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Abstract—We discuss possible observational consequences resulting from the propagation of transverse mag-
neto-electron waves in the interstellar medium. We briefly describe a magnetohydrodynamic model for the
cyclotron waves with emphasis on their analogy with hydrodynamic inertial waves. It is shown that the cyclo-
tron waves are heavily damped in the interstellar medium and, therefore, cannot affect the gas dynamics of star-
forming molecular clouds. We developed an analytical model of the helicoidal magneto-electron waves based
on the electromagnetic induction equation for the magnetic flux density driven by the Hall and Ohmic compo-
nents of the electric field generated by flows of thermal electrons. It is established that the helicons can propa-
gate in the interstellar medium without any noticeable attenuation. The presented numerical estimates for the
group velocity of the intercloud helicons suggest that spiral circularly polarized magneto-electron waves of this
type can be responsible for the broadening of molecular lines detected from dark interstellar clouds. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The gasdynamic processes in star-forming molecu-
lar clouds are primarily determined by a strong cou-
pling of the gas–dust interstellar medium (ISM) to
magnetic fields. The electrons, both relativistic and
thermal, are one of the most abundant and mobile
charged components of the ISM, and their small mass
provides the most strong coupling to the intercloud
magnetic fields. Therefore, it is natural to expect that
the collective behavior of electrons may essentially
affect interstellar gas dynamics.

According to the available data on the pulsar disper-
sion measure, the average density of interstellar elec-
trons evaluated throughout the Galactic disc is esti-
mated as ne ≈ 0.03 cm–3 [1]. On the one hand, an exten-
sive analysis of the thermodynamic state of interstellar
medium in our Galaxy reported by Heiles and Kulkarni
[2] implies that the warm diffusive clouds might be the
regions of the most dense accommodation of thermal
electrons where their density can attain a sufficiently
high value ne ≈ 1 cm–3 [3]. On the other hand, highly
ionized HII regions of the warm interstellar medium
occupy only 25% of the Galactic volume [4]. There-
fore, they give a significant contribution to the disper-
sion measure for only a small fraction of pulsars. The
latter observation was made long ago by Manchester
and Taylor [5] and led them to suggest that dispersing
electrons can basically be located in denser interstellar
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1063-7761/01/9304- $21.00 © 20671
clouds highly obscured for the ionizing ultraviolet radi-
ation and soft X-rays. However, if the thermal electrons
reside in the central region of a molecular cloud at some
stage of the star formation, their detection becomes a
highly formidable problem. The progress in searching
for their presence could then be achieved by inspecting
observational consequences caused by highly coherent
electron gasdynamical processes.

This paper discusses two wave processes associated
with collective motions of interstellar electrons in the
presence of a uniform magnetic field. The first process
represents the well-known cyclotron waves originating
from the inertial collective motions of electrons driven
by the Lorentz force. These waves are briefly discussed
in Section 2. Emphasis in this paper is placed on the
second wave process, representing the helicoidal mag-
neto-electron waves inherently related to the Hall drift
of the magnetic flux density by the flows of thermal
electrons. The model of interstellar helicons is devel-
oped in Section 3. For a deeper insight into the physics
of these spiral circularly polarized waves, we confine
our consideration to the idealized model of a gaseous
magnetically supported cloud whose gas dynamics is
dominated by thermal electrons in the regime of strong
coupling between the densities of the electron current
and the magnetic flux threading the cloud; the mobility
of ions and neutral molecules is assumed to be heavily
suppressed. In doing this, we clearly realize that ignor-
ing the dusty component of the intercloud medium and
assuming immobility of ions and neutrals, thereby
eliminating the ambipolar diffusion effect, can be a
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matter of controversy. Nevertheless this does not affect
the interest in the problem of the wave gas dynamics of
interstellar electrons as such. To the best of our knowl-
edge, the problem of the wave transport of magnetic
field by thermal electrons in the interstellar medium has
not been considered in the literature. In Section 4, based
on the electromagnetic induction equation for the trans-
port of the magnetic flux density by the Hall and Ohmic
components of the electric field generated by flows of
thermal electrons, we derive the dispersion relation for
helicons and evaluate their group velocity. We show
that the helicoidal magneto-electron waves can propa-
gate in the interstellar medium without a noticeable
attenuation. This allows us to suggest that the helicons
could be responsible for the observed widths of molec-
ular lines detected from dark interstellar clouds. In Sec-
tion 5, a brief outlook is given of the wave process con-
sidered here and another wave process in dark interstel-
lar clouds affecting the broadening of molecular lines.

2. INTERSTELLAR CYCLOTRON WAVES

The model of intercloud cyclotron waves can be
developed on the basis of hydrodynamical equations
for the collective motions of electrons in a permanent
magnetic field B. Modeling the interstellar electron gas
as a viscous uniformly charged fluid whose flows are
governed by the Lorentz force, we can write

(1)

(2)

where me is the mass of the electron, ne is the electron
density, u is the directed velocity of the electron flow,
and η stands for the dynamical viscosity of the electron
fluid effectively accounting for all the dissipative
effects of elastic collisions of electrons with other
microparticles of the cloud. Viewing the electrons as an
incompressible fluid, we linearize the above equations
around the homogeneous undisturbed state with u0 = 0
and B0 = Bez. As a result, we obtain 1

(3)

Using the plane-wave form for

,

in the first of Eqs. (3), we have

1 It is worth noting that cyclotron waves can be considered as an
analog of inertial waves in the rotating incompressible fluid gov-
erned by the equations [6]

where ν = η/ρ is the kinematic viscosity.
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which implies that the wave is transverse. Inserting the
plane-wave form of δu into equation of motions in (3),
after some algebra we obtain the dispersion relation

(4)

It then follows that the interstellar cyclotron waves
are transverse, circularly polarized, and damped. Their
group velocity is given by

(5)

To describe the effect of cyclotron waves on the
molecular linewidths, we consider the case where k ⊥  B.
Recalling the mean electron density ne = 10–3 cm–3, the
average magnetic field intensity B ~ 10–5 G, and the
average electron temperature Te = 10–200 K in dark
molecular clouds [7] and putting Vc ≈ 0.3–0.5 km/s (the
realm of observed molecular linewidths), we can evaluate
the wavelength of a cyclotron wave as λc ≈ 102–103 cm.
The viscosity coefficient in the interstellar electron
fluid can be evaluated as [8]

The frequency of the elastic collisions of electrons is
typically in the interval νc ~ 10–3–10–1 s–1 [7]. With the
above parameters, the magnitude of the damping coef-
ficient Γc ≈ 103–104 is in strong conflict with the prop-
agation criterion Γc ! 1 following from Eq. (4). The
same can be said about diffusive clouds. Thus, the
cyclotron waves of the Larmor gyration of the electron
flow about the direction of the equilibrium magnetic
field threading the cloud are highly damped. Therefore,
they cannot produce any essential effect on molecular
linewidths detected from interstellar molecular clouds.

3. MAGNETIC FLUX EVOLUTION DUE
TO THE HALL AND OHMIC CONDUCTIVITIES 

OF THERMAL ELECTRONS

The cyclotron waves characterize a high-frequency
branch of the collective oscillatory behavior of elec-
trons in the interstellar magnetoplasma. In this section,
we focus on the low-frequency magneto-electron
waves whose origin is in the transport of the magnetic
flux density by thermal electrons, or in other words, in
the Hall electron conductivity. It should be mentioned
that the magneto-electron waves under consideration
were first discovered in the solid-state plasma physics.
The name helicons [9–11] was coined because of the
spiral character of these circularly polarized waves. By
saying that the helicons represent a low-frequency
branch of electromagnetic excitations in a noncompen-
sated electron-dominated magnetoplasma, we imply
that the frequency of electron oscillations in this wave

ω ωc 1 iΓ c±( ), ωc± eB
mec
---------, Γ c

ηk2

ωcρe

-----------.= = =

Vc
∂ω
∂k
-------

e
mec
---------k B k×[ ]×

k3
---------------------------.±= =

η
nekBTe

νc

----------------- g/cm s.≈
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is less than the cyclotron frequency (see, e.g., [12]).
Waves of a similar nature are observed in planetary
magnetospheres. In particular, the propagation of heli-
cons in the Earth’s ionosphere causes the whistling
audio noise on radio, which is why these waves are
often called whistlers [12, 13]. A similar Hall mecha-
nism of the wave transport of a magnetic flux density by
electrons was recently discussed in [14, 15] in the con-
text of the magnetic field evolution in radio pulsars and
magnetars.

In what follows, we confine our consideration to the
idealized model of the isothermal intercloud medium
whose gas dynamics is dominated by thermal electrons.
The magnetic field is considered to be frozen into the
ions, the mobility of the ions and of the neutral mole-
cules is assumed to be heavily suppressed, and the latter
are therefore regarded as immobilized. This suggests
that the collective behavior of intercloud electrons in
the presence of a permanent magnetic field has some
common features with the behavior of conducting elec-
trons in a metal solid, where the immobility of ions is
taken for granted. Following this line of arguments, we
use of the constitutive equation for the electron conduc-
tivity in the form of the generalized Ohm law

(6)

(7)

where the Ohmic conductivity σC is given by the Drude
formula and σH stands for the Hall conductivity. We let
j(r, t) denote the electron current density that is given by

(8)

in accordance with the Ampére law. Because the mag-
netic flux density satisfies the Maxwell equation for the
Faraday induction,

(9)

inserting Eqs. (6) and (8) in (9) gives

(10)

We note that this model can be considered as an ide-
alized version of the model motivated by Mouschovias
[7] in the context of the magnetic flux redistribution in
cores of the interstellar magnetically supported clouds
with the ions frozen into the magnetic field threading
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the cloud. The first term in the right-hand side of
Eq. (10) is due to the Hall electron conductivity and the
second term describes the Ohmic diffusion of the mag-
netic field. Obviously, the diffusion-free regime of the
magnetic flux transport is realized if

(11)

In this regime, Eq. (10) supplemented by the sole noi-
dality condition for B(r, t) becomes

(12)

which implies that the total magnetic energy

(13)

is conserved:

(14)

It is the major purpose of the remainder of this paper to
show that the interstellar magnetoplasma of molecular
star-forming clouds can transmit low-frequency pertur-
bations in the magnetic flux density by weakly damped
helicoidal circularly polarized waves owing their exist-
ence to the Hall drift of the magnetic field by flows of
thermal electrons.

4. HELICONS IN THE INTERSTELLAR MEDIUM

We consider the evolution of small-amplitude mag-
netic flux density perturbations δB superimposed on
the permanent magnetic field B,

(15)

The corresponding linearization of Eq. (10) leads to

(16)

Inserting

(17)

in the right-hand side of Eq. (16), we obtain

(18)

We let the permanent field B be directed along the
z axis, B = [0, 0, B], and consider a one-dimensional
plane-wave perturbation along the z axis (k = kez) that
does not affect the intensity of the magnetic field in this
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direction, but only along the x an y directions. This
means that the fluctuating magnetic field components
depend only on z and t:

(19)

The Cartesian components of Eq. (18) can be repre-
sented in the equivalent form

(20)

(21)

To see the circularly polarized character of the wave
motions in question, we omit the Ohmic diffusion term
for the moment. The resulting equations (20) and (21)
then become

These are the Cartesian components of the vector equa-
tion

describing the precession of the vector δB about the z
axis with the angular frequency

Wave motions of this type are customarily described in
terms of the right-hand (δB+) and the left-hand (δB–)
circularly polarized wave fields

(22)

Combining the coupled equations (20) and (21) to
obtain one equation for either δB+ or δB–, we arrive at

(23)

Eliminating the time derivative with the help of (22),
we obtain

(24)
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the omegas stand for the cyclotron and the plasma fre-
quencies, and the sigmas for the Ohmic and Hall con-
ductivities. Dispersion relation (24) implies that the
helicon is a transverse circularly polarized and damped
wave in which the densities of the magnetic flux and of
the electron current undergo coherent oscillations in the
plane perpendicular to the direction of propagation. In
the diffusion-free regime, Γh ! 1, we have

(25)

The corresponding group velocity is given by

(26)

Using (25), we can represent this formula in terms of
ω as

(27)

In the electron magnetohydrodynamics [16], the
helicons play the same role as the transverse Alfvén
waves in the single-component magnetohydrodynam-
ics [17]. In both kinds of these magnetohydrodynamic
(MHD) waves, the oscillatory motions of the conduct-
ing fluid are strongly coupled to the magnetic field fluc-
tuations. The essential kinematic difference between
them is that the group velocity of a helicoidal magneto-
electron wave depends on the frequency, whereas the
Alfvén wave is characterized by the dispersion-free
propagation law

We now briefly discuss inferences that could be
made from the propagation of helicoidal magnetoelec-
tron waves in the interstellar medium. As mentioned
above, the average density of electrons evaluated in the
Galactic disc is estimated to be ne ≈ 0.03 cm–3 and B ≈
10–5–10–6 G [1]. With these parameters, we find that the
cyclotron frequency ωc (which sets the upper frequency
limit for the dissipation-free propagation of helicons)
falls into the interval 10 < ωc < 100 s–1. Taking ω ≈ 1 s–1

as a representative example, which is typical of pulsar
activity, we can estimate the velocity of interstellar hel-
icons as Vh ≈ 107–108 cm/s; the corresponding wave-
length is λh = 2π/k ≈ 1000 km. Because the frequency
of elastic collisions is of the order 10–3 s–1 or less, it
seems plausible that the helicons can freely travel in the
interstellar space and give a contribution to the
observed effect of scintillations of the pulsar signals.
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The evidence for the existence of large-scale
motions in dark star-forming molecular clouds is pro-
vided by the widths of molecular lines. Therefore,
searching adequate models of interstellar gas dynamics
is one of the important parts in the current investiga-
tions of the ISM physics. By inspecting a possible
effect of helicons on the widths of molecular lines, we
note that in a typical dark molecular cloud, ωc ≈
102 s–1 and νc ≈ 10–3–10–1 s–1. The criterion for the dis-
sipation-free propagation of helicons Γ = νc/ωc ! 1 is
therefore well justified, and its validity remains quite
robust to the changes in νc up to νc = 100 s–1. By taking
the group velocity of the helicons Vh to be equal to the
velocity dispersion measured for molecular lines, V ≈
0.3–5.0 km/s, we find the wavelength of the intercloud
helicon λh ~ 1012–1013 cm. This space scale is much less
than the linear size of clouds, L ~ 1017 cm. For the same
velocity, the period of oscillations of the electron flow
in the helicoidal magneto-electron wave falls into the
interval Ph ~ 0.1–10 years. These estimates unambigu-
ously show that the intercloud medium can transmit the
helicons without significant attenuation and we conjec-
ture that they could be responsible for the broadening of
molecular lines.

5. DISCUSSION

Understanding gas dynamical processes governing
the structure and the evolution of dense molecular
clouds is one of the outstanding challenges in the cur-
rent development of star formation astrophysics. While
the central role played by magnetic fields in these pro-
cesses was recognized many years ago, the major
uncertainties regarding the motions follow from inade-
quate knowledge of the material composition of the
intercloud medium. Over the years, convincing evi-
dence has been obtained that the composition of dark
molecular clouds is dominated by molecular hydrogen
with some admixture of OH and CO molecules whose
linewidths were found to exhibit the supersonic charac-
ter of intercloud motions. The fact that the linewidths
cannot be explained as a result of the propagation of
isothermal sound waves has served as an impetus in
searching for alternative models of interstellar gas
dynamics and has led to the hypothesis that a sizable
fraction of charged particles (primarily electrons and
ions) are present in dark molecular clouds, with the col-
lective flows of these particles strongly coupled to the
intercloud magnetic field. On the assumptions that the
magnetic field causes both electrons and ions to move
with equal velocities and the friction then causes the
neutral molecules to follow the ions with the same
velocity, the single-component MHD model was exten-
sively exploited in interpreting supersonic broadening
of molecular lines in terms of hydromagnetic waves of
the Alfvén type [19–23]. On average, the model pro-
vides a reasonable account of data in CO regions of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
clouds where the temperature and the ionization factor
are sufficiently high.

Together with this, recent Zeeman measurements of
magnetic fields in dense cores of molecular clouds,
highly obscured by the ionizing ultraviolet radiation,
have revealed a predominately sub-Alfvénic character
of the intercloud motions [24]. The latter circumstance
can be regarded as an indication that the composition
and the character of the motions in cores of the molec-
ular clouds might be quite different from those that are
implied by the single-component MHD model of inter-
stellar gas dynamics. With this in mind, we recently
investigated a model of a non-MHD type [25, 26].
Motivated by the observable filamentary structure of
some of the dark molecular clouds, we argued that the
filaments could be regarded as a manifestation of a
superparamagnetic state of the gas–dust ISM consid-
ered by Jones and Spitzer [27] long ago in the context
of the starlight polarization problem. The magnetically
polarized, poorly conducting soft matter of this type
can be thought of as a gas-based ferrocolloid (consist-
ing of tiny ferromagnetic grains suspended in the dense
gas of molecular hydrogen) capable of sustaining a
long-range magnetic chains extending along the inter-
cloud magnetic fields. Having assumed that the
motions of the Jones–Spitzer matter are governed by
the magnetoelastodynamics equations, we found in
[25] that ferrocolloidal interstellar medium can trans-
mit perturbations by shear magnetomechanical waves
propagating with a sub-Alfvénic group velocity in
accordance with observations [24].

In the meantime, several authors have argued that
the ISM motions in star-forming molecular clouds can
pass the regime in which the Hall conductivity may
become important [28, 29]. In particular, it was recently
shown [30] that the Hall conductivity can essentially
affect the propagation of Alfvén waves in a dense
weakly ionized molecular gas. In this paper, continuing
investigation in this direction, we have explored two
models of pure electron interstellar gas dynamics. The
focus was placed on the helicons (spiral magneto-elec-
tron waves owing their existence to the Hall drift of the
magnetic flux by thermal electrons). The basic infer-
ence of this model is that in dark molecular clouds, the
helicons can propagate without a noticeable attenua-
tion. The observational consequence of their propaga-
tion might be the widths of molecular lines exhibiting
the existence of large-scale intercloud motions. Our
numerical estimates for the group velocity of the heli-
cons suggest that these waves could be responsible for
the broadening of molecular linewidths detected from
dark star-forming clouds or, at least, provide a sizable
contribution to this effect. As a conclusion, the problem
of the interstellar electron wave dynamics considered
here for the first time is interesting in its own right, and
we hope that our analysis can find other useful physical
applications.
SICS      Vol. 93      No. 4      2001
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Abstract—A classical field system is considered that consists of two interacting scalar fields, the Higgs real
field and a complex scalar field. It is demonstrated that there exists a nontrivial topological solution in this sys-
tem—a kink carrying a U(1) charge. Certain questions are discussed related to the stability of the solution
obtained. An improved variational procedure is proposed for determining topological U(1)-charged configura-
tions. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that domain-wall-type solutions
arise in a wide class of modern supersymmetric field
theories as well as in the string description of gauge
theories (D-branes) [1]. The problem of interaction
between particles and domain walls has been repeat-
edly considered in the literature starting from
Voloshin’s paper [2]. The interaction between abelian
gauge particles and domain walls was considered in
greater detail in [3]. Usually, the interaction between
particles and a wall is considered as scattering in a
given potential induced by the wall; i.e., one applies a
weak-coupling approximation and neglects the reaction
of fields on the wall. Such an approximation cannot
always be correct. For example, it is known that the
interaction of monopoles and skyrmions with domain
walls is nontrivial [4, 5]. Moreover, the walls may form
bound states with other fields and have quantum num-
bers corresponding to these fields. Recently, an integra-
ble dyon-type lattice model with a topological soliton
carrying a U(1) charge was discussed in [6].

In the present paper, we consider a simpler continu-
ous model for a system of two interacting scalar fields.
In this model, which was discussed long ago [7], there
exist nontopological solutions with a U(1) charge, the
so-called Q-balls. In this paper, we will show that there
exist kink-type topological solutions carrying a U(1)
charge in (1 + 1) dimensions in the Lee–Friedberg–Sir-
lin model.

It should be noted that monopole-type solutions that
additionally carry an electric charge (dyons) have been
known for a long time in the literature. Other examples
of topological solutions carrying a U(1) charge are the
so-called Q-lumps [8].
1063-7761/01/9304- $21.00 © 20677
2. TOPOLOGICAL AND NONTOPOLOGICAL
Q-BALLS

Consider a system of interacting scalar fields in
(1 + 1) dimensions with the Lagrangian

(1)

Here, φ is a real scalar field; ξ is a complex scalar field;
h, m, and v  are real constants; and µ = 0, 1. Such a field
Lagrangian in (3 + 1) dimensions was first considered
in [7]. In particular, classical spherically symmetric
solutions, carrying a U(1) charge, to the equations of
motion for Lagrangian (1) were obtained in [7]. Later,
these nontopological soliton solutions were referred to
as Q-balls [9]. One-dimensional Q-balls for a field sys-
tem with the Lagrangian close to (1) were discussed in
detail in [10].

Lagrangian (1) is symmetric with respect to the glo-
bal U(1) transformations

(2)

as well as with respect to the discrete transformations

(3)

The invariance of the Lagrangian under transforma-
tions (2) corresponds to the conservation of the current

+ ∂µξ∂µξ*=
1
2
---∂µφ∂µφ+

– h2φ2ξξ *
m2

2
------ φ2 v 2–( )2

.–

ξ ξ eiα ,

φ φ.–

jµ 1
i
--- ξ*∂µξ ξ∂ µξ*–( )=
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and charge

The symmetry (3) corresponds to the conservation of
the topological current

and the topological charge

(here, eµν is a unit antisymmetric tensor).

Lagrangian (1) yields the following equations of
motion:

(4)

(5)

The vacuum states of the system described by
Lagrangian (1) are determined as follows:

(6)

If we consider such configurations that the field ξ is
identically equal to its vacuum value, then Eq. (4) holds
identically, while Eq. (5) is rewritten as

(7)

which coincides with the equation of motion for the
Lagrangian of the λφ4 theory with a doubly degenerate
vacuum. In (1 + 1) dimensions, Eq. (7) has a static topo-
logical solution—a kink:

(8)

Since the field ξ in this theory is identically zero, the
charge is also zero. The energy of this configuration
(the mass of the kink) is given by

(9)

Next, we will show that, for the field systems
defined by Lagrangian (1) in the case of large charge Q,
there exist localized configurations that are stable with
respect to the decomposition into plane waves. These
configurations may be either nontopological (a Q-ball)
or topological (a topological Q-ball). Next, we will
need explicit expressions for the energy of plane waves—
perturbations of the vacuum states (6). In this case, to
avoid diverging quantities while calculating the energy
and charge, we consider these perturbations on a large
(although finite) interval of the x axis: –L/2 ≤ x ≤ L/2.
Under the assumption that the amplitudes of the field

Q j0 x.d∫=

iµ
e

µν∂νφ=

P i0 xd∫=

∂µ∂µξ h2φ2ξ+ 0,=

∂µ∂µφ 2h2ξξ *φ 2m2 φ2 v 2–( )φ 0.=+ +

φvac v ,±=

ξvac 0.=

∂µ∂µφ 2m2 φ2 v 2–( )φ 0,=+

φk x( ) v mv x( ).tanh=

Ek
4
3
---mv 3.=
JOURNAL OF EXPERIMENTAL 
deviations from (6) are small, Eqs. (4) and (5) are
rewritten in linear approximation as

(10)

where δφ = φ – φvac and δξ = ξ – ξvac. For a given charge
of the configuration, a solution to system (10) that guar-
antees the minimal deviation of the energy from its vac-
uum value is given by

(11)

The energy of solution (11) for the given charge Q is

(12)

The essential difference of the case of one space
dimension from the three-dimensional case is the fact
that the system with Lagrangian (1) has topological
solutions. When discussing the possibility of the exist-
ence of topological charged solutions, we should com-
pare the energy of such a solution, which carries a
charge Q, with the sum of the energy of the kink (8)
(which has the least energy among all topological con-
figurations) and the energy of the charged nontopolog-
ical configuration (11). The value of this sum is

(13)

It is this value that we take below as the starting point
when discussing the existence of a stable charged topo-
logical configuration.

Now, following [7, 10], consider the energy func-
tional

(14)

on the class of trial functions of the form

(15)

(16)

∂µ∂µδξ h2v 2δξ+ 0,=

∂µ∂µδφ 4m2v 2δφ+ 0,=

δφ 0,=

δξ Q
2hv L
-------------eihv t= .

E0 hv Q.=

Ẽ
0

hv Q
4
3
---mv 3.+=

H φ ξ,[ ] x ∂ξ
∂t
------

2 ∂ξ
∂x
------

2 1
2
--- ∂φ

∂t
------ 

 
2

+ +
d∫=

+
1
2
--- ∂φ

∂x
------ 

 
2

h2φ2ξξ *
m2

2
------ φ2 v 2–( )2

+ + 


φ x( )

0, x l/2<

v 1
x l/2+

a
--------------- 

 exp– , x l/2–≤±

v 1 x l/2–
a

---------------– 
 exp– , x l/2,≥











=

ξ x t,( )
0, x l/2>
A Ωx( ) iΩt( ), x l/2,≤expcos




=
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where l and a are arbitrary positive constants that
should be varied (the Ritz parameters). The signs “+”
and “–” in Eq. (15) correspond to nontopological and
topological trial functions, respectively. We consider
the state with the minimal energy such that |ξ(x)| does
not vanish on the interval |x | < l/2; therefore,

When ξ(x, t) = |ξ(x)|exp(iΩt), the charge of the config-
uration is given by

Hence, we can determine the constant A in Eq. (16):

Now we can write out an explicit expression for the
energy of the trial functions (15) and (16):

(17)

This expression does not contain the fields coupling
constant h because this quantity enters in the Hamilto-
nian only in the combination h2φ2ξξ*, which vanishes
identically for the functions of the form (15) and (16).
Note also that expression (17) holds for nontopological
as well as for topological configurations because the
field φ enters in the Lagrangian quadratically and the
change of sign in Eq. (15) does not affect the value of
the energy.

The minimal value of expression (17) for a given
charge Q is attained for the following values of the Ritz
parameters:

and is equal to

(18)

Since the energy of plane-wave configurations is a lin-
ear function of charge (see (12) and (13)), it turns out
that the localized configuration (15), (16), whose

energy depends on Q as  is energetically favorable
for large values of the charge. This means that, for large
Q > Qcr, there exists a localized solution in system (1).
Note that the energy (13) of the topological configura-
tion “kink + plane waves” with a given charge Q is dif-
ferent from energy (12) for a nontopological plane-
wave configuration with the same charge Q. At the
same time, the variational estimate (18) is equally
applicable to nontopological and topological configura-

Ω π
l
---.=

Q 2Ω ξ x( ) 2 x.d∫=

A
Q
π
----.=

E
πQ

l
-------= v 2

2a
------ m2v 4l

2
--------------- 11am2v 4

12
----------------------+ + + .

l0
2πQ

mv 2
---------------, a0

1
mv
-------- 6

11
------= =

Emin mv 2 2πQ mv 3 11
6
------.+=

Q
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tions. Hence, we obtain different expressions1 for the
critical charge Qcr:

(1) nontopological Q-ball,

(19)

(2) topological Q-ball,

(20)

The meaning of the critical charges Qcr and  is clar-
ified in Fig. 1. Thus, a topological configuration
becomes energetically favorable and, hence, stable with
respect to the decomposition into a kink + plane waves
under critical charges less than those for a nontopolog-
ical configuration.

3. AN EXACT SOLUTION FOR A TOPOLOGICAL
Q-BALL

In the preceding section, we demonstrated that, in
addition to an ordinary Q-ball, there can exist a topo-
logical Q-ball that carries topological and U(1) charges
simultaneously in a system defined by Lagrangian (1).
However, the topological solution presented in the pre-
ceding section is variational. Actually, an exact solution
to a problem with given boundary conditions at infinity

1 These values represent upper estimates obtained with the use of
trial functions (15) and (16); therefore, stable charged localized
solutions may actually exist even for the charges less than (19)
and (20).

Qcr m2v 2

h2
------------- π h

m
---- 11

6
------ π2 2πh

m
---- 11

6
------++ + 

  ,=

Q̃
cr m2v 2

h2
------------- π h

m
---- 11

6
------ 4

3
---– 

 +
=

+ π2 2πh
m
---- 11

6
------ 4

3
---– 

 + 
 .

Q̃
cr

5

0 5

E

Q
10 15

10

15

Qcr~
Qcr

Fig. 1. The energy as a function of charge (dotted curve) for
the plane-wave configuration, (dashed curve) for the “kink +
plane waves”-type configuration, and (solid curve) for the

variational configuration (15), (16). Qcr and  are critical
values of charge for the nontopological and topological con-
figurations, respectively. The graphs are drawn for the con-
stants h = m = 1 and v  = 1.

Q̃
cr
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(a given topological sector) and the total U(1) charge Q
may have even lower energy. It will be shown below
that a particular solution to this problem for Eqs. (4)
and (5) can be found analytically.

Indeed, we will seek a solution to Eqs. (4) and (5) in
the form

(21)

where φ(x) and f(x) are real functions of x. Taking into
account (21), we can rewrite Eqs. (4) and (5) as

(22)

(23)

Next, we restrict the analysis to the assumption that the
field φ preserves the functional dependence of the kink
(8) (possibly, with a different scale):

(24)

where α > 0 is a certain unknown constant.

Let us pass to a new variable

in Eqs. (22) and (23). Then, we obtain

(25)

and

(26)

instead of (22) and (23). Taking into account that φ(z) =
z in view of (24), from (26) we obtain

(27)

hence, the sought-for solution exists even if the con-
stant α less than unity. Supposing that this condition is
fulfilled, we find a root in (27) and substitute the
expression for f(z) thus obtained into (25). Then, we
obtain

(28)

Since equality (28) must hold for arbitrary z, we have

φ x t,( ) φ x( ),=

ξ x t,( ) f x( )eiωt,=

ω2– f f ''– h2φ2 f+ 0,=

φ''– 2h2 f 2φ 2m2 φ2 v 2–( )φ 0.=+ +

φ x( ) v αmv x( ),tanh=

z v αmv x( ), v z v .< <–tanh=

ω2– f α2m2 v 2 z2–( ) d
dz
----- v 2 z2–( )df

dz
----- 

 –

+ h2φ2 f 0,=

α2m2 v 2 z2–( ) d
dz
----- v 2 z2–( )dφ

dz
------ 

 –

+ 2h2 f 2φ 2m2 φ2 v 2–( )φ+ 0=

f 2 z( ) m2 1 α2–( )
h2

-------------------------- v 2 z2–( ),=

2α2m2 h2–( )z2 ω2 α2m2v 2–( )+ 0.=

α2 h2

2m2
---------, ω2 α2m2v 2 h2v 2

2
-----------= = .=
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Thus, we have found an exact nontrivial solution to
Eqs. (4) and (5). Its explicit expression is

(29)

(30)

This solution exists under the following constraints
imposed on the parameters of the Lagrangian:

(31)

Note that the spatial scale of the field φ in solution (29)
and (30) coincides with the scale of the field ξ, and, as

ρ  , solution (29) and (30) reduces to the
uncharged topological kink (8). Let us write out the
energy and charge of solution (29) and (30):

(32)

(33)

Now, let us discuss how the solution obtained and
the corresponding energy and charge are changed
under the variation of the parameters of the
Lagrangian. When h ! m, the characteristic spatial
scale of solution (29) and (30) is much greater than the
size of the kink (8); in this case, the amplitude of the
charged field is large (~vm/h). It follows from relations
(32) and (33) that the energy and charge of a topologi-
cal Q-ball are also large in the limit of a small coupling
constant h. The tendency of the amplitude ξ in (30) to
infinity as h  0 implies that solution (29) and (30) is
nonperturbative with respect to the small parameter h.
This solution cannot be obtained by the expansion in
powers of h for small h (when h  0, the interaction
term in (1) is of the order of m2v 4, i.e., is not small as
compared with other terms). On the contrary, the weak-
coupling limit in (29) and (30) corresponds to the case

h  m. In this limit, the amplitude of ξ in (30) as
well as the charge tend to zero, whereas φ(x) tends to
φk(x) (8). Thus, the weak-coupling limit corresponds to
the smallness of h2|ξ|2 rather than of h2. Here, we note
that the exact topological solution essentially depends
on the constant h in contrast to the variational solution
proposed above, which did not depend on h.

Now, let us compare the energy of configuration
(29), (30) with the energies of a plane-wave configura-
tion and the corresponding trial configuration (15) and

φ x( ) v hv x/ 2( ),tanh=

ξ x t,( ) v
m2

h2
------ 1

2
---–

ihv t/ 2( )exp

hv x/ 2( )cosh
------------------------------------.=

h2

m2
------ ρ2 2.≤≡

2

E
2 2

3
----------hv 3 4

m2

h2
------ 1– 

  ,=

Q 2v 2 2
m2

h2
------ 1– 

  .=

2
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(16). For this purpose, we first should substitute expres-
sion (33) for the charge Q into (13) and (18). This yields

(34)

(35)

One can easily verify that both the energy (34) of the
plane-wave configuration and the energy (35) of the
variational configuration with an appropriate charge
prove to be greater than the energy (32) of the exact
solution for any values of the parameters of the
Lagrangian that satisfy inequality (31). This fact is nat-
ural just as the fact that the charge Q (33) is less than
the estimated critical value (20) for the topological con-
figuration since (29), (30) is an exact solution to the
equations of motion. Thus, the exact solution (29), (30)
is stable with respect to the decomposition into a kink +
plane waves and into configurations close to the varia-
tional ones (15), (16).

Figure 2 represents the ratio of energy to the con-
stant m in the Lagrangian versus ρ in the interval 0 <

ρ ≤  for the exact solution, for the “kink + plane
waves”-type configuration, and for the variational con-
figuration (15), (16).

4. IMPROVED VARIATIONAL PROCEDURE

The exact solution (29), (30) with the energy less
than that of the solution obtained with the use of the
variational procedure described in Section 2 indicates
that this variational procedure can and must be
improved. Moreover, for given parameters of the
Lagrangian, the charge (33) of the exact solution is
fixed; therefore, the exact solution does not reproduce
the entire spectrum of topological solutions with differ-
ent charges Q for given parameters of Lagrangian (1).
Let us try to improve the variational procedure. For this
purpose, we take the variational functions in the follow-
ing form:

(36)

(37)

where A and β are the Ritz parameters. This choice of
the variational function with

reproduces the exact solution (29), (30). At the same
time, one can hope that, since the variational functions
continuously depend on the parameters A and β the sub-
stitution of (36) and (37) into the energy functional (14)
will result in better minimization of this functional at

E0 mv 3 4
3
--- 2ρ 2

ρ2
----- 1– 

 + ,=

Emin mv 3 2 π 2

ρ2
----- 1– 

  11
6
------+ .=

2

φ x( ) v βx( ),tanh=

ξ x t,( ) Av
iβt( )exp
βx( )cosh

-----------------------,=

A
m2

h2
------ 1

2
---– , β hv

2
-------= =
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least for the values of A and β close to those for the
exact solution. The substitution of (36) and (37) into
(14) yields the following expressions for the energy and
charge of this configuration:

(38)

(39)

Thus, the value of A is uniquely specified by the charge.
Substituting the value of A obtained from (39) into (38)
and minimizing the energy with respect to β for a given
charge, we obtain the following expression for the min-
imal value of energy (38):

, (40)

this minimum is attained for the value of β given by

When Q is equal to the charge (33) of the exact solu-
tion, we obtain, as expected,

As we have already mentioned, when the charges dif-
fer little from Q (33), the energy (40) of the new vari-
ational function is less than the energy (18) of config-
uration (15), (16) as well as than the energy (13) of the
“kink + plane waves”-type configuration. The behavior

Ẽ
2
3
---v 2 1 4A2+( )β 2

3
---v 4 h2A2 m2+( )1

β
---,+=

Q 4A2v 2.=

Ẽmin
2
3
---v Q v 2+( ) h2Q 4m2v 2+( )=

β0
v
2
---- h2Q 4m2v 2+

Q v 2+
--------------------------------.=

β0
hv

2
-------, Ẽmin E

2 2
3

----------hv 3 4
m2

h2
------ 1– 

  .= = =

0
0.2

E/m

ρ
0.4 0.6 0.8 1.0 1.2 1.4

5
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20

15

Fig. 2. The ratio of energy to the constant m versus ρ (solid
curve) for the exact solution, (dotted curve) for the “kink +
plane waves”-type configuration, and (dashed curve) for the
variational configuration (15), (16). In the last two cases, the
charge Q is equal to the charge (33) of the exact solution.
The graphs are drawn for the constant v  = 1.
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Fig. 3. The energy as a function of charge for the variational configurations (dashed curve) (15), (16) and (solid curve) (36), (37)
and (dotted curve) for the “kink + plane waves”-type configuration that correspond to (a) ρ = 1 (h = m = 1) and v  = 1 and (b) ρ =

 = 0.31622… (h = , m = 1) and v = 1.0.1 0.1
of expression (40) for arbitrary values of the charge is
as follows.

(1) When Q  +∞,

hence, when the charge is greater than a certain 

(this value of  can be obtained in the general case

from the equality between  (40) and

 (18)), the variational configuration (15), (16)
becomes energetically more favorable as compared
with (36), (37); thus, for the large charge of a system,
the conventional substitution that leads to a Q-ball-type
solution proves to be energetically more favorable.

(2) When Q < , there are two possible cases
depending on the ratio ρ = h/m of the Lagrangian con-
stants.

(a) The stability condition of a configuration with
respect to the decomposition into a kink + plane waves
is satisfied for any Q > 0. This situation occurs when

3 –  ≤ ρ ≤ 3 + . The characteristic form of the
function of energy versus charge for both the varia-
tional and the plane-wave configurations is shown in
Fig. 3a.

(b) The equality between the energies of the varia-

tional and plane-wave configurations, (Q) =

(Q), holds for Q > 0, which corresponds to ρ > 3 +

 or 0 < ρ < 3 – . In this case, the configuration (35),
(36) with charges Q smaller than

is energetically less favorable as compared to the plane-
wave configuration; therefore, we cannot draw any con-

Ẽmin
2
3
---hv Q= O Q( );+

Q1
cr

Q1
cr

Ẽmin Q1
cr( )

Emin Q1
cr( )

Q1
cr

5 5
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Ẽ
0

5 5

Q2
cr 4

5
---v 2 4

ρ2
----- 6

ρ
---– 1+ 

 =
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clusions about the existence of stable localized solu-
tions. The characteristic layout of energy-versus-charge
curves for this case is shown in Fig. 3b.

However, it is essential that, according to the con-
clusion made above, the energy (32) of the exact solu-
tion is less than the energy (34) of the “kink + plane
waves”-type configuration with the corresponding

charge (33) for any 0 < ρ ≤ . Thus, the variational
functions (36), (37) give an exact solution for the fol-
lowing values of the charge: Q = 0 and Q = 2v 2(2/ρ2 – 1).

In this case, for any Q >  (or Q ≥ 0, depending on
the value of ρ), the functions (36) and (37) yield a lesser
value of the energy functional than the “kink + plane

waves”-type configuration, whereas, for Q < , they
yield a lesser value of the energy functional than the
variational configuration (15), (16).

Thus, we have determined the variational function
for the values of the charge lesser than the critical value

 for the functions (15) and (16); the new variational
functions coincide with the exact solution (29), (30)
for an appropriate value of the charge. The exact solu-
tion (29), (30) and the improved variational proce-
dure (36), (37) imply that topological Q-balls can exist
in a much wider range of charges Q than are implied by
the standard variational procedure usually applied to
the Q-balls.

5. CONCLUSION

We have demonstrated that a wall-type one-dimen-
sional solution (a kink) for a scalar Higgs field can bind
a complex scalar field carrying a U(1) charge and that
the value of the charge Q bound by the wall may vary
within rather wide limits.

The possibility of binding a large U(1) charge by a
topological wall is a new fundamental result obtained in
this paper. This phenomenon should manifest itself in

2

Q2
cr

Q1
cr

Q̃1
cr
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the problem of particle scattering by a domain wall.
Such a problem was first discussed in Voloshin’s paper
[2]. He considered two different problems. The first
problem dealt with the scattering of the Higgs plane
wave by the kink of this very field. In this case, the scat-
tering potential proved to be reflectionless. The second
problem dealt with the interaction between the Higgs
field and a fermion field. The problem of scattering of a
fermion by a kink was also reduced to the problem of
scattering in a given potential induced by the field of
this kink. The statement of this problem within the
framework of [2] corresponds in our case to the study
of the scattering problem for Eq. (4) with a given poten-
tial φ(x). The substitution of φ(x) in form (8) reduces the
problem to the known problem of the scattering of a

particle in the field V(x) ∝  –1/ . Interest-
ingly, as h  0, the reflection coefficient of such a
potential tends to unity as k  0 [11]. Such behavior
of the reflection coefficient for h  0 implies that the
weak-coupling approximation is inapplicable. This
result is not incidental in the problem considered
because there always exists a bound state in the case of
attraction potential in the one-dimensional case.

Note that, generally, the problem of the scattering of
particles by a kink is not reduced to the problem of scat-
tering by a given potential. In fact, in addition to
Eq. (4), which describes the behavior of the field ξ in
the given field φ(x), one has to analyze the behavior of
the field φ(x) in the field ξ(x) of a plane wave, i.e., ana-
lyze the solution to Eq. (5). As is clear from (5), when
one takes ξ(x) in the form of a plane wave, the vacuum
of the field φ and the excitation mass of the field φ over
the vacuum are changed. Thus, the problem of scatter-
ing of particles in the field of a kink is self-consistent
only if the particles represent small deviations of this
field from the vacuum. Moreover, even the bound state
of the field ξ in the potential of the kink of the field φ
can be obtained without taking into account the reac-
tion of the field ξ on the field φ formally only in the case
of a sufficiently strongly coupled level. Qualitatively,
this result becomes clear if we take into account that the
wave function of a weakly coupled level slowly decays
at large distances; therefore, the term 2h2ξξ*φ, which is
rejected in (5) for φ(x) = v , becomes expo-
nentially large as compared with the term (φ2 – v 2)φ ∝

 as x  ±∞. When there is a single

bound level in the potential –h2v 2 , the
wave function of this level is given by [11]

where

mv x( )cosh
2

mv x( )tanh

mv x( )cosh
2–

mv x( )cosh
2

ξ eiωt

mv x( )cosh
s

-----------------------------,=

s
1
2
--- 1– 1 4ρ2++( ).=
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To prevent the term 2h2ξξ*φ from being exponentially
large for large x as compared with other terms in (5),
one should satisfy the inequality s ≥ 1; hence, we obtain

ρ ≥ . Thus, the reaction of the field ξ on the field φ
should be taken into account not only when solving a
scattering problem but also when solving the problem
of a weakly coupled particle of the field ξ in the field of
a kink.

The existence of topological walls carrying a U(1)
charge may be directly related to the problem of the col-
lapse of domain bubbles. The problem of evolution of a
collapsing domain bubble has been studied in detail and
from various viewpoints starting from the pioneering
work by Zel’dovich et al. [12] (see also [13] in this rela-
tion). Usually, one considers the evolution of spheri-
cally symmetric bubbles of the λφ4 theory whose field
profile along the radius corresponds to the profile of a
kink. As is known, such bubbles would collapse; there-
fore, there do not exist stationary domain structures in
the λφ4 theory. The possibility of stabilizing domain
bubbles by filling them with charges has been discussed
starting from [14, 15]. In particular, Bardeen et al. [15]
discussed the stabilization of bubbles by filling them
with quarks. The solutions for charged walls obtained
in the present paper can also be used for finding stable
domain regions carrying a U(1) charge. Here, we
should stress that a vacuum domain surrounded by a
charged wall may, in principle, evolve into a Q-ball. In
future, we are planning to revert to the question of the
time evolution of such configurations.

The topological solutions with a U(1) charge
obtained in this study may possibly exist even in certain
more general models. In particular, a hedgehog-type
solution for a triplet of Higgs scalar fields is of interest
when one takes into account its interaction with a com-
plex field with U(1) symmetry.
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Abstract—Photogeneration of neutrinos and axions at nuclei, γ(Ze)  γ(ν ), γa, and inelastic photon–pho-
ton scattering, γγ  γ(ν ), γa, are considered in the 2D covariant theory being developed for calculating
matrix elements of Feynman diagrams in a strong magnetic field. Since the matrix elements of four-pole dia-
grams are linear functions of the magnetic induction B, the contribution of the radiative photogeneration of neu-
trinos at nuclei to the luminosity of magnetic neutron stars at early stages of their evolution may compete with

URCA processes for values of B ~ (103–104)B0 (B0 = /|e | = 4.41 × 1013 G). The upper estimate of the axion
mass obtained from the condition of dominance of the neutrino luminosity over the axion luminosity for the
proposed values of temperature and magnetic induction is in accord with other independent results. © 2001
MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

It is generally accepted [1, 2] that in an extreme
astrophysical situation of the type of a supernova burst
accompanied with the formation of a neutron star, neu-
trino emission is the dominating mechanism of energy
release in view of the high penetrability of neutrinos.
Naturally, neutrino physics itself is an important com-
ponent of the theory of elementary particles. Important
aspects of neutrino physics are the problem of the exist-
ence of neutrinos with definite masses [3, 4], the form
of the unitary matrix of mixing during the formation of
neutrino states νe, νµ, and ντ constituting weak current,
the number of neutrino flavors, etc. In this respect, col-
lapsed astrophysical objects as well as the Universe as
a whole with the possible dominance of the massive
neutrino component as a carrier of the latent mass are
giant natural laboratories enhancing our understanding
of the nature of neutrino.

Apart from standard nuclear reactions (URCA
processes), quantum processes of the Compton type
γe–  e–(ν ) [5] and bremsstrahlung e–(Ze) 
e–(ν ) [6] also contribute to the formation of neutrino
radiation by the above-mentioned processes. The possi-
ble generation of neutrinos accompanied by the excita-
tion of vacuum electron states was apparently men-
tioned by Rosenberg [7] who studied the conversion of
a photon to a pair of neutrinos at a nuclei, γ(Ze) 
(ν ), in the Fermi diagram, which is determined by the
contribution of the electron tripole. A noticeable contri-
bution from such a mechanism is possible at a high
temperature T ~ m (m is the electron mass) of equilib-
rium photon radiation and a high concentration of

ν
ν

ν
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nuclei. This appears astonishing in itself since such
electrodynamic effects of a higher order with an elec-
tron quadripole were identified with difficulty in the
laboratory conditions (the Delbruck effect [8, 9] and
splitting of a photon at a nucleus [10, 11]), while the
main nonlinear electrodynamic effect of light scattering
by light has not yet been detected.

The existence of ultrastrong magnetic fields formed
upon the compression of the primary magnetosphere
with the magnetic flux conservation revealed basically
new features in the formation of neutrino radiation dur-
ing the collapse. According to estimates, the magnetic
induction may attain the characteristic Schwinger value

(e < 0 is the electron charge) and even exceed it up to
B ~ 104B0 [12]. This leads to the opening of other chan-
nels of neutrino generation, e.g., the γ  (ν ) chan-
nel [13, 14] or the synchrotron mechanism of neutrino
emission, e–  e–(ν ) [15–18]. It should be noted, in
particular, that a new possibility of neutrino mass detec-
tion on the basis of analysis of threshold effects in the
synchrotron emission of massive neutrinos was indi-
cated in [18]. In the following analysis, we will proceed
from the average limitation on the electron neutrino
mass, given in [19]:

 < 15 eV. (1)

A more stringent limitation does not affect the results
obtained by us disregarding the neutrino mass as com-

B0
m2

e
------ 4.41 1013 G×= =

ν

ν

mνe
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pared to the characteristic energies appearing in this
work.

The effect of the field on the channels which are
open in zero magnetic field also is the strongest when
the real and virtual electrons are on the ground Landau
level. This results in a transition to the 2D case of the
theory in the (0, 3) subspace (the axis 3 is directed
along the field). The corresponding mathematical appa-
ratus was proposed in [14, 20] and developed in other
publications which are mentioned in the literature cited
here. Since this circumstance is ignored systematically
by some authors (see, for example, [21]), we will
briefly describe in Section 2 the basic principles of this
approach and some of its main consequences under cer-
tain limitations imposed on the momenta of the external
lines.

In particular, the matrix elements of diagrams with-
out excitation of the vacuum (e.g., the diagram of the
Compton effect) do not contain any field dependence
and the role of the field is reduced only to the depen-
dence of the “motion” of an electron on time and on one
spatial coordinate. In this case, however, the field
dependence leading to the stimulated enhancement of
effect in some cases may appear in the integration with
respect to quasimomenta of the outer electron lines as
well as in the inclusion of the temperature distribution
functions for the electron gas with the Fermi momen-
tum defined as [22]

(2)

where γ = |eB| and n is the electron concentration. This
is demonstrated, for example, in [23], where the Comp-
ton mechanism of emission of neutrinos and axions,
γe−  e–(ν ), e–a in a 2D magnetized Fermi gas is
considered.

The stimulating effect of an external magnetic field
with induction B @ B0 is also manifested in diagrams
without outer electron lines. The matrix element is a
linear function of the field for an even number of vecto-
rial and (or) pseudovectorial vertices in an electron loop
and becomes constant for an odd number of vertices.
Consequently, the cross sections, probabilities, and
emission power corresponding to the first type of pro-
cesses contain the factor (B/B0)2 @ 1 in contrast to the
characteristics of the second type of processes and may

pF
2π2n

γ
------------,=

ν

νγ e

(a)

(Ze)

γ
γ

(b)

(Ze)

e

eee

e

e
–ν

–ν

ν

Fig. 1.
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exceed their values although these quantities have a
higher order of magnitude in the formal perturbation
theory. This statement does not contain any contradic-
tion since, like in ordinary quantum electrodynamics
(QED), the contribution of the nth order loop diagram
with an even number of vectorial vertices exceeds the
contribution of the (n – 1)th diagram which is equal to
zero (Farry theorem). The characteristics of the process
of photogeneration of neutrino at a nucleus, γ(Ze) 
(ν ), taking into account the contribution of the triangular
diagram in a strong magnetic field B @ B0 (Fig. 1a)
were analyzed in [24] using the Fermi scheme. It can be
seen that it is expedient to analyze the radiation-
induced generation of a neutrino pair, γ  γ(ν ),
stimulated by the electron quadripole (Fig. 1b). It
should be noted that similar channels of inelastic scat-
tering of “light by light,” γγ  γ(ν ), and the fusion
of photon at a nucleus, γγ(Ze)  (ν ), as well as their
contribution to luminosity, were studied by us earlier
[25, 26].

The idea concerning the existence of a pseudoscalar
Goldstone boson (axion) has been discussed recently. It
makes it possible to explain the observed exact CP
invariance of strong interactions [27]. An axion also
competes with a neutrino as a potential carrier of latent
mass and as one of the mechanisms of the energy expul-
sion from the star during its collapse in view of the
smallness of the coupling constant 1/f  for an axion
with “ordinary” particles (invisible axion). For this rea-
son, the program of studying simultaneously the neu-
trino and axion luminosities of stars in view of different
mechanisms of their generation seems to be quite natu-
ral. Since the axion mass is strongly associated with the
energy scale f of violation of the Peccei–Quinn global
symmetry [27],

(3)

a comparison of the neutrino and axion luminosities
makes it possible to refine the possible range of axion
mass, which is still quite wide:

(4)

In this connection, we will consider a channel of
radiation-induced photogeneration of an axion at a
nucleus, γ(Ze)  γa (Fig. 2), and an inelastic scatter-
ing channel γγ  γa (Fig. 2b), which are also
described by a quadripole diagram.

The paper is constructed as follows. In Section 2, the
basic principles of the method of analysis of Feynman
diagrams in strong magnetic fields, which was devel-
oped by us, are formulated. The matrix elements of the
radiation-induced photogeneration of an axion at a
nucleus, γ(Ze)  γa, and of a pair of neutrinos at a
nucleus, γ(Ze)  γ(ν ), are determined and the cor-
responding emission powers are calculated under the

ν

ν

ν
ν

ma 0.6 10 3–  eV
1010 GeV

f
----------------------- 

  ,×≈

10 5–  eV & ma & 10 2–  eV.

ν

 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001



PHOTOGENERATION OF NEUTRINOS AND AXIONS 687
assumption of an equilibrium distribution of photons.
In Section 4, a similar analysis is carried out for the
inelastic scattering γγ  γa and the result obtained
earlier for the process γγ  γ(ν ) is presented. The
characteristics of these effects are analyzed in Section 5
taking into account their contributions to the axion and
neutrino luminosities of collapsed objects and possible
limitations imposed on the axion mass.

2. FUNDAMENTALS OF CALCULATION 
OF THE MATRIX ELEMENTS OF FEYNMAN 

DIAGRAMS IN A STRONG MAGNETIC FIELD

The solution of the Dirac equation in the Cartesian
coordinates in a constant and uniform magnetic field,

(5)

(5a)

was found in [29]. In the standard representation of
γ matrices, it has the form

(6)

(7)

(8)

where Hn(ξ) are the Hermite polynomials, and the spin
coefficients Cj satisfy the normalization condition

(9)

Here,

is the energy of an electron with momentum p3 along
the field and with the value of the quantum number n =
0, 1, 2, …; p2 is the quasimomentum characterizing the
position of the packet center on the axis 1; and L2, 3 are
the auxiliary normalization lengths along the axes 2 and 3.

ν

i∂̂ eÂ– m–( )Ψ 0,=

Aα Bx1gα2,=

Ψ γ/π( )1/4

2 p0L2L3( )1/2
------------------------------=

× –
ξ2

2
----- i p2x2 p3x3+( )+ un,exp

un
2 n/2–

n!
----------

iC1 2nHn 1– ξ( )–

C2Hn ξ( )

iC3 2nHn 1– ξ( )–

C4Hn ξ( ) 
 
 
 
 
 
 

,=

ξ x1 γ
p2

γ
-------,+=

C j
2

j 1=

4

∑ 2 p0.=

p0 m2 p3
2 2γn+ +=
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At the Landau ground level, n = 0, the electron spin
is directed against the field and the spin coefficients are
given by

(10)

The resultant spinor u0(p) is independent of the coordi-
nate and satisfies the following equations:

(11)

This means that at the Landau ground level, the space
of physical momenta and γ matrices in fact degenerates
into the 2D space (0, 3) so that we can introduce the 2D
spinor v(p) and the 2 × 2 matrices  (α = 0, 3) with
the properties

(12a)

(12b)

(12c)

In this case,

in the representation equivalent to the standard repre-
sentation, while expressions (12) are independent of
representation.

The main reduction formula rendering the proce-
dure of calculation of traces and convolutions trivial
has the form

(13)

C1 C3 0, C2

p0 m+

p0 m+
--------------------,= = =

C4

p3

p0 m+
--------------------, p0– p3

2 m2+ .= =

p̂|| m–( )u0 0, p̂|| p0γ
0 p3γ

3,+= =

Π–u0 u0, Π–

1 iγ1γ2–
2

---------------------,= =

u0u0 2m, u0u0 Π– p̂|| m+( ).= =







γ̃α

p m–( )v 0, p p0γ̃
0 p3γ̃

3,+= =

ˆ ˆ

vv 2m, v v +γ0,= =

vv p m+( ).=

ˆ

γ̃0 1 0

0 1– 
 
 

, γ̃3 0 1

1– 0 
 
 

= =

γ̃α γ̃β g̃αβ γ̃5εαβ,+=

γ

(Ze)

e

(a) (b)
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γ γ

γe

ee

e e

ee
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where  = ,  = 1,  = (1, –1) is the metric
tensor and εαβ (ε30 = –ε03 = 1) is the absolutely antisym-
metric tensor in the subspace (0, 3). In particular, taking
into account relation

(14)

we can easily derive the following relations:

(15a)

(15b)

, (15c)

and so on.
The solution of the singular Dirac equation in a con-

stant and uniform magnetic field, i.e.,

(16)

in the same calibration (5a) can be presented in the
form [24]

(17)

(17a)

(17b)

(17c)

where the following notation has been introduced:

(18)

If the condition

(19)

is satisfied, Eq. (17c) assumes the form

Obviously, condition (19) is satisfied for diagrams
without the excitation of vacuum if the momenta of
external electron lines satisfy the condition

(19a)

γ̃5 γ̃0γ̃3 γ̃5( )
2

g̃αβ

εαβερσ g̃ασ g̃βρ g̃αρ g̃βσ–=

γ̃α γ̃β γ̃βγ̃α+ 2g̃αβ,=

γ̃α γ̃α1
…γ̃α2n 1+

( )γ̃α 0,=

1
2
---Tr γ̃5γ̃α γ̃βγ̃ργ̃σ( ) g̃αβερσ εαβg̃ρσ+=

i∂̂ eÂ– m–( )S x y,( ) δ x y–( ),=

S x y,( ) f x⊥ y⊥,( )G x y–( ),=

f x⊥ y⊥,( )
iγ
2
---- x1 y1+( ) x2 y2–( )– ,exp=

G z( )
1

2π( )4
------------- q4 e i qz( )– G q( ),d∫=

G q( )
1

γη
------ t

1 t+
1 t–
----------- 

 
η

d

0

1

∫=

× e δt– q̂|| m+( ) Π– 1 δt–( ) η
1 t+
-----------– η q̂⊥–

 
 
 

,

η
q||

2 m2–
2γ

-----------------, q||
2 q0

2 q3
2, δ–

q⊥
2

γ
-----,= = =

q⊥
2 q1

2 q2
2, q̂⊥+ q1γ

1 q2γ
2.+= =

η  ! 1

G q( ) 2e δ– Π–

q̂|| m+

q||
2 m2–

-----------------.=

pi( )||
2 m2 2γ,<–
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while the momenta of photon (axion, neutrino) lines
satisfy the condition

(19b)

In the case of diagrams with excitation of the vac-
uum, the following additional constraint must be
imposed in the case of convergence of integrals in the
2D (0, 3) momentum of the loop at the electron mass:

(19c)

Passing to 2D  matrices and convolutions in (0, 3),
we present Green’s function in the form

(20)

(20a)

(20b)

implying that the vertex factors in the matrix elements
of the diagrams can also be transformed to 2D factors
since

and differ from zero only for α = 0, 3.
In the evaluation of the matrix elements of the dia-

grams without vacuum excitation (e.g., a diagram of the
type of the Compton effect), the integral with respect to
transverse coordinates has the form

After the evaluation of Gaussian type integrals, it has
the form

(21)

where p2 and  are quasimomenta of the entering and

emerging electron lines, and k1, 2 and  are the trans-
verse momenta of the entering and the emerging lines
of zero-charge particles (like photons). In view of con-

ki p j( )|| ki( )||
2
 ! γ.,

γ @ m2 B @ B0( ).

γ̃

Ss x y,( )
γ

2π
------ f x⊥ y⊥,( )ϕ x y–( )⊥( )=

× 1

2π( )2
------------- q2 e iq x y–( )– Gs q( ),d∫

ϕ z⊥( )
γ
4
--- z1

2 z2
2+( )– ,exp=

Gs q( )
q m+

q2 m2–
-----------------,=

ˆ

Π– γα γαγ5,( )Π– γ̃α γ̃α γ̃5,( )

J x1 x2 y1 y2 f x⊥ y⊥,( )ϕ x y–( )⊥( )dd∫dd∫=

× 1
2
--- γx1

p2'

γ
-------+ 

 
2

– i p2' x2–
1
2
--- γy1

p2

γ
-------+ 

  2

–exp

---+ i p2y2 ik1y1 ik2y2 ik1' x1– ik2' x2–+ + .

J 4π π
γ
--- 

 
3/2

δ p2 k2 p2' k2'––+( )
k ⊥

2 k ⊥'
2

+
4γ

------------------–exp=

+
i

2γ
------ k2k1' k1k2'–( ) + 

i
2γ
------ p2 p2'+( ) k1' k1–( ) ,

p2'

k1 2,'
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straints (19a) and (19b), the first and second terms in
the exponent in Eq. (21) can be omitted, while the third
term has the same form for other diagrams of the pro-
cess also and can also be omitted as an insignificant
phase factor in the case of real external zero-charge
line. For example, the matrix element of a “2D” Comp-
ton effect taking into account formulas (6) and (20) can
be written in the form

(22)

(23)

where the form of the 2D Green’s function Gs in the
momentum representation is defined by expression (20b);
the properties of the 2D spinor v  are defined by formu-
las (12a)–(12c); and e and e' are the polarization vectors
of the initial and final photons. The expression for M
coincides with the matrix element of the “4D” Comp-
ton effect [30] upon a transition to 2D quantities and
convolutions and does not contain an explicit field
dependence. The cross sections and probabilities do not
contain the field dependence either since the integration
with respect to L2d /(2π) eliminates the δ(2) function.
If we consider cross processes of the type γγ  e+e–

and γ  γe+e–, additional integration with respect to
L2dp2/(2π) is equivalent, in accordance with Eqs. (6)
and (8), to the integration with respect to coordinate X1
of the center of the packet; i.e.,

(24)

where L1 is the effective normalization length along the
axis 1. Thus, the cross sections and probabilities of such
processes are linear functions of the field. It should also
be noted that “nonsterile” polarization states of a pho-
ton in the 2D version of the theory are states with the
electric vector in the momentum–field plane, which can
be presented in covariant form as

(25)

where ε is the absolutely antisymmetric tensor in the (0,
3) space introduced by us earlier.

It was mentioned in Section 1 that we consider here
the diagrams with an even number of vectorial and (or)
pseudovectorial vertices. A matrix element of a loop
diagram with a fixed arrangement of vectorial and (or)

f S i〈 〉 i 2π( )3δ 0 2 3, ,( ) p k p'– k'–+( )=

× M

2k02k0' 2 p02 p0'( )1/2
L2L3V

-------------------------------------------------------------,

M 4παv p'( )=

× eGs p k'–( )e'∗ e'∗ Gs p k+( )e+[ ] v p( ),

ˆ ˆ ˆ ˆ

p2'

L2

2π
------ p2d∫

L2γ
2π
-------- X1d

0

L1

∫
L1L2

2π
-----------γ,= =

eα
kε( )α

k2
-------------, e2 1,–= =
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pseudovectorial vertices corresponds to a tensor
(pseudotensor)

(26)

in which scalar produces in the exponent are four-
dimensional, the form of Ss is specified by formulas (20),
(20a), and (20b), k(j) are the momenta of external lines
of zero-charge particles, and

(27)

The integration over transverse coordinates can be car-
ried out by applying successively the following integral
relation:

(28)

(28a)

Since the form of ϕ((x – y)⊥ ) implies that

the exponent in Eq. (28a) is of the order of k⊥ /  and
 ≈ 1 in the given approximation in accordance with

condition (19b).
Thus, the 2(n – 1)-fold integration with respect to

transverse coordinates eliminates n – 1 factors γ/2π
appearing in the expression for Ss. The integration with
respect to the last pair of transverse coordinates leads to
the factor

Considering that we are left only with factor γ/2π and
integrating with respect to coordinates (0, 3) in for-
mula (26), we obtain

(29)

Mα1…αn
k 1( ) … k n( ), ,( ) x4

1… x4
nd∫d∫=

× i k j( )x j( )
j 1=

n

∑ Tr Γ̃α1

1( )
Ss x1 x2,( )[exp

× Γ̃α2

2( )
Ss x2 x3,( ) …Γ̃αn

n( )
Ss xn x1,( )] ,

Γ̃α
j( ) γ̃α γ̃α γ̃5,( ).=

z2
⊥ f x⊥ z⊥,( )ϕ x z–( )⊥( ) f z⊥ y⊥,( )ϕ z y–( )⊥( )d∫

× i kz( )⊥–[ ]exp
2π
γ

------ f x⊥ y⊥,( )ϕ x y–( )⊥( )=

× ϕ̃ x⊥ y⊥,( ) i
2
--- k x y+( )⊥( )– ,exp

ϕ̃ x⊥ y⊥,( )

=  
k ⊥

2

2γ
------–

1
2
--- k2 x1 y1–( ) k1 x2 y2–( )–[ ]+

 
 
 

.exp

x y–( )1 2,( )eff γ 1/2–∼

γ
ϕ̃

2π( )2δ 1 2,( ) k j( )

j 1=

n

∑ 
 
 

.

Mα1…αn
k 1( ) … k n( ), ,( ) 2πγδ k j( )

j 1=

n

∑ 
 
 

=

× q2 Tr Γ̃α1

1( )
Gs q( )Γ̃α2

2( )
Gs q k 2( )+( )…Γ̃αn

n( )
Gs q k 1( )–( )[ ] ,d∫
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where the 4-momentum is conserved. Here and below,
notation δ(k) is used to denote a 4D δ function.

In the case of an odd number of vertices, the addi-
tion of the term with reverse circumvention of the loop
to expression (29) gives zero irrespective of the form of

 (27); i.e., the extended Farry theorem holds in the
2D version as compared to the 4D version. This means
that in expression (17c), we must take into account the
next terms in the expansion in η (in reciprocal field); as
a result, the matrix elements of such diagrams are inde-
pendent of the field for B @ B0.

In the case of an even number of vertices, the result-
ant tensor can be obtained by reducing expression (29)
to symmetric form and does not vanish; i.e., the matrix
element is a linear function of the field.

It should also be noted that in strong magnetic fields
of the order of 1018 G, the actual expansion parameter
of perturbation theory in QED becomes a function of
the field (α ln2(B/B0), α(B/B0), α = e2 = 1/137); in such
cases, one must carry out summation of the series in
perturbation theory as was done in [31] for the main
types of compact diagrams in QED.

3. PHOTOGENERATION OF AXIONS 
AND NEUTRINOS AT NUCLEI

The Lagrangian describing the interaction between
an axion and an electron has the form

(30a)

and the Lagrangian in the electroweak model in the
contact approximation is given by

(30b)

(ce is a model-dependent constant of the order of unity),
while the structural constants can be expressed in terms
of the Weinberg angle:

for electron neutrinos and C(µ, τ) = C(e) – 1 for µ and
τ neutrinos. Taking into account the QED Lagrangian

(30c)

and using the computational algorithm for loop dia-
grams in a strong magnetic field described in Section 2,
we can obtain the following expression for the matrix
element of photogeneration of an axion:

(31)

Γ̃α
i( )

+a
ce
2 f
------ ∂a

∂xα-------- Ψeγαγ5Ψe( ),=

+ν
G

2
------- Ψeγα CV CAγ5+( )Ψe[ ]–=

× Ψνγα 1 γ5+( )Ψν[ ] ,

CV
e( ) 1

2
--- θWsin

2
, CA

e( )+ 1
2
---= =

+ eAα ΨeγαΨe( )=

f S i〈 〉 a
eαe'∗ α'Aβ κ( )

2q02k02k0'( )1/2
V3/2

---------------------------------------------Mαα 'β,=
JOURNAL OF EXPERIMENTAL
(32)

where Jαα 'β is a tensor symmetrized in photon lines in
the (0, 3) subspace:

(33)

In formula (31), V is the normalization volume,
Aβ(κ) is the Fourier transform of the external field taken
into account in the first Born approximation for the
external field, which is given by

(34)

in the case of a Coulomb field, κ = k – k' – q is the trans-
ferred momentum, k and k' are the momenta of the ini-
tial and final photons, and q is the momentum of an
axion.

The form of the tensor Jαα 'β in the low-energy
approximation in the electron mass, disregarding the
small mass of an axion, was defined in [32], where the
three-photon decay of an axion was investigated:

(35)

(35a)

where

in view of the 2D nature of convolutions.
Defining nonsterile polarization states of photons by

formula (25) and taking into account relations (14) and
(34), we obtain

(35b)

In this case, the probability of photogeneration of an
axion at a nucleus per unit time, which is determined by
the conventional methods, can be written in the form

(36)

(37)

Further, we will be interested in the axion emission
intensity from unit volume for the concentration n0 of

Mαα 'β
e3ceγ
6πf

------------Jαα 'β k k' κ, ,–( ),=

Jαα 'β k k' κ, ,( )
i
π
--- p2d∫–=

× 1
2
---Tr γ̃5qGs p( )γ̃αGs p k+( )[

× γ̃α'Gs p k k'+ +( )γ̃βGs p q–( ) ] 2 transpositions.+

ˆ

Aβ κ( ) gβ0

8π2δ κ0( ) Ze( )
k2

---------------------------------,=

Jαα 'β k k' κ, ,–( )
4q2

15m6
------------ kε( )α k'ε( )α' κε( )β,–=

Jαα 'βkα Jαα 'βk'α' Jαα 'βκβ 0,= = =

q2 q0
2 q3

2–≡ q⊥
2=

kε( )α

k2
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k'2
--------------Jαα '0 k– k' κ, ,( )

4q⊥
2

15m6
------------k ⊥ k ⊥' κ3.=

Wa

8α2Zceγ
45 f m6

---------------------
 
 
 

2
k ⊥

2

2k0 2π( )5V
-------------------------- k'3d

2k0'
--------k ⊥'

2
Ia,∫=

Ia
q3d

2q0
--------δ k0 k0' q0––( )

q⊥
4 k3 k3'– q3–( )2

k k' q––( )4
---------------------------------------.∫=
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001



PHOTOGENERATION OF NEUTRINOS AND AXIONS 691
nuclei and in accordance with the Planck distribution of
the equilibrium emission field, which has a physical
meaning. It can easily be seen that this quantity has the
form

(38)

We disregard the mass parameter (1) in view of its
smallness. For this reason, the temperature dependence
can be factorized after corresponding substitutions, and
the final result can be written in the form

(39)

where the quantity  is a number presented in integral
form:

(40)

(40a)

The dimensionless integration variables correspond to
the following variable in the momentum space:

(40b)

Numerical integration gives  = 0.0046.

The matrix element of the process of radiation-
induced photogeneration of a neutrino pair at a Cou-
lomb center with the Fourier transform Aβ(κ) can be
obtained by using expression (30b) and (30c) and has
the form

(41)

Sa

8α2Zceγ
45 f m6

---------------------
 
 
 

2
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2π( )8
------------- k3d

2k0
--------

k ⊥
2

e
k0T
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-----------------∫=

× k'3d
2k0'
--------k ⊥'

2
k0 k0'–( )Ia.

k0' k0≤( )
∫

Sa
691 2π( )7

728 453×
-----------------------

α4Z2ce
2

f /m( )2
----------------- T

m
---- 

 
12 B
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----- 

  2
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1

2π
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1
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0
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----------------------------------------------------------------,d
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1

∫

n3 x εy– z 1 ε–( ),–=
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k0 k0'–
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k0'
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----,= =
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〉

Ĩa

f S i〈 〉 ν i
eαe'∗ α'Aβ κ( )^β'

2k02k0' 2q02q0'( )1/2
V2

--------------------------------------------------Mαα 'ββ' ,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where

(42)

(43)

where the 2D tensor Jαα 'ββ' symmetrized in photon lines
is given by

(44)

Q = q + q' being the total momentum of the neutrino.

Calculations similar to those made in [32] give, in
the low-energy approximation, the following expres-
sion:

(45)

with properties in α, α', and β indices similar to those
of expressions (35a) and (35b). Taking into account the
value of the integral over neutrino momenta (mν = 0),

and form (34) of Aβ(κ), we can present the probability
of photogeneration of a neutrino pair at a nuclei per unit
time in the form

(46)

(47)

^β'
uν q( )γβ' 1 γ5+( )uν q'–( )[ ] ,=

Mαα 'ββ'
e3Gγ
3 2π
--------------Jαα 'ββ' k– k' κ, ,( ),=
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i
π
--- p2 1

2
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× Gs p( )γ̃αGs p k+( )γ̃α'Gs p k k'+ +( )
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Jαα 'ββ' k– k' κ, ,( )
4

15m6
------------ kε( )α k'ε( )α' κε( )β=
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while the emission intensity has the form

(48)

A result similar to formula (39) has the form

(49)

with the integral representations of the coefficients

(50a)

(50b)

(50c)

(50d)

The remaining notation of dimensionless variables is
the same as in expressions (40a) and (40b) after the
substitution q3  Q3. As a result of numerical integra-

tion, we obtained the following values:  ≈ 2.2 × 10–4

and  ≈ 3.2 × 10–4.
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4. INELASTIC SCATTERING 
OF A PHOTON BY A PHOTON

The matrix element of inelastic scattering γγ  γa
with the generation of an axion in the low-energy
approximation in the electron mass can be obtained
from the general relations (29), (30a), (30c), (33), and
(35); in the case of allowed nonsterile polarization
states (25) of photons, it has the form

(51)

(52)

where k and k' are the momenta of the initial photons,
and k" and q are the momenta of final photon and an
axion.

The probability of the process per unit time is
defined as

(53)

where I is the invariant in subspace (0, 3),

(54)

A quite cumbersome integration leads to

(55)

Dividing Eq. (53) by the factor

and taking into account expression (55), we obtain the
scattering cross section.

In order to find the axion emission power, we must
calculate the explicit form of the 2D vector in (0, 3):

(56)

Calculations give

(57)
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Thus, the emission power from unit volume can be pre-
sented in the form of an integral over the phase volume
of initial photons in the equilibrium radiation field:

(58)

Integration with respect to angular variables with the
factorization of the temperature dependence gives

(59)

The value of the double integral in formula (59) found
as a result of numerical calculations turned out to be
approximately equal to 8.7 × 107.

The final result for the emission power can be writ-
ten in the form

(60)

In accordance to the results obtained in [25], the corre-
sponding expression for the neutrino emission power
can be written in the form

(61)

5. DISCUSSION

In order to estimate the role of the effects under
investigation, we must set preliminarily the range of
temperatures and magnetic field induction, in which the
contribution of the diagrams considered above exceeds
the contribution from tripole diagrams.

The neutrino emission power in the case of photo-
generation at nuclei due to the contribution of triangu-
lar diagram in fields with induction B @ B0 in the Fermi
scheme is approximately equal to [24]1

(62)

1 In [24], the factor (2π)–3 is omitted in formula (5); the corre-
sponding correction should be introduced in the subsequent for-
mulas.

Sa
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f
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2 T

m
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Sν 10 1.24CV
2 1.20CA

2+( )≈

× α3 Gm2( )2 B
B0
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  2 T
m
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m5.

Sν
F( ) 0.6α3Z2 Gm2( )2 T

m
---- 
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n0m2( ).≈
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Assuming that CV ≈ CA ≈ 1 for obtaining an estimate on
the basis of formula (49), we get

(63)

If T = 0.1m, the contribution of the quadripole diagram
to the emission power for the maximum admissible
value of B ~ 104B0 might be several times larger than
the contribution of the tripole diagrams. If we assume
that formula (63) also gives a correct order-of-magni-
tude estimate of the result for temperatures T ~ m typi-
cal of early stages of the evolution of supernovas, the
process of radiation-induced photogeneration starts
dominating even for B ~ 102B0.

The contribution of the triangular diagram to the
inelastic process γγ  ν  in the Fermi scheme in
fields with induction B @ B0 is given by [33]

(64)

Comparing this expression with the contribution of the
quadripole diagram (61), we again assume that CV ≈
CA ≈ 1 and obtain the relative quantity

(65)

i.e., the possible range of variation of parameters B and
T in the region where Sν(γγ  γ(ν )) dominates is
slightly wider.

Let us now compare the mechanisms of neutrino
luminosity under investigation with the traditional
mechanism associated with modified URCA process
whose power can be estimated by the order of magni-
tude as

(66)

where ρ0 = 2.8 × 1014 g/cm3 is the characteristic nuclear
density and ρ is the average density of the star. Result (49)
can be presented in a similar form (CV ≈ CA ≈ 1):

(67)

Assuming that estimate (66) is valid for T ~ m and tak-
ing into account the mean value of Z2/A in the range 1–
10 [34], we find that the contribution from the mecha-
nism of radiation-induced photogeneration of neutrinos
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at nuclei competes with the URCA process for B ~
(103–104)B0. This is also in accord with the comments
to formula (63).

The emission power defined by formula (61) has the
order of magnitude

(68)

and does not compete with the power of the URCA pro-
cess even for B ~ 104B0, T ~ m.

Thus, for the above values of parameters B and T for
which the process of radiation-induced photogenera-
tion may become predominant, the lower boundary of
the scale of the PQ symmetry breaking and the upper
boundary of axion masses can be obtained from the
condition

(69)

Taking into account formulas (3), (39), and (49), we
obtain

(70)

(71)

Under the assumed values of T ~ m, B ~ (103–104)B0,
and for ce ~ 1, this does not contradict the possible
range (4) obtained from different considerations.
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Abstract—We consider the bremsstrahlung of electrons as they collide with ions in a strong laser field. The
bremsstrahlung spectrum has been found to be enriched in sufficiently strong fields. Particular attention is given
to the coherent bremsstrahlung component. We propose a qualitative model that explains our results. The pos-
sibility of experimentally observing the coherent bremsstrahlung component in a strong field is discussed.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The traditional interest in electron-ion pair colli-
sions in strong electromagnetic fields observed for
about 40 years [1–10] has become particularly active in
recent years in connection with the invention of power-
ful short-pulse lasers with energy densities up to 1018–
1021 W/cm2, which correspond to ultrarelativistic elec-
tron oscillation energies.

The physical phenomena that arise in this case when
studying the interaction of such fields with ordinary and
cluster plasmas and the possible applications (from
laser controlled thermonuclear fusion to the transfor-
mation of optical radiation into X-ray radiation) have
turned the problem of pair collisions in plasma from a
purely academic one to an important applied problem.

Theoretical studies of electron-ion collisions are
customarily carried out on the basis of three models. All
these models are based on the pair-collision approxima-
tion in the plasma theory; i.e., it is assumed that all
parameters of the collision integral for a single-particle
distribution function can be determined by solving the
problem of the scattering of a beam of noninteracting
electrons by a single ion. The small-angle scattering
model [3–7] gained widespread acceptance; in this
model, a rectilinear trajectory is taken as the unper-
turbed electron trajectory, and all effects are estimated
using the theory of perturbations along this trajectory.
Clearly, in this approximation, electrons collide with
ions at uncorrelated times. More specifically, for a
beam with an initially uniform distribution in field
phase, the distribution of collision times in field phase
will also be uniform. In addition, this approximation
disregards the possible attraction of the electron to the
ion during scattering; i.e., the electron cannot greatly
change its impact parameter. A quantum modification
of this model (Born approximation [7]) gives no quan-
tum corrections, because only the first order is retained
in the semiclassical expansion.
1063-7761/01/9304- $21.00 © 20695
Another model (low-frequency approximation [8–
18]) describes strong collisions with large scattering
angles. In this case, an external, sufficiently strong elec-
tric field is assumed to accelerate the electron before
and after collision, and only the statistic field of the
nearest ion is significant during the instantaneous scat-
tering. As in the small-angle scattering model, the col-
lisions are assumed to occur at random times.

All the above approximations yielded results that
differed only by a logarithmic factor. The assumptions
that the collisions were uncorrelated and that the elec-
tron could not change its impact parameter as it oscil-
lated near the ion appear to have been mainly responsi-
ble for this difference. This has recently been shown
particularly clearly by Silin [4], who obtained the same
results as those in the papers cited above directly from
the Landau collision integral again with a logarithmic
accuracy. The close agreement between the results
yielded by the three different (at first glance) approxi-
mations was apparently the reason why interest in this
subject has waned for more than 30 years.

The importance of taking into account the change in
impact parameter during oscillations can be understood
from the following considerations. Let an electron with
an impact parameter ρ impinge on an ion along the
electric field of a wave. Flying past the ion at this dis-
tance with a large velocity,

it is scattered through a small angle,

where e and eZ are the electron and ion charges, respec-
tively; and

v osc
eE
mω
--------,=

δθ 2e2Z

mρv osc
2

------------------∼
2bosc

ρ
------------ ! 1,≡

bosc e2Z/mv osc
2=
001 MAIK “Nauka/Interperiodica”



 

696

        

BALAKIN, FRAIMAN

                                                                      
is the Rutherford radius estimated from the oscillation
velocity.1 As a result, the electron acquires a transverse
velocity and reduces its impact parameter at the next
passage by the ion in half the laser-field period by

where rosc = eE/mω2 is the electron oscillation radius. In
particular, if this transverse displacement is equal to the
initial impact parameter,

then the electron suffers a strong scattering with a large
change in drift energy. At large electron oscillation
velocities and oscillation radii, the corresponding cross
section rEbosc significantly exceeds the scattering cross
section, whose value is estimated in all the above mod-

els via the square of the Rutherford radius  from the
oscillation velocity.

As we showed in [11], allowance for multiple elec-
tron oscillations near the ion and, as a result, a larger
change in the impact parameter during scattering leads
to even stronger effects. Thus, the main element of nov-
elty in this and previous papers is as follows. The very
concept of strong field for electron scattering by ions is
defined not only by the oscillation-to-drift velocity ratio
but also by yet another parameter: the ratio of the elec-
tron oscillation radius to the size of the region where
the ion Coulomb field dominates, rosc/rE:

(1)

Here, the frequency ω is in 1015 Hz, the power P is in
1018 W/cm2, the electron temperature T is in electron-
volts, and the wavelength λ is in microns. More specif-
ically, if the two parameters given by expression (1) are
large, then the fields are said to be strong. If, however,
this is not the case, then other regimes take place. If the
oscillation velocity is large compared to the drift veloc-
ity while the oscillation radius is small compared to rE

(for example, in the case of a high radiation frequency),
then an averaged ponderomotive description should be
developed. Similarly, if the latter parameter is large
while the former parameter is small, then the results are
similar to those for a weak field, because the drift in a
period significantly exceeds the oscillation radius.

1 Recall that the impact parameter at which the electron impinging
on an ion with this velocity is scattered through an angle of π/2 is
commonly called the Rutherford radius for a given velocity v.

π/ω( )v oscδθ 2πroscbosc/ρ @ bosc,=

2πroscbosc 2πrE≡  @ bosc,

bosc
2

v osc

v
--------- 810

P

Tω
------------ 130

Pλ
T

-----------,≈ ≈

rosc

rE

-------- 1.3 104P3/4

ω2
-------- 3.5 102P3/4× λ2.≈×≈
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In our previous papers, we focused on the effects
attributable to an appreciable change in impact param-
eter during scattering.2 Here, we dwell on the subtler
effects of such a scattering that were touched upon in
[11] only superficially. We will discuss the mechanism
of electron separation by phases. The point is that
because of the different attraction efficiencies of elec-
trons with different total velocities, which are deter-
mined by the field phase at the time when the electron
is closest to the ion during each oscillation, electrons
can group together. This, in turn, can enhance the
energy exchange and increase the effective cross sec-
tion, as well as produce new and, occasionally, unex-
pected results. Unfortunately, the analytic model of
such attraction is complex. Therefore, we will mainly
rely on numerical simulations and simple estimates.

Our numerical analysis of electron–ion collisions
shows that correlation effects play an important role
during collisions in strong fields [11]. In this case, an
oscillating electron repeatedly returns to the same ion
while preserving and accumulating the phase memory
of the preceding collisions. These correlated returns
result, on the one hand, in an increase in the electron
attraction by the ion and, on the other, in an electron
grouping at certain field phases followed by a strong
scattering of the formed electron clusters by the Cou-
lomb center. The increase in attraction must cause the
bremsstrahlung to intensify, while the grouping can
give rise to coherent radiation from the plasma. Our
main goal is to investigate the peculiarities of the
bremsstrahlung spectra.

All direct calculations of the bremsstrahlung spectra
for electron–ion collisions were performed in the
dipole approximation. This implies that we restrict our
analysis to nonrelativistic laser-field intensities. In this
case, the pumping field may be considered uniform on
scales of the region significant for collisions that do not
exceed the electron oscillation radius [11], i.e.,

where k0 = ω0/c, ω0 is the field frequency. As in all the
papers cited above, the condition of the pair-collision
approximation is assumed to be satisfied; i.e., the
plasma is considered to be rarefied. This approach
allows the main plasma collision parameters to be
defined in terms of data on the scattering of a beam of
noninteracting electrons oscillating in a strong field by
a single ion. In general, unless otherwise specified, we
will consider plasma that is transparent to laser radia-
tion (ω0 @ ωp).

This paper is structured as follows: First, we intro-
duce general expressions for the parameters of the inco-
herent and coherent radiations during electron–ion col-
lisions in a strong laser field (Section 2). In Section 3,
we present our numerical simulations of these parame-

2 The idea of the importance of allowing for multiple returns of an
electron to the same ion has been recently developed in [15]
when calculating the multiple ionization probability.

rosck0 ! 1,
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ters and show that the incoherent radiation intensity
significantly increases compared to plasma radiation of
the same temperature without an external field. Here,
we also present spectra for the coherent collisional-cur-
rent component. In conclusion, we qualitatively discuss
the main peculiarities of the spectra. In particular, we
show that both the increase in incoherent intensity and
the major contribution to the radiation at laser-field har-
monics are determined by a small fraction of the elec-
trons that are mostly scattered backward (relative to the
laser field) and that, as a consequence, significantly
change the drift velocity. Here, we also estimate the
applicability conditions for our results and interpret the
possible peculiarities of an experimental detection of
the effects under study.

2. BASIC RELATIONS

If the pair-collision approximation is used to deter-
mine the parameters of electron scattering by an ion,
then it will suffice to consider the scattering by an ion
of an individual electron (Fig. 1) with charge e and drift
velocity v– in the strong uniform electric field of a wave
polarized along the z axis,

(2)

in terms of the classical equation of motion. We restrict
our analysis to the nonrelativistic limit. In this case, the
electron radiation may be assumed to be a dipole one.
In addition, when considering the motion of a nonrela-
tivistic electron, in view of the condition k0rosc ! 1, the
wave field may be assumed to be uniform on collision
scales and the coordinate of the nearest ion may be sub-
stituted for the electron coordinate R in (2). The equa-
tion of motion then takes the form

(3)

Equation (3) has the following characteristic scales:

(4)

(5)

In dimensionless variables with scales (4), the equa-
tion of motion is (the notation is the same)

(6)

As in [11], it is convenient to pass to an oscillating
coordinate system:

(7)

E R t,( ) E ω0t k0– R⋅( )cos z0,=

mṘ̇ Ze2R

R3
------------- z0eE ωt.cos+–=

rE
eZ
E
------ boscrosc,= =

ωE
eE3

m2Z
----------4 , v E

Ze3E

m2
------------4 .==

Ṙ̇ R

R3
-----–= z0 Ωt.cos+

r R=
z0

Ω2
------ Ωt.cos+
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The equation of motion for the electron drift coordinate
r (7) then takes the form

(8)

In the absence of a Coulomb potential, the drift trajec-
tory is a straight line. Of course, this trajectory can
become very complex in a periodically oscillating
potential [11]; hence the effects analyzed in the paper.

Equations (6) and (8) include only one dimension-
less parameter, the dimensionless frequency

(9)

Another parameter of the problem is the ratio of the
initial drift velocity of the scattered electron to vE

from (4).
According to (1), the region in which the following

conditions are simultaneously satisfied is below called
the region of strong field. (i) The electron drift velocity
is small compared to the electron oscillation velocity.
(ii) The field amplitude is sufficiently large [11], i.e., in
view of (9),

(10)

The first condition implies that an electron can make
multiple oscillations when moving near an ion in the
wave field. The second condition is the condition for
the size of the region with a significant ion Coulomb
field being small compared to the electron oscillation
amplitude.

Let us determine the electron radiation during colli-
sions in the above approximations. In the absence of a
laser field, the effective radiation, which is estimated as
the spectral density of the incoherent radiation from the

ṙ̇ ∇ 1

r
z0

Ω2
------– Ωtcos

----------------------------------.=

Ω ω m2Z

eE3
----------4

ω0

ωE

------
bosc

rosc
--------4

rE

rosc
--------.= = = =

v
v osc
--------- Ωv  ! 1,

ω
ωE

------ Ω ! 1.= =

Fig. 1. A typical electron trajectory (solid line), the drift tra-
jectory (dotted line), and parameters of the scattered elec-
tron (ρ is the impact parameter, and θ is the angle between
the velocity and field E).
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beam of electrons scattered by a single ion [13], is cus-
tomarily analyzed in problems. We use a natural gener-
alization of this characteristic by considering the radia-
tion produced by the particle drift, i.e., the spectral den-
sity of the incoherent radiation from a beam of
oscillating electrons with a given initial drift velocity:

(11)

where

is the Fourier spectrum of the dipole moment for an
individual electron; ϕ is the entrance phase, which is
defined as the field phase at the time when the electron
passes the plane of impact parameters; in what follows,
〈…〉ϕ denotes averaging over the entrance phase. The
plane of impact parameters r (Fig. 1) is perpendicular
to the initial electron velocity vector and lies so far from
the ion that the effect of the Coulomb field on the
motion in this region may be ignored.

In particular, using this parameter for plasma with
electron density ne and ion density ni, we have for the
spectral density of the incoherent radiation from a unit
plasma volume

(12)

For numerical simulations, it is convenient to intro-
duce a dimensionless quantity χinc:

(13)

As a parameter of the coherent radiation, we may
choose the coherent cross section χcoh, which is propor-
tional to the coherent collisional-current density. Let us
write out an expression for the amplitude of the nth har-
monic for this current (see the Appendix):

(14)

The introduced quantity χcoh has the dimensions of area
multiplied by velocity, and all parameters of the coher-
ent radiation are expressed in terms of this quantity. As
is clear from (14), the collisional-current density is pro-
portional to the product of the electron and ion densi-
ties. Qualitatively, this is explained by the fact that the
electron current itself is proportional to the product of
the electron density by the change in electron velocity
averaged over the initial conditions, which, in turn, is
proportional to the collision frequency and, conse-
quently, to the ion density.

χω
2e2ω4

3c3
-------------- rω

2〈 〉 ϕd2r,∫=

rω r τ( )eiωτ τd

∞–

∞

∫=

dI inc χωneniv Tdω.=

χ inc ω( ) χω
3c3

2e2
-------- 1

rE
4 ωE

2
------------.=

jn
col eneniv –

2π
ω
------ccoh nω0( ),=

ccoh ω( ) ω2 rω〈 〉 ϕ r.d∫=
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Note that, in contrast to the incoherent scattering
cross section (11), the introduced coherent scattering
cross section χcoh at pumping-field harmonics is com-
plex-valued. The phase of this quantity corresponds to
the phase shift between the pumping field and the
coherent harmonic of the collisional current. Similarly,
it is convenient to introduce a dimensionless quantity

 for calculations:

In what follows (as previously), the subscript “new” is
omitted.

Below, we focus on calculating the spectral param-
eters χinc (13) and χcoh (14).

3. SPECTRAL PARAMETERS

To determine the spectral parameters, we calculated
the bremsstrahlung cross sections given by relations
(11) and (14) for the coherent and incoherent cases.
During our numerical experiment, we computed the
dipole moment of electron beams with drift velocities
from 0.03vosc to 3vosc and with impact parameters up to
5rosc. The computations were performed for five fre-
quencies, Ω = 0.1, 0.2, 0.32, 1, and 3.2. The electrons
were assumed to be initially uniformly distributed in
entrance phase. The initial distance from the Coulomb
singularity to the leading particle center was chosen to
be 3rosc; a particle was considered to have left the inter-
action region when the leading center receded from the
Coulomb singularity by more than 3rosc. Particular
attention was given to the choice of a sufficient number
of particles in the field period. The computations were
performed for the longitudinal (v– || E) and transverse
(v– ⊥  E) scattered beams. We computed the bremsstrahl-
ung during electron scattering by an ion up to the 20th
harmonic of the laser-pumping field.

As was shown in [11], the main difference of colli-
sions in strong fields is the appearance of a sizable frac-
tion of electrons scattered through large angles. Their
appearance is associated with the strong attraction of
the electron due to its multiple correlated oscillations
about the ion (Fig. 1). Because of this adiabatic pulling
(we call it the parachute effect), the electrons fall within
a close vicinity of the ion and are subsequently scat-
tered through large angles.

