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Abstract—The motion of slow atoms with degenerate energy levels in a resonant, nonuniformly polarized laser
field is described by the Fokker–Planck equation for the atomic distribution function in phase space in terms of
the semiclassical approach. Field gradient expansions are used for the spatially nonuniform coefficients of the
equation. For closed atomic transitions Jg = J  Je = J + 1 (Jg and Je are the total angular momenta of the
ground and excited states, respectively), new analytical results are presented for the light pressure force and the
friction and diffusion coefficients in momentum space. These results allow the kinetic effects (laser cooling,
localization in optical potential wells, etc.) in a field of arbitrary one-, two-, or three-dimensional configuration
to be investigated. In several cases, the new contributions to the friction coefficient are interpreted qualitatively.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Major progress in laser cooling and in trapping neu-
tral atoms is known to be associated with the use of
field configurations with spatial polarization gradients.
Field polarization gradients underlie the operation of
magnetooptical traps, allow the Doppler cooling limit
to be overcome, and are used to produce optical lattices
and in a number of other applications. Such configura-
tions arise every time the field is produced by interfer-
ing laser beams whose propagation directions and
polarization vectors do not coincide. The problem of
theoretically describing the motion of an atom in a non-
uniformly polarized laser field is complex and requires
taking into account all of the possible recoil effects and
the processes of optical orientation associated with the
redistribution of atoms in magnetic sublevels. In partic-
ular, cooling below the Doppler limit (TD ~ 10–3 K) is
achieved by using laser fields in which the orientation
or eccentricity of the polarization ellipse varies at dis-
tances on the order of the light wavelength. In these
cases, a peculiar correlation arises between the optical
orientation of the ground state, the translational motion,
and the momentum transfer from the field to atoms.
This correlation is generally responsible for the forma-
tion of new kinetic effects.

Dalibard and Cohen-Tannoudji [1] laid the founda-
tions of the sub-Doppler cooling theory. They consid-
ered simple one-dimensional field configurations in the
semiclassical approximation: counterpropagating
waves with orthogonal linear (lin ⊥  lin) and circular
1063-7761/03/9603- $24.00 © 20383
(σ+–σ–) polarizations (in the former and latter cases,
field configurations with spatial gradients in the ellip-
ticity and rotation angle of the polarization ellipse are
realized, respectively), and simple atomic transitions
from the class J  J + 1 (1/2  3/2 and 1  2,
respectively). Sub-Doppler cooling can be also achieved
on transitions from the class J  J (J is a half-integer),
which was shown in [2, 3] for the 1/2  1/2 transition.
Despite the large number of theoretical papers on this
type of laser cooling, the analytical treatment of the
friction and diffusion coefficients has been restricted so
far to low angular momenta and simple field configura-
tions. In particular, the dependence of cooling parame-
ters on the angle between the linear polarizations of
counterpropagating waves in a lin–θ–lin configuration
[2, 4] and the effect of intensity imbalance between cir-
cularly polarized waves [5] were analyzed. Calcula-
tions related to real experiments, in which transitions
with large angular momenta (J = 2 for 23Na, 87Rb; J = 3
for 85Rb; J = 4 for 133Cs) and complex (two- and three-
dimensional) field configurations are commonly used,
were performed by various numerical methods [6].

This situation can be partly explained by the fact
that no analytical expressions for the stationary atomic
density matrix in a field with an arbitrary elliptical
polarization had been known before the series of papers
[7–9] even without considering the translational motion
and recoil effects. This problem, which forms the zero
approximation in a semiclassical treatment of the kinet-
ics of slow atoms, was completely solved for J  J
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(J is a half-integer) [7] and J  J + 1 [8–11] transi-
tions. The existence of polarization features of the
kinetics, which had not been considered previously, fol-
lowed even from the form of the solution itself. Thus,
even in the simplest case of a uniformly polarized
standing wave and the atomic 1/2  1/2 transition,
additional (compared to the model of nondegenerate
states) contributions to the friction and diffusion attrib-
utable to field ellipticity were found [12]. Even more
unexpected features were detected when considering
the kinetics of atoms in nonuniformly polarized fields
with spatial gradients simultaneously in several field
parameters (the ellipticity and rotation angle of the
ellipse, the field amplitude and phase) [13, 14].

The primary goal of this study is to develop analyt-
ical invariant methods for describing the motion of
atoms in a resonant, nonuniformly polarized laser field
of the most general configuration. In other words, we
seek to obtain results valid for an arbitrary field without
associating our treatment with any specific field config-
uration (with the exception of Section 8, where a spe-
cial class of one-dimensional field configurations is
considered). The main approximations that allow this
program to be carried out are as follows. First, assum-
ing the photon momentum "k to be small compared to
the atomic momentum dispersion ∆p, we use the semi-
classical approximation for the atomic center-of mass
motion. In this approximation, the evolution of an
atomic ensemble at the kinetic stage is known [15, 16]
to be described by the Fokker–Planck equation for the
atomic distribution function in phase space. Therefore,
the problem reduces to seeking the coefficients of this
equation, i.e., the force and diffusion (in momentum
space). Second, representing these coefficients as a
power series of the atomic velocity, we restrict our anal-
ysis to the lowest orders (the zero and first orders for the
force and the zero order for the diffusion). This corre-
sponds to the slow-atom approximation, where an atom
is displaced by a distance much smaller than the light
wavelength in the relaxation time scale in internal
degrees of freedom.

Of course, these approximations impose certain
restrictions on the applicability of our results to practi-
cal problems of laser cooling and atomic trapping. In
particular, as we know from theory [2, 6] and sub-Dop-
pler cooling experiments [17], the atomic temperature
first decreases (roughly linearly) and then increases
sharply with decreasing field intensity (or with increas-
ing detuning from resonance). The slow-atom approxi-
mation is definitely inapplicable near the minimum of
this dependence, and the condition for semiclassical
motion is violated as the intensity further decreases.
Nevertheless, in the range where the temperature is a
linear function of the intensity, our approximations are
valid and the semiclassical kinetics of slow atoms satis-
factorily describes the experimental results.
JOURNAL OF EXPERIMENTAL 
2. STATEMENT OF THE PROBLEM

Consider an atomic ensemble with total angular
momenta Jg and Je in the ground and excited states that
resonantly interacts with a monochromatic light field

(1)

The Hamiltonian of the interaction with the external
field (1) in the dipole approximation in a basis rotating
at the field frequency does not explicitly depend on
time:

(2)

where the Rabi frequency Ω = – E/" specifies
the scalar amplitude of the interaction and  is
the reduced matrix element of the dipole moment oper-
ator. According to the Wigner–Eckart theorem, we rep-

resent the tensor part of the interaction operator as  =

 · E/E, where the covariant components of the vector

operator  can be expressed in terms of the Clebsch–
Gordan coefficients:

(3)

In this case, the Hamiltonian of a free atom in the cen-
ter-of-mass frame can be written as

(4)

where δ = ω – ω0 is the field frequency detuning from
the atomic transition frequency and the projection oper-
ator

is represented by a unit matrix in the basis of sublevel

wave functions for the excited state ( , the projector
onto the ground state, is defined in a similar way).

The quantum kinetic equation for the atomic density
matrix in Wigner representation for translational
degrees of freedom [18] is

(5)

E r t,( ) e iωt– E r( ) c.c.+=
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--- ĤD–E r

i"∇ p

2
------------+ 

  ρ̂ r p,( )

– ρ̂ r p,( )ĤD–E r
i"∇ p

2
------------– 

  γ1
2
--- Π̂e ρ̂ r p,( ),{ }–

+ γ3
2
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where γ is the radiative damping rate for the excited
level. The vector operators ∇ r and ∇ p act on the Wigner
density matrix . The normalization condition for
the latter can be written as

(6)

The induced recoil effect is described by the operators
∇ p in Eq. (5) and is related to the spatial nonuniformity
of the energy of interaction with the external field. The
spontaneous recoil effect manifests itself in the term
that describes the radiative arrival [the last term on the
right-hand side of Eq. (5)] in the form of a shift in the
argument of the Wigner density matrix by the photon
momentum "k along which the averaging ( ) is
performed. The unit polarization vectors es(k) of the
spontaneous photons are orthogonal to the escape
direction.

It is well known [19–21] that the presence of a small
parameter "k/∆p ! 1 (the ratio of resonant photon
momentum to atomic momentum dispersion) allows
the rapid processes of ordering in internal degrees of
freedom to be separated from the slow processes asso-
ciated with translational motion. Relaxation times to a
stationary (in the zero order in recoil) distribution in
internal degrees of freedom t @ τmax = max{γ–1, (γS)–1},
where the saturation parameter is defined as

(7)

correspond to the kinetic stage of the evolution.

In this case, the dynamics of the atomic ensemble is
determined by the slow change of the distribution func-
tion in translational degrees of freedom, w(r, p) =
Tr{ }. To within the second order in recoil
parameter [19, 15], reducing the original quantum
kinetic equation (5) to a closed equation for w(r, p)
yields the Fokker–Planck equation

(8)

whose coefficients Fi(r, p) and Dij(r, p) have the mean-
ing of Cartesian components of the force vector and dif-
fusion tensor (in momentum space), respectively for an

atom in the light field; and .

In deriving Eq. (8), we assumed that the Wigner
density matrix as a function of the momentum changes

ρ̂ r p,( )

Tr ρ̂ r p,( ){ } r3d p3d∫ 1.=

…〈 〉 Ωk

S
Ω 2

γ2/4 δ2+
---------------------,=

ρ̂ r p,( )

td
d

w r p,( )
pi∂
∂

Fi r p,( )
i

∑–=

+
pi∂
∂

p j∂
∂

Dij r p,( )
ij

∑ w r p,( ),

td
d

t∂
∂ p r∇

M
----------+=
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only slightly on photon momentum scales "k. This
requirement leads to the condition

(9)

Otherwise, the density matrix elements are sharply
oscillating (on "k scale) functions of the momentum
[15, 22].

Let us discuss in more detail the condition for the
emergence of two distinctly different time scales for the
evolution in internal and translational degrees of free-
dom. As we see from Eq. (8), the rate of change in the
distribution function is determined by the light pressure
force and atomic momentum dispersion: dw/dt ≈
F/∆pw. This rate must be much lower than the mini-
mum relaxation rate in internal degrees of freedom:

(10)

If condition (10) is violated, then the atomic kinetics is
not described by one equation (8); i.e., it has a multi-
component character (see, e.g., [16]). For the induced
light pressure, the force is determined by the rate of
photon rescattering from one external field mode to
another. In this case, condition (10) can lead to more
stringent constraints than "k/∆p ! 1. Thus, in a strong
field S @ 1, the induced force is proportional to the Rabi
frequency, F ≈ "kΩ , which leads to the condition [16]

In the opposite limit S ! 1, we have an estimate F ≈
"kδS for the force at large detunings, δ @ γ. As a result,
the time-scale separation condition can be written as

3. THE SLOW ATOM APPROXIMATION

The coefficients of the Fokker–Planck equation (8)
can be analytically calculated for a field nonuniform in
intensity and polarization only in various limiting situ-
ations. As applied to laser cooling problems, of certain
interest (see the Introduction) is an analysis of slow
atoms that are displaced by distances much smaller
than the light wavelength in the characteristic times of
ordering in internal degrees of freedom, i.e., v τmax ! λ.
By the definition of τmax, this leads to the inequality

(11)

When this condition is satisfied, to properly take into
account dissipative processes, it will suffice to restrict

min γ γS,{ }  @ 
%r

"
------.

F
∆p
-------  ! min γ γS,{ } .

"k
∆p
-------  ! 

γ
Ω
----  ! 1.

"k
∆p
------- ! 

γ
δ
--  ! 1.

kv  ! max γ γS,{ } .
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our analysis to the linear approximation in velocity in
the expression for the force:

(12)

where F(r) is the light pressure force exerted on an
atom at rest at point r. The antisymmetric part of the
tensor ξij (∝ eijkbk) corresponds to the effective Lorentz
force (∝ v × b), and its symmetric part defines the fric-
tion force. The zero approximation in velocity is com-
monly used for the diffusion:

(13)

Note that caution should be exercised in using the
slow-atom approximation for field configurations with
nodes (e.g., in a standing wave [16]) or sharp gradients
with characteristic spatial scales zsc ! λ (e.g., in a lin–
θ–lin configuration for θ ! 1 [2]). In both cases, the
slowness condition becomes more stringent than (11).
In a strong standing wave, Ω @ δ > γ, the linear velocity
dependence of the force is known [16] to be restricted
by the condition

For sharp gradients, the following condition should be
used in place of (11):

Below, we give general expressions for the kinetic
coefficients Fi(r), ξij(r), and Dij(r). The light pressure
force exerted on an atom at rest is determined by the
mean value of the force operator

(14)

where  =  +  is the total Hamiltonian
of the atom at point r:

(15)

The density matrix  is the solution of the system of
stationary Bloch equations:

(16)

Here, the spatially uniform operator  describes the
radiative relaxation:

(17)

This solution, which is presented in explicit analytical
form in [8–11], describes the stationary atomic distri-
bution in magnetic sublevels of the ground and excited
states in the zero approximation in the recoil parameter

Fi r p,( ) Fi r( ) ξ ij r( )v j,
j

∑+≈

Dij r p,( ) Dij r( ).≈

kv
γ

-------  ! 
δ
Ω
----  ! 1.

v
zsc

------  ! min γ γS,{ } .

F̂ r( ) ∇ rĤ r( ),–=

Ĥ r( ) Ĥ0 ĤD–E r( )

F r( ) Tr F̂ r( )σ̂ r( ){ } .=

σ̂ r( )

–
i
"
--- Ĥ r( ) σ̂,[ ] Γ̂ σ̂{ }– 0, Tr σ̂{ } 1.= =

Γ̂

Γ̂ σ̂( )
γ
2
--- Π̂e σ̂,{ }= γ T̂q

†σ̂T̂q.
q

∑–
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and atomic velocity. The tensor ξij is proportional to the
spatial gradient of :

(18)

where ∇ j are the Cartesian components of the vector
operator ∇ . Like the light pressure force, the spontane-
ous diffusion tensor component can be expressed by
using :

(19)

The induced diffusion tensor can be represented as

(20)

where we denoted the fluctuation of the force operator

by  =  – F. Generalizing the method from [12] to
three dimensions, we introduced auxiliary matrices 
in formulas (18) and (20), which allowed us to write the
expressions for the friction and induced diffusion coef-
ficients in a uniform way. The matrices  are the solu-
tion of the inhomogeneous linear equation

(21)

in which the force operator fluctuation is the source.

The induced diffusion tensor  is quadratic in

, which corresponds to the standard definition of
diffusion via a two-time correlator of the force operator
(see, e.g., [20]). As was noted in [12], the system of lin-
ear equations (21) is degenerate; i.e., the matrices 
are defined to within the gauge condition. For example,
Tr{ } = 0 can be used as this condition.

An alternative approach to calculating the tensors ξij

and  is to solve the equations for the corrections
of the first order in velocity and recoil to the Wigner
density matrix. In this case, an invariant description
based on the expansion of the atomic density matrix
into a basis of bipolar harmonics [14] is possible. In
several cases, these equations are more convenient in

interpreting the various contributions to ξij and ,
and they are used below.

σ̂ r( )

ξ ij r( ) Tr ϕ̂ i r( )∇ jσ̂ r( ){ } ,–=

σ̂ r( )

Dij
sp( ) r( )
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4. THE KINETIC COEFFICIENTS 
IN A FIELD OF ARBITRARY CONFIGURATION

To analyze the kinetics of atoms in a laser field of
arbitrary configuration, it is convenient to represent the
kinetic coefficients as an expansion in terms of spatial
field gradients. In general, six real quantities com-
pletely specify the local complex amplitude of the field
E(r). The real amplitude E, the phase Φ, and the unit
complex polarization vector e can be separated in an
invariant way:

(22)

As usual, we assume that Im(e · e) = 0 and introduce the
ellipticity angle ε(r):

(23)

Note that the ambiguity in determining the real ampli-
tude, the phase, and the ellipticity disappears if we
require that they be analytic functions of the coordi-
nates. In addition to E, Φ, and ε, we need the following
three angles that specify the orientation of the polariza-
tion ellipse: φ(r), the angle of rotation about the axis
orthogonal to the polarization ellipse; and α(r) and
β(r), the angles of rotation about the principal axes of
the polarization ellipse. For the angles, we cannot give
an invariant definition via the polarization vector e and
its conjugate vector e* similar to (23). Nevertheless,
this can be done for their spatial gradients as follows.
For example, writing the expansion of the polarization
vector in terms of circular unit vectors e±1 in the local
coordinate system with the axis

(24)

as

and calculating the scalar product e · ∇ ie*, we find that

(25)

Similarly, considering the component of an infinitesi-
mal increment of the polarization vector along the e0
axis, we obtain

(26)

(27)

By definition (15), the light pressure force exerted
on an atom at rest is linear in field gradients and it can
be written as

(28)

E r( ) E r( ) iΦ r( )( )e r( ).exp=

2ε( )cos e e.⋅=

e0
ie e∗×

2ε( )sin
------------------=

e ε π
4
---– 

  e iφ– e+1cos ε π
4
---– 

  eiφe–1sin+=

2ε( )∇ iφsin Im e ∇ ie∗⋅( ).=

ε( )∇ iαcos Re e0 ∇ ie⋅( ),=

ε( )∇ iβsin Im e0 ∇ ie⋅( ).=

F " ^κg κ( ),
κ 1=

6

∑=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where

(29)

For the tensors ξij and  quadratic in field gradi-
ents, the expansions similar to (28) are

(30)

(31)

where  are the Cartesian components of the vector
g(κ). These expansions have a number of remarkable
properties:

(1) The coefficients ^κ , -κκ ' , and $κκ ' depend only
on the local intensity E2(r), ellipticity ε(r), and field
detuning δ from resonance. They do not depend on the
local phase and rotation angle, because we can always
pass to a local basis where the phase and the rotation
angles are zero when calculating the traces of the matri-
ces in (15), (18), and (20).

(2) Each of the coefficients ^κ , -κκ ' , and $κκ ' has a
certain parity relative to ε and δ. This statement is also
quite general, because it can be proved by considering
the symmetries of the kinetic equation for the matrix
density relative to coordinate system inversion and time
reversal [23]. We emphasize that the force vector F and

the tensors ξij and  have no such parity.

(3) In general, the nondiagonal elements -κκ ' and
$κκ ' at κ ≠ κ' are nonzero; i.e., the spatial field gradients
of various types correlate with one another rather than
act independently.

(4) Since the mean dipole moment of an atom at rest
lies in the plane of the polarization ellipse and orthogo-
nal to the small variations in polarization vector that
bring it out of the polarization plane, the components
^5 and ^6 are generally zero. This reasoning leads us
to conclude that the matrices -κκ ' and $κκ ' have a block
structure—there are no correlations between sectors
{1–4} and {5, 6}.

As regards the spontaneous diffusion tensor

, it clearly also depends only on the ellipticity,
intensity, and detuning.

As we will see below, our representation for the vec-
tor E(r) is convenient for writing the analytical results
and the qualitative interpretation of various contribu-
tions. At the same time, it is clearly not the only possi-
ble one: any six real quantities that uniquely define the
complex vector E(r) can be used. However, it is impor-
tant to emphasize that the final results for the force vec-

g 1( ) ∇ E, g 2( )ln ∇Φ ,= =

g 3( ) ∇ε , g 4( ) ∇φ ,= =

g 5( ) ∇α , g 6( ) ∇β .= =

Dij
ind( )

ξ ij " -κκ 'gi
κ( )g j

κ '( ),
κ( )
∑=

Dij
ind( ) γ"

2 $κκ 'gi
κ( )g j

κ '( ),
κ( )
∑=

gi
κ( )

Dij
ind( )

Dij
sp( ) r( )
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388 BEZVERBNYI et al.
tor F and the tensors ξij and Dij can always be expressed
in terms of the complex vector amplitude of the field
E(r) and its spatial gradients in an invariant and analyt-
ical way. The recipe for this transformation is described
in Appendix A.

It should also be noted that the analytical expres-
sions given below can be directly used to analyze the
dependences of the force and diffusion on cooling-field
parameters in the practically important cases of simple
field configurations, where only one of the spatial field
gradients is nonzero: a standing wave (g(1) = k), a trav-
eling wave (g(2) = k), a lin ⊥  lin configuration (g(3) = k),
and a σ+–σ– configuration (g(4) = k). In all cases, the
friction and induced diffusion coefficients are com-
pletely determined by one diagonal element -κκ and
$κκ at κ = 1, …, 4.

Thus, knowing the analytical expressions for the

dependences of ^κ , -κκ ' , $κκ ', and  on ellipticity,
intensity, and detuning, we have general and complete
information that allows the light pressure force, friction
and diffusion coefficients to be determined for any spe-
cific field configuration.

To all appearances, expansions of the form (28) and
(31) were first used by Gordon and Ashkin [24] to ana-
lyze the motion of an atom in a radiative trap. Subse-
quently, Kazantsev et al. [16] used an expansion similar
to (30) in the problem of an effective Lorentz force in the
field of a Gaussian beam. The authors of these papers
used a simple model of a resonant atom in the form of
two nondegenerate levels and, accordingly, considered
the influence of only two gradients: g(1) and g(2), the field
amplitude and phase, respectively. Expansions in terms
of all the possible gradients, including the polarization
ones, for the light pressure force exerted on an atom with
a degenerate ground state in the zero and first approxima-
tions in velocity are given in [9, 14], where we also
briefly discussed some of their properties.

Note that the results of this section are general. They
remain valid for much more general atomic excitation
and relaxation schemes than those considered in pre-
ceding sections. In particular, the ground and excited
levels can have several hyperfine components with dif-
ferent angular momenta and energies; the isotropic
relaxation operator can include extra terms that
describe collisional relaxation, etc. Here, we restrict
our analysis to closed dipole transitions Jg  Je in the
approximation of purely radiative relaxation (as formu-
lated in Section 2); the relaxation rate of the ground
level is assumed to be exactly equal to zero. In this
statement of the problem for the two classes of atomic
transitions J  J (J is an integer) and J  J – 1,
where coherent population trapping in the ground state
takes place [25], the light pressure force and the diffu-
sion tensor for an atom at rest become zero. The tensor
ξij is antisymmetric; i.e., the linear (in velocity) force
component reduces to the Lorentz force. In this case,
the effective magnetic field is defined by the rotor of the

Dij
sp( )
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vector geometric potential for which we derived analyt-
ical expressions in [26] for arbitrary angular momenta.
As regards the corrections of a higher order in velocity
(quadratic for the diffusion and cubic for the force),
which determine the laser cooling effects in this case
[27, 28], the approach developed here is clearly inappli-
cable to their calculation.

Transitions from the two remained classes J  J
(J is a half-integer) and J  J + 1 are considered in
the laser cooling theory. However, laser cooling was
experimentally achieved only for J  J + 1 transi-
tions, because they are much more abundant than the
J  J (J is a half-integer) transitions. Therefore, we
consider below J  J + 1 transitions, which are most
important for applications, although we have similar
results for J  J (J is a half-integer) transitions.

5. THE LIGHT PRESSURE
ON AN ATOM AT REST

The stationary solution found for the density matrix
 in [7, 10, 11] allows the light pressure force

exerted on an atom at rest to be analytically calculated
with the same generality, i.e., for arbitrary angular
momenta of the ground and excited states and for an
arbitrary monochromatic field configuration. In gen-
eral, the four nonzero force components ^κ can be
written as

(32)

The even (in detuning) components ^2 and ^4 corre-
spond to the spontaneous light pressure force associ-
ated with the induced absorption and the subsequent
spontaneous emission. The odd components ̂ 1 and ^3
contribute to the induced light pressure force associated
with the coherent reemission of photons from one mode
into another mode.

The coefficients α0, α1, and A depend only on
cos(2ε). Their explicit form is determined by the type of
optical transition. Thus, for J  J + 1 transitions,
based on the results of [10], we can obtain

(33)

σ̂ r( )

^1
2δSα1

α0 2Sα1+
------------------------, ^2–

γSα1

α0 2Sα1+
------------------------,= =

^3 2ε( )
2δS α1 A–( )
α0 2Sα1+

------------------------------,tan=

^4 2ε( ) γSA
α0 2Sα1+
------------------------.sin–=

α0
1

2J 1+( ) 4J 1+( )! 2ε( )cos
--------------------------------------------------------------- CLPL

1
2ε( )cos

------------------- 
  ,

L 0=

2J

∑=

α1 P2J 1+
1
2ε( )cos

------------------- 
  ,=

A
1

2J 1+( ) 2ε( )cos
----------------------------------------P2J 1+' 1

2ε( )cos
------------------- 

  ,=
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where

In the expression for α0 in (33), the summation is over
even L (starting from 0) for integer angular momenta J
and over odd L (starting from 1) for half-integer J, and
the coefficient A is expressed in terms of the derivative
of the Legendre polynomials

When the field polarization approaches a circular one,
ε  ±π/4, the argument of the polynomials 1/cos(2ε)
and the polynomials themselves increase without limit.
However, it is easy to see that the ratio of the polynomi-
als in terms of which ^κ are expressed remain finite:

A remarkable feature that shows up the most clearly
at large angular momenta J is the rapid decrease of CL

with decreasing L, which allows several terms in the
sum with the largest L to be retained in approximate
calculations. For example, the ratio

for J = 4 (a closed transition on the 133Cs D2 line) is
177.8. As a result, if we substitute the sum for α0 with
one term with L = 2J, then the error will be at a maxi-
mum for ε = 0 and will not exceed one percent.

6. SPONTANEOUS DIFFUSION

Since the diffusion tensor (19), which is attributable
to fluctuations in the escape direction of spontaneous
photons, can be expressed in terms of  like the
light pressure force, we can also obtain an analytical
result for it at arbitrary J. Like any symmetric second-

rank tensor,  can be represented as an isotropic part
(∝δ ij) and an irreducible part with a zero trace:

(34)

where we use the standard notation [29] for the sym-
bol 6j and the irreducible tensor product; ei and ej are
the Cartesian unit vectors (irreducible first-rank ten-

CL 2L 1+( ) 2J L–( )! 2J L 1+ +( )!=

PL' x( )
xd

d
PL x( ).=

α1

α0
----- 1,

A
α0
----- 1,

α1 A–

α0 2ε( )2cos
--------------------------- 2J

4J 1+
---------------.

C2J

C2J 2–
-------------- 4J 1+( )2 2J

4J 3–
---------------=

σ̂ r( )

Dij
sp

Dij
sp( ) γ "k( )2 δij

π e( )

6
-------- 1–( )

Je Jg+ 2Je 1+

10
-----------------–=

× 2 1 1

Jg Je Je 
 
 

ei e j⊗{ } 2 σ2
e( )⋅( ) ,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
sors). The isotropic component in (34) is proportional
to the total excited-level population,

(35)

and the component with a zero trace corresponds to
alignment in the excited state, which for J  J + 1
transitions is

(36)

We see from formula (36) that the spontaneous diffu-
sion tensor is diagonalized in the local coordinate sys-
tem associated with the polarization ellipse, where the
z axis is orthogonal to the polarization plane (i.e.,
directed along e0) and the x and y axes are parallel to the
principal axes of the ellipse (Re{e} and Im{e}). Since
the Cartesian tensor Kij = ({ei ⊗  ej}2 · {e ⊗  e*}2) in this
coordinate system is

in general, all eigenvalues of the spontaneous diffusion
tensor are different and only in the special cases of lin-
ear and circular polarization does an axial symmetry
take place.

7. THE FRICTION FORCE,
THE LORENTZ FORCE, 

AND INDUCED DIFFUSION

Unfortunately, we failed to obtain an analytical
solution for the matrices of the first-order corrections

 at arbitrary angular momenta J [in contrast to

]. Nevertheless, solving Eq. (21) for a given J
involves no fundamental difficulties. The only problem
is that the analytical expressions become increasingly
cumbersome with increasing J. For this reason, below
we present the coefficients -κκ ' and $κκ ' in explicit
form for several transitions from the class J  J + 1
with low values of J.

The linear (in velocity) friction force, which causes
the mean atomic kinetic energy to change with time, is
determined by the symmetric part of the tensor ξij;
therefore, the diagonal components -κκ and the sums
of the nondiagonal components (-κκ ' + -κ'κ) contribute

π e( ) α1S
α0 2α1S+
------------------------,=

σ2
e( ) S

α0 2α1S+
------------------------ 1

4J 1+
---------------–=

× 30 J 1+( )
J 2+( ) 2J 1+( ) 2J 3+( ) 2J 5+( )

--------------------------------------------------------------------------------

× e e∗⊗{ } 2

2ε( )cos
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------------------- 

 

+
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2ε( )cos
2

-------------------------------------------------------P2J 1+'' 1
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------------------- 
  .
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1 3 2ε( )cos+

6
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6
-------------------------------- –

1
3
---, ,
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to this force. The differences between the cross compo-
nents (-κκ ' – -κ'κ) determine the Lorentz force, which
does not change the kinetic energy.

In general, the induced diffusion tensor components
$κκ ' are not symmetric relative to the permutation of
subscripts. However, as was noted above, only the sym-
metric components contribute to the Fokker–Planck
equation. Therefore, we assume below that

7.1. An Arbitrary Saturation Parameter S. 
The 0  1 Transition 

This simplest transition from the class J  J + 1 is
of considerable interest from a practical point of view,
because it is used for the laser cooling (to the Doppler
limit) of calcium and strontium atoms. For arbitrary sat-
uration parameters S, the coefficients -κκ ' have the fol-
lowing form. The diagonal elements that are odd in
detuning and even in ellipticity are

(37)

(38)

(39)

(40)

(41)

where  = δ/γ is the detuning, in units of the radiative
width. Formulas (37) and (38) closely correspond to the
results for the friction coefficient in the field of standing
and traveling waves obtained in [16, 24] for a two-level
model atom with nondegenerate states. Clearly, the sca-
lar model is not enough to derive (39), (40), and (41);
and the Zeeman structure of atomic energy levels and
the vector nature of the electromagnetic field should be
taken into account. The component -44 (40) for a zero
ellipticity transforms to the well-known result for the
0  1 transition in a σ+–σ– field configuration [30].

$κκ ' $κ 'κ $κκ ' $κ 'κ+( )/2.= =

-11
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---------------------- 1

1/4 δ̃
2

+
------------------- 1 2S–( ) 8S2– ,=
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----------------------------------------------,=
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+( ) 1 2S+( ) 1 S 1/4 δ̃
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-------------------------------------------------------------------------------------------------,=
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----------------------------------------------=

× 1 1 2ε( )cos
2

+( )S 1/4 δ̃
2

+( ) 1 2ε( )cos
2

–( )S2+ +

1 S 1/4 δ̃
2

+( )S2+ +
-----------------------------------------------------------------------------------------------------------------------,

-55
1 2ε( )cos+

2
------------------------------33,   - 66 

1 2 ε( )
 

cos–
2

---------------------------- - 33 ,= =

δ̃
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In addition, the linear (in velocity) force contains
nonlinear contributions due to the combined action of
various types of field gradients:

(42)

(43)

(44)

(45)

(46)

(47)

which, as far as we know, are given for this transition
for the first time.

As we see from (42)–(44), the contributions to the
friction force from the correlation of amplitude–phase
and amplitude–angle gradients have an even depen-

dence on the detuning and do not vanish at  = 0. Con-
sequently, in general, the friction coefficient has no def-

inite parity in  and laser cooling is possible even at
exact resonance. We discussed the latter in a brief com-
munication [13] for the 1/2  3/2 transition in the
field of a special one-dimensional configuration (see
also Section 8).

Let us physically interpret some of the components
-κκ ' . Specific field configurations (a traveling wave, a
standing wave, the field produced by orthogonally
polarized waves, etc.) are commonly considered to elu-
cidate the physical friction mechanisms. However, this
is not necessary, because all of the contributions from
-κκ ' can be interpreted locally, without associating the
reasoning with any global field configuration. Thus,
when considering the diagonal components -κκ, it will
suffice to assume that only one field gradient g(κ) is non-
zero at a given point of space, with the field amplitude
and polarization being generally arbitrary. This
approach leads to the mechanisms for -κκ that were
previously known from the analysis of simple field con-
figurations (Doppler, Sisyphus, and other friction
mechanisms). To interpret the cross contributions from

-12
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-κκ ' , we must assume that two gradients, g(κ) and g(κ'),
are nonzero at a given point and consider their com-
bined action.

For example, the nondiagonal element -12, which
corresponds to the correlation of amplitude–phase gra-
dients, can be interpreted as follows. The induced light
pressure force "^1g(1), which depends on the field
detuning from resonance [see (32)], acts on an atom in
a field with an amplitude gradient. If, in addition, the
atom moves in a field with a phase gradient, then the
field frequency shifts δ  δ – g(2) · v because of the
Doppler effect. For the corrections of the first order in
velocity, we have –" g(1)(g(2) · v), which exactly
corresponds to (42). Thus, this contribution is attribut-
able to the resonant frequency dependence of the
induced light pressure force and the Doppler effect. In
contrast, the other nondiagonal element -21 is due to
the spontaneous light pressure force "^2(r, p)g(2) ,

where ^2(r, p) = Tr{ (r, p)} is the mean value of

the operator  = i[Ω  – H.c.], which determines the
absorption rate of external field photons. The first (in
velocity) corrections are associated with the delayed
(with respect to the slow field amplitude variations) part
of the mean dipole moment for the moving atom. In
particular, for the 0  1 transition under consider-
ation without saturation, the in-phase and delayed parts
of the corresponding density matrix elements are

which leads to (43), to within the first order in satura-
tion parameter S.

Note that expressions (42) and (43) can be derived
by using a two-level model atom. The Lorentz force
due to the combined action of the amplitude and phase
gradients in the field of a Gaussian beam was first con-
sidered by Kazantsev et al. [16]. Our result for the dif-
ference (-12 – -21) matches that from [16] in the limit
S ! 1. Curiously, for a large saturation, S @ 1, the com-
ponent -21 decreases as 1/S, while -12 ceases to
depend on the parameters that characterize the intensity
of the atom–field interaction and the corresponding
contribution to the force "g(1)(g(2) · v) is completely
determined by the field geometry and the atomic
velocity.

The components -αα ' [(α) = 5, 6] associated with
the spatial rotation of the polarization ellipse were pre-
viously considered by one of the authors for Jg > 0 in
the context of sub-Doppler cooling [31]. Here, we point
out that the physical mechanisms responsible for the
orientation contributions to the friction force (-44, on
the one hand, and -αα ' , on the other) are in many ways

^1( )δ'

^̂2σ̂

^̂2 V̂

σ̂eg r p,( ) i
ΩV̂

γ/2 iδ–
------------------ ig 1( ) v

ΩV̂

γ/2 iδ–( )2
-------------------------,⋅+–≈

σ̂eg Π̂eσ̂Π̂g,=
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similar. Indeed, the variation of the total Hamiltonian
for an atom in the case of an infinitesimal spatial dis-
placement δr can be represented as a expansion in
terms of field gradients:

where the variations related to rotation (κ = 4, 5, 6) are

generated by the total angular momentum operator :

Here,  are the corresponding components of the vec-

tor  (along e0 for κ = 4 and along the principal axes of
the ellipse for κ = 5, 6). According to the equations of
motion, we can write the following relations for the
mean values of the orientation force components

^κ(r, p) = Tr{ }:

(48)

These relations express the conservation of angular
momentum: the absorption rate of external field angular
momentum, –^κ, is the sum of the rate of angular
momentum transfer to vacuum modes via spontaneous
emission and the rate of change of the mean atomic

angular momentum, Jκ(r, p) = Tr{ }. It is easy
to show that the first term on the left-hand side of (48)
is proportional to the excited-state angular momentum

(r, p) = Tr{ }:

Here, the depolarization coefficient

is determined by the difference between the angular
momentum lost by an atom as it spontaneously escapes
from the excited state and the angular momentum
gained by the atom through its spontaneous arrival to
the ground state. For an atom at rest, p = 0. Using the
stationary solution  from [11], we obtain

,

in agreement with the result for ^4(r) (32) presented
above. The first (in velocity) corrections in the equation
for the atomic density matrix, which arise during the
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motion in a field with orientation gradients are known
[30, 1] to be described by the effective Hamiltonian

i.e., they are equivalent to the switching on of a ficti-
tious magnetic field directed along the principal axes of
the ellipse for g(5, 6) or orthogonally to the ellipse plane
for g(4). Thus, the orientation components -55 and -66,
as well as -44, correspond to the magnetic susceptibil-
ity tensor components for optical pumping by ellipti-
cally polarized light. In addition, the second term on
the left-hand side of (48) contributes to the cross com-
ponents -56 and -65.

Let us now turn to the induced diffusion tensor. The
diagonal components $κκ ' are even functions of the
detuning and ellipticity:

(49)

The nonzero nondiagonal elements break this sym-
metry:

(50)

The components $11, $22, and $12 attributable to the
amplitude and phase gradients match those obtained
previously in the scalar model of a two-level atom [24].
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The orientation component $44 for the transition in
question was considered in [30] for ε = 0. Without con-
sidering the physical interpretation of the various con-
tributions to the induced diffusion tensor in detail, we
only note that they are attributable to fluctuations of the
induced and spontaneous light pressure forces, which
generally correlate with each other.

The dependence of -κκ ' and $κκ ' on the saturation
parameter S can be expressed as a quotient of two poly-
nomials whose coefficients, in turn, depend on the
detuning, ellipticity, and level angular momenta. The
peculiarity of the 0  1 transition associated with
ground-state nondegeneracy is that the expansions in
powers of S for -κκ ' , just as for $κκ ' , start from the first
power. As we see from the above results, the contribu-
tions of higher orders in S are negligible in the low-sat-
uration limit:

(51)

when the rate of atomic excitation from the ground state
of the order of γS and the optical shifts of excited-state
sublevels of the order of δS are much smaller than the

rate of spontaneous decay γ. In this case, ξij and 
are linear in field intensity and we obtain the well-
known results [32]:

Thus, the formulas given in this section generalize
the previously obtained results for the 0  1 transi-
tion to arbitrary field configurations and arbitrary satu-
ration parameters.

7.2. The Low-Saturation Limit.
The 1/2  3/2 Transition 

For atomic transitions with a degenerate ground
state Jg > 0 for low saturations (51), the first nonvanish-
ing contributions to -κκ ' have a zero order in S. This is
known [1] to be fundamentally important for laser cool-
ing below the Doppler limit. Several new peculiar prop-
erties of the coefficients -κκ ' arise in this approxima-
tion. In particular, since the density matrix  in the
zero order in saturation parameter S contains no phase
and amplitude dependences, -κ1 = -κ2 = 0 for any κ =
1, …, 4. In addition, the following relation holds
between the coefficients:

(52)

It is a generalization of the relation for the force acting

on an atom at rest (32): ^1(r) = –2 ^2(r). It can be
shown that this relation between the induced and spon-

S ! min 1 γ/δ,{ } ,
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taneous light pressure forces also remains valid for a
moving atom if we retain the terms of order (v /S)n, the
leading terms for S ! 1, in each order of the expansion
of the force in powers of the velocity. From a more gen-
eral point of view, (52) is a corollary of the Kramers–
Kronig relation for atomic susceptibility.

For the ground-state angular momentum Jg = 1/2,
the matrix  in the zero order in S does not depend
on the angle φ either. Therefore, in this special case,
-κ4 = 0. The nonzero components -κκ ' are

(53)

(54)

The physical mechanism responsible for the compo-
nents -13 and -33 is known from the analysis of a lin–
θ–lin field configuration [2]—this is the so-called Sisy-
phus effect [1]. This effect is commonly associated with
induced light pressure forces, which at low field inten-
sities (S ! 1) can be considered as resulting from the
spatial nonuniformity of the optical ground-state sub-
level shifts (the dynamic Stark effect). The optical shift
is proportional to the field intensity and depends on
ellipticity. In particular, for the 1/2  3/2 transition in
a local coordinate system with the z axis along e0,

It should be said that the presence of at least two dis-
tinct potentials is a necessary condition for the realiza-
tion of the Sisyphus effect. The force components asso-
ciated with the amplitude (g(1)) and ellipticity (g(3)) gra-
dients are
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where  is the mean z component of the atomic
angular momentum (half the difference between the
ground-state sublevel populations). Another necessary
ingredient of the Sisyphus mechanism of sub-Doppler
friction is a delay in the ground-state anisotropy for a
slowly varying local ellipticity. In the case under con-
sideration, the in-phase and delayed parts of the angular
momentum, to within the first order in velocity, can be
written as

As we see, the characteristic delay is inversely propor-
tional to the optical pumping rate γS, which leads to the
intensity-independent contributions -13 and -33.

The interpretation of the -independent compo-
nents -23 and -43 is similar to that considered above,
but with the significant distinction that the force action
is provided by the spontaneous light pressure through
phase and φ gradients:

Previously [13], using as an example the symmetric
class of one-dimensional field configurations produced
by counterpropagating, elliptically polarized waves of
equal amplitudes, we showed that the detuning-inde-

pendent friction coefficient  + 
does not vanish when averaged over the spatial period;
i.e., there is a systematic effect of cooling (or heating,
depending on the geometric parameters of the field con-
figuration) at exact resonance δ = 0. The spatial nonuni-
formity of the delay proportional to (γS)–1 was found to
play a significant role.

