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Abstract—Experimental data are presented on the use of single receiving and transmitting systems in acoustic
tomography of dynamic processes in a shallow sea. The experiments are based on the use of the transmission
tomography and opposite-direction sounding with complex phase-manipulated signals. The original data are
those obtained by the authors in 1990–2000 on the shelf of the Sea of Japan near the Gamov Peninsula, in the
vicinity of the acoustical-hydrophysical experimental site of the Pacific Oceanological Institute. A possibility
of using combined transmitting–receiving systems (transceivers) for monitoring the temperature and fields of
currents in the ocean is demonstrated. © 2002 MAIK “Nauka/Interperiodica”.
Acoustic tomography is widely known as a promis-
ing method for monitoring the currents and temperature
fields in the ocean. However, its implementation in
coastal regions faces great difficulties. In this paper, we
consider the experiments performed at the shelf of the
Sea of Japan with the aim to show possible ways of set-
tling the problem of acoustic tomography of the sea
medium in shallow-water regions.

The Sea of Japan is an important object for studying
the laws of climate formation, ventilation of the near-
bottom water layers, migration of sea animals, spread
and accumulation of pollutants, and many other pro-
cesses of natural and antropogenic characters, which
influence the environment in the Asian Pacific Region.
In such studies, the changes in the temperature regimes
and in the dynamics of the water bulk are the key
points. The cold Maritime and warm Tsushima cur-
rents, which travel in opposite directions, give rise to a
frontal zone and a great number of vortex systems. The
situation becomes still more intricate because of the
dynamic processes in the coastal regions of the ocean,
which are associated with the bottom topography and
tidal flows. With such an environment, the efficiency of
contact methods that are traditional for oceanology
depends on the possibility to arrange the measuring
devices at distances that do not exceed the spatial cor-
relation lengths of the processes to be studied, and to
perform long-term observations. The technical and eco-
nomical considerations led to new measuring technolo-
gies in the oceanographic practice, which are based on
the acoustic tomography technique. The implementa-
1063-7710/02/4801- $22.00 © 20001
tion of this technique often requires complicated and
expensive devices. For instance, in [1, 2], for monitor-
ing the current and temperature fields, vertical arrays
are proposed that consist of acoustic transceivers (i.e.,
combined sources and receivers of sound) and hydro-
phones. Such systems are practically inapplicable in
shallow-water regions with intense ship traffic and
high current speeds. On the other hand, according to
many publications [2–4], the use of single bottom-
moored systems for the transmission and reception of
probing signals can lead to errors caused by the insuf-
ficient time resolution of the ray arrivals and, hence, to
the impossibility of their identification. However, the
advantages of the aforementioned systems are so evi-
dent and promising that, in our opinion, further and
deeper studies are needed to develop simple and
highly efficient devices for acoustical methods of
monitoring the sea medium. Here, we present the data
of the experiments on the acoustic tomography using
single bottom-moored systems and probing signals of
high complexity.

To test the technique and the instrumental imple-
mentation of the tomographic system, an acoustical-
hydrophysical site was arranged at the coastal testing
ground of the Pacific Oceanological Institute, near the
Gamov Peninsula. The experimental site included fixed
self-contained transmitting and receiving systems that
can be installed at an arbitrary point and are cable-con-
nected with the coastal laboratory equipped with con-
trolling, data-collecting, and processing devices [5].
002 MAIK “Nauka/Interperiodica”
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As probing signals, phase-manipulated ones, namely,
M-sequences, were used, with 511 symbols in each
sequence, the characteristic polynomial ï9 + ï4 + 1, and
the symbol lengths that were equal to 4 or 8 periods of
the carrier frequency. The phase shift ϕ was specified to
be zero for the symbol “1” and ϕ = 174.934° for the
symbol “0.” Such values of the shift ensured a smooth-
ing of the envelope of the signal amplitude spectrum
and a partial suppression of the side peaks of the corre-
lation function. For the signal reception, radio-acoustic
buoys with hydrophones were used; the buoys were
positioned at different points of the site, 1 m above the
bottom. The received signal was subjected to the cross-
correlation processing with the transmitted one. The
correlation maximums determine the arrival times of
the ray groups or modes that propagate over different
paths. In these studies, we did not intend to solve the
inverse problem of reconstructing the hydrophysical
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Fig. 1. Acoustic paths and locations of the transmitting and
receiving systems: P1, transceiver 1; P2, transceiver 2; and
P3, single hydrophone (radio-hydroacoustical buoy).
parameters of the sea medium by means of a theoretical
inversion method. Instead, we approximately calcu-
lated the average sound speed and flow velocity to esti-
mate the accuracy of the method.

In the opposite-direction sounding, the arrival times

 and  were measured for the nth ray group (the nth
mode) that corresponded to the signal propagation
against and along the flow, respectively. Then, the sum

Sn =  +  and the difference ∆tn =  –  of the
arrival times were found. Finally, the component Vn =

∆tn /2r of the flow velocity was determined along the
path of the length r for the nth ray group (mode), and
the propagation velocity cn = 2r/Sn of this group was
calculated. In this procedure, we assumed that the field
of velocities Vn and cn was horizontally uniform and
that Vn ! cn. The relations used in the calculations were
based on the generalized reciprocity principle [6].

In the course of the experiments carried out from
October 1999 to November 2000, we used different
depths of the transceivers, receivers, and transmitters,
as well as different distances between them. We also
studied the parameters of the tidal internal waves, the
currents, and the water temperature on the shelf to test
and adapt different techniques of measuring the tem-
perature and current fields to the specific conditions of
the Sea of Japan. As a result, a representative body of
experimental data was obtained (about 400 h of contin-
uous records).

Here, we present the data of two experiments on
studying the possibility to use single bottom-moored
systems for acoustically monitoring the temperature
and the fields of currents in a shallow-water sea. Fig-
ures 1 and 2 show the map and the diagram of these
experiments.

To begin, we consider the experiment on measuring
the flow velocity by opposite-direction sounding. This
experiment was performed in October 2000.

The transmitter of an acoustic transceiver 1 that
was 150 m offshore and 1 m above the bottom (sea
depth 27 m, point P1) was electrically supplied and
controlled through a cable from the coastal station.
Transceiver 2 that was located 12 km away from the
coastline and also 1 m above the bottom (sea depth 60 m,
point P2) was self-contained in its energy supply. In
both transceivers, electromagnetic-type transducers
were used as the sound sources with a central frequency
of 250 Hz and a bandwidth of 60 Hz. The signals
received by the hydrophones of transceivers 1 and 2,
both mounted 20 cm apart from the centers of the emit-
ting transducers, were radio-transmitted to the coastal
laboratory for the data acquisition and analysis.

tn
– tn

+

tn
+ tn

– tn
– tn

+

cn
2

ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002



 

AC

       

ACOUSTIC TOMOGRAPHY OF DYNAMIC PROCESSES IN A SEA SHELF ZONE 3

                      
Laboratory

Radio-buoyRadio-buoy

Transceiver 1

Hydrophone

Transmitter

Transceiver 2

Hydrophone

Transmitter

Fig. 2. Positions of the devices at the experimental site.
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Fig. 3. Variations in the arrival times t of the sound signals versus time Tc of the day: (a) path P1–P2; (b) path P2–P1.

p.m.
At the experimental site, the water column was iso-
thermal from the surface to the bottom, with a slight
negative gradient in the vertical temperature distribu-
tion during the tide-caused intrusion of cold waters to
the shelf.
OUSTICAL PHYSICS      Vol. 48      No. 1      2002
Every minute, the transceivers transmitted the
M-sequences which were shifted relative to each other
by 30 s to eliminate the interference caused by their
own emissions. Figure 3 shows the variations in the
arrival times of the sound signals that were received in
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Fig. 4. Normalized cross-correlation function B in the range of signal arrival times t for two times Tc of the day (see Fig. 3) and two
propagation paths: (a) path P1–P2; (b) path P2–P1.
the opposite-direction sounding at the time of the max-
imal velocities of the tide-caused water flow. The
amplitudes of the cross-correlation function of the
transmitted and received signals are represented by the
brightness picture. The cross-correlation maximums
served to determine the arrival times. The comparison
of the two dependences shows that the main features of
the time structure of the sound field are the same for the
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Fig. 5. Dependences on time Tc of the day: (a) for the com-
ponent of the velocity of current V in the direction of signal
propagation for the whole waveguide (the solid curve) and
for the near-bottom layer (the dashed curve); (b) for the tide
height H.
sound propagation against and along the flow: the reci-
procity principle is valid. Figure 4 shows two fragments
of these dependences that more obviously exhibit the
reciprocity of the process and display the time shift
between the arrivals of the signals propagating in oppo-
site directions.

In Fig. 5, the component of the velocity of current
along the propagation direction and the tide height are
plotted versus time. The values of the velocity were cal-
culated according to the aforementioned formulas for
two signal arrivals: the first one formed by the rays
propagating in the whole water layer and the second
one formed by the rays propagating in the near-bottom
layer of colder water. The positive and negative values
correspond to the water flows towards and away from
the coast, respectively. The minimal velocity was
observed at ebb-tide (11 p.m.), and the maximal one
corresponded to high tide (8:20 p.m.). As one would
expect, the velocity is lower in the near-bottom layers
than in the upper ones. The data obtained in the experi-
ment agree well with the features of the dynamic pro-
cesses in the water bulk of this region of the ocean,
which were established in long-term oceanographic
studies.

In the experiment that was carried out in the middle
of October 1999, the sea medium was sounded by the
complex signals (an M-sequence with the 250-Hz cen-
tral frequency) every four hours, with the use of the
sound source mounted on transceiver 1 (Figs. 1 and 2).
The signal was received by the single hydrophone
located at point P3, at a distance of 15 km, again, 1 m
above the bottom. The received signals were transmit-
ted to the coastal station through a radio-channel.

In the shelf region where the transmitting and
receiving systems were located, the situation was gov-
erned by an irregular semidiurnal tide, with the associ-
ated variations in temperature and salinity. At high tide,
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Fig. 6. Variations in the water temperature T°C versus time Tc of the day. The parameters of the curves are the depths (in meters).
starting from the 16-m horizon, warm coastal waters
were replaced by colder and saltier sea waters. In this
process, the temperature variations reached 10°C in the
lower layers. Figure 6 shows the time dependence of
the water temperature at different depths.

Figure 7 illustrates the 24-hour variations in the nor-
malized cross-correlation function of the transmitted
sound signal and that received at point P3. As men-
tioned above, these variations are related to those in the
times of signal propagation along different paths. The
maximal values of the propagation velocity, as mea-
sured for the main part of the signal power, correspond
to 6:52 a.m. and 6:52 p.m., these times coinciding with
those of ebb-tides, that is, with the moments of the iso-
thermal water stratification caused by the withdrawal of
the cold salty water. One can see that the propagation
velocity is higher at 6:52 a.m., at the moment of the
main tide (the daily phase). The latter fact characterizes
the sensitivity of the proposed method, because, at
6:52 p.m., the vertical temperature distribution has a
higher negative gradient, and, hence, more of the signal
energy travels through the near-bottom water layer with
a lower sound speed. The latest arrivals of the main sig-
nal energy are observed at 2:52 and 10:52 p.m. These
values also agree with the ray theory, because they cor-
respond to the tide phases of the highest negative gradi-
ent in the vertical temperature distribution. Hence, at
these times, the rays travel along the longest paths near
the bottom, in the layers with the minimal sound speed.

To analyze the effect of fine phenomena of smaller
time scales on the sound propagation, we performed a
one-hour-long session of sounding with a repetition
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
rate of 30 s. The calculated cross-correlation functions
and the signal arrival times are shown in Fig. 8. The
time dependence shown exhibits pronounced effects
of a wave process having a period of about 20 min.
One can assume that, in this case, the sound field was
influenced by internal waves, because the previously
measured [7, 8] periods of internal waves have the
same values.

Thus, the method of sounding the sea medium by
complex signals revealed some features in the sound
field formed under the influence of the dynamic hydro-
physical processes. So, the conclusion can be drawn
that the proposed method and its instrumental imple-
mentation are promising for solving the inverse prob-
lems in coastal regions. The arrival times of ray groups
or modes depend on the vertical and horizontal distri-
butions of the sound speed, which, in turn, are governed
by the temperature and salinity distributions, as well as
by the direction and velocity of the current. In data pro-
cessing, the r.m.s. error is no higher than 2 ms, which is
low enough to measure the water temperature to an
accuracy of 1°C and the velocity of the current to an
accuracy of 0.1 m/s. The presence of several arrivals of
the ray groups (two to four in our experiments), which
travel through different layers of the waveguide, allows
one to estimate the fields of temperatures and currents
in the vertical plane.

The simplicity, mobility, and low cost of the devel-
oped technique support its practical use in solving
applied problems. The proposed tomographic systems
can significantly improve the technical properties of the
surfacing-and-drifting oceanographic buoys, which
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now are being set into practice in the United States and
Japan (the ARGO Program—Array Real-Time Geo-
strophic Oceanography). The use of the proposed tech-
nique seems to be most advantageous on shallow-water
shelves and in regions with complicated ice environ-
ments.
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Circular piezoceramic plates are widely used in
modern acoustic instruments. The study of circular
plates of a conventional shape (of uniform thickness
and constant radius, see Fig. 1a) is the subject of many
publications, e.g., [1–3]. From the experiment [1], it
has been known that, in the case of thickness vibrations,
the distribution of the normal displacement component
at the flat surfaces of a circular plate is not uniform (pis-
ton-like), as would follow from the one-dimensional
theory, but is oscillatory in nature. The solutions corre-
sponding to the experimental data were obtained later
using the variational method [2] and the finite-element
method (FEM) [3]. The vibrations characterized by a
cophased distribution of the axial displacement compo-
nent at the z = l plane and a dominance of this compo-
nent over the radial one were called quasi-thickness
vibrations [3]. It was shown that the quasi-thickness
vibrations are formed by the fourth, seventh, tenth, thir-
teenth and subsequent modes at certain values of the
piezoelectric plate thickness l/a. For each of these
modes, there exist the optimal plate dimensions l/a at
which the dynamic electromechanical coupling coeffi-
cient (DCC) is maximal.

The oscillatory nature of the distribution of the nor-
mal displacement component at the flat surfaces of a
piezoelectric plate results in the fact that the DCC of the
quasi-thickness vibrations of piezoelectric plates is
lower than the static coupling coefficient of thickness
vibrations kt calculated by the one-dimensional theory.
The DCC amounts to 0.7kt for the plates made of the
first-type piezoceramics and to 0.8kt for the second-
type piezoceramic plates [3, 4]. It is obvious that the
oscillations of the normal displacement component are
caused by the presence of a cylindrical surface confin-
ing the plate in the radial direction. By varying the
shape of this surface, i.e., by using a plate of variable
rather than uniform thickness, an effort could be made
to reduce the oscillations of the normal displacement
component (to smooth out its distribution) and to
increase the DCC of the quasi-thickness vibrations.

Two technologically simple modifications of vari-
able-thickness piezoelectric plates, symmetric about
1063-7710/02/4801- $22.00 © 20107
the plane z = 0, are shown in Figs. 1b and 1c. For brev-
ity of further discussion, we call the plate shown in
Fig. 1b the convex piezoelectric plate, as distinct from
the concave one in Fig. 1c. A common piezoelectric
plate is confined by the coordinate surfaces z = ±l and
r = a in the cylindrical coordinate system; its thickness
is defined by the dimensionless ratio l/a. The minimal
radius of the variable-thickness piezoelectric plate is a,
and the maximal one is a + h. The deviation of plate
shape from the conventional one can be described by
the dimensionless ratio h/a or h/l = .

To investigate the possibilities for improving the
behavior of the thickness vibrations of piezoelectric
plates, other variable-thickness plates were also consid-
ered. We call the piezoelectric plate shown in Fig. 1d
the biconvex piezoelectric plate, as distinct from the
biconcave one in Fig. 1e. The minimal thickness of the
variable-thickness plate is equal to the thickness of the
common plate 2l. The maximal thickness of the vari-
able-thickness piezoelectric plate is 2(l + b). The devi-
ation of the shape of the variable-thickness plate from
the common one can be described by the dimensionless
ratio b/l or b/a = .

In the analysis of natural vibrations of piezoelectric
plates, the following boundary conditions are assumed
to be satisfied. The whole surface of the piezoelectric
plate is free from mechanical stresses. Over the flat or
conical surfaces confining the plates in the axial direc-
tion, thin equipotential electrodes are applied. The
polarization vector is parallel to the z axis. At the sur-
faces free from electrodes, the normal component of the
electric induction is equal to zero.

It is well known [3–5] that, at given boundary con-
ditions for the analysis of the resonance (short circuit)
and antiresonance (idling) regimes, the FEM leads to
matrix eigenvalue problems of high dimensionality.
The solution of these problems provides the eigenval-
ues, i.e., the resonance and antiresonance frequencies,
and the eigenvectors, i.e., the nodal displacements.
Knowing the resonance eigenvalues and eigenvectors,
the DCC (k) can be calculated for any vibration mode

αtan

βtan
002 MAIK “Nauka/Interperiodica”



 

108

        

IVINA

                                                                      
as the ratio of the mutual energy to the geometric mean
of the elastic energy and the electric one.

The natural frequency spectra were calculated for
the resonance and antiresonance cases in a wide range
of geometric dimensions for all indicated types of
piezoelectric plates of unconventional shapes made of
ceramics of various compositions. The dependences of
the DCC on the geometric dimensions and on the dis-
tribution of the displacements (the vibration mode)
were also analyzed. The optimal geometric dimensions
of piezoelectric plates, at which the DCC of quasithick-
ness vibrations became maximal, were determined.

Consider, for example, one of the typical variants
for a convex plate (Fig. 1b) made of the TsTBS-3
ceramics with the parameters corresponding to the ref-
erence data [6]. The maximal DCC of the tenth mode of
quasi-thickness vibrations in a common piezoelectric
plate, k = 0.277, is attained at the optimal thickness l/a =
0.15. The distribution of the displacement components
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Fig. 1. Piezoelectric plates: (a) with a constant radius and a
uniform thickness; (b, c) with a variable radius, including
the (b) convex and (c) concave ones; and (d, e) with a vari-
able thickness, including the (d) biconvex and (e) biconcave
plates.
for this case is shown in Fig. 2 (curves 1 and 2). In this
figure, the abscissa represents the numbers of equidis-
tant nodal points in the range r/a ∈  [0, 1] at the flat sur-
face of a piezoelectric plate. The axial and radial dis-
placement components normalized to the axial compo-
nent at the center of the plate are plotted as ordinates.
When proceeding to the convex piezoelectric plate, the
modes of natural vibrations and, correspondingly, the
distributions of the displacements change considerably.
The distribution of the axial component of the displace-
ment is smoothed out, and the radial component is
reduced; at h/a = 0.2, the axial component of the dis-
placement has a monotonic distribution. At the optimal
geometric dimensions, the DCC of the tenth mode
reaches the value k = 0.339 and increases by δ10 =
22.4% relative to the common piezoelectric plate.

Now, we formulate the main conclusions and prac-
tical recommendations concerning the utilization of
variable-radius piezoceramic plates made of piezocer-
amics of various compositions.

For the first-type piezoceramics (TsTBS-3,
TsTSNV-1, and TsTS-19), the convex piezoelectric
plates like the plate shown in Fig. 1b is advisable. Then,
it is possible to increase the DCC of the quasi-thickness
vibrations up to the value k ≈ 0.8kt , i.e., in this index,
the first-type piezoceramics approaches the second-
type one. In addition, in this case, it is possible to con-
siderably improve the distribution of the normal dis-
placement component at the flat surface of the piezo-
electric plate (up to a monotonic distribution) and to
reduce the radial displacement component. The use of
concave piezoelectric plates made of the first-type
ceramics provides a less considerable improvement in
the displacement distributions and a small increase in
the DCC.

For the second-type piezoceramics (NBS-1, TBKS,
and TBK-3), the manufacture of a piezoelectric plate in
the form of the convex plate deteriorates the character-
istics of quasi-thickness vibrations. The manufacture of
a piezoelectric plate in the form of the concave plate
improves the distributions of the displacement compo-
nents at the radiating surface, but the DCC increases by
only 2–4%.

The biconvex shape of a piezoelectric plate made of
the TsTBS-3 ceramic raises the DCC of the three first
quasi-thickness modes by 10–23% and improves the
distribution of the normal displacement component at
the radiating surface. Each individual quasi-thickness
mode has its own optimal geometry of the variable-
thickness piezoelectric plate, which provides the maxi-
mal DCC. The increase in the DCC of quasi-thickness
modes that is achieved with the use of a biconvex piezo-
electric plate varies for different modes and decreases
with increasing mode number.
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Now, we formulate the main recommendations for
the utilization of variable-thickness circular piezoelec-
tric plates made of piezoceramics of various composi-
tions.

The DCC of quasi-thickness vibrations can be
increased solely with the help of a biconvex piezoelec-
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Fig. 2. Distributions of the (1, 3, 5) axial and (2, 4, 6) radial
components of the displacement at the flat surface of a con-
vex variable-radius piezoelectric plate: l/a = (1, 2) 0.15 and
(3–6) 0.16; h/a = (1, 2) 0, (3, 4) 0.16, and (5, 6) 0.2; k =
(1, 2) 0.277, (3, 4) 0.337, and (5, 6) 0.339.
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tric plate, whereas a biconcave plate fails to produce
this effect.

A greater increase in the DCC can be achieved with
a piezoelectric plate made of the first-type piezoceram-
ics (e.g, TsTBS-3), whereas a piezoelectric plate made
of the second-type piezoceramics (e.g., NBS-1) allows
only a slight increase in the DCC of the fourth mode.
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Abstract—Experimental data on the volume and surface prereverberation are presented. The main prereverbera-
tion features and parameters are considered, and the mechanism and theory of the phenomenon are discussed. The
range dependences of the prereverberation times are analyzed for different ocean regions and for distances from
180 to 1500 km. Quantitative data on the prereverberation times are presented. The widths of the scattering dia-
grams are estimated for the underwater and surface sound channels. © 2002 MAIK “Nauka/Interperiodica”.
In studying the fine structure of the sound field in the
Black Sea, the author of this paper discovered the phe-
nomenon of prereverberation. It consists in that, in the
amplitude–time structure of the sound field in an inho-
mogeneous stratified waveguide, a reverberation-type
background exists that precedes the arrival of the main
signal governed by the deterministic parameters of the
sound channel. Later, prereverberation was studied in
other ocean regions, both with fully insonified and zone
structures of the sound field, including moderate lati-
tudes and tropical regions of the Pacific, Atlantic, and
Indian oceans. The measured space–time dependences
were identical for all regions. In view of the general
character of the phenomenon in different conditions of
the natural waveguides, the determination of the nature
of prereverberation and a theoretical justification of this
phenomenon have become topical. For this reason, as
the amount of the experimental data collected for dif-
ferent regions of the Ocean increased, the new results
were repeatedly discussed at scientific conferences and
seminars. However, no reasonable physical explanation
was found for a long time, mainly because the prerever-
beration phenomenon does not obey the classical the-
ory of sound propagation in a stratified ocean [1]. Only
16 years after the discovery of the phenomenon, did the
author of this paper manage to fully explain the prere-
verberation [2, 3] in the framework of the simplest
model of the waveguide in the form of a surface chan-
nel with wind waves at its upper boundary (this theory
is not presented in the aforementioned publications).
By that time, the main features of the sound field,
including the prereverberation components, had been
studied in detail for different waveguides. Some of
these results can be found in [2–8]. To explain the phe-
nomenon, apart from the appropriate waveguide model,
one should find the rays along which the prereverbera-
tion signals arrive, then, determine the propagation tra-
jectories of the regular and scattered components of the
sound field, and, finally, prove that the travel time of the
1063-7710/02/4801- $22.00 © 0110
background signals is smaller than that of the main sig-
nal governed by the deterministic conditions. In addi-
tion, it is necessary to prove that, within the time inter-
val of adjacent ray cycles, prereverberation is formed
by two pairs of unique arrivals, which are asymmetric
in the associated cycle lengths and scattering angles.
The latter fact is not quite obvious for an underwater
sound channel. However, with the model of a surface
channel with a wavy upper boundary, the feasibility of
the observed prereverberation features seems to be
quite natural. As a result of the analysis, it becomes
clear that the prereverberation in an underwater sound
channel is governed by the same mechanism, the vol-
ume inhomogeneities being the scatterers in this case.
There are few publications on prereverberation. In
addition to the aforementioned publications [2–8], one
should mention the paper [9] that, as a matter of fact,
reports on the prereverberation components (they are
called “noise components” by the authors) for two
deep-water ocean regions without zone structure of the
sound field. In foreign publications, there are no special
studies aimed at identifying the regular and prerever-
beration components. Kibblewhite and Denham [10]
report that the regular component of the sound field is
accompanied by a noise, which precedes it and exists
some time after the regular component terminates. The
recent publications include three papers [11–13]. How-
ever, these studies deal with the coherence of the inte-
gral levels of the sound field, without resolving in time
and identifying the regular and random components.

By analyzing a large body of experimental data
obtained in different ocean regions, a number of fea-
tures were established [2–8] that are inherent in the reg-
ular and scattered components of the sound field:

(1) Prereverberation is represented by an incoherent
sound field that is caused by the scattering from volume
or surface inhomogeneities and that precedes the arrival
of the main refracted signals. In contrast to reverbera-
2002 MAIK “Nauka/Interperiodica”
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tion, which is mainly associated with back-scattering,
prereverberation is formed by forward sound scattering.

(2) While reverberation is a decaying process, prer-
everberation grows in its amplitude and reaches the
maximal level at the moment of arrival of the main sig-
nal, when it virtually merges with this signal. The ratio
of the prereverberation and the signal level can reach
0.1–1.0 at long ranges.

(3) As the range becomes longer, the duration of pre-
reverberation increases proportionally to the cycle
number and can reach several hundreds of milliseconds
at distances of several hundreds of kilometers. The
maximal duration of prereverberation is limited by the
difference in the arrival times of the adjacent compo-
nents. When the characteristic angles (at which the rays
cross the channel axis) decrease and the regular compo-
nents transform into the scattered prereverberation
ones, the arrivals of the coherent and incoherent signals
are equally probable in the vicinity of the channel axis,
and these signals overlap in time. Instead of a discrete
structure that is distinctly quantized in time and arrival
angles [4–6], the sound field takes the form of a noise-
like process with a uniform probability distribution of
the amplitudes, angles, and arrival times, within rela-
tively wide limits of their variations. The sound field
becomes fully incoherent.

(4) Within the first ray cycle, the signals that arrive
along the rays touching the bottom exhibit no prerever-
beration. The latter can exist only for the rays that pro-
duced two or more refraction cycles. If the sound field
has a zone structure, prereverberation is weakly pro-
nounced at distances up to those where the zones over-
lap, and it is absent at the extremum points and in the
caustic zones.

(5) The angular diagrams of the volume and sur-
face forward scattering (the phenomena causing prer-
everberation) reach ±0.5°–2.5° in their widths at a
level of –30 dB.

(6) The deterministic signals can be accompanied
by prereverberation, which also manifests itself after
their arrivals. In this case, the signal shape is nearly
symmetric due to the prereverberation components
caused by the side scattering [3].

To illustrate the fundamental features of the sound
field in underwater waveguides and the mechanism of
prereverberation formation, we consider a surface
channel with a wavy upper boundary. Let the sound
source and the receiver be at the channel axis. Figure 1
shows the ray pattern that demonstrates the process of
the sound field formation and the accompanying prere-
verberation. If the surface is flat and the channel thick-
ness is finite, the transmitting point (O) and the receiv-
ing point (A) can be connected by a set of refracted rays
that are strictly quantized in their arrival angles and
times and that produce 1, 2, … full cycles. In the case
at hand, for an arbitrary distance, the angle and time
quantization can be analytically expressed in the form
that represents a strictly discrete sequence in the arriv-
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
als of the deterministic components [3]. In the only pos-
sible situation, the boundary ray 1, which corresponds
to the maximal velocity, will be the first to arrive at the
point A. This ray carries no prereverberation signal.
Ray 3 arrives second: it produces two full cycles. Later,
the rays arrive that produce three and more full cycles.
If the surface is rough, the rays that do not obey the
quantization condition for the deterministic waveguide
can also arrive at the point A. In advance of ray 3, the
rays can arrive at point A that are scattered by the sur-
face and are asymmetric in their lengths and arrival
angles, namely: rays 2 and 2', as well as rays 4 and 4',
which have equal mean propagation velocities and
which undergo one surface reflection each. Their scat-
tering diagrams are limited within the grazing angles
∆α = α2 – α1. Any other combination of the scattered
rays with more reflections leads to prereverberation for
the subsequent signal components. If the difference in
the arrival angles tends to zero and, hence, the cycle
lengths of rays 2 and 2', 4 and 4', respectively, become
equal, the prereverberation components transform into
the deterministic ray 3. In an underwater sound chan-
nel, the mechanism of prereverberation is the same. The
only difference consists in that, in this case, the volume
inhomogeneities are the scatterers. For the surface
channel with a linear sound speed profile, a simple
expression was obtained in [4] for the dependence of
the relative duration of prereverberation on the range
within the first boundary cycle. In accordance with the
sea state and the concentration of the volume inhomo-
geneities, changes occur in the frequency-dependent
absolute levels of the sound field, in the scattering dia-
gram, and in the prereverberation duration.

Let us consider typical structures of the sound field
in an underwater sound channel to analyze the behavior
of both the components and the whole signal. To study
the fundamental characteristics of prereverberation, we
use the data obtained in autumn, in the Black Sea where
both underwater and stable surface channels were
present. The sea depth was 2000 m, the depth of the
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Fig. 1. Sound speed profile and ray pattern illustrating the
mechanism of the prereverberation formation in a surface
channel. The source and the receiver are both at the channel
axis; r is the distance, H is the depth, and a is the relative
sound speed gradient.
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Fig. 2. Oscillograms of the explosion-generated signals in the underwater sound channel at the distances (a) 130 m, (b) 37, and
(c) 140 km. The depth of explosions is 35–40 m, the reception depth is 60 m, and the frequency is 3 kHz.
channel axis was 60 m. The sound speeds were 1460 m/s
at the axis, 1500 m/s near the surface, and 1505 m/s
near the bottom. With such a difference in the sound
speeds near the surface and the bottom, the refracted
rays reaching the surface were those with the grazing
angles from 0° to 5° at the distances 34–40 km, and the
difference in the departure angles was ±2°. Explosive
charges of 25 kg were used as the sound sources. The
charges were detonated under the discontinuity layer, at
depths of 30–40 m, where the sound speed was 1470–
1474 m/s. The signals were received at a depth of 35 m.
The analyzed frequency was 3 kHz, and the bandwidth
was 20%. The signals received at the sea states of Beou-
fort 2–3 were photorecorded directly from the electron-
ray tube, in a linear scale. The film was pulled at a
velocity of 326 mm/s. Figure 2 shows the space–time
structures of the signal amplitude, including the indi-
vidual components of the sound field. The curves cor-
respond to the high-frequency band of the signal prop-
agating in the waveguide with the aforementioned
parameters. The illustrations cover the near-field zone
(130 m), the distance of the first boundary cycle (37 km),
and the zone of full insonification (140 km).

In the near-field zone, single signals of the shock
wave and those of the first gas-bubble oscillation can be
seen. The period of this oscillation is 275 ms. At the fre-
quency at hand, the ratios of the amplitudes of the
shock wave and the first bubble oscillation are within
20–25 dB. In the records, the signals of the shock wave,
which correspond to the direct and surface-reflected
components, are limited in their amplitudes by 20–22
and 10–12 dB, respectively. The signals of the gas-bub-
ble oscillation were not limited in the records. At small
distances, the leading edge of the signal is sharp: the
signal level rapidly increases. The signal is followed by
the surface reverberation of a considerable duration and
a high level. The volume reverberation, which can be
seen between the direct and the surface-reflected sig-
nals, has the level that is by 10 dB lower than that of the
surface reverberation. The same amplitude ratios are
characteristic of the signals of the first gas-bubble oscil-
lation.

In an underwater waveguide, the signals usually
arrive in the form of quartets characterized by relatively
close arrival times. At the distance 37 km, where the
deep boundary ray reaches the reception point and
where all signal components allowed by the waveguide
at hand exist, the first components arrive at the surface,
and, just as in the near-field zone, they are followed by
a high-level reverberation. Again, the level of these
components sharply increases. The subsequent signals
are purely refractive ones: they produce two or more
full cycles and interact with neither the surface nor the
bottom. Pronounced noise-like components occur
before each of these signals, and the leading edges of
the deterministic components are less sharp. The level
of the noise-like components increases and reaches its
maximum at the moment of the arrival of the main sig-
nal. Due to these properties, these components are
called prereverberation. The reverberation following
the refracted components is much weaker. It is difficult
to resolve the signal quartets in time because of the
small depths of the transmitter and the receiver. The
first arrival is the only one that is partially resolved (into
signal pairs).

At the distance 140 km, the first and second signals
are separated by an interval, which has increased
approximately in proportion with distance (full propor-
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Fig. 3. Fragments of the oscillograms obtained for the signals in the surface sound channel of the north-western Pacific at the dis-
tances 290 and 390 km. The depth of explosions is 300 m, the reception depth is 200 m; A is the prereverberation and B is the main
signal. The amplitudes are shown on a linear scale.
tionality exists only at the distances that are multiples
of the refraction cycles and at fixed characteristic
angles). The time structure of the arrivals is changed.
The first signal reaching the surface has a pronounced
reverberation and prereverberation of small duration.
Subsequent signals, which are separated in time, are
accompanied by a prereverberation of a considerable
level. At the moment of the arrival of the deterministic
signals, the prereverberation amplitude has a value of
0.3–0.4 relative to the maximal level. The prereverber-
ation times are within 40–60 ms. The first signal has a
prereverberation duration of 12 ms, because it propa-
gates somewhat above the bottom (40 m). As the range
increases, the near-axis components loose their regular
properties because of the growing effect of prereverber-
ation: they transform into random components that
overlap in time and have equal levels. The sound field
becomes totally diffuse, with a uniform distribution of
phases and amplitudes for the characteristic angles
within ±5° and the arrival times within 200–300 ms.

Figure 3 shows fragments of the oscillograms corre-
sponding to the components of the sound field (the sig-
nal quartets) generated by the explosive sound sources
at distances of 290 and 390 km. These data were
obtained in conditions close to those of a surface sound
channel. The frequency is 500 Hz. The grazing angles
are 13–14° near the surface. The shown records are
obtained in the central part of the Pacific Ocean, at
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
northern latitudes, with the path length 1000 km, at sea
states of Beoufort 2–3 to 5–7. The path had a latitudinal
orientation and passed behind the Impair Mounts, along
the surface isotherms with the temperature 15–16°C of
the upper water layers at the 45° latitude. The path began
at 173° E and terminated at 175° W. The channel axis
was shallow: 40 to 100 m. At distances up to 500 km
from the reception point, the near-surface sound speed
was 1490 m/s; at 1000 km, it increased to 1495 m/s. At
the same time, the near-axis sound speed changed from
1450 m/s at the reception point to 1464 m/s at the ter-
minal point of the path (distance 1000 km). At the
depth 5000 m (near the bottom), the sound speed was
1542 m/s. The 25-kg explosive charges were used in
the experiment. The explosion depth was 300 m, the
reception depth was 200 m. The ocean depth was
mainly lower than 5000 m along the path, but exceeded
6000 m at the reception point. For the 300-m source depth
(the sound speed 1460–1468 m/s), a powerful surface
channel existed with the difference 50–55 m/s in the
sound speeds near the surface and the bottom. In these
conditions, the signals reaching the surface were those
whose grazing angles were within 0° to 15.5°, with ray
cycles 45–73 km in length. The prereverberation com-
ponents have levels of 0.3–0.4 relative to the maximum
of the deterministic components. The duration of prer-
everberation is 330–400 ms. The levels of reverberation
are 8–10 dB lower than those of the prereverberation. In
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Fig. 4. Oscillograms illustrating the amplitude and space–time structures of the signals in the northern and central regions of the
Pacific Ocean at the frequency 400 Hz. (a) The northern region: the distance is 500 km and the explosion and reception depths are
each 100 m. (b–e) The central region: the reception depth is 200 m and the distance is (b) 400, (c) 590, (d) 735, and (e) 1500 km;
the explosion depth is (b–d) 100 and (e) 200 m. The amplitudes are shown on a linear scale.
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a number of records, signal forms close to symmetric
were observed. In such situations, the reverberation-
type tales of the signals are governed by both reverber-
ation components (of small amplitude) and prerever-
beration ones (side-scattering). The associated levels
depend on the angles between the propagation direc-
tions of the sound waves and the wind waves at the sur-
face.

To illustrate the time structure of the sound field and
the prereverberation properties in the convergence
zones, the data are presented that were obtained in the
tropical region of the Pacific Ocean and in the subtrop-
ical region of the Atlantic Ocean. The oscillograms of
the signals received in different ocean regions are
shown in Fig. 4. To compare the amplitude-time struc-
tures of the sound field in the convergence zones of
tropical latitudes and in fully insonified zones of mod-
erate latitudes, Fig. 4a shows a record of the full system
of signals received in the north-western part of the
Pacific Ocean. The path length was 500 km, the fre-
quency was 400 Hz. The components of the sound field,
both separate and overlapped in time, can be seen. For
this set of explosions, the oscillograms of the individual
components are shown in Fig. 3 in more detail. The four
initial arrivals of the signal quartets that are separated in
time propagate in the waveguide with surface reflec-
tions. The time-overlapped terminal part of the record
is constituted by purely refracted signals that propagate
near the channel axis without surface reflections. The
total duration of the signal is 3.5 s. The near-axis noise-
like irregular part of the signal, which is formed by the
components with the characteristic angles ±11°–12°
and influenced by the prereverberation components,
has the duration 800 ms. The prereverberation time of
the separated components is within 100–350 ms. The
first signal quartet, which precedes the subsequent ones
by 1.26 s and is reflected from the surface at grazing
angles of 16°, is 15–20 dB weaker than the subsequent
quartets and has a significant coherent part. The levels
of the incoherent near-surface components, which
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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overlap in time, are 5–6 dB higher than the levels of the
individual components.

Figures 4b–4e present the amplitude and space–
time structures of the sound field for the Pacific Ocean
(south-west of the Hawaii Islands), at the propagation
distances 400–1500 km. In the experiment, 25-kg
charges were exploded at the depth 100 m. The dis-
tances were 200 m to 1500 km. The signals were
received at the depth 200 m and analyzed at the fre-
quency 400 Hz. The sound speed profile was typical of
tropical ocean regions. The thickness of the surface
sound channel was 60–70 m. The sound speeds were
1538 m/s near the surface, 1490 m/s at the channel
axis (1000 m), 1542 m/s near the bottom (5000 m),
and 1520 m/s at the horizons of transmission and
reception (200 m each). With the zone structure of the
sound field, the records exhibit arrivals that are dis-
tinctly separated in time by 1–1.14 to 0.55 s, and an
amplitude difference up to 30 dB. At the distance 400 km,
only the refracted signal of the shock wave that pro-
duces six full cycles can be seen. There are also two
gas-bubble oscillations with a period of 100 ms. Bot-
tom reflections are absent. The convergence zones begin
to overlap at the distances 450–500 km. At 400 km, two
forerunners can be seen with advance times of 1.1 s.
The forerunners are caused by the arrivals of the scat-
tered signals from the surface channel. Within the fre-
quency band determined by the channel parameters, the
refracted signals that reach the surface in every cycle
are captured by the waveguide (because of the scatter-
ing from the wavy surface), propagate in it, and, after
surface reflections, penetrate below the discontinuity
layer thereby reaching the receiver. Their amplitudes
usually are 30–40 dB below the generating compo-
nents. The prereverberation components are weakly
pronounced. Their advance times are not higher than
30–40 ms, and the levels are 30–40 dB lower than those
of the deterministic components. At distances of 590–
1500 km, the number of signals increases to six. The
prereverberation is most pronounced for the second
components, at the distances 590 and 735 km. The
prereverberation time reaches 120 ms, and the level is
not higher than 0.10–0.15 relative to the levels of the
deterministic components. Other components have
lower times and levels of prereverberation. The only
exception is the distance 1500 km (the 25th–30th con-
vergence zones) where some components have prere-
verberation times as high as 150 ms and amplitudes up
to 0.3–0.4 of the maximal value. At both moderate and
tropical latitudes, the difference in the arrival times of
the first and second signals is 1.1–1.26 s. The doubled
difference in the arrival times of the refracted compo-
nents determines the wavelength corresponding to the
critical frequency of the waveguide. Hence, in the
Pacific Ocean with the depth 5000 m, this frequency is
0.4–0.45 Hz, depending on the sound speed profile.