In Fig. 2, the collision energy and phase are plotted
against the impact parameter and initial phase of the
scattered electrons. Clearly, these dependences are
periodic in initial phase, because the pumping field is
periodic. Note an important peculiarity of the depen-
dence of the particle drift energy on impact parameter,
∆w(ρ). In strong fields, an electron can greatly change
its energy due to the parachute effect (darker shade in
panel (Fig. 2a)) even if its initial impact parameter was

χcoh
new

χcoh
new χcoh

rE
3 ωE

------------.=
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Fig. 2. Collision energy (a) and phase (b) versus impact parameter and initial entrance phase of the scattered electrons for v  = 1 and
Ω = 0.1 (longitudinal scattering, v– || E).
much larger than the Rutherford radius bosc estimated
from the particle oscillation velocity. Similarly, Fig. 2b
shows the grouping effect. Here, the same shade corre-
sponds to the same phase of the last (closest) electron
passage near the ion corresponds. The two effects are
seen to take place in the region of a significant change
in impact parameter during the scattering.

The boundary of this region can be easily estimated
from simple analytic considerations. Indeed, in the
oscillating coordinate system (7) and (8), the ion oscillates
and the unperturbed electron trajectory is a straight line. In
each return of the ion, the drift trajectory slightly changes
its slope (instantaneous collision) and approaches the ion.
To gain a larger drift energy (to significantly change its
longitudinal momentum), the electron must fall within a
close vicinity of the ion, such that

where bosc = e2Z/mv 2 is the Rutkerford radius of elec-
tron and v  is electron velocity.

Let us estimate the maximum impact parameter at
which this is possible. We restrict ourselves to longitu-
dinal scattering. Let an electron be scattered by an ion
through a small angle

In that case, it must have time to pass in a close vicinity
of the ion for a large change in energy. This is possible
if it can come to a distance equal to its initial impact
parameter in the time it takes to traverse the ion oscilla-
tion radius ρ; i.e., the following condition must be sat-
isfied:

r bosc≤  ! bv  ! rosc,

δθ bv /ρatt∼  ! 1.

ρatt/2rosc δθ≈
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(15)

Thus, the parachute effect increases the area from
which particles can be scattered through large angles
and, accordingly, can radiate more strongly (Fig. 3).

First, we see in Fig. 3 a significant increase in the
spectral energy density of the bremsstrahlung in strong
fields. Thus, whereas the estimate

is valid in conventional models in the plateau region,
our results are well fitted by the dependence

for longitudinal incidence. We see an increase in the
bremsstrahlung with pumping-field intensity rather
than its decrease, as in conventional models.

This result can be interpreted as follows. It implies
that not all of the plasma electrons but only a relatively
small percentage of them scattered through large angles
produce the bulk of the bremsstrahlung. Previously
[11], we called these electrons representative electrons.
Indeed, the average change in their velocity is of the
order of the oscillation velocity 1/Ω; they are collected
from the area

ρatt 2bv rosc≈ 2
Ωv
---------.=

χ 1

v 2
------∝

χ π
2Ω2v 2
----------------∝

ρatt
2 1

Ω2v 2
-------------∼
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Fig. 3. Spectral energy density of the bremsstrahlung versus impact parameter: (a) numerical simulations and (b) conventional models.
and their fraction is of the order of Ω2. Their motion
[11] is a smooth pulling toward the ion and an instanta-
neous collision with an abrupt change in particle
momentum (and energy). Thus, they radiate energy
with a spectral density of the order of

(16)

which is comparable to the value that we found by
numerical simulations.

Note that, according to [13], the radiation intensity
for a particle moving in the way described above must
be equal to the square of the change in velocity. For rep-
resentative electrons, this quantity is approximately
equal to the change in particle energy. In other words,
the incoherent bremsstrahlung cross section must be
equal to the total change in beam energy, as our compu-
tations show. For a beam of particles with the initial
velocity perpendicular to the electric vector, the change
in energy is much smaller [11]. Accordingly, the spec-
tral power density of the radiation from such particles
is also weaker:

(17)

χ 1
Ω
---- 

 ≈
2 1

Ω2v 2
-------------Ω2 1

Ω2v 2
-------------,=

χ 1

v 2
------.≈

θ

logχinc

103

0 0.5 1.0 1.5

102

101

100

Fig. 4. Incoherent bremsstrahlung cross section versus
angle between the initial beam velocity and the field for v  = 1
at various pumping-wave frequencies: Ω = 1 (weak field),
solid line; Ω = 0.316, dashed line; and Ω = 0.1, dotted line.
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Integration over the solid angle in the velocity space
of impinging particles yields a dependence of the inco-
herent bremsstrahlung cross section in the form (17).
Thus, the formula for conventional models from the
weak-field region remains valid, although there is a
fraction of the particles that radiate much more
strongly. Here, the situation is similar to the situation
with energy exchange [11] (Fig. 4).

Figure 2b reflects another important peculiarity of
the electron scattering in strong fields. It shows the field
phase at the time of electron–ion collision (ϕcol is the
collision phase) taken in the modulus of 2π, the pump-
ing-field period, as a function of their impact parame-
ters and initial phase. The same shade corresponds to
the same collision phase. In the figure, we see alternat-
ing regions (black and white) with the sharp transitions
between them corresponding to representative elec-
trons. This implies that almost all plasma electrons
come close to the ion3 at one of these two pumping-
field phases. This phase grouping is prepared by the
adiabatic electron drift (parachute effect). Recall that in
conventional models [2–10], the collisions are assumed
to be uniformly distributed in field phase.

Figure 5 demonstrates the grouping effect in more
detail. It shows the particle distribution in collision
phase as a function of Ω and v.

It is easy to see that as the vosc/vT ratio increases, all
electrons are collected into two narrow peaks near the
maxima of the oscillation velocity. The width of these
peaks is proportional to the vT/vosc  ratio. We see from
Fig. 5a that at a large thermal electron velocity, vT >
vosc , the phase grouping vanishes and the conventional
collision model for a weak field becomes applicable.

The width of the peaks in the electron distribution
function in collision phase determines the width of the
coherent bremsstrahlung spectrum. The narrower the
peaks in the distribution function, the wider the coher-
ent bremsstrahlung spectrum (cf. Fig. 6). Thus, the
number of peaks increases with vosc/vT. As expected,
the coherent bremsstrahlung vanishes at vT > vosc .

3 A more detailed analysis indicates that all electrons from the
attraction region come within an ion vicinity of size rE by the col-
lision time.
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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The presence of mostly odd harmonics in the coher-
ent current spectrum stems from the fact that the group-
ing is realized twice during one half-period at field
phases shifted from each other by half the period (Fig. 5).
This means that during each grouping peak, the elec-
trons are scattered in antiparallel to the instantaneous
oscillation velocity. Thus, the collisional current in
each period is represented as two peaks of opposite
polarity shifted by half the period.

The results of our numerical simulations for the
cross section of coherent bremsstrahlung at the nth har-
monic in strong fields can be fitted by the dependence

(18)

This parameter can be estimated [cf. the estimate of
the incoherent radiation intensity (16)] from the current
of representative electrons as the product of their veloc-
ity vosc by the cross section from which they are col-

lected π , by their fraction from the entire number of
electrons Ω2, and by the factor Φ that characterizes the
degree of particle grouping in collision phase:

(19)

Note that Φ(v Ω) is bell-shaped: it is equal to unity
for v Ω ! 1 and rapidly decreases for v Ω ≥ 1. Unfortu-
nately, the domain of parameters in our bremsstrahlung
computations was chosen in such a way that we could
not find a unique velocity dependence of the cross sec-
tion χcoh, because the parameter v Ω fell within the
domain of inflection of Φ(v Ω), while computations

χcoh
1

Ωv 2n
--------------.∝

ρatt
2

χ v oscρatt
2 Ω2Φn Ωv( )≈

Φn Ωv( )
Ωv 2

--------------------.=
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with very low drift velocities are difficult to perform.
We give the velocity dependence in (18) as ∝ 1/Ωv 2,
because both simple and more complex models yield
values for χcoh that are in good agreement with those
obtained in our computations.

In conclusion, two important peculiarities of the
coherent radiation (18) should be noted:

(i) The radiation has a wide spectrum that decreases
as 1/n, where n is the harmonic number.

(ii) A small percentage of the representative elec-
trons mainly contribute to the coherent radiation.

4. CONCLUSION

In conclusion, we list those important peculiarities
that have been revealed by our numerical simulations.

First, the impact parameter (the minimum distance
to the ion in each field period) was found to decrease,
because the electron can be attracted to the ion during
several successive oscillations about it. Since the elec-
tron approaches the ion during each passage and, con-
sequently, the Coulomb field increases, the scattering
angle during each subsequent oscillation will be larger
than the previous one. It should be noted here that
although almost all scatterings when the electron
passes by the ion may be considered small-angle ones,
the total scattering is not necessarily a small-angle one
(primarily for the representative electrons). In other
words, when simulating electron-ion collisions, we
cannot restrict ourselves to the small-angle approxima-
tion [11] but must also take into account the possibility
of a large change in angle and small impact parameters
during the last collision.
SICS      Vol. 93      No. 4      2001



702 BALAKIN, FRAIMAN
This remark is of particular importance in under-
standing the bremsstrahlung-related effects. The point
is that the contribution of an individual electron to the
bremsstrahlung is determined by the change in its
momentum rather than in its energy. In particular, at
frequencies that are low compared to the collision time,
the amplitude and intensity of the radiation field are
proportional, respectively, to the change in the momen-
tum itself and the square of this change [13]. That is
why the particles with a large change in longitudinal
momentum (along the laser field) mainly contribute to
the radiation in our case, although their percentage is
low. These are the representative electrons. A sizable
fraction of these particles are scattered with a large
component of the change in momentum (of the order of
mvosc) in the direction opposite to the oscillation veloc-
ity at the time of the last collision. Given that the inco-
herent bremsstrahlung cross section in the instanta-
neous-collision model (at low frequencies), according
to [13], is proportional to the sum of the squares of the
changes in momenta along and across the pumping
field averaged over the field phase and integrated over
the impact parameters, we immediately obtain esti-
mates (16), which are in good agreement with our
numerical results.

Before analyzing the radiation at harmonics, we
make two more useful remarks associated with incoher-
ent-bremsstrahlung studies.

First, the bremsstrahlung spectrum in strong fields
corresponds to the white-noise spectrum; i.e., it is
essentially independent of frequency, including low
frequencies (Fig. 5). This is because the representative
electrons responsible for this radiation can emerge only
from a bounded region of impact parameters (parachute
region). This region has a sharp boundary [12], so the
Coulomb-logarithm effect responsible for the logarith-
mic divergence of the bremsstrahlung spectrum in con-
ventional models vanishes.

The logarithmic divergence in the Landau collision
integral and in the bremsstrahlung theory is known to
be associated with calculations of the transport colli-
sion cross section in plasma. In this case, integration
over the impact parameters is restricted to the size of
the nonadiabatic-interaction zone, ρ = v /ω. In strong
fields (10), the parachute region is definitely larger [11]
than this zone and is sharply outlined (the electron can-
not be attracted to the ion from large distances to a dis-
tance of the order of the Rutherford radius estimated
from the oscillation velocity). This is necessary for sig-
nificant energy exchange. That is why no increase in the
bremsstrahlung spectrum is observed at low frequen-
cies. However, for a transverse electron entrance at
moderately low velocities (larger than rEω), the para-
chute effect is not observed, and the radiation is the
same as in the problem without a field. It determines the
total radiation (after integration over the entrance
angle). It should be noted that when estimating δvdρ in
strong fields, we again derive an expression similar to
JOURNAL OF EXPERIMENTAL 
that obtained without a field. In this case, a large quan-
tity should be substituted for the Coulomb logarithm.
Thus, the solution of the problem without a field gives
a lower limit for this quantity.

Second, we found the bremsstrahlung spectrum to
be virtually independent of the pumping-field polariza-
tion (Fig. 4). The reason is that the parachute effect is
insensitive to polarization [12], because the oscillatory
motion now reduces to circular motion and, being at the
smallest distance from the ion, the electron again suf-
fers a scattering. As a result, during the next passage
(oscillation), it comes even closer to the ion. The prob-
lem of scattering in a circularly polarized field requires
a special, more detailed analysis.

The role of representative electrons in the coherent
radiation at harmonics is even more significant. The
point is that since the problem is isotropic, there is no
radiation associated with the change in transverse (rel-
ative to the pumping field) momentum in the dipole
approximation. Therefore, the coherent radiation is
entirely attributable to the change in momentum along
the field. In this case, since the electrons that undergo
small energy exchange change their longitudinal
momentum only in the second order in scattering angle,
the representative electrons must mainly contribute to
the radiation. Thus, we obtained estimate (19) for the
amplitude of the coherent scattering cross section. The
first factor vosc corresponds to the characteristic change
in longitudinal momentum of the representative elec-
trons; the second factor, to the area of the parachute
region; and the third factor, to the fraction of represen-
tative electrons. This estimate agrees with our results in
the dependence on laser-field intensity and in order of
magnitude. Of course, a better estimate can hardly be
obtained, because a detailed comparison requires a
more accurate model of the grouping effects, the infor-
mation on which is contained in the function Φ. In esti-
mate (19), however, we restricted ourselves to the limit
of the delta approximation; i.e., we assumed all the last
scatterings to take place exactly at the phases corre-
sponding to the oscillation-velocity maxima (at the
phases of pumping-field zeros). Unfortunately, we have
failed to construct a convincing analytic model of the
grouping effect (Fig. 5). Therefore, in all our estimates,
we took this prerequisite as an experimental result.

As regards the qualitative aspect of the issue, we can
only note that, since the scattering angle of the electron
during each passage depends on its velocity, which, in
turn, depends on the field phase at the time of the elec-
tron passage at the closest distance from the ion, the
energy-exchange efficiency determined by the field
phase at the collision time (the last passage near the
ion) depends entirely on the field phase. In essence, this
is the mechanism of electron separation in field phase.
The result of its action is the arrival of almost all elec-
trons to the ion at certain phases of the external field,
i.e., the effect of grouping in phase
AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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It thus follows that the appearance of a weak exter-
nal high-frequency field does not result in an apprecia-
ble modification of the bremsstrahlung cross section at
a thermal velocity of the electrons larger than their
oscillation velocity. The bremsstrahlung intensity
increases in strong fields, because the external high-fre-
quency field, on the one hand, pulls the electrons
toward the ion (parachute effect) and, on the other hand,
accelerates them to large velocities, compared to the
thermal velocity, thereby increasing the acceleration
and, accordingly, the particle bremsstrahlung intensity.
These two effects combine to produce an increase in the
bremsstrahlung intensity in strong fields.

In conclusion, we give estimates for the intensities
of the coherent and incoherent radiations and for the
applicability conditions for our results in dimensional
form. Below, the electron temperature T is in electron-
volts, the power P is in 1018 W/cm2, the frequency is in
1015 Hz, the wavelength λ is in microns, the density n is
in 1018 cm–3, the total radiation intensity Icoh is in watts,
and the pulse duration τ is in 10–15 s.

Let us first estimate the characteristic radiation
parameters. We begin with the incoherent radiation. We
find from formulas (11) and (18) that the incoherent
radiation intensity per unit volume is approximately
equal to

(20)

This expression is a lower limit. At low temperatures,
vT ! rEω, the radiation intensity apparently reaches the
level

(21)

Similarly, we can derive an expression for the lower
limit on the coherent radiation at the kth harmonic from
formulas (14), (34), and (18):

(22)

Here, δn is the factor associated with the geometrical
beam size [see formula (35) in the Appendix], and L is
the length of the strong-field region in microns (Fig. 7).
The coefficient of transformation to the kth harmonic
can be written as

(23)

where a is the radius of the strong-field region in
microns (Fig. 7). Note that since the coherent compo-
nent of the collisional-current density is proportional to
the square of the density (14), the coherent radiation
intensity (34) at first glance must be proportional to the
fourth power of the density. Actually, having solved the

dI inc 9 10 6– n2Z2
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dI inc 0.4≈ n2P3/4

Tω2
--------------dω.

Icoh( )k 2 102 Ln2ωZ4
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ωpa
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  .×≈

ηk 5 10 8– n2Z4

ak2P2Tλ5
------------------------ δn

ωpa
c
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  ,×≈
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electrodynamic problem of collisional-current radia-
tion (see the Appendix), we obtained only the second
power of the density. To be more precise, the result
proves to be even more complex, because the factor δn

itself is a complex function of the density.

Let us write out the applicability conditions for our
results. Clearly, the strong-field conditions (10) must be
satisfied; these can be written in dimensional form as

(24)

(25)

Another important condition is the condition imposed
on the pulse duration τimp: it must be longer than the
time it takes to traverse the characteristic region of
interaction with the ion (of the order of two oscillation
radii) with the drift velocity:

(26)

It should be noted that our numerical calculations
yielded a sizeable fraction of the captured electrons, the
particles that did not leave the interaction region rosc in
a time much longer than the time it took to traverse this
region, 2rosc/vT. The fraction of such electrons
increases with field.

Yet another condition arises from the classical
description we used. It can be shown [12] that it is
equivalent to the condition

(27)

Thus, the applicability conditions for the classical
description in the pair-collision problem become less
rigorous with growing field. This can be qualitatively
explained by the fact that the energy exchange proper
takes place a region of size rE that is inversely propor-
tional to the square root of the field amplitude (4). Since
the de Broglie wavelength of an electron estimated
from its oscillation velocity decreases even faster
(inversely proportional to the first power of the field),
the quantum corrections must be negligible.
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Fig. 7. Admissible angles of the radiated waves.
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The condition imposed on the density is most strin-
gent. Formally, our results are valid only in sufficiently
rarefied plasma with N ! (λv /c)–3 (λ is the radiation
wavelength in microns). However, one might expect
similar effects to take place in denser plasma as well.
Indeed, of important is only the fact that no more than
one ion is in the volume of the attraction region,

rosc , because the presence of another ion on the path
of the electron scattered by the ion can significantly dis-
rupt the dynamics and can minimize all correlation
effects. In dimensional variables, this condition is

(28)

In denser plasma, the effects described here will
show up incompletely (they will be weakened, the
dependence on parameters will change), but they will
take place up to densities

In such plasma, the neighboring ions do not affect the
electron trajectory over the period of change in the
external field and allow it to make one oscillation and
to be attracted to the ion from distances of the order of

We did not perform detailed calculations of this case,
but we believe from general considerations that, com-
pared to conventional models, the incoherent
bremsstrahlung must be enhanced by a factor of rosc/bosc
(by analogy with the increase in effective cross section
[11]) and a weak coherent bremsstrahlung must appear.
In even denser plasma with

the correlation effects completely vanish and conven-
tional models become applicable [16].
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APPENDIX

Parameters of Coherent Bremsstrahlung

Let us derive relation (14). Since, as was said
above, the electrons group together in phase, it is of
interest to study the coherent electron bremsstrahlung.
Since the collision times and the external-field phases
are correlated, the dipole moment depends not just on
time but on

(29)

ρatt
2

n 3 1015Tω4

PZ
---------- 4 1016 T

λ4PZ
-------------.×≈×≤

Nbosc
2 rosc 1.≤

rE boscrosc.=

Nbosc
3 1,∼

t ri– k0/ω0,⋅
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where ri is the collision coordinate. In other words, a
wave of bremsstrahlung flashes running with the pump-
ing-field wave is excited in plasma.

To determine the bremsstrahlung intensity, let us
calculate the collisional electron current (we ignore the
ion current, because the parameter me/Mi is small). In
accordance with the general philosophy of the pair-col-
lision approximation, let us first consider the drift cur-
rent jeff that corresponds to the scattering of an electron
beam with density ne and unperturbed velocity v– by a
single stationary ion:

(30)

The quantity defined in this way has the dimensions of
current. Averaging over the initial phase ϕ corresponds
to a periodicity of the external field in time. It follows
from this periodicity that the current jeff is also a peri-
odic function and can be represented as a Fourier series
with harmonics jn, such that

(31)

The quantity χcoh [see (14)] has the dimensions of area
multiplied by velocity; the coherent radiation intensity
is expressed in terms of this quantity.

Indeed, using (30) and (31), the collisional-current
density in plasma can be written as

(32)

To determine the intensity of the radiation from plasma,
we must solve the electrodynamic problem of colli-
sional-current radiation (32) by taking into account the
specific geometry of the plasma profile and density.
The current-radiation intensity at frequency nω0 into a
solid angle do can be calculated using the standard
solution of the Helmholtz equation by substituting the

current  in it:

(33)

In conclusion, we give an estimate of the total radi-
ation intensity at the nth harmonic In by assuming that
the collisional-current distribution (strong-field region)
is uniform inside a cylindrical rod of radius a and
length L (the z axis is directed along the pumping-field
wave vector ):

(34)
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Here,

is the factor responsible for the radiation direction,
which is

(35)

where J1(k⊥ a) is the Bessel function of the first kind.
It is easy to see that δn (and, hence, the intensity) is

at a maximum if the following condition for the direc-
tion of the wave vector  is satisfied [14]:

(36)

In this case, the fields from all flashes (plasma colli-
sions) will add up in amplitude rather than in intensity,
as in the case of ordinary incoherent bremsstrahlung.
For plasma, this condition is equivalent to the wave
propagation at such an angle θ0 to the propagation
direction of the pumping wave that

(37)

Here,

is the electron plasma frequency, Thus, we have for k⊥

(38)

We immediately see from this relation that the depen-
dence on k⊥ a = ωpa/c in (35) is nonmonotonic; conse-
quently, the density dependence in (34) is more com-
plex. In particular, the total radiation a ~ c/ωp intensity
is proportional to the square of the density.

The cone thickness (Fig. 7) can be easily estimated
from the condition

(39)
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It should also be noted that, since the sizes a and L
themselves (Fig. 7) depend on the field and plasma den-
sity, the resulting dependence on pumping intensity and
density can significantly differ from the dependence
derived by using the coherent bremsstrahlung cross
section (31). In particular, allowance for the self-action
effects can lead to a dependence on the field intensity in
the form

(40)
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Abstract—The primary stages of photoinduced processes are studied in thin C60 films by the femtosecond
laser pump–probe method. The films were excited by 100-fs laser pulses with photon energies above (wave-
lengths 345 and 367 nm) and below (645 nm) the mobility threshold, the fraction of excited molecules being
no more than several percent. Upon probing in the spectral range from 400 to 1100 nm, several regions with
substantially different decay kinetics were observed in the difference spectrum, which is caused by the simul-
taneous presence of several relaxing components. The appearance of the 465- and 500-nm bleaching bands in
the difference spectrum upon excitation by photons with energies both above and below the mobility threshold,
which are typical for electroabsorption spectra, suggests that charge carriers are produced in both these cases.
The observed dependence of relaxation on the oxygen amount in the sample volume suggests that during exci-
tation both charged (electrons and holes) and neutral (excited molecules) components are produced. The frac-
tion of charged components is greater upon excitation into the fundamental band. The appearance of the 500-nm
absorption band delayed by 10–13–10–14 s, the delay being increased in the presence of oxygen, was attributed
to the formation of excited anions due to the capture of electrons by C60 molecules. It is concluded that upon
excitation of the films by photons with the energy below the mobility threshold, charge carriers are produced
due to two-photon absorption rather than due to singlet–singlet annihilation. When the films are excited by pho-
tons above the mobility threshold, the primary charge carriers are produced by direct optical excitation. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The properties of fullerenes—molecules consisting
of carbon atoms that form a closed spherical or spheroi-
dal shell—have recently attracted special attention. The
C60 molecule, which has the symmetry Ih, is the most
spherical molecule among all the known molecules.
The extensive studies of this molecule are related not
only to its geometrical perfection but also to a number
of other remarkable properties. The delocalization of π
electrons inherent in the fullerene molecule due to a
great number of conjugated bonds strongly enhances a
nonlinear optical response of fullerenes. For this rea-
son, the nonlinear optical susceptibility χ(3) of
fullerenes in solutions and solids has been studied in
many papers [1–6]. Photoinduced darkening of
fullerenes, which is observed in a broad spectral range,
makes them a promising material for optical limiters [7,
8]. Another unique property of fullerenes is their ability
to absorb many photons without decomposition of the
molecule [8–10]. A very high triplet-state yield of
fullerenes in solutions (the quantum yield of this pro-
cess is close to unity) resulting in a high quantum yield
of singlet oxygen makes C60 a potential agent for pho-
todynamic therapy [11]. The discovery of superconduc-
1063-7761/01/9304- $21.00 © 20706
tivity in C60 doped with alkali metals [12] stimulated
the development of studies devoted to synthesis of
organic superconductors. Thin polymer films doped
with C60 exhibit photoconductivity with a very high
quantum yield [13], which makes them promising for
applications in xerography and in light cells.

An increase in the photoconductivity of a polymer
upon doping with C60 is directly related to photoexcita-
tion of C60 followed by the electron exchange with an
adjacent polymer chain. It is known that pure C60 does
not contain free charge carriers. Therefore, to induce
conductivity, the C60 molecules should be excited, for
example, by light. To reveal the features of charge
transfer in fullerene-doped materials, it is necessary to
study in detail the mechanisms of photoconductivity in
pure fullerene films, and such studies were performed
in many papers [14–19]. Note, however, that the results
obtained so far are contradictory. For example, the
quantum yield of charge carriers measured in different
papers varied from 10–5 to 0.55, and the mobility of
charge carriers estimated in different papers was also
substantially different [18]. A great scatter in the mea-
surements of these quantities is mainly explained by a
high sensitivity of photoconductivity to the degree of
001 MAIK “Nauka/Interperiodica”
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crystallinity of a sample, to the number of defects, and
especially to the presence of oxygen, which can reduce
photoconductivity by several orders of magnitude [15, 17,
18]. In addition, the phototransformation of fullerenes
during measurements and the appearance of long-lived
localized charge carriers, whose lifetime can achieve a
week, can substantially affect the results of measure-
ments [18, 19]. Finally, one of the important factors
affecting the measurements is the use of metal elec-
trodes and rather strong electric fields in most experi-
ments, resulting in the unavoidable contact and electro-
absorption effects. Based on the measurements of spec-
tral dependences of the efficiency of generation of
carriers, the authors of papers [14, 15] concluded that
upon excitation above the mobility threshold (2.3 eV),
charge carriers are generated due to direct optical exci-
tation, while upon excitation at lower energies, they are
generated due to singlet–singlet annihilation of excited
molecules. However, the time resolution of these exper-
iments was in the picosecond range, which is insuffi-
cient for a direct observation of primary photoprocesses
in solids.

Relaxation of photoexcited C60 molecules in films
has been studied by the pump–probe method with a
femtosecond resolution in papers [1–3, 6, 20–34]
(review of these experiments is presented in [34]). In
most papers, a nonexponential decay of the photoin-
duced absorption was observed with the decay times of
different components ranging from subpicoseconds to
hundreds of nanoseconds. Many experiments [1, 3, 6,
20–23] were performed using the same wavelength for
pumping and probing; in some studies [24–34], the
probing was performed with the help of a broadband
supercontinuum pulse, which gives much more infor-
mation. The results of these experiments are sometimes
substantially different or even contradictory in details.
Thus, in some experiments, the dependences of relax-
ation on the pump intensity [1, 6, 21, 23, 25, 30–34], the
pump wavelength [1], the probe wavelength [25, 31–
34], and temperature [23] were observed, whereas in
other experiments ([28, 29], [31], [26, 28, 30], [20, 21],
respectively), such dependences were not observed.
This discrepancy is probably mainly explained by dif-
ferent experimental conditions. First, in these experi-
ments different samples were used. For example, spec-
tral properties of C60 films, especially in the wavelength
range above 600 nm, substantially depend on the con-
ditions of their deposition [35]. Experimental results
also depend on the amount of oxygen in films and on
the dose of absorbed light [24]. Second, the results also
may depend on the pulse repetition rate of a laser used
in experiments. In the case of megahertz pulse repeti-
tion rates, which were used in papers [20, 22–24, 27],
long-lived photoproducts can be accumulated during
the experiment [36]. These can be triplet molecules
[36], photopolymerized molecules [24], or localized
charges [30]. The accumulation of photoproducts is not
very important at pulse repetition rates less than a kilo-
hertz and in samples containing oxygen, which effi-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ciently quenches triplet molecules and inhibits photo-
polymerization [1, 37].

All these factors gave rise to the use of various
mechanisms for explaining femtosecond relaxation of
C60 in films observed in different experiments. This is
the capture of carriers in the case of disordered semi-
conductors [23], hopping transfer of carriers [20], scat-
tering of carriers and relaxation of a lattice [3, 21, 28,
33], distortion of a lattice upon exciton self-trapping in
conjugated polymers [21], intramolecular relaxation
[22], and the interaction and annihilation of excitons [1,
6, 25–27, 29–32, 34]. An important feature in the inter-
pretation of all these experiments is the assumption that
only one component appears upon excitation, which
can transform to other intermediate and photoproducts
during its relaxation. The nature of this primary compo-
nent was treated differently in different papers (a Fren-
kel exciton [27, 29], a charge-transfer exciton [38], a
molecule in an excited state [1, 3, 6, 21, 22, 24–26, 30–
32], charge carriers [23, 28, 33], etc.), and various
relaxation mechanisms were proposed. On the other
hand, it follows from photoconductivity experiments
that, because the quantum yield of the generation of
charge carriers is always less than unity, direct optical
excitation should produce both charged and neutral
components, the types of their relaxation being sub-
stantially different. When relaxation is studied by the
pump–probe method, different components (and their
relaxation mechanisms) can be observed upon probing
in different spectral regions. In this case, specific fea-
tures of these mechanisms can be studied compara-
tively simply, even if the relaxation of different compo-
nents occurs on the same time scale. However, a strong
overlap of broad spectral lines of photoproducts pro-
duced upon excitation, which is typical for solids, can
make the measurements very complicated. The single-
component interpretation used in most papers is proba-
bly explained by the fact that the probing in these
papers was performed only at a single wavelength, usu-
ally coinciding with the pump wavelength. In this case,
the presence of many components in a system of
excited molecules in principle cannot be found. In most
(if not in all) experiments with broadband probing, the
pump-beam intensity provided excitation of more than
10% of all molecules. At such a high fraction of excited
molecules, the main channel of their relaxation is the
singlet–singlet annihilation of neighboring molecules
[1, 25, 30–32, 34], which substantially complicates the
study of other fast decay channels.

In this paper, we describe pump–probe experiments
with broadband probing. The fraction of excited mole-
cules in our experiments did not exceed a few percent,
which allowed us to decrease substantially the contri-
bution of annihilation processes and to observe the
dynamics of the appearance and decay of primary pho-
toproducts, both neutral and charged, for different exci-
tation levels. We also investigated the influence of oxy-
gen on the relaxation and analyzed the conditions at
which the effect of accumulation of photoproducts
SICS      Vol. 93      No. 4      2001
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becomes substantial. We studied the relaxation begin-
ning from the earliest stages up to 0.5-ns delays under
the same pumping and probing conditions, which
allowed us to identify the nature of the relaxing compo-
nents.
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Fig. 1. Linear absorption spectrum of the C60 film of thick-
ness 140 nm used in experiments. The solid curve is the
spectrum immediately after the film deposition; the dot-
and-dash and dotted curves are spectra after 30 and 50 h of
irradiation by laser pulses during experiments, respectively.
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Fig. 2. Energy level diagram of the C60 film in the spectral
region under study.
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2. EXPERIMENTAL

We studied the dynamics of difference absorption
spectra of C60 films of thickness 140–190 nm deposited
on quartz substrates by the pump–probe method. The
films were excited by 100-fs pulses at 645 nm (1010–
1011 W/cm2), 345 and 367 nm (109 W/cm2). The energy
absorbed by a sample was also measured.

A typical absorption spectrum of the C60 film shown
in Fig. 1 is similar to the spectra described in earlier
papers. The three intense absorption bands with max-
ima at 345, 270, and 220 nm (Fig. 1) are related to the
hggg–t1u, hu–hg, and hggg–t2u transitions, respectively
(Fig. 2), in accordance with notation accepted in previ-
ous papers. A group of weak lines near 600 nm is
related to forbidden molecular hu–t1u (HOMO–LUMO)
transitions, which are observed due to the Herzberg–
Teller coupling. It was shown in [39] that the tempera-
ture dependences of the intensities of the 450- and
600-nm bands are substantially different. For this rea-
son, the 450-nm band, which is related to the solid-state
effects [40], was assigned to the allowed hu–t1g tran-
sition to the excited states with symmetry T1u, T2u,
Hu, and Gu. The dipole nature of this allowed transition
was also confirmed in recent experiments. The wave-
length 645 nm corresponds to the hu–t1u excitation
(below the mobility threshold), while the wavelength
367 nm (in some experiments, excitation was also per-
formed at 345 nm) corresponds to the hggg–t1u excita-
tion (above the mobility threshold).

The probing was performed by a weak femtosecond
supercontinuum pulse in the spectral range from 400 to
1100 nm using delays from −1 to 550 ps. The pulse rep-
etition rate was 5 kHz. The accuracy of measurements
of difference spectra provided by the detection system
was no worse than 10–4 (in optical density units), each
experimental point being obtained by summation of
2500 pump pulses. The measurement errors were deter-
mined in each specific experiment by a degree of the
sample homogeneity. All the experiments were per-
formed at room temperature.

During the near-zero delay measurements, a signal
detected from a sample also contains the substrate
response [25], whose contribution can be substantial.
For this reason, we measured a signal from a substrate
in all experiments separately. Figure 3 demonstrates the
relation between signals from a sample and a substrate
upon excitation at 345 and 645 nm. One can see that in
the latter case (Figs. 3a, 3b), the contribution from a
substrate during the near-zero delay measurements is
rather large (Figs. 3a, 3b). Nevertheless the accuracy of
measurements allowed us to take this contribution into
account and perform the correction of relaxation kinet-
ics and difference spectra. All the experimental data
presented below were corrected taking the above-men-
tioned contribution into account. In addition, by detect-
ing a signal from the substrate, we could determine the
AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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Fig. 3. Variation in the optical density of the difference spectrum of a sample (dark squares) and a substrate (light squares) near the
zero delay. Excitation at 645 nm and probing at (a) 550 and (b) 500 nm; excitation at 345 nm and probing at (c) 550 and (d) 500 nm.

0

position of a zero delay in the relaxation kinetics upon
probing at different wavelengths.

Because the pump pulse repetition rate was rather
high (5 kHz), we performed special measurements of
the effects of accumulation of photoproducts during our
experiments [36]. It was found that upon excitation of a
fixed sample at 367 and 345 nm, the relaxation kinet-
ics changed substantially with increasing exposure
(Fig. 4a), the rate of the change upon excitation of the
films from the substrate side being several times larger
than that upon excitation from the air side. This effect
is obviously caused by the accumulation of photoprod-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ucts during excitation of the films. For this reason, the
sample was continuously displaced in the subsequent
experiments in the direction perpendicular to the laser
beam. The rate of the sample movement was chosen so
that the relaxation kinetics and difference spectra did
not change with increasing exposure (Fig. 4b). In addi-
tion, a slower degradation of the sample was also
observed upon laser excitation, resulting in a change in
the linear absorption spectrum (Fig. 1). For this reason,
linear spectra were regularly controlled and degraded
samples were replaced by new samples.
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Upon excitation into the fundamental absorption
band at 345 and 367 nm, a great difference was
observed in some spectral ranges of probing between
the kinetics for films excited from the substrate side and
from the air side (Fig. 5). In our opinion, this is
explained by a different content of oxygen in the sam-
ple volume (see below). Samples were kept in the air;
therefore, to reduce the influence of oxygen, we excited
films from the substrate side.

3. EXPERIMENTAL RESULTS

We found that difference spectra exhibited the same
main bands upon excitation at different wavelengths.
Figure 6 shows the part of difference spectra, which is
the most interesting from the point of view of the
dynamics of charge carriers. The spectra were obtained
upon excitation of the 190-nm thick film by laser pulses
at 367 nm for several delays between the pump and
probe pulses. Immediately after excitation, a decrease
in the sample absorption (bleaching) is observed in the
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Fig. 4. Effect of the accumulation of photoproducts on the
relaxation dynamics in the 500-nm band for the C60 film in
the case of a fixed (a) and moving (b) sample. Excitation by
3 × 10–4 J cm–2 pulses was performed at 345 nm from the
substrate side. The numbers of pump pulses (in thousands)
incident on a sample during the measurements are indicated
near the corresponding symbols.
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region from 430 to 520 nm, which has the complicated
time dependence. Then, absorption increases within a
broad band with a maximum at 550 nm. In a longer-
wavelength region, a structureless absorption band
appeared with a weakly pronounced maximum at 900 nm.
The dynamics of appearance and relaxation of spectral
changes was investigated in more detail from the relax-
ation kinetics obtained by probing samples at fixed
wavelengths by continuously varying the delay. Analy-
sis of the variation of the difference spectrum shows
that several spectral regions can be distinguished that
have substantially different relaxation kinetics (Fig. 7).
This is clearly demonstrated at large time delays (Fig. 7a).
The different types of relaxation observed in different
spectral regions of probing (400–530, 450–700, and
700–1100 nm) under the same pumping conditions
suggest that the nature of these characteristic bands is
different (for simplicity, we denote these bands as the
500-, 600-, and 900-nm bands). This means that at least
three different components simultaneously exist, each
of them having its own relaxation kinetics. The charac-
teristic bands of these components in the difference
spectrum are strongly overlapped. In addition, the type
of relaxation in different bands differently depends on
the excitation intensity and on the amount of oxygen in
the sample volume. Let us discuss the differences that
were observed upon excitation at 367 (345) and 645 nm.
First, this is the difference in the relaxation kinetics of
the 500-nm band during the first several picoseconds
(Fig. 8). Second, the ratio of maximum optical densities
of the broad 900-nm band and of the most intense
600-nm band is approximately three times lower than
upon excitation at 645 nm. In addition, in the latter
case, the relaxation rate in the 600-nm band increased
with increasing excitation intensity, but it was always
lower than upon excitation at 367 nm, where such
dependence was not observed. In both cases, the relax-
ation rate in the 900-nm band increased with increasing
excitation intensity, whereas in the 500-nm band, it was
virtually independent of the excitation intensity. As for
excitation of samples from opposite sides, the different
results were obtained only upon excitation at 367 and
345 nm. Upon excitation from the air side, the relax-
ation rate of the 500- and 900-nm bands decreased at
the initial stage and then increased at delays of the order
of tens of picoseconds (Figs. 5a, 5b). Relaxation in the
600-nm band was independent of the direction of the
pump beam for any delay (Fig. 5c).

One of the most important properties of the differ-
ence spectra observed for all excitation wavelengths
used in experiments is the appearance during the pump
pulse of specific features in the spectral range from 400
to 530 nm (Fig. 6, dips in absorption at 465 and 500 nm),
which are clearly observed at the maximum delay 550 ps
as well (Fig. 6b). Note that these features and absorp-
tion at 600 and 900 nm appear with the rising front,
which is determined by the pump pulse duration. Then,
the shape of the difference spectrum in the 600-nm
band changes: its short-wavelength wing shifts to the
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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Fig. 5. Relaxation kinetics in (a) the 500-, (b) 900-, and (c) 600-nm bands obtained upon pulsed excitation at 367 nm from the sub-
strate side (light squares) and from the air side (dark squares). All the dependences are normalized to the maximum.

(c)
blue, while the shape of the long-wavelength wing
remains virtually unchanged (Fig. 9). Figure 10 shows
the results of subtraction of the difference spectrum
with the delay 0.1 ps from the spectra with larger delays
(all difference spectra were preliminary normalized to
the maximum absorption at 560 nm). These data clearly
show that variations in the shape of the difference spec-
trum in Fig. 9, beginning from the delay 100 fs, are
related to the appearance of the 500-nm absorption
band. Figures 5a, 7b, and 8 show the detailed dynamics
of this absorption and of photoinduced variations in the
500-nm band at earlier stages under different excitation
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
conditions. In all the relaxation kinetics, the bleaching
that appears at the initial moment rapidly changes to
absorption. Upon excitation at 345 and 367 nm, the
bleaching front is determined by the leading edge of the
probe pulse. One can see from Fig. 5a that the front of
the absorption kinetics in the 500-nm band is delayed,
the delay being greater and induced absorption being
smaller upon excitation from the air side. Upon excita-
tion at 645 nm, the dynamics of bleaching was more
complicated (Fig. 8), while the dynamics of absorption
was independent of the side from which the sample was
excited.
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We observed a linear dependence of the energy
absorbed in films on the incident energy for all excita-
tion wavelengths used in experiments.

4. DISCUSSION OF RESULTS

The characteristic bleaching with maxima at 465
and 500 nm in the difference spectrum of C60 films was
earlier observed upon excitation above the mobility
threshold at 530 and 478 nm [33] and 419 and 383 nm
[38]. The same spectral features were observed in pho-
tomodulation experiments [41], where the similarity
between this region of the difference spectrum and the
electroabsorption spectrum of C60 films was noted [42].
Based on this similarity, the spectral features were
attributed to electroabsorption changes in the spectra of
molecules in the ground state in local electric fields pro-
duced by charge carriers [43]. These changes ∆D are
proportional to the square of the electric field and, in the
case of an isotropic medium with randomly oriented
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Fig. 6. (a) Difference spectra observed upon excitation of
the C60 film of thickness 190 nm by 100-fs pulses at 367 nm

(3 × 10–4 J cm–2) for different delays. The delay values are
shown in Fig. 6a. (b) The difference spectrum for the maxi-
mum delay 550 ps at the enlarged scale.
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molecules, have the form

(1)

where ∆p and ∆m are changes in the polarizability and
dipole moment of the molecule in the electric field F
and D(E) is the dependence of the optical density on the
photon energy (linear absorption spectrum).
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delay upon excitation at 645 and 345 nm. The dependences
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The bleaching at 465 and 500 nm, which was
observed in experiments [38] performed at 80 K, was
attributed to excitation of an exciton accompanied by
the charge transfer, and the following relaxation was
interpreted as the exciton self-trapping and its transition
to a long-lived triplet state. It seems more likely that the
bleaching bands observed in our experiments have the
electroabsorption nature, because bleaching of the
450-nm band (Fig. 1) caused by the depletion of the
ground state upon excitation would produce a smooth
band with a maximum at 450 nm in the difference spec-
trum rather than two bands observed in experiments
(Fig. 6). In addition, recent study [44] showed that only
the 500-nm band belongs to a charge-transfer exciton,
whereas the 465-nm band is related to the dipole tran-
sition of a Frenkel exciton. In contrast to [38], we did
not observe a long-lived (lifetime about of 250 ns) self-
trapped exciton; in any case, the relaxation of the
500-nm band mainly occurs at the 100-ps scale
(Fig. 7a).

The electric field of a pump laser pulse also can pro-
duce electroabsorption changes, which are proportional
to the square of the field [see (1)], however, this contri-
bution is negligible under our experimental conditions.
This was proved in special experiments, in which no
signal was observed at 500 nm upon excitation of the
same—C60 films at 800 and 1280 nm. Based on the
above discussion, we can conclude that the appearance
of the features in the difference spectrum, which are
typical for the electroabsorption spectrum of C60 films
[42] and exist up to maximum delays (Fig. 6), suggests
that local electric fields are produced in a sample due to
generation of charge carriers upon optical excitation at
367, 345, and 645 nm. One can see from the difference
spectra in Fig. 6 that the dynamics of electroabsorption
changes near the zero delay is rather complex: bleach-
ing at 500 nm occurs more rapidly than at 465 nm and
reaches larger maximum values (for the 150-fs delay).
Then, this bleaching also more rapidly decreases. Such
a behavior of the difference spectrum can be related to
the changes in polarizability and the dipole moment of
molecules in the ground state produced by the electric
field. Another possible explanation is the appearance of
a short-lived charge-transfer exciton, which results in
the additional bleaching of the 500-nm band. In any
case, to interpret physical processes proceeding at this
time scale, experiments with a better time resolution are
required.

Conduction electrons are majority charge carriers in
C60 films [17, 18]. It is reasonable to expect that upon
excitation of C60 molecules, electrons should appear
together with cations (holes). The electric field of the
charges produced causes electroabsorption changes in
the spectrum of unexcited molecules (Fig. 6) due to
changes in their polarizability and dipole moment (see
formula (1) [43]). In addition, neutral molecules in the
excited state should appear upon excitation because the
quantum yield of charge carriers is less than unity.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Unfortunately, the data on the spectra of cations and
anions in C60 films are in fact absent in the literature. In
solutions, both ions absorb in the entire visible and
near-IR regions and have similar spectra with maxima
in the near-IR region. The absorption cross section for
a cation is smaller and its characteristic bands lie in a
shorter-wavelength spectral region (between 800 and
1000 nm compared to the region from 950 to 1100 nm
for an anion) [45]. It is reasonable to assume that due to
the solid-state effects the characteristic absorption
bands of charge carriers in films will be shifted to the
blue compared to those in solutions, as in the case of
neutral molecules [39]. However, because the magni-
tude of these shifts is unknown, we identified the bands
in the difference spectrum using the fact that charged
and neutral components differently interact with oxy-
gen. It is well known that oxygen drastically affects the
photoconductivity because it produces in C60 very effi-
cient deep traps for charge carriers [15, 17, 18].
Because oxygen is accumulated under normal condi-
tions in freshly prepared C60 films at the depth of the
order of 20 nm from the film–air interface [46], its
influence can be observed in experiments with short-
wavelength excitation at which the absorption depth is
substantially less than the film thickness (for excitation
at 367 nm, the absorption depth is about 40 nm). There-
fore, by comparing the data obtained upon excitation of
the film at 367 and 345 nm from the air and substrate
sides, we can determine the influence of oxygen on the
dynamics of processes under study. These studies
revealed the effect of oxygen on the relaxation kinetics
of the 500-nm band (Fig. 5a) and, in somewhat lesser
degree, on the relaxation kinetics of the 900-nm band
(Fig. 5b). However, the relaxation kinetics of the
600-nm band was virtually independent of the presence
of oxygen (Fig. 5c). This means that the first two kinet-
ics reflect the relaxation of charged components, while
the latter kinetics is related to neutral components, i.e.,
excited C60* molecules. The 600- and 900-nm bands
and electroabsorption changes in the spectrum
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Fig. 9. Shapes of difference spectra for different delays. All
the spectra are normalized to the maximum.
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appear with the rising front, which is determined by
the pump pulse duration (Fig. 7b). For this reason, we
assigned the 900-nm band to the  cation, which
appears simultaneously with a conduction electron.

The rapid decay of bleaching at 500 nm (Figs. 5a,
7b, 8) was interpreted in [33] as a decrease in the influ-
ence of local fields (and, hence, the disappearance of
electroabsorption changes produced by them) due to
their screening with increasing carrier density during
the pump pulse. We observed in our experiments the
increase in bleaching with increasing excitation inten-
sity, which contradicts to the screening mechanism. In
addition, as was mentioned above, electroabsorption
measurements were observed in the difference spectra
up to the largest delays (Fig. 6). Therefore, we explain
this part of the kinetics not by the bleaching relaxation
but by the appearance of additional absorption at
500 nm with a strongly delayed front (see above). One
can see from Fig. 5a that the duration of this front
strongly depends on the presence of oxygen, which
itself has a low mobility. This means that a rapid
increase in absorption is related to a charge carrier hav-
ing a high mobility, i.e., a conduction electron e–,
whose mobility is several orders of magnitude higher
that of a  hole [17, 18]. We explain the increase in
absorption at 500 nm, which was observed for delays
from 0.1 to 10 ps (Fig. 10), by the capture of e– by
unexcited molecules with the formation of an excited

 anion, which rather strongly absorbs in this band.
The high efficiency of this process is caused by the high
electron affinity of C60 (2.65 eV [18]). In the presence
of oxygen, a conduction electron is efficiently captured
by deep traps, resulting in a decrease in the rate of for-
mation and yield of anions (Fig. 5a). Simultaneously
with the formation of excited anions upon the electron
trapping, anions are relaxing and a much slower recom-
bination of anions and cations occurs. This results in a
decrease in absorption in the relaxation kinetics at
500 nm. The delay in the absorption decay observed in
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tion band in the difference spectrum for delays longer than
100 fs (the corresponding delays are shown in figure).
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experiments (Fig. 7a) can be explained by a gradual
decrease in the rate of formation of excited anions
caused by a decrease in the concentration of conduction
electrons.

The differences observed upon excitation at differ-
ent wavelengths are probably related to different mech-
anisms of generation of charge carriers. Upon excita-
tion at 367 and 345 nm, i.e., above the mobility thresh-
old, carriers appear during the entire pump pulse and
the electroabsorption bleaching exceeds the absorption
of excited molecules at the t1u–hg transition. To generate
free carriers upon excitation at 645 nm, the C60 mole-
cule should absorb more than one photon. Assuming
that the two-photon absorption coefficient at 645 nm is
close to the values measured at 620 nm [5], we can con-
clude that in the energy range where the kinetics and
difference spectra have been measured, the two-photon
absorption cross section is of the same order of magni-
tude or somewhat greater than the linear absorption
cross section measured with a spectrophotometer.
Therefore, upon excitation at 645 nm, charge carriers
are generated due to two-photon absorption mainly in
the most intense part of the pump pulse. This is con-
firmed by a more complicated form of the relaxation
kinetics at 500 nm in this case (Fig. 8). Two-photon
absorption at the leading edge of the pump pulse is
lower than one-photon absorption, so that the number
of charge carriers is small, the main part of excited mol-
ecules being in the t1u state, from which absorption at
500 nm is larger than from the ground state (the allowed
t1u–hg transition). For this reason, absorption is
observed in the difference spectrum. As the excitation
intensity approaches the maximum of the pump pulse,
two-photon absorption becomes dominant and charge
carriers appear that cause the electroabsorption bleach-
ing of the 500-nm band. Upon excitation at 367 and
345 nm, charge carriers and bleaching produced by
them appear already at the leading edge. It is obvious
that the quantum yield of generation of carriers at
645 nm should be substantially lower. This is con-
firmed by a lower ratio of the intensities of the 900- and
600-nm bands observed in our experiment compared to
excitation at 345 and 467 nm and is consistent with the
photoconductivity data [14–17]. A dominant role of
two-photon absorption upon excitation at 645 nm under
conditions of our experiment is also confirmed by the
fact that the difference spectrum did not exhibit the
intense 680-nm band, which was assigned to the
hggg−hu absorption, which appears due to the produc-
tion of vacancies at the hu level caused by excitation
from this level [33]. This means that a greater part of
molecules are excited not upon a transition from the hu

level but upon the two-photon hggg–t1g transition. The
kinetic energy of conduction electrons produced in this
case are higher than upon excitation at 367 and 345 nm
(the hggg–t1u transition), resulting in a more rapid for-
mation of anions upon excitation at 645 nm (cf. the
relaxation kinetics at 500 nm, Fig. 8), which was
AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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observed in our experiments. The relaxation of
uncharged excited molecules (the 600-nm band) can be
related to the quenching of excitons by charge carriers
due to the dipole–dipole interaction [47] or accompa-
nied by emission of phonons [28].

Based on the above discussion, we can interpret the
features of accumulation of photoproducts, which were
observed upon excitation at 367 nm (Fig. 4a). We
explain them by photopolymerization of C60 in films
during a sufficiently prolonged irradiation [37]. This
assumption is confirmed by the fact that the accumula-
tion process strongly slows down in the presence of
oxygen, which efficiently quenches triplet C60 mole-
cules involved in photopolymerization [37]. In addi-
tion, the radiation dose, at which variations in the relax-
ation kinetics of fixed samples are observed, corre-
sponds to absorption of more than 104 photons per
molecule, in good agreement with photopolymerization
data [36, 37, 46]. The increase in the rate of formation
of excited anions observed during accumulation of pho-
toproducts (and the corresponding decrease in the
bleaching amplitude in the relaxation kinetics at 500 nm,
Fig. 4a) can be explained by an increase in the mobility
of free electrons due to an increase in the photoconduc-
tivity of C60 upon photopolymerization [48].

5. CONCLUSION

Our studies showed that upon excitation of C60 films
by 100-fs pulses at 645 nm (1010–1011 W/cm2) and at
367 (345) nm (109 W/cm2), both primary charge carri-
ers - conduction electrons and localized cations produc-
ing local electric fields in the sample, and excited neu-
tral molecules are formed during the pump pulse. The
fastest relaxation processes involve the most mobile
components—conduction electrons. These are the cap-
ture of electrons by C60 molecules accompanied by the
formation of excited anions, recombination of electrons
and cations, and the capture of electrons by deep traps
(in the presence of oxygen). The recombination of
localized cations and anions and their capture by deep
traps occur much slower. Upon excitation at 367 and
345 nm, primary charge carriers appear due to direct
optical excitation, whereas upon excitation at 645 nm,
they are produced due to two-photon absorption, so that
the quantum yield in the latter case is substantially
lower. The singlet–singlet annihilation was not
observed in both cases; therefore, annihilation pro-
cesses do not play an important role in the generation of
charge carriers.
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Abstract—We propose a new interferometric method of measuring the homogeneous emission linewidth for
an ensemble of radiating oscillators. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The concepts of homogeneous and inhomogeneous
emission linewidth are widely used in spectroscopy to
describe the emission line shape for an ensemble of
independent oscillators. The best-known example of
such a system is a low-pressure gas whose atoms,
which are excited, for instance, by electric discharge,
radiate a set of spectral lines of the corresponding
chemical element. The natural emission linewidth is
generally very small; the inhomogeneous broadening
attributable to the Doppler frequency shift due to the
thermal motion of radiating atoms dominates. Since the
homogeneous linewidth is directly related to the opti-
cal-transition probability, it is a crucial parameter of the
radiating system. Methods of nonstationary, nonlinear
optics, such as a light echo and four-wave mixing [1],
are used in spectroscopy for its determination.

Here, we propose a method for measuring the
homogeneous linewidth that does not use any nonlinear
optical effects. The method is based on the application
of a new scheme of a grating interferometer. Diffraction
gratings are successfully used in interferometry for
beam splitting and for an additional light monochroma-
tization [2]. In the proposed scheme, the grating allows
the wavelength independence of the phase difference
between the interfering beams to be achieved. An opti-
cal scheme of the interferometer is shown in Fig. 1. A
parallel beam of light falls on a diffraction grating G.
The diffracted light is reflected from a flat mirror M
mounted parallel to the grating and is again directed to
the grating. It is easy to show that after a second diffrac-
tion by the grating, the deflected beam will propagate
exactly parallel to the zero-order beam that underwent
a mirror reflection from the grating. Consequently, an
interference of the two beams can be observed in the far
1063-7761/01/9304- $21.00 © 20717
field. The path difference S10 between the beams is
given by

(1)

The diffraction angle φ is related to the wavelength λ of
the incident light and to the grating spacing h by

(2)

Differentiating (1) and using (2), it is easy to obtain

(3)

Let us determine the change in the phase difference

between the interfering beams, where N is the order of
interference, for a small change in the wavelength of
the incident light:

(4)

The first term in this formula corresponds to the
change in wave phase at the end of a fixed-length opti-
cal path, as is the case, for example, in a Michelson
interferometer, while the second term results from the
grating action. Note that the “Michelson” and “grating”
contributions have opposite signs. If we require that
dΦ = 0 (phase-constancy condition), then we can easily

S10
2z

φcos
------------ 1 φsin+ θsin( ).=

θ φsin+sin
λ
h
---.=

dS10

dλ
---------- 2zλ

h2 φcos
3
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Φ 2π
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λ
------- 2πN= =

dΦ 2π
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λ2
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λ
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derive a fourth-degree equation for x = sinφ using
Eq. (2) for diffraction by a grating:

(5)

A numerical analysis of this equation with a computer
shows it to have physical solutions in some range of λ/h
The results of our computations are presented in Fig. 2,
where the angles φ and θ that satisfy Eq. (5) are plotted
against λ/h. Thus, the condition dΦ = 0 can actually
be met.

This condition implies that the phase difference
between the interfering beams will not depend on a
small change in wavelength, and, consequently, the fre-
quency shift attributable to inhomogeneous line broad-
ening will not cause the interference pattern to blur.
Indeed, interference is known to be a single-photon
effect; i.e., passing through the instrument, the photon
emitted by a particular oscillator from an ensemble
interferes with itself. The wave packet that corresponds
to this photon has a carrier frequency characteristic of
its emitting oscillator. If we directed this wave packet to
a Michelson interferometer, then the probability to
detect the photon at a certain point of the screen after
interference would depend on the phase difference ∆Φ

x4 λ
h
---x3– 2x2–

λ
h
---x + 1 λ2

h2
-----– 

 + 0.=

M

O
PD

G

θ
φ

Fig. 1. An optical scheme of the constant phase autocorre-
lation interferometer: G is a grating, M is a flat mirror, O is
an objective, and PD is a photodiode.

0
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λ/h
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θ

Fig. 2. The angles of incidence (θ) and diffraction (φ) for
which the phase-constancy condition is satisfied; h is the
grating spacing.
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for the two paths along which this point is reached, with
each corresponding to its own interferometer arm:

(6)

Here, S12 is the difference between the optical interfer-
ometer arms, and λ is the carrier wavelength of the
wave packet. For a wave packet with a different carrier
wavelength λ', the phase difference ∆Φ' may turn out to
be so large that the probability at the screen point where
it was at a maximum for the first wave packet will be at
a minimum for the second packet. Averaging over the
wave packets radiated by all oscillators will cause the
interference pattern to disappear.

In our interferometer, the path difference S10
depends on the carrier wavelength of the wave packet.
As a result, the phase shift ∆Φ is the same for wave
packets with different carriers, because increasing the
wavelength causes a proportional increase in the path
difference. In other words, an ensemble of quasi-mono-
chromatic oscillators with slightly differing central fre-
quencies will produce an interference pattern even if
the inhomogeneous broadening is significant.

As we see from Eq. (5), the separation z between the
mirror and the grating does not enter into the phase-
constancy condition. Since a single-photon wave
packet is spatially bounded, increasing this separation
causes the interference to disappear. Thus, by changing z
and observing the disappearance of interference, we
can determine the spatial extent of a single-photon
wave packet and, consequently, the radiative lifetime of
the observed transition or the homogeneous linewidth.

The above considerations properly illustrate the
main idea, but they are very simplified in two important
respects. They disregard the delay introduced by the
grating into the diffracted beam and the finite grating
resolution. Let us consider each of these effects sequen-
tially.

A diffraction grating is known to produce a dif-
fracted beam with a delay that depends on the total
number of grating lines and on the angles of incidence
and diffraction. This effect is widely used in lasers to
compress (shorten) laser pulses. A pulse-compression
system was proposed by Treacy [3], who also consid-
ered a theory of this phenomenon. The system consists
of two identical parallel diffraction gratings; basically,
it is very similar to our interferometer (see Fig. 3a). Its
main distinction is that it is not an interferometer
proper; i.e., there is no addition of the transmitted sig-
nal with a reference beam that split off from the main
one and that arrived at the same point by a different
path. Otherwise, the beam path in Treacy’s system is
the same as that in our interferometer. This becomes
clear if we construct a virtual image of the grating pro-
duced by the mirror (Fig. 3b). As a result, Treacy’s rea-
soning proves to be also valid in our case if twice the
separation 2z between the mirror and the grating is sub-

∆Φ 2π
S12

λ
-------.=
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stituted for the separation between the gratings in his
scheme.

In his calculations, Treacy disregarded the finite
grating resolution. He showed that the pulse shape and
duration at the output changed because of the differ-
ence in the diffracted-signal formation delays for dif-
ferent Fourier components of the pulse incident on the
gratings. The pulse-compression problem turned out to
be formally similar to the Fresnel diffraction problem if
we ignore the term d2τ/dω2 compared to dτ/dω in the
range of frequencies ω concerned, where τ is the delay
attributable to the wave-packet passage through the sys-
tem. Treacy’s estimates [3] indicate that for a pulse of
spectral width δω, the ratio of the contributions from
these two terms to the phase is δω/ω in order of magni-
tude; i.e., the corrections are actually negligible. Note
that the above phase-constancy condition is written in
the same approximation.

If a classical damped oscillator with a low damping,
which is commonly used for a classical description of
atomic radiation, is taken as the basis, then the wave
packet can be represented as a weakly damped har-
monic wave with a more or less steep leading edge that
corresponds to oscillator “switching.” Following
Treacy’s notation [3], we write the wave packet before
it falls on the grating as

(7)

where A(t) is a slowly varying amplitude, and ψ(t) is
the function that describes the pulse phase modulation.
Equation (7) describes the signal time variation in an
x = 0 plane parallel to the pulse wave front, which is
assumed to be plane. After the passage through the two-
grating system (or an equivalent system composed of a
grating and a mirror in our interferometer), the pulse
wave front turns out to be parallel to the same plane,
while the time dependence is

(8)

Here, τ0 is the delay at the carrier frequency ω0, which
is attributable to the wave-packet passage through the
system, µ–1 = –∂τ/∂ω, and φ0 is a constant.

For a carrier frequency with a constant amplitude,

(9)

we obtain at the output

(10)

Note that the phase Φ introduced above corresponds to
the carrier-wave phase ω0τ0 and differs from Treacy’s
phase [3] by the absence of a correction term that

Bin t( ) A t( ) iψ t( )[ ]exp iω0t–[ ] ,exp=

Bout t ' τ0+( ) µ
2π
------ 

 
1/2

i φ0
π
4
---– ω0 t ' τ0+( )– 

 exp=

× A iψ( ) i
µ
2
--- t t '–( )2expexp t.d

∞–

∞

∫

Bin t( ) A0 iω0– t( )exp=

Bout t ' τ0+( ) A0 i φ0 ω0 t ' τ0+( )–( )[ ] .exp=
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allows for the relative delay of various Fourier compo-
nents (including this term is necessary when consider-
ing the pulse passage through the system). Thus, the
phase-constancy condition dΦ = 0 formulated above
implies the constancy of the carrier-wave phase.

For a classical harmonic oscillator with a low damp-
ing γ, we assume, by disregarding phase modulation,
that

(11)

where ton is the time of oscillator excitation. The wave
packet at the output takes the form

(12)

For γ = 0 (undamped oscillator), calculating the integral
in (12) is formally similar to the problem of plane-wave
diffraction by a half-plane:

(13)

Here, C(x) and S(x) are the Fresnel integrals. The anal-
ogy with Fresnel diffraction allows the distortion of the
wave packet when it passes through the interferometer
to be visualized. In this case, time variations in the light
intensity (pulse envelope) are shown in Fig. 4. The light
intensity reaches a maximum not at t ' = ton but with a

iψ( )exp 1,≡
A t( ) A0θ t ton–( ) γ t ton–( )–[ ] ,exp=

Bout t ' τ0+( ) µ
2π
------ 

 
1/2

i φ0
π
4
---– ω0 t ' τ0+( )– 

  A0exp=

× θ t ton–( ) γ– t ton–( ) i
µ
2
--- t t '–( )2+exp t.d

∞–

∞

∫

Bout t ' τ0+( ) µ
2π
------ 

 
1/2

i φ0
π
4
---– ω0 t ' τ0+( )– 

  A0exp=

× i
µ
2
--- t t '–( )2exp td

ton

∞

∫

=  
A0

2
------- i φ0

π
4
---– ω0 t ' τ0+( )– 

 exp

× iπ/4–( )exp

2
--------------------------- C

µ
π
--- t ' ton–( ) 

  iS
µ
π
--- t ' ton–( ) 

  .+ +

(a) (b)

Fig. 3. (a) A two-grating system widely used in lasers to
produce short light pulses [3]. (b) The path of the diffracted
beams in the constant phase autocorrelation interferometer
and in an equivalent two-grating system.
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delay introduced by the diffraction grating. Character-
istic damped oscillations and a monotonic signal decay
into the region of a time “shadow,” t ' ≤ ton, are observed
at the leading edge.

For a nonzero γ, the integral in (12) cannot be taken
explicitly:

(14)

Here, we denoted

(15)

If the photodetector at the interferometer output
responds to a time-integrated signal, then its response P
will be given by the integral of the modulus of the total
amplitude squared:

(16)

Bout t ' τ0+( ) µ
2π
------ 

 
1/2

=

× i φ0
π
4
---– ω0 t ' τ0+( )– 

  A0exp

× γ– t ' ton–( ) i
γ2

2µ
------+ J t ' ton– γ µ, ,( ).exp

J t ' ton– γ µ, ,( )

=  i
µ
2
--- z

γ
µ
---i+ 

 
2

exp z.d

t ' ton–( )–

∞

∫

P Bin t '' τ0+( ) Bout t ''( )+ 2 t ''d

∞–

∞
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=  Bin t '' τ0+( ) 2 t ''d Bout t ''( ) 2 t ''d
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+ 2Re Bin* t '' τ0+( )Bout t ''( )[ ] t ''.d

∞–
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1

0

I/I0
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0.25

Fig. 4. Time variations in light intensity (pulse envelope) for
an undamped harmonic oscillator switched on at time ton.
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The interference term in (16) is

(17)

To obtain signal W from an ensemble of oscillators, we
must perform averaging over the carrier frequency ω0
with the distribution function f (ω0):

(18)

Significantly, when the phase-constancy condition is sat-
isfied, the carrier-wave phase ω0τ0 does not depend on
ω0; as a result, the phase factor may be taken outside the
integral in (18). This implies that the interference pattern
will not blur because of inhomogeneous broadening. The
change in visibility (spectral luminous efficacy) of the
interference pattern with separation between the mirror
and the grating is given by integrals (17) and (18). By
measuring the pattern visibility, we can determine
parameters on which these integrals depend and, prima-
rily, the homogeneous linewidth γ.

Let us now consider the effect of a finite grating res-
olution. Clearly, for a wave packet with a spectral
width δω (δλ in wavelengths) smaller than the mini-
mum spectral interval ∆ω (∆λ in wavelengths) allow-
able by the grating, the grating will act just as a mirror
(with an additional time delay), and our interferometer
will be similar to the Michelson interferometer. For an
inhomogeneous broadening exceeding ∆ω, different
wave packets will be directed by the grating along dif-
ferent paths and will finally produce the same interfer-
ence pattern on the screen. In this case, the disappear-
ance of the interference pattern will be determined by
the minimum wavelength interval ∆λ allowable by the
grating. For wave packets whose carrier wavelengths
differ by no more than ∆λ, only the first term should be
retained in Eq. (4) when calculating the phase differ-
ence, because no change in the optical path caused by
the grating action occurs for them. If we take ∆Φ = –π

2Re Bin* t '' τ0+( )Bout t ''( )[ ] t ''d

∞–

∞

∫ A0
2 µ

2π
------ 

 
1/2
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 exp
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as the disappearance condition for the interference pat-
tern, then

(19)

where R = λ/∆λ is the grating resolution. In other
words, the interference pattern disappears as the sepa-
ration between the mirror and the grating increases
when the resolution of the Michelson interferometer 2N
reaches the grating resolution R. Let us write the order
of interference N using (1):

(20)

Relation (20) clearly shows that as the grating resolu-
tion increases, the separation z at which the interference
pattern ceases to be observable will increase propor-
tionally. If we successively increase the grating resolu-
tion (for example, by replacing the grating with a new
one with a large number of lines), then the separation z
will increase until ∆λ = δλ. This is the condition of
equality between the homogeneous emission linewidth
and the minimum wavelength interval allowable by the
grating. As the resolution increases further, different
Fourier components of each wave packet will propagate
along different paths, and the wave packet will be dis-
torted, as was described above; i.e., the grating will
behave as a perfect one.

Let us estimate the spatial size of the wave packet
for a weakly damped classical oscillator. Since the
phase modulation for such an oscillator is small, we
have

(21)

where T is the wave-packet duration. We define the spa-
tial size L of the wave packet as

(22)

Compare this size with the optical path difference 
in our interferometer at which the frequency interval
allowable by the grating becomes equal to the spectral
width of the wave packet, ∆ω = δω:

(23)

Thus, L and  are of the same order of magnitude.
It may be roughly assumed that the interference pattern
disappears when the path difference  is exceeded,
because the wave packets from different interferometer
arms do not overlap. To determine the specific law of
reduction in visibility of the interference pattern with
separation z between the grating and the mirror requires
a detailed calculation and knowledge of the wave-
packet shape. Once the grating reaches a spectral reso-
lution that is enough to separate a single wave packet
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into its components, its autocorrelation analysis will
essentially take place. So, carrying out appropriate
experiments, it is hoped that the inverse problem—
restoring the original shape of a single-photon wave
packet—can be solved.

It is of interest to determine which wave packets can
be subjected to an autocorrelation analysis with a grat-
ing of a given resolution. It follows from relation (23)
that L ≤ Rλ/2π. Using large gratings, we can reach R =
200000, which corresponds to L < 1.6 cm for a wave-
length of 0.5 µm. The radiative lifetime corresponding
to this distance, T ≈ 50 ps, is an upper limit on the radi-
ative lifetimes measurable with a given grating. Note
that the lifetimes of interest in semiconductors are gen-
erally much shorter.

Thus, achieving a maximum grating resolution
seems of great importance in our interferometer. The
interferometer considered above (see Fig. 1), which is
convenient for illustrating the basic principles, proves
to be inefficient from this point of view. Indeed, travers-
ing a finite, moderately large distance, the light dif-
fracted by the grating and reflected by the mirror
returns to the grating. As a result, not the entire grating
but only the lines in the first Fresnel zone with an order-
of-magnitude size (2λz)1/2 are effectively used.

To experimentally test the above considerations, the
interferometer assembled according to the scheme in
Fig. 1 was placed under an airtight cap, from which air
was pumped out with a high-pressure vacuum pump.
The air pressure under the cap was checked by a mer-
cury pressure gauge. The beam from a helium-neon
laser operated in TEM00 mode that was precollimated
with a telescope until a divergence of 10–4 rad was
directed toward a grating with 2400 lines/mm. The light
emerging from the interferometer was collected by a
long-focal-length objective (f = 210 mm) and recorded
by a photodiode in its focal plane. Air was allowed to
slowly bleed under the cap through a small hole. In this
case, the photodiode recorded the periodic variations in
light intensity attributable to the dependence of the
refractive index for air on the pressure under the cap.
The change in air refractive index as the pressure
increased from 20 to 660 mm Hg caused the wave-
length to change by about 1.6 Å. The number of passed
interference maxima for a perfect grating with an infi-
nite resolution is given by

(24)

where λ0 is the wavelength of the helium-neon laser in
a vacuum, and na is the refractive index for air (na ≈
1.0003 under normal pressure). We see that it must be
smaller than the number of maxima that passed in a
similar situation in the Michelson interferometer, for

∆N ∆
S10

λ0
-------na 

  S10

λ0
-------
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λ0
-----

dS10

dλ
---------- dλ

dna

--------+ 
  ∆na= =

=  
S10

λ0
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2zλ0

h2na
2 φ3cos
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which only the first term is available in Eq. (24). The
experimental curve shown in Fig. 5 actually demon-
strates a reduction in the number of passed maxima
attributable to the grating action. In the pressure range
shown in Fig. 5, 27.9 interference orders must have
been observed, while the experimental curve contains a
mere 25.2 orders. Check measurements with a Michel-
son interferometer yielded excellent agreement
between theory and experiment. Experiments with a

120

In
te

ns
ity

P, Torr
220 320 420 52020 620 660

∆N = 25.2

Fig. 5. Light intensity at the output of the interferometer
assembled according to the scheme in Fig. 1 and placed
under a pumped cap versus air pressure under the cap; z =
19 mm and θ = 75°.

G1

G2

G3

G4

O1

O2

O3

O4

Fig. 6. An improved constant phase autocorrelation interfer-
ometer, which allow one to make full use of the grating res-
olution and to vary the arm difference over a wide range.
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lower-resolution (1200 lines per mm) grating show that
the difference from the Michelson interferometer (with
the same optical path difference) decreased to 0.6 of the
interference order. Note that a nonoptimal use of the
grating resolution causes the observed effect to be
reduced considerably (by more than an order of magni-
tude) compared to an infinite resolution that corre-
sponds to Eq. (24).

An improved interferometer can be proposed for
practical measurements. This interferometer makes full
use of the grating resolution and makes it possible to
change the path difference between the interfering
beams over a wide range. Its scheme is shown in Fig. 6.
As in a Michelson interferometer, light is split by a
semitransparent plate into two arms, each containing a
system of two parallel diffraction gratings. An afocal
optical system with a unit angular magnification
between the gratings ensures the grating operation in
parallel beams; as a result, the maximum possible grat-
ing resolution can be achieved (it is important that the
minimum spectral interval allowable by the gratings be
smaller than the homogeneous linewidth). The inde-
pendent change in interferometer arm length allows the
visibility of the interference pattern to be measured
over a wide range of beam path differences.
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Abstract—The effect of the velocity (v ) dependence of the transport collision frequency νtrv on the Dicke line
narrowing is analyzed in terms of the strong-collision model generalized to velocity-dependent collision fre-
quencies (the so-called kangaroo model). This effect has been found to depend on the mass ratio of the reso-
nance (M) and buffer (Mb) particles, β = Mb/M: it is at a minimum for β ! 1 and reaches a maximum for β * 3.
A power-law particle interaction potential, U(r) ∝  r –n, is used as an example to show that, compared to νtrv(v) =
const (n = 4), the line narrows if νtrv(v ) decreases with increasing v  (n < 4) and broadens if νtrv(v ) increases
with v  (n > 4). At β * 3, the line width can increase [compared to νtrv(v ) = const] by 5 and 12% for the poten-
tials with n = 6 and n * 10, respectively; for the potentials with n = 1 (Coulomb potential) and n = 3, it can
decrease by more than half and 6%, respectively. The line profile I(Ω) has been found to be weakly sensitive to
νtrv(v ) at some detuning Ωc of the radiation frequency Ω . Dicke line narrowing is used as an example to analyze
the collisional transport of nonequilibrium in the resonance-particle velocity distribution in a laser field. The
transport effect is numerically shown to be weak. This allows simpler approximate one-dimensional quantum
kinetic equations to be used instead of the three-dimensional ones to solve spectroscopic problems in which it
is important to take into account the velocity dependence of the collision frequency when the phase memory is
preserved during collisions. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that elastic collisions of gas parti-
cles with the phase of the radiation-induced dipole
moment conserved result in line narrowing (Dicke
effect) [1–3]. Physically, the essence of the narrowing
is that collisions with phase memory do not cause any
collisional line broadening but restrict the spatial parti-
cle motion, thereby removing inhomogeneous Doppler
broadening.

The models of strong [2, 3] and weak [2–4] colli-
sions are commonly used to describe the line shape
with allowance for the Dicke narrowing due to elastic
collisions (recall that the collision frequencies in these
models are velocity-independent). Precise measure-
ments of the line profiles in the infrared molecular
absorption spectrum show that in several cases, these
models faithfully describe the observed (narrowed) line
profiles (see, e.g., [5] and references therein). However,
in some cases (for example, for CO molecules in He,
Ne, Ar, Xe, and N2 buffer gases [6], C2H2 molecules in
a Xe buffer gas [7], and HF molecules in an Ar buffer
gas [8]), none of these models gives satisfactory agree-
ment with experiment. Reasonable agreement is
achieved only when the Dicke narrowing due to elastic
collisions (in the strong- and weak-collision models)
and the dependences of the collisional line width and
shift on the molecular velocity are simultaneously
1063-7761/01/9304- $21.00 © 20723
taken into account (see [6–8] and references therein).
Nevertheless, difficulties in describing the experimen-
tally observed absorption-line asymmetry, for example,
for HF molecules in an Ar buffer gas [8], also arise in
this approach. Accordingly, in order to adequately
interpret the observed anomalies, Pine [8] suggested
that, apart from the velocity dependence of the line
width and shift, the velocity dependence of the collision
frequency was also taken into account when describing
the Dicke line narrowing. No formula was derived in
[8] for the line profile. In essence, it was suggested
describing the line profile by the well-known formula
of the strong-collision model [2, 3] by substituting
velocity-dependent frequencies for the velocity-inde-
pendent collision frequencies in it. Of course, this sub-
stitution is physically incorrect, because it makes the
Maxwell velocity distribution a nonequilibrium one, as
was pointed out by Pine [8]. Good agreement with
experimental results was considered to be a criterion
for the applicability of the formula for the line profile
proposed in [8]. Pine [8] drew attention to the necessity
of solving the corresponding theoretical problem in an
effort to properly allow for the velocity dependence of
the collision frequency when calculating the Dicke nar-
rowing.

In [9–11], it was theoretically shown that the veloc-
ity dependence of the collision frequency significantly
001 MAIK “Nauka/Interperiodica”
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affects the Dicke line narrowing. In [9, 10], the absorp-
tion line of ions in equilibrium plasma was calculated
by using the Landau collision integral. In [11], the
Dicke narrowing was calculated by using the kernel of
the collision integral in the hard-sphere model.

Thus, the importance of taking into account the
velocity dependence of the collision frequency when
calculating the Dicke line narrowing is beyond ques-
tion. Accordingly, it is of interest to consider the Dicke
effect in terms of a universal collision model that would
allow the influence of the velocity dependence of the
collision frequency on the Dicke narrowing to be
described for any interaction potential of the colliding
particles and at any ratio of their masses. It seems that
the so-called kangaroo model [12, 13], which is a gen-
eralization of the strong-collision model to velocity-
dependent collision frequencies, may be taken as such
a universal collision model.

Here, our goal is to analyze the effect of the velocity
dependence of the collision frequency on the Dicke line
narrowing in terms of the kangaroo model.

2. GENERAL RELATIONS

The profile of a single spectral line, I(Ω), normal-
ized in area to unity,

is given by

(1)

where ω and ωmn are the field frequency and the Bohr
m–n transition frequency, respectively; v is the reso-
nance-particle velocity; and ρ(v) is the nondiagonal
density matrix element. For a low radiation intensity,
ρ(v) can be calculated from the kinetic equation (see,
e.g., [3])

(2)

Here, γ = (Γm + Γn)/2, Γm and Γn are the spontaneous
decay rates of the combining (radiation-affected) levels m
and n; k is the radiation wave vector; S(v) is the nondi-
agonal collision integral; and W(v) is the Maxwell
velocity distribution.

The general expression for the collision integral is

(3)

where ν(v) is the “departure” frequency for the nondi-
agonal density matrix element, and A(v|v') is the kernel
of the collision integral. The actual kernel must satisfy
the relation [3, 14]

(4)

I Ω( ) Ωd

∞–

∞

∫ 1,=

I Ω( ) 1
π
---Re ρ〈 〉 , ρ〈 〉 ρ v( ) v,d∫= =

Ω ω ωmn,–=

γ i Ω k v⋅–( )–[ ]ρ v( ) S v( )= W v( ).+

S v( ) ν v( )ρ v( )–= A v v '( )ρ v '( ) v ',d∫+

A v ' v( )W v( ) A v v '( )W v '( ).=
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It thus follows that

(5)

where (v) is the “arrival” frequency [3, 14] for the
nondiagonal density matrix element. In general, the
velocity-dependent departure (v) and arrival (v )
frequencies are complex-valued. The relation

(6)

gives the absorption-line half-width Γ1(v ) and shift
∆1(v ) for particles with a fixed velocity v  without Dop-
pler broadening [3, 14].

The kangaroo model [12, 13] is based on the
assumption that the kernel of the collision integral is
factorized:

(7)

The following expression can be derived from (5) and
(7) for the kernel of the collision integral in the kanga-
roo model:

(8)

Substituting A(v|v') from (8) in (3) yields an expression
for the nondiagonal collision integral in the kangaroo
model:

(9)

The kangaroo model (9) is a generalization of the
strong-collision model to velocity-dependent collision
frequencies. For velocity-independent collision fre-
quencies, the kangaroo model (9) transforms to the
strong-collision model.

The following expression can be derived from (1),
(2), and (9) for the line profile:

(10)

where
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M and vT are the mass and most probable velocity of the
absorbing particles, respectively; T is the temperature;
and kB is the Boltzmann constant.

Formula (10) differs in structure from the standard
formula for the line profile in the strong-collision
model [2, 3]. The well-known expression for the line
profile in the strong-collision model [2, 3, 14] follows
from (10) for (v), ν(v) = const.

Having performed the integration over the direc-
tions of velocity v in (8) and (11), we derive for  and
Yq in (10)

(12)

Here, we introduced the functions of dimensionless
velocity t = v /vT

(13)

Thus, calculating the line profile in the kangaroo model
reduces to calculating single integrals.

3. THE CASE OF (v) = ν(v )

If the effects of phase memory in collisions may be
disregarded (the elastic scattering amplitudes of the
particles in the combining states m and n differ signifi-
cantly), then we should set (v) = 0 in the kangaroo
model (9). According to (6), the quantity γ + ν(v) is
determined by the line half-width Γ1(v) and shift ∆1(v )
[as a rule, the radiation half-width γ is known; in gen-
eral, γ ! ν(v) for molecules]. In this case, the line pro-
file is described by the function Re(Y0).

If, alternatively, the phase memory is completely
preserved in collisions (the elastic scattering ampli-
tudes of the particles in the combining states m and n
are equal; the most favorable conditions for the Dicke
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narrowing to show up), then, as is well known [3, 14],
the nondiagonal kernel A(v|v') is real and matches the
diagonal kernel Ai(v|v') of the collision integral for the
resonance particles in state i = m, n:

In this case, the departure ν(v ) and arrival (v) fre-
quencies are also real and equal [3, 14]:

(14)

The subsequent analysis of the line profile (10) is
performed for (14), when the phase memory is com-
pletely preserved during collisions; the collision fre-
quency (14) is the only model parameter.

Formulas (10)–(13) give the solution of our problem
in quadratures for any dependence ν(v ). However,
there is little point in discussing the abstractly postu-
lated dependences ν(v ). It is of interest to study the
effect of the mass ratio of the colliding particles and a
specific interaction potential on ν(v ) and, hence, on the
line profile I(Ω). To this end, it makes sense to trace the
relationship of ν(v) to the characteristics of an elemen-
tary scattering event. Given that ν(v) is the departure
frequency and that it is generally expressed in terms of
the total scattering cross section [3, 14], one would
think that this relationship can be clearly established. In
reality, this issue must be addressed with caution: when
the collision integral is modeled, the physical treatment
of the model parameters can change somewhat. In par-
ticular, in the kangaroo model used here, ν(v) in condi-
tions (14) also acts as the so-called transport collision
frequency νtrv(v), which enters into the coefficient of
proportionality between the drag force and the speci-
fied particle velocity:

(15)

The transport frequency νtrv(v) is expressed in terms of
the transport scattering cross section [14], and its veloc-
ity dependence differs from that for the departure fre-
quency.

Thus, as a parameter of the kangaroo model, ν(v )
also simultaneously acts as the departure and transport
frequencies. It should be realized with what the model
parameter ν(v ) must be associated when the Dicke
problem is considered. This question can be answered
by analyzing the asymptotic value of I(Ω) at large
buffer-gas pressures. When the conditions  @ kv T,
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γ, |Ω| are satisfied, the line profile I(Ω) is described by
the formula

(16)

Here, n is a unit vector in an arbitrarily chosen direc-
tion.

Under the same conditions, the line profile can for-
mally be calculated in the general case without model-
ing the collision integral (see the Appendix). It is
described by the same universal formula (16), where
1/τ(v ) acts as ν(v ) [see formulas (A.7) and (A.8)]. The
quantity τ(v) is a transport parameter and can be inter-
preted as the time it takes to lose memory of the initial
particle velocity direction due to collisions. In general,
τ(v ) is unrelated to the parameters of an elementary
scattering event, but it is clear that 1/τ(v ) is physically
much closer to the transport collision frequency than to
the departure frequency. Thus, the kangaroo-model
parameter ν(v) in the Dicke problem is physically
much closer to the transport collision frequency than to
the departure frequency. Below, we therefore ascribe
the velocity dependence characteristic of the transport
collision frequency to ν(v). An additional argument for
this is that in the Lorentz gas model (the limiting case
of heavy buffer particles), the diffusivity D, which γtr is
proportional to (γtr = k2D; see the Appendix), is expressed
in terms of the transport collision frequency (15) in the
same way as in (16) [15, 16].

An important parameter of the line profile I(Ω) is its
half-width, Γw . Plots of Γw against buffer-gas density
are usually analyzed when discussing the Dicke effect.
For velocity-dependent collision frequencies, the
behavior of these plots and their relative positions begin
to significantly depend on precisely which physical
quantity proportional to the density is laid off along the
horizontal axis [the density proper, the value of 〈ν〉 , or
the value of ν(v) averaged by a different method, the
transport collision frequency averaged in one way or
another, etc. may be laid off along this axis]. The corre-
sponding plots for different mass ratios of the colliding
particles and for different interaction potentials turn out
to be spaced most closely if νtr, which is inversely pro-
portional to γtr, is taken as the argument for Γw:

(17)
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where D is the true diffusivity. In the kangaroo model,
the diffusivity is expressed in terms of ν(v ) according
to (16). Note that the diffusivity introduced here is
responsible for the corresponding transport in gas-
kinetic problems (see the Appendix). As we see, the
well-known gas-kinetic parameter also universally
describes the line shape in the Dicke effect at asymptot-
ically high buffer-gas pressures.

Thus, in order to analyze the pressure dependence of
the line half-width I(Ω), it makes sense to consider the
function Γw(νtr). It has the same model-independent
asymptotics (16) for any mass ratios and interaction
potentials of the colliding particles. The quantity νtr
itself (mean transport collision frequency) is directly
related to a well-known physical parameter (diffusiv-
ity); it can be obtained either from tabulated data or
from independent measurements of the diffusivity in
transport phenomena.

Let us analyze the line profile I(Ω) by taking into
account the above remarks. We will ascribe the velocity
dependence characteristic of the transport frequency
νtrv(v ) to ν(v). For the Maxwell velocity distribution of
buffer particles, the transport collision frequency is
related to the parameters of an elementary scattering
event by [15]

(18)

where

(19)

Nb and Mb are the buffer-particle density and mass, u is
the relative velocity of the resonance and buffer parti-
cles, and σtr(u) is the transport cross section for the scat-
tering of an absorbing particle by a buffer particle.

For a power-law particle interaction potential,

(20)

in the classical limit, the transport scattering cross sec-
tion σtr(u) depends on the particle relative velocity u as
[17]1

(21)

1 For the Coulomb particle interaction (n = 1), a logarithmic diver-
gence arises when calculating σtr(u). For charged particles in
plasma, this divergence is known to be eliminated by cutting off
the impact parameter at a distance of the order of the Debye
screening length RD.
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For this σtr(u), it follows from (18) that [14, 15]

(22)

where 1F1(a; b; x) is Kummer’s degenerate hypergeo-
metric function. Formula (22) can also be written as

(23)

where  is the mean transport collision frequency,
which is related by

to the diffusivity D(c) calculated in the first approxima-
tion of Chapman–Enskog’s method (or in the five-
moment approximation of Grad’s method). The quan-

tity  is given by (see, e.g., [14])

(24)

The parameter  (24) is equal to νtr (17) only for
νtrv(v ) = const, i.e., either when β  0 (the limiting
case of light buffer particles) or at n = 4 for a power-law
interaction potential. For a power-law potential at n ≠ 4,
the following relation holds:

The difference between νtr and  is at a maximum for
heavy buffer particles (β @ 1), and it is about 13% for
the potentials with n = 2 (charge-dipole interaction for
distances that are sufficiently large compared to the
characteristic particle sizes) and n = ∞ (an equivalent of
the hard-sphere model); for 2 < n < ∞, this difference is
even smaller.2 For the Coulomb potential (n = 1), the

difference between  and νtr is at a maximum, and

the /νtr ratio reaches ≈3.4 at β @ 1.

It follows from (23) that the transport collision fre-
quency decreases with increasing v  at n < 4 and
increases with v  at n > 4. At n = 4, the collision fre-
quency is velocity-independent. For light buffer parti-
cles (β ! 1), the frequency νtrv(v) depends weakly

2 While on the subject of a power-law potential with n = ∞, we
have in mind that the transport cross section is σtr(u) = const
for n = ∞, as follows from (21). The velocity independence of the
transport cross section is characteristic of the particle interaction
in the hard-sphere model.
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on v. The v  dependence of νtrv increases with β and
reaches its maximum for heavy buffer particles (
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When condition (14) is satisfied, Im[
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)] = 0, so
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(23), it follows from (10) for large Doppler broadening
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where 
 

Γ
 

(
 

x
 

) is the Gamma function. For the interaction
potential with  n  = 4, formulas (25) and (26) transform
to a well-known formula for the central line intensity in
the strong-collision model [2, 3, 14], as must be the
case because the transport frequency 
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 does
not depend on 

 

v

 

 at 
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 = 4.
As follows from (25) and (26), the smaller 

 

n

 

, the
larger 

 

I

 

(0). Since the area under the line profile is con-
stant and normalized to unity, an increase in 

 

I

 

(0)
implies a decrease in the line width and vice versa.
Thus, at the same 

 

ν

 

tr

 

, the line width increases with 

 

n

 

.
This result is easiest to interpret in terms of the so-
called one-dimensional approach [3, 13, 14] to solving
spectroscopic problems in which it is important to take
into account the velocity dependence of the collision
frequency. This approach is considered in the next
section.

In Figs. 1 and 2, the line half-widths 

 

Γ

 

w

 

 for the pro-
file 

 

I

 

(

 

Ω

 

) calculated using formula (10) are plotted
against mean transport elastic collision frequency 

 

ν

 

tr

 

 at
various 

 

n 

 

for a power-law interaction potential and at
various mass ratios 

 

β

 

 of the resonance and buffer par-
ticles.

We clearly see from Fig. 1 that at the same 

 

ν

 

tr

 

, the
line width increases with 

 

n 

 

for a power-law potential.
Allowance for the dependence 

 

ν

 

tr

 

v

 

(v) increases the cal-
culated line width compared to νtrv(v) = const (n = 4,
the strong-collision model) for n > 4 and decreases it
for n < 4. As we see from Fig. 1a, allowance for νtrv(v)
at νtr < kvT can increase the calculated line width [com-
pared to νtrv(v ) = const] by 5 and 12%, respectively, for
the potentials with n = 6 and n = ∞ (the interaction
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Fig. 1. Line half-width Γw versus mean transport collision frequency νtr at various n for a power-law interaction potential and at a
fixed mass ratio β of the resonance and buffer particles. The values of n correspond to the arrangement of curves from top to bottom;
γ/kvT = 10–2; (a) β = 10 and n = ∞, 6, 4, 3, 2, 1; (b) β = 1 and n = ∞, 6, 4, 3, 2, 1; and (c) β = 0.3 and n = ∞, 4, 2, 1.
potential for hard spheres). For the potential with n = 3,
allowance for νtrv(v) at νtr < kvT can decrease the calcu-
lated line width by 6%. The dependence νtrv(v) affects
the calculated line width most strongly for the Coulomb
interaction potential (n = 1). A comparison of the
curves in Fig. 1a for n = 1 and n = 4 at νtr/kvT ~ 0.5
shows that allowance for νtrv(v) can decrease the calcu-
lated line width by more than a factor of 2 compared to
νtrv(v ) = const.

The effect of the velocity dependence of the colli-
sion frequency on the line profile I(Ω) is at a minimum
for light buffer particles, β ! 1 (in this case, νtrv(v)
depends weakly on v ), and at a maximum for heavy
buffer particles (β @ 1). A numerical analysis indicates
that for the problem under consideration, the limit β @ 1
is reached beginning with β ≈ 3. In other words, β = 3
is virtually equivalent to the condition β @ 1. Thus, the
plots of line half-widths Γw against νtr at β = 3 are close
to those in Fig. 1a for β = 10.
JOURNAL OF EXPERIMENTAL
According to formula (16), the line half-width Γw in
the limiting case of large collision frequencies (νtr @
kvT , γ) does not depend on the interaction potential of
the colliding particles and is Γw = γ + γtr. It follows from
an analysis of the plots in Fig. 1a that the formula

gives the line half-width with a satisfactory accuracy
(no lower than 2% for n ≥ 3) even at νtr ≈ 5kvT  at any n
for power-law interaction potentials except n = 1.