The physical mechanism responsible for the orien-
tation components (54) was discussed above and their
influence on the sub-Doppler cooling was considered
by one of the authors [31]. Here, we note only one sig-
nificant point. In contrast to all the remaining com-
ponents of the zero order in S, the components -55 and
-66 do not become zero at points where the field polar-
ization is circular; i.e., these components can dominate
if the atoms are spatially localized near these points.

The coefficients $κκ ' are linear in S in the low-satu-
ration limit (51). For the 1/2  3/2 transition, all
13 elements are nonzero. These include the four even
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(in detuning) diagonal and two cross elements in sec-
tor {1–4},

(55)

the four odd (in ) nondiagonal elements in sector {1–4}
attributable to the correlation between induced and
spontaneous light pressure force fluctuations,

(56)

and the three diagonal even and nondiagonal odd (in )
elements in sector {5, 6},

(57)

For a ground-state angular momentum Jg ≥ 1, the
density matrix  contains nondiagonal elements
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(Zeeman coherences) in the local basis with the quanti-
zation axis orthogonal to the polarization ellipse even in
the zero order in S. Therefore,  also depends on φ
and, in general, -κ4 ≠ 0. The  dependences of -κκ ' and
$κκ ' have the form of a quotient of two polynomials
whose coefficients depend on the ellipticity and angular
momentum J in a complex way. The complete set of
coefficients required to calculate the tensors ξij and

 is given in Appendix B for the 1  2 transition.

8. THE FIELD PRODUCED
BY COUNTERPROPAGATING 

ELLIPTICALLY POLARIZED WAVES

Let us illustrate application of the results obtained
above to the relatively simple but nontrivial case of one-
dimensional field configurations simultaneously with
two or more gradients (e.g., intensity and ellipticity gra-
dients). These configurations are produced by counter-
propagating waves with equal intensities and arbitrary
elliptical polarizations e1 and e2; thus, they are a gener-
alization of the (lin–θ–lin and σ+–σ–) field configura-
tions widely used for laser cooling. Thus, we consider
the ε1–θ–ε2 configuration: the principal axes of the
polarization ellipses are oriented at an angle θ to each
other, and ε1 and ε2 are the corresponding ellipticities.
Denote the real amplitude of each wave by E0.
For   counterpropagating waves of equal intensity,
Im(E · ∇ iE*) = 0 and formula (A.5) give a rigid relation
between the phase gradients and the rotation angle of
the local polarization ellipse:

(58)

where ε is the local field ellipticity and g(κ) is the gradi-
ent component along the direction of wave propagation
(along the z axis). In this case, the coordinate depen-
dence of the kinetic coefficients and their dependences
on wave parameters are completely determined by two
invariants, E · E and E · E* [see (A.2)–(A.4)]:

(59)

More specifically, we will consider one subclass of
symmetric configurations for which the most interest-
ing physical effects arise, namely, the ε–θ–  field con-
figuration where the ellipticity parameters of the coun-
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terpropagating waves have opposite signs, ε1 = –ε2 = ε0.
According to (59), all of the possible field gradients are
then nonzero:

8.1. The Light Pressure Force 

For specific calculations, it is convenient to repre-
sent the light pressure force exerted on an atom at rest
as

(60)

because the ratios of the coefficients α0, α1, and A
depend only on even powers of cos(2ε). In particular,
for the 1/2  3/2 transition in the low-saturation
limit, we have

E E∗⋅ 2E0
2 1 2ε0( )cos θ 2kz( )coscos+[ ] ,=

2ε( )sin
θ 2ε0( )cos 2kz( )sinsin

1 2ε0( ) θ 2kz( )coscoscos+
------------------------------------------------------------------,–=
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
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Fig. 1. Spatial dependence of the induced (solid lines) and
spontaneous (dashed lines) light pressure forces in a weak
(S0 ! 1) field of ε–θ–  configuration for the (a) 1/2 
3/2 and (b) 4  5 transitions. The spontaneous light pres-
sure force "(^2g(2) + ^4g(4)) is in units of "kγS0, and the

induced light pressure force "(^1g(1) + ^3g(3)) is in units
of "kδS0. The field configuration parameters are ε0 = π/8
and θ = π/3.

ε

–1.5
F 2"kS0 2ε0( )cos 2kz( )
δ 4 θ 1 3 θcos+( ) 2ε0( ) 2kz( )coscos+cos[ ] γ θ 2ε0( )cossin–

3 1 θ 2ε0( )cos 2kz( )coscos+[ ]
--------------------------------------------------------------------------------------------------------------------------------------------------,sin=
  
where the saturation parameter S0 corresponds to the
intensity of one wave.

It follows from symmetry relations [23] that the
force (60) averaged over the spatial period becomes
zero; i.e., the force corresponds to a periodic potential.
A characteristic feature of this configuration is that a
periodic potential is produced by both the induced and
spontaneous light pressure forces (see Fig. 1). In prin-
ciple, this behavior allows the spontaneous force to be
used to produce optical gratings in the case of exact res-
onance where the induced force becomes zero and the
spontaneous force reaches a maximum.

8.2. The Friction Coefficient 

Consider the 1/2  3/2 transition in the low-satu-
ration limit S ! 1, where cooling below the Doppler
limit becomes possible in a field with polarization gra-
dients [1]. The friction coefficient is defined by four
                            

components (53). For the -independent anomalous
components to appear, the phase and ellipticity or rota-
tion angle and ellipticity gradients must be simulta-
neously present. Both are realized in the ε–θ–  config-
uration at θ ≠ 0. Using (59) and (A.2)–(A.4), we can
derive explicit expressions for the normal, ξn , and
anomalous, ξa , friction coefficients in terms of the
ellipticity ε0 of the forming waves and the angle θ:

(61)
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(62)

In general, when averaged over the field period, the two

ξa " -23g 2( )g 3( ) -43g 4( )g 3( )+[ ]=

=  "
3
2
---g 2( )g̃ 3( )–

3
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Fig. 2. The heating (blank) and cooling (hatched) regions
for the detunings δ = 0 (a), 3γ (b), and –3γ (c).
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components are nonzero:

(63)

(64)

8.3. The Direction of the Kinetic Process 

The anomalous friction force qualitatively manifests
itself in changes of the direction (heating or cooling)
and rate of the kinetic process. Perhaps the most glaring
example is an exact resonance, δ = 0, when the normal
friction force becomes zero. Disregarding the anoma-
lous component, one might expect a slow (linear in
time) temperature rise due to atomic momentum diffu-
sion. However, if ε0 ≠ 0, ±π/4 and θ ≠ 0, π/2, then
〈ξ a〉  ≠ 0 and an atom is, on average, under the action of
nonconservative forces even at δ = 0. The sign of 〈ξ a〉  is
determined by the product sinθsin(2ε0). As a result, we
can distinguish the domains of θ and ε0 (see Fig. 2)
where the friction coefficient is negative and where
cooling takes place and the domains where the friction
coefficient is positive, which corresponds to a rapid
(exponential) temperature rise.

The anomalous friction force can be also detected at
nonzero detunings. Thus, for example, for δ < 0, one
might expect cooling to take place in the entire domain
of θ and ε0. However, because of the anomalous com-
ponent, the friction coefficient reverses its sign when
crossing the line

(65)

and an exponentially rapid temperature rise takes place
in the region bounded by this line and the θ = 0 axis. In
contrast, at negative detunings, the friction coefficient
is negative in the region bounded by line (65) and the
θ = 0 axis; i.e., cooling and heating take place inside
and outside this domain, respectively. This behavior
can be explained by the fact that the local field polariza-
tion for θ = 0 is linear everywhere and there is no sub-
level population difference nor difference in the corre-
sponding optical potentials necessary for the Sisyphus
friction mechanism. As a result, the normal compo-
nents tend to zero, 〈ξ n〉 ∝ θ 2, as θ  0 (ε0 ≠ 0). For the
anomalous component, only the first of the two causes
remains, which results in a slower decrease, 〈ξ a〉 ∝ θ .
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Explicit expressions for the diffusion coefficients
can be calculated in a similar but more cumbersome
way. Here, we do not consider this issue.

9. CONCLUSION

Let us summarize our results. The kinetics of slow
atoms in a nonuniformly polarized field is described in
the semiclassical approximation by the Fokker–Planck
equation for the atomic distribution function in phase
space. The coefficients of this equation (the force in the
zero and first orders in velocity and the diffusion in the
zero order) were represented as expansions in terms of
spatial field gradients. For closed atomic transitions
from the class J  J + 1, we derived analytical
expressions for the force and diffusion coefficient that
allow the atomic motion in a field of arbitrary configu-
ration to be considered. For the force exerted on an
atom at rest and for the spontaneous diffusion, we
obtained compact analytical results, which are valid for
an arbitrary angular momentum J. Since the analytical
expressions for the first (in velocity) corrections to the
force and for the induced diffusion become cumber-
some with increasing J, we restricted our analysis to a
series of transitions with small angular momenta, J = 0,
1/2, and 1. The friction force and the induced diffusion
tensor were shown to generally contain the cross con-
tributions due to the combined action of the various
types of gradients. As a result, the friction force and the
diffusion tensor have no definite parity relative to the
change of sign of the field detuning δ from resonance.
We considered a qualitative interpretation of the physi-
cal mechanisms that give rise to cross contributions to
the friction. We found that these mechanisms could be
assigned to a mixed type—the Doppler friction through
induced light pressure forces (-12) and the Sisyphus
effect in the presence of spontaneous light pressure
forces (-23 and -43).

In conclusion, note that our analytical results for the
coefficients of the Fokker–Planck equation give a solu-
tion (in a general form that does not depend on the spe-
cific field configuration) of the first half of the problem
of theoretically describing the motion of atoms in the
semiclassical approximation. The second half must
involve an analysis of the (stationary and dynamic)
solutions to the Fokker–Planck equation. To all appear-
ances, such an analysis, qualitative or quantitative, is
possible only when the spatial field configuration is
specified. The well-known [1, 15, 16, 24] analytical
estimates of the cooling temperature based on fluctua-
tion–dissipation relations using spatially averaged dif-
fusion and friction coefficients constitute the simplest
case. Clearly, more sophisticated methods must include
the spatial localization of atoms (see, e.g., [16, 33]) and
the complex pattern of motion in a nonuniformly polar-
ized field.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research (project nos. 01-02-17036,
01-02-17744, 02-02-06513, and 03-02-16513) and
the Ministry of Education of Russia (project
nos.  E00-3.2-153 and UR.01.01.062). One of us
(O.N.P.) was supported by an INTAS Grant For Young
Scientists (YSF 00-129).

APPENDIX A

The natural parametrization (29) that we used is
convenient for writing the analytical results and for
qualitatively interpreting the various contributions.
However, the final results for the force vector F and the
tensors ξij and Dij can always be expressed in an invari-
ant and analytical way in terms of the complex vector
amplitude of the field E(r) and its spatial gradients. In
this case, we can completely avoid taking the nth root.
It is well known that the latter operation can lead to
ambiguities in the phase factors. In this sense, the
degree of linear polarization, cos(2ε)), defined as

(A.1)

contains this ambiguity. For example, the nonnegative
value of the root could be used everywhere, which is
not quite convenient, because, in general, this function
is not smooth. Such reasoning is also valid for sin(2ε),
the degree of circular polarization. At the same time,
the square of the degree of linear polarization

(A.2)

does not have this drawback.

The transformation to the generally invariant
expressions for F, ξij , and Dij can be made as follows.
The gradients g(1) and g(2) can be expressed as

(A.3)

Next, we should use

(A.4)

in place of the ellipticity gradient g(3) and the product

 = sin(2ε)g(4) in place of the angle gradient g(4). For
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2
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E E∗⋅
-----------------------,=
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E E⋅( )∗
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E E⋅
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the Cartesian coordinates of the latter, we have the
expression

(A.5)

equivalent to (25). It is easy to verify that after changing
to the new gradients, all of the coefficients ^κ , -κκ ' ,
and $κκ ' in sector {1–4} will have an ellipticity depen-
dence only in the form of even powers of cos(2ε); i.e.,
the ambiguity associated with taking the root will be
removed.

The situation in sector {5, 6} is more complex,
because no unique analytical expressions can be
obtained for the linear combinations of the gradients
g(5) and g(6). Here, two circumstances play a significant
role. First, since ^5 = ^6 = 0, we need only quadratic

combinations of the gradients in the form .
Second, the coefficients -αα ' and $αα ' in sector {5, 6}
contain both even and odd powers of cos(2ε). In this
case, the following properties of the symmetry relative
to the change of sign of cos(2ε) hold:

(A.6)

(similarly for $αα '), which predict that analytical invari-
ant expressions can be derived for the combinations

(A.7)
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JOURNAL OF EXPERIMENTAL
Indeed, consider the two tensors

(A.8)

where  is the third unit vector of the complex triad:

 = e0 × e. Clearly, each of the tensors Pij and Rij can
be uniquely expressed in terms of E(r) and its deriva-
tives (we do not give explicit expressions, because they
are cumbersome), because it is composed of an even
number of vectors e0 and an equal number of vectors e
and e*; i.e., there is no need to use ambiguous expres-

sions for sin(2ε) and exp(iΦ). The tensors  and

 are equal to the half-sum and half-difference of the

real parts of (A.8), and  corresponds to the imagi-
nary part. To derive an analytical expression for the ten-

sor , we can take the symmetric part of the tensor

(A.9)

where the factor sin(2ε) compensates for the odd num-
ber of the vectors e0 used to construct Sij .

APPENDIX B

In this appendix, we give analytical expressions for
the coefficients -κκ ' and $κκ ' for the 1  2 transition
in the low-saturation limit (51).

In the zero order in S, the nonzero components -κκ '
in sector {1–4} are
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(B.2)

Below, to save space, we use the notation c = cos(2ε) and s = sin(2ε). It is convenient to represent the orientation
components -αα ' in sector {5, 6} in symmetrized form:

(B.3)

The components Dκκ ', which define the induced diffusion tensor, can be written, in the first order in saturation
parameter S, as

(B.4)
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where 1 = 2(25 – 8c2)3[5 + 4(5 – 4c2) ],

(B.5)

(B.6)
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--------------------------------------------------------------------------------------------------------------------------------------------------------,–=

$34 δ̃S
48c3 1625 2420c2 288c4– 8 625 535c2 1256c4– 96c6+ +( )δ̃

2
+ +[ ]

25 8c2–( )3
5 4 5 4c2–( )δ̃

2
+[ ]

-----------------------------------------------------------------------------------------------------------------------------------------------------------------,=

$55 $66+
S

2 25 8c2–( ) 9 4c2– 52 48c2–( )δ̃
2

64s4δ̃
4

+ +[ ]
----------------------------------------------------------------------------------------------------------------=

× 225 143c2 16c4 16c6 4 325 309c2– 80c4– 72c6+( )δ̃
2

64s4 25 13c2–( )δ̃
4

+ + + + +[ ] ,

$55 $66–
cS

2 25 8c2–( ) 9 4c2– 52 48c2–( )δ̃
2

64s4δ̃
4

+ +[ ]
----------------------------------------------------------------------------------------------------------------=

× 405 57c2– 52c4 4 225 301c2– 68c4 16c6+ +( )δ̃
2

64s4 5 c2–( )δ̃
4

+ + +[ ] ,

$56 δ̃S
4sc 45 6c2– 4 20 31c2– 11c4+( )δ̃

2
+[ ]

25 8c2–( ) 9 4c2– 52 48c2–( )δ̃
2

64s4δ̃
4

+ +[ ]
-------------------------------------------------------------------------------------------------------------.–=
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Abstract—We consider states of the hydrogen atom with the principal quantum number n ≤ 3 and zero mag-
netic quantum number in a constant homogeneous magnetic field *. The perturbation theory series is summed
using the Borel transformation and conformal mapping of the Borel variable. Convergence of the approximate
energy eigenvalues and their agreement with the corresponding existing results are observed for external
fields up to n3*/*0 ~ 5, where *0 is the atomic magnetic field. The possibility of restoring the asymptotic
behavior of energy levels using perturbation theory coefficients is also discussed. © 2003 MAIK
“Nauka/Interperiodica”.
The magnetic fields proper of some astrophysical
objects reach very high values [1, 2]. If we are inter-
ested in the atomic spectra in these external fields, it is
convenient to introduce the natural measure of field
strength, the atomic magnetic field

The fields * up to one-half of *0 are detected in the
vicinity of some white dwarves. Neutron stars possess
fields up to the order of 104*0. For the correct interpre-
tation of the observation results, it is desirable to know
the atomic hydrogen spectrum in this range of external
fields. For this aim, computations based on the adia-
batic approach with a Landau level as the initial
approximation were performed [3]. In what follows, we
show which part of the desired external field range can
be covered using the standard expansion in powers
of *, starting from the Coulomb levels of the hydrogen
atom. The computation involves many orders of pertur-
bation theory (up to the 75th order). Summation of the
series is performed using the Borel transformation sup-
plemented by a conformal mapping of the Borel vari-
able.

The Borel summation method was introduced into
quantum field theory relatively long ago (see, e.g., [4]).
It has been tested on some quantum-mechanical prob-
lems (one of numerous examples is described in [5])
and is still applied in modern works [6]. Great hopes of
the possibility to advance into the strong-coupling
region were related to the Borel summation of the per-
turbation series. Some rather simple problems where
the details can be traced and compared with the corre-

*0
e3m2c

"
3

--------------≡ 2.55 109 G.×=

¶This article was submitted by the authors in English.
1063-7761/03/9603- $24.00 © 0402
sponding exact results supported this optimism. For
example, for the funnel potential

applying a conformal mapping of the Borel variable
and Padé summation of the Borel transformant gives
the ground state energy as g  ∞ in the form

with a precision of about 0.2% for the index ν and about
5% for the coefficient C [5]. It became clear later that
such a successful summation presents a special but not
general case. We can surmise that this success is a con-
sequence of the simplicity of this problem. In contrast,
the asymptotic behavior of energy levels in the Stark
and Zeeman effects is established at very large values
of the external fields. For the Stark effect, it is now
practically impossible to reach the region of the truly
asymptotic behavior by perturbation series summation.
An intermediate linear asymptotic behavior is observed
instead [7, 8].

To introduce the notation and the scale, we write the
Hamiltonian

(1)

where g ≡ *2/c2, and we use the atomic units " = m =
e = 1 hereafter. In (1), we drop the elementary contribu-
tion of the electron spin and consider only states with
the magnetic quantum number m ≡ 0. We can expand
E(g) as a formal power series in g,

(2)

V r( ) –
1
r
--- gr,+=

E g( ) Cgν=

H –
1
2
--- ∇ 2 1

r
---–

1
8
---g r2 z2–( )+= Ĥ0 gĤ1,+≡

E g( ) Ekg
k.

k 0=

∞

∑=
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We must then obtain hypersusceptibilities Ek . We can
use the moment method for this aim. This method is
especially useful in the cases where variables cannot be
separated in the Schrödinger equation. Obviously, the
Zeeman effect is precisely such a problem. In the previ-
ous work [9], the moment method was applied to the
recurrent evaluation of hypersusceptibilities. A some-
what different version of the moment method was intro-
duced in [10].

For the lower four “isolated” hydrogen levels, we
immediately use the results of [9]. Unfortunately, the
computer code employed in [9] for the relatively more
complicated case of degenerate 3s and 3d states con-
tained a mistake.1 We therefore performed a new com-
putation of the 3s and 3d hypersusceptibilities. Results
of the computation for some orders are presented in
Table 1. These results are in agreement with the results
in [11], where high-order hypersusceptibilities were
obtained for the first time (but the method used in [11]
is much more complicated than the moment method).

As the order k increases, hypersusceptibilities grow
as a factorial [12],

(3)

where

and Cnl are not essential for us; their values can be
found in [9] and references therein. Equation (3)
implies that series (2) is asymptotical, and the formal
sum of such a series is therefore ambiguous. However,
the choice of the summation method is in fact
restricted: from physical considerations, the function
E(g) must have analytical properties that are to be
reproduced by the true sum of series (2). In the non-
physical region g < 0, the diamagnetic perturbation

 changes its sign, the total Hamiltonian becomes
“open,” and the possibility of a spontaneous ionization
of the atom emerges. The energy eigenvalue must there-
fore have an imaginary part at g < 0, and the function
E(g) must have a cut along the negative real semiaxis in
the g plane. Summation using the Borel transformation
results in a function that has the left cut and the discon-
tinuity on this cut is represented by a smooth function
of g.

The Borel transformant B(w) of E(g) is a series,

(4)

with the coefficients

1 We are thankful to Prof. V.D. Ovsyannikov for drawing our atten-
tion to this mistake.

Ek Ẽk 1–( )k 1+ Cnlan
kΓ 1k βnl+( ),=

an
n2

π
----- 

 
2

, βnl 2n 1–
1–( )l

2
------------,+= =

gĤ1

B w( ) Bkw
k

k 0=

∞

∑=

Bk Ek/Γ 2k b0+( ),=
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where b0 is an arbitrary constant. The choice of b0 can,
in principle, affect the numerical results, but because
changing its value within an interval of about 0.5 ≤ b0 ≤
5 has a weak effect, we fixed b0 for convenience. The
numerical calculations in this work were performed at
b0 = 3. Series (4) converges, as usual, inside the circle

|w | < 1/an . Substituting asymptotic coefficients for
Ek , it is easy to verify that the singularity of B(w) is
located at w = –1/an . The energy of the level is related
to the function B(w) by the integral transformation

(5)

For the numerical integration in the right-hand side to
be successful, B(w) must be analytically continued
from its convergence disk to the domain containing the
image of the entire positive real w semiaxis. For this,
we performed a conformal mapping of the Borel vari-
able w. Many sufficiently effective versions of this map-
ping are appropriate. The main point is that the nearest
singularity of the Borel transformant must be removed
to infinity. We used the mapping

(6)

Ẽk

E g( ) e x– B gx2( )x
b0 1–

x.d

0

∞

∫=

y
anw

1 anw+
------------------=

Table 1.  Hypersusceptibilities of degenerate states

k Ek for 3s state

1 19.57851476711195477229924488394

2 –7992.558488642566993349104381687

3 9951240.466276842310264046307800

4 –20931559882.53444368634980579917

5 58826900682409.79349115290157121

25 1.3793233851820609414463787913215 × 1094

50 –9.3227132696889616617788676903516 × 10211

75 2.8053533970811704326574930831176 × 10340

k Ek for 3d state

1 5.171485232888045227700755116050

2 –1017.425886357433006650895618312

3 738127.8247387826897359536921995

4 –923576528.5544112941189442008231

5 1677908319019.727217770438272530

25 1.0431217771758614011812311858395 × 1092

50 –6.0721978561446884300072726553011 × 10209

75 1.7302552995055432680731087635037 × 10338
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that was employed in [6]. As explained in [6], this trans-
formation is optimal in the sense that it decreases the
influence of all possible singularities of B(w) from the
nonphysical region. Transformation (6) is equivalent to

1s

%
1.75

1.50

1.25

1.00

0.75

0.50
0 1 2 3 4 5 6 7

γ
Fig. 1. Binding energy for the 1s state in at. units. The data
is evaluated with double precision (using the Padé approxi-
mant [30/30], solid curve; and by straightforward summa-
tion, dotted curve) and with quadruple precision (using the
Padé approximant [30/30], dashed curve). Crosses denote
the data in [13].

0 1 2 3 4 5
γ

%

6

2s

2p
0.250

0.225

0.200

0.175

0.150

0.125

Fig. 2. Binding energy for the 2s and 2p states in at. units.
Notation is the same as in Fig. 1.

%
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0.070

0.065

0.060

0.055

0.050

3p

0 1 2 3 4 5
γ
6

0.045
3s

3d

Fig. 3. Binding energy for the 3s, 3p, and 3d states in at.
units. Notation is the same as in Fig. 1.
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the following series rearrangement:

(7)

To improve convergence, we applied the Padé summa-
tion to rearranged series (7),

(8)

where PM and QN are polynomials of the respective
degrees M and N.

We performed computations using various Padé
approximants and a straightforward summation of rear-
ranged series (7). To illustrate the effect of computa-
tional accuracy on summation results, we compared
those made with double precision (16 decimal places)
and quadruple precision (32 decimal places).

Some graphs of the obtained binding energy

as a function of the parameter γ ≡ n3*/c are given in
Figs. 1–3. Compared with [9], the region of external
field values for which these eigenvalues are success-
fully recovered is extended by a factor of about 5. As
usual, the precision of the sum considerably increases
at lower * values. The accuracy of the summation
method described above is illustrated in Table 2.

We note that in [9], Padé approximants were imme-
diately applied to summation of divergent series (2).
These approximants imitate the discontinuity on the cut
g < 0 by a set of delta functions, which is a very rough
approximation. On the other hand, the same discontinu-
ity is represented by a smooth function of g as a result
of the Borel summation. Our calculations confirmed
that mapping (6) is indeed very efficient: after this map-
ping, Padé summation of the Borel transformant
improves the convergence only slightly, and its straight-
forward summation appears to be sufficient in some
cases (see Figs. 1–3).

One technical detail is of principal importance for
the perturbation series summation by any method. The
precision of the entire chain of computations must
increase as the number of the involved successive terms
increases. This is simply a consequence of the fact that
the sum, being of the order of unity, is the result of a
compensation of very large terms with alternating
signs.

At a first glance, it seems that the high-precision
requirement is not necessary for the Borel transformant
because all the essential alternating sign coefficients Bk

have approximately the same order. However, any

B w( ) Dmym, D0

m 0=

∞

∑ B0,= =

Dm
m 1–( )!

k 1–( )! m k–( )!
--------------------------------------

Bk

ak
-----, m 1.≥

k 1=

m

∑=

B w( ) M/N[ ] y( )
PM y( )
QN y( )
--------------,≈≈

% γ( )
1

2n3
--------γ E γ2( )–=
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numerical procedure of analytic continuation usually
requires a high precision. Turning to series rearrange-
ment (7), we see that binomial coefficients entering the
sum for Dk change by 20 orders of magnitude (in the
present case). Obviously, an enormous loss of precision
occurs in performing the sum for Dk in (7). Therefore,
if we want to use all Bk up to the 75th order, the preci-
sion of the Bk coefficients must be better than about
10−20. In our calculations, the precision of Ek , and con-
sequently, the precision of Bk was about 10–30, and the
precision of Dk therefore decreased from 10–30 at k = 0
to approximately 10–10 at k = 75.

We now turn to the problem of restoring the E(g)
dependence at large values of g and focus on the ground
state. We first note that an interpolation expression for
the ground (tightly bound) state energy was obtained in
[3]. In spite of multiple anticrossings at γ ≤ 300 and of
the related computational complications, the fit in [3]
provides precision within 10–3–10–2 in the range 0.1 ≤
γ ≤ 104.

The asymptotic form of the ground level energy at
large g (equivalently, at large γ) is given by

(9)

where λ is a dimensionless constant (see, e.g., [14]). We
first consider the possibility of restoring the leading
term parameters in (9)—the power index and the con-
stant multiplier—using the perturbation theory. Meth-
ods applicable to this problem are considered in [5, 6].
We note that for the asymptotic regime to establish, the
leading term in (9) must be large compared with the
correction term. We refer to the results in [13] (where
the values of %(γ) were obtained by a variational proce-
dure), which show that the binding energy is less than
20% of (1/2)γ only if γ > 102. We can therefore specu-
late on restoring the asymptotic parameters only if we
succeed in summing E(g) in this region of external
fields, but we failed to do this using only 75 coefficients
Ek , and the linear asymptotic behavior could therefore
not be restored. This was confirmed in our attempts to
apply the methods proposed in [5, 6]: no plausible
result was obtained. In the method in [6], parameters of

E γ( )
1
2
---γ 1

2
--- λγ( )ln

2
– …,+
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the asymptotic form of E(g) are related to the large-k
behavior of the coefficients Dk . Namely, if E(g) 
Cgν as g  ∞, we obtain similarly to [6] that

It was then suggested to perform the fit of C and ν using
the known Dk coefficient and their errors by means of
the χ2 method. However, in our case, the value of χ2 at
its minimum is extremely large (about 108 even if we
try to fit only five coefficients Dk at a statistical error of
σ = 10–10, and we have no reason to increase this value
of σ). This result indicates that the asymptotic regime
of Dk is established at values of k much larger than 75.

The power index in the asymptotic form of E(g)
could also be traced using the method described in [5].
This method consists in taking the limit of the expres-
sion wB'(w)/B(w) as w  ∞ (or equivalently, the limit
of y(1 – y)B'(y)/B(y) as y  1), which gives the exact
value of ν. However, numerical calculation showed that
we did not obtain a reasonable precision for the limit
value in the region where B(y) was recovered (for y
close to 1, the error must obviously increase because of
a finite number of Dk used).

Dk
Ckν 1–

an
kΓ ν( )Γ 2ν b0+( )

------------------------------------------.

103102 104 105

γ

25

20

15

10

5

0

%

Fig. 4. Binding energy and its asymptotic form. The solid
curve is plotted using Eq. (6) in [3]. Crosses denote the data
in [13]. The dotted curve is the logarithmic asymptotic
behavior with λ = 0.010. 
Table 2.  Values of the binding energy for 2p state

[M/N] % at γ = 1.12 [M/N] % at γ = 3.20 % at γ = 4.80 % at γ = 8.00

[28/28] 0.172618226340 [30/30] 0.214270 0.23396 0.2655

[29/29] 0.172618226340 [37/36] 0.214257 0.23371 0.2612

[30/30] 0.172618226339 [37/37] 0.214265 0.23370 0.2610

[31/31] 0.172618226343

[32/32] 0.172618226340

Ref. [13] 0.17261822 Ref. [13] 0.2142655 0.233675 0.260006
SICS      Vol. 96      No. 3      2003
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It thus appears to be impossible to obtain asymptotic
parameters corresponding to a Landau level on the
basis of all the known perturbation theory coefficients.
Nevertheless, taking all possible information into
account (including that contained in interpolation for-
mula [3] and variational calculation results [13]), the
question naturally arises whether it is possible to sub-
tract the Landau level energy from the “exact” function
E(g) and trace the second term of the asymptotic
expression. In other words, at which external field val-
ues does the logarithmic term in Eq. (9) become notice-
able? An illustration to the answer is given in Fig. 4,
where we plotted the binding energy and its logarithmic
asymptotic form. The constant λ is chosen such that the
value of the logarithmic term (1/2)ln2(λγ) in the asymp-
totic expression coincides with the data in [13] at γ =
105. This occurs at λ = 0.01, and the smallness of this
constant indicates that the value of γ is too small to
speak about the asymptotic regime. We can see that the
asymptotic curve and the curve of exact data have con-
siderably different slopes.

Thus, for the Zeeman effect, perturbation theory
does not allow recovering even the linear part of the
ground state energy asymptotic behavior in a strong
field and the logarithmic term becomes essential at
huge fields beyond the neutron stars range.
JOURNAL OF EXPERIMENTAL 
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Abstract—Excitation of multilevel Rydberg states (atoms and diatomic molecules) is studied under an intense
time-periodic perturbation that is instantaneously turned on and off. For a one-quantum excitation from a lower
lying state, general expressions for the Laplace images of the population amplitudes of Rydberg states are
obtained with regard to their decay characteristics. It is shown that the problem considered is reduced to the
determination of the positions and widths of the energy levels of a quantum system in the field of monochro-
matic laser radiation of the same frequency and intensity as that in a pulse mode. To determine these quantities,
an integral formulation is proposed for the eigenvalue problem for energies that is relatively simply solved with
regard to the effect of the ionic core and its complex vibration–rotation structure on diatomic molecules. The
specific features of the excitation of Rydberg states and the behavior of Rydberg wave packets are studied
depending on the intensity and duration of laser radiation. A quantum phenomenon of rotational orientation of
electron-excited diatomic molecules is considered. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, we study the specific features of exci-
tation of Rydberg states of atoms and diatomic mole-
cules by short laser impulses.

We assume that the field acting on a quantum system
is linearly polarized and can be approximated by the
expression

(1)

where f (t ) is the field-strength amplitude and ωf is the
field frequency (e = " = me = 1). In this study, we con-
centrate our attention on the population amplitudes of
excited Rydberg states and on the structure of wave
packets that are formed during and immediately after
the transmission of a laser impulse.

When describing these processes, the shape f (t ) of
the envelope of the exciting impulse plays an important
role. This problem admits an analytic approach for
short laser impulses. Such an approach is widely used
in the theory of femtosecond spectroscopy of mole-
cules and is based on perturbation theory for exciting
and scanning impulses [1, 2].

The second efficient method for solving this prob-
lem is based on the assumption that the pulse envelope
f (t ) is rectangular; i.e., the excitation is time periodic
and is instantaneously turned on (at t = 0) and off (at
t = t0) [3–5]. During the last two decades, extensive
investigations have been carried out based on the
Laplace method used in these assumptions [4–8] (as a
rule, a small number of excited states are taken into
consideration in these investigations). A qualitative
analysis for multilevel systems was carried out in [4]

F ω t,( ) f t( ) ωf t( ),cos=
1063-7761/03/9603- $24.00 © 20407
under certain constraints imposed on the characteristics
of the exciting impulse. In [9], the authors considered
transitions in a system of equidistant Rydberg levels
that are resonantly coupled to a lower lying state under
the assumption that the Rydberg states were initially
occupied. We should also mention study [10], in which
the authors considered certain specific features of reso-
nant ionization through Rydberg states of atoms. Multi-
level systems were also investigated via direct numerical
solution of the Schrödinger equation [11]. It is important
that the aforementioned analytic studies [4–10] did not
explicitly take into account the effect of the ionic core
on Rydberg atoms. The extension of the existing meth-
ods (in the form they were used in the aforementioned
works) to molecular systems presents a rather compli-
cated problem, especially when large groups of states
are involved in the process and perturbation theory
becomes inapplicable.

In Section 2 of the present paper, we describe a suf-
ficiently general procedure for determining the Laplace
images as applied to processes of the aforementioned
type. In excited Rydberg states, one can take into
account the effect of the ionic core on the Rydberg
states of atoms and molecules, a nonadiabatic coupling
between various types of electron and nuclear motions,
and the interaction between various series of Rydberg
states against the background of a continuous spectrum,
including combined transitions in continua. The main
problem for the systems considered is the determina-
tion of Laplace images because, in view of the fact that
the parameters involved in the equations are actually
independent of energy, the subsequent calculation of
003 MAIK “Nauka/Interperiodica”
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the population amplitudes of the states is carried out by
means of the residue theorem.

It would be natural to start the application of the
approach proposed to the study of the class of problems
in question from the simplest multilevel systems that
are formed as a result of the absorption of a laser-radi-
ation quantum. These are atoms of hydrogen and alka-
line metals (the latter feature the effect of the ionic core
on the excited states of Rydberg series). These atoms
are considered in Section 3, where we discuss the pos-
sibility of controlling the reaction yield and the forma-
tion of Rydberg states with fixed values of the principal
quantum number n. In this section, we also discuss the
specific features of the behavior of Rydberg wave
packets.

In Section 4, we investigate laser excitation of low-
energy Rydberg electron-rotational states as applied to
molecular systems. Within the framework of a two-
level transition scheme, we consider the problem of
rotational orientation of excited diatomic molecules
under linearly polarized radiation from a pulse source.
Earlier, such a problem was considered for the rota-
tional orientation of molecular ions that are formed in
the field of a monochromatic laser radiation [12] and,
with regard to a finite duration of a laser impulse in the
classical approximation, for the rotational motion of
diatomic molecules [13].

2. MECHANISMS OF INSTANTANEOUS 
TURNING ON OF PERTURBATIONS

IN MULTILEVEL SYSTEMS 
(GENERAL CONSIDERATION)

The description of the reaction of a quantum system
to an instantaneous turning on of a time-periodic per-
turbation has been sufficiently well developed [3–5].
This procedure reduces to calculating the expansion
coefficients Cs(t) of a wave function Ψ over the set N of
discrete states ϕs involved in the process,

(2)

which are determined by the Laplace transformation,

(3)

where the integration contour c lies below all the singu-
larities of the function as(E). The Laplace images as(E)
are obtained by eliminating the states of the continuous
spectrum as well as other states of the quantum system
inessential for the process considered. As a result, in the
notation adopted in the present paper, we obtain the fol-
lowing system of inhomogeneous algebraic equations
with the initial conditions (0) = 1 and  = 0

Ψ Cs t( )ϕ s,∑=

Cs t( )
1

2πi
-------- as E( ) iEt( )exp E,d

c

∫=

Cs0
Cs s0≠
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(t = 0 is the moment of turning on the field) for the tran-
sition scheme considered:

(4)

Here, Es is measured from the boundary of the spectrum

and  =  + ωf , where  is the position of a lower
lying state of the system in the absence of field.

The quantities as determined from Eq. (4) also allow
us to obtain the Laplace images for the amplitudes ap of
the states |p〉  of the continuous spectrum with energies
Ep [4, 5]:

(5)

where Vsp is the matrix element of the transition, V =
f · D/2, and D is the dipole-moment operator.

Recall that, when using Eqs. (4), it is assumed that
only one of the states (s0) is occupied with a probability
of one at the moment t = 0. The expression for the
matrix elements  includes a direct field interaction
between the states s and s' with the functions |s〉  and |s ' 〉
normalized to unity, as well as transitions through con-
tinua. It is well known that, for moderately high field
strength f such that

(6)

the operator T ' is represented as follows:

(7)

The subscripts s in (4) and (5) and p in (7) include a nat-
ural (in the absence of external field) set of quantum
numbers that characterize the system, as well as the
number k—the variation of the number of quanta ωf
during the interaction with the radiation field. The sum-
mation over p presumes that there are various continua
into which the quantum system may decompose under
the influence of the field. These processes are responsi-
ble for the broadening of energy levels. Note that the
electron wave functions |p〉  differ from those normal-

ized in a conventional way by the factor . The first

term in the matrix elements  in (7) describes a direct
field interaction between the states s and s' with the
wave functions |s〉  and |s ' 〉  normalized to unity, and the
second term describes Raman-type transitions (the so-
called Λ transitions through continua [9]).

Under condition (6), the strongest effects are associ-
ated with laser-induced direct transitions between the
initial s0 and excited discrete states. Just as in [9, 10],
the field is assumed to be sufficiently strong:

E Es–( )as Tss'' as'

s'

∑ iδs0s.+=

Es0
E0

0 E0
0

ap

asVsp

E Ep–
---------------

s

∑ ,=

Tss''

f ωf
5/3–

 ! 1,

T' V iV p| 〉 p〈 |V .
p

∑–=

π
Tss''

V0s  @ Es Es 1±– .
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However, one cannot consider it as a superstrong field
because, due to condition (6), the second term in (7) is
small as compared with the first. At the same time, the
second term in (7) should also be correctly taken into
account when considering the decay of the excited
states.

Now, note that there exists a more general represen-
tation for the operator T '. We derive this representation
within the formalism of the stationary radiation-colli-
sion method, which was proposed in [14] and devel-
oped in [15, 16] (Eqs. (4) for the Laplace images are
also stationary; the specific feature of these equations is
displayed only by the free term in the right-hand side
of (4)). To this end, in the Green function of a system
with a turned-off interaction V, we single out the contri-
bution of N states that are essential for the processes
considered,

(8)

where

(9)

Then, we introduce the operator

(10)

whose definition involves —the real part of the func-
tion

that is smooth with respect to energy. Then, the opera-
tor T ' defined by

(11)

assumes a more general (with respect to (7)) form [15, 16]:

(12)

This expression formally takes into account (through
t f) the Stark shifts of energy levels as well as cascade
transitions in continua that affect the broadening of
these levels.

Introducing the quantities

, (13)

we can rewrite Eq. (4) as

(14)

This equation is equivalent to (4) and may serve as
a basis for the further generalization of the theory. It can
be obtained within the formalism of reconstructed inte-

G Gd G0,+=

Gd s| 〉 s〈 |
E Es–
---------------.

s 0=

N

∑=

tf V VG̃tf ,+=

G̃

G0 G̃ i p| 〉 p〈 |
p

∑–=

T ' V VG0T '+=

T ' tf itf p| 〉 p〈 |T '.
p

∑–=

Bs E Es–( )as=

Bs Tss''
Bs'

E Es'–
---------------

s'

∑ iδs0s.+=
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gral equations that take into account the possibility of
splitting the Green function (9) of the quantum system
into the parts that strongly (Gd) and weakly (G0)
depend on energy. Including G0 in the definition of the
operator T ' (11), we obtain the following expression for
the operator B that forms the matrix  in the general
form:

(15)

In representation (9)–(12), Eq. (15) is naturally reduced
to Eq. (14), which determines the required quantities Bs

in (13). Here, one can also see a direct analogy with the
formulation of the problem for the matrix T of radiation
collisions [14–16] that occur in the field of a monochro-
matic laser radiation,

(16)

The operator equations (15) and (16) differ only by free
terms.

The substitution of the explicit expression (9) for the
Green function of the system into (15) (with a turned-
off field interaction) allows one to easily take into con-
sideration the contributions of large groups of Rydberg
states for the values of the principal quantum number
n @ 1. In this case, one can also take into account the
effect of the ionic core and various types of nonadia-
batic coupling between electron and nuclear motions.
In other words, to solve the problem, one can directly
take advantage of the stationary formulation of the
problem of radiation collisions in the field of a mono-
chromatic laser radiation [14–16] in the theoretical
analysis.