To analyze the field structure in the convergence
zones of the Atlantic Ocean, we consider the records
obtained on the path 740 km long. The path passed
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
through the deep-water Canary Hollow, to the south-
west of Madeira Island, and was oriented towards the
Great Meteor Bank. The sea depths were 5000–6000 m.
The sound speed profile exhibited a deep axis of the
sound channel and a monotone decrease in the sound
speed from the surface to 1700 m; at deeper horizons,
the speed slowly increased. The profile was close to
parabolic. As a result, the near-surface convergence
zones were rather short. The sound speed was 1520 m/s
near the surface, 1497 m/s at the channel axis, and
1542 m/s near the bottom (5000 m). The surface
waveguide was 30–40 m in thickness. As in the afore-
mentioned experiments, the sound sources were the
25-kg explosive charges. The depth of explosions was
150 m, the reception depth was 50 m. Figure 5 shows the
sound field structure obtained at the frequency 400 Hz in
the first (70 km), second (130 km), and combined 11th
and 12th (740 km) convergence zones. At distances up
to 600–670 km, the structure consists of single signals
(the signal quartets). At ranges as long as 740 km, the
convergence zones (the 11th and 12th ones) begin to
overlap. At the distance 70 km, in addition to the signals
of the shock wave (limited by 7–8 dB) and those of the
first bubble oscillation, one can see twofold bottom-
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Fig. 5. Oscillograms illustrating the amplitude and space–
time structures of the signals in the Atlantic Ocean. The fre-
quency is 400 Hz; the explosion depth is 150 m; the recep-
tion depth is 50 m; and the distance is (a) 70, (b) 130, and
(c) 740 km. The amplitudes are shown on a linear scale.
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surface reflections, with a delay of 1.4 s. At greater dis-
tances, only one refraction signal is present in each
record. The bottom reflections are absent at this fre-
quency. In a broad frequency band, the coefficient of
bottom reflection is not higher than 0.1–0.15. As was
mentioned above, at the distance 740 km, there are two
signals that correspond to the 11th and 12th convergence
zones. The difference in their delay times is 730 ms,
which corresponds to 1 ms/km. Hence, the critical fre-
quency of the channel is 0.67 Hz in contrast to 0.4–
0.45 Hz in the Pacific Ocean at the same depth (5000 m).
At the frequency 400 Hz, the difference in the levels of
the shock wave and the first bubble oscillation is 8–12 dB.
According to the records shown, in this region of the
Atlantic Ocean, no prereverberation manifests itself in
the convergence zones with the sound levels from –20
to –40 dB. This fact can be primarily attributed to the
high stability and uniformity of the sound speed profile
along the path, to the monotonic character of the verti-
cal sound speed gradient in the upper and lower layers
of the ocean, and to the signal reception in the vicinity
of the caustic. The broadening of the convergence zone
boundaries follows the Airy function. When receiving
the signal at deep horizons (200–300 m) outside the
caustic zone, the prereverberation is also insignificant
and has a duration of less than 10–20 ms. At the dis-
tance 740 km (the 12th convergence zone, the 2nd group
of signals in Fig. 5c), the rays of the ray quartet are
separated in time. The separation of the quartet com-
ponents can also be noticed in the bottom reflections
(Fig. 4a).

Figure 6 shows the averaged range dependences of
the duration of volume prereverberation for the under-
water sound channel of the Black Sea and the surface
channel of the north-western Pacific, i.e., for the
regions where prereverberation is most pronounced.
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Fig. 6. Range dependences of the prereverberation duration
in the underwater (crosses) and surface (dots) sound chan-
nels. The triangle corresponds to the data by Popov and
Tyurin [9].
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Line 1 (crosses) approximates the average increase in
the prereverberation level in the underwater channel,
and line 2 (dots) corresponds to the surface channel.
The prereverberation time was calculated starting from
the moment when the prereverberation level became
higher than the noise level and ending with the moment
when the deterministic component arrived. The level
difference was 20–35 dB. The plot illustrates the prere-
verberation times for the signals whose characteristic
angles are within 7–11° in the underwater channel and
10–13° in the surface channel. For smaller characteris-
tic angles, the prereverberation increase is limited by
the difference in the arrival times of the deterministic
components.

From the time dependences of the prereverberation
amplitude obtained above, we calculated the scattering
diagrams for the underwater and surface channels. Evi-
dently, it was impossible to determine the prereverber-
ation duration for the distances longer than 600 km in
the Pacific Ocean, because, at such ranges, the deter-
ministic and surface-scattered components rapidly
decayed and then vanished. The near-axis components
that do not touch the surface are present at distances up
to 1000 km at frequencies up to 1000 Hz. The forward-
scattering diagrams were calculated for the channels at
hand. With the aforementioned grazing angles, the
width of the scattering diagram of volume prereverber-
ation is within ±0.5°, and the corresponding value for
the surface prereverberation reaches ±2.5°. The side
field was limited by the levels –20 to –35 dB relative to
the level of the specular component.

The described experimental data on the sound fields
in the underwater waveguides and the analysis of the
field structure and stability show the variety of the field
properties in different ocean regions.
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4th Russian Research-Engineering Conference
“State of the Art and Problems of Navigation

and Oceanography”
The 4th Russian Research-Engineering Conference
“State of the Art and Problems of Navigation and
Oceanography” was held on June 6–9, 2001 in St. Peters-
burg. It was organized by the State Research Naviga-
tional-Hydrographical Institute (SRNHI) of the
Defense Ministry of the Russian Federation together
with the St. Petersburg Maritime Assembly, Leningrad
District Office of the Krylov Research-Engineering
Society of Shipbuilders, Institute of Problems of
Mechanics, Russian Academy of Sciences, Russian
Public Institute of Navigation, Russian Hydrographical
Society, and Radio Navigation Interstate Council with
support from the City Administration of St. Petersburg.
Such conferences have been regularly held since 1992.

The conference Organizing Committee was headed
by the Commander of SRNHI, Doctor of Engineering,
Corresponding Member of the Transport Academy,
Rear Admiral S.P. Alekseev.

The wide scope of the conference was presented in
more than 170 papers delivered within the framework
of eight sections. Four of the sections were largely
devoted to acoustic methods and devices: Section 2
Autonomous Navigation Systems and Complexes, Sec-
tion 5 Hydrography and Nautical Cartography, Section 6
Means and Methods of Marine Geophysics, and Sec-
tion 7 Oceanographic Research.

The importance of designing new means of oceano-
graphic and geophysical monitoring is evident. For
example, research activities in the Gulf of Finland
aimed at the development of transportation and com-
munications demand new generation equipment. These
activities include engineering-geological research to
determine the routes for the North-European pipeline
and the Russian–Finnish optical-fiber communication
cable.

In 1998, the International Hydrographical Organiza-
tion developed a new version of standards, S-44 for
hydrographical works, which reflect stricter require-
ments on the precision of the sea bottom profiling for
both solving economics problems and providing for
general navigation safety. For example, a mandatory
total survey of navigation routes, approaching chan-
nels, and harborages with the help of multibeam under-
water acoustic systems is indicated.

Therefore, new hydrographical systems both exist-
ing and under development and their conformity to new
1063-7710/02/4801- $22.00 © 0118
trends were brought to the attention of conference par-
ticipants.

Sonar systems for various hydrographical applica-
tions, e.g., mapping of the bottom profile of large areas
(Institute of Radio Engineering and Electronics, Rus-
sian Academy of Sciences) and the mapping of mor-
phological features of the bottom relief and coastline
(Shirshov Oceanology Institute, Russian Academy of
Sciences), were widely presented. A review paper from
the Morfizpribor Central Research Institute and SRNHI
on modern trends in the development of equipment for
the remote profile survey of soil aroused considerable
interest. In the paper, primary attention was paid to
wideband underwater acoustic profilographs, which
would satisfy the requirements of modern geomonitor-
ing, e.g., would solve the problem of bottom stratifica-
tion with the resolution of layers 0.2–0.4 m.

Prospects for the development of a new generation
of automated hydrographical systems on the basis of
double-frequency and multichannel echo-sounders
(SRNHI) were discussed. Such systems will provide
the opportunity to abandon the obsolete hydrographical
practice of bottom profiling by measuring in tacks
using a single-beam echo-sounder.

In underwater acoustic support for mapping and
monitoring, important problems involve automation,
the combination of acoustic techniques with other
methods (e.g., with geomagnetic survey), data inter-
preting, error minimization, and, finally, the develop-
ment of appropriate software [papers presented by
SRNHI, Institute of Radio Engineering and Electronics
(Russian Academy of Sciences), Institute of Oceanol-
ogy (Russian Academy of Sciences), the Elektropribor
Central Research Institute, the Briz Research Institute,
and the Kurs Central Research Institute].

For example, a system approach is suggested for the
important problem of bottom measurement: a measur-
ing complex includes not only an echo-sounder but also
receiving equipment for satellite navigation, a mapping
system, and equipment for monitoring ship position.
The conference proceedings demonstrated that such a
system approach is now a common standard for under-
water acoustic bottom survey. The main problems are
the increase in the measurement efficiency and the pos-
sibility of the soil classification. For these purposes, a
measuring system may be equipped with a profilograph
and a side-scan sonar. However side-scan sonars do not
2002 MAIK “Nauka/Interperiodica”
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always meet the requirements, because they lack verti-
cal selectivity and the sea depth cannot be determined
with their help. Measurement efficiency can be consid-
erably increased with the help of multibeam echo-
sounders, which are already used extensively outside
Russia.

Appropriate software is now being developed to
increase survey efficiency. For example, one of pre-
sented software packages (Institute of Radio Engineer-
ing and Electronics, Russian Academy of Sciences) is
used to solve the problems of the determination of soil
type and to simultaneously present the results of the
operation of a profilograph and a side-scan sonar in a
form convenient for the further classification of the bot-
tom by an operator.

The interest in systems, which could solve the prob-
lem of the remote classification of bottom sediments by
acoustic methods, is not surprising. It seems that suc-
cessful research in this area is possible with the correct
implementation of foreign experience (such systems
already exist in Australia and the United States), while
proceeding from simplified to detailed classification
models based on geoacoustic parameters of the actual
sea bottom. Moreover, now, with the development of
system integration, it is better to combine the remote
acoustic methods with contact soil sampling rather than
to separate the two approaches.

Considerable attention at the conference was given
to the techniques for the transmission and reception of
wide-band (super-wide-band) signals and FM signals
and to the numerical processing techniques. The signal
bandwidth that is sufficient for solving the problems of
bottom monitoring and the monitoring of wind waves is
a distinctive feature of photoacoustic sources exited
remotely at the sea surface by laser radiation. A paper
from the Andreev Acoustics Institute was devoted to the
demonstration of the measurement capacities of this
type of source.

Acoustic solutions for navigation problems were
also proposed. For example, a paper from the Morfiz-
pribor Central Research Institute presented new modi-
fications of the known correlation hydroacoustic instru-
ment for the measurement of ship velocity. Expressions
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
for the space-time correlation function of a signal scat-
tered by the sea bottom were calculated in the frame-
work of one of the phenomenological models of a scat-
tering bottom.

Lately, at all conferences on fundamental and
applied oceanology, interest is centered on various
aspects of the development of oceanografic databases.
Work on the maintenance of databases on longterm
oceanological observations, their development, and
their adjustment to the requirements of the Unified Sys-
tem of Information on the Situation in the Ocean is
being conducted at SRNHI. Certain organizational
problems are connected with the sharp cutback of infor-
mation during the 1990s and also with the natural
necessity to transfer the initial data obtained earlier
from old magnetic media to CD-ROM.

A very important issue brought up in papers and dis-
cussions was the relationship between the development
costs of a new generation of equipment and the costs of
the modernization of the equipment currently used by
hydrographic, pilot, and other services. For example,
equipping echo-sounders with separate digital units for
communication with the data acquisition and process-
ing equipment provides an opportunity for hydrograph-
ical service to work with the equipment that is currently
at hand for several more years until the new equipment
becomes available. The experience in the moderniza-
tion of underwater acoustic equipment, which was
accumulated by the Gidromaster Moscow research-
technological company was approved by the audience.

The international status of the conference was char-
acterized by the presence of researchers and experts
from Poland, Germany, the United States, and China.
Foreign companies manufacturing underwater acoustic
equipment actively promoted their products through
informative presentations and seminars.

S. V. Egerev

Translated by M. Lyamshev
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Characteristics of Thermal Acoustic Radiation
as a Source of Acoustic Signals
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Abstract—A linear dependence of the output voltage of an acoustic thermometer on the temperature dif-
ference between the source and the piezoelectric transducer is demonstrated experimentally. The constant
component of the output voltage is determined by the noise temperature of the receiving device. The main
feature of the thermal acoustic radiation as a source of acoustic signals is that the signal is represented not
by the total thermal radiation of the object, which is proportional to the absolute temperature of the latter,
but by the part of this radiation that is proportional to the temperature difference between the object and the
transducer. © 2002 MAIK “Nauka/Interperiodica”.
The possibility of designing a passive acoustic ther-
motomograph for biomedical applications is much dis-
cussed in the literature [1–8]. Investigations of the
parameters of thermotomograph sensors, i.e., acoustic
thermometers or sensors of thermal acoustic radiation,
are conducted for this purpose [1, 9–13]. Nevertheless,
many fundamental problems of the physics of thermal
acoustic radiation remain unsolved. The main problem
is how to take into account the contribution of the noise
produced by a heated body and by a piezoelectric trans-
ducer to the measured signal.

Measurements of thermal acoustic radiation are fun-
damentally limited because of the necessity to take into
account the self-radiation of a transducer. A body
heated to the temperature T must emit radiation with the
intensity proportional to this quantity [12]. However, a
piezoelectric transducer (a receiver of radiation) also
has a definite temperature TTR, and, therefore, it must
also emit thermal radiation determined by this temper-
ature. As a result, two radiation fluxes propagate
towards each other in the medium adjacent to the trans-
ducer, and the total flux of radiation is determined by
their difference. If the body temperature is higher than
the temperature of the piezoelectric transducer, T > TTR,
the radiation flux is incident on the transducer from out-
side; if T < TTR, the transducer emits into the surround-
ing medium; and if the temperatures are equal, T = TTR,
the total radiation flux is equal to zero. The measured
quantity is the so-called acoustic brightness tempera-
ture TA [9, 12] defined as the temperature of a black
acoustic body that creates the same flux of acoustic
radiation as the object under investigation. This temper-
ature is proportional to the mean square of the sound
1063-7710/02/4801- $22.00 © 20012
pressure  measured by the transducer. It is still not
quite clear how to connect the values of TA with the
temperatures of the object and the transducer. A similar
problem was considered theoretically for a flux of ther-
mal electromagnetic radiation [14]. Such studies for
acoustic radiation have not been performed yet.

As there is no clear understanding of the mecha-
nism of the acoustic signal formation owing to ther-
mal acoustic radiation, it is difficult to interpret the
results of temperature measurements using a correla-
tion technique [5, 15]. With this method of reception,
electric voltages from two piezoelectric transducers are
recorded separately, and then they are multiplied and
averaged. As a result, the so-called acoustic brightness
temperature of the correlation signal TAC is measured.
Two results are obtained experimentally:

(1) the peak value of the correlation signal TAC is
proportional to the temperature difference T – TTR;

(2) the increments of the acoustic brightness tem-

peratures  and  measured using a modulation
technique by the first and second sensors separately are
also proportional to the same quantity.

The values of the correlation coefficient R =

TAC/  estimated according to these data
reached 0.6–0.7.

The first of these results does not seem evident. If
the intensity of the thermal radiation of a body is deter-
mined by its absolute temperature, then, by analogy
with the measurement of a noise signal from active
sources, it is natural to expect that the peak value of the
correlated signal will be proportional to the value of T
rather than T – TTR. Thus, here we have a disagreement
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between the experimental data and theoretical esti-
mates. The clarification of the origin of this disagree-
ment is also important in practice, since the differences
in the signal values by a factor of several tens can
strongly affect the possibility of solving the inverse
problems of passive acoustic thermotomography [5].

The first step in solving the problem on the specific
features of thermal acoustic radiation as an acoustic
signal must be the investigation of signals obtained in
the case of uncorrelated reception. In [9, 16], to mea-
sure the thermal acoustic radiation intensity, its source
(a body with the temperature T) was placed into a basin
with the temperature TAQ, where a piezoelectric trans-
ducer with the temperature TTR coinciding with the
basin temperature TAQ was positioned. Already, one of
the first studies of acoustic thermography [16] demon-
strated that the signal obtained at the output of an
acoustic thermometer increases when a body with a
temperature higher than the basin temperature TAQ
occurs in its range of vision, and decreases when the
temperature of this body is lower than TAQ. It was found
that the signal magnitude is proportional to the temper-
ature difference T – TAQ. Later on, this result was con-
firmed in [9, 12]. However, because of the peculiarities
of the modulation scheme of the reception of thermal
acoustic radiation, which was used in these studies, it
was impossible to give an unambiguous answer to the
question of whether the acoustics brightness temperature
is determined by the temperature difference T – TTR.

To describe the signals measured by an acoustic
thermometer, a semi-empirical formula was suggested

in [10] for the mean square of the electric voltage 
detected at the piezoelectric transducer. This formula
contains a term depending on the temperature differ-
ence between an object and a transducer T – TTR. How-
ever, there is no strict derivation of this formula.

The purpose of this paper is the measurement of the
dependence of the acoustic brightness temperature on
the thermodynamic temperatures of a source of thermal
acoustic radiation and a transducer and to obtain the
corresponding theoretical expression describing this
dependence.

Let us consider the distinctive features of the modu-
lation scheme of measurement [9, 12] to select the opti-
mal scheme of the experiment. A body with the temper-
ature T was placed in a basin with the temperature TAQ.
A piezoelectric transducer with the temperature TTR
coinciding with the basin temperature was also posi-
tioned in the basin. A flux of thermal acoustic radiation
was periodically interrupted with a frequency of several
hertz. Thermal acoustic radiation from the object
arrived at the piezoelectric transducer during one of the
half-periods, and thermal acoustic radiation from the
basin arrived during another half-period. The difference
between the signals obtained during the two half-peri-
ods was measured.

u2
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Let us show that the dependence of the signal mag-
nitude on the basin temperature that is recorded in the
case of the modulation reception does not permit unam-
biguous interpretation. In [9, 12], the body under inves-
tigation and the basin were treated as two independent
objects and the intensities of their thermal radiations
were compared. The temperature of the piezoelectric
transducer was taken into account only to the extent
that it determined the intrinsic noise of the transducer.
The fact that it had the same temperature as the basin
did not provide grounds to believe that the signal pro-
portional to the difference between the temperatures of
the object and the piezoelectric transducer (T – TTR) was
recorded. Thus, the question of what is the quantity
measured by the receiver of thermal acoustic radiation
remains open.

From a practical point of view, this ambiguity does
not affect the results of temperature measurements
with the use of a noncorrelation technique. It is always
possible to calibrate a receiving device according to
several values of the object temperature and obtain a
unique relation between the mean square of the voltage

 picked up from a piezoelectric transducer and the
object temperature T. Nevertheless, as mentioned
above, this question is of key importance for correla-
tion measurements.

To eliminate the ambiguity connected with the mod-
ulation reception, we measured thermal acoustic radia-
tion using a nonmodulation technique (Fig. 1). The
measurements were conducted in (1) a 40 × 28 × 30-cm3

basin filled with water. The source of thermal acous-
tic radiation was (2) a wide plasticine bar (the absorp-
tion coefficient of ultrasound in plasticine at the fre-
quency about 2 MHz is 5 cm–1 [12]), which played the
role of an acoustic “black” body. The bar was posi-
tioned in (3) a cuvette (a thermostat) with thick foam-
plastic walls and acoustically transparent windows. The
cuvette was also filled with water. The temperatures of

u2
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Fig. 1. Experimental setup: (1) a basin filled with water;
(2) a plasticine bar; (3) a cuvette with foam-plastic walls
and acoustically transparent windows, which is also filled
with water; (4) a piezoelectric transducer; (5) an amplifier;
(6) a square-law detector; (7) a personal computer; and
(8) a reflecting duralumin plate.
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the basin and the cuvette were changed independently
in the experiment in the range ~20–45°C. The temper-
atures were monitored by mercury thermometers with a
precision of 0.2°C.

The radiation receiver was (4) a circular flat piezo-
electric receiver with the radius a = 5 mm that was
placed in the basin. The piezoelectric transducer was
equipped with one quarter-wave layer, electrically
loaded by a coupling transformer, and tuned to the fre-
quency 2.2 MHz. The temperature of the piezoelectric
transducer coincided with the temperature of the basin.
The sound pressure produced by the thermal acoustic
radiation from the basin with the cuvette was trans-
formed into electric voltage by the piezoelectric trans-
ducer. The total signal also included the intrinsic noise
of the piezoelectric transducer.

An electric signal was fed through (5) an amplifier
with the transmission band 200 kHz to the input of (6)
a square-law detector made using an MLT04 Analog
Devices microcircuit. The resulting output voltage U
proportional to the square of voltage at the output of the

piezoelectric transducer  was averaged by a low-fre-
quency filter of the first order with the time constant
τ = 1 s and then stored during t = 20 s in (7) a PC with
the help of an L-154 interface card (L-card SoftWare
Lab Limited, Russia). The nonmodulation scheme of
measurement preserves the constant component of the
signal (whereas in the case of the modulation reception
of an acoustic signal, this component vanishes). This, in
its turn, dismisses the question of whether we measure
the temperature of the piezoelectric transducer or the
basin temperature.

u2
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Fig. 2. Dependence of the voltage increment ∆U = UO – UC
obtained in detecting the signals from the black body UO
and the basin UC on the temperature difference ∆t between
the black body and the basin for different values of the basin
temperature: (s) 29.1, (×) 30.0, (*) 34.5, (h) 39.2, (e) 44.4,
(,) 42.2, and (n) 40.5°C.
To eliminate the drift of the output signal due to the
piezoelectric transducer and the amplifier, we placed (8)
a reflecting duralumin plate across the signal path. If
the plate is removed, the signal from the black body is
detected (position “open,” the plate removed, U = UO).
If the plate is replaced, the signal from the basin is mea-
sured, U = UC (position “closed,” the plate covers the
acoustic window of the cuvette). The changes from the
“open” to “closed” positions and back were performed
with a period of several tens of seconds, which allowed
us to correct the setup drifts and determine the voltage
difference for the two aforementioned plate positions
more precisely. We called this voltage difference the
voltage increment ∆U = UO – UC. Naturally, the incre-
ments were much smaller than each of the measured
voltages UO and UC.

The dependences of the voltage increment ∆U on
the temperature difference ∆t between the black body
and the piezoelectric transducer ∆t = T – TTR are given
in Fig. 2. If the temperature difference ∆t is positive, the
temperature of the black body is higher than the basin
temperature, and if it is negative, the basin temperature
is higher than the temperature of the black body. Vari-
ous signs in Fig. 2 indicate the experimental data
obtained at different basin temperatures in the range
29–45°C. The line approximating the given data is also
shown in the figure.

The errors σ in the measured voltage increment ∆U,
which are shown in Fig. 2, were determined taking into
account the number of independent readings N = t/2τ
during the time t: σ = σm, where σm is the rms
error of measurement of the voltages UO and UC, and

the factor  is connected with the fact that the voltage
difference was calculated.

One can see that the data obtained can be approxi-
mated by a linear function ∆U = (A ± δA)∆T, where the
mean value of the angular coefficient A has the mean-
ing of the steepness of the transformation AT to the
electric signal and δA is the error of its determination.
Using the least squares method, one obtains A ± δA =
3.3 ± 0.3 mV/K.

The dependence of the voltage UC measured by the
piezoelectric transducer in the case of a closed shutter
is given in Fig. 3 to evaluate the constant component of
the signal and its drift. In this case, the changes of the
output voltage are connected with the setup drifts.
One can see that drifts constitute the value of the order
of 10 mV while the average value is U0 ≈ 2.37 V. When
the piezoelectric transducer was disconnected from the
input amplifier, the noise level was UA = 0.4 V, which is
the contribution of the amplifier noise to the measured
signal.

Thus, with allowance for the effect of the setup
drifts and the signal noise, the mean square of the out-

put voltage  of an acoustic thermometer consists of a
large “base” and a term depending linearly on the tem-
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perature difference between the object and the trans-
ducer T – TTR:

(1)

Now, let us turn to the analysis of the results. A
semi-empiric formula for the mean square of the volt-

age  picked up from the output of the piezoelectric
transducer has the form [10]

(2)

where kB is the Boltzmann constant, ReZ is the real part
of the complex electric output impedance of the trans-
ducer, K2 is the magnitude of the coefficient of the pres-
sure-to-voltage transformation, z2 is the specific acous-
tic impedance of the medium under investigation, S is
the area of the piezoelectric transducer, and ∆f is the
transmission band of the receiver. The temperature dif-
ference T – TTR is present in this formula in an explicit
form, but this term was introduced artificially in [10].

u2 B A T TTR–( ).+=

u2

u2 kB 4TTRReZ K2
2z2/S( ) T TTR–( )+[ ]∆ f ,=
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10 15 20 t, min
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Fig. 3. Time dependence (drift) of the constant component
UC of the signal at the basin temperature 29.5 ± 0.5°ë. The
voltage of 0.4 V is the contribution of the amplifier noise to
the measured signal.
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Let us demonstrate that Eq. (2) can be derived
strictly by the consideration of an equivalent electric
circuit of a piezoelectric transducer as a six-terminal
[17], as shown in Fig. 4. We consider a piezoelectric
transducer with the specific acoustic impedance zTR in
contact with a damper (with the acoustic impedance
Z1 = Sz1, where z1 is the specific acoustic impedance) at
one (rear) side (the 1–1 connectors) and with the
medium under investigation with the acoustic imped-
ance Z2 = Sz2 at the other side (the 2–2 connectors). In
the general case, the piezoelectric transducer is con-
nected with the medium under study through a match-
ing layer with a specific acoustic impedance z3. The
forces F1 and F2 producing the pressures p1 = F1/S and
p2 = F2/S, respectively, affect the two inputs of the
piezoelectric transducer.

We attribute all losses in the piezoelectric transducer
to the damper, as it was done before [9]. In this case, the
acoustic elements of the piezoelectric transducer are
determined, first, by the acoustic properties of the trans-
ducer material (the quarter-wave coupling layer):  =
zTRS/jsin(πλATR/λTR) (  = z3S/jsin(πλA3/2λ3)),  =
jzTRS πλATR/2λTR) (  = jz3S πλA3/4λ3)), where
j is the imaginary unit and λTR (λ3) and λATR (λA3) are the
acoustic wavelength and the wavelength at the antires-
onance frequency fA in the piezoelectric transducer (in
the quarter-wave layer), and, second, by the piezoelec-
tric properties of the transducer: the coefficient n =

kT  of force-to-voltage transformation and
the negative capacitance –C0/n2, where kT is the coeffi-
cient of electromechanical coupling and C0 is the trans-
ducer capacitance.

In such a circuit, the mean square of the voltage at
the transducer output (the out–out connectors) can be
represented as a sum of independent signals supplied to
the transducer due to the thermal acoustic radiation
from the medium and the damper:

(3)

ZTR'
Z3' ZTR''

(tan Z3'' (tan

2SzTR f AC0

u2 kB K2
2z2/S( )T K1

2z1/S( )TTR+[ ]∆ f ,=
1

2
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Z ''TR

C0
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u

F2

1

2 Z ''TR
Z ''3Z '3
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Z '3

Z1 n:1
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Fig. 4. Equivalent circuit of a piezoelectric transducer. The circuit of a coupling layer between the piezoelectric transducer and the
medium under investigation is encircled by a dashed line. F1(F2) is the force affecting the piezoelectric transducer from the side of

the damper (the medium); u is the voltage at the transducer output;  and  (  and ) are the circuit elements determined

by the acoustic properties of the acoustic transducer (the coupling layer); Z1 and Z2 are the acoustic resistances of the damper and
the medium; C0 is the capacitance of the piezoelectric transducer; and n is the coefficient of the force-to-voltage transformation.

ZTR' ZTR'' Z3' Z3''
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where  is the square of the magnitude of the coeffi-
cient of transformation of effective pressure in the
damper to electric voltage.

Using the theory of four-terminals for noise sig-
nals, it is possible to demonstrate the equivalence of
Eqs. (2) and (3). In particular, at the antiresonance fre-
quency, for a piezoelectric transducer without a quar-

ter-wave layer, we have ReZ =  and

 =  = , and with a quarter-wave

layer, we have ReZ = ,  =

, and  = .

The majority of these formulas were obtained using
other equivalent circuits of piezoelectric transducers
[9, 11].

Thus, two approaches to the description of the
reception of thermal acoustic radiation are possible.
According to Eq. (2), the source is represented by the
intrinsic noise of the piezoelectric transducer due to
both the loss in the transducer itself and the loss for
radiation and by the signal determined by the difference
between the temperatures of the object and the trans-
ducer. In the case of a negative value of this signal,
when T < TTR, energy is carried away from the trans-
ducer. At the same time, according to Eq. (3), we can
assume that the signal measured at the transducer out-
put is formed by two independent sources. The first of
them is thermal acoustic radiation of the medium under
investigation, and the second one is similar radiation
from the damper. The intensities of these signals are
determined by the absolute temperatures of these
objects. Both approaches are equivalent and lead to the
same expressions. However, the information on the
existence of the object appears only when the object
temperature is different from the transducer tempera-
ture. Therefore, we can conclude that, in the case of the
detection of thermal acoustic radiation, the signal is
determined not by the total thermal radiation of the
object, which is proportional to T, but only by its part
that is proportional to the difference T – TTR.

The described analysis provides an opportunity to
evaluate the noise temperature TN of an acoustic ther-
mometer, which determines its threshold sensitivity. It
is necessary to note that the measured quantity, i.e., the

mean square of the voltage, , is virtually independent
of the acoustic load of the piezoelectric transducer. If
we remove the medium under investigation, i.e., put
the piezoelectric transducer in air, the second terms in
Eqs. (2) and (3) that are proportional to T – TTR and T,
respectively, vanish and the first terms change. If we

K1
2

kT
2

π2
-----

2zTR

f AC0 z1 z2+( )
---------------------------------

K1
2 K2

2 kT
2

π2
-----

8zTRS

f AC0 z1 z2+( )2
-----------------------------------

kT
2

π2
-----

2zTR

f AC0 z1 z3
2/z2+( )

--------------------------------------- K1
2

kT
2

π2
-----

8zTRS

f AC0 z1 z3
2/z2+( )2

----------------------------------------- K2
2 kT

2

π2
-----

8zTRz3
2S

f AC0z2
2 z1 z3

2/z2+( )2
----------------------------------------------

u2
detect the signal within the whole transmission band of
the piezoelectric transducer, the resulting value of the

mean square of the voltage  for the electrically
unloaded piezoelectric transducer considered above

will be  = (8 /π2) kBTTR/C0 [11].

Thus, if the temperatures of the medium under
investigation and the piezoelectric transducer coincide,

the resulting signal  barely changes when the
medium is changed, e.g., in the case of such a funda-
mental change as the replacement of water by air. This
signal actually determines the noise temperature of an
acoustic thermometer.

Expression (2) provides an opportunity to estimate
theoretically the noise temperature  of a piezoelec-
tric transducer. These estimates yield reasonable
results:  ≤ 2TTR [9, 18]. The results given in Figs. 2
and 3 provide an opportunity to evaluate experimen-
tally the noise temperature TN of an acoustic thermom-
eter. According to Eq. (1), it is the ratio of the constant
term B to the transformation steepness A [10]:

(4)

It is easy to find that, with allowance for the ampli-
fier noise, the noise temperature of an acoustic ther-
mometer is TN = 720 K, while in the absence of the
amplifier noise,  ≈ 600 K. It should be noted that
the noise temperature of a piezoelectric transducer is
approximately two times higher than its thermody-
namic temperature and the contribution of the amplifier
noise is 17%. Previously, these quantities were mea-
sured using indirect methods [9, 13, 18]. The given esti-
mates coincide with our results obtained earlier [18]
and are close to the results obtained by Gerasimov, Mir-
gorodskiœ, and Peshin [13] using a different method.

It should be noted that Eq. (1) is obtained for the
case of a black body covering the whole aperture of the
piezoelectric transducer. A decrease in the thermal
source dimensions leads only to a decrease in the trans-
formation steepness A.

Thus, the linear dependence of the voltage incre-
ment on the temperature difference between the source
and the transducer, which is predicted by Eq. (2), is
proved experimentally. The constant component of the
signal obtained at the output of the piezoelectric trans-
ducer determines the noise temperature of the receiving
device. The main feature of the thermal acoustic radia-
tion as a source of acoustic signals is that the signal is
represented not by the total thermal radiation of an
object, which is proportional to the absolute tempera-
ture T of this object, but by the part of this radiation that
is proportional to the temperature difference between
the object and the transducer, T – TTR.

U2

U2 kT
2

U2

T NTR

T NTR

T N B/A.=

T NTR
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Abstract—All nine elastic moduli of an orthotropic composite material, namely, polypropylene reinforced
with glass fiber, are determined from the measured values of the bulk acoustic wave velocities along specific
directions in the planes of symmetry of the material. These data are used to calculate the angular dependences
of phase velocities, polarization vectors, and directions of ray velocities of bulk waves in the composite. It is
demonstrated that the difference in the velocities of shear waves polarized along and across the glass fiber gives
rise to an acoustic birefringence and can lead to an elliptical polarization of waves. The measurement of the
phase velocities of shear waves as functions of the wave polarization is suggested as a method for the determi-
nation of the fiber orientation in a composite material. © 2002 MAIK “Nauka/Interperiodica”.
The anisotropy of acoustic wave propagation in
fiber-reinforced composites provides an opportunity to
determine such important structural parameters of these
materials as the fiber content, its orientation, etc., by
measuring the characteristics of the bulk waves propa-
gating in them. These characteristics must include not
only the conventional anisotropy of the propagation
velocity [1, 2], but also other parameters of acoustic
waves (the velocity and direction of energy transfer, the
polarization, etc.), which strongly depend on the prop-
agation direction in both single crystals and composite
materials. In this connection, acoustic polarization
measurements for shear waves are of importance.
These measurements are the subject of active recent
investigations [3–5], but, in contrast to optics, they have
not yet found wide application in nondestructive test-
ing. In particular, this is true for the effect of birefrin-
gence of shear acoustic waves [6], which can serve as
the source of information on the structural anisotropy
of polymers and composites.

This paper analyzes the experimental potentialities of
the birefringence polarization technique by using a well-
known composite material, namely, sheet polypropylene
reinforced with glass fiber, as an example. The analysis
is preceded by the calculation of the anisotropy of
acoustic wave propagation with the use of the values of
the elastic moduli, which are determined for this mate-
rial from the measurements of the phase velocities of
bulk waves propagating in it.

The investigated composite material is an orthotro-
pic material with three mutually orthogonal planes of
symmetry normal to the x, y, and z axes. This material
is characterized by a set of nine independent elastic
1063-7710/02/4801- $22.00 © 0018
moduli cijkl (i, j, k, l = 1, 2, 3). The propagation param-
eters of acoustic waves are determined by solving the
Christoffel equation [7]

(1)

where nj and nl are the components of a unit vector
along the propagation direction, ρ is the material den-
sity, c is the phase velocity, and δik is the Kronecker delta.
A nontrivial solution to the system of equations (1) exists
with the constraint

(2)

and has the form

(3)

where the components of the polarization vector pk are
the respective minors of the matrix given by Eq. (2),
and U0 is the acoustic wave amplitude.

The analysis of Eq. (2) shows that the values of all
six diagonal components of the matrix of elastic moduli
(c11, c22, c33, c44, c55, and c66) can be determined by mea-
suring the phase velocities of longitudinal and trans-
verse waves of respective polarizations, which propa-
gate along the three basic directions, x, y, and z (the
fiber orientation). To calculate the remaining three
independent components of the matrix cijkl (c12, c13, and
c23), it is possible to use the measurements of the phase
velocity of only longitudinal waves along the diagonal
directions in the symmetry plane of the composite.

The phase velocities of bulk acoustic waves were
measured in the samples of glass-fiber-reinforced sheet
polypropylene with a thickness of about 4 mm and a

cijkln jnl ρc2δik–( )uk 0,=

cijkln jnl ρc2δik– 0=

uk U0 pk,=
2002 MAIK “Nauka/Interperiodica”
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glass fiber content from 0 to 30%. Six cuts of the com-
posite were prepared to determine all nine elastic mod-
uli: three cuts along the basic directions, x, y, and z, and
three 45° cuts in the symmetry planes. A standard
pulsed technique using transmission and reflection was
used to measure the delay of a radio-frequency pulse in
the 2–10-MHz frequency range. In this frequency
range, the dispersion of acoustic waves that is related to
the molecular structure of the polymer matrix, is absent
and the values of the phase velocity do not depend on
frequency [1]. The error of the measurement of the pulse
delay by a digital oscilloscope did not exceed 10 ns. Lon-
gitudinal waves were excited by ZTL ceramic transduc-
ers (the Krautkramer company), and YX-cut quartz

0
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Fig. 1. Dependences of the elastic moduli of glass-fiber-
reinforced polypropylene on the glass fiber content.
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plates were used to generate shear waves. The contact
between a transducer and the sample surface was estab-
lished using a layer of epoxy resin, which provided an
opportunity to change (and analyze) the polarization of
shear waves by rotating the transmitting (or receiving)
transducer. A considerable number of measurements
were conducted for each orientation to make the error
of the phase velocity determination less than ~1%. The
results of calculating the elastic moduli by Eq. (2) using
the measured values of the phase velocities of acoustic
waves for samples of glass-fiber-reinforced polypro-
pylene with different glass fiber contents are given in
Fig. 1. One can see that the elastic matrix without glass
fiber is almost isotropic: c11 = c22 = c33, c44 = c55 = c66,
and c12 = c23 = c13 ≈ c11 – 2c44. The introduction of glass
fiber leads to the formation of an orthotropic composite
with the longitudinal and shear elasticities (the diago-
nal components cijkl) increasing with the growth of fiber
content. The maximal increase in elasticity (c33) is
observed, naturally, along the glass fiber direction (the
z axis). At the same time, the values of the nondiagonal
components (c13 and c23) decrease with the growth of
the fiber content from 20 to 30% (Fig. 1). Such behavior
is physically analogous to a decrease in the Poisson’s
ratio in the case of increasing rigidity of a material,
which usually occurs in the case of solids.

The values obtained above for the elastic moduli of
glass-fiber-reinforced polypropylene were used to cal-
culate the phase velocities and the polarization of
acoustic waves in the planes of symmetry of the mate-
rial by using Eqs. (2) and (3). The results of calculation
for the xz plane (the x axis is directed along the thick-
ness of a polypropylene sheet) of a sample with a 30%
fiber content are given in Fig. 2.
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Fig. 2. (a) Anisotropy of the phase velocity in the xz plane of 30% glass-fiber-reinforced polypropylene: (----) a quasi-longitudinal
wave; (—) a quasi-shear wave; and (–·–·–) a purely shear wave with polarization along the y axis. (b) Angle of deviation of the polar-
ization of quasi-longitudinal waves from the propagation direction in the xz plane of 30% glass-fiber-reinforced polypropylene.
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A purely shear wave (polarized normally to the
propagation plane) and also quasi-longitudinal and
quasi-shear (polarized in the propagation plane) waves
can exist in an arbitrary direction in the symmetry
plane. According to Fig. 2a, a strong anisotropy of the
phase velocity (≅ 50%) is observed for a quasi-longitu-
dinal wave. For shear waves in this plane, there are two
acoustic axes near the reinforcement direction. Since
the polarization vectors for quasi-longitudinal and
quasi-shear waves are mutually orthogonal, it is possi-
ble to conclude from the data given in Fig. 2b that the
polarization vectors of both waves can deviate from the
propagation direction within the angles up to 15°.
A strong acoustic anisotropy of glass-fiber-reinforced
polypropylene is also confirmed by the calculation of the
anisotropy of the ray velocity: the angles of deviation of
the ray velocity from the propagation direction (δ) for
quasi-longitudinal waves exceed 20°, and for quasi-
shear waves, they can exceed even 30°, which can lead
to a noticeable displacement of the beams of bulk
waves in the nonsymmetric directions of the composite.
It is characteristic that in this case the dependence δ(θ)
for quasi-longitudinal waves is completely analogous
to the dependence shown in Fig. 2b, which is typical of
all anisotropic media [7]: in the case of quasi-longitudi-
nal waves in the directions of pure polarization, the ray
velocity coincides with the wave normal (δ = 0). This
rule is not true for quasi-shear waves: according to the
calculations, near the directions of pure polarization of
shear waves, the value of δ reaches 20°–30°.

Figure 2a demonstrates that two shear waves with
slightly different phase velocities and the polarizations
parallel and perpendicular to the reinforcement direc-
tion (the z axis) are allowed in the direction of the x axis
(across the thickness of a composite sheet). Hence, if
we set an arbitrary polarization in the plane of the sheet
(the yz plane) at the shear wave transducer, the excited
shear wave will be split into two waves:

(4)

where k2 and k3 are the wave numbers of the shear
waves polarized along the y and z axes, respectively,
and ey and ez are the unit vectors of polarization of these
waves. The wave amplitudes in Eq. (4) depend on the
orientation of the transmitting transducer:  =

UTcosβ and  = UTsinβ, where β is the orientation
angle of the transmitting transducer and UT is the dis-
placement amplitude at the radiator. Since k2 and k3 dif-
fer to a certain extent according to Fig. 2, the oscilla-
tions in the plane x = d, after being transmitted through
a sample with the thickness d, have the form

(5)

where the phase shift is ∆ϕ = d(k2 – k3). According to
Eq. (5), glass-fiber-reinforced polypropylene acts as a
polarizing plate that changes the polarization of shear
waves depending on the strength of birefringence (∆ϕ).