Figure 2 illustrates the effect of the mass ratio β of
the resonance and buffer particles on the line half-
width. The difference between the line half-widths for
heavy (β @ 1) and light (β ! 1) buffer particles and,
other things being equal, for the potentials with n = 3,
6, and ∞ reaches 6, 5, and 12%, respectively, while for
the Coulomb potential (n = 1), this difference can be
twice as large.

Figure 3 shows the line profiles I(Ω) at various n for
a power-law interaction potential and mean transport
collision frequency νtr. A characteristic feature of this

Γw γ γtr+=
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Fig. 2. Line half-width Γw versus mean transport collision frequency νtr at various mass ratios β of the resonance and buffer particles
and at a fixed n for a power-law interaction potential. The values of β correspond to the arrangement of curves from top to bottom;
γ/kvT = 10–2; (a) n = 1 and β = 0.01, 0.1, 0.3, 1, 3, 100; (b) n = ∞ and β = 100, 3, 1, 0.1.
figure is the intersection of all I(Ω) plots roughly at a
single point for some values of the frequency detuning
Ω = Ωc (for example, at |Ω|/kvT ≈ 0.33 and 1.3 in
Fig. 3a). When passing through the points Ω = Ωc, the
values of I(Ω) are “inverted”: the largest value of I(Ω)
(depending on n) becomes smallest and vice versa. The
velocity dependence of the collision frequency weakly
affects the intensity I(Ωc) at these points.

Note the following. We analyzed the line width and
shape as a function of the mean transport collision fre-
quency νtr, which is related to the true, experimentally
measurable diffusivity D by formula (17). In principle,
we could also plot the half-width Γw against mean

transport collision frequency  (24) or against

/kvT, which naturally arises in formula (10). A direct
comparison of the behavior of the line half-width Γw as
a function of these variables shows that the dependence
of Γw on collision frequency (ultimately, on buffer-gas
pressure) is most universal when νtr (17) is chosen as a
variable. The plot of Γw against νtr rapidly (at νtr *

5kvT) approaches the asymptotics Γw = γ + γtr [see for-
mula (16)] for any interaction potential. If the transport
collision frequency νtrv(v ) decreases with increasing
velocity, then the v  dependence of νtrv causes the line to
narrow compared to the case where νtrv(v) = const. If,
alternatively, νtrv(v) increases with v  (n > 4 for a
power-law interaction potential), then the v  depen-
dence of νtrv causes the line to broaden.

When plotting Γw against  or , neither a
rapid approach to the asymptotics nor a universal law of
line narrowing or broadening depending on whether
νtrv decreases of increases with v  are observed. For

example, Γw depends on  for power-law potentials

ν tr
c( )

ν̃〈 〉

ν tr
c( ) ν̃〈 〉

ν tr
c( )
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with n < 4 as follows: the line narrows for  < kvT

and broadens beginning with  > kvT compared to
νtrv(v ) = const.

We now draw attention to the following interesting
fact. Since the collision model we use describes pair
collisions of particles with each other, the possibility of
applying our formulas to the Coulomb interaction of
particles (n = 1) in plasma is called into question. The
point is that the Coulomb interaction of charged parti-
cles with each other in plasma is a long-range interac-
tion and is of a collective nature rather than a pair one.
Nevertheless, a direct comparison of our calculations
with the results from [9, 10], in which the Dicke
absorption-line narrowing for ions in equilibrium
plasma was calculated by using the Landau collision
integral for β = 1, shows that the case n = 1 can also be
satisfactorily described by our formulas.

Let us consider this case in more detail. At n = 1, the
transport scattering cross section σtr(u) in (18) can be cal-
culated using Rutherford’s formula for the effective scat-
tering cross section of charged point particles. A loga-
rithmic divergence arises in this case, which is associated
with the large contribution of distant collisions that pro-
duce small-angle scattering. For plasma charged parti-
cles, this divergence is known (see, e.g., [18]) to be elim-
inated by cutting off the impact parameter ρ at a dis-
tance of the order of the Debye screening length RD;
i.e., the contribution from collisions with ρ > RD is dis-
regarded. Substituting the transport scattering cross
section σtr(u) thus calculated in (18) yields (t = v /vT)

(27)

ν tr
c( )

ν tr
c( )

ν trv v( ) ν trv 0( ) 3

2βt2
----------=

× πerf βt( )
2 βt

----------------------------- βt2–( )exp– ,
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Fig. 3. Line profile I(Ω).The values of n for a power-law interaction potential correspond to the arrangement of curves from top to
bottom near Ω = 0; β = 3, γ/kvT = 10–2; (a) νtr/kvT = 0.1 and n = 1, 2, 4, ∞; (b) νtr/kvT = 0.5 and n = 1, 2, 3, 4, ∞; and (c) νtr/kvT = 3
and n = 1, 2, 4, ∞.
where

(28)

(29)

νeff is the effective transport ion-ion collision fre-
quency, L is the Coulomb logarithm, and q and qb are
the charges of the absorbing and buffer ions in plasma.

Expression (27) for the transport collision frequency
can also be derived for the Landau collision integral. To
this end, we make use of the well-known [19–22] for-
mulas for the drag force exerted on a test charged parti-
cle moving in a medium of charged particles with the
Maxwell velocity distribution that correspond to the
Landau collision integral. Given the standard [19–22]
formulas for F, expression (27) for νtrv(v ) follows from
relation (15), which defines the transport collision fre-
quency. Thus, the Landau collision integral and the col-

ν trv 0( ) 1 β+( ) βνeff,=

νeff

16 πLNb qqb( )2

3M2v T
3

----------------------------------------,=
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lision integral with the inclusion of pair collisions alone
at n = 1 give the same expression (27) for the transport
collision frequency.

In [9, 10], the line profile was analyzed as a function
of the effective transport collision frequency νeff, which
is related to νtrv(v) at v  = 0 by νeff = νtrv(0)/2 for β = 1
considered in [9, 10].

In Fig. 4, the central line intensities I(0) (at Ω = 0)
calculated in various collision models are plotted
against νtrv(0). As we see from Fig. 4, the difference
between the values of I(0) calculated using the Landau
integral at β = 1 and in the kangaroo model at n = 1 and
β = 1 (the difference between the two lower solid and
dashed curves) is much smaller than the correction that
is introduced by allowance for the velocity dependence
of the collision frequency (when passing from the
strong-collision model to the kangaroo model at n = 1
and β = 1, this is the difference between the two solid
curves; when passing from the weak-collision model to
the Landau collision integral at β = 1, this is the differ-
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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ence between the two dashed curves). The difference
between the models is at a maximum when γ  0.
Therefore, our comparison was made for a small γ/kvT

(γ/kvT = 10–6).
Thus, the kangaroo collision model satisfactorily

describes the Dicke absorption-line narrowing for ions
in equilibrium plasma. Physically, this interesting con-
clusion follows from the fact that, with a logarithmic
accuracy (~1/L ! 1), all collisions in Coulomb plasma
up to the impact parameter ρ = RD may be considered
as pair ones, while the contribution of collisions with
ρ > RD may be completely ignored [19, 23]. The colli-
sion integral with multiparticle interactions has such a
structure that multiple collisions may be essentially
considered as pair ones but complicated by the influ-
ence of the medium, i.e., by the presence of other parti-
cles [19]. In other words, taking into account the com-
bined effect of many perturbing particles on a test par-
ticle does not change the binary nature of the scattering
formulas; i.e., multiple collisions, on average, imitate
pair collisions [22, 24]. In equilibrium plasma, the for-
mulas for multiple collisions match the formulas for
pair collisions with a logarithmic accuracy [19, 23].
When calculating the Dicke absorption-line narrowing
for ions in equilibrium plasma, the correction due to the
difference between the strong- and weak-collision
models (the kangaroo model and the Landau collision
integral) is much smaller than the correction that is
introduced by allowance for the velocity dependence of
the collision frequency.

There are several methods for deriving the Landau
collision integral. In particular, the Landau collision
integral can be derived directly from the Boltzmann
kinetic equation (which includes the pair collisions
between particles alone), given that collisions with a
small change in velocity produces a major effect during
Coulomb particle collisions [25, 26]. That is why the
above equality of the transport collision frequencies
calculated using both formula (27) (pair collisions) and
the standard [19–22] expressions for the drag force F of
a test charged particle in Coulomb plasma comes as no
surprise.

The above quantitative comparison of the intensi-
ties I(0) calculated in various collision models (see
Fig. 4) confirms the possibility of using, to a first
approximation, the concept of pair collisions to
describe the Dicke absorption-line narrowing for ions
in equilibrium plasma.

4. THE ONE-DIMENSIONAL APPROACH 
TO CALCULATING THE LINE PROFILE

It is well known that when interacting with a gas of
resonance particles, laser radiation produces (through
the Doppler effect) nonequilibrium in the particle
velocity distribution only for the v z component of par-
ticle velocity v along the wave vector k. The particle
distribution in the velocity component v⊥  orthogonal to
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the wave vector k is not directly perturbed by the radi-
ation. Therefore, in the absence of collisions, the den-
sity matrix elements ρij(v) for resonance particles can
be represented in factorized form:

(30)

where W(v⊥ ) is the Maxwell distribution in velocity
component v⊥ . The factorization relation (30) allows
the three-dimensional (3D) quantum kinetic equations
for the density matrix ρij(v) to be reduced to one-dimen-
sional (1D) equations for ρij(v z) by substituting (30)
in  the basic 3D equations and then integrating them
over v⊥ .

When collisions are taken into account, the factor-
ization relation (30) becomes approximate, because
collisions generally “transfer” nonequilibrium in the v z

distribution to the distribution in orthogonal velocity
component v⊥ . In collision models with velocity-inde-
pendent collision frequencies, there is no transfer of
nonequilibrium and the factorization relation remains
valid. Therefore, just as in the absence of collisions, the
3D equations for ρij(v) reduce to 1D equations for
ρij(v z), which makes it much easier to solve the prob-
lem. However, in collision models with velocity-depen-
dent collision frequencies, there is always the transfer
of nonequilibrium to the orthogonal velocity compo-
nents v⊥  [13]. That is why the factorization relation (30)
does not hold in these models, and the equations to be
solved must necessarily be 3D ones. In many cases, it is

ρij v( ) W v⊥( )ρij v z( ),=

1

0 2

kvT I(0)

νtrv (0)/kvT

4 6 8 10

2

3

4

5

6

Fig. 4. Central line intensity (for Ω = 0) versus νtrv(0) in

various collision models, γ/kvT = 10–6. The upper and lower
solid curves represent, respectively, the strong-collision
model [the kangaroo model for νtrv(v) = const] and the kan-
garoo model, n = 1, β = 1. The upper and lower dashed
curves represent, respectively, the weak-collision model
(calculations with formulas (2.22) and (2.23) from [2]) and
the Landau collision integral (calculations with the interpo-
lation formula (50) from [10]), β = 1.
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naturally much more difficult to solve the 3D equations
and to analyze their solution than in the 1D situation.
Therefore, the question of whether simpler approxi-
mate 1D equations can be used to solve spectroscopic
and light-induced gas-kinetic problems, in which it is
important to take into account the velocity dependence
of the collision frequency, becomes of current interest.
In other words, it is important to know the error of the
solution when passing from the 3D to 1D equations.

It is commonly assumed on intuitive, qualitative
grounds that the effect of nonequilibrium transfer is
weak [3, 14, 27], and, in many cases, it may be disre-
garded. In that case, substituting (30) in the basic 3D
equations for the density matrix ρij(v) and then integrat-
ing them over v⊥  allows us to pass to 1D equations for
ρij(v z) with 1D collision integrals:

(31)

where Sij(v) are the 3D collision integrals.
The accuracy of the solution given by the 1D quan-

tum kinetic equations for velocity-dependent collision
frequencies was first quantitatively analyzed in [13,
28]. In these studies, it was numerically shown that the
transfer effect is weak and that the transfer of nonequi-
librium may be ignored when solving a wide range of
spectroscopic and light-induced gas-kinetic problems
in which it is important to take into account the velocity
dependence of the collision frequency without the risk
of losing important subtle details of the described phe-
nomena.

The collisional transfer of nonequilibrium when the
phase memory is preserved during collisions has not
yet been analyzed quantitatively. In this section, we
study this issue using the Dicke effect as an example by

Sij v z( ) Sij v( ) v⊥ ,d∫=

2
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Fig. 5. 3D, νtrv(v) (solid curves) and 1D, (v z) (dashed

curves) transport collision frequencies versus v  and vz; β = 1;
n = 1 (1), ∞ (2), and 4 (3).

νtrv
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νtrv
1( ) (v z)/νtr
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directly comparing the numerical calculations of the
line profile based on the 3D and 1D equations.

Using the above scheme for passing from the 3D to
1D equations, we find that in the 1D approach to solv-
ing our problem, the line profile I (1)(Ω) is given by for-
mula (10) with the substitution

Yq  ,   

where

(32)

W(v z) is the Maxwell distribution in the velocity com-

ponent v z = k · v/k; ν(1)(v z) and  are the 1D colli-
sion frequencies. The frequency ν(1)(v z) is related to the
3D frequency ν(v) by

(33)

the relation between (v z) and (v ) as well as

between (v z) and νtrv(v) are given by similar for-
mulas.

Given the relation

formula (33) takes the form

(34)

The quantity  in (32) matches  in (11):

It can be shown that if the collision frequencies ν(v )
and (v) are velocity-independent, then the profiles
I(Ω) and I(1)(Ω) coincide, as must be the case.

Figure 5 shows the v  and v z dependences of the 3D

[νtrv(v)] and 1D [ (v z)] transport collision frequen-
cies for a power-law interaction potential at various n.

The velocity dependence for the 1D frequency (v z)
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Fig. 6. Line half-widths Γw (solid curves) and  (dashed curves; calculations using the 1D equations) versus mean transport col-

lision frequency νtr . The values of n for a power-law interaction potential correspond to the arrangement of solid curves from top

to bottom. β = 10, γ/kv T = 10–2; (a) n = 6, 4, 3; (b) n = ∞, 4, 2, 1. The plots for Γw and  in Fig. 6a merge together and are

perceived as a single curve.

Γw
1( )

Γw
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is smoother than that for the 3D frequency νtrv(v). The
1D transport collision frequency decreases with
increasing v z for n < 4 and increases with v  for n > 4.
At n = 4, the 1D frequency is velocity-independent.

Figure 6 shows the plots of line half-widths Γw for

the profile I(Ω) (3D approach) and  for the profile
I(1)(Ω) (1D approach) against mean transport collision
frequency νtr calculated using the above formulas. The
calculations were performed under condition (14) [the
phase memory was preserved during collisions, (v) =
ν(v) = νtrv(v ) = const)] and for heavy buffer particles,
β @ 1, because the dependence of the transport colli-
sion frequency νtrv(v) on velocity v  is at a maximum in
this case, and, hence, the difference between Γw and

 is also at a maximum. At smaller β, the difference

between Γw and  is also smaller.

For the power-law potentials with n = 3 and n = 6,

the difference between Γw and  is so small (&0.3%)

that, as we see from Fig. 6a, the plots for Γw and 
merge together and are perceived as a single curve. The

difference between Γw and  is marked only for n *
10 and n < 3 (Fig. 6b). However, in these cases, the rel-

ative difference between Γw and  is also much
smaller than the correction that is introduced by allow-
ance for the velocity dependence of the collision fre-
quency (the difference between Γw for n = 4 and n ≠ 4).

Thus, when the phase memory is preserved during
collisions, the effect of collisional nonequilibrium

Γw
1( )

ν̃

Γw
1( )

Γw
1( )

Γw
1( )

Γw
1( )

Γw
1( )

Γw
1( )
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transfer is weak, and it may be ignored to a first approx-
imation. This implies that the 1D collision integrals can
always be used instead of the 3D ones to describe the
Dicke narrowing with allowance for the velocity depen-
dence of the collision frequency.

Let us now use the 1D approach to interpret the
results obtained in the preceding section. More specifi-
cally, let us elucidate the physical cause of the increase
in line width with n for a power-law interaction poten-
tial. Since the area under the line profile I(1)(Ω) is con-
stant, an increase in n must cause I(1)(0) to decrease and
vice versa. Let us elucidate the cause of this behavior of
I(1)(0) as a function of n. Consider a large Doppler
absorption-line broadening, kvT @ νtr, γ. Under these
conditions, only those particles that lie in a narrow
velocity range near v z = 0 interact with the field at Ω = 0.
Consequently, the diffusion motion of the selected
group of particles is determined by the 1D transport

collision frequency (0). For power-law potentials

with n < 4, the frequency (0) > νtr (Fig. 5) and

increases with decreasing n [ (0) = νtr for the n = 4

potential]. The higher the collision frequency (0) of
the group of resonance particles near v z = 0, the larger
the Dicke line narrowing. Thus, for n < 4, the line nar-
rows compared to n = 4 [constant transport collision
frequency νtrv(v) = const]. The narrowing increases
with decreasing n. The line broadening for n > 4 com-
pared to n = 4 is explained similarly.

ν trv
1( )

ν trv
1( )

ν trv
1( )

ν trv
1( )
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5. CONCLUSION

Our results show that when calculating the Dicke
line narrowing, allowance for the velocity dependence
of the transport collision frequency, νtrv(v), can signif-
icantly change the calculated line width. The line nar-
rowing or broadening compared to constant collision
frequencies can reach 5–12% for molecules, while for
ions in equilibrium plasma, the line can narrow by more
than half. If νtrv(v) increases with velocity v, then the
line broadens compared to νtrv(v) = const and narrows
if νtrv(v) decreases with increasing v.

The fact that at some detuning Ωc of the radiation
frequency Ω , I(Ωc) was virtually the same for any v
dependence of νtrv proved to be unexpected.

Our quantitative calculations have confirmed that
simpler approximate 1D quantum kinetic equations can
be used instead of the 3D ones to solve spectroscopic
problems in which it is important to take into account
the velocity dependence of the collision frequency. A
quantitative justification of the applicability of the 1D
approach to solving such problems is of importance,
because the passage from the 3D to 1D equations can
give a considerable gain when performing numerical
calculations, as recently demonstrated in [11].
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APPENDIX

Let us introduce the Green function for Eq. (2) that
satisfies the following equation containing only the
parameters of the medium (but not radiation):

(A.1)

Formally, the solution of Eq. (2) in terms of this Green
function is given by

(A.2)

We derived a new integral equation for ρ(v') that is use-
ful when the velocity distribution ρ(v') differs only
slightly from the Maxwell distribution. Let us show
this. Integrating Eq. (2) over the velocities under condi-
tion (14) yields

(A.3)

γF v v '( ) S F v v '( )[ ]= δ v v '–( ).+

ρ v( ) F v v '( )∫=

× W v'( ) i Ω k v '⋅–( )ρ v'( )+[ ] dv'.

γ iΩ–( ) ρ〈 〉 1 ik j, j vρ v( ) v.d∫≡⋅–=
JOURNAL OF EXPERIMENTAL 
We calculate k · j by using (A.2):

(A.4)

Integration over v affects only the Green function:

(A.5)

The quantities l and τ(v ') have the dimensions of length
and time, respectively (their physical meaning is dis-
cussed below). Let us represent ρ(v) as

(A.6)

where we assume δρ(v) to be a small addition to the
equilibrium distribution 〈ρ〉 W(v) and disregard this
addition when substituting in (A.4). From obvious
symmetry considerations, only one term remains when
integrating in (A.4) over nonzero v', so

(A.7)

Here, n is a unit vector in an arbitrarily chosen direc-
tion.

Using (A.7), we obtain from (A.3)

(A.8)

Thus, at sufficiently high buffer-gas pressures, when
the Doppler broadening is negligible and the velocity
distribution function ρ(v) is close to the Maxwell one,
the line profile I(Ω) takes a universal form according to
(A.8) with the half-width determined by the integrated
parameter D. The latter, in turn, is uniquely expressed
in terms of τ(v). The quantities l(v), τ(v ), and D may be
considered as phenomenological parameters of the gas
system in question, but, as we see from their structure,
they are formed by a sequence of collisions, and there
is no general expression in terms of the parameters of
an elementary scattering event for them. In some partic-
ular models, however, they can be expressed in terms of
the parameters of the collision integral. Let us consider
a model collision integral with a velocity-isotropic
arrival:

(A.9)

where the kernel of the integral is a function of the
velocity v1 before collision and of the velocity magni-

k j⋅ k v⋅( )∫ F v v '( )=

× W v'( ) i Ω k v '⋅–( )ρ v'( )+[ ] dvdv'.

vF v v '( ) vd∫ l v'( )≡ v'τ v '( ).=

ρ v( ) ρ〈 〉 W v( )= δρ v( ),+

k j⋅ i ρ〈 〉 k v'⋅( )2τ v '( )W v'( ) v'd∫– ik2D ρ〈 〉 ,–= =

D n v'⋅( )2τ v '( )W v'( ) v',d∫≡

τ v '( ) v v'⋅( )
v '2

----------------F v v '( ) v.d∫≡

ρ〈 〉 1

γ k2D iΩ–+
-------------------------------= ,

I Ω( ) Re ρ〈 〉
π

---------------≡ 1
π
---

γ γtr+

γ γtr+( )2 Ω2+
----------------------------------,=

γtr k2D.=

S ρ v( )[ ] ν v( )ρ v( )–= A v v1( )ρ v1( ) v1,d∫+
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tude v  = |v| after collision. The well-known strong-col-
lision model and the kangaroo model considered here
are special cases of this model. With this collision inte-
gral, we obtain from (A.1) for the Green function

(A.10)

The Green function consists of two parts: anisotropic
(with a δ function) and isotropic in v (integral term).
The anisotropic part is completely determined by the
model parameters. On the other hand, τ(v ') from (A.7)
is entirely determined by the anisotropic part of the
Green function alone, so, based on (A.10), we derive
for model (A.9)

(A.11)

Note that τ(v ') has also a finite limit when γ  0,

whereas  tends to infinity in this limit.

Let us now turn to the physical meaning of l, D, and
τ. To this end, we consider the standard Boltzmann
kinetic equation with a stationary source and relax-
ation:

(A.12)

where ρ(v) is coordinate-dependent. We use the Green
function (A.1) to solve it. Formally, the solution can be
written as

(A.13)

Let us calculate the particle flux

by assuming the local deviation from the Maxwell dis-
tribution to be negligible. Acting in the same way as in
the case of deriving (A.4)–(A.7), we obtain

(A.14)

It is clear from this result that D is the ordinary diffusiv-
ity when γ  0, which is defined as the coefficient of
proportionality between the density gradient and the
particle flux produced by it. The diffusivity can be
expressed in terms of the transport parameters averaged
in a certain way—transport length l(v ') or transport
time τ(v '). The meaning of the transport length can be
understood from its definition (A.5). In accordance
with the normalization of the Green function given by
Eq. (A.1), the combination F(v|v')dv means the average
time a particle with velocity v lies in interval dv. The
combination vF(v|v')dv is the average particle displace-

F v v '( ) 1
γ ν v( )+
---------------------=

× δ v v'–( ) A v v1( )F v1 v'( ) v1d∫+[ ] .

τ v '( ) 1
γ ν v '( )+
----------------------.=

F v v '( ) vd∫

γ v+ ∇⋅( )ρ v( ) S ρ v( )[ ]= Q r( )W v( ),+

ρ v( ) F v v '( )∫=

× Q r( )W v'( ) v' ∇⋅( )ρ v'( )–[ ] dv'.

j vρ v( ) v,d∫≡

j l v'( ) v' ∇⋅( ) ρ〈 〉[ ] W v'( ) v'd∫–=

=  τ v '( ) n v'⋅( )2W v'( ) v'd∫( )∇ ρ〈 〉– D∇ ρ〈 〉 .–=
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ment dl in this time. Consequently, l(v') is the average
displacement of a particle with an initial velocity v'
until the memory of this velocity is completely lost.
In general, this requires a finite number of collisions.
The meaning of τ(v ') is also transparent: this is the
average time it takes to lose the memory of the initial
velocity (v') direction. The transport parameters l(v')
and τ(v ') were previously introduced (see, e.g., [29,
30]) in connection with gas-kinetic problems. They are
seen to have a direct bearing on the line-profile problem
as well.
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Abstract—Numerical solutions are obtained of the full self-consistent system of equations for the counter,
rotating polarization components of the field of a short optical pulse propagating in a nonlinear birefringent
fiber and in the ensemble of the energy-level degenerate doped resonance atoms implanted in the fiber material.
In every cross section of the fiber, the ellipticity of the polarized wave experiences a complex evolution in time
accompanied by rapid changes of the azimuthal angle due to the interplay of the dispersion and the Kerr non-
linear self- and cross-phase modulation. The reciprocal effect of the impurities on the traveling pulse causes
oscillations of the pulse envelope that can completely distort the shape of the input signal, while the resonance
absorption can drive the birefringence process from the nonlinear regime back to the linear one. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Much is known about the propagation of short opti-
cal pulses in nonlinear fibers [1–3]. In a nonlinear opti-
cal fiber, the propagation of distortionless pulses can be
realized under conditions where the amplitude self-
modulation effects compensate for the linear disper-
sion. In particular, for intensities at which the dielectric
polarizability has a cubic field response (the Kerr non-
linearity), the envelopes of quasimonochromatic pulses
are approximated by optical solitons. In the axisymmet-
ric optical fiber, the fundamental mode consists of two
copropagating and perpendicularly polarized linear
fields. Non-axisymmetric imperfections to the fiber
destroy this polarization degeneracy and introduce the
linear birefringence—a difference in the propagation
characteristic between the two polarizations. Further-
more, for a nonlinear fiber, the amplitude coupling
causes an additional self-induced birefringence via the
cross-phase modulation. Activating the fiber by reso-
nance impurities, e.g., rare-earth ions, has given rise to
an entire industry of fiber lasers and amplifiers whose
physics is extensively discussed in the literature (see [4]
and references therein).

In this paper, our approach is to consider the physi-
cal system in two associated parts. The first is a short
optical pulse propagating in a nonlinear, dispersive and
birefringent fiber. The second is an ensemble of two-
level resonance atoms immersed in the fiber host mate-
rial. The first part is modeled by the full fiber equations,
broadly in the form of two coupled nonlinear
Schrödinger (NLS) equations. The second is governed
by a system of Bloch equations coupled to the fiber part
by the resonance polarization.

¶This article was submitted by the authors in English.
1063-7761/01/9304- $21.00 © 20737
Disregarding the linear birefringence, the difference
of the group velocities of the polarized modes (i.e., the
walk-off effect), and the polarization induced in the res-
onant subsystem, the nonlinear equations for the field
components are an example of a completely integrable
system [5, 6]. Under certain conditions, a short optical
pulse in a resonant medium can in turn evolve into a
steady-state solitary wave (a 2π-pulse) [7]. This means
that in a model of this type, one could ideally observe
the coexistence of the self-induced transparency (SIT)
and NLS solitons [8–10]. But this can hardly occur for
a moderately intense pulse in realistic doped fibers
because the disparity in the spatial scales and the pulse
energy for the SIT solitons and optical solitons are very
substantial in a nonlinear fiber: one 2π SIT pulse corre-
sponds to hundreds of NLS solitons by power.

The general problem then apparently reduces to two
characteristic cases: (i) the Kerr nonlinearity and bire-
fringence effect on the coherent propagation of short
pulses in a short doped fiber when the dispersion of
group velocities and the walk-off effect are insignifi-
cant, (ii) the weak effect of the resonant absorption and
refraction on the coupled soliton-like pulse propagation
in a nonlinear birefringent fiber. In this paper, we con-
centrate on the latter case. Basically, both the fiber
effects and the two-level medium can affect the polar-
ization state of the propagating light wave. In vector
nonlinear wave equations, all the cross terms (linear
birefringence, power-dependent cross-phase modula-
tion, and the group velocity mismatch) contribute to
variations of the polarization states [11]. At the same
time, level-degenerate atoms possess their own polar-
ization properties that have been discussed in numerous
papers devoted, e.g., to polarization features of the pho-
ton–echo effect [2]. The eccentricity and polarization
001 MAIK “Nauka/Interperiodica”
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ellipse orientation can alter across the width of a
2π-pulse in degenerate self-induced transparency
[12, 13].

In this paper, we consider a short optical pulse prop-
agation in a nonlinear birefringent doped fiber by
numerically solving the self-consistent system of equa-
tions for the optical field and the degenerate two-level
medium. In the course of discussion, we introduce in
succession the conventional fiber attributes (birefrin-
gence, dispersion, Kerr nonlinearity, and walk-off
effect) followed by the resonance interaction of the
light pulse with the impurity atoms in order to observe
both the separate and the combined influence of these
effects on the dynamics of polarization states and the
waveforms of polarization modes.

2. POLARIZED WAVES IN A CUBIC MEDIUM 
WITH RESONANT IMPURITIES

We consider the electromagnetic wave propagation
in an optical birefringent fiber with the cubic (Kerr)
nonlinearity. We let this fiber contain doped two-level
atoms with the transition energy in resonance with the
frequency of the carrier. The description of the solitary
wave propagation is conventionally based on the
reduced Maxwell equations [9, 14–16] complemented
with the Bloch equations [5] determining the evolution
of the resonance subsystem. Hereafter, we follow the
works by Boardman and Cooper [9, 14], where the
propagation of polarized pulses in the Kerr medium
was thoroughly observed. The resonance contribution
is considered in the same way as in [5].

We write the electric field vector of the optical wave
as E = Exex + Eyey, where ex and ey are orthogonal vec-
tors in the x and y directions. The wave propagates in
the z direction. Using the slowly varying (complex)
envelope approximation (SVEA), we can write

where ω0 is the carrier frequency and βx(βy) is the linear
propagation constant of the slow (fast) principal axis of
the birefringent fiber [9, 14–16].

The radial distribution of the electric field in the
fiber is described by the mode function Ψ(x, y). We
assume that the propagation constants slightly vary
from some average value β such that βx = β + ∆β and
βy = β – ∆β. The complex envelopes are expressed in
terms of real amplitudes and phases slowly varying in
space and time, %x = Rxexp[iϕx] and %y = Ryexp[iϕy].
The phases are given by ϕx =  + φ and ϕy =  – φ,
where  is the average value. Finally, the electric field
components are given by

Ex %x z t,( )Ψ x y,( ) i βxz ω0– t( )[ ] ,exp=

Ey %y z t,( )Ψ x y,( ) i βyz ω0– t( )[ ] ,exp=

ϕ̃ ϕ̃
ϕ̃

Ex Ax z t,( )Ψ x y,( ) iβz iω0t–[ ] ,exp=

Ey Ay z t,( )Ψ x y,( ) iβz iω0t–[ ] ,exp=
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where

The presentation of the phase terms in the above
form is attributable to the following effects: the intrin-
sic birefringence (i.e., the birefringence that would
exist in the linear limit) is represented by ±∆βz and the
self-phase modulation is described by ±φ(t, z). In a
weakly nonlinear and weakly birefringent medium,
such as the typical glasses of optical fibers, the nonlin-
earity is assumed to be instantaneous. Generally speak-
ing, the validity of this assumption depends on the
pulse rise time. If the optical pulse becomes narrower,
the assumption is no longer valid. We ignore this effect
in this paper. We consider a Kerr-type nonlinear
medium assuming that (i) the dielectric medium is iso-
tropic, (ii) the third harmonic generation can be
neglected, and (iii) the second-order nonlinear suscep-
tibility is identically zero. Therefore, the slowly varying
envelope of the nonresonance cubic polarization
3333Kerr(z, t) is

where the spatial and temporal dispersion is assumed to
be absent. The above equality written in projections
becomes

(1)

(2)

where we use the notation  = a and  = b.

The Maxwell equations with nonlinear terms (1)
and (2) and the resonance polarization included provide
a set of coupled evolutionary equations for the ampli-
tudes Ax and Ay, with the second-order group velocity
dispersion taken into account:

(3)

(4)

In Eqs. (3) and (4), the effect of the resonance impu-
rities is referred to by the slowly varying polarization
envelopes Px and Py . The coefficient is defined in
Eq. (15) in what follows. Nonresonance losses are
ignored in (3) and (4), while the terms proportional to

Ax Rx i ϕ̃ φ ∆βz+ +( )[ ] ,exp=

Ay Ry i ϕ̃ φ– ∆βz–( )[ ] .exp=

3333
Kerr

2χ1122
3( )

%%%% %%%%*⋅( )= χ1221
3( )

%%%% %%%%⋅( )%%%%*,+

Px
Kerr a b+( )[ Ax

2=

+ a b 4i φ ∆βz+( )–[ ]exp+{ } Ay
2 ] Ax,

Py
Kerr a b+( )[ Ay

2=

+ a b 4i φ ∆βz+( )[ ]exp+{ } Ax
2 ] Ay,

2χ1122
3( ) χ1122

3( )

i
∂Ax

∂z
--------- iv x

1– ∂Ax

∂t
--------- σx

∂2Ax

∂t2
-----------– ∆βAx+ +

+ mx a11 Ax
2 a12 Ay

2+( )Ax qPx+ 0,=

i
∂Ay

∂z
--------- iv y

1– ∂Ay

∂t
--------- σy

∂2Ay

∂t2
-----------– ∆βAy–+

+ my a21 Ax
2 a22 Ay

2+( )Ay qPy+ 0.=
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Px and Py represent the resonance absorption and
refraction effects. In Eqs. (3) and (4), the following
coefficients are introduced:

The self-modulation effect is represented by a11 and a22.
The factors a12 and a21 are responsible for the cross-
modulation. The effective nonlinear interaction param-
eter χeff is taken as a factor exclusively depending on
the ratio of the material susceptibility tensor elements,

i.e., on / . Thus, we have

where the effective nonlinear interaction parameter χeff
is defined as

For the silica optical fiber, the third-order susceptibility
mainly occurs because of a nonlinear electronic
response and because a = 2b, and therefore,

If we use the relations

the nonlinear terms in Eqs. (3) and (4) become

v x y,
1– dβx y,

dω
------------, σx y,

1
2
---

d2βx y,

dω2
--------------, mx y,

ω0
2

2c2βx y,

-----------------.= = =

χ1221
3( ) χ1122

3( )

a11 = a22 = χeff, a12 = 
a b 4i φ ∆βz+( )–[ ]exp+

a b+
-----------------------------------------------------------χeff,

a21 = 
a b 4i φ ∆βz+( )[ ]exp+

a b+
--------------------------------------------------------χeff,

χeff

χ1122
3( ) r( ) Ψ r( ) 4 rd∫

Ψ r( ) 2 rd∫
------------------------------------------------= .
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The system of equations (3), (4) can now be rewritten
in the final form

(5)

(6)

Equations (5) and (6) describe the propagation of a
polarized radiation pulse in the birefringent fiber doped
by resonance impurities. The electric field of the pulse
is expressed by the Cartesian components. In order to
emphasize the circular nature of birefringence, it seems
reasonable to express the evolution equations in terms
of the right- and left-hand circularly polarized fields

The corresponding complex envelopes can be written as

It is worth noting that

Hereafter, we set σx = σy = σ and mx = my = m. For the
sake of generality, we also assume that the group veloc-
ities of the different polarization components are differ-
ent. To proceed to numerical simulations of the nonlin-
ear propagation of polarized pulses, it is convenient to
introduce the dimensionless quantities

where t0 is the characteristic time scale (which can be
equal to the initial pulse duration tp0); L and A0 are the
normalizing length and amplitude, respectively; and the
velocity of the time frame v  is the velocity of the “cen-

ter of gravity” of the optical pulse, v –1 = (  + )/2.

In terms of the new variables, the system of equa-
tions (4) becomes

(7)

i
∂Ax

∂z
--------- iv x

1–+
∂Ax

∂t
--------- σx

∂2Ax

∂t2
-----------– ∆βAx+

+ mxχeff Ax
2Ax

2
3
--- Ay

2+ Ax
1
3
---Ax*Ay

2+ 
  qPx+ 0,=

i
∂Ay

∂z
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1–+
∂Ay

∂t
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∂2Ay

∂t2
-----------–  – ∆βAy+

+ myχeff Ay
2Ay

2
3
--- Ax
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1
3
---Ay*Ax

2+ 
  qPy+ 0.=

E1 Ex= iEy, E2+ Ex iEy,–=

A1 Ax= iAy, A2+ Ax iAy.–=

Ax
2 Ay

2+ A1A2, Ax
2 Ay

2+
A1

2 A2
2+

2
----------------------------= = .

A1 2, A0e1 2,= , z ζL, τ t
z
v
----– 

  t0
1– ,= =

v 1
1– v 2

1–

i
∂e1

∂ζ
-------- i

1
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-------- s
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1
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(8)

where P1 = Px + iPy and P2 = Px – iPy.
In Eqs. (7) and (8), the effect of resonance impuri-

ties is represented by the slowly varying polarization
envelopes P1 and P2. The parameters lg, lc, lk, and ld are

(9)

where

(10)

The length Ld characterizes the dispersion of the
group velocities in each polarization mode. The quan-
tity Lc stands for the coupling length. The correspond-
ing terms in Eqs. (7) and (8) couple the right and left
circular components of the electromagnetic wave,
thereby implying the linear birefringence effect. The
self- and cross-modulation effects reveal at the length Lk.
The difference between the group velocities v 1 and v 2
of the counter-rotating polarized light waves causes a
spatial divergence of the differently polarized compo-
nents of the optical pulse (the walk-off effect) over the
characteristic length Lg. A simple estimate gives the
ratio

It follows that in the picosecond pulse range, the terms
related to the group velocities are small compared to the
linear coupling terms. However, the walk-off effect can
be important when we pass to the femtosecond pulse
duration domain.

Equations (7) and (8) must be supplemented by
equations describing the temporal behavior of the den-
sity matrix elements for the ensemble of two-level
atoms immersed in the fiber host material whose levels
are degenerate with respect to the projections of the
angular momenta ja and jb. For definiteness, we con-
sider the case where ja = 1  jb = 0. The resonance
transition is characterized by the dipole moment ele-

i
∂e2

∂ζ
-------- i

1
lg

---
∂e1

∂τ
-------- s

ld

---
∂2e2

∂τ2
----------–

1
lc

---e1+ +

+
1

3lk
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2 2 e1

2+( )e2
Lq
A0
------ 

  P2+ 0,=
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1– L
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2t0
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v 1
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v 2
------– 

  , lc
1– L

Lc

----- ∆βL,= == =

lk
1– L

Lk

----- LχeffA0
2 ω0

2

2c2β
-----------,= =

s σ, ld
1–sgn L

Ld

-----
L

t0
2

--- σ ,= = =

Ld

t0
2

σ
------= , Lc

1
∆β
-------,=

Lk
2βc2

ω0
2χeffA0

2
--------------------, Lg

2v 1v 2t0

v 2 v 1–
--------------------.= =

lc

lg

--- λ
4π ctp0( )
---------------------.≈
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ment d13 = d23 =  =  = d. The effective matrix ele-
ment of the dipole transition is given by

The vector r lies in the plane normal to the optical fiber
axis.

The temporal behavior of the resonant impurities is
governed by a system of the generalized Bloch equa-
tions [13]. For slowly varying elements of the density
matrix  describing the transition between the states
|a, m〉  = |ja = 1, m = ±1〉 , and |b〉  = |jb = 0, m = 0〉, we
introduce the notation

(11)

The initial conditions are given by

The change of variables ρ12 = m21, ρ21 = m12, ρ11 = m11,
ρ22 = m22, ρ33 = n, p1 = –ρ13, p2 = –ρ23 allows writing the
generalized system of Bloch equations in the compact
form

(12)

(13)

(14)

The initial conditions are given by n(0) = 1 for the
ground level population, pα(0) = 0 for the polarization,
and mαα '(0) = 0. We also assume that the pulse duration
is much shorter than all the relaxation times in the res-
onance subsystem, which allows us to omit the relax-
ation terms in Eqs. (12)–(14). The dimensionless vari-
ables pα entering Eqs. (12)–(14) are related to the polar-
ization terms in Eqs. (7) and (8) by

(15)

where

d31* d32*

deff

r( ) Ψ r( ) 2d rd∫
Ψ r( ) 2 rd∫

----------------------------------------.=
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ρ23 a +1, ρ̂ b〈 〉 , ρ11 a 1–, ρ̂ a 1–,〈 〉 ,= =

ρ22 a, 1 ρ̂ a +1,+〈 〉 , ρ33 b ρ̂ b〈 〉 ,= =

ρkl ρlk*, l k, 1 2 3., ,= =

ρ33 0( ) 1, ρ22 0( ) ρ11 0( ) 0,= = =

ρ12 0( ) ρ13 0( ) ρ23 0( ) 0.= = =

∂ pα

∂τ
--------- iν pα= if eα 'mα 'α

α '

∑ eαn–
 
 
 

,–

∂mαα '

∂τ
------------- if eα* pα ' eα ' pα*–( ),–=

∂n
∂τ
------ if eα pα* eα* pα–( ), α α ',

α
∑– 1 2.,= =

Lq
A0
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  Pα
L
Lr

-----Pα
L
Lr

----- pα〈 〉 1
lr
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q
2πω0nadeff
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Lr = f , na is the concentration of the impurity
atoms, and 〈 〉  denotes the summation over all atoms
with the frequency detunings ν = ∆ωt0 from the center
of the inhomogeneously broadened line. In (15), the
characteristic length of the resonance interaction is

(16)

In the system of equations (12)–(13) and in expres-
sion (15),

is the normalized effective oscillation frequency of the
material variables of the resonance subsystem affected
by the field of the amplitude A0, and A2π is the amplitude
of the SIT 2π-pulse.

The coupled system of Maxwell–Bloch equations (7)–
(8) and (12)–(14) provides the mathematical basis for
numerically simulating the propagation of short pulses
of circularly polarized light in a nonlinear waveguide
doped by resonance impurities. The solution of field
equations (7)–(8) was obtained using one of the popular
[17] finite difference implicit–explicit Crank–Nicolson
numerical schemes, where the desired accuracy 0.001
was reached by iterations. Bloch equations (12)–(14)
coupled to field equations (7)–(8) by the resonance
polarization terms were solved by the predictor–correc-
tor procedure. The predictor–corrector was run at every
iteration in the Crank–Nicolson algorithm until the
accuracy about 0.001 was achieved for the polarization
components pα in Eqs. (12)–(14). Although the code
could produce the integration over the inhomoge-
neously broadened line of the resonance absorption,
we restricted it to the homogeneous case and the exact
resonance at this stage of numerical simulation, i.e., to
ν = 0 in (12). The results of calculations were the abso-
lute value of the complex amplitudes e1, 2(ζ, τ) of the
counter-rotating right- and left-handed oppositely
polarized fields. Following Winful [18], we examined
the polarization state of the field in the optical pulse in
terms of the azimuthal angle

and the ellipticity

where ξ = e1  is a complex quantity. The characteris-
tic values of ε are given by ε = 0 for the linearly polar-
ized light, ε = +1 for the purely right-hand circularly
polarized light, and ε = –1 for the purely left-hand cir-
cularly polarized light. The parameter θ is the angle
between the axis of the polarization ellipse and the slow

Lr
2π( )

Lr
2π( ) cn"

πdeff
2 ω0nat0

---------------------------= .

f
deffA0t0

2"
------------------

A0

A2π
--------= =

θ ζ τ,( ) ξarg
2

-----------=

ε ζ τ,( ) ξ 1–
ξ 1+
---------------,=

e2
1–
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principal axis of the birefringent fiber. It can vary
within the interval (–π/4, π/4).

The launched pulses are assumed to have the follow-
ing form,

(17)

where δ = tp0  and τ0 is the temporal coordinate of the
input pulse center.

3. NUMERICAL ESTIMATES

We let the group velocity dispersion D = 4πcσ  of
the silica-based monomode fiber host material be typi-
cally D = 15 ps nm–1 km–1 at λ0 = 1.55 µm and the non-
linear index n2 ≈ 10–13 esu. It then follows that

The effective nonlinear interaction parameter is

We adopt the value d ≈ 5 × 10–21 esu (the transition
4I5/2  4I5/2 in Er3+ ions) and the impurity concentra-
tion na ≈ 1018 cm–3 that corresponds to realistic samples
[19]. With the input pulse duration tp0 = t0 = 0.1 ps, the

dispersion length is Ld = σ–1 ≈ 102 cm. The polariza-
tion mode coupling effect occurs over the distance

Here, we set ∆n ~ 10–6 [20]. The effect of the group
velocity mismatch becomes noticeable at the character-
istic distance

The spatial scale of the Kerr self- and cross-modulation
process Lk depends on the field amplitude A0 as

The balance between the fiber group velocity disper-
sion and the nonlinear pulse compression occurs when
Lk = Ld. This gives the value of the one-soliton solution
amplitude of a single nonlinear Schrödinger equation

e1 2, 0 τ,( ) em1 2,
τ τ 0–

δ
------------- 

 sech ,=

t0
1–

λ0
2–

σ 1
2
---

d2β
dω2
---------= 10 28–  s2 cm 1– .≈

χeff

n2n
2π
-------- 2.3 10 14–  esu.×≈ ≈

t0
2

Lc
1

∆β
-------

λ0

2π∆n
-------------- 25 cm.≈ ≈ ≈

Lg

2v 1v 2

v 2 v 1–
------------------t0=

2ct0

∆n
---------- 6 104 cm.×≈ ≈

Lk

nλ0

πχeffA0
2

-----------------.≈

ANLS
σnλ0

πt0
2χeff

---------------= 0.5 104 esu×≈
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for the 0.1 ps pulse duration. The corresponding length

scale is  ≈ 70 cm. The nonlinear Schrödinger
one-soliton peak intensity can be estimated as

For comparison, the amplitude of a 0.1 ps 2π-pulse is

A2π = 2"d–1  ≈ 4 × 106 esu. The peak intensity of the
pulse reaches the magnitude I2π ≈ 2 × 1015 W/cm2.

Another balance equality Lk = Lc yields the electric

field strength Ac = (2n∆n )1/2 known as the charac-
teristic light wave field for a continuous wave (cw) of a
nonlinear directional coupler [21], Ac ≈ 104 esu, the
intensity Ic ≈ 1.5 × 1010 W/cm2. This broadly means that
for the input field amplitude values higher than Ac, the
nonlinear birefringence initiated by Kerr processes
begins to have a noticeable effect.

The quantity

is the distance in the sample over which the reciprocal
reaction of the medium in the form of polarization and
population differences develops to produce coherent
transients, e.g., the self-induced transparency [13], pho-
ton echoes [22, 23], optical nutations, breather waves
[24], etc. For signals with a small pulse area θ [24],

the parameter  serves as the absorption length. The
pulse area of the NLS soliton θNLS = πd"–1t0ANLS = 3 ×
10–3π is extremely small in comparison with θSIT = 2π.

4. EVOLUTION OF POLARIZATION STATES 
IN A FIBER. NUMERICAL ANALYSIS

We can now proceed to examine typical numerical
results. We focus on the diagnostic of the temporal pro-
file of the field amplitude and polarization parameters ε
and θ at every cross-section of the nonlinear birefrin-
gent fiber. We assume the light wave to be in exact res-
onance with the homogeneously broadened atomic
transition, i.e., ν = 0. In order not to overcomplicate the
problem, we also ignore the walk-off effect in this
paper, although we observed some of its obvious results
in our preliminary computations. In the numerical sim-
ulations demonstrated in Figs. 1–5 below, amplitudes

(11) of the input pulses were chosen as em1 = /2 and
em2 = 1/2 while the respective initial phases were 0 and
π. We also set f = 0.0015, thus assuming that the reso-

Lk
NLS( )

INLS

c ANLS( )2

8π
---------------------= 4 109 W/cm2.×≈

t0
1–

χeff
1–

Lr
2π( ) n"λ0

2π2nad2t0

------------------------= 5 102 cm×≈

θ d"
1– R z t,( ) t,d

∞–

∞

∫=

Lr
2π( )

3
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nance interaction process is not a strong perturbation to
the fiber effects.

The propagation of a light pulse in a birefringent
fiber is accompanied by the two-way coupling between
the orthogonal counter-rotating polarization modes
with the spatial beat period 2π∆β–1. No dispersion is
involved in the numerical simulation at this stage. For
the linear undoped fiber (i.e., when the contribution of
the Kerr self- and cross-modulation effect can be
neglected) the solution of Eqs. (7) and (8) is quite sim-
ple (Fig. 1a, 1b). The period of the partial energy trans-
fer between the modes is lb = πlc. It is seen from the 3D
plot of the azimuth θ and the ellipticity ε (Fig. 1c, 1d)
that both functions are uniform across the pulse and
oscillate in the course of propagation inside the fiber
[18]. It is worth noting that if the launched pulse ampli-
tudes were em1 = 1, em2 = 0, the azimuth angle θ would
change from –π/4 to π/4 and the polarization state
would change from the linear polarization (ε = 0) to a
circular polarization of the opposite direction (ε = ±1).

When both polarizations are excited in an asymmet-
ric manner, the ellipticity oscillates between the ellipti-
cal clockwise and elliptical anticlockwise polariza-
tions. This is clearly seen from the gray scale modular
surface of θ(ζ, τ) and ε(ζ, τ) (Figs. 1e, 1f). The dark
gray up to black corresponds to the maxima of the plot-
ted function, while the light gray down to white, to the
minima. The phase trajectories on the ε vs θ plane (with
ε and θ calculated at the moments of peak intensity of
the pulse) parameterized by ζ are closed circles (Fig. 1g).
In this picture, each trajectory is associated with a dif-

ferent η = (em1 )
2
 ratio. The outer curve pertains to

η = 999. The subsequent cycles correspond to η = 99,
9, 3, 1.5, 1.22. The biggest circle is the ultimate trajec-
tory related to a nearly net circularly right-hand polar-
ized light and small circles correspond to a nearly lin-
early polarized light. The circle in open dots corre-
sponds to the case that was numerically investigated:

em1 = /2 and em2 = 1/2. This numerical picture is in
good agreement with the one presented in [18] for the
cw-waves.

With the Kerr and walk-off effects ignored, the com-
bined action of the linear birefringence (lc = 0.25) and
dispersion (ld = 1.0) provides a well interpretable effect
of the intensity hump spreading (Figs. 2a, 2b) in the
depth of the fiber, as is clearly seen in the gray scale
map (Fig. 2c, 2d). In this case, the polarization proper-
ties of the travelling field (Figs. 2e, 2f) are quite similar
to those in Fig. 1. The spikes on both sides of the central
area in Figs. 2e and 2f are the result of numerical fluc-
tuations provoking random switchovers of the elliptic-
ity ε and the azimuth θ on the wings of the propagating
pulse, where the field is extremely weak in both polar-
izations. In Fig. 2g, we display the phase plane (ε vs. θ)
for the coupling + dispersion case for the parameters
η = 999, 9, 3, 1.22. The value η = 3 corresponds to the

em2
1–

3
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Fig. 1. (a, b) Normalized field strengths in counter-rotating polarization modes in birefringent (lc = 0.25), linear (lk = ∞), and dis-
persionless (ld = ∞) fiber; (c, d) space–time evolution of the azimuthal angle θ and the ellipticity ε; (e, f) gray scale surface of the

functions θ(τ, ζ) and ε(τ, ζ); (g) phase trajectories of θ vs. ε taken at τ = τ0 for different η = (em1 )
2
 ratios (see the text).em2
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Fig. 2. (a, b) The same as in Fig. 1 for the parameters chosen as lk = ∞, lc = 0.25, and ld = 1.0; (c, d) gray scale maps of the central
parts of pictures (a, b), respectively; (e, f) gray scale maps of the azimuthal angle θ and the ellipticity ε; (g) the same as in Fig. 1.
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case under numerical simulations. The plotted curves
are quite similar to those in Fig. 1g.

The interplay between the linear coupling and the
Kerr nonlinear phase modulation yields the picture that
JOURNAL OF EXPERIMENTAL 
was not immediately evident (Fig. 3). We injected the
pulses of the counter rotating polarization in the fiber,
with the amplitudes of the pulses expressed in physical
units satisfying the conditions Am1 ≈ 2Ac and Am2 ≈ Ac.
AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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Fig. 3. (a, b) Normalized field strengths in polarization components of the pulse propagating in birefringent nonlinear and disper-
sionless fiber with lc = 0.25, lk = 0.05; (c–f) the same as in Fig. 2; (g) the same as in Fig. 1; (h) from top to bottom: the azimuthal
angle θ, the ellipticity ε, and the polarization mode moduli at the exit of the fiber.
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This corresponds to choosing lc = 0.25 and lk = 0.05 for
the characteristic lengths. In this case, one could expect
the Kerr to compress the energy couples back to the
mode from the conjuncted polarization state every time.
Instead, we observe the interference between the cou-
pling processes with different beat periods. The cou-
pling is revealed in the form of the inserted cycles when
every new growth of the amplitude begins while the
previous one has not yet finished. The physical expla-
nation may be found if one notes that both input ampli-
tudes are chosen to be of the order of the critical
strength of the electric field Ac for cw switching. For
such intensities, the Kerr processes become sufficiently
strong to make the birefringence a nonlinear process
and the beat period can even grow unlimitedly [25–28].
Attention must be drawn to the fact that the periodicity
of the onsets of the back and forth coupling cycles
approaches the value prescribed by the choice lc = 0.25
(compare with Fig. 1). The linear behavior occurs only
on the slopes of the pulse envelope, where the field
intensity has not reached the critical value. The further
growth of the pulse field strength in a pulse envelope
forces the beat period to increase as well. The result is
seen in Figs. 3a, 3b and 3c, 3d showing the 3D picture
and the gray scale map of the polarization mode
dynamics, respectively. The envelopes of the field in
both polarization modes experience a temporal
counter-phase modulation in the central part of the
propagating waveform (Fig. 3h). The modulation of the
amplitudes of the counter rotating polarization modes
leads to the oscillation of ε and θ over τ in the propagat-
ing light wave that is clearly seen from the gray scale
maps in Figs. 3e and 3f and on the comparative plots of
the fields, ellipticity, and azimuth at the exit from fiber
placed in Fig. 3h. Figure 3g shows the (ε, θ) phase
plane for the same values of the parameter η as above.
Unlike the previous cases, the ultimate circle is dis-
torted, which agrees with the analysis in [18]. This
cycle is smeared because the spatial modulation of the
peak intensity of polarization components is complex.

Our calculations presented in Fig. 4 illustrate the
combined action of the linear birefringence, Kerr non-
linearity, and dispersion. The dispersion length ld = 1
serves as a scale length, while the coupling length lc and
the Kerr length lk are shorter, lk = 0.1 and lc = 0.25. The
choice of parameters dictates the values of the polariza-
tion mode amplitudes at the entrance to the fiber: Am1 ≈

Ac ≈ 2.7ANLS and Am2 ≈ 0.8Ac ≈ 1.6ANLS. Weak rip-
ples at the edges of the computational grid are due to
the time boundary conditions.

The current case is not a completely integrable prob-
lem because of the intermode coupling. The propagat-
ing pulse cannot find a stable form at least over the dis-
tance considered here. In one of our preliminary com-
putations under the conditions similar to those in Fig. 4,
but with lk ≈ 0.05 (i.e., for a greater amplitude), we
observed the breaking up of the input pulses of both

2
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polarizations into two separate subpulses subsequently
scattering aside.

The periodical squeezing of the pulse shape, a fea-
ture of a high-order NLS solution, produces new oscil-
lations on the wings of the pulse (Figs. 4a, 4b) because
the Kerr processes and dispersion are spatially mis-
matched. The dispersion spreading is noticeable at sev-
eral (ζ ~ 4) normalized lengths when the dispersion
chirp fills almost the entire time window (Figs. 4c, 4d).
It is then natural that polarization properties of the light
wave (i.e., the alternation of dark and light shades of the
gray) map the broadening area of the spatial-temporal
oscillation of the polarization components (Figs. 4e, 4f)
caused by the dispersion, thereby making the entire pic-
ture rather complicated. As in Fig. 3h, the oscillations
of the field remain out of phase in polarization modes
(Fig. 4g). We note that there are fewer coupling periods
in Figs. 4a and 4b than in Fig. 1 or Fig. 2. Clearly, the
nonlinear narrowing and peak amplification drive the
propagation of the pulse into a nonlinear birefringent
regime. A further growth of the pulse input amplitudes
strengthens the inequality lk < ld, thereby making the
process somewhat analogous to that in Fig. 3, plus the
dispersion-originated oscillations spreading away of
the sharp central peak.

The resonance interaction of a short pulse with the
ensemble of resonance atoms is now added to the con-
ventional fiber effects as indicated in Eqs. (7), (8) and
(12)–(14). The evolutionary behavior of the counter
circularly polarized components with the input ampli-
tudes Am1 ≈ 2Ac ≈ 4ANLS, Am2 ≈ Ac ≈ 2ANLS is plotted in
Figs. 5a, 5b and 5c, 5d. We assume the resonance inter-
action to be weak by setting f = 0.0015. Under this con-
dition, the population differences insignificantly devi-
ate from their initial values. The spatial scale of the pro-
cess is ld = 1.0, whereas lk = 0.05, lc = 0.25, and lr =
0.01. The value of the resonance interaction length

 can be estimated as  ≈ 7Ld (see (6)). This
means that the total length of the fiber in Fig. 5 is about

0.6  or 4Ld. The resonance interaction process
transfers energy more effectively than the dispersion
off the pulse to the radiation born by the reciprocal
reaction of the medium in the pulse-after-action region.
It is then clear that in comparison with Fig. 4, the ampli-
tudes of the humps rapidly decrease in the propagation
direction (Figs. 5a, 5b).

Attention should be drawn to two humps in the cen-
ter of Fig. 5g. These are the above-mentioned relics of
the NLS N-soliton break up. The visible asymmetry of
the pattern relative to the initial pulse position results
from the delayed response of the resonance subset.
Generally, we can predict that at longer distances inside
the doped fiber, the well-evolved dispersion and coher-
ent “ring” effects can hardly be distinguished.

The polarization properties of the light pulse are dis-
played in the gray scale maps in Figs. 5e and 5f. It is
interesting to note that these pictures preserve the peri-

Lr
2π( ) Lr

2π( )

Lr
2π( )
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Fig. 4. (a, b) Normalized field strengths in polarization components of the pulse for lc = 0.25, ld = 1.0, and lk = 0.1; (c–f) the same
as in Fig. 2; (g) polarization mode shapes (absolute values) at the entrance (dashed line) and at the exit (solid line) of the fiber.
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odic alternation of the regions with the opposite ellip-
ticity and azimuthal angle owing to the linear coupling
(see Figs. 2e, 2f). In our further computations (not
shown), when we set lr = 0.001 for the ten times larger
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
concentration of impurities, we saw the resonance
oscillations already filling the entire (ζ, τ) computa-
tional area at an early stage of the pulse propagation. It
was interesting to observe how the increase of the
SICS      Vol. 93      No. 4      2001
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Fig. 5. (a, b) Normalized field strengths in polarization components of the pulse propagating in a fiber with impurities (lr = 0.01).
Other parameters are lc = 0.25, ld = 1.0, and lk = 0.05; (c–f) the same as in Figs. 2–4; (g) polarization modules at the entrance (dashed
line) and at the exit (solid line) of the fiber.
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Fig. 6. (a–f) The same as Figs. 4a–4f with the parameters ld = 2.0, lc = 4.0, lk = 0.33.
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dopant concentration developed the generic picture of
the periodic azimuth and ellipticity variations with the
same beat period seen in Figs. 1 and 2. Qualitatively,
this can be regarded as a result of the resonance absorp-
tion when the progressive damping of the field humps
decreases the field amplitude below the critical value of
the electric field strength Ac, thereby driving the process
back into the linear regime, when lc begins to be shorter
than lk. Anyway, because the dispersion and the reso-
nance interaction are time-dependent processes, they
introduce temporal modulation to the basic polarization
picture consistent with the linear birefringence.

The comparison of our numerical simulation with
the known results [25] is displayed in Figs. 6 and 7. The
parameters introduced in this paper correspond to the
analogous quantities in [25, Fig. 1b] if we set ld = 2,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lc = 4, lk = 0.33, and  = 1.25. This yields the estimate
Am1 ≈ 4Ac ≈ 3ANLS, Am2 = 0 in physical units for the input
field amplitudes in the cases depicted in Figs. 6 and 7.
In both pictures, we kept the original [25] length of the
fiber, although it corresponds to lfiber = 8ld in our con-
ventions. The discrepancy originates from renormaliz-
ing the factor in the dispersion term in (5) by the coef-
ficient 1/2. In Fig. 6, we reproduce the results of [25]
observing the formation of two distinct periodicities of
the coupling process between the modes. The pulse
shape dynamics (Figs. 6a, 6c and 6b, 6d) can be physi-
cally interpreted in terms of the lc/lk ratio, which in the
current case is the biggest of all those described above,
lc/lk = 12. The coupling process between the modes
must then reveal a nonlinear behavior because of the
power dependence of the energy exchange period. In

em1
2
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Fig. 7. (a–f) The same as Figs. 5a–5f with the parameters ld = 2.0, lc = 4.0, lk = 0.33, lr = 0.01.
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the Ld units, the linear coupling length (i.e., at low

power) should have been lb = Lb = πLc  = 2π. As
a matter of fact, the visual estimate of the beat period in

Figs. 6a, 6b and 6c, 6d yields  =  ≈ 4.5π > lb.
We note that in the case under consideration, the period
of the typical higher-order soliton compressions
became power dependent. This manifests the difference
between our approach and the ideal completely integra-
ble model [29].

Figures 6e and 6f shows the gray scale (τ, ζ) maps
of the azimuthal angle θ and the ellipticity parameter ε.
It is seen that the time–pace features of the dispersion
process are distinctly reproduced. The brightest lines
and spots in the region of pulse slopes demonstrate
abrupt changes of the polarization state due to a rapid
growth or drop of the field in one polarization mode
compared to the other.

Ld
1– Ld

1–

lb
nl Lb

nlLd
1–
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The reciprocal reaction of resonance impurities on
the field of the propagating short pulse can noticeably
change the space-time picture of polarization dynamics
in the analysis of nonlinear effects in a pure fiber by
Trillo et al. [25]. For the computational variant pre-
sented in Fig. 7, all the fiber parameters and input pulse
amplitudes remain unaltered with respect to the case in
Fig. 6. But in contrast to the variant in Fig. 6, the field
of a short propagating pulse is now coupled to the res-
onance subsystem, and therefore, the complete system
in Eqs. (7)–(8) and (12)–(14) must be solved numeri-
cally. The value of the normalized resonance length was
set as lr = 0.01, with the corresponding physical length

of the resonance interaction  ≈ 3Ld and the param-
eter f = 0.0015. The population difference between the
resonance levels (which was computed but is not shown
here) remains practically unchanged because the areas
of the coherent pulses are small.

Lr
2π( )
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The resonance response changes the waveform of
the polarized light. In the current case, the intensity of
the interaction process is higher than in Fig. 5 because
the resonance interaction length is shorter. The energy
of the input pulse is rapidly transferred to oscillations of
the resonance polarization (Figs. 7a, 7b) in the region of
the retarded action of the propagating pulse (Figs. 7c,
7d). The resonance absorption noticeably weakens the
humps for greater ζ, moving them out of the calculation
window. It is interesting that the intensity damping
leads to the restoration of the linear beat period lb ≈ 2π,
and the propagation process is therefore converted from
a nonlinear regime to the linear one. Thus, the nonlinear
phase modulation and dispersion do not play the lead-
ing role in the dynamics of the pulse. This explains why
the maps of polarization parameters (Figs. 7e, 7f) are so
flat. In fact, the slow variations in the form of dark and
light stripes due to the linear coupling process period
(Figs. 7e, 7f) are the only prominent feature of the dis-
played plots. It is interesting that the oscillations of the
field envelope caused by the retarded reciprocal reac-
tion of the medium, being in phase, do not produce a
modulation of the polarization parameters ε and θ
except in the vicinities of especially rapid changes of
the field.

Passing to a higher concentration (lr = 0.001) dem-
onstrates the typical features of the coherent phenom-
ena in a resonance medium. In the depth of the fiber,
there is no solitary wave; instead, we have a waveform
with the oscillating envelope. This wave packet rapidly
shifts towards the later times, leaving the calculation
grid somewhere at ζ = 6. The polarization properties
remain indifferent to the complete destruction of the
pulse and the linear birefringence beat period is pre-
served.

5. CONCLUSION

In this paper, we have tried to give an indication of
a rich space time dynamics arising from the propaga-
tion of an elliptically polarized light pulse in a nonlin-
ear birefringent doped fiber. The resonance impurities
in the form of two-level atoms were included in the
model in addition to the full set of nonlinear fiber
effects. We have concentrated on the case of a weak
input field, for which the amplitude of the pulse is about
the amplitude of a single NLS pulse and the coupling to
the resonance system is therefore not strong. A trivial
account of the weak effect of the resonance system on
the propagating optical pulse leads to a linear absorp-
tion. Generally speaking, the coherent interaction of
short pulses with resonance atoms is a non-Markovian
process [24, 30]. Moreover, the degeneration of reso-
nance levels gives the contribution to birefringence that
is nonlocal in time. With the exception of big detunings
off the resonance, the analytical consideration of all
these effects is extremely difficult. Therefore, a direct
numerical simulation of the pulse evolution is prefera-
ble. But even within the weak-interaction approxima-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion, the general picture proved to be sufficiently com-
plex. The polarization properties of the pulsed light are
nonstationary across the pulse width and can also dras-
tically change in space. Our numerical simulations
show that the polarization dynamic is basically featured
by the interplay between the Kerr nonlinear self- and
cross-phase modulation and dispersion, while the linear
birefringence leads to a spatial modulation of the azi-
muthal angle and the ellipticity. There is a range of the
input amplitudes where the birefringence becomes a
nonlinear power dependent process because of the Kerr
cross-phase modulation, and the power beat period can
therefore grow. At the same time, when the spatial scale
of the resonance interaction becomes less than or about
the characteristic lengths of the fiber effects, the propa-
gating pulse experiences a strong distortion and a reso-
nance absorption. The intensity damping leads to the
restoration of the linear beat period, there by converting
the propagation process from the nonlinear regime to
the linear one. To observe perceptible coherent effects
such as the SIT or the photon echo, one must take many
times more powerful pulses, which in their turn excite
a higher-order N-soliton effect. Therefore, the problem
requires a special treatment.
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Abstract—The formation of vapor bubbles in a superheated liquid or of liquid drops in a superheated vapor in
a uniform electric field and at a charged center is considered. The work done for the formation of drops as well
as their critical size decrease in all cases. The critical size of bubbles always increases, while the work decreases
at a charged center and in a uniform field. An explanation is offered for the results of experiments on the initi-
ation of boiling of a superheated liquid by electric field pulses. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The effect of external magnetic fields causing the
polarization of a medium on the phase equilibrium con-
ditions was considered by many authors [1–19]. It was
found that the electric field facilitates the condensation
of superheated vapor by reducing the critical size of liq-
uid drops and the work required for their formation.
However, the conclusions concerning vapor bubbles
formed in a superheated liquid are contradictory.
According to [11, 12], an electric field must hamper the
nucleation of the vapor phase in the liquid. However, a
qualitatively opposite effect was observed in some
experiments: a pulsed electric field applied to a dielec-
tric initiated the boiling of a superheated liquid [13–
18]. In order to remove this contradiction, a number of
hypotheses reflecting different opinions concerning the
experimentally observed effect were put forth in [13,
16, 17]. These effects included the liberation of a gas at
electrodes followed by Joule heating and liquid break-
down [13, 16] and the existence of an electric double
layer at the liquid–cell-wall interface, which facilitates
the formation of the gaseous phase [15]. In specially
enacted experiments [14], electrodes were isolated
from the liquid by a glass casing which suppressed the
gas emission. Nevertheless, these experiments con-
firmed the intensification of boiling in an electric field.
In the hypothesis of a double layer, the reasons behind
its formation are not quite clear and the value of its
charge remains undetermined. According to the authors
of [19], the motion induced by electric forces may
affect vapor formation.

In the present work, the nucleation of a new phase in
a dielectric medium polarized by an external electric
field is studied on the basis of the conservation laws at
the interface and from an analysis of the expression for
the excess work required for the formation of a nucleus.
The nucleation at a charged center and in a uniform
field is considered.
1063-7761/01/9304- $21.00 © 20753
The surface forces emerging at the interface (i.e., the
electric force directed towards a less dense medium and
the Laplace force associated with the curvature of the
surface and elevating pressure in a nucleus) are of con-
siderable importance. For a liquid drop in the gaseous
phase, these forces have opposite directions, which
“unloads” a drop, effectively reducing its surface ten-
sion, and leads to a decrease in the size of a critical liq-
uid phase nucleus in the supersaturated vapor. On the
contrary, for a gas bubble in the liquid medium, the
action of both forces is added so that both forces com-
press the bubble. As a result, the size of a critical
nucleus in the presence of a field is larger than in zero
field. However, the work done for the formation of a
critical-size bubble decreases in a uniform field and in
the nonuniform field of a charge center on account of
the change in the electric field energy. The latter cir-
cumstance makes it possible to interpret the results of
experiments in which the boiling of a superheated liq-
uid is initiated by a nonuniform electric field.

2. CONDITIONS AT THE PHASE INTERFACE
IN AN ELECTRIC FIELD

Let us consider the conditions which must be satis-
fied by the parameters of a dielectric polarized by an
external electric field at a curvilinear stationary inter-
face in phase equilibrium (T1 = T2, the mass flow
through the interface is zero). The balance of forces at
the interface leads to a relation for the pressure differ-
ence in the phases [4] and the energy balance leads to
the equality of the total chemical potentials of the
phases. This gives
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where p1, p2 and ρ1, ρ2 are the pressures and densities
of the substances of the phases at the interface, E1 and
E2 are the electric field strength at the interface, which
are connected through the following boundary condi-
tions:

En and Et being the normal and tangential components
of the field strength in the first medium,

σ is the surface tension, R1 and R2 are the principal radii
of curvature of the phase boundary at the point under
investigation. ∆F is the surface electric force associated
with the difference in the permittivities of the media, is
directed towards the medium with a smaller value of ε,
and defined as [4]

(3)

Formula (2) is convenient since in zero field it is trans-
formed, together with formula (1), into the standard
conditions of phase equilibrium known from the ther-
modynamics for surfaces with a curvature:

Linearizing (to within linear terms) the chemical
potentials in Eq. (2) in pressure in the vicinity of
point ps corresponding to phase equilibrium in zero
field and for zero curvature, we arrive at, instead of (1)
and (2), the following relations containing no chemical
potentials:

(4)
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and v  = 1/ρ is the specific volume of the substance.
In the presence of an electric field, the quantity p2E =

p0 approximately preserves its value which is equal to
pressure p0 a point where the field is equal to zero [4].
Consequently, the contribution of the electrostriction
forces to the resultant pressure drop at the interface is
approximately equal to zero. This circumstance allows
us to disregard these forces at the very outset as it was
done, for example, in [5, 6].
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3. NUCLEATION

Let us suppose that one of the phases has a small
size and is formed within the main extended phase
which is in a metastable state in the presence of an elec-
tric field. We are speaking of the formation of liquid
drops in a supercooled vapor or of vapor bubbles in a
superheated liquid. We will consider this problem for a
nonuniform centrosymmetric field and for a uniform
field.

3.1. Nucleation at a Charged Center

If the charge Q creating the field is located at the
center of a bubble (for a liquid drop, this problem is
considered in [5]), the problem becomes spherically
symmetric and the nucleus is a sphere of radius R. We
are not interested in the density distribution over the
volume of the nucleus and, hence, assume that it is con-
stant.

Since the temperature and the total chemical poten-
tial of the nucleus coincide with the values of these
quantities for the ambient, the work required for its cre-
ation is determined by the change in the thermody-
namic potential Ω = –pV of the substance and by the
change in the electric field energy. We will write these
quantities in the form

(7)

It is noteworthy that the contribution from the change in
the electric field energy for a bubble or drop appears in
Eq. (7) with different signs.

We can find the extrema by differentiating Eq. (7)
with respect to R taking into account the dependence of
the permittivity of the medium on density. This gives

(8)

It can be seen that we arrive precisely at condition (1)
derived from the conservation laws and written for the
spherical case. In zero field, expression (8) gives the
Laplace formula for the radius of a critical nucleus. The
equality of the total chemical potentials at the interface
allows us to go over from Eq. (8) to a formula similar to
Eqs. (5):

(9)

In order to analyze expressions (7) and (9), it is con-
venient to use the dimensionless units p' = p/p0 and r =
R/Rc, where Rc is the size of the critical nucleus in zero

∆Ω 4πR2σ=
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Fig. 1. Dependence of the work of nucleation on the field of a charged center on the radius: (a) bubble; (b) drop. Curves correspond
to zero field (1), F = (2) 1, (3) 3, (4) 0.2, and (5) 0.5.
field. In these units, Eq. (9) assumes the form (primes
are omitted)

(10)

where

characterizes the field and the quantity

is the effective degree of supersaturation. For a vapor
bubble in a superheated liquid, ps/p0 @ 1 and v2/v1 ! 1;
consequently, parameter S is large. For a drop in a
supersaturated vapor, it is also large, but now due to the
fact that ps/p0 < 1 and v 2/v 1 @ 1. In Eq. (10), the upper
(plus) sign should be taken for a bubble and the lower
(minus) sign for a drop. In these units, the value r = 1
corresponds to zero field.

The work of nucleation (see Eq. (7)) in the dimen-
sionless units assumes the form

(11)

Equations (10) and (11) can be solved parametrically.
Eliminating field F from Eq. (10) and substituting the
obtained expression into Eq. (11), we obtain

(12)

This gives

(13)

S 1 1
r
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F
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4 p0

------------------= 1
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 =
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for a bubble and

(14)

for a drop. Specifying the value of r and using
Eqs. (12)–(14), we obtain universal field dependences
of the work at the extremum for a bubble and a drop.

The dependences of ∆Ω on the radius are plotted in
Figs. 1a and 1b for a bubble and a drop, respectively, for
various values of the field. In zero field, both depen-
dences display a conventional peak corresponding to
the critical size of the nucleus. The effects of the field
on bubbles and drops are different. For bubbles, the
peak is displaced towards larger sizes, but the value of
work at the peak point becomes lower. For drops, a
minimum at a certain small radius R0, corresponding to
a stable state of the drop, appears on the curves along
with the peak. Drops having a radius smaller than R0
grow to this size, while larger drops tend to reduce their
size to this value. With increasing field, the points of
maximum and minimum converge and the extremum of
∆Ω vanishes at a certain critical value so that the func-
tion becomes monotonically decreasing. Under these
conditions, drops of any size start growing. It should be
noted that the values of work at the extrema increase
with the field.

Figure 2 shows the field dependences of the radius
and the work at the extrema. The critical radius of a
bubble increases with the field. However, the work
done for its formation decreases linearly. Hence the
field facilitates vaporization in a superheated liquid.
The previously prevailing opinion that the field sup-
presses vaporization was based on an incomplete anal-
ysis of energy expenditure for nucleation. Indeed, if the
changes in the electric field energy are disregarded, the
energy spent for creating a critical vapor bubble
increases.

F
S
--- r4 1

r
--- 1– 

 =
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Fig. 2. Dependence of the critical radius (a) and the work of formation of a critical nucleus (b) on the field F/S of a charged center.
Region I corresponds to a bubble (the field is measured from left to right) and region II corresponds to a drop (the field is measured
from right to left).
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In the case of drops in the presence of the field, the
solution has two branches corresponding to a peak
(upper branch) and a minimum (lower branch). With
increasing field, these points converge and the extre-
mum vanishes at a certain critical value of the field. The
work at the extrema slightly increases with the field up
to the critical value. After the attainment of this value,
the formation of drops of any size becomes disadvanta-
geous from the energy point of view. It follows from
relation (9) that the value of critical field can be derived
from the relation

This relation corresponds to the fields

Such fields are easily attainable in experiments.

3.2. A Nucleus in a Uniform Field

A detailed analysis of the shape of a bubble (drop)
as a foreign inclusion in the dielectric matrix medium
in a uniform field was carried out in [6]. We consider
the situation when these inclusions are another phase of
the same substance. For this purpose, we must intro-
duce some changes into the formulas derived in [6]. In
a uniform field, a bubble (drop) has a shape quite close
to a prolate ellipsoid of revolution in the direction of
the field and having a radius R across the field and a
radius Rγ (γ ≥ 1) along the field. The eccentricity of
such an ellipsoid can be written in the form

(15)

Fc/S 3/4( )3/4 0.105.= =

E MV/cm[ ] 0.32 ps atm[ ] .≈

e 1 1/γ2– .=
JOURNAL OF EXPERIMENTAL 
The field E1 in the ellipsoid is uniform and connected
with the external field E in a uniformly unperturbed
medium through the relation

(16)

where G = (1 – n)ε2 + nε1 and n is the depolarization
factor defined as

(17)

Following [6], we write the balance equation for the
surface forces at the pole, where only the normal com-
ponent of the field differs from zero:

(18)

On the equator of the ellipsoid of revolution, the field is
directed along the tangent to the interface, and the cor-
responding equation has the form

(19)

Subtracting Eq. (18) from Eq. (19) and using relation (15),
we obtain

(20)

In zero field, this equation has the obvious solution γ = 1.
In the presence of the field, the nonsphericity parameter
γ depends on E, σ, and R.
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AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001



NEW PHASE NUCLEATION IN ELECTRIC FIELDS 757
Let us write the expression for the work required for
the formation of a nucleus in the form of an ellipsoid in
a uniform field:

(21)

In this equation, the last term describes the variation of
the field energy upon nucleation. It should be noted
that the direct evaluation of the extremum of expres-
sion (20) with respect to variables R and γ leads to
expressions differing slightly from relations (19) and
(20). It was demonstrated in [6], however, that this dif-
ference is insignificant.

In an analysis of expressions (19)–(21), it is conve-
nient to go over to the dimensionless units used by us
earlier. Introducing the dimensionless quantity F for a
uniform field,

(22)

we can write expressions (19)–(21) in the form

(23)

(24)

(25)

The system of equations (23)–(25) also has a paramet-
ric solution:

(26)

(27)

(28)

where K(γ) = 1 – 1/2γ – 1/2γ3.
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Figure 3 shows the dependences of radius R and the
nonsphericity parameter γ on the quantity F/S charac-
terizing the field for a bubble and for a drop. The radius
of a bubble and its elongation along the field increase as
the value of the field becomes higher. The value of γ for
a drop also increases. However, the radius of the drop
increases.

Figure 4 shows the dependence of the work required
for the formation of a nucleus of the critical size at the
peak on the field F/S for a bubble (ε1 = 1) for various
values of the permittivity of the surrounding liquid and
for a drop surrounded by vapor (ε2 = 1) for various val-
ues of the permittivity of the drop itself. The work first
increases and then decreases upon an increase in the
field in the case of a drop. In the case of a bubble, the
work decreases, this decrease becoming stronger and
stronger with increasing ε2.

0.1
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F/S
0.2 0.3 0.4 0.5

4

2

0

R
γ

R

γ

Fig. 3. Dependence of the critical radius R and parameter γ
on the field F/S for a uniform field. The upper two curves
correspond to a bubble (ε1 = 1, ε2 = 3) and the lower two
curves, to a drop (ε1 = 3, ε2 = 1).

Fig. 4. Dependence of the work of formation of a critical
nucleus in a uniform field on the parameter F/S. Curves 1–3
correspond to a bubble: ε1 = 1, ε2 = 2.5 (1), ε1 = 1, ε2 = 2 (2),
and ε1 = 1, ε2 = 3 (3). Curves 4 and 5 correspond to a drop:
ε1 = 3, ε2 = 1 (4) and ε1 = 8, ε2 = 1 (5).
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4. COMPARISON WITH EXPERIMENT

The nucleation frequency (or rate) per unit volume
is usually written in the following form [21]:

(29)

where G = ∆Ω/T is the Gibbs number. In experiments,
the average expectation time τ for the nucleus appear-
ance in the volume W of a metastable liquid,

(30)

is usually used.
In experiments [17, 18], an intensification of boiling

of superheated liquid n-hexane (C6H14) in an electric
field was observed. The experiments were made in a
miniature bubble chamber in the temperature range
from 120 to 170°C. The liquid under investigation was
heated in a special heater, compressed by a buffer gas
to pressures exceeding the saturation pressure at a given
temperature. Then the pressure was abruptly decreased,
the liquid was transformed into the superheated state,
and a high-voltage pulse was supplied at this instant.
The time of existence of the superheated liquid (from
the beginning of the pressure drop and voltage supply
to the beginning of boiling) was measured. It was found
that at a fixed temperature, this time decreases consid-
erably upon an increase of the applied voltage; i.e., the
electric field initiates boiling. The time of boiling was of
the order of tens of milliseconds for field strengths (0.6–
5.6) MV/cm. Such fields emerged in the liquid near the
edge of the inner metallic electrode and were extremely
nonuniform.

Let us consider a regime of liquid superheating real-
ized in [17, 18] when the superheating temperature was
105 K. In this case, the temperature of the liquid was
T = 447 K, the saturation pressure was ps = 12 atm, the
density of the liquid was ρ2 = 0.476 g/cm3, the density
of its vapor was ρ1 = 0.0054 g/cm3 (these values were
calculated by us from the empirical equation for n-hex-
ane from [21]), the permittivity of the liquid was ε2 =
1.7, and the permittivity of vapor was ε1 ≈ 1. The sur-
face tension was calculated by us from the data also
presented in [21] and amounted to σ = 3.9 dyn/cm. The
liquid was “unloaded” to the atmospheric pressure.
Under these conditions, the degree of supersaturation
introduced by us was S = 9.75 and the critical radius of
a bubble in zero field was Rc ≈ 0.8 × 10–6 cm. The quan-
tity G – 88 can be written as 104∆Ω(F) – 88. This is an

J –G 88+( ),exp=

τ JW( ) 1–=

Table

U, V 100 200 300

E, MV/cm 0.63 1.25 1.88

F 0.17 0.68 1.54

τ, ms (theory) 45 15.6 2.6

τ, ms (experiment) 40 10 2
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extremely sharp function of the field. For this reason, it
is important to analyze the behavior of this function
near zero. We expand it in the field at point F0, which is
a zero of this function. This gives

where

We will estimate the value of F0 using formula (22).
This gives a dimensionless value of the field of approx-
imately 0.7, or approximately 1 MV/cm in the dimen-
sional units. The coefficient α for the experimental con-
ditions is unknown. We can assume that its value is
small and negative since the field under the experimen-
tal conditions is nonuniform, although it is not as strong
as the field of a charged center. Finally, we can write the
nucleation time in the form

This dependence correctly describes the experimental
data for τ0 = 15 µs and α = –0.02. This is an indirect
indication of the fact that the field strength decreases
insignificantly over the characteristic length of the
nucleus size.

The table contains the values of applied voltage U,
the values of the field strengths emerging at the edge of
the inner metallic electrode in dimensional and dimen-
sionless units, and also the experimental and calculated
time τ elapsed before the liquid starts boiling.

5. CONCLUSIONS

The above analysis of the possibility of formation of
nuclei of a new phase in electric fields demonstrated
that the electric field of a charged center initiates the
condensation of a supersaturated vapor as well as the
boiling of a superheated liquid. In the latter case, the
size of critical nuclei is larger than that in zero field.
However, the nucleation work calculated taking into
account the change in the electric field energy becomes
smaller. In a uniform field, the vapor condensation is
also intensified. The boiling of a superheated liquid in
a uniform field is facilitated and the critical size of
nuclei and the work spent for their formation increase.
The concepts developed here provide a qualitative
explanation of the experimental results [17] if we
assume that the field varies insignificantly over the
sample size.
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Abstract—We studied the collective elastic interaction in a system of many macroparticles embedded in a nem-
atic liquid crystal. A theoretical approach to the interaction of macroparticles via deformation of the director
field [1] is developed. It is found that the director field distortion induced by many particles leads to the screen-
ing of the elastic pair interaction potential. This screening strongly depends on the shape of the embedded par-
ticles: it exists for anisotropic particles and is absent for spherical ones. Our results are valid for the homeotropic
and the planar anchoring on the particle surface and for different Frank constants. We apply our results to cylin-
drical particles in a nematic liquid crystal. In a system of magnetic cylindrical grains suspended in a nematic
liquid crystal, the external magnetic field perpendicular to the grain orientation results in inclining the grains to
the director and induces an elastic Yukawa-law attraction between the grains. The appearance of this elastic
attraction can explain the cellular texture in magnetically doped liquid crystals in the presence of the magnetic
field [2]. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Suspensions in liquids were recently given an inten-
sive consideration in science and technology. Colloid
suspensions of solid particles coated with a surfactant
and dispersions of liquid droplets form a medium have
attracted great interest in different practical applica-
tions including medicine [3, 4]. Small particles sus-
pended in a nematic liquid crystal make a new compos-
ite material with unique physical properties that origi-
nate from the orientational ordering of the liquid
crystal. Mechanical and optical properties of this
medium are primarily determined by the collective
behavior of these particles. Depending on their size and
anchoring energies, the particles form chains [5–7],
anisotropic clusters [8–10], or periodic structures
[1, 11].

The origin of the structure formation is the overlap-
ping distortions of the director field n caused by single
particles. These distortions interfere and result in a fas-
cinating anisotropic interaction between particles. The
director deformations greatly depend on the particle
sizes and anchoring energy. For the normal anchoring,
the director prefers to be normal to the surface of the
particles; for the planar anchoring, the director prefers
to be parallel to the surface. For a strong anchoring, the
boundary conditions on n are fixed and impose topo-
logical constrains on the director field around the parti-
cle. Topological defects arising in this case cannot be
removed from the particle. A single spherical particle
with a strong normal anchoring induces a point topo-
logical defect called the hyperbolic hedgehog. The

¶This article was submitted by the authors in English.
1063-7761/01/9304- $21.00 © 20760
droplet and the defect form a dipole that was theoreti-
cally described with the help of ansatz functions using
the electrostatic analogy [5, 12]. Such dipoles play the
dominant role in the formation of chains. Terentjev et al.
[13, 14] introduced the Saturn-ring configuration with
the quadrupole symmetry where a –1/2 disclination
ring surrounds the sphere along the equator. It was
investigated by both analytical and numerical methods.
For a finite anchoring strength of the molecules at the
surface, a ring configuration occurs. In this configura-
tion, the director field is smooth everywhere, and a ring
of tangentially oriented molecules is located at the
equator of the sphere [14]. Using a Monte-Carlo simu-
lation, Ruhwandl and Terentjev [15] showed that the
surface ring is the preferred configuration for a suffi-
ciently small anchoring. Stark [17] showed that the
transition from the dipole to the Saturn-ring configura-
tion can be achieved by either decreasing the particle
size or applying the magnetic field or decreasing the
anchoring.

In all the papers cited above, the behavior of spher-
ical droplets in a nematic liquid crystal was studied.
However, it was shown that there can be interesting
properties and new structures in suspensions of aniso-
tropic particles [1]. In 1970, Brochard and de Gennes
[19] showed for the first time that the doping of a nem-
atic liquid crystal with ferromagnetic cylindrical grains
leads to a macroscopic collective behavior. This behav-
ior is manifested as a distortion of the uniform molecu-
lar orientation of the entire matrix upon application of
an external magnetic field. In other words, magnetic
grains rule over the orientation of the entire nematic liq-
uid crystal matrix. This was experimentally confirmed
001 MAIK “Nauka/Interperiodica”
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by Chen and Amer [2, 20]. They found that the doped
nematic exhibits a cellular texture with the cells of the
order of tens of micrometers at the critical magnetic
field H ~ 30 G. The magnetically doped nematic liquid
crystal (DNLC) system in the magnetic field was theo-
retically examined by Burylov and Raikher [21, 22].
However, since the elastic interaction between the
grains was not taken into account, the cellular texture
itself has not found a satisfactory theoretical explana-
tion. The first attempt to find the elastic interaction
between cylindrical grains in a nematic matrix was
made by Lopatnikov and Namiot [24], who found the
pair interaction potential for the weak anchoring when
the grains lie along the director.

A new approach to finding the pair interaction
potential between arbitrarily shaped particles for the
weak anchoring was proposed in [1]. This approach
allows finding the interaction potential for any orienta-
tion of the particles with respect to the director. The pair
interaction potential was found as the result of the over-
lapping of distortions of the director field from two par-
ticles. The general potential obtained in [1] reduces to
the results of Ramaswamy et al. [23] and Lubensky et
al. [12] for spherical particles and to the result of Lopat-
nikov and Namiot [24] for cylindrical particles. For
spherical particles, this potential differs from that
obtained by Ruhwandl and Terentjev only by the angu-
lar dependence of the interacting macroparticles with
respect to the director.

In this paper, we use the approach proposed in [1] to
consistently account for the interference of the defor-
mations of the director field from all particles embed-
ded in the liquid crystal. Distortions of the director field
from the other particles affect the interaction potential
between two chosen particles. We show that the collec-
tive screening effect arises when the concentration of
particles is high. This screening effect is shown to
essentially depend on the shape and orientation of the
particles and on the anchoring strength. For example,
the screening is absent for spherical particles and is sig-
nificant for anisotropic particles, e.g., cylinders. When
the cylinders are placed at an angle to the director, the
screened Coulomb attraction of the Yukawa form aris-
ing between them can lead to nontrivial consequences.
In this paper, we show that this potential is responsible
for the cellular texture in ferronematics that was
observed by Chen and Amer [2]. We show that the
effective charge in the screened Coulomb attraction
greatly depends on the angle between the grains and the
director. It is zero in the equilibrium states when the
grains are parallel or perpendicular to the director in the
case of the planar or homeotropic anchoring. The exter-
nal magnetic field that is not parallel to the initial orien-
tation of the magnetic grains takes them out of the equi-
librium state; the effective charge then arises because of
the angle between the grains and the director. We also
show that the screening is not always exponential but
can be trigonometrical under some conditions. It can
occur only in the presence of the external field when the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
angle between the grains and the director exceeds the
critical threshold.

In Section 2, we formulate the problem of finding the
elastic energy of a doped nematic liquid crystal follow-
ing the approach in [1]. In Subsection 2.1, we find the
director distribution resulting from the interference of
the distortions induced by all particles. In Subsection 2.2,
we consider the energy of these director distortions and
extract the screened pair interaction potentials from it.
In Subsection 2.3, we find an analytical expression for
the pair interaction potential in the diagonal approxi-
mation. In Section 3, we find the elastic Yukawa attrac-
tion of the magnetic grains in the liquid crystal in the
presence of the external magnetic field. We consider the
system of many particles attracting in accordance with
the Yukawa law and find the conditions for the clump-
ing to occur in this system. This allows us to explain the
cellular texture in ferronematics.

2. FORMULATION OF THE PROBLEM
The free energy of a nematic liquid crystal is given by

(1)

where Kii are the Frank elastic constants and n is the
director. The macroparticles embedded in a liquid crys-
tal induce deformations of the director field. The sur-
face of these particles can be coated with different sur-
factants that orient the nematic molecules either nor-
mally or tangentially to the surface. The surface energy
can be written as

(2)

where ν(s) is the unit normal to the surface at the point s
on the surface and W(s) is the anchoring coefficient at
this point. In the general case, W(s) > 0 corresponds to
the planar anchoring and W(s) < 0 corresponds to the
normal anchoring. The integral is taken over the entire
surface of particle p. We assume that all particles have
the same orientation in space (for example, with the
help of the external field), but their centers of mass can
move freely under the action of the resulting elastic
potentials in order to minimize the total free energy of
the system. The total free energy is the sum of the bulk
and surface energies:

(3)

We do not consider the distribution entropy part of
the free energy, because it does not affect the director
distribution and is irrelevant for finding the elastic
interaction potential between particles.

