ω( ) c const,= =
L OF EXPERIMENTAL AND THEORETICAL PHY
Following [15, 16], we introduce the self-similar
variables

and the functions

(49)

This transforms system (24) to the following system of
equations:

(50)

We assume that perturbation eP is a function of the field
amplitude and its derivatives.

Let us prove that, for small γ1, 2 and e, the initial and
boundary conditions

, (51)

and large values of ζ, the radiative solution of system
(50) completely determines the asymptotic form.

System (24) has the following linear solutions:

(52)

ζ τ 2cz=

E 2cz% ζ( ), R c/2z5 ζ( ),= =

N c/2z1 ζ( ).=

∂
∂ζ
------ ζ% ζ( )( ) 5 ζ( ) e

2z
c

-----P 2cz% ζ( )( )+ ,=

∂
∂ζ
------5 ζ( ) 1 ζ( )% ζ( )

γ2

2cz
------------5 ζ( ),–=

∂
∂ζ
------1 ζ( ) 5 ζ( )% ζ( )–= 1

γ1

2cz
------------1 ζ( ).–+

R z 0,( )  ! 1, N z 0,( ) n0, E 0 τ,( )– 0= =

E R 0, N n0–= = = cτ ,+
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where –n0 < 0 is the initial difference in the populations
of levels 1 and 2, and

(53)

The radiative solution is initiated by medium fluctua-
tions and describes the nonlinear stage of the develop-
ment of instability. For small fluctuations (as in the case
of a laser amplifier [12]), the emerging shape of the
leading front and the characteristic delay can be deter-
mined from the linear solution for small deviations of
the field amplitude and polarization from state (52). For
the linear stage of development of instability and for
g(ω) = δ(ω), e = 0, we obtain from system (24)

(54)

(55)

Here,

and f is a function describing fluctuations of the polar-
ization of the medium. In analogy with the theory of
laser amplifiers developed using the semiclassical the-
ory [26], the initiation of the process can be described
by simulating the initial polarization of the stochastic
function with a small amplitude of fluctuations.

Using the substitution

,

we can reduce Eq. (55) to the telegraph equation. For
γ1  0 and τ @ n0, the solution to this equation has the
form

(56)

For a very slow function f(z, τ) (which increases not
faster than according to a power law), solution (56)
describes the leading front of the quasi-self-similar
solution of the initial model (24). For ζ @ 1, we obtain

(57)

Here, ζ0 = ln|f0 | and f0 is a certain mean value of the
amplitude of fluctuations. A more rigorous computa-
tion of stochastic averages leads to the same result.

For 5(0) ! 1 and e = γ1 = 0, system (50) in the lin-
ear limit describing small deviations from state (52) can
be reduced to the equation

(58)

E 2cz, R c/2z, N 0.= = =

∂zẼ R̃,=
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Ẽ Ee
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----- 1 e

γ1τ–
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E z τ,( ) f z' τ ',( )
0

τ

∫
0

χ
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× I0 2c τ2 τ '2–( ) z z '–( )( )dz 'dτ '.

E
z f 0sgn

ζ
-----------------≈ e

ζ ζ 0–
1 O

1

ζ
------- 

 + .

ζ∂ζ
2% ∂ζ%+ ζ n0–( )%,=
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which can be transformed to a degenerate hypergeo-
metric equation. The solution to this equation for small
ζ and large values of n0 consists of oscillations attenu-
ating upon an increase in ζ, which are transformed, for
ζ > ζc, into a rapidly increasing solution proportional to
the Bessel function I0(ζ) (ζc is the point of joining of the
attenuating and increasing solutions). For ζ > ζc @ 1,
we obtain the following solution:

(59)

The value of  is determined by the joining of the
increasing component with the attenuating initial com-
ponent of the solution to Eq. (58). Solutions (57) and
(59) coincide accurate to the delay; i.e., the asymptotic
form of the solution to Eqs. (24) for the initial and
boundary conditions differing insignificantly from con-
ditions (52) is joined with the quasi-self-similar solu-
tion to Eq. (50). Thus, when conditions (48) are satis-
fied, the solution of system (24) in the nonlinear regime
is described by the nonlinear solution (50) which can be
reduced to the solution to the following Painlevé V
equation:

(60)

where ξ = 2ζ and

(61)

Using the linear solution (52), we choose

The initial conditions for u and the parameters of the
equation are determined by joining with this linear
solution and with the conditions of regularity for ξ = 0;
in fact [15–18], these conditions have the form

(62)

It should be noted that solution (59) coincides with
that for a laser amplifier [12] correct to the self-similar
variable and the phase factor. In particular, this solution
shows that for small 50, the amplification is delayed as
in the case of a laser amplifier. At the same time, an
additional delay in the generation of the radiative solu-
tion is observed in the case of a three-level laser with
pumping due to the initial population of the lower laser
level:

Let us now analyze the role of a small perturbation
in the formation of the self-similar radiative asymptotic
form and compare these results with those for the soli-
ton amplitude. The numerical solution of systems (36)
and (50) for e = γ1, 2 = 0 is illustrated in Fig. 8. It can be

E
z %csgn

ζ
------------------≈ e
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1 O

1

ζ
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 + .