If an analogous shear transducer is used for the
detection of the resulting displacement, it is possible to
determine the amplitude (V0) and phase (ψ) of its out-
put signal from Eq. (5):

uT x t,( ) UTy
ey ωt k2x–( )sin=

+ UTz
ez ωt k3x–( ),sin

UTy

UTz

uT d t,( ) UT βcos( )ey ωtsin=

+ UT βsin( )ez ωt ∆ϕ+( ),sin
(6)V0 UT β γcos
2

cos
2 β γsin

2
sin

2
2 β β γ γ ∆ϕcoscossincossin+ + ,=
(7)

where γ is the angle between the direction of polariza-
tion of the receiving transducer and the y axis of the
composite. The results of calculating V0(γ) and ψ(γ) for
β = 45° and different values of ∆ϕ are shown in Figs. 3a
and 3b.

The case ∆ϕ = 0 corresponds to the propagation of a
linearly polarized wave in an isotropic solid: the output
signal of a phase plate naturally vanishes in the case of
the orthogonal position of the radiator (β = 45°) and the
receiver (γ = 135°) (Fig. 3a), and its phase changes step-
wise to 180° as it passes through this position (Fig. 3b).

At ∆ϕ = 90°, we have a circular polarization: the
amplitude of the output signal does not depend on γ
(Fig. 3a) and the phase grows linearly (ϕ = γ) with the
receiver rotation (Fig. 3b). The intermediate values of
∆ϕ correspond to the elliptical motion of the medium

ψ β γ ∆ϕsinsinsin
β γcoscos β γ ∆ϕcossinsin+

----------------------------------------------------------------------,arctan=

particles. In this case, the minimums and maximums in
Fig. 3a characterize the positions of the minor and
major semiaxes of the ellipse, respectively. For ∆ϕ <
90°, the ellipse is oriented along the direction of the
radiator polarization (β = 45°), and for ∆ϕ > 90°, the
major semiaxis of the ellipse is rotated through 90°.
Comparing Figs. 3a and 3b, we see that the steepest
portions of the phase characteristic (γ ≅ 135°) corre-
spond to the position of the minor axis of the ellipse.
This proves the theoretical prediction [7] that the sector
velocity of a particle is constant in the case of elliptical
motion: the angular velocity of a medium particle is
large near the minor axis and decreases with distance
from the rotation center.

In the case of the constant thickness d of a sample,
the strength of birefringence depends on the frequency
and the difference in the phase velocities of the waves
polarized along the y and z axes and propagating
through the composite thickness. The velocity of these
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Fig. 3. Dependences of the (a) amplitude and (b) phase of the output signal on the orientation of the receiving transducer for different
values of the birefringence strength.

Fig. 4. Dependences of the (a) amplitude and (b) phase of the output signal on the orientation of the receiving transducer for a
weakly birefringent sample of 5% glass-fiber-reinforced polypropylene.

polypropylene
waves is determined by the values of the elastic mod-
uli c55 and c66. The difference between these moduli
vanishes as the concentration of glass fiber decreases
(Fig. 1). At ω/2π ≈ 2 MHz, the 5% glass-fiber-rein-
forced polypropylene can be considered as a weakly
birefringent medium: ∆ϕ ≅  11° at d = 4 mm, and the tra-
jectory of particle motion is an elongated ellipse with
the ratio of semiaxes about 1/10.

The experimental dependences of the amplitude and
phase of the output signal on the angle of orientation of
the receiving transducer are given in Figs. 4a and 4b.
The deep amplitude modulation (Fig. 4a) and the step-
like change of the signal phase (Fig. 4b) observed
experimentally show that, in the case of a 5% glass-
fiber-reinforced polypropylene sample, the ellipse of
displacements is very strongly elongated along the
direction of the radiator oscillations. One can see good
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
general agreement of the experiment with the calcula-
tions conducted using Eqs. (6) and (7). Some scatter of
single experimental points is apparently connected with
the instability of the acoustic contact at the rotation of
the receiving transducer.

A more pronounced manifestation of birefringence
was observed in a 5% glass-fiber-reinforced polypropy-
lene sample at the frequency 10 MHz. In this case, a
composite sheet is a strongly birefringent medium: the
calculated value is ∆ϕ ≅ 48°, and the expected ratio of
the ellipse semiaxes is approximately equal to 1/2
according to Eq. (5). One can see from Figs. 5a and 5b
that in this case the experimentally observed depth of
the amplitude modulation of the output signal is much
smaller and the phase of this signal changes almost lin-
early. Satisfactory agreement of experimental data with
the calculations in Fig. 5 proves that the polarization of
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polypropylene
shear waves in glass-fiber-reinforced polypropylene
changes qualitatively from linear to almost circular
because of the birefringence.

Acoustic birefringence and the observed effects of
elliptical polarization are caused by the difference in
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Fig. 6. Dependence of the delay time of the output signal of
the receiving transducer on the polarization of shear waves.

Fig. 7. Determination of the local orientation of glass
fiber in a polyamide sample: (—) acoustic measurements
and (----) measurements with the electromagnetic polariza-
tion technique.
the phase velocities of shear waves with orthogonal
polarizations and manifest themselves only in anisotro-
pic media. Such an anisotropy in composites is caused
by the effect of the fiber, which leads to different values
of the shear rigidity of the material in the case of its
deformation along and across the reinforcement direc-
tion. This provides the possibility of acoustically diag-
nosing the fiber orientation by measuring the velocity
of shear waves (or the delay time ∆τ) as a function of
their polarization. The results of such measurements for
30% glass-fiber-reinforced polypropylene are given in
Fig. 6. To obtain these data, the radiator and the receiver
were positioned coaxially (γ = β) and rotated synchro-
nously in the sample plane. The angular position of the
minimum in the curve of Fig. 6 (the velocity maximum)
indicates the fiber direction, and the maximum in this
curve corresponds to the orthogonal direction.

Analogous measurements of ∆τ(γ) were conducted
for another composite material, glass-fiber-reinforced
polyamide, with the local orientation determined pre-
liminarily by the electromagnetic polarization tech-
nique [8]. Its local orientation varied strongly for differ-
ent points of the sample (Fig. 7). The data of acoustic
measurements given in this figure demonstrate that the
method of acoustic birefringence provides the opportu-
nity to determine the local orientation of a fiber with
sufficiently high precision. The spatial resolution of
measurements is determined by the size of the trans-
ducers, which was about 1 cm in our experiments.

In conclusion, it is necessary to note that the studied
polarization effects in glass-fiber-reinforced polypro-
pylene must be typical for a wide class of uniaxial
fiber-reinforced composites. Similar acoustic anisot-
ropy and effects of birefringence can arise due to
internal mechanical stress. In this case, the sample can
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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behave like a polarizing plate, and the polarization of
shear waves will depend on the value and orientation
of stress.
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Abstract—The data of repeated experiments on the long-range propagation of explosion-generated and cw
signals in the Norwegian Sea in summer conditions (with a fully-developed underwater sound channel) are
presented. These data are used to analyze the spatial and time structures of the sound field, as well as to esti-
mate the attenuation coefficient at frequencies within 63–630 Hz and to determine its frequency dependence.
The spatial variability of the propagation conditions is analyzed on the basis of the experimental data
obtained for the propagation of explosion-generated signals along a 815-km-long path crossing the Norwe-
gian and Lofoten Hollows. © 2002 MAIK “Nauka/Interperiodica”.
A specific feature of the water characteristics in the
Norwegian Sea is their spatial variability governed by
the currents that exist in this region [1–3]. Through the
Faeroe-Scotland Trough, warm and high-saline waters
of the Atlantic Ocean arrive at the Norwegian Sea.
Because of the permanent influx of these waters, the
near-surface temperature approaches 5–15°ë, and the
salinity is close to 35‰. From the north and north-west,
cold arctic waters intrude that reach deep horizons in
their mixing with the Atlantic waters. The salinity of the
deep waters is about 34.9‰, and their temperature is as
low as –1°C. Towards the north (along the Norwegian
coastline), water currents are branched from the Gulf
Stream and produce counterclockwise rotations. The
directions of the local currents and the depth that is
reached by them are strongly influenced by the general
bottom relief. The bed of the Norwegian Sea has a
rough relief. The central part of this sea is occupied by
the Norwegian Hollow (with 2900–3500-m depths) and
the Lofoten Hollow (with 2800–3200-m depths) [2].
According to the publications, the bottom sediments of
the central deep-water part of the Norwegian Sea are
represented by terrigenic aleurite silts. The sediments
have a layered structure. Interlayers of different hard-
ness, viscosity, and consistence occur. The highest den-
sity characterizes the viscous sediments that are
enriched with a fine-grained clay-like bottom material.

In summertime (July to September), experiments
were repeatedly performed by the Andreev Acoustics
Institute to study the sound attenuation and to deter-
mine the space–time variability and the intensity struc-
ture of the sound field in the underwater sound channel
(UWSC) of the deep-water Norwegian Sea. The main
experiments were carried out with explosive sound
sources on the propagation path that crossed the Nor-
wegian and Lofoten hollows from south-west to north-
east. In the southern part of the sea (the region of the
Norwegian Hollow), the vertical structure of the water
1063-7710/02/4801- $22.00 © 20024
column had the following features. The upper mixed
layer reached depths of 20–40 m. The temperature in
this layer was 7–8°C, the salinity was 35.0–35.1‰, and
the sound speed gradient varied from –0.4 to +0.03 1/s.
At depths of 20–40 to 50–60 m, a pronounced temper-
ature discontinuity layer was observed. As the depth
increased, the water temperature decreased from 7–8 to
3.5–5.5°ë. The sound speed gradient in the discontinu-
ity layer varied from –0.5 to –0.8 1/s. At deeper hori-
zons, the temperature decreased more slowly. At depths
of 100–200 to 300–400 m, a layer existed, within which
the depth dependence of the sound speed (under the
effect of the slight decrease in the water temperature)
was nearly compensated by the hydrostatic gradient.
At the depths 300–400 to 600–700 m, the temperature
decreased to 0°ë, and the sound speed gradient
remained within –0.02 to –0.03 1/s. At lower depths, the
temperature monotonically decreased to –0.8 to –1.5°C
near the bottom. At such depths, the hydrostatic gradi-
ent predominates, and the lower boundary of the
UWSC is formed, its axis being at the depth 400–600 m.
Figure 1a shows a vertical sound speed profile c(z) that
is characteristic of the Norwegian Hollow. At the sur-
face, the sound speed is by 18–20 m/s lower than at
the bottom (with a sea depth of about 3.5 km) and by
18–25 m/s higher than at the UWSC axis.

Figure 1b shows a vertical sound speed profile c(z)
that is characteristic of the northern part of the sea (the
region of the Lofoten Hollow). In contrast to the south-
ern part of the sea, the UWSC axis here is at the depth
800–1100 m. The difference in the sound speeds at the
bottom (with a sea depth of about 3.3 km) and at the
UWSC axis is about 35 m/s. The value of the sound
speed at the surface is 10–15 m/s lower than at the bot-
tom. In some curves c(z) obtained in the measurements
that accompanied the acoustical experiments, a relative
maximum was observed at depths of ~350–400 m in the
southern and ~500–600 m in the northern parts of the
002 MAIK “Nauka/Interperiodica”
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path. The sound speed at these depths was 1–3 m/s
higher than at 150–200 m and 7–9 m/s higher than at
the axis of the main UWSC. Thus, in some cases, an
additional weakly pronounced underwater sound chan-
nel existed that could capture rays crossing its axis at
angles smaller than 3°–3.5° (in comparison with 10° for
the main UWSC).

To study the spatial structure of the point-source
sound field within the kilohertz frequency band, towed
piezoceramic transmitting transducers were used. In
these experiments, a continuous noise signal was trans-
mitted within a 1/3-octave band. The sound sources
were towed along paths 80–100 km in length. The min-
imal distance between the corresponding points was no
higher than 200–400 m. The latter fact allowed us to
perform mutual calibration of the transmitting and
receiving systems, which is required to subsequently
recalculate the measured sound levels to the anomaly of
sound propagation. The aforementioned experiments
were carried out both in the northern and southern parts
of the Norwegian Sea.

According to one such experiments performed in
the region of the Norwegian Hollow, with a 95-m
source depth, the nearest boundary of the first conver-
gence zone was at a 41-km distance for a 20-m receiver
depth, at 36 km for a 150-m receiver depth, and at
31.5 km for 600 m. The propagation anomaly reached
12–16 dB at the beginning of the zone. At horizons
deeper than 300–400 m, the convergence zone broke
down into two half-zones, the nearest boundary of the
second half-zone was 42.5 km from the source for the
600-m receiving horizon. Figure 2a illustrates the range
dependence of the propagation anomaly for the 600-m
depth of the receiver.

According to a similar experiment performed in the
region of Lofoten Hollow, with a 95-m source depth,
the nearest boundary of the first convergence zone was
43.5 km for a 150-m receiver depth and 36.5 km for
1000 m. The propagation anomaly reached 12–15 dB at
the beginning of the zone. At horizons deeper than 500–
600 m, the convergence zone again broke into two half-
zones. The nearest boundary of the second half-zone
was 52 km from the source for the 1000-m receiving
horizon. Figure 2b illustrates the range dependence of
the propagation anomaly for the 150-m receiver depth
in this region.

The spatial structures of the sound field intensity are
different for the northern and southern parts of the Nor-
wegian Sea.

At low frequencies (10–300 Hz), experiments were
also carried out with the use of cw sources that could
not be towed. In these studies, vertical structures of the
sound field were measured at different distances from
the source. The transmitter was usually at a 100–200-m
depth in such measurements. The results obtained at
closer (about 1 km) distances were used to calibrate the
sound source. At small distances, the measured vertical
structure agrees well with the calculations. However, at
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Fig. 1. Vertical sound speed profiles typical of (a) the Nor-
wegian Hollow and (b) the Lofoten Hollow.

Fig. 2. Propagation anomaly versus the distance. Experi-
mental data obtained in the regions of (a) the Norwegian
Hollow (the source and receiver depths are 90 and 600 m,
respectively) and (b) the Lofoten Hollow (90 and 150 m,
respectively).
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Fig. 3. Sound speed field and the bottom relief on the path of long-range propagation of explosion-generated signals. The values of
the speed of sound (in m/s) are indicated by the numbers on isolines.
long ranges (more than 40–50 km), we failed to obtain
good agreement between the experimental and calcu-
lated vertical structures of the sound field. But the exper-
imental values of the propagation anomaly at the fre-
quencies 16–250 Hz, upon being averaged over a layer of
100–200 m, agreed well with the horizontal structure of
the sound field that was calculated for the 150-m
receiver depth using the ray-approximation computer
code developed by Vagin [4]. In analyzing the vertical
structure of the sound field, a characteristic period of
interference was found. In a number of measurements,
the vertical structure was obtained nearly simulta-
neously at different frequencies. For each fixed distance
from the source, the spatial interference period was
inversely proportional to the frequency of transmission.

In experimenting with the explosive sound sources,
the receiving vessel was drifted at 220–230 nautical
miles to the north of the Faeroes. The transmitting ves-
sel went a heading of about 45° away from the receiv-
ing one in the north-eastern direction. In these measure-
ments, a path 650–815 km in length was surveyed. Fig-
ure 3 shows the results of echo-sounding along the
propagation path. In the region of reception, the sea
depth was 3000–3900 m. At a distance 200 km from the
receiver (at the boundary between the Norwegian and
Lofoten Hollows), a sharp bottom rise existed: the sea
depth decreased from 4000 to 2700 m. At longer dis-
tances, the sea depth again increased to 3700–3850 m
and did not change within the path fraction of about
50 km. Then, the sea depth sharply decreased to 2100 m
and did not exceed 2400 m within the next 50-km-long
fraction of the path. At longer distances, the path crossed
the Lofoten Hollow.

Along the path of long-range propagation, up to ten
hydrological observations were usually performed.
Figure 3 shows an example of such measurements.
When the distance from the reception point increases to
about 150–200 km, the UWSC axis lowers from 500–
600 to 1000–1100 m. At the distances longer than 150–
200 km, two UWSC axes were observed. The axis
depth of the second (weakly pronounced) UWSC was
250–400 m. In experimenting at the boundary between
the Norwegian and Lofoten Hollows, rather sharp
changes occurred in the structure of the sound speed
field. The sites of the changes correlate well with
those of the bottom rises determined by the echo
sounding.

In experimenting on this path, the water temperature
was also measured at the depths 40 to 400 m, with the use
of TZO-2 expandable thermosensors. Totally, 24 sensors
were dropped from the transmitting vessel, equidis-
tantly along the path. Figure 4 presents the measured
temperature field. Considerable changes in the tempera-
ture field can be seen at the distances 200–250 km. These
changes are somewhat more intricate than those in the
sound speed field (measured at nine points). At this part
of the path, the horizontal (along the path) temperature
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Fig. 4. Temperature field on the path of long-range propagation of explosion-generated signals, as measured by TZO-2 expandable
thermosensors. The temperature values (in °C) are indicated by the numbers on the isolines.
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gradients reached 0.15–0.2 deg/km at depths of 100–
150 m.

According to the publications (e.g., [2]), in some
regions of the Norwegian Sea, the Polar Front is
observed in the form of a narrow zone of high horizon-
tal temperature gradients. The front occurs at the
boundary between the warm Norwegian and cold East-
Icelandic currents. The researchers also argue that the
long-standing changes in the front position can be
mainly attributed to the variations in the intensity of the
currents, as well as to the features of the large-scale
atmospheric circulation. In the experiments performed
on the same path in other years, less sharp changes in
the temperature and sound speed fields were observed.

Let us consider the experimental data obtained in
the environment illustrated by Figs. 3 and 4 in more
detail. In total, 180 charges were exploded on the path.
Pressure-sensitive detonators were used as the charges
dropped from the vessel. They exploded at a depth of
300 m (with the period about 10 ms of the gas-bubble
fluctuation). At the moment of each explosion, the dis-
tance between the vessels was determined by the prop-
agation time of the sound signal. The explosion-gener-
ated signals were received by omnidirectional systems
deployed to the depths 150 and 600 m. The received
signals were magnetic-tape recorded. At the laboratory,
the signals were reproduced and, upon preliminary fil-
tering (the antializing filter has a 2.5-kHz cutoff fre-
quency), converted to a digital form with 10-kHz sam-
pling frequency by a 12-bit A/D converter.
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
First, the time structure of the explosion-generated
signals was analyzed. Figure 5 shows this structure for
the signals received at the depths 150 and 600 m, at dis-
tances 18 to 50 km from the source. All signals are nor-
malized to their maximal levels. At the distances up to
45 km, in addition to “purely water-path” signals, sig-
nal quartets can be seen that are once reflected from the
bottom (in the figure, they are the last to arrive becom-
ing closer to the main group of the water-path signals as
the distance increases). At the distances at hand, the
experimental time structure of the signals agrees well
with that calculated by using the computer code devel-
oped by Tebyakin [5]. The bottom-reflected signals dif-
fer from the water-path ones in their shapes and specific
positions in the time structure of the total multiray sig-
nal. While the singly bottom-reflected signals have
rather high amplitudes, twice and triply bottom-
reflected signals (received at 50–70-km distances)
become negligibly small in comparison with the water-
path ones. Signals reflected from the sea surface were
also observed. These signals are much more difficult to
detect and identify.

Upon propagating in the UWSC, the explosion-gen-
erated signal becomes protracted in time. The extent of
signal protraction is governed by the propagation con-
ditions, which are specific for the region, that is, by the
multiray character of propagation. Figure 6 presents the
range dependence of the signal duration for reception
depths of 150 m (dots) and 600 m (asterisks). In exper-
imental evaluation of the signal duration, elementary
bottom-reflected signals were ignored. At distances
longer than 20–40 km, the signal duration at the hori-
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Fig. 5. Time structure of the exlosion-generated signals received at distances from 18 to 50 km with a 300-m source depth; the recep-
tion depths are (a) 150 and (b) 600 m.
zon 150 m is usually 40–60 ms lower than at 600 m. At
250–300-km distances, the range dependence of the
signal duration is rather regular. With a periodicity
about 43–44 km, maximums are observed that precede
the bottom-caused cutoff of the signals, which most
widely deviate from the UWSC axis. At distances
longer than 300 km (after the path crosses the boundary
between the Norwegian and Lofoten hollows), the peri-
odicity of the maximums is violated.

At the initial fraction of the path (the region of the
Norwegian Hollow), the change in the duration of the
total signal is on average proportional to the distance
with the proportionality factor K = ~0.0015 s/km.
According to our other experiments, in other regions of
the Ocean this factor is much higher (with the exception
of the eastern part of the Central Atlantic) [6]. In the
experiment under discussion, the depth of the sound
source (300 m) differs from that of the UWSC axis.
However, according to the measurements, the differ-
ence in the sound speeds was no higher than 1–2 m/s at
these two horizons, which is not enough to cause a sig-
nificant increase in the proportionality factor. Accord-
ing to the calculated time structure of the sound field in
the Norwegian Hollow (including the surface-reflected
signals), the theoretical value of factor K agrees well
with the experimental one for 600- and 300-m recep-
tion and transmission depths, respectively. For the
source depth 600 m (at the UWSC axis), the factor K
proves to be only 10–20% higher.

Unfortunately, we failed to determine the factor K
for the region of the Lofoten Hollow from the data of
the experiment at hand. The information on the signal
protraction is distorted in these data. The explosion-
generated signals that arrive from this part of the path
exhibit a noticeable cut-off because of the bottom rise
between the two hollows.

The time of signal protraction is a fairly rough char-
acteristic of time relations in the multiray signal. To
describe the time structure of the sound field in the
UWSC in more detail, Ewing and Worzel [7] proposed
the so-called t–R diagram (t is the time advance for the
signal propagating over an individual ray relative to the
signal propagating along the UWSC axis, and this
advance corresponds to the given distance R). For a
classical UWSC, when the source and receiver are at
the same horizons, the t–R diagram is represented by
many triplets of curves. The central curve in each triplet
characterizes the t–R relation for the rays that made an
integer number of full cycles in space; the side curves
correspond to the rays that differ from a full-cycle ray
by a half-cycle. The adjacent triplets of curves differ
from each other by a single full cycle.
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Although the t–R diagrams are quite informative,
they are rather cumbersome and not convenient for cor-
relating the sound field structures formed in different
regions of the Ocean. For this purpose, a more compact,
reduced t–R diagram, which consists of a single curve
characterizing the t–R relation for the rays that made a
single full cycle, was proposed [8]. With the appropri-
ate choice of the scales (t/N and R/N) for an arbitrary
ray that makes an arbitrary number N of full cycles,
such a curve determines the propagation times for all
typical signal quartets, along with the relative delays in
the arrival times for the adjacent signal quartets.

Figure 7 shows a fragment of the reduced t–R dia-
gram obtained from the experiment in the Norwegian
Sea. To plot the diagram, the explosion-generated sig-
nals were analyzed that arrived from the distances 10 to
225 km (the values of N varied from 1 to 5). The quar-
tets with time-separated signals arrive from the dis-
tances that are multiples of 41–47 km. With the experi-
mental data obtained in the Norwegian Sea, it is not
easy to interpret the resulting reduced t–R diagram. In
the multiray signals received at shorter distances from
the source, in addition to the purely water-path signals,
the surface-reflected ones are present that cannot always
be unambiguously identified. However, the calculations
showed that the signals of the typical quartets, which
are well resolved at the distances 40–45, 85–90 km, and
so on, are the surface-reflected ones. This fact is indi-
rectly confirmed by the phase relations between the sig-
nals. The measured (frequency-independent) phase
shift for the signals of a quartet, which differ by a single
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
surface reflection from each other, proved to be about
180°. Thus, the t–R diagram obtained in the experi-
ments under discussion differs from the diagrams pre-
sented in [8] for other regions of the Ocean in that the
latter diagrams were plotted by neglecting the effect
of the bottom and surface reflections on the time struc-
ture of the sound field. No quartets of time-separated
water-path signals were observed in the time structure
of explosion-generated signals propagating in the
Norwegian Sea.

In the UWSC of the Norwegian Sea, the geometric
dispersion of the signal was estimated from the data of
its frequency filtering. The explosion-generated signal
received from a certain distance was filtered in
1/3-octave bands that covered the 63–250 Hz range.
The time structures of the signal filtered in different fre-
quency bands were correlated for the same time inter-
vals. Signals received from different distances were
analyzed. No noticeable dispersion was detected for
any of these signals. The group velocity calculations
performed with the wave-approximation computer
code [9] led to the same conclusion: the geometric dis-
persion is rather weak, if any.

From the experimental data, the coefficients of
sound attenuation were estimated for the frequency
band 63–630 Hz. As a rule, one determines the attenu-
ation coefficient in the ocean by the deviation of the
experimental sound field decay from the cylindrical law
of the geometric spread. With explosion-generated sig-
nals, the sound field is characterized by the following
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quantity that is equivalent to the signal energy within
the frequency band ∆f:

where T is the signal duration and pf(t) is the sound
pressure in the explosion-generated signal, which is
normalized to the frequency band ∆f. In the computer
signal processing, the equivalent quantity can be
obtained from the power spectrum of the signal. For the
spectral analysis of the experimental data, a set of com-
puter codes was developed to determine the decay law
of the explosion-generated signals, the attenuation
coefficients at individual frequencies, and the fre-
quency dependence of attenuation.

As a result of the signal processing performed for
the signals that were received at the horizons 150 and
600 m, the laws governing the decay of the sound field
levels with distance were obtained. The values of the
attenuation coefficient at different frequencies were
determined based on the deviations of the experimental
decay curves from the cylindrical law for the path frac-
tion 50–815 km. At frequencies higher than 400 Hz, the
most distant boundary of the path was chosen from the
condition of sufficiently high signal level above the
noise (at least 8–10 dB). At about 200 km from the
reception point, the boundary between the Norwegian
and Lofoten hollows was located, at which rather sharp
changes in the profile c(z) took place. The signals arriv-
ing from distances longer than 200 km were partially
screened by the bottom rise. The sound speed at the
depth about 2400 m (corresponding to the bottom rise)
were nearly the same as near the surface. In this case,
only the purely water-path rays contributed to the signal
energy. The signals reflected from the surface were

E f p f
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Fig. 7. Fragment of the reduced t–R diagram for the dis-
tances R/N = 41–49 km. The region of the Norwegian Hol-
low. The experimental values of t/N correspond to N = (d) 1,
(×) 2, (s) 3, (+) 4, and (n) 5.
attenuated by the additional bottom reflection (during
experimentation, the wind speed was 8–12 m/s, the sea
state was Beoufort 4–6).

Figure 8 shows the experimental decays for the
sound field level, upon introducing corrections for the
cylindrical law of geometrical spread, at the frequen-
cies 63, 160, and 315 Hz for the 600-m receiver depth.
At 80–160-km distances, a considerable (6–8 dB)
increase was observed in the sound field level. For the
150-m receiver depth, a similar increase exists at the
distances 250–300 km. The calculations with the use of
the Vagin ray-approximation computer code [4] con-
firmed the experimentally observed increase in the
sound field level for 80–160-km distances (with the
600-m receiver depth). It is worth mentioning that the
location of this increase agrees well with the position of
the core of cold waters (see Fig. 3).

In Table 1, the attenuation coefficients are summa-
rized that are directly estimated from the deviation of
the sound level decay from the cylindrical law. At fre-
quencies higher than 400 Hz (the data marked with
asterisks), the attenuation was estimated for the path
fraction bounded by the 600-km limiting distance. This
limitation is determined by low signal-to-noise ratios at
higher frequencies.

For the signals received at the 600-m depth, an addi-
tional estimate was obtained for the sound attenuation
at the path fraction bounded by the distances 200 and
815 km. In this case, the fraction between 80 and
160 km, where a local increase in the signal level
occurred, was eliminated from the consideration. Here,
the decay of the 63–100-Hz signals was slower than the
cylindrical one. Earlier, we repeatedly observed similar
deviations from the cylindrical law at low frequencies
at which the sound attenuation in sea water is relatively
weak. These deviations can be attributed to the redistri-
bution of the sound energy in depth due to the range-
dependent changes in the profile c(z) [10]. The fact is
worth mentioning that the attenuation coefficients
determined from the decay law for the 600-m horizon
differ on the average by 5–6 dB/km for the path frac-
tions 50–815 and 200–815 km. This difference is nearly
frequency independent and seems to be caused by noth-
ing but the increased sound field level within the 80–
160-km path fraction.

Strictly speaking, a direct determination of the
attenuation coefficient by the deviation of the sound
level decay from the cylindrical law is incorrect for the
experiment at hand. In this case, in spite of the guided
sound propagation, one cannot speak of the cylindrical
law of the geometric spread: the medium deviates
appreciably from a horizontally layered structure. If the
medium characteristics change along the path and the
law of the geometric spread cannot be established to a
sufficient accuracy, one should use the so-called differ-
ential method [11] to estimate the attenuation coeffi-
cient. This method is based on two assumptions. First,
the law of the geometric spread is unknown, but it is the
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Table 1.  Directly determined attenuation coefficients

f, Hz

Attenuation coefficient 
(dB/km) for a reception 

depth of 150 m

Attenuation coefficient (dB/km)
for a reception depth of 600 m

Absorption coefficient
(dB/km) calculated
according to Eq. (2)

50–815 km 50–815 km 200–815 km

63 0.002 0.003 –0.003 0.00024–0.00026

80 0.0031 0.0036 –0.002 0.00038–0.00041

100 0.0041 0.005 –0.00015 0.0006–0.00065

125 0.0043 0.0054 0.001 0.00093–0.001

160 0.0052 0.009 0.0043 0.0015–0.0016

200 0.0078 0.010 0.005 0.0023–0.0025

250 0.0106 0.0132 0.0067 0.0035–0.0038

315 0.0115 0.0168 0.0122 0.0054–0.0058

400 0.0181* 0.0278* 0.0220* 0.0084–0.0089

500 0.0246* 0.0336* 0.0346* 0.0122–0.0130

630 0.0262* 0.0498* 0.0370* 0.0175–0.0190
same for whole frequency band under study. Second,
the frequency dependence of the attenuation coefficient
obeys a power law with a zero constant component. The
sound levels at individual frequencies are normalized to
the level at a single frequency, which is considered as a
reference one. Thus, the unknown law of the geometric
spread can be eliminated. From the normalized decay at
each frequency, the differential attenuation coefficient
is determined, and this coefficient can be shown to be
equal to the difference in the values of the total attenu-
ation coefficient at two frequencies: the frequency
under analysis and the reference one. By approximating
the frequency dependence of the differential attenua-
tion coefficient by a power-law function and omitting
the free term, we arrive at the following expression for
the total attenuation coefficient:

(1)

This technique was first used in [12]. We imple-
mented it in a computer code for processing the exper-
imental data and repeatedly used it to estimate the
sound attenuation in complex hydrological environ-
ments. With approximation of the sound field level (at
a certain frequency) normalized to that at the reference
frequency (160 Hz) by an exponential law, there no
need to choose a path fraction with uniform hydrologi-
cal characteristics. To estimate the attenuation coeffi-
cient with the differential method, we used the sound
signals received at the distances between 50 and 650–
815 km from the source. Figure 9 shows the range
dependences of the experimental sound field levels nor-
malized to the corresponding values measured at the
reference frequency (160 Hz). These dependences
illustrate the advantages of the differential method: the
local increases in the sound field level, which are
caused by the changes in the hydrological characteris-
tics along the path, are absent in the curves.

β a f n.=
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To describe the frequency dependence of sound
attenuation by Eq. (1) with the frequency measured in
kilohertz and the attenuation coefficient measured in
decibels per kilometer, we determined the following
values of the parameters:

(i) for the 600-m reception depth, a = 0.0524 and
n = 0.925;

(ii) for the 150-m reception depth, a = 0.0438 and
n = 0.99.

The resulting expressions yield close values for the
attenuation coefficient. Table 2 presents the attenuation
coefficients determined by the differential method.

For the sake of comparison, the last columns of
Tables 1 and 2 contain the absorption coefficients cal-
culated according to the formula given in [13]:

(2)

where f is the frequency in kilohertz, K = 1.42 ×
 dB/km kHz2,  = 1.125 ×

 kHz,  = 62.5ST × 10–6 dB/km kHz,

frB = 37.9S0.8 × 10–780/T kHz, AB = 1.65S ×
 dB/km kHz, S is the salinity in parts

per thousand, T is the temperature in Kelvin degrees,
and pH is the effective value of the hydrogen ion expo-
nent.

The first term in Eq. (2) characterizes the relaxation
absorption associated with boron, the second corre-
sponds to the relaxation absorption associated with
magnesium sulfate, and the third determines the fresh-
water sound absorption.

In calculating the absorption coefficient for the Nor-
wegian Sea, we specified the following parameters of

α
AB f

f / f rB f rB/ f+
---------------------------------

AMgSO4
f

f / f rMgSO4
f rMgSO4

/ f+
--------------------------------------------------- K f 2,+ +=

10(–8 1240/T )+ f rMgSO4

10 9 2038/T–( ) AMgSO4

10 4 0.78pH 3696– /T+( )
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Fig. 8. Experimental decays of the sound field level cor-
rected for the cylindrical law of the geometric spread. The
reception depth is 600 m. The frequencies are (a) 63,
(b) 160, and (c) 315 Hz. The decay is approximated by an
exponential function for the intervals of distances from the
source (1) 200–815 and (2) 50–815 km.

Fig. 9. Experimental decays of the sound field level normal-
ized to the corresponding level at the reference frequency
(160 Hz). The reception depth is 600 m. The frequencies are
(a) 63 and (b) 315 Hz.
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the water medium: T = 272.5°K, S = 35.2‰, and pH =
8.15–8.2.

For the Norwegian Sea, the experimental values of
the attenuation coefficient are by a factor of 1.5–2.5
higher than the predicted values of the absorption coef-
ficient at the frequencies 400–630 Hz and 10 to 20 timed
higher than the values predicted for the low frequencies
(63–100 Hz).

A possible reason for that high values of the attenu-
ation coefficient is the sound scattering by thermal
inhomogeneities like thin-layered structures in the
ocean. In [14], based on the analysis of a large body of
experimental data on the hydrological parameters for
the north-western part of the Pacific Ocean, a conclu-
sion is drawn that the aforementioned inhomogeneities
are generated in the ocean regions that are influenced
by the Kamchatka current. In such regions and in the
areas that are close to them, typical limits are deter-
mined for the variations of the mean square refractive
index: µ2 ≈ 10–5–10–7.

The Norwegian Sea is strongly influenced by the
cold East-Greenland Current and by a branch of the
warm North-Atlantic Current. To explain the values of
the attenuation coefficient obtained in our experiment
for a frequency of about 500 Hz by the sound scattering
from the fine-structure inhomogeneities of the medium,
it is sufficient to substitute µ2 ≈ 10–7 into the expres-
sions given in [15] with the vertical and horizontal
inhomogeneity sizes of about 1 and 150 m, respec-
tively.

In the literature, the fractal nature of the fine-struc-
ture inhomogeneities of the ocean is discussed. The
sound scattering by such inhomogeneities leads to a
power-law dependence of the low-frequency attenua-
tion [16]. With certain parameters of a fractal, the expo-
nent in the frequency dependence of attenuation can be
obtained that agrees with the results of our experiment.
The fractal parameters for the Norwegian Sea notice-
ably differ from those chosen earlier [11] to describe
the experimental data on the sound attenuation in the
Greenland Sea, for instance. This difference can be
explained by nothing but the regional features of thin-
layered structures (scatterers), which are responsible
for the increased attenuation (in comparison with
absorption) of sound in sea water.

Generalizing the analysis of experimental data
described above, we can draw the conclusion that the
features of sound propagation in the Norwegian Sea are
fairly intricate. In particular, profound changes occur in
the propagation conditions when the path crosses the
boundary between the Norwegian and Lofoten hollows,
these changes correlating with the bottom rise (ocean-
ologists repeatedly observed the correlation between
the positions of different ocean fronts and the bottom
relief [17]). The hydrological data presented above
determine the position of the front zone at the moment
of experimenting with long-range propagation of the
explosion-generated signals. However, these data are
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Table 2.  Attenuation coefficients determined by the differential method

Frequency, Hz

Attenuation coefficient (dB/km)
for a reception depth of 150 m

Attenuation coefficient (dB/km)
for a reception depth of 600 m

Absorption coefficient 
(dB/km) calculated
according to Eq. (2)experiment Eq. (1) experiment Eq. (1)

63 0.0030 0.0028 0.0044 0.0041 0.00024–0.00026

80 0.0044 0.0036 0.0050 0.0051 0.00038–0.00041

100 0.0050 0.0045 0.0063 0.0062 0.0006–0.00065

125 0.0050 0.0056 0.0068 0.0077 0.00093–0.001

160 0.0058 0.0072 0.0103 0.0096 0.0015–0.0016

200 0.0083 0.0089 0.0115 0.0118 0.0023–0.0025

250 0.0125 0.0111 0.0145 0.0146 0.0035–0.0038

315 0.0122 0.0140 0.0182 0.0180 0.0054–0.0058

400 0.0180 0.0177 0.0229 0.0225 0.00840–0.0089

500 0.0250 0.0221 0.0273 0.0276 0.01220–0.0130

630 0.0261 0.0277 0.0338 0.0342 0.01750–0.0190
insufficient to estimate the horizontal gradients of tem-
perature and the speed of sound in the front zone and to
describe the front zone itself in detail.

The presented experimental data give an insight into
the formation of the spatial and time structures and the
intensity structure of the sound field in this rather pecu-
liar region of the ocean.

The analysis of the experimental data on sound
attenuation in the Norwegian Sea leads to the conclu-
sion that the role of sound scattering by the thermal
inhomogeneities of the medium (of the type of a thin-
layered structure) is significant. This mechanism can
override the sound absorption in the ocean medium
(including the relaxation processes associated with
boron). When ascribing the fractal nature to the scatter-
ing, one should take into account that the differences in
the fractal parameters, which lead to certain frequency
dependences of attenuation (that are different for differ-
ent ocean regions), can be used to estimate the regional
variability of the conditions of sound propagation in the
UWSC.
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Abstract—The motion of a body along an elastic guide under the effect of an incident wave is considered.
An equation describing the longitudinal motion of a body along an arbitrary guide is derived from the laws
governing the energy and momentum variations for the case when the incident wave generates a single
reflected wave. The equations that describe the motion of a body along a string and along a beam correspond-
ing to the Bernoulli–Euler model are considered as examples. The process of the body acceleration along a
beam of the aforementioned type is investigated. For the subcritical velocities, the law governing the motion
of the body and the ratio of the kinetic energy variation to the energy supplied to the body are determined.
© 2002 MAIK “Nauka/Interperiodica”.
† The statement that waves exert some pressure on the
bodies impeding their free propagation was first formu-
lated by L. Euler. Being an opponent of the corpuscular
theory of light, in 1746, he published a paper [1] in
which he explained the elongation of cometary tails
observed with decreasing distance to the Sun by the
pressure produced by light waves, whereas his oppo-
nents attributed this effect to the bombardment of atmo-
sphere by particles of light. In 1873, Maxwell proposed
a theoretical explanation for the effect of the wave pres-
sure and derived a formula for calculating the pressure
exerted by electromagnetic waves on a stationary obsta-
cle [2]

(1)

where Φ is the wave energy flux and c is the propaga-
tion velocity of electromagnetic waves. Experimen-
tally, the wave pressure was first observed by Dvorak in
1876 [3]. He insonified acoustic resonators suspended
from threads and used the angles made by the threads
with the vertical to measure the pressure produced by
the sound waves. The results of his experiments were
interpreted by Rayleigh [3], who developed the theory
of sound wave pressure in the framework of the adia-
batic approximation. In 1902, after the famous experi-
ments by P.N. Lebedev [4], which revealed the pressure
produced by light waves, Rayleigh and Larmor inde-
pendently put forward the idea that any wave motion of
any origin produces a certain pressure on the bodies
that impede its free propagation [5, 6]. The studies of
the pressure effect caused by mechanical waves, which
were initiated by Rayleigh and Larmor, were continued
by E. Nicolai. In 1912–1925, he considered a set of

† Deceased.

F Φ/c,=
1063-7710/02/4801- $22.00 © 20034
problems on the interaction of transverse waves excited
in a string with its moving supports [7, 8].

Interest in a closer consideration of the effect of
wave pressure has revived recently in connection with
attempts to explain the parametric instability of the sec-
ond kind in systems with moving supports [9, 10], as
well as the effects of wave formation in the presence of
loads moving along elastic guides [11]. It was found
that the energy required for the excitation of pulses in
the first case and the wave generation in the second is
taken from the energy of the translational motion of the
supports and the loads, respectively, and that this
energy transformation occurs via the force caused by
the pressure of waves [12]. The problem of taking into
account the pressure of waves is especially important
for the design and use of railroads [13]. When a train
moves with a speed 200 km/h or higher, elastic waves
can be excited in the railway bed and in the surrounding
ground [14, 15]. The pressure produced by these waves
makes the major contribution to the tractive resistance.

Let us estimate the pressure exerted by waves of dif-
ferent physical origins on a stationary obstacle. If the
obstacle absorbs the incident wave, the pressure will be
determined by Eq. (1), where c = ω/k is the phase veloc-
ity, ω is the frequency, k is the wave number, and Φ is
the wave source power, provided that the whole wave
energy flux generated by the source is incident on the
obstacle. The corresponding estimates are presented in
the table. To make the comparison more convenient, for
all kinds of waves given in the table, the source powers
are assumed to be identical and equal to 104 W.