We consider the case of the weak anchoring, where
Wr0/K ! 1 (we imply the absolute value of W), where
r0 is the smallest size of the particle, e.g., the radius of

Fb
1
2
--- d3r K11 divn( )2{∫=

+ K22 n rotn⋅( )2 K33 n rotn×( )2 } ,+

Fs sW s( ) ν s( ) n s( )⋅( )2,d∫°
p

∑=

F Fb= Fs.+
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the sphere or the cylinder. For the homeotropic anchor-
ing and spherical droplets, this corresponds to the sur-
face ring configuration [13, 14]. In this case, we assume
that the director distortion from the homogeneous state
n0 is small everywhere:

(4)

Under this assumption, the director smoothly varies
from point to point and no topological defects arise in
the vicinity of particles. This is a consequence of the
weak anchoring strength and of the small particle size
(we consider particles with the size less than 1 µm,
which only slightly distort the director for the real
anchoring strength [15]). We can use the Fourier repre-
sentation for the director in the entire space, thereby
considerably simplifying the problem.

In the Fourier representation, we have

(5)

Inserting (5) in bulk Frank energy (1), we obtain

(6)

To simplify this expression, we choose the special basis

(7)

We then have q = (q⊥ , 0, q||) and δn = (δn1, δn2, 0), and
Eq. (1) therefore reduces to

(8)

Because we assume that the director smoothly varies
from point to point and relation (4) is true, we can con-
sider the director to have a given value inside the vol-
ume of the particle. This assumption is valid if the total
volume of the suspended particles is much less than the
entire volume of the system, i.e., the volume fraction of
the particles is small, cv  ! 1, where c = N/V is the con-
centration and v  is the volume of a particle (the “gas”
approximation). For the real system [2], c = 1010 cm–3,
v  ~ 10–15 cm3, and cv  ~ 10–5, and our assumption is
therefore true.

n r( ) n0 δn r( ), δn  ! 1.+=

δn r( ) 1

2π( )3
------------- d3∫ q iq r⋅–( )δn q( ).exp=

Fb
1
2
--- 1

2π( )3
------------- d3q K11 q δn q( )⋅ 2{∫=

+ K22 n q×[ ] δn q( )⋅ 2 K33 n q⋅( )δn q( ) 2 } .+

e1

q⊥ n0×( )
q⊥

----------------------, e2

q⊥

q⊥
------,= =

e3 n0, q⊥ n0 q.×= =

Fb
1
2
--- 1

2π( )3
-------------=

× d3q Kiiq⊥
2 K33q||

2+{ } δ ni q( ) 2.∫
i

∑
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The director on the surface can therefore be
expressed through the director at the center of mass Rp

of the particle and its derivatives,

where ρ is the vector drawn from the center of mass to
the point s on the surface. The complete expression for
the director on the surface through the director at the
center of mass of the particle is therefore given by

(9)

We now fix a coordinate system (x, y, z) where the
z axis is parallel to the undeformed director n0 and x
and y are perpendicular to it. This system is firmly fixed
in space. We next substitute director field (9) in the sca-
lar product (n(s) · ν(s))2 and also include the second
powers of the perpendicular director deformations δnx

and δny. We thus write

(10)

where

We note that this expression involves two smallness
parameters. The first is the perpendicular component of
the director,

,

and the second is the ratio  = ρ/ln of the particle size
to the average deformation length ln of the director. In
[1], the respective terms proportional to ε, ε, and 2ε
were taken into account. The expansion in  is equiva-
lent to the multipole expansion in [12]. In this paper, we
also take the last term proportional to ε2 into account.
This term is not essential at the distances comparable to
the average distance between particles, as we see
below, and it can therefore be omitted for the systems
considered in [6, 7, 12], where the concentration of dis-
persed particles is small. It becomes essential for dense
colloids, where there are too many particles and where
the interference of the distortions from all particles is
considerable. In [12], |δnµ| (with µ = x, y) was shown to
fall off as R–2 and R–3 depending of the dipole or qua-
drupole symmetry. We thus conclude that ε ~ 2 for the
third term, which has the dipole symmetry (and ε2 ! ε
in this case), and ε ~ 3 (ε2 ! 2ε) for the fourth term
with the quadrupole symmetry. In any case, taking the
last term into account gives only small corrections at
the average distances and for a small number of parti-

δn s( ) δn Rp( )= ρ∇( )δn Rp( ) 1
2
---+ ρ∇( )2δn Rp( ),+

n s( ) n0 δn Rp( ) ρ∇( )δn Rp( )++=

+
1
2
--- ρ∇( )2δn Rp( ).

ν s( ) n s( )⋅( )2 ν n0⋅( )2 2 ν n0⋅( ) ν δn⋅( )+=

+ 2 ν n0⋅( ) ρ ∇⋅( ) ν δn⋅( )

+ 2 ν n0⋅( ) ρ ∇⋅( )2 ν δn⋅( ) ν δn⋅( )2,+

ν ν s( ), δn δn Rp( ).= =

δnx δny, ε, δn3 ε2∼ ∼

ζρ

ζρ ζρ
ζρ

ζρ
ζρ

ζρ ζρ
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cles. As we see below, this is essential in the collective
effect of the screening at large distances, where the con-
centration of particles is high. We specifically clarify
this problem in what follows.

For this, we write the scalar products (ν(s) · n(s)) in
the local basis (k1, k2, k3) associated with each particle.
For example,

where

The surface energy is then written as

(11)

(12)

(13)

(14)

where N is the total number of particles in the entire
volume V of the liquid crystal matrix and the respective

surface terms  and  are linear and quadratic in
δnµ. Following [1], we now define several tensors in the
basis (k1, k2, k3) that characterize the anchoring energy,

(15)

The elastic energy Fel, i.e., the energy of deformations
of the director field, is then given by

(16)

(17)

(18)

ν s( ) n s( )⋅ ν kl⋅( ) δn kl⋅( )
l 1 2 3, ,=

∑=

=  ν lδnµklµ
ν lδn3kl3

,+

ν l ν kl⋅( ), kl3
kl n0,⋅= =

δn3
1
2
--- δnx

2 δny
2+( ).–=

Fs Fs
0( ) Fs

1( ) Fs
2( ),+ +=

Fs
0( ) N sW s( ) ν s( ) n0⋅( )2,d∫°=

Fs
1( ) sW s( )ν lνmkl3

d∫°
p

∑=

× 2δnµklµ
2 ρ∇( )δnµklµ

ρ∇( )2δnµklµ
+ +{ } ,

Fs
2( ) sW s( )ν lνmd∫°

p

∑=

× δnµδnνklµ
kmν

δnx
2 δny

2+( )kl3
km3

–[ ] ,

Fs
1( ) Fs

2( )

α kl 2 sW s( )νk s( )ν l s( ),d∫°=

βklm 2 sW s( )νk s( )ν l s( )ρm s( ),d∫°=

γklmn sW s( )νk s( )ν l s( )ρm s( )ρn s( ).d∫°=

Fel Fb= Fs
1( ) Fs

2( ),+ +

Fs
1( ) α lm βlms ks ∇⋅( )+{

p

∑=

+ γlmst ks ∇⋅( ) kt ∇⋅( ) }δ nµklµ
km3

,

Fs
2( ) 1

2
---=

× α lm δnµδnνklµ
kmν

δnx
2 δny

2+( )kl3
km3

–[ ] .
p
∑
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The main difference between this paper and [1] is in
taking term (18) into account. It is quadratic in the
director deformations and can be regarded as the con-
tribution of all particles to the interference of distor-
tions. Precisely this term leads to the screening effects.
Some of its features can be considered without finding
the director. For example, it is clearly seen that it van-
ishes for spherical particles. Indeed, αlm = αδlm and

 = δµν for the sphere, and therefore,  ≡ 0. For
any other shape, Eq. (18) does not vanish. To describe
its effect analytically, we go to the continuum limit in
this expression and replace the summation with the
integration over the entire space,

where, as before, c = N/V is the concentration of parti-
cles:

(19)

We thus consider the interference of only long-
wavelength distortions of the director field. In the Fou-
rier representation, we have

(20)

The tensor  is here taken in the (x, y, z) coordi-
nate system, which is not convenient. It is much more
suitable to write the surface energy and the bulk energy
in Eq. (8) in the same basis (e1, e2, e3). This basis is
rotated by the angle ψ(q) with respect to (x, y, z) around
the z axis (Fig. 1). In the new basis, the director has the
components δn = (δn1, δn2, 0) and δnµ = ϖµiδni (with
µ = x, y and i = 1, 2). The rotation matrix is given by

klµ
klν

Fs
2( )

c V ,d∫
p

∑

Fs
2( ) c

2
--- Vãµνδnµ x( )δnν x( ),d∫=

ãµν α lm klµ
kmν

kl3
km3

δµν–[ ] .=

Fs
2( ) c

2 2π( )3
---------------- d3qãµνδnµ q( )δnν* q( ).∫=

ãµν

ϖµi
ψcos ψsin–

ψsin ψcos
= .

Fig. 1. Orientation of a cylindrical particle. The particle lies
in the xn0 plane at the angle θ with the director.

ψ

θ

n0

e2

e1

x

y

K1

K2

K3
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In the basis (e1, e2, e3), the surface energy becomes

(21)

(22)

(23)

We now add the bulk energy Fb and the surface
energy Fs and find the total energy of the system

with the elastic energy

(24)

(25)

(26)

Here, m = 1, 2, 3; i, j = 1, 2; and δni(q) and  are the
projections of these vectors on the basis (e1, e2, e3).

2.1. Director Distribution
in the Doped Nematic Liquid Crystal

Having found the complete expression for the elas-
tic energy of a liquid crystal with particles, we can find
the director at any point of the system from the extre-
mum condition

(27)

In the matrix form, the last equation becomes

(28)

where

Fs
1( ) 1

2 2π( )3
---------------- d3q iq– rp⋅( )am* δn q( ) km⋅( )exp{∫

p

∑=

+ iq rp⋅( )am δn* q( ) km⋅( ) } ,exp

am kl n0⋅( )=

× α lm iβlms q ks⋅( ) γlmst q ks⋅( ) q kt⋅( )–+[ ] ,

Fs
2( ) c

2 2π( )3
---------------- d3qaijδni q( )δn j* q( ),∫=

aij ϖiµ
T ãµνϖν j.=

Ftotal Fs
0( ) Fel+=

Fel
1

2 2π( )3
---------------- d3qVij q( )δni q( )δn j* q( )∫=

+ bi* q( )δni q( ) bi q( )δni* q( ),+

Vij q( ) Kiiq⊥
2 K33q||

2+( )δij caij,+=

bi q( ) iq rp⋅( )amkmi
.exp

p

∑=

kmi

δ
δn j* q( )
------------------Fel Vij q( )δni q( ) b j q( )+ 0,= =

δni q( ) Vij
1– q( )b j q( ).–=

δn1 q( )
δn2 q( ) 

 
 

=  –
1
D
----

V22 V12–

V12– V11

b1 q( )
b2 q( ) 

 
 

,

D V11V22= V12
2 .–
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We can make some general conclusions from this
expression concerning the behavior of the director. Dis-
tortions decrease far from the particle. However, the
denominator D can vanish for some wave vectors q,
which corresponds to the appearance of oscillations of
the director field. The origin of the director oscillations
is purely collective, because the effect depends on the
concentration V12 ~ ca12. It also depends on the shape of
the particles and their orientation with respect to the
undeformed director n0. We assume that these oscilla-
tions can be observed experimentally, because they
must lead to the scattering of electromagnetic waves
with wave lengths commensurate to the oscillations
period. Equation (28) seems to imply that

where α is the average value of the tensor αlm; from
Eq. (15), we have

where W is the anchoring energy and S is the area of the
particle. The resonance wave length is therefore
roughly estimated as

(29)

For example, in the experiment with cylindrical grains
[2], the parameters are given by c ≈ 1010 cm–3, S ≈
2πRL, the radius of the grain is R ≈ 0.05 µm, the length
L ≈ 0.5 µm, the elastic constant K ~ 10–7 dyn, and the
anchoring energy W ~ 10–3 dyn/cm. We then find λres ≈
30 µm. Because it is always possible to vary the con-
centration and the anchoring energy, the resonance
wave length can be in the range λ ≈ 10–100 µm. In any
case, this length must be larger than the average dis-
tance between the particles, λ @ 〈l 〉 . For the experiment
in [2], 〈l 〉 ≈ 4 µm and all the assumptions are therefore
valid. In the domain with the size about 30 µm, there
are approximately 500 particles and their collective
interaction can induce long-wavelength oscillations of
the director field.

2.2. Elastic Energy and the Pair Interaction Potential 
between Particles

Having found the director field, we insert Eq. (28) in
(24) and obtain the elastic energy of the director defor-
mations in the DNLC:

(30)

The negative sign implies that the total free energy

evaluated for solution (28) is less than the energy F =

 for the undeformed director field n0. The total
energy Fel can be represented as the sum of the pair

λ K /cα ,∼

α lm WS,∼

λ res K /WcS∼ .

Fel
1

2 2π( )3
---------------- d3qVij

1– q( )bi* q( )b j q( ) 0.<∫–=

F Fs
0( ) Fel+=

Fs
0( )
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potentials between two particles. Indeed, we introduce

the operator  such that

(31)

(32)

The elastic energy Fel then takes the form

(33)

(34)

The expression Upp' has the meaning of the pair interac-
tion potential between particles p and p' that is caused
by long-range deformations of the director field. The
subscript p indicates that we must substitute

in the operator . This expression is valid for parti-
cles of the ordinary shape and orientation. It accounts
for screening effects that arise from the interference of
the director field distortions by all particles.

2.3. Pair Potential in the Diagonal Approximation. 
Analytical Results

Although expression (34) is exact, it is too difficult
to find the results analytically. In the most general case,
the pair potential U(R, W) depends on all the three com-
ponents of the radius vector R = rp – rp', and on three
Euler angles W that determine the orientation of parti-
cles in space (we assume that all particles are oriented
in the same way, and all of them therefore have the
same Euler angles). To take the screening effects into
account analytically, we consider particles with the
rotational symmetry around one axis. For such parti-
cles, the pair potential U(R, θ) depends on the angle θ
between this symmetry axis and the director. If θ = 0,
all particles are parallel to the director. In this case, the
entire DNLC has the rotational symmetry around the
director n0 and the pair potential U(R⊥ , R||) depends on
the perpendicular and parallel projections of R with
respect to n0. But in the case where θ ≠ 0, the second
preferential direction arises in the system, the direction
along which all the particles lie. We project this direc-
tion on the plane perpendicular to the director and let s
denote the projection,

Âm

Âmeiq r⋅ ameiq r⋅ ,=

Âm kl n0⋅( ) α lm βlms ks ∇⋅( )+[=

+ γlmst ks ∇⋅( ) kt ∇⋅( ) ] .

Fel
1
2
--- U pp ' ,

p p ',
∑=

U pp '
1

2π( )3
------------- Âm

p
Âm '

p '
–=

× d3q iq rp rp '–( )[ ] Vij
1– q( )kmi

km j'
.exp∫

∇ ∂
∂rp

--------=

Âm
p

s n0⋅ 0.=
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We then have the potential U = U(R⊥ , R||, ϕ, θ), where
ϕ is the azimuthal angle between R and s.

To obtain analytical results, we average over the
angle ϕ. For this purpose, we average the tensor aij in
Eq. (23) over the angle ψ and drop the off-diagonal
terms; we call this the diagonal approximation:

(35)

where

This approximation makes the propagator (q) diag-
onal and allows us to take all the integrals analytically.
The diagonal approximation is exact only for θ = 0,
when the entire system has the rotational symmetry in
the xy plane. The coefficient a(θ) depends on the shape
of the particles. For example, for cylinders with R ! L,
we have

and for flat (pancake) particles with R @ h,

(where θ is the angle between the normal to the pancake
plane and the director). In the diagonal approximation,
the propagator therefore becomes

(36)

and the pair potential is given by

(37)

(38)

(39)

(40)

It is easy to integrate over q in Eqs. (39) and (40)
using the coordinate system with the basis

(41)

aij ψ θ,( ) aij〈 〉 ψ

=  
1
2
---

ã11 ã22+ 0

0 ã11 ã22+
a θ( )δij,=

a θ( ) 1
2
--- ã11 ã22+( ).=

Vij
1–

a θ( ) πRLW 2 3 θsin
2

–( ),=

a θ( ) 2πR2W 1 3 θcos
2

–( )=

Vij
1– q( ) Kiiq⊥

2 K33q||
2 ca θ( )+ +( ) 1– δij=

U pp '
1

2π( )3
------------- Âl

p
Âl '

p '
Ill ' R( )[ ] ,–=

Ill ' R( ) I1ll ' R( ) I2ll ' R( ),+=

I1ll ' R( )

=  d3qeiq R⋅ kl q⊥ n0×[ ]⋅( ) kl ' q⊥ n0×[ ]⋅( )
q⊥

2 K11q⊥
2 K33q||

2 ca θ( )+ +( )
--------------------------------------------------------------------------,∫

I2ll ' R( )

=  d3qeiq R⋅ kl q⊥⋅( ) kl ' q⊥⋅( )
q⊥

2 K22q⊥
2 K33q||

2 ca θ( )+ +( )
------------------------------------------------------------------.∫

r1

R⊥ n0×
R⊥

------------------, r2
R⊥

R⊥
-------= = ,

r3 n0, R⊥ n0= R×= .
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This basis is rotated with respect to the one in (7) by
some angle ϕ about the axis n0. The quantities q⊥  and q||
are similar in both bases. We therefore have

and the denominators of the fractions involved in (39)
and (40) do not depend on the angle ϕ. Integrating over
ϕ, we obtain

(42)

where µ = 1, 2 and

and J0 and J2 are the Bessel functions.
In order to calculate these integrals, we must thor-

oughly scrutinize the function a(θ). As mentioned
above,

for cylindrical grains. The case where W > 0 corre-
sponds to the planar anchoring, and W < 0 corresponds
to the normal anchoring. For the planar anchoring, the
equilibrium state of the grains is θ = 0 and

and for the normal anchoring, the equilibrium state is
θ = π/2 and

We thus see that a(θ) > 0 in the equilibrium state
independently of the anchoring type. But if the grains
have a magnetic moment, the external magnetic field
can lead the grains into the states where a(θ) < 0. This
occurs if

for the planar anchoring and if

for the homeotropic anchoring. These states exist only
because of the magnetic field. Both cases must there-
fore be considered. We first consider the case where
a(θ) > 0, which corresponds to the equilibrium states or

the case of weak external fields. We write (R) for
Iµll '(R) in this case. We introduce

iq– R⋅( )exp i q⊥ R⊥ ϕcos q||R||+[ ]–{ }exp=

Iµll ' R( ) π q⊥ q⊥d

0

∞

∫=

× Ql l ',
+ J0 q⊥ R⊥( ) 1–( )µQl l ',

– J2 q⊥ R⊥( )+{ }

× q||
iq||R||–( )exp

Kµµq⊥
2 K33q||

2 ca θ( )+ +( )
------------------------------------------------------------,d

∞–

∞

∫

Ql l ',
±( ) r1 kl⋅( ) r1 kl '⋅( ) r2 kl⋅( ) r2 kl '⋅( )±=

a θ( ) πRLW 2 3 θsin
2

–( )=

aplanar 0( ) 2πRLW 0,>=

anormal π/2( ) πRLW 0.>–=

2/3arcsin θ π/2< <

0 θ 2/3arcsin< <

Iµll '
exp

pµ
Kµµ

K33
---------R||, s R⊥ , zµ

ca θ( )
Kµµ

--------------.= = =
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After the integration over the q||, (R) becomes

(43)

For the Bessel functions, we have the relation

which for ν = 1 gives

The corresponding integrals involving J1(x) and J0(x)
are given by

(44)

(45)

Using these relations, we find

(46)

The pair interaction potential is then given by

(47)

This is the potential of the elastic interaction between
any particles in the diagonal approximation. It depends
on the three components of the radius-vector R = rp – rp'
between particles.

In the one-constant approximation where Kµµ =
K33 = K, the potential depends only on the scalar of the
vector R,

(48)

Iµll '
exp

Iµll '
exp R( ) π2

KµµK33

---------------------- q⊥ q⊥
pµ q⊥
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--------------------------------------------d
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----------------------J0 sq⊥( )d
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(49)

It is clearly seen that collective distortions of the
director lead to the screening of the pair interaction
potential with the screening length

(where W is the absolute value of the anchoring energy
and S is the area of the particle). This screening occurs
both for the homeotropic and for the planar anchoring.
Because the concentration is only involved in the
inverse screening length ξ, the limit as c  0 gives
ξ = 0 and brings us back to the unscreened result of Lev
and Tomchuk [1], which is equivalent to the result of
Lopatnikov and Namiot [24] for asymmetric cylinders.

All this is true only if ξ–1 @ 〈l〉 , where 〈l 〉  = 1/  is the
average distance between particles. We thus write the
condition on the anchoring strength under which our
approach is applicable:

(50)

2.3.1. Field-induced trigonometric screening. If
the grains have the magnetic or electric moment, the
external magnetic or electric field can change the angle θ
between them and the director, which can result in
a(θ) < 0. To find the potential in this case, we must
replace

in (46) and take half the sum of the two expressions,

(51)

which gives

(52)

The pair interaction potential then takes the form

(53)

In the one-constant approximation, this becomes

(54)
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where

The screening becomes trigonometrical. We have
obtained this result in the diagonal approximation after
averaging over the azimuthal angle ϕ. Beyond the diag-
onal approximation, the screening length ξ–1(ϕ, θ) actu-
ally depends on the azimuth, and the exponential
screening ξ–1(ϕ, θc) is therefore different in different
directions. Changing the external field changes the
angle θ, and at a certain critical angle θc, the screening
length ξ–1(ϕ, θc), can become infinite in some directions
determined by ϕ; the screening thus vanishes along
these directions. Subsequently increasing the field
makes the screening trigonometrical along these direc-
tions. The screening is therefore exponential along cer-
tain directions and is trigonometrical along others, but
it is absent on the intersections.

3. EXPLANATION OF THE CELLULAR TEXTURE 
IN FERRONEMATICS

In 1970, Brochard and de Gennes [19] proposed
doping the liquid crystal matrix with ferromagnetic
grains to allow the coupling of the liquid crystal molec-
ular orientation to weak external fields. The authors
treated such a system theoretically and predicted the
Fréedericks effect in weak magnetic fields H ~ 10 G. The
doped matrix therefore exhibits a collective orienta-
tional distortion in weak magnetic fields. They also pre-
dicted segregation effects, i.e., a smooth change of the
grain concentration c(R) from point to point in the mag-
netic field. In [2], the authors experimentally observed

ξ 1– θ( ) K
c a θ( )
-----------------.=

H0

H1

H0

n

m

θ

0 < θ < π/2

Fig. 2. Aggregation of magnetic grains in a ferronematic
upon application of the magnetic field.
SICS      Vol. 93      No. 4      2001



768 CHERNYSHUK et al.
the collective behavior in the MBBA doped with mag-
netic grains, which is exhibited as a long-range uniform
distortion of the molecular orientation of the entire
sample upon application of a weak magnetic field
H < 1 G. In that experiment, the grains were coated
with DMOAP, which provides homeotropic anchoring
on their surfaces, thereby making the magnetic grains
lie perpendicular to the nematic director in the absence
of the magnetic field.

This system was theoretically studied by Burylov
and Raikher [21, 22]. It was shown that under applying
the magnetic field H, there is an angle between the grain
dipole moment direction m (which is the unit vector
along the grain) and the director n0; the angle is differ-
ent from π/2 or 0 for a finite anchoring, as shown in
Fig. 2.

To describe the experimental results on the depen-
dence of the field-induced birefringence on the strength
of the applied field, on the concentration of the mag-
netic dopant, and on the thickness of the nematic cell,
Burylov and Raikher proposed the free energy density
functional

(55)

where f = cv  is the volume fraction occupied by the par-
ticles, v  is the particle volume, Ms is the magnetization
inside the grains, d is the diameter, and A ~ 1 is a con-
stant. This functional differs from the one proposed by
Brochard and de Gennes only by the last term. The last
term accounts for the weak anchoring under which 0 <
θ < π/2. Minimization with respect to f (keeping the
number of particles fixed) leads to

(56)

where f0 is found from the total number of grains

It was found that the particles accumulate in the center
of the cell under applying the magnetic field (Fig. 2).
For weak fields H < 10 G, the dependence f(z) (where z
is the axis perpendicular to the cell, with z = 0 in the
center) is given by [21]

, (57)

F
1
2
--- K[ 11 divn( )2 K22 n rotn⋅( )2+=

+ K33 n rotn×[ ] 2 ]

– Ms f m H⋅( )
f kbT fln

v
---------------------

fWA n m⋅( )2

d
-------------------------------,–+

f f 0
µ m H⋅( )

kbT
---------------------- WAv n m⋅( )2

dkbT
---------------------------------+ ,exp=

f Nv f r( ) V .d∫= =

f z( ) f 1 ρ2D2 1 12z2/D
2

–( )
48λ2

----------------------------------------------+=
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where

D is the thickness of the cell (D ≥ 100 µm),

and ν ≈ 2 × 10–15 cm3. At higher fields, the concentra-
tion in the center is increased faster, which was proved
by computer simulations. But on reaching the field H ~
30 G, experiment shows [2] that the uniform orienta-
tional distortion is replaced by a new field-induced cel-
lular texture with the cells having dimensions on the
order of tens micrometers. At the critical concentration
in the center, magnetic particles clump into aggregates.
This clumping had no explanation, because the mag-
netic dipole–dipole interaction is much smaller than the
interaction with the external magnetic field. Indeed, the
magnetic moment µ = Msv  induces the interaction

where R is the average distance between particles, R−3 ~
c ~ 1010 cm3, and therefore, Edd ~ 4 × 10–15 erg. The
energy of the interaction with the external magnetic
field H ~ 10 G is EH = µH ~ 3 × 10–12 erg, and hence,
EH @ Edd.

We explain this field-induced cellular texture by the
clumping of the grains caused by elastic deformations
of the director, i.e., by the elastic interaction between
particles. In the one-constant approximation, this

potential is given by Eq. (48). In the operators  in
(32), we keep only the first term

because the other terms give higher powers in 1/R. For
the cylinder, the tensor

has the components

and αlm = 0 for the others. Hence,

and we can neglect α33. We thus obtain

(58)

Cylindrical grains therefore attract each other in
accordance with the Yukawa law if θ ≠ 0, π/2, which is
possible in the inclined external field. In the absence of
the field, the equilibrium orientations are θ ≠ 0, π/2
(depending on the planar or normal anchoring [25]) and

λ
K33v

2 f kbT
--------------- 

  1/2

,=

ρ Msv H/kbT , Ms 340 G,∼=

Edd µ2/R3,=

Âl
p

Âl α lm kl n0⋅( ),=

α lm 2 sW s( )ν l s( )νm s( )d∫°=

α11 α22 dLπW , α33 d2πW ,= = =

α33/α11 d/L 0.1,≈=

Ucyl R( )
α11

2 θ θcos
2

sin
2

4πK
----------------------------------- ξ θ( )R–( )exp

R
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the potential becomes that obtained by Lopatnikov and
Namiot [24], which is proportional to 1/R3. We set

We next consider the system of particles with the
concentration c and the interaction law

The free energy density of this system is written as

(59)

We must find the condition for the loss of stability in
this system of attracting particles. We write the concen-
tration as

where f0 is the ground volume fraction. Expanding

we obtain

(60)

where r0 is the size of the particle. Inasmuch as U < 0,
a phase transition occurs for N < 0. In our case, ξr0 ! 1
and we can therefore write

Below the critical point,

The length of the first instability is

(61)
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As discussed above, linst ≈ 30 µm, which is in a good
agreement with the experimental size of the cells [2].

4. CONCLUSION

We have derived the potential interaction for parti-
cles of the ordinary shape doped in the nematic liquid
crystal. We have taken the collective screening effects
into account, which is essential for the real colloid sys-
tems. It is found that the shape of the particles essen-
tially influences the screening effects, which exist for
both the homeotropic and the planar anchoring. Screen-
ing is absent for spherical particles. Anisotropic parti-
cles. (e.g., cylinders) with the magnetic or electric
moment in the presence of the inclined external mag-
netic or electric field induce oscillations in the director
distribution with the period about λ ~ 10–100 µm
depending on the anchoring, the concentration, and the
magnitude of the external field. In this case, selective
scattering of the electromagnetic waves on these oscil-
lations may be observed for electromagnetic waves in
this range.

It is found that cylindrical grains inclined to the
director attract via the Yukawa law. This explains the
cellular texture in ferronematics. Application of the
external magnetic field changes the orientation of the
magnetic grains with respect to the director, which can
lead to essentially changing the screening effects. In
particular, this can lead to the trigonometric screening
of the pair interaction.

Collective effects in doped nematic liquid crystals
strongly depend on the anchoring strength, on the par-
ticle shape and concentration, and on external fields and
make DNLC a marvellous medium for a further exper-
imental and theoretical exploration of the different
structures originating from deformations of the director
field.
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Abstract—The problem of hydrodynamic drag of a fractal cluster is considered on the basis of the Brinkman
equation. An analytic expression is obtained for the drag force of large and small clusters as a function of their
fractal dimension. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Fractal clusters arise in different natural and techno-
logical processes. There are many papers devoted to the
study of these objects [1–4]. One of important charac-
teristics of a cluster is its hydrodynamic radius RH,
which is equal to the radius of an impermeable particle
with the same hydrodynamic drag. This characteristic
of a cluster is used for the experimental determination
of its dimension [2, 3]. The model of a porous ball in
which the distribution of the spherically symmetric
density of constituent particles is a power function of
the radius is frequently applied to the description of the
flow of a fluid and the determination of the hydrody-
namic drag of a fractal cluster. In this case, the hydro-
dynamics of a fluid is described by the Brinkman equa-
tion [5] with the permeability depending on coordi-
nates. Analytical estimates are usually obtained with
the use of the results of Debye and Bueche [6] for a
homogeneous porous ball. Numerical methods were
applied to obtain results for an arbitrary dimension of a
fractal cluster [7–9]. The hydrodynamic drag of an
inhomogeneous porous ball was calculated in [10] by
numerical methods. In the present paper, we obtain ana-
lytic expressions for the hydrodynamic radius RH and
the fluid collection efficiency η for large and small clus-
ters of arbitrary fractal dimension.

2. THE STUDY OF THE SOLUTIONS
TO THE BRINKMAN EQUATION

The flow field V of a fluid around a cluster of radius R
for small Reynolds numbers Re = VR/ν ! 1, where ν is
the kinematic viscosity, can be described by the Brink-
man equation [5]

(1)

where V(r) is the velocity of the fluid, p is pressure, and
µ is the dynamic viscosity. Suppose that κ2(r) is propor-
tional to the density n of the cluster substance (some-

∆V κ2 r( )V–
1
µ
--- ∇ p– 0, divV 0,= =
1063-7761/01/9304- $21.00 © 20771
times, one applies more complex models [8, 9]). The
number N of particles in a fractal cluster is related to its
radius R by the formula

where a is the radius of original particles that constitute
the cluster, D is the cluster dimension, and C is the pro-
portionality factor that may depend on D. In this case,
the density n is given by

At low density, we can assume that the inverse of the
permeability is proportional to the density of particles

where the coefficient α is of the order of unity and

is the permeability on the surface of the cluster.
Passing to the dimensionless variables r ' = r/R, V' =
V/V0, and p' = pR/µV0 and omitting the primes, we
rewrite Eq. (1) as

(2)

where

and s = 3 – D. We will seek a solution to Eq. (2) in a
spherical system of coordinates with the polar axis
directed along the flow incoming onto a resting cluster.
Let us express the velocity of the flow in terms of the
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azimuthal component of the vector potential V = rotAφ.
We seek the solution in the following form:

(3)

Substituting these expressions into the equation for the
radial component of velocity, we obtain

(4)

Taking the divergence of the equation of motion (2), we
obtain the second equation

(5)

Equations (4) and (5) constitute the full system of equa-
tions for determining the flow field and the pressure dis-
tribution inside and outside the fractal cluster. Outside
the cluster, β = 0, and the general solution to Eqs. (4)
and (5) satisfying the boundary conditions at infinity is
given by

(6)

where A1 and A2 are indefinite coefficients. Inside the
cluster, the solutions to Eqs. (4) and (5) are expressed
in terms of elementary functions only when s = 0 or s =

p θp r( ),cos=
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Fig. 1. Positive roots of Eq. (10) versus parameter β.
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2. For a homogeneous porous ball with s = 0, two solu-
tions that are regular at zero are given by

(7)

where I3/2 is a Bessel function of a complex argument,

(8)

For a fractal cluster with s = 2, the solutions are given by

(9)

The exponent k satisfies the fourth-order equation

, (10)

from which we obtain two positive roots k1, 2. The solu-
tion of this equation as a function of the parameter β is
represented in Fig. 1. For small and large values of β,
the roots are as follows:

(11)

To solve Eqs. (4) and (5) for an arbitrary dimension
of a cluster, 0 < s < 2, we introduce a new variable

(12)

and a new function (r) = rp(r). Then, Eqs. (4) and (5)
are rewritten as

(13)

(14)

One can see that, when s ≠ 2, the points y = 0 and y = ∞
are the only singular points of this system of differential
equations. It follows from the theory of linear differen-
tial equations [11] that the functions χ(y) and  are
analytic throughout the complex plane of variable y
except for the points 0 and ∞. The point y = 0 is a regu-
lar singular point of the system of differential equations
(13) and (14). In the neighborhood of zero, we can seek
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solutions in the form of power series in y. We obtain the
first pair of solutions by substituting the expansions

(15)

into Eqs. (4) and (5) and equating the coefficients of
equal powers of r. As a result, we obtain an equation for
l and a system of recurrence relations for determining

the coefficients  and . The quantity l is determined
from the quadratic equation

When l = 2, we obtain a solution regular at zero,
whereas, when l = –1, we obtain a singular solution.
When l = 2, the system of equations for the unknown

coefficients  and  is expressed as

(16)

Let us write out the solution obtained in the explicit
form up to the terms proportional to β2:

(17)

To obtain the second independent solution, we apply
the expansions of the form

(18)

Substituting these series into Eqs. (4) and (5), we again
obtain an equation for l:
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Only the solution with l = 0 is regular at zero. In this
case, the system of recurrence equations is given by

(19)

Let us write out this solution exactly up to the terms
proportional to β2:

(20)

When β2 ! 1, it is interesting to observe how solu-
tions (15) and (18) are reduced to solutions (9) as s  2.
Recurrence relations (16) and (19) are easily solved in
this limit:

Substituting these coefficients into series (15) and (18)
and adding up the results obtained, we have

One can see that, when β2 ! 1 and s  2, the solu-
tions obtained differ from the exact solutions (9) only
by constant factors.

Now, let us analyze the behavior of the solutions for
y @ 1. The point y = ∞ is an irregular singular point of
the system of equations (14) and (15). For one pair of
solutions, y = ∞ is an essentially singular point,
whereas, for another pair, it is a branching point. We
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will seek the solutions with an essentially singular
point in the form

(21)

Substituting these expansions into Eqs. (4) and (5), we
obtain l = –(2 – 3s/4) and a system of equations for the
coefficients an and bn. For the solution increasing at
infinity, we write out the answer up to the terms propor-
tional to β–1 in the following form:

(22)

The solution with a branching point at infinity is
obtained from the expansion in inverse powers of y:

(23)

Equating the terms with equal powers of r in Eqs. (4)
and (5), we obtain the recurrence relations

Taking into account that a0 = 0 for n = 0, we obtain the
following equation for m from this system:

It turns out that one solution increases at infinity,
whereas another tends to zero. Note that the solutions
that decrease at infinity must be singular at zero since
the modulus of an analytic function cannot have a max-
imum inside the domain of analiticity [12]. Therefore,
we will focus only on the solutions that increase at
infinity. For the function that increases at infinity, we
have

(24)
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Below, we will need only the first terms of the expan-
sion

(25)

3. HYDRODYNAMIC RADIUS
OF A FRACTAL CLUSTER

A general solution to the system of Eqs. (4) and (5)
inside the fractal cluster can be expressed as

where (χ1(r), p1(r)) and (χ2(r), p2(r)) are two indepen-
dent solutions that are bounded at zero. Now, knowing
the structure of the solution inside the fractal cluster, we
can sew it together with the solution outside the cluster.
The components of the velocity and the components of
the momentum flux tensor must be continuous across
the cluster surface (when r = 1) [13]:

This yields the continuity of the functions χ, χ', and χ''
and the pressure p at r = 1. We obtain the following sys-
tem of linear equations for the coefficients A1, A2, B1,
and B2:

(26)

This system allows one to obtain all expansion coeffi-
cients from the values of the functions χ1 and χ2 and
their derivatives at the point r = 1. Of greatest interest is
the coefficient A1; the drag force F of a cluster and the
dimensionless hydrodynamic radius RH are expressed
in terms of this coefficient:

The system of Eqs. (26) yields

(27)

Another quantity of interest is the fluid collection effi-
ciency η, which is equal to the ratio of the fluid flow
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Fig. 2. (a) Hydrodynamic radius RH and (b) fluid collection efficiency η versus β for two values of the fractal dimension D of the
cluster, D = 1 and D = 3.

0.5
through a porous medium to the fluid flow at infinity
that passes through an area of πR2:

We obtain the following expression for this coefficient:

(28)

In the case of a homogeneous porous ball with s = 0,
substituting exacts solutions (7) and (8) into Eq. (27),
we obtain the known expression [6] for the hydrody-
namic radius,

(29)

and the coefficient η,

(30)

For β ! 1, from (29) we obtain

whereas, for β @ 1, we have

exactly up to β–3. In another limit case, when s = 2, the
substitution of exact solutions (9) into Eqs. (27) and
(28) yields the following expressions for the hydrody-
namic radius and the fluid collection efficiency η:
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where k1 and k2 are the roots of Eq. (10). For β ! 1, we
have

For large clusters with β @ 1,

(31)

(32)

exactly up to β–3.
Figure 2 represents exact values of the hydrody-

namic radius RH and the fluid collection efficiency η as
functions of the parameter β for two limit values of the
dimension, D = 3 and D = 1. The dashed lines represent
the asymptotic functions that are exact up to β–3.

Now, using the solutions obtained above for arbi-
trary s, we calculate the hydrodynamic radius RH and
the coefficient η for large and small values of β. When
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2β2 ! 2 – s, the substitution of the expansions (17) and
(20) into (27) and (28) yields

(33)

and

(34)

For s = 0, these expressions reduce to the formulas for
a homogeneous porous ball; the first term in expan-
sion (33) is valid for an arbitrary dimension 0 < s < 2
and coincides with the expression obtained for s = 2.

For large clusters with β @ 1, the substitution of
solutions (21) and (25) into (27) and (28) yields

(35)

and

(36)

One can see that the asymptotic expressions for the
hydrodynamic radius RH (35) and the fluid collection
efficiency η (36) for a fractal cluster of arbitrary dimen-
sion D = 3 – s exactly reduce to the expressions for s =
0 and s = 2 obtained above. As follows from (35), the
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effect of the dimension on the hydrodynamic radius for
β @ 1 manifests itself only starting from the terms propor-
tional to β–2. Note that the diagrams of RH(β) and η(β)
in Fig. 2, drawn for the dimensions D = 3 and D = 1,
restrict the range of variation of the corresponding
quantities under the variation of the dimension within
the interval 3 > D > 1.
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Abstract—The character of internal excitations is compared for phase transitions and chemical transitions in
atomic systems. Although the temperature dependences of some physical parameters of atomic systems have
resonance-like structures with maxima in both cases, the dependences of the partition functions on the number
of elementary excitations or the excitation energy differ because of the difference in the numbers of interactions
that govern the transitions. The phase changes of condensed rare gases are considered in the case where the
external pressure is small and the differences between phases are predominantly associated with differences in
configurations. Important energy parameters of rare gases are determined by the attractive part of the pairwise
interaction potential between atoms. The statistical analysis shows the existence of a “freezing limit” tempera-
ture for these systems, below which the liquid state becomes unstable. The kinetics of decay of such unstable
states is analyzed in terms of the diffusion of voids. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A phase transition corresponds to a transition
between different aggregate states; for a first-order
phase transition, the internal energy of a bulk system
changes discontinuously as the temperature varies and
the pressure is constant [1–3]. In contrast to this, a
chemical transition, i.e., a transition between two limit-
ing chemical states of a substance, occurs throughout
some temperature range, with a shifting equilibrium
ratio of the species, when conducted at a constant pres-
sure. This principal difference between the phase and
chemical transformations is lost for systems consisting
of a finite number of atoms, notably, clusters [4–10].
Computer simulations of phase transitions in clusters
[4–10] reveal some peculiarities of this phenomenon, in
particular, the coexistence of the phases throughout
some temperature range. From general considerations,
one can infer that this range has sharp upper and lower
bounds, which we may call the “melting limit” Tm and
the “freezing limit” Tf. The range between Tf and Tm can
remain or shrink to zero as the number of particles N in
the cluster grows very large. However in either case, the
observable effect of increasing N is to make the range
of the apparent coexistence shrink to a single tempera-
ture Teq at which the free energies and mean chemical
potentials of the two forms are equal. Away from this
temperature, the thermodynamically unfavored phase
can be present in observable amounts for relatively
small N, but as N increases, the unfavored phase
becomes so unfavored that the amounts or frequencies
of its appearance become unobservably small. Because
of the observability of unfavored phases for small sys-

¶This article was submitted by the authors in English.
1063-7761/01/9304- $21.00 © 20777
tems, the transitions or phase changes between aggre-
gate states are very similar to those between chemical
states such as chemical isomers.

The study of phase transitions in clusters [4–10],
especially focusing on their microscopic nature, has
given us a deepened understanding of the nature of
phase transitions for bulk systems. Analyzing the phase
and chemical transformations in bulk systems from the
microscopic standpoint, one can find both common and
different features of these phenomena. Such an analysis
is the goal of this paper. We are guided by the simplest
cases for this analysis.

We compare the solid–liquid phase transition for a
system of atoms bound by a pair interaction with the
simple chemical transformations, ionization and disso-
ciation. This comparison allows us to establish the
common and different features of the phase and chem-
ical transitions from the microscopic standpoint. The
microscopic interpretation allows us to expand our
understanding of the phase transition.

2. CHEMICAL EQUILIBRIUM 
AND TRANSFORMATIONS

We first consider the simplest chemical equilibria, in
which a gaseous system consists of particles XY at low
temperatures that dissociate into X and Y at high tem-
peratures, and the chemical equilibrium therefore has
the form

(2.1)

For the ionization equilibrium, we use this form and
consider X to be an ion (A+) and Y an electron (e), in

XY X Y.+
001 MAIK “Nauka/Interperiodica”
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which case the ionization equilibrium is

(2.2)

In parallel, we consider the dissociation equilibrium, in
which the composite particles XY are dimer molecules
and the dissociation equilibrium has the form

(2.3)

We use the simplest formulas for these equilibria. For
the ionization equilibrium, the number densities of
electrons Ne, ions Ni, and atoms Na are related by the
Saha equation [11, 12]

(2.4)

where me and Te are the mass and temperature of elec-
trons and ge, gi, and ga are the statistical weights of the
electron (ge = 2), the ion, and the atom electronic states.
Introducing the probabilities for an electron to be free
we = Ne/N or to be bound in an atom wa = Na/N (where

A+ e A.+

A A A2.+

NeNi

Na

------------
gegi

ga

---------
meTe

2π"
2

------------ 
  3/2 J

Te

-----– 
  ,exp=

1.4
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CV/CV
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Fig. 1. The specific heat capacity of argon with a sodium
admixture in the temperature range of the sodium ionization
transition. The concentration of sodium atoms is equal to
10% and the number density of argon atoms corresponds to
the pressure 1 Torr at room temperature.

Fig. 2. The specific heat capacity of iodine J2 in the range
of the dissociation transition if the iodine number density
corresponds to the pressure 1 Torr at room temperature.
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N = Ne + Na is the total number density of free and
bound electrons, and hence, we + wa = 1), we represent
Saha formula (2.3) for a quasineutral plasma with
Ne = Ni as

(2.5)

where the statistical weight g of free electron states is

(2.6)

In general, the statistical weight of free, continuum
states is the ratio of the typical atomic number density
in the condensed phase to the density of free atoms in
the gas phase, and hence, this value is large. Therefore,
the value 1/lng is a small parameter of the theory,
because we consider transitions between free and
bound states; these transitions occur in a relatively nar-
row range of temperatures due to a small value of this
parameter. We note that we deal with an ensemble con-
sisting of a sufficiently large number of particles to
allow us to neglect the fluctuations.

We now determine the temperature width for this
transition. We define the electron temperature for the
ionization transition Tion as the temperature for which
we(Tion) = 1/2. To be precise, we define the temperature
range ∆T of the transition from atoms to electrons and
ions such that the value we varies in this region from 1/4
up to 3/4. Hence, we have

(2.7)

and a small parameter in this case is

In particular, under conditions of Fig. 1, Eq. (2.7) gives

Using the same expressions for the probabilities of
free and bound states, we have for the dissociation equi-
librium

(2.8)

where wa is the probability for an atom to be free and
wm is the probability for an atom to be bound in the
dimer molecule; D is the dissociation energy of the
molecule. In contrast to the ionization equilibrium,
where the probability of excited atom states is small,
excited rotational and vibrational molecule states are
taken into account in Eq. (2.8). But the structure of this
formula is the same as for the ionization equilibrium.
Figures 1 and 2 give some examples of the ionization
and dissociation equilibria. The width of the transition
between free and bound states in the temperature scale

we
2
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------ g
J
Te

-----– 
  ,exp=

g
1
N
----

gegi

ga

---------
meTe

2π"
2

------------ 
  3/2

.=

∆T
T ion

2

J
--------= 27,ln

T ion/J 1/ g.ln=

∆T /T ion 0.3.=
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2
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D
Te
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  ,exp=
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is determined by the small parameter 1/lng and
decreases as the number density of particles decreases.

As a result of renormalization, we can infer from
Eq. (2.5) the respective partition functions of free and
bound electron states Ze and Za. For the ionization equi-
librium, we then have

(2.9)

We obtain a corresponding relation for the dissociation
equilibrium. These formulas can be used for the analy-
sis of statistics of chemical equilibria.

We now determine the partial partition function for
the ionization equilibrium that corresponds to a given
number of free electrons at a certain temperature. An
equivalent result appears for the dissociation equilib-
rium. If the total number of nuclei in the system is n and
the number of ionized atoms is m, the probability of this
event is determined by the Poisson formula

(2.10)

where the ratio between we and wa (with we + wa = 1) is
given by Eq. (2.5). The partition function Znm of the sys-
tem with a given number of free and bound electrons is
proportional to this value, and we take these values to
be identical for simplicity. We note that formation of m
free electrons in this system corresponds to the excita-
tion energy

For a large number of free and bound electrons in
the system, i.e., m @ 1 and n @ 1, the partition function
Znm has a sharp maximum as a function of m: near the
maximum m = m0, it has the form

(2.11)

and in accordance with to the above relations, we have

(2.12)

From this expression, we see that the partition function
has a narrow maximum in the range of the number of

broken bonds ∆m ~  if m0 ~ n, and the relative max-

imum width ∆m/m0 tends to zero as 1/  when the
number of atoms tends to infinity.

3. CONFIGURATION EXCITATION 
OF A SYSTEM OF BOUND ATOMS

It follows from the above analysis that as a function
of the excitation energy, the partition function is char-
acterized by one maximum. In contrast to this, the par-
tition function for the solid–liquid phase equilibrium
has two maxima, and each maximum corresponds to a
certain aggregate state. Below we consider, from this

Ze
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J
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  .exp=

Wnm Cn
mwe

mwa
n m– Cn

mwe
m 1 we–( )n m– ,= =

m J 3Te/2+( ) mJ .≈

Znm Z0 α m m0–( )2–[ ] ,exp=

m0 nwe, α 1
2m0
--------- 

n
n m0–
---------------.= =

n

n
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standpoint, the solid–liquid phase transition for con-
densed rare gases when the interaction between nearest
neighbors dominates. We use measured parameters of
the aggregate states of condensed rare gases near their
triple points and consider a condensed rare gas as a sys-
tem of bound atoms with short-range interactions, i.e.,
assume that interactions between nearest neighbors
give the main contribution to the constitutive parame-
ters of such systems. The reduced parameters of con-
densed rare gases are expressed through the parameters
of the pair interaction potential of these atoms, which
are known well [13–16]; this information is based on
the parameters of diatomic molecules, condensed and
dense rare gases and collision parameters of pairs of
atoms. Next, the classical character of the atomic
motion in condensed systems of Ne, Ar, Kr, and Xe,
together with the short-range character of the interac-
tions of atoms in these systems, allows us to use a scal-
ing analysis to express bulk parameters of these sys-
tems through parameters of the interaction potential of
two atoms. Simplifying this operation, we choose the
parameters of the pair interaction potential of these
atoms as D, the depth of the potential well, and Re, the
equilibrium distance between atoms of the diatomic
molecule. Adding to these parameters the atom mass m,
we can express the physical value of any dimensioned
property through the three parameters m, Re, and D. The
degree of coincidence of the reduced physical parame-
ters for different rare gases then determines the accu-
racy of such a scaling law for real systems; for real rare
gases, this measure of accuracy is several percent.

The analysis of parameters of the solid rare gases
shows a small contribution of a long-range interaction.
Indeed, the ratio of the distance a between nearest
atoms in the solid rare gases at zero temperature to the
equilibrium distance between atoms of the correspond-
ing diatomic, averaged over all the stable rare gases, is
[17–19]

and the reduced sublimation energy εsub of solid rare
gases is 6.4 ± 0.2 per atom. For a system of bound
atoms with only the nearest-neighbor interactions,
these values are equal to 1 and 6 respectively, whereas
for a system of atoms with the Lennard-Jones interac-
tions, for which there is a long-range contribution to
physical parameters of the system, the respective values
are equal to 0.97 and 8.41 [20]. This shows that con-
densed rare gases are close to systems of atoms with the
interaction between nearest neighbors only, and the
error from this assumption is less than 10% for any
parameter.

Taking real condensed rare gases as a system of
bound atoms with a short-range interaction (i.e., the
interaction between nearest neighbors only), we obtain
additional information about this system on the basis of
parameters of condensed rare gases. In particular, Table 1
contains the reduced parameters of the phase transition

a/Re 1.005 0.013,±=
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of this system near the triple point. In this table, Ttr and
ptr are the temperature and pressure at the triple point,
∆Hfus and ∆Sfus are the fusion energy and the entropy
change per atom as a result of the phase transition, ρsol
and ρliq are the density of the solid and liquid rare gases
at the triple point, and ρ(0) is this value at zero temper-
ature; the specific volume per atom for the solid and liq-
uid states are denoted as V0 and Vliq, respectively. In
addition, the equilibrium vapor pressure p above the
solid and liquid surfaces is given by the formulas

(3.1)

where the parameters εsol and εliq characterize the bind-
ing energies per atom for the solid and liquid states of
this system, to within the accuracy of the thermal
energy at the melting point. The parameters of Eq. (3.1)
are given in Table 1.

It follows from the data in Table 1 that the mechan-
ical work ptr∆V during the phase transition of a real rare
gas near the triple point is small compared to the
change ∆Hfus of the internal energy of the constituent
atoms. This simplifies the analysis and allows us to
neglect the expansion of the system of bound atoms
during the phase transition, and hence, to treat this pro-
cess as a function of only one variable. Below, we con-
sider the temperature range of the melting point where
the criterion

(3.2)

p psol
εsol

T
-------– 

  , pexp pliq
εliq

T
------– 

  ,exp= =

∆Hfus @ p∆V

Table 1.  Reduced average parameters of condensed rare
gases at the triple point [17–19]

Reduced quantity Average value 

Ttr/D 0.579 ± 0.007

1.9 ± 0.2

∆Hfus/D 0.98 ± 0.02

∆Sfus 1.68 ± 0.03

ptr∆V/∆Hfus, 10–4 2.2 ± 0.4

εsub/D 6.4 ± 0.2

ρ(0) / 1.01 ± 0.04

0.92 ± 0.02

0.80 ± 0.02

Vliq/V0 1.153 ± 0.006

εev/D 5.4 ± 0.2

psol /D 110 ± 20

pliq /D 25 ± 4

εliq/D 5.5 ± 0.1

Tcr/D 1.04 ± 0.02

ptrRe
3/D 10–3,

Re
3 2

ρsolRe
3/ 2

ρliqRe
3/ 2

Re
3

Re
3
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is satisfied. Here, p is the pressure on the melting curve
and ∆V is the increase of the specific volume. In this
temperature range, the attractive part of the pair inter-
action potential of atoms is responsible for the behavior
of this system of atoms, and it is not necessary to
explicitly account for the external pressure because that
would be very small compared to the attraction forces
between the interacting atoms. This criterion is valid
under the condition

(3.3)

Equation (3.1) and the data in Table 1 imply that these
criteria are valid at least at temperatures

(3.4)

where Tcr is the critical temperature for the liquid–gas
transition (see Table 1). We note that at high external
pressures, the repulsive part of the pair interaction
potential of atoms is important for the phase transition
and the mechanical work p∆V makes a considerable
contribution to the fusion energy.

We now analyze the excitation of a system of many
bound atoms with a pair interaction in the case where
the interaction between nearest neighbors dominates.
Computer simulations of clusters, which are systems of
such bonded atoms and have completed shells, show
the complex character of the phase transition. At a cer-
tain degree of excitation, atoms of filled shells move out
of those shells to the cluster surface; they float on it,
albeit with somewhat hindered motion, and then return,
typically exchanging roles with other atoms coming out
of the surface layer [21, 22]. These transitions are easi-
est for the outermost shell, but are possible for others
beneath, and in some range of temperatures one can
thus construct several caloric curves [23], each describ-
ing the excitation of a particular shell. Evidently, when
a cluster becomes very large, one can extract the sur-
face excitation and the bulk (internal) excitation in this
way. Although we here draw from the experience of
phase transitions in clusters, in order to simplify this
analysis, we restrict the further discussion to internal
excitations only, and therefore consider infinite clusters
or bulk systems of bound atoms.

We note two types of excitations in a bulk system of
bound atoms. The first deals with the excitation of
vibrations or phonons; this excitation is identical in
principle for the solid and liquid states, apart from the
regular character of excitations of a periodic lattice.
The excitation of the other type, the configuration exci-
tation, corresponds to a change in the atomic positions.
When this excitation is small, it can be characterized by
the change in the number of vacancies inside the crystal
lattice. These vacancies result from removal of atoms
from sites of the crystal lattice to positions outside.
When the number of vacancies becomes large, such
that neighboring vacancies border, these vacancies
transform into voids [24], and the energy of formation

p ! 
D

Re
3

-----.

T Tcr,<
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of an individual void, as well as its volume, depends on
the degree of the configuration excitation. We assume
the excitations of these two types to be independent and
analyze the configuration excitation, which is responsi-
ble for the phase transition as a result of formation of
voids inside the system.

Considering the configuration excitation to be
unequilibrium with respect to the thermal motion of
atoms, we use a simple model for this excitation [25–
27]. We prepare an excited state as follows. In a crystal
consisting of n + v  atoms, we create v  vacancies inside
by removing v  atoms to the outside. Then v, the num-
ber of vacancies formed, characterizes the excitation
degree of this system. In the second stage of the evolu-
tion, this system relaxes such that it shrinks, and its
internal energy typically (but not necessarily) drops.
We characterize the degree of the configuration excita-
tion of this system by the number of voids v, which
coincides with the number of interior vacant sites. Of
course, in contrast to a vacancy, an individual void var-
ies its form and volume in time; we consider an individ-
ual void in terms of its average form and volume. We
use statistical parameters for each void, characterizing
it by a certain energy εv of its formation and the statis-
tical weight gv . Thus, we describe the degree of the
configuration excitation of the system by the number of
voids that are initially isolated vacancies. In this man-
ner, we consider an excitation as a gas of noninteracting
voids that are identical on average, whereas the param-
eters of an individual void depend on the degree of exci-
tation.

The statistical model under consideration involves
averaging over atomic positions in a system of interact-
ing atoms. If we restrict the treatment to interactions
between nearest neighbors only, we can express the
excitation energy through the average number of the
nearest neighbors nc for any internal atom. The mean
binding energy per atom is then given by

where D is the binding energy per individual bond and
the average volume per atom is

where the specific volume V0 is that based on the solid
state. From this, we have

(3.5)

where εv is the energy of formation of one elementary
void and εsub is the binding energy per atom for the solid
state. In particular, this implies that for the liquid state,

(3.6)

ε Dnc/2,=

V 12V0/nc,=

V V0

εsub

ε
-------- V0

nεsub

εsub εv v /n–
-----------------------------,= =

ξ liq

V0

V
------

εsub

εsub ∆Hfus–
---------------------------≡ 1,=
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and the statistical average of this parameter over real
rare gases gives

and Eq. (3.2) is therefore valid within the accuracy of
3%. Evidently, the error in ξliq is related to the accuracy
of using the mean-field approximation.

Considering the liquid–solid phase transition as a
result of formation of voids, we construct the partition
function of a void gas as

(3.7)

where εv is the energy of formation of an individual
void, gv is the statistical weight of a void, and these
parameters depend on the parameter x = v /n. Assuming
voids to be independent, we define the energy of forma-
tion of an individual void as

(3.8)

where U is the effective interaction potential of voids,
ε0 is the energy of formation of a vacancy in the crystal
as a result of removing an internal atom to the surface,
i.e., when v  = 0 (ε0 = 6D in the case of the interaction
between nearest neighbors only). We take the statistical
weight of an individual void to have the form [26, 27]

(3.9)

For the effective interaction potential, we use [26, 27]

(3.10)

where α and k are parameters. These relations imply
that as the unoccupied space inside the system
increases, the statistical weight per atom increases, and
the energy of formation of new vacancies decreases. It
then follows that the reduced logarithm of the partition
function is given by

(3.11)

The use of the phase transition parameters for con-
densed rare gases at their triple points together with this
expression for the partition function allows us to find
the parameters of this model [25–27]. We note that the
complex form (3.6) of the effective interaction potential
of voids is related to a bimodal form of the partition
function that cannot be realized at k = ∞. The parame-

ξ liq 1.024= 0.006,±

Z v( ) Cn v+
v= gv

v v εv

T
---------– 
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782 BERRY, SMIRNOV
ters of this model averaged over the stable rare gases are
given in Table 2 [26, 27].

One can continue the partition function of a system
of bound atoms to the range of low temperatures, where
the liquid state of the bulk is a metastable aggregate
state. Figure 3 shows the dependence of the specific
free energy

on the specific volume and is based on Eqs. (3.5) and
(3.7)–(3.10); the mechanical work as a result of the phase
transition is neglected in accordance with criteria (3.3)
and (3.4). We use Eq. (3.7) for the specific partition
function and the relations between the volume per one
atom V, the specific excitation energy v εv /n, and the
relative number of voids v /n. It follows that, below the
freezing limit T∗  = 0.36D, the liquid maximum of the
partition function disappears and the liquid state
becomes unstable.

4. THE CALORIC CURVE OF CONDENSED RARE 
GASES AND THE RATE OF EQUILIBRATION

Thus, neglecting the surface configuration excita-
tion of large clusters of rare gases, we restrict our
description to two aggregate states that correspond to

F T Zln–=

Table 2.  Mean parameters of condensed rare gases at the triple
point

 Quantity Average value

α 0.13 ± 0.01

k 4.8 ± 0.2

v liq/n 0.31 ± 0.01

a 65 ± 15

U(v liq/n)/D 3.3 ± 0.2

U(vmin/n)/D 1.3 ± 0.1

–lnZ((vmin/n)/n) 0.39 ± 0.02
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Fig. 3. The dependence of the specific free energy of con-
densed rare gases on the reduced volume per atom. The
right minimum corresponds to the liquid state; at T = T∗ , the
liquid state becomes unstable.
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the solid and liquid states of a bulk system. Figure 4
gives the caloric curves for these states. Each caloric
curve is the temperature dependence of the specific
internal energy of the isothermal system of bound
atoms. We take the excitation energy as a sum of the
phonon excitation energy and the configuration excita-
tion energy. The phonon contribution to the excitation
energy per atom is given by [11]

(4.1)

where

(4.2)

is the Debye function; the Debye temperature ΘD does
not conform to the scaling law. Figure 4 corresponds to
argon, for which we take [20, 28] ΘD ≈ 90 K. The spe-
cific energy of the configuration excitation is taken as
v εv /n for the liquid state and is zero for the solid state,
and therefore, the total specific internal energy of the
liquid state is

(4.3)

and the second term is absent for the solid state. Next,
the liquid caloric curve terminates at the freezing limit
T∗  where the liquid maximum of the free energy disap-
pears (see Fig. 3). In the same manner, the solid caloric
curve terminates at high temperatures in this formula-
tion. Because the critical temperature of the solid state
is sufficiently high such that the mechanical work of
solid–liquid transitions cannot be neglected, it would
be incorrect to discuss the high-temperature range of
the caloric curve within this framework. Because the
scaling law is invalid for the phonon excitation ener-
gies, we specifically analyze the parameters of argon in
what follows.

We note the principal difference in the construction
of caloric curves for clusters and for bulk systems. For
clusters, the coexistence of the solid and liquid phases
is possible in some temperature range where the proba-
bility of the location of a cluster in each aggregate state
is non-negligible. Hence, assuming that the time inter-
vals between transitions from one aggregate state to
another is long compared to the observation time and
that the times required for the transitions are brief on
the same scale, we terminate the caloric curve of each
state at a temperature at which the probability of
observing the cluster in this state becomes small. (More
rigorously, we could terminate where the local mini-
mum in the free energy of that form disappears.) For
large clusters or a bulk system, this probability of the
observation of the unfavored phase is very, very small,
even in the vicinity of the melting point, but a typical
dwell time in one phase may be long, even infinite, pre-
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cisely at the melting point, if the cluster is macroscopic.
Hence, constructing the caloric curve in Fig. 4 for
argon, we suppose the mean dwell time in the liquid
state to be sufficiently long. The true low-temperature
termination of the liquid caloric curve means that at
even lower temperatures, the metastable liquid state
does not exist. In addition, Fig. 5 gives the specific vol-
ume of the argon liquid state; the argon fusion energy
for the solid–liquid phase transition is represented in
Fig. 6. In accordance with criteria (3.3)–(3.5), our treat-
ment is restricted to a range of temperatures that are not
too high.

For a bulk system, the decay of the liquid state
below the melting point is determined by fluctuations
due to nonuniformities in the void distribution. This
also occurs for small clusters. For very large clusters or
bulk systems, we neglect these fluctuations, and meta-
stable liquid states can therefore live very long in the
absence of external perturbations. Below the freezing
limit, the decay of an unstable liquid state results from
the diffusion of voids to the boundary of the system;
below, we briefly analyze this process.

Because the diffusion process has an activation
character, it slows down with a temperature decrease
and stops at sufficiently low temperatures. Because the
voids move by diffusion, the rate of this process
depends on the geometry of the system. We consider
atoms to be bonded with a substratum, and bound
atoms to form a film on the substratum surface. (The
substratum may be another layer of the same material.)
If the film thickness is l, the typical time of a void
departure outside the film is of the order l2/Ddif, where
Ddif is the diffusion coefficient of voids inside the film.
Because a displacement of voids is determined by the
inverse displacement of atoms, the diffusion coefficient
of voids is

(4.4)

where ωD = ΘD/" is the Debye frequency, a is the lattice
constant, T is a current temperature, and Ea is the acti-
vation energy for the atomic displacement, which
depends on the relative number of voids or vacancies
inside the system. We assume that the heat transport
proceeds more effectively than the process of void dif-
fusion because of the activation character of the last
process, i.e., the criterion

(4.5)

is satisfied, where χ is the thermal diffusivity coeffi-
cient.

The activation energy drops if the relative number of
voids decreases. Evidently, the “frozen” temperature

Ddif ωDa2 Ea

T
-----– 

  ,exp∼

Ddif ! χ
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(an analog of the glassy temperature [30]) is deter-
mined by the condition

(4.6)

Assuming the temperature variation rate dT/dt to be
constant, we obtain from Eqs. (4.6) and (4.4) that

(4.7)

where Tf is the temperature below which voids are fro-
zen, and the activation energy Ea @ Tf  corresponds to a
frozen relative number of voids.

The activation energy of this process increases as
the number of voids decreases. Below, we consider this
transition in the limit in which the atoms form a crystal
lattice, and even the nearest vacancies do not border
each other. We take a face-centered cubic lattice for the
solid state of the system of bound atoms. The transition
of a vacancy from one lattice site to a neighboring one
is similar to the transition of an atom next to a vacancy
to the vacancy site. For simplicity, we fix other atoms in
the sites of the crystal lattice. To make the transition to
a neighboring site, a test atom must overcome a barrier;
from symmetry considerations, the barrier height is the
difference of the total interaction potentials of atoms
with the test atom located in a site of the crystal lattice
and halfway between two neighboring vacancies. If we
introduce the pair interaction potential of atoms U(R) at
the distance R between them, we obtain the barrier
height

(4.8)
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Fig. 4. Caloric curves for argon representing the tempera-
ture dependences of the internal energy of aggregate states.
The solid caloric curve is given by Eq. (4.1) and the liquid
caloric curve is given by Eq. (4.3).
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We account for the interaction of a transiting atom with
the nearest neighbors as it passes from the initial to the
final atom position; a is the distance between nearest
neighbors of the lattice.

In particular, we use the Lennard-Jones interaction
potential between atoms

(4.9)

where Re is the equilibrium distance between atoms for
a classical diatomic molecule and D is its dissociation
energy. In this case, we have

(4.10)

For the Morse interaction potential

(4.11)

and the Morse parameter α = 6/Re (making the potential
as similar to the Lennard-Jones one as possible), we
have

(4.12)

We note that both interaction potentials are character-
ized by identical dissociation energies D of the
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Fig. 6. The fusion energy for the solid–liquid phase transi-
tion in argon.
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diatomic molecule and identical second derivatives of
the interaction potentials at their equilibrium distances,

If we restrict the interactions to those between nearest
neighbors of the crystal lattice, then a = Re. These
results can be used to obtain an upper limit for the acti-
vation energy of the transition under consideration. The
criterion of validity of Eqs. (4.11) and (4.12) is such
that neighboring voids are individual vacancies at the
crystal lattice sites, i.e., v  ! n/12.

We now analyze the character of the frozen process
under the conditions of the specific experiment [29,
30], when the thickness of the argon film on the copper
target is 0.1 µm and the cooling rate is 2 K/min. In
accordance with Eq. (4.7), voids are frozen if Ea/Tf ≈
14. If the decay of an unstable state resulting from an
irreversible transport of voids starts from the tempera-
ture T∗  = 52 K, some fraction of the voids diffuses to
the outside under the given conditions, until the activa-
tion energy of the void diffusion process reaches the
value

Because this value is less than the activation energy (4.10)
and (4.12) for the diffusion of vacancies in the crystal,
some of the voids are frozen by this cooling process.
Thus, it follows from the above estimate that a system
of bound atoms is characterized by a nonequilibrium
number of voids or vacancies that are caught and frozen
at low temperatures, and this number depends on the
rate of cooling of this system.

5. CONCLUSION

Although there is no difference in the forms of the
temperature dependence of some physical parameters
for systems of a finite number of bound atoms in the
cases of chemical transformations and phase transi-
tions, these phenomena are different in principle due to
the different dependences of the corresponding parti-
tion functions on the number of elementary excitations
or the excitation energy. For chemical transformations,
the partition function has a sharp maximum at the aver-
age number of excitations at a given temperature, and
this maximum tends to infinity as the number of excita-
tions tends to infinity. The temperature variation leads
to a smooth transition from one chemical state of the
system to the other. For the phase transition of a large
system, when surface excitations are not important, the
partition function has two maxima as a function of the
number of elementary configuration excitations; these
maxima correspond, e.g., to the solid and the liquid.
The liquid state is characterized by a freezing limit
below which the liquid maximum disappears. Quench-
ing the configuration excitations in a large system of
interacting atoms results in a transport of voids to the
boundaries of the system or from them. The character

U '' Re( ) 72/Re
2.=

Ea 14T*= 5D.≈
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of the void transport process determines the state of this
system of bound atoms after its cooling.
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in Cr-Based Multilayers

V. N. Men’shov* and V. V. Tugushev**
Russian Research Centre Kurchatov Institute, pr. Kurchatova 1, Moscow, 123182 Russia

*e-mail: sasha@mics.msu.su
**e-mail: vvtugushev@mail.ru

Received April 12, 2001

Abstract—A mechanism of the formation of the short antiferromagnetic order with a spin density wave (SDW)
in the vicinity of the interfaces in the Fe/Cr type multilayers is proposed. The main reason behind the emergence
of magnetic ordering with SDWs is the redistribution of charge (and, hence, spin) density in the vicinity of
Fe/Cr interfaces, which leads to the paramagnetic phase instability at a temperature considerably higher than
the Néel temperature in chromium. The Ginzburg–Landau expansion for the free energy of the system is used
for determining the inhomogeneous collinear structures of CDWs and for constructing the phase diagram (the
dependence of the transition temperature on the thickness of the antiferromagnetic interlayer). The obtained
results are used for discussing the experimental data on neutron scattering and tunnel microscopy. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The peculiar magnetic and kinetic properties of a
number of artificial layered structures on the basis of
transition metals (multilayers having a thickness from
tens of angstroms to several micrometers) have
attracted considerable attention and have become an
object of heated discussions in recent years. We are
speaking, in particular, of the NM/AFM and the
FM/AFM structures, where NM, FM, and AFM stand
for the normal, ferro- and antiferromagnetic metals,
respectively, and chromium and its diluted alloys are
used predominantly as AFM. In view of certain techno-
logical and practical factors associated primarily with
the application of such structures in magnetic recording
systems, Fe/Cr multilayers whose properties are con-
sidered in recent reviews [1, 2], have become most pop-
ular. Among other things, these multilayers were first
examples of systems with a sign-oscillating effective
exchange between the FM (Fe) layers and the AFM
(Cr) interlayer depending on the thickness of the latter
[3].The complex dependence of this exchange on the
interlayer thickness and the quality of the Fe/Cr inter-
face (the presence of “short” and “long” periods), the
giant magnetoresistance, the peculiar magnetic phase
diagram obtained from neutron-diffraction and magne-
tooptical measurements, the emergence of collinear as
well as complex noncollinear structures, and a number
of other experimental results have not received an ade-
quate theoretical interpretation. It can only be stated
undeniably that the band nature of the magnetism in the
AFM layer and the special sensitivity of this type of
ordering to the doping level, temperature, and external
1063-7761/01/9304- $21.00 © 20786
effects is of fundamental importance for the properties
of Fe/Cr type multilayers.

It should be recalled that, according to the generally
accepted point of view, a peculiar magnetic state of
band electrons, viz., spin density wave (SDW) [4], is
realized in bulk chromium below the Néel temperature
TN = 311 K. This state is characterized by transverse-
polarized spin density distribution (which becomes lon-
gitudinally polarized below the spin-flip transition tem-
perature TSF = 123 K),

(1)

with the wave vector Q = (2π/a)(100), where a is the
bcc lattice constant. The SDW amplitude σ(x) = nσ(x),
where n ⊥  Q in a transverse-polarized wave and n || Q
in a longitudinally polarized wave (n is a unit vector);
σ(x) is a complex long-period function whose period λ
is incommensurate with a. The specific form of the
function σ(x) is either preset (in simple empirical or
variational algorithms, it is simply assumed that σ(x) =
σ0cos(qx), q = 2π/λ, λ @ a [5]) or calculated self-con-
sistently by minimizing the free energy (for example, in
the model of the soliton lattice of the SDW, the depen-
dence σ(x) has the form of an elliptic function [6]).

The magnetic phase diagrams of bulk chromium
and its numerous diluted alloys have been investigated
comprehensively (see, for example, review [7]). The
magnetic phase diagram of the Fe/Cr layered structure
has also been established in general [8–10]. In the latter
case, we are speaking of the dependence of the temper-
ature of the antiferromagnetic transition in the Cr inter-
layer on its thickness L. A qualitative distinguishing
feature of all available “bulk” phase diagrams is that

S r( ) s x( ) Q r⋅( ),cos=
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two temperatures, T1(L) and TN(L), of transition to an
antiferromagnetic state of the SDW type are observed
for a fixed composition of the interlayer with a thick-
ness L > L* ≈ 30 monolayers (approximately 45 Å). For
L < L*, the temperature TN(L) is equal to zero, and the
temperature T1(L) remains finite (approximately equal
to 600 K), while for L @ L*, the temperature TN(L)
tends to the “bulk” value TN(∞) = 311 K and T1(L) var-
ies slowly near T1(∞) ≈ 550 K.

The nature of the magnetic transition to the “high-
temperature” phase and the existence of the “critical”
thickness remain the subjects of numerous discussions,
while the transition to the low-temperature phase is
reliably associated with ordering of the type of the tran-
sition to the state with an incommensurate SDW
(ISDW) in bulk chromium. In accordance with the stan-
dard theory of one-parametric scaling, the dependence
TN(L) should have the form

where b is a constant and ν is the critical exponent for
correlation length, which naturally depends on the type
of magnetic order [11]. However, the experiments give
another dependence TN(L) resembling that given above,
but with the effective length Leff = L – L* for L > L*
(TN(L) = 0 for L < L*). It is more or less clear that the
thickness L* and the transition at T1(L) are associated
with the effects occurring in the vicinity of the Fe/Cr
interface, although this problem has not been analyzed
in detail so far. For some not quite clear reasons, the
transition at T1(L) is associated in the literature with the
emergence of a commensurate SDW (CSDW); how-
ever, in the subsequent analysis, we will try to avoid the
terms “commensurate and incommensurate SDW”
which are applicable to bulk systems and leave the pop-
ular identification of T1(L) with the temperature of tran-
sition to a phase with a commensurate SDW without
comments.

It was proposed in [12] that below the temperature
T1(L), multilayers of the Fe/Cr type experience an anti-
ferromagnetic ordering to an inhomogeneous phase of
SDW which has no bulk analogue and cannot be
described using the generally accepted terms of com-
mensurate or incommensurate SDW structures. The
origin of this new phase is determined completely by
the existence of the Fe/Cr interfaces and by the redistri-
bution of the charge and spin densities of band elec-
trons in the vicinity of these interfaces. Such a “high-
temperature” SDW phase can be interpreted qualita-
tively as a short- range antiferromagnetic order in the
Cr interlayer, which is “induced” by the interfaces and
characterized by a new scale, viz., the interpolation
length L*.

It should be noted that the naive attempt made in
[13] to apply the simplest variational non-self-consis-
tent approach entirely based on the analogy with the

T N L( ) T N ∞( )–
T N L( )

------------------------------------- bL 1/ν– ,=
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algorithms used for bulk systems with SDWs did not
make it possible to explain the magnetic phase diagram
of Fe/Cr multilayers even qualitatively, not to mention
the fine details of the spin density distribution in the Cr
interlayer and the competition between collinear and
noncollinear structures with SDWs. A numerical anal-
ysis of the magnetization distributions in the layers [14]
makes it possible, in principle, to describe the ground
state of the Fe/Cr structure for various thicknesses L,
but it cannot be used for studying the thermodynamics
and complex magnetic configurations in regions with
T < T1(L) (for “thin” structures with L < L*) and
TN(L) < T < T1(L) (for “thick” structures with L > L*).
Unfortunately, we cannot claim to providing a quan-
titative analysis of the (T, L) phase diagrams for multi-
layers of the Fe/Cr type in the entire range of tempera-
tures T and thicknesses L; however, even the qualitative
approach which will be described below for the short-
range order region is of considerable interest in our
opinion in view of the peculiarity and variety of the
antiferromagnetic structures formed in this region.

2. FORMULATION OF THE PROBLEM

Let us consider a simplified 1D model of the typical
element of a Fe/Cr multilayered structure, i.e., a three-
layered system consisting of two outer layers of the
ferromagnetic metal (Fe) and an interlayer of the
weakly antiferromagnetic metal (Cr), oriented along
the x direction perpendicular to the interfaces. We
assume that Fe/Cr surfaces are perfectly smooth and
arranged symmetrically (at distances ±l) relative to the
origin x = 0 at the middle of the interlayer. The antifer-
romagnetic order parameter D(x) is introduced in the
standard manner (see, for example, review [15]) and is
assumed to be transverse-polarized relative to the x axis
of the structure:

where s(x) is the SDW amplitude (1) mentioned in the
Introduction and U is the effective SDW potential
which generally depends on the choice of the micro-
scopic model (see [5]). We present the order parameter
in the form

(2)

where nx, ny, nz are the unit vectors of polarization and
|x | < l, l being the half-thickness of the interlayer. Since
the Curie temperature in the Fe layers (TC ≈ 1040 K) is
much higher than the characteristic temperatures of
SDW formation in the Cr interlayer, we assume that the
magnetic moment in the Fe layers is homogeneous and
independent of temperature.

In this work, we consider the temperature region
above the Néel temperature in the bulk of the anti-
ferromagnet (T > TN(∞)); i.e., we assume the absence of
a long-range magnetic order. At the same time, we
assume that both quantum-mechanical and classical

D x( ) Us x( ),=

D x( ) ny∆y x( )= nz∆z x( ), D x( ) + ⊥  nx,
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thermodynamic fluctuations of the order parameter D(x)
are small (the size of the system, including that along
the x axis, is much larger than the atomic spacing and
the effective interaction constant is much smaller than
unity). In other words, the conditions are satisfied for
analyzing the thermodynamics of the system on the
basis of the theory of a “local phase transition” [15, 16]
using formally the Ginzburg–Landau free energy func-
tional and applying the mean-field approximation for
its analysis. The estimation of the correlation length of
the order parameter for the standard SDW model in
chrome and its alloys [15] gives the values

where ξ0 ≈ (5–10)a, a ≈ 2.8 Å is the parameter of bcc
lattice of chromium. The characteristic temperatures
considered here lie in the interval TN(∞) < T < T1(L),
T1(L) ≈ 600 K, TN(∞) ≈ 311 K; the characteristic thick-
nesses L = 2l, where l ≥ ξ(T) ≥ ξ0 @ a. Thus, the mean-
field approach considered by us can be regarded as sat-
isfactory for not very thin interlayers and for relatively
high temperatures (which are still lower than the Curie
temperature in the ferromagnetic layers). The behavior
of the order parameter in the vicinity of Fe/Cr interfaces
on scales smaller than ξ0 is not described in this
approach and is simply defined through the boundary
conditions under certain reasonable assumptions.

Let us formulate in greater detail the proposed
approach on the basis of the Ginzburg–Landau expan-
sion of the free energy F of the system. We assume that
in the temperature range under investigation, the order
parameter D(x) is small (|D(x)| ! πT) and varies slowly
with coordinate x (|∂D/∂x| ! πT/ξ0) so that the series
expansion of the functional F[D(x)] in D(x) and in its
derivatives is valid. For thick interlayers (L > 2ξ0), we
disregard the details of the spatial variation of D(x) over
distances smaller than ξ0 near the Fe/Cr interfaces, where
the local approximation for the functional F[D(x)] is
inapplicable, and write the latter as the sum of the “vol-
ume” and “surface” components:

(3)

Here, the volume contribution is defined as

(4)

(5)

and the surface contribution is given by

(6)

ξ T( )
ξ0

T /T N ∞( ) 1–
-----------------------------------,=

F FV= FS.+

FV
1
2
--- f V D x( )[ ] x,d

l–

l

∫=

f V D x( )[ ] c1D2= c2v F
2 D '2 c2D4,+ +

FS
ν
4
--- D2 l( ) D2 l–( )+[ ]=

+
1
2
--- A l( ) D l( )⋅ A l–( ) D l–( )⋅+[ ] ,
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where vF is the Fermi velocity and ν and A are param-
eters. Strictly speaking, the decomposition of F into the
volume and surface components in the form (3)–(6) is
incorrect for systems with thin interlayers (L < 2ξ0).

Expressions (3)–(6) can be derived directly from the
microscopic model of SDW by the standard method of
Green’s functions using the high-temperature expan-
sion of the diagrammatic series for free energy (see, for
example, review [15] and the expression for fV[D(x)]
given therein). It should be noted that in the tempera-
ture range T ≈ TN(∞), we should use, instead of the sim-
plified expansion (5) for fV[D(x)], a more complex
expression containing higher-order terms proportional
to D6(x) (and D''2(x)). This is associated with specific
features of the microscopic model with nesting, in
which the coefficients of the terms proportional to D4(x)
and D'2(x) in formula (5) changes their sign in the tem-
perature range T ~ TN; this leads to complex self- con-
sistent equations for D(x) since higher-order terms in
D(x) and D'(x) in functional FV must be taken into
account in this case [15]. In the region of temperatures
much higher than TN(∞) we are interested in, all coeffi-
cients in relation (5) are positive and there is no need to
write higher-order terms.

The physical meaning of the first and second contri-
butions to the surface energy FS is quite clear and is of
the general nature. Namely, the term linear in D is
directly connected with the effective exchange interac-
tion between electron spins of the outer ferromagnetic
layers (Fe) and the antiferromagnetic interlayer (Cr) in
the vicinity of interfaces. The term quadratic in D is due
to the conventional redistribution of charge density and
the presence of the contact potential difference near the
surface separating the Fe and Cr layers. As a result, the
electron polarizability, the electron spectrum parame-
ters, and the band filling in the vicinity of the Fe/Cr
interfaces change; the conditions of instability of the
paramagnetic phase relative to the SDW formation in
the surface layer of chromium change accordingly. The
estimates of parameters ν and A in expression (6) can
be obtained from the formulas given in [16] for the
model with the nesting of the electron and hole regions
on the Fermi surface. If U0 and J0 are the Coulomb and
the exchange components of the surface potential,
respectively (U0 < 0 and J0 > 0 in the chosen model,
which corresponds to the flow of electrons from Fe to
Cr in the surface layer and to the antiferromagnetic
interaction of spins in Fe and Cr), we obtain the follow-
ing estimates in the first order in U0 and J0 in the local
approximation, assuming that D(x) is a slowly varying
function over the radius of action of the surface poten-
tial:

(7)

Here,  is the average density of states at the Fermi
level for spectral regions with nesting, n0 < 0 is the dif-

ν U0N
2
/n0, A J0SN .∝–∝

N
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ference in the filling of the electron and hole regions,
and S is the spin density per unit interface in Fe. The
first (Coulomb) term in interaction (6) prevails when

while the second (exchange) term dominates for

Since the order parameter D in the Ginzburg–Landau
expansion must be small compared to πT, the role of the
term quadratic in D in expression (6) must be analyzed

in greater detail. In chromium, |n0 | ≈ 0.05 and  ≈
1 eV so that |J0S/U0 | ! 1 and the Coulomb term in the
temperature range T ≈ 400–600 K may be larger than
the exchange term even if |D | ! πT. It was mentioned
above that potential U0 is associated with the charge
flow between Fe and Cr and can be estimated in the
order of magnitude as

(Q is the surface charge and d is the Debye screening
length in Cr), i.e., at about 1 eV. It is more difficult to
estimate the exchange component J0 in view of the
complex nature of the spin density distribution in the
vicinity of the Fe/Cr(100) interface. As a matter of fact,
the first monolayer of chromium at this interface is
actually rearranged to a considerable extent and, appar-
ently, a strongly localized moment (approximately
equal to 1.5µB per Cr atom) antiparallel to the ferro-
magnetic moment of Fe is formed in it instead of the
band moment [2]. As a result of such a strong rear-
rangement, the exchange interaction between the spin
of Fe and the band component of the spin density in the
inner layers of the Cr interlayer forming the SDW are
effectively screened. It is well known that the effective
screening in diluted Cr1 – xFex alloys strongly sup-
presses the interaction between the local atomic spin of
Fe and the SDWs, which is manifested virtually in a
complete absence of “freezing” of this spin in the anti-
ferromagnetic phase down to extremely low tempera-
tures [4, 17]. Estimating of the parameter |J0S/U0| in
bulk diluted Cr1 – xFex alloys gives values of the order of
(0.01–0.1) ! 1 and we have no reasons for a consider-
able departure from such values in the case of the Fe/Cr
interface. Thus, in the model expression (6) for func-
tional FS, the role of the term quadratic in D is quite sig-
nificant in our opinion and is probably even more
important that the role of the term linear in D. After all
these essential explanations, we directly go over to an
analysis of the SDW structure and the phase diagram
for the model under investigation.

D  @ n0N
1–

J0S/U0( ),

D  ! n0N
1–

J0S/U0( ).

N
1–

U0 4πQe/d≈
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3. STRUCTURE OF THE LONG-RANGE 
ANTIFERROMAGNETIC ORDER INDUCED

BY THE CHARGE DENSITY REDISTRIBUTION 
IN THE VICINITY OF THE INTERFACE

In our opinion, the arguments given in Section 2 are
serious enough to consider the situation with the
exchange contribution to FS, which is linear in D(±l),
formally equal to zero as the initial approximation in
the problem of the formation of the short-range order in
SDW, bearing in mind that this approximation is vio-
lated for |D | ! (A/ |ν|) ! πT. Thus, retaining only the
contribution to FS which is quadratic in D(±l) and is
associated with the charge density redistribution near
the Fe/Cr interfaces, we carry out the variation of func-
tional (3) in D(x) in order to find the optimal (in energy)
configuration of the SDW in the mean-field approxima-
tion. It can easily be verified that the self-consistent
equation has the conventional form

(8)

with the boundary conditions

(9)

In this work, we will confine our analysis only to the
case of a linearly polarized SDW, for which D(x) =
nz∆(x) in formula (2), i.e., ∆y(x) = 0, and ∆z(x) = ∆(x) is
the scalar function. In this case, the solutions of the sys-
tem of equations (8) and (9) can be obtained in the class
of the Jacobi elliptic functions since the first integral of
Eq. (8) is well known. In the standard notation [18], we
will write the possible solutions (one symmetric and
two antisymmetric) of the problem (8), (9), which will
be subsequently analyzed. Thus, the symmetric solu-
tion ∆+(x) has the form

(10)

where ξ = vF  is the correlation length and k is
the modulus of the elliptic function, which depends on
the characteristic lengths of the system and tempera-
ture:

(11)

Here, D = 2c2 / |ν| is the new characteristic length
(the so-called interpolation length) emerging due to the
presence of the term associated with the charge density
redistribution and proportional to ∆2(±l) in formula (5)
for surface energy. It should be noted that this length in
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the microscopic model used here is almost independent
of temperature:

if |n0 | ! 1| and |εF/U0| ≥ 1, which is presumed by the
condition of the problem. The relation between ξ and D
may in principle be arbitrary and depends on tempera-
ture, and parameter k obviously lies in the interval 1 >

k2 > 1/2, while l/ξ < K(k), where K(k) is the

total elliptical integral of the first kind and k ' = 
is an additional modulus.

In addition to the symmetric solution (10) and (11),

there exist two antisymmetric solutions (x). The
first of them has the form

(12)

where parameter k is defined by the equality

(13)

and 0 < k2 < 1, l/ξ < K(k). The second solution
has the form

(14)

where parameter k can be determined from the condi-
tion

(15)

and 0 < k2 < 1/2, l/ξ < K(k).

The limiting transition k  1 (k '  0) in formu-
las (11) and (13) defines the stability boundary for the
paramagnetic state for the emergence of SDW of the
appropriate symmetry. In the limit k '  0, we have

(16)
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(17)

where parameters  are functions of l, D, and ξ:

(18)

the sign + (–) corresponding to the solution of the sym-
metric (antisymmetric) type. It should be noted that

solution (x) in the limit k '  0 under consider-

ation is absent. For  = 0, we obtain from relation (18)
the equations for the temperatures Ts, a(l) of the transi-
tion to the corresponding states with SDWs. In particu-
lar, for the symmetric state, this means that

It is convenient to introduce the dimensionless transi-

tion temperature τs(l) = Ts(l)/  > 1, where  is the
transition temperature in the model with ideal nesting.
This leads to the following estimates for the depen-
dence τs(l) in the limiting cases:

(19)

where τ0 = vF/πD . Thus, the transition temperature
τs(l) for a thick interlayer (l @ D) tends to a finite value
τs(∞) > 1 which is independent of the thickness. For
τ0 @ 1, this value can be estimated with the logarithmic
accuracy as

while for τ0 ! 1, the value of τs(∞) – 1 ~ . For a thin
interlayer (l ! D), we can write with the logarithmic
accuracy

naturally, within the range of application of the Gin-
zburg–Landau expansion in the form (4)–(6) and the
validity of the mean-field approximation (see above).

For an antisymmetric state, a nontrivial solution of
problem (8) and (9) exists only for l > D (it should be
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recalled that we consider only the region above the bulk
Néel temperature so that the value of ξ(T) is finite in the
temperature range under investigation). Introducing the

dimensionless transition temperature τs(l) = Ta(l)/ ,

we can estimate, using relation (18) for  = 0, the
dependence τa(l) in the limiting cases:

(20)

and formally assume that τa(l) = 1 for l/D < 1. Obvi-
ously, the temperature τs(l) > τa(l) in the entire range of
the ratios l/D, the values of τa(l) and τs(l) approaching
each other exponentially for l @ D. Thus, the symmet-
ric solution (10) always appears at a higher temperature
than the antisymmetric solution (12) of the first type.

Let us now consider the antisymmetric solution (14)
of the second type. It can easily be seen that it is trans-
formed into the solution (12) of the first type for k = 0;
in accordance with relations (13) and (15), this gives
the transition line between these antisymmetric solu-
tions:

(21)

The solution of Eq. (21) exists only for l > D, and ξ 
∞ both for l/D @ 1 and for l/D  1. The correspond-
ing transition temperature Taa(l) defined by relation (21)

always lies in the interval  < Taa(l) < Ta(l). Omitting
a detailed cumbersome analysis of the possible regions
of existence and stability of various configurations
∆(x), we summarize the results in the figure depicting
the dependences Ts(l), Ta(l), and Taa(l) in the entire
range of the ratios l/D. The main conclusion that can be
drawn from our analysis is that the instability of the
paramagnetic state relative to the formation of SDWs in
the vicinity of interfaces on a scale of the order of D
appears first (i.e., at a higher temperature) on the Ts(l)
curve corresponding to the symmetric configuration of

the order parameter. This configuration exists for  <
T < Ts(l) and no other configurations can appear in thin
interlayers (l < D) in the model under investigation. In
thick interlayers (l > D), antisymmetric configurations

of type 1 (for Taa(l) < T < Ta(l)) or type 2 (for  < T <
Taa(l)) may also appear in addition to the symmetric
configuration. The answer to the question whether the
symmetric configuration be replaced by an antisym-
metric one (since Taa(l) < Ta(l) < Ts(l) for all l) upon a
decrease in temperature requires a comparison of free
energies and is not obvious beforehand. Besides, it will
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be shown below that the free energies of the symmetric
and antisymmetric (type 1) configurations become
close in values in thick interlayers for l @ D; in this
case, in accordance with relations (19) and (20), the
transition temperatures Ts(l) and Ta(l) asymptotically
approach each other in view of the smallness of the
parameter exp(–2l/D) ! 1. This means that the role of
the small exchange term in the surface energy (5),
which was disregarded in the above analysis, but might
affect the choice of the most advantageous configura-
tion from the energy point of view, increases consider-
ably for l @ D. Consequently, a more detailed estima-
tion of the role of this term is required; this will be done
in the next section.

4. EFFECT OF EXCHANGE INTERACTION
IN THE VICINITY OF THE INTERFACE 

ON THE STRUCTURE OF THE SHORT-RANGE 
ANTIFERROMAGNETIC ORDER

The calculation of the free energy F for various
SDW configurations with arbitrary relations between
the quantities ξ, l, and D is a cumbersome problem.
However, the situation is simplified considerably in the
vicinity of the instability line Ts, a(l), where k2 ! 1 and
the expression for F can be written in a compact form
suitable for obtaining qualitative estimates.