To solve the problem under a strong perturbation of
a Rydberg state, one has to find representations for the
functions a0 that admit the application of the residue
theorem. To this end, one should return to standard
equations (4) for the Laplace images. In the case of one-
quantum excitation of Rydberg states (which are hence-
forth denoted by subscript n) from the lower lying level

 (denoted by subscript 0), these equations are
expressed as

(17)

Here, En are Rydberg levels that are not perturbed by

the field, E0 =  + ωf is the position of the level E0

after the absorption of the electromagnetic field quan-
tum ωf. Here, we can assume that  = V0n because
this operator describes a two-quantum transition from
the initial state to the continuum. At the same time, one
must take into account the terms of the operator T '
in (7) that are diagonal in n because these terms are

Bss0

B i s0| 〉 s0〈 | T 'GdB.+=

T T ' T 'GdT .+=

E0
0

E E0– T00'–( )a0 T0n' an

n

∑ iδ0n,+=

E En– Tnn'–( )an T0n' a0.=

E0
0

T0n'
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responsible for the broadening Γn of the Rydberg levels.

The off-diagonal terms  (n ≠ n') make a negligible
contribution due to condition (6) adopted in this work,
which suggests that the transition probabilities in the
continua are small (in the atomic scale). This condition
leads to the inequality Γn ! 1/n3, which is well satisfied
and implies that there is no efficient mixing of Rydberg
states through continua.

Under the assumptions made, for a one-quantum
excitation of Rydberg states from the lower lying level
E0, Eq. (17) admits the following compact analytic
solution:

(18)

where  and  are the positions of the above-men-
tioned levels with regard to the field perturbation. As
we have shown above (by comparing Eqs. (14) and
(16)), these levels are determined in the same way as in
the problem on a Rydberg system subject to a perma-
nent (for –∞ < t < ∞) time-periodic perturbation.

The expressions, obtained from (18), for the popula-
tion amplitudes of states for 0 < t < t0 are represented as

(19)

Tnn'

a0

E En–( )
n

∏
E Ẽ0–( ) E Ẽn–( )

n

∏
-------------------------------------------------,=

am –iV0m

E En–( )
n m≠
∏

E Ẽ0–( ) E Ẽn–( )
n

∏
-------------------------------------------------,=

Ẽ0 Ẽn

C0 t( )

Ẽ0 En–( )
n

∏
Ẽ0 Ẽn–( )

n

∏
------------------------------- iẼ0t–( )exp=

+

Ẽr En–( )
n

∏
Ẽr Ẽ0–( ) Ẽr Ẽn–( )

n r≠
∏

----------------------------------------------------- iẼrt–( ),exp
r

∑

Cm t( ) –iV0m

Ẽ0 En–( )
n m≠
∏

Ẽ0 Ẽn–( )
n

∏
------------------------------- iẼ0t–( )exp=

+

Ẽr En–( )
n m≠
∏

Ẽr Ẽ0–( ) Ẽr Ẽn–( )
n r≠
∏

----------------------------------------------------- iẼrt–( )exp
r

∑ .
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Recall that  and  are complex quantities:

(20)

they contain information on the positions  and 
and widths Γ0 and Γn of the system levels under laser
irradiation.

The expression for C0(t) in (19) corresponds to for-
mula (5) in [10], where this quantity is represented as a
sum of contributions of states with different quasi-ener-
gies en of a dressed atom:

The coefficients αn were not calculated in [10]; the
authors only pointed out the functions from which these
coefficients can be obtained by the residue theorem.

Expressions (19) obtained in the present study give
an analytic representation for these coefficients and
provide a direct method for their determination, pro-

vided that the positions of the quasilevels  in the
field of monochromatic radiation of frequency ωf and
strength f are known.

In the two-level approximation, which is realized in
these systems when the quasilevel E0 lies close to a cer-

tain Rydberg state Em , so that  ! 
(n ≠ m), we have

(21)

When Γ0, Γm = 0, (21) implies formula (3.7) of [3].
Let us illustrate result (19) by an example of a three-

level system when, together with the quasilevel , the
two closest Rydberg states with energies En and En + 1
(En < E0 < En + 1) are taken into consideration. In this
case, we have the following expression for the popula-
tion amplitude of the state n subject to a laser impulse
for t ≤ t0:

(22)

The general analysis of the excitation of multilevel
states under moderately high strength f of the external
field, such that  @ V0n for any n, also proves to

Ẽ0 Ẽn

Ẽ0 Ẽ0' i
Γ0

2
-----, Ẽn– Ẽn' i

Γn

2
-----;–= =

Ẽ0' Ẽn'

C0 t( ) αn ient–( ).exp∑=

Ẽn

Ẽ0 Ẽm– E0 Ẽn–

Cm t( ) iV0m
1

Ẽ0 Ẽm–
------------------ iẼ0t–( )exp–=

+
1

Ẽm Ẽ0–
------------------ iẼmt–( )exp .

Ẽ0

Cn t( ) iV0n

Ẽ0 En 1+–

Ẽ0 Ẽn–( ) Ẽ0 Ẽn 1+–( )
--------------------------------------------------- iẼ0t–( )exp–=

+
Ẽn En 1+–

Ẽn Ẽ0–( ) Ẽn Ẽn 1+–( )
--------------------------------------------------- iẼnt–( )exp

+
Ẽn 1+ En 1+–

Ẽn 1+ Ẽ0–( ) Ẽn 1+ Ẽn–( )
--------------------------------------------------------- iẼn 1+ t–( )exp .

En E0–
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be simple. This analysis can be carried out analytically,
without resorting to perturbation theory, which requires
restrictions on the duration of a laser impulse.

In this case, we actually have the two-level approx-
imation formula

(23)

for the probability of excitation of the nth state of
series P after a laser impulse. One can easily verify
that Cn(t )  0 as t  0 in formulas (19) and (22).
The same property is incident to the multilevel ampli-
tudes Cn(t ).

Using expressions (18) and (19), we have reduced
the problem under consideration to the analysis of the
behavior of Rydberg levels in the field of a monochro-
matic laser radiation. These levels can be determined by
equating the determinant of system (17) to zero. This
procedure is convenient when the levels En and the
eigenfunctions ψn of the Rydberg system in the absence
of field are well known. As applied to molecular sys-
tems, these quantities are very sensitive to specific fea-
tures of the ionic-core structure and to the diversity of
types of nonadiabatic coupling between electron and
nuclear motions. Therefore, it is expedient to control
these features in the equations themselves. Then, it is
preferable to use eigenvalue equations for energies in
the integral formulation:

(24)

Since the interactions that have not been taken into
account in the Green function G = (E – H0)–1 are
included in the operator T ' defined by (12), Eq. (24) is
readily rewritten in the form convenient for solving the
problem considered. If one uses the Coulomb Green
function as G, then the effect of the ionic core on Ryd-
berg atoms X** and molecules XY** and on induced
Rydberg electrons of the inelastic transitions e––X+ or
e––XY+ can be explicitly manifested in Eq. (12) if one
includes the electrostatic interaction te with the lattice
in this equation. In this case, the operator t f in (12) is
replaced by the combination of two operators

(25)

moreover, under condition (6), which presumes that the
transition probabilities in the continua are small (in the
atomic scale), we have

(26)

in linear and quadratic (in the field) approximations [15].
Formula (26) takes into account the effect of the

ionic core and the associated distortions of the wave
functions of the Coulomb center. Below, we introduce

W n( ) V0n
2

Ẽn Ẽ0–( )2
------------------------=

× –iE0t0

Γ0

2
-----t0– 

 exp –iEnt0

Γn

2
-----t0– 

 exp–
2

T T'GdT .=

t te tf ;+=

tf 1 teG0+( ) V VG0V+( ) 1 G0te+( )=
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a subscript q assigned to a chosen series of Rydberg
states. Based on the arguments presented and the formu-
lations of Eqs. (16) and (24) developed earlier [15, 16] in
the theory of radiation collisions, one can represent a
generalized equation for the Laplace images in the fol-
lowing form (below, it is assumed that the group of
interacting Rydberg states adjoining the boundary of
the spectrum is coupled to the continuous spectrum and
the lower lying level E0 through the electromagnetic
field):

(27)

where νqk = {1(εq + kωf – E)}–1/2 is the effective princi-
pal quantum number of the Rydberg series correspond-
ing to different states of the ionic core with the excita-
tion energy εq . The energy E in (27) is measured from
the boundary between the spectra of the ground elec-
tron state and the vibration–rotation state of the lattice.
Therefore, in what follows, we omit the subscript k = 0
when considering Rydberg states.

Equation (27) is constructed on the basis of the
functions |q〉 , which are normalized over the energy
scale both in continuous and discrete spectra. There-
fore, the quantities  = V0q arising below differ from
the quantities V0n introduced above by a factor of

:

Recall that the excited initial state of energy (after the
absorption of a light quantum ωf) is overlapped by the
Rydberg states of an atom or a molecule.

3. LASER-INDUCED TRANSITIONS 
ASSOCIATED WITH THE EXCITATION 

OF RYDBERG STATES 
OF ALKALINE METAL ATOMS

In atoms of alkaline metals, only the P series of
Rydberg resonances, denoted by subscript q (see
Fig. 1), is excited during transitions from the ground
state. Under condition (6), it is hardly probable that
other Rydberg series will be involved in the process due
to Λ transitions through the continua. In this case, for
the eigenvalue problem for energies, we have

(28)

B i 0| 〉 0〈 |=

+ T ' qk| 〉 qk〈 |B πνqk( ) T '
0| 〉 0〈 |

E E0–
---------------B,+cot

q k,
∑

T0q'

πn3

V0n
1

πn3
------------V0q.=

B0 T0q' πν( )Bq T00'
1

E E0–
---------------B0,+cot=

Bq Tqq' πν( )Bq Tq0'
1

E E0–
---------------B0.+cot=
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Here,  =  – iγ,  = –  (µ1 is the quan-

tum defect of Rydberg levels of the P series),  = 

(for , one can set  = 0 assuming that  is

included in ), E0 =  + ωf, and ν = (–2E)–1/2 (E is
energy measured from the boundary of the spectrum).

The quantity Bq represents a large group of Rydberg
states of an atom. Therefore, instead of system (4)
involving a large number of states, here we have only
two equations. The quantities a0 and aq corresponding
to the Laplace images and determined according to (28)
are given by the following expressions:

(29)

It is interesting to note that expressions of type (29) for
a0 and aq also arise in calculating the intense interaction
between strongly coupled Rydberg states in radiation-
collision processes [15].

Equations (28), which take into account the contri-
bution of one Rydberg series only, represent the sim-
plest realization of a multichannel (in q) version of the
theory based on representation (27).

Note also that Eq. (29) for D(E) can be rewritten as
a sum of contributions of separate Rydberg states; i.e.,
it can be reduced to a characteristic equation used in [9]
for solving the eigenvalue problem for energies.

Unfortunately, we cannot compare our results for
the population amplitudes (19) with the results of [9]
because these results have been obtained under differ-
ent assumptions on the initial state of the system.

Tqq' tqq
e tqq

e πµ1( )tan

T0q' t̃0q
f

T00' T00' t00
e

E0
0 E0

0

a0

πν( )tan tqq– iγ+
D E( )

-------------------------------------------, aq

V0q

D E( )
------------,= =

D E( ) E E0–( ) πν( )tan tqq
e– iγ+[ ] V0q

2 .–=

14

E0 = E0
0 + ωf

En

E0
0

Fig. 1. Typical configuration of Rydberg levels of a hydro-
gen atom. The dashed line represents the position of the
ground state after the absorption of a quantum ωf of external
radiation.
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Now, the main problem is to find the roots of the
equation

which determine the poles of the functions a0 and aq .
This problem proves to be analogous to that one has to
solve in the theory of interaction of a quantum system
with monochromatic laser radiation.

The advantage of representation (28) and of more
general equations for the eigenvalue problem for ener-
gies that follow from (27) lies in the fact that they allow
one to take into account the relation between the widths
Γn , Γ0 and the positions ,  of the levels in the field
of laser radiation in the analytic form. Returning to
Eq. (29), we note that, in view of the smallness of γ
(γ ! 1), this equation can be solved in two steps. First,
for γ = 0, we determine the real roots of Eq. (29). Then,
using the values of  and  obtained and passing to

the energy scale  =  – iΓn/2,  =  – iΓ0/2, we
find that the field-induced shifts in the scale ν and the
level widths behave as follows:

(30)

The quantities  introduced above are expressed as

where, as is shown in [17] by an example of a hydrogen
atom, the field-induced quantum defects µf may reach
values close to µf = ±1/2 for field strength of f ~ 10–2.

This means that the difference between  and En in
the scale of distances between Rydberg levels, δEn ~
1/n3, may reach considerable values.

When V0q = 0, we derive the following expression
for the level width from (30):

,

which takes into account the quantum defect µ in the
basis of the Coulomb functions [16]. For V0q ≠ 0, we
have

where ν is determined from Eq. (30) for .
Thus, it turns out that the width Γn depends on the level
shift: the closer a perturbed Rydberg level to the center
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of the Rydberg interval ν = n ± 1/2, the smaller its width
and, hence, the greater the lifetime of the corresponding
Rydberg state.

Earlier, formula (30) was obtained in [10] for a Ryd-
berg state that is not perturbed by the ionic core, i.e., for

 =  = 0. However, one can see that, when

 ≠ 0, the ionic core can appreciably affect the decay
characteristics of the states that are perturbed by an

external field under the condition that  ~ . The
quantum defects µl for small l may reach considerable

values, µ0 = 0.35 and µ1 = –0.14 for Na, so that  =
0.47 for the population of states of the P series. Thus,
there exists a domain of the spectrum where the inter-
action between a Rydberg electron and the ionic core
plays a significant role. Under strong fields such that

 @ 1, the effect of the ionic core is insignificant
and the difference between formulas (30) and (11)
of [10] vanishes.

4. DISTRIBUTION
OF EXCITED RYDBERG STATES
OVER QUANTUM NUMBERS n

Selective excitation conditions for the nth state are
satisfied when

both under moderately high and high strength of the

field. In the first case, the restriction  @ |V0n |
is imposed on the excited Rydberg states, which
implies that Γ0 ! Γn . In this case, the length of a laser
impulse should be such that Γ0t0 ! 1 and Γnt0 > 1. Then,

(31)

Under higher strength of the field,

The selectivity of the excitation of a chosen Rydberg
state is preserved under the additional constraints

(32)

since here Γ0 ~ Γn . Then,

(33)

Note that, for  @ Γ0, Γn , formula (33) repro-
duces the well-known result of the two-level approxi-
mation.
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The expressions given above show that, by varying

the intensity I ~ , frequency ωf, and the duration t0

of a laser impulse, one can obtain the most favorable
conditions for the selective excitation of a Rydberg
atom to fixed states.

Under nonresonance conditions |E0 – En | ~ |En –
En ± 1 |, a whole group of states is excited. In the case of
a strong field |E0 – En | ~ V0n , the highest intensity is
attained for Γ0t0, Γnt0 ! 1 and the distribution of the

population probability is expressed as Wn = , in
which Cn(t0) is given by an appropriate formula in (19),

where  and  are replaced by real quantities 

and  that characterize the positions of field-per-
turbed levels.

Figures 2 and 3 show typical diagrams of the Ryd-
berg levels for hydrogen and sodium atoms and typical
populations of the Rydberg levels versus the duration t0

of a laser impulse in atomic units for  = 10–3.

Now, let us discuss the structure of Rydberg wave
packets that arise for t > t0, i.e., after the transmission
of a laser impulse,

(34)

for r > r0. Here,  is a stationary wave function,
normalized to unity, of a Rydberg electron of the qth
series, En is the position of the nth level in the absence
of field, and r is the radius-vector of a Rydberg elec-
tron; it is assumed that the admixed lower lying E0 state
decays rapidly as r increases in the range r0.

The function Ψ(r, t) in (34) reproduces a sufficiently
complicated pattern in the distribution of the electron
density |Ψ(r, t) |2 in space and time.

Notice the following interesting property of this
function that is attributed to the equidistant character of

the Rydberg levels En –  ≈ ∆n/ : the recovery of a

wave packet for (t – t0) = 2πk, where k is an integer

and  is the level closest to E0. This phenomenon
occurs for sufficiently small evolution times of a Ryd-
berg wave packet at t – t0 ~ 10–3–10–12 s for the principal
quantum number n0 ranging from 10 to 30 and is anal-
ogous to the vibrational excitation of diatomic mole-
cules observed in femtosecond experiments [18].

In the case of a hydrogen atom, when the quasilevel
E0 lies at the midpoint between the levels n0 and n + 1
and a group of states in the interval ∆n ! n0 is excited by

a laser impulse, the amplitude Cn(t0) for ∆nt0/  ! 1
proves to be antisymmetric with respect to n' = n0 + 1/2:

Cn' + ∆n = –Cn' – ∆n. Then, for ∆n|t – t0 |/  ! 1 and suffi-

V0n
2

Cn t0( ) 2

Ẽ0 Ẽn E0'

En'

V0q
2

Ψ r t,( ) Cn t0( )Φn
q( ) r( ) iEn t t0–( )–( )exp

n

∑=

Φn
q( ) r( )

En0
n0

3

n0
3–

En0

n0
3

n0
3

SICS      Vol. 96      No. 3      2003



414 IVANOV, BODNEVA
0.07

0

W14 (a) (b)
0.09

0

W14

0.08

0

W13
0.09

0

W13

0.15

0

W12
0.18

0

W12

0.27

0

W11
0.33

0

W11

0.6

0

W10
0.75

0

W10

0.7

0

W9
0.7

0

W9

0.3

0

W8
0.27

0

W8

0.15

0

W7
0.15

W7

5000 10000 15000 20000 25000 30000
t0, au

0 5000 10000 15000 20000 25000 30000
t0, au

Fig. 2. Population probabilities of Rydberg states in the range of n = 7–14 for a hydrogen atom versus the duration t0 of a laser
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ciently small r such that r3/2|E | ! 1 (E = –1/2n2), where

the wave function  of a Rydberg electron is virtu-
ally independent of n, an interference suppression of
state (34) occurs. This means that, for a short period of
time, the Rydberg electron is expelled to a large dis-
tance from the ionic core where its interaction with the
radiation field is weaker. Note that this phenomenon
occurs under special physical conditions and, unlike
the phenomena considered in the Kramers–Hen-
neberger approximation [19], is not associated with a
variation in the form of the potential acting on the Ryd-
berg electron.

5. ROTATIONAL ORIENTATION
OF ELECTRON-EXCITED DIATOMIC 

MOLECULES

In this section, we briefly consider the excitation of
low-energy electron-rotational Rydberg states. Here,
we can restrict ourselves to a two-level approximation
if the Raby frequency Ω is much less than the distance
between adjacent levels (Ω ≤ 1/n3). Within this prob-
lem, which is formulated with regard to the decay of the
states participating in the process, one can consider an
interesting quantum phenomenon—a rotational orien-
tation of excited diatomic molecules by a linearly
polarized radiation from a pulse source. We will con-
sider this phenomenon under the condition Γnt ≤ 1,
when the probability of ionization is small. Then, the
main analysis can be based on the dependence of the
excitation probability W of a molecule on the total
angular momentum J and its projection M onto the
direction of the field-strength vector f according to the
simple two-level approximation formula (3.7) of [3],

where

,

and

is a field-induced interaction between the electron-rota-
tional states under consideration. It is assumed that the
excited state is characterized by a clear-cut vibration–
rotation structure. The rotation constant B of low-
energy excited states of most molecules (NO, CO, etc.)
is commensurable to B in the ground electron state.
Therefore, the ground and excited rotational states may
be sufficiently well separated in energy (BJ > ∆). The

initial rotational state with energy  is assigned an
angular momentum of J @ 1 and projection M onto the
direction of the polarization vector f of external radia-
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tion. During a direct transition J, M  J ± 1, M, the
quantity M is invariant. It is interesting to consider the
dependence of excited (due to a dipole transition) states
on M against the background of a uniform (in M) distri-
bution of the initial rotational states of a molecule, tak-
ing into account that [20]

where

is a field interaction of resonant states for M = 0.
For a zero defect of a resonance ∆ = 0, W(J, M) sat-

isfies the following relation:

(35)
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Fig. 4. Characteristic distributions of electron-excited NO
molecules versus the projections M of the rotational angu-
lar momentum for various characteristics of the exciting
laser impulse for J = 10; (a) a zero defect of a resonance

(formula (35) for t0 = 15) and (b) ∆ @ VJ0 (formula (36)

for 2πk /∆2 = 0.3).
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In the other limiting case ∆ ! |VJ0 |, representing Ω
as

we obtain the following expression for a special choice
of the duration t0 of a laser impulse such that t0 = 2πk/∆,
where k is an integer:

(36)

Therefore, for various values of VJ0 and t0, we obtain
different distributions of the excitation probability ver-
sus M; these distributions may vary over sufficiently
wide ranges. It is essential that the processes consid-
ered above exhibit states that are indistinguishable in
energy.

Figure 4 represents typical distributions of electron-
excited molecules versus the projections M of the rota-
tional angular momentum for various parameters of the
exciting laser impulse.

6. CONCLUSION

This work has been carried out within the general
program of investigations on the problem of forming
highly excited Rydberg states of atoms and molecules
under laser radiation. The analysis is based on suffi-
ciently generally accepted simplifications of the
impulse shape that presume that a time-periodic pertur-
bation is turned on and off instantaneously. Neverthe-
less, this approximation requires new approaches to
this important practical problem because of the com-
plexity of the traditional analysis of multilevel systems.

We have demonstrated that the problem considered
is reduced to the determination of the positions and
widths of the energy levels of the system in the field of
a monochromatic laser radiation of the same frequency
and strength as those in a pulse mode. Therefore,
instead of the direct solution of the nonstationary
Schrödinger equation, we can apply a stationary
method of a radiation-collision matrix [14–16]. Many
investigations were carried out in a stationary formula-
tion [21], and the results of these investigations can be
directly applied to the problems of pulse excitation of
complex (as compared with earlier studied) quantum
systems. In this case, one can take into consideration
the effect of the ionic core and its complex vibration–
rotation structure in molecules, which leads to various
forms (in different spectral domains) of nonadiabatic
coupling between electron and nuclear motions. In the
integral formulation, the method of radiation-collision
matrices reduces the problem to transcendental equa-
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tions, which are solved in two steps for moderately high
field intensities (see condition (6)). First, assuming that
the broadening of levels is negligible, one determines
their positions. Then, from the same equations, one
derives analytic formulas that establish a relation
between the widths of the levels and their positions
within characteristic Rydberg intervals.

The results obtained show that separate Rydberg
states or groups of states can be stabilized according to
the predictions of numerous studies devoted to this sub-
ject field in simpler cases. In the present work, the
effect of stabilization is also demonstrated on the spe-
cific features of the behavior of Rydberg wave packets.

In conclusion, we note that the assumption used in
this model that the rise and decay times of the impulse
are negligible may lead to certain errors in the results
obtained. However, if the characteristic rise–decay time
τ satisfies the condition

this effect can be taken into account within perturbation
theory and does not substantially influence the main
results of the present work.
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Abstract—Transmission spectra of CdS crystals of different thickness are calculated in the region of An = 1
exciton using the Pekar theory taking into account an extra light wave. It is shown that the dependence of the
refractive index variance on the thickness of superthin crystals at low temperatures, which has been observed
earlier, is associated with interference of the extra light wave, to which the crystal is opaque, with the funda-
mental wave transmitted by the crystal. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Extra light waves were predicted in a fundamental
paper by Pekar published in 1957 [1], which was later
classified as a discovery in Soviet science [2]. The
results of many years of investigations in this field were
generalized in the monograph [3]. Extra light waves
were predicted as a result of inclusion of spatial disper-
sion of permittivity ε(ω, k), i.e., the dependence of ε not
only on frequency, but also on the wave vector of a light
wave. These waves possess the same frequency and
polarization as the fundamental waves, but are charac-
terized by different refractive indices and, hence, differ-
ent velocities of propagation. Since the two waves are
coherent, they experience interference, which must be
manifested in complex dependences of the intensity
and phase of transmitted and reflected light waves on
the thickness d of the crystal and on the wavelength λ
of the light wave.

Investigation of the effect of interference of Pekar
waves on optical properties of crystals began soon after
the theory of extra light waves had been developed.
However, this phenomenon could be observed experi-
mentally only many years later. For example, it was
reported in a series of publications [4−6] that the
Fabry–Perot interference (FPI) pattern in CdSe and
CdS crystals at T = 4.2 and 1.8 K in the region of An = 1
exciton for energies ω < ωL , where ωL is the longitudi-
nal frequency, exhibits a usual single-mode character,
while at ω > ωL it shows two modes: a densely periodic
weak structure associated with interference with an extra
wave is superimposed on deep extrema of the fundamen-
tal wave with a large period. The obtained spectral
dependence was correctly described by the Pekar theory.

Simultaneously, it was shown for the first time
in [7, 8] using a direct method for measuring the phase
1063-7761/03/9603- $24.00 © 20418
of an optical wave transmitted through a crystal that the
dispersion of the refractive index n(ω) within the
absorption band for the An = 1 exciton has no classical
“anomalous” region, but increases monotonically up to
frequency ωL . In Pekar’s terminology, this branch is
referred to as the plus wave (see Fig. 1 below). Starting
from frequency ωL , the main contribution to energy
transfer through the crystal comes from the minus
wave, and dispersion n(ω) measured at this frequency
experiences a jump from the plus to the minus branch.
Below frequency ωL , the minus wave is not transmitted
through the crystal; however, it produces a strong effect
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Fig. 1. Real (solid curves) and imaginary (dashed curves)
parts of the complex refractive indices of the plus and minus
waves as well as the effective refractive index for the reflec-
tance spectrum. Energy values on the abscissa axis are given
in units of the wave number ν = 1/λ taking into account the
correction to the refractive index of air according to
Kayzer’s tables [24]; ωL and ωT ≡ ω0 are the frequencies of
longitudinal and transverse excitons.
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on the reflection spectrum, which has a conventional
classical form with an anomalous region within the
absorption band halfwidth. It contradicts the reflection
spectrum calculated using the Fresnel formula even
qualitatively if we substitute into this formula the val-
ues of n(ω) measured in light transmitted through the
crystal [9]. In order to match experiment with theory,
we must introduce an effective refractive index neff ,
which is a complex function of the refractive indices of
the plus and minus waves [10]. We can state that the
emergence of neff itself is a result of interference of the
plus and minus waves in reflected light. An extra wave
also radically changes the spectral dependence of the
phase of the reflected wave [11, 12].

Subsequently, the dispersion curves n(ω) were mea-
sured experimentally on a wedge-shaped CdS crystal
from the deflection of a laser beam [13–15]. Only the
plus wave branch increasing with frequency was
detected in a spectral range below ωL at T = 1.8 K, while
both branches (fundamental minus wave and extra plus
wave) could be measured in light transmitted through a
crystal at frequencies above ωL . In contrast to plane-
parallel plates, two beams at the exit from a wedge-
shaped crystal are separated in space and hence do not
interfere with each other. The refractive indices and
intensities are measured for each wave separately.

Thus, it has been reliably established on the basis of
the results obtained in the above-mentioned publica-
tions that only one wave passes through a CdS crystal
at low temperatures in the region of an An = 1 exciton
allowed in the E ⊥  c polarization (c is the optical axis
of the crystal) at frequencies lower than the longitudi-
nal exciton frequency, while two identically polarized
waves (E ⊥  c), but with different refractive indices, are
transmitted through the crystal at frequencies exceed-
ing this value.

Since all measurements of optical characteristics in
transmitted light were made using classical methods
and formulas of single-wave crystal optics (see below),
it appeared that these methods can rightfully be used in
other cases also (in particular, below frequency ωL ,
when only one wave passes through the crystal). So,
FPI patterns and polarized beam interference (PBI) pat-
terns were analyzed in [16, 17] using relations of clas-
sical crystal optics and were used for calculating
“experimental” dispersion curves n(ω). It was found
that the thinner the crystal, the smaller its refractive
index in the important resonance region of the spectrum
and the lower the position of the n(ω) curve relative to
that for a “thick” crystal. In this way, a dependence of
the refractive index dispersion in superthin CdS crys-
tals (d < 1 µm) on its thickness was observed. “Experi-
mental” curves were approximated in accordance with
the Pekar theory taking into account the exciton effec-
tive mass and damping constant, the oscillator strength
of the transition, and upper excited states. The Myasni-
kov theory described in [18–21], according to which
the exciton–phonon interaction (i.e., the transition
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
oscillator strength) decreases with the crystal thickness,
is in qualitative agreement with these experimental
facts [18–21].

We have calculated the transparency spectrum of
crystal plates taking into account an extra light wave. It
was found that the observed dependence of the n(ω)
curves on the thickness is associated with the effect of
the extra wave on the phase of transmitted light. It
turned out that the minus wave (although it is not trans-
mitted through the crystal plate) affects not only the
reflected wave, but also the resultant phase of transmit-
ted light. In other words, it was found that the applica-
tion of the formulas of classical crystal optics is not jus-
tified for very thin crystals and the refractive index of
the plus wave calculated on the basis of these formulas
is lower than that for a thick crystal. The results of cal-
culations given below substantiate this statement.

2. FORMULAS 
OF CLASSICAL CRYSTAL OPTICS 

USED FOR CALCULATING DISPERSION 
CURVES

The dispersion of the refractive index in the range of
lower exciton states in a CdS crystal at low tempera-
tures was measured for the first time in [22] and then in
[7, 8] using a Jamin interferometer crossed with a spec-
trograph. In these publications, experimental data were
processed using formulas of classical single-wave crys-
tal optics, according to which only one wave with
refractive index n propagates in a crystal with birefrin-
gence in each polarization, and the phase incursion of a
wave passing through a crystal of thickness d is ∆ϕ =
nd(2π/λ). Consequently, the computation formula used
in such measurements has the form

(1)

where ∆y/H is the ratio of the zero-order fringe shift
upon the introduction of the crystal into one of the arms
of the interferometer to the width of the interference
fringe. In view of the fundamental importance of the
result obtained in [7] (the absence of an anomalous
region on the n⊥ (λ) curve within the absorption band
halfwidth), which contradicts basic concepts of the
classical oscillator model of exciton absorption, in
addition a method involving interference of polarized
beams was employed. Calculations were based on the
formula

(2)

where ∆n = n⊥  – n|| is the difference in the refractive
indices for light with polarizations E ⊥  c and E || c, m
being an integer or a half-integer determining the inter-
ference order. In the component corresponding to
polarization E || c, we have n||(λ) ≈ const and n⊥ (λ) =
n|| + ∆n(λ). The correctness of the dependence obtained

d n 1–( )
∆y
H
------λ ,=

∆nd mλ ,=
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was verified, and it was found that the two n⊥ (λ)curves
coincide.

In [4–6], dispersion n⊥ (λ) was measured from the
Fabry–Perot interference pattern in polarization E ⊥  c.
The pattern was interpreted using the Pekar theory as
well as the formula

(3)

where k is the interference order.
Analogously to these publications, formulas (2) and

(3) were also used in [16, 17] for calculating the n⊥ (λ)
curves from the FPI and PBI. In order to reduce the
error in measuring thickness and to eliminate the differ-
ence in the properties of different samples, measure-
ments were made on the same wedge-shaped crystal. In
the first series of measurements, the wedge was posi-
tioned vertically in the cell of a cryostat so that its thick-
ness varied in the vertical plane. The crystal image was
projected by a microscopic attachment to the slit of the
spectrograph, which cut a variable-thickness cross sec-
tion from the image. In this case, the interference pat-
tern of polarized beams was photographed and the
spectral ∆n(λ) dependences were calculated by for-
mula (2) for wedge regions with multiple thicknesses.
The curves were plotted on the basis of the assumption
that n is independent of the crystal thickness; for this
reason, multiple-thickness cross sections were chosen
so that they had multiple interference orders m over a
wavelength λ' corresponding to the nearest longitudinal
exciton frequency. The curves plotted for four segments
and having common point λ' according to the principle
of their construction strongly diverge towards the long-
wave region, indicating that the initial assumption con-
cerning of n being independent of thickness is erroneous.

In the second series of measurements, the wedge
was arranged horizontally and its thickness varied in
the same direction. In view of a very small value of the
angle of refraction of the crystal, we could assume that
the slit cuts a constant-thickness cross section from the
image. In this geometry, the FPI and PBI patterns were
photographed for different thicknesses. On the basis of
the spectral positions of the extrema in these patterns,
the ∆n(λ) and n⊥ (λ) curves were calculated using for-
mulas (2) and (3). The spectral dependences n⊥ (λ)
obtained using these two formulas coincided. It was
noted above that the curves measured in this way for
thinner parts of the crystal were found to be displaced
toward shorter waves as compared to those measured
for a thicker part.

In connection with this result, we can mention pub-
lication [23], in which the measurements of the n⊥ (λ)
dependence for CdS and CdSe crystals with varying
thickness were reported. The authors of this publication
observed a short-wave shift of the n(λ) curves upon a
decrease in the crystal thickness, but attributed it to a
change in the resonance frequency ω0 of the exciton
transition. In order to reach the coincidence of the dis-
persion curves measured for CdS crystals of different

2dn⊥ kλ ,=
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thickness, the curves had to be displaced over distances
from 1 to 3 cm–1. The curves obtained by us are also
shifted by approximately the same distance. However,
since we were tracing the spectral position of a longitu-
dinal exciton, which practically did not depend on the
thickness, we assigned the observed effect to a decrease
in the longitudinal–transverse splitting ∆LT = ωL – ωT ,
which is proportional to the oscillator strength of the
exciton transition.

It is interesting to note that the dispersion curve
measured in [7], which was calculated by formula (1),
could be approximated in [10] by the theoretical depen-
dence for a value of ∆LT slightly smaller than for thick
crystals.

In order to clarify the situation, we calculated the
transparency spectra of CdS plates of different thick-
ness using the Pekar theory and compared the spectral
positions of the extrema in the Farby–Perot interference
pattern with those calculated using the formulas of sin-
gle-wave crystal optics.

3. CALCULATION OF THE TRANSPARENCY
OF CDS CRYSTAL PLATES ON THE BASIS

OF THE PEKAR THEORY

The refractive indices for two waves emerging in a
crystal due to spatial dispersion of permittivity can be
determined, according to Pekar [3], from the relation

(4)

where

ε0 is the background permittivity, ω0 is the resonance
frequency of a transverse exciton, c is the velocity of
light, M is the translational mass of an exciton, ∆LT is
the longitudinal-transverse splitting, and Γ is the damp-
ing constant. For the parameters of the theory, we used
the values obtained by us earlier in [13, 14] for the
lower exciton An = 1 at 4.2 K: ∆LT = 16 cm–1, ε0 = 7.4,
ω0 = 20585 cm–1, Γ = 0.16 cm–1, and M = 0.8me . Fig-
ure 1 shows the real and imaginary parts of the complex
refractive indices  = n± + iκ± for the plus and minus
waves obtained for such values of the parameters. In
order to simplify the figure, the κ+ branch is not
depicted since it virtually coincides with the abscissa
axis for such a small value of Γ: the absorption coeffi-
cient for the plus wave does not exceed 0.1 in the fre-
quency range under investigation.

ñ±
2 1

2
--- µ ε0+( )=

1
4
--- µ ε0–( )2 b+ ,±

µ µ' iµ'', µ'+
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"ω0
2

------------- ω ω0–( ),= =

µ''
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"ω0
2

-------------Γ , b
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"ω0
2

-------------∆LTε0,= =

ñ±
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Figure 1 also shows the real and imaginary parts of
the effective refractive index , which must be sub-
stituted into the Fresnel formulas to match the experi-
mentally measured spectra and the phase variation
upon reflection from a semiinfinite medium with the
theoretical spectra,

(5)

The spectra of transparency T and reflectance R for
CdS crystals of different thickness, taking into account
the extra light wave, were calculated from the relations
given in [3]:

(6)

(7)

where

Relations (6) and (7), as well as the formula for the
effective refractive index, were derived using the Pekar
extra boundary condition; namely, the exciton compo-
nent of polarizability is equal to zero on the crystal sur-
face: |Pex | = 0.

Figure 2 shows the transparency spectra for crystal
plates of different thickness. It can be seen that, in spite
of the fact that we took multiple thicknesses, the spec-
tral positions of interference extrema with multiple
orders do not coincide. The thinner the crystal, the
larger the shift of the corresponding extrema towards
the short-wave region. Figure 3 shows for comparison
analogous spectra calculated on the basis of the single-
wave theory, i.e., corresponding to formula (3), which
was used for processing the experimental dependences.
The calculations were made using the program pro-
posed in [25] and taking into account multiple reflec-
tions within the crystal plate. Values of n+(ω) and κ+(ω)
were used as optical parameters of the medium since
only the plus wave passes through the crystal for
ω < ωL . As expected, the positions of the extrema with
multiple orders coincide exactly.
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It follows from the above figures that the positions
of interference extrema in the presence of an extra wave
are determined not only by the values of n+ and κ+ of the
fundamental wave transmitted through the crystal, but
are also affected by the extra wave. The refractive index
of the minus wave below the longitudinal frequency
can be regarded as purely imaginary: κ– ≠ 0 and n– ≈ 0
(it does not exceed 0.2). In accordance with classical
crystal optics, a medium with such optical parameters
totally reflects light. It was noted above that the crystal
is indeed opaque for the minus wave below ωL . In
accordance with the results of measurements from the
laser beam deflection by a wedge-shaped crystal, which
were made in [15] at different temperatures, the minus
wave can pass through the crystal when its refractive
index attains a value of n– ≈ 1 at T = 7.7 K due to an
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Fig. 2. Transparency spectra for three CdS crystals, calcu-
lated in accordance with the Pekar theory. The crystal plate
thicknesses are equal to 0.09 (dashed curve), 0.18 (fine solid
curve) and 0.36 µm (bold solid curve). The figures on the
peaks indicate orders of interference.
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Fig. 3. Transparency spectra for the same crystals as in
Fig. 2, calculated on the basis of the single-wave classical
theory.
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increase in Γ, the entire region of ∆LT clearing up jump-
wise. Thus, in spite of the fact that the crystal is opaque
for the minus wave at T = 4.2 K, this wave changes the
phase of transmitted light. For this reason, the values of
refractive index calculated by formula (3) are averaged
to a certain extent. This quantity is a sort of “effective”
refractive index for transmitted light, which does not
coincide, however, with the value of neff for reflection
from a semiinfinite crystal (this can be seen from a
comparison of Figs. 4 and 1).

Further, we tried to apply the procedure of evalua-
tion of the refractive index, which was used for process-
ing experimental data in [16, 17] (i.e., formula (3)) for
the transparency spectra calculated taking into account
the extra light wave (see Fig. 2). The results of these

16

20570 20580 20590 20600

ν, cm–1

14

12

10

8

6

4

2

n

Fig. 4. Results of calculation of the dispersion curves n(ω)
from the interference extrema shown in Fig. 2 by formula (3):
d = 0.36 (d), 0.18 (j), and 0.09 (m) µm. The solid curve cor-
responds to n+(ω) and the dashed curves are the result of
approximation.
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Fig. 5. Transparency T (solid curve) and reflectance R
(dashed curve) as functions of the crystal thickness, cal-
culated in accordance with the Pekar theory for ω =
20584.2 cm–1. Figures indicate interference orders.
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calculations are shown in Fig. 4. It can be seen from the
figure that the thinner the crystal, the lower and more
shifted to the right are the calculated values of n(ω)
relative to the quantity n+(ω), which was initially
assumed in formula (6) and which was used for calcu-
lating the transparency spectrum. On the basis of the
displaced n(ω) curves, we can choose new parameters
of the theory and estimate the variation of ∆LT in the
case of coincidence of the new approximating curve
with the dispersion curve obtained earlier. This proce-
dure corresponds to that used by us in [16, 17] for
determining the theoretical parameters for experimen-
tally measured curves. Dashed curves in Fig. 4
approximate the “experimental” dependences (∆LT =
15.5, 14.5, and 13.1 cm–1 for a thickness of 0.36, 0.18,
and 0.09 µm, respectively). The latter dependences
can also be approximated by varying ω0 alone, as was
done in [23].

Thus, the shift of the dispersion curve observed
in [16, 17, 23] is associated not with a decrease in ∆LT

or a shift of ω0, but with the application of relations of
single-wave crystal optics for experimental data pro-
cessing. However, other relations are not available for
experimenters.

It should be noted, by the way, that for an apprecia-
ble value of κ in an absorbing medium, the positions of
extrema obtained in transmitted and reflected light do
not coincide in view of an extra phase shift upon reflec-
tion from the absorbing medium. However, the damp-
ing constant of the An = 1 exciton at low temperatures is
very small and analysis of the T(ω) and R(ω) spectra
according to the classical program, as well as the pro-
gram taking into account the extra light wave, proved
that the maxima of T(ω) virtually coincide with the
R(ω) minima. Figure 5 also demonstrates a similar
coincidence of extrema. This is another evidence of the
fact that the shift of the n(ω) curves is not associated
with absorption of crystals.

We have also carried out another series of calcula-
tions: the transparency and reflectance were calculated
as functions of the crystal thickness for different wave-
lengths from the region of ∆LT . An example of such cal-
culations is shown in Fig. 5. It was found that the inter-
ference extrema are separated by different distances.
The thinner the crystal, the larger the period of oscilla-
tions; in other words, in order to form the next interfer-
ence peak, light in a thin crystal must traverse a larger
distance than in a thick crystal. For example, the inter-
ference order k = 1 corresponds to d ≥ 0.05 µm, while
k = 10 corresponds to d ≤ 0.4 µm. If we process the
obtained dependences using relation (3), ascribing a
certain interference order to each extremum, we obtain
the curves depicted in Fig. 6. These curves clearly
exhibit the crystal thickness dependence of the “effec-
tive” refractive index for the transmitted wave.