Evidently, the pressure produced by low-frequency
gravity waves, as well as by transverse waves in beams,
chains, crawler belts, and plates, is comparable with the
002 MAIK “Nauka/Interperiodica”
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forces that drive the machines. This explains the inter-
est by researchers in the development of machines and
mechanisms based on the wave motion concept, includ-
ing those transforming the wave energy to the transla-
tional energy of bodies.

Let us consider the motion of a body of mass m
along an elastic guide (Fig. 1) under the effect of pres-
sure produced by a wave incident on this body. If the
body does not move in the transverse direction, the
wave does not penetrate behind it, and we can consider
the case of perfect reflection. Then, the problem under
study can be identified with the problem of a collision
of two bodies. One of them is represented by the body
moving along the elastic guide, and the other is repre-
sented by the wave, which can be characterized by the
wave momentum [12]. We assume that the incident
wave generates a single reflected wave propagating in
the direction opposite to that of the incident wave. For
such an interaction, the laws governing the energy and
momentum variations have the following differential
form:

(2)

Here, v  = (t ) is the velocity of travel of the mass m;
dl = vdt; ε0 and p0 are the energy and momentum of the
incident wave; ε and p are the energy and momentum
of the reflected wave; and F is the friction force, which
has the form

(3)

where F0 and δ are the constants characterizing dry and
viscous friction, respectively.

We assume that the wave incident on the body has
the frequency ω0, and the frequency of the reflected
wave ω varies slowly so as to satisfy the condition

(4)

In this case, the energy and the wave momentum aver-
aged over the period are related as follows [16]:

(5)

where c0 = ω0/k0 and c = ω/k are the phase velocities of
the incident and reflected waves, respectively.

Assuming that relationships (5) are also valid in the
small, from Eqs. (2) we obtain the following equation
describing the motion of the body along the guide:

(6)

We note that, in deriving Eq. (6), instead of the law
governing the momentum variation, one can use the so-
called law of conservation of the number of wave
energy quanta, which has the form ε/ω = ε0/ω0 = const
in the case of a perfect reflection with a single reflected
wave [16], and the law of the double Doppler effect,

dε0 dε– mv dv Fdl,+=

d p0 dp– mdv Fdt.+=

l̇

F F0 vsgn δv ,+=

dω/dt  ! ω2.

ε0 c0 p0, ε cp,= =

m
vd
td

-------
c c0+( )

c0 c v+( )
-----------------------

ε0d
dt
------- F.–=
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which relates the frequencies of the incident and
reflected waves.

To calculate the possible types of motion of bodies
under the forces caused by the elastic wave pressure, it is
convenient to preset either the wave source power Φ0
when the wave is fed by a force source or the wave
energy density h0 when the wave is fed by a displacement
source. Taking into account that the wave energy flux
incident on a moving body is equal to (Φ0 – vh0)|x = l(t)
and the wave flux through a stationary cross-section (i.e.,
the source power Φ0) is related to the wave energy den-

sity h0 by the formula Φ0 = vgrh0, where vgr = 

is the wave energy flow velocity (i.e., the group velocity
of the incident wave), we obtain the expression

Then, Eq. (6) can be represented in the form

(7)

Equation (7) is derived under the natural assumption
that the incident wave catches up with the moving body,
i.e., v gr > v. Otherwise, no interaction will occur
between the body and the wave.

To determine the group and phase velocities
involved in Eq. (7), it is necessary to know the depen-
dence of the frequency on the wave number. This
dependence is obtained either from the dynamic equa-

dω
dk
-------

ω ω0=

dε0 = 1 v /v gr–( )Φ0 x l t( )= dt = v gr v–( )h0 x l t( )= dt.

m
vd
td

-------
c c0+( )

c0 c v+( )
----------------------- 1 v /v gr–( )Φ0 x l t( )= F–=

=  
c c0+( )

c0 c v+( )
----------------------- v gr v–( )h0 x l t( )= F.–

Table

Waves Velocity 
c, m/s

Pressure 
F, N

Electromagnetic waves in vacuum 3 × 108 3.3 × 10–5

Sound waves in metal 5 × 103 2

Sound waves in air 3 × 102 3.3 × 101

Low-frequency gravity waves 10–1–1 104–105

Low-frequency transverse waves in 
beams, chains, crawler belts, and plates

1–10 103–104

x = l(t)

U(x, t)

x

Fig. 1. Motion of a mass along an elastic guide.
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tion of the elastic guide in the form of the dispersion
equation

(8)

or from the experiment. It is necessary to take into
account that the frequency and the wave number of the
incident wave are related to the frequencies and wave
numbers of the secondary (reflected and transmitted)
waves:

(9)

This relationship expresses the condition that the fre-
quencies of all secondary waves are equal to the fre-
quency of the incident wave in the moving coordinate
system (x ' = x – v t, t ' = t). Among all solutions to the
system of equations (8) and (9), only those correspond-
ing to the energy flow away from the moving body, i.e.,
those with the group velocity satisfying the condition
dω/dk < v, will describe the reflected waves.

The first term on the right-hand side of Eq. (7) rep-
resents the force caused by the wave pressure (Fpr), the
presence of which was first mentioned in [5–7]. It can
easily be shown that, in the case of total reflection [for
which Eq. (7) was derived], this force is proportional to
the reflection coefficient (Φ1/Φ0) at the boundary [17]:

(10)

Here, Φ1 is the reflected energy flux and v gr1 is the
group velocity of the reflected wave.

If we choose the guide in the form of a string for

which c = c0 = dω/dk = ω0/k0 =  (where N is the
string tension and ρ is the density per unit length of the
string), Eq. (7) will take the form of the equation
derived in [12] from the corresponding nonlinear
boundary-value problem

The solution of this equation was studied in detail in
[18–20].

Let us consider the transformation of the flexural
wave energy to the energy of the motion of bodies. For
this purpose, we choose the guide in the form of a beam
corresponding to the Bernoulli–Euler model.1 Trans-
verse vibrations of such a beam are described by the
equation

where γ is the flexural rigidity of the beam and ρ is its
density per unit length. Representing the solution to
this equation in the form u(x, t) = u0cos(ωt – kx + ϕ0)

f ω k,( ) 0,=

ω v k– ω0 v k0.–=

Fpr

v grh0 c c0+( )
c c0 v–( )

-------------------------------- 1 v /v gr1+( )
Φ1

Φ0
------.=

N /ρ

m
vd
td

------- 2
c0 v–
c0 v+
---------------h0 F.–=

γuxxxx ρutt+ 0,=

1 This model is widely used in mechanics [21, 22]. However, the
attention is usually concentrated on the dynamic behavior of the
system under the effect of moving loads or on the interaction of
flexural waves with fixed supports.
(where u0 and ϕ0 are constant values), we obtain the
following dispersion equation [Eq. (8)] for flexural
waves [23]:

(11)

From this equation, we obtain

where ω0 is the frequency of the incident wave. Solving
Eqs. (9) and (11) in combination, we find that, in the

velocity interval v 1 < v  < v 2 (where v 1 = –2(  + 1)c0

and v 2 = 2(  – 1)c0), a near-boundary oscillation and
a travelling reflected wave whose phase velocity is c =
c0 – v  must occur. In all other cases, the number of
reflected waves is greater, and these cases are beyond
the scope of our paper.

As for the wave energy transferred by the incident
wave, with allowance for Eq. (11), its density can be

represented as h0 = (ρ  + γ ) = ρ  = const.

Then, from Eq. (7), we obtain

Let us consider the solution of this equation for
some particular cases. First, we assume that the friction
force is negligibly small (F = 0). Then, after integrating
the equation dv /dt = (2 – v /c0)2h0/m with allowance for
the initial condition v (0) = v 0, we derive

(12)

From this expression, it specifically follows that the
longitudinal component of the beam reaction to the
body (the wave pressure) is equal to

Fpr = 2 – / 1 + 2 – h0 .

The subsequent integration yields the law that gov-
erns the motion of the body

Since we consider the interval –2(  + 1) <  <

2(  – 1), the time within which the above formulas
are valid is as follows:

γk4 ρω2– 0.=
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Taking into account that the energy supplied to the
moving mass is equal to

from Eq. (12) we obtain v  = 2c0 + (v 0 –

2c0)exp . The dependence corresponding to

this formula is shown in Fig. 2.
We can also calculate the ratio of the kinetic energy

variation to the energy supplied to the body, i.e., the effi-

ciency η = m(v 2 – )/(2ε0) (t < t*). Setting v0 = v(0) =

0 and taking into account Eq. (12), we determine the accel-

eration efficiency η = 8 t2/ m2 1 + ln 1 +

, where t < t*. Expressing it through the energy

of the incident wave, we obtain

η = 2  – 1 / exp .

Figure 3 represents the dependence of the efficiency
on the reduced energy of the incident wave. One can see
that, for the case under consideration, the efficiency
does not exceed 0.7. All solutions are obtained within
approximation (4)

The presence of the friction force given by Eq. (3)
leads to the existence of several types of motion [18]. If
the force caused by the wave pressure is smaller than
the friction force, the motion of the object will termi-
nate within a finite time interval. If these forces are
comparable, the motion will be intermittent. Finally,
the motion of the object will be continuous if the force
acting on it is sufficiently strong. For the latter case, in
the framework of the approximation specified above,
we obtain

ε0 S0 v h0–( ) td
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Here, A1 = 2 –  +  + / 2 –  +  – ,

K =  +  + , and β = .

Thus, for distributed systems with objects moving
along them, it is possible to determine some important
quantities from the laws governing the energy and
momentum variations without solving the correspond-
ing nonlinear boundary-value problems.
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Abstract—Experimental data obtained by studying the sound field produced in the first and second conver-
gence zones by an omnidirectional pseudonoise source operating in the kilohertz frequency range at a depth of
~10 m are presented. The measurements of the cross correlation and the time spectra are performed for the sig-
nals received from different directions in the vertical plane by one narrow-beam, 40-m array and by two such
arrays with the array centers positioned at different depths (200 and 450 m). The results of the experiments show
that, for the signals arriving over different ray paths, the cross-correlation coefficients and the fluctuations of
the time spectra obtained by using the reception at one depth and at two different depths are practically identi-
cal. © 2002 MAIK “Nauka/Interperiodica”.
To predict theoretically the sound field structure in
different parts of the oceanic waveguide so as to obtain
the sound field characteristics close to reality is a rather
difficult task, especially in the complex acoustic condi-
tions of the oceanic medium. In this connection, the
need arises in reliable experimental measurements and
in the comparison of their results with the correspond-
ing calculations. Recently, the interest of many
researchers in experiments of this kind has quickened
[1–3]. In particular, full-scale measurements were car-
ried out near caustics and at large distances from the
source with the use of large-aperture vertical arrays.
However, such measurements are usually performed
with pulsed signals whose carrier frequencies are about
several tens or hundreds of hertz. For these frequencies,
the design of narrow-beam arrays with low enough
sidelobe levels to study the fine structure of the sound
field (e.g., the angular and time spectra of the received
signals) is highly complicated, if not impossible. We
note that the angular spectrum is understood as a set of
the arrival angles of the signal in the vertical plane, and
the time spectrum is a set of the differences in the
arrival times of one signal by different rays paths.

In our previous publications [4–7], we studied the
cross-correlation and spectral characteristics of broad-
band pseudonoise signals in the kilohertz frequency
band in the case of their reception by narrow-beam ver-
tical arrays (with a main lobe width of ~2° at the mean
frequency) in different situations. For example, we
studied the fine structure of the sound field at large dis-
tances from the source for a single reception point (in
multipath propagation conditions) and for reception
points spaced at several tens of kilometers along the
acoustic track, in the regions of the sound field caustics
and in their vicinities, in the presence of considerable
space-time variations of the sound velocity because of
1063-7710/02/4801- $22.00 © 20039
the Gulf Stream, and even in the case of the signal
reception at the points lying in different oceans with the
use of the data recorded in different years.

In this paper, we consider the variability of the cor-
relation characteristics and the time spectra of signals
received at relatively large depths (200–450 m) from a
near-surface omnidirectional source of sound lying at a
depth of about 10 m. In this situation, unlike the case of
a large transmission depth, even in the underwater
sound channel conditions, the characteristics of the sig-
nals can be strongly affected by the agitated ocean sur-
face and by the source depth variations due to the roll
of the transmitting ship. Thus, in the situation under
study, the correlation and spectral characteristics of the
received signals can depend not only on the sound scat-
tering by random inhomogeneities of the water column,
but also on the scattering by the agitated ocean surface.

To estimate the effect produced by the inhomoge-
neities of the refractive index of the water column on
the fluctuations of the time of signal propagation(στ)1
over the water ray paths, i.e., along the rays that
undergo no surface or bottom reflections, one can use
the formula [8]

where 〈µ2〉  is the mean square fluctuation of the refrac-
tive index,  is the mean diameter of random inhomo-
geneities on the acoustic track, c is the velocity of
sound, and r is the distance. We note that this formula
yields the upper estimate, because it is derived on the
assumption that the inhomogeneities of the medium
occur along the whole propagation path of the signal,
both in the upper layers of the ocean and in the deep

στ( )1
π1/2

2c2
-------- µ2〈 〉 ar 
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water layers. If we assume that the whole waveguide is
filled with large inhomogeneities characterized by the
size  = 115 m and the maximal value 〈µ2〉  = 270 ×
10–10, the calculation by the aforementioned formula
yields the value (στ)1 < 0.3 ms for the distances within
~55–70 km, which are considered in this study. Taking
into account that the dimensions of the inhomogene-
ities and the mean square fluctuation of the refractive
index vary with depth (in the upper layers of the ocean,

 = 1.5–1.9 m and 〈µ2〉  = (16–22) × 10–10, whereas in
the lower layers,  = 110–115 m and 〈µ2〉 = (100–270) ×
10–10 [9]) and, hence, different kinds of inhomogene-
ities occur on the signal propagation path (because of
the vertical refraction), we can take the equivalent size
of random inhomogeneities throughout the propagation
path to be  ≅  40 m and the mean square fluctuation to
be 〈µ2〉  = 50 × 10–10 [10]. Then, we obtain the estimate
(στ)1 < 0.07 ms. Thus, for the distances under consider-
ation, the inhomogeneities of the water column should
not cause any noticeable changes in the time spectra or
any decorrelation of signals received at different angles
in the vertical plane.

Since, in the experiment, the source of sound was
submerged to a small depth (~10 m), a much stronger
effect on the cross correlation of signals and on the tem-
poral variations of the time spectra should be produced
by the agitated ocean surface. Therefore, we estimate
the possible mean square fluctuations of the propaga-
tion time due to the signal reflection from the surface,
(στ)2, by the formula for the variance [11]

Here, N is the number of reflections from the upper
boundary of the waveguide; α is the grazing angle
formed by a ray and the flat (unperturbed) surface; c0 is
the sound velocity near the surface; σ2 and γ are the
variance of the displacements and the rms slope angle
of the surface, respectively; D is the ray cycle length; r
is the source–receiver distance along the ray at no
swell; r2 = rh + (N – 1)D/2 and r3 = rz + (N – 1)D/2,
where rh and rz are the horizontal projections of the ray
taken between the reflection point and the source and
between the reflection point and the receiver, respec-
tively; and the subscript α indicates a derivative with
respect to the angle α.

For a wind speed of 6–7 m/s and wind waves of
about Beaufort 3 (rms displacement of the water sur-
face σ ≅ 0.19–0.26 m), the estimate of the rms slope
angle of the rough surface γ by the formulas given, e.g.,
in [12] yields a value of about 0.6°–0.7°. The calcula-
tion of (στ)2 by the formula presented above shows that
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(see, e.g., [11]), for the distances 50–70 km, the rms
fluctuations of the difference in the signal arrival times
corresponding to different ray paths do not exceed 1–
1.5 ms, even when the grazing angle of the incident
sound wave (relative to the flat surface) is ~10°.

The change that occurs in the frequency spectrum of
a signal at its reflection from the rough surface should
cause a decorrelation of signals propagating over dif-
ferent ray paths. However, a number of experimental
studies [4, 6, 7] provide (in the case of a small number
of reflections) correlation coefficients no less than 0.4
and variations of the time spectra no greater than 1.6 ms,
even for a Rayleigh parameter close to unity. In the case
of a near-surface sound source, the decorrelation pre-
sumably should be greater because of the stronger
effect of the source depth variation due to the roll of the
transmitting ship.

The experiment was carried out in a deep-water
region of the Atlantic Ocean (sea depth H = 5180 m) in
March 1980 by the research ships Petr Lebedev and
Sergeœ Vavilov.1 The transmitting ship was maintained
at a fixed point by an electrical motor, and the receiving
ship lay to. As a result, the distance between the ships
varied steadily from 58 to 66 km during the measure-
ments in the first convergence zone and from 119 to 126
km during the measurements in the second convergence
zone.

The hydrological conditions were characterized by
the sound velocity profile c(z) shown in Fig. 1a, and the
weather conditions were characterized by wind speed
5–6 m/s and wind waves corresponding to Beaufort 2–3
(rms height of waves was ~0.1–0.19 m). A continuous
pseudonoise signal was generated in the frequency
band 0.8–1.3 kHz at a source depth of ~10 m. The sig-
nal was received by two 40-m vertical arrays whose
centers were at the depths 200 and 450 m. Each of these
arrays consisted of 296 hydrophones, which were com-
bined into 74 nonequidistant centers, and had an outer
diameter of 5 cm. The signals intended for the cross-
correlation processing were simultaneously received by
two directional patterns formed by either one or two
arrays. The deviation of the arrays, which had ~700 kg
weights at their ends, from vertical was controlled by
special clinometers or estimated by the difference in the
arrival angles of the signals, one of which was reflected
from the bottom and the other from the bottom and the
surface. During the experiments, the deviation from
vertical did not exceed ±1°. The angular resolution of
the arriving signals in the vertical plane was ~2° at the
mean frequency of the aforementioned frequency band,
and the resolution in the arrival time was 2 ms.

The sound field produced by a near-surface sound
source is known to be characterized by narrower con-
vergence zones (all other conditions being equal).
However, when the signals are received in these zones,

1 The unique set of transmitting and receiving systems used in the
experiment was developed under the supervision of A.M. Dymshits
at the Morfizpribor Central Research Institute.
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Fig. 1. (a) Sound velocity profile c(z) and (b, c) the angular spectra of the sound field [in the middle of the (b) first and (c) second
convergence zones].
they can arrive at the depths specified above both from
below (by rays with negative arrival angles) and from
above (by rays with positive arrival angles).

Figures 1b and 1c present the angular spectra of sig-
nals received at different depths in the middle of the
first and second convergence zones. The photographs
showing the responses of the arrays to the arriving sig-
nals were made using a sector scan indicator in the
beam scanning mode within the angular range ±20°ë,
which was “stretched” on the screen to approximately
310°ë. The outer and inner scans refer to the reception
depths 200 and 450 m, respectively. At both reception
depths, signals with both positive and negative arrival
angles α were observed. In the middle of the first con-
vergence zone, the signals arrived at the angles α1 = +8°
and α2 = –6° for z = 200 m and α1 = +10° and α2 = –9°
for z = 450 m; in the middle of the second convergence
zone, the arrival angles were α1 = +8° and α2 = –5° for
z = 200 m and α1 = +11° and α2 = –10° for z = 450 m.
It should be noted that from the response at the indica-
tor, i.e., from the dependence of the amplitude on the
angle in the vertical plane, one can derive information
not only on the direction of the arriving signals, but,
based on the width of the response, also on the number
of signals received from a given direction. If the width
of the response does not exceed ~2°, i.e., corresponds
to the main lobe width of the array, the arriving signal
can be naturally considered as a single-ray one. Other-
wise, there is reason to believe that there are several sig-
nals that arrive along this direction to the reception
point with their arrival angles being unresolved by the
array.

The signal processing provided the values of the
cross-correlation coefficient |R| for the signals simulta-
neously received by the directional patterns of one or
two arrays aimed at different angles in the vertical
plane. The current values of |R | were calculated using
an averaging time of 1.024 s at 12- to 20-s intervals.
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
The measurements were performed for signals with dif-
ferent pairs of arrival angles: α1, α2 > 0 (both signals
arrive from above), α1, α2 < 0 (both signals arrive from
below), and α1 > 0 and α2 < 0 (one signal arrives from
above, and the other from below). The results of the
measurements were used to obtain the time spectra, i.e.,
the sets of differences in the arrival times of signals
within the observation interval. For each two- to three-
minute-long signal record, six to fourteen measure-
ments were taken. Although the duration of each single
record was small, it was long enough for the distance
between the transmitting and receiving ships to vary
and also for the source depth to vary with a ship roll
period of about 10 s; in addition, within a single record,
changes occurred in the field structure, which, in partic-
ular, can be seen in Fig. 2. This figure shows several
records for the signals received by the two arrays posi-
tioned at different depths (200 and 450 m). The abscissa
axis represents the observation time t, and the ordinate
axis represents the difference τ in the arrival times of
the signals with the arrival angles α1 and α2 at which the
main lobes of the arrays were aimed. The distances
between the transmission and reception points are indi-
cated at the top of the plots. Figures 2a and 2b show the
time spectra of the signals received in the first conver-
gence zone at the distances from 60 to 66 km, and Fig. 2c
shows the time spectra for the signals received in the sec-
ond convergence zone at the distances 119.5–126 km.
Dots of different shapes shown in Fig. 2 represent dif-
ferent values of the cross-correlation coefficients |R| of
the received signals: (*) 0.8 ≤ |R| ≤ 1.0, (×) 0.6 ≤ |R| <
0.8; (s) 0.4 ≤ |R| < 0.6; and (d) 0.2 ≤ |R| < 0.4. Despite
the rather small width of the main lobe of each of the
arrays (∆α0.7 ≅ 2°), in some cases signals arriving over
different rays with close grazing angles fell within it.
The signals that were unresolved in angle but resolved
in the arrival time gave rise to several correlation peaks
and, hence, to several components in the time spectra.
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Within the first half of the first convergence zone
(Fig. 2a), the mean values of the time delays τ increased
from ~42 to ~46 ms as the distance increased by 3 km,
and the values of the cross-correlation coefficient var-
ied from  = 0.81 at the distance r ~ 60 km to

 = 0.70 at r ~ 63 km. In the second half of the first
convergence zone (Fig. 2b), two signals instead of one
fell within one of the directional patterns in most cases,
which resulted in the formation of two branches of τ in
the time spectra. For the time spectrum component with
maximal correlation coefficients, the mean values of τ
varied insignificantly (from ~5 to ~3 ms) and the max-
imal correlation coefficient  varied from 0.64 (r ~
65 km) to 0.76 (r ~ 66 km).

In the second convergence zone at the distances
from 119.5 to 126 km, several signals fell within prac-
tically every directional pattern of the receiving sys-
tems. Therefore, in most cases, several delay values were
simultaneously observed in the time spectra (Fig. 2c).
The time delays τ between the signals that provided the
maximal values of the cross-correlation coefficient
|Rmax | varied from ~44 to ~52 ms. The values of the
maximal correlation coefficients |Rmax| varied from 0.59
to 0.83.

When more than one signal fell within the main lobe
of the directional pattern, the determination of the
cross-correlation coefficient for the received signals
resulted in several values of |R| instead of one. In such
a situation, the signals arriving over different ray paths
played the role of “signal” interference for each other
and reduced the correlation coefficient |R| for each indi-
vidual signal. If the difference in the arrival times of the
signals exceeded 2 ms, the “signal” interference was an

Rmax

Rmax

Rmax
additive one. In this case, to take into account the inter-
fering effect of the time resolved signals that fell within
the directional pattern by propagating over each (ith)
ray, we calculated the corrected correlation coefficient
under the assumption that the levels of the arriving sig-

nals are equal: |RΣ| = . For the records pre-

sented in this paper, its mean values  vary from
0.68 to 0.88 in the first convergence zone and from 0.66
to 0.92 in the second convergence zone.

Figures 3–5 present (from top to bottom) the data on
the positions of the reception points of the propagation
track (variations in the distance r during the experi-
ment), the aiming angles of the directional patterns in
the vertical plane (angles α at which the directional pat-
terns of the arrays were directed), the correlation coef-
ficients  for one of the components of the time spec-
tra with the maximal value of |Rmax| together with the
mean values of the corrected correlation coefficients

 indicated by asterisks (*), and the differences in
times of the signal arrivals τ over all rays falling within
the directional pattern. The abscissa axis represents the
observation time t in minutes. The fluctuations of the
time differences ±στ, i.e., the rms deviation from the
mean value of τ, are shown by vertical segments in the
plots of τ(t).

Figure 3 corresponds to a single-depth reception,
i.e., to a simultaneous reception of signals by two direc-
tional patterns of the same array. The depth at which the
receiving array is positioned is indicated at the top of
each column of plots. Figure 3a presents the results
obtained by measuring the aforementioned characteris-

Ri
2

i∑
RΣ

R

RΣ
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R

tics in the first convergence zone with the receiving
array center positioned at a depth of 200 m. The corre-
lation and time characteristics were measured between
the signals received at the angles α equal to ~+8° and
~–6°. As one can see from the plot τ(t), the time spec-
trum contains two components (~15 and ~18 ms),
which indicates that one of the directional patterns
simultaneously received two signals whose arrival
angles are close to each other, so that these signals can-
not be resolved. At the beginning of the second conver-
gence zone at the same depth 200 m (Fig. 3b), each of
the directional patterns, which were turned to the
angles α close to –5° and –8°, received one signal.
Therefore, the time spectrum τ(t) contains only one
component, and the measurements of the correlation
coefficient reveal a single correlation peak. In this case,
naturally, we have  ≡ . At a reception depth
of 450 m (Fig. 3c), for the signals with the arrival
angles ~−12° and ~–9°, each time spectrum τ(t) proves
to have two components and the correlation functions
have two correlation peaks. The smooth variations
observed in Figs. 3a–3c for the mean values of the
time differences τ within the observation interval t (40
to 80 min) are mainly related to the variations of the
distance between the transmission and reception points.

Different data characterizing the experimental con-
ditions (the distance r, the depth of the vertical array
center h, and the aiming angles of the major maximums

Rmax RΣ
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of the directional patterns α1 and α2) and the results
obtained from the single-depth reception (the mean
value of the maximal correlation coefficients ,
the number of correlation peaks n, the corrected cross-
correlation coefficient , and the rms deviation of
the arrival time differences στ) are presented in Table 1.

Now, we consider the results obtained using the dif-
ferent-depth reception, i.e., the signal reception by two
arrays positioned at different depths. Figure 4 presents
the plots for the signals received in the first convergence
zone. The center of one array is at a 200-m depth, and
the center of the other is at a 450-m depth. The angles
α of the signal arrivals at the depths 200 and 450 m are
denoted by dots and crosses, respectively. The charac-
teristics of the received signals were measured for dif-
ferent angles α. At the beginning of the experiment
(within 145 min), negative values of the arrival angles
were used for both reception depths (~–7° for 200 m
and ~–9° for 450 m), whereas at the end of the experi-
ment (within the last 50 min), one angle was negative
(~–6° at 200 m) and the other was positive (~+11° at
450 m).

Figure 5 corresponds to the measurements per-
formed in the second convergence zone with the differ-
ent-depth reception. As in the experiments in the first
convergence zone, negative arrival angles were selected
at the beginning (α1 ≅ –7° for the depth 200 m and α2 ≅

Rmax

RΣ
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–11° for 450 m), and then, one positive (α1 ≅ +10° for
200 m) and one negative angle (α2 ≅ –10° for 450 m)
were used.

The data characterizing the experimental conditions
and the results obtained in the case of the different-
depth reception are presented in Table 2.

Thus, the studies of the correlation characteristics of
continuous broadband (with a bandwidth of 500 Hz)
signals received at distances up to 130 km from a sound
source positioned near the ocean surface showed that
the maximal correlation coefficients fall within 0.53 to
0.87 (the corrected values fall within 0.60 to 0.91,
respectively). The same values of  and  are
typical of a source positioned at a large depth (see, e.g.,
[4, 5]). As for the fluctuations of the differences in the
arrival times στ of signals generated by a near-surface

Rmax RΣ
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τ, ms
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–10
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Fig. 4. From top to bottom: variations of the distance r, the
arrival angles α, the mean values of the correlation coeffi-
cients , and the arrival time differences τ for the recep-
tion at two different depths in the first convergence zone.
The reception depths are (d) 200 and (×) 450 m.

R

source, in accordance with the theoretical estimates
presented above, they are often greater (up to 1.25 ms)
than the corresponding fluctuations observed for the
signals propagating in water without reflections, which
are not affected by the ocean surface and by the varia-
tions of the source depth due to the roll of the transmit-
ting ship (up to 0.3–0.5 ms).

In closing, we note that, for narrow-beam reception
in the vertical plane (~2°) both at a single depth (200 or
450 m) and at two different depths (200 and 450 m), the
values of the cross-correlation coefficients of the
received signals are mainly determined by the angular
resolution of the signals by the receiving system rather
than by the near-surface position (~10 m) of the source.
When several signals with close arrival angles are
received, the increase in the number of correlation

20 60 100 140 180 t, min
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0.5

0
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60
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–10
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Fig. 5. From top to bottom: variations of the distance r, the
arrival angles α, the mean values of the correlation coeffi-
cients , and the arrival time differences τ for the recep-
tion at two different depths in the second convergence zone.
The reception depths are (d) 200 and (×) 450 m.

R

Table 1

r, km h, m α1, deg α2, deg n στ, ms

63.0–64.6 200 ~+8 ~–6 0.53–0.77 2 0.67–0.85 0.40–0.73

120.3–122.3 200 ~–5 ~–8 0.76–0.83 1 0.76–0.83 0.25–0.39

121.4–122.3 450 ~–12 ~–9 0.56–0.59 2 0.71–0.82 0.27–0.52

Rmax RΣ
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Table 2

r, km
h = 200 m

α1, deg
h = 450 m

α2, deg
n στ, ms

59.8–63.3 ~– 7 ~–9 0.58–0.87 2–3 0.66–0.87 0.11–1.25

64.8–65.9 ~–6 ~+11 0.71–0.78 2 0.83–0.91 0.39–0.88

65–66 ~+8 ~+11 0.64–0.76 1–2 0.66–0.88 0.36–0.67

119.5–126.0 ~–5 ~–10 0.59–0.83 1–3 0.66–0.92 0.32–0.53

120.1–122.2 ~–7 ~–11 0.55–0.69 2–3 0.71–0.82 0.16–0.48

123.3–125.8 ~+10 ~–10 0.61–0.68 1–2 0.65–0.78 0.34–0.88

Rmax RΣ
peaks (in the cross-correlation function) is accompa-
nied by a decrease in their magnitudes according to the
number of arriving signals and their relative intensities.
This occurs for all spatial arrangements of the transmit-
ting–receiving systems. Only the values of the rms
deviations of the arrival time differences between sig-
nals arriving over different ray paths prove to be greater
for a near-water source than for a source positioned at a
large depth.
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Abstract—The results of an experimental study of the velocity of ultrasonic waves propagating at a 3 MHz
frequency in suspensions of glass spheres in water are presented for a wide range of concentrations. It is shown
that, from the variations in the concentration coefficient of the velocity of ultrasonic waves, one can extract
information on the structural rearrangements in the suspension and, in the range of low concentrations, infor-
mation on the elastic moduli of individual microparticles. © 2002 MAIK “Nauka/Interperiodica”.
Dispersive media are widespread in nature, and,
therefore, they are the subject of numerous theoretical
and experimental studies, including those based on the
measurements of the velocity and attenuation of ultra-
sonic waves. The propagation velocity of ultrasonic
waves is related to one of the basic properties of mate-
rials, elasticity. As is well known, the dynamic elastic-
ity of an inhomogeneous medium is determined by the
elastic parameters of the matrix and the disperse phase;
their structural parameters, such as size, form, and con-
centration; and the exchange processes between the
phases [1–11].

This paper is devoted to the experimental study of
the concentration dependence of the velocity of ultra-
sonic wave propagation in suspensions of spherical
glass particles in the range of volume concentrations
from fractions of a percent to 55%, that is, to the con-
centrations at which a globular porous structure is
formed [12, 13].

By using a histogram of glass particles, which was
determined by measuring the sizes of 1000 spheres with
a microscope, we determined the mean size characteriz-
ing the maximal fraction of glass spheres (10 µm), as
well as the minimal (3 µm) and the maximal (40 µm)
sizes. The suspensions were sounded by ultrasonic
waves with a frequency of 3 MHz. The velocity was
measured by a pulse-phase method with a variable
base, which uses the interference of two signals with a
path-length difference being a multiple of λ/2 in the
sample under study [14]. The accuracy of measure-
ments was about 1%. For all sizes of particles, the con-
dition kR ! 1 was satisfied, where k is the wave number
and R is the radius of a particle.

The results of measuring the velocity of ultrasonic
wave propagation in suspensions in the whole range of
particle concentrations are presented by curve 1 in Fig. 1.
As is seen, in the region of low concentrations n ∈  0.1–
10%, the velocity of ultrasonic waves decreases with
1063-7710/02/4801- $22.00 © 20046
the increase in the particle concentration. In this region,
the concentration coefficient of velocity is negative

 < 0. At concentrations higher than 10%, the
dependence of the velocity of ultrasonic waves on the
concentration changes. In the 10–20% range of concen-
trations, the curve reaches its minimum and the concen-
tration coefficient tends to zero  ~ 0. On further
growth of the particle concentration in the suspension,
the velocity of ultrasound begins to rise. The concentra-
tion coefficient of velocity becomes positive  > 0.
At a concentration ~45%, the velocity of ultrasonic
waves in the suspension reaches the values comparable
with the velocity in a pure matrix and then becomes
even higher.

A negative concentration coefficient of the ultra-
sonic velocity in the region of low concentrations was
observed in suspensions of ferromagnetic particles and
in water with gas bubbles of sizes much smaller than
resonant. In the first case, this effect was explained by
the dominant role of the additive density of the suspen-
sion, and in the second case, by the dominant role of the
additive compressibility [15, 16]. In the suspensions of
glass spheres, the negative concentration coefficient of
ultrasonic waves in the region of low particle concen-
trations up to 10% is most likely associated with the
dominant role of the additive density of the suspension,
as in suspensions of ferromagnetic particles.

Calculations and direct observations with a micro-
scope showed that the change in the character of the
concentration dependence of the ultrasonic velocity
takes place in the regions of structural rearrangements.
In the concentration range 0.1–10% (  < 0), the
distance between the particles is rmn > 2R and the num-
ber of interparticle contacts is γ = 0. It is the region of
existence of isolated particles almost uniformly distrib-
uted in the matrix. In the concentration range 10–20%
(  ~ 0), the distance between the particles is rmn <

∂c/∂n

∂c/∂n

∂c/∂n

∂c ∂n⁄

∂c ∂n⁄
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2R, and the cluster aggregations appear with double and
triple interparticle contacts. When the concentration
exceeds 20%, a globular porous structure begins to
form and the number of interparticle contacts grows
with concentration and reaches a value of γ ≈ 6. A sim-
ilar sensitivity to structural rearrangements in suspen-
sions of glass spheres was observed in the study of the
concentration dependence of the attenuation constant
for ultrasonic waves [7].

The theories describing the propagation of acoustic
waves in disperse systems are based on the model of
microinhomogeneous media [18]. The additivity of the
density 〈ρ〉  = (1 – n)ρ1 + nρ2, the heat capacity at con-
stant pressure 〈cp〉 = (1 – n)cp1 + ncp2, the coefficient of
thermal expansion 〈α〉  = (1 – n)α1 + α2, and the isother-
mal compressibility 〈β〉  = (1 – n)β1 + nβ2 is assumed to
be valid. Here, index 1 designates a liquid medium, the
index 2 designates a solid medium, and n is the volume
concentration of the disperse phase. The coefficient of
adiabatic compressibility in the absence of exchange
processes between the phases of a disperse system is
also additive: 〈βa〉 = (1 – n)βa1 + nβa2. In this case, the
Laplacian velocity of ultrasonic waves is determined by
the expression

. (1)

However, in the case of the propagation of ultra-
sonic waves in heterogeneous systems, the processes of
the energy transfer between the phases occur at the
phase boundaries, which results in an additional loss of
acoustic energy and calls for corrections to the Lapla-
cian velocity of ultrasonic waves.

In particular, due to the distinction between the ther-
mal parameters of disperse phases, acoustic waves
propagating in dispersive media excite temperature
waves at the phase boundaries. The heat transfer pro-
cesses produced by these waves depend on the relation
between the size of the particles and the temperature

wavelength. For kTR < 1, where kT =  is the wave

number of the temperature wave, within the time equal
or less than half-period of the ultrasonic wave, an
equalization of temperatures of the disperse phases will
occur in the zones of both compression and rarefaction
of the acoustic wave. In this case, the velocity of ultra-
sonic waves and the correction to it ∆cT are calculated
by the formula

(2)

where ∆cT is the correction to the Laplacian velocity.
When the size of particles is much greater than the

temperature wavelength kTR @ 1, the temperature gra-
dient between phases is retained in the zone of both

cll ρ〈 〉 β a〈 〉( )
1
2
---–

=

ωρcp

2κ
-------------

c cll ∆cT+=

=  cll
n
2
---T0cll
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α1

ρ1cp1
-------------

α2

ρ2cp2
-------------– 

  2

,–
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compression and rarefaction. Then, the velocity of
ultrasound and the correction to it are calculated by the
formula

(3)

where κ is the thermal conductivity coefficient and T0 is
the equilibrium temperature [1, 20].

As is seen from Eqs. (2) and (3), ∆cT is negative, i.e.,
the heat exchange process reduces the magnitude of the
Laplacian velocity of sound.

An additional attenuation and a correction to the
velocity of acoustic waves will be caused by the viscosity
waves arising at the phase boundaries in the case of the
propagation of ultrasonic waves in dispersive media. For
the suspensions under study, this correction to the veloc-
ity can be computed by using Rytov’s theory:

(4)

where

c cll ∆cT+ cll
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Fig. 1. Dependence of the propagation velocity of ultrasonic
waves on the concentration of particles at a frequency of
3 MHz: (1) glass spheres, (2) ferrite particles [15], (3) the
theoretical values of cll for glass particles, and (4) the values
of cll with the corrections ∆cT and ∆cη.
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Table

Substance

Parameters

density
ρ × 103 kg/m3

heat capacity
cp × 10–2 J/kg K

thermal conductivity 
κ W/m K

coefficient of 
compressibility
β × 10–10 Pa–1

coefficient of 
thermal expansion

α × 10–4 K–1

viscosity
η × 10–3 Pa s

Water 0.998 41.9 0.63 4.56 1.82 1.01
Glass 2.32 6.3 1.34 0.15 2.82 × 10–2
and

The values of the parameters needed for calculating cll,
∆cT , and ∆cη are given in the table [19]. In the calcula-
tions, we used the mean size of particles determined
from the histogram for the suspensions under study.

The results of calculating the velocity cll by Eq. (1)
are displayed by curve 2 in Fig. 1. As seen from the fig-
ure, the theoretical concentration dependence of the
velocity of ultrasonic waves calculated by Eq. (1) for a
suspension of glass particles qualitatively coincides
with the experimental curve:  < 0 in the range of
concentrations n ∈  1–10%,  ≈ 0 at concentra-
tions n ∈  10–20%, and  > 0 beginning from the
concentration n ≈ 20%. However, the numerical values
differ appreciably.

The theoretical models described in the literature
[1–3, 20] make it possible to compute the corrections
∆cT and ∆cη to the velocity of ultrasonic waves in dis-
persive media on condition that rmn @ 2R, where rmn is

b
2
9
---

ρ1 2ρ2–
ρ1

-------------------- 
  .=

∂c/∂n
∂c/∂n

∂c/∂n

2
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β × 1010, Pa–1

n, %40 60

6

4

1

2

3

Fig. 2. Dependence of the compressibility of the suspension
on the concentration of particles: (1) the effective compress-
ibility of the suspension of glass spheres, (2) the coefficient
of compressibility of water, and (3) the coefficient of com-
pressibility of glass.
the distance between the particles. For the suspensions
under study, this condition is satisfied for the concentra-
tions up to 10%. For these suspensions, R = 0.1 and

R = 0.3, and, consequently, for calculating ∆cT and
∆cη, one can use Eqs. (2) and (4). The theoretical values
of the velocity cll obtained by taking into account the
corrections ∆cT and ∆cll are in good agreement with the
experimental data (curve 3 in Fig. 1).

The calculations allowed us to choose the range of
concentrations in which it is possible to compute the
coefficient of compressibility of particles by Eq. (1)
from the experimentally measured velocity of ultra-
sonic waves without consideration for the corrections
∆cT and ∆cη. For the studied suspensions, the correc-
tions ∆cT and ∆cη are small in the range of concentra-
tions n ∈  0.01–2%. For this range, having measured the
density of the glass spheres, which coincided with the
density of solid glass accurate to the third decimal
place, we calculated the coefficient of compressibility
of the particles: β2 ≈ 11 × 10–10.