For k '2 ! 1, we obtain

(22)

for the symmetric and antisymmetric structures, respec-
tively, and the value of k' is given by expression (18).
Formula (22) is valid for any ratio of lengths l and D. In
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the case of a thick interlayer, when l/D @ 1, we can
write Eq. (22) in the form

(23)

where τs, a(l) are the dimensionless temperatures intro-
duced in Section 3. It can be seen that in the limit
l/D  ∞, when τa(l)  τs(l), the difference between
the energies of the symmetric and antisymmetric con-
figurations is exponentially small in parameter
exp(−2l/D) ! 1; i.e., these states with SDWs become
almost degenerate in energy.

In a thin interlayer with l < D, when only the sym-
metric configuration exists below the transition temper-
ature Ts(l), and the antisymmetric configuration is not
realized, the calculation of the free energy gives

(24)

In the vicinity of the transition temperature, depen-
dence (24) has the form

(25)

Thus, it follows from formulas (23) and (25) as well
as from more general expressions for F± that the state
with SDWs described by a symmetric order parameter
∆+(x) is advantageous from the energy point of view in
all regions of the (T, l) phase diagram below the transi-
tion line Ts(l). However, this statement is valid only as
long as we disregard the exchange term in the surface
energy (5) and requires a correction when this term is
taken into account. The case when the instability curves
Ts(l) and Ta(l) converge asymptotically for l @ D so that
even a slight perturbation facilitating the formation of
an antisymmetric state with SDWs may change the sit-
uation radically in favor of the antisymmetric state is of
special importance.

Let us consider in greater detail the explicit form of
the exchange term under investigation in the case of a
linearly polarized SDW. Taking into account what has
been said above concerning the sign and magnitude of
the exchange interaction at the Fe/Cr interface, we can
write

(26)

where the plus and minus signs correspond to the ferro-
and antiferromagnetic relative orientation of the spins
in Fe at the opposite outer layer of the three-layered
structure, respectively, and N is the number of mono-
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layers in the Cr interlayer. Let us consider the case of
the ferromagnetic orientation of spins in the outer lay-
ers. If N is an odd number, the result of the inclusion of
contribution (26) is almost obvious: since the symmet-
ric state gives an additional gain in energy (26), which
is equal to Fex = –A∆+(l), it remains preferable to the
antisymmetric state for any value of the ratio l/D.
Besides, the exchange term in the surface energy (5),
which is a source of the order parameter, leads to the
emergence of a symmetric SDW for an odd N every-
where in the temperature range T > Ts(l), the value of
∆(x) being small in view of the smallness of coeffi-
cient A:

The order parameter induced by the magnetization of
the outer layers decreases abruptly with increasing dis-
tance from the interface to the bulk of the interlayer
since the length ξ(T) decreases upon an increase in tem-
perature. As T  Ts(l), the SDW amplitude ∆+(x)
increases so that the order parameter depends on A only
slightly upon a further decrease in T. Thus, the qualita-
tive role of the exchange interaction near the interface
for an odd N is mainly reduced to the formation of an
induced symmetric state with a SDW in a narrow region
(smaller than the interpolation length D) in the vicinity
of the interface at high temperature T > Ts(l) and to an
additional gain in the energy of the symmetric configu-
ration below Ts(l).

The situation when N is even and the exchange term
in formula (5) induces the order parameter with an anti-
symmetric configuration of type 1 everywhere in the
temperature range T > Ts(l) is much more interesting:

In thin interlayers (l < D), when the temperature
becomes slightly lower than Ts(l), a symmetric state
with a SDW is inevitably formed in place of the anti-

symmetric state (x) at a certain temperature

(l) < Ts(l) for which the energy gain |F+| (24)

becomes larger than  = A (l)/2. With such a
scenario, the role of the exchange interaction at the
interface at T < Ts(l) is mainly reduced to a shift in the
transition temperature:

The possibility of the existence of a configuration with
a combined symmetry below Ts(l) is not considered
here since the role of the component ∆+(x) is predomi-
nant in any case.

The most interesting situation takes place in thick
interlayers (l @ D) for an odd number N of the mono-
layers, when the role of term (26) is decisive for the
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choice of the symmetry of the state with a SDW below
the transition point Ts(l) ≈ Ta(l). In the limiting case
l/D  ∞, the energies F± (23) converge to such an
extent that the exchange term (26) makes the formation
of an antisymmetric state more advantageous. For
l/D @ 1, we can obtain the following relations:

(27)

(28)

which are valid in a wide temperature range Ta(l) > T >
Taa(l). The transition line ξ = D leads to the asymptotic
value Ts(l) = Ta(l) = T(∞)for l/D  ∞. Thus, in very
thick interlayers with an even number of monolayers,
the antisymmetric state with a SDW is most advanta-
geous from the energy point of view (at least, in the
vicinity of the transition temperature). As the thickness
of the interlayer decreases (but still l/D @ 1), the gain
due to the contribution of Fex becomes smaller than the
gain due to the difference F+ – F– and the conclusion
that the symmetric configuration is preferred over the

antisymmetric one becomes valid again for l < . The

estimate of the value of  is given by the equality

(29)

which, however, should not be treated too rigorously
since it holds only for extremely small values of A ! 1
and not too close to the line ξ = D. The assumption that

 is larger than D only slightly (i.e., /D ≥ 1) and the
difference F+ – F– is not too small appears as more real-

istic. Unfortunately, the length  can be calculated in
this case only numerically, but this problem is not con-
sidered by us here.

The case of the antiferromagnetic orientation of
spins of Fe in the opposite outer layers can be analyzed
similarly by replacing the even number of monolayers
by an odd number or vice versa. Thus, if the mutual ori-
entation of spins in the opposite outer layers of Fe is
given, either a symmetric or antisymmetric configura-
tion with an SDW is formed depending on the number
of Cr monolayers in thick interlayers (l/D @ 1). The
specific mechanism fixing this orientation of spins can
be either an external magnetic field, or other indirect
exchange channels (e.g., through electrons from the
paramagnetic regions of the Fermi surface in chro-
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mium, which do not exhibit nesting and do not partic-
ipate in the formation of SDWs). If, however, the
external mechanisms of spin orientation in Fe are
absent or insignificant for some reason, the ± sign in
formula (26) is determined self-consistently depend-
ing on the number N: the plus sign should be chosen
for an odd N and the minus sign for an even N. A sym-
metric structure of SDW is apparently most advanta-
geous in this case in accordance with formula (26).

5. CONCLUSIONS

The main results obtained in this work can be for-
mulated as follows.

1. Chromium-based multilayers (in particular, used
in Fe/Cr type systems which have been used more com-
prehensively) display a considerable short- range order
with a SDW initiated by the interfaces in Cr layers at
temperatures much higher than the bulk transition tem-
perature TN. The mechanism of the formation of such a
short-range order is primarily determined by the charge
(and, hence, spin) density redistribution in the vicinity
of the interfaces. The role of the exchange interaction
itself (between the spins of band electrons of Cr and
local spins of Fe in systems of the Fe/Cr type) at these
interfaces is mainly reduced to the choice of the SDW
structure in the situation when the symmetric and anti-
symmetric configurations are almost degenerate in
energy. Such a situation emerges in thick chromium
interlayers with L > L*, where L* is the characteristic
thickness consisting of 20–30 monolayers.

2. The characteristic scale of the short-range order
emerging in the chromium interlayer below a certain
temperature T1(L) > TN(L) is the so-called interpolation
length which is mainly determined by the parameters of
the interlayer material and the effective surface poten-
tial at the interfaces as well as (to a considerably
smaller extent) by the temperature. The temperature
T1(L) increases considerably in thin interlayers (L <
2D) and attains a constant value independent of L in
thick interlayers (L > 2D). The length D is larger than
the separation between chromium monolayers; in the
present work, we can assume the estimate 2D ≈ L*
which makes it possible to carry out a qualitative com-
parison with some experimental results.

Let us discuss two groups of reliable experimental
results which provide information on the magnetic
structure in the chromium interlayer. We consider first
some results on the exchange interaction between the
ferromagnetic outer layers in the triple layer Fe/Cr/Fe
in which the chromium interlayer has the shape of a
wedge. Important results were obtained in a series of
publications (all references can be found in review [1])
devoted to an analysis of the so-called optimized triple
Fe/Cr/Fe layers formed by the layer-by-layer deposi-
tion of chromium on a thick and almost perfectly planar
iron (001) substrate having the temperature Topt ≈ 570 ±
20 K. The spatial configuration of the chromium layer
SICS      Vol. 93      No. 4      2001
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in the growth front resembles wide terraces between
monatomic steps with a mean size of several tens of
nanometers. The method of scanning tunnel micros-
copy with polarization analysis makes it possible to
detect, apart from the expected alternation of ferro- and
antiferromagnetic links in the Fe layers upon the
change in the number N of chromium monolayers by
unity, an indirect exchange phase slip at room tempera-
ture for N ≈ 24, 44, and 64 [19]. It is generally accepted
that this fact indirectly indicates the presence of a trans-
verse SDW in the Cr interlayer with an amplitude mod-
ulation along the direction of the heterostructure
growth, the modulation preserving its sign for thick-
nesses with N < N1 ≈ 24. It was found that the tempera-
ture dependence of N1 is preserved up to temperatures
T ≈ 550 K, at which the value of N1 becomes as high as
N1(550 K) ≈ 38; i.e., the antiferromagnetic order exists
in the Cr interlayer at temperatures much higher than
the bulk transition temperature TN = 311 K. In the
model proposed by us, the SDW contribution to the

exchange interaction leads to a phase slip for L = ,

where is the thickness corresponding to the change in
the SDW configuration from the symmetric to the anti-

symmetric one. The estimate  ≈ (N1 + 1)a/2, where

a/2 is the separation between monolayers, gives  ≈ 55 Å
for the high-temperature phase. Traditionally, the phase
slip in the indirect exchange is attributed to the periodic
SDW modulation in chromium, but this assumption is
far from obvious in the temperature range above TN we
are dealing with. We proved that even in the absence of
a periodic modulation (incommensurability), the exist-
ence of at least the first critical number N1 of monolay-
ers below which the phase slip is absent can be
explained at a high temperature T > TN, when the long-
range order and incommensurability are almost ruled
out. Unfortunately, the temperature dependences of the
second and higher critical number of monolayers (N2,
N3, …) are unknown to us, although the emergence of
these numbers at T > TN would indicate the existence of
more complex structures with SDWs than those deter-
mined above; this does not contradict, in principle, the
general concept used by us here.

In contrast to triple Fe/Cr/Fe layers, the study of
superlattices with tens and hundreds of periods makes
it possible to analyze the state with an SDW directly
using the sensitive neutron-diffraction methods. The
magnetic phase diagram of structures of the Fe/Cr type
was constructed thanks mainly to the efforts of two
groups of experimenters [8–10, 20]. Among other
things, the critical thickness L = L* of the chromium
interlayer for which the traditional antiferromagnetic
ordering with an incommensurate SDW observed in
bulk chromium (L* ≈ 45 Å) disappears was established
[8]. For L < L*, the Néel temperature TN(L) is formally
equal to zero, while for L > L* it increases sharply and
rapidly tends to the “bulk” value TN(∞) = 311 K. The

L̃

L̃

L̃

L̃
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pattern of magnetic reflections in neutron scattering in
the form of a central peak with two satellites, which is
observed everywhere below TN(L), is successfully
interpreted in terms of an incommensurate SDW with a
large period which virtually coincides with the corre-
sponding period in bulk chromium [9]. However, mag-
netic reflections in the form of a central peak and corre-
sponding (at first glance) to the existence of a commen-
surate SDW are also observed above TN(L) for L > L*
as well as in multilayers with L < L*. These reflections
are preserved up to temperatures T1 ≈ 550–600 K [10,
20]. In our model, such a “high-temperature” SDW
phase is naturally explained as a state with a short-
range order emerging below T1(L) and having the char-
acteristic scale D ≈ L*/2. Thus, only a part of the inter-
layer of thickness approximately equal to 2D displays a
clearly manifested antiferromagnetic order in the tem-
perature range TN(L) < T < T1(L), while the middle of
the interlayer of thickness leff = L – 2D essentially
remains almost paramagnetic. We can assume that it is
precisely the thickness Leff that appears in the scaling
dependence TN(leff) [8] discussed in the Introduction,
although this dependence has not been calculated
directly as yet.

In this paper, many important problems listed below
are not considered.

(i) The possibility of formation of noncollinear
SDW structures below T1(L) in the range of applicabil-
ity of the Ginzburg–Landau expansion (3)–(6) for the
free energy F(D).

(ii) The determination of the SDW structure in the
range of temperatures close to TN(L). It should be
recalled that a decrease in temperature leads to the sign
reversal of coefficient c2 in expansion (5) and necessi-
tates the inclusion of higher-order gradient terms in this
expansion. The solutions obtained by us for D(x) are
inapplicable even at T ≥ TN(L), i.e., in the short-range
order region, if c2(T) < 0.

(iii) The determination of the structure of the anti-
ferromagnetic order with SDW in the low-temperature
range T ! TN(L). Unfortunately, we cannot offer any
approach other than the variational approach for ana-
lyzing this problem in view of the considerable difficul-
ties involved in the solution of the self-consistent equa-
tion for the order parameter D(x).

The last thing which we will touch upon in this
paper is the need to expand the class of Cr-based multi-
structures under investigation. It would be very inter-
esting to obtain neutron-diffraction data for a structure
of the Co/Cr type in which the exchange coupling at the
interface is much stronger than in Fe/Cr structures and
is apparently ferromagnetic. It would also be interest-
ing to study the Fe/Cr1 – xMnx type structures for low
(up to 1%) concentrations of manganese since such
structures must display a sharp change in the SDW type
and an increase in the transition temperature TN. Sys-
tems of the Fe/Cr1 – xFex type [21] with a low (up to 3–
AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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5%) concentration of Fe, in which a change in the SDW
structure is accompanied by a small decrease in TN,
may turn out to be promising for an analysis of fine fea-
tures of the short-order mechanism with SDWs. This
list can be extended, but even the above examples indi-
cate, in our opinion, the possible direction of future
investigations.
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Abstract—The experimental studies of magnetic phase transitions in the layered tetragonal intermetallic com-
pound DyMn2Ge2 are continued. The existence of spontaneous phase transitions is confirmed by the results of
measurements of the temperature dependences of lattice parameters and the initial magnetic susceptibility. The
measurements in strong (up to 50 T) and ultrastrong (up to 150 T) fields revealed two new field-induced mag-
netic transitions. The inclusion of the exchange interaction between next-to-nearest layers of manganese and
the crystal field effects for the rare-earth subsystem along with the antiferromagnetic exchange interaction of
nearest Mn layers has made it possible to describe the magnetic properties of DyMn2Ge2 in a wide range of
magnetic fields. The parameters of these interactions are determined from a comparison of the experimental and
theoretical magnetization curves and H–T phase diagrams. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetic and other physical properties of ter-
nary intermetallic compounds RMn2Ge2 (R stands for
rare-earth elements) are of considerable interest due to
the effects associated with the co-existence of two mag-
netic subsystems: the band 3d (manganese) subsystem
and the localized 4f (rare-earth) subsystem. Besides,
these compounds are perfect natural superlattices
which may display the effect of giant magnetoresis-
tance, e.g., during the magnetic field induced metamag-
netic transitions. The layered structure, the high sensi-
tivity of exchange parameters to atomic spacing, the
antiferromagnetic exchange interaction in the Mn sub-
system in intermetallic compounds with heavy rare-
earths, and pronounced crystal field effects in the rare-
earth subsystem lead to complex and very interesting
magnetic phase diagrams of these compounds.

The RMn2Ge2 compounds crystallize in the a tetrago-
nal structure of the ThCr2Si2 type (space group I4/mmm),
which has the form of a set of R–Ge–Mn–Ge–R per-
pendicular to the c axis. The magnetic properties of
these compounds were intensely studied during the last
two decades [1–4]; it was found that numerous mag-
netic phase transitions take place in them. In these
intermetallic compounds, both rare-earth and manga-
nese possess magnetic moments. The Mn–Mn
exchange interaction in a layer is the strongest of all
interactions; it determines the ferromagnetic ordering
1063-7761/01/9304- $21.00 © 20796
of the magnetic moments of Mn in the layer. In the case
of heavy rare-earths, the exchange interactions between
Mn–Mn and R–Mn layers are antiferromagnetic. At
room temperature, the Mn subsystem is antiferromag-
netically ordered, while the rare-earth subsystem is dis-
ordered since the effective fields exerted on this sub-
system by two adjacent Mn layers compensate each
other, and the intrinsic exchange in the rare-earth sub-
system is small. The magnetic moments of the rare
earth become ordered only at low temperatures. For
example, GdMn2Ge2 and TbMn2Ge2 compounds expe-
rience a first-order transition to a state with an ordered
rare earth at T = 96 and 95 K, respectively [2]. Below
this temperature, the R–Mn exchange interaction
induces the formation of a collinear ferrimagnetic
structure: the magnetic moments of the rare earth are
oriented along the tetragonal axis, while the magnetic
moments of all Mn atoms are antiparallel to them.

The magnetic behavior of DyMn2Ge2 is more intri-
cate. The magnetic and neutron-diffraction studies on
single crystals [5] proved that the magnetic moments of
Mn in DyMn2Ge2 become antiferromagnetically
ordered at TN = 431 K. According to the results obtained
in [5] and in [6, 7], where neutron-diffraction experi-
ments were made on powders, DyMn2Ge2 experiences
two first-order magnetic phase transitions in the low-
temperature region: at temperatures T1, which lie in the
interval from 33 to 35 K, and at T2 varying between
001 MAIK “Nauka/Interperiodica”
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37.5 and 40 K. At T < T1, this compound is character-
ized by a collinear ferrimagnetic (Fi) structure similar
to the structure of GdMn2Ge2 and TbMn2Ge2 described
above. At T > T2, the compound has an antiferromag-
netic (AF) structure with disordered moments of dys-
prosium. For the temperature range between T1 and T2,
the results presented in [5–7] are contradictory.
According to [6], three phases coexist in this tempera-
ture range: Fi, AF, and an intermediate phase in which
all magnetic moments are also directed along the c axis,
the directions of the magnetic moments of Mn in the
layers alternate in the sequence ↓↑↓↓↑↓... , and the
magnetic unit cell is characterized by tripling along the
tetragonal axis, i.e., a' = a and c' = 3c. According to [7],
the AF phase does not exist below T2, which follows
from the temperature dependence of the integrated
intensity of the corresponding line. The authors of [7]
assume that between T1 and T2, there exists a single
incommensurate phase whose wave vector was deter-
mined preliminarily as k ≈ (0, 0, 0.65). The measure-
ments of the magnetization curves on DyMn2Ge2 single
crystals in fields up to 15 T [6] and 5 T [8] revealed the
existence of first-order phase transitions in all tempera-
ture intervals under investigation up to 70 K. No
attempts were made to describe theoretically the mag-
netic phase diagrams of DyMn2Ge2 except an attempt
in [6] to determine the exchange parameters from the
condition for the existence of spontaneous first-order
transition from the ferrimagnetic to the antiferromag-
netic phase in the vicinity of 40 K, which was made not
quite correctly.

This work is devoted to further experimental inves-
tigations of magnetic properties of DyMn2Ge2 and the
theoretical description of magnetic phase transitions at
different temperatures and for different magnetic field
directions, the construction of the H–T phase diagrams,
and the determination of the parameters of interactions
in this compound on the basis of the model proposed by
us here.

2. EXPERIMENTAL RESULTS

Polycrystalline samples of the intermetallic com-
pound DyMn2Ge2 were melted in an induction oven in
argon under the quasilevitation conditions from the ini-
tial elements of purity 99.9. To achieve a high degree of
homogeneity, the samples were melted thrice and
annealed for 170 h in a dynamic vacuum at 750°C. The
presence of only one phase in the sample was checked
with the help of X-ray diffraction.

The initial magnetic susceptibility was measured
both in a varying field (in the temperature range from
4.2 to 270 K) and in a constant field (at temperatures
from 300 to 500 K). Such measurements make it possi-
ble to reliably determine the singularities on the tem-
perature dependence of magnetic susceptibility emerg-
ing during magnetic phase transitions. The temperature
dependence of susceptibility, χ(T), clearly exhibits
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
anomalies (Fig. 1) associated with low-temperature
phase transitions as well as an anomaly in the transition
from the paramagnetic to the antiferromagnetic state in
the Mn subsystem at TN ≈ 440 K.

The temperature dependence of the lattice parame-
ters was measured by the X-ray diffraction on a “Gei-
gerflex” diffractometer (Japan) in the temperature
range 10–800 K. The temperature dependences of the
lattice parameters of DyMn2Ge2 presented in Fig. 2
clearly show that the transition from the paramagnetic
to the antiferromagnetic state in the Mn subsystem
(TN ≈ 440 K) is accompanied by a noticeable anomaly
on the a(T) dependence; i.e., the temperature depen-
dence of the Mn–Mn atomic spacing in the layer
changes during this transition. Low-temperature transi-
tions are manifested on the temperature dependences
less strongly for reasons which are not completely
clear. This is probably due to the fact that, according to
[6], different magnetic structure coexist in DyMn2Ge2
at low temperature and, hence, the X-ray reflections
corresponding to different magnetic phases with differ-
ent lattice parameters cannot be separated. This hypoth-
esis is supported by the fact that, according to the
results of our measurements, the X-ray reflection (220)
is broadened significantly below T2.

The magnetization and the field dependence of
dM/dt were measured in strong pulsed magnetic fields
up to 50 T with a pulse duration of 26 ms with the help
of a pulsed coil magnetometer [9] in the temperature
range from 7 to 70 K on free powders whose particles
can rotate in a field. Figure 3 shows the field depen-

0 200

T1

T, K

1

2

T2

TN

400 600 800

0.2

0.1

χ, 10–3 cm3/gχac, rel. units

Fig. 1. Temperature dependence of the initial magnetic sus-
ceptibility of DyMn2Ge2, measured in a varying field (dark
circles) and static field (light circles): T1 and T2 are the tem-
peratures of spontaneous magnetic phase transitions (see
text), TN is the magnetic ordering temperature.
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dences of the differential magnetic susceptibility
dM/dH at various temperatures, which were measured
in an increasing field. A first-order phase transition cor-
responding to the peak on the curve can be seen clearly.
The field dependences of susceptibility recorded in a
decreasing field are similar to those presented in Fig. 3
for an increasing field, but the peaks are displaced
towards lower fields approximately by 1 T, indicating
the existence of a hysteresis during the phase transition.

In pulsed magnetic fields up to 150 T, which are
generated during the discharge of a capacitor bank

3.96

0 200

a, Å

T, K

3.98

4.00

4.02

400 600 800

TN

10.96

10.92

10.88

10.84

c, Å

Fig. 2. Temperature dependences of the crystal lattice
parameters for DyMn2Ge2.

0
15

dM/dΗ, rel. units.

µ0H, T
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1
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3
4 5

Fig. 3. Differential magnetic susceptibility of DyMn2Ge2,
measured on free powders in fields up to 50 T at the follow-
ing temperatures, K: 58 (1), 48 (2), 32 (3), 18 (4), and 7 (5).
The curves are recorded in increasing fields. The curves
recorded in decreasing fields are displaced towards lower
fields approximately by 1 T.
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through a one-turn solenoid (the duration of the first
half-period of the pulse is 6 µs), the measurements were
made by the induction technique on fixed powders with
a particle size of about 10 µm at temperatures from 5 to
7 K. Using this method, it is impossible to compensate
the measuring coils completely and the signal is
described by the formula

The first term in the parentheses is the signal associated
with the decompensation of the coils, the second is the
signal from the sample, χ is the differential magnetic
susceptibility of the sample, and a and b are the con-
stants associated with the parameters of the coils and
the sample, respectively (see [10] for details). In the
critical field of the first-order phase transition, suscep-
tibility χ passes through a peak, which must be
reflected in the emergence of a peak in the voltage V
induced in the measuring coils. It should be noted that
the fields Hmax at which the peaks on the V(H) and χ(H)
dependences are observed coincide exactly only when
dH/dt = const, which was indeed the case during mea-
surements in the fields up to 50 T. If the transition takes
place for H > 0.5Hmax, the value of the critical field must
be determined from the field dependence of the quan-
tity V/(dH/dt), which is just what we did in the present
case.

The obtained dependence of the differential mag-
netic susceptibility of DyMn2Ge2 is shown in Fig. 4.
Distinct peaks of dM/dH correspond to a phase transi-
tion. The values of critical fields upon an increase (112 T)
and a decrease (108 T) of the field are different, which
is typical of first-order phase transitions. Besides, the
relaxation effects associated with the pulsed nature of
magnetization in strong fields apparently affect the
width of the hysteresis loop also.

3. THEORETICAL APPROACH

In our previous publications, the experimental data
for  intermetallic compounds Gd1 – xYxMn2Ge2 and
Gd1 − xLaxMn2Ge2 [11–13] were described by using a
model in which the interactions between the correspond-
ing nearest layers of magnetic atoms were taken into
consideration along with the exchange interactions in
rare-earth and Mn layers in the molecular field approx-
imation. This model made it possible to correctly
describe the phase transitions observed in these inter-
metallic compounds, but in some cases the experimen-
tal and theoretical data could not be matched quantita-
tively. An analysis of experimental results for
DyMn2Ge2 shows that this simple model does not allow
to describe the magnetic properties of this intermetallic
compound even qualitatively. In particular, the possibil-
ity of interpreting the existence of a magnetic structure
observed in the temperature range between T1 and T2,
the magnetization jump during the first-order phase

V a bχ+( )dH
dt
-------.=
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transition at low temperatures in a field oriented along
the tetragonal axis of the crystal (see [5]), etc. cannot be
explained in this theory. For this reason, we compli-
cated the model by taking into account the exchange
interactions between next-to-nearest magnetic layers.
This appears quite natural since, apart from indirect
exchange through germanium, the exchange interaction
in the intermetallic compounds under investigation
occurs through the conduction electrons and is a long-
range interaction. Besides, in contrast to the Gd3+ ion,
the Dy3+ ion is not an S ion and, hence the effects asso-
ciated with the crystal field are significant in this case.
When these factors are taken into account, nonequiva-
lent positions of magnetic moments may appear both in
the dysprosium and in the manganese magnetic sub-
systems of the crystal. The existence of such nonequiv-
alent positions and the exchange interactions between
different layers of magnetic atoms were precisely taken
into consideration while writing the expressions for the
effective Hamiltonians.

The effective Hamiltonian for a Dy3+ ion in the ith
position in the molecular field approximation can be
written in the form

(1)

where  are the crystal field parameters of the tetrag-

onal symmetry,  are the equivalent operators, gJ is
the Lande factor, and J(i) is the angular momentum
operator of the Dy3+ ion. The molecular field strength

 is defined as

(2)

The components of the ith dysprosium (M(i)) and of the
kth manganese (m(k)) magnetic moments are given by

where g is the g-factor of Mn, S(k) is the spin moment

operator for Mn, and  and  are the parameters of
Dy–Dy and Dy–Mn exchange interactions, respec-
tively. It should be noted at the very outset that, accord-
ing to our calculations, the parameters of the exchange
interaction between Dy–Dy and Dy–Mn atoms corre-
sponding to different layers appear additively in all
expressions; for this reason, we will subsequently use
the total parameters λ11 and λ12.

For itinerant electrons of the manganese d sub-
system, we will take into account only exchange inter-

actions in the effective Hamiltonian  for the kth
Mn atom:

(3)
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The effective field acting on the kth Mn atom in the
external magnetic field H oriented at an angle ϕ to the
c axis of the crystal is given by

(4)

where ηk is the polar angle of the kth magnetic moment

of Mn and  are the parameters of exchange interac-
tion between Mn atoms belonging to the kth and nth
layers. The anisotropy of the manganese subsystem
will be included in the thermodynamic potential as an
additive term in view of its smallness in comparison
with the exchange. It should be noted that, for the con-
venience of notation, we have included, in addition to
the exchange constant I, the factors required for writing
the effective Hamiltonians and molecular fields in the
form (1)–(4) in the exchange parameters λ introduced
above; namely,

HMn
k( ) H ϕ η k–( )cos Hm

k( ),+=

Hm
k( ) λ22

n( )m n( ) ηn ηk–( )cos
n k k 1 …,±,=

∑=

+ λ12 Mz
i( ) ηk Mx

i( ) ηksin+cos( ),
i

∑

λ22
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---------------------I11, λ12
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gJµB
--------------I12,= =

λ22
n( ) 1
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Fig. 4. Differential magnetic susceptibility at T = 5 K, mea-
sured in pulsed fields up to 150 T. Arrows distinguish the
curves obtained upon the application and removal of the
field.
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The thermodynamic potential per formula unit in
the molecular field approximation is defined as

(5)

(N is the number of nonequivalent formula units). The
partition function Zi for the ith dysprosium moment was
evaluated using numerical diagonalization of the

Hamiltonian  (1), involving the solution of the cor-

responding self-consistent problems, xk = µBg /kBT,
and K is the anisotropy constant for the Mn subsystem.
The second and fourth terms in formula (5) are conven-
tional correcting terms in the molecular field theory.

For known values of the parameters of the system
appearing in the thermodynamic potential, we can find
the range of existence of various magnetic structures
from the conditions of the minimum of their thermody-
namic potential, and calculate the phase-transition
fields (from the equality of the thermodynamic poten-
tials of different phases in the case of first-order phase
transitions). In the present work, we will solve the
inverse problem of determining the complete set of
parameters of DyMn2Ge2 for interpreting the experi-
mental data concerning the magnetic properties of this
compound on the basis of thermodynamic potential (5).

4. PHASE TRANSITIONS IN A FIELD PARALLEL 
TO THE TETRAGONAL AXIS

Low-temperature transitions. We begin our anal-
ysis with the phase transitions induced by a magnetic
field parallel to the tetragonal axis at helium tempera-
tures. It is known [5] that at this temperature, the initial
phase is the ferrimagnetic phase (Fi) with the magnetic
moments of Mn in all the layers oriented antiparallel to
moments MDy and that a first-order phase transition
occurs in the vicinity of 7 T. According to our experi-
mental data, two more first-order phase transitions take
place in stronger fields: near 30 T (see Fig. 3) and near
110 T (see Fig. 4). The first-order phase transition near
110 T was detected during measurements on powder
samples. We attribute it to crystallites for which the
field is oriented along the tetragonal axis since out cal-
culations revealed that no other first-order phase transi-
tions are possible in this field regions for other mutual
orientations of the field and the tetragonal axis. From
the value of magnetization after the jump at H ≈ 7 T [5],
it can be concluded that the transition occurs to a phase
(which will be referred as the intermediate phase I) in
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which the magnetic moment of every third layer of the
Mn subsystem is reoriented along the direction of the
field.1 The spontaneous formation of precisely this
phase was presumed in neutron-diffraction and Möss-
bauer studies in the temperature range between T1 and
T2 [6]. This structure contains antiferromagnetic and
ferromagnetic Mn blocks (see Fig. 5 in [6]) so that the
entire phase I is in fact an ordered superposition of the
Fi and the antiferromagnetic (AF) phases, in which a
block of the Fi phase follows two blocks of the AF
phase. Obviously, there are two types of Dy atoms in
this case. In zero field, dysprosium in the Fi blocks is
magnetized due to the Dy–Mn exchange, while in the
AF blocks, Dy is disordered. It was proposed in [5] that
the transition near 7 T occurs into the triangular phase
in which the magnetic moment of Dy is oriented, as
before, along the tetragonal axis (and along the field),
while the moments of manganese form obtuse angles
with MDy. This assumption contradicts the experimen-
tal data obtained by the same authors [5], according to
which the susceptibility of the system is virtually equal
to zero in fields above the transition field, while its
magnitude in the triangular phase must be significant.

If the Fi  I transition takes place in the vicinity
of 7 T, we can assume that the antiferromagnetic (AF)
phase with the antiferromagnetic ordering in the Mn
subsystem and the ferromagnetic (F) phase in which the
magnetic moments of both subsystems are oriented
along the field play the role of higher-field phases. The
values of the three critical fields of first-order phase
transitions at helium temperatures,

make it possible to determine three exchange parame-

ters of the compound: λ12(Dy–Mn),  (Mn–Mn

interaction in adjacent layers), and  (Mn–Mn inter-
action in alternate layers). Since we are dealing with the
situation when temperatures are low, the external field
is parallel to the tetragonal axis and is obviously too
high for all the magnetic moments to be saturated
(MDy = M, m1 = m2 = … = m), we can use the expres-

1 It should be noted that the magnitude of magnetization after the
phase transitions suggests the reorientation of the magnetic
moment of every fourth Mn layer. However, our calculations
proved that the energy of such a state is higher, while the phase-
transition fields coincide in the approximation taking into account
the exchange interactions between Mn layers separated by not
more than one layer. The inclusion of the antiferromagnetic
Mn−Mn exchange interaction between the layers separated by
two layers removes the degeneracy of the critical fields, the criti-
cal field  being characterized by a smaller value.HFi I→

HFi I→ 7 T, HI AF→ 32 T, HAF F→ 110 T,= = =

λ22
2( )

λ22
3( )
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sions for the critical fields obtained from the low-tem-
perature expansion of the thermodynamic potential (5):

(6)

At helium temperatures, the magnetic moment of Dy is
formed, to a high degree of accuracy, by the lower level
of the ground Kramers doublet split by the exchange
and external magnetic fields. According to the results
obtained in [6], this level is a nearly pure |15/2〉  state;
hence we put M = 10µB. Assuming that m = 2.2µB in
accordance with [5], we find that

(7)

The total low-temperature magnetization curve of the
compound DyMn2Ge2 calculated with these parameters
for a field directed along the tetragonal axis is shown in
Fig. 5. The same figure shows the experimental curve
measured in a field up to 15 T in [5] as well as high-field
peaks of differential magnetic susceptibility obtained
by us here. It should be noted that for the values (7) of
exchange parameters, the triangular phase cannot
emerge in a field along the tetragonal axis.

The value of the Mn–Mn exchange interaction
parameter in a layer can be determined from the value

of TN = 440 K with known  and :

It is well known that the Mn–Mn exchange interaction
between the layers in layered compounds RMn2Ge2 is
very sensitive to the atomic spacing in a layer, i.e., to
the lattice parameter a. This leads to the temperature

dependence of  associated with thermal expansion
in the form [14]

(8)

where ac = 4.045 Å for intermetallic compounds
RMn2Ge2. However, our calculations proved that in the
temperature interval below 70 K investigated by us
here, the inclusion of the temperature dependence of

 in DyMn2Ge2 is not necessary.

H–T diagram. The temperature dependences of
critical fields must be calculated on the basis of the gen-
eral expression (5) for thermodynamic potential. The
crystal field parameters for the Dy3+ ion in DyMn2Ge2
were determined in [6] from the temperature depen-
dences of the hyperfine field and quadrupole interac-
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tion, which were obtained from an analysis of the

Mössbauer spectra.The sixth-order parameters  and

 were put equal to zero, while the remaining param-
eters were determined to within 30%. It will be shown
below that in order to describe the processes of magne-
tization in a field perpendicular to the tetragonal axis,
the values of some parameters from those given in [6]
have to be changed within the above-indicated error.
For H || c the crystal field effects and, hence, the varia-
tions of parameters are less significant. It is impossible
to determine unambiguously the parameter λ11 of the
Dy–Dy exchange from the available experimental data,
but the absence of the Fi phase above T2 sets the upper
limit on its value. We take it equal to 0.49T/µB; the
Curie temperature of the Dy subsystem corresponding
to this value of λ11 amounts to 25 K.

The theoretical H–T phase diagram is shown in Fig. 6
together with the experimental data obtained in [5, 8]
and in the present work. It should be emphasized that
all phase transitions are of the first order and the corre-
sponding magnetization curves obtained as a result of

B6
0

B6
4

Fig. 5. Low-temperature magnetization of DyMn2Ge2 cal-
culated per formula unit as a function of the field applied
along the tetragonal axis. The curves correspond to calcula-
tions and dark circles correspond to the experimental data
obtained for a single crystal at 4.2 K [5]. The dM/dH peaks
shown above the magnetization curve for the I  AF and
AF  F phase transitions were obtained by us at T = 7
and 5 K, respectively. The arrows indicate the magnetic
moments of dysprosium and manganese in the layers. The
formula unit is shown in the dashed frame.
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measurements exhibit a hysteresis. It can be seen that
the calculated temperature dependence of the critical
field HFi → I is in good agreement with the experimental
curve obtained in [5] on a single crystal. The calculated
field HI → AF of the I  AF transition exhibits a
weaker temperature dependence than the field obtained
from measurements on free powders.

It was mentioned in the Introduction that the mag-
netic state of the intermetallic compound DyMn2Ge2 in
zero field in the temperature interval between T1 and T2
has not been determined unambiguously in the avail-
able publications and the origin of the magnetic phase
transitions in the temperature range above T1 is not
quite clear. It should be recalled that the results of the
Mössbauer and neutron-diffraction studies carried out
in [6] enabled the authors of this work to assume that
three phases coexist in zero field in the temperature
range between T1 and T2: ferrimagnetic (Fi), antiferro-
magnetic (AF), and intermediate (I) phases. This is pos-
sible if the intermediate phase in this temperature range
is stable, while the other two phases are in the metasta-
ble state.

At the same time, Kobayashi et al. [7] concluded
from the results of preliminary neutron diffraction stud-
ies that the magnetic structure in the temperature inter-
val T1 < T < T2 is homogeneous: it has the form of an
incommensurate phase with the wave vector k = (0, 0,
0.65). Such a value of the wave vector indicates that this
incommensurate phase is close to a commensurate
phase with the unit cell tripling along the tetragonal c
axis. In our opinion, this model is supported by the
magnetization curves for T > T1 from [5, 8], in which
the hysteresis loops are small (if three different mag-
netic phases coexist in this temperature range, hystere-
sis effects must be manifested much more strongly).
The version of the existence of an incommensurate
phase suggests that the low-field magnetic phase transi-
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Fig. 6. Magnetic phase (H–T) diagram of DyMn2Ge2. Nota-
tion for phases is explained in the text. Dashed curves cor-
respond to calculations. The remaining curves present
experimental data obtained by us (dark square and light tri-
angles), in [5] (dark triangles) and in [8] (light squares).
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tion observed in the antiferromagnetic phase at a tem-
perature above T2 is a transition to an incommensurate
phase. This, however, is just a hypothesis, and we have
to admit that the available experimental data are insuf-
ficient for describing theoretically the low-field mag-
netic behavior of DyMn2Ge2 above T2.

Figure 7d demonstrates a fairly good agreement
between the experimental magnetization curve [5] and
the one calculated on the basis of the thermodynamic
potential (5) for the AF phase in a field parallel to the
tetragonal axis.

5. PHASE TRANSITIONS IN A FIELD 
PERPENDICULAR TO THE TETRAGONAL AXIS

The experimental H–T phase diagram for a field
directed perpendicularly to the tetragonal axis has not
been obtained, but the magnetization curves given in
[5] for this direction at T = 4.2 and 20 K indicate the
beginning of a first-order phase transition in a field (see
Figs. 7a and 7b). At these temperatures, the Fi phase is
initial. Our numerical calculations based on the thermo-
dynamic potential (5) proved that, as expected, the sus-
ceptibility of the Fi phase for H ⊥  c is extremely sensi-
tive to the crystal field parameters. We had to modify
the parameters from [6] within the error of their deter-
mination in this work and assume that (in cm–1)

in order to obtain simultaneously the susceptibility of
the compound in the phase for H ⊥  c and T = 4.2 K,
coinciding with the experimental value from [5] (see
Fig. 7a) without deteriorating the description of the reg-
ularities for the Mössbauer spectra given in [6]. In fields
weaker than the transition field, the magnetic moment
of dysprosium acquires a component along the mag-
netic field, while the magnetic moments of manganese
remain parallel to each other and are slightly rotated
towards the field direction since the exchange field
exerted by dysprosium tends to preserve the antiparallel
orientation of the moments of the dysprosium and man-
ganese subsystems. In the critical field, a first-order
phase transition to the triangular phase takes place, in
which the magnetic moment of dysprosium is oriented
along the field, while the moments of Mn form obtuse
angles with it. The corresponding theoretical magneti-
zation curves are presented in Figs. 7a and 7b. It can be
seen that the calculated value of susceptibility in the Fi
phase for 20 K coincides with the experimental value.
We also succeeded in describing the decrease in the
critical field upon heating (the phase-transition field at
20 K is weaker than at 4.2 K both in experiment and in
theory). The calculated magnetization jump exceeds
the experimentally observed value. Out attempts to
increase the jump by slightly varying the parameters
were futile. A change in the crystal field parameters,
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Fig. 7. Magnetization of DyMn2Ge2, calculated per formula unit as a function of the magnetic field applied along the indicated
directions at various temperatures T, K: (a) 4.2; (b) 20; (c) 60, and (d) 77. The symbols correspond to the experimental results
obtained in [5] (dark circles and squares) and [8] (light circles); the curves correspond to calculations.
e.g., a decrease in the parameter , leads to an
increase in the transverse susceptibility in the ferrimag-
netic phase. The variations of the Dy–Mn and Mn–Mn
exchange interaction parameters displace the phase
transition fields for both directions of the field. The
magnitude of the anisotropy constant for the manga-
nese subsystem, which was taken, in particular, as
15.8 T µB/formula unit for GdMn2Ge2 [12], is insignif-
icant since the anisotropy of the Mn subsystem is much
smaller than the anisotropy of the Dy subsystem. Thus,
the jump cannot be described in this model. A compli-
cation of the model would involve the introduction of
new parameters whose determination makes the prob-
lem more ambiguous and requires additional experi-
mental data for their determination.

It is interesting to note (see above) that the magnetic
moment of dysprosium in a field perpendicular to the
tetragonal axis can be reoriented relatively easily from
the tetragonal axis to the direction of the field. For

B2
0
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example, the angle formed by the magnetic moment of
dysprosium with the tetragonal axis for H = 10 T
amounts approximately to 7°. The tetragonal axis of the
crystal must be the Ising axis for the moment of dyspro-
sium at low temperatures since its ground state is char-
acterized by the wave function |15/2〉 . A comparatively
easy reorientation of the magnetic moment of dyspro-
sium from the Ising axis can be explained by the fact
that the intersection of the lower energy levels of the
Dy3+ ion (crossover) is observed for this direction of the
field even in fields of about 1 T and the magnetic
moment component perpendicular to the tetragonal
axis starts growing at a higher rate.

Figures 7c and 7d show the magnetization curves
for field directions in the basal plane in the temperature
range in which the AF phase is initial. It can be seen that
at T = 60 K (Fig. 7c), our theoretical curve is in good
agreement with the experimental curve obtained in [8]
during measurements on a thin square plate-like crys-
SICS      Vol. 93      No. 4      2001
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tal. We had to recalculate the experimental curve taking
into account demagnetizing fields for the given shape of
the single crystal, which was not done in [8]. At T =
77 K (Fig. 7d), the discrepancy between the calculated
and experimental [5] magnetization curves is stronger.
It cannot be ruled out that this is also associated with
the necessity of including demagnetizing fields (there is
no information in [5] about taking demagnetizing fields
into account).

6. CONCLUSIONS

In this work, the layered tetragonal intermetallic
compound DyMn2Ge2 is investigated experimentally
and theoretically. The temperature of antiferromagnetic
ordering of the manganese subsystem (TN ≈ 440 K) is
determined from the measured temperature depen-
dences of the lattice parameters a and c and the initial
magnetic susceptibility. The existence of two low-tem-
perature spontaneous first-order phase transitions (T1 ≈
33 K and T2 ≈ 44 K), which were established experi-
mentally in [5, 6], is confirmed. The differential mag-
netic susceptibility at low temperatures is measured on
free powders in strong magnetic fields (up to 50 T) and
on power samples in ultrastrong magnetic fields (up to
150 T). Two first-order phase transitions are observed
for the field orientation along the tetragonal axis:
between 20 and 35 T (depending on temperature) and
near 110 T.

Low-temperature magnetic properties of the layered
intermetallic compound DyMn2Ge2 are explained in
the model taking into account two magnetic sub-
systems of this intermetallic compound (the rare-earth
and the manganese subsystems); the intrinsic exchange
interaction of the manganese subsystem leads to anti-
ferromagnetic ordering of this subsystem. It is shown
that, in contrast to similar Gd-based intermetallic com-
pounds studied earlier, the magnetic properties of
DyMn2Ge2 can be interpreted correctly only by taking
into account the exchange interaction between next-to-
nearest Mn layers. This results in the possibility of the
emergence, apart from antiferromagnetic and ferromag-
netic types of magnetic ordering in the Mn subsystem,
of a magnetic structure in which the mutual orientation
of magnetic moments alternates as ↓↑↓↓↑↓ … in a field
directed along the tetragonal axis. A comparison of the
experimental values of induced phase transitions at
helium temperature with the theoretically calculated
values allowed us to determine the parameters describ-
ing both exchange interactions in the subsystems and
the exchange interactions between the subsystems.
Using these values of the exchange parameters as well
as the parameters of the crystal field acting on the Dy3+

ion refined from the experimental data presented in [5,
JOURNAL OF EXPERIMENTAL 
6], we managed to describe semiquantitatively the mag-
netization curves at higher temperatures and to con-
struct the H–T phase diagram.

It should be noted that some of the problems remain
unsolved. For example, since the nature of magnetic
ordering in the temperature range T1 < T < T2 has not be
established completely, and the origin of field-induced
low-field magnetic phase transitions at T > T1 has not
been clarified, the changes that must be introduced into
the model for describing completely the magnetic
phase diagram for DyMn2Ge2 are yet to be determined.
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Abstract—Slowly cooled Nd1 – xBaxCoO3 – δ samples were two-phase in the concentration interval 0.3 ≤ x ≤
0.46. One of the phases had O-orthorhombic lattice distortions (Pbnm) characteristic of ferromagnetic samples
with x ≤ 0.3, and the other phase had tetragonal distortions (P4/mmm) characteristic of samples with x ≥ 0.46.
Tetragonal distortions were caused by ordering of Nd3+ and Ba2+ ions. Samples with ordered neodymium and
barium ions (Nd1 – yBa1 + yCo2O6 – γ at –0.08 ≤ y ≤ 0.08) experienced metal–dielectric and orientation magnetic
phase transitions. © 2001 MAIK “Nauka/Interperiodica”.
Currently, substituted rare-earth metal orthocobal-

tites of the general formula Ln1 – x

(Ln is a lanthanide, and A is a divalent alkaline-earth
metal) attract much interest of researchers because their
properties are in many respects similar to those of sub-

stituted orthomaganites Ln1 – x ,

which exhibit giant magnetoresistance [1, 2]. In both
classes of perovskites, an increase in the content of
divalent ions causes a concentration transition to the
ferromagnetic metallic state. Based on this observation,
their magnetic properties were broadly interpreted in
terms of double exchange [1, 2]. De Gennes [3] used
double exchange theory to show that the concentration
transition from the antiferromagnetic to the ferromag-
netic state in La1 – xAxMnO3 at 0 < x < 0.2 should occur
via a noncollinear state. According to an alternative
point of view on the mechanism of this transition, the
system in the vicinity of the transition stratified into
regions with different magnetic orderings [4, 5]. Exper-
imental proof of magnetic phase stratification in man-
ganites was obtained in [6]. The problem was studied
theoretically in several works [7, 8]. Concentration
transitions in substituted orthocobaltites have been
studied much less thoroughly. The initial compounds,
LnCoO3, are an example of oxide systems with transi-
tions between ion spin states. The splitting of the Co
3d levels by the ligand crystal field in these compounds
is close in magnitude to the intraatomic exchange
energy. For this reason, increasing temperature causes
thermal excitation of trivalent cobalt from the low-spin

 state (S = 0) to the intermediate  state with

S = 1 or to the high-spin  state (S = 2). As a conse-
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quence, the compounds are diamagnetic at low and
paramagnetic at high temperatures [1]. It is shown in
[9] that the replacement of neodymium by barium in
Nd1 – xBaxCoO3 – δ causes a concentration transition
from the diamagnetic to the ferromagnetic state and
then from the ferromagnetic to the antiferromagnetic
state. The special features of the transitions from the
diamagnetic to the ferromagnetic state in this system
are likely to be similar to those characteristic of the well
studied La1 – xSrxCoO3 system [1]. But information as to
which of the possible mechanisms (noncollinear mag-
netic structure, spin glass-type state, or two-phase state)
governs the transition from the ferromagnetic to the
antiferromagnetic state is still lacking. The purpose of
this work was to determine the mechanism of the con-
centration transition from the ferromagnetic to the anti-
ferromagnetic state in the Nd1 – xBaxCoO3 – δ system.

All Nd1 – xBaxCoO3 – δ samples (0.3 ≤ x ≤ 0.56, con-
centration was varied in steps of ∆x = 0.02) were syn-
thesized by the usual ceramic procedure from metal
oxides and carbonates of OSCh (special purity) grade
taken in the required proportions. The mixtures were
preliminarily calcined at 900°C. The syntheses were
conducted at 1100–1200°C for 10 h. The samples were
then slowly cooled (80 K/h) to ensure more complete
absorption of oxygen by the lattice. To determine the
effect of oxygen on the properties of samples, several
samples were quenched from high temperatures. Elec-
tric conductivity was measured by the standard four-
contact method. Magnetic measurements were per-
formed on a commercial Foner magnetometer. X-ray
diffraction was measured on a DRON-3 apparatus,
CrKα radiation.
001 MAIK “Nauka/Interperiodica”



 

806

        

KHALYAVIN 

 

et al

 

.

                          
1200

900

600

300

1200

900

600

300

30 40 50 60 70 80 90 100

Pbnm + P4/mmm

x = 0.38

200

300

400

71 72 73 74 75

0.38

0.48

x = 0.3

Pbnm
x = 0.48

30 40 50 60 70 80 90 100

x = 0.54 Pmmm

P4/mmm
x = 0.3

Fig. 1. X-ray powder patterns of some compositions of the Nd1 – xBaxCoO3 – δ series. Shown in the inset is the concentration evo-
lution of the (200) multiplet in the cubic approximation.

2θ2θ
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According to the X-ray data, Nd0.7Ba0.3CoO3 – δ, like
initial NdCoO3 [9, 10], has a perovskite structure with
O-orthorhombic distortions, space group Pbnm. The X-
ray powder pattern of Nd0.68Ba0.32CoO3 – δ contained
not only reflections of the O-orthorhombic lattice but
also lines of another phase. The intensity of these lines
increased as the content of barium grew, whereas the
intensity of the O-orthorhombic phase reflections
simultaneously decreased. The system remained two-
phase up to x = 0.44. The second phase, which appeared
at x > 0.3, had a tetragonally distorted lattice, space
group P4/mmm, characteristic of samples with barium
contents 0.46 ≤ x < 0.5. X-ray data therefore show that
the Nd1 – xBaxCoO3 – δ system stratifies into regions with
different crystal structure types in the concentration
interval 0.3 < x < 0.46 (Fig. 1). According to [9, 11], tet-
ragonal distortions of the Nd0.5Ba0.5CoO3 – δ lattice are
caused by spatial ordering of Nd3+ and Ba2+ ions similar
to ordering of Y3+ and Ba2+ in YBaFeCuO5 [12].
Ordering of ions allows Nd0.5Ba0.5CoO3 – δ to be
treated as an individual compound whose chemical
formula should be written as NdBaCo2O6 – γ. According to
the X-ray data, the compositions with ordered Nd and Ba
ions, when slowly cooled in air (80 K/h), remain sin-
gle-phase when the contents of Ba and Nd change
from Nd1.08Ba0.92Co2O6 – γ to Nd0.92Ba1.08Co2O6 – γ
(Nd1 − yBa1 + yCo2O6 – γ with –0.08 ≤ y ≤ 0.08). In the
JOURNAL OF EXPERIMENTAL 
−0.08 ≤ y < 0 interval, the compositions are character-
ized by tetragonal crystal lattice distortions (P4/mmm),
and in the 0 ≤ y ≤ 0.08 interval, distortions are orthor-
hombic (Pmmm). The degree of orthorhombic distor-
tions decreases as barium content grows. Quenching
from high temperatures substantially broadens the
region of homogeneity of the ordered phase. We were
able to obtain a single-phase Nd1.34Ba0.66Co2O6 – γ sam-
ple with tetragonal crystal lattice distortions by quench-
ing this composition from T = 1000°C. This may be
caused by an increase in oxygen deficiency in quenched
samples, which stabilizes ordering of rare-earth metal
ions and barium in perovskites [12].

Magnetization measurements showed that
Nd0.7Ba0.3CoO3 – δ had spontaneous magnetization M
below the critical temperature ~ 160 K. The magnetic
moment of the cobalt sublattice (MCo) was difficult to
determine at low temperatures because of a negative f–d
exchange value orienting the magnetic moment of the
neodymium sublattice in the direction opposite to that of
the cobalt sublattice. We were, however, able to estimate
the upper bound for MCo based of the field dependence of
magnetization measured at a liquid helium temperature.
The spontaneous magnetization of the sample with x =
0.3 at T = 4.2 K was M = 0.5µB/formula unit. If we
assume that, at this temperature, the neodymium sub-
lattice is ordered with an MNd = 1.4µB magnetic
AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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moment (the MNd value was obtained from the neutron
diffraction data on NdCoO3 [10] per Nd ion), then, for
the Co sublattice, we obtain MCo = 1.4 × 0.7 + 0.5 =
1.5µB/Co. The calculated MCo value for the intermedi-

ate ( , S = 1) spin state of Co3+ and the low-spin

( , S = 1/2) state of Co4+ is 1.7µB/Co. It can there-
fore be suggested that some part of trivalent cobalt ions
are in the low-spin state. On the other hand, the cobalt
sublattice moment value lower than the calculated
moment may be caused by an antiferromagnetic contri-
bution of the Co3+–O–Co3+ superexchange which com-
petes with the Co3+–O–Co4+ ferromagnetic exchange.
The specific resistance of Nd0.7Ba0.3CoO3 – δ at T = 77 K
equaled ρ = 2 × 10–3 Ω cm and weakly increased as tem-
perature rose, which is characteristic of metals (Fig. 2).
An increase in the content of barium above x = 0.3 grad-
ually decreased the spontaneous magnetic moment.
Simultaneously, localization of charge carriers
occurred, which was evidenced by the concentration
transition from the metallic to the activated conductiv-
ity type (Fig. 2). For Nd0.7Ba0.3CoO3, a magnetization
peak was observed in measurements near the Curie
point in low fields after zero field cooling (ZFC). The
ZFC-magnetization curves of Nd1 – xBaxCoO3 – δ sam-
ples with x > 0.3 contained an anomaly in the low-tem-
perature region (T ~ 130 K). This anomaly transformed
into a well-defined additional peak as the concentration
of barium increased. The relative intensities of both
peaks changed depending on barium content (Fig. 3). It
follows from the X-ray data that Nd1 – xBaxCoO3 – δ
exists in the two-phase state in the concentration inter-
val 0.3 < x < 0.46. It is likely that the additional
ZFC-magnetization peak at x > 0.3 is caused by the
appearance of the tetragonal phase, in which barium
and neodymium ions are ordered. The results obtained
in studying the magnetic properties of the
Nd1 − xBaxCoO3 – δ system can visually be represented in
the form of the phase diagram shown in Fig. 4. The crit-
ical temperature for the x = 0.2 composition was taken
from [9], for the other compositions, the critical tem-
peratures were determined directly from the results of
our experiments. The upper (solid) critical line, which
separates the paramagnetic and magnetically ordered
regions, corresponds to the onset of the transition from
the paramagnetic to the ordered state. The lower (dot-
ted) line corresponds to the position of the low-temper-
ature maximum of the ZFC-magnetization curve (Fig. 3,
inset). In the concentration range 0.3 < x < 0.4, the char-
acteristic temperatures of both phases vary insignifi-
cantly, whereas the intensity of the low-temperature
magnetization peak gradually increases. Such behavior
of the magnetic properties can be expected when the
chemical composition of phases varies insignificantly,
and changes occur as a result of an increase in the con-
tent of the tetragonal phase. In the 0.42 < x < 0.46 inter-
val, we observe inversion, that is, the temperature of
magnetic ordering of the phase with ordered neody-
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Fig. 2. Specific resistance of Nd1 – xBaxCoO3 – δ as a func-
tion of temperature.
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mium and barium ions becomes higher than that of the
second phase. The Nd1 – yBa1 + yCo2O6 – δ samples have
spontaneous magnetizations not exceeding 0.15µB/Co.
Currently, the nature of spontaneous magnetization of
these compositions is subject to controversy. Phases
with ordered barium and neodymium ions may well be
weak ferromagnets. In the temperature range 30 K <
T < 230 K, Nd0.92Ba1.08Co2O6 – δ exhibits anomalous
magnetization behavior in low magnetic fields (Fig. 5).
This is likely to be related to orientation magnetic tran-
sitions, as follows from the observation that the magne-
tization measured after field cooling (FC) can be
directed oppositely with respect to a low magnetic field
in the temperature range 60–200 K. Orientation transi-
tions have been thoroughly studied in rare-earth metal
orthoferrites RFeO3 [13]. In the high-temperature
region, Nd0.92Ba1.08Co2O6 – γ has a well-defined metal–
dielectric phase transition (Fig. 3), similar to that
observed in GdBaCo2O5.5 [11]. It was shown in [14, 15]
that orthorhombic crystal lattice distortions and the
metal–dielectric transition in RBaCo2O6 – δ (R is a rare-
earth metal or yttrium ion) were closely related to the
content of oxygen in these compounds and were char-
acteristic of the O5.5 phase, in which ordering of oxygen
vacancies occurred. It is likely that deviations from the
ratio between the cations in NdBaCo2O6 – γ toward
increasing the content of barium causes an increase in
oxygen nonstoichiometry and shifts γ closer to 5.5,
similarly to what occurs in RBaCo2O6 – γ when the
radius of the rare-earth metal ion decreases from Nd
(γ = 0.3) to Tb (γ = 0.5) [14]. It follows from the data

0.8
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100 150 200 250
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Fig. 5. Temperature dependences of FC- and ZFC-magneti-
zations in an H = 100 Oe field for Nd0.92Ba1.08Co2O6 – γ.
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obtained in this work that the concentration transition
from the ferromagnetic to the antiferromagnetic state in
Nd1 – xBaxCoO3 – δ occurs through a mixed state, that is,
the system stratifies into regions with different mag-
netic ordering types. The difference in magnetic order-
ing is caused by the different chemical compositions of
these regions. Most likely, phase stratification occurs at
temperatures about 600°C, when samples intensely
interact with oxygen, which causes the decomposition
of solid solutions.
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Abstract—Based on the experimental data on copper metaborate single crystals obtained in X-ray and neutron
diffraction studies and heat capacity, magnetic susceptibility, and muon spin relaxation measurements, a phe-
nomenological theory of the incommensurate magnetic structure of this crystal was developed. Considering the
space group of the crystal, I 2d, Lifshits invariants were included into its thermodynamic potential. An analy-
sis showed that magnetic structure formation at 10–20 K was dominated by the subsystem of copper spins in
4b unit cell sites. Below 10 K, the role played by the magnetic subsystem of copper spins in 8d unit cell sites
in the formation of the magnetic structure of copper metaborate substantially increased. This caused a sharp
increase in the wave vector of the incommensurate structure as temperature lowered. Numerical simulation of
the temperature dependence of the wave vector of the helix and the heat capacity of the crystal gave a satisfac-
tory description of the experimental data. This simulation was used to estimate the parameters of the phenom-
enological thermodynamic potential of the magnetic system of copper metaborate. © 2001 MAIK
“Nauka/Interperiodica”.

4

1. INTRODUCTION

Modulated (incommensurate) magnetic structures
are known to appear most often as a result of competi-
tion of exchange interactions [1]. The crystal structure
then does not impose any limitations on the possibility
of the formation of such structures. Less frequently,
incommensurate structures are formed as a result of rel-
ativistic interactions. Dzyaloshinskii [2] was the first to
mention such a possibility. The physical reason for the
appearance of incommensurate structures is then the so-
called Dzyaloshinskii–Moria antisymmetric exchange
interaction. Formally, incommensurate structures of the
relativistic origin can be described by introducing the
Lifshits invariant [1], which linearly contains the first
derivatives with respect to the two-component order
parameter coordinates, into the thermodynamic poten-
tial. Note that an important limitation is then imposed
on crystal symmetry. Namely, the Lifshits invariant can
only be included into the thermodynamic potentials of
crystals that have no center of symmetry. The magnetic
state of a system with the Lifshits invariant is generally
a lattice of magnetic solitons. In the simplest case, if
magnetic crystallographic anisotropy effects are
ignored, the distribution of magnetic moments obeys a
simple sine law. The smallness of relativistic interac-
tions implies the smallness of the wave vector of
1063-7761/01/9304- $21.00 © 20809
incommensurate magnetic structures. Close to the tran-
sition of a magnetic system into an incommensurate
phase, strong diffuse neutron scattering should be
observed [1]. The soliton character of magnetic order-
ing leads to a complex structure of magnetic satellites
in the neutron diffraction pattern.

As modulated magnetic structures of the relativistic
origin are rare, their detailed study, especially per-
formed for high-quality single crystals, is of great inter-
est. Copper metaborate CuB2O4 single crystals were for
the first time synthesized and studied in [3–6]. Neutron
diffraction data on this crystal were reported in [7]. In
this work, we suggest a theoretical interpretation of the
magnetic state of the spin system in copper metaborate
at various temperatures; our interpretation is based on
analyzing the whole set of available experimental data.

2. EXPERIMENTAL DATA

A procedure for growing high-quality large copper
metaborate single crystals was described in [4].
According to X-ray and neutron diffraction studies [7],

CuB2O4 forms tetragonal crystals, space group I 2d

( ) with lattice parameters a = 11.528 Å and c =
5.607 Å. The unit cell contains 12 formula units. Cop-
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Fig. 1. Crystal structure of copper metaborate.
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Fig. 3. Temperature dependence of the heat capacity of sin-
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(2) simulated, (3) Debye contribution, (4) Schottky anom-
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per Cu2+ ions are situated in two nonequivalent posi-
tions, namely, CuA, site 4b, point symmetry group S4
(0, 0, 0.5) and CuB, site 8d, point symmetry group C2
(0.0815, 0.25, 0.125). Each CuA ion occupies the center
of a square formed by four oxygen ions. All CuB ions
are surrounded by six oxygen atoms in vertices of dis-
torted octahedra (Fig. 1). The special high-resolution
neutron diffractions study [7] showed that, up to 1.5 K,
the crystal did not experience structural phase transi-
tions of any kind. The magnetic reflections at 12 K cor-
responded to the Bragg commensurate phase positions.
The observation of forbidden reflections of the (110) or
(002) type at this temperature shows that the magnetic
structure is antiferromagnetic. The magnetic and crys-
tal chemical unit cells coincide, and the magnetic struc-
ture is described by the q = 0 propagation vector.

Magnetic measurements on single crystals showed
that sharp singularities appeared in the magnetic sus-
ceptibility curve at TA = 21 K and TB = 10 K. The tem-
perature dependences of magnetic susceptibility obtained
on a SQUID magnetometer for magnetic field orienta-
tions parallel and perpendicular to the tetragonal crystal
axis are shown in Fig. 2 [6]. Attention is caught by the
sharp anisotropy of susceptibility. For a magnetic field
applied in the basal plane of the crystal, a susceptibility
jump is observed at 21 K; susceptibility then rapidly
increases as temperature decreases. At 10 K, suscepti-
bility decreases in a jump by approximately one order
of magnitude and then monotonically increases down
to 4.2 K. For a magnetic field applied parallel to the tet-
ragonal axis of the crystal, the temperature dependence
of susceptibility is smooth in the whole temperature
range. The Néel paramagnetic temperature and the
effective copper ion moment determined from the high-
temperature magnetic susceptibility portion equal ΘN =
–9.5 K and µeff = 1.77µB, respectively.

The magnetic susceptibility anomalies described
above are accompanied by singularities of the tempera-
ture dependence of heat capacity [3]. The results of heat
capacity measurements in the temperature range 2–40 K
are shown in Fig. 3. Two anomalies at the temperatures
that coincide with those of magnetic susceptibility
anomalies are quite manifest. In addition, the Cp(T)
curve contains an anomaly in the form of a broad max-
imum near 4 K.

Muon spin relaxation (µSR) data were reported in
[3]. These data lend support to the conclusion of mag-
netic transformations at 21 and 10 K. More recent mea-
surements at temperatures down to 1 K [8] revealed the
occurrence of an additional magnetic transformation
close to 1 K. This leads us to suggest that a new rear-
rangement occurs at this temperature in the spin sub-
system of copper metaborate.

Neutron diffraction studies of copper metaborate
were performed for a single crystal that contained the
11B isotope to decrease absorption of neutrons [7]. The
magnetic structure in the temperature range 10–21 K
was found to be commensurate and antiferromagnetic.
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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This structure was described as a noncollinear arrange-
ment of the CuA and CuB ion spins along the diagonals
of the tetragonal plane of the crystal [7]. The magnetic
moment of the CuA ion was found to be about 1.3µB at
12 K. Its component along the tetragonal c axis of the
crystal was small, µz = 0.25µB, which corresponded to
a 14° deviation from the ab plane. The CuB ion spins
lied in the ab plane and had a small magnetic moment
of about 0.25µB at T = 12 K. The magnetic moment of
the CuB ion rapidly increased as the temperature low-
ered below 10 K and equaled 0.7µB at T = 2 K.

At temperatures below TB = 10 K, two magnetic sat-
ellites situated symmetrically with respect to reciprocal
lattice points of the commensurate phase appeared
(Fig. 4). The magnetic structure of copper metabo-
rate turned incommensurate along the tetragonal axis
of the crystal and was described by a spin density wave
with phase modulation [7]. The spin modulation period
continuously increased from q ≈ 0 at 10 K to q = (0, 0,
0.15) at 1.8 K. At this temperature, spin structure mod-
ulation was characterized by a c/0.15 ≈ 40 Å period.
The temperature dependence of the wave vector of the
incommensurate spin structure phase obeyed the
power law

q(T) = A(T – TB)0.48. (1)

As is shown in Fig. 5, Eq. (1) well described the tem-
perature dependence of the incommensurate phase
wave vector in the whole temperature range of mea-
surements.

Wave vector q decreases virtually to zero as temper-
ature increases, and the period of the incommensurate
spin structure at TB becomes large compared with the
lattice parameter. In addition, strong diffuse neutron
scattering is superimposed on the Bragg peaks for the
Q0 neutron scattering vector along the [001] crystallo-
graphic direction. The intensity of diffuse scattering
increases as temperature rises from 1.8 K and reaches a
maximum close to TB [7]. Diffuse scattering is observed
even at the lowest temperature attained in experiments.
This is sharply different from usual behavior of the spin
subsystem of 3D-magnets with localized spins, for
which critical fluctuations are limited by a narrow tem-
perature region in the vicinity of the phase transitions.
Adjustment of the magnetic structure at 2 K gives the
best fit for a simple helix with a 0.7µB for CuB.

3. DISCUSSION

The combined experimental data described above
show that the spin subsystem of copper metaborate
experiences rearrangements at 21 and 10 K. In addition,
it may well be that one more rearrangement of the mag-
netic structure occurs near 1 K. In the commensurate
phase, the magnetic structure is antiferromagnetic and
possesses a spontaneous magnetic moment [6]. The
magnetic and crystal chemical unit cells coincide,
accordingly, the propagation vector q is zero. As the I
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
symmetry operation of the lattice is also a magnetic
transformation if q = 0, the corresponding irreducible
representations of the magnetic structure are the repre-

sentations of the 2m point symmetry group. This
group comprises eight symmetry elements and has five
irreducible representations [9]. Four of these (Γ1, Γ2,
Γ3, and Γ4) are one-dimensional, and one (Γ5) is two-
dimensional. The decomposition of representations
gives

The Γ3 and Γ4 magnetic modes of site 4b correspond to
collinear ferromagnetic and antiferromagnetic order-
ings along the c axis, respectively. The modes related to
the Γ5 representation describe a noncollinear magnetic
structure. Similar magnetic modes for the 8d site can
also be obtained from group theory. An analysis of the
neutron diffraction pattern containing 25 purely mag-
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Fig. 4. Temperature dependence of propagation vector q =
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Fig. 5. Simulation of the temperature dependence of propa-
gation vector q by Eqs. (1) (solid line) and (11) (dashed
line).
SICS      Vol. 93      No. 4      2001



812 PETRAKOVSKII et al.
netic peaks [7] shows that the magnetic structure of
CuB2O4 copper metaborate can be described as a non-
collinear arrangement of spins of both CuA and CuB
along the diagonals of the tetragonal plane with out-of-
plane displacements of CuA magnetic moments. A
symmetry analysis of the structure of copper metabo-
rate shows that CuA spins may be involved in Dzy-
aloshinskii–Moria interactions. Therefore, these inter-
actions favor a noncollinear arrangement of spins,
which is observed experimentally. In the incommensurate
magnetic order region, helical ordering is observed [7].

It follows from the aforesaid that the whole spin sys-
tem of copper metaborate comprises two subsystems,
namely, subsystem A formed by CuA ions, where the
distribution of spins corresponds to a mixture of the Γ4
and Γ5 irreducible representations (axial antiferromag-
netic and noncollinear planar configurations), and sub-
system B formed by CuB ion spins. The distribution of
spins in this subsystem corresponds to the Γ5 irreduc-
ible representation (a noncollinear planar configura-
tion). It follows that, in writing the phenomenological
thermodynamic potential of the spin system of copper
metaborate, we must take into account two two-compo-
nent order parameters corresponding to the Γ5[CuA]
and Γ5[CuB] representations and one order parameter
corresponding to the Γ4[CuA] representation. It is also
important that crystal symmetry allows Lifshits invari-
ants to be introduced for both subsystems.

Let the one-component order parameter be denoted
by η, and two two-component order parameters, by
(ηA1, ηA2) and (ηB1, ηB2) for subsystems A and B,
respectively. The thermodynamic potential of the
whole spin system can then be written as

(2)

where
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αA0 > 0, αB0 > 0, βA > 0, βB > 0, δA > 0, δB > 0, ∇  is the
nabla operator, and f ' ≡ df/dz. The relation between
subsystems A and B described by the invariant with
coefficient κ in (2) results in the appearance of a heli-
coid in both subsystems at the same temperature.

The η one-component order parameter describes the
axial component of CuA spins and is of no importance
for analyzing the incommensurate structure of the sim-
ple helix type with the helicoid axis along the tetragonal
crystal axis. For this reason, thermodynamic potential
(2) can be reduced to

(3)

The Φ extremum conditions with respect to the order
parameters corresponding to the equilibrium state of
the system have the form

(4)

(5)

(6)

(7)

where ∆ is the Laplase operator. As the perturbation of
the homogeneous magnetic system state by the Lifshits
invariant is one-dimensional, and deviations transverse
to the z axis in the equilibrium state are excluded by
positive δA and δB values, the nabla operator in these
conditions should be replaced by single differentiation
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with respect to z, and the Laplase operator, by double
differentiation.

Finding the equilibrium state of the system from
(4)–(7) is a complex problem. We will use the approxi-
mation of constant order parameter moduli, ηA ≠ ηA(z)
and ηB ≠ ηB(z) [2]. As follows from (4) and (6), such an
approximation is admissible if the Lifshits, anisotropy,
and intersubsystem interaction invariants are small
compared with the other invariants. As far as interaction
between subsystems is concerned, it is only required
that the dependence of the difference between helicoid
phases in subsystems A and B on the z coordinate be
negligibly small. In this approximation, thermody-
namic potential (3) for the equilibrium state decom-
poses into two parts,

where ϕ = ϕA = ϕB + πθ(κ), θ(κ) is the Heaviside func-
tion,

Accordingly, the equilibrium conditions take the form

(8)

where f '' ≡ d2f /dz2.
The first two equations of system (8) determine the

temperature dependences of order parameter ηA and ηB

moduli. Physically, the absence of phase ϕ(z)-depen-
dent terms in these equations is justifiable, because ηA

and ηB are almost fully determined by exchange inter-
actions in the spin system of copper metaborate.

The third equation in (8) determines the dependence
of the helicoid phase on the z coordinate along the tet-
ragonal axis and on order parameter moduli. Its solu-
tion is the Jacobi amplitude function [10]

(9)

where q0 = /k1, and k1 and ∆z are the integration
constants. The ∆z constant corresponds to arbitrariness
of selecting the origin along the tetragonal axis and is
further set equal to zero. The k1 constant is determined
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by the minimization of Φϕ after substituting (9) into the
equation for Φϕ,

(10)

where

(11)

is the helicoid period length, and

and

are the total elliptical integrals of the first and second
kind, respectively. The minimization of (10) with
respect to k1 gives

The corresponding Φϕ value is

Because of the absence of magnetic satellites in the
spectra of inelastic neutron scattering on CuB2O4 in the
temperature range 10–21 K, it can be suggested that
σA ! σB; therefore, σA can be ignored. The ηA order
parameter at TB is already not small, and anisotropy in
subsystem A interferes with the appearance of a heli-
coid as a result of interaction between the subsystems.
Therefore, the γA parameter is also assumed to be neg-
ligibly small in this work.

The relations obtained above allowed us to simulate
the temperature dependences of ηA, ηB, and the q = 2π/λ
wave number and the temperature dependence of the spe-
cific heat capacity of the crystal, Cp = –T∂2Φ/∂T2, with
the use of the Cp = –T∂2Φ/∂T2 relation for the following
thermodynamic potential parameters (in kelvins):
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Figure 6 shows that, in the temperature range 10–20 K,
the ηB order parameter is small compared with ηA and
rapidly increases at T < 10 K. A similar increase in the
q ≡ 2π/λ wave vector in Fig. 5 coincides with that
observed experimentally (Figs. 4, 5) but qualitatively
differs from the latter in that q ≠ 0 already at tempera-
tures below 20 K: in the temperature range of smallness
of anisotropy invariants compared with the Lifshits
invariants (k1 ! 0) we have

q ≈ σ/δ
and, at σA = 0, q variations are largely determined by ηB.

In addition to the jump at the transition point
described by the Landau theory and the Ginzburg esti-
mate of the contribution of order parameter thermal
fluctuations, the contributions of acoustic phonons and
Schottky-type anomalies were taken into account in
heat capacity calculations. At 20 K, the fluctuation con-
tribution characteristics of second-order phase transi-
tions with a maximum at the transition point predomi-
nated. In the experimental curves (Fig. 3), the singular-
ity at 9.6 K has the form of a step. This singularity is
related to a rapid growth of the order parameter in the
second spin subsystem. This parameter is already non-
zero below 20 K because of bilinear interaction with the
first subsystem. The field induced by this interaction
suppresses thermal fluctuations in the second sub-
system. The latter were therefore ignored in the calcu-
lations. Note that the step at 9.6 K is observed against
the background of a broad maximum, which increases
as temperature decreases. This maximum can be
assigned to a Schottky-type anomaly that is not

0
T, K

5 10 15 20

4

3

2

1

0

Fig. 6. Simulated temperature dependence of order param-
eter moduli.
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|ηB|
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described by the phenomenological approach. The
deviation of the experimental dependence from the cal-
culation results at T < 3.5 K is caused by the approach
to the supposed transition involving a low-temperature
transformation of the magnetic structure near 1 K.

To summarize, we developed a phenomenological
model of the magnetic subsystem of copper metaborate
based on the experimental data on this compound. This
model was applied to analyze the temperature depen-
dence of the order parameter, the wave vector of mag-
netic structure modulation, and heat capacity. Further,
we plan to study the properties of this crystal under
strong magnetic field actions.
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Abstract—The conductivity of quantum dot layers is studied in InAs/GaAs structures in the temperature range
from 300 to 0.05 K in the dark and using two types of illumination in magnetic fields up to 6 T. Depending on
the initial concentration of current carriers, the conductivity of the structures varied from metallic (the Shubni-
kov–de Haas effect was observed) to hopping conductivity. At low temperatures, the temperature dependence
of the resistance changed from the Mott dependence to the dependence described by the Shklovskii–Efros law
for hopping conductivity in the presence of the Coulomb gap in the density of states. The conductivity of sam-
ples was studied upon their illumination at λ = 791 nm and λ > 1120 nm. All the samples exhibited a positive
persistent photoconductivity at T < 250 K. The structures were also studied using photoluminescence and an
atomic force microscope. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years the quantum dot (QD) structures
attract great scientific interest (see, for example, [1–4]).
This is explained first of all by the possibility of study-
ing fundamental physical laws in such structures, for
example, localization and scattering of current carriers
[5, 6] and optical properties [7, 8]. The growth pro-
cesses and the energy spectrum are of interest in their
own right [9–12]. The QD structures are also promising
for practical applications in semiconductor lasers, tran-
sistors, and memory elements [13].

One of the promising methods for growing QD sys-
tems is the self-organization of InAs QD during the
InAs deposition on the GaAs substrate, which is caused
by the discrepancy between the periods of crystal lat-
tices of InAs and GaAs. The deposition can be per-
formed both by the method of molecular beam epitaxy
and gaseous epitaxy from metalloorganic compounds
(MOC hydride epitaxy) (see [3, 12, 14] and references
therein). By varying the growth conditions, the size and
density of QD in a layer can be changed. The properties
of QD layers strongly depend on their size and distribu-
tion over the surface. The variation in the positions and
sizes of QD can be reduced by growing them on the vic-
inal faces of a semiconductor [15].

At present, the optical properties of QD are studied
quite thoroughly, whereas the transport of current carri-
ers in QD structures has not been adequately investi-
gated. In addition, the QD concentration in the struc-
tures was low in most studies in order to provide a suf-
ficient overlap of the wave function of carriers localized
at neighboring QD. In such structures, QD layers are
1063-7761/01/9304- $21.00 © 20815
not directly involved in photoconductivity, however,
they can affect (as artificial scattering centers) the con-
ductivity of neighboring two-dimensional layers
[16, 17].

In this paper, we studied the conductivity in the
plane of QD layers grown on the vicinal faces of the
InAs/GaAs structures. The experiments were performed
in the temperature range from 300 to 0.05 K in the dark
and using two types of illumination in magnetic fields up
to 6 T. At low concentrations of charge carriers, such struc-
tures exhibit the hopping conductivity, while at high con-
centrations of current carriers in QD layers, which are pro-
duced by doping, the mobility of current carriers is suffi-
cient for observing oscillations of a magnetoresistance,
the Shubnikov–de Haas effect.

2. SAMPLES

The structures were grown at the atmospheric pres-
sure by MOC hydride epitaxy at the temperature 630°C
on a vicinal semiinsulating GaAs substrate, i.e., the
substrate was oriented at angles of 0.14° and 3° with
respect to the (001) plane in the [110] direction. The
structure is shown schematically in Fig. 1.

Samples of the main series with one QD layer
(2704, 2706, 2711, 2932) consist (in the direction from
the substrate to the surface) of the i-GaAs layer of
thickness 0.45 µm, the Si δ layer, the undoped GaAs
layer of thickness 18 nm (spacer separating the QD
layer under study from the doping Si δ-layer), the InAs
QD layer, another 18-nm-thick GaAs spacer and Si
δ-layer, and the upper covering GaAs layer of thickness
0.45 µm. The Si δ-layers are required to provide the
001 MAIK “Nauka/Interperiodica”
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electronic conductivity in QD layers. It is assumed that
the δ-layers reduce the influence of the nonuniform dis-
tribution of the volume charge at the substrate interface
and on the structure surface. The parameters of the
structure were chosen so that the electronic levels of
δ-layers lie substantially higher than the electronic lev-
els of QD to exclude the shunting of QD layers by
δ-layers. In sample 2713, according the photolumines-
cence data (discussed below), a QD layer was not
formed because of an insufficient amount of deposited
indium.

To make sure that the conductivity of the structures
is realized through QD layers, we prepared test samples
(2712 and 2715) without QD. Samples 2699 and 2700
were grown without δ-layers. Instead of this, sample
2699 was entirely uniformly doped except spacers near
the QD layer, while sample 2700 contained broad
(20 nm) uniformly doped regions. We also prepared
samples 2933 and 2939 with two QD layers, separated
by a GaAs layer of thickness 10 nm. Depending on the
doping level, we could obtain various concentrations of
electrons in the samples. Some parameters of the sam-
ples studied are presented in the table. We studied
square samples with sides oriented along the [110] and
[–110] directions (misorientation of the substrate
results in the formation of steps oriented along the
[−110] direction).

Along with samples with one or two QD layers, we
prepared multilayer samples of the p- and n-types for
studying the hopping conductivity (see table). The sam-
ples were grown by MOC hydride epitaxy at a temper-

δ-Layer

δ-Layer

QD layer

Substrate

[110] [110]
_

Fig. 1. Schematic structure of a sample with one QD layer.
JOURNAL OF EXPERIMENTAL 
ature of 600–650°C and the atmospheric pressure on a
semiinsulating GaAs substrate oriented at an angle of
3° with respect to the (001) plane in the [110] direction.
Sample 1961 of the p-type consisted of ten GaAs peri-
odic layers of thickness 0.1 µm, the carbon δ layer for
the hole doping of QD layers, the GaAs spacer of
thickness 5−6 nm, and ten InAs QD layers. The struc-
tures were covered from above by the 0.1-µm-thick
GaAs layer. A great number of identical QD layers can
be treated as parallel resistors. These samples were syn-
thesized to reduce a high resistors of structures consist-
ing of one layer for measuring resistances at low and
ultralow temperatures.

The growth process and samples were studied with
an atomic force microscope (AFM). Figure 2 shows the
topography of the GaAs epitaxial layer. One can see a
system of the growth macrosteps. Figure 3 shows the
InAs QD structure covered by the GaAs layer 10 nm
thick. The growth terraces and large islands are
observed, the latter protruding over the cover layer and

2.21

0

1000

500

0
0 500 1000

nm

nm
nm

Fig. 2. Topography of a GaAs epitaxial layer observed with
the help of an atomic force microscope.

2500

1250

0 0

1250

2500

nm

nm

Fig. 3. An AFM image of the structure with InAs QD cov-
ered by a 10-nm thick GaAs layer.
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Table

Sample Sample type Amount of 
InAs (ML) Emax, eV ∆E, meV Illumina-

tion method
NH × 1011, 

cm–2
NSH × 1011, 

cm–2
µH,

cm2/V s

Test sample without QD

In the dark 2.7 – 290

2712 0 – – Filter 1 4.2 – 1010

n-type Filter 2 4.3 – 1340

Test sample without QD

In the dark 1.5 – 15

2715 0 – – Filter 1 3.9 – 300

n-type Filter 2 5.3 – 740

Modulation doped
In the dark 3.6 2.3 4900

2699 4.5 1.352 42 Filter 1 4 2.3 4900

n-type One QD layer 1.387 17 Filter 2 4.7 2.3 4900

Modulation doped
In the dark 2.5 2 6200

2700 3.3 1.398 19 Filter 1 3.4 2 6100

n-type One QD layer Filter 2 3.7 2 6900

In the dark 1.4 – 200

2713 Wetting InAs layer 1.4 1.471 13 Filter 1 3.3 – 1580

n-type Filter 2 4.5 – 1990

In the dark 2.7 2.6 6300

2704 One QD layer 3.3 1.393 20 Filter 1 4.2 3.8 15 900

n-type Filter 2 4.3 4.5 32 000

In the dark – – –

2706 One QD layer 3.3 1.400 19 Filter 1 1.9 – 900

n-type Filter 2 3.2 – 1200

In the dark 3 3.1 3400

2711 One QD layer 3.3 1.397 26 Filter 1 4.5 4.3 8200

n-type Filter 2 4.9 5.2 11 300

In the dark 2.6 3.5 5700

2932 One QD layer 3.3 1.37 23 Filter 1 4.1 4.1 15 500

n-type Filter 2 5.3 4.5 22 700

In the dark 6 4.5 22 200

2933 Two QD layers 3.3 1.362 26 Filter 1 6.2 4.5 23 100

n-type Filter 2 6.9 4.6 23 500

In the dark 2.8 2.7 8700

2939 Two QD layers 3.3 1.367 18 Filter 1 4.5 3.5 10 500

n-type Filter 2 5.4 4.3 16 600

1961
p-type Ten QD layers 2.5 1.36 22 In the dark 2.7 – 2700

1959
n-type Ten QD layers 2.3 1.38 24 In the dark 1.9 2.6 10 500

1967
n-type Twelve QD layers 2.1 1.41 26 In the dark 0.36 0.45 2400

Note: Parameters of samples: the amount of deposited InAs per layer (in QD monolayer (ML) units; positions Emax and half-widths ∆E of
luminescence bands measured at 77 K; electron concentrations NH (per layer) and NSH measured from the Hall and Shubnikov–de
Haas effects, respectively; Hall mobility µH measured in the dark and upon illumination through silicon filter no. 1 (λ ≥ 1120 nm)
and through filter no. 2 (λ = 791 ± 8 nm) at 4.2 K.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001



 

818

        

KUL’BACHINSKII 

 

et al

 

.

                        
having diameters of about 250 nm, heights up to 100 nm,
and the surface density equal to 108 cm–2. The charac-
teristic feature of the relief is a lot of craters in the cover
layer (Ns ~ 109 cm–2) and at the apexes of almost all
islands. These craters suggest that the dissolving of rel-
atively large dislocated island clusters takes place upon
deposition of the cover layer, small pseudomorphous
clusters representing QD being preserved, although it is
possible that their shape and size somewhat change. To
reveal QD, we removed the cover layer of the prepared
samples by selective etching. Figure 4 shows the sur-
face structure after this procedure. The QD are located
along the terraces of the vicinal surface used for their
growth.

3. RESULTS AND DISCUSSION

3.1. Photoluminescence

Photoluminescence spectra were recorded at 77 K
by exciting samples with 200 mW/cm2 He–Ne laser.
The spectra of some samples are shown in Fig. 5. The
table presents the energies of maxima of the spectra
(spectra of some samples had two maxima) and the

1000
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0 0

500

1000

nm

nm

Fig. 4. An AFM image of the structure surface after selec-
tive etching for removing a cover layer.
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Fig. 5. Photoluminescence spectra of samples 2699, 2704,
2706, and 2713. The 1.52-eV peak corresponds to a bulk
GaAs.
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half-width of the spectral bands. According to the
results obtained in [18], these data allows one to esti-
mate approximately the QD size. In our case, such an
estimate gives the diameter of a QD equal to 9–13 nm.
Analysis of the galvanomagnetic properties of the
structures studied suggests that in our case the wave
functions of current carriers localized at neighboring
QD (QD are densely located) strongly overlap with
each other. As the distance between QD decreases, the
luminescence bands shift to the red [19]. Thus, the esti-
mate of the QD size from data [18] yields the upper bound.
The direct study of QD structures with the help of an
atomic force microscope gives the QD size equal to
5−6 nm.

The luminescence spectrum of sample 2713 (Fig. 5)
corresponds to one InAs monolayer (wetting layer),
i.e., in this sample the QD have not been formed
because of a small amount of indium used for the sam-
ple growth. In samples 2706, 2707, and 2699, QD have
already been formed. The red shift of the luminescence
band of sample 2699 is caused by a great amount of
deposited indium arsenide (see table) and, hence, by larger
QD. The luminescence spectrum of this sample can be
approximated by two bands, the long-wavelength band
being broader, which suggests that the size distribution of
QD is broad.

3.2. Anisotropy of Resistance
and the Hopping Conductivity

We studied the temperature dependences of the
resistance of all the samples. As an example, Fig. 6
shows the temperature dependences of the specific
resistance for samples 2933 and 2711. One can see that
the conductivity has anisotropy, the conductivity of all
the samples along steps (the [–110] direction) being
greater than that across the steps (inset in Fig. 6a). We
explain this anisotropy by the appearance of chains
formed by QD, which are oriented along the steps
(along the [–110] direction) (see also [20]). Such
anisotropy of the conductivity was observed on vicinal
surfaces of GaAs structures δ-doped with tin [21, 22].
The predominant distribution of tin along the steps
observed in papers [21, 22] resulted in the temperature-
dependent anisotropy of the conductivity, and the con-
ductivity along the steps was also greater.

At sufficiently low temperature and low concentra-
tion, current carriers are localized on the inhomogene-
ities of the QD layer and the conductivity occurs
through hops of the current carriers from one localiza-
tion center to another. The temperature dependence of
the resistance in the case of hopping conductivity is
determined by the law [23]

(1)

(the Mott law for the variable range hopping conductiv-
ity) in the two-dimensional case at the constant density
of states near the Fermi level ν = 3. As the temperature

ρ ρ0 T0/T( )1/ν{ }exp=
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Fig. 6. Temperature dependences of the sheet resistance for samples (a) 2933 and (b) 2711. The solid curve was obtained in the dark,
the dashed and dotted curves correspond to illumination through filters no. 1 (λ ≥ 1120 nm) and no. 2 (λ = 791 ± 8 nm), respectively.
The inset shows the temperature dependence of anisotropy of the resistance of sample 2933.
decreases, the Coulomb interaction between current
carriers becomes substantial, resulting in the formation
of an energy gap in the spectrum of the density of states
near the Fermi level [23]. When the maximum energy
of a hop becomes equal to the energy gap, the depen-
dence with ν = 3 changes to the dependence with ν = 2
(the Shklovskii–Efros law for the hopping conductivity
in the presence of the Coulomb gap in the density of
states), which was experimentally observed in δ-doped
GaAs/AlxGa1 – xAs heterostructures [24].

The resistance of samples with a sufficiently high
mobility of current carriers (µ > 1000 cm2/V s at 4.2 K)
decreased with decreasing temperature, passed through
a minimum in the region between 30 and 100 K and
again increased. The resistance of samples with a low
mobility of carriers monotonically increased with
decreasing temperature, and its temperature depen-
dence was well described by expression (1) at suffi-
ciently low temperatures (hopping conductivity).

We determined the parameter ν by plotting the tem-
perature dependences of the resistance of samples in
special coordinates W(t), where W = –∂lnρ/∂lnT =
(1/ν)(T0/T)1/ν. In these coordinates, the parameter ν is
determined from the derivative of the function W(T)
(the method is described in paper [24]). Figure 7 pre-
sents the dependence W(T) for multilayer sample 1961
of the p-type (p = 2.7 × 1011 cm–2) in logarithmic coor-
dinates. As the temperatures decreases, dependence (1)
with ν = 3 transforms to the dependence with ν = 2 at
T = 3.2 K, which, according to the theory [23], occurs
in the presence of a gap in the density of states at the
Fermi level at a sufficiently low temperature. In other
words, the temperature dependence of the resistance
obeying the Mott law for the hopping conductivity in
the two-dimensional case

ρ T( ) ρ0 TM/T( )1/3,exp=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
with TM = 15 K changes to the temperature dependence

with TES = 3.8 K corresponding to the Shklovskii–Efros
law. The resistance of multilayer samples of the n-type
increased with decreasing temperature down to 0.05 K,
as shown in Fig. 8, however, it could be approximated
by expression (1) neither with ν = 3 nor 2, which is,
probably, explained by a lower effective mass of elec-
trons and their substantially greater mobility compared
to holes.

3.3. Persistent Photoconductivity

We studied the conductivity of samples in the dark
and upon illumination at different wavelengths in the
temperature range from 4.2 to 300 K. The samples were
illuminated by light that passed through filter no. 1 (λ ≥
1120 nm, Si plate) or filter no. 2 (λ = 791 ± 8 nm, inter-
ference filter). To determine the concentration and
mobility of current carriers, we measured the Hall
effect in a magnetic field up to 6 T at 4.2 K.