It should be noted that the above calculations do not
claim exact quantitative agreement with experiment,
AND THEORETICAL PHYSICS      Vol. 96      No. 3      2003
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although the obtained shifts of dispersion curves are
close to the shifts measured in experiments. First, it was
noted above that formulas (6) and (7) were derived
under the extra Pekar boundary condition: |Pex | = 0 at
the crystal surface. Indeed, it was proved in many pub-
lications, beginning with [26] (including those devoted
to the measurement of the phase shift of the reflected
wave [11, 12]), that there exists a “dead” layer on the
crystal surface into which an exciton cannot penetrate.
However, we are not aware of formulas for calculating
T and R of a crystal plate taking into account the dead
layer that effectively reduces the thickness. Second, the
calculations were made for a constant value of Γ, which
is not an exact approximation. The quantity Γ recipro-
cal of the lifetime of an exciton, which may be compa-
rable to the mean free time between the crystal surfaces
for very thin perfect crystals, can be a function of the
sample thickness and frequency. For this reason, it is
very difficult to attain quantitative agreement between
the experimentally measured and theoretically calcu-
lated transparency spectra of crystals [10, 14].

4. CONCLUSIONS

We have calculated the spectral dependence of the
transparency of CdS crystal plates of various thickness
on the basis of the formulas of the Pekar’ theory [3] tak-
ing into account an extra light wave. The calculations
prove that the phase of the transmitted wave is a com-
plex function of the refractive indices of both waves:
the plus wave transmitted through the crystal and the
minus wave reflected from it. Since all the formulas
used by experimenters for processing spectrograms
were derived under the assumption that a single wave
passes through the crystal, the obtained results are aver-
aged characteristics of the medium referred to unit
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Fig. 6. Dependence of the “effective” refractive index for
light transmitted through a crystal on its thickness for differ-
ent frequencies from the resonance exciton region of the
spectrum. Solid lines parallel to the abscissa axis indicate
the values of n+ for the same frequencies.
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thickness. In such calculations and with such an inter-
pretation, the refractive index indeed becomes a func-
tion of sample thickness. However, in actual practice,
the effect is a manifestation of the interference of the
plus and minus waves, whose refractive indices remain
unchanged. It is found that the effect of the minus wave
is the stronger, the thinner the crystal.

Thus, the dependence of the dispersion of refractive
index in the region of an An = 1 exciton of a CdS crystal at
low temperatures on its thickness observed in [16, 17] is
associated with the effect of the Pekar extra wave on the
phase of transmitted light.

It should be noted in conclusion that we do not deny
the correctness of the theory developed in [18–21].
However, in order to verify this theory, use should be
made of experimental data obtained that takes into
account the Pekar extra wave rather than the results
obtained on the basis of the formulas of the single-wave
theory.
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Abstract—A scheme is proposed for detecting optical signals in which electrons bound in atoms, molecules,
or ions are used as a sensitive element rather than free electrons, as in conventional detectors (photoelements,
photomultipliers, etc.). It is shown that such a scheme has a high sensitivity and a reduced shot-noise level.
© 2003 MAIK “Nauka/Interperiodica”.
The problem of detecting optical signals by optical
methods themselves was probably first formulated by
Bloembergen [1]. However, this idea has not been ade-
quately developed. It was shown in paper [2] that the
signal-to-noise ratio could be improved by using non-
linear radiation detectors in which the signal transfor-
mation begins from an absorption transition. It was
shown in papers [3–5] that photocounts appear in con-
ventional photodetectors due to the strong Coulomb
instability of a weak electron current produced in the
detector by a signal being detected. This suggests that
in detectors, instead of free electrons, the electrons that
are bound in atoms, ions, or molecules are used, where
they are well stabilized by a strong Coulomb field of
nuclei.

In this paper, a possible scheme for detecting weak
optical signals by laser means is described. At present
microcavities are created which can be used in the
Bloembergen scheme, providing the passage from
spontaneous to stimulated effect, thereby substantially
improving the scheme.

Our scheme is based on a system of three-level
atoms (Fig. 1). It is assumed that the atoms are located
in a specially designed optical (micro)cavity, in which
there are a resonance signal mode at the frequency ω of
the |0〉   |1〉  transition and two resonance modes at
the frequency Ω of the |1〉   |2〉  transition. When lev-
els |1〉  and |2〉  are not populated, the two last modes are
degenerate and are not coupled with each other. One of
these modes (pump mode) is excited; i.e., it contains a
strong monochromatic pump field, which is determined
by an external source. The second mode is intended for
excitation of an output signal (hereafter, the output
mode). In the initial state, i.e., before the arrival of a
signal, this mode is not excited and contains no fields.

The principle of the detector operation is as follows.
Before the arrival of a signal exciting the signal mode,
an atom, not being in resonance with the pump field and
not in fact interacting with the field, remains in the |0〉
state. After the arrival of a signal at the frequency ω, the
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|1〉  level becomes somewhat populated. In this case, a
strong pump field induces transitions between levels |1〉
and |2〉 , and an oscillating dipole moment appears at the
frequency Ω , which excites a field in the output mode.
The problem is to show that the output signal can be
substantially greater than the input signal. In addition,
it is necessary to find the characteristic rise time of the
output signal. The study is performed in the so-called
semiclassical approximation, when processes occur-
ring in atoms are investigated quantum-mechanically,
while all the fields are assumed classical.

Consider the case when the rise time of the output
signal is shorter than the phase (transverse) relaxation
time of active atoms in the medium. The state of a
three-level atom changes under the action of three
fields: the signal field, the pump field, and an initially
unknown field of the output mode. The output mode
field is excited by a polarization current of a system of
atoms. Consideration of the evolution of atoms and
excitation of the output mode leads to a self-consistent
problem. The solution of this problem gives the field in
the output cavity and the rise time of the output signal.

Pump
mode

Output
mode

Signal
mode

Fig. 1. Principal detection scheme.

|1〉

|2〉

|0〉
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Excitation of the field in the output mode of the cav-
ity is described by the equation

(1)

where

(2)

is the projection of the current 

 

j

 

(

 

t

 

) on the normalized

distribution of the mode field 

 

v

 

o(r) (  = 1) of

the eigenfrequency Ω , and U(t) is the amplitude of this
mode.

Below, we assume that the field amplitude U(t) is a
slowly varying function of time. Let us separate the
negative-frequency part in it:

Then, by neglecting the second derivative of the ampli-
tude u(t) with respect to time, we transform the equa-
tion for excitation of the output mode to the form

(3)

where j '(t) is the amplitude of the negative-frequency
part of the current j(t),

(4)

which also varies slowly in time.
The current exciting the output mode consists of ele-

mentary currents from individual atoms, which interact
with three fields. The evolution of a three-level atom in
the fields of three modes is described by the
Schrödinger equation in the interaction representation

(5)

where

(6)

and

(7)

are the quantities describing the interaction of the atom
with the field modes; U, Ui , and Uo(t) are the negative-
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frequency field amplitudes of the pump, signal, and
output modes, respectively; and

(8)

are the projections of the matrix elements of the elec-
tron coordinate r on the amplitudes v, vi, and vo of the
normalized pump, signal, and output modes at the
atom’s location (below, we assume in estimates that the
average value of the normalized mode amplitude is

 ≈ , where V is the mode volume). The quantities
related to the pump mode have no indices, while the
quantities related to the signal and output modes are
indicated by indices i (in) and o (out).

The first term in the expression for W(t) describes
the interaction of the atom with the pump mode, taking
into account that the pump frequency Ω coincides with
the frequency Ω0 of the |1〉   |2〉  transition. The sec-
ond term describes the interaction of the atom with the
output mode. Because the field amplitude of the output
mode proportional to γ(t) varies slowly in time, this
field is not monochromatic. Its average frequency is
taken equal to Ω . The third term in the expression for
W(t) described the interaction of the atom with the sig-
nal (detected) field at the frequency ω0, which is equal
to the resonance frequency ω of the |0〉   |1〉  tran-
sition.

Due to the action of the fields, the atom undergoes
transition to the state

(9)

where, according to perturbation theory,

(10)

Because the current density operator of the atom is

(11)

we obtain the expression for the current at the |1〉  |2〉
transition in the interaction representation:

(12)

The polarization current j(t) exciting the output mode
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v V2
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has, in the dipole approximation, the form

(13)

where n is the number of active atoms, r0 = vo(0)r21, r21
is the matrix element of the electron coordinate for the
|2〉   |1〉  transition. By averaging this expression over
state (9), we obtain the current exciting the output mode
of the cavity:

(14)

Therefore, according to (3) and (14), the output-
mode field is determined by the equation

(15)

In order to pass from u(t) to γ(t), we multiply this equa-
tion, according to (7), by –ero/" to obtain

(16)

where

(17)

Taking into account that

(18)

where N is the number of photons in the signal mode,
we obtain

(19)

By dividing expression (16) by t and differentiating the
obtained equality with respect to t, we obtain the equa-
tion

(20)

The general solution of this equation has the form

(21)
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as can be verified by a direct substitution of this expres-
sion into (20). Because γ(0) = 0 and /t |t = 0 = 0 at the
moment of the signal arrival, as one can see, for exam-
ple, from (16), then A = 0 and B = α. Therefore, the
response of the system to the input signal is described
by the relation

(22)

Therefore, after the arrival of the external signal,
i.e., the field ui , a field rises in the output mode for the

time τ = , which is approximately equal to the
pump field, which is far greater than the signal field.
This characteristic response time τ of the detector
should be smaller than or equal to the phase relaxation
time τ0. The quantity ξ2 can be written in the form

(23)

where n is the number of atoms interacting with the
modes, N is the number of photons in the signal mode,
Vi and Vo are the volumes of the signal and output
modes, and λi and λo are the wavelengths of the signal
and output radiation. For τ ≈ τ0, this expression deter-
mines the minimum number of photons that should be
present in the signal mode for the field amplitude in the
output mode to achieve its maximum value during a
detection time on the order of τ0. Therefore, this param-
eter determines the sensitivity of the scheme to the
value of a signal being detected. Below, we assume that
the phase relaxation time is τ ≈ 10–8 s. Such a transverse
relaxation time can probably be obtained by cooling the
active medium to liquid nitrogen temperature.

By assuming ξ2 = (2π)2/ , we find that, for the
number of photons in the signal mode equal to

(24)

where ε is the fine structure constant, the field in the
output mode increases for the time τ0 up to its maxi-
mum value. For estimates, we assume that the trans-
verse size of the mode is on the order of the wavelength
λ and its longitudinal size is on the order of 102λ. The
sizes of both modes are assumed to be approximately
identical. As mentioned above, the time τ0 ≈ 10–8 s. The
concentration of active atoms n0 ≈ 5 × 1019 atom/cm3

and their number is n = n0V. The matrix elements are
|r |2 ≈ 2 × 10–19 cm2 [6]. Then, according to (21), when
the number of photons in the signal mode is N ≈ 10–8,
the field in the output mode will increase to its maxi-
mum value for the time τ0 = 10–8 s. As pointed out
above, the maximum value of the output-mode field is
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approximately equal to the pump-mode field. If the
pump mode contains, for example, 100 photons, the
energy gain of a signal can be very high. Of course, to
obtain such a high sensitivity, serious experimental
efforts are required and the quantum nature of the
detected signal should be theoretically considered. We
considered above only the case of signals with a dura-
tion shorter than the phase relaxation time. However,
our additional study showed that the phase relaxation
does not drastically change the detection process,
resulting only in an increase in the response time of the
detector.

Our estimate showed that the number of parasitic
photons in the signal mode at the frequency ω appear-
ing, for example, due to nonresonance Rayleigh scatter-
ing is at least two orders of magnitude smaller than the
value of N presented above.

Note an important circumstance. It was assumed
implicitly in relation (13) that all the active ions are
located at the same place in the cavity. However, modes
in optical cavities are spatially distributed and, in par-
ticular, their phase changes from point to point. In this
case, the output and pump modes can be in phase at
some points and out of phase at other points. In the case
of a homogeneous spatial distribution in the cavity, the
active ions, which follow the phase of the pump mode,
can excite the output mode in some regions and sup-
press excitation at other regions, making the overall
interaction between the modes extremely weak. For
this reason, the distribution of active ions should not be
homogeneous. Active ions should be located only in the
regions of the cavity where the output and pump modes
are in phase.

Let us explain this by a simple example. Consider a
dielectric cylindrical cavity (Fig. 2). As the output and
pump modes, consider the so-called “whispering gal-
lery” modes, i.e., the modes slipping over a circle along

Fig. 2. Cylindrical cavity (eight sectors). Active ions are
located in hatched regions.
JOURNAL OF EXPERIMENTAL 
the cylindrical surface of the cavity. The fields of such
modes are described by high-order Bessel functions.

We assume for definiteness that the output mode is
described by the distribution

where ϕ is the angular coordinate of the field point.
Because of the boundary condition at the cylindrical
surface, the condition

should be fulfilled, where ρmn is the nth root of the

derivative of the Bessel function (ρmn) = 0. It is clear
that the phase of this field depends on the angular coor-
dinate. We also assume that the pump mode is
described by a similar distribution with other values of
m and n. The resonance frequencies of these modes can
coincide for some selected values of m and n.

Assuming for definiteness that the cavity diameter is
0.01 cm (100 µm) and its height is 0.001 cm (10 µm),
we can readily show that the output mode with indices
m = 314, n = 1 and the pump mode with indices m' =
325 and n' = 0 are degenerate; i.e., they have the same
resonance frequencies (the corresponding wavelengths
are on the order of 1 µm).

In this case, the cavity volume adjacent to its cylin-
drical surface will be divided into ∆m = m' – m (11 =
325 – 314) sectors (Fig. 2). The modes in one-half of
each sector will be in phase, and out of phase in the
other half of the sector. The active ions should be dis-
tributed only where the output and pump modes are in
phase, i.e., as shown in Fig. 2. It should be also taken
into account that the output mode changes its sign
depending on the radius, so that the depth of the distri-
bution of ions should not exceed the value

For the parameters of the cavity specified above, this
value is approximately 1.7 µm; at a larger depth, the
output mode changes its sign and becomes out of phase
with the pump mode. The distribution of active ions
shown in Fig. 2 allows efficient interaction between the
modes. Of course, this is only one possible variant of
the cavity for laser detection of weak optical signals.

In conclusion, we summarize the results. It is shown
in the paper that optical signals can be detected by laser
means. Our estimates showed that such schemes have a
high sensitivity.

The most striking feature of laser detection schemes
considered above is that they are capable of detecting
energy representing only small portions of an incident
photon. If this feature is realized experimentally, the

Emn r ϕ,( ) Jm αmnr( ) mϕ( ),sin=

αmnrc ρmn=

Jm'

∆ rc

ρm0

αm1
--------– rc 1

ρm0

ρm1
--------– 

  .= =
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situation in the quantum theory of measurements can
change drastically.

The important feature of laser detectors of weak
optical signals is that they are capable of operating
without photocounts because the electronic excitation
is distributed in them over many active atoms, in which
electronic systems are well stabilized by a strong Cou-
lomb field of nuclei. This means that the shot noise in
laser detectors is strongly suppressed. The physical
nature of noise in laser detectors substantially differs
from that in conventional photodetectors and requires
further study.
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Abstract—The Weibel instability increment is analytically derived for plasma produced at the barrier-suppres-
sion ionization of atoms and atomic ions by a superintense femtosecond laser pulse. The cases of linear and
circular polarization are considered. Relativistic effects are discussed. It is found that the instability increment
is larger for the circular polarization than for the linear polarization. This increment can attain the plasma fre-
quency. Barrier-suppression ionization decreases the increment compared with the case of tunneling ionization.
Relativistic effects also decrease the value of the increment. Estimates of the produced maximum quasistatic
magnetic field are given. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Erich Weibel [1] (see also textbook [2]) was the first
to predict spontaneously growing transverse electro-
magnetic waves in plasma due to an anisotropic veloc-
ity distribution of electrons. The maximum increment
of this instability for the wave frequency ω is (in the
nonrelativistic approximation)

where ωp is the plasma frequency and u is the average
velocity of electrons in the (longitudinal or transverse)
direction along which this velocity has a maximum.
This solution is valid under the condition of a strong
anisotropy of the velocity distribution in longitudinal
and transverse directions.

This approach has been applied in [3] to electrons
produced in the tunneling ionization of atoms by a
strong low-frequency linearly polarized laser field. The
corresponding average velocities of electrons along the
field strength polarization u|| and in the transverse plane
u⊥  strongly differ from each other. Their ratio is found
in [4],

where

is the Keldysh parameter (the atomic system of units
with e = m = " = 1 is used in this paper). Here, F is the

Imω u
c
---ωp,=

u⊥

u||
-----

γ
3

-------,=

γ
ω0 2Ei

F
-------------------=

¶This article was submitted by the author in English.
1063-7761/03/9603- $24.00 © 20430
field strength amplitude and ω0 is the laser frequency.
The quantity Ei @ ω0 is the ionization potential of the
atom (or atomic ion). In the case of tunneling ioniza-
tion, we have γ ! 1. It was found in [3] that the maxi-
mum instability increment is

where, according to [4],

In this paper, we consider the barrier-suppression
ionization that occurs upon irradiation of atoms and
atomic ions by the field of a superintense laser pulse
with a peak intensity larger than 1016 W/cm2. The cor-
responding anisotropic distribution of ejected electrons
was obtained in [5]. We can neglect the collisions of
strongly heated ejected electrons with analogous elec-
trons and atomic ions (bearing in mind, e.g., the cluster
plasma [6]) because the Weibel instability develops

over a very short time, on the order of . This process
occurs at the peak of the superintense femtosecond
laser pulse. We solve the problem in the linear regime
only, when the perturbation of the velocity distribution
function is smaller than the unperturbed distribution
function. We find that the real part of the frequency of
the Weibel electromagnetic field is much smaller than
the laser frequency. We can therefore consider the Vla-
sov–Maxwell equations for the Weibel field inde-
pendent of the Maxwell equation for the external
laser field.

Imω
u||

c
----ωp,=

u||
3F3/2

ω0 2Ei( )3/4
------------------------.=

ωp
1–
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2. LINEARLY POLARIZED FIELD

We first assume that the external laser radiation
pulse is linearly polarized. With only linear terms of
perturbation retained, the Boltzmann transport equation
for the Weibel electromagnetic field is of the standard
form:

where f0(v) is a nonisotropic stationary distribution of
electrons, f is a perturbation of the distribution function,
and E and B represent a perturbation of the electromag-
netic field (i.e., Weibel field).

Assuming that the first-order quantities f(v, r, t),
E(r, t), and B(r, t) depend on r and t only via the factor
exp(iωt + ik · r), we obtain for the Weibel field with a
frequency of ω and wave vector k that

(1)

The Maxwell equation

implies a relationship between the electric and mag-
netic fields,

Substituting this equation in Eq. (1), we find the equa-
tion containing only the electric field,

(2)

We now assume that wave vector k is directed along
the x axis and the electric field strength E is directed
along the z axis. We then find the function f from
Eq. (2):

(3)

The second Maxwell equation is given by

(4)

where the electric current density is determined by the
distribution function,

Substituting this expression and Eq. (3) into Eq. (4), we
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obtain the Vlasov equation in the form

(5)

Projection of this equation to the z axis gives a disper-
sion relation between the frequency ω and the wave
number k,

(6)

We simplify the first term in the right-hand side of
this equation by taking into account the normalization
condition for the unperturbed distribution function:

where n is the number density of free electrons; the
above equation then becomes

(7)

where we define the plasma frequency as

The inequality ω @ kv x is valid in the tunneling and
barrier-suppression ionization regimes. It corresponds
to the condition that the longitudinal electron velocity
v z is much larger than the transverse electron velocity
v x . We can then expand the denominator in Eq. (7) as

Substituting this expansion in Eq. (7), we integrate by
parts,

and finally obtain

(8)
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where  is the average square of the longitudinal
electron velocity.

Because the most interesting case in dispersion rela-
tion (8) is ω ! kc (see below), we can neglect the term
–ω2 in the left-hand side of (8). It then follows from
Eq. (8) that

(9)

and, therefore, the frequency is a purely imaginary
quantity that produces the Weibel plasma instability.
The maximum value of this instability increment is
achieved at kc @ ωp (the short wavelength limit),

(10)

In the case of tunneling ionization, the distribution

function f0 is of Gaussian form [4, 7]. Hence,  =

, where

(see the Introduction). Here, ω0 is the laser frequency
and γ is the Keldysh parameter. It therefore follows
from Eq. (10) that [3]
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We now consider the case of barrier-suppression
ionization. According to [5], the anisotropic distribu-
tion is given by

(11)

where Ai(x) is the Airy function. This distribution
reduces to the tunneling limit [4] under the condition of
weak field (compared with the atomic field),

Therefore, the deviation for the square of the instability
increment from the tunneling limit, Eq. (10), is deter-
mined by the ratio

and hence,

(12)

where

The universal function G(s) is given by

(13)

We have G(s)  1 at s @ 1 (the tunneling limit). This
function is shown in the figure.

It can be seen that in the case of barrier-suppression
ionization, the increment increases more slowly with an
increase in laser field F than in the case of tunneling
ionization. We can therefore conclude that the electro-
magnetic field is generated in plasma with the same lin-
ear polarization as the initial laser radiation that pro-
duced these anisotropic plasma electrons. The fre-
quency of this field (see Eq. (10)) does not contain the
real component, and this field is therefore quasistation-
ary, but with an exponentially growing amplitude of the
electric and magnetic strengths.

We now briefly discuss the relativistic generaliza-
tion of the tunneling results. According to [8], the
energy distribution of ejected electrons along the field
polarization is given by
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The second term in the exponent is responsible for the
relativistic effect. It diminishes the average longitudinal
velocity,

where  = 3ω0/2γ3 (see the Introduction). This
decrease in the instability increment agrees with the rel-
ativistic results in [9],

3. CIRCULARLY POLARIZED FIELD

In this section, we consider the Weibel instability
produced in plasma during the tunneling and barrier-
suppression ionization of atoms (or atomic ions) by a
circularly polarized laser femtosecond pulse. We again
direct the wave vector k of the laser field and of the pro-
duced electromagnetic perturbation field along the x
axis. The perturbation electric field strength E is also
circularly polarized and rotates in the yz plane. Hence,

where iz and iy are unit basis vectors. Equation (2) then
becomes

where v || is the velocity in the polarization plane. We
thus obtain the perturbation distribution function

Instead of Eq. (6), we find the dispersion relation in
the form
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or

(14)

The unperturbed electron energy distribution function
for tunneling ionization is given by (see, e.g., [10])

(15)

where v 0 = F/ω0 is the ponderomotive electron velocity
and

(F is again the laser field strength amplitude and Ei is
the ionization potential of an atom or an atomic ion).
Unlike for the linear polarization, dispersions of the
average longitudinal and transverse velocities are now
equal to each other.

We note that u ! v 0; i.e., the width of the distribu-
tion is small compared to its shift in the longitudinal
direction. The first term in the right-hand side of
Eq. (14) vanishes because the integrand is an odd func-
tion of the argument (v || – v 0). Dispersion relation (14)
then becomes

We again assume that ω @ kv x , i.e., ω @ ku, and expand
the denominator in a Taylor series,

Integrating by parts, we simplify the dispersion relation
as

(16)

Substituting Eq. (15) in Eq. (16), we obtain

The solution of this equation is
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The frequency ω is therefore a purely imaginary
quantity that produces a circularly polarized exponen-
tially increasing electromagnetic wave. Its real part is
zero, and the wave is therefore quasistationary. In the
short wave limit

(17)

we simplify this solution by taking into account that
v 0 = F/ω0,

(18)

The condition ω @ ku bounds the wave number k from
above,

(19)

Inequalities (17) and (18) do not contradict each other
under the condition

which is satisfied up to very high values of laser field
intensities (c = 137 a.u.).

In the case of barrier-suppression ionization by a
circularly polarized field, the unperturbed distribution
function is given by [5]

Substituting this expression in Eq. (16), we obtain the
same dispersion relation as in the case of tunneling ion-
ization. Therefore, the maximum increment of the Wei-
bel instability is again determined by Eq. (18) also for
barrier-suppression ionization.

In the nonrelativistic limit, we have

Hence, the Weibel increment is small compared to the
plasma frequency. The anisotropic relativistic distribu-
tion of ejected electrons was obtained in [10]. Most
electrons are ejected not in the polarization plane of cir-
cularly polarized laser radiation, but at the angle θ with
respect to this polarization plane determined from the
relation [11]

The normalized unperturbed relativistic distribution
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function is given by [10]

(20)

where px and p|| are the respective momentum compo-
nents of the ejected electron along the wave vector and
in the polarization plane. The relativistic width ur of the
distribution is given by [10]

where (see above)

is the nonrelativistic width.
Substituting Eq. (20) in Eq. (16), we find instead of

Eq. (18) that

where  is the average relativistic velocity in the
polarization plane, to be compared with Eq. (10) for the
linearly polarized field. This quantity can be expressed
through the corresponding relativistic momentum,

,

and the relativistic energy,

,

due to narrow peaks in unperturbed distribution (20),

Thus, we finally obtain

(21)

It follows that relativistic effects diminish the Wei-
bel increment for a circularly polarized field similarly
to the case of linear polarization (see above). The
maximum value of the increment is achieved at v 0 =

F/ω0 = c ,
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4. CONCLUSIONS
We have found that the plasma instability produces

a quasistatic magnetic field B (the frequency does not
contain the real part). The corresponding quasistatic
electric field E is much smaller in the short-wave limit
kc @ ω,

We estimate the maximum value of this field for the cir-
cularly polarized field. Our derivation is valid in the lin-
ear approximation where f ! f0. In accordance with the
results in the previous section, we rewrite this inequal-
ity for a circularly polarized field as

or

Substituting ω ~ ωp(v0/c), we find the maximum mag-
netic field

It follows that the magnetic field is determined only by
the number density of plasma electrons and can be very
large.

E
ω
kc
-----B ! B.=

E

ω3
------k2v 0 ! 1,

kBv 0

ω2c
------------- ! 1.

Bmax ωpc.∼
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Abstract—The feasibility of confining dust particles in a plasma by thermophoretic forces was demonstrated.
An extended dust structure in a positive glow discharge column was experimentally obtained at liquid nitrogen
temperature. The dust structure was confined in an electrostatic-thermal trap, in which vertical stability was pro-
vided by the summed action of longitudinal electrostatic field and thermophoretic forces. Traps of this kind can
be analyzed in terms of the general principles developed for confining particles in traps with the use of electric
and magnetic multipole fields. We were able to change the shape and volume of the structure and even separate
it into parts by varying temperature fields. © 2003 MAIK “Nauka/Interperiodica”.
Ordered structures comprising charged dust parti-
cles with strong Coulomb interactions have been
observed in a nonequilibrium low-pressure plasma in
charged electric layers, which are actually electrostatic
traps [1]. Such structures are formed in strata in a glow
discharge and in a charged layer close to electrodes in
an RF discharge. When a charged particle is at equilib-
rium, its gravity force is balanced by a longitudinal
electric field, which is much higher in layers than in the
surrounding plasma and is longitudinally nonuniform.
An ambipolar electric field confines particles in the
radial direction. The number of confined particles
depends on the size of the trap and can vary from sev-
eral dozens to several thousands. The particles can
experience ordering to produce a fairly regular crystal
structure, or their behavior can resemble that of a liq-
uid. As the charge of particles is sustained by the bal-
ance between electron and ion fluxes onto their surface,
the arising structures are dissipative. Because of the high
mobility of electrons in glow and RF discharges, the
charge is always negative and amounts to q = 104–105

electron charge units.

An electrostatic trap can exist in a plasma if there
are gradients of the concentration of charged particles.
This in turn results in electric field nonuniformity in a
layer caused by the arising of both longitudinal and
radial ambipolar electric fields. The presence of heat
sources in a bounded plasma causes the appearance of
a temperature gradient and the arising of thermo-
phoretic forces, which act on dust particles. According
to [2, 3], the existence of various forms and structures
of plasma-dust clouds confined in electrostatic traps
primarily depends on equilibrium conditions in the
radial direction, because the characteristic depth of the
well that confines particles in the radial direction is
much smaller. The radial ambipolar field that acts on
1063-7761/03/9603- $24.00 © 20436
charged dust particles is directed toward the axis of the
discharge tube. Forces that push dust particles toward
walls are ionic friction and thermophoretic forces. The
thermophoretic force is proportional to the gradient of
gas temperature and is directed similarly to the heat flux
caused by thermal conductivity of the neutral gas. In
most of the experiments in which dust particles were
confined in charged layers, ionic friction forces were
substantially weaker than thermophoretic forces. All
the forces are therefore proportional to the correspond-
ing gradients and, as shown in [2], the concept of poten-
tial energy can then be introduced for particles confined
in an electrostatic–thermal trap. Generally, these forces
also determine the equilibrium of dust particles in a
nonuniform thermal field in the longitudinal direction.

The principle of confining charged particles in natu-
ral traps of the type of strata in a strongly nonuniform
plasma is similar to the general principles of confining
particles in special traps using electric or magnetic mul-
tipole fields. These principles have long been success-
fully used in the physics of molecular beams, in mass
spectrometry, and in the physics of accelerators of
charged particles [4]. Particles can be trapped or phased
under the action of an elastic binding force that linearly
increases as the distance grows,

or, in other words, if particles move in the parabolic
potential

It follows from the Laplace equation

F cr,–=

ϕ  ~  α x 
2 β y 

2 γ z 
2 .+ +

∆ϕ 0=
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that

for potential fields. For instance, at α = β = 1 and γ = −2
in the cylindrical coordinates, this condition leads to a
three-dimensional trap with the potential [4]

where 2  = .

Note that precisely this potential configuration was
used in the first experiments on confining charged
micron aluminum particles in a quadrupole trap in 1959
[5]. In addition, dynamic stabilization of the orbits of
separate particles with the use of a low-frequency
(50 Hz) periodic electric field was used. Random
motion of particles was suppressed by a buffer gas. It
was found that the particles lined up into a regular
structure to form a crystal. The pseudocrystallization of
ions cooled by a laser beam was observed in a similar
trap [6]. The ions moved to the positions where Cou-
lomb repulsion forces were balanced by focusing
forces in the trap and the energy of the whole ensemble
was minimum.

For plasma-dust structures confined in a volume
charge layer, for instance, in a near-electrode RF dis-
charge layer, in which dust structures of particles were
observed for the first time [7], the condition

does not hold, because the Poisson equation applies to
charged layers. At the same time, the Laplace equation
is valid for thermal fields without heat sources, and the
general principles can therefore be used for creating
traps.

In a gas-discharge low-pressure plasma, thermo-
phoretic forces strongly influence the motion of dust par-
ticles and their equilibrium arrangement in space [2, 3].
Thermophoretic forces can be used not only to change
the position and shape of a dust cloud but also to
remove dust particles from the discharge zone under the
action of the temperature gradient in a neutral gas. At a
low gas pressure, the thermophoretic force is

where P is the neutral gas pressure, L is the free path of
molecules, a is the radius of dust particles, and L @ a.
In a glow discharge plasma, the force of the radial
ambipolar electric field that confines charged dust par-
ticles is

where Te is the electron temperature and n is the con-
centration of electrons. In the ionization-diffusion
model, the distribution of electrons in the positive col-
umn and in a stratum is described by the Bessel func-

α β γ+ + 0=

ϕ ϕ 0
r2 2z2–

r0
2

2z0
2+

------------------,=

z0
2 r0

2

α β γ+ + 0=

FT –4PLa2∇ T /T ,=

FE qkTe∇ n/n,=
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tion J0(2.4r/R), where R is the radius of the tube. For
this reason, the FE force is proportional to the radius in
the vicinity of the axis and grows more sharply as the
particle approaches tube walls. If heat release in a
plasma is axially symmetric, the thermophoretic force
close to the axis is also proportional to the radius.

A dust of particles cannot be confined in the longi-
tudinal direction in a uniform positive column, because
electric field gradients are then absent, and particles,
which are in the neutral equilibrium state, depart along
the axis of the discharge tube. In addition, an analysis
of the experimental data on glow discharge in various
gases [8] shows that the strength of the longitudinal
electric field is insufficient for balancing the gravity
force of micron particles; this is why dust structures are
observed in strata or near-electrode layers. Creating a
trap in the longitudinal direction requires additional
gradient forces. An electrostatic thermal trap in a
plasma with a longitudinal temperature gradient in a
neutral gas can be formed with the use of thermo-
phoretic forces. Cooling or heating part of the discharge
causes the appearance of additional longitudinal forces
capable not only of balancing gravity forces but also of
locking particles in a trap. Such forces arise if gas tem-
perature along the symmetry axis changes by the qua-
dratic or a sharper law. Estimates show that, for micron
particles of mass 10–10 g in a glow discharge in air, lon-
gitudinal temperature gradients on the order of 10 K/cm
are required.

The confinement of dust particles in an electrostatic-
thermal trap was experimentally observed in a glow
discharge plasma in air when the air was cooled to the
boiling temperature of liquid nitrogen (77 K). The
scheme of experiments was similar to that used in [9].
Dust structures of magnesium oxide particles 3–5 µm
in diameter, which were introduced from above from
the side of the anode, were observed in the positive col-
umn of a low-pressure glow discharge in a quartz dis-
charge tube 2 cm in diameter immersed in a cryostat
with liquid nitrogen. The dust structures were studied
through a longitudinal optical window of the cryostat.
An extended structure up to 20 cm long arose in the nar-
row pressure range 0.04–0.05 Torr; this structure con-
sisted of long dust threads, which occupied almost the
whole volume of the glow discharge positive column. A
photograph of a dust structure 12 cm long in a positive
glow discharge column in liquid nitrogen is shown in
Fig. 1. Above the level of liquid nitrogen, the character
of the discharge changes and the discharge column is
divided into strata. Alongside the factors well known
previously (the form of the electrostatic potential, grav-
ity force, and ionic friction force), the key role in deter-
mining the stability of extended dust structures is
played by longitudinal thermophoretic forces. These
forces are proportional to temperature gradients and are
almost an order of magnitude larger than the ionic fric-
tion force. They arise because the momentum trans-
ferred from molecules that arrive from the side of the
SICS      Vol. 96      No. 3      2003
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more heated gas to a dust particle is larger than the
summed momentum of “cold” molecules. The dust
structure occurs in an electrostatic-thermal trap, in
which vertical stability is provided by the summed
action of longitudinal electric field and thermophoretic
forces. Thermophoretic forces lock the particles on
two sides, namely, on the sides of the cathode and the
boundary of liquid nitrogen. They act both downward,
in the direction of the heat flux from above (from the
zone free of liquid nitrogen), and upward, because of
heat release in the cathode zone. Earlier, such

 Nitrogen
level

Cathode

 Dust
structure

Tube
diameter

Fig. 1. Extended dust structure in a positive glow discharge
column at cryogenic temperature. Seen at the bottom is
cathode glow, and at the top, strata formed above the bound-
ary between air and liquid nitrogen. The liquid nitrogen
level and cathode glow are marked by arrows.
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(‡)

(b)

Fig. 2. Dynamics of dust structure partitioning under the
conditions of cooling the discharge tube on two sides:
(a) scheme of the arrangement of microrefrigerators; the
discharge tube cross section is shown: (1) discharge tube,
(2, 3) microrefrigerators, and (4) dust structure; and
(b) sequential photographs of the dust structure in discharge
tube cross section after switching on cooling; the diameter
of the tube equals the horizontal frame size.
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extended dust structures had never been observed
experimentally.

The dust structure becomes separated into several
parts 4–5 cm long each as pressure decreases. The
resulting structure is, however, unstable with respect to
longitudinal low-frequency perturbations. The whole
extended dust structure divides into transverse layers
about 0.7 mm thick, which have different densities.
Most likely, this is caused by the arising of dust-acous-
tic instability. The appearance of dust-acoustic instabil-
ity is a consequence of general plasma-flow instability,
when ions move through a charged dust at drift veloci-
ties exceeding the velocity of sound in the dust itself. The
development of such an instability is facilitated by a
decrease in the temperature of heavy particles, because
the velocity of sound in the dust then decreases [9].

We performed experiments in which a discharge
tube 2 cm in diameter was cooled with the use of Peltier
elements. The middle part of the discharge tube was
cooled on both sides by two microrefrigerators 2.5 cm
long, which tightly fitted the side surface of the tube.
Two gaps 8 mm wide were situated between the
microrefrigerators for observing dust structures. The
dust structures were concentrated in strata close to the
tube axis at air pressures of 0.1–0.5 Torr and currents of
0.25–1 mA. Cooling the discharge tube walls by 20 K
stretched the dust structure of the stratum between the
microrefrigerators in the radial direction under the
action of thermophoretic forces. First, the dust structure
cross section transformed into an ellipse prolate toward
cold walls. Next, the cloud of dust particles divided into
two circles, which experienced deformations and were
attracted to cold walls (Fig. 2). Particles did not reach
the walls under the action of the radial temperature gra-
dient but were confined in a new equilibrium state,
because the radial electric force directed toward the
axis grew stronger as the radius increased. Dust clouds
of various shapes can be created by varying the temper-
ature field. If the walls of a discharge tube are locally
cooled by microrefrigerators in the longitudinal direc-
tion, all charged dust particles are withdrawn by the
longitudinal temperature gradient from the strata lying
lower by 5–6 cm. They in part go to cold tube walls in
the region of refrigerators. Particles remain in the strata
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
that are situated above the refrigerators. Longitudinal
thermophoretic forces are strong enough to draw dust
particles upward from electrostatic traps, that is, from
strata. As a consequence, a new trap arises; this trap is
formed as a result of the superposition of thermo-
phoretic and longitudinal electric field forces. Creating
various thermal traps with the use of Peltier elements
allows the shape of dust structures to be changed or
even allows dust structures to be removed from the dis-
charge zone.

To summarize, thermophoretic forces can be used to
create thermal traps in a plasma for confining dust par-
ticles. At low temperatures, extended dust structures
can be formed; such structures cannot be obtained in
natural electrostatic traps in a discharge. Dust struc-
tures can change their shape and volume and even
become divided into parts when Peltier elements are
used. As thermophoretic forces are potential, the con-
struction of traps can be performed with the use of the
well developed theory of creating electromagnetic traps.
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Abstract—The action of an electron beam on ordered dust structures in glow and low-pressure RF discharges
was studied experimentally. The electron beam produces destruction and dynamic displacement of the dust
structure. In the center of a dust structure, an electron beam with a low electron energy (tens of eV) at currents
up to 1 mA caused structural disordering and “melting” in the region of its action but did not excite external
crystal regions. Local action of an electron beam with a high electron energy (25 keV) and a beam current above
10 mA caused deformation of the whole dust structure and shifted it in the horizontal direction so that it was
carried away from the RF discharge zone. The effect of dust structure displacements can be used to locally
remove particles from a plasma. © 2003 MAIK “Nauka/Interperiodica”.
A dust plasma in a high-frequency or glow
discharge can be used to obtain high nonideality para-
meters

because of a large charge of dust particles Z ~ 105–106.
Interparticle Coulomb interactions are then strong to
the extent that they cause the formation of ordered dust
structures, in which Coulomb interaction exceeds ther-
mal movement energy by orders of magnitude. The
reaction of an ordered structure to actions followed by
its relaxation to the initial state allows new data on the
properties of ordered structures to be obtained [1]. The
relaxation of a dust structure after an action depends on
the character of the action. Under slow weak actions,
for instance, thermal [2] or electric [3] action, the struc-
ture moves in space, and some part of it can be
deformed or destroyed. The action of high-power elec-
tric field pulses of nanosecond width causes the
destruction of dust structures in a plasma [1]. Under
such short-term actions, dust particles have no time to
move and structural transformations occur as a result of
rapid changes in plasma parameters. It is likely that the
destruction of dust structures and the recession of par-
ticles under nanosecond actions are primarily caused
by an increase in their charge, because a fair number of
high-energy electrons with energies of hundreds of eV
then appear in the plasma [4]. An electron beam can
directly act on dust particles to increase their charge
and transfer momentum to them. In [5, 6], charging of
dust particles in a non-self-sustained discharge, which

γ Z2e2n1/3/kT= 104–105∼
1063-7761/03/9603- $24.00 © 20440
was sustained by an electron beam at atmospheric pres-
sure, for creating a radioactive battery was analyzed
theoretically. The purpose of this work was to study the
direct action of an electron beam on dust particles in a
low-pressure discharge.