Figure 2 shows the coefficient of the effective com-
pressibility versus the concentration for the investi-
gated suspensions (curve 1). The values of the coeffi-
cient of compressibility of water (point 2) and solid
glass (point 3) are also presented. From the figure, it is
seen that the mean value of the effective compressibil-
ity of suspensions of glass spheres in the range of con-
centrations of 0–10% exceeds the compressibility of
water, which is caused by the relatively high compress-
ibility of particles.

The formal application of Eq. (1) for calculating the
compressibility at concentrations n > 10%, i.e., when
the distance between the particles becomes less than
their size and interparticle contacts occur giving rise to
a porous globular structure, reveals a decrease in the
effective compressibility of the suspension with the
increasing number of interparticle contacts and close-
ness of the packing of the particles.

Thus, by measuring the propagation velocity of ultra-
sonic waves in suspensions in the range of low concen-
trations, it is possible to obtain information on the elastic
moduli of individual microparticles, whereas, such
measurements in the range of high concentrations pro-
vide information on the effect of structural rearrange-
ments in the ensemble of particles on the effective elas-
tic parameters of the suspension.

kT1

kT2
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Abstract—Results of an experimental study of the motion of small droplets in a capillary are discussed. The
translational velocity of small droplets is studied as a function of the level and frequency of vibration acting
together with a static force on the droplet–capillary system. The results are presented in the form of a set of
curves, which reveal the nonlinear mechanical features of the system under consideration. The experiments
confirm the previously developed theoretical model [7] based on the hysteresis dependence of the surface ten-
sion forces on the velocity of the meniscus motion. © 2002 MAIK “Nauka/Interperiodica”.
The mechanisms of the effect of vibration on fluid-
containing porous media, which results in the convec-
tion or filtration of the fluid components, are much dis-
cussed in the literature in connection with the practical
problems of increasing the efficiency of hydrocarbon
extraction from the interior of the earth, as well as with
some technological problems. The studies are usually
concerned with the most common cases of completely
liquid-saturated media. Particular interest is attracted to
the processes determined by the contacts of two or
more liquid phases that differ in skeleton wetting, as
well as to analysis of the effect of the gaseous phase on
the fluid flow in pores [1–6].

This paper describes an experiment demonstrating
the specific effects that arise under the combined action
of a static force and a low-frequency vibration in a
droplet–capillary system, which consists of a glass cap-
illary with a liquid droplet inside and with air in front
and behind the droplet. Such a system models the effect
of the surface tension that occurs at the meniscuses sep-
arating liquid fractions of different types with different
wetting properties in the capillaries of porous media.

A theoretical study of the dynamics of small drop-
lets placed in a cylindrical capillary and subjected to the
two aforementioned types of external action was car-
ried out earlier [7]. On the basis of a simplified model
equivalent to the droplet–capillary system, an equation
was derived to describe the motion of a small droplet
partially wetting the capillary walls. The solution to this
equation allows one to determine the possible complex
movements of the center of mass of the droplet, i.e., to
predict different specific types of droplet motion. In the
cited paper, attention is concentrated on the motion fea-
tures related to the surface tension forces that arise at
the meniscuses of the droplet and lead to the effects
characteristic of systems with dry, i.e., Coulomb, fric-
1063-7710/02/4801- $22.00 © 20050
tion [8]. One of these features is as follows: in the pres-
ence of vibration, the external force level that is neces-
sary for disturbing the droplet from its equilibrium
position becomes lower than the corresponding static
force threshold observed in the absence of vibration.
Another feature is the experimentally observed differ-
ence between the dependences of the translational
velocity of the droplet on the vibration amplitude for
the case of its increase or decrease, when the region of
the reconstruction includes a force threshold corre-
sponding to either the departure of a stationary droplet
from its equilibrium position or the termination of the
translational motion of a moving droplet. It should be
noted that the difference is observed between the
threshold values themselves, which will be seen from
the experimental dependences presented below. In
addition, it is worth noting the existence of other exper-
imental data that cannot be described by the simplified
model, which points to the possibility of the presence of
unknown physical mechanisms that make the behavior
of the dynamic system under study more complicated.

Therefore, it is of interest to describe in more detail
the experimentally observed characteristics, specifi-
cally, the dependence of the translational velocity of the
droplet on the frequency of vibration at constant ampli-
tude and the dependence of this velocity on the ampli-
tude of vibration at constant frequency. From the point
of view of the specific features of these dependences,
the low-frequency region is of most interest.

The experimental studies of the effect of vibration
were performed using a vibration-testing machine
(RFT DDR), which provided the vibrational accelera-
tion with the amplitudes 0–30 m/s2 in the frequency
range 10–100 Hz. The vibrational acceleration was
controlled by a KB-10 accelerometer (RFT DDR). The
static force was represented either by the gravity force
002 MAIK “Nauka/Interperiodica”
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when the capillary was set in the vertical position or by
the force due to the excess air pressure supplied to one
end of the capillary when it was in the horizontal posi-
tion. In the latter case, the excess air pressure was con-
trolled by a liquid-column manometer. To provide a
translational velocity of about several centimeters per
second for a 5–10 mm long droplet in a horizontal cap-
illary with an inner diameter of ~1 mm, it is necessary
to maintain a pressure difference of ~20 mm water col-
umn. Approximately the same average values of the
droplet “flow” velocity are obtained under the effect of
the gravity force acting on the droplet disturbed from its
equilibrium position. Two types of liquid were studied
in the experiment: distilled water and a 50% solution of
glycerol in water. For the vertically oriented capillary
where the weight of the droplet played the role of the
external static force, we used the liquid of the second
type, and for the horizontally oriented capillary with a
pneumatic external action, we used the liquid of the
first type. It should be noted that, to avoid the distorting
effect of the surface film, which in every preceding
experiment partially or fully covered the inner surface
of the channel behind the moving droplet, we took spe-
cial measures that prevented the formation of such a
film, and the measurements were performed with a
clean inner wall of the capillary. We note that the visu-
ally observed effect of the film formation is more prom-
inent for higher velocities of the droplet motion at
which a greater portion of the droplet mass is left on the
wall, i.e., the droplet mass decreases more substantially.
Therefore, in the experiment, the translational velocities
were maintained so as not to exceed 3–4 cm/s.

Let us first consider the data obtained from the
experiments with a droplet of the 50% solution of glyc-
erol in water. Initially, the droplet was in equilibrium.
After the vibration-testing machine was turned on,
when the vibration level exceeded a certain threshold,
the droplet began to move with a translational velocity
depending on the vibration amplitude and frequency
under the effect of gravity and vibration. In this series
of experiments, the vibration-testing machine produced
vertically polarized vibrational accelerations of the
capillary, which was mounted on its platform so that the
longitudinal capillary axis was strictly vertical. Figure 1
presents a family of curves 1–6 obtained under vibra-
tions with the frequencies 20, 30, 40, 50, 60, and 70 Hz.
The horizontal axis in the plot corresponds to the vibra-
tional acceleration amplitude measured by the acceler-
ometer (KB-10) with a sensitivity of 1 mV/m/s2, and
the vertical axis corresponds to the translational veloc-
ity of the droplet. The latter was measured by the con-
ventional method of determining the time interval (by a
stopwatch) within which the droplet traveled a refer-
ence distance. The estimates show that, in these mea-
surements, the vertical scatter of the experimental
points due to the measurement error does not exceed
0.25 cm/s.

One can easily see that the experimental results sup-
port some theoretical inferences made in [7], specifi-
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
cally, the statement that the translational velocity
increases as the frequency of vibrations becomes lower.
The same refers to the increase that was observed in the
motion onset threshold with increasing vibration fre-
quency: this effect agrees well with the results of the
aforementioned theoretical study.

In the cited paper [7], it was found that the motion
onset threshold can be estimated by the formula

(1)

where g = 9.8 m/c2 is the acceleration of gravity; the
difference between the cosines of the contact angles,
cosθ–– cosθ+, characterizes the uncertainty interval of
the static moisture contact angle of the meniscus
bounding a semi-infinite liquid column in the capillary
(see Fig. 2 showing the qualitative dependence of the
cosine of the meniscus contact angle on the velocity of
the droplet motion from [9]);  denotes the limiting
static values of the moisture contact angle, which cor-
respond to the meniscus velocity tending to zero for the
positive and negative meniscuses; σ is the surface ten-
sion constant at the liquid–wall boundary; ρ is the den-
sity of the liquid; L is the droplet length; r is the inner
radius of the capillary; ω is the vibration frequency; and
y is the amplitude of the capillary wall displacement
under vibration.

The hysteresis observed in Fig. 2 for the moisture
contact angle of a stationary (i.e., in the static position)
meniscus determines a nonlinear type of motion of a
small droplet when its length exceeds the capillary
diameter by no more than an order of magnitude. Sub-
stituting the specific values of the parameters in Eq. (1)
by taking them from the reference data and from the
experiment (on the basis of the presented curves), we
estimate the aforementioned uncertainty interval of
the cosine of the moisture contact angle as 0.3–0.5.

yω2( )thr
2σ
ρLr
--------- θ–cos θ+cos–( ) g,–=

θ+−
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Fig. 1. Dependence of the translational velocity of the drop-
let (a 50% solution of glycerol in water) on the vibrational
acceleration amplitude for the vibration frequencies (1) 20,
(2) 30, (3) 40, (4) 50, (5) 60, and (6) 70 Hz.
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Fig. 2. Dependence of the cosine of the moisture contact
angle at the rigid wall on the velocity for the cases of the
positive (s > 0) and negative (s < 0) meniscuses bounding a
semi-infinite liquid column.

Fig. 3. Dependence of the translational velocity of the drop-
let (a 50% solution of glycerol in water) on the vibration fre-
quency for the vibrational acceleration amplitudes (1) 10,
(2) 15, and (3) 20 m/s2.
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Fig. 4. Dependence of the translational velocity of the drop-
let (distilled water) on the vibrational acceleration ampli-
tude for the vibration frequencies (1) 30, (2) 40, (3) 50, and
(4) 60 Hz.
Recall that these values are obtained by approximat-
ing curves 1–6 shown in Fig. 1 to the zero velocity
value. Similar values were obtained in the earlier stud-
ies [9, 10] based on the optical observation of the
meniscus shape, but this method is much more difficult
to realize in the experiment.

A distinctive feature of the experimental data
obtained in this series of experiments is the decrease in
the mean slope of the amplitude dependences with
increasing frequency, which can be seen from the
curves presented in Fig. 1. This experimental fact still
has no rigorous theoretical explanation, although gen-
eral physical considerations point to the possible effect
of the Stokes friction forces that act over the whole lat-
eral droplet surface being in contact with the wall rather
than only in the meniscus region, as in the proposed
simplified model. Therefore, in more adequate models
to be developed, the role of the near-wall viscosity
should be corrected.

Figure 3 presents the dependences of the transla-
tional velocity on the vibration frequency at constant
levels of vibrational acceleration: curves 1, 2, and 3 cor-
respond to the vibrational acceleration amplitudes 10,
15, and 20 m/s2, respectively. In this figure, the velocity
decreases with increasing frequency on the average, but
all three curves exhibit local minimums and maximums
in the frequency interval 40–60 Hz.

The second series of experiments was performed with
a water droplet in an identical capillary oriented horizon-
tally. The vibrations were polarized along the horizontal
capillary axis. This configuration was obtained by rotat-
ing the vibration-testing machine through a right angle
from the initial position. In this case, the static action
was provided by excess air pressure on one side of the
droplet. The excess pressure in the compression vessel
over the atmospheric pressure was ~15–16 mm water
column, which was somewhat below the threshold
value corresponding to the onset of uniform motion of
the center of mass of a 15–20 mm long droplet. The
application of a certain vibration level causes the drop-
let to leave its equilibrium position, whereas, in the
absence of vibration, the equilibrium is not disturbed.
Figure 4 shows the dependences of the translational
velocity on the amplitude of the vibrational accelera-
tion for the frequencies 30, 40, 50, and 60 Hz (curves
1–4, respectively). As in the previous series of experi-
ments, higher velocities of the droplet motion corre-
spond to lower frequencies. At the same time, the
curves obtained in this series of experiments are char-
acterized by smaller average slopes, as compared to the
experiments with a 50% glycerol solution droplet.
However, the essential difference from the previous
series of measurements is not the quantitative differ-
ence in the velocities of motion or in the slopes of the
corresponding dependences, but the following fact: the
second series of measurements revealed a difference
between the vibration level at which the droplet
changes from the state of rest to motion with increasing
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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vibrational acceleration and the level at which the trans-
lational motion of the droplet terminates as the vibra-
tion level decreases. This difference is relatively small,
but it is detected in the experiment. The threshold value
corresponding to the transition from rest to motion is
higher than the threshold value for the inverse process.
This can be seen from the splitting in the left parts of
the curves shown in Fig. 4, where the directions of the
variation of the vibrational acceleration amplitude are
indicated by arrows.

In Fig. 5, curves 1–3 represent the frequency depen-
dences of the translational velocity of the center of
mass of the water droplet in the presence of a combined
effect produced by the vibration and pneumatic action,
when their “total” level exceeds the critical value. One
can see the same tendency for a general decrease in the
velocity with increasing frequency, as well as local
minimums and maximums at the frequencies specified
above.

On the whole, the experimental studies of the trans-
lational velocity of liquid droplets in a capillary as a
function of the amplitude and frequency of applied
vibration, which were performed in the presence of
static forces of different nature for different liquids,
reveal a non-Newtonian (Bingham) [11] “rheology” in
the droplet–capillary system. This result is explained
by the fact that, along with the presence of forces of dif-
ferent physical origins, the dominant factor is the sur-
face tension acting on the droplet meniscuses, as well

0.5

4020 50 60 F, Hz
0

1.0

1.5

2.0

2.5
s, cm/s

5 m/s2 10 m/s2

15 m/s2

30

1

2 3

Fig. 5. Dependence of the translational velocity of the drop-
let (distilled water) on the vibration frequency for the vibra-
tional acceleration amplitudes (1) 5, (2) 10, and (3) 15 m/s2.
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as the specific hysteresis behavior of the velocity of
motion as a function of the external action, which is
inherent in the nature of the surface tension forces.

From the practical point of view, the experimental
results presented above can be essential in analyzing
the processes of the artificial drying of partially fluid-
saturated materials and in developing methods for the
intensification or stimulation of oil recovery by
vibroseismic techniques.
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Abstract—A model problem is considered for a radiator in the form of a circular disk with a given pressure
jump at its surface. The radiator is inserted in a soft screen coinciding with the upper boundary of the Pekeris
waveguide. A series expansion of the sound field in normal modes is obtained. A numerical analysis of the radi-
ation impedance and its components that are responsible for the radiation into the waveguide and into the half-
space is carried out. © 2002 MAIK “Nauka/Interperiodica”.
The well-known problem of low-frequency radia-
tion in free space has certain specific features when the
radiator operates in a shallow sea. In this case, the low
efficiency of radiation decreases additionally because
of the inefficient distribution of the radiated power
between the waveguide and the halfspace. Numerical
estimates of the components of the radiation impedance
that are responsible for the radiation into the waveguide
and the halfspace were obtained earlier [1, 2] for a ver-
tical cylindrical radiator in a rigid screen in the Pekeris
waveguide. According to these estimates, when a radi-
ator of size l ~ 1 m operates in a frequency range of 50–
100 Hz near the surface of a waveguide with a depth
h = 100 m and with a sandy bottom, 80–90% of the
power radiated by this source is lost in the sea bottom
instead of remaining in the waveguide.

The objective of this paper is to obtain similar
numerical estimates for model radiators of a different
type, which correspond to actual radiators and radiation
conditions at low frequencies. As a model radiator, we
consider a circular disk with a given pressure jump at its
surface. The radiator is inserted in a soft screen whose
surface coincides with the upper boundary of the Pek-
eris waveguide. By its geometry, such a source can be
assigned to radiators of the piston type, although the
piston-type distribution of the particle velocity at its
surface exists only at low frequencies.

By the boundary function type, such a radiator is
close to an explosive source and, in this sense, is of cer-
tain interest. Note that, in the literature, the operation of
a piston radiator has been considered only when it is
inserted in a rigid screen coinciding with the boundary
of a waveguide with perfectly rigid walls [3]. However,
such a model radiator has limited application in hydroa-
coustics.
1063-7710/02/4801- $22.00 © 200054
The boundary problem is written as

(1)

where ϕ(r, z) and p(r, z) are the velocity potential and
the sound pressure in the waveguide, z ∈ (0, h), k1 =
ω/c1, ρ1 and c1 are the density and the sound velocity in
the waveguide, ρ2 and c2 are the density and the sound
velocity in the halfspace, Zin is the input impedance of
the halfspace, θ2 is the refraction angle, p0 is the pres-
sure developed by the piston, a is the piston radius, and
ω is the circular frequency.

Applying the Hankel transformation to solving
problem (1), we obtain its solution as the following
improper integral

(2)

where ∆ = cosx + iρ12 sinx, ρ12 = , x = k31h,  =

 – ξ2,  =  – ξ2, k2 = ω/c2, ξ is the parameter of
the integral transformation, and

ϕ(ξ, z) = cosk31(h – z) + iρ12 sink31(h – z).
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Using the known relationships [4]

J0 x( )
1
2
--- H0

1( ) x( ) H0
2( ) x( )+[ ] , H0

1( )
x–( ) H0

2( ) x( ),–= =
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one can transform solution (2) to the form

J1 x( )
1
2
--- H1

1( ) x( ) H1
2( ) x( )+[ ] , H1

1( )
x–( ) H1

2( ) x( ),= =
(3)

In estimating the field in the waveguide z ∈ (0, h), we use as the upper (physical) list of the Riemann surface

the one where for the root k32 =  the radiation condition Rek32 ≥ 0 is satisfied. In this case, the discrete
part of the solution in the region r ≤ a, according to the residue theorem, is given by

where

(4)
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The total piston radiation conductivity, YR, is then
determined by the expression

where v z =  is the normal component of the parti-

cle velocity. For the normalized conductivity , we
obtain the following expression
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where

(5)

is the conductivity component responsible for the radi-
ation by the system of the ordinary n(1) and generalized
n(2) normal waves in the waveguide and N– and N+ are
the numbers of the ordinary and generalized normal
waves, respectively;

is the partial directional pattern of the piston, which
corresponds to a normal wave with the angle of inci-
dence θ1n;
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is the total conductivity component responsible for the
radiation into the halfspace by the system of the leaky
normal waves n(3); and

is the total conductivity component responsible for the
radiation into the halfspace by the liquid layer perform-
ing thickness vibrations in depth (ξ = 0).

The radiation impedance of the piston and its total
conductivity are related by the standard relationship

ZR = .

We now consider the results of numerical calcula-
tions assuming that ρ12 = 1/1.6 and c12 = 1.5/1.75,
which corresponds to the impedance boundary between
the water and the sandy bottom. Figure 1 exhibits the
frequency dependence of individual components of the
total conductivity of the piston with the geometric
parameter a1 = 10–2. Note some specific features.

The component Re , responsible for the radiation
into the waveguide, differs from zero at frequencies
higher than the first critical frequency and has a clearly
pronounced discrete form associated with the mode
structure of the sound field in the waveguide. Its first
maximum corresponds to the condition k1a = π/2. This
means that, for an observer located in the waveguide at
a rather large distance, only one Fresnel zone fits within
the radiator surface. A similar interpretation is valid for
the following maxima corresponding to the condition

k1a = (2n + 1) with their amplitudes decreasing with

frequency.
As the geometric parameter a1 increases, the maxi-

mum of the component Re  is shifted to the region
of lower frequencies down to the first critical frequency.
In this case, the maximal value of this component
increases (Re  ≈ 0.1–0.15).

At low frequencies, the reactive component Im
has an elastic character, but as the frequency increases,
this component changes its sign and becomes an iner-
tial reactance.

The component Re  is negative at low frequencies
and becomes positive only at rather high frequencies.
This means that the system of leaky normal waves is
not self-sufficient to describe the energy characteristics
of piston radiation into the halfspace. At low frequen-
cies, the reactive component Im  has an inertial char-
acter, but as frequency increases, this component oscil-
lates and remains an alternating quantity.
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π
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Y12 max,'

Y12'

Y3'

Y3'
The interference character of both components is
also related to the mode structure of the field in the half-
space. However, in the case under study, the system of
leaky normal waves is used only for the formal descrip-
tion of the resonance properties of the liquid layer
loaded by the halfspace with allowance for the inhomo-
geneous distribution of the field in the radial direction
(ξn ≠ 0, Imξn < 0).

The components Re  and Im  describe the reso-
nance properties of the liquid layer, which performs
one-dimensional thickness vibrations in depth (ξ = 0),
and provide an additional description of the energy
characteristics of the piston radiation into the halfspace.
Averaged over the frequency domain, the active con-

ductivity value 〈Re 〉ω =  corresponds to

the energy transparency of the impedance boundary.

Figure 1d illustrates the frequency dependence of the
total component (  + ) for which Re(  + ) > 0
everywhere in the domain of its definition. It is this total
component that describes the piston radiation into the
halfspace.

Figure 2 shows the frequency dependence of the
components of the total radiation impedance ZR of the
piston for different values of the parameter a1: a1 = 2 ×
10–3, 10–2, and 10–1. All three plots show that the strong
interference variability of the total impedance compo-
nents corresponds to the resonance properties of the liq-
uid layer performing oscillations in depth. We can also
note that the reactive component of the inertial charac-
ter far exceeds the active component. As the frequency
increases, the active component becomes greater than
the reactive one; however, the latter does not vanish, at
least, in the frequency interval under consideration.

Figure 3 exhibits the frequency dependences of the
coefficient K = Re /Re(  +  + ), which char-
acterizes the ratio of the power radiated into the
waveguide to the total power and, therefore, the effi-
ciency of the piston radiator operation in the
waveguide. All frequency dependences calculated for
various values of the geometric parameter a1 are similar
in essence and differ in the frequency corresponding to
the maximum of the coefficient K, this frequency being
determined by the Fresnel rule. In Fig. 3c, one can see
additional maximums corresponding to an odd num-
ber of Fresnel zones on the radiator surface for the
case a1 = 0.1.

The low efficiency of the piston radiation into the
waveguide is easily understood, because, at very low
frequencies, only a small number of energy-carrying
normal waves of the n(1) and n(2) type are present in
the whole set of normal waves, while, at rather high fre-

Y4' Y4'

Y4'
2ρ12c12

1 ρ12
2 c12

2+
-----------------------

Y3' Y4' Y3' Y4'

Y12' Y12' Y3' Y4'
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Fig. 2. Frequency dependences of the active and reactive components of the piston radiation impedance for a1 = (a) 2 × 10–3,

(b) 10–2, and (c) 10–1: (1) ReZR and (2) ImZR.
quencies, the directional pattern of the piston becomes
narrow and oriented toward the bottom. Therefore, the
optimal situation is realized only when the condition
k1a = π/2 (i.e., 2a = λ/2) is satisfied.
To analyze the piston radiator field in the waveguide,
one can use the upper integral in Eq. (3). Applying the
residue theorem again, we obtain the desired represen-
tation
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(6)

In this case, the general solution, as well as solution (4),
contain normal waves of the n(1), n(2), and n(3) types.

Integrating the horizontal power flux corresponding to
solution (6) over the waveguide cross section z ∈ (0, h) at
large distances k1r @ 1, we obtain one more expression
for the acoustic power radiated into the waveguide:

(7)

where

and the summation involves only the normal waves of
the n(1) and n(2) types.

The structure of solution (7) is such that the acoustic
power corresponding to the total sound field cannot be
represented as the sum of powers related to individual
normal waves, which is the consequence of the nonor-
thogonality of the eigenfunctions ϕn(ξn, z) within the
interval z ∈  (0, h). In addition, the power given by Eq. (7)
retains the range dependence, but this dependence,
being purely formal, is also caused by the interference
interaction of the power fluxes corresponding to indi-
vidual normal waves.

It is natural to assume that the component Re
given by formula (5) and the component averaged over
the distance

are equal to each other, because they correspond to the
same power radiated into the waveguide. In fact,
numerical estimates of these components confirm their
close values. In this connection, the following interpre-
tation of the generalized normal waves is possible.

It is known that the operator corresponding to
boundary problem (1) is not self-adjoint. This means
that, for the full description of the sound field in the
Pekeris waveguide, one has to consider a boundary
problem adjoint to problem (1) and the adjoint operator
corresponding to it. The generalized normal waves of
the family n(2) are just a subset of the eigenfunctions of
the adjoint operator with real propagation constants
(Imξn = 0, Imk32, n > 0). The poles corresponding to the
total set of the normal waves of n(1), n(2), and n(3)
types are located on the upper list of the Riemann sur-

face for the root k32 =  determined by the con-
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dition Rek32 ≥ 0. This condition determines its choice in
the model problem under consideration.

It is should be noted that the cut Rek32 = 0 was first
used in [5] to analyze roots of the Stoneley–Scholte
characteristic equation, which determines the surface
waves at the boundary between liquid and solid half-
spaces. In [6], the roots of the characteristic equation,
which correspond to ordinary and generalized Stone-
ley–Scholte waves, were numerically analyzed, and the
existence of the generalized Stoneley–Scholte waves
was confirmed experimentally.

A closer examination of the generalized solutions
and their application in solving various acoustical prob-
lems are described in [7]. The types of the generalized
Stoneley–Scholte waves fully correspond to those stud-
ied theoretically and experimentally in [6].

Some properties of the generalized normal waves
and their application for describing the operation of
directional arrays in the Pekeris waveguide are given in
[2]. Since the application of the generalized normal
waves for describing the sound field in the Pekeris
waveguide is unconventional, we present here some
information about their structure and general proper-
ties. The most important property of the subset of ordi-
nary and generalized normal waves of the n(1) and n(2)
types is their generalized orthogonality within the
whole domain of their definition z ∈ (0, ∞), which for-
mally expresses their energy independence. To clarify
the relations of the generalized orthogonality, we intro-
duce the vector functions xn(pn, vrn) describing the hor-
izontal power fluxes (v r is the radial component of the
particle velocity)

(8)
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With the adopted notation, the relationships of the
generalized orthogonality for the normal waves of the
n(1) and n(2) types have the canonical form

(10)

where N =  is the matrix operator of permutation,

δnm is the Kronecker delta, (n, m) ∈ n(1) ∪ n(2), and

With allowance for Eq. (10), the total power trans-
ferred by the normal waves of the n(1) and n(2) types in
the horizontal direction is given by the expression

where the conductivity Re  fully coincides with def-
inition (5) and the power is decomposed into a sum of
components corresponding to individual normal (gen-
eralized normal) waves. The power (normalized) of
each normal wave, or the norm of the corresponding
vector-function xn, is determined as

where the upper signs refer to the normal waves of the
n(1) type and the lower signs to the generalized normal
waves of the n(2) type. The components of the power
flux ±E2n correspond to inhomogeneous waves, which
are an extension of the normal wave field from the
waveguide to the halfspace. For n(1)-type normal
waves, this extension is continuous (regular) in the
sound pressure and in the normal component of the par-
ticle velocity, whereas for generalized normal waves, it
is continuous only in the impedance but discontinuous
(generalized) in the sound pressure and the normal
component of the particle velocity.

The components of the power flux ±E2n are almost
completely compensated in the total field of normal
waves in the halfspace. The range-averaged power trans-
ferred through the waveguide cross section z ∈ (0, h)
closely coincides with the power transferred through
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the cross section z ∈ (0, ∞) of the layer–halfspace sys-
tem. The exact and approximate relations between
these quantities are as follows:

where the power fluxes in the lower halfspace are better
compensated the greater the number of normal (gener-
alized normal) waves existing in the waveguide.

The description of the energy characteristics of nor-
mal waves only by the subset of n(1)-type waves is
insufficient, because uncompensated power fluxes E2n
in the lower halfspace have no physical meaning: the
power of a source located in the waveguide cannot be
transferred though the boundary with a reactive input
impedance when the incidence angle exceeds the criti-
cal one.

Estimating the operation of a piston radiator as a
whole, we can note its low efficiency. The radiation into
a waveguide is optimal when the size of the radiator is
equal to the half-wavelength of the first critical fre-
quency of the waveguide ωcr. 1; in this case, a1, opt =
0.57, (k1h)cr. 1 = 2.74, and Kmax = 0.15. For a radiator of
an arbitrary size, the radiation efficiency is still lower:
K = (3–5)%. As the reflectivity of the water–sea bot-
tom impedance boundary increases, the efficiency of
the piston radiator operation also increases; for a
rocky bottom, the coefficient K increases by a factor
of 2.0–2.5.
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Abstract—Results of a numerical calculation of the near acoustic field excited by a low-frequency source of
forced vibration positioned on the surface of a layered biological tissue are presented. The latter is simulated
by a soft tissue layer varying in thickness and overlying a solid halfspace. The spatial distribution of the acoustic
field in the biological tissue is obtained. © 2002 MAIK “Nauka/Interperiodica”.
Investigation of a near acoustic field excited by a
low-frequency source of forced vibration placed on the
surface of a layered biological tissue is important from
the point of view of determining the layered structure of
the tissue (the layer thickness) and the elastic parame-
ters (the shear moduli of the layers) depending on the
tissue state. Attempts to determine the acoustomechan-
ical parameters of a biological tissue and its structure
are described in the literature [1–14]. Local and nonlo-
cal quasistatic methods [5–9, 11, 14], wave methods
[2–4, 9], and ultrasonic techniques for visualization of
the elastic properties of tissues and for tomographic
examinations [1, 10, 12, 13] are used in this case. This
concerns, first of all, the soft tissues that are responsible
for the functional state of a living body and also the
hard tissues responsible for supporting the body and for
defensive functions. Longitudinal ultrasonic waves,
when used in tissues, usually provide information only
on the layered nature of a tissue and its volume com-
pressibility. Therefore, the studies of tissues by shear
waves [3, 4, 9], including surface waves, are conducted
to obtain information on the structure of layers and their
shear elastic parameters. The successful studies are
those of simple homogeneous samples in which known
types of shear waves (e.g., rod waves), whose parame-
ters involve the elastic modulus in an explicit analytical
way, are excited.

The problem is much more complex in actual condi-
tions when a layered structure is present with both soft
and hard layers. Several types of waves occur in the
wave field simultaneously, and the presence of the reac-
tive component, the so-called near field, is essential.
This is especially characteristic of soft (water-like) lay-
ers. It is difficult to separate the wave modes from the
reactive component, and this is a separate problem. The
acoustic field is mainly concentrated near the source, at
a distance of several wavelengths, because of the strong
damping both at the surface and in the depth of a soft
1063-7710/02/4801- $22.00 © 20062
tissue. An analytical representation relating the wave
field to the structure and the viscoelastic properties of
layers in such a system is cumbersome. A certain way
out is the utilization of numerical methods of the wave
field calculation and also the development of computa-
tional algorithms for the determination of the layer
thickness, the elastic moduli, and other parameters on
their basis. The calculation of low-frequency vibroa-
coustic fields is important also for the problems of the
ultrasonic imaging of tissue structure and its viscoelas-
tic properties [1, 3, 7–10]. As applied to layered biolog-
ical tissues, a method for the numerical calculation of
near acoustic fields produced by a surface source of
forced vibrations along the surface of a tissue [15–20]
and within it [15, 21, 22] was developed with averaging
over the area of a vibrating stamp [17, 19] and without
averaging. This method was used for describing the
field of normal and tangential components of displace-
ments [15–20], the propagation of surface waves [15–
17, 19], and mechanical impedance [19, 21, 22]. It is
necessary to note that, in the case of a three-layer model
of a biological tissue, rather good agreement of the cal-
culated frequency dependences of mechanical imped-
ance with experiment was obtained [5, 6]. The calcula-
tion for the mechanical impedance of a gelatin layer [23]
was conducted using the methods developed in [15–22],
and an attempt was made to compare it with the mea-
surements.

In this paper, we ignore the detailed structure of bio-
logical tissue and represent it as a two-layer medium
with widely different shear moduli and with the internal
layer being a halfspace. Primary attention is given to
the numerical calculation of the near acoustic fields
excited by a surface source of forced vibrations that is
positioned on the soft external layer (a viscous water-
like tissue) linked with a hard halfspace (a weakly dis-
sipative elastic material), which is common for an
endoskeleton (a bone inside). This paper presents the
002 MAIK “Nauka/Interperiodica”
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results of calculating the frequency dependences of the
displacement field for both normal and tangential com-
ponents and the calculated spatial distribution of the
displacement field over the surface of the tissue and in
its depth. The method of integral representations of the
Lamb type was used to calculate the near wave fields by
analogy with similar calculations in seismology [24].

The excitation of elastic waves was conducted by a
surface source of forced vibrations (a stamp) normally
to the surface (the layered halfspace occupied the
region z ≥ 0, and the r axis was directed along the tissue
surface from the stamp). It was assumed that the com-
ponent of the stress tensor σzz = σ0exp(iωt) (σ0 is the
amplitude of the normal component of stress and ω is
the frequency) was distributed uniformly over the cir-
cular surface area of radius a under the source. Beyond
this area, σzz = 0, and the other component is σzr = 0
over the whole surface z = 0. On both sides of the con-
tact surface of the layer and the halfspace z = h, the nor-
mal and tangential components Wn and Wt of the dis-
placement vector must be equal by virtue of the
assumed condition of a tight mechanical link, and the
normal and tangential components of the stress tensor
σzz and σzr must also be equal. In addition, it is assumed
that the materials of the layer and the halfspace can be
described by common linear equations of the Lame
elasticity theory in the cylindrical coordinates r and z
with allowance for dissipation in the soft medium
within the framework of the Kelvin–Voigt model. The
major parameters of a two-layer tissue are the Lame
constants λn and µn and the density ρn; the index n = 1
corresponds to the parameters of the soft medium; µ1 is

an operator: µ1 ⇒  µ1 + ∂/∂t, where  is the viscos-
ity coefficient; and n = 2 corresponds to the hard
medium.

By introducing the scalar and vector potentials and
the Hankel transformation in the equations and bound-
ary conditions, we obtain a set of algebraic equations
with respect to the unknowns A, B, C, D, E, and F:

(1)

(2)
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(4)

(5)

(6)

where

and k is the propagation constant with respect to r.
Solving the set of equations (1)–(6) for the displace-

ment components normal and tangential to the surface,
we obtain rather cumbersome expressions in the form
of integrals with respect to the tangential wave numbers
k, which are the inverse Hankel transformations of the
zeroth and first order [15–19]. We obtain for the soft
layer

(7)

(8)

where Jm is the Bessel function of order m. The values
of the components Wn and Wt are determined numeri-
cally. It is well known that it is possible to obtain an
asymptotic expression for integrals of this form at
rather large distances from the source. The values of
integrals (7) and (8) near the source can be determined
only using numerical methods. It is necessary to keep in
mind that the denominator of the integrand ∆ [∆ is the
determinant of the system of the boundary conditions
of the sixth order (1)–(6)] has a finite number of zeros
of the first order, which correspond to surface waves.
The integration method taking into account the poles
and the branch points is selected in such way that the
energy flux in the waves is directed away from the
source. At z > h, the waves must be either exponentially
decaying or propagating in the direction of increasing z.

µ1 –2ν1e
ν1h–

A 2ν1e
ν1h

B 2k2 ks1
2–( )e

ν1' h–
C+ +[

+ 2k2 ks1
2–( )e

ν1' h
D ]

=  µ2 –2ν2e
ν2h–

E 2k2 ks2
2–( )e

ν2' h–
F+[ ] ,

e
ν1h–

A e
ν1h

B ν1' –e
ν1' h–

C e
ν1' h

D+[ ]+ +

=  e
ν2h–

E ν2' e
ν2' h–

F,–

ν1 e
ν1h–

A– e
ν1h

B+( ) k2 e
ν1' h–

C e
ν1' h

D+( )+

=  –ν2e
ν2h–

E k2e
ν2' h–

F,+

νn k2 kpn
2– , νn' k2 ksn

2– ,= =

kpn
2 ω2ρn

λn 2µn+
--------------------, ksn

2 ω2ρn

µn

------------,= =

Wn r z,( ) ν1 Be
ν1z

Ae
ν1z–

–( )[
0

∞

∫=

+ k2 Ce
ν1' z–

De
ν1' z

+( ) ]kJ0 kr( )dk,

Wt r z,( ) Ae
ν1z–

Be
ν1z

+[
0

∞

∫–=

+ ν1' De
ν1' z

Ce
ν– 1' z

–( ) ]k2J1 kr( )dk,



64 KLOCHKOV
The values of the parameters of the biological tis-
sue layers were selected as follows [25]: λ1 = 2.67 ×
1010 dyn/cm2, µ1 = 5 × 104 dyn/cm2, ρ1 = 1.05 g/cm3,

and  = 25 dyn/cm2 for the soft layer; λ2 = 5.7 ×
1010 dyn/cm2, µ2 = 6.4 × 1010 dyn/cm2, and ρ2 =
1.6 g/cm3 for the hard halfspace. The source radius was
a = 0.5 cm and the normal stress amplitude was σ0 =
1 dyn/cm2. The thickness of the soft layer was varied:
h = 0.3, 0.6, 0.85, 1, 1.05, 1.1, 1.5, 2, 3, 4 cm and ∞ (a
halfspace).

The values of the complex amplitudes of normal and
tangential displacements were determined as the func-
tions of the source frequency f for various distances
from the source center along the surface. The results of
calculation are given in Fig. 1 (the normal components
of the displacement) and Fig. 2 (the tangential compo-
nents of the displacement). The amplitude–frequency
and phase–frequency characteristics of the wave field
are most clearly defined and rather simple exactly at the
point 0 (r0 = 0, z = 0) under the stamp (Fig. 1). Charac-
teristic resonance peaks are visible in the amplitude–
frequency dependences for each layer thickness h.
These peaks manifest themselves also in the phase–fre-
quency dependence. In the case of a halfspace, the peak
meets the ordinate axis f = 0. The following distinctive
features of the influence of the layer thickness h are
essential. As h increases, the peak shifts monotonically
to the low-frequency region. Its value increases up to
approximately h = 2 cm and then decreases starting
from h = 3 cm and tending to the case of a halfspace.
Additionally, the increase in h is accompanied by the
narrowing of the resonance. If the layer thickness
decreases below the value h = 2 cm, the peak becomes
noticeably smaller and wider. In the case of rather high
frequencies f, these layer effects vanish and the depen-
dence of the displacement on frequency becomes close
to the one in the case of the halfspace. In this case, the

µ1'

6

|Wn| × 106

4

2

h = 0.3

0.6

1

1.5
23

4

0 50 100 150 200 250 300 350 f

∞

Fig. 1. Amplitude of normal displacements (in centimeters)
at point 0 on a layered tissue as a function of frequency (in
hertz) for various values of the soft layer thickness.
amplitude curves for rather thin layers are below the
curve for the halfspace. Similar effects manifest them-
selves in the calculations of the tissue rigidity propor-
tional to 1/Wn and also in the mechanical impedance
[19]. In the case of averaging over the stamp area, the
pattern exhibits little qualitative changes; whereas,
quantitatively, a certain decrease in the average dis-
placement is observed, the values of the average rigid-
ity are somewhat higher, and the values of the average
impedance are also greater. A characteristic frequency
irregularity with sharp dips in the ranges 10–80 Hz and
100–150 Hz and around 300 Hz is observed in the
amplitude–frequency dependence of the normal dis-
placements at point 1 (r1 = 2.5 cm, z = 0) [19]. The
phase–frequency characteristic at point 1 is sufficiently
monotonic, excluding the region around 300 Hz, the
low-frequency range 10–80 Hz, and also the range
about 150–180 Hz for h = 0.85 cm. The phase variation
with frequency in the range 100–150 Hz is relatively
large for all values of h. The indicated irregularity is
characteristic of the complex near field produced by the
vibration source at the tissue surface, while the corre-
sponding curves are already noticeably smoother at
point 2 (r2 = 4.5 cm, z = 0). This is confirmed by special
calculations of the spatial distribution of the vibration
field [18, 21, 22].

An essential difference from the normal displace-
ments is observed for the tangential displacements at
point 1 (at point 0 under the stamp, the tangential dis-
placements are equal to zero), which is connected with
the resonance maximums and minimums at different
frequencies depending on the thickness h (Fig. 2). The
greatest dip is observed for the layer with h = 2 cm at
the frequency f about 56 Hz (the split main resonance).
At h > 2 cm, the dip depth decreases and it shifts
towards lower frequencies; at h < 2 cm, the dip depth
decreases also, but it shifts towards higher frequencies.
In the case of a halfspace (h = ∞) and h = 1, 0.85, 0.6,
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0.61
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0 50 100 150 200 f

∞

Fig. 2. Amplitude of tangential displacements (in centime-
ters) at point 1 on a layered tissue as a function of frequency
(in hertz) for various values of the soft layer thickness.
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and 0.3 cm, no dips are observed. This is reflected in the
corresponding phase characteristics, a noticeable mini-
mum being present at f ≈ 56 Hz for h = 2 cm.

The spatial distribution of the near acoustic field
produced by a surface source of forced vibrations posi-
tioned on a soft layered biological tissue (along its sur-
face and within it) was calculated for the frequencies
f = 60 and 70 Hz (Figs. 3–8) and also for f = 130 Hz at
h = 1 and 2 cm [18, 21, 22]. The elastic near field along
the surface (in r) is given in Figs. 3 and 4 for z = 0 and
f = 60 Hz. The amplitudes of the normal components
of displacement decrease relatively fast with the dis-
tance r from the vibrating stamp, the amplitude value
for rather thick layers (h ≥ 1 cm) being much higher
than in the case of thin layers (h < 1 cm). The normal
field is considerably large at the distances 0.5–1 cm.
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Fig. 3. Spatial distribution of the amplitude of normal dis-
placements (in centimeters) over the surface of a layered tis-
sue (distance in centimeters) for various values of the soft
layer thickness at f = 60 Hz.