ρ T( ) ρ0 TES/T( )1/2,exp=

1

2

0.6

0.3
0.6 1 3 10

T, K

W

T–1/2

T–1/3

Fig. 7. Temperature dependence of logarithmic derivative
W = –∂lnρ/∂lnT for sample 1961.
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An important remark should be made concerning
the possibility of calculation of the concentration n of
current carriers in our samples at 4.2 K from the Hall
effect. We used two methods for measuring the concen-
tration of current carriers that were based on the Shub-
nikov–de Haas effect (see below) or the Hall effect. In
the case of the Hall effect, the classical formula n =
1/RHe (where RH is the Hall coefficient) was used,
which is valid for completely delocalized current carri-
ers. However, at low temperatures some of the samples
exhibited the hopping conductivity. The theory of the
Hall effect in the case of hopping conductivity is much
more complicated than the classical theory [25, 26].
Nevertheless, the classical formula is also valid in this
case in certain regions of the phase diagram [26], which
is confirmed experimentally (for example, in paper
[27]), although in some cases this formula gives only
approximate values of the concentration. Here, we use
the concentration of current carriers calculated from the
Hall effect for samples exhibiting hopping conductivity
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Fig. 8. Temperature dependences of the resistance of sam-
ples 1959 and 1967 of the n-type in the region of ultralow
temperatures.

Fig. 9. Oscillations of the magnetoresistance of sample 2711
at 4.2 K. The solid curve corresponds to measurements in
the dark. The dashed and dotted curves were obtained upon
illumination through filters no. 1 (λ ≥ 1120 nm) and no. 2
(λ = 791 ± 8 nm), respectively.
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only as an estimate in a comparative analysis of the
samples.

At low temperatures, we observed the positive per-
sistent photoconductivity in all the samples. The typical
dependences of the resistance on temperature and illu-
mination are shown in Fig. 6. The sample was illumi-
nated to achieve the saturation of its resistance, then the
illumination was switched off and the temperature
dependence of the resistance was measured with the
rate 5 K/min. The temperature dependence of the dif-
ference between resistances measured in the dark and
after illumination did not exhibit a threshold in all the
samples studied. However, at T > 250 K, this difference
became less than the error of measurements.

The conductivity of all the samples increased after
their illumination. The Hall concentrations and mobili-
ties generally increased after illumination, however,
some of the samples revealed no changes (see table).
The conductivity, Hall concentration and mobility
increased greater after illumination through filter no. 2
compared to filter no. 1. In addition, upon illumination
through filter no. 2, the conductivity saturated substan-
tially faster.

Samples with a relatively high Hall mobility exhib-
ited at low temperatures oscillations of a magnetoresis-
tance (the Shubnikov–de Haas effect) from two-dimen-
sional electrons in QD layers. The two-dimensional
properties of electrons were verified experimentally by
deviating the magnetic filed direction from the normal
to the structure surface. Typical oscillations observed in
some samples are shown in Figs. 9 and 10. The oscilla-
tion spectrum of each sample has a single frequency in
the range of magnetic fields studied, which allows us to
calculate easily the electron concentration and its
dependence on illumination. The electron concentra-
tions determined from the Shubnikov–de Haas effect
are presented in the table.

The type of dependence of the oscillation frequency
on illumination is the same for all the samples (except
test samples 2699, 2700, 2712, and 2715). The oscilla-
tion frequency of the magnetoresistance increases upon
illumination (Fig. 9), this increase being greater upon
illumination through filter no. 2 compared to filter no.
1. In addition, upon illumination, oscillations begin at
lower magnetic fields than in the dark, which suggests
that the mobility of electrons increases. The increase in
the Hall mobility with increasing concentration of cur-
rent carriers in the QD layer can be explained by a
stronger screening of the random scattering potential
by electrons and by the increase in the Fermi velocity
of electrons.

It is known that current carriers localized in Si δ-lay-
ers have a low mobility (µ < 2000 cm2/V s) [28]. In test
samples 2712 and 2715 (samples with δ-layers, but
without QD layers) with a very low mobility of current
carriers (see table), no Shubnikov–de Haas oscillations
were observed in magnetic fields up to 6 T. In the case
of a relatively low doping level, all the electrons from
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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Fig. 10. Oscillations of the magnetoresistance of samples (a) 2699 and (b) 2933 at 4.2 K. The solid curve corresponds to measure-
ments in the dark. The dashed and dotted curves were obtained upon illumination through filters no. 1 (λ ≥ 1120 nm) and no. 2
(λ = 791 ± 8 nm), respectively.
δ-layers transfer to QD layers. When the doping level
increases, a fraction of electrons can remain in δ-layers,
however, they do not contribute to the Shubnikov–
de Haas oscillations. In other words, only two-dimen-
sional electrons located in the QD layer will be
involved in the Shubnikov–de Haas effect. The mobil-
ity of current carriers observed in QD structures sub-
stantially exceeds the mobility typical of δ-layers.
Therefore, the presence of δ-layers virtually does not
affect the transport properties of QD samples.

When a sufficiently high electron concentration is
produced (with respect to the capacity of QD layers),
the QD layer can be completely filled, and a fraction of
current carriers will remain in δ-layers. The illumina-
tion will no longer change the concentration of carriers
in the QD layer, but it can add electrons to δ-layers.
Because of the low mobility of current carriers in δ-lay-
ers, the total conductivity is mainly determined by elec-
trons located in QD layers. Therefore, the Hall mobility
increases only slightly, whereas the Hall concentration
increases. The frequency of Shubnikov–de Haas oscil-
lations will not change noticeably because the electron
concentration in the QD layer does not change. Most
likely this situation is realized in samples 2699 and
2700 (Fig. 10a) and partially in sample 2933
(Fig. 10b), whereas in weakly doped samples the
oscillation frequency increases upon illumination
(Fig. 9). Sample 2933 was heavily doped, so that its QD
layers were virtually filled even in the dark. Samples
2699 and 2700 contained one QD layer, but instead of
δ-doping they were uniformly doped, resulting in a
higher electron concentration in the QD layer.

Figure 11a shows schematically the band diagram of
the samples in the absence of illumination. The Fermi
level in a substrate is determined by the chromium
level, which is located higher by 0.89 eV than the top of
the valence band in GaAs [29]. Near the semiconductor
surface, the Fermi level is determined by crystal
defects. Because surface states capture electrons, the
bands are bent near the surface, as shown in Fig. 11a.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
We used two types of illumination in photoconduc-
tivity experiments. The light transmitted by filter no. 2
(λ = 791 ± 8 nm) has a sufficient energy (the photon
energy is ε = 1.6 eV) to excite an electron from the
valence band to the conductivity band (the energy gap
of GaAs at 4.2 K is 1.52 eV). The energy of photons trans-
mitted by filter no. 1 (λ ≥ 1120 nm, εγ < 1.1 eV) is not suf-
ficient for exciting an electron from the valence band even
to the electronic level of the size quantization (the lumi-
nescence band of QD lies in the region between 1.35 and
1.47 eV), but it is sufficient for exciting an electron from
the chromium level in the substrate.

Upon illumination of a sample by light through filter
no. 2, electron–hole pairs are formed over the entire
sample thickness, from the substrate to the sample sur-
face. Taking into account the energy band relief, the
electrons will pass to QD layers and δ-layers, and then
the electrons will tunnel from δ-layers to the QD layer
(the distance between the δ-layers of the dopant and
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Fig. 11. Scheme of energy bands (a) before illumination and
(b) after the resistance saturation.
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QD layers is 18 nm) (this process cannot be detected on
the time scale of our measurements). For holes, the δ-
layers serve as a peculiar water divide. The holes will
slide down from the external (with respect to the QD
layer) part of a sample to the substrate and to the sur-
face, and from the internal part of a sample—to the QD
layer, where they recombine with electrons. Therefore,
in the QD layer the negative charge is accumulated,
while in the substrate and near the sample surface, the
charge increases compared to the equilibrium situation.
This will occur until the charge redistribution “straight-
ens” the band diagram (Fig. 11b), after which photoge-
nerated electrons and holes will cease to separate.

When filter no. 1 (λ ≥ 1120 nm, εγ < 1.1 eV) is used,
the photons can excite electron neither from the valence
band nor from the hole levels in QD (the luminescence
bands of our samples located in the region between
1.35 and 1.47 eV correspond to the transitions between
the neighboring electronic and hole levels). The con-
centration increases due to excitation of electrons from
the level of Cr in the substrate. In this case, of course,
the reverse process will take place—the neutralization
of charged donors by photoexcited electrons. The bands
are inclined near the substrate–buffer layer interface
(Fig. 11a), and the excited electrons begin move away
from the substrate and can manage to slide down to the
QD layer. This process of saturation of the QD layer by
electrons occurs substantially slower than upon illumi-
nation by light with the energy exceeding the energy
gap because in this case the electron concentration in
the QD layer increases only due to a narrow layer adja-
cent to the substrate–GaAs buffer layer interface. In
addition, the light transmitted by filter no. 1 (in contrast
to filter no. 2) cannot neutralize shallow acceptors,
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Fig. 12. Relaxation of the conductivity σ(0) – σ(t) of sam-
ple 2713 measured in the dark at 4.2 K after illumination
through filters (1) no. 1 (λ ≥ 1120 nm) and (2) no. 2 (λ =
791 ± 8 nm). The solid curves are fittings by the expression
σ(0) – σ(t) = Aln(1 + t/τ) for τ = 116 s (1) and 41 s (2). The
inset shows the dependence τ(T) for λ ≥ 1120 nm.
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which are always present in GaAs. When the QD layer
is saturated by electrons, the band diagram becomes
“straight” (as upon illumination through filter no. 2),
but because of the presence of charged acceptors, the
bands become completely straight at a smaller change
in the electron concentration in the QD layer.

The described difference in the saturation times and
the final concentration was observed in experiments.
Upon illumination through filter no. 2, the conductivity
saturated within several seconds, whereas upon illumi-
nation through filter no. 1 at the same intensity, the con-
ductivity saturated within approximately half an hour.

The additional concentration of charge carriers
required for straightening the bands in the GaAs buffer
layer between the substrate and the QD layer is approx-
imately equal to

where ∆V ≈ 0.6 V is the potential corresponding to the
energy gap between the chromium level in the substrate
[29] and the Fermi energy in the QD layer (Fig. 11b);
d = 0.45 µm is the buffer layer thickness in the struc-
tures studied; and ε = 13.2 is the dielectric constant of
GaAs at 4.2 K. The value of ∆ns obtained in this way is
1011 cm–2. Approximately the same number of electrons
enter the QD layer from the free surface of the sample
upon its illumination because in the equilibrium situa-
tion the Fermi level is located approximately by ∆V =
0.7 V below the bottom of the conductivity band [30].
Therefore, a total increase in the electron concentration
in the QD layer due to the band straightening can be
estimated as 2 × 1011 cm–2, which corresponds to the
increase in the electron concentrations observed in
samples after their illumination through filter no. 1,
which were measured based on the Shubnikov–de Haas
effect (see table). A small increase in the electron con-
centration in QD after illumination by light transmitted
by filter no. 2 (compared to illumination through filter
no. 1) is most likely explained by the neutralization of
charged acceptors, which are present in small amounts
in i-GaAs.

According to the above discussion, in our case the
effect of persistent conductivity is related to the spatial
separation of charges, the electrons entering QD layers
after illumination of the both types. The spatial separa-
tion of charge carriers is also confirmed by the logarith-
mic dependence of the photoconductivity relaxation on
time. Figure 12 presents the experimental data and their
fit using the expression [31]

(2)

which is valid for the initial time interval. The neutral-
ization of charged acceptors upon illumination through
filter no. 2 results in a faster relaxation of the positive
persistent photoconductivity than upon illumination
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through filter no. 1 because of the recombination of
electrons from the QD layer with neighboring accep-
tors. The parameter τ (see inset in Fig. 12) decreases
with increasing temperature. This decrease is probably
explained by the fact that thermally activated electrons
more rapidly pass over the potential barrier in the GaAs
buffer layer between the QD layer and the substrate and
between QD and the sample surface.

4. CONCLUSION

We have studied the conductivity along QD layers in
the InAs/GaAs structures. Depending on the concentra-
tion of current carriers, QD systems demonstrated both
metallic properties (the Shubnikov–de Haas effect) and
strong localization of current carriers. The passage
from the metallic to hopping conductivity is caused by
the increase in the effect of inhomogeneities of the
potential relief of QD layers with decreasing electron
concentration. The temperature dependence of the
resistance of samples of the p-type with a low concen-
tration of carriers changes at low temperatures from the
dependence obeying the Mott law for the variable range
hopping conductivity to the Shklovskii–Efros law for
the hopping conductivity in the presence of the Cou-
lomb gap in the density of states. Illumination of the
structures results in an increase in the concentration of
carriers in QD layers and enhances their mobility. The
positive persistent conductivity observed in all the sam-
ples is caused by the spatial separation of photogener-
ated charges.
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Abstract—Some general properties of partial (calculated over the volume of individual components) moments
of the electric field strength are considered in the standard linear problem of electrical conductivity of two-com-
ponent media. The description of the critical behavior of moments of an arbitrary order in the vicinity of the
metal–insulator phase transition point given here is free of any model assumptions. The corresponding critical
indices are introduced and the relations between them following from the similarity hypothesis are established.
The reciprocity relations obtained for 2D systems and connecting partial moments of the same order reduce by
half the number of new independent critical indices. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the theory of transport phenomena in two-compo-
nent media, partial (averaged over the volume of indi-
vidual components) characteristics of fields such as
various moments of the electric field strength play an
important role (see, for example, [1–4]). For instance,
the effective electrical conductivity of such a medium
can be expressed in terms of the first- as well as second-
order moments. Structural field and current fluctuations
[1, 2] and also the Joule heat liberated in each compo-
nent can be expressed through second-order partial
moments. The knowledge of second-order moments
also make it possible to determine the derivatives of the
effective conductivity σe with respect to its arguments,
i.e., the conductivities σi of the components [2]. The
corresponding relations make it possible to study
comprehensively the critical behavior of effective
conductivity (see, for example, [5]). It should be noted
that the derivatives of σe also appear in the expressions
for low- frequency permittivity [6], magnetoresis-
tance in a weak magnetic field [2], and also (for a cer-
tain relation between parameters) in the expression for
thermo-emf [7].

An analysis of nonlinear phenomena in inhomoge-
neous media necessitated the study of higher-order
moments. For example, in order to calculate the first
nonlinear correction to effective conductivity, the
knowledge of fourth- order partial moments of the elec-
tric field strength is essential [3, 4]. Moments of sixth,
eighth, etc. order appear in the next approximations in
nonlinearity (see Appendix A). Fourth-order moments
also appear in the problem of low-frequency noise
spectrum in an inhomogeneous medium [3, 4]. It
should be noted that some other quantities might be
required in certain problems. For example, quadratic
averages of the longitudinal and transverse components
1063-7761/01/9304- $21.00 © 20824
of the electric field strength appear in the problem of
galvanomagnetic properties of two-component media
in a weak magnetic field [2]. Finally, partial moments
of odd orders are also of interest.

Thus, various effective characteristics of two-com-
ponent media can be expressed in terms of partial
moments of electric field strength of various orders. It
should be noted that these moments, which are defined
in the linear problem of electrical conduction, are func-
tions of two arguments: concentration p and the con-
ductivity ratio h = σ2/σ1 of the components. Conse-
quently, the effective characteristics of the medium,
which are initially functions of many parameters, can
be reduced to the level of two-parametric functions. At
the same time, the critical behavior of two-parametric
functions in the vicinity of the metal–insulator phase-
transition point can be described on the basis of the
standard similarity hypothesis (cf. a similar procedure
in the case of electrical conductivity [8] and some other
quantities [2, 5]). This circumstance, in turn, makes it
possible to describe consistently the critical behavior of
multiparametric effective characteristics of the medium
in the spirit of the conventional similarity hypothesis.

In the present work, we consider some general prop-
erties of partial moments of the electric field strength
determined in the linear problem on the conduction of
binary composites. The main attention is paid to the
analysis of moments in the vicinity of the metal–insu-
lator phase transition point. The critical behavior of the
moments of an arbitrary order are described for two-
component media; the corresponding indices are intro-
duced and the relation following from the similarity
hypothesis and connecting these indices are derived. It
is shown that each partial moment of an order higher
than two is characterized by a new critical index (as
compared to the conduction indices). The reciprocity
001 MAIK “Nauka/Interperiodica”
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relations found for two-dimensional systems make it
possible to relate the partial moments of the same order,
which are calculated for the first and second compo-
nents. As a consequence, the number of new indices in
the 2D case is half as large as in the 3D case.

The algorithm of consistent computation of the
effective nonlinear conductivity for a nonhomogeneous
medium is given in Appendix A. In Appendix B, a con-
cise derivation of the formula for the noise spectrum
(low-frequency current fluctuations) in a binary com-
posite, generalizing to a certain extent the conventional
derivation [3, 4], is presented.

2. EFFECTIVE CHARACTERISTICS
OF A MEDIUM

The problem of the conductivity of a nonhomoge-
neous isotropic medium is formulated in the following
standard way. The system of equations for a direct cur-
rent can be written in the form

(1)

where E is the electric field strength and j is the current
density. In the approximation linear in the electric field,
the quantities j and E are connected through Ohm’s
law:

(2)

where σ(r) is the coordinate-dependent local conduc-
tivity of the medium. The system of equations (1) and
(2) is solved under the condition that a uniform field 〈E〉
exists in the medium, where 〈…〉  denotes averaging
over the volume V of the sample. The effective conduc-
tivity σe of the medium is defined as the proportionality
factor in the expression connecting the average current
density 〈j〉  and the quantity 〈E〉:

(3)

for V  ∞. Thus, conductivity σe is the linear
response of the medium to the applied external “pertur-
bation,” viz., the uniform field 〈E〉 .

The effective conductivity σe can be expressed in
terms of quadratic parameters of the field. By virtue of
Eqs. (1), the following well-known identity holds (see,
for example, [1, 2]):

(4)

which is valid for an arbitrary (including nonlinear)
dependence of j on E. In the linear case, Eq. (4) com-
bined with (2) and (3) gives

(5)

where

(6)

is the dimensionless electric field strength in the
medium.

curlE 0, div j 0,= =

j σ r( )E,=

j〈 〉 σ e E〈 〉=

jE〈 〉 j〈 〉 E〈 〉 ,=

σe σe2〈 〉 ,=

e r( ) E r( )
E〈 〉

------------=
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For a two-component medium, the quantity σ(r)
assumes the constant values σ1 and σ2 for the first and
second component, respectively. In this case, Eq. (5)
leads to

(7)

Here

(8)

and

(9)

where integration is carried out over the volume Vi of

the ith component. Quadratic quantities  will be
referred to as second-order partial moments of the elec-
tric field strength. It should be emphasized that, like

conductivity σe, functions  are effective character-
istics of the medium (self-averaging for V  ∞) and
are independent of the magnitude and direction (isotro-
pic case) of the applied field 〈E〉 .

For the two-component systems under investigation,
it is convenient to introduce the dimensionless effective
conductivity f in accordance with the relations

(10)

where p is the concentration (a fraction of the occupied
volume) of the first component. In this case, relation (7)
leads to

(11)

It should be noted that the quantities  are deter-
mined only by the properties of the medium and are
functions of the same arguments as function f:

The role of functions  is not limited to their use
in relations (7) and (11). For example, the quadratic
structural fluctuations of fields and currents (see, for
example, [1, 2])

σe σ1ψ1
2( ) σ2ψ2

2( ).+=

ψi
2( ) e2〈 〉 i( )

i 1 2,=( )=

…( )〈 〉 i( ) 1
V
--- …( ) rd ,

Vi

∫=

ψi
2( )

ψi
2( )

σe σe p; σ1 σ2,( ) σ1 f p h,( ), h≡
σ2

σ1
-----,= =

f ψ1
2( ) hψ2

2( ).+=

ψi
2( )

ψi
2( ) ψi

2( ) p h,( ).=

ψi
2( )

∆E
2 E E〈 〉–( )2〈 〉 E〈 〉( ) 2– ,=

∆ j
2 j j〈 〉–( )2〈 〉 j〈 〉( ) 2–=
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can also be expressed in terms of the quantities :

(12)

The fraction of the Joule heat Qi liberated per unit time
in the volume of the ith component can also be

expressed in terms of :

(13)

Using identities of type (4), we can relate functions

 with the derivatives of σe with respect to σi:

(14)

Substituting relations (10) into (14), we obtain [2]

(15)

These relations make it possible to express the quanti-

ties , , and Qi in terms of function f and its
derivative f '. On the other hand, the application of rela-
tions (15) allows us to find the derivative f ' in a numer-
ical experiment without a cumbersome numerical dif-
ferentiation (see [5]). It should be noted that the knowl-

edge of the quantity  = f ' in the entire range of its
argument is essential for determining the low-fre-
quency permittivity [6], thermo-emf [7], and magne-
toresistance [2]. Besides, when the quantities f and f '
are determined together, it is possible to carry out a
more detailed analysis of the critical behavior of con-
ductivity (see [5]).

It was proved in [3, 4] that the calculation of high-
order moments of the electric field strength (e.g., fourth-
order moments) are required for studying nonlinear
properties of nonhomogeneous media. For a weakly
nonlinear isotropic medium, instead of relation (2)
we have

(16)

The average values 〈j〉  and 〈E〉  are connected through a
similar relation:

(17)

where , , … are the effective nonlinearity coef-
ficients. According to [3, 4] (see also Appendix A), the

quantity  can be expressed in terms of the electric
field strength in the linear problem:

(18)

ψi
2( )

∆E
2( ) ψi

2( ) 1,–
i

∑=

∆ j
2( ) 1

σe
2

----- σi
2ψi

2( ) 1.–
i

∑=

ψi
2( )

Qi j E⋅〈 〉 i( ) σiψi
2( ) E〈 〉( )2.= =

ψi
2( )

ψi
2( ) e2〈 〉 i( ) ∂σe

∂σi

--------.= =

ψ1
2( ) f h f ', ψ2

2( )– f ', f
∂ f p h,( )

∂h
--------------------.≡= =

∆E
2( ) ∆ j

2( )

ψ2
2( )

j σ r( ) χ 3( ) r( )E2 χ 5( ) r( )E4 …+ + +{ } E.=

j〈 〉 σ e χe
3( ) E〈 〉( )2 χe

5( ) E〈 〉( )
4 …+ + +{ } E〈 〉 ,=

χe
3( ) χe

5( )

χe
3( )

χe
3( ) χ 3( )e4〈 〉 ,=
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where e(r) is the same as in relation (6). For a two-com-
ponent medium, it follows from (18) that

(19)

where  is the value of the nonlinearity coefficient
χ(3)(r) for the ith component and

(20)

is the fourth-order partial moment. Obviously, the value

of  is determined only by the properties of the
medium and is a function of the same arguments as f

and :

Fourth-order moments also appear in the problem of
low-frequency noise spectrum in nonhomogeneous
samples. According to [3, 4] (see also Appendix B), the
noise spectrum K(ω) can be expressed in terms of the
electric field strength e(r) in the linear problem:

(21)

Here, K(ω) and λω(r) are the Fourier transforms of the
functions K(τ) and λ(τ, r) defined in Appendix B. For a
two-component medium, relation (21) leads to

(22)

where λi(ω) is the value of the quantity λω(r) for the ith

component and  is the same as in relation (20).

It follows from Eqs. (19) and (22) that for studying

the behavior of the quantities  and K(ω) in the
vicinity of the metal–insulator phase-transition point, it
is sufficient to analyze the critical behavior of the par-

tial moments . In this case, the ratios of parameters

 and λ2(ω)/λ1(ω) are generally arbitrary so that
any of the two terms in expressions (19) and (22) may
dominate.

Thus, in order to determine various physical effec-
tive parameters of binary composites, it is sufficient to
calculate the partial moments

(23)

with e(r) from (6). This necessitates an analysis of the

quantity  = (p, h) in the entire range of argu-
ments p and h, including the neighborhood of the
metal–insulator phase-transition point.

χe
3( ) χ1

3( )ψ1
4( ) χ2

3( )ψ2
4( ),+=

χ i
3( )

ψi
4( ) e4〈 〉 i( )

=

ψi
4( )

ψi
2( )

ψi
4( ) ψi

4( ) p h,( ).=

K ω( )
1
V
--- λωe4〈 〉σ e

2– .=

K ω( )
1
V
--- λ1 ω( )ψ1

4( ) λ2 ω( )ψ2
4( )+[ ]σ e

2– ,=

ψi
4( )

χe
3( )

ψi
4( )

χ2
3( )/χ1

3( )

ψi
2n( ) e2n〈 〉 i( )

n 1 2 …, ,=( )=

ψi
2n( ) ψi

2n( )
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It would be also interesting to analyze odd-order

partial moments (p, h) defined by the relation

(24)

Here, we take into account the fact that the vector quan-
tity 〈e2ne〉 (i) for an isotropic medium can be directed
only along the unit vector 〈e〉  = 〈E〉/|〈E〉|. It follows
from Eq. (24) that

(25)

where e||(r) is the component of e(r) parallel to 〈E〉 . It
should be noted that, in accordance with Eq. (3), the
effective conductivity can be expressed in terms of the

first-order partial moments :

(26)

The computation of odd higher-order moments is
required, for example, for analyzing structural fluctua-
tions of the electric field strength of the form

(27)

with n ≥ 2.

3. CRITICAL BEHAVIOR

OF FUNCTIONS 

The critical behavior of the effective conductivity of
a randomly nonhomogeneous two-component medium
in the vicinity of the metal–insulator phase-transition
point can be described using the similarity hypothesis
[8]. According to [8] (see also, for example, [2]), func-
tion f in the critical region h ! 1, |τ| ! 1, where τ = (p –
pc)/pc, pc being the critical concentration) varies as fol-
lows:

(28)

for τ > 0, ∆0 ! τ ! 1

(29)

for |τ| ! ∆0, and

(30)

for τ < 0, ∆0 ! |τ| ! 1. Here

(31)

ψi
2n 1+( )

e2n 1+〈 〉 i( ) ψi
2n 1+( ) e〈 〉 .=

ψi
2n 1+( ) e2ne||〈 〉 i( )

,=

ψi
1( )

σe σ1ψ1
1( ) σ2ψ2

1( ).+=

∆E
2n( ) e e〈 〉–( )2n〈 〉=

ψi
2n( ) p h,( )

f τ t A0 A1
h

τ t /s
------- …+ +

 
 
 

,=

f hs a0 a1
τ

hs/t
------- …+ +

 
 
 

,=

f
h

τ–( )q
------------ B1 B2

h

τ–( )t /s
--------------- …+ +

 
 
 

,=

∆0 hs/t=
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is the size of the “smearing” region [8]. The critical
indices t, q, and s are connected through the following
relation:

(32)

Numerical experiments on disordered lattices (see, for
example, [3, 5, 9, 10]) in the 3D case give

(33)

It is natural to expect that the basic concepts of the sim-
ilarity hypothesis, including expressions (28)–(33), are
also applicable to finely dispersed binary composites.

The critical behavior of functions  (see [5]) can
be revealed using relations (15) after the substitution of
expressions (28)–(30) into them. All the critical indices

of quantities  in this case can be expressed in terms
of the conductivity indices t, q, and s (see (42)). At the
same time, no relations of type (15) which would con-

nect  with the dimensionless effective conductiv-
ity f are known for functions (23) with n ≥ 2. For this

reason, the behavior of the quantities with
n ≥ 2 in the vicinity of the metal–insulator phase-tran-
sition point should be determined proceeding from
their general properties. Such a procedure was carried
out, for instance, in [2, 5] for the two-parametric func-
tions emerging in the problem of galvanomagnetic
properties of binary systems in a weak magnetic field.

Confining the analysis to the principal terms in the
corresponding expansions and omitting factors of the
order of unity, in analogy with [2, 5], we obtain the fol-

lowing expressions for function  in the criti-
cal region:

(34)

for τ > 0, ∆0 ! τ ! 1,

(35)

for |τ| ! ∆0, and

(36)

for τ < 0, ∆0 ! |τ| ! 1. Here

(37)

By virtue of relations (37), only two of the five new crit-
ical indices (for a fixed n) are independent (for these
indices, we can choose, for example, t2n and µ2n).

Expressions (34)–(37) were obtained on the basis of
the following considerations. In the concentration
range τ > 0, ∆0 ! τ ! 1, the electric field is “expelled”
from the high-conductivity (first) component as we

q
t
s
-- t.–=

t 2, q 0.8, s 0.7.≈≈≈

ψi
2( )

ψi
2( )

ψi
2n( )

ψi
2n( ) p h,( )

ψi
2n( ) p h,( )

ψ1
2n( ) τ

t2n, ψ2
2n( ) τ

µ2n–
,∼∼

ψ1
2n( ) h

s2n, ψ2
2n( ) h

λ2n–
,∼∼

ψ1
2n( ) h2n

τ–( )
q2n

---------------, ψ2
2n( ) 1

τ–( )
µ2n

----------------∼∼

q2n 2n
t
s
-- t2n, s2n–

s
t
--t2n, λ2n

s
t
--µ2n.= = =
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approach the transition point (cf. similar considerations

in [2]). Consequently,   0 for τ  0. In
accordance with the similarity hypothesis, we assume
that this decrease follows a power law. At the same

time, the quantity  in the given case increases
since the number of narrow “bridges” (junctions)
formed by the high-conductivity component increases.
In the vicinity of these junctions, the electric field
strength in the low-conductivity (second) component
increases sharply, which is reflected in formula (34)

for .

For p < pc and σ2 = 0 (i.e., for τ < 0 and h = 0), the
electric field strength in the inclusions of the first com-
ponent forming finite clusters is equal to zero. For small
values of h ≠ 0, the field strength in the high-conductiv-
ity component differs from zero, but is also small and is
linear in h outside the smearing region (cf. [2]). Conse-

quently, function  in relations (36) is proportional
to h2n. On the other hand, for a fixed h, the value of

 must increase for p  pc, which is taken into
account in formula (36). For p < pc and p  pc, func-

tion  also increases since the number of “hot”
points near which the electric field strength increases
sharply becomes larger in this case. Finally, formulas (35)

give the values of  and  in the smearing
region, in which finite (nonzero) conductivities of both
components must be taken into account.

The smearing region  for function  is
determined in the conventional way by joining expres-
sions (34) and (35):

Equating now expressions (35) and (36) for  for

τ = – , we arrive at the first relation for the critical
indices t2n, s2n, and q2n. Further, in accordance with the
similarity hypothesis, all the critical indices in the prob-
lem of electrical conductivity must be characterized by

the universal scale so that  ~ ∆0, where ∆0 is
defined in (31). This leads to the second relation from
(37), which was taken into account while writing the
first relation.

The quantity  is considered similarly. In this
case, the equality of critical indices for τ > 0 and τ < 0
follows from the “joining” of relations (34) and (36)
with (35), which is symmetric relative to τ = 0. Accord-
ingly, we derive the relation between indices λ2n and µ2n

(third relation in (37)) by equating (by the order of

magnitude) the size  of the smearing region for

function  and the quantity ∆0 from relation (31).
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It should be noted that

(38)

where pi is the concentration of the ith component (p1 = p,

p2 = 1 – p). Substituting the expressions for  and

 from formulas (34)–(36) into relation (38), we
obtain a number of inequalities for critical indices,
from which the following two inequalities are indepen-
dent:

(39)

The remaining inequalities can be reduced to these two
inequalities when relations (37) are taken into consider-
ation.

For a randomly inhomogeneous medium, the simul-
taneous substitutions σ1  σ2 and p  1 – p do not
change the properties of the medium as a single entity
(see [1]) so that σe(p; σ1, σ2) = σe(1 – p; σ2, σ1), whence

(40)

Accordingly, for partial moments , we have

(41)

These equalities are quite obvious since the first and
second components change places under the substitu-
tions σ1  σ2 and p  1 – p. Relations (41) make it

possible to determine the quantities (p, h) for h > 1
if they are known for h < 1 in the entire concentration
range.

It was noted above that no new independent indices

appear for the second-order moments . Indeed,
substituting expressions (28)–(30) into relation (15)
and comparing the result with (34)–(36) (for n = 1), we
obtain

(42)

It can be easily verified that indices (42) satisfy rela-
tions (37) for n = 1. The quantity λ2 is positive since
s < 1, which is in turn a consequence of the positiveness

of function .

In the case of fourth-order moments, critical indices

are usually introduced for functions  (see [3, 4]).

e2n e2n〈 〉 i( )
–( )

2
〈 〉

i( )

=  ψi
4n( ) 2 pi–( ) ψi

2n( )( )2
0,≥–
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ψi
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t4n 2t2n, µ4n 2µ2n.≥≤

f p h,( ) hf 1 p–
1
h
---, 

  .=
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2n( ) 1 p–

1
h
---, 

  ψ2
2n( ) p h,( ),=

ψ2
2n( ) 1 p–

1
h
---, 

  ψ1
2n( ) p h,( ).=

ψi
2n( )

ψi
2( )

t2 t, s2 s, q2 q
t
s
--;+= = =

µ2 q, λ2 1 s.–= =

ψ1
2( )

χe
3( )/σe

2
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In our notation, the following relations correspond to
the relevant relations from [3, 4]:

(43)

for τ > 0, ∆0 ! τ ! 1 and

(44)

for τ < 0, ∆0 ! |τ| ! 1. The substitution of expressions
from (28), (34) and (30), (36) into relations (43) and
(44) gives

(45)

Inequalities (39) combined with definitions (45) and
relations (42) give [3]

(46)

If, following [10], we assume for estimates that t =
2 and q = 0.75 (in this case, it follows from relation (32)
that s ≈ 0.73), k = 1.6 and k' = 0.7 we obtain from rela-
tions (45) and (37) the following values of the remain-
ing indices:

It should be noted, however, that the calculation of indi-
ces using formulas (45) and (37) leads to noticeable
errors (this refers especially to the value of q4).

The critical behavior of odd momenta 
can be analyzed exactly in the same way as that of

 and is defined by formulas (34)–(37) for n ≥ 1,
in which 2n should be replaced by 2n + 1. For n = 0, the

quantities  = 〈e||〉 (i) can be expressed in terms of
dimensionless effective conductivity [2]:

(47)

For h ! 1, we have  ≈ f so that the critical behavior

of  is defined by formulas (28)–(32). In the case of
randomly inhomogeneous media, relations of type (41)

are valid for functions  after the substitution of
2n + 1 for 2n.

4. TWO-DIMENSIONAL CASE

The previous analysis was valid for 3D as well as 2D
systems. In the 2D case, however, the so-called reci-

procity relations can be established for quantities ,
which provide additional information on the properties
of these functions. The subsequent analysis is valid
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only for 2D systems and has no three-dimensional ana-
logue.

Following [1], we transform the relations between
the field and the current to the following system of
equations:

(48)

Under transformation (48) (with the parameter λ inde-
pendent of coordinates), Eqs. (1) and (2) for direct cur-
rent preserve their form, and the conductivity of system
(48) can be written as

(49)

For a two-component system, it is convenient to put λ =

 so that the conductivity components change
places under transformation (48):

Calculating the mean values 〈j'〉  and 〈E'〉 , we obtain
the reciprocity relations for the effective conductivity:

(50)

Substituting relations (10) into (50), we arrive at the
reciprocity relation for the dimensionless effective con-
ductivity:

(51)

Further, from relations (48) we obtain

(52)

(53)

so that

(54)

Using expression (54), we obtain the following rela-
tions for the two-component system:

(55)

(56)

While deriving these formulas, we have assumed that
h' = 1/h. Equalities (55) and (56) are the required reci-

procity relations for functions .
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Relations (50), (51), (55), and (56) are valid for iso-
tropic two-dimensional two-component systems of an
arbitrary structure (both periodic and disordered). Let
us now consider a randomly inhomogeneous medium.
Taking into account equalities (40) and (41), we can
write relations (51), (55), and (56) for such a medium
in the form

(57)

(58)

(59)

Equalities (58) and (59) are transformed into each other
after the substitution p  1 – p.

For p = pc = 1/2, relation (57) leads to the well-
known result obtained by Dykhne [1]:

(60)

In this case, we obtain the following relation from (58)
(or (59)):

(61)

which can also be written for p = 1/2 in the form

(62)

This equality was derived earlier in [1].
In accordance with relation (60), index s = 1/2 for a

2D randomly inhomogeneous system, and q = t in accor-
dance with relation (32). Consequently, relations (37) in
the 2D case assume the form

(63)

Substituting expressions (35) into relation (61), we
obtain one more relation between critical indices:

(64)

which, together with relations (63), leads to the follow-
ing relation between the two indices chosen in Section 3
as independent indices:

(65)

Relations (58) and (59) for p ≠ 1/2 give no new relations
between the indices. Thus, in the 2D case, only one new
independent critical index (e.g., µ2n) appears for quan-

tities  and  for a fixed n.
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For n = 2, relation (65) can also be written in the
form 2t – t4 = µ4 – 2t. A comparison of this equality with
(45) (for q = t) gives

(66)

If we assume that t = q = 1.3 [3, 11] and k = k' = 1.2 [10]
for our estimates, we obtain the following values for the
remaining critical indices in the 2D case:

Taking into account considerable errors introduced
when the indices are calculated using formulas (63)–
(66), we can assume that the value of λ4 ≈ 1.46 is in sat-
isfactory agreement with the value of λ4 = 1.33 ± 0.05
obtained in [12].

It should be noted in conclusion that the isomor-
phism relations obtained in [13, 14] for a 2D two-com-
ponent system in a transverse magnetic field h make it
possible to relate the electric field strength for H ≠ 0
with the field strength in the same system for H = 0.
Thus, the partial moments for H ≠ 0 can be expressed
in terms of the corresponding moments for H = 0. Con-
sequently, the results obtained in this section make it
possible to study the properties of partial moments as
functions of the magnetic field H in the vicinity of the
metal–insulator phase-transition point. Such an analy-

sis was carried out in [15] for functions (H).

APPENDIX A

We will seek the solution of Eqs. (1) for direct cur-
rent in the case of a weakly nonlinear medium with
Ohm’s law in the form (16) using perturbation theory
with the help of a power expansion in 〈E〉: 

(A.1)

. (A.2)

Here, E(n)(r) and j(n)(r) are terms of the order of |〈E〉|n.
In accordance with Eqs. (16) and (A.1), (A.2), we can
write the following expressions for j(n)(r):

(A.3)

The corresponding potentials defined in accordance
with E(n)(r) = –∇ϕ (n)(r) obey the following equations:

(A.4)

k k'.=

t4 1.4, µ4 3.8, q4≈≈ 9.0,=

s4 0.54, λ4 1.46.≈≈

ψi
2( )

E r( ) E 1( ) r( ) E 3( ) r( ) E 5( ) r( ) …,+ + +=

j r( ) j 1( ) r( ) j 3( ) r( ) j 5( ) r( ) …+ + +=

j 1( ) r( ) σ r( )E 1( ) r( ),=

j 3( ) r( ) σ r( )E 3( ) r( ) χ 3( ) r( ) E 1( ) r( )( )3
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∇ σ r( )∇ϕ 1( ) r( ){ } 0,=
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whose solution is assumed to be known. We also
assume that the problem can be solved for a given
potential difference (i.e., for a preset 〈E〉) so that

. (A.5)

In order to calculate the values of , , …, we will
apply an approach similar to that used in the problems
of thermo-emf [7] and magnetoresistance [2]. It will be
shown below that this approach simplifies computa-
tions to a certain extent.

It should be noted that E(m)(r) and j(n)(r) satisfy
equations of type (1):

(A.6)

Consequently, these quantities satisfy relations similar
to Eq. (4):

(A.7)

For n = 3, m = 1 and n = 1, m = 3, relation (A.7) leads to

(A.8)

where it is assumed that 〈E(3)〉  = 0. Taking into account
the first of these equalities, the fact that 〈j(3)〉  =

, and the definition of the quantity j(3))(r)
from Eqs. (A.3), we obtain

(A.9)

The first term on the right-hand side of this relation,
which is equal to 〈j(1)E(3)〉 , vanishes and, hence, rela-

tion (A.9) leads to the well-known expression for 
[3, 4] (see formula (18)).

In the next approximation, we have

(A.10)

Using relation 〈j(5)〉  =  and the definition of
the quantity j(5)(r) from Eqs. (A.3), from the first equal-
ity in (A.10) we obtain

(A.11)

The first term on the right-hand side of this relation,
which is equal to 〈j(1) · E(5)〉 , vanishes and, hence, we
obtain from (A.11)

(A.12)
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where e(r) = E(1)(r)/|〈E〉|. Higher-order approximations
in 〈E〉  can be analyzed similarly.

APPENDIX B

Let the local conductivity σ in a heterogeneous sam-
ple of volume V experience fluctuations in time:

(B.1)

Here, σ(r) is the average value of conductivity and the
bar indicates averaging over time. In this case, the total
current through the sample also fluctuates: I(t) =  +
δI(t). Let us define the time correlation functions for
currents as

(B.2)

where the bar indicates averaging over time t as in rela-
tion (B.1). For a given potential difference, the total
current is proportional to the average conductivity of
the sample σe so that we have, instead of relation (B.2),

(B.3)

where δσe(t) is the fluctuating component of the quan-
tity σe(t). While deriving relation (B.3), we presumed
the low-frequency nature of conductivity fluctuations
so that the quasi-static approach is applicable and the
current I(t) is connected with voltage U through the
conventional Ohm’s law. Besides, we assume that the
sample volume V is large enough so that the average
conductivity σe coincides with the effective conductiv-
ity defined for V  ∞.

We will find the quantity δσe by varying relation (5):

(B.4)

Here, we have taken into account the fact that 〈δEδE〉  =
〈jδE〉  = 〈j〉〈δE〉  = 0 since 〈δE〉  = 0. Using relation (B.4),
we obtain

(B.5)

Following [3, 4], we make the natural assumption con-
cerning the short-range (delta-functional in the macro-
scopic description) nature of correlations of the quanti-
ties δσe(t, r):

(B.6)

In this case, we obtain from relations (B.3), (B.5), and
(B.6)

(B.7)
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Passing to Fourier components in this relation, we
arrive at formula (21). It should be noted that the quan-
tity K(τ) is inversely proportional to volume V.
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Abstract—A new phenomenon, viz., field-asymmetric transverse magnetoresistance of a doped asymmetric
quantum-size structure discovered in a magnetic field parallel to the heteroboundary planes, is studied experi-
mentally and theoretically. The magnetoresistance asymmetry relative to the field direction, which is indepen-
dent of the direction of transport current, is observed when a lateral electric field is embedded in the structure
with the help of alloyed metallic contacts. In the theoretical part of the paper, it is shown that the contribution
to current, which is asymmetric in the magnetic field, can be consistently described in the framework of the
theory of spontaneous current states and photovoltaic effect in systems without an inversion center; the reason
behind the emergence of this current is associated with the asymmetry of the energy spectrum of charge carriers
relative to the quasimomentum. It is shown that the change in the size and shape of Fermi contours in a magnetic
field determines the magnitude of the strong negative magnetoresistance associated with the intersubband scat-
tering under investigation and is found to be responsible for the emergence of a qualitatively new effect men-
tioned in the title of this paper. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The electronic properties of a low-dimensional sys-
tems are of considerable interest for fundamental sci-
ence as well as for practical applications. Of special
importance are investigations of 2D electron gas in a
magnetic field, resulting in the discovery of integer [1]
and fractional [2] quantum Hall effects. A 2D gas is
realized in practice either at the heteroboundary
between two semiconductors or in a quantum well. In
both cases, the wave function of charge carriers is
extended in a direction perpendicular to the heter-
oboundary plane and can vary in this direction under
the effect of external factors (applied magnetic or elec-
tric field). Such a variation is manifested most clearly
upon a transition to multilayered tunnel-coupled 2D
systems asymmetric along the normal to the plane of
heteroboundaries. If the role of external factor is
played, for example, by a magnetic field, the above-
mentioned change in the wave function may noticeably
affect the behavior of the magnetoresistance. This was
demonstrated experimentally in [3–5], where the mag-
netoresistance of two tunnel-connected quantum wells
was studied in a transverse (relative to the heterostruc-
ture plane) magnetic field.

A more significant change in the configuration of
the wave functions of electrons in a direction perpen-
1063-7761/01/9304- $21.00 © 20833
dicular to heteroboundaries takes place when the mag-
netic field is applied along the plane of a heterostruc-
ture. In this case, the confining potential of the quantum
well is supplemented by a magnetic potential of the
oscillator type, which depends on the location of the
center of the electron orbit in the magnetic field [6]. The
magnetoresistance of nanostructures consisting of tun-
nel-connected quantum wells in such a geometry was
investigated in [7–12]. Among other things, it was
found that the magnitude of magnetoresistance is deter-
mined to a considerable extent by the change in the
nature of intersubband scattering of charge carriers.
The intersubband scattering, in turn, is determined by
the magnitude of transferred momentum Q, which in
the zeroth approximation is equal to the difference in
the Fermi momenta in the subbands. The interband
scattering probability is proportional to 1/Q. Upon a
change in the magnetic field, the variations of Fermi
momenta in different subbands differ considerably,
which leads to the emergence of clearly manifested
magnetoresistance. Since the relative change in the
Fermi momenta in the subbands can be of either sign
(depending on the system geometry and charge carrier
concentrations in subbands), the magnetoresistance can
be positive, or negative, or even alternating, as is indeed
observed in experiments [8, 10, 12, 13].
001 MAIK “Nauka/Interperiodica”
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It was found [7] that the magnitude of magnetoresis-
tance in a parallel magnetic field depends on the direc-
tion of the magnetic field and the current; i.e., the mag-
netoresistance contains a term which is linear in the
magnetic field parallel to heteroboundaries (and per-
pendicular to current) as well as in the electric field
which is parallel to the current. The observed effect can
be interpreted as a consequence of the electron density
redistribution under the action of the Lorentz force. In
the case when the scattering of charge carriers is differ-
ent in different regions of a heterostructure, which is
virtually always the case in heterostructures, the mobil-
ity of charge carriers changes upon a change in the
direction of the current or the magnetic field, leading to
the observed change in the resistance. The correspond-
ing contribution to the current can be presented in the
form

(1)

where H is the magnetic field parallel to the layers, E is
the electric field strength, and P is a certain polar vector
perpendicular to the plane of the structure, which exists
due to physical inequivalence of the opposite regions of
the heterostructure, i.e., its asymmetry along the growth
axis. It should be noted that according to the results of
the experiments [7] and the corresponding theory [11],
the effect associated with this mechanism is very weak.

In the present work, we describe a basically new
effect [14], viz., magnetoresistance asymmetric to the
magnetic field parallel to the layers of the structure,
which is independent of the direction of the current.
The experimental results obtained by us imply that a
considerable asymmetry in magnetoresistance relative
to the change in the magnetic field direction is observed
in samples of a nanostructure with alloyed metallic

dj α P H×[ ] E⋅( )E,=
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Fig. 1. Potential profile (curve 1), position of size-quantiza-
tion levels (dot-and-dash lines), and the probability distribu-
tion for the first two levels (curves 2, 3) for the structure
under investigation in zero magnetic field.
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contacts near which a depleted region with an embed-
ded lateral electric field is formed (see Subsections
3.3.1 and 3.3.2). In this case, the magnetoresistance is
independent of the direction of the current through the
sample and, hence, the observed effect must correspond
to a contribution to current in the form

(2)

where E0 is a certain polar vector parallel to current,
which is determined by the electric field embedded in
the contact region. It will be shown in the theoretical
part of this paper (Section 4) that the contribution of
type (2) to the current can be described consistently
using the theories of spontaneous current states [15]
and the photovoltaic effect [16] in systems without an
inversion center. The physical reason behind the emer-
gence of the anomalous contribution to current is asso-
ciated with the asymmetry of the energy spectrum of
the investigated nanostructure relative to quasimomen-
tum. Thus, while the change in the size of Fermi con-
tours determines the value of magnetoresistance, which
is associated with the intersubband scattering discussed
by us here (Subsection 3.3.3), the change in their shape
is responsible for the emergence of a qualitatively new
effect defined by formula (2).

2. INVESTIGATED NANOSTRUCTURE 
AND ITS CHARACTERISTICS

The nanostructure investigated by us is a single
undoped GaAs quantum well of width 300 Å, bounded
on both sides by barrier layers of Al0.34Ga0.66As (270 Å)
uniformly doped with silicon up to the concentration
~2 × 1018 cm–3. The barrier layers are separated from
the quantum well by undoped Al0.34Ga0.66As spacers of
width 100 Å. The entire structure is separated from the
substrate by a thick (~0.5 µm) GaAs buffer layer and is
covered by a protecting GaAs layer of thickness 100 Å.
The profile of the bottom of the conduction band, the
electron spectrum, and the wave function distribution
were determined from the self-consistent solution to
the system of Poisson and Schrödinger equations. It
was found that the three subbands (E1, E2, and E3) lying
under the Fermi level are characterized by the Fermi ener-
gies EF1 ≈ 32 meV, EF2 ≈ 26 meV, and EF3 = 1–2 meV. The
distribution of the charge carrier concentration was cal-
culated from the solution of the quantum-mechanical
problem (using wave functions) in the region of the
quantum well and according to classical formulas out-
side this region. Figure 1 shows the profile of the edge
of the conduction band in the quantum well region, the
position of the size-quantization levels (relative to the
Fermi level), and the distribution of wave functions for
the first two subbands. The distribution of the doping
impurity in the system is such that the potential asym-
metry in the quantum well is quite small: the potential
difference ∆U at the right and left boundaries of the
well amounts to only 12 meV. Nevertheless, the distri-

dj β P H×[ ] E0⋅( )E,=
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bution of the wave functions for the first subbands is
characterized by a clearly manifested asymmetry (see
Fig. 1).

3. MAGNETOTRANSPORT PROPERTIES 
(EXPERIMENTAL RESULTS AND DISCUSSION)

The magnetotransport properties of the above nano-
structure were investigated using the standard dc
method in the temperature range 2–300 K for various
orientations of the magnetic field relative to the plane of
the heterostructure and to the direction of transport cur-
rent. Most measurements were made in the magnetic
field region up to 75 kOe in a setup containing super-
conducting solenoid made of niobium–titanium cable,
which made it possible to change the magnetic field
direction during a run of measurements of field depen-
dences of magnetoresistance. Separate measurements
were made in strong magnetic fields up to 140 kOe cre-
ated by a superconducting solenoid made of niobium–
tin ribbon. Since the field reversal in such a solenoid is
possible only up to a low backward field, the measure-
ments in this case were made for a given orientation of
the sample for a single chosen direction of the magnetic
field.

3.1. Shape of Samples and Potential Contacts

The samples under investigation had different
geometries and shapes of potential contacts (Fig. 2)
depending on the type of the given experiment. The fol-
lowing three versions were used:

(1) lithographically prepared symmetric potential
contacts of the Hall geometry (Fig. 2a);

(2) spaced alloyed metallic (indium) contacts (Fig. 2b);
(3) combined (one alloyed and several lithographic)

contacts (Fig. 2c).
The geometry of the first version was used for char-

acteristic measurements of the Shubnikov–de Haas
(Sh–dH) effect and the quantum Hall effect (QHE). In
the second and third versions with alloyed potential
contacts, the contribution to the potential difference
being measured comes from the contact regions of the
nanostructure with embedded lateral electric fields; the
asymmetry of the magnetoresistance relative to the
field is observed precisely in this geometry. In the case
when potential contacts are spaced to a certain distance
(Fig. 2b), asymmetry is a difference effect which can be
detected due to a difference in the values of the opposite
embedded electric fields in the contact regions near the
first and second potential contacts (see Subsection 3.3.1).
In the third version (Fig. 2c), only one alloyed metallic
potential contact was prepared. The second potential
contact was a simple lithographic contact separated by
a small distance from the alloyed contact in order to
ensure a high enough value of the potential difference
being measured, on the one hand, and to increase con-
siderably the contribution to this potential difference
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
from the contact region with an embedded electric field,
on the other hand. In this case, the asymmetry of the
magnetoresistance was noticeably enhanced (see Sub-
section 3.3.2).

3.2. Shubnikov–de Haas and Quantum Hall Effects

The Sh–dH effect and the QHE were measured in
the standard configuration (the magnetic field is
directed along the normal to the plane of the nanostruc-
ture, and the samples have the Hall geometry illustrated
in Fig. 2a) primarily to characterize the nanostructure,
i.e., to determine experimentally the parameters of its
electron spectrum and to compare them with the calcu-
lated values. Figure 3a shows the results of measure-
ments of the field dependences of magnetoresistance
Rxx(H) and the Hall resistance Rxy(H) at T = 4.2 K. The
Fourier analysis of the oscillating component of mag-
netoresistance gives two clearly manifested peaks corre-
sponding to values 18.3 × 104 and 1.25 × 104. The values
of charge carrier concentrations and the Fermi energy
calculated by the formulas

and

(where ∆(1/H) is the period of oscillations in the recip-
rocal magnetic field), and corresponding to these two

n
e

πc
------ 1

∆ 1/H( )
------------------=

EF
e

m*c
---------- 1

∆ 1/H( )
------------------=

1 2

3 4

3* 4*
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(a)

(b)
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Fig. 2. Sample geometry and the shape of potential con-
tacts: (a) lithographic potential contacts with the Hall geom-
etry, (2) alloyed potential contacts, (c) combined contacts
(1 and 2 are current contacts and 3–5 are potential contacts).
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values are n = 8.8 × 1011, 0.6 × 1011 cm–2, and EF = 32,
2 meV (for m* = 0.067m0). These values are close to the
those calculated for subbands E1 and E3. Consequently,
the contribution from subband E2 to the Sh–dH oscilla-
tions is not manifested in the experiments probably due
to the fact that the values of the Fermi energy and car-
rier concentrations in the first two subbands are close
and the resolution is insufficient for a not very high
mobility of carriers (see below) and for a high temper-
ature and, second, due to the fact that the mobility of
carriers in subband E2 is lower than in subband E1.

1

The total carrier concentration nH obtained from Hall
measurements in weak magnetic fields (H < 10 kOe) is
equal to 1.8 × 1012 cm–2, while the measured value of
electron mobility at T = 4.2 K is equal to
26000 cm2/V s. A comparison of the Hall concentra-
tion nH with the concentrations n1 and n3 obtained from
the Sh–dH measurements shows that the values of the
concentration in subbands E1 and E2 are indeed close,
but the concentration in subband E2 cannot be deter-

1 It can be seen from Fig. 1 that the wave function of electrons of
subband E1 has a clearly manifested peak at one of the heter-
oboundaries, while the wave function of subband E2 has two
peaks in the vicinity of all heteroboundaries. Consequently, the
electron scattering probability at charge impurities located at the
barriers in subband E2 must be higher than in subband E1.
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Fig. 3. Shubnikov–de Haas oscillations (Rxx(H) curves) and
field dependences of the Hall resistance (Rxy(H) curves) at
two temperatures: (a) 4.2 K and (b) 2.2 K.
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mined accurately since the Hall emf is determined by
carriers in all the three subbands whose mobilities may
differ considerably. It should be noted that the ampli-
tude modulation of magnetoresistance oscillations in
strong magnetic fields (Fig. 3) is probably associated
with intersubband scattering whose amplitude is quite
large (approximately equal to half the total scattering
amplitude for charge carriers).

The field dependences of the Hall resistance Rxy(H)
(Fig. 3a) for H > 12 kOe display clearly manifested
steps corresponding to the positions of minima of resis-
tance Rxx. The values of Rxy at the steps coincides to
within (3–4)% with the corresponding theoretical val-
ues of ρxy = h/2eim, where i is the number of filled Lan-
dau levels taking into account the spin and m is the
number of identical electron layers connected in paral-
lel (m = 2 in our case).

It can be seen from the results presented in Fig. 3b
that the last two minima of the Sh–dH oscillations are
shifted towards lower values of the magnetic field and
split upon a decrease in temperature to 2.2 K. This is
apparently associated with the spin splitting of Landau
levels. It was shown in [17, 18] that the g-factor in a 2D
gas at the AlGaAs/GaAs heteroboundary may attain
high values (g ~ 10) for odd occupational numbers as a
result of exchange interaction of electrons at the spin
sublevels with quantum numbers i and i – 1.

It should be noted that the transverse magnetoresis-
tance is positive in this configuration in the range of low
magnetic fields (1.5–12 kOe). In very weak fields (H <
1.5 kOe), a very weak (~0.5%) negative magnetoresis-
tance is observed at T = 4.2 and 2.2 K, which is proba-
bly associated with the suppression of the interference
correction to the metal-type conductivity [19].

3.3. Longitudinal and Transverse Magnetoresistance
in a Parallel Magnetic Field

The dependence of the resistance of nanostructure
samples on the strength of a magnetic field parallel to
the plane of the 2D gas was investigated for two mutual
orientations of the current vector J and the magnetic
field vector H: J ⊥  H (transverse magnetoresistance)
and J || H (longitudinal magnetoresistance) in the tem-
perature range 4.2–300 K. Measurements were made
on samples with the three forms of potential contacts
described above (see Fig. 2).

3.3.1. Magnetoresistance in the case of alloyed
potential contacts with an embedded electric field.
Figure 4 shows the magnetoresistance curves

measured in a wide temperature range (from 4.2 to
300 K) in the case of spaced alloyed potential contacts
(Fig. 2b) for J ⊥  H. It can be seen that

(a) the magnetoresistance is negative in the entire
temperature range;

∆R H( )
R 0( )

----------------- R H( ) R 0( )–
R 0( )

-------------------------------≡
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(b) the magnetoresistance strongly depends on tem-
perature, increasing upon cooling and attaining a value
of the order of –0.4 at T = 4.2 K and H = 75 kOe;

(c) the magnetoresistance is asymmetric in the mag-
netic field in the entire temperature range, the asymme-
try changing its sign upon a change in temperature,
passing through zero at a temperature of the order of
130 K.

It should be emphasized that the magnitude and
shape of the normalized curves ∆R(H)/R(0) do not
depend on the direction of the current through the sam-
ple and on its magnitude (at least, from 1 to 50 µA in
the temperature range under investigation). This indi-
cates that the Hall voltage emerging along the nano-
structure axis for J ⊥  H does not affect the magnitude
of magnetoresistance and its asymmetry.

In the case of the longitudinal magnetoresistance
(J || H), the height and shape of the ∆R(H)/R(0) curves
change, but these curves become completely symmetric
(Fig. 5). The negative longitudinal magnetoresistance
at T = 4.2 K and H = 75 kOe attains a value of about
−0.25, which is considerably smaller than the trans-
verse magnetoresistance in the given field at the given
temperature (see Fig. 4).

Asymmetry of transverse magnetoresistance in a
parallel magnetic field. Figure 6 presents the results on
the asymmetry of the transverse magnetic resistance at
two extreme temperatures, 4.2 and 273 K. These results
were obtained on rectangular samples of the nanostruc-
ture having a size of 2 × 8 mm, in which two indium
potential contacts separated by a distance of approxi-
mately 6 mm were alloyed at a temperature of 350°C.
It can be clearly seen that the transverse magnetoresis-
tance has different values for opposite directions of the
magnetic field. For example, the asymmetry in the
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Fig. 4. Field dependences of magnetoresistance at different
temperatures for J ⊥  H. The magnetic field vector is parallel
to the plane of the 2D gas. The shape of the sample and
potential contacts is shown at the top of the figure.
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magnetoresistance relative to the magnetic field direc-
tion at T = 4.2 K attains ~7% in the field 75 kOe (see
curves 1). At T = 273 K, the magnitude of magnetore-
sistance itself is very small (~1%), but its asymmetry is
manifested much more clearly. It can be seen from Fig.
6 (curves 2) that one branch of the field dependence of
magnetoresistance becomes nonmonotonic at high
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Fig. 5. Field dependences of magnetoresistance at different
temperatures for J || H. The magnetic field vector is parallel
to the plane of a 2D gas. The shape of the sample and poten-
tial contacts is shown at the top of the figure.
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temperatures in contrast to the other branch, and the
magnetoresistance even changes its sign in the vicinity
of 30 kOe.

It was mentioned above that the magnitude and sign
of transverse magnetoresistance asymmetry are inde-
pendent of the direction of current for a given value of
the magnetic field. If we define asymmetry η(H) as the
difference in the field dependences ∆R(H)/R(0) for
opposite directions of the magnetic field, it is signifi-
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Fig. 7. Field dependence of asymmetry η of transverse
magnetoresistance at 273 K.
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cant that the η(H) dependence is a linear function of H
in all the cases investigated by us and at all tempera-
tures. This fact is illustrated in Fig. 7, where we delib-
erately choose the case when the field dependence
∆R(H)/R(0) is clearly nonmonotonic (magnetoresis-
tance at T = 273 K, see curves 2 in Fig. 6). This leads to
the conclusion that the asymmetric corntribution to
conductivity (or current) is a linear function of the mag-
netic field.

If the sample is rotated so that the magnetic field
vector becomes strictly parallel to the vector of current
through the sample (longitudinal magnetoresistance),
the magnitude and even the sign (at high temperatures
in fields above 30 kOe) of the magnetoresistance
change; it is significant, however, that the asymmetry of
the ∆R(H)/R(0) curves disappears in this case (see
Fig. 8).

3.3.2. Magnetoresistance in the case of combined
potential contacts. Since in the case of spaced alloyed
potential contacts the asymmetry of transverse magne-
toresistance is a difference effect observed due to the
difference in the magnitude of opposite embedded elec-
tric fields E0 (see formula (2)) in the contact regions of
the first and second contacts, it is interesting to measure
the asymmetry of the magnetoresistance on samples
with only one alloyed potential contact (see Fig. 2c).
The other (lithographic) potential contact was arranged
at a small (but not limiting) distance from the alloyed
contact in order to ensure a sufficiently high level of the
potential difference being measured, on the one hand,
and to considerably increase the contribution to the
total magnetoresistance from the depleted contact
region of the alloyed potential contact with the embed-
ded electric field, on the other hand.2

The results of such an experiment are presented in
Fig. 9. Three potential contacts (depicted in the upper
part of the figure) were used: an alloyed indium contact 5
and two lateral lithographic contacts 3 and 4 separated
by quite different distances from contact 5. It can be
seen that when the second lithographic potential
contact is at a small distance from the alloyed contact
(d3–5 ≈ 0.3 mm in our case), the asymmetry of the mag-
netoresistance curves becomes more pronounced: it
attains a value of the order of 50% at T = 4.2 K, while
at T = 273 K, the magnetoresistance even changes its
sign (it is positive for a certain direction of the field and
negative for the opposite direction). As expected, the
asymmetry of the magnetoresistance curves is weak
when the second lithographic potential contact is far
from the alloyed contact. In our case, when potential

2 Alloying of a metallic (in our case, indium) contact to a certain
depth is accompanied by the displacement of the potential barrier
to the quantum well; as a result, a region depleted in charge carri-
ers is formed under the contact and in its immediate vicinity. This
depleted contact region possesses a very high resistance; for this
reason, its (asymmetric relative to magnetic field) contribution to
the magnetic resistance is considerable despite its small size (~1–
10 µm) and determines the asymmetry of the transverse magne-
toresistance of the entire sample.
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contacts 4 and 5 are used (d4–5 = 6 mm), the asymmetry
of the magnetoresistance curves does not exceed ~2%
in compliance with the ratio of the distances d3–5 and d4–5.
Finally, in the case of the lithographic potential con-
tacts 3 and 4, the magnetoresistance curves are com-
pletely symmetric (see curves 3, 3' in Fig. 9).

Thus, the experiments made on samples with an
alloyed potential contact show that the effect of the
asymmetry of the transverse magnetoresistance can be
noticeably enhanced to the extent of contribution to the
resistance being measured from the region of the nano-
structure with an embedded lateral electric field, which
is depleted in charge carriers.

3.3.3. Magnetoresistance and intersubband scat-
tering. In this subsection, we will consider and analyze
the problems and compare experimental and theoretical
data associated with the negative magnetoresistance in
a magnetic field parallel to the plane of the nanostruc-
ture and its possible qualitative explanation on the basis
of the mechanism of intersubband scattering of charge
carriers. It was mentioned in the Introduction that this
mechanism is associated with the change in the size and
shape of Fermi contours upon the application of an
external magnetic field.

The high value of the negative magnetoresistance at
low temperatures (in our case, ∆R(H)/R(0) ≈ –0.4 for
J ⊥  H and ∆R(H)/R(0) ≈–0.25 for J || H in a field
75 kOe) is apparently a consequence of the suppression
of the interband scattering in a magnetic field, which,
like the intraband scattering at an ionized impurity, is
determined by the electron mobility at low tempera-
tures. Earlier, this mechanism of magnetoresistance at
T = 4.2 K and J ⊥ H was considered in [9, 10, 12, 20,
21] as applied to GaAs/AlGaAs heterojunctions and
two-well structures.

It is well known (see, for example, [6]) that the elec-
tron states are subjected to a considerable modification
in a parallel magnetic field, which leads to a displace-
ment of the minima of the subbands to the k-space; the
displacement of the minima of the corresponding sub-
bands increases with the subband number and may
attain a value of several millielectronvolts. Thus, the
population of a certain subband in a magnetic field can
be changed down to its complete depletion. Figure 10
shows the dispersion curves En(kx) and the correspond-
ing Fermi contours in magnetic fields of 0, 40, and
80 kOe (the x and y axes lie in the plane of the nano-
structure; the magnetic field is applied along the y axis),
which were obtained for our nanostructure as a result of
self-consistent solution of the system of Schrödinger
and Poisson equations in a magnetic field. Obviously,
the intersubband scattering in our case is determined
mainly by E1 and E2 subbands with the smallest differ-
ence ∆kF in the wave vectors at the Fermi level. The
population of the third subband is extremely low since
the Fermi level lies near its bottom, and it is completely
depleted in strong magnetic fields.
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It can be seen from Fig. 10 that as the value of the
magnetic field increases, the dispersion relation En(kx)
experiences considerable deformation even in a weakly
asymmetric system like the nanostructure under inves-
tigation: the effective mass m becomes noticeably
anisotropic (the effective mass mx in the x direction
increases with the field, while the effective mass my

changes only slightly in the y direction). The asymme-
try of the dispersion curves is manifested clearly,
En(kx) ≠ En(–kx).

A complete description of the field dependence of
the conductivity tensor σij(H) must include the solution
of the corresponding kinetic equation (see, for example,
[11]) and is a complicated problem. The features of
magnetoresistance can be determined qualitatively by
analyzing the dependence of the deformation of Fermi
contours on the magnetic field. The existence of two
subbands E1 and E2 with close energy values is respon-
sible for a significant contribution of the mechanism of
interband scattering of electrons to the magnetoresis-
tance. The anisotropy of Fermi contours which appears
upon an increase in the magnetic field leads to anisot-
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the nanostructure for the electron concentration n = 2 × 1012 cm–2.
ropy of the characteristic time of intersubband relax-
ation and, hence, to a dependence of magnetoresistance
on the mutual orientation of the current and the mag-
netic field. For anisotropic Fermi contours, conductiv-
ity σxx in the x direction is mainly determined by the
states on the Fermi contours with small values of ky,
while conductivity σyy in the y direction is determined
by states with small kx. The intersubband scattering
probability in this case depends on the separation ∆kF

between the Fermi contours of the first two subbands in
these directions. It can be seen from Fig. 10b that the
values of ∆kF increase with the field in both directions.
Since the scattering probability is inversely propor-
tional to the value of momentum being transferred, the
increase in the value of ∆kF with the magnetic field
leads to a negative magnetoresistance, which is in
accord with the experimental results. Calculations
show that as the magnetic field (H || y) changes from
zero to 100 kOe, the difference ∆kF in the y direction
changes approximately by a factor of two, while the
change in the transverse direction is almost tenfold.
This explains the experimental fact of a strong change
in the resistance with increasing field for the J ⊥  H ori-
entation. (It should be noted that the increase in the
effective mass mx is comparatively small and does not
compensate the decrease in the scattering probability.)
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An additional factor of the magnetoresistance
anisotropy is that the overlapping of the wave functions
for the first and second subbands for small kx varies
slowly with the magnetic field as compared to the case
of small ky. According to the results of calculations, the
overlapping for small ky first decreases upon an
increase in H, attains its minimum value, and then
increases, amplifying the scattering intensity.

The mobility of charge carriers at low temperatures
is determined by the intraband scattering from a
charged impurity and by the intersubband scattering.
According to the results obtained in [20, 22], the prob-
abilities of these processes are of the same order of
magnitude. Consequently, the suppression of intersub-
band scattering in a magnetic field must considerably
reduce the resistance, which is actually observed in our
experiments. At high temperatures, the scattering at
phonons becomes the dominating mechanism of intra-
band scattering. In this case, the decrease in the inter-
subband scattering probability in a magnetic field leads
to a considerably smaller contribution to magnetoresis-
tance.

3.3.4. Transverse magnetoresistance in strong
magnetic fields. The measurements of transverse mag-
netoresistance in magnetic fields up to 140 kOe proved
that the sign of the derivative of magnetoresistance is
reversed at H ≈ 110 kOe and the resistance of the nano-
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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structure starts increasing with the magnetic field. By
way of an example, Fig. 11 shows a branch of the trans-
verse magnetoresistance (1) and its derivative with
respect to the field (2) at T = 4.2 K. The sign reversal of
the magnetoresistance derivative, i.e., the transition to a
positive magnetoresistance, indicates, as expected, the
termination of the operation of the intersubband scat-
tering mechanism in strong magnetic fields due to the
withdrawal of the second subband E2 beyond the Fermi
level; as a result, only the E1 subband remains below the
Fermi level.

It is interesting to note that the curve describing the
derivative of magnetoresistance clearly manifests sin-
gularities associated with quantization of the orbital
motion of electrons in a magnetic field parallel to the
plane of the nanostructure. Figure 11 shows, for exam-
ple, that the curve of the magnetoresistance derivative
displays typical kinks for the values of magnetic field
for which the transverse size of the quantum well is
such that it incorporates one (n = 1), one and a half (n =
3/2), and two (n = 2) electron orbits.3 Thus, precision
measurements of transverse magnetoresistance in a
magnetic field parallel to the layers of a nanostructure
make it possible to determine experimentally the trans-
verse size of a quantum well to a high degree of accu-
racy and to compare it with the initial size at the growth
stage of the nanostructure.

4. PHENOMENOLOGICAL AND MICROSCOPIC 
DESCRIPTIONS OF MAGNETORESISTANCE 
ASYMMETRICIN IN THE MAGNETIC FIELD

A quantum-size structure in a longitudinal magnetic
field is a system with a broken fundamental symmetry
relative to inversion of coordinates and time [6]. The
loss of the spacial inversion center is associated with a
virtually inevitable asymmetry of the quantum well
appearing due to inequivalence of the conditions of
growth of the upper and lower heteroboundaries of the
well. This asymmetry can be enhanced by forming mul-
tiwell structures containing unequivalent wells. It
should be noted that there is formally no inversion cen-
ter in any surface region due to the existence of the nor-
mal to the surface. The system under investigation can
be characterized by the polar time-odd vector T: 

(3)

Here, H is the external magnetic field and P is a certain
polar vector directed along the normal to the plane of
the well. Vector T is similar in transformation proper-
ties to the quasimomentum vector k. Consequently, the
product T · k is invariant and the energy spectrum,

3 In Fig. 11, the singularity of the magnetoresistance derivative for
n = 1/2 is manifested very weakly. However, precision experi-
ments in weak magnetic fields indicate that a clearly manifested
jump in the second derivative of magnetoresistance takes place at
this point also.

T H P.×∝
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which may contain all possible invariants, is asymmet-
ric relative to the wave vector:

(4)

This asymmetry may lead to peculiar macroscopic
properties of nanostructures. For example, according to
theoretical publications [6, 23], anomalous photovol-
taic and magnetoelectric effects emerge in such a sys-
tem under nonequilibrium conditions. In order to inter-
pret these and other effects qualitatively, it is expedient
to use the concept of vector T as the density vector of
the toroidal moment of the system (toroidal multipoles
form the third independent family of multipoles in
addition to the electric and magnetic moments [24]).
Since the toroidal moment, momentum, and current
possess the same symmetry, the existence of a macro-
scopic spontaneous current in the system, which is pro-
portional to the density vector of the toroidal moment,

(5)

does not contradict the requirements of symmetry.
However, this expression for the current density

vector under equilibrium conditions is forbidden by the
gauge invariance requirements [25]. Under nonequilib-
rium conditions, however, a current of the form (5) may
exist [6]. In this case, parameter β in formula (5) is a
dissipative constant. Since both vectors j and T change
their sign upon time inversion, constant β must be pro-
portional to an even power of relaxation time. The devi-
ation from equilibrium can be due to photoexcitation
[16]. In this case, Eq. (3) describes the anomalous pho-
tovoltaic effect (this effect is anomalous since it exists
in the absence of the electrochemical potential gradi-
ent). This effect can be observed not only in systems
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Fig. 11. One of the branches of transverse magnetoresis-
tance at temperature 4.2 K (1) and its derivative (2) in mag-
netic fields up to 140 kOe. The sign reversal of the deriva-
tive of magnetoresistance takes place in the field 108 kOe.
The arrows marking singularities (kinks) on the magnetore-
sistance derivative curve are indicated for the magnetic field
values at which the transverse size of the quantum well cor-
responds to half (n = 1/2), one (n = 1), one and a half (n =
3/2), and two (n = 2) electron orbits for the orbital motion
of electrons in a quantizing magnetic field parallel to the
plane of the nanostructure.
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with an asymmetric spectrum, but also in systems with-
out an inversion center [26]. The mechanisms behind
the emergence of the effect in these systems are sub-
stantially different. In nonmagnetic noncentrosymmet-
ric media, it is due to the emergence of the asymmetric
component of the distribution function under an isotro-
pic perturbation of the system. The description of the
effect in this case falls outside the scope of the Born
approximation in scattering [26]. On the contrary, the
anomalous photovoltaic effect in systems with broken
magnetic symmetry and with an asymmetric spectrum
can be described even in the relaxation time approxima-
tion and is associated with the very fact that the system
is not in equilibrium [16]. However, this effect emerges
only if the nonequilibrium distribution function is
essentially out of equilibrium and should not be reduc-
ible to a function depending only on the energy of par-
ticles [16]. Functions of this type appear in the theory if
several relaxation channels “operate” simultaneously.
As in conventional nonmagnetic media [26], nonequi-
librium currents of the form (5) may also appear for
sources of deviation from equilibrium other than photo-
excitation, e.g., nonequilibrium heating [27] (in the
absence of equilibrium between the electron and
phonon subsystems).

Let us consider the situation when the system is out
of equilibrium due to a direct current passing through it.
The general expression for the current density has the
conventional form

(6)

where ε(k) is the energy spectrum, f(k) is the charge
carrier distribution function, and D is the dimensional-
ity of the k space. The distribution function f(k) can be
determined from the solution of the kinetic equation

(7)

where E is the total electric field acting on charge car-
riers, including the external electric field associated
with the potential applied to the structure and the inter-
nal embedded field of the contact potential and/or of the
bulk charge, v = (1/")∂ε(k)/∂k is the velocity of charge
carriers, and Isct[f ] is the scattering integral.

The energy spectrum ε(k) of charge carriers appear-
ing in formulas (6) and (7) must be determined from the
solution of the Schrödinger equation for a quantum
structure in a magnetic field. We choose the normal to
the plane of the quantum well (size-quantization axis)
along the z axis. We assume that the magnetic field is
directed along the y axis and the electric current, along
the x axis. We also assume that an embedded electric
field associated with the structural inhomogeneity of
the material (the field of the contact potential or the
field of the space charge) is directed along the current.
We denote by ϕ(x) the total electrostatic potential of the

j "
1– ∂ε k( )

∂k
-------------- f k( ) dDk

2π( )D
--------------,∫=

v
∂
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----- e

"
--- E 1
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---+ v H× 

  ∂
∂k
------– 

  f k r,( ) Isct f[ ] ,=
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embedded and external fields and assume that it is
smooth and satisfies the semiclassical approximation.
The potential U(z) of the quantum structure will be
described by using the envelope function method
(effective mass method). The wave function of charge
carriers in this case is sought in the form

The expression for the energy of charge carriers has
the form

(8)

where εn(kx) is the quantized energy spectrum, which
can be determined from the Schrödinger equation

(9)

(here, ω0 = eH/mc is the cyclotron frequency, λ =
("c/eH)1/2 is the magnetic length, and z0 = kxλ2 is the
center of the orbit of the wave function for an electron
in a magnetic field). In the absence of the quantum
structure potential U(z) (in a homogeneous medium),
the energy of a particle in a magnetic field does not
depend on the position of the center of the orbit and the
energy levels εn are degenerate in kx. In the presence of
potential U(z), the energy levels acquire a dispersion
εn = εn(kx) due to the dependence of the particle energy
on the position z0 of the orbit center in a magnetic field.
If potential U(z) is spatially asymmetric, U(z) ≠ U(–z),
the energy ε(kx) automatically becomes an asymmetric
function of quasimomentum (see relation (4)) since the
coordinates z0 = kx and –z0 = –kx of the orbit center are
inequivalent.

The presence of the quantizing potential of the het-
erostructure considerably complicates the solution of
the kinetic equation. The nonlocality of the scattering
integral for the motion of charge carriers in a direction
perpendicular to the magnetic field cannot be resolved
analytically even in the case of a symmetric quantum
well in a magnetic field parallel to the plane of the well,
and the nonlocal renormalization of the velocity of car-
riers must be taken into account [28]. In this case, the
kinetic equation can be solved only numerically even
for the simplest model potential [29]. Asymmetry of the
quantizing potential complicates the problem still fur-
ther. In order to clarify the qualitative aspects of the
phenomenon under investigation, we use the artificial
relaxation time approximation for writing the scattering
integral in the kinetic equation (7):

(10)
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where i = 1, 2, … is the order of expansion of the distri-
bution function in the small parameter of the problem
and τi is the corresponding relaxation time. In a spa-
tially symmetric system, i = 1 corresponds to the distri-
bution function component asymmetric in k, while i =
2 corresponds to the nonequilibrium correction to the
symmetric component of the distribution function. In
an asymmetric system with the spectrum asymmetric in
quasimomentum, the separation of the symmetric and
asymmetric components is not expedient.

In the general case, the diffusion and the field terms
on the left-hand side of Eq. (7) are separately not small
even in the case of a slight deviation from equilibrium
(weak current) in a system with an embedded potential.
However, these terms exactly compensate each other in
equilibrium. If the departure from equilibrium is insig-
nificant, we can choose for the small parameter the den-
sity j of electric current passing through the system.
The distribution function in this case can be presented
in the form of a series,

where f (0) is the equilibrium distribution function and
ai(E0) are the expansion coefficients depending only on
the magnitude E0 of the embedded field; these coeffi-
cients can be calculated using perturbation theory
assuming that the embedded field E0 is weak. As a
result, in the expansion for the distribution function, we
have

where the second term (f (1)) describes the conventional
ohmic current in the linear approximation, the fourth
term (f (22)) describes the nonlinear correction to the
current, while the third term (f (21)) describes the correc-
tion to the ohmic current and to the linear conductivity,
which is associated with the macroscopic inhomogene-
ity of the system. It will be shown below that this cor-
rection can be a nontrivial function of the magnetic
field.

Using the kinetic equation (7), we obtain the follow-
ing expression for the first-order (in current) contribu-
tion to the distribution function:

(11)

where  is the temperature and F is the Fermi quasi-
level (electrochemical potential): ∇ F = –e∇ (ϕ – ϕ0);
here, ϕ and ϕ0 are the potentials of the total and embed-
ded electric fields, respectively: ∇ϕ  = E, ∇ϕ 0 = E0. In
the equilibrium stare, the Fermi level F0 = const.

f f 0( ) 1 a1 E0( ) j a2 E0( ) j2 …+ + +( ),=

f f 0( )= f 1( ) f 2( ) …+ + +

=  f 0( ) f 1( ) f 21( ) f 22( ) …+ + + +

=  f 0( ) 1 a1
0+ j a1

1E0 j a2
0 j2 …+ + +( ),

f 1( ) τ1

T̃
----= v∇ F f 0( ),

T̃
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The substitution of relation (11) into formula (6) for
current leads to the conventional expression for ohmic
current:

(12)

where µ is the mobility and n is the charge carrier con-
centration.

Iterating Eq. (7) twice, we obtain the following
expression for the second-order contribution f (2):

(13)

This relation immediately implies that in the case of
a charge carrier spectrum asymmetric in quasimomen-
tum (v(k) ≠ –v(–k)), the substitution of expression (13)
into relation (6) for current gives a term bilinear in the
magnetic field and the electrochemical potential gradi-
ent, whose symmetry differs from the symmetry of the
contribution to the current, associated with the Hall
effect.

The analytic structure of the expression for current
can be investigated by analyzing a model asymmetric
dispersion relation of the form

(14)

where the velocity v = "k/m and ° is the asymmetry
parameter of the spectrum (4) for charge carriers, which
is proportional to the toroidal moment (3). The left-
hand side of Eq. (9) and, hence, the energy spectrum are
invariant to the simultaneous sign reversal of the mag-
netic field H and quasimomentum kx. Thus, the spec-
trum is also asymmetric relative to the magnetic field,
the asymmetry parameter ° of the spectrum being pro-
portional to odd powers of the magnetic field, 

, (15)

in compliance with the general symmetry consider-
ations (3).

Using expressions (14), (13), and formula (6) for
current, we obtain the following expression for the con-
tribution to current in the second order of perturbation
theory:

(16)

where j0 is the ohmic current (12).

For the electric conductivity tensor σik defined by
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we obtain from relations (12) and (16) the following
expression in the second order of perturbation theory:

(17)

For parallel E0 and j0, the first term on the right-hand
side of Eq. (17) gives the contribution to the diagonal
component to conductivity, which is odd in the mag-
netic field by virtue of relation (15). It follows from for-
mula (16) that such a contribution to conductivity
(resistance) exists only if the current flows through the
region in which the embedded field E0 differs from
zero. The larger the value of the embedded field, the
stronger (other conditions being equal) must be the
manifestation of the magnetoresistance asymmetry rel-
ative to magnetic field, which agrees qualitatively with
the main features of the asymmetric resistance (relative
to the magnetic field) observed by us for the first time
in [14] and described in detail in Subsections 3.3.1 and
3.3.2 of this paper. It should be noted that the magnetic
field asymmetric contribution to magnetoresistance,
which was considered above and is associated with the
emergence of additional contribution (16) to the cur-
rent, is a first-order effect relative to the external field
(electrochemical potential gradient). For this reason,
the corresponding linear responses (electrical conduc-
tivity and magnetoresistance) do not change upon the
sign reversal of the current. On the contrary, the magne-
toresistance asymmetry relative to the change in mag-
netic field and current, which is associated with the
redistribution of charge and current density under the
action of the Lorentz force [7], is a second-order effect
in the external field, which determines its smallness.

Expression (16) for current suggests that a number
of new effects may also exist. If the directions of the
current and of the embedded field do not coincide (e.g.,
the magnetic field and the current are parallel, while the
embedded electric field is perpendicular to them), the
contribution to the resistance of the system described
by the first term on the right-hand side of Eq. (16) is
nevertheless an asymmetric function of the magnetic
field direction and is independent of the direction of the
current. The second term in Eq. (16) for parallel E0 and
j0 is completely similar to the first term. If, however, the
embedded field and the current are not parallel, this
term describes, in the Hall geometry, the emergence of
an emf in a direction parallel to the magnetic field pro-
vided that there exists an embedded electric field paral-
lel to the magnetic field. It should be noted that the
absence of a term proportional to γ itself (or to the tor-
oidal moment vector T since γ ∝  T) in expression (16)
for current is a consequence of simplifications (10)
used in the solution of the kinetic equation. Such a term
will be present in the expression for current if the non-
local renormalization of velocity is taken into account
[29].

σik nµ2 E0 °δik⋅ E0iϒk+( ).=
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5. CONCLUSIONS

In this work, we investigated the anomalous (in
respect of asymmetry) magnetic field dependence of
the resistance of a nonhomogeneous quantum-size het-
erostructure. In fact, we proved that macroscopically
inhomogeneous heterostructures are nontrivial physical
objects exhibiting new physical properties which can
be interpreted from the position of macroscopic sym-
metry. In the theoretical part of the present paper (Sec-
tion 4), we described a number of new galvanomag-
netic phenomena which may exist in such systems.
New effects appear as a result of simultaneous action on
charge carriers by external electric and magnetic fields
as well as the internal (embedded) field of the space
charge or contact potential. In our experiments, like in
most other electrophysical and galvanomagnetic exper-
iments, we measured the global characteristics of the
medium (such as the total resistance and conductance)
rather than local characteristics. In this case, a situation
can emerge, in principle, when the directions of the cur-
rent and the magnetic field are not collinear in some
regions in the system with a strictly parallel orientation
of the external magnetic field and the current contacts
due to a nonuniform distribution of the current. The
macroscopic resistance measured in this case is deter-
mined by the longitudinal as well as the transverse (odd
in magnetic field) resistances.

It should be noted that the magnetoresistance asym-
metry relative to the magnetic field was observed ear-
lier in mesoscopic conductors [30] and in faceted het-
erostructures in a nonuniform transverse magnetic field
[31]. This effect in mesoscopic conductors was inter-
preted precisely as the result of contribution of the non-
diagonal (Hall) component to the conductance of the
system being measured [32, 33]. The symmetry of the
system in the case of faceted heterostructures is similar
in many respects to the symmetry of the experiment
described by us here. The role of vector T in this case is
played by the curl of the normal component of the mag-
netic field, which also leads to the asymmetry of the
spectrum relative to quasimomentum [34]. It should be
noted that, in accordance with the concepts developed
in the present work as well as in [6, 23], the asymmetry
of the energy spectrum relative to quasimomentum
must lead, in faceted heterostructures in a tilted mag-
netic field, to the magnetoelectric and photovoltaic
effects described earlier [6, 23] and to the asymmetry of
the longitudinal (non-Hall) component of magnetore-
sistance described in this work. The authors of [31]
interpret the experimental results by using, in fact, the
approach developed for mesoscopic conductors and
indicate the possible curvilinear geometry of the distri-
bution of current, leading to the entanglement of the
longitudinal and the transverse (Hall) components of
magnetoresistance in the observed response as the
mechanism responsible for the effect. It is significant,
however, that in this case (in contrast to the case
described by us here), the effect will depend on the
AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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direction of the transport current. In order to determine
the actual mechanism of the magnetoresistance asym-
metry in faceted heterostructures in a tilted magnetic
field, it would be expedient to carry out more detailed
experiments on samples with different topologies of
contacts, which will make it possible to compare differ-
ent geometries of current spreading.
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Abstract—The field electron emission, structural features, and electronic properties of carbon films obtained
by chemical vapor deposition were experimentally studied. It is shown that the field electron emission from the
films composed of spatially oriented carbon nanotubes and platelike graphite nanocrystals is observed for the
electric field strength lower by one to two orders of magnitude as compared to the values characteristic of the
metal emitters. Experimental data reported for the first time are indicative of a local decrease in the electron
work function in such carbon film materials as compared to that in graphite. A model of the emission center is
proposed and a mechanism of the field electron emission from nanostructured carbon is described. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The main advantages of field (or cold) cathodes in
comparison to the incandescent electron emitters are
the absence of energy losses for the electron excitation,
the high density of the emission current, and the narrow
distribution of the emitted electron beam with respect
to the emission direction and particle velocity [1, 2]. At
the same time, an extremely high electric field strength
(about 100 V/µm) required in most cases for the field
electron emission brings considerable problems in the
cold cathode applications. In particular, such cathodes
have to be manufactured in the form of thin points or
blades (see, e.g., [3]) in order to provide for the neces-
sary local field amplification.

An alternative approach consists in fabricating cath-
odes from semiconductor materials possessing low or
negative electron affinity, which allows the field
strength and, hence, the potential difference between
cathode and anode to be reduced. As a result, problems
related to the damaging effects of ions bombarding the
cathode surface and of the high-strength electric field
are eliminated [4, 5].

A typical example of the semiconductor material
suited for these purposes is offered by diamond. Some
faces of the diamond single crystals are characterized
by a negative electron affinity [6], which provides con-
ditions for the obtaining of cold emission at low thresh-
old values of the field strength in various diamond or
diamond-like materials [7]. Unfortunately, the concen-
tration of free electrons in pure diamond is too low for
the emission current to be sufficiently high. At the same
time, the problem of doping diamonds so as to create
shallow donor levels and increase the free electron con-
1063-7761/01/9304- $21.00 © 20846
centration is still unsolved for various (including funda-
mental) reasons [8].

Alternatively, free electrons in the diamond struc-
ture can be generated under the action of UV or X-ray
radiation, which is analogous to the excitation process
taking place during the photoelectron spectroscopy
measurements (by which, in particular, the negative
electron affinity of diamond was found—see, e.g., [6]).
Electrons can be also injected into the conduction band
of diamond from some other material. The main factors
determining the emission efficiency are related to the
recombination processes and the transport of electrons
to the cathode surface [6, 9].

An analysis of numerous experimental data reported
so far shows that the efficiency of cold emission in dia-
mond materials increases with the content of non-dia-
mond carbon present in the form of extended structural
defects of various origin [10–12] or graphite-like car-
bon inclusions formed at the grain boundaries in poly-
crystalline films obtained by chemical vapor deposition
(CVD) [13, 14] and in graphite–diamond compounds
[15, 16].

Our recent investigations [17–19] of CVD diamond
films showed for the first time that gradual variation in
the ratio of the diamond and graphite-like components
is accompanied by a monotonic decrease in the thresh-
old electric field strength for the field electron emis-
sion. The threshold field strength is one of the main
characteristics of efficiency of the field electron emis-
sion. This threshold was minimum (less than 1.5 V/µm)
for carbon CVD films free of the diamond phase [17–
19]. Neither these low threshold values of the macro-
scopic electric field strength, nor the high densities of
the emission current (up to 100 mA/cm2) and emission
001 MAIK “Nauka/Interperiodica”
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centers (above 106 cm–2) or the parameters of current–
voltage characteristics of the carbon CVD film cath-
odes [17–19] can be explained based on the traditional
field emission theory [1, 2].

In the previously proposed model, the high effi-
ciency of the field electron emission from carbon CVD
films and the low-voltage emission from other carbon
materials were explained by the presence of atomic
clusters with a modified electron structure in the nano-
structured graphite-like carbon phases entering into the
composition of such films and some other carbon-based
emitters. This nanostructured carbon has the form of
nanotubes, platelike graphite nanocrystals, and/or
fullerene-like elements [17–19]. In this study we have
obtained for the first time direct experimental evidence
that the carbon CVD materials contain such clusters
characterized by reduced values of the electron work
function.

2. EXPERIMENTAL

The carbon film samples were prepared by CVD
from a hydrogen–methane (H2 : CH4 ≈ 9 : 1) gas mix-
ture activated by a dc discharge. The experimental film
deposition setup was described in detail elsewhere [20].
The carbon CVD films were deposited onto 25 ×
25 mm2 silicon substrates cut from standard 0.3-mm-
thick single crystal silicon wafers. The substrate tem-
perature during deposition was about 1000°C; the dep-
osition process duration was about 90 min.

The field electron emission from carbon film sam-
ples was studied in the vacuum diode regime. The
anode was a glass plate coated with a transparent con-
ducting indium and tin oxide (ITO) film. The conduct-
ing anode film was covered with a phosphor layer. The
anode-cathode distance could be varied and adjusted
with a micrometric screw drive to within 5 µm. A typical
interelectrode spacing d in the course of measurements
was 200 µm. The average (macroscopic) electric field
strength in the interelectrode gap was calculated as F =
U/d, where U is the potential difference between anode
and cathode. In the plane-parallel electrode configura-
tion, the electric field in the interelectrode gap could be
considered as homogeneous, which significantly sim-
plifies analysis of the experimental data as compared to
the cases of point [21] or spherical anodes [14, 22].