Experiments were conducted in air at 0.01–0.20 Torr
in cylindrical discharge tubes 2 cm in diameter under
glow discharge conditions and in a large-volume cham-
ber (Fig. 1) with plane electrodes 10 cm in diameter
under high-frequency (13.56 MHz) discharge condi-
tions. Structures of 5–20 µm MgO particles were stud-
ied by means of a video camera at transverse and longi-
tudinal illumination by a laser knife (0.63 µm wave-
length radiation) with a 150 µm caustic. A weak-
current electron beam with 25 keV of electron energy
was used to act on dust structures in an RF discharge
plasma. The beam was formed in an accelerator and
emitted horizontally into the discharge chamber, in
which an ordered dust structure was preliminarily cre-
ated. The diameter of the beam in the chamber was
2−2.5 mm. At pressures characteristic of our experi-
ments, the beam introduced into the working chamber
remained virtually unscattered in the gas medium. The
beam current could be continuous or have the shape of
rectangular pulses of 2–200 Hz. The ordered dust struc-
ture was confined in an RF discharge between two
plane electrodes situated 5 cm apart. The pressure in the
working chamber was 0.20 Torr. The structure was
formed in the volume charge zone above the lower elec-
trode, to which RF power was supplied. The upper elec-
trode was grounded. To radially confine macroparticles
in the structure, a ring 5 mm high made of organic glass
003 MAIK “Nauka/Interperiodica”
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was used. Ring walls ran along the electrode perimeter
and lay on the lower electrode. The ordered dust struc-
ture hung over the ring and consisted of several layers
of charged particles. The electron beam fell on the
structure from one side in the radial direction. The char-
acter of its action depended on the beam current and
distance d between the axis of electron beam injection
and the plane of the ordered plasma-dust structure. At
d > 10 mm, the structure did not react to switching on
the beam if the beam current was lower than 10 mA.
Structural perturbations observed as the beam appro-
ached the plane of the plasma-dust structure were as
follows. Switching on a beam with an I < 5 mA beam
current set the plasma-dust structure in motion, which
was accompanied by changes in interparticle distances
and displacements of the external boundary of the
structure. Switching the beam off caused the return of
the structure to the initial state. When a low-frequency
(some 2–5 Hz) pulsed periodic beam (I < 5 mA) was
injected, plasma-dust structure particles began to oscil-
late. An increase in the frequency of beam current mod-
ulation accelerated particle vibrational motions, which
then ceased to be discernible. Beams with beam cur-
rents above 10 mA slightly deformed the whole dust
structure, displaced it in the horizontal direction, and
carried it away from the discharge zone. Figure 2 shows
a sequence of photographs illustrating displacement of
a dust closed by a 25-keV electron beam (exposure,
0.04 s; time interval between shots, 0.16 s). The dust
structure was not only carried away from the zone of
beam action determined by the initial diameter of the
beam, but it behaved similarly to an elastic body, which
caved in under the beam action and then moved as a
whole. The structure was not restored after switching
off the beam. The destruction of the structure was pri-
marily caused by the dynamic action of beam electrons
on dust particles.

Our estimate shows that the force transferred to a
separate particle from an electron beam at beam cur-
rents of about 10 mA exceeds the radial electric field
force that confines the particle in a layer. This estimate
is based on the assumption that electrons are absorbed
by the particle because the free path of beam electrons
in the material of particles is smaller than the size of
particles and that they directly transfer their momentum
to the particle. A beam acts on the surface of a dust par-
ticle and causes its acceleration. Note that the force
estimated from the transfer of momentum from elec-
trons coincides with the value estimated from the char-
acteristic acceleration of dust particles as determined
from our video records. As particles are not forced from
the structure by the beam, the dynamics of beam
actions is, in all probability, as follows. After switching
on the beam, dust particles acquire a large additional
charge, because the energy of beam electrons and the
energy of electrons knocked out from the surface of
particles (~100 eV) [7] substantially exceed the energy
of plasma electrons. This was experimentally observed
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
under the conditions of electron beam action on separate
particles in a low-pressure gas [8]. Particles flew away
from the zone of beam action irrespective of the material
of particles and their emission properties. The measured
potential of macroparticles was about 100 V [8]. This
caused intense scattering of beam electrons and sec-
ondary electrons by dust particles, because the cross
section of Coulomb scattering increased proportionally
to the squared charge of particles and became commen-
surate with the interparticle distance. The scattering of
the beam and secondary electrons could cause charging
of peripheral particles, which increases the effective
area of beam action on the dust cloud. As particles in
the cloud interact with each other, the dust cloud moves
as a whole. To check this suggestion, we performed the
following model experiment. A metallic ball 8 mm in
diameter was placed in the way of the beam. When the
beam acted on the ball, gas glow around the ball was
observed, which was evidence of scattering of beam
electrons and electrons emitted from the surface over a
large area.

Dust structures form in strata when a glow discharge
is ignited in a cylindrical discharge tube. The conditions
for the formation of ordered structures of micron parti-
cles in air in a glow discharge at a current of 0.3–1 mA
are approximately the same as with RF discharges. An
increase in the glow discharge current at 0.2 Torr is
accompanied by an increase in the size of the dust
structure and in the distance between dust particles. The
crystal experiences disordering and begins to resemble
a liquid as the current grows to several mA. At a dis-
charge current of 0.6–1 mA, ordered structures in the
form of a cylinder, whose diameter equals one-third or
one-fourth of the tube diameter, are observed. The

Fig. 1. Scheme of experiments and working cell. The diam-
eter of the lower electrode is 10 cm, the angle between the
electron beam direction and the laser beam is 90°, d is the
distance between the dust structure plane and the electron
beam. The video camera is situated at a 45° angle with
respect to the horizontal plane of the electrodes.

Electrode
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Fig. 2. Carrying away of a dust cloud.
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diameter of the ordered structure grows as current
increases and reaches two-thirds of the tube diameter at
currents of 1−2 mA. The thickness of the structure
decreases as the current grows, and, at 1.5–2 mA, plane
structures comprising several (5–10) layers of particles
are observed. At still stronger currents, a ring structure
is formed; its diameter increases and thickness
decreases as current grows. In the near-axis region, par-
ticles are absent. The currents at which transitions
between different ordered structural forms are observed
decrease as the size of dust particles increases.

A plane cathode was replaced by a hollow cathode
to obtain an electron beam in the specified pressure
range in a glow discharge. A cylindrical ordered struc-
ture was then obtained at the strata at a current of
0.3−0.6 mA. An increase in discharge tube voltage
caused the formation of a narrow electron beam from
the hollow cathode with a characteristic electron energy
of several tens of eV. An increase in the total discharge
current was largely determined by an increase in the
electron beam current. The size of the dust structure
and the shapes of glowing stratum regions remained
unchanged as the total current increased. When the
electron beam, which was formed in the near-axis
region at a current of 0.6 mA, reached the center of the
dust crystal, the beam acted on it and caused crystal
“melting” and disordering only in the region of beam
action, without exciting external crystal regions
(Fig. 3). The diameter and the depth of beam action
increased as the beam current grew to cause the excita-
tion of the whole crystal at a current of 2 mA. The gen-
eral picture of the action of an electron beam in a glow
discharge with a hollow cathode corresponded to RF
discharge experiments in which a high-energy electron
beam with a weak electron beam current was used. The
destruction of structures in both RF and glow dis-
charges was primarily caused by an increase in the
charge of dust particles. An electron beam rapidly
increased the charge of dust particles, which was pro-
portional to the energy of electrons. The neutralization
of excess negative charge occurred at a much lower
rate, because this process was determined by the flow of
ions. The action of excess charge caused Coulomb
repulsion of particles and pushed away particles from
the plasma trap upward. Subsequently, the particles fell
down, which resulted in structural disordering. Parti-
cles experienced various oscillations under the action
of an electron beam. These oscillations could also be
related to the excitation of plasma–beam instabilities of
various kinds in the dust medium.

To summarize, the action of an electron beam on
dust structures in a plasma is, in essence, as follows: it
increases the charge of dust particles and causes
momentum transfer from beam electrons in collisions.
As a result, both the destruction and dynamic displace-
ments of dust structures occur. Estimates show that the
force transferred to a separate macroparticle from an
electron beam and the force calculated from the charac-
 AND THEORETICAL PHYSICS      Vol. 96      No. 3      2003
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teristic acceleration of the macroparticle exceeds the
radial force of the electric field that confines the particle
in a layer. This is evidence that interparticle interaction
forces in a plasma–dust crystal are substantially stron-

Fig. 3. Electron beam action on the central region of an
ordered dust structure in a glow discharge from a hollow
cathode: dust structure (cross section) (a) without a beam
action and (b) with a beam action.

(a)

(b)
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ger than electric forces responsible for radial equilib-
rium of the crystal in a plasma trap. The effect of the
dynamic action of an electron beam on a dust cloud can
be used to locally remove particles from a plasma, for
instance, in devices for growing particles or separating
them according to size. Such a device for separating
particles can be a glow discharge in a discharge tube
with a variable cross section, for instance, a tube having
the shape of a cone [9]. In such a discharge tube, longi-
tudinal field varies along the tube axis and particles of
different sizes are localized at different tube cross sec-
tions. The removal of particles of the required size in a
certain cross section can be performed using a trans-
verse electron beam.
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Abstract—Parameters of a low-temperature plasma containing dust particles are calculated numerically with
the help of a self-consistent solution of the balance equation for production and recombination of electrons and
ions, combined with the molecular dynamics method for direct simulation of processes in the vicinity of mac-
roparticles. The relation between the charges of macroparticles and the neutral gas pressure, as well as the
dependence of the low-temperature plasma parameters on the volume concentration of dust particles, is ana-
lyzed. It is shown that the plasma characteristics and composition may change noticeably relative to the case
unperturbed by dust even for comparatively low concentration of dust particles. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Processes occurring in dusty plasmas provoke tre-
mendous interest and have become objects of intense
investigations in recent years. Among the most thor-
oughly studied phenomena, we can mention processes
of self-organization occurring in dust–plasma systems;
the formation of dust crystals [1–7] and gas-liquid
phase transitions [8–13], development of instability in
dust clouds [11, 14]; and interactions between macro-
particles, which may lead to the formation of dust clus-
ters. An understanding of the dynamics of the above-
listed processes is of fundamental importance both for
plasma physics and for physics of condensed systems.
However, apart from purely theoretical interest, the
study of these processes has become of practical signif-
icance. This is primarily due to rapid development of
microtechnology as well as the methods for obtaining
new materials in plasmochemical reactors.

Since the application of dusty plasma is regarded as
one of the effective methods for synthesizing nanopar-
ticles with unique physical properties, a grasp of the
mechanisms governing the interaction of macroparti-
cles is a decisive condition for creating the required
technical basis. The main factor responsible for the
emergence of a strong interaction between particles is
the accumulation of considerable electric charges on
macroparticles, which may attain values of Z ~ 103–104

electron charges depending on specific conditions. In
view of the high mobility of electrons, this charge is
usually negative; however, a number of effects such as
secondary electron emission and photoemission [15]
may lead to accumulation of a positive charge. Never-
theless, in spite of the fact that macroparticles accumu-
late considerable static charges of the same polarity, the
1063-7761/03/9603- $24.00 © 0444
presence of the plasma gives rise to additional attractive
forces facilitating self-organization processes and the
growth of clusters. A variety of models describing such
processes have been proposed in the literature [16–18].

In connection with wide application of dc dis-
charges in the technology of deposition of thin films
with preset properties, the effect of macroparticles on
the micro- and macroscopic parameters of the plasma,
as well as the interaction between dust particles, is of
special interest. The presence of particles in a plasma
may significantly modify its properties due to the emer-
gence of an extra source of recombination and (some-
times) production of electrons and ions. At the same
time, dust may considerably affect the chemical and
charge composition of a plasma as well as the rates of
reactions occurring in it.

This study aims at numerical analysis of the effect of
external factors (such as the volume concentration of
dust, the neutral gas pressure, and the rate of ionization
by an external source) on macroscopic and microscopic
characteristics of the plasma, namely, ion and electron
concentrations in the plasma, dust particle charges,
recombination rate, and energy distribution function for
plasma particles. An important factor that must be taken
into account in constructing an adequate model of a
plasma with dust particles is that the system compo-
nents cannot be treated independently since all param-
eters of individual (ion, electron, and dust) subsystems,
as well as processes occurring in these subsystems,
strongly affect one another. Thus, for a given set of val-
ues of external factors, the system ultimately attains a
state of dynamic equilibrium, which can be shifted in a
certain way upon a change in external conditions.
2003 MAIK “Nauka/Interperiodica”



        

EFFECT OF DUST PARTICLES ON THE PROPERTIES OF LOW-TEMPERATURE PLASMAS 445

                   
In view of a large number of interdependent factors
and processes, the problem formulated above is very
complicated and difficult for analysis. The situation is
complicated further still by the fact that the equations
describing the dynamics of the system turn out to be
strongly nonlinear. In this connection, the development
of numerical methods for simulating such systems is of
practical significance.

Numerical calculations have been widely used for a
long time as a tool for studying the processes occurring
in dusty plasmas [18–25]. The drift diffusion approxi-
mation, in which densities and fluxes of charged parti-
cles are determined by solving a system of equations
(including the Poisson equation, continuity equations,
and Boltzmann equations for determining the distribu-
tion function for plasma particles), is one of the most
frequently used approaches. This approach was used
in [19] for calculating the charge of dust particles,
plasma fluxes to the surface of an individual dust parti-
cle, the concentration distribution of electrons and ions
in the vicinity of a macroparticle, and other parameters
in the plasma of a semi-self-maintained discharge in
helium under atmospheric pressure. The same approach
was employed in [20] for similar calculations in a nitro-
gen plasma under atmospheric pressure. The main cri-
terion for applicability of this approach is the condition
of the smallness of the mean free paths of ions and elec-
trons as compared to the characteristic size of macro-
particles and to size of the region of quasineutrality vio-
lation, whose size can be estimated by the Debye
radius. A disadvantage of this approach is that addi-
tional assumptions are required for choosing the
boundary conditions at the surface of a dust particle and
at the boundary of the calculation cell.

Another widely used approach is the molecular
dynamics method involving a direct solution of the
equation of motion for ions and electrons in a self-con-
sistent field produced by the plasma and the charge
accumulated on dust particles. The advantage of this
method is that the above-formulated problem is solved
“from first principles” without using any additional
a priori assumptions. However, the application of this
approach is accompanied by other difficulties associ-
ated with a large number of particles for which calcula-
tions must be performed. These difficulties necessitate
the introduction in actual computations of various sim-
plified models of interaction, limiting the number of
participating particles. This method was used for deter-
mining the type of screening of dust particles [21], for
verifying the limits of applicability for the orbital
motion limited (OML) approximation taking into
account the interaction between ions and atoms of the
neutral gas [22], and for calculating the plasma dynam-
ics in the vicinity of a dust particle in the presence of an
ion flow [23, 24]. In addition to the basic computational
method mentioned above, some authors [25] also
employed combined methods in which the hydrody-
namic description was used for one of the subsystems
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and the Monte Carlo method was applied for describing
another subsystem.

In this study, we carry out numerical simulation of
processes in the plasma–dust system on the basis of the
molecular dynamics method. Our object of investiga-
tion is the plasma of a semi-self-maintained discharge
in helium in the presence of a certain amount of dust.
The model adopted by us is oriented on studying the
evolution of the system to a dynamic equilibrium state
depending on external conditions. Consequently, the
basic principle governing the construction of the model
was that all the quantities characterizing the state of the
system must attain their equilibrium values in a natural
way. In particular, we have discarded any compulsory
control of the number of particles in the calculation cell
or the control of its electrical neutrality.

2. DESCRIPTION OF NUMERICAL MODEL

The initial state of the system was the homogeneous
plasma of a semi-self-maintained discharge in helium.
The mechanisms controlling the production and recom-
bination of charged particles were ionization by an
external source and the electron–ion recombination in
the bulk of the plasma. It should be noted that we apply
the term “semi-self-maintained discharge” not only to a
classical high-pressure semi-self-maintained discharge
controlled by an external electron beam with an energy
of hundreds of kiloelectronvolts, but also to low-pres-
sure quasi-semi-self-maintained discharges like those
with runaway electrons.

The chosen ionization source ensured a constant
rate Q = 1015 cm–3 s–1 of plasma particle production per
unit volume. Equilibrium values of ion and electron
concentrations were formed by the balance between the
production and recombination rates. In our model, the
particle recombination constant was chosen so that the
ion and electron concentrations in the absence of dust
were n0 = 109 cm–3. The ions have a mass of 4 and are
assumed to be singly charged.

The equilibrium temperature for ions is determined
by the interaction with the neutral gas and is approxi-
mately equal to room temperature Ti = 0.025 eV. The
electron temperature is much higher and is determined
by the external electric field. Generally speaking, the
electric field is one of the external factors determining
the system dynamics. For this reason, the study of its
effect on the process of dust particle charging, as well
as on other processes occurring in the dusty plasma,
may be of independent interest. Experience shows,
however, that, since the electron temperature is one of
the basic parameters characterizing the processes in the
plasma–dust system, the main role of the electric field
is associated with determining the value of this intrinsic
parameter. The remaining influence of the electric field
can be treated just as an additional correction to the
temperature factor. In our model, the field remains con-
stant and the electron temperature corresponding to its
SICS      Vol. 96      No. 3      2003
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value is Te = 2.5 eV. We will use the Maxwell distribu-
tion as the equilibrium velocity distribution function for
plasma particles.

Further, we bring a certain amount of dust into the
plasma. In our model, we assume that all macroparti-
cles are spherical in shape and have the same radius a =
10 µm. Such a size of particles is typical of many exper-
iments and can be treated as an averaged value. In sim-
ulations, the dust particle concentration nd varies in a
wide range from 102 to 107 cm–3, being one of the exter-
nal parameters of the system. Plasma particles are ini-
tially neutral.

After the introduction of macroparticles, the system
passes to a new state of dynamic equilibrium. The
dynamics of transition to a new state can be described
by the system of equations

(1)

Here, ne , ni , and nd are the concentrations of electrons,
ions, and macroparticles; Q is the ionization rate; β is
the rate constant of the electron–ion recombination; Zd

is the charge of dust particles; and βed and βid are the
effective rate constants of electron and ion recombina-
tion on the surface of macroparticles. The following
two remarks should be made as a comment on the
above system of equations. First, all the parameters
appearing in the system are quantities averaged over
volume. This should be borne in mind in calculating the
concentrations of ions and electrons, since their values
experience very strong perturbations in the vicinity of
dust particles and noticeably deviate from their mean
values. Second, the rate constant of electron and ion
recombination on the surface of macroparticles during
the evolution of the system are not constant but are
formed by the charge of dust particles and by the
plasma fluxes to their surface.

Thus, in order to solve system (1), we must know the
flows of charged particles to the surface of dust for any
point of time. In our model, these flows are calculated
using an algorithm based on the molecular dynamics
method. We assume that all macroparticles have the
same size and shape. Then, if we disregard fluctuations
due to the presence of other dust particles in their
neighborhood, the processes occurring in the vicinity of
each particle (namely, its charging and the action on the
surrounding plasma) can be treated as identical. Under
these conditions, the system dynamics can be investi-
gated by choosing a dust particle as a representative. In
our model, a single dust particle is at the center of a cal-

dne

dt
-------- Q βnine– βedndne,–=

dni

dt
------- Q βnine– βidndni,–=

dZd

dt
--------- βidndni βedndne.–=
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culation cell, which is spherical like the particle itself.
The choice of such geometry is dictated by the symme-
try properties of the problem.

The cell radius L is chosen equal to 60 µm, which is
six times as large as the radius of the particle. However,
in regard to establishing the boundary conditions, such
a relation is not optimal and it would be better to
increase the proportion. For the initial concentrations of
ions and electrons n0 = 109 cm–3, a cell of the chosen
size contains approximately 1800 particles; however,
since the number of electrons and ions in the cell is not
fixed and is determined by the ratios of the rates of their
production and recombination, it can vary in the course
of computations from hundreds to a few tens of thou-
sands depending on the conditions.

Electrons and ions appear in the cell together with a
flow through its external boundary or they can be pro-
duced directly in the cell volume. The production of
particles in the cell is simulated as a random process
whose probability per unit time is determined by the
ionization rate. The generated particles are distributed
uniformly over the cell volume, and their initial veloc-
ity distribution is assumed to be a Maxwell distribution.
The conditions at the external boundary of the cell will
be considered at a later stage. The number of plasma
particles may decrease due to their absorption at the
surface of the dust particle, due to recombination in the
cell volume and also due to the departure of particles
through the external boundary of the simulation region.

The trajectories of charged particles in the calcula-
tion cell were determined by direct integration of the
system of equations of motion:

(2)

Here, rk is the radius vector of the kth particle relative
to the center of the cell, vk is the particle velocity, mk is
the particle mass, Fk is the force acting on the particle,
and τ is the time step. The value of the time step was
recalculated on each iteration. The criterion for the
recalculation was that the distance traversed by the fast-
est particle from the simulation region must be much
smaller than the size of the dust particle, which plays
the role of the characteristic scale of length in the
present case: τ ! a/vmax.

Let us consider the forces that cause the motion of
particles. These forces can be written in the form

(3)

The first term in this expression describes the interac-
tion of the kth particle with the charge accumulated by
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the dust particle. Here, qk is the charge of a microparti-
cle, which is equal to +e for ions and –e for electrons,
and rk is the distance from the center of the dust parti-
cle. The second term describes the interaction between
ions and electrons. Here, rik is the distance between the
ith and kth particles. The last term in Eq. (3) describes
the interaction of the kth microparticle with atoms of
the neutral gas.

Since we must calculate forces taking into account
pair interaction between electrons and ions, and the
number of participants of this interaction is very large,
we must use additional assumptions to reduce the com-
putation time. A popular and widely used method is
selection of plasma particles falling inside the cutoff
interaction radius [26]. In other words, in calculating
the force acting on a chosen particle, only the contribu-
tions from its nearest neighbors separated from it by a
distance not exceeding the interaction length are taken
into account. However, this approach is inapplicable in
our case for certain reasons. The role of the character-
istic cutoff length that determines the neighbor search
region for plasma particles is played by the Debye
radius, which has a value of λd ≈ 40 µm for the chosen
conditions. First, the size of the corresponding region is
larger than the size of the dust particle and is compara-
ble in order of magnitude to the size of the calculation
cell. Thus, a certain gain can be obtained only for much
higher concentrations of charged particles in the cell.
Second, the application of the given approach is ruled
out by the fact that the charge accumulated on the dust
particle leads to such a strong redistribution of concen-
trations of electrons and ions in the vicinity of the mac-
roparticle that disregarding the contribution of the vol-
ume charge of these regions according to the principle
that it does not fall within the cutoff length would lead
to a large computational error.

Taking into account the above considerations, we
have chosen a different way based on the geometrical
features of the problem. The number density distribu-
tion of particles in the cell is spherically symmetric;
consequently, the electric field also possesses spherical
symmetry and is directed, on the average, to the center
of the cell at any point of it. If we draw a sphere with
the center at the middle of the cell through the chosen
point, the electric field will be determined, in accor-
dance with the Gauss theorem, only by the charge con-
centrated in the selected sphere:

(4)

Here, Zd is the charge of the dust particle and Ni and Ne

are the total numbers of ions and electrons in the
sphere.

Let us now consider in greater detail the mechanism
of plasma particle interaction with neutral gas atoms.
The data on the interaction cross sections were bor-
rowed from [27].

Q̃ Zd Ni Ne–+( )e.=
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For electrons in helium, the frequency of elastic col-
lisions is approximated by the following dependence:

(5)

Here, νe0 is the frequency of elastic collisions, P is the
neutral gas pressure, and Te is the electron temperature.
In the case of electrons, the contribution from inelastic
collisions can be neglected, since these collisions
become significant at higher values of temperature.

In the description of the interaction between ions
and neutral gas atoms in our model, we have taken into
account the polarization mechanism of the interaction
and resonant recharging. The polarization interaction
cross section has the form

(6)

Here, a0 = 0.529 × 10–8 cm is the first Bohr radius, IH =
13.6 eV is the ionization potential for a hydrogen atom,
mi is the mass of an ion, v  is its velocity, and α is the
polarizability of a neutral atom. For a helium atom in

the ground state, we have α/  = 1.39.

The resonant recharging cross section is given by

(7)

Here, I = 24.6 eV is the ionization potential for a helium
atom, v 0 = 2.19 × 108 cm/s is the electron velocity on
the first Bohr orbit, and v  is the velocity of an ion.

Taking into account relations (6) and (7), we can
write the expression for the frequency of collisions
between ions and neutral gas atoms in the form

(8)

Here, n0 = P/kT0 is the concentration of neutral gas
atoms, kT0 = 0.025 eV is the neutral gas temperature, P
is the pressure, and v  is the velocity of an individual ion.

The interaction of plasma particles with the neutral
gas is of the type of random collisions. In each colli-
sion, the velocity of an ordered plasma particle motion
is lost and a part of energy is transferred to a neutral
atom. In our model, we take into account this interac-
tion by adding an effective frictional force, which was
denoted earlier by fk0. In our case, this way is preferen-
tial as compared to the statistical method of description,
i.e., the method of random generation of collisions in
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the calculation cell. As a matter of fact, when we con-
sider the interaction with neutral atoms, the main factor
producing the strongest effect on the evolution of the
system is the loss of ion energy (which was acquired in
the field of the dust particle) during collisions. As a
result, the ions get into a potential trap and their trajec-
tories become finite. Over the course of time, every ion
of this sort experiences new and new collisions, losing
energy each time, and ultimately finds itself on the sur-
face of the macroparticle. If we use the statistical
description, we should trace the trajectories of all such
ions (even those which must leave the simulation
region). In addition, the times of their finite motion may
turn out to be significant as compared to time periods
over which the system dynamics can be simulated in
actual practice. For this reason, we have chosen the
model in which collisions are treated not as discrete
events, but as an interaction distributed over the time.
The formula for the effective frictional force can be
written in the form

(9)

Here, νk0 is the frequency of collisions with neutral gas
atoms, T0 is the neutral gas temperature, εk is the kinetic
energy of a particle, µ is the reduced mass, and vk is the
particle velocity. The second factor in Eq. (9) has been
introduced to take into account the effectiveness of
energy transfer in collisions. This is required since, in
simulating the motion of an individual particle, it is
impossible to separate the energy acquired in external
fields from its thermal energy. At the same time, if the
particle is thermalized, the energy transfer to the neutral
gas must cease.

Taking into account relations (4) and (9), we can
rewrite expression (3) for the force acting on a micro-
particle in the form

(10)

To implement the algorithm of force computation, the
calculation region was divided into spherical layers.

The value of  and, accordingly, the value of the elec-
tric field in each layer were recalculated on each time
step, and the force exerted on an individual particle was
determined from its occurrence in a certain layer.

Let us now discuss the boundary conditions on the
outer surface of the calculation cell. In order to main-
tain the balance of the number of particles in the simu-
lation region, we must know the ion and electron flows
through the outer surface to the bulk of the cell. Until
the dust particle accumulates a considerable charge,
these flows are the same as in the case of plasma unper-
turbed by the presence of dust. Thus, the number of par-
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ticles getting into the cell per unit time is determined by
the average concentrations ne and ni of electrons and
ions as well as by the area of the outer surface of the
cell. The velocity distribution function for particles is
isotropic and assumed to be of the Maxwell type. In
order to determine the flow unperturbed by the pres-
ence of dust, preliminary computation without a mac-
roparticle in the simulation region is carried out. Under
equilibrium conditions, the particle flows outside the
cell and those directed to its bulk coincide. For this rea-
son, instead of each departing particle, a new particle is
created at random at an arbitrary site on the cell bound-
ary, the velocity of this particle being directed to the
bulk of the cell. Then, the numbers of electrons and ions
falling on the external boundary are counted for some
time. After collection of acceptable statistics and deter-
mination of plasma flows with sufficient accuracy, the
electron and ion production rates on the outer boundary
are preserved and are subsequently used in the algo-
rithm simulating at random the inflow of electrons and
ions into the simulation region through its outer
surface.

While the charge of the dust particle increases, an
appreciable potential is created at the boundary of the
simulation region, which rules out the use of the elec-
tron and ion production rates, determined in the unper-
turbed state, in subsequent computations. This diffi-
culty can be overcome simply by increasing the cell
size; however, as mentioned above, a purely technical
restriction exists that limits the maximal number of par-
ticles whose motion can be calculated using the molec-
ular dynamics method. For this reason, we had to use
auxiliary considerations for correcting the flows
through the external boundary as well as the form of the
velocity distribution function for particles falling into
the calculation cell.

In order to solve the problem in our model, we use
the following procedure. First of all, we find a sphere of

radius  for electrons and ions, beyond which the
plasma can be treated as unperturbed. As a criterion, we
use the assumption that the average kinetic energy of
particles at the boundary of the sphere has the same
order of magnitude as the potential energy of interac-
tion with a macroparticle. This criterion can be written
in the form

(11)

Here, Ti, e are the temperatures of ions and electrons,
which are the measures of their kinetic energy; ϕ(L) is
the potential at the boundary of the calculation cell; and

 is the effective screening radius. It is necessary to
use the effective screening radius instead of the conven-
tional Debye radius, since screening becomes nonlinear
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on account of large values of the charge accumulated by
the macroparticle. In order to determine the value of

, we make use of the equation

(12)

Here, L is the calculation cell radius, Zd is the macro-
particle charge, and ϕ(L) is the value of potential at the
cell boundary, which is determined in the course of

simulation. Calculations show that the value of , in
contrast to the Debye radius, may be as high as several

hundred micrometers. The values of  and  are
recalculated on each time step.

When the size of the region beyond which the
plasma can be regarded as an equilibrium plasma
exceeds the size of the calculation cell, the algorithm
correcting the flows at the external boundary comes
into play. Particles are generated at the boundary of

sphere  at a rate corresponding to the conditions in the
unperturbed plasma. Their spatial positions, directions
of motion, and the magnitudes of their velocity are set
at random. For each added electron or ion, the calcula-
tion cell with all particles contained inside plays the
role of a charged sphere in whose field particle motion
takes place. If we disregard for the time being the inter-
action with the neutral gas, we can easily determine
from the momentum and energy conservation laws
whether a generated particle gets into the calculation
cell and, if it does, its parameters. Denoting the velocity
of the generated particle by v 0 and the angle between
the direction of the velocity vector and the normal to the

surface of sphere  by θ0 (see Fig. 1), we can write the
condition for the particle getting into the calculation
cell in the form

(13)

In this relation, v  stands for the velocity with which the
particle falls into the calculation cell:

(14)

Here, the plus sign corresponds to ions, and the minus
sign, to electrons. If the radicand is found to be negative
(which may be the case for electrons), this also means
that the particle does not reach the surface of the com-
putational cell. Such verification is carried out for each
new electron or ion, which can appear in the computa-
tional region only if condition (13) is satisfied.
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The proposed correction algorithm makes it possi-
ble to take into account the deviation of flows from their
equilibrium values due to the fact that the calculation
cell is not electrically neutral. However, in addition to
this factor, there also exist auxiliary flows associated
with the effect of the interaction of charged particles
with the neutral gas. This concerns primarily the ions,

which, while moving in sphere , may experience an
inelastic collision; this inevitably leads to their falling
into the calculation cell after a certain time. This pos-
sibility is taken into account by additional coin tossing
for each ion. The collision probability can be esti-
mated as

(15)

An ion that has experienced a collision hits the cell at
the thermal velocity.

Let us return to system of equations (1) and rewrite
it in the form

(16)

Here, dNi and dNe are the numbers of ions and electrons
absorbed by the macroparticle over time interval τ.
Thus, starting the computational procedure and count-
ing directly the number of particles absorbed by the sur-
face of the dust particle per unit time, we can trace the
dynamics of the system evolution to the equilibrium
state. In turn, a change in the averaged concentration of
ions and electrons with time leads to a change in the
flows of plasma particles through the external boundary
to the bulk of the calculation cell, since these flows are
proportional to ne and ni . Taking this factor into

L̃

p
2 L̃ν i0 θ0cos

v 0
----------------------------.∼

ne t τ+( ) ne t( ) Q βni t( )ne t( )–[ ]τ dNend,–+=

ni t τ+( ) ni t( ) Q βni t( )ne t( )–[ ]τ dNind,–+=

Zd t τ+( ) Zd t( ) dNi dNe.–+=

Equilibrium flow 
Calculation cell

Sphere of interaction

L~
v0θ0

Zd
of particles 

Fig. 1.
SICS      Vol. 96      No. 3      2003



450 OLEVANOV et al.
account, we obtain a completely closed and self-consis-
tent solution to the formulated problem.

3. RESULTS OF SIMULATION

Using the approach described above, we simulated
the dynamics of processes occurring in the plasma–dust
system upon a change in the neutral gas pressure and
the dust concentration in the bulk for a constant value
of parameter E/P.

The dependence of the charge accumulated by an
individual dust particle on the neutral gas pressure is
shown in Fig. 2. The parameters used in calculations
are as follows: Q = 1015 cm–3 s–1; the ion and electron
concentrations unperturbed by the presence of dust are
ni, ne = 109 cm–3; nd = 103 cm–3; Te = 2.5 eV; and Ti =
0.025 eV. The macroparticle radius is a = 10 µm, and
the size of the calculation cell is L = 60 µm. The pres-
sure varied from 10–4 to 760 Torr. It can be seen from
the curve that the absolute value of charge behaves non-
monotonically and decreases sharply to half the initial
value upon a change in pressure approximately to
1 Torr; then the curve displays an insignificant increase,
after which the charge attains saturation and remains
approximately constant upon an increase in pressure up
to atmospheric pressure.

Analyzing the obtained dependence, we conclude
that the sharp decrease in the absolute value of charge
upon an increase in pressure from 10–4 to 1 Torr is due
to the fact that the number of inelastic collisions
between ions and neutral gas atoms in the vicinity of
the particle increases. As a result, ions find themselves
in a potential well and, losing energy in subsequent col-
lisions, ultimately fall on the surface of the macroparti-
cle, thus increasing the flow of positive charge. The size
of the region in which the ions experiencing a collision
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Fig. 2. Dependence of the macroparticle charge on the neu-
tral gas pressure: Q = 1015 cm–3 s–1, n0 = 109 cm–3, nd =

103 cm–3, Te = 2.5 eV, Ti = 0.025 eV, a = 10 µm.
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get into the potential trap can be estimated by equating
the energy of interaction with the macroparticle to their
average thermal energy. As the pressure increases fur-
ther, the mean free path of ions decreases to such an
extent that practically every ion falling into the sphere
of interaction experiences a collision and is trapped by
the dust particle. This means that the cross section of
interaction between ions and the macroparticle stops
increasing starting from a certain instant and is deter-
mined by the size of the interaction region. Thus, we
can draw the conclusion that the charge of the macro-
particle remains practically unchanged in a wide range
of pressures. This can be clearly seen from Fig. 2.

Using the obtained result, we can estimate the size
of the ion–macroparticle interaction region. For this
purpose, we equate the electron flux obtained in the
OML approximation to the gas-kinetic flux of ion to the
surface of the sphere in which an ion gets trapped. It
should be noted at the very outset that the application of
the OML approximation for electrons is justified, since
the cross section of their interaction with neutral gas
atoms is small and the mean free path is much larger
than the size of the region in which the interaction with
the macroparticle noticeably affects the trajectories of
motion. We write the final expression in the form

(17)

Here,  and  are the thermal velocities of ions and
electrons, ni and ne are the mean concentrations of
charged particles, φ0 is the potential of the macroparti-

cle surface, a is the radius of the dust particle, and  is

the size of the interaction region. Deriving  from
Eq. (17), we obtain the following estimate:

(18)

Here, P = Zdnd/ne is a dimensionless parameter charac-
terizing the relative charge accumulated at dust parti-
cles under the dynamic equilibrium conditions. Substi-
tuting the values of parameters listed above and Zd ≈
20000 into the expression obtained and considering
that P ! 1 for the dust concentration nd ≈ 103 cm–3, we

obtain  ≈ 165 µm. This value is much larger than the
Debye screening radius in plasma, which is equal to
λd ≈ 40 µm under the above conditions.

The parameters of the system used for estimating 
are typical of most experiments with plasma–dust crys-
tals; according to the results of such experiments [1–7],
the characteristic size of the crystal lattice constant is
on the order of 100–300 µm. In respect to the theory of
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crystal structure formation in a plasma, this fact leads to
considerable difficulties, since the observed lattice con-
stant is much larger than the predicted interaction
length that can be estimated by the Debye radius. This
discrepancy provoked considerable interest in the
screening mechanisms in dusty plasmas.

The quantity  estimated by us has an important
physical meaning. It is just the size of a macroatom
with a dust particle as the nucleus, in which the role of
the electron cloud is played by the cloud of ions in the
potential trap. In this connection, we can view the pro-
cess of dust crystal formation from a slightly different
standpoint; namely, we can consider the above-men-
tioned atoms as the building blocks of the crystal struc-
ture. Such an approach differs from the traditional one.
In the conventional treatment, plasma is regarded just
as a factor responsible for the screening of the macro-
particle interaction potential. The crystal obtained in
this case is of the purely Coulomb type. In contrast to
the traditional approach, the variant considered here
envisages the existence of crystals with a free boundary.
In addition, we can state that the interaction between
ions and neutral gas atoms, which is completely disre-
garded in the traditional model, may in fact become the
main factor in the description of the mechanisms of
self-organization in a plasma–dust system. Returning to

the results of experiments, we note that the value of 
obtained by us is in full accordance with the observed
distance between particles in dust crystals. Although
crystals with a free boundary have not been obtained as
yet, plasma–dust drops were indeed observed [16].

Continuing the analysis of Fig. 2, we note that the
change in the equilibrium charge of macroparticles
upon an increase in the neutral gas pressure is non-
monotonic. This can be explained by the fact that, upon
an increase in the gas pressure, ions in the vicinity of
the dust particle start experiencing multiple collisions,
thereby losing the energy accumulated in the accelerat-
ing field of the particles. This leads to a decrease in the
positive charge flow to its surface. As regards the
description of the system, this necessitates a transition
to the hydrodynamic approximation, while the OML
approximation can be used for low pressures. However,
the sharp change in the value of charge at the beginning
of the curve indicates that, even in the case of low pres-
sure, this approximation may lead to a significant error,
since even individual collisions in the vicinity of the
macroparticle lead to trapping of ions and their fall to
its surface.

Let us now analyze the evolution of the system for
various values of dust volume concentration. Figure 3
shows a family of curves illustrating the dynamics of
the macroparticle charge evolution for different con-
centrations of dust particles. Simulation was carried
out for the same values of parameters as in the previ-
ous case, but for a fixed value of neutral gas pressure
of P = 1 Torr. The dust concentration varies from 10 to

λ̃

λ̃
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107 cm–3. Along the abscissa axis, we laid the time
elapsed from the introduction of neutral dust particles
into a volume filled with ionized gas. The value of pres-
sure chosen for simulating the system dynamics was
not accidental: it corresponds to the transition region
between the OML approximation and the hydrody-
namic regime. Numerical calculations for this range of
parameters are of special interest, since analytical
methods are the least suitable in this case.

Figure 3 shows that the processes leading to the
establishment of a dynamic equilibrium state exhibit
different modes of evolution for different numbers of
macroparticles per unit volume. For low concentrations
of dust, the charge attains a steady-state value via an
ordinary relaxation process with a characteristic charg-
ing time on the order of 0.1 µs. However, the shape of
the curve changes upon an increase in the macroparticle
concentration. First, the absolute value of the charge
attains its peak and then decreases to a certain steady-
state value. The rate of the system transition to the sta-
tionary state increases with the volume concentration
of dust.

The change in the dynamics of charging can be
explained by analyzing the evolution of processes in the
system from the viewpoint of the balance between the
production and recombination of charged particles in
the plasma. Since electrons possess higher mobilities
and energies as compared to ions, the rate of their
recombination at the surface of macroparticles for
fairly high dust concentrations is much higher than the
rate of destruction of ions. As a result, the equilibrium
between the production and recombination of electrons
in the bulk sets in much earlier than for ions, and their
flow to the surface of macroparticles stops changing.
This leads to the emergence of a characteristic maxi-
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mum on the charging curve since the equilibrium for
ions sets in more slowly, and the ion flow to the surface
continues to increase for some more time.

Figures 4 and 5 show the dependences on the dust
particle charge Zd as well as average electron and ion
concentrations in dynamic equilibrium on the concen-
tration of macroparticles in the bulk. The ion and elec-
tron concentrations are expressed in relative units. As a
unit, we have chosen the equilibrium concentrations ni0,
ne0 = 109 cm–3 in the absence of dust. It can be seen from
the figures that the charge of macroparticles increases
with the number of dust particles and that the steady-
state values of ne and ni change almost synchronously.
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Fig. 4. Dependence of the macroparticle charge in equilib-
rium on the dust concentration. Solid curve is the result of
simulation and dashed curve is the result of calculation in
the orbital motion limited approximation.
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This confirms the thought that the states of the dust and
plasma subsystems are strongly interrelated under real
conditions. The effect of the large amount of dust in
the bulk on the dynamics of the system is manifested
starting from nd ~ 104 cm–3; in this case, a sharp
decrease in the charge accumulated by dust particles
takes place, and the degree of ionization also
decreases. A similar behavior of the system was
observed earlier in experiments on the dynamics of
dust particle charging [28].

The observance of the quasineutrality condition ne +
Zdnd = ni was not specially controlled by the numerical
algorithm; the results of calculation show, however, that
the system passed spontaneously to a state in which this
condition is satisfied almost exactly. A deviation from
the quasineutrality condition expressed in the above
form takes place only for very high dust concentrations
nd ~ 107 cm–3. This is a consequence of the fact that the
size of the calculation cell becomes comparable with
mean distances between dust particles, and we find our-
selves almost at the boundary of the proposed scheme
applicability. The quasineutrality condition and the
symmetry of the problem presume that the space filled
with macroparticles can be divided into electrically
neutral cells in which the balance between the produc-
tion and recombination of plasma particles is main-
tained in the steady state. The volume of such a cell can

be estimates at V ~ . Since the entire space is filled
with such cells, the average flow of plasma particles
through the boundary of each cell can be assumed to be
equal to zero. The above estimate of V can be used as
the measure of the calculation cell size, for which the
application of periodic boundary conditions is justified
in various numerical models. The use of the Debye
radius for such an estimate may lead to large errors
since the calculation of screening in the case of dust
particles cannot be carried out in the framework of the
linear approximation.