Fig. 5. Spatial distribution of the amplitude of normal dis-
placements (in centimeters) within a layered tissue (depth in
centimeters) for various values of the soft layer thickness at
f = 60 Hz.
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These laws are also reflected in the corresponding
phase characteristics of the normal components, the
phase change near the source in the case of thin layers
being greater than for the thick layers. The amplitudes
of tangential components near the source are much
smaller in value than the amplitudes of normal compo-
nents, and they behave nonmonotonically with varying
the distance r. A peak is observed for all h, and, in the
case of h = 2 cm, two peaks are present. The tangential
field for thin layers h = 0.3 and 0.6 cm is concentrated
near the source. The phase of the tangential compo-
nents of displacements decreases with distance for all
h, except for h = 0.3 and 1.5 cm. At the frequency f =
130 Hz, the elastic field behaves nonmonotonically, the
interference effects being more pronounced for h = 2 cm
than for h = 1 cm. On the average, the slopes of the
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Fig. 4. Spatial distribution of the amplitude of tangential
displacements (in centimeters) over the surface of a layered
tissue (distance in centimeters) for various values of the soft
layer thickness at f = 60 Hz.
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Fig. 6. Spatial distribution of the amplitude of tangential
displacements (in centimeters) within a layered tissue
(depth in centimeters) for various values of the soft layer
thickness at f = 60 Hz.
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Fig. 7. Two-dimensional distribution of the amplitude of normal displacements (in centimeters) over the surface and in the depth of
a layered tissue (in centimeters) for h = 3 cm and f = 70 Hz. The level curves (within the same limits in r and z) are shown at the
top right of the figure.
amplitude curves obtained for these layers for each of
the displacement components are rather close, and the
skin-layer at this frequency is rather thin. From the cor-
responding phase dependences, it follows that the
phase difference near the source is small for the layers
with h = 1 and 2 cm, but it increases with distance. At
the same time, the phase differences between the nor-
mal and tangential components of displacements
behave nonmonotonically.

The distribution of the near acoustic field within the
layered tissue (in z) for f = 60 Hz is given in Figs. 5 and
6. The amplitudes of normal displacements at r = r0
within the tissue decrease with depth. An exception is a
very narrow region near the source for h = 2 and 3 cm,
where a small peak is present. In this case, the phases
of normal components decrease noticeably with depth
for the layers with h > 1.5 cm, whereas the phase vari-
ation is small within the layers with h ≤ 1.5 cm. The
amplitudes of the tangential components of displace-
ments at r = r1 vary nonmonotonically with depth z for
different h, the peak growing and shifting deeper with
the increase in the layer thickness h up to h = 2 cm, and
for h = 3 cm and h = ∞, the behavior is even more non-
monotonic: there are two zones of decrease and one
zone of increase with depth. Simultaneously, the phases
of the tangential components decrease with depth for
the layers with h > 1.5 cm, and for h ≤ 1.5 cm, the phase
variation is small.

The two-dimensional distribution (in r and z) of the
elastic field of a surface source of vibrations is repre-
sented in Figs. 7 and 8 in the form of a surface and in
the form of level curves for f = 70 Hz and h = 3 cm.
A characteristic peak at the point of the source position
is visible for the normal component of the displace-
ment. Its behavior is nonmonotonic in r far from the
source and in z near it (Fig. 7). The distribution of the
level curves around the source is also visible. A more
complex pattern is observed for the tangential compo-
nent of the displacement: it is equal to zero at the point
of the source position r = r0, and when the distance
from it increases, the tangential field exhibits several
peaks, which is reflected in the plots of both the surface
and the level curves (Fig. 8).

In conclusion, it should be noted that, from the
described rather complete investigations of the near
acoustic fields excited by a source of forced vibrations
at the surface of a layered biological tissue, it follows
that, in the low frequency range, it is possible to repre-
sent common tissues of a live body by a viscoelastic
water-like layer rigidly bound with a hard elastic layer
(in particular, a halfspace). A strong effect of the soft
layer thickness on the frequency characteristics of the
acoustic field is revealed. The spatial distributions of
the acoustic field over the surface and within the tissue
are obtained. Surface waves are convenient for the
investigation of biological tissues and sensitive to their
structural and functional changes. The results of this
study allow us to hope for the possibility of solving the
inverse problem, i.e., to determine the structure of a lay-
ered tissue (in particular, the layer thickness) and its
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Fig. 8. Two-dimensional distribution of the amplitude of tangential displacements (in centimeters) over the surface and in the depth
of a layered tissue (in centimeters) for h = 3 cm and f = 70 Hz. The level curves (within the same limits in r and z) are shown at the
top right of the figure.
viscoelastic parameters from the characteristics of the
transverse and longitudinal components of displace-
ments in the near field in various types of layered tis-
sues. This is important from the point of view of the
evaluation of the state of a tissue as a complex reacting
medium, as well as for the development of the founda-
tions of linear tissue tomography utilizing surface
waves.
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Abstract—Sound diffraction by a moving inhomogeneity in a shallow sea is considered as applied to a shadow
observation system. An expression for the perturbation formed by a group of in-phase excited normal modes is
obtained in the WKB approximation. The perturbation characteristics are estimated depending on the shadow
contour of the inhomogeneity and the observation conditions. A small-parameter model of diffraction is pro-
posed in the framework of the averaged description of a multimode pattern of the diffraction shading. Condi-
tions for the model applicability are formulated © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Development of a model, which provides an oppor-
tunity to analyze the results of a numerical calculation
of the acoustic field diffraction by localized inhomoge-
neities in underwater sound channels, is very important
for solving many problems of ocean acoustics. In par-
ticular, for inhomogeneity motion along the normal to
a reference line connecting the source with the receiver,
a simple physical model was suggested by Gorskiœ et al.
and Kuz’kin [1, 2]. This model agrees well with the
results of numerical calculations and provides an
opportunity to qualitatively understand and quantita-
tively estimate the characteristics of a perturbed field
[3–6]. The fruitfulness of the utilization of this model in
the problems of matched processing was demonstrated
in earlier papers [2, 7, 8]. However, as numerical calcu-
lations [3, 9] show, this model is inadequate when an
inhomogeneity crosses the reference line at an angle
different from π/2. Therefore, it seems important to
consider a more general case of inhomogeneity obser-
vation in the vicinity of the reference line with the use
of the shadow scattered field.

This paper presents a theoretical analysis of this
problem. The consideration is based on the isotropy of
scattering in the vertical plane and on a “rather narrow”
spectrum of eigenvalues.

QUALITATIVE CONSIDERATIONS

Let a stationary point source be positioned at the
point Q(r0, z0) with the coordinates r0 = (0, 0) and z = z0,
the geometric center of an inhomogeneity be positioned
at the point S(rs, zs) with the coordinates rs = (xs, ys) and
z = zs, and a stationary receiver, at the point G(r, zr) with
the coordinates r = (xr, yr) and zr , where r = (x, y) is the
radius-vector in the horizontal plane. We consider the
1063-7710/02/4801- $22.00 © 20069
case of monochromatic radiation with the frequency f
and the motion of an inhomogeneity in the horizontal
plane (at a fixed depth zs) with a constant velocity v  at
an angle γ to the reference line. We understand that the
angle γ is the angle between the vector of the velocity v
of the inhomogeneity and the positive direction of the
reference line (from the source towards the receiver),
which is measured in the counterclockwise direction.
We denote the horizontal distance between the source
and the receiver by R and the distances from the point,
at which the inhomogeneity crosses the reference line,
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to the source and the receiver, by R1 and R2, respectively
(R1 + R2 = R). The figure presents the problem geometry
for the angle γ < π/2. The upper indices 1 and 2 mark-
ing the distances rs, r, x, y, and the angles β1, 2, θ1, 2, ϕ
refer to the cases of the inhomogeneity approaching the
reference line and moving away from it, respectively.

Conditions for the sound propagation in the ocean
are such [10, 11] that the field is effectively formed by
a small number of constructively interfering groups of
modes of the same type with close numbers. Further, as
in [2], we assume that, within the range of numbers of
the group of modes under consideration, the scattering
in the vertical plane is isotropic (all directions of rera-
diation from the mode m of an incident wave into the
mode µ of a scattered wave are equivalent) and the
range of eigenvalues is “rather narrow.” Assuming that
the scattering is isotropic within the range of the Bril-
louin grazing angles of the propagating modes, we pro-
ceed to a considerably simplified model. Nevertheless,
it allows us to reveal the influence of the oceanic
medium on the characteristics of a perturbed field in an
underwater sound channel and is rather close to actual
conditions when the field is formed by a relatively
small number of modes with close numbers.

In this case, under the assumption that the effects of
multiple scattering are small [12] and the medium is
locally inhomogeneous [13], the field diffracted by the
inhomogeneity can be represented according to [14] in
the form

(1)

where F(j, i) is the scattering amplitude describing the
amplitude and phase of a scattered wave in the far wave
field in the direction j on the condition that a plane wave
propagating in the direction i is incident on the body;

(2)

are the fields of the point sources at the distance rs from
the source to the inhomogeneity and at the distance rr =
|r – rs| from the inhomogeneity to the receiver, respec-
tively. Here, ψm(z), ξm, and κm are the orthonormal
eigenfunction, the propagation constant, and the modal
attenuation coefficient of the mth mode. Different fac-
tors in Eq. (1) are separated in a convenient way. The
diffraction effects are characterized by the scattering
function F, and the waveguide propagation is reflected
in the source functions u1 and u2.

Now, if we use the WKB asymptotics of eigenfunc-
tions to describe the field of the point source produced
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by the in-phase excited group of modes, Eq. (1) can be
reduced to the form [10]
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The following notations are used in Eqs. (4) and (5):
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Here, hl(z) = [(ω/c(z))2 – ]1/2 is the vertical compo-
nent of the wave vector of the lth mode, in whose vicin-
ity the neighboring modes are in phase;  is the upper
turning point, which may also be located at the surface
z = 0; H is the waveguide depth; Dl is the cycle length
of the ray corresponding to the mode with the number l;
Dl(z) is the horizontal distance, which the ray travels
from the upper turning point until it reaches the depth
z; and N is the number of constructively interfering
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modes. Estimates of their number can be found, e.g., in
[10, 11].

In the WKB approximation, the field of a point
source that is produced at the reception point by the in-
phase excited group of modes is equal to [10]

(7)

where

Here,

Under the assumption |u0| @ |us|, the field perturba-
tion u0 determined as the difference between the ampli-
tudes of the perturbed and unperturbed fields ∆u = |u0 +
us| – |u0| can be written as

(8)

where

(9)

is the magnitude of the scattered field and
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are the phases of the scattered (Eq. (3)) and primary
(Eq. (7)) fields, respectively. Here,

(11)

(12)

are the modulus and the argument of the complex func-
tion Wi.

According to Eq. (8), the complex envelope of the
diffracted field is determined by the form of the func-
tion F describing the scattering with the slowly varying
functions W1 and W2 superimposed upon it, the latter
functions being determined by the waveguide character
of propagation. This leads to the fact that, depending on
the observation conditions, the envelope can exhibit
“intricate” variations, thus, it can widely deviate from
the form of the scattering function F. In particular, as
one can see, the complex envelope is an even function
relative to the time moment t0 of crossing the reference
line by the inhomogeneity, ∆u(t0 – t) = ∆u(t0 + t), if

(a) the motion occurs along the normal to the refer-
ence line, or

(b) the reference line is crossed at the angles differ-
ent from π/2 and z0 = zr, R1 = R2 = R/2.

In the case of any other geometry of the problem, the
violation of the symmetry pattern must occur. The indi-
cated distinctive feature of the perturbed field is con-
firmed by the results of numerical simulation [3–6, 9].
To make the following consideration more concise, it is
convenient to adopt the time moment t0 = 0 as the initial
one and assume that t < 0 (t > 0) when the inhomogene-
ity approaches (or moves away from) the reference line.
Without violation of generality, let us consider the dis-
tinctive features of the shadow observation system for
the case shown in figure. It is clear that, for the angles γ
and π – γ, the function ∆u(t) (Eq. (8)) represents the
mirror reflections with respect to the moment t0 = 0, all
other conditions being equal:

SMALL-ANGLE APPROXIMATION

Let us describe the pattern of the shadow scattered
field for the case when it is concentrated within a nar-
row angular region around the source–inhomogeneity
direction (a small-angle approximation). We assume
that the inhomogeneity is a body extended in the hori-
zontal plane and characterized by the horizontal
dimension 2l far exceeding the sound wavelength λ,
λ ! 2l. This means the smallness of the angular devi-
ation ϕ (the figure), ϕ ~ λ/2l ! 1, which allows us to

Wi ai bi+( )2 ci di+( )2+[=

+ 2 ai bi+( ) ci di+( ) 4Nφi( )cos ]1/2, i 1 2;,=

Wiarg
ci di+( ) ai bi+( )–
ci di+( ) ai bi+( )+

--------------------------------------------- 2Nφi( )tan ,tanarg=

i 0 1 2., ,=

∆u γ t, 0≤( ) ∆u π γ– t 0≥,( ),=

∆u γ t, 0≥( ) ∆u π γ– t 0≤,( ).=
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simplify Eq. (8) to a certain extent. The limitation from
above for the value of the characteristic vertical dimen-
sion 2d is caused by the isotropy of the scattering in the
vertical plane, and, in the conditions of waveguide
propagation, it is reduced to the inequality [2]

(13)

where k = 2π/λ. In the small-angle approximation, the
dependence of the modulus of the scattering function
F(ϕ) has a lobe structure, in which the near side-lobe
amplitude does not exceed 0.2 of the main lobe ampli-
tude, and the main lobe contains more than 90% of the
energy scattered forward by the body. The width of the
main lobe is equal to λ/l∗  in order of magnitude, where

2l∗  = 2lsin(γ + ) is the visible characteristic hor-
izontal dimension of the inhomogeneity from the side
of the source, i.e., its projection on the normal to the
direction of wave incidence from the source. In the

case  @ , the projection is 2l∗  ≈ 2lsinγ.
At ϕ  0, the value of |F(ϕ)| increases on the average
and reaches the maximal value F0 = 4πε0(S∗ /λ), where
ε0 is the constant depending on the wave dimensions
and the acoustic properties of the inhomogeneity (0 <
ε0 ≤ 1), S∗  is the area of the body projection onto the
incident wave front at ϕ = 0. At λ ! 2d, the constant is
ε0 = 1 and does not depend on the acoustic properties of
the inhomogeneity [15].

To obtain a qualitatively correct diffraction pattern
in the conditions of waveguide propagation, one can
use approximate expressions for the scattering ampli-
tude (see, e.g., [16, 17]), the applicability of which does
not imply their validity in a homogeneous space. This
statement is also confirmed by the results of the numer-
ical simulation of the sound diffraction by a rigid spher-
oid extended in the horizontal plane for the case γ = π/2,
which was performed using both approximate [4] and
exact [6] expressions for the scattering amplitude. This
is explained by the fact that, in bottom sound channels
where different modes may have different absorption
coefficients, the condition of the isotropy of scattering
in the vertical plane [Eq. (13)] is much weaker than the
analogous condition in a homogeneous medium, 2d ≤
λ/2. In actual conditions, the shape of an inhomogene-
ity is usually not known exactly. At the same time, pro-
ceeding from the energy considerations, it is desirable
to observe an inhomogeneity within the main lobe of
the shadow scattered field, where almost the whole
potentially possible energy scattered forward by the
inhomogeneity is concentrated. This shows that the
shape of an inhomogeneity is unimportant in the analy-
sis of many diffraction problems. Therefore, for the
sake of clarity, we restrict the following consideration
to a rigid cylindrical body as an example.

2d λ /2 1 ξ l N+ /k( )2– ,≤

β1
1 2,( )

γtan β1
1 2,( )tan
According to [16], the scattering function for a cir-
cular cylinder can be written in the form

(14)

where F0 = 4πε0(S0/λ), S0 = 4ld is the area of the shadow
contour, Ω = εll(cosθ2 – cosθ1), and θ1, 2 are the angles
in the azimuth plane between the directions of the inci-
dent (scattered) wave and the rotation axis of the body.
From the figure, we obtain

(15)

If the condition

(16)

is satisfied, we obtain from Eq. (14) by taking into
account Eq. (15):

At small angles , this expression yields

(17)

where

It is necessary to note that, when the inhomogeneity
crosses the reference line in the middle of the distance
R1 = R2, the scattering amplitude proves to be an even
function.

In the small-angle approximation, the distance rs, r in
the factor (rsrr)–1/2 in Eq. (9) and in the expressions for
the magnitude (11) and phase (12) of W1, 2 can be
assumed as equal to rs, r ≈ R1, 2 ± v tcosγ. The quantity r
in the argument of the cosine in Eq. (9) can be replaced
by an approximate expression:

(18)

As we are interested in the region of the main lobe, we
consider in more detail the case of small values of x =
v tcosγ. This provides an opportunity to linearize the
magnitude and phase of the function W1, 2 with respect

to the value of , which corresponds to the inhomo-
geneity motion at the angle γ = π/2 to the reference line.
Let us expand a1, 2(x) [Eq. (6)] as a Taylor series in the

F F0 γ Ωsin
Ω

------------,sin=

θ1
1 2,( ) γ β1

1 2,( ), θ2
1 2,( )± γ β2

1 2,( ),+−= =

ϕ 1 2,( ) β1
1 2,( ) β2

1 2,( ).+=

γ @ β1
1 2,( ) β2

1 2,( )–( )/2tantan

F F0 γ
ξ ll γ β1

1 2,( )sin β2
1 2,( )sin+( )sin[ ]sin

ξ ll γ β1
1 2,( )sin β2

1 2,( )sin+( )sin
----------------------------------------------------------------------------------.sin=

β1 2,
1 2,( )

F t( ) F0 γ Φ t( )sin
Φ t( )

-------------------,sin=

Φ t( )
ξ llRv t γsin

2

R1 v t γcos+( ) R2 v t γcos–( )
---------------------------------------------------------------------.=

r R
R v t γsin( )2

2 R1 v t γcos+( ) R2 v t γcos–( )
-------------------------------------------------------------------------.+≈

W1 2,
0( )
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vicinity of the distances R1, 2 and consider only the first
approximation:

Writing similar expressions for b1, 2, c1, 2, and d1, 2
[Eq. (6)], we finally obtain

a1 2, a1 2, R1 2,( ) a1 2,' R1 2,( )v t γcos+≈

=  a1 2,
0( ) a1 2,

1( )
v t γ.cos+
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
(19)

where

W1 2, W1 2,
0( ) 2W1 2,

1( )

W1 2,
0( )--------------v t γ,cos±=

W1 2,arg W1 2,
0( )arg

w1 2, H1 2,
0( )

1 H1 2,
0( )( )2

+
--------------------------v t γ,cos±=
W1 2,
1( ) a1 2,

0( ) b1 2,
0( )+( ) c1 2,

1( ) d1 2,
1( )+( ) a1 2,

1( ) b1 2,
1( )+( ) c1 2,

0( ) d1 2,
0( )+( ) ] 2Nφ1 2,( ),cos

2
+[=

w1 2,
2 a1 2,

0( ) b1 2,
0( )+( ) c1 2,

1( ) d1 2,
1( )+( ) a1 2,

1( ) b1 2,
1( )+( ) c1 2,

0( ) d1 2,
0( )+( )–[ ]

c1 2,
0( ) d1 2,

0( )+( ) a1 2,
0( ) b1 2,

0( )+( )–[ ] c1 2,
0( ) d1 2,

0( )+( ) a1 2,
0( ) b1 2,

0( )+( )+[ ]
-----------------------------------------------------------------------------------------------------------------------------------------.=
The values of  and  =  in
Eq. (19) are determined by Eqs. (11) and (12), in which

the substitutions ai  , bi  , ci  ,

and di   must be made. The plus-sign in Eq. (19)
refers to the lower index 1, and the minus-sign, to the
lower index 2. Let us consider the characteristics of the
perturbation given by Eq. (8).

(a) Duration. We determine the duration T as the
duration of the main peak of the envelope |us| [Eq. (9)]
at the level of the zero value, where the majority of the
energy is concentrated. We introduce the notation ∆R =
R2 – R1. We assume that

(20)

i.e., the inhomogeneity crosses the reference line in the
vicinity of the middle of the path at angles that are not
too shallow. In these conditions, the duration deter-
mined by the main lobe width of the scattering function
(17) is equal to

(21)

where L = (R1R2λ/R)1/2 is the radius of the first Fresnel
zone at the moment of crossing of the reference line. In
this case, the horizontal x(1, 2) and vertical y(1, 2) dis-
placements of the inhomogeneity with respect to the
point of crossing the reference line, which correspond
to the half-width of the spike, are estimated as

where ν = (λ/2l)(∆R/R)(cosγ/sin2γ). We note that con-
dition (20) implies the validity of inequality (16). It is
clear that these conclusions are not connected with the
choice of the inhomogeneity model. One can also arrive
at this result directly by assuming that the rational value

W1 2,
0( ) W1 2,

0( )arg H1 2,
0( )arctan

a1 2,
0( ) b1 2,

0( ) c1 2,
0( )

d1 2,
0( )

∆R/R( )2
 ! 1,

γ @ λ /2l( ) 1 ∆R /R( )+[ ] γ ,cossin
2

T
1

lv
------ L

γsin
---------- 

 
2

,=

x*
1 2,( )

y*
1 2,( ) γ, y*

1 2,( )cos
L2

2l γsin
---------------- 1 ν+−( ),= =
of the angular sector of observation is determined by
the relation maxϕ(1, 2) ~ λ/2l∗  (figure).

(b) Spectrum width. If Eqs. (20) hold, the change of
the phase of the field perturbation (8) [as it follows from
Eqs. (10), (18), and (19)] is determined by the expres-
sion

(22)

where

(23)

The initial phase is omitted in Eq. (22), its exact value
being irrelevant in what follows. The component Θ1(t)
describing the quadratic dependence of the phase is
caused by the Doppler effect (see below), and the com-
ponent Θ2(t) determining the linear dependence of the
phase is related to the waveguide character of propaga-
tion. A constant frequency shift, which is determined
by the linear phase variation, is equal to zero when the
source and the receiver are positioned at the same hori-
zontal level, z0 = zr , and the inhomogeneity crosses the
reference line in the middle of the path (R1 = R2) or
moves along the normal to the reference line (γ = π/2).
The deviation of the instantaneous frequency during the
time T is

so that the base m determining the complexity of the
pulse form is equal to

(24)

According to Eq. (24), in the case of large inhomogene-
ities, l∗  = lsinγ ~ L, the base value is small—of the
order of unity. The pulse becomes simple, and its spec-
trum width is estimated as ∆f ≈ 1/T = tv(sinγ/L)2. By
contrast, in the case of small inhomogeneities, l∗  ! L,

Θ t( ) Θ1 t( ) Θ2 t( ),+=

Θ1 t( ) π v t γsin
L

---------------- 
 

2
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Θ2 t( )
w2H2

0( )

1 H2
0( )( )2

+
--------------------------

w1H1
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1 H1
0( )( )2

+
--------------------------– v t γ.cos=

∆ω Θ' T /2–( ) Q' T /2( )– 2π v /l( ),= =

m ∆ωT
L

l γsin
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 
2

.= =
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the base is large, because the scattered field has time to
change considerably within the first Fresnel zone.

One can arrive at Eq. (23) for Θ1(t) in a different way
by considering the Doppler frequency shift. Indeed, in
the case of a stationary receiver receiving the sound
scattered by a moving inhomogeneity, the frequency ω
of the received wave is equal to [19]

where ω0 is the radiation frequency; c is the sound
velocity in the medium; and θ1 and θ2 are the angles
between the direction of the inhomogeneity velocity and
the propagation directions of the initial and scattered
waves, respectively (figure). If the inequality v /c ! 1
and conditions (20) are satisfied, we obtain for the
Doppler frequency

(25)

which coincides with the derivative of the phase Θ1(t)
given by Eqs. (23). The mechanism of the Doppler
effect in the case of the inhomogeneity motion in the
horizontal plane can be also described by a simple
interference model. According to it, the intersection of
two plane waves produces an interference pattern with
the periodic spatial distribution of the intensity of the
resulting field. The width of the interference band Λ in
this case is given by the formula

where β = β1 + β2 is the angle between the propagation
directions of the primary and scattered waves (figure).
The radiation scattered by an inhomogeneity moving in
the interference field is intensity modulated. The mod-
ulation frequency is equal to the inverse value of the
time of crossing a single interference band by the inho-
mogeneity:

where v cosχ is the projection of the velocity vector onto
the direction of the difference between the wave vectors
of the scattered and incident waves (χ = (π/2) – γ in the
case of the inhomogeneity approaching the reference
line and χ = (π/2) + γ when it moves away from the ref-
erence line). The resulting expression coincides with
Eq. (25) for the Doppler frequency shift.

AVERAGE PERTURBED FIELD

Let us consider the average pattern of a perturbed
field ∆u [Eq. (8)]:

(26)

ω* ω0

1 v /c( ) θ1cos–
1 v /c( ) θ2cos–
-------------------------------------,=

ω t( ) ω* ω0– 2π v γsin
L

--------------- 
 

2

t,–= =

Λ λ
2 β/2( )sin
------------------------

L2

v t γsin
--------------------,= =

ω t( ) 2π v χ/Λcos( ),=

∆u
u0us* u0*us+

2 u0
2

----------------------------- u0
2 Θs Θ0–( )cos ,= =
which is relevant in the application of extended vertical
arrays. The overbar in Eq. (26) means averaging over
the positions of the source, the inhomogeneity, and the
receiver within the waveguide depth. In this case, it
becomes possible to describe a multimode pattern of
diffraction shading in the framework of the small-param-
eter model. The utilization of the small-parameter model
in algorithms of matched filtering provides an opportu-
nity to obtain the detection characteristics close to the
potentially possible ones and predict the inhomogeneity
parameters with a preset precision [1, 8, 20–22].

Let us use the representation of the direct and dif-
fracted fields in the form of a mode expansion accord-
ing to Eq. (2):

Then, we substitute these expressions into Eq. (26). In the
process of averaging, we take into account the orthonor-

mality of the eigenfunctions: (z)ψµ(z)dz = δmµ,

where δmµ is the Kronecker delta. Assuming that the
eigenvalue spectrum is narrow, we can consider the
slowly varying parameters ξm and κm as constant and
equal to ξ l = 2π/λ and κ l and factor them out from under
the summation sign. If inequality (20) is valid, the

quantity rs, r in the factor 1/  and in the argument of
the attenuation exponent can be replaced by the approx-
imate value R1, 2. As a result, we obtain

(27)

where the phase Θl(t) is determined according to
Eqs. (23).

Let us introduce the variation coefficient

characterizing the contrast of the averaged diffraction
pattern. The rms value of the primary field is equal to

so that from the comparison of Eqs. (26) and (27) we
obtain

us
iF
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(28)

i.e., the variation coefficient reproduces the scattering
amplitude of the inhomogeneity correct to the constant

factor . The maximal value of the vari-
ation coefficient (28) attainable at the moment t = 0 of
crossing the reference line by the inhomogeneity is

(29)

We note that the estimate (29) can be also obtained by
proceeding from the Huygens–Fresnel principle, as it is
demonstrated in [2, 18] for the case γ = π/2.

It should be also noted that, as one can see from
Eqs. (21), (22), (24), and (29), in the particular case γ =
π/2, we arrive at the expressions for the characteristics
of a diffracted signal, which were proposed earlier in
[1, 2, 18].

APPLICABILITY OF THE SIGNAL MODEL

The estimates presented above are based on the isot-
ropy of scattering in the vertical plane [Eq. (15)] and on
a rather narrow eigenvalue spectrum. Let us specify the
second condition. If we repeat the reasoning used in [2]
for the case γ = π/2, we arrive at analogous expressions

where ∆ξ = ξ1 – ξM is the width of the spectrum of
propagation constants and the base m is determined by
Eq. (24).

CONCLUSION

The proposed model provides an opportunity to
describe simply and directly the sound diffraction by
localized inhomogeneities in oceanic waveguides and
to estimate the effect of the observation conditions on
the perturbed field without time-consuming numerical
calculations. In particular, the relation between the per-
turbed field characteristics and the parameters of the
problem geometry and the oceanic medium becomes
absolutely clear. It is demonstrated that, when the refer-
ence line crossing angle differs from π/2, the specificity
of the waveguide propagation manifests itself in a dis-
tortion of form and a frequency shift, as compared to
free space, if the source and the receiver are located at
different horizontal levels. A small-parameter model of
diffraction is proposed in the framework of the aver-
aged description of a multimode pattern of diffraction
shading. It provides an opportunity to increase the effi-
ciency of storing the signal responses from the ele-
ments of a vertical array by using the methods of
matched filtering.

g
1

4πH
----------- λR

R1R2
------------F,≈

λR/4π R1R2

gmax
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Abstract—Experimental results and a theoretical description are presented for the effect of an intense pumping
wave on a weak wave in a sandstone bar resonator. From the amplitude dependences of the resonance frequency
shift and of the nonlinear loss, which are measured for the weak wave in the presence of the intense one, it is
inferred that sandstone exhibits a dissipative acoustic nonlinearity. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

When propagating in a medium, an elastic wave
interacts with it causing a number of nonlinear effects,
such as wave generation at combination frequencies,
amplitude-dependent loss, change in the wave velocity,
attenuation of sound by sound, amplitude limitation,
and demodulation of high-frequency pulses. The inten-
sity of these effects depends on the nonlinear properties
of the medium and on the amplitude of the wave.
Therefore, the investigation of these effects, including
the reconstruction of the amplitude–frequency charac-
teristics, contributes to revealing the mechanisms of
acoustic nonlinearity and deriving the equations of state
of the medium. All this forms the basis for the develop-
ment of nonlinear methods of testing the structure and
condition of the medium.

One of the principal problems arising in the analyt-
ical description of experiments involving nonlinear
effects is the proper choice of the equation of state for
the medium in which these effects are observed.
Another no less important side of this problem is to set
up the experiment so that the results can be used “to
make statements independent of the existing theoretical
concepts” [1]. In acoustics (and, hence, also in seismoa-
coustics), theoretical knowledge traditionally relies on
the five- or nine-constant elasticity theory [2, 3]. How-
ever, this approach can only be applied to homogeneous
solids. For microinhomogeneous media, which contain
various inclusions (dislocations, grains, cracks, etc.),
the equations of state are often nonanalytic and contain
a fractional-power or hysteretic nonlinearity even in the
case of relatively small strains (10–7 to 10–6) [4–15].
The effective parameters of the acoustic nonlinearity of
microinhomogeneous media are, as a rule, considerably
greater than the nonlinearity parameters of homoge-
neous media and materials. All other factors being the
same, the nonlinear effects are most pronounced in res-
onators, in which the amplitudes of elastic waves can be
much higher than in an unbounded medium. Such
1063-7710/02/4801- $22.00 © 20076
experiments were carried out with some polycrystalline
metals and rocks. It was found that, in addition to the
hysteretic nonlinearity, these materials exhibit a dissi-
pative acoustic nonlinearity [6, 11, 14, 16, 17]. In this
connection, a search for new media that exhibit these
properties is also a topical problem of nonlinear acous-
tics and seismoacoustics.

This paper presents the results of an experimental
study and analytical description of the effect of an
intense acoustic pumping wave on the characteristics of
a sandstone resonator that are measured by a weak
wave. The analysis of these results shows that sand-
stone exhibits a dissipative acoustic nonlinearity.

DESCRIPTION OF THE EXPERIMENT

A block diagram of the experimental setup is shown
in Fig. 1. The experiment used a bar resonator (1) made
of sandstone, which was taken from a core extracted at
an oil and gas production site. The length L of the bar
was 28 cm and its diameter was d = 2.5 cm. A piezoce-
ramic vibrator (2) used to produce the weak wave was
attached to the end face of the bar and to a massive (M =
2 kg) titanium concentrator (3) intended for producing
the intense pumping wave. Therefore, the boundary
condition at this face of the resonator was close to the
boundary condition at a perfectly rigid surface. (The
minimal level of the pumping wave exceeded the level
of the weak wave by more than 30 dB.) A piezoelectric
accelerometer (4) was attached to the other (free) end
face of the bar. The mass of this device was sufficiently
small, so that this boundary could be considered as
acoustically soft. The eigenfrequencies of longitudinal
vibrations of this resonator can be calculated as Fn =
C0(2n – 1)/4L, where C0 is the velocity of the longitu-
dinal wave in the bar and n is the index of the longitu-
dinal mode. The signal produced by the accelerometer
(4) was supplied to a spectrum analyzer (5) in order to
measure the amplitude of the pumping wave, and,
002 MAIK “Nauka/Interperiodica”
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through a rejection filter (6), which suppressed the
pumping signal by 30 dB, this signal was also supplied
to a frequency selective voltmeter (7) and an oscillo-
scope (8), which measured the amplitude A of the weak
wave. At small excitation amplitudes, the eigenfrequen-
cies of the first four longitudinal modes of the resonator
were F1 ≈ 2230 Hz, F2 ≈ 6800 Hz, F3 ≈ 10150 Hz, and
F4 ≈ 13340 Hz. Their Q factors were Q1 ≅  125, Q2 ≅
130, Q3 ≅  135, and Q4 ≅  140, respectively. These reso-
nance frequencies correspond to the velocity of the lon-
gitudinal wave in the bar C0 ≅  2.5 × 105 cm/s.

EXPERIMENTAL RESULTS

In the experiment, a continuous weak wave at the
fourth mode and a continuous intense pumping wave at
the first mode were first excited in the resonator. Subse-
quently, the weak wave was excited at the first mode
and the intense wave was excited at the fourth mode.
This choice of frequencies of the intense and weak
waves was determined primarily by the acoustic com-
patibility, i.e., by the condition that they could be
received separately. The amplitude of the weak wave
was maintained constant during the measurements. The
amplitude of the pumping wave was increased, which
caused the resonance conditions to be violated. There-
fore, the frequency of this wave was varied so as to keep
the pumping wave at resonance. Figures 2a and 2b
show respectively the resonance curves for the weak
wave at the fourth and first modes with the pumping
wave amplitude at the first and fourth modes as a
parameter. These figures show that an increase in the
pumping wave amplitude εm shifts the resonance fre-
quency and broadens the resonance curve for the weak
wave. This effect is associated with a decrease in the
Young modulus (or in the elastic wave velocity) and
with a decrease in the Q factor of the resonator (or an
increase in the nonlinear loss). The level of the combi-
nation frequency components (near the third and fifth
resonator modes) were about 30 dB lower than the
weak wave level. Therefore, these waves could not
cause such a considerable decrease in the Q factor at the
fourth and first modes of the resonator. Figure 3 shows
the shift ∆F4, 1 in the resonance frequency of the weak
wave versus the strain amplitude due to the pumping
wave. As seen in Fig. 3, ∆F4, 1 ~ εm. Figure 4 displays
the relative amplitude R = A/A0 of the weak wave (at
resonance) versus the amplitude εm of the pumping
wave (A0 and A are the weak wave amplitudes at εm = 0
and εm ≠ 0, respectively). From the dependences shown
in Fig. 4, it follows that the relative amplitude R
decreases with increasing εm.

ANALYTICAL DESCRIPTION OF THE EFFECT 
OF THE PUMPING WAVE ON THE WEAK WAVE

The nonlinear effects observed in the experiment,
namely, the resonance frequency shift and the decrease
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
in the Q factor of the resonator with increasing wave
amplitude, are usually explained in the framework of
the hysteretic nonlinearity model [4, 6–14]. In this
paper, we will also try to analytically describe these
effects in terms of the hysteretic equation of state

(1)

(2)

where σ and ε are the longitudinal stress and strain in
the bar, E is the Young modulus, ρ is the density, and α
is the linear attenuation coefficient. In the equations, it
is assumed that |γ1–4εm| ! 1 and |γ1–4| @ 1. (The qua-
dratic hysteretic nonlinearity was chosen, because,
experimentally, it was found that ∆F1, 4 ~ εm.)

Equations of state (1) and (2) together with the
equation of motion

(3)

and the boundary conditions

(4)

(where U is the displacement, ε = Ux, and a ! U0)
describe the effect of an intense pumping wave on the
weak wave in the resonator. We represent the solution
to Eqs. (1)–(3) as a superposition of the intense εp and
weak εw waves:

(5)
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Fig. 1. Schematic diagram of the measuring setup.
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Fig. 2. (a) Resonance curves for the weak wave at the fourth mode with the strain amplitude of the pumping wave at the first
mode as a parameter: εm = (1) 0, (2) 7.5 × 10–7, (3) 1.6 × 10–6, and (4) 2.5 × 10–6. (b) Resonance curves for the weak wave at

the first mode with the strain amplitude of the pumping wave at the fourth mode as a parameter: εm = (1) 0, (2) 4.5 × 10–7, (3) 7.5 ×
10–7, (4) 1.3 × 10–6, (5) 2.1 × 10–6, and (6) 2.7 × 10–6.

(a)

(b)
Let the pumping wave be specified as a mode of the res-
onator εp(x, t) = εmcosΩmtcosKmx, where Km = Ωm/C0 =

π/(2m – 1)L and  = E/ρ. Since |εw| ! εm, we expand
the function f(ε, ) into the Taylor series in εw, accurate
to the linear term. Separating the constant component in
the coefficient fε(εp, ) (〈 fε(εp, )〉  = γeff εm|cosKmx|),
we obtain the equation for the weak wave:

(6)

where γeff =  +  is the

effective parameter of the hysteretic nonlinearity. Equa-

C0
2

ε̇

ε̇p ε̇p

∂2εw

∂t2
---------- C0

2∂2εw

∂x2
----------–

=  γeff C0
2εm Kmxcos

∂2εw

∂x2
---------- α

∂3εw

∂x2∂t
-------------,+–

γ1 γ2 γ3 γ4+ + +
4

---------------------------------------
γ1 γ2– γ3 γ4–+

π
--------------------------------------
tion (6) yields the weak-wave resonance curve of the
bar for the nth mode of the resonator [10]:

(7)

where δn = Ωn – Ω and δh = –(γeff/π)Ωmεm are the linear
and nonlinear shifts in the resonance frequency, respec-

tively, and Qn = /αΩn. This equation shows that the
hysteretic nonlinearity model can explain only the shift
in the resonance frequency, but not the decrease in the
Q factor of the resonator with increasing amplitude of
the intense wave at one mode measured with the help of
the weak wave at another mode. As a matter of fact, to
explain only the nonlinear shift in the resonance fre-
quency (∆F1, 4 ~ εm), it is not necessary to resort to the

A
aC0/L

δn δh–( )2 Ωn
2

4
------ 1

Qn
2

------+

-----------------------------------------------,=

C0
2
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hysteretic model. It is sufficient to assume that the non-
linearity is different for the positive and negative values
of ε within the framework of the quadratic nonlinearity
model by assuming that, in Eq. (2), γ2 = –γ1 and γ4 =
–γ3, but γ1 ≠ γ3, so that γeff ≠ 0. The hysteretic equation
of state was used here because, when the resonator is
excited by the pumping wave alone, the effect of the
amplitude-dependent friction both shifts the resonance
frequency and decreases the Q factor. This equation
was also used in order to show that the hysteretic non-
linearity does not decrease the Q factor for the weak
wave in the presence of the intense one. To explain this
effect, it is necessary to introduce the dissipative non-
linearity into the equation of state [6, 11, 14, 16, 17]:

(8)

where β and S are dimensionless constants. Similar cal-
culations yield the resonance curve of the resonator and
show that the resonance frequency shift and the Q fac-
tor for the weak wave at one mode depend on the ampli-
tude of the pumping wave at another mode:

(9)

where η = .

The comparison of the experimental results (Fig. 3)
with the theoretical dependence of the resonance fre-

σ ε ε̇,( ) E ε f ε( )–[ ] αρ 1 β ε S+[ ]ε̇ ,+=

A
aC0/L

δn δh–( )2 Ωn
2

4Qn
2

--------- 1 ηβεm
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-------------------------------------------------------------------------,=

1
2π
------Γ2 S 1+( )/2[ ]

Γ2 S 3+( )/2[ ]
---------------------------------
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Fig. 3. Resonance frequency shift ∆F4, 1: (1) for the weak
wave at the fourth resonator mode versus the pumping ampli-
tude at the first mode and (2) for the weak wave at the first
mode versus the pumping amplitude at the fourth mode. The
straight lines correspond to the dependence ∆F4, 1 ~ εm.
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quency shift on the pumping amplitude at the first and
fourth modes yields the effective parameter of the
hysteretic nonlinearity: γeff (m = 1) ≅  6.4 × 104 and
γeff (m = 4) ≅  6.6 × 103. As follows from these estimates,
the effective parameter of the hysteretic nonlinearity
decreases with increasing pumping frequency. Similar
behavior is observed for polycrystalline lead and zinc
[6, 13].