%csgn

uξξ uξ( )2 3u 1–
2u u 1–( )
-----------------------

1
ξ
---uξ–= γu

ξ
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u u 1+( )
2 u 1–( )
--------------------,–+

%
u uξ–

u u 1–( )
------------------------eiϕ .=

1 0( ) 0, % 0( ) 5 0( ) 50, Im50 0.= = = =

u 0( ) 1, ϕ– π/2,= =

uξ 0( ) 1 250, γ+ –1 250.–= =

R3 z 0,( ) n0–= 0.<
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seen that there exists a certain interval of values [0, zd ≈
16], in which the contribution of the continuous spec-
trum can be neglected. The length zd of this interval
increases with n0 and upon a decrease in |50|. In the
general case, in the absence of a perturbation, for γ1, 2 =
0, and for large values of z, the soliton solution starting
with a small initial amplitude is of the same order as the
pulses of the radiative solution. It can be seen from
Fig. 8 that the contribution of the radiative solution to
the soliton dynamics for z > zd cannot be disregarded in
the general case. At the same time, according to the
results of numerical analysis, the behaviors of the soli-
ton and radiative solutions in the presence of perturba-
tion and pumping differ qualitatively. This enables us to
determine the conditions under which the amplitude of
the soliton solution is much larger than the amplitude of
pulses constituting the radiative solution for all values
of z. In this case, the contribution of the radiative solu-
tion can be disregarded while studying the evolution of
solitons.

The inclusion of small perturbations of type (35)
changes qualitatively the radiative asymptotic form. We
fix point ζ1 at the leading front of a pulse from the radi-
ative solution and carry out a transition to the reference
frame attached to this point. It can be seen from system
(50) that the perturbation in this reference frame
increases with z in proportion to the field amplitude,
while the contribution from relaxation terms decreases

in proportion to . Numerical calculations revealed
that perturbations containing losses in the form of odd
powers of the field amplitude, e.g.,

lead to a decrease in the radiative contribution for large
z. This suppression is the stronger, the larger the delay,
i.e., the larger the initial population of the lower lasing
level and the smaller |50|.

At the same time, it follows from the previous sec-
tion that small perturbations may lead to a qualitative
change in the asymptotic form of the soliton solution.
Figure 9 shows the results of numerical analysis of sys-
tem (24) for the soliton mode and of system (50) for the
quasi-radiative mode, for which the perturbation has
the form

The initial and boundary conditions in this case are
given by

The numerical analysis was carried out for various val-
ues of α1, 3 and h. It was found that smaller values of
α1, 3 > 0 correspond to relatively weaker suppression of
the radiative contribution. The change in h considerably
affects the radiative solution. For α1, 3 ~ 10–1–10–4, c ~

T1 2,
1–

e3 –α1E α3 E 2E– α4 E 4E, α i 0,>–=

eP –α1E α3 E 2E.–=

2η 0( ) 0.1, R0 0.001, n0 1.= = =
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1, and large values of z, the amplitude of radiative solu-
tion pulsations does not exceed 10% of the soliton
amplitude for all z. This fraction decreases with
decreasing c. As the value of c increases and α1, 3 ≠ 0
decreases, the ratio of maximum amplitudes of radia-
tive solution pulsations to the soliton amplitude
increases and may exceed unity on a certain interval of
z (cf. Fig. 8).

The above estimates of the radiative solution delay
show that the three-level scheme of laser pumping in
which the lower level of the laser transition coincides
with the ground level is preferable for observing the
soliton dynamics since the radiative solution delay in
this case may exceed that for the four-level scheme of
pumping considerably (by an order of magnitude). At
the same time, relaxation effects as well as linear and
nonlinear losses lead to strong suppression of the radi-
ative component of the solution. Conversely, in the case
of zero initial population of the lower laser level and
higher values of the pumping coefficient c @ 1 and in
the absence of losses, the contribution of the continuous
spectrum of the problem must be taken into account in
an analysis of the soliton dynamics.
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Fig. 8. Numerical solution of systems (36) and (50) for e =
0, c = 1, n0 = –1, and α1, 2, 3 = 0. Dependences of the max-

imum soliton intensity (bold line) and of the intensity |E|2 of
the radiative solution (fine curve) on z.
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Fig. 9. Numerical solution of systems (24) and (50) for
α1 = 0.01, α2 = 0, and α3 = 0.05.
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7. CONCLUSION

The solution of systems of equations close to inte-
grable makes it possible to study the nonlinear stage of
the evolution of solitons and other nonlinear modes.
The perturbation theory apparatus presented by us here
supplements the list of such models with the models
close to deformed integrable systems of equations.
Some of the integrable deformed models have impor-
tant physical applications (e.g., the Heisenberg cylin-
drical equation and the equations of the principal chiral
field, which are used in gravitation theory [6]).

The Maxwell–Bloch equations close to system (24)
and describing the interaction of a light field with a res-
onance medium under pumping are used quite fre-
quently [9]. The solutions of the idealized integrable
version of this model may be regarded as nonlinear
modes (solitons) strongly “deformed” during the evolu-
tion since the spectral parameter depends on variables.
The inclusion of small perturbations leads to the emer-
gence of additional terms in the equations describing
the dependence of soliton parameters on the variables.
It has been demonstrated by us here that a combination
of these properties leads to a qualitatively new dynam-
ics of nonlinear modes. In particular, soliton amplifica-
tion modes appear, which cannot be described by using
the standard perturbation theory [4, 5].

On the other hand, conditions of type (9) in the per-
turbed model can be satisfied approximately for a spe-
cial choice of perturbation. This enables us to extend
the physical range of applicability of models integrable
in the framework of the MISP with a variable spectral
parameter.

The qualitative effects observed by us and mani-
fested during the propagation of a soliton in a medium
with pumping may be applied in an analysis of lasing
and for choosing lasing conditions.
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