The current–voltage characteristics were measured
using a computer-controlled system, in which the max-
imum emission current was limited (in order to protect
the measuring circuits) on a level of 1 mA. The maxi-
mum possible emission current densities were esti-
mated using special experiments in which the main cri-
terion was a long-term stability of the electron emission
process. The electron-induced cathodoluminescence
from the phosphor layer covering the anode allowed us
to evaluate the distribution of emission centers on the
cathode surface. The images were photographed or
monitored with a video camera.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The Raman scattering spectra were taken and the
electron-microscopic images were obtained using stan-
dard equipment. The photoelectron spectra were mea-
sured on a VG ESCALAB combined spectrometer
(Vacuum Generators Scientific, England). The photo-
electron spectra were excited either by X-ray radiation
with a quantum energy of 1253.6 eV (a characteristic
MgKα emission filtered through an Al foil window) or
by rigid UV radiation with a quantum energy of 21.2 eV
from a gas-discharge HeI source. The energy scale was
calibrated using a freshly cleaved surfaces of gold with
Eb(Au4f7/2) = 84.0 eV and copper with Eb(Cu2p3/2) =
932.7 eV [23, 24].

3. RESULTS AND DISCUSSION

The samples of carbon CVD films studied in our
experiments were prepared under standard conditions
optimized so as to obtain a maximum efficiency of the
field electron emission. Stability of the CVD film tech-
nology employed provided for a good reproducibility
of the results: the parameters measured for several hun-
dred of samples had virtually the same values.

The data of Raman spectroscopy and electron dif-
fraction showed that the CVD film material studied had
a graphite-like structure with a sufficiently high degree
of crystallinity [17–19]. This conclusion was confirmed
by the results of X-ray photoelectron spectroscopy
(XPS) measurements. Figure 1 shows a typical review
XPS spectrum from which we may conclude, in partic-
ular, that the carbon films contain no foreign impurities
except for oxygen, the relative bulk concentration of
which (i.e., the atomic ratio of oxygen to carbon) was
about 1.5 at.% in the analyzed surface layer with a
thickness not exceeding 10 nm. Assuming that the pres-
ence of oxygen is explained by adsorption during the
contact of samples with atmosphere and this oxygen is
localized on the film surface, the surface concentration
of oxygen may reach up to 5–10%. More detailed con-
clusions about the structural features of CVD film
materials could be derived based on the analysis of the
shapes of individual lines in the XPS spectrum.

We performed a comparative analysis of the shape
of the C1s photoelectron lines in the XPS spectra of
carbon CVD films, diamond single crystals, pyrolytic
graphite, and fullerene-like carbon, together with the
spectra of electron energy losses for the C1s line in the
same materials. It was established that the C1s line
shape in the spectrum of CVD carbon is close to that in
the spectrum of pyrolytic graphite, whereas significant
differences were observed between the former spec-
trum and the spectra of diamond or fullerene-like
graphite. Similar conclusions were derived from an
analysis of the spectra of the C KLL Auger electron
transitions in various carbon materials. An analysis of
the shape of these signals is usually employed for the
identification of various forms of carbon. Figure 2
shows an example of such spectra for a carbon CVD
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film, pyrolytic carbon, and diamond. As can be seen,
the best coincidence of the C KLL lines takes pace for
the samples of CVD film and graphite.

The type of the carbon material structure is of deci-
sive importance for explaining the emission properties
of the films. Figure 3 shows a typical current–voltage
(I–V) curve measured in the vacuum diode mode for an
anode–cathode distance of 200 µm. As can be seen
from these data, a threshold macroscopic electric field
strength is below 1.5 V/µm, which is several orders of
magnitude lower as compared to the values typical of
the metal emitters. At the same time, the plot is properly
linearized in the Fowler–Nordheim coordinates, which
is characteristic of the classical field emitters based on
the materials with metal conductivity [1]. Based on the
corresponding theoretical relationships, we may use the
slope of the linear portion of the I–V curve to determine
the effective energy barrier for electrons at the emitter–
vacuum interface (see, e.g., [3, 14, 17–19, 22]). How-
ever, this would require the knowledge of the local elec-
tric field strength, which may strongly differ from the
macroscopic value as a result of the field concentration
on the microscopic points or the other like structures on
the cathode surface. Our previous estimates showed
that materials possessing an electron work function
analogous to that of the conventional graphite are char-
acterized by the field amplification on the order of 5 ×
103 to 104 [17–19]. However, such a large field amplifi-
cation contradicts the base assumptions of the Fowler–
Nordheim theory formally employed to derive the esti-
mates. Moreover, direct experimental observations of
the surface morphology with the aid of electron micros-
copy give evidence for a much lower role of the geo-
metric factor in the field amplification.

For example, Fig. 4 presents an image of the surface
structure of a carbon CVD film examined in a transmis-
sion electron microscope (TEM). The film surface
region observed in this image contains the formations
analogous to the carbon nanotubes and platelike graph-
ite nanocrystals. Using high-resolution TEM measure-

Fig. 1. A review XPS spectrum of a carbon CVD film.
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ments, we demonstrated previously [25] that the above
nanostructures are composed of the well ordered
atomic layers of a graphite-like carbon. A characteristic
feature of these structures is the predominant orienta-
tion of their atomic layers perpendicularly to the sub-
strate plane. The characteristic diameter of the nano-
tubes and the grain size is about D ~ 20 nm. The film
thickness, measured from the substrate to the upper
boundary of a dense layer of the platelike graphite crys-
tals is about 4 µm. The length of the nanotubes protrud-
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Fig. 2. The C KLL Auger electron line in the XPS spectrum
of (1) diamond, (2) pyrolytic graphite, and (3) carbon CVD
film.
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Fig. 3. A typical current–voltage characteristic plotted in the
Fowler–Nordheim coordinates for a vacuum diode with
cold cathode based on the carbon CVD film. The inset
shows the same curve plotted in different coordinates.
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001



 

J

       

REHYBRIDIZATION OF THE ATOMIC ORBITALS AND THE FIELD ELECTRON EMISSION 849

                                
1 µm

Fig. 4. A TEM micrograph of the surface of a graphite-like carbon CVD film.
ing above the film surface usually does not exceed H ~
1 µm.

Based on these characteristic dimensions, the coef-
ficient of the geometric field amplification can be esti-
mated by the order of magnitude as D/H ~ 50. Taking
into account that the size of the effective emitting area
on the nanotube surface may be significantly smaller
than the total area, the real field amplification coeffi-
cient can be somewhat greater. At the same time, the
screening effect of the adjacent tubes must reduce the
field amplification. It should be also noted that the
shape of the upper part of the nanotubes formed on the
carbon CVD film surface may also vary. Besides the so-
called open tubes, there can also exist the closed tubes
with spherical or cone-shaped tips and various den-
drite-like structures (see Fig. 4) [25]. Our observations
revealed no correlations between the shape of the nan-
otubes and nanocrystals in the CVD films and their
electron emission properties.

Thus, the field amplification coefficient determined
from direct experimental observations turned to be sig-
nificantly lower as compared to the estimates based on
the assumption that the electron work function for a
carbon CVD film is close to the value for a usual graph-
ite. In order to determine the possible difference in the
electron work function between the CVD films and
graphite, we used the method of secondary electron
yield spectroscopy.

Figure 5 shows several secondary electron yield
spectra measured in the range from 0 to 20 eV. The sec-
ondary-electron signal was excited by X-ray radiation
and measured by applying a bias potential to a sample
in order to separate the electrons emitted from the sam-
ple and the analyzer. As is seen in Fig. 5, there are two
OURNAL OF EXPERIMENTAL AND THEORETICAL PHY
groups of secondary electrons. The energy shift toward
greater kinetic energy for one of these groups exactly
corresponds to a bias potential applied to the sample.
For the other peak, the shift is about 30% of the corre-
sponding additional energy value. We may suggest that
the secondary electrons in the two groups emitted from
the sample under the action of the X-ray radiation have
different origins. Electrons in the first (high-energy)
group are apparently due to excitation of the intrinsic
conduction electrons, while the second (low-energy)
group is emitted as a result of a two-step process. In the
first step, an X-ray quantum is absorbed that leads to the
electron–hole pair production. This is followed by the
electron emission leading to the formation of a fixed
positive charge in a near-surface layer of the sample.

15
E, eV

0 5 10 20 25

1

2

3 4

5

Fig. 5. X-ray-excited secondary electron yield spectra mea-
sured for various values of the bias potential applied to a
carbon CVD film sample: (1) 0; (2) –2; (3) –8; (4) –10;
(5) −15 V.
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The electric field of the latter positive space charge
accounts for the partial decrease in the kinetic energy of
electrons emitted from sample into vacuum. In the lat-
ter case, the electron emission efficiency is determined
by the exciting radiation intensity and by the rate of
uncompensated hole recombination. This recombina-
tion rate may be rather insignificant if the electron
emission and the hole production processes are related
to the structures with localized electron densities. The
dependence of the emission efficiency on the exciting
radiation intensity explains the fact that the UV radia-
tion excites only electrons of the first type, the energy
distribution of which shifts precisely in accordance
with the applied bias potential (Fig. 6).

A comparative analysis of the secondary electron
yield spectra measured using the UV excitation showed
that the energy distribution of the secondary electrons
emitted from carbon CVD films exhibits a “shoulder”
on the low-energy side, which is not observed in the
analogous spectrum of crystalline graphite. For better
illustration, Fig. 7 shows the low-energy regions of the
spectra taken from Fig. 6 and reduced to a common
kinetic energy zero. The low-energy shoulder in Fig. 7
corresponds to region C, which was observed only in
the secondary electron yield spectra of CVD films; the
two other characteristic regions (A and B) were
observed in the spectra of all other samples containing
a graphite-like carbon fraction. As can be seen in Fig. 7,
the low-energy shoulder in the electron energy distribu-
tion appears only at a certain threshold value of the bias
potential applied to the CVD sample. Lower energies of
these secondary electrons correspond to a lower elec-
tron work function, while a relatively small fraction of
such electrons is indicative either of an insignificant

5

1

E, eV
10 15 20 25

2

3

4 5

6

7

Fig. 6. UV-excited secondary electron yield spectra mea-
sured for various values of the bias potential applied to a
carbon CVD film sample: (1) 0; (2) –2; (3) –4; (4) –6; (5) −8;
(6) –10; (7) –15 V.
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density of the corresponding emitting centers or of their
partial screening (which decreases with increasing the
bias potential). A nonmonotonic character of the depen-
dence of the low-energy electron fraction on the bias
potential may be related to expanded angular distribu-
tion that was not monitored in our experiments.

A similar effect was observed in the spectra excited
by the X-ray radiation. Figure 8 shows two secondary
electron yield spectra comparing a CVD film and a
pyrolytic graphite sample measured with the same bias
potential of –8 V. By approximating the low-energy
region of these spectra with straight lines, we may esti-
mate the corresponding threshold energies P1 and P2.
These energies proved to be the same for low-energy
electrons in the materials of both types. As noted above,
these electrons are emitted from the localized states
related to structural defects. The cutoff energy of the
high-energy electrons emitted from unlocalized states
is approximately 1 eV lower in CVD films as compared
to the graphite samples. This decrease in the threshold
energy is indicative of a reduced electron work function
on a certain part of the CVD film surface.

Additional evidence for the presence of surface
structures with reduced electron work function is pro-
vided by comparison of the secondary emission effi-
ciency, which usually increases with decreasing work
function. Figure 9 shows the secondary electron yield
spectra for graphite and a CVD film measured with a
bias potentials of 0 and –8 eV applied to the samples. In
contrast to the graphite sample, the CVD film (nano-
structured) material exhibit a significant increase in the
secondary electron yield upon application of the addi-
tional potential. This result indicates that the structures
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1
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4
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Fig. 7. Low-energy regions of the UV-excited secondary
electron yield spectra measured for various values of the
bias potential applied to a carbon CVD film sample: (1) 0;
(2) –2; (3) –4; (4) –6; (5) –8; (6) –10; (7) –15 V. The cutoff
energies for all spectra are reduced to a common zero level.
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with reduced electron work function are not manifested
unless an additional potential is applied, which is
related to the existence of a threshold determined by the
work function of the electron analyzer in the spectrometer
employed. An increase in the secondary electron emission
upon application of the additional bias potential may take
place in the presence of structures possessing a lower elec-
tron work function, and no such change must be observed
in the absence of these structures.

Thus, the results of our investigation showed evi-
dence for the presence of elements with reduced elec-
tron work function (in comparison to the usual carbon-
based materials) in the carbon CVD films. According to
the assumptions made previously [18, 19, 25], these
structural elements may represent the clusters compris-
ing double atomic chains localized in the bending
regions of graphite-like atomic carbon layers. In carbon
nanotubes, such chains may be arranged along the side
surface. In platelike nanocrystals, these chains may be
align in the direction of sharp edges. The presence of
such clusters with reduced electron work function pro-
vides a self-consistent explanation both for the low-
voltage field electron emission and for a number of
other phenomena observed in nanostructured carbon
materials, including cathodoluminescence [26] and a
light emission accompanying the field electron emis-
sion [27].

According to the above assumptions, an emission
center on the surface of a nanostructured carbon mate-
rial can represent a single bent atomic layer or several
such layers (Fig. 10). The graphite bonds between most
part of the carbon atoms in such structural elements

1

15
E, eV

5 10 20 25

2

P1

1

2

P2

∆P1 ~ 1 eV

Fig. 8. The X-ray-excited secondary electron yield spectra
of (1) a carbon CVD film and (2) a pyrolytic carbon sample
measured for the same bias voltage of –8 V. The figure illus-
trates the method used for determining the electron cutoff
energy.
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provide for the high electric conductivity. The presence
of clusters with modified electron properties on the
graphite surface accounts for a change in the energy
barriers at the emitter–vacuum interface, which is illus-
trated by the energy band diagram in Fig. 10. The den-
sity of electron states for atoms in the clusters must dif-
fer significantly from that characteristic of a semimetal-
lic graphite with a zero bandgap.

0
E, eV
10 20

(b)(a)

0
E, eV

10 20

Fig. 9. A comparative of the secondary electron emission
yield spectra of (a) a carbon CVD film and (b) a pyrolytic
carbon sample measured for a zero bias voltages (solid
curve) and for –8 V (dashed curves).

Fig. 10. Schematic diagrams illustrating (a) the proposed
model of the emission center in a nanostructured carbon
material and (b) the corresponding energy band diagram in
the presence of an applied electric field F = βU/d (β = D/H);
E0 and E1 are the energy levels bounding the bandgap in the
electron density of states of the carbon clusters; Evac is the
vacuum level; EF is the Fermi level. Dashed lines show the
energy band diagram of the usual graphite.
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The most important difference is the appearance of
a bandgap in the density of states, which is bounded
from above and below by the energy levels E1 and E0,
respectively. As indicated previously [17–19] it is natural
to suggest that the width of this bandgap is about 4 eV.
When an external electric field is applied to this heteroge-
neous structure, electrons are injected from the graphite-
like region into a near-surface layer possessing character-
istics equivalent to those of a wide-bandgap material, the
surface of which may be expected to exhibit a low or neg-
ative electron affinity (analogous to those observed in dia-
mond). A thickness of the transition region between the
graphite-like and diamond-like parts of this emitting
center does not exceed several lattice constants, which
accounts for the effective electron transport in this
structure.

The proposed model of the emitting center and the
mechanism of the field electron emission are not spe-
cific of the CVD films of the particular type studied.
Analogous mechanisms can explain the other experi-
mental observations of the low-voltage electron emis-
sion from various carbon-based materials composed of
or containing nanostructured graphite-like elements in
the form of nanotubes and/or nanocrystals. Besides the
polycrystalline diamond films, diamond–graphite com-
pounds [5, 7, 9–16], and carbon nanotubes as such [22,
27], materials of this type may include the amorphous
carbon films composed of fullerene-like elements [28],
carbon fibers [29, 30], and powdered [31] or disordered
graphite [32], etc.

4. CONCLUSION

The experimental data presented above confirm our
previous suggestions concerning the presence of clus-
ters with diamond-like interatomic bonds in nanostruc-
tured graphite-like carbon materials. A local decrease
in the electron work function in the region of such clus-
ters favors a decrease in the threshold value of the elec-
tric field strength for which the field electron emission
takes pace. The proposed model of the emission center
and the mechanism of the field electron emission
explain a number of effects observed in various carbon
materials, which are indicative of important distinc-
tions from the field emission phenomena observed for
metal cathodes.
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Abstract—We theoretically analyze the collective oscillations of 2D electrons in nanotubes. In the presence of
a magnetic field parallel to the tube axis, the plasmon frequencies undergo Aharonov–Bohm oscillations. The
effect can manifest itself in infrared absorption and in Raman scattering. We calculate the cross sections for
inelastic light scattering by plasmons. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nanotubes (and quantum rings) occupy a prominent
place among the objects studied by modern physics of
low-dimensional systems because of their topological
peculiarities. Since the region of electron motion is not
simply connected, peculiar effects result (in the pres-
ence of a magnetic field), in which the phase of the
wave function proves to be observable. All these effects
are the derivatives of the well-known Aharonov–Bohm
effect.

In a magnetic field parallel to the nanotube axis, the
single-particle spectrum depends on magnetic flux as

(1)

where µ is the effective mass, a is the cylinder radius,
"q is the momentum along the axis, φ is the number of
magnetic-flux quanta inside the tube, and m = 0, ±1,
±2, … is the azimuthal quantum number. This depen-
dence of Em on φ results in oscillations in macroscopic
properties of the nanotube, for example, in conductivity
[1] or magnetic moment [2]. In both cases, macroscopic
manifestations of the properties of charge-carrying ele-
mentary excitations that obey Fermi statistics or, more
simply, the electron behavior are considered.

Recently, a number of authors [3] have shown that
Aharonov–Bohm oscillations also take place for a neu-
tral object—an exciton in a quantum ring. The possibil-
ity of an electron and a hole tunneling toward each
other along the ring leads to oscillatory dependencies of
the exciton binding energy and formation probability
on magnetic flux.

In all the above examples, the oscillation period is
universal and equal to the flux quantum φ0 = hc/e. How-
ever, as was shown by Chaplik [4], this universality
breaks down for a charged exciton (trion). Its binding

Em q( ) "
2q2

2µ
----------= B m φ+( )2, B+

"
2

2µa2
------------,=
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energy oscillates with flux with a period that depends
on the ratio of the effective electron and hole masses.

It seems of interest to explore the possibility of
oscillation effects in the collective excitations of an
electron system in nanotubes. Here, we show that Bose
neutral elementary excitations (plasmons) are also
characterized by oscillatory dependencies of their
parameters on magnetic flux, i.e., they exhibit the Aha-
ronov–Bohm effect. This effect manifests itself in nan-
otube optical properties and can thus be observed in
experiments that require no electrical contact with the
objects being studied.

We consider two types of nanotubes: semiconductor
hollow cylinders (for example, self-assembled quantum
rolls [5]) and carbon nanotubes. For the former, we use
a standard parabolic dispersion law of two-dimensional
electrons that leads to formula (1) in a magnetic field.
For the latter, we take a conical dispersion law of two-
dimensional graphite [6] as the initial one:

where q is the two-dimensional (2D) vector in the plane
of the graphite sheet, and V0 is a parameter of the order
of the electron velocity in the atom.

Below, we derive the dispersion law for plasma
oscillations, the dependence of the plasmon frequency
on magnetic flux in a magnetic field parallel to the nan-
otube axis, the infrared absorption spectrum, and the
cross section for inelastic light scattering by plasmons
in nanotubes.

2. PLASMA OSCILLATIONS FOR φ = 0; 
THE COLD-PLASMA APPROXIMATION

In the simplest theory of plasma oscillations, the
spatial dispersion is ignored, which is equivalent to
ignoring the particle velocity distribution (cold
plasma). The corresponding criterion for a degenerate

E±
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plasma is ω @ kVF, where ω and k are the frequency and
wave vector of the plasma wave, and VF is the Fermi
velocity. In this case, the system of equations for
plasma oscillations (without retardation effects) is

(2)

Here,  and js are an addition to the particle surface
density and the surface current, respectively; σ is the
two-dimensional conductivity; and ϕ is the electric
potential. For parabolic dispersion and in the collision-
less approximation,

where Ns is the equilibrium electron surface density.
Solving system (2) in cylindrical coordinates yields the
dispersion of a plasmon with momentum k along the
nanotube axis and with azimuthal moment m:

(3)

where Im and Km are, respectively, the Bessel functions
of the first and third kinds of an imaginary argument.
The dispersion law (3) gives the correct asymptotics.

(i) In the long-wave limit, ka ! 1, for an axially
symmetric plasmon (m = 0):

(4)

where C is the Euler constant, and NL = 2πaNs is the lin-
ear electron density;

(ii) In the shortwave limit, ka @ 1, m @ 1:

(5)

which corresponds to a 2D plasmon with the momen-
tum components (k, m/a).

Equation (4) represents a standard dispersion law
for a one-dimensional plasmon (for example, in a quan-
tum wire), which usually includes the cutoff size under
the logarithm known only in order of magnitude. As we
see, the result for a nanotube is completely definite,
including the numerical coefficient under the loga-
rithm.

The logarithmic singularity of ω(k) when m = 0 and
k  0 formally corresponds to an infinite group
velocity, which is, of course, unfeasible. At low k, the
retardation effects (transverse fields) must be taken into

∆ϕ 4πeδ ρ a–( )Ñs,–=

eÑ
˙

s divjs+ 0, js σ∇ϕ ρ a= .–= =

Ñs

σ
iNse
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2 2πe2Ns
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account. This requires solving the Maxwell equations for
the scalar and vector potentials instead of system (2):

(6)

As a result, the dispersion law is given by Eq. (3), in
which the following substitution must be made:

For m = 0 at ka ! 1, we have

(7)

Thus, we have ω ≈ ck when k  0, but the domain
of existence of this asymptotics is exponentially small,
of the order of

Let us now consider the dispersion with a conical
point. Depending on the method of rolling up the
graphite sheet, the nanotube can have either semicon-
ductor or metal band structure. In the latter case, the
gap in the single-particle spectrum vanishes at q = 0,
while the density of states remains finite at this point;
the azimuthal quantum number of the electron is zero,

and  = ±"V0|q|, where the “+” and “–” signs refer to
the conduction and valence bands, respectively.

Clearly, for a nonzero gap in the electron spectrum,
the pattern of plasma oscillations does not differ quali-
tatively from that for the parabolic dispersion consid-
ered above. Therefore, we consider in more detail only
the metal band structure, for which nontrivial singular-
ities appear in the plasmon parameters.

We assume that only the zeroth (in azimuthal quan-
tum number) one-dimensional subband is occupied.
For a degenerate system, this implies a constraint either
on the dopant density,

or on the donor energy level (which is positive for con-
ical dispersion),
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For an intrinsic conductivity, the temperature must be
low enough, T ! "V0/a. An expression for the nanotube
conductivity can be easily derived from the collision-
less kinetic equation if the dispersion law is linear:

(8)

All relations (2) hold, and we find the plasmon fre-
quency for degenerate electrons to be

(9)

It can be shown that the square of the plasma frequency

for an arbitrary ωp/kV0 is k2  + , with  defined
in (9).

This is the case for doped carbon nanotubes at a zero
temperature. Without doping and at a finite tempera-
ture, there is an intrinsic two-band conductivity. The

quantity  is proportional to f(0), the value of the
Fermi function at E = 0. f(0) = 1 in a degenerate system
at a zero temperature and f(0) = 1/2 for a nanotube with
an intrinsic conductivity, because the chemical poten-
tial is zero at any temperature (the conical dispersion
law!). The factor 1/2 is compensated for, because elec-
trons and holes contribute equally to the conductivity,
and we again derive a plasmon dispersion law in the
form (9). Its characteristic (and, at first glance, paradox-
ical) feature is that the plasma frequency is independent
of the carrier density. The same is also true for the con-
ductivity (8). The reason can be easily understood if we

note that both  and σ are proportional to NL/µ for
parabolic electron dispersion. Conical dispersion can
be formally obtained if the effective mass µ itself is
assumed to depend linearly on q. In that case, its value
at the Fermi level (degenerate gas) or the mean temper-
ature value (nondegenerate gas) enter into the formulas

for  and σ. The parameter NL matches the Fermi
wave vector, to within a numerical factor, and is propor-
tional to T/"V0 in a nondegenerate system. Thus, in
both cases, the dependence on NL is eliminated from the
formulas. This is because the density of states in a one-
dimensional subband is constant for a zero azimuthal
number.

It is well known that carbon nanotubes can form
coaxial structures with different numbers of nested cyl-
inders. The probability of electron transitions between
them is negligible, but the coupling through electric
fields of plasma oscillations causes the number of
branches of the plasmon spectrum to increase (an ana-
log of a planar multilayer structure). For example, in
the case of two coaxial nanotubes, two branches corre-
sponding to in-phase and out-of-phase oscillations

σ
ie2V0

π2
"aω

----------------= .

ωp
2 4e2V0k2

π"
-------------------K0 ka( )I0 ka( ), ωp ! kV0.=

V0
2 ωp

2 ωp
2

ωp
2

ωp
2

ωp
2
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(optical and acoustic plasmons) emerge:

(10)

Here,

a and b are the radii of the two nanotubes with b > a,
and ωpa and ωpb are their individual plasma frequencies.
The “+” sign before the square root in (10) corresponds
to an optical plasmon, and the long-wave asymptotics

ω+ ∝  k  at m = 0. The second branch for the ka,
kb ! 1, m = 0, obeys a linear dispersion law, ω– ∝
k . At m ≠ 0, both frequencies ω+ and ω– tend
to the constant values that correspond to intersubband
transitions with a depolarization shift (see below) when
k  0.

3. EFFECTS OF A MAGNETIC FIELD

A magnetic filed can affect the plasmon dispersion
law only via the constitutive equations (current–field
relation). If, as was done in Section 2, the conductivity
is assumed to be classical, then a longitudinal magnetic
field for parabolic dispersion cannot change the orbital
motion of 2D electrons on the cylinder surface, and,
therefore, σ does not depend on the field. The influence
of a magnetic field (or, to be more precise, magnetic
flux φ) shows up only when quantum effects are taken
into account. The dependence of energy on φ given by
Eq. (1) transforms to a dependence of the Fermi level
and polarization operator on magnetic flux. With an
allowance for the spatial dispersion of conductivity, an
oscillatory dependence of the plasma frequency on φ
(the Aharonov–Bohm effect for plasmons) arises.

We begin with a symmetric plasmon with m = 0.
Calculating the polarization operator

(11)

and solving the Poisson equation yields the dispersion
equation

(12)

where
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Fig. 1. Fermi energy of degenerate electrons on the nanotube surface versus magnetic flux: (a) a parabolic dispersion law and (b) a
conical dispersion law.
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Fig. 2. Plasmon frequency at m = 0 versus magnetic flux (parabolic dispersion): ka = 0.1 (a) and 1.0 (b).
the Fermi energy must be derived from the equation

(13)

The summation over m' in (12) and (13) is con-
strained by the requirement that the radicands be posi-
tive. An analytic (and relatively simple) answer can be
obtained in the approximation of weak spatial disper-
sion, ω @ kVF(m') for all admissible m'. Expanding in
(12) in kVF/ω and applying the Poisson summation for-
mula yields

(14)

Here,

is the oscillation-averaged Fermi level. The second
term in (14) has a relative smallness of the order of

"NL
2 2µ

π
--------------= EF B m ' φ+( )2– .

m '

∑

ω2 2e2k2NL

µ
--------------------≈ K0 ka( )I0 ka( ) 3 kVF( )2

2π2NLa
--------------------+

× J2 2πl
EF

B
------ 

  2πlφ( )cos

l2
-------------------------.

l ∞–=

∞

∑

EF
µVF

2

2
----------

2π"
2Ns

µ
------------------= =
JOURNAL OF EXPERIMENTAL 
a*/a|ln(ka)|, where a* = "2/µe2 is the effective Bohr

radius (this is the parameter k2 /ω2 for ω of the order
of the frequency of one-dimensional plasma oscilla-
tions, which is given by the first term in Eq. (14)). Thus,
when spatial dispersion is taken into account, the plas-
mon frequency oscillates with magnetic flux with the
period ∆φ = 1.

For an arbitrary value of kVF/ω, we calculated ω(φ)
numerically. Figure 1 shows a plot of Fermi energy
against magnetic flux within one period. The electron
density was chosen in such a way that no more than two
subbands were occupied at any φ (for φ > 0, these are
the pairs m' = 0 and m' = –1; m' = –1 and m' = –2; and
so on). Under the same conditions, Fig. 2 shows ω(φ)
for two values of the wave vector. As must be the case,
the magnetic dispersion of the plasmon frequency is
enhanced with increasing ka.

The results are qualitatively different for conical
quasi-particle dispersion. In this case, including a mag-
netic field opens a gap in the dispersion law for a nano-
tube with a “metal-type” spectrum:

(15)

VF
2

E0
±

"V0 q2 φ2

a2
-----+ .=
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As a result, the diagonal velocity element along the
axis and the nanotube classical conductivity depend on
magnetic flux even in the lowest approximation in
kV0/ω:

(16)

This leads to a more complex dependence of the
plasma frequency on φ, as illustrated by Fig. 3 for three
values of ka. The linear density NL again corresponds to
the occupation of no more than two subbands.

Azimuthally nonuniform oscillations (m ≠ 0) are
similar to intersubband 2D plasmons in quantum films.
These are in fact transitions between subbands, m' 
m' + m, with Coulomb effects (depolarization shift).
Since the general case with k ≠ 0 and m ≠ 0 is described
by cumbersome formulas, we restrict our analysis to a
purely transverse plasmon (k = 0). The corresponding
equation for Π in the case of parabolic dispersion is

(17)

where EF can be determined from Eq. (13). Π is clearly
periodic in φ with the same period ∆φ = 1. Figure 4
shows plots of the intersubband-plasmon frequencies
against magnetic flux for m = ±1 in the range 0 < φ <
1/2, which corresponds to one half-period [EF is an
even function of φ, ].

The density NL was chosen in such a way that only
the m' = 0 and m' = –1 subbands were occupied as φ var-
ied over the above range; this requires that the condition
πNLa < 2 be satisfied. The break in the plot corresponds
to the onset of the m' = –1 subband occupation.

For conical dispersion, the case with m ≠ 0 is quali-
tatively similar to that considered above.

4. INTERACTION OF PLASMONS
WITH ELECTROMAGNETIC RADIATION

4.1. Infrared Absorption

An electromagnetic wave linearly polarized along
the nanotube axis produces an axially symmetric per-
turbation (m = 0). This wave can be absorbed by m = 0
plasmons if its electric field is modulated in the axis
direction with a period L. This is usually achieved with
a one-dimensional grating structure. The absorption-
line frequency is then equal to the frequency of a plas-
mon with k = 2π/L. Given the electron scattering, the
absorption at the line center per unit surface area is [7]

σ0/2, where E0 is the amplitude of the wave electric
field, and σ0 = e2Nsτ/µ is the nanotube static surface

σ
ie2NLV0

π"ω
-------------------- 1

πaNL( )2 φ2+
------------------------------------.=

Π k 0= m,( ) 2µm2

π2a"B
-----------------=

×
EF B m ' φ+( )2–

m4 2mm ' 2mφ ω/B–+( )2–
------------------------------------------------------------------,

m '

∑

Π φ ω,( ) Π φ– ω–,( )=

E0
2
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conductivity (Ns is the surface density, and τ is the
momentum relaxation time).

No modulation is required when the wave is polar-
ized perpendicular to the tube axis: a uniform field
excites the ∆m' = ±1 transitions; i.e., intersubband plas-
mons with m = ±1 are produced in the system. With an

0
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ωa/V0

0.4 0.8
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(b)

0.52
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(a)

0.22
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0.50

0.20

Fig. 3. Plasmon frequency at m = 0 versus magnetic flux
(conical dispersion); ka = 0.1 (a), 0.3 (b), and 1.0 (c).
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Fig. 4. Frequencies of single-particle transitions (dashed
lines) and intersubband plasmons with a depolarization
shift (solid lines) versus magnetic flux; a = 70 Å and NL =
3 × 105 cm–1.
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allowance for the depolarization effects, absorption fre-
quency is plotted against φ in Fig. 4.

In conclusion, recall that the above discussion per-
tains to intraband transitions. For carbon nanotubes,
these transitions are as follows:

The absorption that is attributable to E+  E– transi-
tions and that is unrelated to plasma effects was consid-
ered in [8]. The Aharonov–Bohm effect that results
from a periodic dependence of the ground-state energy
on magnetic flux also shows up in this case.

4.2. Inelastic Light Scattering

The plasmon contribution to inelastic light scatter-
ing is commonly observed in the geometry of parallel
polarizations of the incident (e1) and scattered (e2) pho-
tons; the amplitude of the process is proportional to
e1 · e2. The corresponding cross section is determined
by the density-density correlator. The latter, in turn, is
related to the generalized susceptibility α, which gives
a response of the system to a scalar perturbation of the
form exp(ik · r) with allowance for the self-consistent
field.

For a fixed transfer of the photon momentum with
components k⊥  (in a plane perpendicular to the nano-
tube axis) and k (along the axis), the scattering cross
section is the sum of partial contributions σm(k) whose
relative weights are determined by the coefficients of
the expansion of a plane wave exp(ik⊥  · r) in terms of
cylindrical harmonics:

(18)

where the subscripts 1 and 2 denote, respectively, the
incident and scattered photons; l is the nanotube length;
m0 is the mass of a free electron; n(ω) are the Bose
occupation numbers, and Jm is the Bessel function. We
also included the amplification factor F(ω1) in the for-
mula, because Raman scattering is commonly observed
at resonance, when the frequency ω of the exciting light
is close to a particular interband transition. In A3B5
semiconductors for resonance with a spin-orbit split-off
band (see [9]),

where pcν is the interband momentum matrix element,
and ∆ is the resonance detuning. The partial susceptibil-
ity αm(k, ω), which gives a response of the density to a
scalar perturbation fmeimϕ with moment m, can be calcu-
lated by adding –∇ f/e to the electric field in the formula

Em '
+ q( ) Em ' m+

+ q k+( ).

d2σm

dΩdω
--------------- 2al

ω1

ω2
------ e2

m0c2
-----------

 
 
  2

n ω( ) 1+( )=

× Jm k ⊥ a( ) 2Imαm k ω,( ) e1 e2⋅( )2F ω1( ),

ω ω1= ω2,–

F pcν
4/9m0

2∆2,=
JOURNAL OF EXPERIMENTAL 
for current js and by solving system (6). As a result, we
obtain

(19)

This expression for α corresponds to the cold-plasma
approximation,

Apart from the plasmon pole, αm(k, ω) has a bifur-
cation point at R = 0, i.e., at ω = ck. As in the two-
dimensional case (see [10]), the high-frequency wing in
the Raman scattering spectrum at ω > ck corresponds to
this bifurcation. The imaginary part of α, which gives
the wing intensity distribution, is

(20)

where

and the argument of all Bessel functions is

.
Intersubband transitions (m ≠ 0) are excited during

inelastic light scattering with k⊥  ≠ 0. At k⊥ a ! 1, the
cross sections for such processes rapidly decrease with
increasing m: σm ∝  (k⊥ a)2m. In the presence of a mag-
netic field, the polarization operator should be substi-
tuted for the classical conductivity σ in Eq. (19):

(21)

In that case, the peaks in the partial cross sections as
functions of ω are determined by resonances on inter-
subband plasmons and shift as the magnetic flux
changes (see Fig. 4). The amplitudes of these peaks,
i.e., the partial cross sections themselves, are also peri-
odic functions of φ.

Thus, we have shown that the basic parameters of
plasma waves in nanotubes oscillate with magnetic flux
with a period φ0. For a longitudinal, axially symmetric
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plasmon, this dependence emerges only beginning with
terms of the order of (ω/kVF)2 in the dispersion law.
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The Doubling of the Anomalous Magnetic Moment of Electron
in a Very Strong Constant Homogeneous Electric Field¶
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Abstract—Calculated by the author previously [8], the anomalous magnetic moment (AMM) of the electron
in an intense constant electric field changes nonmonotonically as the field increases, passing through a mini-
mum and tending to the doubled Schwinger value for very strong fields. In the present paper, it is supposed that
the AMM is related by the Lande factor to the angular momentum of a virtual electron accompanied by a virtual
photon. This factor changes its effective value because of the influence of the external field on the motion of the
virtual electron and its self-action. With increase of the electric field strength, the virtual electron can succes-
sively occupy the excited states l = 1, j = 1/2 and l = 1, j = 3/2 in addition to the original state with the orbital
angular momentum l = 0 and the total angular momentum j = 1/2. The first of these excited states decreases the
AMM and the second increases and doubles it if only this state is occupied for a very strong field. The latter
condition is equivalent to the alignment of the spin and the orbital angular momentum of the electron along the
field, while the total angular momentum of the entire system of the virtual electron and the virtual photon
remains equal to 1/2. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The purpose of this paper is to draw attention to an
interesting dependence of the anomalous magnetic
moment of electron on the intensity of the external con-
stant homogeneous electric field. The dependence of
the AMM on the constant magnetic or crossed field was
considered by Demeur [1], Newton [2], Ternov et al.
[3], Ritus [4], Jancovici [5], Tsai Wu-yang and Yildiz
[6], and Baier et al. [7]. It was shown that the AMM
tends to zero for a very strong magnetic or crossed field.
The dependence of the AMM on the constant electric
field cannot be obtained from its dependence on the
magnetic field by the analytic continuation H2  –E2

because of the nonanalyticity at zero field.

In my paper [8], the eigenvalue of the mass operator
of electron in a constant homogeneous electromagnetic
field of an arbitrary intensity was found. In particular,
this eigenvalue, or more precisely, the corresponding
elastic scattering amplitude involves the dependence of
the AMM ∆µ on the electric and magnetic fields. If one
keeps only the dependence on the electric field ε and
confines oneself to the state with p⊥  = 0, the ratio of ∆µ
to the Bohr magneton µ0 is given by

(1)∆µ
µ0
-------

α
π
---J β( ), β " eε

m2c3
------------,= =

¶This article was submitted by the author in English.
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where β is the electric field ε in characteristic QED
units and

(2)

It was shown that in a weak field (β ! 1),

(3)

and in a strong field (β @ 1),

(4)

where γ = 1.781… and ζ(3) = 1.202… .
Thus, as the field increases, the AMM first decreases

from the Schwinger value α/2π, reaches a minimum,
and then increases and approaches the doubled
Schwinger value α/π.

J β( ) 1 I β( ),–=

I β( )
1
β
--- y y/β( )φ y( ),sind

0

∞

∫=

φ y( )
xu2d

x 1 u+( )2
----------------------,

y

∞

∫=

u x x y–( )coth xcoth–[ ] .=

J β( ) 1
2
---

4
3
---β2 γ

2β
------ln 23

12
------– 

 –=

–
128
3

---------β4 γ
2β
------ln

81
70
------ζ 3( )– 209

1120
------------– 

  …+

J β( ) 1
π

4β
------ 2β

γ
------ 1–ln 

 – …,+=
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This intriguing dependence is also confirmed by the
numerical calculation of the integral J(β), see Figs. 1
and 2. The minimum of J(β) is located at β ≈ 0.179 and
is equal to J(0.179) ≈ 0.49040.

The most striking property of J(β) is the doubling of
this function and of the AMM in the strong-field limit
compared to its value in the weak-field limit,

(5)

In all other fields (magnetic, crossed) the AMM turns
into zero in the strong-field limit.

Another interesting property of J(β) is its nonmono-
tonic dependence with one minimum.

The formula for the AMM is nothing else than the
Fourier sine transform of the function φ(y). This func-
tion has a maximum at zero, which is equal to 1/2, and
monotonically decreases to zero as y  ∞,

(6)

Qualitatively, a similar nonmonotonic behavior for J(β)
with the minimum at β ~ 1 and the doubling at infinity,
J(∞) = 2J(0), would be given by the Gaussian

J ∞( )
J 0( )
----------- 2.=

φ y( ) 1
2
--- y2 2

3
--- 1

2y
------ln 5

18
------– 

 –=

– y3 1
3
--- 8π2

45
--------+ 

  …, y ! 1,+

φ y( )
1

2y
------ 2y 1–ln( )=

–
1

8y2
-------- 2yln

2
8 2y

π2

3
----- 4+ +ln– 

  …, y @ 1.+

φ y( )
1
2
---e y

2–=

0.1

1

I(β) = 1 – J(β)

β

0.2

0.3

0.4

0.5

2 3 4 5 60

Fig. 1.
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and the Lorentzian

functions of y.

We consider the physical meaning of the function
φ(y) and its argument.

2. THE MASS OPERATOR OF ELECTRON
IN A CONSTANT ELECTROMAGNETIC FIELD

The law of motion of a relativistic classical charge
in the homogeneous constant electromagnetic field Fαβ
can be written as

(7)

where xα(s) is the charge 4-coordinate depending on the
proper time s and xα(0) and πα(0) are the initial 4-coor-
dinate and the kinetic 4-momentum respectively. In a
Lorentz system where the electric and magnetic fields
are parallel, the electron moves along a helical line with
alternating pitch whose rate of change is defined by the
electric field and the period of revolution is defined by
the magnetic field.

Quantum motion of the electron in an external field,
with the radiative corrections taken into account, is
described by the Dirac wave equation with the mass
operator. Roughly speaking, the mass operator is
defined in the e2-approximation by the product of the
causal propagation functions Sc(x, x') and Dc(x – x') of
the electron in an external field and of the photon in the
vacuum:

(8)

φ y( )
1
2
--- 1 y2+( ) 1–

=

xα s( ) xα 0( )–
2eFs( )exp 1–
eF

------------------------------------ 
 

αβ
πβ 0( ),=

M x x',( ) ie2γµSc x x',( )γµDc x x'–( ).=

0.48
0

I(β) = 1 – J(β)

β
0.1 0.2 0.3 0.4 0.5

0.49

0.50

0.51

Fig. 2.
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Here and below, we use the same notations as in [8]. In
the proper time representation, we have

(9)

and ε and η are the strengths of the electric and the
magnetic field in the frame where they are parallel. The
ϕ integration goes along the straight line.

After going over to the Ep(x)-representation, the
mass operator becomes diagonal and its renormalized
eigenvalue is given by the γ-matrix,

(10)

This is Eq. (52) in [8], where one can find all the details
about the quantities involved here and the notations.

It is now important to discuss the transformation of
the term γBz entering the electron propagator. This
term, being linear in the field (for a weak field) and lin-
ear in the coordinate difference z = x – x', gives a con-
tribution to the AMM and contains information about
the motion of the virtual electron between the points x'
and x when it is accompanied by a virtual photon and

Sc x x',( )
ieiϕ

16π2
----------- se2ηεd

eηs( ) eεs( )sinhsin
----------------------------------------------

0

∞

∫–=

× m
i
2
---γBz– 

  –im2s
izβz

4
---------- ieσFs

2
---------------+ + 

  ,exp

Dc z( )
i

16π2
----------- td

t2
---- iz2

4t
------ 

  , zexp

0

∞

∫– x x',–= =

Bαβ βαβ eFαβ, βαβ+ eF eFs( )coth( )αβ,= =

ϕ e yα Aα y( ),d

x'

x

∫=

MR p F,( )
α
2π
------ s tdd

t2
----------

eηw1( ) eεw2( )sinhsin
eηs( ) eεs( )sinhsin

------------------------------------------------------




0

∞

∫
0

∞

∫=

× –im2s i pw p– ieσFw
2

-----------------– 
 exp

× 2m S iγ5P+( ) i
ieσFs

2
---------------– 

 exp+

× γ eF w s+( )( ) eFw( )sinh
eFs( )sinh

-------------------------- pexp

–
ω2

s2
------ –im2s i p2w–( ) 2m iγp

ω
s
----+ 

 exp




MR
0 p( ).+
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its motion is distorted by the external field. Because

(11)

the term γBz appears in MR( , F) in the second term in
the square brackets as

(12)

Therefore, after the integration over x and x' performed
in passing from M(x, x') to MR( , F), we obtain instead
of z ≡ x – x' the quantity

(13)

which is the “mean” or the “effective” coordinate dif-
ference. Here,  is the constant momentum four-vec-
tor that characterizes the quantum motion of the elec-
tron in the external field and wαβ is the 4 × 4 matrix

(14)

with two doubly degenerate eigenvalues

(15)

playing the roles of the magnetic and the electric proper
times. Thus, the virtual electron moves between the
points x' and x of the emission and the absorption of the
virtual photon “as a classical charge” with two proper
times.

Because the virtual electron is accompanied by a
virtual photon with the proper time t (or with the
squared momentum k2 ~ t–1), the proper times w1, 2 are
always less than s,

0 ≤ w1, 2 ≤ s. (16)

The symbol arccot also indicates that w1 is always in the
same period with s,

.

γµ m
i
2
---γBz– 

  ieσFs
2

--------------- 
  γµexp

=  4m S iγ5P+( ) i
ieσFs

2
---------------– 

  γBz,exp+

p

γBzeff 2γ eF w s+( )( ) eFw( )sinh
eFs( )sinh

-------------------------- pexp=

=  γ eFs( ) 2eFw( )exp 1–( )exp
eFs( )sinh

------------------------------------------------------------------ p

=  γB
2eFw( )exp 1–

eF
------------------------------------- p.

p

zα eff
2eFw( )exp 1–

eF
------------------------------------- 

 
αβ

pβ,=

pβ

w
1

eF
------ eFs( )coth 1

eFt
--------+ 

 arccoth=

w1 s t η, ,( )
1

eη
------ eηs( )cot 1

eη t
--------+ 

  ,arccot=

w2 s t ε, ,( )
1
eε
----- eεs( )coth 1

eεt
-------+ 

 arccoth=

nπ eηw1 eηs n 1+( )π, n≤≤≤ 0 1 2 …, , ,=
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The argument y of φ(y) is equal to

(17)

i.e., it is proportional to the delay of the electric proper
time of the virtual electron compared to the proper time
of the real electron in the field.

3. PHYSICAL INTERPRETATION 
OF THE AMM DOUBLING FOR A VERY STRONG 

ELECTRIC FIELD

The AMM ∆µ explicitly appears in the elastic scat-
tering amplitude [8]

(18)

as the real part of the coefficient at the first of the two
spin-dependent invariants

(19)

Here,  is the polarization 4-vector,  is the field ten-
sor dual to Fαβ, and

(20)

is the polarization density matrix. For the state with
p⊥  = 0 and the magnetic field η  0, ∆µ is given by
Eqs. (1) and (2).

The main contribution to the integral I(β) comes
from y ~ β. The doubling of the AMM in a strong field
is then related to a large delay y ~ β @ 1 and the explicit
expression for y shows that

(21)

In other words, in a strong field the virtual electron is
accompanied by a “heavy” virtual photon with the
squared momentum

We note that

in a weak field.
The phenomenological and very speculative expla-

nation of the doubling of the magnetic moment in the
system of a virtual electron and a photon with the

y = eε s w2–( ) eεs eεs( )coth 1
eεt
-------+ 

 arccoth ;–≡

T p s F, ,( ) –Tr MR p F,( )upζupζ( )=

–
sF∗ p

m
-------------Tr uu( ) upζ

1
2
---σFupζ ,=

sF p
m

----------Tr uu( ) upζ
1
2
---σF∗ upζ .=

s Fαβ*

upζupζ
Tr uu( )

4m
----------------- m iγp–( ) 1 iγ5γs+( ),=

p2 m2, s2– 1, s p 0,= = =

s m 2– , t
1
eε
-----  ! m 2–∼∼

or k2 1
t
--- eε @ m2.∼ ∼

k2 eε @ m2.∼

s t m 2–∼ ∼
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increase of the virtual photon momentum squared may
be as follows.

There is the known relation between the magnetic
moment µ and the angular momentum j of an electro-
dynamical system,

(22)

where g is the gyromagnetic ratio. Writing this relation
for the AMM and comparing it with the definition of the
function J(β),

(23)

shows that J(β) can be considered as half the product of
the gyromagnetic ratio and the angular momentum of
the virtual electron.

In a weak field, gj/2 = 1/2 because the virtual elec-
tron has the quantum numbers s = 1/2, l = 0, and j = 1/2
and the Lande formula

(24)

gives g = 2. In a strong field, the virtual electron can go
to the state with s = 1/2, l = 1, and j = 3/2, for which g =
4/3. Then gj/2 = 1 and the AMM doubles.

For moderate field intensities, the virtual electron
can be in a superposition of the states s = 1/2, l = 0, j =
1/2 and s = 1/2, l = 1, j = 1/2. Because g = 2/3 and gj/2 =
1/6 for the latter state, the decrease of the AMM with
the increase of β becomes clear until β is sufficiently
small and the state with s = 1/2, l = 1, and j = 3/2 is not
perceptibly excited.

Thus, the following physical picture can occur.
The electron interacting with itself via a virtual pho-

ton possesses the total angular momentum J = 1/2,
which can be considered as the vector sum of the virtual
electron angular momentum j = 1/2 and the proper
moment (spin) jγ = 1 of the virtual photon. The external
electric field changes the motion of the virtual electron
such that the electron can acquire the orbital angular
momentum l = 1 and its total angular momentum j can
remain equal to 1/2 or become equal to 3/2. Besides, the
vector sum

J = j + jγ

of the virtual electron and the virtual photon angular
momenta remains equal to J = 1/2 and their projections
on the electric field direction satisfy the conservation
law

(25)

If the orbital angular momentum and the spin of the vir-
tual electron prefer to be parallel as the electric field
increases, such that

µ µ0gj, µ0
"e

2mc
----------,= =

∆µ
µ0
-------

α
2π
------gj,

∆µ
µ0
------- α

π
---J β( ), J β( )

1
2
---gj,= = =

g 1 j j 1+( ) s s 1+( ) l l(– 1 )+ +
2 j j 1+( )

---------------------------------------------------------------------+=

mJ ms ml mγ.+ +=

j l 1/2+=
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and

then the appearance of the states with l > 1 becomes
impossible.
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Abstract—The spectral diffusion theory developed for explaining the logarithmic temporal broadening of the
optical line of an individual impurity center and based on spontaneous tunnel transitions in a polymer or glass
is supplemented by taking into account the tunnel transitions occurring in the center itself upon the absorption
of a photon. This light-induced additional tunneling leads to a sharp temporal broadening of the optical line
from an individual impurity molecule occurring against the background of a slower logarithmic line broaden-
ing. It is shown that the inclusion of light-induced tunneling can explain the difference in the temporal line
broadening of three individual Terylene molecules introduced in polyethylene, which was measured in experi-
ments by the group headed by M. Orrit [A. M. Boiron et al., Chem. Phys. 247, 119 (1999)]. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

According to the standard theory of broadening of
optical lines from impurity centers in crystals based on
the electron–phonon interaction, the half-width of a
phononless line is a function of temperature but does
not depend on the measuring time [1]. Consequently,
the doubled rate 2/T2 of optical dephasing measured in
“fast” experiments such as photon echo must coincide
with the half-width of the phononless line measured in
“slow” experiments such as stable spectral hole burn-
ing. Indeed, such a coincidence is observed for impu-
rity centers of crystals; i.e., the phononless line half-
width does not depend on the time of measurement [2].

However, a different situation is observed in poly-
mers and glasses. This fact remained unknown for a
long time since the strong nonuniform broadening
existing in these solvents masks the uniform broaden-
ing of the phononless line from an individual molecule.
The nonuniform broadening can be eliminated by
exposing a polymer with impurity molecules to laser
radiation since the light emitted by a laser effectively
excites only the impurity molecules whose phononless
lines coincide in frequency with the laser emission line.
Such a frequency selection of impurity molecules takes
place during spectral hole burning in nonuniformly
broadened optical bands and during the measurements
of a photon echo signal. Consequently, under these con-
ditions, we are dealing with a spectrally homogeneous
system in which a uniform phononless line can be
hypothetically investigated.

The application of the spectral hole burning method,
as well as photon echo to impurity centers in polymers
and glasses, made it possible to discover the time
dependence of the broadening of the spectral hole [3, 4]
1063-7761/01/9304- $21.00 © 20865
burnt in a nonuniformly broadened optical band as well
as the time dependence of the optical dephasing rate [5,
6] of impurity centers in polymers and glass. The time
dependence of the spectral hole half-width was called
the spectral diffusion.

This phenomenon was discovered almost 40 years
ago while studying the microwave echo in spin systems
[7]. The term spectral diffusion reflects the contempo-
rary level of understanding of this phenomenon, which
was interpreted as follows. In the ensemble of spins
with coinciding spectral lines (i.e., in a homogeneous
ensemble), the line corresponding to different spins are
displaced with time by different distances and in differ-
ent directions on the frequency scale under the action of
the spin–spin interaction. This nonuniform broadening
increasing with time and resembling the diffuse spread-
ing in space (e.g., of heat from a source) was referred to
as spectral diffusion.

When the broadening with time of holes burnt in
nonuniformly broadened optical bands of impurity cen-
ters of polymers was subsequently discovered [3, 4],
the analogy with the spectral diffusion observed earlier
in spin systems was noted immediately. The concept of
spectral diffusion as a nonuniform broadening in an ini-
tially spectrally homogeneous molecular ensemble,
increasing with time, was also borrowed. This concept
is used, for example, in some of the recent reviews
devoted to spectral hole burning in nonuniformly
broadened bands of impurity molecules in polymers
and glasses [8]. However, the above-described concept
of spectral diffusion cannot explain the broadening
with time of the optical line of individual molecules,
which was observed in recent experiments [9, 10].
001 MAIK “Nauka/Interperiodica”
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It should be noted, however, that another interpreta-
tion of spectral diffusion was given as long ago as in the
1960s in the theoretical work by Klauder and Anderson
[11]. According to this hypothesis, this phenomenon is
the broadening with time of the resonance line of spin
due to the dipole magnetic interaction of the resonance
spin with a huge number of spins which are not in res-
onance with the exciting magnetic field. As applied to
molecules as two-level systems, such a concept of spec-
tral diffusion presumes that the optical line correspond-
ing even to an individual molecule may broaden with
time if this molecule interacts with a vast ensemble of
nonequilibrium two-level systems (TLS) of glasses and
polymers.

According to the dynamic theory [12, 13], the inter-
action of a chromophore of an impurity center with a
vast ensemble of slowly relaxing TLS existing in abun-
dance in polymers and glasses may lead to broadening
in time of the phononless line of each molecule. This
radically changes the meaning of the term spectral dif-
fusion as applied to optical spectra since it denotes now
the time broadening of the optical line of each mole-
cule. The spectroscopy of individual molecules gives
convincing experimental proof of such an interpretation
of spectral diffusion.

However, recent measurements of time broadening
of optical lines for individual molecules [14] revealed
new facts which cannot be explained in the existing the-
ory of spectral diffusion of the dynamic [12, 13] or sto-
chastic [4, 15, 16] types. It should be noted that the
above-mentioned theories disregarded the light-
induced tunneling in TLS. In this paper, we supplement
the dynamic theory of spectral diffusion [12, 13] by the
inclusion of light-induced tunneling in TLS and prove
that with such a generalization, the dynamic theory of
spectral diffusion [12, 13] is able to explain success-
fully the new experimental facts discovered in [14].

2. FORMULA FOR THE HALF-WIDTH
OF THE PHONONLESS LINE OF AN IMPURITY 

MOLECULE

According to the dynamic theory [1, 12, 13], the
half-width of the phononless line corresponding to
impurity centers in polymers and glasses can be
described as the sum of the following four terms:

(1)

Here, the first term describes the natural half-width of
the line, to which the half-width of a phononless line
tends as temperature T tends to zero; i.e., T1 defines the
lifetime of the molecule in an excited electronic state.
The second term is due to the quadratic Frank–Condon
electron–phonon interaction, It is this term that deter-
mines the temperature broadening of the phononless
line of impurity centers in crystals without TLS [1]. The
third and fourth terms appear due to the quadratic

∆ω1/2
1
T1
----- γph T( ) γL T( ) γTLS+ + T t,( ).+=
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Frank–Condon interaction of an optical electron of an
impurity molecule with TLS. The third term emerges
due to the interaction with several TLS from the local
neighborhood of the impurity, while the fourth term is
generated by the interaction with a vast number of TLS
located at large distances from the given molecule. It is
worth noting that the interaction with TLS from the
local neighborhood of the impurity does not lead to a
time dependence of the half-width of the phononless
line. It is only the interaction with a vast number of dis-
tant TLS, which is described by the last term, that gives
the dependence on time.

This important conclusion of the dynamic theory
can easily be illustrated using the formula [12, 13]

(2)

describing the contribution of the jth TLS to the
phononless line half-width. Here, ∆j is the parameter
characterizing the intensity of quadratic interaction of
an optical electron of the impurity molecule with TLS.
This parameter determines the variation of splitting of
TLS upon the electron excitation of an impurity mole-
cule. Parameter Rj determines the relaxation rate of the
TLS, while the parameter

(3)

defines the probability of finding a TLS in an excited
state. Nonequilibrium TLS’s must be characterized by
relaxation times much longer than the lifetime T1 of an
excited electron level. Formula (2) shows that if, for
example, the TLS relaxation occurs on the microsecond
scale, the relaxation constant Rj is of the order of 106 s–1

and, hence, the contribution of such a TLS to the half-
width γj of a phononless line is of the same order of
magnitude; i.e., γj ! 1/T1. In accordance with relation (1),
its half-width is two orders of magnitude larger. For this
reason, a small number of nonequilibrium TLS’s
(i.e., TLS’s with small Rj) make an insignificant contri-
bution to the half-width of the phononless line. It is
only TLS’s with Rj > 1/T1 that make a noticeable con-
tribution to the half-width of this line. However, such
TLS’s relax rapidly, i.e., can be regarded as equilibrium
systems like phonons. Only the interaction of a chro-
mophore with a vast number of nonequilibrium TLS’s,
which is described by the term γTLS(T, t) in formula (1),
may lead to a noticeable time dependence of the
phononless line half-width since the small contribution
to the half-width from each TLS is compensated by the
huge number of such TLS’s. Obviously, the contribu-
tion to the half-width of the line from nonequilibrium
TLS’s from the local neighborhood of the impurity can
be neglected. This means that the time broadening of
the optical line of different molecules must be the same.

γ j

∆ j
2R j

∆ j
2 R j

2+
------------------ρ j T t,( ) 1 ρ j T t,( )–( )=

ρ j T t,( ) ρ j T ∞,( )=

+ ρ j T 0,( ) ρ j T ∞,( )–( ) R jt–( )exp
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The form of the time dependence of the half-width
γTLS(T, t) is determined by the type of electrostatic
interaction between an impurity and TLS’s [17, 18]. For
the dipole–dipole type of this interaction, the half-
width increases with time according to a logarithmic
law; i.e.,

(4)

where Rm is the maximum relaxation rate for TLS’s,
whose order of magnitude is estimated as 109–1010 s–1.
Since this term is due to the interaction with a vast num-
ber of TLS’s separated from a given impurity by con-
siderable distances, it must be practically the same for
all impurity molecules. However, Fig. 1 demonstrates,
on the contrary, different time dependences of the half-
width for different individual molecules. In the follow-
ing sections, we will prove that this contradiction can
be eliminated by taking into account the fact that for-
mula (1) for the half-width takes into account only
spontaneous relaxation of TLS’s. If, however, we also
take into account the effect of light-induced transition
in TLS’s on the half-width of the line, the experimental
results presented in Fig. 1 can be interpreted success-
fully.

3. MANIFESTATION OF TIME BROADENING
OF THE LINE IN A TWO-PHOTON CORRELATOR

In experiments with individual molecules, the pho-
tons emitted by a molecule have to be counted. The pro-
file of the optical line of an individual molecule can be
measured using single- or two-photon counting meth-
ods. When the single-photon counting method is used,
all the photons emitted by an individual molecule are
counted; i.e., the intensity of fluorescence is measured.
In two-photon methods, photon pairs with a time delay
between the photons of a pair are counted. It will be
shown below that both counting methods provide the
same information on the dynamics of an individual
impurity center.

In single-photon counting methods, the results of
measurements, as a rule, is a random quantity. This can
be, for example, the time dependence of the intensity of
emitted light or of the frequency of absorbed light, i.e.,
the “spectral trajectory.” The spectral trajectory is a ran-
dom function which is not reproduced in experiments.
It cannot be calculated theoretically since quantum
mechanics makes it possible to calculate only the prob-
ability of observing a certain frequency value. The
information on probabilities is extracted from the mea-
sured spectral trajectory by its statistical processing.
These probabilities can be compared with calculated
values. In contrast to single-photon methods, two-pho-
ton methods make it possible, on the contrary, to mea-
sure probabilities directly in the real time of experi-
ments. For this reason, we will first find out how the
temporal evolution of the optical line width, which is a

γTLS T t,( ) aT Rmt,log=
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probabilistic parameter, can be measured using two-
photon counting methods.

A molecule exposed to light emitted by a CW laser
emits fluorescence photons at random instants of time.
The sequence of emitted photons reaches a photodetec-
tor counting the number of photon pairs with a certain
time delay t0 between the photons in a pair. The count-
ing rate p(t0) for such pairs was referred to in [19, 20]
as a two-photon correlator. Such a correlator can be cal-
culated if the Hamiltonian of the system is known. The
quantum theory of two-photon correlators was con-
structed in [13, 19]. According to this theory, a two-
photon correlator is defined by the simple formula

(5)

where n1 is the probability of detecting an impurity cen-
ter in the fluorescent state provided that upon continu-
ous laser pumping, it is in the ground state with the
probability equal to unity at instant t0 = 0. It was shown
in [13, 19] that a two-photon correlator is a function of
the delay time t0 between the photons in a pair, of the
difference ∆ between the lasing frequency and the fre-
quency corresponding to the peak of the phononless
line, and of temperature; i.e., p(t0, ∆, T).

In [20], the correlator was calculated for a simple
case (typical of organic molecules) when the ground
and the first excited singlet levels are separated by a
triplet layer. The correlator of such a molecule is shown
in Fig. 2. Obviously, the molecule subjected to contin-
uous laser pumping performs multiple “jumps” at ran-
dom instants between the ground and excited singlet
states, getting into the triplet state from time to time. As
long as the molecule is in the triplet state, fluorescence

p
n1 t0 ∆ T, ,( )

T1
---------------------------= ,

200

1 10

∆ω1/2, MHz

Time, s
100

400

600

800

1

2

3

Fig. 1. Time variation of half-widths of the optical lines of
three individual Terylene molecules in polyethylene and the
time dependence of the half-width of the line corresponding
to an ensemble of eight molecules (solid curve) [14].
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Fig. 2. Two-photon correlator of an individual molecule with a triplet level as a function (a) of the time delay between the photons
of a pair and (b) of the frequency of pumping radiation for t0 = 10–6 (solid curve) and 10–4 s (dashed curve).
photons are not emitted. For this reason, the train of
photons is interrupted intermittently. The photons will
be as if grouped on the time scale (photon bunching)
[21]. Such a scintillating fluorescence is typical of
nanoobjects. For example, it can also be observed dur-
ing the detection of radiation emitted from quantum
dots of semiconductors [22, 23] and in the study of the
kinetics of chemical reactions at individual molecules
with the help of fluorescence methods [24, 25]. These
time intervals with and without fluorescence are usually
referred to as on and off intervals, respectively.

The correlator as a function of frequency describes
the shape of the absorption line. Consequently, calcu-
lating such a correlator for different delay times
between photons, we can obtain information on the
temporal behavior of the absorption line of an impurity
center. Figure 2 shows the time and frequency depen-
dences of a two-photon correlator calculated in [19, 20]
for a molecule with a triplet level. The exponential
increase or exponential decay on the logarithmic time
scale used in Fig. 2a appears as a smooth step extended
over an order on the time scale. For time intervals of the
order of 10–4 s, a smooth step describes the exponential
decrease in the probability of finding the molecule in
the excited singlet (i.e., fluorescent) state. Figure 2b
shows that the increase in the width of the correlator,
which is regarded as a function of the frequency of
pumping radiation, also occurs at the same time interval
of the order of 10–4 s. This broadening of the absorption
line has a simple physical meaning: it indicates the
broadening of a hole in the probability of finding the
molecule in the ground state at the given frequency of
the pumping laser radiation due to the increase in the
probability of finding the same molecule in the triplet
(off) state. The same effect in the spectroscopy of holes
is known as the effect of triplet saturation of spectral
hole [26].The optical line broadening due to the “leak-
age” of probability to the nonfluorescent triplet off
state, occurring on a segment of the time scale equal to
an order of magnitude of the quantity, resembles the
broadening presented in Fig. 1. Since such a broaden-
ing of the absorption line occurs after the transition of
JOURNAL OF EXPERIMENTAL 
the molecule from the excited siglet state to the triplet
state, it is determined by the light intensity, i.e., is a
light-induced broadening. However, the broadening in
this case is governed by the intramolecular mechanism
of intercombination conversion. Consequently, it must
be identical for all impurity molecules, which contra-
dicts Fig. 1. However, the above arguments show that
we will be able to explain the experimental results pre-
sented in Fig. 1 if we find the off states of another phys-
ical origin than the triplet state of a molecule. These
states must reflect the peculiarities of the local sur-
roundings of an individual molecule.

4. QUALITATIVE INTERPRETATION 
OF THE LIGHT-INDUCED LINE BROADENING 

FOR AN INDIVIDUAL MOLECULE

Since individual impurity molecules in a polymer
have different surroundings, it is natural to assume that
different time broadening of the lines of individual mol-
ecules is associated with the interaction of a chro-
mophore impurity molecule with TLS’s from the near-
est neighborhood of the molecule. The energy level dia-
gram for a chromophore molecule interacting with a
TLS is shown in Fig. 3. The meaning of all the con-
stants determining the dynamics of the TLS is clear
from the figure. The dynamic theory of the time broad-
ening of optical lines, developed in [12, 13], takes into
account the interaction of the chromophore impurity
with a vast number of TLS’s of the polymer, but only
the tunnel transitions between the wells in the ground
electron state of chromophore were included; i.e., it
was assumed that B = b = 0. In other words, this theory
disregarded light-induced jumps in TLS’s. It will be
proved in the next section that disregard for light-
induced transitions is justified if we investigate the
emergence of the time dependence in the term γTLS(T, t)
taking into account the effect of a vast number of TLS’s
on the line half-width. However, the curves in Fig. 1
cannot be explained if we disregard the light-induced
tunneling in TLS’s.
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Let us first try to explain qualitatively why the line
of a molecule can be broadened upon an increase in the
time of measurements, which is demonstrated in Fig. 1.
For this purpose, we must first describe how the exper-
imental results were obtained in [14]. An individual
molecule exposed to light emitted by a CW laser
“hopped” between the ground and excited electron
states, being multiply excited and emitting each time a
fluorescence photon. The sequence of all photons emit-
ted by the molecule was registered; i.e., the single-pho-
ton counting method was used. The frequency of laser
radiation was scanned so that a frequency interval of
several gigahertz was covered in 1 s. When the fre-
quency of laser radiation coincided with the phononless
line of the molecule, the latter emitted fluorescence
photons which served as a source of information on the
light absorption by the molecule. In the experiment,
two-dimensional patterns depicted in Fig. 4 were
obtained. Dark vertical bands with gaps (trails) visual-
ize the light absorption by an individual molecule at a
given instant at a given frequency. It can be seen that the
molecules hop at random instants between two spectral
positions. In accordance with Fig. 4, about 1000 laser
scans were made.

The half-widths of the lines presented in Fig. 1 were
calculated in [14] after double averaging. The first aver-
aging was carried out over n laser scans. The time t
plotted along the abscissa axis in Fig. 1 is equal to ntsc,
where tsc is the duration of a scan. The shape of the
spectral line plotted as a result of such an averaging was
subjected to noticeable fluctuations (especially for
small values of t); for this reason, it was averaged over
the entire length of a trail. The half-width of such an
averaged line is plotted in Fig. 1.

We assume that the impurity center under investiga-
tion, by which we mean an impurity molecule with its
nearest neighbors, can be transformed with a change in
the atomic arrangement; i.e., the atoms of the impurity
center have a couple of equilibrium positions. In this
case, the diagram of its electron levels corresponds to
that presented in Fig. 3. Such an impurity center has
two spectral lines. Let us suppose that this impurity
center is excited at the frequency of the 0–1 transition,
while the frequency of the 2–3 transition lies outside
the frequency interval of the laser scan. In other words,
we consider the situation when, for example, only the
left trail from the two shown in Fig. 4 is within the laser
scan. In this case, the following pattern is observed in
each laser scan lasting 1 s. When the lasing frequency
coincides with the optical line of the 0–1 transition, the
photomultiplier detects a sequence of fluorescence pho-
tons with random intervals. Each fluorescence photon
is emitted during the transition of the molecule from
state 1 to state 0. Consequently, the left pair of wells in
Fig. 3 describes the on state of the chromophore. How-
ever, the system can hop to the right pair of wells owing
to the possible tunneling between the left and right pairs
of wells. Being in this conformation state, the impurity
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
center has another resonance frequency lying outside
the interval in which the frequency of laser radiation is
being scanned; i.e., it is not excited by the laser and,
hence, does not emit photons. Consequently, the right
pair of wells in Fig. 3 corresponds to the off state. After
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1/T1L É

b

a

0
A + a = R

Fig. 3. Energy level diagram for a chromophore molecule
interacting with a TLS.
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Fig. 4. Trails obtained as a result of scanning of the pump-
ing laser frequency, visualizing the light absorption by a
Terylene molecule in polyethylene [14].
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a certain time approximately equal to the reciprocal
tunneling probability 1/A from state 2 to state 1, the
impurity center can again be found in the state
described by the left pair of wells and, hence, starts
emitting a new sequence of photons in each laser scan.

Figure 5 shows schematically the sequence of pho-
tons emitted by the molecule under continuous excita-
tion to the peak of the absorption line of the molecule
and to the wing of this line. The sequence of emitted
photons splits into groups separated by gaps (photon
bunching). In Fig. 5, average values of on and off inter-
vals are presented. In a real system, the duration of on
and off intervals fluctuates (see Fig. 4). The replace-
ment of fluctuating intervals by their mean values does
not change the essence of the explanation given below.

Obviously, a displacement of the lasing line by ∆
from the resonance reduces the absorption of light by
an impurity center. For this reason, the intervals
between fluorescence photons in a group are larger in
the case of nonresonant excitation (see Fig. 5). Conse-
quently, the photon count rate dN(0, t)/dt in the case of
excitation corresponding to the resonance state is
higher than the count rate in the case of excitation to the
wing of the line. Besides, if the tunneling in the excited
electron state plays the leading role in the transition of
the system from the left pair of wells to the right pair,
the rate of such a light-induced tunneling is propor-
tional to BL/Γ, where the ratio L/Γ determines the occu-
pancy of level 1. This means that the weaker the light
absorption at the frequency of the 0–1 transition, i.e.,
the smaller the value of L, the lower the rate of depar-
ture of the impurity center from the optically active on
state to the optically inactive off state. Consequently, on
intervals τon(∆) for the excitation corresponding to the

0
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I(∆, T0)
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I(∆, tsc)

I(0, tsc)

tsc

t o
ff

t o
ff

t o
n(

∆)

t o
n(

0)

t = 0

∆ ω

Fig. 5. Schematic diagram explaining the time broadening
of the line corresponding to an individual molecule due to
light-induced tunneling.
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wing of the optical line are longer than the intervals
τon(0) for the excitation to the resonance state. On the
other hand, the rate of departure from the off state cor-
responding to the right pair of wells is determined by
constant A; i.e., this rate does not depend on the inten-
sity of absorption. For this reason, the duration τoff of an
off interval is independent of whether it is excited at a
frequency corresponding to the peak of the line or to its
wing. Figure 5 reflects all these details of broadening.

If the time t = ntsc of measurement is much shorter
than the lifetime of a molecule in the on state, i.e., t !
τon, the photons being counted belong to one of the
groups presented in Fig. 5. In this case, the signal at the
photomultiplier is proportional to the rate of emission
of photons by the molecule, and we can write the fol-
lowing expression for the ratio of signals in the case of
resonant and nonresonant excitation:

(6)

When the signal is accumulated over a long period of
time T0 @ τon, τoff depicted in Fig. 5, we have the fol-
lowing ratio for signals:

(7)

Indeed, it follows from Fig. 5 that 3τon(0) < 2τon(∆).
Formula (7) indicates that the half-width of the optical
absorption line, measured during time t shorter than τon,
is smaller than the half-width measured during the time
T0 exceeding the time τon. Precisely this pattern is
depicted in Fig. 1.

5. THE THEORY OF LIGHT-INDUCED 
BROADENING OF OPTICAL LINE

Let us now derive the formula for describing the
experimental results on emission line broadening for
three individual molecules presented in Fig. 1. We con-
sider an impurity molecule interacting with a huge
number of TLS’s in a polymer. We assume that only one
TLS is present in the local neighborhood; i.e., such an
impurity center is characterized by only two optical
lines (see the energy level diagram in Fig. 3).

We analyze the case when the pumping by light is
carried out only at the frequency of the 0–1 transition.
In this case, the system of balance equations with tran-
sitions presented in Fig. 3 has the form

(8)

I 0 t,( )
I ∆ t,( )
--------------- dN 0 t,( )/dt

dN ∆ t,( )/dt
----------------------------= .

I 0 T0,( )
I ∆ T0,( )
-------------------

3τon 0( )dN 0 t,( )/dt
2τon ∆( )dN ∆ t,( )/dt
-----------------------------------------------=

I 0 t,( )
I ∆ t,( )
---------------.<

ρ̇1 Γ B+( )– ρ1 Lρ0 bρ3,++=

ρ̇3 Bρ1
1
T1
----- b+ 

  ρ3,–=

ρ̇0 Γρ1 L a+( )ρ0 Aρ2,+–=

ρ̇2 aρ0
ρ3

T1
----- Aρ2,–+=
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where L = k0 – 1 and Γ = L + 1/T1. We assume that the
constants describing the rates of transitions satisfy the
following inequalities:

(9)

which is usually observed in real systems. With such a
relation between the rate constants, the time evolution
of probabilities ρj has two stages (short and long)
reflecting the rapid and slow evolution of probabilities
ρj. The rapid evolution occurs over times of the order of
T1. This evolution corresponds to an increase in the cor-
relator, for example, the same as in Fig. 2a. However,
we will be interested in the slow relaxation observed
after the stabilization of quasi-equilibrium between the
populations ρ1 and ρ3 of the electronically excited
states, on the one hand, and the population ρ0, on the
other hand. The relation between the probabilities in the
quasi-equilibrium state can be determined by putting

 =  = 0. In this case, taking into account inequali-
ties (9), we obtain the following relations from the first
and second equations:

(10)

Substituting relations (10) into the last two equations in
system (8), we arrive at the following system of equa-
tions:

(11)

describing the slow relaxation in an impurity center
with TLS. Using relation ρ2(t) = 1 – ρ0(t), we can easily
obtain the following equations from Eqs. (10):

(12)

which includes a function of frequency  determined
by the intensity of laser radiation. The solution of
Eq. (12) has the form

(13)

Here

(14)

In accordance with formulas (10) and (13), the slow
relaxation of all populations is determined by the tun-
neling between states 0 and 2 as well as between 1 and 3.

Γ  @ L @ A, B a b;,>

ρ̇1 ρ̇3

ρ1

1/T1 b+( )Lρ0

Γ B+( )/T1 bΓ+
---------------------------------------- L

Γ
---ρ0,≈=

ρ3

BLρ0

Γ B+( )/T1 bΓ+
---------------------------------------- L

Γ
---T1Bρ0.≈=

ρ̇0 – B̃ a+( )ρ0= Aρ2,+

ρ̇2 B̃ a+( )ρ0= Aρ2,–

ρ̇0 B̃ R+( )ρ0 A,+–=

B̃

ρ0 t( ) A
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--------------=

+ ρ0 0( ) A

B̃ R+
--------------– 

  B̃ R+( )– t[ ] .exp

B̃
L
Γ
---B, R A a.+= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The transition between states 1 and 3 is light-induced

tunneling. Its rate  is proportional to pumping L.

It was noted above that polymers and glasses con-
tain a vast number of TLS’s inherent in the solvent,
which exist irrespective of the presence of an impurity
in the polymer. The number of such TLS’s is huge and
may considerably exceed the number of impurity cen-
ters. The rates of spontaneous tunneling, b and B, in
such TLS’s with an excited chromophore are compara-
ble with the tunneling rates A and a in the ground elec-
tronic state of the chromophore. When such TLS’s are
taken into account, the light-induced transitions
between states 1 and 3 can be disregarded in accor-
dance with formulas (10) and (14), since L/Γ ! 1. Such
a situation is realized for a chromophore interacting
with TLS’s in polymers and glasses, and it is the contri-
bution from these TLS’s to the half-width γTLS(T, t) that
leads to the time dependence of the half-width of the
line.

However, the probability of light-induced transi-
tions may exceed the probability of spontaneous transi-
tions. This is observed for TLS’s simulating an impu-
rity center. It is these TLS’s that participate in photo-
chemical burning of stable spectral holes in
nonuniformly broadened optical bands. In the spectros-
copy of individual molecules, burning appears as the
disappearance of the optical line of a molecule in the
spectral range under investigation for a considerable
time interval. As a rule, such TLS’s describe the state of
the chromophore itself; i.e., they belong to the type of
TLS’s introduced by an impurity molecule into the sol-
vent. Obviously, the number of such TLS’s is approxi-
mately equal to the number of impurity centers. Exper-
iments show that in this case, a stable spectral hole is
burnt in a nonuniformly broadened optical band pre-
cisely due to light-induced tunneling. Since this hole
exists for several days and even weeks in the absence of
light pumping at low temperatures, this indicates an
extremely low intensity for such a tunneling in the
ground electronic state, i.e., the smallness of constants
A and a in the TLS associated with the impurity. Con-
sequently, light-induced tunneling cannot be neglected
for such TLS’s since it plays a decisive role for explain-
ing the shape of curves 2 and 3 in Fig. 1.

The absorption line obtained as a result of n laser
scans obviously reflects the dependence of the proba-
bility of observing a fluorescence photon on the fre-
quency of pumping laser radiation. The probability of
the emission of a photon is proportional to the probabil-
ity of finding a chromophore in an excited state, i.e., the
probability ρ1(t), where t = ntsc. Using formulas (10)
and (13), we obtain

(15)

B̃

ρ1 ∆ t,( ) L
Γ
---=

× A

B̃ R+
-------------- 1 A

B̃ R+
--------------– 

  B̃ R+( )– t[ ]exp+ ,
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where the initial condition ρ0(0) = 1 has been used.

Substituting the value of  defined by Eq. (14) into this
expression and taking into account the fact that

(16)

where χ = dE/" is the Rabi frequency, we arrive at the
following expressions for the population for short and
long observation times:

(17)

the transition from the Lorentzian with half-width 2/T2
to the Lorentzian with the half-width

(18)

occurring for t ∝  1/(  + R).

6 COMPARISON OF THEORY
WITH EXPERIMENT

The spectral function F(∆, t) measured with the help
of laser frequency scanning during the time t = ntsc is
proportional to the function ρ1(∆, t) described by for-
mula (15); i.e.,

(19)

If we disregard light-induced transitions by equating
constant B in formula (15) to zero, the upper and lower
expressions in (17) coincide; i.e., the half-width of the
spectral function ∆ω1/2 is equal to 2/T2 and may depend
on time only due to the time dependence of the half-
width γTLS(T, t) appearing in 2/T2, which means that it is
the same for all molecules. In this case, formula (1) can
be transformed to

(20)

Coefficients 1/T2(1) and C may be different for differ-
ent individual impurity molecules in a polymer. For-
mula (20) correctly describes the time broadening of
the line corresponding to molecule 1 in Fig. 1 for
1/T2(1) = 1.9 × 109 s–1 and C = 0.08. This means that
molecule 1 does not interact with a TLS characterized
by a noticeable probability of light-induced tunneling.
Obviously, the line broadening will be correctly
described by formulas (1) and (4) in the time interval
under investigation even in the case when the impurity
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center still interacts with the TLS, but the latter has a very
large relaxation constant R in the ground state. In this
case, in accordance with (18), we have ∆ω1/2(∞) = 2/T2.

Let us now consider the time broadening of the opti-
cal line of molecule 2, presented in Fig. 1. It cannot be
described by formulas (1) and (4) only. The optical line
half-width for this impurity center must be calculated
using formulas (15)–(18). In the presence of an opti-
cally inactive state, the sequence of photons is inter-
rupted by intermissions; i.e., on and off intervals exist.
Let us find the mean values and durations of on and off
intervals.

Obviously, as long as the molecule hops between
states 0 and 1 presented in Fig. 3, the emitting system is
in the on state, i.e.,

(21)

is the probability of finding the system in the on state.
Assuming that the system is in the on state with the
probability equal to unity, we will find the average life-
time τon in this state. The kinetics of departure of the
system from the on state is determined by the following
equations:

(22)

Summing up these equations, we obtain

(23)

Taking into account inequalities (9), we find (in the
same way as in Section 5) that

(24)

Using formulas (21) and (24), we can transform
Eq. (23) to the following equation:

(25)

where τon defined by the formula

(26)

is the lifetime of the system in the on state. It depends
on the difference between the laser frequency and the
peak of the phononless line. Equation (25) leads to the
following expression for the density of the probability
of finding an on interval of duration t:

(27)

ρon ρ0 ρ1+=

ρ̇1 Γ B+( )ρ1–= Lρ0,+
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Here, τon is defined by formula (26). Using this proba-
bility density, we arrive at the following expression for
the mean value of on intervals:

(28)

Obviously, after performing a quantum jump to the
off state, the system enters state 2 over a time of the
order of a few nanoseconds. Consequently, we can put

(29)

The kinetics of the system departure from the off state
is defined by the equation

(30)

Consequently, the lifetime of the off state and, hence,
the mean value of the off interval are defined by the for-
mula

(31)

Let us consider formulas (26) and (31) describing
the mean values of the on and off intervals. Formula
(26) implies that for B = a, the mean duration of the on
intervals does not depend on laser pumping and is equal
to τon = 1/a. In this case, in accordance with Fig. 5, the
duration of the emission of a group of photons in the
right column is the same as in the left column. Conse-
quently, the Lorentzian corresponding to the upper part
of Fig. 5 and measured during the time T0 has the same
half-width as the lower one measured during a shorter
time. Thus, the results presented in Fig. 1 cannot be
interpreted for B = a. However, the energy level dia-
gram presented in Fig. 3 shows that the probabilities B
and a determine the rates of transitions with the cre-
ation and annihilation of phonons, respectively. Conse-
quently, these quantities do not coincide since they
have different temperature dependences. Their coinci-
dence for a certain temperature may only be accidental.
This means that the equality B = a is possible only for
a different energy level diagram, namely, if the left well
in the upper pair of the potential wells in Fig. 3 is lower
on the energy scale than the right well.

Let us return to the energy diagram in Fig. 3. In this
case, B @ a. This inequality obviously holds at a low
temperature since a tends to zero upon a decrease in
temperature, while B remains constant. In this realistic
case, formula (26) assumes the form

(32)

i.e., the mean duration of an on interval is inversely pro-
portional to laser pumping. This feature readily deter-

twon t( ) td

0

∞

∫ τon.=

ρoff ρ2.=

ρ̇off Aρoff.–=

τoff 1/A 1/R.≈=

1
τon ∆( )
--------------- B

L
Γ
--- BLT1;≈≈
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mines the light-induced nature of the transition from
the on to the off state. Taking into account the fact that

(33)

we can write formula (18) in the form

(34)

It is also clear that the time interval over which the half-
width of the optical line increases is defined by the for-
mula

(35)

The last two formulas are convenient since they do not
contain unknown parameters of the type of tunnel tran-
sition probabilities. All the quantities appearing in these
formulas can be measured comparatively easily in a
single experiment. Unfortunately, the mean intervals
τon and τoff were not measured in [14] and we had to
select the parameters τ and r = τoff /τon. The first param-
eter determines the time at which the broadening in Fig. 1
starts increasing. The second parameter defines a sort of
amplitude of half-width variation. Knowing these
parameters, we can calculate the relaxation constants B
and R from formulas (33).

The matching of the theoretical curve with the
experimental data for half-width in Fig. 6b was attained
for the following values of parameters: r = 3.7 and τ =
234 s. This corresponds to τon = 297 s and τoff = 1100 s.
Using these values, we can find the tunneling con-
stants B and R for the impurity center 2. The recipro-
cal value of τoff is the required rate R of tunneling in
the ground electronic state. In order to find constant B,
we must know the Rabi frequency. It can be expressed
in terms of the wavelength λ of absorbed light and the
radiation intensity I of the pumping laser expressed in
photon/(cm2 s):

(36)

In [14], a laser with a luminous intensity of 1 mW/cm2

generating a photon flux I ≈ 2.5 × 1015 photon/(cm2 s)
was used. Substituting the latter value into formula (36)
and taking λ = 500 nm and T1 = 3 × 10–9 s [27], we
obtain χ ≈ 2.2 × 107 s–1. Using curve 2 in Fig. 1, we can
determine parameter T2. Calculations give 1/πT2 =
280 MHz; i.e., T2 ≈ 10–9 s. Substituting the value of the
Rabi frequency obtained above and the values of phase-
relaxation constant T2 into formula (33), we obtain
B = 1.1 s−1.

Figure 6a shows the variation of the population of
the fluorescent state 1. The sharp decrease of the curve
for log(t) > 1.5 corresponds to the transition of the mol-

1
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Fig. 6. (a) Time dependence of the population of the fluorescent state of molecule 2 and (b) comparison of the measured line half-
width of molecule 2 (symbols) with that calculated by formulas (15) and (20) for 1/πT2 = 280 MHz, C = 0.01, r = τoff /τon = 3.7,
and τ = 234 s.
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Fig. 7. The same as in Fig. 6 for molecule 3 for 1/πT2 = 238 MHz, C = 0.02, r = τoff /τon = 9.2, and τ = 2.35 s.
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ecule to the off state. A comparison of Figs. 6a and 6b
reveals the clearly manifested correlation between the
time during which the transition from level 1 to the off
state occurs and the time during which the half-width of
line 2 increase sharply.

A more complicated situation is encountered in the
analysis of the line broadening for molecule 3 in Fig. 1.
First, it increases rapidly and then at a lower rate over a
time interval equal approximately to two orders of mag-
nitude. Since the exponential increase lasts only during
a time interval of one order of magnitude, it can be
expected that curve 3 cannot be described correctly
with the help of formula (15) containing only one expo-
nential. Indeed, Fig. 7b shows that the theoretical curve
satisfactorily describes only the initial segment of time
broadening for molecule 3, which occupies only one
order on the time scale. Obviously, an auxiliary mech-
anism of light-induced tunneling also exists and mani-
fests itself for large time intervals which are not cov-
ered by the simple TLS model presented in Fig. 3. It
should be noted that the analysis of trails of several doz-
ens of individual Terylene molecules in polyethylene,
JOURNAL OF EXPERIMENTAL 
carried out in [14], indicates that, indeed, some of the
encountered cases cannot be described by the TLS
model (e.g., when the optical line of a molecule jumps
between three spectral positions). The factors responsi-
ble for the auxiliary broadening in Fig. 7b remain
unclear.

7. CONCLUSIONS

The above analysis leads to the following explana-
tion to the peculiar time dependence of the half-width
of the lines of three individual Terylene molecules in
polyethylene (see Fig. 1).

The weak logarithmic increase in the half-width,
which is the same for the three lines, is explained by the
interaction of chromophore molecules with a vast num-
ber of TLS’s of the polymer (including many nonequi-
librium systems). This effect is usually referred to as
spectral diffusion. It was observed more than once ear-
lier in the study of spectral holes and optical lines cor-
responding to individual molecules.
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The sharp increase in the line half-width of Terylene
molecule 2 in Fig. 1 is explained satisfactorily by an
effect similar to the effect of spectral line saturation
observed for molecules with a large quantum yield in
the triplet state of a molecule. It is only in this case that
the role of a triplet trap is played by the second state of
the TLS simulating the two possible conformation
states of an impurity center. The transition to the second
conformation state of the impurity center upon the
absorption of a photon is precisely responsible for the
sharp line broadening. If the mean length of on and off
intervals appearing in formulas (34) and (35) were
measured in [14], these formulas would not contain free
parameters. Unfortunately, the mean lengths of on and
off intervals have not been measured in [14]. For this
reason, these parameter had to be selected. The pro-
cessing of the measured time dependences of the half-
widths of the lines emitted by molecule 2 made it pos-
sible to determine the tunneling rates R = 1/τoff and B in
the ground and excited electron state of molecule 2,
respectively.

Figure 7 shows that the simultaneous sharp change
in the population and half-width of the line of molecule
3 is also caused by light-induced tunneling. However, it
cannot be described completely by the simple TLS
model since this molecule exhibits an auxiliary broad-
ening of unclear nature for large values of time.
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Abstract—New relativistic quantum protocols realizing the bit commitment and coin tossing schemes are pro-
posed. The protocols are based on the idea that spatially extended nonstationary orthogonal quantum states
inaccessible for measurement cannot be unambiguously distinguished. As the states are transmitted from the
region controlled by one party to the region accessible for measurement by the other party, the states become
reliably distinguishable when accessed as a whole. Essential points of the protocol are both the quantum char-
acter of states and the existence of an ultimate signal propagation speed dictated by special relativity. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the nonrelativistic quantum mechanics, any mea-
surement performed by an observer in a quantum sys-
tem introduces, in the general case, a disturbance in the
initial state of the system. In the absence of limitations
with respect to the maximum speed, instantaneous
measurements (including spatially nonlocal) are for-
mally not prohibited.

The special relativity theory poses additional
restrictions on the measurements in the classical sense.
The existence of a limiting speed makes the nonlocal
measurements on a classical object within an arbitrarily
short time impossible.

The relativistic quantum field theory must involve
additional restrictions concerning the measurement of
observables in comparison with the nonrelativistic
quantum mechanics. Apparently, the problem of funda-
mental limitations imposed by special relativity upon
the possibility of measuring various dynamic variables
in a quantum system was originally considered by Lan-
dau and Peierls [1]. The qualitative considerations for-
mulated in that paper based on the uncertainty relation-
ships, together with the restriction of ultimate speed led
to a conclusion that “…all physical quantities
employed by the wave mechanics turn out to be indeter-
minable in the relativistic field.”

The nonrelativistic quantum mechanics does not
formally prohibit precisely measuring, for example, the
momentum of a quantum system within an arbitrarily
short (zero) period of time. The momentum operator is
nonlocal and the eigenstate of this operator (i.e., a plane
wave) is infinitely extended in space. Of course, being
not normalized, the plane wave is not a physically real-
izable state. However, this state can be approached with
any precision by a state (localized in an arbitrarily large
but still finite region of space) such that the average
1063-7761/01/9304- $21.00 © 20876
value of the momentum operator measured in this state
can be arbitrarily close to the momentum of the plane
wave. This momentum measurement implies that the
state occupying the arbitrarily large region in space can
be accessed as a whole. The nonrelativistic quantum
mechanics does not prohibit the access to any spatial
region within an arbitrarily short (zero) period of time
and, hence, does not poses formal restrictions on the
arbitrarily accurate instantaneous measurement of, for
example, the momentum. With an allowance for limita-
tions of special relativity, the access to an infinite spa-
tial region requires an infinite time: in this sense, the
physical quantities are indeterminate (more strictly
speaking—indeterminable, if the exact determination
within a finite time is implied).

From the standpoint of precise measurement of the
momentum (using an eigenstate of the momentum
operator or, more precisely, generalized eigenvector),
this quantity is indeterminable even in the nonrelativis-
tic case because the plane wave state cannot be realized
exactly. We may only approach, with an arbitrary accu-
racy, the precise measurement. It is essential that the
nonrelativistic quantum mechanics poses no restric-
tions on the time required to obtain the result. The rela-
tivistic theory also does not prohibit the measurement
of, for example, the momentum with arbitrarily high
precision. However, the need in accessing the formally
infinite region for such a precise measurement of the
momentum implies an infinite period of time. Inter-
preted in this way, the statement of Landau and Peierls
[1] concerning the impossibility of precisely determin-
ing the momentum is self-consistent.