3
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Fig. 4. Relative amplitude R = A/A0: (1) for the weak wave
at the fourth resonator mode versus the pumping amplitude
at the first mode and (2) for the weak wave at the first mode
versus the pumping amplitude at the fourth mode. The solid
line is calculated by Eq. (11) with β = 2.5 × 109.

Fig. 5. Dependence of R–1 – 1) on  for the reso-
nator excited by the pumping wave at (1) the first and
(2) fourth modes. The straight line corresponds to R–1 – 1 ~

.

(log εmlog

εm
3/2
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Let us determine the exponent S and the parameter
of dissipative nonlinearity β. Formula (9) implies that,
at resonance, the amplitude of the weak wave and the
dependence R = R(εm) are given by the expressions

(10)

(11)

As follows from Eq. (11), R–1 – 1) = β +
S . Using the experimental results (Fig. 4), we

plot the dependences of R–1 – 1) on  (Fig. 5),
from which we obtain S ≅  3/2 and β ≅  2.5 × 109. The
parameter of the dissipative nonlinearity for sandstone,
as for lead and zinc [6, 13], was found to be indepen-
dent of the pumping frequency. This fact corroborates
the assumption that the nonlinear dissipation coeffi-
cient in the equation of state (8) depends on |ε| rather
than on | |.

CONCLUSION

This paper describes an experimental study (the
setup and results) of the effect of an intense sound wave
on the resonance frequency and the Q factor of a sand-
stone bar resonator when these parameters of the reso-
nator are measured with the help of a weak wave. Based
on the observed behavior of the resonance frequency
and the Q factor of the resonator at one mode under the
action of the intense wave at another mode, it is shown
that, to explain these effects, it is necessary to assume
that sandstone exhibits both hysteretic nonlinearity and
dissipative acoustic nonlinearity. The comparison of the
experimental and theoretical results shows that, as the
frequency of the intense wave increases by a factor of 6
(from 2.2 to 13.3 kHz), the effective parameter of hys-
teretic nonlinearity becomes almost 10 times smaller,
while the parameter of dissipative nonlinearity remains
unchanged.

Note that, presumably, the majority of polycrystal-
line rocks exhibit dissipative acoustic nonlinearity.
Therefore, the variety of nonlinear effects observed in
these media is much wider than in common media,
which possess only elastic nonlinearity. The study of
the effects of dissipative nonlinearity can be used in the
remote acoustic (and seismoacoustic) testing of natural
rock.

A 4aQn/ π 2n 1–( ) 1 ηβεm
S+( )[ ] ,=

R 1/ 1 ηβεm
S+( ).=

(log ηlog
εmlog

(log εmlog
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Abstract—The shear horizontal modes that occur in a quartz plate are studied both theoretically and exper-
imentally. These modes are shown to possess a wide variety of temperature properties, including the char-
acteristic behavior of the temperature coefficient of delay, which can take on negative, zero and record-
breaking high positive values up to 350 × 10–6/°ë. The dependence of this coefficient on the mode number
is explained by the varying partial contributions of three elastic moduli, c12, c14, and c44, to this coefficient.
© 2002 MAIK “Nauka/Interperiodica”.
The value, sign and temperature dependence of the
temperature coefficient of delay (TCD) of acoustic
waves in crystals play an important role in a broad
range of applications. The frequency stabilizers and
narrow-band filters require small values of the TCD,
which vary weakly in a wide temperature range. On the
contrary, this coefficient should be as large as possible
for temperature measurements in analytical chemistry
and for gas detection by thermal conduction measure-
ments. Therefore, the investigation of the temperature
properties of acoustic vibrations remains a topical
problem of modern acoustoelectronics. The required
value of the TCD is generally provided by the choice of
the crystal cut and the direction of wave propagation
[1–12]. This paper shows that the value, sign, and tem-
perature dependence of the TCD can be varied by
choosing the mode number without changing the direc-
tion of propagation and the plate cut.

We studied the shear horizontal (SH) modes with
the frequencies f = 12.6–44.5 MHz in an ST,X+90°
quartz plate 0.5 mm thick. One face of the plate was
optically polished and the other was grinded. The vibra-
tions were excited and received using interdigital
transducers with 20 pairs of Cr/Au pins and the period
λ = 392 µm. The distance between the transducers was
24.1 mm. The structure under study was placed in a
heat-insulated box of an MLW U10 thermostat with
varying temperature (to an accuracy of ≤0.05°ë). The
study of the temperature sensitivity of SAW was con-
ducted in the phase format with an HP 8753 ES quadri-
pole analyzer. By virtue of the narrow transmission
band of the transducers and the small thickness of the
plate (H/λ = 1.2755), the acoustic modes of various
orders n were well resolved up to n = 18 (see Fig. 1). In
the experiment, we measured the relative phase shift
∆ϕ/ϕ of the vibrations under a change in temperature
within t = 2–92°ë at a step ∆t = 5–10°ë. The value of
1063-7710/02/4801- $22.00 © 20008
the TCD for each mode was determined according to
the relation TCD = (1/∆t)(∆ϕ/ϕ) at room temperature
(t = 20°ë) and at the temperatures of the zero and max-
imal TCD. To diminish the effect of electromagnetic
interference on the measurement results, the vibrational
modes whose amplitudes exceeded the interference by
less than 10 dB were excluded from consideration. The
reliability of the experimental results was monitored
using a 128° Y,X LiNbO3 test sample for which the
Rayleigh-wave TCD was well known (72 × 10–6/°ë).

The results obtained are presented in Figs. 2–4.
From Fig. 2, one can see that modes of different orders
have different temperature dependences of their phases
(ϕ – ϕ0)/ϕ0: for the first modes, this dependence is
quasi-cubic, and for higher-order modes, it is close to
linear. According to different types of the phase–tem-
perature dependences, differences are also observed in
the temperatures t, at which the curves for different
modes reach their extremal values or their maximal gra-
dients, and the corresponding values of the TCD =
(1/∆t)(∆ϕ/ϕ) turn to zero or reach their maximum. In
our experiments, the maximal temperature sensitivity
was characteristic of the 13-order mode at t ≈ 47°ë. The
value of the TCD for this mode was about 350 × 10–6/°ë,
which was much higher than the corresponding values
for the bulk wave (–12 × 10–6/°ë) and the surface wave
(–34 × 10–6/°ë) of the same polarization, which propa-
gated in the same direction in quartz. This value is also
far above the Rayleigh-wave TCD value in Bi12GeO20

(120 × 10–6/°ë) and the corresponding values for the
SH modes in AT-quartz plates with double-sided grat-
ing (210 × 10–6/°ë) [13], the latter modes being the
most thermally sensitive acoustic vibrations known so
far. At the threshold value of the acoustic response
∆ϕ/ϕ = 0.5 × 10–6 and TCD = 350 × 10–6/°ë, the thresh-
old value of the temperature variations detected in our
experiments was ∆t = (1/TCD)(∆ϕ/ϕ) ≈ 0.001°C.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Amplitude–frequency characteristics of SH modes in an ST,X+90° quartz plate. Mark 1 corresponds to a frequency of
12.78125 MHz and an amplitude of 47.943 dB.
It is seen from Fig. 3 that the value of the TCD
changes rapidly with the mode number n: this value is
negative for n = 0–4, zero for n = 5–7 and positive for
n ≥ 8.

To substantiate this change, we calculated the partial
contributions made to the TCD by the variations of the
density ρ, the elastic moduli cij and the linear coeffi-
cients of thermal expansion along the propagation
direction α|| and along the plate thickness α⊥ . The
modes of the first 17 orders were considered. The
phase velocity of the nth mode v n was presented as a
total differential with respect to the variables x = ρ, cij ,
α⊥ , and α||:

(1)

Then, we conducted a successive variation of one of
the parameters of the quartz plate x within ±1% rela-
tive to its room-temperature (20°ë) value and calcu-
lated the values of the mode velocity for the room-
temperature (vno) and two boundary values of this
parameter (vn – 1% and vn + 1%). After that, we determined
the temperature sensitivity dx/dt of the parameter x and
the value of the corresponding partial contribution
(1/vno)(∆vn/∆x)(dx/dt), where ∆vn = vn + 1% – vn – 1%.
Finally, the partial contributions of different parameters
x were added together, and the TCD value for this mode
was calculated by Eq. (1). The mode velocities were
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1
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calculated according to Adler’s program [14]. The
material constants of quartz and their temperature
dependences were taken from [15] and [16], respec-
tively. The thickness of the quartz plate was determined
by the experimental condition H/λ = 1.2755. A compar-
ison of the theoretically calculated and experimental

–8

0 20

(ϕ – ϕ0)/ϕ0 × 103

t, °C
40 60 80 100

–4

0

Fig. 2. Temperature dependence of the phase for some
vibrational modes in the same plate. The dots represent the
experimental data, and the lines represent the linear and
cubic approximations; n = (j) 0, (s) 2, and (m) 8.
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velocity values measured with an accuracy of ±2%
shows (see table) their agreement to within several per-
cent (the values in parentheses). This allows us to iden-
tify the modes correctly during the experiment.

The results of the calculations are presented in
Figs. 3 and 4. It is seen from Fig. 3 that the calculated
and experimental dependences of the TCD on the mode
number are in qualitative agreement. The quantitative
difference observed for the high-order modes is pre-
sumably attributable to the effect of the interdigital
transducers and the roughness of one of the sample sur-

–2

2

TCD × 10–4/°ë

Mode number
4 6 8 10

0

2

0 12 14 16 18

–1

1

3

4

Fig. 3. Values of the TCD for SH modes in ST,X+90° SiO2
at room temperature t = 20°C: (j) theory and (s) experi-
ment.
faces on the measurement results. According to Fig. 4,
the dependence of the TCD on n mainly results from
the change in the partial contributions of the elastic
moduli c12, c14, and c44 with varying mode number,
because the contributions of other parameters of the
plate are virtually constant for all modes, and the con-

Fig. 4. Variations of the partial contributions of the follow-
ing parameters of the plate to the TCD with the mode num-
ber at room temperature t = 20°ë: (h) ρ, (+) c11, (m) c12,
(v) c13, (.) c14, (×) c33, (c) c44, and (s) H/λ.

–150
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Theoretical and experimental values of the velocities of SH modes in ST,X+90° quartz plate (H/λ = 1.2755) m/s

Mode number Theory Experiment Mode number Theory Experiment

0 4993 5000 (+0.1%) 10 14203 14500 (+2.1%)

1 5169 5500 (+6.4%) 11 15454 15600 (+0.9%)

2 5662 6200 (+9.5%) 12 16716 16800 (+0.5%)

3 6398 7000 (+9.4%) 13 17989 18000 (+0.1%)

4 7303 7900 (+8.2%) 14 19268 19200 (–0.4%)

5 8322 8800 (+5.7%) 15 20554 20400 (–0.7%)

6 9418 10000 (+6.2%) 16 21845 21600 (–1.1%)

7 10567 11100 (+5.0%) 17 23141 22800 (–1.5%)

8 11754 12200 (+3.8%)

9 12969 13300 (+2.6%)
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tributions of c11, c13, and c33 are negligibly small or
equal to zero.

Thus, the SH modes in a quartz plate possess a wide
variety of temperature properties, the temperature coef-
ficient of delay taking on negative, zero, and record-
breaking high positive values in the temperature range
t = 2–92°ë. A further increase in the temperature sen-
sitivity of acoustic vibrations should be expected for the
SH, Lamb, and Love plate modes after the necessary
optimization of the material, the crystal cut, and the
thickness of the sound-transmitting plate.
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Abstract—The large-scale horizontal variability of deep scattering layers (DSL) in the Northwestern Pacific is
analyzed. The analysis is based on long-term measurements of the column strength and the volume scattering
coefficient for frequencies from 0.63 to 16 kHz. The depth and frequency dependences of the scattering coeffi-
cient are presented for different regions of the aforementioned ocean region. The most pronounced changes in
the DSL structure are found to occur at the boundaries between large-scale water masses or seas with different
hydrological characteristics. By contrast, within such water masses and seas, the depth–frequency structure of
the DSL remains relatively stable. © 2002 MAIK “Nauka/Interperiodica”.
Despite the fact that ample data on deep scattering
layers (DSL) has been collected by various researchers
from different countries for 50 years, many regional
features of the spatial and temporal variability of vol-
ume scattering in the ocean and outlying seas remain
open questions. This paper presents an attempt to sum-
marize the results of the long-term experiments carried
out by the author in the Northwestern Pacific. The vol-
ume backscattering coefficient mv and column strength
M are adopted as the basic characteristics of the volume
scattering in the water column. The backscattering
coefficient mv is determined as

where WS is the power backscattered by a volume V per
unit solid angle and I is the sound intensity incident on
this volume. The column strength M is the integral of
the scattering coefficient mv with respect to the depth;
this integral is usually calculated within the limits from
the sea surface to the depth where the DSL are in great-
est abundance. The paper considers the spatial variabil-
ity of the quantities mv and M in frequency range 0.63–
16 kHz.

The experimental measurements of the volume scat-
tering characteristics were carried out using two basic
techniques of remote sensing in the bulk of the ocean:
explosions and tone impulses. In the first technique,
explosions of trinitrotoluene charges (200-g mass in the
case under consideration) formed the sound source pro-
viding an intense broadband omnidirectional radiation
that was sufficient for detecting the DSL at virtually
arbitrary depths z in the ocean. In this case, the recep-
tion was performed with a spherical omnidirectional
hydrophone located at a distance of only few meters
from the explosion center, which, with allowance for
the experiment geometry, makes it possible to consider
the points of transmission and reception coincident and
to interpret the term scattering as the backscattering in

mv WS/ VI( ),=
1063-7710/02/4801- $22.00 © 20081
the following consideration. In the experiments, we
used the Lesenka lowering system designed at the
Andreev Acoustics Institute. This system was attached
to the working end of the carrying cable-hawser and
contained a receiving hydrophone with a preamplifier
and 12 charges that were remotely exploded from on
board the vessel during the experiment. To enhance the
reliability of the measured depth-dependent scattering
coefficient mv , the charges were exploded in runs of five
or six charges at two depths differing by 300–1000 m.
Later, the results obtained in the runs were averaged.
In the conditions of our experiments, a 95% confi-
dence interval for the calculated scattering coefficient
was usually less than 1.5–2.0 dB. At the beginning of
the experiment, one or two charges were exploded
below all expected DSL, at a depth of 2.0–2.5 km,
which made it possible to roughly estimate the vertical
structure of the scattering field and define more exactly
the depths of the explosion runs. Under favorable con-
ditions, the explosion runs were carried out day and
night at the same point of the ocean, which gave the
opportunity to measure the diurnal DSL variability
governed by the vertical migration of biological scatter-
ers. The explosion technique and the description of the
Lesenka system are given in detail in [1]. The calcula-
tion of the dependences mv(z) from data obtained with
the explosion technique assumes that, within the inson-
ified region, the scattering properties of the medium
depend only on the depth, i.e., the scattering field has a
horizontally layered structure. In addition, the calcula-
tion assumes that the explosion wave is a spherical one,
i.e., the depth dependence of the velocity of sound is
neglected.

In the case of tone impulses, we used directed trans-
mitting–receiving acoustic arrays usually operating in
the echo-sounder mode with the axis of the directional
pattern being perpendicular to the unperturbed ocean
surface. The half-width of the main lobe of the pattern
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Regions of experiments on DSL in the Northwestern Pacific.
at a level of –3 dB varied from 5° to 15° depending on
frequency in the range 3–8 kHz. The tone impulse tech-
nique is much simpler in implementation than the
explosion technique. It should be noted, however, that
the directed radiation systems used in the experiment
produced a pressure of only 2 × 104 Pa (reduced to a
distance of 1 m) at the axis, so that, in the case of their
positioning near the sea surface, they did not always
allow us to detect the DSL at large depths, especially at
higher frequencies. For frequencies f ≥ 8–10 kHz, the
limiting detection depth of layers with an intermediate
scattering level measures about 1 km. For sounding the
DSL at greater depths, it is necessary either to increase
the duration of the transmitted signal, which lowers
spatial resolution, or to deepen the array by several hun-
dreds of meters, which drastically increases the dura-
tion of the experiment.

Figure 1 shows the centers of the regions in the
Northwestern Pacific (asterisks) where the experiments
were carried out. From three to seven runs of hydroa-
coustic experiments with a spacing of 20–50 km were
carried out in every region. The experimental condi-
tions of regions 2 and 6 differed from the above condi-
tions and will be described below, before discussing the
results. The hatched band shows the approximate posi-
tion of the subarctic part of the frontal zone serving as
the boundary that separates the subarctic and western
water masses of the Pacific [2], which drastically differ
in their hydrology, chemistry, and biology. This frontal
zone coincides with the region where two currents
meet: the warm Japan (Kuroshio) Current and the cold
Oyashio (Okhotsk) Current.

The most complete data on the features of DSL in
the Northwestern Pacific were obtained for the Kam-
chatka region (regions 1 and 2 in Fig. 1), where the
measurements were carried out from 1983 to 1990 in
spring, summer, and autumn, and several tens of
hydroacoustic experiment runs were performed with
both explosions and tone signals.

Among the characteristic features of the Kamchatka
region, the first is the absence of daily migrations of
DSL. As a consequence, the column strength in the day-
time differed from the column strength at night only
slightly (by less than 2–3 dB) for all frequencies of the
0.63–16 kHz range used in the experiments. This
invariability of the scattering field during the day and its
low variability in the Kamchatka region make it possi-
ble to characterize the region by the function mv(z, f )
obtained in May 1986 with the explosion technique in
region 2 (area about 20000 square kilometers) located
mainly between the Kamchatka coast and the Kurile–
Kamchatka Canal. Figure 2 shows this function as a
family of lines of equal level with a spacing of 5 dB.
The dotted line in the left-hand part of Fig. 2 indicates
the region where no data was obtained, because the
level of the received signal was below the noise level.

The second feature of this region is the deep layer
about 1 km wide lying at the depths from 1 to 2 km and
observed at frequencies higher than 2 kHz. This layer
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Fig. 2. Averaged function mv(z, f ) characteristic of region 2 (near the Kamchatka coast).
had a weak maximum (shown in Fig. 2 by the dashed
line) at a 4 kHz frequency at a depth of about 1.4 km.
In similar measurements carried out in 1990 near the
Kamchatka coast (region 1) with the use of directed
transmitting–receiving arrays operating in the 2–7 kHz
range and lowered to a 0.5 km depth, the deep layer was
regularly observed. The scattering maximum in this
layer occurred in the frequency range 3–4 kHz at a
depth varying from 1.2 to 1.5 km. The magnitudes of
the coefficient mv  only slightly differed from those
given in Fig. 2 throughout the whole frequency–depth
region. The layer at the depth 300–500 m at a 3 kHz fre-
quency was also regularly observed. It should be noted
that layers of such thickness and scattering level at
depths exceeding 1.5 km were only rarely observed in
other regions of the ocean.

Finally, the third feature of the region, which was fixed
during only one expedition, is a 30- to 150-m thick layer
that appeared for frequencies in the range 0.63–2 kHz and
was immediately adjacent to the ocean surface. This
layer was steadily observed during May in the region
between the Kamchatka coast and the Kurile–Kam-
chatka Canal. The detection of this low-frequency layer
was possible only using upward insonification, i.e.,
using deep-water explosions. The latter were carried
out in only one expedition in the Kamchatka region
because of technical reasons. Sounding the water col-
umn with surface explosions gave no way of detecting
this thin layer, because, during the first 200 ms after an
explosion, the receiver of our hydroacoustic system
remained in the nonlinear mode caused by the overload
of the hydrophone output due to the passage of the
shock wave. The column strength of the surface layer
exceeded the column strength of underlying water by at
least 10–15 dB; it amounted to a value of –52 dB (which
corresponds to the value of the scattering coefficient
HYSICS      Vol. 48      No. 1      2002
averaged over the layer thickness from –75 to –67 dB)
and remained almost intact within the range 0.63–2 kHz.
For frequencies above 2 kHz, the surface layers with a
scattering coefficient exceeding –75 dB were observed
nearly everywhere in the Kamchatka region, including
the areas located behind the Kurile–Kamchatka Canal.
Analysis showed that the recorded low-frequency sur-
face layer presumably had a biological nature.
According to our calculations, such a high scattering
level at a 0.63 kHz frequency could be caused by large
discrete scatterers (swimming-bladder fishes of length
30 cm and longer) with a concentration of about 2 ×
10–4 m–3. The invariability of the column strength M for
the frequencies f within the range 0.63–2 kHz sug-
gests that the concentration of smaller fishes must
increase no slower than ~l–2, where l is the fish length.
Since this surface layer was detected during salmon
spawning near the Kamchatka coast, it, possibly, has a
seasonal nature. To the west of the Kurile–Kamchatka
Canal, this layer was detected neither during salmon
spawning, nor in other seasons.

The investigations of the volume scattering in the
Kamchatka region testify to the long-term (at least
within 5–7 years) stability of the DSL parameters, such
as the absolute values of the scattering coefficients and
their depth-dependent profiles. If we assume that the
field of volume scattering is also stable in other areas of
the ocean, we can relate the differences in the layer
structure observed by spaced hydroacoustic systems to
specific hydrological and climatic conditions. This
assumption makes it possible to estimate the parame-
ters of the large-scale spatial variability in the North-
western Pacific.

Figure 3 shows the frequency–depth behavior of
the volume scattering coefficient during the day in
regions 1–6. All these regions were located in the open
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 relative 1 m–1
deep-water area of the ocean and were practically not
separated by isle arcs and bottom elevations that could
affect the DSL structure. However, between regions 5
and 3, there is a subarctic frontal zone that separates the
global types of water mass structure and goes approxi-
mately along 41° N. According to hydrological data, the
effect of frontal zones on water salinity and temperature
is appreciable only to depths of 500–700 m, and, for
greater depths, no jumps occur in the latitude behavior
of these parameters. Despite a fairly great scatter of
regions 1–6 in longitude, in view of the direction of this
boundary between water masses, we will assume that
Fig. 3 characterizes the latitude variability of the field
of volume scattering. The validity of this interpretation
is indirectly supported by the results obtained by subdi-
viding the Atlantic Ocean into regions in accordance
with the acoustic characteristics of DSL, primarily the
column strength for frequencies from 3 to 20 kHz [3,
4]. It was found that the boundaries of regions with
homogeneous hydrological conditions in the Atlantic
could be considered in some cases as boundaries
between regions with different statistical parameters of
column strength. This fact allows one to suggest that
the DSL parameters in the open ocean are more stable
in the latitude direction than in the meridian one. To
simplify the comparison, the curves of equal level of
the coefficient mv are given for the same frequency
range (2.0–6.3 kHz) and the same depths (0.2–2.2 km)
with a curve spacing of 10 dB.

As is seen from Fig. 3, the DSL located in the depth
range from 1 to 2 km universally occurred to the north
of the subarctic frontal zone (regions 1–3). As we
approached the frontal zone (region 3), the scattering
level in this deep-water layer decreased, and the
received signal was even below the background noise
for f > 5 kHz. A distinguishing feature of region 4
located almost immediately at the frontal boundary
consists in the irregularity of the function mv(z, f ) for
z > 800 m. Only traces of the deep-water layer were
observed there, the scattering coefficient being below
–87 dB for all frequencies. To the south of the subarctic
zone, only one DSL was discernible, in which the scat-
tering maximum occurred at a depth of about 700 m,
i.e., about 200 m deeper than the scattering maximum
of a similar layer to the north of the frontal zone. It is
worthwhile to mention that the frequency–depth struc-
ture of the field of volume scattering in region 5 is
closer to the structure observed in region 6, which is
separated from it by 4000 km, than to the structures
observed in regions 1–4 located at shorter distances.
A possible explanation is that both regions 6 and 5 are
located in the zone affected by the same water stream
consisting of the North Pacific Current continued by the
Japan Current.

The curves given in Fig. 3 suggest that the fre-
quency-depth structure of the field of volume scatter-
ing is essentially changed at the boundary between
two water masses and can be considered as one of the
biological and hydrological characteristics typical of
these masses. An interesting point consists in the fact
that the strong variability of hydrological characteris-
tics observed in going from one water mass to the other
concerns only the upper 700-m thick water layer, while
changes in the DSL structure occur in the water bulk to
a depth of 2000 m.

For low latitudes, the DSL were investigated in the
semi-closed South China Sea and in the open Philip-
pine Sea that can be considered a part of the Pacific,
because it is involved in the dynamics of the North
Pacific Current. In the Philippine Sea, measurements
were carried out far from the coast, in region 6 where
the sea depth exceeds 5 km. The distance between the
points where two measurement runs were carried out
was about 100 km. In the South China Sea, measure-
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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ments were carried out in three regions separated from
each other by hundreds of kilometers. Region 9 is
located in a small hollow that has depths about 2 km and
is almost surrounded by reefs and shallow waters.
Despite the separation by about 800 km, regions 7 and 8
have similar hydrological characteristics: about depths
4 km and relatively flat bottoms. The measurements
were carried out in May in region 9 and in October in
regions 7 and 8. As an example figure 4 shows the struc-
ture of the scattering field obtained in region 8 during
daytime. Contrary to the Philippine Sea, in parallel with
the layer at a depth about 700 m, an additional layer
occurred here at a 200 m smaller depth. A similar dou-
ble-layer structure was also characteristic of other mea-
surement runs carried out in the South China Sea.
Unfortunately, the measurements in these southern seas
were performed only with directed low-frequency
arrays, which restricted the maximal depth in the exper-
imental functions mv(z) by a value of about 1 km in the
frequency range 3–7 kHz. However, comparison with
the data of other authors and with our own explosion
measurements for other low-latitude regions of the
Pacific suggests that deep-water layers similar to those
detected in the Kamchatka region are unlikely for both
the South China and the Philippine Seas.

To quantitatively estimate, on the one hand, whether
or not the Philippine and South China Seas can be con-
sidered as different in their volume scattering charac-
teristics and, on the other hand, what is the degree of
homogeneity of these characteristics for each of the areas
under consideration, we used the simple technique of
cluster analysis similar to that used by McElroy [5] to
select in the Atlantic regions uniform in their scattering
characteristics. The essence of this technique is as fol-
lows. The same set of parameters (in the general case,
not necessarily hydroacoustic ones) is measured for
every point of an area. Then, this set is considered as the
coordinates of the point in the N-dimensional space,
where N is the number of measured parameters. The
proximity of these points is characterized by the
Euclidean distance in the above coordinate system. If
the set of interpoint distances can be divided into sub-
sets, within which these distances are smaller than a
certain distance used as the proximity criterion, and the
distances between any pair of points belonging to dif-
ferent subsets exceed this criterion, then, the separation
of the area into homogeneous regions (clusters) is ful-
filled. The above separation procedure is one of the
simplest and most rigorous procedures in cluster analy-
sis, because the distances between obvious clusters can
actually be smaller than the intracluster distances (as
the distances between isles in the ocean can be smaller
than the sizes of the isles).

McElroy [5] used the magnitudes of the column
strength in decibels for 16 frequencies ranging from 1
to 31.5 kHz as acoustic coordinates. Subsequently, the
frequency-averaged magnitude M calculated for every
measurement run was subtracted from these magni-
tudes. This way, the entire area was subdivided into
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
regions with characteristic frequency-dependent behav-
iors of the column strength, i.e., with identical distribu-
tions in sets of biological scatterers. The total number
of scatterers was not taken into consideration in subdi-
viding the area into clusters. In addition, such an
approach cannot include the differences in the vertical
structure of the DSL.

We used the values of the scattering coefficient mv
for nine depths (from 250 to 1050 m at every 100 m)
and for four frequencies 3.15, 4.2, 5.2, and 6.2 kHz as
coordinates in a 36-dimensional space. All data were
normalized by the average scattering coefficient over
all 36 values. The table presents the matrix of the
Euclidean acoustic distances for three regions of the
South China Sea (7–9) and two regions of the Philip-
pine Sea (6 and 6a). Regions 6 and 6a (on the map,
region 6a is not marked by a separate asterisk) were
separated by not more than 100 km.

As is seen from the table, the distance between any
pair of points belonging to each single sea is smaller
than the distance between any points belonging to dif-
ferent seas (the corresponding three groups are marked
by the bold frames), which points to a relatively low
variability of the frequency–depth structure of the scat-
tering field within one sea in comparison with the vari-
ability of this structure in going from one sea to the
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other. In actual practice, the division into homogeneous
regions is often performed with the use of weaker crite-
ria than the one given above. The small average dis-
tance between the intracluster points and the small dis-
tance from the cluster points to the gravity center of the
cluster in comparison with the distance between the
gravity centers of these clusters are examples of such
criteria. The use of such criteria would result in a more
prominent subdivision of the matrix of distances into
two separate compact regions.

The suggested procedure can be useful in subdivid-
ing the ocean into areas according to the DSL charac-
teristics. The degree of detail in such a subdividing
depends on the number of parameters measured for
every geographic point and on the criteria of proximity
of these parameters. Note that such a subdivision into
homogeneous areas is closely related to the urgent
problem of the general accounting of the biological
resources of the ocean. This problem studied under cer-
tain international programs, one of which is the
extended program “Census of Marine Life” [6]. This
program includes the formation of the global Ocean
Biogeographic Information System (OBIS) based on
many experimental data, including acoustic data.

Acoustic distances between the investigated regions of the
South China and Philippine Seas

Region no. 8 7 6 6a

9 25.0 29.5 48.7 53.4

8 – 38.8 39.6 46.2

7 – – 46.1 48.5

6 – – – 23.1
All abovementioned results support the hypothesis
that assumes a certain relationship between the large-
scale spatial variability of the DSL and the global vari-
ability of hydrological characteristics, which was
pointed out in [4]. Under this assumption, every water
mass or closed sea is presumably characterized by its
own depth–frequency structure of the volume scatter-
ing field, this structure being relatively stable within the
basin under consideration.
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Abstract—Theoretical expressions for the components of the displacement vector in a three-layer halfspace
with linked and slipping layers are obtained for the case of setting an oscillatory pressure distributed evenly
over a circular area at the layer surface. Numerical calculations of the displacement field in the medium are per-
formed for the values of the parameters simulating a skin-fat layer–muscle–liver biological system. The depen-
dences of the oscillatory displacements within tissues on the dimensions and oscillation frequency of the sur-
face source of vibration are studied, and the possibilities of using such a source for the implementation of the
sonoelastography method are discussed. © 2002 MAIK “Nauka/Interperiodica”.
A technique for the ultrasonic visualization of the
shear viscoelastic characteristics of soft biological tis-
sues (the so-called sonoelastography method) has been
actively developed in recent years [1–3]. This technique
is believed to be promising for medical diagnostics of
various kinds of tissue pathology. The technique is
based on remote measurements by a Doppler ultrasonic
gauge of the oscillatory displacements (velocities) pro-
duced by a low-frequency shear wave within tissues.
Shear waves excited in various ways are used in differ-
ent studies. These can be natural pulsations excited in
tissues by the heart and vessel movements, forced
vibrations produced by a source at the tissue surface,
and even shear waves generated as a result of nonlinear
effects that accompany the propagation of a focused
ultrasonic beam in tissues. Although many experimen-
tal studies based on the excitation of shear waves in
sample and phantom tissues from their surfaces had
been conducted, no adequate theoretical description of
the process of vibration penetration into the depth of
real biological objects was proposed. The purpose of
this paper is to introduce acoustic models of this pro-
cess and to study the laws governing the vibration exci-
tation in tissues by a surface source with the help of
these models.

The models of low-frequency acoustic processes in
tissues that are now known [4–15] are based on the
approaches developed in the dynamic theory of elastic-
ity and seismology [16–21]. A theoretical analysis of
shear displacements within the tissue samples of finite
dimensions is conducted in [4] for the case of excitation
of vibration modes in them. Tissues are simulated by a
viscoelastic medium with inclusions corresponding to
tumors. The changes of the amplitude of surface dis-
placements in tissues with the distance from the source
of vibration are analyzed in [5, 6] on the basis of the
solution of a dynamic contact problem on the interac-
1063-7710/02/4801- $22.00 © 20087
tion of a surface source with a halfspace. Several stud-
ies [7–9] describe the experimental frequency depen-
dences of the mechanical impedance of a gelatin layer
and various soft tissues on the basis of a strictly stated
dynamic contact problem on the interaction of a circu-
lar flat piston with tissues, which leads to integral equa-
tions. In these studies, a soft tissue is considered as a set
of linked layers on a hard base (from one to three lay-
ers). In [10–12], a soft tissue is treated as a homoge-
neous layer linked to a hard halfspace simulating a
bone, and an approximate formulation of a dynamic
contact problem that is common to solving the Lamb
problem is used [16]. Experimental frequency depen-
dences [22] of the propagation velocity and the damp-
ing factor of waves at the surface of a human hand are
described in the framework of this model [10], and the
frequency dependences of surface displacements at var-
ious distances from a vibrating piston are calculated
theoretically [11], as well as the frequency depen-
dences of the mechanical impedance of a piston,
including different thicknesses of the soft tissue layer
[12]. The models of soft tissues in the form of several
linked layers (from one to three) linked with a hard base
are developed within the framework of the approach
using an approximate formulation of the dynamic con-
tact problem [13–15]. The experimental frequency
dependences of the mechanical impedance of a gelatin
layer and soft tissues of a human arm, which were
obtained using pistons of different diameters, are
described within the framework of these models. In this
paper, the models of this class (for brevity, we will call
them the PSV-models, where PSV means pressure
source of vibrations) are suggested for the calculation
of the displacement field produced within tissues by a
circular source of oscillatory pressure positioned at the
surface. A three-layer halfspace with linked or slipping
layers is taken as the model of soft tissues.
002 MAIK “Nauka/Interperiodica”
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We obtain expressions for the nonzero components
of the displacement vector in the ith layer of a medium
in an axisymmetric case (see Fig. 1) analogously to the
solution of the Lamb problem for a homogeneous half-
space [13, 16]. Specifically, in the general equations of
the dynamic elasticity theory [17], we change to scalar
and vector potentials and then proceed to the equations
for the Hankel transforms of elastic potentials. We write
down a general solution for the last equations, express
the Hankel transforms for the displacement compo-
nents through the potentials, and apply the inverse Han-
kel transformation. Finally, we obtain the following
expressions:

(1)

where

(2)

Here, the upper indices correspond to the order of the
Hankel transformation; k is the parameter of the Hankel
transformation; J0 and J1 are the Bessel functions of the

zeroth and first orders; and the parameters κti = 
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Fig. 1. Diagram of the vibration excitation in a three-layer
halfspace.
where cti =  and cli =  are the
velocities of shear and longitudinal waves that are
determined by the tissue density ρi and the Lame con-
stants µi and λi . The unknown functions A1i , A2i , B1i ,
and B2i used for expressing the general solution must be
determined from the boundary conditions for the dis-
placements and stresses at all external and internal
boundaries of the layers. Expressions for the stress
transforms in the medium are obtained from the expres-
sions for the displacement transforms [Eqs. (2)] taking
into account the definition of strains and the Hooke law:

Here, the upper indices 0 and 1 marking the quantities
szz and srz also correspond to the order of the Hankel
transformation.

At the external boundary of the halfspace z = –H1,
we adopt the following boundary conditions for the
stress transforms:

which correspond to a uniform distribution of the pres-
sure p in the region r ≤ a (see Fig. 1) and to the absence
of shear stress at the whole surface. At the boundaries
between the layers z1 = 0 and z2 = H2, we adopt the con-
ditions of total linking

or the conditions of continuity of the normal compo-
nents of stress and displacements in the case of free
slipping of the layers in the tangential direction

For the third infinite layer, we adopt the condition of the
finiteness of solutions, which is reduced to the condi-
tions

µi/ρi λ i 2µi+( )/ρi

szz i,
0 k z,( ) = 2µik

2κ tie
κ lizA1i k( )– 2µik

2κ tie
κ tiz–

A2i k( )+

+ µi k2 κ ti
2+( )e

κ lizB1i k( ) µi k2 κ ti
2+( )e

κ liz–
B2i k( ),+

srz i,
1 k z,( ) µik k2 κ ti

2+( )e
κ tizA1i k( ) µik k2 κ ti

2+( )+=

× e
κ tiz–

A2i k( ) 2µikκ lie
κ lizB1i k( )– 2µikκ lie

κ liz–
B2i k( ).+

szz 1,
0

k H1–,( ) pa
k

------J1 ka( ),–=

srz 1,
1 k H1–,( ) 0,=

szz i, k zi,( ) szz i 1+, k zi,( ),=

srz i, k zi,( ) srz i 1+, k zi,( ),=

Wz i, k zi,( ) Wz i 1+, k zi,( ),=

Wr i, k zi,( ) Wr i 1+, k zi,( ),=

szz i, k zi,( ) szz i 1+, k zi,( ),=

srz i, k zi,( ) srz i 1+, k zi,( ) 0,= =

Wz i, k zi,( ) Wz i 1+, k zi,( ).=

A13 k( ) B13 k( ) 0.= =
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Below, we give a set of boundary conditions that corre-
sponds to the model of tissues with linked layers:

(3)

Only the fourth, sixth, eighth, and tenth equations are
changed in the set of equations corresponding to the
model of tissues with slipping layers in comparison
with Eqs. (3). The sixth and tenth equations (for the dis-

–2µ1k2κ t1A11e
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κ t1H1+

+ µ1 k2 κ t1
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2+( )B21e
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=  –
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placement components Ur at the boundaries z = 0 and
z = H2) vanish, and the fourth and eighth ones (for the
components of shear stress at the boundaries z = 0 and
z = H2) split into two equations each:

(4)

We take into account the viscoelastic properties of
tissues in the models by the assumption that the shear
moduli are complex µi = µi0 + jωηi , where µi0 is the
static shear modulus and ηi is the shear viscosity. We do
not take into account the viscoelastic properties of tis-
sues in the case of bulk deformation, which is assumed
quite often in considering wave processes in soft bio-
logical tissues at frequencies lower than 20 kHz [6].

To make the models adequate to the skin-fat layer–
muscle–liver system, we take the following numerical
values of parameters: H1 = 5 mm, H2 = 10 mm, µ10 =
1 kPa, µ20 = 4 kPa, µ30 = 1.7 kPa, η1 = 6 Pa s, η2 = 3 Pa s,
η3 = 2 Pa s, cl1 = 1450 m/s, cl2 = 1570 m/s, cl3 = 1574 m/s,
ρ1 = 930 kg/m3, ρ2 = 1040 kg/m3, and ρ3 = 1080 kg/m3.
The values of the tissue densities and sound velocities
are taken from a handbook [23], and the values of the
moduli of shear elasticity and shear viscosity of tis-
sues are estimated using the results of our experiments
[13, 24]. The size of the source and the frequency of its
vibrations are set within the range of the values easily
realized in practice: a = 25 mm and f = 20 Hz. We take
the amplitude of vibrations p = 1 kPa, which approxi-
mately corresponds to 1% isothermal changes of the
volume of a closed air chamber with the initial pressure
1 atm and which also can be easily realized.

We compute the displacements in tissues directly by
Eqs. (1) and (2), where the unknown functions A1i, A2i,
B1i, and B2i are determined from the sets of equations (3)
and (4), by using the MathCAD software package. The
upper limits of integration in Eqs. (1) (which are differ-
ent at different points of the medium) are selected on
the basis of the preliminary study of the behavior of the
integrands. Selecting the points of the medium for the
calculations, we provide them to be at a certain distance
from the layer boundaries, because, at the boundaries
and near them, the integrands in Eqs. (1) become
undamped and their integrals diverge.

Further, we consider the laws governing the penetra-
tion of low-frequency vibrations into layered biological
tissues within the framework of the PSV-models intro-

µ1k k2 κ t1
2+( )A11 µ1k k2 κ t1
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– 2µ1kκ l1B11 2µ1kκ l1B21+ 0,=

µ– 2k k2 κ t2
2+( )A12 µ2k k2 κ t2
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A23 2µ3kκ l3e

κ l3H2–
B23– 0.=
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Fig. 2. Displacement distribution Uz(r, z) under a vibration source in (a) a homogeneous halfspace, (b) a three-layer halfspace with
linked layers, and (c) a three-layer halfspace with slipping layers. The step between the level curves is 0.05 mm.
duced above. First of all, let us clear up the possibilities
of the generation of rather large displacements within
tissues by a surface source and also estimate the distor-
tions in the structure of the displacement field for the
models with linked and slipping layers by using the
parameters given above in comparison with a homoge-
neous halfspace with the properties of the third layer. The
calculations are conducted in the region r ≤ 160 mm and
z ≤ 160 mm at a step of 2 mm in both r and z. The cal-
culated displacements Uz(r, z) and Ur(r, z) are given in
Figs. 2 and 3. One can see that, if we preset the oscilla-
tory pressure with the amplitude 1 kPa at the tissue sur-
face, the amplitude of oscillatory displacements
remains at a level higher than 0.1 mm to the depths
greater than 100 mm. The best visualization conditions
in the sonoelastography method can be expected when
the amplitudes of oscillatory displacements are compa-
rable with the ultrasonic wavelength. Since the wave-
lengths of the order of 0.3–0.6 mm are used in modern
Doppler gauges, the amplitude of oscillatory displace-
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Fig. 3. Displacement distribution Ur(r, z) under a vibration source. Notations are the same as in Fig. 2.
ments remains sufficient for utilization in the sonoelas-
tography method to the depths greater than 150 mm. As
for the distortions of the displacement field by surface
layers, they are limited by the depth of 2–3 cm, as one
can see from Figs. 2 and 3. The field in the halfspace at
a large depth does not change significantly in the case
of the appearance of surface layers with the adopted
properties.