In our model, for low concentrations of dust parti-
cles, the size of a cell in which the quasineutrality con-
ditions must be observed is much larger than the size of
the calculation region. Under this condition, the bal-
ance between the particle production and recombina-
tion is controlled by flows from the external cell bound-
ary and the sink to the surface of a macroparticle. How-
ever, as the concentration of macroparticles increases,
the cell volume V becomes comparable with the size of
the simulation region, and the role of flows from the
external boundary becomes smaller. In this case, the
processes of ionization and recombination in the com-
putational region itself play the major role. Thus,
Eqs. (1) describing the balance between the particle
production and recombination in the system in the form
averaged over volume should be replaced by a purely
statistical description of these processes. In our model,
the latter regime was implemented by generating the
corresponding events with allowance made for their

nd
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probability. In the latter case, the quasineutrality condi-
tion is satisfied for the calculation region proper, but
noticeable charge fluctuations are possible under these
conditions and were actually observed in our simula-
tions.

Let us return to analysis of the evolution of plasma
particle concentration upon an increase in the amount
of dust in the volume. Figure 5 shows that, starting from
a value of nd ~ 105 cm–3, the concentration of positive
ions increases. This is due to the fact that, under the
given conditions, dust is the main mechanism of recom-
bination for plasma particles; however, the cross sec-
tion of ion recombination at macroparticles noticeably
decreases in view of the decrease in the absolute value
of negative charge accumulated by macroparticles. On
the whole, the electron concentration decreases to such
an extent that the system passes to the state of a purely
ionic two-component plasma. Positively charged gas
ions play the role of the light component, while nega-
tively charged macroparticles form the heavy compo-
nent. This consideration may be useful in constructing
a kinetic description of the system in the case of a high
dust concentration.

Figure 6 shows the rate constants of electron and ion
recombination at macroparticles under dynamic equi-
librium as functions of the dust concentration. For cal-
culating βed and βid , we have used Eqs. (1) with a zero
left-hand side and with the values of ne and ni obtained
as a result of simulation. In this case, we can write the
following expressions for βed and βid:

(19)

The dependence is nonmonotonic on the whole. This
means that different modes of evolution to equilibrium
take place depending on the relative role of various fac-
tors. For a low dust concentration in the volume, the
equilibrium between the production and recombination
of ions and electrons is maintained due to the electron–
ion recombination. As a result, the concentrations of
plasma particles are nearly identical; consequently, the
rate constants of recombination at dust particles are
also equal. This conclusion follows from the condition
of equality of the ion and electron flows to the surface
of macroparticles. The enhancement of the role of
recombination at dust particles becomes significant
starting from a concentration of nd ~ 104 cm–3. This is
manifested in the divergence of the curves in Fig. 5.

In respect to the macroparticle charging dynamics,
the competition of two processes with different relax-
ation times is possible, which determines the path of the
system to equilibrium. The first process corresponds to
the establishment of balance for ion and electron flows
to the surface of a macroparticle, while the second pro-
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cess leads to equilibrium between the production and
recombination of plasma particles in the bulk. The situ-
ation when equilibrium between the flows to the mac-
roparticle surface sets in much later than the balance
between the rates of particle production and recombi-
nation in the bulk is realized for dust concentrations
nd * 105 cm–3. Under these conditions, the absolute
value of the charge of dust particles decreases, leading
to a rapid increase in the electron recombination rate
constant at macroparticles and to a decrease in the cor-
responding constant for ions. As the concentration of
dust increases further, the electron recombination rate
constant passes through a maximum and also starts
decreasing. This is due to the fact that the existing
source of ionization cannot maintain the increasing rate
of electron departure from the bulk any longer. Thus,
the electron flow to the surface of individual macropar-
ticles decreases.

An analysis of the curves shows that the rate con-
stants of recombination at macroparticles are not con-
stant quantities depending only on the features of inter-
action between macroparticles and plasma particles,
but are determined by the state of the system as a whole,
which is given by a set of external factors such as the
ionization rate or the concentration of macroparticles in
the bulk of the plasma. This result is a consequence of
the open nature of the system. It should also be noted
that the rate constants of recombination at dust particles
are many orders of magnitude higher than the rate con-
stant of the electron–ion recombination. In our model
calculations, the value of this rate constant was taken
equal to β = 10–3 cm3 s–1, which was generally dictated
by computational considerations since the number of
particles participating in simulation cannot be
extremely large. Under real conditions in helium, the
electron–ion recombination rate constant is on the
order of β = 10–8–10–9 cm3 s–1. Let us see how this
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Fig. 6. Dependence of the rate constants βid and βed of ion
(solid curve) and electron (dashed curve) recombination at
the surface of macroparticles on the dust concentration.
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affects the parameters of the system in dynamic equi-
librium. For this purpose, we solve system of equa-
tions (1) in the stationary case for ne and ni and write
the asymptotic expressions for the concentrations for
small values of nd:

(20)

For β ~ 10–8 cm3 s–1 and βid ≈ βed ~ 102 cm3 s–1, the ratio
βed/β is on the order of 1010. The equilibrium concentra-
tions of charged particles under the same conditions are
n0 ≈ 1011 cm–3. The estimates obtained above indicate
that even a minimal concentration of dust in the volume
of about 102 cm–3 must lead to a sharp decrease in the
concentration of charged particles and the role of bulk
recombination in the establishment of dynamic equilib-
rium must be small as compared to the processes of
recombination at the macroparticle surface.

However, this conclusion strongly contradicts the
results of a number of experiments. The dependence of
the current in a semi-self-maintained discharge in
helium on the dust concentration reported in [19] shows
that a noticeable decrease in the number of plasma par-
ticles is observed only for dust concentrations on the
order of 104 cm–3. Consequently, the electron–ion
recombination treated in our model as the main factor
responsible for the balance of the production and
recombination of charged particles is far from being the
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Fig. 7. Dependence of the ion (1) and electron (2) concen-
tration in the vicinity of a dust particle on the distance from
its center; nd = 104 cm–3, P = 1 Torr. Solid curves corre-
spond to the density distribution obtained in numerical
experiment and dashed curves correspond to the equilib-
rium concentration distribution.
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only way, and other possibilities can also be realized in
actual practice. For example, the balance equations
should be supplemented with diffusion and drift fluxes
of charged particles. In this case, the problem ceases to
be spatially homogeneous and geometrical features of
specific experiments must be taken into account in cal-
culations.

Summarizing the discussion of the system parame-
ters in equilibrium, let us compare our results with the
results of similar calculations made in the OML
approximation. This may be interesting, since the latter
approximation is widely used in applications. The
dashed curve in Fig. 4 describes the charge of macro-
particles obtained in the OML approximation. It can be
seen from the figure that the values of charges calcu-
lated for a neutral gas pressure of 1 Torr differ almost
by a factor of 2. This is another evidence of the fact that
the interaction of plasma particles with neutral gas
atoms is a significant factor determining the system
dynamics, which cannot be disregarded while con-
structing models.

Let us now consider processes in the immediate
vicinity of a macroparticle. Figure 7 shows the time-
averaged distributions of the ion and electron concen-
trations as functions of the distance to the center of an
individual dust particle. The neutral gas pressure P is
equal to 1 Torr and the volume concentration of dust nd

is equal to 104 cm–3. The same figure shows for compar-
ison the dependences of the densities of charged parti-
cles on the distance, which are given by the Boltzmann
distribution. It can be seen that the curves obtained sta-
tistically and the theoretical curves are in acceptable
agreement. However, to match the curves for ions to a
certain extent, we had to take as the distribution param-
eter the average kinetic energy of ions  = 1.0 eV in the
immediate vicinity of the macroparticle surface, but not
the equilibrium temperature Ti = 0.025 eV. This means
that the heating of ions in the field of a macroparticle
plays a significant role in describing the system dynam-
ics and that the employment of the parameters of the
plasma unperturbed by the presence of dust for this pur-
pose is unjustified. In the case of electrons, good agree-
ment between the theoretical curves and the results of
numerical experiment was reached using the electron
equilibrium temperature Te = 2.5 eV.

One more feature of the plasma particle concentra-
tion distribution should also be noted. Comparison of
Figs. 7 and 5 shows that the value of the electron con-
centration at the boundary of the computational region
almost coincides with the volume-averaged value rep-
resented in Fig. 5, while the ion concentration exceeds
the corresponding value in the region unperturbed by
the field of the macroparticle approximately by a factor
of 1.7. This is not accidental and is due to the fact that
the distance from the center of the macroparticle
beyond which the plasma can be regarded as unper-
turbed is much longer than the size of the calculation
cell. In this respect, the observed deviation in ion con-

εi
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centrations may serve as an additional confirmation of
the necessity of introducing a plasma flow correction
procedure on the external boundary of the calculation
cell into the computational algorithm and also illus-
trates the effectiveness of its operation.

Figure 8 shows the distributions of the average
kinetic energies of ions and electrons under the same
conditions. These data, as well as the concentration dis-
tributions, were collected statistically over a certain
period of time during which the system had already
been in dynamic equilibrium. In this procedure, the
arithmetic mean values of the kinetic energy of parti-
cles located at the same distance from the center of the
calculation cell were calculated for every time selec-
tion. The figure shows clearly that the energy of ions
increases, while the energy of electrons decreases with
decreasing distance to the macroparticle surface. We
also obtained the values of energies of ions and elec-
trons absorbed at the surface of macroparticles. For the
same parameters of the system, these energies are  =

5.12 eV and  = 1.05 eV. It can be seen that the value

of  for electrons is several times larger than the
value of the averaged kinetic energy directly at the mac-
roparticle surface. This means that the absorption at the
surface of macroparticles strongly affects the energy
distribution function for particles that remain in the
bulk. On the whole, the electron energy spectrum is
noticeably “cooled” relative to the case of dust absence.
Since the charge accumulated by dust decreases upon
an increase in the amount of dust in the bulk, electrons
with lower energies can overcome the potential barrier.
This means that the effect of the electron distribution
function cooling upon an increase in the dust concen-
tration in the bulk must be manifested more strongly.
This effect was indeed observed in our calculations and
was represented in the gradual increase in the distance
between the boundary of the region in which the aver-
aged electron kinetic energy differs noticeably from its
unperturbed value and the macroparticle surface upon
an increase in nd . Thus, the inclusion of this factor is
actually required in the description of the plasma kinet-
ics and treatment of the transport processes in the pres-
ence of dust particles even for comparatively low dust
concentrations.

On the whole, the analysis of the results obtained
here indicates that dynamic equilibrium is established
in the system via the attainment of a complex balance
between various processes, and the ways in which the
system reaches equilibrium may differ significantly
depending on the combination of external factors. The
self-consistent approach developed by us here proves to
be a suitable tool for solving this type of problems, but
requires a further refinement for obtaining a more com-
prehensive and adequate description. For example, the
evolution of the energy distribution for plasma particles
must obviously be included along with other dynamic
processes considered in this connection. This in turn

εed

εid

εed
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might change the cross sections of interactions and
reaction rates in a multicomponent plasma. Thus, fur-
ther investigations in this field are of profound interest,
and we plan to work in this direction.
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Abstract—Muon catalyzed fusion (MCF) in deuterium was studied by the MCF collaboration on the Joint
Institute for Nuclear Research Phasotron. The measurements were carried out with a high-pressure deuterium
target in the temperature range 85–790 K at densities of about 0.5 and 0.8 of the liquid hydrogen density. The
first experimental results for the ddµ molecule formation rate λddµ in the temperature range 400–790 K with
a deuterium density of about 0.5 of the liquid hydrogen density are presented. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The processes of muon catalyzed fusion (MCF) in
deuterium have been studied at many laboratories [1–
10]. Recent years have seen significant success both in
theoretical consideration [11–14] and in the measure-
ments of the ddµ molecule formation rate including
strong spin effects. Recent data [9, 10] give an example
of the progress achieved in the accuracy of measuring
the fine effects of MCF in low-density deuterium gas at
temperatures of 28–350 K. However, there are still no
direct experimental data for the MCF processes at tem-
peratures above 400 K. The only experimental (nondi-
rect) result for λddµ at temperatures up to 600 K [2] was
obtained from the analysis of muon losses in an exper-
iment with double deuterium–tritium mixtures and had
large errors. It is important that at these temperatures,
a large ddµ formation rate for the dµ atom spin state
F = 1/2 should be expected to prevail over that for the
spin F = 3/2 [14]. These measurements of λddµ at high
temperatures are also necessary for correcting the eval-
uation of the parameters of the dt fusion cycle derived
from experiments [15].

Here, we present the results of the measurements in
a dense deuterium gas in a wide temperature range,

¶This article was submitted by the authors in English.
1063-7761/03/9603- $24.00 © 20457
85−790 K. The aim of the experiment was to measure
the formation rate λddµ in dense deuterium for the first
time in a temperature range up to 800 K. The scheme of
the process is presented in Fig. 1.

2. EXPERIMENT

The experimental method is similar to that used
in [16]. We measured and analyzed the time and charge
(deposited energy in a neutron detector) distributions of
2.5 MeV neutrons from the dd fusion reactions

(1)

(2)

The simplified experimental layout is shown in Fig. 2.
The essence of the experimental installation is
described in [17]. The installation was mounted on the
muon beam line of the Joint Institute for Nuclear
Research Phasotron.

2.1. Target 

The central part of the installation was a specially
constructed deuterium high-pressure target (T) [18]

dµ d ddµ He3 n µ,+ + +

dµ d ddµ Heµ3 n.+ +
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with a volume of 76 cm3 (Fig. 3). The ampoule of the
target was made of the special hydrogen-resistant alloy
XH40MDTYu-ID. The ampoule was surrounded by a
set of radiation screens (RSs) and is placed inside a vac-
uum chamber (VC) made of stainless steel. The total
amount of wall matter on the muon beam path was
about 11 mm. The target was able to withstand pres-
sures up to 1500 bar at temperatures up to 800 K. A set
of devices [18] was used for handling the deuterium
gas. To achieve the deuterium purity of impurities with
Z > 1 at a level of 0.1 ppm, the target was filled using a
palladium filter and a vanadium–deuterium pressure
source [19].

2.2. Detectors 

The target was surrounded by a set of detectors.
Scintillation counters 1–3 detected incoming muons.
Cylinder-shaped scintillation counters 4 and 5 served to
select muon stops in the target (signal 1 × 2 × 3 × 4 ×

). Specially designed cylinder-shaped scintillation
counters 1-e and 2-e were used to detect µ-decay elec-
trons. A coincidence between the signals of counters 5
and 1-e, 2-e was considered as a µ-decay electron. A
large neutron detector (with the NE-213 volume 12.5 l)
[20] was aimed to detect neutrons from reactions (1)
and (2). To reduce the background, the n–γ separation
was realized by comparing signals for the total light and
the fast component light of the neutron detector signal.
The γ-quantum discrimination efficiency was better
than 10–3 for energies larger than 100 keV.

A NaI(Tl) crystal was used to search for the rare
fusion channel d(d, γ)4He in parallel with the main aim
of the experiment (the subject matter of this paper).

The timing sequence of the 4, 5, 1-e, 2-e, and neu-
tron detector signals was registered by flash ADC and
was recorded on a PC. The trigger is described in [22].

2.3. Experimental Conditions 

Two exposure runs were carried out. One was with
the target filled with an equilibrium protium–deuterium
mixture (21% of H) in the temperature range 85–300 K
at a density of ϕ ≈ 0.84 LHD (as usual, density is given
in units of the liquid hydrogen density, LHD = 4.25 ×
1022 nucl/cm3). The exposure at ϕ ≈ 0.47 LHD was also
measured at 300 K.

The second exposure run was carried out with the
target filled with pure deuterium (protium content was
about 0.1%) in the temperature range 300–790 K at a
density of ϕ ≈ 0.48 LHD.

The experimental conditions and the electron statis-
tics gathered for all runs are presented in Table 1. The

5
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Table 1.  Experimental conditions and statistics

Run T, K
Content, %

ϕ, LHD Ne
H D

1 85 (1) 20.7 (0.1) 79.3 (0.5) 0.840 (0.025) 685200

2 110 (1) 20.7 (0.1) 79.3 (0.5) 0.841 (0.025) 456500

3 230 (1) 20.7 (0.1) 79.3 (0.5) 0.831 (0.025) 415900

4 301 (3) 20.7 (0.1) 79.3 (0.5) 0.831 (0.025) 427000

5 299 (3) 20.7 (0.1) 79.3 (0.5) 0.473 (0.014) 374900

6 290 (4) 0.1 (0.1) 99.9 (0.1) 0.480 (0.014) 355500

7 401 (10) 0.1 (0.1) 99.9 (0.1) 0.480 (0.014) 226900

8 530 (10) 0.1 (0.1) 99.9 (0.1) 0.480 (0.014) 194900

9 660 (10) 0.1 (0.1) 99.9 (0.1) 0.480 (0.014) 208700

10 791 (15) 0.1 (0.1) 99.9 (0.1) 0.483 (0.020) 301900
background exposure with an empty target was also
carried out.

3. KINETICS OF THE ddµ FUSION CYCLE

The basic processes of the kinetics of the resonant
formation of ddµ molecules are considered in [11, 12].
The dµ atoms are formed over a time of about 10–12ϕ–1 s
[23] with the energy of a few eV and are thermalized at
a rate of about 109ϕ s–1 [24]. Two different hyperfine
states of the dµ atoms F = 3/2 and F = 1/2 are statisti-
cally populated by the respective probabilities 2 : 3
and 1 : 3. After that, processes of resonant ddµ forma-
tion (3) and dµ atom spin-flip processes (4) occur:

(3)

(4)

The rates of direct and inverse spin-flip processes (4)

(λd and ) are connected by the detailed balance rela-
tion

(5)

In the process of resonant ddµ formation (3), the
released energy (the binding energy of the ddµ meso-
molecule formed) is transmitted to the excitation of
vibration–rotational states of the mesic molecular com-
plex [(ddµ)dee]*. In the case of the usually nonresonant
ddµ formation,

(6)

dµ D2 ddµ( )dee[ ] ∗ ,+

dµ( )F 3/2= D2 dµ( )F 1/2= D2.++

λd'

λd' γλd, γ 2 ∆E/T–( ),exp= =

∆E 0.0485 eV.=

dµ D2 ddµ( )de[ ] + e,+ +
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the released energy is taken away by a conversion elec-
tron. The rate of this nonresonant mechanism (λnr) is
sufficiently small and increases with temperature
(energy) as [25]

(7)

In the ddµ complex formed (3), the processes of dd
fusion (with rates of λf ~ 109 s–1 [26])

(8)

(9)

(10)

compete with the processes of complex deexcitation
and complex back decay. The dµ atom formation rate
and the thermalization rate, as well as the dd fusion
rate, are much higher than the effective hyperfine tran-
sition rates and the effective (experimentally observ-
able) mesomolecule formation rate. At times larger
than the lifetime (~0.5 ns) of the mesomolecular com-
plex, the kinetics is therefore described by the scheme
in Fig. 1 and depends on the effective rates of spin-flip
processes (4) and the effective rates of ddµ formation
from two hyperfine states (λ1/2 and λ3/2). The following
system of differential equations corresponds to the
kinetics in Fig. 1 [11, 27]:

(11)

λnr λ1 λ2 3/2( )kT , λ1+ 0.04 µs 1– ,= =

λ2 2.3 µs 1–  eV 1– .=

ddµ He3 n µ,+ +

ddµ t p µ,+ +

ddµ He3 µ n+

dN3/2

dt
------------ λ0 λd λ3/2+ +( )N3/2–=

+
2
3
--- 1 w–( )λ3/2N3/2

2
3
--- 1 w–( )λ1/2 λd'+ N1/2,+
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(12)

(13)

Here, N3/2 and N1/2 are populations of the F = 3/2 and
F = 1/2 dµ atom hyperfine states, Nn is the number of
fusion neutrons, w = βwd , β is the probability of 3He-
reaction channel (8) and (10), wd = 0.13 is the probabil-
ity of muon sticking to 3He [11], and λ0 is the muon
decay rate.

This system of differential equations (11)–(13) was
considered, and its approximate solution was obtained
[11, 27].

4. ANALYSIS

The first step of the analysis of registered events
consists in separation of neutrons, γ-quanta, and
µ-decay electrons. For each exposure, we then build
and analyze the time and charge (deposited energy in a
neutron detector) distributions of fusion neutrons and
the time distributions of µ-decay electrons.

dN1/2

dt
------------- λ0 λd' λ1/2+ +( )N1/2–=

+
1
3
--- 1 w–( )λ1/2N1/2

1
3
--- 1 w–( )λ3/2 λd+ N3/2,+

dNn

dt
---------- βϕ λ 3/2N3/2 λ1/2N1/2+( ).=

104

103

102

10

1
0 2 4 6 8 10 12 14

Time, µs

Counts

Fig. 4. Example of the experimental time spectrum of elec-
trons from µ decay. Solid line is the fitting function. Dashed
line corresponds to the empty target.
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4.1. Electron Time Spectra 

Time spectra of electrons from muons that stopped
and decayed in the target were created and analyzed for
each exposure, including the background run with an
empty target. Fitting of the background electron time
spectra from muons that stopped and decayed in target
walls allows us to obtain the form of this distribution,
Bempty(t). For each exposure with the deuterium-filled
target, we then fitted the electron time spectra, with the
obtained form of the background spectra taken into
account, using the formula

where λe is the muon disappearance rate and F is an
accidental background. In this fit, k, Ae , λe , and F are
parameters. As a result, the numbers of electrons Ne =
Ae/λe from the muons that stopped in deuterium were
obtained. The numbers Ne were necessary for normal-
ization. A typical example of the fitted time distribu-
tions of decay electrons for the deuterium-filled target
is shown in Fig. 4. The dashed line corresponds to the
electrons from decays of muons that stopped in the tar-
get walls (empty target).

The observed muon disappearance rates λe agree
with the muon decay rate λ0 = 0.455 µs–1 with an accu-
racy not worse than 1.5%. Analysis of electron time dis-
tributions showed that about 45% of all the incoming
muons stop in deuterium. The remaining part of muons
stop in the target walls.

4.2. Neutron Time and Charge Spectra 

Only the first detected neutrons were selected for
analysis. To reduce the background, we used the time
selection criterion [28]

(14)

where tn and te are neutron and electron detection times
measured from the moment a muon stops in the target.
The time and charge (energy) distributions were plotted
for these events. Examples of time distributions of
fusion neutrons are shown in Fig. 5 for four tempera-
tures.

According to [11, 27], the solution of the system of
differential equations (11)–(13), time distributions of
the first neutrons detected with the efficiency e, is given
by the sum of two exponentials,

(15)

The parameters of this expression are functions of λd ,
λ1/2 , λ3/2 , and α ≡ e + ω – eω. They can be reconstructed
from the amplitudes and slopes of the exponentials
in (15). The amplitude Afast of the first term in (15) is
related to the ddµ formation from the dµ atom with a

Ne
total t( ) kBempty t( ) Ae λ et–( )exp F,+ +=

tn 0.5 µs+ te tn 4.5 µs,+< <

Nn t( ) Afast λ fastt–( ) Aslow λ slowt–( ).exp+exp=
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Fig. 5. Experimental time spectra of fusion neutrons measured for exposures at temperatures of 85, 230, 290, and 790 K. Solid lines
are the fitting functions.
spin of F = 3/2, and the corresponding slope λfast is
determined mainly by the value of λd . The amplitude of
the second term (slow component) corresponds to the
so-called steady state of the ddµ cycle. The steady-state

ddµ formation rate  presents the “mean” value of
the ddµ formation rate from different dµ spin states for

times t > . The ratio of the amplitudes Afast/Aslow is
responsible for the ratio λ3/2/λ1/2.

The values of  were obtained from

(16)

Here, the second ratio gives the absolute neutron yield
for the steady state of the dd cycle, λn is the slow expo-
nent slope of (15), and Nn is the number of fusion neu-

λddµ
ss

λ fast
1–

λddµ
ss

λddµ
ss λn

ϕβ
-------

Nn

Nee f t

--------------.=
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trons. The time selection factor ft = 0.67 is due to crite-
rion (14).

Determination of the neutron detection efficiency e
is analogous to that in [29]. To determine the efficiency
loss due to a finite energy threshold, the calculated
recoil proton energy spectrum was reconciled with the
experimental energy distribution. This procedure was
done for each exposure; an example is given in Fig. 6.
The line in the figure is the calculated response function
of the neutron detector, and the histogram is the exper-
imental energy distribution. The efficiency of the neu-
tron detector was found to be approximately 12%, and
its accuracy is about 8%.

The fitting strategy was as follows. At the first step,
we fitted only the slow part of the neutron time spectra

and found the steady-state formation rates ( ) using
expression (16). At the next step, we fitted the entire
neutron time spectra using formula (15). In this fit, for-

λddµ
ss
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mula (15) was convolved with a Gaussian resolution
function to allow for a finite time resolution and to
determine the time zero position. The analysis showed
that the time zero stability during data collection was
better than 1 ns. The background due to muons stop-
ping in the target walls and due to accidental coinci-
dence was taken into account in the fitting procedure.
At the final step of the analysis, the values of λ3/2, λ1/2 ,

and λd were obtained from the values of  and theλddµ
ss

600

500

400

300

200

100

0 50 100 150 200 250

Counts

Channels

Fig. 6. Neutron energy distribution. The histogram is the
experimental neutron energy distribution. Solid line is the
calculated response function of the neutron detector.

Table 2.  Experimental results for the steady-state ddµ for-
mation rate

T, K
, µs–1

Value Stat. error Syst. error

85 0.197 0.007 0.018

110 0.485 0.015 0.044

230 2.06 0.06 0.19

301 2.69 0.08 0.24

299 2.57 0.08 0.24

290 2.67 0.08 0.24

401 3.00 0.09 0.27

530 3.10 0.09 0.27

660 2.67 0.08 0.24

791 2.30 0.07 0.21

λddµ
ss
JOURNAL OF EXPERIMENTAL 
parameters of expression (15). The method developed
in [27] was used for this purpose.

We made some corrections to the final values of the
rates that are due to the nonresonant ddµ formation rate
on molecules D2 and HD [30] (in runs with double H/D
mixtures).

It turned out that a reliable separation of fast and
slow terms of (15) in fitting is possible only at low tem-
peratures (in our case, not higher than 290 K), where
the rates λ3/2 and λ1/2 are substantially different and λd

is much larger than . At high temperatures (higher
than 300 K), the rates λ3/2 and λ1/2 are approximately
equal [14], and it is therefore a large problem during fit-
ting to obtain the fast component parameters and thus
to distinguish the values of λ3/2 and λ1/2 . At these tem-

peratures, we obtained only the value of . For λd ,
which is determined from the fast exponent slope, we
obtained its value only at the temperatures 85 and
110 K because of the same reasons.

5. RESULTS AND DISCUSSION

The obtained values of , λd , λ3/2, and λ1/2 are
presented in Tables 2 and 3. All rates are normalized to
the liquid hydrogen density. The statistical error is
2−3%. The main sources of systematic errors are the
uncertainties of the neutron detector efficiency (about
8%) and gas density (about 3%).

In Fig. 7, the temperature dependence (T) is
shown together with the data [2]. The main result of this
work is the direct measurement of the steady-state ddµ
formation rate at temperatures above 400 K. As can be
seen, our data are in good agreement with theoretical
predictions [14] at low temperatures (up to 400 K).
However, the experimental data are slightly larger than
the theoretical ones at high temperatures.

In Fig. 8, the temperature dependence of λ1/2 and λ3/2
is shown. The solid line represents theoretical calcula-
tions [14]. The values of λd , λ1/2 , and λ3/2 are in good
agreement with the theory and with other experimental
data [9, 10, 17].

As mentioned above, reliably separating fast and
slow terms in (15) in fitting, and hence the obtaining the
values of λd, λ1/2, and λ3/2, is possible only at low tem-
peratures under our experimental conditions. The life-
time of the fast component of neutron spectra (15) is

Under our conditions (ϕ ≈ 0.5 LHD), this approxi-
mately equals 50 ns, or about five channels in the time
histogram measured. This fact is also confirmed by our
Monte Carlo calculations. It is therefore worthwhile to

λd'

λddµ
ss

λddµ
ss

λddµ
ss

τ 1
λ fast
--------- 1

λdϕ
---------.∼=
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Table 3.  Experimental results for the effective ddµ formation rates from different spin states and the effective dµ spin-flip rate

T, K
λ1/2, µs–1 λ3/2, µs–1 λd, µs–1

Value Stat. error Syst. error Value Stat. error Syst. error Value Stat. error Syst. error

85 0.170 0.006 0.015 4.63 0.13 0.42 32.8 1.0 3.2

110 0.403 0.014 0.036 4.79 0.14 0.43 31.4 1.2 3.2

230 1.72 0.06 0.16 3.92 0.12 0.35 – – –

290 2.40 0.08 0.22 3.52 0.10 0.32 – – –
carry out an experiment at high temperatures with low-
density deuterium (about 0.05 LHD), where the spin-
effect time range at neutron time distributions is about

Fig. 7. Values of  as a function of temperature. Circles

are our data, squares are the LAMPF data [2]; the line rep-
resents theory [14].

λddµ
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Fig. 8. Values of λ3/2 and λ1/2 as a function of temperature;
the lines represent theory [14].
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0.5 µs. An experiment of this type could be conducted
in a muon factory.

6. CONCLUSIONS

The first direct measurements of the muon catalyzed
dd fusion cycle parameters at high temperatures (up to
790 K) are carried out. The values of the steady-state
ddµ formation rate are obtained for the entire tempera-
ture range. Comparison with theory showed good
agreement at low temperatures (up to 400 K) and some
difference at high temperatures (above 400 K). At low
temperatures, the values of the effective rates λ3/2 and
λ1/2 are obtained; they are in agreement with the theory.
Measuring these hyperfine parameters in the high-
temperature range seems to require an experiment of a
special type, i.e., at a low deuterium density (about
(0.01–0.05) LHD) with a high-intensity muon beam.
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Abstract—The internal energy of high-density hydrogen plasmas in the temperature range T = 10000–50000 K
is calculated by two different analytic approximation schemes—the method of an effective ion–ion interaction
potential and the Padé approach within the chemical picture—and are compared with direct path integral Monte
Carlo results. A reasonable agreement between the results obtained from the three independent calculations is
found and the reasons for still existing differences are investigated. Interesting high-density phenomena such
as the onset of ion crystallization are discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The thermodynamics of strongly correlated Fermi
systems at high pressure is of growing importance in
many fields, including shock and laser plasmas, astro-
physics, solids, and nuclear matter (see [1–6] for an
overview). In particular, thermodynamic properties of
hot dense plasmas are essential for the description of
plasmas generated by strong lasers [5]. Further, among
the phenomena of current interest are the high-pressure
compressibility of deuterium [7], metallization of
hydrogen [8], plasma phase transition, etc., which
occur in situations where both interaction and quantum
effects are relevant. Among the early theoretical papers
on dense hydrogen, we refer to Wigner and Huntington
[9], Abrikosov [10], Ashcroft [11], and Brovman et al.
[12]; concerning the plasma phase transition, see Nor-
man and Starostin [13], Kremp et al. [14], Saumon and
Chabrier [15], and Schlanges et al. [16], and also some
earlier investigations of one of us [17–20]. Among the
early simulation approaches, we refer to several Monte
Carlo calculations, e.g., [21–23].

There has been a significant progress in recent years
in studying these systems analytically and numerically
(see, e.g., [1, 2, 4, 24–28] for an overview), but there
remains an urgent need to test analytic models by an
independent numerical approach. In addition to the
molecular dynamics approach, e.g., [24, 26], the path
integral Monte Carlo (PIMC) method is particularly
well suited to describe thermodynamic properties in the

¶This article was submitted by the authors in English.
1063-7761/03/9603- $24.00 © 20465
high-density region. This is because it starts from the
fundamental plasma particles—electrons and ions
(physical picture)—and treats all interactions, includ-
ing bound state formation, rigorously and self-consis-
tently. We note a remarkable recent progress in apply-
ing these techniques to Fermi systems (see, e.g., [1, 2,
29, 30] for an overview).

Several methods have been developed to perform
quantum Monte Carlo calculations. We first mention
the restricted PIMC method (RPIMC) [31–34], where
special assumptions on the density operator  are
introduced in order to reduce the sum over permuta-
tions to even (positive) contributions only. It can be
shown, however, that this method does not reproduce
the correct ideal Fermi gas limit [35]. An alternative is
given by direct fermionic PIMC simulations (DPIMC),
which have occasionally been attempted by various
groups (see, e.g., [36, 37] and references therein). How-
ever, these simulations have been very inefficient
because of the fermionic sign problem. Recently, three
of us proposed a new path integral representation for
the N-particle density operator [38–41] that allows
direct fermionic PIMC simulations of dense plasmas in
a wide range of densities and temperatures. Using this
concept, the pressure and energy of a degenerate
strongly coupled hydrogen plasma [39–42] and the pair
distribution functions in the partial ionization and dis-
sociation region [40, 41] have been computed. This
scheme is rather efficient when the number of time
slices (beads) in the path integral is less than or equal to
50 and was found to work well for temperatures kBT >
0.1 Ry.

ρ̂
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One difficulty of PIMC simulations is that reliable
error estimates are often not available, in particular for
strongly coupled degenerate systems. Here, we make a
comparison of two independent analytic methods. The
first is the method of an effective ion–ion interaction
potential (EIIP) that has previously been developed for
application to simple solid and liquid metals [12, 24]
and which is here adapted to dense hydrogen for the
first time. The second is the method of Padé approxima-
tions in combination with Saha equations, i.e., the
chemical picture (PACH) [3]. The Padé formulas are
constructed on the basis of the known analytic low-den-
sity [3, 43] and high-density [3] limits and are exact up
to quadratic terms in the density, interpolating between
the virial expansions and the high-density asymptotic
regime [19, 44, 45].

We show here that both methods, EIIP and PACH,
provide results for the internal energy that agree well
with each other at high densities where the electrons are
strongly degenerate and no bound states exist, approxi-
mately for n > 1024 cm–3. In this region, there is also a
good agreement with recent density functional results
[46]. The agreement of the PACH and DPIMC results is
good below 1022 cm–3. For intermediate densities,
where the ionization degree changes strongly, we
observe deviations. Also, at high densities, the DPIMC
results tend toward lower energies than the analytic
approaches. Finally, they reveal several interesting
effects, such as formation of clusters and the onset of
ion crystallization.

2. PHYSICAL PARAMETERS 
AND BASIC EFFECTS

We study a hydrogen plasma consisting of Ne elec-
trons and Np protons (Ne = Np = N). The total proton
(atom) density is n = Np/V. The average distance
between the electrons is the Wigner–Seitz radius

and other characteristic lengths are the Bohr radius

the Landau length

and the De Broglie wavelength

of the electrons. The degeneracy parameter is . We
define the dimensionless temperature τ = kT/Ry, which

d
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varies between 0.06 < τ < 0.4 in the temperature inter-
val considered below. We also introduce the Wigner–
Seitz parameter

and the dimensionless classical coupling strength

Hydrogen is antisymmetric with respect to the
charges (e– = –e+) and symmetric with respect to the
densities (n+ = n– = n). Ions and electrons behave quite
differently because of the big mass difference, mp =
1836me . At the temperatures considered, the ions can
be treated classically as long as n & 1027 cm–3. For these
temperatures and densities, the proton coupling param-
eter is in the range 0 < Γ < 150, and we can therefore
expect strong coupling effects. We study internal ener-
gies of the fluid hydrogen system and start with provid-
ing some simple estimates for guidance. In what fol-
lows, we give all energies in Rydberg units.

First, at very low densities, the electrons and protons
behave as an ideal Boltzmann gas. Therefore, the
energy (of free electrons and protons) per proton is
given by

(1)

In other words, the low-density limit is, in our temper-
ature interval, a positive number in the region e ≈ 0.2–
1.2. With increasing density, we expect a region where
atoms and possibly also a few molecules are formed
[17, 41]. In the region of atoms, the lower bound for the
energy per proton is

(2)

where the last term represents the binding energy 1 Ry
of H atoms. If molecules are formed, the corresponding
estimate per proton is lower,

(3)

Generally, the existence of a lower bound for the
energy per proton was proven by Dyson and Lenard
[47] and Lieb and Thirring [48],

(4)

where the best estimate known to us (which is certainly
much too large) is C ≈ 23 [48]. We see that with increas-
ing density, the energy per proton tends to negative val-
ues and can reach a finite minimum. Further density
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increase causes the energy to increase again as a result
of quantum degeneracy effects.

To understand this increase, we first consider the
limit of a very high density (but in the region where the
protons are classical). The first estimate of the energy is
then 

(5)

which is positive. The last term, representing the Fermi
energy of the electrons, strongly increases with the den-
sity (as n2/3). In the next approximation, according to
Wigner’s estimate [49],1 we must take into account the
Hartree contribution to the electron energy and the cor-
responding estimate for the proton energy. The latter is
estimated under the assumption that the protons form a
lattice. In this way, we find the estimate

(6)

The two corrections that were added to Eq. (5) are both
negative and scale as n1/3. In other words, these interac-
tion terms might play a major role with decreasing den-
sity. At a critical density, the energy per proton can
become negative. This density can be estimated from
Eq. (6) by solving the quadratic equation

(7)

perturbatively, starting with the zero temperature limit,
and adding the first correction (linear in τ),

(8)

As τ  0, this result coincides with Wigner’s criterion
for the existence of molecules: for d < aB , molecules
cannot exist because there is no room for forming
bound state wave functions. According to Eq. (8), mol-
ecules exist at a finite temperature only for larger d as
thermal fluctuations increase the wave function over-
lap. More generally, with increasing temperature, the
energy becomes positive at lower density compared to
the case where T = 0.

Summarizing the qualitative results obtained in this
section, we can state that we expect the following gen-
eral behavior of the internal energy per proton in the
given temperature range: at zero density, the energy
starts with an ideal gas expression that depends only on
temperature. With increasing density, the energy per
proton becomes negative because of correlation effects

1 Wigner’s original estimate for the lattice energy was corrected
later, and we use an improved result. For a discussion of various
estimates, see, e.g., Chapter V of G. D. Mahan, Many-Particle
Physics, Plenum Press (1990).
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(bound states, electron correlations, and proton correla-
tions). A minimum is formed, and at the density where
the proton density is close to the inverse Bohr radius
cubed, the energy per proton turns to positive values
and is more and more determined by the ideal electron
energy increasing with n2/3, corrected by correlation
contributions of the order n1/3 determined by the Har-
tree term and by proton–proton coupling effects. In
what follows, we show that this qualitative picture is
supported by the results of our calculations.

3. THE METHOD 
OF AN EFFECTIVE ION–ION INTERACTION 

POTENTIAL

It is well known that in plasmas and plasmalike sys-
tems, in a broad parameter range, the interaction
between the electron and ion subsystems is weak,
whereas the interactions within the electron and ion
subsystems can be strong. The corresponding small
parameter is the ratio uei/EF of the characteristic value
of the electron–ion interaction uei to the electron Fermi
energy EF . Therefore, the approximation of a small
uei/EF ratio is valid for systems with degenerate elec-
trons if EF @ Te ≥ Ti , where Te and Ti are the electron
and ion temperatures, respectively (below, we consider
the case where Te = Ti). Typical systems where this
approximation is applicable are simple solid and liquid
metals and nontransitional metals in general; this
approximation serves as a basis for the computation of
thermodynamic and electron kinetic properties (see,
e.g., [24, 50]).

For simple metals, the Fermi energy is not very large
compared with the characteristic electron–ion Cou-
lomb interaction taken at the average interparticle dis-
tance. However, because the wave functions for the
conduction electrons and the electrons bound in the ion
shells are orthogonal, a partial compensation of the
electron–ion Coulomb attraction occurs at small dis-
tances, which effectively weakens the electron–ion
interaction. This fact is described in the theory of sim-
ple metals in the framework of the so-called pseudopo-
tential theory. The calculation of the pseudopotential is
a complicated problem in general, in particular due to
its nonlocal structure [50, 51]. For practical applica-
tions, it can be represented approximately as a local
interaction with one or two fitting parameters for each
metal. On the basis of the pseudopotential theory, all
thermodynamic properties and electron kinetic coeffi-
cients can be calculated with a sufficiently high accu-
racy for a wide range of temperatures and pressures.
Naturally, these calculations require a reliable knowl-
edge of the properties of the two quasi-independent
subsystems: the degenerate electron liquid in the posi-
tive charge background and the classical ion subsystem
with some effective strong interion interaction.

It is apparent that there is also a wide range of
parameters for highly ionized, strongly compressed
SICS      Vol. 96      No. 3      2003



468 TRIGGER et al.
hydrogen plasmas where the electron–ion interaction is
weak. For these parameters, the complicated problem
of calculating the properties of a strongly coupled
quantum electron–proton system can be substantially
simplified. In so doing, the results obtained for high
compression (when no bound electron states—hydro-
gen atoms or molecules—exist) do not require any fit-
ting, in contrast to the case of simple metals, because
the interion potential for hydrogen is a purely Coulomb
one. The data obtained with this analytic approximation
can therefore be considered as a reliable basis for com-
parison with the results of alternative approaches,
including analytic and simulation methods for degener-
ate quantum systems of Fermi particles. The results of
this pseudopotential approach are especially important
for conditions of extreme compression where the
plasma is characterized by a strong interaction within
the electron and especially the ion subsystem. For these
difficult situations, experimental data are still missing
and new accurate numerical methods for Fermi systems
are only just emerging.