The problem of measurements in quantum systems
in the relativistic case was further investigated by Bohr
and Rosenfeld [2]. As far as we can judge, the conclu-
sions derived in [2] do not abolish the restrictions indi-
001 MAIK “Nauka/Interperiodica”
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cated in [1] concerning the necessary time because
these considerations follow essentially from limitations
dictated by the special relativity. Later, the arguments
formulated in [1] were reproduced virtually unchanged
in [3].

Below we will be interested in restrictions posed by
the relativistic quantum field theory on the probability
of unambiguously distinguishing between two states of
a quantum system. Since the information is carried by
photons (representing essentially relativistic particles),
the relativistic limitations of measurements are of prin-
cipal significance. In addition, the restrictions with
respect to the ability of distinguishing quantum states
may only increase the possibility of constructing vari-
ous relativistic cryptography protocols.

All the nonrelativistic quantum cryptography proto-
cols employ, in one or another form, the following two
circumstances. The first is the so-called no-cloning the-
orem [4], according to which an unknown quantum
state cannot be duplicated. This is equivalent to impos-
sibility of the process

where |A〉  and |Bψ〉  are the states of the system before
and after duplication and U is some unitary operator.
This process is prohibited by virtue of the linearity and
unitarity of evolution in the quantum mechanics. The
second point is that even a weaker process, delivering
any information about one of the two nonorthogonal
states without disturbing these states, is impossible [5].
This circumstance prohibits processes of the type

with  ≠ , provided that 〈ψ1|ψ2〉  ≠ 0, which
implies the impossibility of distinguishing nonorthogo-
nal states. No such a prohibition exists with respect to
orthogonal states. Moreover, the nonrelativistic quan-
tum mechanics, generally speaking, does not prohibit
instantaneous (arbitrarily fast) unambiguous distin-
guishing between the orthogonal states at any time
instant without disturbing these states. If there is a pair
of orthogonal states in the Hilbert space * (|ψ1, 2〉  ∈  *,
〈ψ1|ψ2〉  = 0), these states can be reliably distinguished
using the measurement described by an orthogonal
expansion of unity in the space *:

where 31, 2 are the projectors onto subspaces *1, 2 gen-
erated by |ψ1, 2〉; 3⊥  is the projector onto subspace

 = (*1 % *2)⊥ . The probability of obtaining a

A| 〉 ψ| 〉 U A| 〉 ψ| 〉( ) Bψ| 〉 ψ| 〉 ψ| 〉 ,=

A| 〉 ψ1| 〉 U A| 〉 ψ1| 〉( ) Aψ1
| 〉 ψ1| 〉 ,=

A| 〉 ψ2| 〉 U A| 〉 ψ2| 〉( ) Aψ2
| 〉 ψ2| 〉 ,=

Aψ1
| 〉 Aψ2

| 〉

31 32 3⊥+ + I , 31 2, ψ1 2,| 〉 ψ1 2,〈 | ,= =

3⊥ I 31– 32,–=

*1 2,
⊥
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result belonging to the manifold of results Θ = {1, 2, ⊥ }
(e.g., for the initial state |ψ1〉) is

(1)

while that in the 32, ⊥  channel is identically zero

(2)

(analogous expressions can be written for the initial
state |ψ2〉). These relationships imply that the orthogo-
nal states are unambiguously distinguishable. More-
over, these states can be distinguished instantaneously
and without disturbing the system. It is assumed that
the whole Hilbert space is accessible at once. Since the
physical systems cannot exist outside the coordinate
space, the accessibility of the Hilbert space of states
implies the access to the region of the coordinate space
in which the state carrier is nonzero.

In the relativistic case, the impossibility of instanta-
neously accessing a finite space region results in that
the orthogonal states extended in the coordinate space
can be unambiguously distinguished as proper objects
only when accessible as a whole (i.e., the measuring
instrument can access the entire spatial region in which
the state carriers are nonzero). This circumstance will
be employed below in constructing the relativistic
quantum protocol.

Many problems in cryptography can be reduced to a
sequence of primitive cryptographic exchange proto-
cols. These are the protocol of key transmission (cryp-
tography) [6–8], bit commitment, and coin tossing [9–
12]. The bit commitment represents a stronger protocol
as compared to the coin tossing in a sense that, once the
bit commitment is realized, the coin tossing protocol
can be formulated on this basis.

In a descriptive and informal way, the bit commit-
ment protocol is usually formulated as follows. There
are two spatially separated legal parties of the protocol,
A and B (henceforth conventionally referred to as
“Alice” and “Bob”). In the commitment stage, Alice
selects a secret bit (0 or 1) and transfers a part of infor-
mation about this to Bob; by this part, Bob cannot
unambiguously judge on what Alice means. More
strictly speaking, the probability of identifying the mes-
sage by measuring the part of information in the ideal
case is 1/2 (the probability of simple guessing). In the
stage of unveiling, Bob may request the remainder bit
information from Alice. In the ideal case, Bob must
unambiguously (with the probability of unity) recover
in the unveiling stage the secret bit originally commit-
ted by Alice. Moreover, Alice must be unable of chang-
ing the secret bit when the first part of information is
sent to Bob.

The protocol of coin tossing is formulated as fol-
lows. Two spatially separated parties (neither of the two
trusting another, each party having all admissible
means of deceiving another) must exchange informa-
tion so that eventually (in the ideal case, at the probabil-
ity of unity) they both have to agree that the bit trans-

Pr ψ1| 〉{ } Tr ψ1| 〉 ψ1〈 |31{ } 1,= =

Pr ψ1| 〉{ } Tr ψ1| 〉 ψ1〈 |32 ⊥,{ } 0,= =
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mitted by this protocol is a true choice. If the parties
could exchange information only via a classical com-
munication channel, this task might even seem unsolv-
able.

It is evident that, once the secret bit commitment
protocol can be realized, the coin tossing protocol can
be implemented on this basis as well. To this end, Bob
has to guess the secret bit (that was originally commit-
ted by Alice and will be unambiguously known to both
upon unveiling) during the time interval between the
first bit commitment and unveiling. If Bob’s guess is
correct, he wins, otherwise Alice wins.

A simple variant of the bit commitment protocol is
offered by the following example. Alice writes the
secret bit on a sheet of paper, places it into a safe box,
and sends the box to Bob (commitment), while retain-
ing the key till the unveiling stage. Despite evident sim-
plicity, this example reflects all principal features of the
protocols employing the classical information carriers.
Here, Bob receives at his disposal essentially the whole
information (rather than a part of it) concerning the
secret bit. The laws of nature do not forbid Bob (pro-
vided that the appropriate technical facilities are avail-
able) to know the secret data before official unveiling.
An analogous situation takes place in the protocols
based on the computational complexity of some trap
functions such as the discrete logarithm [13]. In these
protocols, Alice transmits to Bob the y value (y =
abmodp; a and p being known preliminarily and party
b being the secret bit). The information about b (pro-
vided with the y value) is already sufficient to unambig-
uously establish (by calculating the discrete logarithm)
the secret bit value. However, from the standpoint of the
classical computational algorithms, such calculations
would require large (exponentially increasing) compu-
tational facilities. However, it is not proved by now that
other, more effective (polynomial) classical algorithms
do not exist.

In the case when Alice and Bob may exchange infor-
mation only via a classical communication channel, the
problem was solved by Blum [13]. Strictly speaking,
the protocol proposed in [13] is not secure with respect
to the possibility of one party being deceived by
another, since the secrecy is based on the unproved dif-
ficulty of computing the discrete logarithm. In proto-
cols of this type, Alice also transmits the whole infor-
mation (rather than a “part” of it), and the laws of nature
do not forbid Bob to know the secret bit before the
unveiling stage (e.g., by using a quantum computer [14,
15], although this device is still far from practical real-
ization).

Using classical (nonrelativistic) objects as informa-
tion carriers, it is impossible to realize an uncondition-
ally secure bit commitment protocol (the secrecy of
which is based only on the fundamental natural prohi-
bitions, rather than on restricted technical facilities),
whereby only a “part” of the classical object (e.g., of a
spatially extended signal) is delivered to Bob prior to
JOURNAL OF EXPERIMENTAL
the unveiling sage. Since the signal part accessible to
Bob prior to unveiling must appear identically for the
bit values 0 and 1 (so that Bob would possess zero
information about bit commitment before unveiling),
the object (signal) part retained by Alice must differ for
the two values. The laws of nonrelativistic classical
physics do not prohibit instantaneous modification of
the retained signal part (to change from 0 to 1 and vice
versa) before sending it to Bob for unveiling. Thus,
nothing forbids Alice to change the secret bit value.
Thus, an unconditionally secure bit commitment proto-
col cannot be realized within the framework of the non-
relativistic classical physics.

The nonrelativistic quantum protocols employ
quantum systems as the information carriers. In gen-
eral, the common features of these protocols are as fol-
lows. Let *s be the Hilbert space containing the states
of information carriers. Alice selects the system state
|ψ0, 1〉  ∈  *s corresponding to 0 or 1 and sends these
states to Bob (as a rule, the nonorthogonal states are
selected). It is important to note that the whole space of
states *s is implicitly assumed to be accessible to both
Alice and Bob during the entire protocol time. The
requirement that the matrices of density of states corre-
sponding to 0 and 1 would appear the same for Bob
prior to unveiling opens the possibility for Alice to
deceive Bob by the undisclosed Einstein–Podolsky–
Rosen (EPR) attack [16, 17]. Roughly speaking, this
protocol involves only the space of the system states.
However, this situation is rather artificial and does not
correspond to real conditions of the information trans-
fer. More precisely, we imply that the protocol parties
cannot monitor the entire space and only control certain
regions (laboratories, measuring devices, etc.). More-
over, all measurements take pace in the real space and
time (or space–time in the relativistic case). The nonrel-
ativistic quantum mechanics does not prohibit the for-
mation of intricate states in physically distinguishable
systems (we are interested only in such cases since,
should the systems be identical, it is impossible to per-
form a measurement involving only one of these sys-
tems). Therefore, if the protocol parties control only
nonintersecting regions of the space, an intricate state
from *s % *a must automatically be nonlocal in the
coordinate space. The wave functions of both sub-
systems from *s and *a must possess the carriers
simultaneously in the regions controlled by both Alice
and Bob (otherwise the given state will not be intricate
for the parties). The latter condition implies that each
party has access both to the space of states *s and to
*a, being capable of conducting measurements and
performing unitary transformations in the subsystems
(by virtue of their being physically distinguishable) at
its own discretion. Thus, the local character of transfor-
mations in the space of states *s % *a (involving
manipulations in one of the subspaces of states) does
not imply locality in the coordinate space. In other
words, the space of states of the information carriers in
 AND THEORETICAL PHYSICS      Vol. 93      No. 4      2001
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such nonrelativistic quantum protocols (declining from
explicitly taking into account the space–time structure
of the information carriers) is accessible to both parties.
In this sense, the protocols do not employ the idea of
delivering a part of information about the secret bit car-
rier.

Apparently, an explicit use of the effects of state
transmission in the coordinate space, when Bob can
access only a part of the state (because of its extension
in space) in the nonrelativistic case, cannot bring some
new essential features of the problems under consider-
ation, since there is no limiting speed of the signal prop-
agation.

It should be noted that the problem formulation
using only specific features of the space of states *
does not correspond to a real situation taking place in
the case of information transmission in the real space–
time. It is more natural to consider a problem in which
both protocol parties reside in their laboratories and
control the space regions in the vicinity of these labora-
tories. Obviously, Alice and Bob can neither control nor
monitor the whole coordinate space simultaneously.

For the first time, an explicit use of the effects of the
state propagation (with the space–time structure of
states taken into account) in solving the tasks of quan-
tum cryptography was suggested by Goldenberg and
Vaidman [18] (in our opinion, the ideas formulated in
that paper were not timely appreciated [19, 20]). An
allowance for the restrictions posed by the special rela-
tivity and quantum mechanics (quantum field theory)
considerably simplifies the proof of unconditional
security of the relativistic quantum cryptosystems [21,
22]. Moreover, the quantum field theory poses addi-
tional fundamental limitations, for example, on the tele-
portation of quantum states [23].

Recently, Kent [24] suggested the classical proto-
cols of bit commitment and coin tossing with an allow-
ance for the limited velocity of signal (information)
propagation. The relativistic classical protocol [24] is
unconditionally secure (i.e., the protocol security is
based only on the basic laws of nature) and allows, in
principle, the second stage of the protocol to be delayed
(i.e., to retain information about the secret bit commit-
ted by Alice for an arbitrarily long time). For the proto-
col realization, it is necessary that both parties control
two spatially-separated sites.

An idea of the relativistic quantum bit commitment
and coin tossing protocols using orthogonal states was
previously formulated in [25] based on two simple con-
siderations. First, a pair of orthogonal states (unambig-
uously distinguishable if accessible for measurement as
a whole) become effectively nonorthogonal (undistin-
guishable) when bounded in a subspace. This circum-
stance is valid in the nonrelativistic quantum mechanics
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
as well. Indeed, a pair of orthogonal states extended in
the coordinate space, for example,

becomes effectively nonorthogonal when bounded in a
subspace (a finite region Ω in the coordinate space):

The second important point is the presence of a limited
velocity of propagation of for quantum states and clas-
sical objects, as dictated by the special relativity. This
condition ensures that the access to the whole state (in
the region where it exists) cannot be instantaneous.

Using the states with “internal” degrees of freedom
(e.g., helicity of the photon) allows the protocols to be
simplified in comparison with those considered in [25],
where the states possessed no such degrees of freedom.
Strictly speaking, the states for 0 and 1 of the type

are orthogonal (due to the internal degrees of freedom)
even if not accessible for the measurement as a whole
(but only in that part of the coordinate space where the
function ψ(x) is nonzero). However, these states cannot
be unambiguously distinguished: the probability of this
(i.e., of measuring 0 or 1 in one of the orthogonal chan-
nels) can be arbitrarily small if only a part of the state
accessible. Indeed, the probability of measurement in a
finite region of the space Ω

can be rendered arbitrarily small by selecting the shape
and size of ψ(x). This is in fact dictated by the condition
of normalization of the state 

Our idea of the relativistic quantum protocol is gen-
erally as follows. Alice, controlling a certain finite
region of the coordinate space, prepares a quantum
state at a time instant stipulated by the protocol. This
state propagates in the communication channel and
gradually becomes accessible for Bob’s measurement
in a region not controlled by Alice. Being in access only
to a part of the quantum state in the real space, Bob can-
not obtain reliable information about the secret bit (i.e.,
unambiguously distinguish 0 and 1); the states can be
selected so that the probability of distinguishing 0 and
1 by measurement on the Bob side would be arbitrarily

ψ0 ψ1,( ) ψ0* x( )ψ1 x( ) xd

∞–

∞

∫ 0,= =

ψ0 1, x( ) +2 ∞ ∞ dx, ,–( ),∈

ψ0 ψ1,( )Ω ψ0* x( )ψ1 x( ) x 0.≠d

Ω
∫=

ψ0 1,| 〉 ψ x( ) e0 1,| 〉 , e0 e1〈 〉⊗ 0,= =

ψi ψi〈 〉 Ω ψ x( ) 2 xd

Ω
∫ 1, i< 0 1,,= =

ψ x( ) 2 xd

∞–

∞

∫ 1.=
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close to 1/2 (the probability of simple guessing) within
an arbitrarily long time interval (initially stipulated by
the protocol). There are no fundamental limitations
from above for this interval (although making this inter-
val arbitrarily long can be technically difficult). The
existence of limiting velocity allows the states to be
selected so that, when a part of the state leaves the
region controlled by Alice and becomes out-of-reach,
she cannot change this state (committed bit). As the
protocol time elapses, the whole states become accessi-
ble to Bob and he can obtain unambiguous information
at a probability arbitrarily close to unity. This protocol
is based essentially on both the quantum character of
states and the existence of a limiting velocity, as dic-
tated by the special relativity.

Section 2 describes the states and measurements
involved in the proposed protocols. Sections 3 and 4
present the bit commitment and coin tossing protocols
for the states with compact carriers. Section 5 describes
changes in the protocols, which are necessary for tak-
ing into account the principal nonlocality of states in
the quantum field theory. The Conclusion briefly sum-
marizes the results of this study.

2. STATES AND MEASUREMENT INVOLVED 
IN THE PROTOCOL

Since the protocol explicitly employs the space–
time structure of states, the procedure cannot be formu-
lated without taking into account a particular geometry
of the system. Let us consider a one-dimensional model
that retains all essential features of the protocol dictated
by the quantum field theory. This model is frequently
employed in the quantum optics. We will deal with the
field states corresponding to a massless field, the states
of which a determined in the momentum representation

on the mass surface  – k2 = 0. We are interested in the
states propagating in the positive direction of the x axis
(k > 0). It is assumed that Alice controls a region in the
vicinity of the point xA, while Bob controls an analo-
gous region in the vicinity of xB (xA < xB).

All the functions considered below depend on the
difference τ = t – x; the speed of light is taken equal to
unity (c = 1). This representation reflects intuitive
notions of a wave packet moving at the speed of light.
The eigenvector |k〉  of the momentum operator, corre-
sponding to the momentum k, is a generalized eigen-
vector [more precisely, a linear continuous functional
on elements of a dense subset in * = +2(0, ∞, dξ)] hav-
ing the following form:

(3)

The states |ψ〉 belonging to * can be expanded in gen-
eralized states

(4)

k0
2

ξ k〈 〉 δ k ξ–( ).=

ψ| 〉 k ψ〈 〉 k| 〉 k,d

0

∞

∫=
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where the values of the functional 〈k| on the elements
|ψ〉 are

(representing the amplitude of the state |ψ〉 in the k- rep-
resentation). Accordingly, the amplitude of the state 〈k|
in the τ-representation has the following form:

(5)

This form reflects intuitive notions of a plane wave
(representing the state with a certain momentum) mov-
ing at the speed of light.

An essential point in the protocol is that the quan-
tum states are propagating at the maximum possible
speed (light speed). In the τ-representation, the orthog-
onal states (packets) corresponding to 0 and 1 in the
protocol have the following form:

(6)

where the states |e0, 1〉  correspond to the internal degrees
of freedom (e.g., helicity of the photon).

The condition of normalization for the states is

(7)

where

(8)

Let us introduce the state amplitude in the k-represen-
tation, which can be defined as

(9)

Taking into account expressions (5)–(7), the normaliza-
tion condition can be written as

(10)
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Substituting the amplitude in the k-representation from
(7) into (8) and taking into account that [26]

(11)

we obtain

(12)

According to the requirement of microscopic cau-
sality [27], the field operators (generating the field
states belonging to the Hilbert space of states by acting
upon the vacuum vector) must be commutative (or anti-
commutative) if these operators belong to spacelike
regions. As is known, the commutator of the field oper-
ators is a generalized function (for detail, see [27]). In
order to speak of the local properties of the generalized
functions, the basic functions must possess certain
properties (in fact, belonging to the space (( ) of infi-
nitely smooth functions decreasing at the infinity more
rapidly than | |–n for any natural n). In other words, the
states of the free field cannot possess a compact carrier
(i.e., differ from zero only in a finite spatial region and
belong to the space $( )), that is, the free field states
are fundamentally nonlocalizable. However, the field
theory allows the existence of states arbitrarily local-
ized in space and decreasing at a rate arbitrarily close to
exponential (see, e.g., [28–32]). In addition, the func-
tions from space $( ) with a compact carrier form a
dense set in the space (( ), which implies that any
function from (( ) can be approximated by the func-
tions from $( ) with an arbitrary accuracy.

In application to the one-dimensional model under
consideration, the property of nonlocalizability can fol-
low from the Wiener–Paley theorem [33], since the nor-
malization condition (10) with an allowance for (7)
implies a quadratic integrability of the amplitude in the
k-representation and poses restrictions on the asymp-
totic behavior of the function f(τ)

(13)

As follows from (11), the function f(τ) cannot possess
a carrier that is compact with respect to τ and cannot
decrease exponentially, but it can be made arbitrarily
strongly localized and decreasing at a rate arbitrarily
close to exponential. For example:

(14)

where α is an arbitrary positive quantity.
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For the sake of better illustration and convenience,
we will first formulate a protocol for the states with
compact carrier (since the functions from $(τ) form a
dense set and any function f(τ) can be approximated
with an arbitrary accuracy by the functions from$(τ)).
Then we will introduce changes in the protocols, which
are necessary for nonlocalizable states.

Let the state carrier f(τ) possess a compact carrier
supp f(τ) = (–∆τ, ∆τ) (where ∆τ can be selected arbi-
trarily small). The states are formed with contributions
only from the vectors |τ〉 from the region (–∆τ, ∆τ) on
the light cone

(15)

The situation with the quantum field theory differs from
the nonrelativistic quantum protocols, in which the
space–time structure of states is not explicitly
employed and the effects of state preparation are not
significant [more strictly speaking, the nonrelativistic
quantum mechanics does not prohibit instantaneous (at
any time moment) preparation of states from *, even
including the states that are nonlocal in the coordinate
space]. In contrast to this, the preparation of states in
the field theory requires the access to a finite region of
the space–time (even if the carrier is compact). In the
one-dimensional case, this corresponds either to a coor-
dinate space region with the size ∆x = 2∆τ (if the state
is prepared using a nonlocal source at a fixed time
moment t) or to a finite time interval ∆t = 2∆τ (if
the state is generated by a point source located at the
point x). Therefore, a relativistic protocol can only be
formulated with an allowance for a particular geometry
of the system. The one-dimensional case is most simple
for the analysis, since all quantities depend on a single
variable τ = x – t. Taking into account that there are
experiments employing quasi-one-dimensional fiber-
optic systems, an analysis of the proposed one-dimen-
sional model is quite reasonable.

Now we will consider the “extended” states
(required for the protocol) composed of two halves
spaced by an interval τ0 on the light cone:

(16)

Here and below, the states are normalized as

(17)

Since the initial state possesses a carrier in (–∆τ, ∆τ),
the state preparation requires controlling the region
(−∆τ, ∆τ + τ0) on the light cone [representing either the

ψ0 1,| 〉 f τ( ) τ| 〉 τ e0 1,| 〉 .⊗d
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region ∆x = (–∆τ, ∆τ + τ0) in the coordinate space if the
state is prepared by a nonlocal instrument at a fixed
time moment, or a time interval ∆t = (–∆τ, ∆τ + τ0) if
the state is generated by a local source at the point x].

Now let us discuss the individual measurements per-
formed by the second party of the protocol on a sepa-
rate state. The measurements are described by an
expansion of unity (with the results of these measure-
ments forming the space Ω = {τ ∈  (–∞, ∞), i = 0, 1}),
for which

(18)

where |k〉  is the formal eigenvector corresponding to a
preset k and

It will be also necessary to describe the propagation of
states in a quantum communication channel from the
region controlled by Alice to that controlled by Bob.
This propagation is described by a unitary translation of
the state |ψ0, 1〉 along the branch of the light cone τ = x – t:

(19)

where τch is the length of the communication channel.
A relationship between the state “extension” (2∆τ + τ0)
and the channel length τch must be such that

which allows us to assume without loss of generality
that τch = 0 (since the channel length can be arbitrarily
short, only not exceeding the state “extension”).

The probability for Bob to obtain a result in the ith
channel in the dτ interval for an input state |ψj(τ0)〉  is

(20)

This expression describes the density of the probability
of obtaining the result in one of the orthogonal (distin-
guishable) channels for 0 (i = j = 0) and 1 (i = j = 1) in
the interval dτ. On the intuitive level, this measurement
can be interpreted as realizable using a photodetector
operating in a standby mode with a small (formally
zero) internal response time. The result of this measure-
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ment is a random event falling within the interval dτ at
a probability density (20).

The probability of detecting a state within a finite
interval ∆(τ) (for i = j) is

(21)

If the interval ∆(τ), representing accessible region on
the light cone, does cover the whole state carrier (e.g.,
covering one half of this state), the probability of
obtaining the result is 1/2. However, once the result is
obtained, the orthogonality of the registration channels
30 and 31 provides for the unambiguous identification
of states. For this reason, the probability of an error in
the identification of state by measurement during the
time ∆τ ≤ τ ≤ τ0 + ∆τ is 1/4. Accordingly, the probabil-
ity of the correct identification is 3/4. For a simple
guessing without measurement, the error is 1/2.

It should be emphasized that this measurement can
by no means be interpreted as lasting for a finite time
∆(τ). Every time, the result of the measurement appears
randomly at a time moment t with the probability den-
sity (20). On elapse of the time τ0 + 2∆τ, when the state
occurs completely in the region accessible for Bob’s
measurement, 0 or 1 are unambiguously identified due
to the orthogonality of states.

Thus, the propagation of states with ultimately pos-
sible speed allows the idea of a partial delivery of the
information concerning the committed secret bit (a part
of the quantum state) by Alice to be explicitly and nat-
urally realized. The quantum character of states is also
essential for the protocol. Indeed, for f(τ) describing the
shape of a signal with different polarizations (e0 or e1),
the probability of the identification of states in the clas-
sical case (even provided the access to a half of the
state) would be 1 (against 3/4 in the quantum case). In
the quantum case, the probability of 3/4 obtained with
the access to a half of the state in fact follows from the
normalization condition.

This result can be also obtained in a somewhat dif-
ferent way, which clarifies distinctive features of the sit-
uations when a part of the Hilbert space of states (i.e., a
part of the carrier of state) is accessible for the measure-
ment. Let us find the measurement minimizing the error
in distinguishing two states described by the density
matrices in the case when a part of the state carrier is
accessible. The form of the density matrices is as fol-
lows:

Pr ∆ τ( ){ } Pr τ ; i i,d{ }
∆ τ( )
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(22)

Now let us derive an expression for the error in distin-
guishing the ρ0, 1 states when only a part of the space–
time is accessible for the measurement. The problem
formally reduces to the situation when a region ∆(τ) is
accessible, and the remaining part of the space–time is
inaccessible for the measurement. The measurement is
described by the expansion of unity comprising two
terms representing the unity in the subspaces generated
by the basis set vectors |τ〉 belonging to the interval ∆(τ)
and by the vectors from the inaccessible space–time
region denoted as 

 = (–∞, ∞)\∆(τ).

This yields

(23)

Let the state ρ0 be presented for the measurement at an
aprioric probability of π0 and the state ρ1, at a probabil-
ity of π1 (π0 + π1 = 1). Below we use π0 = π1 = 1/2 (the
states are simply equiprobably guessed by Bob).

Since only a part of the space–time is accessible for
the measurement (which automatically implies
restricted access to the Hilbert space of states because
the basis states are numbered in τ), the total error is a
sum of two contributions. The first contribution
Pe( ) corresponds to cases when the measuring
instrument on the Bob side fails to operate (for out-
comes in the inaccessible region). The second contribu-
tion Pe( ) describes the error in distinguishing
states for outcomes in the region accessible to Bob.

The provability that a transmitted state was not
detected by Bob (whose instrument failed to operate) is

(24)

Here, the probability of an outcome in the inaccessible
region for the state ρ0 with the given aprioric probabil-
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ity of presentation π0 is

(25)

By the same token, for the state ρ1 presented with the
aprioric probability π1, the probability of an outcome in
the inaccessible region is

(26)

The probability of an error (misidentification), whereby
the state ρ0 was presented for the state ρ1 transmitted
(and vice versa), is

(27)

Let only one half of the states to fall in the accessible
region (the carrier f(τ) or f(τ − τ0) occurs in the inacces-
sible region) and, accordingly, another half to be in the
region inaccessible for the measurement. Then, accord-
ing to (24)–(27), the probability of an error for the out-
come in the inaccessible region is Pe( ) = 1/2.

In the general case, the measurement minimizing
the probability of an error is given (for a binary statisti-
cal decision function) by a unity expansion of the type

(28)

where, in contrast to [34, 36], the expansion is limited
to subspace ∆(τ). The minimum probability of an error
is determined by minimizing over all possible expan-
sions (for detail, see [34, 36])

(29)

where π0 and π1 are the probabilities of density matrices
ρ0 and ρ1, respectively (in our example, π0 = π1 = 1/2
are the probabilities of preparing the states correspond-
ing to 0 and 1).

Taking into account (28), an expression for the error
probability can be written as

(30)

Determination of the minimum of Pe(∆(τ)) reduces to

minimizing  over all possible operators .
Since the region accessible for the measurement is
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Ẽ0 Ẽ1+ I ∆ τ( )( ) I
C2⊗=

=  I ∆ τ( )( ) E0 E1+( ),⊗

Pe ∆ τ( )( )
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reduced to the interval ∆(τ) the trace is

(31)

Taking into account that

we obtain

(32)

The minimum error is determined by the negative
eigenvalues γi of the operator

(see [36]). Operators  must obey the conditions

(33)

where |γi〉  are eigenvectors of the operator

The matrix of Γ in the basis set {|e0〉 , |e1〉} has the form
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The minimum error is
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Ẽ0 I ∆ τ( )( ) 0 0

0 1 
 
 

,⊗=
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Finally, we obtain for the error probability correspond-
ing to outcomes in the region accessible for the mea-
surements

(38)

On the intuitive level, this result can be interpreted
as follows. Assume that we have to distinguish between
two spatially extended one-photon states with different
(orthogonal) helicities. The probability of distinguish-
ing these states is unity only when the states are acces-
sible as a whole (accordingly, the error probability is
zero). Although the basis vectors for different helicity
values are orthogonal, the states are identified with
uncertainty due to their spatial extension (making the
spatial part of the states inaccessible as a whole). From
the physical standpoint, this is related to the fact that a
helicity state cannot exist outside the internal degrees
of freedom. Owing to the normalization with respect to
the spatial degrees of freedom, the probability of the
instrument operation on Bob’s side does not exceed
unity for any measurement. The unambiguous distin-
guishing between states even with different (orthogo-
nal) helicities basically requires a finite time because
limitations posed by the special relativity make it
impossible to access the whole state within a time
shorter than the effective extension of the state divided
by the speed of light.

For a large number of trials, the total error equals the
fraction of incorrectly identified states. The fraction
(probability) of outcomes in the accessible region is

(39)

and that in accessible region,

(40)

The total error probability is a sum of the error in the
inaccessible region multiplied by the fraction of such
outcomes and the error in the accessible region multi-
plied by the corresponding fraction:

(41)

In the case of access to a half of the states, this yields

(42)

Accordingly, the probability of the correct identifica-
tion amounts to 3/4.

Pe ∆ τ( )( ) f 2 ∆ τ( )( ) π0 π0–( ) 1
2
--- 1

2
--- 1

2
---– 

  0,= = =

f 2 ∆ τ( )( )
1
2
---.=

N ∆ τ( )( ) Tr π0ρ0 π1ρ1+( ) I ∆ τ( )( ) I
C2⊗( ){ } ,=

N ∆ τ( )( ) Tr π0ρ0 π1ρ1+( ) I ∆ τ( )( ) I
C2⊗( ){ } .=

Pe Pe ∆ τ( )( )N ∆ τ( )( ) Pe ∆ τ( )( )N ∆ τ( )( ).+=

Pe
1
2
--- 1

2
---×  + 0

1
2
---× 1

4
---,= =

Pe ∆ τ( )( )
1
2
---, N ∆ τ( )( )

1
2
---,= =

Pe ∆ τ( )( ) 0, N ∆ τ( )( )
1
2
---.= =
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This result can be interpreted as follows. If Alice
randomly and equiprobably prepares one of the states
(ρ0 or ρ1) and presents it to Bob for the measurement,
the measuring instrument operates with the probability
1/2 in one of the channels (corresponding to 0 or 1).
Once the instrument has operated, the states are unam-
biguously identified. However, if the instrument fails to
operate, Bob has to guess the state. The probability of
this situation is 1/2 and the probability of simply guess-
ing is 1/2. For such events, the probability of the correct
identification is

1/2 × 1/2 = 1/4.

The total probability of the correct identification is

1/2 + 1/4 = 3/4.

In this case, the probability 1 – Pe coincides with the
probability of correctly identifying the secret bit. This
probability (exceeding 1/2) of the correct identification
is unacceptably high for constructing the protocol. The
situation dramatically changes if the secret bit repre-
sents the bit of parity for N states. As will be shown
below, the probability of the correct identification of the
parity bit by Bob in this case exceeds the value 1/2 (the
probability of simple guessing that represents the worst
variant) only by an exponentially small quantity.

Now let us consider the probability of an error in
distinguishing between 0 and 1 when these values are
encoded as the parity bit determined over N orthogonal
states. The problem of determining the parity bit over N
states, with every bit being encoded by a nonorthogonal
state and the space of states being accessible as a whole,
was considered previously by Bennett et al. [37].

Let us first calculate the error of distinguishing the
states for outcomes in the accessible region. For an N-
bit line (corresponding to a density matrix ρ0, 1) ran-
domly selected from 2N possible combinations (among
which 2N/2 are even and 2N/2 are odd), the problem
reduces to distinguishing two density matrices corre-
sponding to the even and odd lines:

(43)

ρ̂0
2

2N
------ ρi1

ρi2
… ρiN

⊗ ⊗ ⊗
N

i1 i2 … i⊕ N⊕ ⊕( ) 0=

∑=

=  
2

2N
------ ρ f( ) ρ f( ) … ρ f( )⊗ ⊗ ⊗( )

ρ i1( ) ρ i2( ) … ρ iN( ),⊗ ⊗ ⊗
i1 i2 … i⊕ N⊕ ⊕( ) 0=

∑⊗

ik 0 1, k, 1 …, N .,= =
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(44)

The measurement minimizing the error in distinguish-
ing the density matrices  and  is described by the
unity expansion

(45)

The corresponding error probability is

(46)

Accordingly, the minimum error is given by a formula
analogous to (28) and determined by the negative
eigenvalues γi of the operator

(47)

In the basis of vectors ordered into even and odd sets
with respect to the sum of indices, the operator Γ has
the following form:

(48)

ρ̂1
2

2N
------ ρi1

ρi2
… ρiN

⊗ ⊗ ⊗
N

i1 i2 … i⊕ N⊕ ⊕( ) 1=

∑=

=  
2

2N
------ ρ f( ) ρ f( ) … ρ f( )⊗ ⊗ ⊗( )

ρ i1( ) ρ i2( ) … ρ iN( ),⊗ ⊗ ⊗
i1 i2 … i⊕ N⊕ ⊕( ) 1=

∑⊗

ik 0 1, k, 1 …, N .,= =

        

ρ̂0 ρ̂1

I ∆ τ( )( ) I
C2⊗( )⊗ N

Ê0 Ê1+=

=  I ∆ τ( )( )⊗ N

Ê0 Ê1+( ),⊗

Ê0 Ê1+ I
C2
⊗ N

.=

~ ~

Pe ∆ τ( )( ) π0Tr ρ̂0 I ∆ τ( )( )⊗ N

I
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Ê0⊗( ){ } .
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π1ρ̂ 1( ) π0ρ̂ 0( )–( ) f 2 ∆( )( )
N
Γ .= =

Γ 1
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0 1 0 …
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. . . …
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,=
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…
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Finally, the minimum probability of an error in determin-
ing the resulting parity bit over N orthogonal states inac-
cessible for measurement as a whole (for π0 = 1/2) is

(49)

In the case of access to a half of each state (  =
1/2), we obtain

(50)

Due to the orthogonality of the channels, the error prob-
ability (for the outcome in the accessible region) is
zero. This formula has to be interpreted as follows: if all
N outcomes took place in the accessible region, the
error probability is zero due to orthogonality of the
channels; the same is valid if the outcome in the acces-
sible region took place for m states (in this case, m
should be substituted for N in (47) and (48)). Thus, if
the outcomes related to the presented states took place
in the accessible region, the corresponding states
become unambiguously identified.

However, the outcomes can also take place in the
region inaccessible for the measurements. As a state
propagating into the accessible region becomes acces-

sible as a whole (   1), the error probability
tends to zero (Pe  0). The orthogonal states are
unambiguously distinguishable when accessible as a
whole.

Now let us evaluate the probability of correctly
identifying the parity bit. The total number of N-bit
binary lines is 2N and the outcomes may take place in
both accessible and inaccessible regions. The space of
events contains two elements. The first represents the
case when all N outcomes take place in the accessible
region. In this case, the probability of correctly identi-
fying the parity bit is unity. However, the probability of
this event (for only a half of each state being accessi-
ble) is

The second element of the space of events represents all
other cases (i.e., those with no more that N – 1 out-
comes in the accessible region). The probability of all
these outcomes (for only a half of each state being
accessible for the measurement) is

(51)

Pe ∆ τ( )( ) f 2 ∆( )( )
N 1

2
---

1

2N
------ 1–( )

γi 0≤

2N /2
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+
 
 
 

.=

f 2 ∆( )

Pe ∆ τ( )( )
1
2
--- 

 
N 1

2
---

1

2N
------2N

2
------– 

  0.= =

f 2 ∆( )

f 2 ∆( )
N

2 N– .=

CN
k f 2 ∆( )

k
1 f 2 ∆( )–( )

N k–

k 0=

N 1–

∑

=  CN
k 1

2k
---- 1

2N k–
-----------

k 0=

N 1–

∑ 1 f 2 ∆( )
N

– 1 2 N– .–= =
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For such outcomes, the probability of an error in deter-
mining the parity bit is 1/2. Indeed, Bob knows a k-bit
line (k ≤ N – 1), the parity of which is unambiguously
established. However, the remaining (N – k)-bit line
(for outcomes in the inaccessible region) can be either
even or odd with a probability of 1/2. Therefore, the
resulting parity of the total N-bit line is also known only
at a probability of 1/2, since the knowledge of the parity
of a part of the k-bit line does not influence the
probability of correctly determining the parity of the
whole line.

The resulting error of determination of the parity bit
is a sum of two contributions. The first contribution is
due to the event corresponding to all outcomes taking
place in the accessible region, and the second reflects
all other events. Each of these terms is the product of
the probability of an error in determining the parity bit
by the probability of the corresponding event. Eventu-
ally, this yields

(52)

Accordingly, the probability that Bob correctly identi-
fies the parity bit (for the access to half of the states) is

(53)

which exceeds the probability of simple guessing only
by an exponentially small quantity.

Thus, within a period of time τ0 (∆τ < τ < ∆τ + τ0)
after beginning of the protocol, Bob possesses an
exponentially small amount of information about the
secret bit.

However, the scheme of the secret bit presentation
in the form of a parity bit for an N-bit line is insufficient
for a secure protocol, since it leaves an unacceptably
large possibility for Alice to deceive Bob (a large prob-
ability of undisclosed delay in the bit selection). In
order to eliminate this possibility, it is necessary to
encode each of the N bits with a block of k like bits (the
k value is determined below), which are sent to Bob
intermittently via Nk channels.

Finally, let us present an expression for the probabil-
ity of an error in distinguishing the density matrices
corresponding to 0 and 1 in the case when the parity bit
is encoded by k-bit blocks (containing either all zeros or
all unities). According to the protocol, the secret bit
selected by Alice is a parity bit of N zeros or unities,
with each 0 and 1 presented by blocks of k zeros or uni-
ties. This block representation of each bit is necessary
to enable Bob monitoring the absence of deception on
Alice’s side.

In this case, the total number of possible binary line
combinations is 2Nk. The number of even and odd com-

Pe parity( ) 1
2
--- 1 2 N––( ) 0 2 N–×+=

=  1
2
---

1
2
--- 2 N–× .–

Pc parity( ) 1 Pe parity( )– 1
2
---

1
2
--- 2 N–×+= =
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binations (encoded by k-bit blocks of all zeros or uni-
ties) is

(54)

which equals in fact to the total number of arrange-
ments for (N – l)k unities and lk zeros (0 ≤ l ≤ N) over
Nk cells [35].

Note that, if the position of each k-block were fixed
(with zeros and unities of different blocks not mixed),
the number of possible combinations of the even and

Sodd even,
1
2
--- CNk

mk

m 0=

N 1–

∑=

=  2Nk 1
2k
------ 

  lπ
k
----- 

  Nlπ( ) 2Nk,≈coscos
Nk

l 1=

k

∑
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odd blocks would be only 2N which is exponentially
smaller than 2Nk for large k values (see formula (54)).

By definition, the rest of the combinations num-
bered

enter neither Sodd nor Seven in the form of any subdivi-
sions into k-blocks (containing either all zeros or all
unities). This circumstance is important for the pro-
posed protocol.

In the bass set ordered for the even and odd k-block
states and the rest of the states (for certainty, k is
assumed even)

N rest 2Nk Sodd Seven ! 2Nk––=
(55)

(56)

Seven

e0| 〉 e0| 〉 … e0| 〉⊗ ⊗ ⊗ ……… e0| 〉 e0| 〉 … e0| 〉⊗ ⊗ ⊗
k k k k

⊗⊗
other combinations of e0| 〉  and e1| 〉  with even

numbers of k-blocks e1| 〉 e1| 〉 … e1| 〉⊗ ⊗ ⊗
k

a total of N  blocks( )

e1| 〉 e1| 〉 … e1| 〉⊗ ⊗ ⊗ ……… e1| 〉 e1| 〉 … e1| 〉⊗ ⊗ ⊗
k k k k

⊗⊗









          } }         

        

         } }         

…

…

Sodd

e0| 〉 e0| 〉 … e0| 〉⊗ ⊗ ⊗ ……… e1| 〉 e1| 〉 … e1| 〉⊗ ⊗ ⊗
k k k k

⊗ ⊗
other combinations of e0| 〉  and e1| 〉  with odd

numbers of k-blocks e1| 〉 e1| 〉 … e1| 〉⊗ ⊗ ⊗
k

a total of N  blocks( )

e1| 〉 e1| 〉 … e1| 〉⊗ ⊗ ⊗ ……… e0| 〉 e0| 〉 … e0| 〉⊗ ⊗ ⊗
k k k k

⊗⊗









          } }         

        

         } }         

…

…

the operator  analogous to that in (48) has the follow-
ing form:

(57)

where  ( ) are the identity matrices of the size

Sodd × Sodd (Seven × Seven) and  is the zero matrix of the
size Nrest × Nrest.

In the same basis set, the measurement operators 

and  are and follows:

Γ̂

Γ̂
ÎSodd

0 0

0 Î– Seven
0

0 0 0̂ 
 
 
 
 
 

,=

ÎSodd
ÎSeven

0̂

Ê0

Ê1
(58)

The probability of an error in determining the k-
block parity bit for Nk outcomes in the accessible
region is

(59)

Ê0

0̂ 0 0

0 ÎSeven
0

0 0 0̂ 
 
 
 
 
 

, Ê1
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0 0

0 0̂ 0

0 0 Î 
 
 
 
 
 

.= =
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Seven Sodd+( )----------------------- 1–( )

i 1=

γi 0≤

2
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0.=
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The error is zero for any number of states, the measure-
ments on which gave outcomes in the accessible region.

Now we will determine the error of identification of
the parity bit for the k-block representation. Note that
the outcomes may take place in both accessible and
inaccessible regions. Let us first calculate the minimum
necessary number of outcomes in the accessible region
for which the line parity is unambiguously identified.
Since the direct calculation is rather cumbersome, we
will obtain an estimate using the following consider-
ations (essentially, in terms of the Shannon typical
sequences [38]; see also [39]). In the situation with
every bit representing a block of unit length (k = 1), the
power of the set of all lines is Ω = 2N. Accordingly, the
information from each element of the set is I = log2|Ω|,
representing (to within a rounding error) the number of
binary symbols necessary for individualization of the
elements. If each symbol (in our case, detector opera-
tion in the accessible region) appears at a probability of
p, the probability of the element identification is pI.

In the k-block representation, the subset power is
given by expression (54) and the number of binary sym-
bols necessary for individualization of the elements is

(60)

This is the number of outcomes in the accessible
region, which is necessary for identification of the line

parity. The probability of such an event (for p =  =
1/2) is

(61)

For these outcomes, the error is zero. The probability of
outcomes in the inaccessible region is

(62)

and the corresponding error in determining the parity
bit amounts to

(63)

Thus, the probability of the correct identification of the
parity bit in this case exceeds 1/2 (the probability of
simple guessing) only by an exponentially small quan-
tity:

(64)

It should be noted that the number of lines in the
block representation with zeros and unities from vari-
ous blocks intermixed equals in the order of magnitude
the total number of lines (≈2Nk); each k-block line
appears almost as if the block length is 1. For the line

I
2Nk 1–

k
------------- lπ

k
----- 

 cos
Nk

l 1=

k

∑ Nlπ( )cos
 
 
 

2
log=

=  α N k,( ) Nk( ).

f 2 ∆( )

Pacc pα N k,( ) Nk( ) 2 α N k,( ) Nk( )– .= =

Punacc 1 Pacc– 1 2 α N k,( ) Nk( )– ;–= =

Pe parity( )
1
2
--- 1 2 α N k,( ) Nk( )––( ) 0 2 α N k,( ) Nk( )–× .+=

Pc parity( ) 1 Pe parity( )– 1
2
--- 2 α N k,( ) Nk( )– .+= =
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parity determination, almost the whole line is necessary
(to within a correction factor α(N, k) (see formula (60)).

If the block positions were fixed, the set power
would be equal to 2N/2 and N binary tests would be nec-
essary. However, the probability p of each test equals a
sum of the probabilities of having 1, 2, …, or k out-
comes in the accessible region for each block:

(65)

The probability of N outcomes in the accessible region
(allowing Bob to know the parity on having the access
to halves of the states)

(66)

would be high for comparable N and k.
Now we have only to show that, as the whole states

become accessible for the measurement after elapse of
the time τ0 + ∆τ ≈ τ0, the probability for Bob being
deceived by Alice tends to zero. Strictly speaking, it is
necessary to show that Alice cannot change the secret
bit selection once the protocol has been started (in other
words, the probability that Alice changes the selection
after protocol start and remains undisclosed is exponen-
tially small 2–Nk).

According to the protocol, Nk states are simulta-
neously sent to Bob intermittently via Nk channels. A
check for the absence of deception on the Alice side is
provided by a measurement described by a unity expan-
sion of the type

(67)

where

(68)

In each of the Nk measurement channels, there are three
possible outcomes corresponding to 30(f ), 31(f ), and
3⊥ (f ). If Alice sends true states, the probabilities of
outcomes are as follows:

(69)

p Ck
l 1

2l
---- 1

2 k l–( )------------
l 1=

k

∑ 1 2 k– .–= =

Pacc pN 1 2 k––( )N
= =

I ⊗ Nk

I
C2
⊗ Nk

⊗ 30 f( ) 31 f( ) 3⊥+ +( )⊗ Nk

,=

30 1, f( )
1

2
------- f τ( ) f τ τ 0–( )+[ ] τ| 〉 τd

∞–

∞

∫ 
 
 

=

× 1

2
------- f ∗ τ'( ) f ∗ τ' τ0–( )+[ ] τ '〈 | τ 'd

∞–

∞

∫ 
 
 

e0 1,| 〉 e0 1,〈 | ,⊗

3⊥ I I
C2 30 f( )– 31 f( ).–⊗=

Pr ρ0 0,{ } Tr ρ030 f( ){ } 1,≡≡

Pr ρ1 1,{ } Tr ρ131 f( ){ } 1,≡≡

Pr ρ0 1,{ } Tr ρ031 f( ){ } 0,≡≡

Pr ρ1 0,{ } Tr ρ130 f( ){ } 0,≡≡

Pr ρ0 1, ⊥,{ } Tr ρ0 1, 3⊥ f( ){ } 0.≡≡
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Thus, when Alice sends true states, all outcomes with a
probability of unity must take place only in 30( f ),
31( f ).

A delay in the state selection by Alice for a time
exceeding 2∆τ would imply that the states have to be
used not covering the first halves of the true extended
states. In such cases, Alice begins to prepare the state
after the protocol starts, with a delay exceeding 2∆τ. In
all such states ρ, the carriers of which do not cover the
first halves of true states, the outcome in the 30(f ),
31(f ) channels does not exceed 1/2. Indeed,

(70)

if the carrier

does not cover the first half of the true state:

Thus, for the ideal communication channel, any delay
in the state selection results in that the outcome proba-
bility in 30( f ), 31( f ) does not exceed 1/2. More
strictly speaking, in each single experiment, the out-
come of measurements even on the states delayed by
more than 2∆τ may take place only in 30( f ), 31( f ) and
be absent in 3⊥ ( f ) with a probability of 1/2. However,
for k tests, the probability that all outcomes of the mea-
surements take place in 30( f ), 31( f ) and are absent in
3⊥ ( f ), thus simulating the statistics for undelayed
states, is as small as 2–k. This circumstance is employed
in the protocol below.

Now we will proceed with formulating the proto-
cols.
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2
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∞

∫
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∞

∫=

Tr ρ{ } δ + τ τ '–( )ρ τ τ ',( ) τd τ'd

∞–

∞

∫
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∞

∫=

=  ρ τ τ,( ) τd

∞–

∞

∫ 1,=

suppρ τ τ ',( ) supp f τ τ 0–( )∩ \ varnothing.=
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3. BIT COMMITMENT PROTOCOL 
FOR THE STATES WITH COMPACT CARRIER
IN THE IDEAL COMMUNICATION CHANNEL

1. Prior to proceeding with the protocol, the parties
agree on the type of states (localization 

 

∆τ

 

 and the form
of the state carrier 

 

f

 

(

 

τ

 

)) and the protocol duration dur-
ing which Alice keeps the secret bit. The latter time can
be selected arbitrarily large (not considering related
technical difficulties). Alice and Bob also preliminarily
agree in the 

 

N 

 

and 

 

k 

 

values.

2. Alice selects a secret bit representing a bit of par-
ity for a line of 

 

N 

 

representatives

where 

 

a

 

[

 

i

 

, 

 

j

 

] are bits 0 or 1, representing 

 

j

 

th block (

 

j 

 

is
the number of a 

 

k

 

-block); all bits in one block (with the
same number 

 

j

 

) are alike.

3. At the protocol onset moment (which is also
agreed preliminarily), Alice begins with preparing  Nk 
extended states, each of two halves, which propagate in

 

Nk 

 

quantum communication channels. The states can
also be sent sequentially via the same channel, which
would only increase the protocol duration. The channel
length is assumed to be zero (with an allowance for the
above remarks). This in fact implies that Bob controls
only his laboratory (the vicinity of point 

 

x

 

B

 

) and can
monitor neither the rest of space nor the communica-
tion channel, that is, Alice may reside immediately at
Bob’s laboratory door. Alice can control only the vicin-
ity of point 

 

x

 

A

 

 where the states are prepared. The states
of various 

 

k-

 

blocks

 

 a

 

[

 

i

 

, 

 

j

 

]

 

 

 

are sent intermittently via dif-
ferent channels.

4. A time for the unveiling stage can be selected by
Bob at any instant within the interval 

 

∆τ

 

 < 

 

τ

 

 < 

 

τ

 

0

 

 + 

 

∆τ

 

.
By Bob’s request, Alice must communicate via a clas-
sical channel which states were transmitted via each
quantum channel and assign each channel to a certain
block (i.e., indicate the channel and the representative
value 

 

a

 

[

 

i

 

, 

 

j

 

]).

5. Bob performs measurements described by a unity
expansion of the type (67), (68). The states are orthog-
onal (and, hence, unambiguously distinguishable), but
the projectors 

 

3

 

0, 1

 

 are nonlocal. For this reason, the
unambiguous result for true states can be obtained by
measurement (67) only provided access to all states as
a whole, which requires the time 2

 

∆τ

 

 + 

 

τ

 

0. Then Bob
compares the results of his measurements in each quan-
tum channel to the data communicated by Alice via the
classical channel. In the case of ideal quantum commu-
nication channels, all measurements in the channels
belonging to the same block must give the results only
in like channels (0 or 1). If Bob founds a discrepancy at
least in one position between his results and the data
disclosed by Alice, the protocol is terminated.

b a i j,[ ] ,
i 1=

N

∑=
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Note that, if Alice plays fairly (i.e., the parity of an
Nk-bit line is actually selected and true extended states
are sent at the protocol onset time), the parity bit cannot
be changed through any rearrangements. Otherwise, we
have to conclude that the sets of even and odd lines in
the k-block representation may overlap.

6. If Alice fails to take a decision on the bit selection
at the beginning of the protocol (or, strictly speaking, if
she takes a decision upon elapse of the time interval ∆τ
but, naturally, before the exchange via the classical
channel, i.e., within ∆τ < τ < τ0 + ∆τ), she will send the
states different from |ψ0, 1〉 . The counts in each channel
30, 1 for any states different from true would occur at a
probability not exceeding 1/2. In order to change a
decision on the secret bit, it is sufficient for Alice to
delay a decision in one of the blocks, for which purpose
she has to delay the states in a block of k bits. According
to (70), the probability that Alice would remain undis-
closed on sending k delayed states is 2–k.

7. For Bob, the probability to obtain unambiguous
information on the secret bit before having access to the
whole states does not exceed 1/2 + 2–α(N, k)Nk (see for-
mula (64)).

Thus, the above protocol realizes the basic idea of
the bit commitment scheme, whereby one party trans-
mits a part of the information (from which another
party can obtain only an exponentially small informa-
tion about the secret bit before the unveiling stage). At
the same time, Alice cannot change the selected secret
bit after onset of the protocol. More precisely, the prob-
ability of undisclosed change of the secret bit after the
protocol start is exponentially small.

The proposed scheme allows a fair-play protocol to
be realized at a probability of not worse than 1 – 2–k,
which is exponentially close to unity for sufficiently
large k.

4. COIN TOSSING PROTOCOL FOR THE STATES 
WITH COMPACT CARRIER IN THE IDEAL 

COMMUNICATION CHANNEL

Although a coin tossing protocol can be constructed
based on the bit commitment scheme, it is expedient to
formulate the protocol explicitly.

1. Alice and Bob agree on the states as in the proto-
col described above. At the agreed onset time, each of
the two parties sends to anotherintermittently N blocks
of k states, so that the parity bits over N blocks selected
by Alice and Bob are bA and bB, respectively. It is pre-
liminarily agreed who wins in cases when the resulting
parity bit b = bA ⊕  bB is zero or unity.

2. At a certain time instant τ (−∆τ < τ < τ0 + ∆τ) one
of the two parties (e.g., Alice) communicates via the
classical channel to the other party (Bob) the numbers
of messages and the assignment of messages to blocks
(the information is communicated only for half of the
blocks for all states). Then Bob communicates to Alice
JOURNAL OF EXPERIMENTAL
(only after receiving her data) analogous information
for the other half of the channel numbers (not coincid-
ing with the channel numbers communicated by Alice).
Upon receiving this information from Bob, Alice com-
municates him the assignment to blocks for the remain-
ing channel numbers and indicates the states sent in
each of the blocks. Finally, Bob communicates to Alice
the analogous information concerning the remaining
channel numbers. Since the channel length is τch < τ0,
the exchange via the classical channel can be carried
out during the period of time when both parties have
access to only half of each state.

3. As long as the whole states are inaccessible, the
probability for each party to obtain information con-
cerning the parity bit of the other party from the results
of its own measurements by analogy with the previous
protocol does not exceed 1/2.

4. The parties perform measurements described by a
unity expansion of the type (67), (68). The states are
orthogonal, but the projectors 30, 1 are nonlocal. For this
reason, the unambiguous result for true states can be
obtained by measurement (69) only provided access to
all states as a whole, which requires the time 2∆τ + τ0.

5. After elapse of the time τ0 + ∆τ, when the whole
states become accessible to both parties, Alice and Bob
check the statistics of measurements and the correspon-
dence of the classical information exchange to the
results of measurements in both channels. The protocol
is terminated if there is a lack of agreement between the
results of measurements and classical information
(change from 0 to 1 or vice versa) in at least one of the
channels.

6. The probability for each party to know the parity
bit of the other party before having access to the whole
states exceeds the probability of simple guessing by no
more than an exponentially small quantity 2–α(N, k)Nk

(this is analogous to the previous protocol). Eventually,
a true parity bit (lot) b = bA ⊕  bB is established at a
probability close unity (1 – 2–k).

Obviously, one of the two parties (even if both are
sending true states) can terminate the protocol in case
of unfavorable resulting bit, pleading the lack of corre-
spondence between the data obtained by classical
exchange and quantum measurements. However, this
situation falls outside the problem under consideration
and has to be solved by different means.

It should be noted that the data exchange between
parties via the classical channel is necessary in order to
avoid the deceiving strategy, whereby one party
retransmits back the quantum states of another party. In
particular, one party may only “reflect” the states sent
by another party, rather than transmit its own states.
Using this strategy, the party preliminarily agreed to
win when the total parity bit is

b = bA ⊕  bB = 0,
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may permanently win by deceiving another party, since
bA ≡ bB and b = 0.

The classical exchange with information about only
half of the states is also necessary for eliminating the
retransmission strategy. If one of the parties communi-
cates data about all states, the second party using the
strategy of retransmitting quantum states may also send
this information (once it has became preliminarily
known) back via the classical channel because τch < τ0.
When information about half of the states is sequen-
tially communicated, this strategy fails to win.

5. BIT COMMITMENT PROTOCOL
FOR THE STATES WITH NONLOCAL CARRIER 
IN THE IDEAL COMMUNICATION CHANNEL

The protocols considered above referred to the
states with compact carriers (functions f(τ) ∈  $(τ)).
The set of such functions forms a dense set in the space
of functions describing states of the free field (functions
f(τ) ∈  ((τ) never turn zero). However, the field theory
does not forbid the states on a mass surface which are
localized arbitrarily strongly and decrease at a rate arbi-
trarily close to exponential, for example (14). There-
fore, the states can be always selected so that measure-
ments within a finite region on the light cone τ would
yield an outcome probability arbitrarily close to unity
(i.e., with arbitrarily small contributions from the tails
of states in the infinity). More strictly speaking, the
states (functions f(τ)) and the region of measurement
can be selected so that the probability of obtaining the
result in the region ∆(τ) would be

(71)

where ξ can be arbitrarily large. The contribution from
the tails of states outside the region (–∆τ, ∆τ) is

(72)

The case of states with a compact carrier, the extended
states with nonlocal carrier will be written in the fol-

Pr ∆ τ( ); i i,{ } Tr } τd( )
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lowing form:

(73)

where the carrier f(τ) or f(τ – τ0) is strongly localized
(similarly to that for the single-hump state (13) consid-
ered above) in the interval (–∆τ, ∆τ) or (–∆τ + τ0, ∆τ +
τ0), respectively. The normalization condition yields

(74)

and

(75)

The measurement on the extended state in a finite
window ∆(τ0) = (–∆τ, τ0 + ∆τ) yields the result at a
probability

(76)

The last term (not exceeding O(e–ξ)) arises due to the
overlap of tails of the state halves centered at τ = 0 and
τ = τ0.

Thus, the statistics of measurements on the extended
states must yield the results in the interval (–∆τ, ∆τ +
τ0) with a probability 1 – O(e–ξ)  1 (exponentially
close to unity). Outside this interval, the probability of
counts does not exceed O(e–ξ) and can be made arbi-
trarily small by properly selecting f(τ), ∆τ, and τ0.

Preparing a delocalized state with f(τ) ∈  ((τ) for-
mally requires either an infinite time (e.g., if the state is
generated by a point source) or access to the whole
coordinate space (if the state is prepared at a given time
instant by a nonlocal source). Any real protocol may
only last for a finite time. In order to avoid such formal
difficulties, a convenient (and common) practice is to
consider the situation as follows. Alice controls the
vicinity of point xA and adiabatically (t  –∞)
switches on the source generating a vector |ψ0, 1(τ0)〉
from the vacuum state. The source operation is
described (not dwelling on the particular realization of

ψ0 1,| 〉 1

2
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such a source) by the  matrix acting upon the
vacuum state:

(77)

The generated state is submitted to the communication
channel.

On the intuitive level, this source can be considered
as an atomic system (e.g., an atom) with an appropriate
spectrum, excited by the adiabatically switched classi-
cal source of a special shape. The excitation is radiated
into the communication channel (for the preparation of
one- and two-photon states see, e.g., [40]).

Bob performs measurements described by a unity
expansion analogous to (67):

(78)

(79)

and

(80)

For the true extended states, the measurement (78)–
(80) yields the results with the probabilities

(81)

By analogy with (67), (68) the measurement (78)–(80)
on any states ρ not falling simultaneously into both
intervals (–∆τ, ∆τ) and (–∆τ + τ0, ∆τ + τ0) yields

(82)

Thus, a time delay between states exceeding 2∆τ leads
to the probability of outcome for these states in the 30, 1
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channel dropping from almost unity (81) to nearly 1/2
(82):

(83)

accordingly, the probability in the 3⊥  channel increases
from almost zero (80) to nearly 1/2 (82):

(84)

Alice prepares (as in the previous case) Nk states
and submits these states to the communication chan-
nels. As long as only half of the states is accessible to
Bob, the probability for him to obtain information
about the secret parity bit chosen by Alice does not
exceed (∆τ ≤ τ ≤ ∆τ + τ0)

(85)

For Alice, the probability of being undisclosed upon
delay with the choice in at least one k-block does not
exceed

(86)

The probability of successfully accomplishing the pro-
tocol (with the result obtained for all Nk states in the
30, 1 channels) is

(87)

that can be made arbitrarily close unity by properly
selecting N, k, and ξ.

6. CONCLUSION

The existence of a limiting velocity of propagation
for the quantum states allows the relativistic quantum
protocols realizing the bit commitment and coin tossing
scenarios to be formulated, in which the basic idea of
such protocols is implemented, whereby one party pre-
sents another only a part of information (a part of the
quantum state transmitted) about a secret bit chosen.
However, a statistical nature of the results of measure-
ments on the quantum states does not allow a fair-play
protocol to be realized at a probability of exactly unity
(at least, for the proposed scheme). Nevertheless, the
fair-play protocol can be approached at a probability
arbitrarily close to unity. In addition, the fundamentally
nonlocal character of the quantum field states also
poses limitations on the probability of trusted protocol
outcomes within a finite time interval. However, the
existence of arbitrarily strongly localized states admit-
ted by the field theory basically allows a fair-play pro-
tocol to be constructed for an arbitrary time τ0 (the time
of secret bit keeping) with a preset probability arbi-
trarily close to unity.
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In contrast to the nonrelativistic protocols, where
only the structure of states in the Hilbert space is signif-
icant, the relativistic schemes involve explicit stages of
the state preparation and propagation in the space–time
between spatially separated parties. Since the spin and
helicity states in the nature cannot exist outside the spa-
tial degrees of freedom of a quantum system, an allow-
ance for these degrees of freedom increases possibili-
ties for the construction of quantum cryptographic pro-
tocols.

It should be emphasized that the proposed protocol
employs orthogonal states. The probability of an error
in distinguishing orthogonal states is related to the fact
that a measurement over such states may give no result
at all (a classical instrument yields no response, e.g., the
pointer does not deviate) if the transmitted state falls
outside the space–time region in which the instrument
is located. Therefore, there are three possible outcomes
of the measurements: the classical instrument either
operates in one of the two channels (30 or 31) or does
not operate at all. Once the instrument has operated, the
states are unambiguously distinguished. If only a part
of the state is accessible, there is a nonzero probability
that the instrument will not operate at all; the smaller
the accessible part of the state, the closer this probabil-
ity to unity. In this case, the receiving party may only
simply guess the state (accordingly, the probability of
an error in determining the outcome of such a measure-
ment performed with a classical instrument is 1/2).

Since the spin and helicity states cannot exist out-
side the spatial degrees of freedom, a limited access to
the coordinate space automatically restricts the access
to the Hilbert space of states. A situation is even possi-
ble when the state of a system would become inacces-
sible at all (the state amplitude will be zero in the spatial
region accessible for the measurements).

It should be noted that this situation is different from
that considered by Tal Mor [41] in the context of dis-
cussion of the Goldenberg–Vaidman quantum crypto-
graphy scheme based on orthogonal states [18]. For a
pair of orthogonal states of a composite system com-
prising two subsystems a and b with the space of states
*a ⊗  *b, we have

where the coefficients α0, 1 and β0, 1 are such that the
states |ψ0〉  and |ψ1〉  are orthogonal:

If only one subsystem (e.g., *a) is accessible, the states
of the other subsystem a are nonorthogonal,

ψ0| 〉 α 0 φ0 a( )| 〉 φ0 b( )| 〉 β0 φ1 a( )| 〉 φ1 b( )| 〉 ,⊗+⊗=

ψ1| 〉 α 1 φ0 a( )| 〉 φ0 b( )| 〉 β1 φ1 a( )| 〉 φ1 b( )| 〉 ,⊗+⊗=

ψ0 ψ1〈 〉 0.=

ρ1 Tr*a
ψ1| 〉 ψ1〈 |{ } , ρ0 Tr*a

ψ0| 〉 ψ0〈 |{ } ,= =

Tr*b
ρ0ρ1{ } 0,≠
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and, hence, undistinguishable. In our case, the states
remain orthogonal even when bounded in a subspace
and may be undistinguishable only due to some fea-
tures of the space–time structure.

The proposed protocol can be generalized to a noisy
channel [42], since the initial orthogonality of states
allows the classical codes to be employed [43].

In the given scheme, the protocol duration (≈τ0) is
determined by the effective extension of states, which
can be evaluated for photons using the width of the fre-
quency spectrum. At present, a minimum width of the
spectrum in the optical range, attained in circular fiber
cavities, amounts to ∆ω ≈ 10 kHz. The corresponding
effective state length is

L ≈ c/∆ω = 3 × 1010/104 cm = 3 × 106 cm (30 km).

Accordingly, the protocol duration is

τ0 ≈ 1/∆ω ≈ 10–3 s.

Although there are no fundamental constraints that
would forbid the time τ0 to be made arbitrarily large
(and, accordingly, ∆ω arbitrarily small), this task is
technically very difficult. However, this circumstance is
insignificant for the coin tossing protocol were the time
τ0 for obtaining a trusted lot can be arbitrary. In con-
trast, the τ0 value is significant in the bit commitment
protocol where this parameter determines the time dur-
ing which the secret bit can be kept. This situation is
quite generally encountered in the experimental real-
ization of various systems for the transfer and process-
ing of “quantum information,” when certain basic pos-
sibilities, allowed by the laws of quantum mechanics,
are very difficult to realize using the existing technical
facilities.

It should be noted that real data transmission over
long distances is performed using fiber optic systems in
which the signals propagate at a velocity somewhat
lower compared to the speed of light in vacuum. This
circumstance is by no means restrictive, the only
requirement being that the time separation of state
“halves” would exceed the channel length divided by
the light velocity in a given optical fiber.
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Abstract—The necessary conditions of the applicability of the Frenkel–Kontorova one-dimensional model
[the approximation of immobile neighboring chains plus sine-Gordon (continual) equation for nonlinear
dynamics of the chain under consideration] to describing the dynamics of vacancies in a polymeric crystal chain
are determined. It is shown that these conditions are satisfied for polyethylene crystals. The physical mechanism
of model applicability limitations is established. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: ONE-DIMENSIONAL 
MODELS FOR DESCRIBING NONLINEAR 

DYNAMICS IN THREE-DIMENSIONAL 
SYSTEMS

One of the most important achievements of nonlin-
ear physics is the possibility of describing localized
waves that propagate at a constant velocity, that is, soli-
tons or soliton-like excitations. Such waves are often
observed in physical systems, but they are seldom truly
one-dimensional. These are either waves in filamentary
systems (a magnetic flux quantum in a long and narrow
Josephson contact, a solitary surface wave in a shallow
and narrow channel with water, or an optical pulse of a
picosecond width in a thin optical fiber waveguide
made of a nonlinear material) or plane waves (a turning
wave in a uniaxial ferromagnet with anisotropy of the
type of an easy magnetization plane, ion–sound waves
in a homogeneous collisionless nonisothermal plasma
and magnetoacoustic waves in a cold plasma placed
into a magnetic field, or an optical pulse in a nonlinear
medium). In this context, examples of quasi-one-
dimensional waves virtually localized along a line and
propagating in a three-dimensional (3D) medium like
truly one-dimensional excitations are very interesting.
For instance, a soliton of stretches in a polymeric crys-
tal (that is, a chain unit vacancy without rupture of
internal bonds localized in a small chain portion) is a
quasi-one-dimensional soliton.

Solutions corresponding to nontopological solitons
in multidimensional systems such as Langmuir (elec-
tron) waves in a cold plasma are often unstable with
respect to the wave collapse, although sometimes, new
stable solitons localized in all directions appear, for
instance, as magnetoacoustic waves in a cold 2D
plasma. The problem of taking into account the 3D
character of real physical objects for topological soli-
1063-7761/01/9304- $21.00 © 20895
tons, which are solutions to equations of the sine-Gor-
don type, is qualitatively different in nature. The turn-
ing region in a one-dimensional ferromagnet with
anisotropy of the type of an easy magnetization plane,
an edge dislocation in a low-molecular-weight crystal,
or a chain unit vacancy in a polymeric crystal chain
should exist as static objects (structural defects) in the
3D as well as in one-dimensional case. In a 3D system,
only the type of their dynamic behavior may change
from soliton-like (motion at a constant velocity in a
cold crystal) to pinning because of a lowering of the
upper bound of the spectrum of velocities.

In this work, we study the conditions of the applica-
bility of the one-dimensional Frenkel–Kontorova
model to analyzing nonlinear dynamics of a topological
localized soliton-like excitation in a 3D system for the
example of a vacancy in a polymeric crystal chain. We
also consider the physical mechanisms responsible for
changes in dynamic behavior of structural defects
described above.

2. POINT STRUCTURAL DEFECTS 
IN POLYMERIC CRYSTAL CHAINS

The energy characteristics and the type of the
dynamics of structural defects determine the relaxation
properties and the special features of phase transitions
in crystals. For this reason and in view of the availabil-
ity of polymers with high crystallinity degrees, many
studies of point and line structural defects in crystals
formed by chain molecules have appeared during
recent years.

Because of strong anisotropy and hierarchy of inter-
actions (intrachain covalent chemical bonds are several
orders of magnitude more rigid than interchain van der
Waals bonds), vacancies with rupture of intrachain
001 MAIK “Nauka/Interperiodica”



 

896

        

ZUBOVA

                                          
covalent bonds are virtually immobile. Such crystals
can, however, contain other, specially polymeric, point
defects caused by chain deformations rather that the
rupture of intrachain bonds. These defects may be
localized on a small chain portion, for instance, a chain
can contain a chain unit vacancy or (a plane zigzag
chain) a point defect of rotation through 180° accompa-
nied by chain elongation or contraction by half the
chain period to preserve crystallographic order outside
the defect region.

The idea that polymeric crystal chains can contain
torsional defects with elongation was originally
advanced in [1, 2] in relation to dielectric α-relaxation
in weakly oxidized polyethylene; the exact form of this
defect was established in [3]. The model including
Brownian movement of such a defect along the chain as
a relaxation mechanism (see review [4] and two series
of works, [2, 5] and [6]) allowed some special features
of the process to be explained, namely, its occurrence in
the crystalline fraction, anisotropy with respect to the
direction of the applied field vector, the local character
of the mechanism, the presence of the α-peak in dielec-
tric relaxation of polyethylene and isotactic polypropy-
lene and its absence for syndiotactic polypropylene and
isotactic polystyrene [7]. Since then, the dynamics of
structural defects of this type in polymeric crystals have
been studied fairly extensively [3, 6–10].

Movement of a point structural defect along a chain
in a polymeric crystal is usually treated in the quasi-
one-dimensional approximation of immobile neighbor-
ing chains and is described in terms of topological soli-
ton-like excitations in the continual approximation as a
nonlinear wave which freely propagates at a constant
subsonic velocity along the chain and changes the state
of the chain after its passage.

Calculations of the characteristics of solitons even
in the approximation of immobile neighboring chains
requires knowledge of the form of the interatomic inter-
action potential and its parameters, which cannot be
obtained from experimental data, but which to a sub-
stantial degree determine the type of behavior of
defects. The idea that expanding the interchain poten-
tial in a polymeric crystal into the Fourier series can be
performed analytically by considering the potential of a
linear chain of atoms and summing their contributions
by the Poisson summation rule was long ago advanced
by McCullough [11]. This approach was used to esti-
mate the temperature dependence of shear moduli in
paraffins [12] and to calculate crystal potential energy
minima corresponding to the monoclinic and orthor-
hombic polyethylene polymorphs [13]. The potential of
a linear chain of atoms was calculated not only for Len-
nard-Jones-type interatomic interactions but also for
slowly decreasing Coulomb interactions (see review
[14]). More recently [15], this method was used to
determine the form of the interatomic potential in poly-
ethylene.
JOURNAL OF EXPERIMENTAL
In all these works, the periodic potential of a linear
chain of atoms was truncated after the first harmonic of
the obtained Fourier expansion, A0 + A1cos(2πz/c),
where c is the distance between chain atoms. The cor-
rectness of this approximation was checked by trial cal-
culations of the amplitude of the next harmonic. Physi-
cal criteria of the applicability of such an approxima-
tion (the sine-Gordon equation for describing nonlinear
chain dynamics) to various real crystals were not, how-
ever, formulated.

On the other hand, it is not quite clear whether or not
the environment of a chain can be considered immobile
in analyzing the dynamics of chain point defects.
Molecular dynamics simulations show [16, 17] that
mobility of neighboring chains can have a noticeable
effect on the dynamics of defects. In several works
(e.g., see [18]), mobility of neighboring chains was
taken into account by phenomenologically introduced
terms which, in the limit of stationary neighboring
chains, corresponded to the approximation of the first
harmonic in the Fourier expansion, but the physical
meaning of these terms was not discussed.

In this work, we make an attempt to fill up the two
gaps specified above and determine the limits of the
applicability of the Frenkel–Kontorova one-dimen-
sional model (the approximation of immobile neigh-
boring chains plus the sine-Gordon equation for the
nonlinear dynamics of the chain under consideration)
to describing the dynamics of vacancies in a polymeric
crystal chain (Sections 4 and 3, respectively). An exam-
ple of a real polymeric crystal which satisfies these cri-
teria and to which the Frenkel–Kontorova one-dimen-
sional model is applicable is described in Section 5.

3. A PERIODIC POTENTIAL
OF A LINEAR CHAIN OF ATOMS

Consider potential W(c, b, z) created on axis z by a
linear chain of rigidly fixed atoms situated parallel to
this axis at distance b; c is the interatomic distance (Fig. 1).
The analysis will be performed specifically for van der
Waals interactions between a “test” atom and every
other chain atom,

Here, U0 is the potential energy minimum and r0 is the
point at which this minimum is attained. The summa-
tion over all atoms yields

(1)

If the equilibrium position of the test atom at the z = 0
point is largely determined by interactions with its two
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nearest neighbors (atoms with numbers 0 and –1), the
“local” case, then

Let us introduce the y = b/r0 dimensionless variable and
the δ = c/2r0 parameter and write the terms of (1) in an
explicit form. In “local” equilibrium, when y2 + δ2 ≈ 1,
the εU value only depends on parameter δ. Physically
meaningful are δ values in the (0, 1) interval. At a con-
stant c parameter, the optimal b distance from the
neighboring chain tends to infinity when δ  0 and to
zero when δ  1.

Selecting εU = 0.03 as a boundary of the local case,
we find that the potential of the atom at z = 0 is in reality
only determined by two nearest atoms from the neigh-

boring chain if δ >  ≈ 0.61.

Otherwise (when the contributions of the other
atoms are large), sum (1) can be calculated by the Pois-
son summation formula,

Then,

(2)

All these integrals are easily found by the theory of res-
idues, and the expansion of the W(δ, y, z) potential peri-
odic along z into a Fourier series takes the form

(3)

Here, the main contribution to the potential only
depends on the interchain distance and is independent
of either z or δ,
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The amplitudes of the harmonics are given by the f(δ, y)
function,

The condition of the applicability of expansion (3) is
the smallness of the ratio of the first harmonic ampli-
tude to the main term. This condition determines the
boundary of the “collective” case: the requirement

 < 0.1, where y0 is the position of the
W0(y) function minimum, is equivalent to the condition
δ < 0.41. The amplitude of every next harmonic is then
much less than that of the preceding harmonic because
of the exponential dependence of the f function on the
harmonic number. Even at δ = 0.41, the amplitude of
the second harmonic is 100 times lower than that of the first
one. If we retain the first harmonic in the expansion (this is
necessary to obtain the dependence of the chain potential on
z), the weaker condition  < 0.1
extends the boundary of the collective case to δ = 0.55.
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Fig. 1. Linear chain of atoms with fixed positions along the
x axis. Each atom interacts with the test atom situated on the
z axis according to the Lennard-Jones potential. The total
potential energy of the test atom is found as a function of
chain period c, distance between axes b, and test atom posi-
tion z.
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Fig. 2. Main contribution W0 (curve 1) to the potential of a
linear chain of atoms (Fig. 1) and the f(δ = 0.3, y) amplitude
(curve 2) of the first harmonic along z as functions of
dimensionless distance y = b/r0 (r0 is the equilibrium Len-
nard-Jones interatomic potential distance) between axes x
and z.

θ

0

n + 1

n + 2

n + 3

n + 1

n + 2

n + 3

n
n

n – 1
n – 1

n – 2
n – 2

n – 3
n – 3

(u1) (u2)

Fig. 3. Equilibrium two-dimensional crystal formed by lin-
ear chains.
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Fig. 4. Potential created by one chain atom situated at point x
(Fig. 1) at the position of the test atom situated at z = 0 on
the z axis as a function of dimensionless distance x/c (c is
the chain period). At the selected b = r0y0 interchain dis-
tance, the main contribution of the whole chain to the poten-
tial is minimum. Curves for different δ parameter values are
plotted, from left to right: δ = 0.5, 0.4, 0.3, 0.2, and 0.1.
Solid circles along the x/c axis are real atomic positions on
the axis. The horizontal line corresponds to the –0.05 level.
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We see that, in the collective case, the z dependence
of the potential generated on the axis of a linear chain
of atoms is largely determined by one harmonic. This
distinguishes the collective case from the local case, in
which the periodic substrate is created by flat wells with
narrow barriers in between. It follows that the boundary
of the collective case is also the boundary of the appli-
cability of the sine-Gordon equation to describing the
nonlinear dynamics of a chain in a polymeric crystal.

Understanding the type of the polymeric crystal
under study is necessary for correctly estimating the
type of mobility of point defects in its chains. It is
known [19] that, if barriers are narrow, a much larger
interchain rigidity is required for kinks to move along
chains without pinning than when there is a single har-
monic.

The W0(y) and f(δ = 0.3, y) functions are plotted in
Fig. 2. The W0(y) function attains a minimum at

.

The f(δ = 0.3, y) function is negative at reasonable y val-
ues (it takes on exceedingly small positive values of the
order of 10–6 at y > 1.4). This means that, if we wish to
construct a two-dimensional crystal of linear chains, we
must displace atoms of every next chain by half the
period with respect to atoms of the preceding chain
(Fig. 3).

Let us estimate the number of particles that make a
noticeable (for instance, larger than 5% of U0) contribu-
tion to the potential in the collective case. At z = 0 and
b = y0r0, the potential created by a chain atom at point x
(Fig. 1) is given by

The plots of this function obtained at various δ values
are given in Fig. 4. As expected, four particles make
noticeable contribution to the potential (Ns = 4) if δ ~
0.4–0.5. The data on the other δ values are given in the
table.

Let us estimate the ratio between the amplitude of
the first harmonic in (3) to the lowest Lennard-Jones
interatomic potential energy at various δ. These ratios,
(3π/8δ)| f(δ, y0)|, are also given in the table. We see that,
even at the boundary (δ = 0.5), the amplitude of the sub-
strate is smaller than 0.25U0, whereas at arbitrary δ >
0.61 (the local case), half the difference of potential
hump and well energies exceeds 4.7U0.

This is an important difference between the local
and collective cases. The width of a topological kink is
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Dependence of the Ns number of atoms actually forming potential at the z = 0 point (Fig. 1) and the amplitude of the first
harmonic of this potential on δ

δ 0.1 0.2 0.3 0.4 0.5

Ns 8 × 2 4 × 2 3 × 2 2 × 2 2 × 2

7 × 10–8 4.45 × 10–3 7.33 × 10–2 0.191 0.239
3π
8δ
------ f δ y0,( )
proportional to the square root of the ratio between
intrachain and substrate rigidities. At a large substrate
amplitude (even if the substrate is sinusoidal), substan-
tial intrachain rigidity is required for kinks to remain
fairly broad and experience no deceleration caused by
emission of energy into chain phonon modes [20].

It follows that the transition from the collective to
the local case causes an increase in the amplitude of the
linear chain potential and changes its form from purely
sinusoidal to broad wells separated by narrow barriers.
This corresponds to the transition from the soliton type
of mobility of point defects to emission of phonons by
defects (and the corresponding lowering of the upper
spectrum bound) and, eventually, to purely diffusive
mobility type with pinning.

4. TAKING INTO ACCOUNT MOBILITY
OF NEIGHBORING CHAINS. INTERCHAIN 

INTERACTION POTENTIAL

The interaction energy between two chains whose
atoms are displaced by (u1)n and (u2)n from their equi-
librium positions shown in Fig. 3 is usually written in
the form [18]

(4)

Setting u2 equal to zero, we obtain the sine-Gordon
equation for the nonlinear dynamics of the first chain,
u1. The criterion of the applicability of this equation
was discussed in Section 3. Let us add interaction
energy (4) to the Hamiltonian
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and consider the dynamics of a kink in chain u1.
Assuming that α ! 1 and β ! 1, one can find [18]
within the framework of the perturbation theory that
interaction (4) between chain u1 and mobile chain u2
changes the shape of the kink and causes the appear-
ance of a perturbation in chain u2 which moves together
with the kink. The amplitude of this perturbation is pro-
portional to α + β/(1 – v 2), where v  is the velocity of
the kink in units of v s, the sound velocity of an isolated
chain. The amplitude increases infinitely as the velocity
of the kink approaches the v s value, which shows that
such perturbation theory cannot be used to take into
account kink radiation loss which appears when its
velocity increases. Indeed, it is easy to show that, in a
system of two interacting chains, the introduction of the
ε0β(∂u1/∂y)(∂u2/∂y) term results in that the lowest phase
velocity of phonons common to both chains equals

v 1, 2 =  (in v s units) for two branches corre-
sponding to phonons synphase and antiphase in chains,
respectively. It follows that, regardless of the sign of β,
the velocity of phonons on one branch is always smaller
than unity, and if a kink exceeds this velocity, Vavilov–
Cherenkov-type radiation appears. Conversely, the
term

only influences the width of the phonon spectrum gap
rather than v 1 and v 2. We therefore see that two terms
in (4) have different physical meanings.

Note also that Eq. (4) is internally contradictory.
Indeed, the expression for energy only contains one
harmonic, and this expression is obtained in the contin-
ual approximation, in which displacements (u1)n and
(u2)n are replaced by fields u1(y) and u2(y), and the sum-
mation over atoms is replaced by the integration over
the chain. This is the result of using the Poisson sum-
mation formula. The condition that allows us to retain a
single harmonic in the obtained Fourier expansion of
the potential is the collective character of interactions,
when substrate for a given atom is formed by many
neighboring chain atoms. On the other hand, it follows
from (4) that the interaction between the fields is quasi-
local; that is, the equation for field u1(y0) contains field
u2 and its second derivative with respect to the coordi-
nate only at the same y0 point.

1 β±

–ε0α 1
2π
c

------ u1 u2–( ) 
 cos–
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As (4) is extensively used to study interactions
between kinks in various polymeric crystal chains and
the influence of the mobility of neighboring chains on
the dynamics of kinks [18] and to describe the dynam-
ics of a fluxon in one of two interacting Josephson lines
(see [21–23] and the references therein), it is interesting
to determine if there exists a region of system parame-
ters in which this equation is not physically mea-
ningless.

The interaction energy between two chains in a
crystal (see Fig. 3) is the sum of interactions of all pairs
of atoms,

Replacing the summation over l by integration over θ in
the Poisson formula,

(6)

we see that terms depending on the difference of fields
u1(nc) – u2(nc) at a single point nc can only appear in
the expression for energy if, in calculating the integral
over θ, u1(nc + θ) can be expanded into a Taylor series
and the corrections depending on θ can be assumed to
be small,

(7)

that is, on the segment of length Nsc/2, where the

u  function strongly varies (Fig. 4), the u1(θ)
function should be almost constant. If we are inter-
ested in the dynamics of vacancies, the characteristic
spatial scale of substantial changes in u1(θ) is the Lkc
kink half-width. The condition formulated above is
then written as

(8)

If this condition is satisfied, we can change variables
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to obtain

Comparing this equation with (2) and (3), replacing the
summation over n by the integration along the chain,
and only retaining the largest terms describing the
interaction of the fields, we obtain

(9)

The last term in this equation is seemingly asymmetric
with respect to fields u1 and u2, but it can easily be
reduced to the symmetrical form

by adding the total derivative with respect to the coor-
dinate to energy density. The first term is transformed
to the symmetrical form via the integration by parts. On
the assumptions made above, the third term is much
smaller than the first two ones.

The first two terms in Eq. (9) for the energy density
are familiar to us because they are present in (4). How-
ever in (9), “phenomenological” constants are
expressed in terms of interatomic potential parameters,
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We see that, in the terminology of [18], the interac-
tion between two linear chains of atoms that we are
considering is interchain attraction. We now know
which of many variants of interactions between kinks in
neighboring chains considered in [18] (depending on
signs of and the ratio between α and β) corresponds to
the Lennard-Jones interatomic potential.

It is known that a discrete linear chain of atoms
linked by springs and lying on a sine substrate (for
instance, created by immobile neighboring chains) can
be described by the continual sine-Gordon equation if
the static kink half-width in interatomic distance units,
Lk, which is proportional to the square root of the ratio
between the rigidities of springs and substrate, is much
larger than one. Numerical simulation [24] shows that,
already at Lk ≈ 2–4, the kink virtually does not emit and
moves at an almost constant velocity (at a not too high
velocity, v k = 0.5v s). However, if the substrate is cre-
ated by mobile rather than immobile chains, it is neces-
sary that the interaction energy between chains be rep-
resentable in form (9) for the kink not to radiate; that is,
the β(∂u1/∂y)(∂u2/∂y) term resulting in radiative friction
should be small. This requires condition (8) to be satis-
fied, namely, the kink half-width in the chain should
greatly exceed not unity but half the number of parti-
cles, Ns, that really form substrate for each atom. The
table shows that, in the collective case far from the
boundary, Ns can be large, whereas in real polymers,
intrachain rigidity can exceed the rigidity of substrate
ten times but not ten thousand times. It follows that
even the necessary condition of correctness of the Fren-
kel–Kontorova model requires nontrivially checking it
for every real polymeric crystal.

In addition, in a polymeric crystal with all free
chains, collective (involving many chains) phonon
modes exist which have very narrow if any frequency
gaps, and the lower boundary of phase velocity equals
or approaches zero. Further, because any polymeric
chain consists of several atomic rows linked with each
other, the ω = ω(k) dispersion curves (ω and k are the
phonon frequency and wave vector) even of an isolated
chain can be bent downward in the k  2π/c region (c
is the chain period). Such dispersion curves also have
no lower bound of phase velocities. Note that the exist-
ence of these modes is a direct consequence of the
three-dimensional character of real polymeric crystals.
A kink always emits radiation into these modes by the
Vavilov–Cherenkov-type mechanism (when the veloc-
ity of the kink coincides with the phase velocity of
some phonon mode), but the intensity of this radiation
depends on the strength of coupling between the kink
and such modes. For instance, numerical simulation of
the dynamics of vacancies in zigzag chains of polyeth-
ylene crystals [16] for model [25] with united atoms in
place of CH2 groups shows that this radiation is only
noticeable at velocities v k * 0.6v s, and even at such
velocities, its intensity is low.
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5. AN EXAMPLE OF A CRYSTAL 
WHOSE DYNAMICS OF VACANCIES 

CAN BE DESCRIBED BY THE FRENKEL–
KONTOROVA ONE-DIMENSIONAL MODEL

We have shown that, there exists a simple criterion
for determining the amplitude and form of the potential
generated by a row of atoms. This criterion is the δ =
c/2r0 parameter value relating intrachain distances to
the optimal r0 distances of interchain interactions. At
δ < 0.4–0.55 (the collective case), this periodic poten-
tial is close to purely sinusoidal.

An arbitrary polymeric chain consists of several
rows of almost rigidly fixed atoms, and the potential of
such a chain can be obtained by summing the contribu-
tions of these rows. If the δ < 0.4–0.55 condition is sat-
isfied, each such contribution has a simple analytic
form, which is important for calculating crystal unit
cell parameters and the form and parameters of the
interchain interaction potential.

Remarkably, in the simplest model of zigzag poly-
ethylene chains [16, 25] with united atoms in place of
CH2 groups, the δ parameter for each row constituting
a zigzag approximately equals 0.299. In a more realistic
complete polyethylene model [26], which well repro-
duces the density, structure, and unit cell parameters of
the orthorhombic polyethylene phase at room tempera-
ture, the δ parameters for carbon–carbon, hydrogen–
hydrogen, and carbon–hydrogen interactions between
rows are

which also falls into the category of collective interac-
tions (although δH–H is close to the boundary value).

On the other hand, for a kink to emit no phonons
into neighboring mobile crystal chains, it is necessary
that the number of atoms over the 2Lk kink width be
much larger than the Ns number of atoms that form sub-
strate at the given chain point. In the collective case, Ns

≥ 4. It follows that the Lk @ Ns/2 ≥ 2 inequality is the
necessary condition for applying the continual (rather
than discrete) sine-Gordon equation and for ignoring
mobility of neighboring chains in describing the non-
linear dynamics of a chain with a kink.

For instance, in the same polyethylene model [16,
25, 26], Lk ≈ 16 and Ns ≈ 4 (for δ ~ 0.3–0.5). As poly-
ethylene parameters are at the boundary of the collec-
tive case, the rigidity of its chains is sufficiently large
for the necessary condition Lk ≈ 16 @ Ns/2 ≈ 2 to be sat-
isfied.

We, however, know that this is not the sufficient con-
dition. Molecular dynamics studies of this model [16]
show that, at high (v k * 0.6v s) kink velocities, there
appears weak Vavilov–Cherenkov-type radiation to
collective phonon modes of the crystal, the existence of
which is a direct consequence of the three-dimensional
character of real physical systems.

δC–C 0.31, δH–H 0.48, δC–H 0.38,≈≈≈
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We nevertheless see that there exists at least one
polymeric crystal, polyethylene, the behavior of vacan-
cies in which can, with caution (at not very high veloc-
ities v k < 0.6v s), be described by the Frenkel–Kontor-
ova model (using the approximation of immobile
neighboring chains plus the continual sine-Gordon
equation for the nonlinear dynamics of the chain under
consideration).

6. CONCLUSION

The type of the dynamic behavior of a vacancy in a
polymeric crystal is determined by the Ns number of
neighboring chain atoms actually forming the substrate
potential near each atom of the chain containing the
defect. If this number is small (Ns < 4), the vacancy
experiences deceleration and transmits energy to atoms
of the chain containing it. If Ns is larger than the 2Lk

vacancy width, the vacancy also experiences decelera-
tion and transmits energy to atoms of the nearest neigh-
boring chains. Only if the condition

4 ≤ Ns ! 2Lk

is satisfied, the type of the dynamic behavior of vacan-
cies is close to that of solitons, although, because of the
three-dimensional character of systems, the energy of
the defect is always slowly (in comparison with the
characteristic period of chain vibrations) emitted into
collective crystal phonon modes by the Vavilov–Cher-
enkov-type mechanism.

To summarize, we studied the possibility of apply-
ing the one-dimensional nonlinear integrable model to
describe the dynamics of a topological localized soli-
ton-type excitation in a real physical three-dimensional
system. We found that there existed an interval of three-
dimensional system parameters in which the one-
dimensional model correctly predicted the soliton type
of the dynamic behavior of defects. On the other hand,
at other parameter values, defects, as distinguished
from solitons, could not retain a constant velocity.
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