By the way, we can make some observations that are
of interest for the sonoelastography method from the
AL PHYSICS      Vol. 48      No. 1      2002
results of calculations. First, it seems remarkable that,
in the first layer, near its boundary with the second
layer, the model predicts the formation of the field inho-
mogeneities, which are very sharp in character in the
case of layer linking and more smooth in the case of
layer slipping. In the visualization, these inhomogene-
ities may be interpreted erroneously as medium inho-
mogeneities, although they arise close to the boundary
that is homogeneous along the coordinate r. It is also of
interest that the boundary of the second layer with the
halfspace turned out to be indistinguishable in the dis-
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placement component Uz(r, z) in both cases of layer
linking and slipping, whereas it is clearly visible in the
displacement component Ur(r, z) in the case of the layer
slipping (the inhomogeneous structure of the field in r
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Fig. 4. Dependences of the displacement components (1) Uz
and (2) Ur on the source radius a at the point r = 100 mm,
z = 160 mm. Calculation for the model with linked layers.

Fig. 5. Dependences of displacement components (a) Uz
and (b) Ur on the depth z at the distance from the axis r =
100 mm for different frequencies of pressure oscillations:
(1) 20, (2) 30, and (3) 40 Hz. Calculation for the model with
linked layers.
near the boundary is also formed in this). This effect
may mean that it is necessary to vary the direction of
ultrasonic observation to visualize some tissue inhomo-
geneities by the sonoelastography method.

Now, let us refine the dependences of the displace-
ment values within tissues on the parameters of the sur-
face source of vibrations. Figure 4 presents the calcu-
lated dependences of the displacement amplitudes Uz
and Ur at the point r = 100 mm, z = 160 mm on the
source radius a. One can see that these dependences are
quite strong within the considered range of source
dimensions: Ur ~ a1.85 and Uz ~ a1.81. Figure 5 presents
the calculated dependences Uz(z) and Ur(z) at the dis-
tance 100 mm from the axis at various frequencies of
vibrations. On can see that the frequency dependence of
the depth of vibration penetration in tissues is very
strong. A more detailed analysis of this dependence
within the frequency range 20–60 Hz at the point r =
100 mm, z = 100 mm gives the following results: Ur ~
f –4.79 and Uz ~ f –5.79.

From the results of the last calculations, it is possi-
ble to notice the interesting effect of the rise of non-
monotonic dependences of displacements on depth as
the frequency increases. This effect, as well as the for-
mation of field inhomogeneities along a homogeneous
boundary, can lead to erroneous interpretation of the
results of visualization of the displacement amplitudes.

Thus, in the framework of the PSV-models, it is pos-
sible to calculate easily and sufficiently quickly the
fields of displacements in layered biological tissues
when setting oscillatory pressures at their surfaces. The
described calculations demonstrate that it is quite pos-
sible to obtain within tissues the displacement values
that are sufficient for utilization in sonoelastography by
using a surface source, and to increase the efficiency of
such an excitation, it is necessary to use the maximal
dimensions of the source and the minimal frequencies.
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Abstract—Integral relations that generalize the Helmholtz integral for an inhomogeneous medium with arbi-
trary gradients of its density and the sound velocity in it are obtained. Expressions that determine the Helmholtz
integral for problems related to the diffraction and radiation of sound in an inhomogeneous medium are derived.
It is shown that, in the case of an inhomogeneous medium, an additional factor depending on the density dis-
tribution in the medium appears in the integrand. © 2001 MAIK “Nauka/Interperiodica”.
† The Helmholtz integral is one of the basic means of
the sound field calculations in theoretical and computa-
tional acoustics. It forms the basis of an important
direction of research concerned with the application of
integral equations in solving the radiation and diffrac-
tion problems for sound waves—the boundary element
method (BEM). This method is much studied in the lit-
erature: hundreds and maybe even thousands of publi-
cations are devoted to it. A great number of modifica-
tions of this method have been developed, most of them
being concerned with overcoming the problems related
to the appearance of uncertainties in the case of bodies
with wave dimensions corresponding to the eigenvalues
of the integral equation. Some other methods well
known in acoustics (e.g., the T-matrix method or the
method of auxiliary sources) are also based on the use
of the Helmholtz integral. The description of the new
methods involving the application of the Helmholtz
integral is given in the book [1]. Comprehensive
reviews on these issues and examples of the applica-
tions of the Helmholtz integral can be found in the lit-
erature [2–9]. The Kirchhoff approximation, which is
based on the simplification of the Helmholtz integral
for bodies with large wave dimensions (see, e.g., [10]),
is also widely used in acoustics.

In most publications dealing with the Helmholtz inte-
gral, the integrand contains the Green function for free

space, i.e., exp(ik|r1 – r2|)/(4π|r1 – r2|) or i (ik|r1 –
r2|)/4 for the 3D and 2D cases, respectively. Here and
below, the time dependence is represented in the form
exp(–iωt). However, in some cases (see, e.g., [11, 12]),
it is advantageous to take this function not as a field of
a source in free space, but as a field of a source in the
presence of some surface, which makes it possible to
immediately satisfy the boundary conditions at this sur-

† Deceased.

H0
1( )
1063-7710/02/4801- $22.00 © 20094
face. The derivation of such an integral relation for a
diffraction problem is described in the previous paper
[11] (in the Appendix). For the corresponding integral
relation with an arbitrary Green function in the inte-
grand, which virtually generalizes the Helmholtz inte-
gral, we will also use the term Helmholtz integral for
brevity.

In all publications available to us, the Helmholtz
integral is applied to either a homogeneous medium or
an inhomogeneous medium, in which the field is
described by an approximate Helmholtz differential
equation

(1)

where Q is the strength of a point source located at a
point r0, ρ(r0) is the density of the medium at the source
site, and δ is the delta-function. It is assumed that, in
such a medium, the inhomogeneity is caused by the
varying sound velocity, and the variations of the density
of the medium affect the sound field only as a result of
the sound velocity variations that follow the changes in
the medium density. For this kind of a medium, the
Helmholtz integral does not differ from the conven-
tional Helmholtz integral for a homogeneous medium.
This approach can be applied to a medium with a weak
inhomogeneity, but its applicability in the case of a
strongly inhomogeneous medium is questionable.
Despite the large number of publications devoted to the
use of the Helmholtz integral in acoustics, we could not
find any derivation of the corresponding relations for an
arbitrary inhomogeneous medium, i.e., when the sound
pressure cannot be described by Eq. (1).

In an arbitrary inhomogeneous medium, the sound
field in the absence of sources is described by a homo-
geneous differential equation presented in the mono-
graph [13] and involving an additional term depending
on the variation of the medium density. Below, this

∆p r( ) k2 r( )p r( )+ δ r0 r–( ) iωρ r0( )Q–[ ] ,–=
002 MAIK “Nauka/Interperiodica”
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equation is written with another additional term on the
right-hand side to allow for the presence of a point
source at the point r0:

(2)

Here and below, for the quantities depending on two
arguments, we assume that the first argument indicates
the point where the source is located and the second
argument corresponds to the point of observation. The
subscript r near the differential operators means that the
differentiation is performed with respect to the coordi-
nates of the point r.

In the cited monograph [13], it was noted that
neglect of the third term on the left-hand side of Eq. (2)
can lead to large errors, and a substitution of an auxil-
iary function for the sound pressure is proposed to elim-
inate this term. The auxiliary function has the form

(3)

Using this approach and performing some transforma-
tions, we represent Eq. (2) in the form

(4)

where

(5)

Below, we reproduce the known derivation of the
Helmholtz integral in application to Eq. (4) for the
function ψ and then return to the sound pressure.

Let us first consider the diffraction problem. Sup-
pose it is necessary to determine the sound pressure that
occurs at a point r1 as a result of the sound radiation by
a point source located at a point r0 in the presence of a
surface S (Fig. 1a). We place an auxiliary point source
of strength Q at the observation point r1. The field gen-
erated by this source pG(r1, r) satisfies an equation that
has the form of Eq. (2) with r0 replaced by r1:

(6)

Applying the substitution

(7)

∆r p r0 r,( ) k2 r( )p r0 r,( )+

–
1
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-----------gradrρ r( )gradr p r0 r,( )
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-------------------.=

∆rψ r0 r,( ) K2 r( )ψ r0 r,( )+

=  –δ r0 r–( ) iω
ρ r0( )
ρ r( )
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3
4
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gradrρ r( )
ρ r( )
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 
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.–+=

∆r pG r1 r,( ) k2 r( )pG r1 r,( )+
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1

ρ r( )
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=  δ r1 r–( ) iωρ r1( )Q–[ ] .–
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pG r1 r,( )
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we represent Eq. (6) in the form

(8)

We multiply Eq. (4) by ψG(r1, r) and Eq. (8) by
ψ(r0, r). Then, we subtract the second of the resulting
equations from the first one and integrate the relation
obtained in this way over the volume V enclosed
between the surface S and a large-radius sphere S∞, the
integration being performed with respect to the coordi-
nates of the point r. As a result, we obtain the equation

(9)

The volume integral that appears on the left-hand side
can be transformed by the second Green formula to
integrals over the surfaces S and S∞ bounding the vol-
ume V. According to the radiation principle, the integral
over the surface S∞ tends to zero with increasing radius
of the sphere, and, hence, only the integral over the sur-
face S remains. The integrals that appear on the right-
hand side are calculated using the properties of the
delta-function. As a result, we obtain

(10)

Returning to sound pressures with the use of Eqs. (3)
and (7), we obtain

(11)

This expression is an analog of the conventional
Helmholtz integral and differs from it by the presence
of the factor 1/ρ(r) in the integrand. The auxiliary func-
tion pG is an analog of the Green function, which is
indicated by the subscript G. The difference between
the function pG and the conventional Green function
lies in the normalization determined by the factors
appearing on the right-hand side of Eq. (6). However, if
we set the coefficient multiplying the delta-function on
the right-hand side of Eq. (8) to be equal to unity, the

∆rψG r1 r,( ) K2 r( )ψG r1 r,( )+

=  –δ r1 r–( ) iω
ρ r1( )
ρ r( )

---------------Q– .

∆rψ r0 r,( )ψG r1 r,( ) ψ r0 r,( )∆rψG r1 r,( )–[ ] Vrd∫
V

∫∫

=  –
iωρ r0( )Q–

ρ r( )
---------------------------δ r0 r–( )ψG r1 r,( ) Vrd∫

V

∫∫

+
iωρ r1( )Q–

ρ r( )
---------------------------δ r1 r–( )ψG r0 r,( ) Vr.d∫

V

∫∫

ψ r0 r1,( )
ρ r0( )
ρ r1( )
-------------ψG r1 r0,( ) 1

iω ρ r1( )Q–
-------------------------------+=

× ψ r0 r,( )
∂ψG r1 r,( )

∂nr

-------------------------- ψG r1 r,( )
∂ψ r0 r,( )

∂nr

-----------------------– Sr.d

S

∫∫

p r0 r1,( ) pG r1 r0,( ) 1
iωQ–

--------------+=

× 1
ρ r( )
----------- p r0 r,( )

∂ pG r1 r,( )
∂nr

------------------------ pG r0 r,( )
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∂nr
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Fig. 1. Positions of the surface and the radiation and reception points; r1 is the point of observation and r is the auxiliary point with
respect to which the integration is performed. (a) The problem on the diffraction of sound; a point source is located at the point r0.
(b) The problem on the sound radiation by a surface S.
corresponding Green function will not satisfy the reci-
procity principle in the inhomogeneous medium, and
the introduction of additional factors depending on the
ratio between the densities at the radiation and recep-
tion points will be necessary.

According to Eq. (8), the sound pressure amplitude
pG is proportional to the density of the medium at the
point r1. Hence, the integrand in Eq. (11) is virtually
proportional to the ratio between the densities of the
medium at the points r1 and r. If we apply the corre-
sponding normalization to the right-hand side of Eq. (8),
we can eliminate the factor 1/ρ(r) from the integrand,
but, in this case, the function pG will no longer describe
the sound pressure. Therefore, the use of the auxiliary
function pG describing the sound pressure produced by
the auxiliary source, which has the same strength as the
real source and is located at the observation point r1,
leads to a more illustrative and physically justified field
representation than the use of an equation of the type of
Eq. (8) with a dimensionless right-hand side or with the
introduction of the aforementioned normalization.

We note that the introduction of an auxiliary point
source located at the observation point was used earlier
in [14] in the derivation of the reciprocity theorem for
elastic bodies. This derivation also used the representa-
tion in the form of a field of a real source of a given
strength.

Equation (11) is valid for an arbitrary distribution of
density in the medium and, in particular, for a piecewise
continuous distribution. Therefore, it can also be used
for a body lying at the boundary between two homoge-
neous media with different parameters.

The boundary conditions at the surface S are taken
into account by the corresponding ratios of the sound
pressure p(r0, r) and its normal derivative ∂p(r0, r)/∂nr
at this surface. In this case, the function pG must not sat-
isfy any preset boundary conditions. For example, this
function can be chosen to have the form of the solution
for a free space in an inhomogeneous medium. In addi-
tion, for the problems related to the determination of
the fields resulting from the sound diffraction by a body
located near an elastic or impedance boundary, it is
convenient to choose the function pG in the form of the
field of a source in the presence of such a boundary.
This allows one to immediately satisfy the boundary
conditions at this boundary and to integrate only over
the surface S of the body. A similar approach was used
for a homogeneous medium in [11, 12].

Assuming that the observation point r1 tends to the
body surface and taking into account the impedance or
elastic properties of the surface by setting the afore-
mentioned ratio of the sound pressure p(r0, r) and its
normal derivative ∂p(r0, r)/∂nr , we obtain an integral
equation for the sound pressure p(r0, r).

In a similar way, one can obtain the solution to the
problem on the sound radiation by a surface S in an
inhomogeneous medium. In this case, it is necessary to
determine the field of the sound radiation by the surface
at a given distribution of the sound pressure over the
surface or a given distribution of its normal derivative
proportional to the particle velocity of the surface
(Fig. 1b). The sound pressure in the medium satisfies an
equation that has the form of Eq. (2) with the right-hand
side equal to zero and without the dependence on r0:

(12)

Applying the substitution

(13)

this equation is recast to the form

(14)

∆r p r( ) k2 r( )p r( )+

–
1

ρ r( )
-----------gradrρ r( )gradr p r( ) 0.=

ψ r( ) p r( )
ρ r( )

---------------,=

∆rψ r( ) K2 r( )ψ r( )+ 0,=
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where K2(r) is determined by Eq. (5). The following
transformations do not differ from those performed
above for the diffraction problem. We place an auxil-
iary source at the observation point r1, the field of this
source being described by Eqs. (6)–(8). We multiply
Eq. (14) by ψG(r1, r) and Eq. (8) by ψ(r0, r). Then, we
subtract the second of the resulting equations from the
first one and perform the integration with respect to the
coordinates of the point r over the volume V enclosed
between the surface S and a large-radius sphere S∞.
Returning from the functions ψ to the sound pressures
and performing some transformations, we finally
obtain

(15)

This expression can be considered as the Helmholtz
integral for an inhomogeneous medium, as applied to
the problem of sound radiation by a surface.
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Abstract—A statistical analysis of the noise immunity of a combined receiver is performed for the observation of
a fluctuating tone signal against the background of underwater dynamic noise. The analysis is based on the exper-
imental data obtained in deep ocean with the use of two four-component combined hydroacoustic receivers posi-
tioned at depths of 150 and 300 m. Theoretical expressions are obtained for the signal-to-noise ratio of a combined
receiver, for reciprocal spectral levels of the signal and noise in both narrow and wide frequency bands. The defi-
nition of the combined receiver gain is introduced in terms of the functions of a common single-point coherence
for the acoustic pressure and the particle velocity in an acoustic wave. According to the experimental data
obtained, in the case of multiplicative processing, the maximal gain in the signal-to-noise ratio of a combined
receiver, as compared to a hydrophone-based square-law detector, can reach 15–16 dB for the horizontal channel
and 30 dB for the vertical channel of the combined receiver in the case of the compensation of opposing flows of
the signal and noise energy. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The basis of a device measuring the acoustic intensity
is a combined receiver. It includes a pressure detector (a
scalar receiver) and a three-component pickup for the
particle velocity or acceleration (a vector receiver). The
development of more advanced combined receivers and
combined arrays still remains topical [5–8].

The problem of the noise immunity of a single com-
bined receiver is much studied. However, in the major-
ity of theoretical studies, the noise immunity of a com-
bined receiver was treated on the basis of the directional
features of the dipole characteristics of individual chan-
nels of a vector receiver in the case of additive or mul-
tiplicative processing of acoustic data [1, 4]. A consid-
erable number of studies are based on the methods of
mathematical simulation (see, e.g., [15, 16]). The prob-
lem of evaluating the noise immunity of a combined
receiver on the basis of an experiment conducted in an
actual noise field is now especially important. This
paper discusses multiplicative processing for a four-
component combined receiver. In the theoretical part of
this study, an expression for the signal-to-noise ratio is
obtained and the combined receiver gain is introduced
for both narrow and broad frequency bands in the case
of multiplicative processing. On the basis of the exper-
imental data, the noise immunity of a combined
receiver was analyzed for a narrow frequency band in
the presence of the dynamic noise of a deep ocean. The
experimental studies discussed in this paper were con-
ducted at the depths 150 and 300 m lying above the axis
of an underwater sound channel, which occurred at a
depth of 1200 m. The spectral intensity characteristics
of underwater ambient noise differ significantly for
1063-7710/02/4801- $22.00 © 20098
these depths, which was confirmed by multiple mea-
surements [9]. This paper presents the analysis of the
noise immunity of a combined receiver in noise fields
with various degrees of isotropy (diffuseness), depend-
ing on the averaging time. The noise immunity of a
combined receiver in an anisotropic (coherent) noise
field is considered for the case of compensation. Thus,
the paper is devoted to the interpretation of specific
experimental results on the basis of a simple mathemat-
ical model in the spectral domain, as is usually done in
the case of hydrophone arrays (see, e.g., [10]). Such an
approach has never before been used for the case of the
measurement of the intensity vector. We assume that
both signal and noise are statistically independent
Gaussian processes with zero mean values.

DIRECTIVITY PATTERN
OF A COMBINED RECEIVER

Transducers used in vector receivers are positioned
at the x, y, and z orthogonal axes of the Cartesian coor-
dinate system and have the following spatial directivity
patterns in a spherical coordinate system:

(1)

where ϕ is the azimuth angle counted off from the x
axis and θ is the polar angle counted off from the z axis.

The directivity pattern of a three-component vector
receiver is a sphere

(2)

Thus, a four-component combined receiver includ-
ing a pressure detector and a three-component vector

Rx θ ϕ, Rycossin θ ϕ, Rzsinsin θ,cos= = =

Rx
2 Ry

2 Rz
2+ + 1.=
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receiver has a spherical directivity pattern, i.e., its
response does not depend on the angles ϕ and θ [9].
A combined receiver can be treated as a point receiving
system as long as its geometrical dimensions do not
exceed a half-wavelength at the upper frequency of the
operation frequency range. The spatial directivity pat-
terns, Eqs. (1), of a vector receiver are identical within
the whole operation frequency range, which can extend
from several hundreds of hertz to 10 kHz [2, 6].

COMBINED RECEIVER GAIN 
IN THE FREQUENCY SPECTRUM

We set the signal-to-noise ratio SNR(PV) of a single
combined receiver in the case of multiplicative process-
ing according to [5, 10, 11]. We assume that both signal
and noise are statistically independent stationary Gaus-
sian processes with zero mean values. Then, we have

(3)

Here, B0 = ∆f0 is the band of frequency analysis, which
satisfies the condition ∆f0 ! f0, where f0 is the fre-
quency of a tone signal; T0 is the averaging time; WP, S,
WV, S, WP, N, and WV, N are the powers of signals and
noise at the inputs of the acoustic pressure p and parti-
cle velocity v  channels; and RP, V and JP, V are the real
and imaginary parts of the normalized cross-correlation
function of noise at the output of the combined receiver.

If PN(t) and VN(t) are centered processes in the p and
v  channels, then

(4)

where 〈…〉  is the sign of averaging and * is the notation
for a complex-conjugate quantity.

In Eq. (3), we divide the signal and noise powers by
the analysis band. We obtain WP, S/∆ f0, WV, S/∆ f0,
WP, N/∆ f0, and WV, N/∆ f0. Proceeding from [12], we
determine the following spectral densities at ∆f0  0
and T0  ∞: WP, S/∆f0  ; WV, S/∆f0  ;

WP, N/∆ f0  ; and WV, N/∆ f0  . In this

case, RP, V  cosϕN and JP, V  sinϕN, where ϕN is
the mean value of the phase difference between the
acoustic pressure P(t) and the particle velocity V(t) in
the noise at the frequency f0. Using the above relations
and the theorem on spectra, we reduce Eq. (3) to the
form

(5)

SNR PV( )
B0T0

2
------------

2WP S, WV S,

WP N, WV N, 1 RP V,
2 JP V,

2–+( )
-------------------------------------------------------------------.=

WP N, PN t( ) 2〈 〉 ; WV N, V N t( ) 2〈 〉 ;= =

RP V, Re PN t( )V N* t( )〈 〉 / WP N, WV N, ,=

JP V, Im PN t( )V N* t( )〈 〉 / WP N, WV N, ,=

S
P

2
S,

S
V

2
S,

S
P

2
N,

S
V

2
N,

SNR PV( )
B0T0

2
------------

SP S, f 0( )SV S, f 0( ) ϕScos
SP N, f 0( )SV N, f 0( ) ϕNcos
----------------------------------------------------------.=
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Since we assumed the signal to be a random func-
tion, we have introduced cos ϕS in Eq. (5) (ϕS is the
mean value of the phase difference between PS(t)
and VS(t) for a signal at the frequency f0). The
expressions SP, S( f0)SV, S( f0)cos ϕS = SPV, S( f0) and
SP, N( f0)SV, N( f0)cosϕN = SPV, N( f0) are in essence the
real parts of the cross spectra of signal and noise at the
frequency f0, which are normalized to the frequency
band B0 = 1 Hz.

Let us write Eq. (5) in a logarithmic form:

(6)

Proceeding from Eq. (3), we obtain the signal-to-
noise ratio for a single hydrophone (a square-law
detector),

(7)

where (f0) and (f0) are the spectral densities

of the potential energy of signal and noise, which are
normalized to the frequency band B0 = 1 Hz at the fre-
quency f0.

The noise immunity of a combined receiver relative
to a square-law detector is

(8)

Equations (6) and (8) are convenient to study the
noise immunity of a combined receiver in the spectral
domain in a narrow frequency band.

Let us replace the cross-spectral densities SPV, S(f0)
and SPV, N( f0) by the coherent powers of the signal and

noise [12]: SPV, S( f0) = (f0) (f0) and SPV, N( f0) =

( f0) ( f0), where (f0), and ( f0) are

the functions of a common single-point coherence of
signal and noise and (f0) and (f0) are the

spectral power densities of signal and noise. In this
case,

(9)
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The expression 10  in Eq. (9) is SNR(P2) at

the output of the hydrophone of a combined receiver,
and the expression

(10)

is equivalent (according to [10]) to the expression for an
antenna array gain 10  (where N is the number of
elements in the array), and we call this expression (by
analogy with [10]) the combined receiver gain. There-
fore, the combined receiver gain depends on the ratio of
the signal and noise coherence functions for the pres-
sure and particle velocity of an acoustic field and is
determined by the frequency band B0 and the averaging
time T0.

Let us estimate the limiting theoretical value of the
above combined receiver gain. In the case of a totally

coherent signal ( ( f0)  0) and totally isotropic

(diffusion) noise ( ( f0)  1), it tends to infinity.
A real acoustic field of ambient noise is a superposition
of anisotropic (coherent) and isotropic (diffusion) fields,
and, therefore, the coherence function of real ambient

noise ( f ) differs from zero and depends on fre-
quency. It can reach the minimal values 0.01–0.001
[9] in a real dynamic noise of a deep ocean (the 200–
1000 Hz frequency range). Thus, the gain of a single
combined receiver depends on the coherent properties of
the signal and the noise, and in the case of a totally coher-
ent signal and a diffusive noise, it can reach the values
20–30 dB.

The expression obtained for the combined receiver
gain is simple and convenient for statistical analysis of
experimental data in a narrow frequency band.

In the case of a broadband signal, Eqs. (6), (7), and
(10) must be written in the form

(11)
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where f2–f1 is the width of the frequency band occupied
by a broadband signal.

FORMATION OF THE SNR OF A COMBINED 
RECEIVER IN A REAL FIELD OF OCEANIC 

ACOUSTIC NOISE IN A NARROW
FREQUENCY BAND

A fluctuating tone signal with the frequency f0 =
622 Hz was observed. The length of the time series was
1800 s.

The experimental conditions were as follows: the
sea depth was 4000 m; the axis of the underwater sound
channel was at a depth of 1200 m; the underwater wind
velocity was 6–7 m/s; fully developed wind waves and
ripple were present; combined receivers were posi-
tioned at the depths 150 and 300 m. The x and y axes of
the combined receivers were in the horizontal plane,
and the z axis was directed from the surface towards
the bottom. A tone emitter was positioned at a depth
of 100 m and at the distance 4–6 km from the receiving
system. The level of the varying signal in the autospec-
trum during the observation time exceeded the spectral
noise level by the values from 0 to 6 dB (for the com-
bined receiver positioned at the depth 150 m).

The x and y axes are oriented in the oceanic
waveguide in such way that the horizontal component
of the energy flux I+x, N of the anisotropic field of
dynamic noise is directed along the +x axis; the compo-
nent of the signal energy flux I–x, S is directed along the
–x axis; the signal energy flux I–y, S from a local source
is directed along the –y axis; and the field of dynamic
noise at the frequency f0 = 622 Hz is isotropic (diffuse)
along the y axis.

The component of the energy flux of the dynamic
surface noise I+z, N is directed along the +z axis, and the
counter component of the signal energy flux I–z, S is
directed along the –z axis. The research vessel was
drifting during the experiment. At certain moments, the
drifting vessel was located exactly at the y axis of the
combined receiver, and in this case the signal from the
emitter was absent in the channel x of the combined
receiver. A compensation of the energy fluxes I–z, S and
I+z, N was observed in the vertical plane [13–16].

The Combined Receiver Gain in the Presence
of Dynamic Noise with a Prevailing

Isotropic Component

Investigations of the SNR of a combined receiver at
two time series with the duration t = 1800 s correspond-
ing to two measurement depths (150 and 300 m) at the
central frequency f0 = 622 Hz were conducted. The sig-
nal-to-noise ratios were calculated using the corre-
sponding spectral densities according to Eqs. (6) and
(7) for the following quantities: (i) the spectral density
of the potential energy, SNR(P2); (ii) the Y-component
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002
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Fig. 1. Dependences of 〈SNR(P2)〉, 〈SNR( )〉, and 〈SNR(PVy)〉 on the averaging time T0. The measuring depths are (a) 150 and

(b) 300 m. The dashed curve corresponds to the approximation (a + b ), B0 = 1 Hz.

Vy
2

T

of the spectral density of kinetic energy, SNR( ); and
(iii) the Y-component of the spectral density of the
energy flux, SNR(PVy).

Equation (7) was used for the square-law detector of
the scalar pressure detector, SNR(P2).

For the Y-component of the square-law detector of
the particle velocity receiver, we have

(12)

where (f0) and (f0) are the Y-components of

the spectral densities of the kinetic energies of the sig-
nal and the noise, which are normalized to the fre-
quency band 1 Hz at the frequency f0.

For the Y-component of the energy flux density, we
have

(13)

where (f0) and (f0) are the Y-components
of the spectral densities of the energy fluxes of signal
and noise, which are normalized to the frequency band
1 Hz at the frequency f0.

Since Ek = Ek, x + Ek, y + Ek, z, the quantity SNR(V2)
can be calculated for both the total kinetic energy and
its components corresponding to the x, y, and z axes. In

our case, only SNR( ) is calculated. For the vector of
the energy flux density I = i(PVx) + j(PVy) + k(PVz), we
calculate SNR(PVy) and SNR(PVz). The following
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times of the spectrum averaging were used: T0 = 1, 1.4,
2, 5, 15, 30, 45, 60, 64, 75, 90, 100, 110, 150, 192, 200,
250, 300, and 320 s. We selected exponential averaging.
The analysis frequency band was 1 Hz. We also calcu-

lated the average values for 〈SNR(P2)〉, 〈SNR( )〉, and
〈SNR(PVy)〉 for each T0.

The dependences of the quantities 〈SNR(P2)〉 ,
〈SNR( )〉 , and 〈SNR(PVy)〉  averaged over the total
length of the time series 1800 s long starting from the
averaging time T0 are given in Fig. 1. Figure 1a corre-
sponds to the depth 150 m, and Fig. 1b, to the depth
300 m. As follows from Fig. 1, 〈SNR(P2)〉  and

〈SNR( )〉  attain the maximal values at the averaging
time Tk ≈ 5 s and no longer depend on the averaging
time.

Reliable values are 〈SNR(P2)〉  = 2.5 dB and

〈SNR( )〉  = 7.3 dB (the level difference constitutes
3.8 dB) at the depth 150 m, and 〈SNR(P2)〉  = 6.6 dB and

〈SNR( )〉  = 11.2 dB (the level difference 4.6 dB) at
the depth 300 m.

The difference in levels between 〈SNR(P2)〉  and

〈SNR( )〉  is explained by the dipole directivity pattern
of the channels of the particle velocity pickup with a
directivity factor equal to three. Therefore, the gain in

an ideal isotropic noise field for SNR( ) as compared
to SNR(P2) must be 4.8 dB. The deviation from this
value is the evidence of the presence of an anisotropic
component in the field of ambient noise. The devia-
tion value for the depth 150 m is 1 dB and for the
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Fig. 2. Coherence functions of (1) signal (f0) and (2) noise (f0) at the frequency f0 = 622 Hz. The times of spectrum

averaging are (a) 5, (b) 15, and (c) 30 s. The frequency band of analysis is 1 Hz. In the interval 450–510 s, the combined receiver is
switched off (the pause of the radio channel of a telemetering system).
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depth 300 m, 0.2 dB. This means that the noise field
at the depth 300 m is more isotropic in the horizontal
plane than at the depth 150 m. Namely, at the depth
150 m, 21% of the noise energy density is connected
with the anisotropic field and 79%, with the isotropic
field. At the depth 300 m, the values are 5 and 95%,
respectively. The dependence of 〈SNR(PVy)〉  on T0 is
observed also up to a certain T0 = Tk, and then it almost
does not depend on the averaging time. An approximat-

ing function (a + b ) is obtained for 〈SNR(PVy)〉
(Fig. 1). The function has the following parameters:
(i) for the depth 150 m, a = 12.8 and b = 7.7 s–1/2 (the
averaging times, according to which the approximating
function is designed, are T0 = 1.4, 2, 5, 15, 30, 45, 60,
64, 75, 90, 100, 110, and 150 s); (ii) for the depth 300 m,
a = 37.5 and b = 17.5 s–1/2 (the averaging times are T0 =
1.4, 2, 5, 15, 30, 45, and 60 s, respectively).

The experimental points for 〈SNR(PVy)〉  coincide

with the approximating curve (a + b ) up to the aver-
aging times T0 = Tk ≈ 120 s for the depth 150 m and
T0 = Tk ≈ 60 s for the depth 300 m. As it has been men-
tioned above, the averaging time Tk ≈ 5 s is necessary to

T

T

attain the maximal values of 〈SNR(P2)〉  and 〈SNR( )〉 ,
but, as we can see, the time for 〈SNR(PVy)〉  is Tk ≈ 60–
120 s. Thus, to obtain the maxim values of 〈SNR(PVy)〉 ,
an averaging time that is 12–24 times longer is neces-
sary, as compared to that for the maximal value of

〈SNR(P2)〉  or 〈SNR( )〉 . In this case, the gain in the
noise immunity of the combined receiver, as compared
to a square-law detector [according to Eq. (8)], is
SNR(PVy /P2) = 〈SNR(PVy)〉  – 〈SNR(P2)〉  ≈ 15–16 dB
(Fig. 1). As follows from Fig. 1, at T0 ≤ Tk, the exper-
imental results coincide with the approximating curve

a + b .

In the case T0 ≤ Tk, we can write

( f0)/ (f0) = (a + b ). We assume the

spectral density of the signal energy flux to be constant
at the given frequency f0, i.e., ( f0) = const and

( f0) = σN (where σN is the mean-square deviation
of the noise energy flux density in the band 1 Hz at the

frequency f0). Hence, σN ~ const/ . Thus, the mean-
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square deviation of the energy flux of an isotropic field

of dynamic noise decreases as 1/  (B0 = 1 Hz).

Coherent Properties of the Signal
and Noise Energy Fluxes

Let us consider the dependence of the coherent
properties of signal and noise on the averaging time T0
for the measurement depth 150 m. We take the same
time series with the duration t = 1800 s as in the previ-
ous subsection. The averaging times of the spectra are
T0 = 3, 5, 15, 30, 45, 60, 75, 90, 100, 150, 192, 200, 250,
300, and 320 s. Averaging is exponential. We study the
properties of the gain of the combined receiver k =

10 .

Figure 2 shows the signal and noise coherence

functions ( f0) and ( f0) at the frequency f0 =
622 Hz for three averaging times of spectra T0 = 5, 15,
and 30 s, for the whole time series t = 1800 s. It follows
from Fig. 2 that the signal coherence function at the fre-
quency f0 = 622 Hz fluctuates in time, whereas the noise
coherence function is constant (for a specific averaging
time) and decreases in the case of an increase in the
averaging time.

The dependences of the noise coherence function

(f0) and its mean-square deviation σN(f0) on the
averaging time T0 and also the signal coherence func-

tion (f0) and its mean-square deviation σS(f0) are

given in Fig. 3. The noise coherence function (f0)
and σN(f0) (Fig. 3a) and the signal coherence function

(f0) and σS(f0) were calculated at two time inter-
vals of the same time series t1 = 700–800 s (Fig. 3b) and
t2 = 1200–1500 s (Fig. 3c). The coherence of noise
decreases as the averaging time grows (Fig. 3a). In the

case of averaging with T0 = 3 s, (f0) ± σN(f0) =
0.415 ± 0.021, and in the case of averaging with T0 =

320 s, (f0) ± σN(f0) = 0.008 ± 0.003, so that the
level of coherence drops by 17 dB in this case. Simul-
taneously, the mean-square deviation σN(f0) decreases
approximately by 8.5 dB (from 0.021 to 0.003). Thus,
we have the prevailing diffusive component of noise
along the y axis. As the averaging time increases, the
signal coherence (Figs. 3b and 3c) decreases at first, but
then it remains constant for the averaging times up to
320 s. In the case of a weak signal (Fig. 3b), the signal
coherence decreases until the averaging time reaches
the value of 30 s, and its mean-square deviation σS(f0)
decreases as the averaging time grows. In the case of a
more powerful signal (Fig. 3c), the coherence decreases
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until the averaging time becomes 15 s and then remains
constant. The mean-square deviation in this case
decreases until the averaging time becomes equal to 15 s
and then remains constant. The conclusion from Fig. 3
is that, at the averaging times greater than 30 s, the sig-
nal coherence is a constant value but the noise coher-
ence decreases along with its mean-square deviation.

Since the combined receiver gain is

10 , its value must increase depend-

ing on the increase in the averaging time. Figure 4 pre-
sents the curves for the combined receiver gain as a
function of time t for the time series t = 1800 s at dif-
ferent averaging times T0. The gain varies with time
(at T0 = const), since the signal at f0 = 622 Hz fluctu-
ates; however, as T0 grows, its value increases. Fig-
ure 5 shows the dependence of the combined receiver
gain on T0 obtained by averaging over two time inter-
vals: (i) 700–800 s and (ii) 1200–1500 s. In these
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intervals, the excess of the signal over the noise in the
pressure spectra is constant. The signs ∆ and + denote
the experimental points. The solid curves correspond

to the approximating dependences a + b  (at B0 =T
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Fig. 5. Dependence of the gain on the averaging time T0.
The depth of measurement is 150 m. The experimental data
for the time intervals (+) 700–800 and ( ) 1200–1500 s from
Fig. 4. The solid curves (1 and 2) represent the approxi-

mating dependences (a + b ), B0 = 1 Hz.T
1 Hz). It follows from Fig. 5 that the dependence of

 on T0 is analogous to the

dependence 〈SNR(PVy)〉  [Fig. 1a and Eq. (13)].

SNR(PV) of a Combined Receiver in an Anisotropic 
Noise Field in the Case of the Compensation

of the Signal and Noise Energy Fluxes

The vectors of the energy flux densities of signal and
noise in the case of opposing superpositions can pro-
duce a resulting energy flux equal to zero. This phe-
nomenon was observed in multiple experiments in shal-
low and deep seas, and it was called the compensation
of opposing energy fluxes [13–15]. The compensation
phenomenon can be used for the detection of a signal in
noise [9, 16]. It is impossible to observe the compensa-
tion phenomenon with a hydrophone array, and, there-
fore, this technique of signal separation is feasible only
with combined receivers. It is natural that the most
interesting case is the compensation of two opposing
weak energy density fluxes of signal and noise. In our
case, the compensation is realized between the vertical
component of the energy flux of the signal reflected
from the bottom and the opposing vertical flux of
energy of ambient noise that carries the noise energy of
dynamic origin from the ocean surface to the bottom.

10
B0T0

2
------------

γPV S,
2 f 0( )

γPV N,
2 f 0( )

-----------------------log
ACOUSTICAL PHYSICS      Vol. 48      No. 1      2002



NOISE IMMUNITY OF A COMBINED HYDROACOUSTIC RECEIVER 105
140

130

120

110

100

90

80
0 200 400 600 800

Spectral level, dB

Frequency, Hz

S
P

2 f( )

SPVZ
f( )

Fig. 6. Spectral densities (f) and (f) of ambient noise. The dip at the frequency f0 = 622 Hz is the result of the compensation

of opposing energy fluxes of noise and a tone signal. An exponential averaging over 30 s. The depth of measurement is 150 m and
the wind speed is 7 m/s.

S
P

2 SPVz
Let us consider SNR(PVz) for the vertical compo-
nent of the energy flux of a fluctuating tone signal in the
conditions of compensation. Let (f0) be the com-
ponent of the spectral density of the energy flux of
noise that propagates in the direction +z and (f0)
be the component of the spectral density of the energy
flux of the signal propagating in the direction −z. Let us
form SNR(PVz) as follows. The expression (f0) –

(f0) is equal to the resulting flux along the z axis.

Let us divide it by the noise level (f0) so that

(14)

In the ideal limiting case of total compensation, we
have ( (f0))/( (f0))  1; then, SNR(PVz) 

–∞. In the absence of a signal, ( f0) = 0 and
SNR(PVz) = 0. Thus, in the case of compensation of
opposing energy fluxes, we always obtain SNR(PVz) <
0. Let us consider an example of real compensation at
the frequency of the tone signal f0 = 622 Hz. Figure 6
gives the spectral levels  and . The time of spec-

trum averaging is 30 s. Averaging is exponential. The
analysis band is 1.5 Hz. The depth of the dip in the spec-
trum  (Fig. 6) reaches –30 dB, i.e., SNR(PVz) =
–30 dB. Physically, the dip means that, in the frequency
band 1.5 Hz at the frequency f0 = 622 Hz, the resulting
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energy flux through a unit area perpendicular to the z
axis and located at the detection point is 103 times
smaller (i.e., 30 dB smaller) than the energy flux of
ambient noise in the case of the signal absence. Thus,
the dip at the frequency f0 = 622 Hz indicates the pres-
ence of a weak signal in ambient noise, since the value
of the compensated energy flux of noise is also small.

As experiments [13–15] demonstrate, noise-like
broadband signals with the spectra  similar to the

spectra of ambient noise  are also identified in the
case of the compensation. Equation (14) for a broad-
band signal in the frequency range f2–f1 has the form

CONCLUSIONS

Theoretical expressions for SNR(PV) of a single
combined receiver are obtained, and the combined
receiver gain is introduced in the case of multiplicative
processing for narrow and broad frequency bands.

From the statistical processing of experimental data,
it follows that the mean-square deviation of the hori-
zontal component of the energy flux density of dynamic

noise decreases in the case of averaging as 1/  (B0 =
1 Hz) until a certain limiting averaging time is reached
T = Tk. To obtain a reliable estimate of the value of
SNR(PVy), the averaging time Tk must be 12–24 times
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greater than for the reliable estimates of SNR(P2) and

SNR( ) for the potential and kinetic energy densities,
respectively.

An experimental evaluation of SNR(PVy) and
SNR(PVz) is conducted for the observation of a fluctuat-
ing tone signal against the background of underwater
dynamic noise of the deep ocean.

According to the experimental estimates, the maxi-
mal gain in the signal-to-noise ratio achieved for a com-
bined receiver measuring the energy flux density, as
compared to a hydrophone measuring the potential
energy density, is 15–16 dB for a horizontal energy flux
and 30 dB for a vertical energy flux in the case of the
compensation of opposing energy fluxes of the signal
and noise.
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