We consider the Hamiltonian of an electron–proton
plasma, where the q = 0 infinite contributions to the
potentials cancel because of quasineutrality (and we
retain the charge number Z of the ions for generality),

(9)

Here, ek is the energy of the electron with the momen-
tum "k and

is the Fourier component of the electron–proton inter-
action potential. For the electron degrees of freedom in
the Hamiltonian H, the secondary quantization repre-

sentation is used, with  and ap being the respective
creation and annihilation operators of an electron with
momentum p. For classical ions, the coordinate repre-
sentation is more convenient, and Ri therefore denotes
the coordinate of the ith ion in Eq. (9). As in the theory
of simple metals [12, 24], two main approximations
have to be used to calculate the plasma energy. The first
is the adiabatic approximation for the ion motion,
which is slow compared to the electron one. The second
is the smallness of the ratio of the characteristic elec-
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tron–proton Coulomb interaction to the Fermi energy
EF . The respective parameter is

Calculation of the electron energy in the external field
of immobile ions (protons) leads to the energy of the
plasma given as a function of the ion coordinates Rj . In
general, perturbation theory in terms of the parameter
Γei gives rise not only to pair but also to higher order
ion–ion interactions, which are quite complicated. To
the second order of perturbation theory in the parameter
Γei , the energy per one electron of the plasma with a
fixed proton configuration {Rj} is easily written as

(10)

where ee is the energy (per ion) of the correlated elec-
tron liquid in the homogeneous positive charge back-
ground. The respective functions Πe(q) and εe(q) are the
static polarization function and the static dielectric
function of the correlated electron liquid. They are
related by the usual equality

(11)

The Fourier component of the effective pair interaction

potential between the ions, , involved in (10) is
given by

(12)

In what follows, we concentrate on hydrogen and set
Z = 1, which leads to the effective proton–proton inter-
action

(13)

It is clear that in contrast to liquid metals, where the
presence of the pseudopotential leads to a more compli-
cated structure of the effective potential, in a dense
hydrogen plasma, the effective potential is determined
only by the electron screening. As shown in [12] for liq-
uid metals, the additional pair interaction arising from
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third- and fourth-order terms in the expansion of the
electron energy in the pseudopotential can play an
important role in the effective interaction. A detailed
analysis of the effective potential of a hydrogen plasma
[52] revealed that these terms are essential only for suf-
ficiently rarified plasma conditions (rs > 1.5) and are
practically negligible for higher densities, rs < 1.5,
which we consider in this paper. In fact, for rs > 1.6, the
structure of the effective ion–ion potential in hydrogen
changes drastically and can be considered as a precur-
sor of the appearance of molecular states. In this paper,
we use the simplest version of the method of the effec-
tive ion–ion potential that includes the electron–proton
interaction up to the second order, and we are therefore
restricted to sufficiently high densities corresponding to
rs < 1.5.

Further progress can be made using the random
phase approximation (RPA) for Πe together with the
long-wavelength and short-wavelength limits,

(14)

where "qF =  is the Fermi momentum of the
electrons. The analysis of this expression shows that the
main contribution to energy (10) comes from small
wave numbers.2 With sufficient accuracy, we can there-
fore neglect the q dependence of Πe in Eq. (10), and in
particular, in effective potential (12), replacing

This implies that we also neglect the well-known small
oscillations of the effective potential for large dis-
tances, which are the result of a logarithmic singularity
of the derivative

For the densities under consideration (which are much
higher than the usual metallic densities), these oscilla-
tions are not essential for the thermodynamic functions.

2 As shown by [52], for hydrogen at rs < 1.6 (to which we apply the
EEIP method), the contribution of nonzero wavenumbers is com-
paratively small. For rs > 1.65, however, the situation starts to
change drastically.
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On the other hand, it is crucial to calculate the polariza-
tion function Πe(0) fully self-consistently,

(15)

where ee is determined by (10) and consequently takes
the electron–electron exchange and correlations into
account. In the case of degenerate electrons, we can use
one of the analytic approximations for ee such as that of
Nozières and Pines or Wigner (see, e.g., [53] for an
overview). Below, we use Wigner’s formula for the cor-
relation energy, although the approximation of
Nozierès and Pines is better for small rs (in the region
of rs < 1, where the deviations between these approxi-
mations for the correlation energy become substantial,
we can completely neglect correlations in comparison
to the kinetic and exchange terms). Because

it is clear that Eq. (15) implies a renormalization

  Πe due to the electron–electron interaction,
and therefore, a renormalization of the momentum
κTF  ,

(16)

Because the effective proton–proton potential is
described by the screened potential of the Thomas–
Fermi type in the considered approximation (see
Eqs. (12)–(16)),
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we conclude that a renormalization of the screening
radius due to electronic correlations occurs,
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We now rewrite Eq. (10) for the considered approx-
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where κ ≡ d . After averaging over the proton posi-
tions with the Gibbs distribution (denoted by 〈…〉),
Eq. (19) can be represented as the sum of two terms: the
energy ee of a degenerate electron liquid in the positive
homogeneous charge background and the energy of
screened classical charged protons interacting via the
screened potential (18) and renormalized by the con-
stant terms obtained above,

(21)

with

(22)

Here, u is the ionic interaction energy in kT units. With
an accuracy of (kT/EF)2, energy (21) coincides with the
usual thermodynamic energy determined from the free
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Fig. 1. Internal energy of hydrogen for T = 10000 K:
(a) normalized to the energy of a noninteracting electron–
proton system; (b) in the units of 2N Ry. The curves show
the following results: ideal plasma (1), the PACH calcula-
tions (2), the EIIP model (h), our Monte Carlo simulations,
DPIMC (d), density functional theory [46] (*), and
restricted PIMC data, RPIMC of Militzer et al. [34] (n).
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energy of the system because the electrons are degener-
ate in the considered parameter range (with the same
accuracy). Expression (21) implies that as κ  0 the
energy of a classical one-component system of charged
particles interacting via a screened (Debye or Yukawa)
potential tends to infinity as 3kBTΓ/2κ2 (i.e., the screen-
ing radius diverges). As a function of the two parame-
ters, Γ and the dimensionless screening length κ, the
function u/Γ has been tabulated in [54, 55] for the cal-
culations of the phase diagram of a purely classical one-
component Debye plasma (OCP), based on accurate
MC calculations for the Debye system. In what follows,
we use these numerical results to calculate the energy
of a dense hydrogen plasma in the above approxima-
tions. Within the Wigner approximation for the electron
energy,

(23)

we obtain from Eq. (16)

(24)

where γ(rs  0)  1. The total internal energy in
Eq. (21) can now be expressed in terms of the tabulated
function u/Γ as

(25)

Numerical results computed from this approximation
are included in Figs. 1–3 below.

Alternatively, we can use additional approximations
for the computation of the internal energy of the
plasma. This can be done by averaging Eq. (10) over the
ion Gibbs distribution with the same effective Hamilto-
nian. We then immediately find the average energy per
proton

(26)
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where we introduced the ion–ion structure factor Sii(k),
defined as

(27)

Equation (26) can be simplified by replacing,
approximately, the full structure factor by the OCP

structure factor  computed with the effective ion–
ion interaction. The total energy can then be written as
the sum of three contributions: the first from the elec-
tron subsystem, the second from the classical ion OCP
subsystem (each imbedded into a positive and negative
charge background, respectively), and a third term

 that describes a perturbation-theory approxima-
tion for the polarization of the electron liquid by the
ions. The resulting formulas coincide with the perturba-
tion approximations derived by Hansen, De Witt, and
others [22, 23],

(28)
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Fig. 2. Internal energy of hydrogen for T = 30000 K. The
notation is the same as in Fig. 1.
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(29)

As is clear from the above derivations, Eqs. (28) and
(29) are less accurate than the full EIIP model presented
above.

4. PADÉ APPROXIMATIONS
AND CHEMICAL PICTURE: 

THE PACH METHOD

In this section, we briefly explain the method of
Padé approximations in combination with the chemical
picture, i.e., Saha equations [3, 19, 44, 45] (PACH). On
the basis of the PACH approximation, we calculate the
internal energy for the three isotherms T = 10000,
30000, and 50000 K. This method works with only
analytical formulas, which, however, are rather compli-
cated; nevertheless, the calculation of one energy data
point takes no more than a few seconds on a PC.

The Padé approximations were constructed in ear-
lier works from the known analytic results in the limit-
ing cases of low density [3, 43] and high density [3].
The structure of the Padé approximations was devised
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Fig. 3. Internal energy of hydrogen for T = 50000 K. The
notation is the same as in Fig. 1.
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such that they are analytically exact up to quadratic
terms in the density (up to the second virial coefficient)
and interpolate between the virial expansions and the
high-density asymptotic expressions [19, 44, 45]. The
formation of bound states was taken into account using
the chemical picture.

We here follow these cited works in large part, only
the contribution of the OCP-ion–ion interaction, which
is the largest one in most cases, was substantially
improved following [56]. With respect to the chemical
picture, we restricted ourselves to the strong ionization
region, where the number of atoms is still relatively low
and no molecules are present. We here discuss only the
general structure of the Padé formulas. The internal
energy density of the plasma is given by

(30)

where Eid is the internal energy of an ideal plasma con-
sisting of Fermi electrons, classical protons, and classi-
cal atoms; and

(31)

is the interaction energy. The splitting of the interaction
contribution to the internal energy corresponds largely
to the previous section. The individual pieces are as fol-
lows.

(1) The electron–electron interaction ee . This term
corresponds to the OCP energy of the electron sub-
system. Instead of the simple expressions used in ear-
lier works [19, 42, 44], we here used a more refined for-
mula for the energy [57]. This formula is an interpola-
tion between the Hartree limit with the Gell-Man–
Brückner correction (already used in the previous sec-
tion), the Wigner limit, and the Debye law including
quantum corrections:

(32)

Here, a Wigner function has been introduced as
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and the constants take the values

We mention that similar formulas are also valid for
other thermodynamic functions with the constants
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adjusted [57]. The formula for the OCP used here con-
tains all the terms taken into account in the previous
section and, in addition, also temperature-dependent
corrections.

(2) The ion contribution to the internal energy ei .
This term was calculated in the previous section. We
here use a procedure based on approximation (28),
(29). This enables us to use the results of the MC calcu-
lations of Hansen, De Witt, and others [23, 58]. In
accordance with Eqs. (28) and (29), the ion contribu-
tion is split into two terms,

(34)

where the first is the OCP contribution of the protons
and the second represents the polarization of the proton
OCP by the electron gas. For the region of high densi-
ties, i.e., large Γ and small rs , we use the Monte Carlo
data parametrized by De Witt as [23]

(35)

(36)

We note that the polarization term describes the correc-
tion due to screening of the proton–proton interaction
by the electron fluid. In order to obtain these expres-
sions, semiclassical Monte Carlo calculations were per-
formed based on effective ion interactions that model
the electrons as a responding background [22, 23]. We
do not need to go into the details of this method because
the procedure corresponds to Eq. (29) derived in the
previous section.

In the low density limit, we used the Debye law with
quantum corrections [3, 45],

(37)

(38)

Here, the temperature functions B1 and C1 describe
rather complex quantum corrections, which are, how-
ever, explicitly known and are easily programmed [3].
The Padé approximations that connect the high- and the
low-density limits are constructed by standard methods
[19, 44, 45] and are not given here explicitly. For the
OCP energy of the ions, we use the very accurate for-
mulas proposed by Kahlbaum [56].

(3) The atomic contribution ea . In the region of den-
sities and temperatures studied in this work, this contri-
bution gives only a small correction (except for T =
10000 K). We calculate the number of atoms on the
basis of a nonideal Saha equation described below. The
formation of molecules is not taken into account. We
restrict calculations to the region where the number
density of atoms is smaller than that of the electrons.
The contributions to the chemical potential that appear
in the Saha equation are calculated in part from scaling
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relations and in part by numerical differentiation of the
free energy given earlier [19, 44]. For the partition
function in the Saha equation, we use the Brillouin–
Planck–Larkin expression [3, 45]. The nonideal Saha
equation that determines the degree of ionization (the
density of atoms) is solved by iterations, starting from
the ideal Saha equation. Because of a high degree of
ionization, the atomic interaction contributions can be
approximated in the simplest way by the second virial
contribution and by treating the atoms as small hard
spheres and by neglecting the charged particle-neutral
interaction.

The results of our Padé calculations for a broad den-
sity interval for three isotherms are included in Figs. 1–3.

5. SUMMARY 
OF THE PATH INTEGRAL MONTE CARLO 

SIMULATIONS

The analytic approximations discussed in the previ-
ous sections work very well at high densities if bound
states are of minor importance. These conditions are
not fulfilled for densities below a Mott point corre-
sponding to rs > 1. Here, recently developed DPIMC
simulations can be used. Starting from the basic plasma
particles, electrons and ions, they “automatically”
account for bound state formation and ionization and
dissociation. Furthermore, in contrast to the chemical
picture, no restrictions on the type of chemical species
are made and the appearance of complex aggregates
such as molecular ions or clusters of several atoms are
fully included. On the other hand, simulations are
expected to become increasingly difficult at high densi-
ties where the electron degeneracy is large due to the
fermion sign problem. It is therefore very interesting to
compare results of the DPIMC approach with alterna-
tive theories that are expected to complement each
other. This is done in the next section.

First, however, we briefly outline the idea of our
DPIMC scheme. All thermodynamic properties of a
two-component plasma are defined by the partition
function Z; for Ne electrons and Np protons, it is given
by

(39)

where β = 1/kBT. For a quantum system, the exact density
matrix is not known in general, but can be constructed
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using a path integral representation [21, 59–61],
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being the sum of the Coulomb potentials between pro-
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coordinates are denoted by
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(minus sign), the sum contains Ne!/2 positive and nega-
tive terms, which leads to the notorious sign problem.
Because of the large mass difference of electrons and
ions, the exchange of the latter is not included.
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Thermodynamic functions are given by derivatives
of the logarithm of the partition function with respect to
thermodynamic variables. In particular, the internal
energy E follows from Q by

(41)

which gives (cf. [42] for details)
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We introduced dimensionless distances between neigh-
boring vertices on the loop, ξ(1), …, ξ(n), and thus,
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explicitly, [r] ≡ [r; ; ; …]. The density matrix ρs

in Eq. (42) is given by

(43)

where

Density matrix (43) does not involve an explicit sum
over the permutations and hence does not involve the
sum of terms with alternating signs. Instead, the entire
exchange problem is contained in a single exchange
matrix given by

(44)

As a result of the spin summation, the matrix carries a
subscript s indicating the number of electrons having
the same spin projection.

The potential Φab in Eq. (42) is an effective quantum
pair interaction between two charged particles
immersed into a weakly degenerate plasma. It was
derived by Kelbg et al. [62, 63], who showed that it
contains quantum effects exactly in the first order in the
coupling parameter Γ,

(45)

where xab = |rab |/λab; we emphasize that the Kelbg
potential is finite at zero distance.

The structure of Eq. (42) is obvious: we have sepa-
rated the classical ideal gas part (the first term). The
ideal quantum part in excess of the classical one and the
correlation contributions are contained in the integral
term, where the second line results from the ionic cor-
relations (the first term) and the ee and ei interactions at
the first vertex (the second and the third term, respec-
tively). Equation (42) therefore contains an important
limit of the ideal quantum plasma in a natural way. The
third and fourth lines are due to further electronic verti-
ces and the explicit temperature dependence (Eq. (42))
and volume dependence (the corresponding equation of
state) of the exchange matrix, respectively. The main
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advantage of Eq. (42) is that the explicit sum over per-
mutations has been converted into the spin determinant
that can be very efficiently computed using standard
linear algebra methods. Furthermore, each of the sums
in curly brackets in Eq. (42) is bounded as the number
of vertices increases, n  ∞. The error of the total
expression is of the order 1/n. Expression (42) and the
analogous result for the equation of state are therefore
well suited for numerical evaluation using the standard
Monte Carlo techniques (see, e.g., [21, 29]).

In our Monte Carlo scheme, we used three types of
steps, where either electron or proton coordinates, ri or

qi , or individual electronic beads  were moved until
convergence of the calculated values was reached. Our
procedure has been extensively tested. In particular,
from comparison with the known analytic expressions
for the pressure and energy of the ideal Fermi gas, we
found that the Fermi statistics is very well reproduced
with a limited number of particles (N & 100) and beads
for degeneracy up to nλ3 & 10 [40]. We also performed
extensive tests for few-electron systems in a harmonic
trap, where the analytically known limiting behavior
(e.g., energies) is again reproduced well [64, 65]. For
the present simulations of dense hydrogen, we varied
both the number of particles and the number of time
slices (beads). As a result of these tests, we found that
to obtain convergent results for the thermodynamic
properties of hydrogen in the density–temperature
region of interest here, number of particles Ne = Np = 50
and bead numbers in the range n = 6–20 are an accept-
able compromise between accuracy and computational
effort [39–41].

6. NUMERICAL RESULTS: COMPARISON 
OF THE ANALYTIC AND SIMULATION DATA

We now discuss the numerical results. We have
computed the internal energy of dense hydrogen using
two analytic (EIIP and PACH) approaches and DPIMC
simulations. The data are shown in Figs. 1–3 for three
temperatures: 10000, 30000, and 50000 K, respec-
tively.

We first consider the general behavior that is most
clearly seen for the highest temperature (cf. Fig. 3a).
The overall trend is an increase of the energy with den-
sity, which is particularly rapid at high densities
because of electron degeneracy effects; this is clearly
seen from the ideal plasma curve (dashed and dotted
lines in the lower parts of Figs. 1–3). The nonideal
plasma results show a prominent deviation from this
trend, which is in full agreement with the discussion in
Section 2, the formation of an energy minimum (where
the energy can become negative) at intermediate densi-
ties. Our calculations for a nonideal hydrogen plasma
asymptotically approach the ideal curve both at low
density (the ideal classical plasma) and at high density
(the ideal mixture of classical protons and quantum
electrons). For intermediate densities, between 1021 and

ξ i
k( )
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1025 cm–3, the nonideal plasma energy is significantly
lower than the ideal energy because of strong correla-
tions and formation of bound states. As the temperature
decreases, this region broadens. In particular, we
clearly see that the total energy indeed reaches negative
values for the temperatures considered.

We now compare the results of the different meth-
ods. We consider three density regions, separately (A)
the high-density limit, (B) the region around the mini-
mum, and (C) the region below the minimum.

(A) The first observation from Figs. 1–3 is that for
all temperatures (including temperatures above those
shown), the PACH and EIIP approaches nearly coincide
in the limit of high densities. It is also interesting to
compare these approaches with another theoretical
approach based on the density functional theory (DFT).
Recently, Xu and Hansen [46] published data for T =
10000 K and rs ≤ 1.5, which are also included in Fig. 1.
Evidently, in the high-density limit, PACH and EIIP
coincide with these DFT data (cf. Fig. 1). This good
agreement of the three completely independent
approaches—EIIP, PACH, and DFT—is a strong indi-
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Fig. 4. Electron–electron (1), proton–proton (2), and elec-
tron–proton (3) pair distribution functions of hydrogen from
the DPIMC simulations at n = 1026 cm–3 for the tempera-
tures 10000 K (a) and 50000 K (b). Note the different ver-
tical scales.
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cation that they can yield reliable results for a fully ion-
ized macroscopic hydrogen plasma at high densities.
This asymptotic agreement is not surprising, because
the ideal Fermi gas limit is “built into” each of these
three approaches, but this gives no information about
the lowest densities for which these results remain
quantitatively correct. The comparison presented is
therefore of great importance for giving a hint
(although not a proof) that the value of that minimum
density is above n ≈ 3 × 1024 cm–3 (cf. Figs. 1–3).

We next observe that at higher densities, the DPIMC
simulations yield lower energies and a shift of the
increase in energy to higher density values compared
with the analytic models. This tendency becomes stron-
ger with increasing temperature, as can be seen in
Figs. 1–3. In view of the asymptotic accuracy of the
analytic results (see above), the total energy of macro-
scopic high-density hydrogen is certainly above the
DPIMC results for densities exceeding 1025 cm–3. There
are two main factors tending to reduce our DPIMC
results for energies at high densities. The first factor is
given by degeneracy effects. Practical limitations that
must be imposed on the number of beads and particles
(see Section 5) necessarily make our results less reli-
able for densities exceeding 1025 cm–3. The second fac-
tor is given by finite-size effects related to photon
ordering. To understand the high-density results better,
we analyze the electron–electron (ee), proton–proton
(pp), and electron–proton (ep) pair distribution func-
tions in Fig. 4. These functions exhibit features typical
for strongly correlated systems. The most prominent
effect is seen in the pp function that exhibits a periodic
structure at T = 50000 K, which is even more pro-
nounced at T = 10000 K. This proton ordering is typical
of a strongly correlated ion fluid near the crystallization
temperature.3 Our simulations for even higher densities
reveal the formation of an ionic lattice immersed into a
delocalized sea of electrons, i.e., an ionic Wigner crys-
tal [40], known to exist in high-density objects such as
white or brown dwarf stars. Thus, qualitatively, the sim-
ulations show the correct behavior at high densities.
However, because of the small size of the simulations
(only 50 electrons and protons are presently feasible),
the results are much closer to those for small, strongly
correlated ionic clusters that are known to exhibit quite
peculiar behavior, including a strong dependence of the
energy on size, negative specific heat, etc. In order to
obtain more accurate data for the internal energy of a
macroscopic two-component plasma at ultrahigh com-
pression, a significant increase in the simulation size is
therefore desirable (it should become feasible in the
near future).

(B) The energy minimum at intermediate densities
is reproduced by all methods, but there are quantitative

3 In fact, the first minimum of the proton–proton function (around
r = 0.45aB) for T = 10000 K is far lower than the standard value
of 0.35 typical for a liquid.
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differences regarding its depth and width. The general
observation made for all temperatures (cf. Figs. 1–3) is
that the simulations yield a deeper minimum and shift
of the increase in energy toward higher densities. We
also observe that the EIIP method yields lower energies
than the PACH results and is closer to the DPIMC
results. Further, the PACH results nearly coincide with
the DFT data [46] where available (T = 10000 K and
n ≥ 5 × 1023 cm–3). However, atom and molecule forma-
tion becomes important at these densities, and the EIIP
and DFT methods (in their present form) become
increasingly unreliable. The PACH results presented
include bound states approximately, whereas the
DPIMC calculations have no restrictions with respect
to atom and molecule formation.

We now analyze the DPIMC simulations around the
energy minimum. Our data for T = 10000 K are also
significantly lower than the RPIMC results of Militzer
et al. [34] (cf. Fig. 1b), but we found excellent quanti-
tative agreement between the two independent quantum
Monte Carlo methods above T = 50000 K (see the point
for T = 62500 K in Fig. 3a; a more extensive compari-
son is also given in [42]). A detailed analysis of the
DPIMC simulation results at T = 10000 K and 1023 &
n & 1024 cm–3 revealed that the homogeneous plasma
state is unstable there: the plasma gains energy by
forming higher density clusters or droplets that are
embedded in a lower-density plasma. The droplets are
clearly visible in the electron–proton configurations in
the simulation box [68] and are interpreted as a direct
indication of a first-order phase transition, as discussed
in the Introduction [13–20]. These effects emerge in
weakly ionized plasma (low density) and vanish above
the Mott point, rs ~ 1. We mention that the same effects
are observed in our DPIMC simulations of electron–
hole plasmas under similar conditions [69], for which
droplet formation has been well established and was
observed experimentally three decades ago [70]. Our
conclusion is also indirectly supported by analytic
methods. In the present variants of the PACH and EIIP
methods, homogeneous density distributions are
assumed,4 but it is interesting that at T = 10000 K and
1023 cm–3 & n & 1024 cm–3, both methods yield unstable
results for the thermodynamic functions, which is a
clear indication of the existence of a first-order phase
transition. Xu and Hansen [46] also observed strong
fluctuations in their density functional calculations
below rs = 1.5, which they found to strongly resemble
precursors of a phase transition.

Even if we accept the existence of a phase transition,
the energy obtained in the DPIMC simulations appears
to be unexpectedly low. In this region, we observe large

4 Using a modified PACH approach, Beule et al. [20] predicted a
first-order phase transition in hydrogen for T = 10000 K with the
pressure and density of p ≈ 110 GPa and ρ ≈ 0.8 g cm–3. Similar
results were obtained by Schlanges et al. [16], where other refer-
ences are also given.
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fluctuations of pressure and energy related to the for-
mation and decay of droplets. Furthermore, there are
significant surface energy effects. Our simulations
yield only a very small number of droplets (typically
one to three), each containing 15–50 electron–proton
pairs. Of these, almost all are on the surface.5 We there-
fore cannot be certain that our simulations adequately
represent the macroscopic system in the two-phase
region and its energy per particle in particular. Finally,
in such small systems, there exist additional specific
factors that tend to lower the energy [12] and can there-
fore be responsible for our result. This can also be the
reason for the low-energy minimum observed at higher
temperatures (Figs. 2 and 3), where our analytic models
do not show unstable behavior. Clarifying this interest-
ing issue in more detail requires performing extensive
simulations with a substantially larger number of parti-
cles; such calculations are presently under way.

(C) In the region to the left of the energy minimum,
n & 1022 cm–3, simulations are of special importance. In
this region, the plasma is strongly correlated and
largely dominated by bound states. Analytic methods
based on perturbation expansions in the coupling
strength (Γ or rs) do not work in this parameter range.
While there exist many chemical models of various
degrees of sophistication, rigorous theoretic results are
very rare. In particular, as mentioned above, the EIIP
model breaks down here (we recall that the present ver-
sion is limited to rs ≤ 1.5, cf. Section 3). Also, the
present version of the PACH approach uses a chemical
picture with a nonideal Saha equation, but treats bound
states in a very simple approximation (see above) and
therefore yields only approximate results in situations
with a low degree of ionization). In contrast, the
DPIMC results have no such limitations and provide
reliable results in this region in principle. On the other
hand, there exist specific technical difficulties at low
densities, where the extension of bound electron wave
functions is many orders of magnitude smaller than the
interparticle distance, which leads to very slow conver-
gence of DPIMC simulations (and other quantum
Monte Carlo methods as well). This explains the differ-
ent energies in the DPIMC and Padé results at the low-
est densities at T = 10000 K, where the plasma consists
of atoms (see, e.g., [16, 20]), while good agreement is
found at higher temperatures.

7. DISCUSSION

This work is devoted to the investigation of the total
energy of warm dense plasmas in the temperature range
between 10000 and 50000 K. We presented a new the-
oretical approach to high-density plasmas based on the

5 Imagine 27 (64) particles arranged, for simplicity, in a small
cube. Evidently, 26 (56) of them are situated at the surface of the
“droplet,” which is in a striking contrast to the situation of a mac-
roscopic system, where droplets are expected to contain many
orders of magnitude more particles.
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theory of an effective ion–ion potential. This method
was shown to be quite efficient for fully ionized,
strongly correlated plasmas above the Mott density.
Furthermore, a detailed comparison of several theoreti-
cal approaches and simulations was performed over a
wide density range. The first included the EEIP and
PACH analytic models, on the one hand, and the recent
DFT data of Xu and Hansen [46], on the other. The sec-
ond group of data consisted of several new data points
based on DPIMC simulations of a correlated proton–
electron system with degenerate electrons. From these
comparisons, we conclude that the three theoretical
approaches—PACH, EEIP, and DFT—are in a very
good agreement with each other for a fully ionized
hydrogen plasma in the high-density region where
rs < 1. We therefore expect these results to be reliable
for densities above 3 × 1024 cm–3. This agreement
between the three independent analytic methods is
highly interesting because the physical approximations
involved are very different. On the other hand, our
DPIMC simulations agree with the available RPIMC data
for temperatures above 50000 K (cf. Figs. 1–3 and [42]).
This agreement over a broad range of parameters is cer-
tainly remarkable because the plasma is far outside the
perturbative regime: it is strongly correlated and the
electrons are degenerate; and the two simulations are
essentially independent.

The comparison of our DPIMC simulation results
with the analytic data reveals an overall good agree-
ment. In addition, existing deviations are a useful guide
for future improvement and extension of the various
approaches. Most importantly, the good quality of the
quantum Monte Carlo data in the region of strong
changes of the ionization degree fills a gap in the
present variants of analytic methods. These data can be
used to improve the treatment of a dense plasma via
analytic methods in the theoretically very complicated
region of strong correlations and strongly varying
degrees of ionization and dissociation. Moreover, the
high-density asymptotic results of the analytic methods
may be useful for further improvement of the simula-
tions.

Furthermore, our DPIMC simulations revealed an
instability of the homogeneous plasma state around the
minimum of the energy isotherm T = 10000 K for den-
sities between 1023 and 1024 cm–3. We have made argu-
ments that this is related to the droplet formation, which
is a strong indication of a first-order phase transition [68],
which had been previously predicted by many authors
on the basis of simple chemical models. The existence
of a plasma phase transition would have drastic conse-
quences for the transport properties of many astrophys-
ical objects, such as giant planets, and its verification
therefore remains an important theoretical issue. It
would therefore be of great interest if independent first-
principle simulations, in particular RPIMC, could
reproduce this result. This, however, may require a par-
ticular choice of nodes of the density matrix that allow
SICS      Vol. 96      No. 3      2003
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an inhomogeneous equilibrium plasma state. Finally, at
very high densities, our DPIMC simulations revealed
ordering of protons into a strongly correlated fluid and
the onset of the formation of a proton Wigner crystal.
These interesting physical effects in high-pressure
hydrogen are of relevance for many astrophysical sys-
tems and many laboratory experiments, including ultra-
cold degenerate trapped ions and laser plasmas.

In conclusion, we may state that the analytic meth-
ods and the DPIMC approach are already in a reason-
able overall agreement. Both methods should be devel-
oped to further explore the equilibrium properties of
dense hydrogen.
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Abstract—Mechanisms of turbulent diffusion of particles moving in a turbulent medium under the action of
gravity and Stokes forces are studied. It is observed that the velocity variance of particles decreases upon an
increase in the inertia of the motion. At the same time, the diffusion coefficients of a particle are independent
of its inertia. It is shown that, as the velocity of incidence increases, diffusion in the vertical plane becomes
stronger than in the horizontal plane, and the ratio of the horizontal and vertical diffusion coefficients decreases
to 1 : 2. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Analysis of diffusion of impurity particles in a tur-
bulent medium is important for solving ecological and
meteorological problems. Many authors assume that an
impurity is passive and moves at the velocity of the
ambient medium (see, for example, [1–6]). In real situ-
ations, however, effects associated with the inertia of
motion of particles and force of gravity play a signifi-
cant role. A typical example is aerosol or raindrops in a
turbulent atmosphere. The inertia of particles may con-
siderably affect the laws of turbulent diffusion. For
example, Maxey [7] proved, using numerical simula-
tion, that the average velocity of particles in a turbulent
medium is higher than the velocity of incidence in a sta-
tionary medium, while Csanady [8] noted that the tur-
bulent diffusion coefficient in the vertical plane may be
twice as large as the diffusion coefficient in the horizon-
tal plane. Here, we derive an equation for particle diffu-
sion taking into account the gravity and Stokes forces
and consider its corollaries as applied to the statistics of
coordinates and the velocity of particles. The following
physical effect is discovered: although the variance of
particle velocity decreases upon an increase in the iner-
tia of particle motion, diffusion coefficients are virtu-
ally independent of inertia and are determined only by
the free-fall velocity. The dependence of the particle
velocity variance and of the transverse and longitudinal
diffusion coefficients on the average velocity of particle
fall is considered in detail. It is shown that as the fall
velocity increases, the ratio of the transverse and longi-
tudinal diffusion coefficients decreases gradually to
1 : 2. The physical reason for this effect is that the trans-
verse correlation function of the velocity of vortex
motion decreases at a higher rate than the longitudinal
correlation function and contains by negative correla-
tion regions.
1063-7761/03/9603- $24.00 © 20480
2. LAWS OF MOTION OF PARTICLES

Let us consider the motion of impurity particles in
an incompressible turbulent medium whose random
velocity field is u(x, t). We assume that the size of
impurity particles is much smaller than the inner scale
of turbulence and disregard the possibility of particle
collisions. If, in addition, we can disregard the effect of
particles on the velocity field of the medium and molec-
ular diffusion, the motion of a particle can be correctly
described by the equations

Here, X(t) and V(t) are the coordinates and velocity of
an impurity particle. Coefficient λ takes into account
viscous friction, and g stands for gravity and buoyancy
forces. It is convenient to pass from these equations to
relations describing the deviations of the coordinates
and velocity of the particle from uniform motion:

Here, v = g/λ is the steady-state velocity of the particle
falling in a stationary medium. The equations for Y and
W have the form

(1)

To close the diffusion equation, we will require an
approximate solution of Eq. (1) in the time interval θ,
which will be determined at a later stage. We represent
Y and W in the form

where Y0(t ') and W0(t ') describe the motion of a parti-

dX
dt
------- V, dV

dt
------- λV+ λu X t,( ) g.+= =

Y t( ) X t( ) vt, W t( )– V t( ) v.–= =

dY
dt
------- W, dW

dt
--------- λW+ λu Y vt+ t,( ).= =

Y t( ) Y0 t( ) Ỹ t( ), W t( )+ W0 t( ) W̃ t( ),+= =
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cle in a stationary medium and satisfy the equations

(2)

while  and  are solutions to the equations

(3)

These equations take into account the effect of turbu-
lence on the motion of the particle in a time interval t ' ∈
[t – θ, t]. Let lu be the external scale of the turbulent
velocity field u(x, t). We will henceforth assume that
the inequality

(4)

holds, which means that the “turbulent component” 
of the motion of the particle during time θ is much
smaller than lu . If inequality (4) is valid, Eqs. (3) can be
replaced by the simpler approximate equations

(5)

Let us derive the laws of motion of a particle in the time
interval t ' ∈  [t – θ, t]. It follows from Eq. (2) that the
motion of a particle in a stationary medium, which is
expressed in terms of its coordinates and velocity at
instant t, is described by the equality

Accordingly, the solutions to Eqs. (5), allowing for tur-
bulence of the medium, have the form

(6)

3. DERIVATION 
OF THE DIFFUSION EQUATION

Let us derive the equation for the combined proba-
bility density

(7)

dY0

dt'
--------- W0, dW0

dt'
----------- λW0+ 0,= =

Y0 t θ–( ) Y t θ–( ), W0 t θ–( ) W t θ–( ),= =

Ỹ t'( ) W̃ t'( )

dỸ
dt'
------- W̃,=

dW̃
dt'

--------- λW̃+ λu Y0 t'( ) Ỹ t'( ) vt'+ + t',( ),=

Ỹ t θ–( ) 0, W̃ t θ–( ) 0.= =

Ỹ  ! lu

Ỹ

dỸ
dt'
------- W̃, dW̃

dt'
--------- λW̃+ λu Y0 t'( ) vt'+ t',( ),= =

Ỹ t θ–( ) 0, W̃ t θ–( ) 0.= =

Y0 t'( ) Y0 t( )
1
λ
---W0 t( ) 1 eλ t t'–( )–( ).+=

W̃ t( ) λ u Y0 t'( ) vt'+ t',( )eλ t' t–( ) t',d

t θ–

t

∫=

Ỹ t( ) u Y0 t'( ) vt'+ t',( ) 1 eλ t' t–( )–( ) t'.d

t θ–

t

∫=

f y w; t,( ) δ Y t( ) y–( )δ W t( ) w–( )〈 〉=
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of coordinates and velocity of particles, proceeding
from the approximate description (6) of the motion of
particles in the time interval t ' ∈  [t – θ, t]. The angle
brackets in Eq. (7) and below indicate statistical aver-
aging over an ensemble of the random velocity field
u(x, t) of the medium.

We assume that θ = 2τu , where τu is the time of sta-
tistical dependence of field u(x, t). Passing from
Eqs. (1) to the equation for the average of function
ϕ(Y(t), W(t)), where ϕ(y, w) is a smooth function
whose form will be specified below, we can easily show
that the sought average satisfies the following equation:

(8)

All averages on the left-hand side of this equation are
unambiguously determined by probability density
f(y, w; t) (7). In order to pass from Eq. (8) to a closed
equation for distribution f, we must close the average on
the right-hand side of Eq. (8) relative to this distribu-
tion. We can do that, taking function ϕ(Y(t), W(t)) in
the form

(9)

and assuming that the following inequalities hold:

(10)

It should be noted that function ϕ plays approximately
the same role as a “physically infinitesimal volume” in
the transition from integral conservation laws to macro-
scopic equations of hydrodynamics. This functions sets
the resolution limits lf * lϕ and wf * wϕ for probability
density (7) in the phase space {y, w}, in which the cor-
ollaries of diffusion equations (17) are valid.

When inequalities (4) and (10) are satisfied, the
average on the right-hand side of Eq. (8) can be
replaced by the approximate expression

(11)

The first average on the right-hand side of Eq. (11) is
equal to zero in view of the statistical independence of

∂ ϕ〈 〉
∂t

------------ W ∇ Yϕ⋅〈 〉 λ W ∇ Wϕ⋅〈 〉+–

=  λ u Y vt+ t,( ) ∇ Wϕ⋅〈 〉 .

ϕ Y W,( ) Y y–( )2

lϕ
2

-------------------- W w–( )2

wϕ
2

-----------------------––
 
 
 

exp∼

Ỹ  ! lϕ , W̃  ! wϕ .

u Y t( ) vt+ t,( ) ∇ Wϕ W t( ) Y t( ),( )⋅〈 〉

=  u Y0 t( ) vt+ t,( ) ∇
W

0ϕ W0 t( ) Y0 t( ),( )⋅〈 〉

+ Ỹ j t( )
∂ui Y0 t( ) vt+ t,( )

∂Y j
0 t( )

---------------------------------------∂ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )

---------------------------------------

+ ui Y0 t( ) vt+ t,( )W̃ j t( )
∂2ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )∂W j

0 t( )
------------------------------------------

+ ui Y0 t( ) vt+ t,( )Ỹ j t( )
∂2ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )∂Y j

0 t( )
------------------------------------------ .
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coordinates Y0(t) and velocity W0(t) of field u(x, t). The
remaining averages can be calculated using the same
algorithm; consequently, we will consider here only the
first of these averages. We carry out averaging in two
stages, writing the average in the form

The inner average on the right-hand side can be calcu-
lated provided that Y0(t) and W0(t) are defined, and the
outer angle brackets indicate averaging over random
values of Y0(t) and W0(t). Let us calculate the condi-
tional average, substituting in it explicit expression (6)

for :

Noting that, for t ' < t – τu , the average in the integrand
is equal to zero, while for t ' > t – τu , the values of field
u(x, t ') are statistically independent of the conditions,
we have

(12)

This expression contains the tensor of the velocity field
u(x, t), which will be regarded as statistically isotropic.
The tensor has the form

(13)

Here, F(s) and G(s) describe the transverse and longitu-
dinal correlations of the velocity field, respectively.
Thus, we finally have

(14)

Ỹ j t( )
∂ui Y0 t( ) vt+ t,( )

∂Y j
0 t( )

---------------------------------------∂ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )

---------------------------------------

=  Ỹ j t( )
∂ui Y0 t( ) vt+ t,( )

∂Y j
0 t( )

---------------------------------------
Y0

t( ) W0
t( ),

∂ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )

--------------------------------------- .

Ỹ t( )

Ỹ j t( )
∂ui Y0 t( ) vt+ t,( )

∂Y j
0 t( )

-----------------------------------------
Y0 W0,

=  u j Y0 t'( ) vt'+ t',( )
∂ui Y0 t( ) vt+ t,( )

∂Y j
0 t( )

---------------------------------------
Y0 W0,t 2τu–

t

∫
× 1 eλ t' t–( )–( )dt'.

Ỹ j t( )
∂ui Y0 t( ) vt+ t,( )

∂Y j
0 t( )

---------------------------------------
Y0 W0,

Ci W0 t( )( )=

=  
s j∂
∂

Bij s vτ 1
λ
---W0 t( ) eλτ 1–( )+ + τ, 

 
s 0=

0

∞

∫
× 1 e λτ––( ) τ .d

Bij s τ,( ) F s τ,( )δij G s τ,( ) F s τ,( )–[ ]
sis j

s2
--------.+=

Ỹ j t( )
∂ui Y0 t( ) vt+ t,( )

∂Y j
0 t( )

---------------------------------------∂ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )

---------------------------------------

× C W0 t( )( ) ∇
W

0
t( )
ϕ Y0 t( ) W0 t( ),( )⋅〈 〉 ,
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where C(W0) is defined by equality (12). Expressions
similar to (14) and (12) can also be obtained easily for
the last two averages on the right-hand side of Eq. (11).
Namely,

(15)

Here, we have

(16)

Substituting Eqs. (14) and (15) in Eq. (11) and Eq. (11)
into Eq. (8), we arrive at the equation

Here, by virtue of inequalities (10), processes Y0(t) and
W0(t) on the right-hand side have been replaced by pro-
cesses Y(t) and W(t). It follows from the form of func-
tion ϕ(Y(t), W(t)) (9) and from the last equality that, if
the probability density (7) has characteristic scales in y
and w much larger than lϕ and wϕ , it obeys the diffusion
equation

(17)

It should also be noted that, in the case of the vortex
velocity field u(x, t) in question, when the longitudinal

ui Y0 t( ) vt+ t,( )W̃ j t( )
∂2ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )∂W j

0 t( )
------------------------------------------

=  σij
2 W0 t( )( )

∂2ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )∂W j

0 t( )
------------------------------------------ ,

ui Y0 t( ) vt+ t,( )Ỹ j t( )
∂2ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )∂Y j

0 t( )
------------------------------------------

=  Dij W0 t( )( )
1
λ
---σij

2 W0 t( )( )–
∂2ϕ Y0 t( ) W0 t( ),( )

∂Wi
0 t( )∂Y j

0 t( )
------------------------------------------ .

σij
2 W0( )

=  λ Bij vτ 1
λ
---W0 t( ) eλτ 1–( )+ τ, 

  e λτ– τ ,d

0

∞

∫
Dij W0( )

=  Bij vτ 1
λ
---W0 t( ) eλτ 1–( )+ τ, 

  τ .d

0

∞

∫

∂ ϕ〈 〉
∂t

------------ W ∇ Yϕ⋅〈 〉 λ W C W( )–[ ] ∇ Wϕ⋅〈 〉+–

=  λ σ ij
2 W( )

∂2ϕ
∂Wi∂W j

--------------------

+ λ Dij W( ) σij
2 W( )–[ ] ∂2ϕ

∂Wi∂Y j

------------------ .

∂f
∂t
----- w∇ y f+ λ ∇ w w C w( )–[ ] f⋅( )=

+ λ
∂2 σij

2 w( ) f( )
∂wi∂w j

----------------------------
∂2 λ Dij w( ) σij

2 w( )–[ ] f( )
∂wi∂y j

----------------------------------------------------------.+
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and transverse components of the correlation tensor are
connected through the Kármán relation [9]

(18)

the identity C(W) ≡ 0 holds.

Let us consider the methods of measurement and the
geometrical meaning of solutions to Eq. (17). It should
be recalled that the probability density f (7) satisfying
this equation is defined as the microscopic density of an
impurity particle averaged over the ensemble of realiza-
tions of the random field u(x, t). Consequently, gener-
ally speaking, we must trace the motion of a single par-
ticle to measure f. After quite a long time T @ τu , we
must trace the motion of the next particle, which is
independent of the previous particle, and repeat this
experiment many times to gather the statistics of real-
izations sufficient for a more or less accurate determi-
nation of average (7). Another method of visualization
of the solution to Eq. (17) is based on the fact that the
average density of a cloud of impurity particles in the
phase space {y, w} also satisfies Eq. (17). In particular,
the average density of particles in the ordinary space
(and in the case of isotropic turbulence) is given by

Here, ρ0(x) is the initial density of the cloud of parti-
cles. However, the probability density can be measured
as the average density of a cloud of particles at a given
instant t provided that stringent spatial ergodicity con-
ditions are satisfied. First of all, the size of the cloud
must be much larger than the external scale of turbu-
lence, so that the motion of an individual particle is vir-
tually independent of the motion of most of the remain-
ing particles in the cloud. In addition, the realizations of
the density field of impurity particles are known to vary
in space more and more strongly with time, exhibiting
alternation and impurity clusterization effects (see, for
example, [3–5]). For this reason, additional spatial
averaging of a measured realization of density ρ(y, t)
over regions with sizes on the order of the external scale
of turbulence is required for measuring the average
density 〈ρ(y, t)〉, which varies in space more and more
smoothly.

4. UNIFORM FALL APPROXIMATION

Let us consider in detail the corollaries of Eq. (17)
in the uniform fall approximation. Namely, while cal-
culating the coefficients in Eq. (17), we disregard devi-
ation W of the velocity of a particle from v. We carry out
analysis in the frame of reference falling at velocity v.
Let v be directed along the y1 = y axis. Similarly, we
omit the subscript on the relevant component of vector
w: w1 = w. It can easily be proved that, in this reference

F s τ,( ) G s τ,( )
s
2
---G' s τ,( ),+=

ρ y t,( )〈 〉 ρ 0 y'( ) f y y'– w; t,( ) w3d y3 '.d∫=
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frame and in the uniform fall approximation, Eq. (17) is
transformed into

(19)

Here, gradients are taken in the plane perpendicular to
the vertical y axis, and the following notation is used:

(20)

Formulas (19) and (20) show that the diffusion of a par-
ticle in the direction of its incidence and in the perpen-
dicular plane is not the same: diffusion in the direction
of incidence is determined by the correlation function
of the longitudinal components of the velocity field of
the medium, while transverse diffusion is determined
by the correlation function of the transverse compo-
nent. We will consider separately diffusion in different
directions. Averaging Eq. (19) over transverse coordi-
nates and velocity, we arrive at the longitudinal diffu-
sion equation

(21)

in the probability density

where Y(t) and W(t) are the components of the particle
coordinates and velocity in the direction of incidence.
Equation (21) can easily be solved in the general case.
We confine our analysis to the physically most impor-
tant case of λt @ 1, which corresponds to the steady-
state average velocity of the particle and a linear law of

∂f
∂t
----- w⊥ ∇ ⊥ y⋅( ) f w

∂f
∂y
-----+ + λ ∇ ⊥ w w⊥ f⋅( )=

+ λ∂ wf( )
∂w

-------------- λσ⊥
2 ∇ ⊥ w

2 f λσ||
2 ∂2 f

∂w2
---------+ +

+ λ D⊥ σ⊥
2–[ ] ∇ ⊥ w ∇ ⊥ y⋅( ) f λ D|| σ||

2–[ ] ∂2 f
∂y∂w
-------------.+

σ||
2 λ G v τ τ,( )e λτ– τ ,d

0

∞

∫=

σ⊥
2 λ F v τ τ,( )e λτ– τ ,d

0

∞

∫=

D|| G v τ τ,( ) τ ,d

0

∞

∫=

D⊥ F v τ τ,( ) τ .d

0

∞

∫=

∂ f ||

∂t
-------- w

∂ f ||

∂y
--------+ λ

∂ w f ||( )
∂w

-----------------=

+ λσ||
2∂2 f ||

∂w2
---------- λ D|| σ||

2–[ ]
∂2 f ||

∂y∂w
-------------+

f || y w; t,( ) δ Y t( ) y–( )δ W t( ) w–( )〈 〉 ,=
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diffusion. Over such time intervals, the probability den-
sity of the longitudinal velocity component W(t) coin-
cides with the steady-state distribution fst(w) satisfying
the equation

Here, the dependence of coefficient  on the
velocity of fall and on the inertia characterized by the
dimensionless parameter ε = λτu is indicated explicitly.
The larger this parameter, the less inertial the particle
motion. In particular, for ε @ 1, the particle velocity is
approximately equal to V(t) ≈ v + u(X(t), t).

It follows from the latter equation that the longitudi-
nal velocity of the particle obeys Maxwell’s distribu-
tion:

(22)

We will get a more comprehensive idea of the statis-
tics of the longitudinal velocity of a particle by studying

the dependence of its variance  on the average veloc-
ity v  of fall and on parameter ε. As the first step, we
choose the longitudinal correlation function G(s, τ)
reflecting spatial properties inherent in strong turbu-
lence. We take this function in the form

(23)

where G(s) is the spatial correlation function taking
into account the presence of the inner scale of turbu-
lence l0, its external scale lu (lu @ l0), and the Kolmog-
orov–Obukhov two-thirds power law in the inertia

w f st w( ) σ||
2 v ε,( )

d f st w( )
dw

-----------------+ 0.=

σ||
2 v ε,( )

f st w( )
1

2πσ||
2 v ε,( )

------------------------------ w2

2σ||
2 v ε,( )

----------------------–
 
 
 

.exp=

σ||
2

G s τ,( ) σu
2G s( ) τ

τu

-----– 
  ,exp=

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5 2.0 2.5 3.0

Ω||

z

Fig. 1.
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interval l0 ! s ! lu . It is most convenient to take into
account these features of the turbulence correlation
function in terms of the corresponding spectral density,

The spectral density corresponding to strong turbulence
properties is defined by the Kármán spectrum

where A is chosen from the condition G(0) = 1. While
analyzing absolute diffusion of particles treated by us
here and in the case of strong turbulence (l0 ! lu), we
can apparently disregard the effect of inner scale. Con-
sequently, we set l0 = 0 and use a simplified Kármán
spectrum:

The correlation function corresponding to this spec-
trum is given by

(24)

Here,

For z  0, correlation function (24) possesses the
asymptotic form

corresponding to the Kolmogorov–Obukhov two-thirds
power law, while for large values of z, this function
decreases exponentially to zero:

Figure 1 shows the graph of function Ω||(z) (24)
together with its asymptotic form.

G̃ κ( )
1

2π( )3
------------- G s( )e i k s⋅( )– s.3d

∞–

∞

∫=

G̃ κ( ) AL3 κ2/κ0
2–( )exp

κ2lu
2 1+( )11/6

------------------------------, κ0
5.92

l0
----------,= =

G̃ κ( ) AL3 κ2lu
2 1+( )–11/6

.=

G s( ) Ω||
s
lu

--- 
  ,=

Ω|| z( )
3

π
-------Γ 2

3
--- 

  z
2
--- 

 
1/3

K1/3 z( ).=

A
3

2π2 π
----------------Γ 2

3
--- 

  Γ 11
6
------ 

  0.063.≈=

Ω|| z( ) 1
3 π

Γ 1/6( )
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From Eqs. (20), (23), and (24), we have

(25)

These expressions contain the dimensionless parameter
γ = v / , where  = lu/τu . The curves describing vari-

ance  of the longitudinal velocity of a particle, nor-

malized to , as a function of ε for different values of
γ are shown in Fig. 2. It can be seen that, for a low iner-
tia (ε @ 1), the variance of the particle velocity tends to

the variance of components  of the velocity field of
the medium for any γ. As inertia of the motion of a par-
ticle increases (for ε  0), the variance of its velocity
tends to zero owing to the averaging effect of inertia.

Let us derive the law governing longitudinal diffu-
sion of a particle, passing from formula (21) to the
equation for average 〈Y2(t)〉 . Relation (21) implies that

(26)

The average on the right-hand side, in turn, obeys the
equation

Considering that the mean square of the relative veloc-
ity tends to steady-state variance (25) in the case λt @ 1
of interest to us,

and the average 〈Y(t)W(t)〉  tends to the steady-state
value

we obtain the following asymptotic law of diffusion
from Eq. (26):

(27)

Here, we have explicitly taken into account the depen-
dence of the longitudinal diffusion coefficient on the
velocity of fall (parameter γ). In our opinion, the inde-
pendence of the diffusion coefficient in Eq. (27) of the
particle inertia (parameter ε) is even more remarkable.
This appears as paradoxical since the variance of the
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particle velocity decreases upon an increase in inertia
(with decreasing ε). Apparently, this should suppress
diffusion. The paradox is removed by the fact that, with
increasing inertia, the correlation time τv for the parti-
cle velocity increases in the same proportion. As a

result, the product τv , which determines the diffu-
sion coefficient, turns out to be independent of ε. It
should be noted in addition that, for the longitudinal
correlation function of turbulent velocity field (23),
(24), we have

(28)

while function Φ(γ, ε) is defined by formula (25).

5. TRANSVERSE DIFFUSION

The diffusion of a particle in a plane transverse to
the direction of incidence differs from the longitudinal
diffusion in the dependence of the velocity variance and
the transverse diffusion coefficient on parameters γ and
ε. This is due to the fact that transverse diffusion is
determined by the transverse correlation function F of
the medium and not by the longitudinal function G. In
accordance with Eq. (18), function F in the case when
Eqs. (23) and (24) hold is given by

(29)

In contrast to Ω||(z) (24), function Ω⊥ (z) decreases at a
higher rate and becomes negative for large values of z.
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The Ω||(z) and Ω⊥ (z) curves illustrating the difference
between the transverse and longitudinal correlation
functions of the vortex velocity field are depicted in
Fig. 3. The above-mentioned features of transverse cor-
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relations of the vortex velocity field are responsible for
qualitative and even quantitative difference between
transverse and longitudinal diffusion. Let us compare
above all the transverse and longitudinal variances of
the particle velocity over time periods of steady-state
diffusion (λt @ 1). In this case, the steady-state longitu-
dinal variance of the velocity is given by Eq. (25), while
the corresponding variance of one of the transverse
components of the particle velocity, which can be
obtained by substituting formula (29) in (20) and eval-
uating the integral, is given by

(30)

The curves in Fig. 4 describe the ratio of the transverse
dispersion of the particle velocity to its longitudinal
counterpart as a function of ε for different values of γ.
It can be seen that the above features of the transverse
correlation function (29) lead to a relative decrease in the
transverse variance of the velocity, which is manifested
most clearly for a strongly inertial motion (ε  0).

An increase in the velocity of particle fall (parame-
ter γ) also facilitates a decrease in the transverse veloc-
ity variance. This is illustrated in Fig. 5, showing ratio

 as a function of γ for different values of ε.

It was noted above that inertia of motion of a particle
does not affect its diffusion coefficient. However, the sup-
pression of transverse diffusion as compared to longitudi-
nal diffusion is observed in this case also. Let us illustrate
this for the longitudinal correlation function (23) and the
corresponding transverse correlation function (29) of
the velocity field of the medium. In this case, calcula-
tions lead to the following expression for the mean
square of transverse deviation of a particle from the tra-
jectory of its incidence in a stationary medium:

(31)

Figure 6 shows the longitudinal (28) and transverse (31)
diffusion coefficients normalized to D0 as functions
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of γ. The dashed curve in the same figure shows the
ratio of the transverse and longitudinal diffusion coeffi-
cients. It can be seen that, and the velocity of fall v
increases, the ratio of the diffusion coefficients
decreases smoothly from 1 : 1 to 1 : 2.

It should be noted that the limiting value of the ratio
of the diffusion coefficients, which is equal to 1 : 2, is a
universal constant independent of the spectral and cor-
relation properties of the velocity field u(x, t). Indeed,
in the limiting case of a high velocity of particle fall
(γ @ 1), we can disregard the time dependence of the
correlation functions for the velocity field and use the
asymptotic formulas

(32)

indicating that the particle “pierces” elementary vorti-
ces during a time over which the vortices virtually can-
not shift. Substituting the Kármán formula (18) into the
last relation from (32), we obtain

;

after integrating by parts, we arrive at the following uni-
versal limiting relation:

6. CONDITIONS FOR APPLICABILITY 
OF DIFFUSION EQUATION

It should be recalled that, while deriving the diffu-
sion equation (17), we required that the effect of turbu-
lence on the motion of a diffusing particle could be
neglected for the correlation time τu of the turbulent
velocity field of the medium. Let us estimate the valid-
ity of this assumption, replacing expression (4) by the
inequality for averages,

and substituting the mean square 〈Y2(τu)〉  of the incre-
ment of the longitudinal coordinate over time τu (27),

D|| G v τ 0,( ) τ ,d

0

∞

∫≈

D⊥ F v τ 0,( ) τ γ  @ 1( ),d

0

∞

∫≈
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0

∞
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2
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2,
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(28) in this inequality. This leads to the following con-
dition of applicability of Eq. (17):

(33)

The asymptotic form

shows that, in the case of σu ≈  typical of turbulence,
inequality (33) holds for quite large values of γ.

The freefall approximation used in the above analy-
sis is valid if we can disregard the dependence of coef-
ficients (16) on W0. Let us see when this can be done as
applied to the diffusion tensor Dij . The characteristic
value of W0 is determined by the effective width of the
Maxwell distribution (22): W0 ≈ σ||. In addition, we
assume that the value of γ is large enough for the effec-
tive interval of integration in expression (16) for Dij to
be equal to τ* ≈ τu/γ. In this case, the dependence
of Dij (16) on W0 can be neglected if

In particular, for ε & γ, this condition can be reduced to
the inequality

which obviously holds for large values of γ.
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Abstract—The coherent field propagation in a polymer dispersed liquid crystal layer is described using a
method based on the Foldy–Twersky integral equation for the vector case. Expressions for a polarization-inde-
pendent phase shift and the coherent transmission coefficient of such a layer containing nanodimensional nem-
atic liquid crystal droplets are obtained. Theoretical results for the phase shift are compared to the available
experimental data. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Polymer dispersed liquid crystal (PDLC) films,
which appeared in the late 1980s, are promising mate-
rials for the development of electric-field-controlled
radiation modulators. In recent years, extensive
research has been carried out aimed at the creation of
displays, diffraction gratings, lenses, polarizers, and
other field-controlled optical elements based on PDLC
films [1–7].

In a PDLC film system, particles of an optically
anisotropic liquid crystal (nematic, ferroelectric, cho-
lesteric, or a mixture of these [8–13]) are dispersed in
an isotropic binding polymer matrix confined between
two transparent substrates with transparent electrodes
formed on their inner surfaces. Special features of such
film systems are that they possess a disperse structure
and require no additional polaroids for producing elec-
trooptical effects. The dimensions of liquid crystal
droplets may vary from 0.05 to 3.0 µm.

PDLC films with a particle size exceeding light
wavelength exhibit strong light scattering. The trans-
mission of such films depends on the applied field rotat-
ing optical axes (directors) of the LC droplets and/or
changing the internal structure of these particles. In
PDLC systems with a particle size much smaller than
the light wavelength, the scattering is small. In this
case, description of light propagation reduces in the
first approximation to an analysis of the amplitude and
phase of a coherent (guided) [14] component of the
transmitted radiation. Such films are usually character-
ized by a high transmission, which is not strongly influ-
enced by changes on the LC droplet director orientation.
Here, the main field effect is a change in the effective
refractive index of the film (related to the Kerr effect)
under the action of an applied electric field [15, 16].
1063-7761/03/9603- $24.00 © 20489
Recent interest in the investigation of films possessing
a fine disperse structure is related to prospects for
obtaining polarization-independent light phase modu-
lators [17, 18]. Such films would be promising materi-
als for field-controlled spectral filters [17] and telecom-
munication systems [18].

An important task encountered in the study of fine dis-
perse films is the development of methods for the descrip-
tion of light propagation in such systems, relating charac-
teristics of the transmitted light (wave amplitude and
phase) to the material parameters. Solving this problem
would allow us to predict new electrooptical effects—in
particular, in ferroelectric PDLC films characterized by
small switching times [1–4]—and develop methods for
the obtaining of films with the desired properties.

This paper proposes a model for description of the
propagation of a coherent light field in a PDLC film.
The model is based on solving the problem of propaga-
tion of a plane polarized wave through such a layer in
terms of the Foldy–Twersky integral equation [19].
Using this model, formulas for the coherent transmis-
sion coefficient, light attenuation coefficient, and field-
controlled polarization-independent phase shift in a
PDLC film with nanodimensional nematic LC droplets
are obtained in the Rayleigh approximation. Theoreti-
cal results for the phase shift are compared to the exper-
imental data of Lucchetta et al. [20].

2. COHERENT FIELD 
OF A LINEARLY POLARIZED PLANE WAVE 

PROPAGATING TROUGH A POLYMER 
ENCAPSULATED LIQUID CRYSTAL LAYER

Consider a linearly polarized plane light wave with
amplitude E0(|E0 | = E0) and wave vector k normally
003 MAIK “Nauka/Interperiodica”
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incident onto a plane-parallel PDLC film of thickness l
(Fig. 1). Introduce a right-handed rectangular Cartesian
coordinate system (x, y, z) with the z axis directed along
the normal to the PDLC film, parallel to the wave vec-
tor k of the incident wave, and the (x, y) plane coincid-
ing with the front surface of the layer.

Let us assume that (i) each LC droplet in the layer is

characterized by the director vector dj (j = , where
N is the number of LC droplets in the PDLC film),
which characterizes the orientation of long axes of the
LC molecules averaged over a given particle, and
(ii) that all particles in the layer possess identical shape
and size and are oriented in the same direction parallel

to a given vector d (i.e., dj || d, j = ). Let VV and VH
be the transmitted wave components with the polariza-
tions parallel and perpendicular to the plane of polar-
ization of the incident wave [21, 22]. In terms of the
Foldy–Twersky integral equation [19], the VV and VH
components of the electric vector of the coherent elec-
tromagnetic wave field transmitted through the PDLC
film can be expressed as

(1)

(2)

1 N,

1 N,

EVV z( )〈 〉 E0ψVV z( ) z l= ,=

EVH z( )〈 〉 E0ψVH z( ) z l= ,=

z

y

x

d

E0

θ

ϕd

k

l

ϕi

Fig. 1. Geometry of the plane wave propagating through a
PDLC film: k is the wave vector of the incident wave; dj is
the director of an LC droplet; d is the common direction of
orientation of the LC droplet directors; ϕd and ϕi are the
angles determining orientation of the principal plane (k, d)
and the polarization plane of the incident wave (k, E0) in the
coordinate system (x, y, z); E0 is the electric vector of the
incident wave, l is the PDLC film thickness, θ is the polar
angle between the z axis and the LC director.

dj
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where ψVV(z) and ψVH(z) are given by the formulas

(3)

(4)

Here, angular brackets denote statistical averaging over
the ensemble, ϕi is the angle between the polarization
plane of the wave (k, E0) and the vertical plane (z, x), ϕd

is the angle between the principal plane (k, d) and the

(z, x) plane, and functions ψj(z) (j = ) are solutions
of the system of equations

(5)

(6)

In these equations, q = 2πk–2Nv; Nv is the number of LC
droplets per unit layer volume; k = 2π/λp; λp is the light
wavelength in the binding polymer matrix; and Sj(0)

(j = ) are the elements of the amplitude scattering
matrix [22] for the zero scattering angle. The latter
matrix elements depend on the optical properties of the
LC crystal and the shape, size, and structure of the LC
droplets.

Equations (1)–(6) represent a generalization of the
Foldy–Twersky integral equation [19] for the vector
case. Using these equations, it is possible to analyze
some effects related to the coherent component of the
light transmitted through the PDLC film, including
birefringence and the related transformation of the
polarization state, rotation of the polarization plane,
and linear and circular dichroism. This description
requires knowledge of the amplitude scattering matrix

elements Sj(0) (j = ) and must take into account sta-
tistical features in the distribution of LC droplet direc-
tors in the PDLC film.

Below we will consider a PDLC film with nanodi-
mensional, nonabsorbing nematic LC droplets, assum-
ing a cylindrical symmetry in the arrangement of LC
molecules inside the particles and in the distribution of
particle directors in the layer.
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3. PHASE SHIFT RELATIONS 
AND COMPARISON TO EXPERIMENT

Let the configuration of molecular axes in the PC
particles be cylindrically symmetric with respect to the
average direction of orientation (i.e., relative to the par-
ticle directors). In the absence of an external electric
field, the distribution of directors in the layer is random.
Under the action of an applied field applied along the
normal to the layer, directors of a liquid crystal with
positive anisotropy will be aligned in the control field
direction. The distribution of director orientations is
assumed to be cylindrically symmetric relative to the
electric vector of the control field (i.e., relative to the z
axis). In the Rayleigh approximation for an anisotropic
dipole [22] representing the LC droplet, the amplitude
scattering matrix elements for polydisperse particles at
a zero scattering angle are as follows:

(7)

(8)

(9)

Here, 〈v 〉  is the average volume of the LC droplet; Sf =
(3〈cos2θ〉 – 1)/2 is the order parameter of the PDLC film
[2, 23]; θ is the angle between the LC droplet director
and the z axis; np is the refractive index of the binding
polymer matrix;

(10)

(11)

are the average refractive indices of the LC droplets
for the ordinary and extraordinary waves, respectively
[2, 24]; Sd is the order parameter of the LC droplet; S is
the molecular order parameter of the liquid crystal; no

and ne are the refractive indices of the liquid crystal for
the ordinary and extraordinary waves, respectively; and

(12)

Relations (5)–(8) yield

(13)

(14)

Averaging relations (3) and (4) with respect to angle
ϕd  [so that 〈cos2(ϕd – ϕi)〉  = 〈sin2(ϕd – ϕi)〉  = 1/2 and
〈sin2(ϕd – ϕi)〉  = 0], using formulas (9), (13), and (14),
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and taking into account cylindrical symmetry of the
droplet director distribution, we obtain

(15)

(16)

Relations (15) and (16) show that the problem of deter-
mining the amplitude and phase of a normally incident
wave transmitted through a PDLC film can be solved by
analogy to the scalar case [19, 25].

Solving integral equation (16) with respect to
ψVV(z), we obtain

(17)

where K is the propagation constant defined as

(18)

For a coherent field at the output (z = l) from the
PDLC film, Eqs. (1) and (17) yield (the VV subscript is
omitted by virtue of the polarization-independent char-
acter of the solution)

(19)

This relation indicates that, in the case under consider-
ation, the film behaves like a homogeneous plane-par-
allel plate with the complex refractive index

(20)

Let us define a phase shift ∆Φ as the phase differ-
ence for a wave transmitted with the control electric
field switched on (whereby the film order parameter is
Sf > 0) and off (Sf = 0) [20]. Using expressions (9), (12),
and (20), we obtain

(21)

or

(22)

where cv = Nv〈v 〉  is the number density of LC droplets
in the PDLC film. In expression (21), symbol Re indi-
cates that we take the real part of the effective refractive
index , while the sign minus for ∆Φ in formula (22)
indicates that the phase velocity of the wave is greater
when particles of a liquid crystal with the positive
anisotropy (ne > no) are oriented along the control field.
As the ordering of LC droplet directors (i.,e., the film
order parameter Sf) increases, the phase velocity of the
wave grows.

Let us compare the above theoretical results
obtained for the phase shift to the experimental data
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reported by Lucchetta et al. [20]. We assume that (i) the
order parameter of the LC droplets Sd is independent of
the applied field and that (ii) the order parameter of the
PDLC film depends on the electric field strength E
as [2, 20]

(23)

e = AE, (24)

where A is a parameter determined by the average LC
droplet size, optical anisotropy ∆n = ne – no of the liquid
crystal, and the elastic constants. The results of numer-
ical analysis showed that this parameter is weakly
dependent on the order parameters S, Sd , and Sf .

Figure 2 presents the results of calculations of the
absolute phase shift |∆Φ| as a function of the control
electric field strength E in comparison to the experi-
mental data [20]. The measurements were performed
by an interference technique using the laser radiation
with a wavelength of λ = 0.6328 µm. The films were
prepared using a nematic liquid crystal of the E7 type
(with the refractive indices no = 1.511 and ne = 1.74)
dispersed in a polymer matrix representing a mixture of
DPHPA, NVP, and BP monomers. The refractive index
of the polymer matrix, the molecular order parameter,
and order parameter of LC droplets (determined assum-
ing a bipolar configuration of LC molecules in the par-
ticles) were np = 1.524, S = 0.6, and Sd = 0.7 [20]. In

S f
1
4
--- 3 e2 1+( )

16e2
----------------------+=

+
3 3e2 1+( ) e2 1–( )

32e3
-------------------------------------------- e 1+

e 1–
----------- ,ln

1

2

3

1.0
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0.6

0.4

0.2

0 5 10 15 20 25
E, V/µm

|∆Φ|

Fig. 2. Plots of the absolute phase shift ∆Φ versus the
applied electric field strength E calculated by formula (22)
(solid curves) in comparison to the experimental data [20]
(symbols) for various sets of parameters: (1) l = 13 µm, cv  =
0.125, A = 0.12 µm/V; (2) l = 23 µm, cv  = 0.089, A =
0.124 µm/V; (3) l = 36 µm, cv  = 0.075, A = 0.16 µm/V.
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comparison to the experimental data, taking the known
values of the incident radiation wavelength λ, refractive
indices (no , ne , np), order parameters (S, Sd) and the
PDLC film thickness (l), the particle number density cv

and the parameter A were selected so as to provide for
the best fit between theory and experiment (the corre-
sponding cv and A values are indicated in the legend to
Fig. 2).

A more detailed comparison must include an analy-
sis of the morphological and structural features of the
PDLC films employed and the dependence of the order
parameters Sd and Sf on the applied electric field.

4. COHERENT TRANSMISSION COEFFICIENT

The average amplitude transmission coefficient 〈Ta〉
of the film determined using expressions (18) and (19)
is

(25)

For the coherent transmission coefficient Tc , this yields

(26)

(27)

(28)

where γ is the attenuation coefficient and σext is the
extinction cross section of a single LC droplet [22].

It should be noted that, within the framework of the
Rayleigh approximation for nonabsorbing LC droplets
(with real no and ne values), the cross section σext cannot
be determined based on the optical theorem [25] (for-
mula (28)), since the real part of the amplitude scatter-
ing function at a zero scattering angle S(0) is zero (see
formulas (9)–(12). In this case, cross section σext has
to be determined by integrating the amplitude scatter-
ing matrix elements over the entire solid angle Ω = 4π
[22, 25].

Taking into account the symmetry of the problem
under consideration, the average scattering matrix S
can represented as

(29)

where δ is the scattering angle. For the extinction cross
section, this yields

(30)

Ta〈 〉 E〈 〉
E0 ikl( )exp
--------------------------- qS 0( )l–( ).exp= =

Tc Ta〈 〉 2 γl–( ),exp= =

γ 2qReS 0( ) σextNv ,= =

σext
4π
k2
------ReS 0( ),=

=S
S 0( ) δcos 0

0 S 0( ) 
 
 

,=

σext
S 0( ) 2

k2
--------------- 1 δcos

2
+( ) Ω.d

4π
∫=
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Accomplishing integration, we obtain

(31)

Using expressions (9)–(12) and (31), we obtain a
formula for the attenuation coefficient γ, assuming the
LC droplets to have the shape of spherical droplets,

(32)

where 〈x〉  = π〈d〉np/λ is the average parameter of dif-
fraction, 〈d〉  is the average droplet diameter, λ is the
incident radiation wavelength in vacuum, and f =
〈d3〉/(〈d〉)3 is the ratio of the third moment of the droplet
size distribution function to the cubic average diameter.

For a droplet size distribution described by the
gamma function [26, 27],

(33)

where dm is the modal droplet size and µ is the distribu-
tion parameter, we obtain

(34)

The quantity µ is related to the variation coefficient
Dd/〈d〉  of the LC droplet size distribution, representing
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Fig. 3. Plots of the attenuation coefficient γ versus the film
order parameter Sf , calculated for 〈d〉  = 150 nm, cv  = 0.089,
Sd = 0.7, and various coefficients of variation of the LC droplet
size distribution: Dd/〈d〉 = 0.0625 (1), 0.125 (2), and 0.25 (3).
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the ratio of the mean-square deviation Dd to the average
droplet diameter 〈d〉 , by the relation

(35)

For monodisperse droplets, µ  ∞ and f  1.

Let us consider the behavior of the attenuation coef-
ficient γ and the coherent transmission coefficient Tc for

µ 1/ Dd/ d〈 〉( )2 1.–=
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1
2

3
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0.006

0.004
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γ, µm–1

Fig. 4. Plots of the attenuation coefficient γ versus the film
order parameter Sf , calculated for Dd/〈d〉  = 0.125, 〈d〉  =
150 nm, cv  = 0.089, and various LC droplet order parame-
ters: Sd = 0.7 (1), 0.85 (2), and 1.0 (3).
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Fig. 5. Plots of the coherent transmission coefficient Tc ver-
sus the film order parameter Sf , calculated for Dd/〈d〉  =
0.125, 〈d〉  = 150 nm, Sd = 0.7, l = 23 µm, and various number
densities of LC droplets in the PDLC film: cv  = 0.089 (1),
0.15 (2), and 0.35 (3).
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a PDLC film. The influence of a polydisperse character
and the LC droplet order parameter Sd on the value of γ
is illustrated in Figs. 3 and 4. The curves depicted in
these and other figures were calculated for no = 1.511,
ne = 1.74, np = 1.524, S = 0.6, and λ = 0.6328 µm; other
values are specified in the figure legends. As can be
seen in Fig. 3, growing polydispersity leads to an
increase in the attenuation coefficient for all values of
the film order parameter Sf (0 ≤ Sf ≤ 1). Increasing LC
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Tc

Fig. 6. Plots of the coherent transmission coefficient Tc ver-
sus applied electric field strength E, calculated for Dd/〈d〉  =
0.125, 〈d〉  = 150 nm, Sd = 0.7 and various sets of parameters:
(1) l = 13 µm, cv  = 0.125, A = 0.12 µm/V; (2) l = 23 µm,
cv  = 0.089, A = 0.124 µm/V; (3) l = 36 µm, cv  = 0.075, A =
0.16 µm/V.
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Fig. 7. Plots of the coherent transmission coefficient Tc ver-
sus applied electric field strength E, calculated for Dd/〈d〉  =
0.125, Sd = 0.7, A = 0.16 µm/V, l = 36 µm, cv  = 0.075, and
various average LC droplet dimensions: 〈d〉  = 150 (1), 125
(2), 100 nm (3).
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droplet order Sd leads to a decrease in γ (Fig. 4). In this
case, an increase in the number density of droplets
decreases the transmission coefficient Tc (Fig. 5).

Figure 6 shows variation of the coherent transmis-
sion coefficient Tc depending on the applied electric
field strength for PDLC films with the same parameters
(l, cv , A) as those used in calculating the phase shift as
a function of the field strength (Fig. 2). The vales of
transmission in the absence of the control field (E = 0)
correspond to the experimental values reported in [20].

Figure 7 illustrates the influence of the average LC
droplet size on the PDLC film transmission. As can be
seen, an decrease in the average LC droplet size leads
to a growth in the transmission coefficient Tc , at a rater
weak dependence of the transmission on the applied
field strength.

5. CONCLUSION

Using the proposed model, describing propagation
of a coherent radiation component through fine dis-
perse PDLC films, it is possible to solve problems
related to optimization of the morphology and structure
of such films, aimed at (i) obtaining the required phase
modulation effect, (ii) linearizing the field dependence
of the phase shift, (iii) decreasing the level of control
field strength, and (iv) increasing the transmission of
PDLC films. The model is applicable to an analysis of
the phase modulation and radiation attenuation in
PDLC films with bipolar, axial and other cylindrically-
symmetric structures of LC molecules in nanodimen-
sional inclusions.

The results can be of importance for the develop-
ment of telecommunication systems employing phase
modulation in data processing and transmission.
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Abstract—We theoretically study the evolution of longitudinal–transverse acoustic pulses propagating parallel
to an external magnetic field in a system of resonant paramagnetic impurities with an effective spin S = 1/2. For
equal group velocities of the longitudinal and transverse waves, the pulse dynamics is shown to be described
by evolution equations. In limiting cases, these equations reduce to equations integrable in terms of the inverse
scattering transform method (ISTM). For the most general integrable system of equations that describes the
dynamics of acoustic pulses outside the scope of the slow-envelope approximation, we derive the corresponding
ISTM equations. These equations are used to find a soliton solution and a self-similar solution. The latter
describes the leading edge of the packet of acoustic pulses generated when the initial unstable state of a spin
system decays. Analysis of our solutions and models indicates that the presence of a longitudinal acoustic wave
leads not only to a change in the amplitude and phase of the transverse wave but also to a qualitatively new
dynamics of sound in such a medium. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the nonlinear coherent optical phenom-
ena that are associated with soliton and other self-sim-
ilar solutions [1, 2] have been analytically studied in
greatest detail in terms of integrable models [3]. When
elastic waves propagate in paramagnetic crystals, soli-
ton-like pulses can be produced by effects related to
anharmonic oscillations and dispersion [4] and under
conditions of nonlinear coherent interaction between
acoustic waves and paramagnetic impurities in the
medium, for acoustic self-induced transparency (ASIT)
[5–7]. An analogy between optical and acoustic effects
gave rise to magnetic quantum acoustics [8]. At the
same time, the evolution of an acoustic pulse in a crys-
tal with paramagnetic impurities has a number of qual-
itative distinctions from the dynamics of light waves in
a medium, which are related, for example, to the fact
that the acoustic wave in a crystal can be longitudinal–
transverse. The characteristic length of the acoustic
pulse is no less than 10–4 cm, i.e., much larger than the
lattice constant. For a picosecond acoustic pulse of
duration τa ~ 10 ps, its length is 10–7–10–6 cm. There-
fore, when it propagates in a crystal, the spatial disper-
sion attributable to the lattice structure should be taken
into account, but the discreteness of the crystal medium
can be disregarded. Recently [4], the generation of
picosecond acoustic solitons has been observed experi-
mentally. The solitons formed at a distance of several
millimeters due to the balance between the dispersion
attributable to the positions of atoms in the crystal lat-
1063-7761/03/9603- $24.00 © 20496
tice and the nonlinearity that arises from the anharmo-
nicity of interatomic forces. An acoustic resonant
effect, an analog of optical self-induced transparency,
was observed in low-temperature crystalline samples
with paramagnetic impurities. This effect was observed
on Fe2+ impurities in MgO [9] and LiNbO3 [10] crystal
lattices when a longitudinal acoustic pulse propagated
at an angle to the external field.

In general, the group velocities of the longitudinal
(v ||) and transverse (v ⊥ ) components of an acoustic
pulse in a solid are different. As a result, the local inter-
action between the pulses of these components of
length la is limited by the time tint ~ la/(v || – v ⊥ ). The
interaction of the pulses is most effective when the
phase velocities are close, v || ≈ v ⊥ . This situation takes
place in elastic-isotropic crystals, in which the veloci-
ties of the longitudinal and transverse elastic field com-
ponents do not depend on the direction. These condi-
tions are best satisfied for ion crystals of alkali metal
galogenides with central forces of interatomic interaction
[11]. For example, NaBr belongs to these crystals [11].

When propagating in a crystal, the longitudinal and
transverse acoustic waves can affect the dynamics of
each other through their interaction with paramagnetic
impurities. The ASIT theory for a transverse pulse
propagating parallel to the magnetic field in a system of
S = 1/2 spins was developed by Denisenko [5]. This the-
ory was generalized to longitudinal–transverse acoustic
waves by Voronkov and Sazonov [6, 7], who derived
equations describing the dynamics of acoustic pulses.
003 MAIK “Nauka/Interperiodica”
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The authors used several approximations to solve these
complex evolution equations. Voronkov and Sazonov [7]
theoretically studied the ASIT of quasi-monochromatic
pulses with a transverse–longitudinal structure propa-
gating parallel to the vector of constant magnetic field
in a system of paramagnetic impurities with an effec-
tive spin S = 1/2 under the condition v ⊥  = v || and assum-
ing that the frequency of the transverse component of a
quasi-monochromatic pulse was equal to the Zeeman
splitting frequency of the Kramers doublet. The
approximations of a slow envelope and an exact reso-
nance were used for the transverse field, and the
approximation of unidirectional acoustic wave propa-
gation was used to simplify the equations for the longi-
tudinal field. In [6], the authors considered acoustic
pulses of extremely short duration similar to ultrashort
optical pulses [2]. In addition, the authors of [6, 7] used
the Wentzel–Brillouin–Kramers–Jeffery method,
which requires a slow field variation, to simplify the
Bloch equations. However, even when all of the corre-
sponding conditions imposed on the field dynamics
were satisfied, the equations derived by these authors
were not integrable. The condition for the absence of a
longitudinal wave, under which the system of simpli-
fied equations reduces to the well-studied sinus-Gordon
equation, constitutes an exception. Therefore, the
approximations used in [6, 7] do not allow the dynam-
ics and mutual influence of the transverse and longitu-
dinal acoustic waves to be studied in detail.

At the same time, the rich structure of these equa-
tions opens up the possibility of reducing them, for
quite realistic approximations, to integrable models
both when similar stringent conditions are imposed and
without them. Here, we show that, to pass from the
original evolution equations to an integrable system of
equations, it will suffice to use the approximation of
unidirectional wave propagation and the condition of
equal group velocities for the longitudinal and trans-
verse acoustic waves. The resulting new integrable sys-
tem is related to the integrable system of equations that
we derived previously in the theory of four-wave mix-
ing of optical pulses in media with two-photon-induced
Kerr nonlinearity [12, 13]. At the same time, the inte-
grable system of equations derived here has the symme-
try of the spectral problem, for which the apparatus of
the inverse scattering transform method (ISTM) [3] has
not been developed. The ISTM application to this
model allows the various regimes of evolution of pico-
second acoustic pulses to be studied outside the scope
of the slow-envelope approximation.

Here, we develop the ISTM apparatus for our sys-
tem of equations and find a soliton solution of the
model that explicitly describes, in particular, the defor-
mation and nonlinear rotation of the polarization of an
acoustic pulse of a transverse wave in the presence of a
pulse of a longitudinal wave. Apart from the soliton
solutions associated with ASIT, other regimes of pulse
evolution can also be analyzed in terms of the ISTM.
Soliton solutions often require more stringent condi-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tions for the generation and observation than do solu-
tions of a different kind. For example, when the spins of
impurity ions are initially directed along the magnetic
field, an unstable state of the system arises and a weak
seed acoustic wave is sufficient to remove it from this
state. Here, for such a spin system, we use the ISTM to
find the shape of the pulse that corresponds to the lead-
ing edge of the packet of generated pulses when the
system approaches a stable state.

Apart from intense picosecond acoustic pulses,
weak acoustic pulses that require lower powers for their
generation can be formed. It is of interest to study the
physical conditions for the generation of such low-
amplitude pulses and their parameters. From this point
of view, it is important to determine the type of interac-
tion, the minimum nonlinearities, and other conditions
under which stable nonlinear structures such as solitons
and other similar solutions can be formed. It is also
important to seek integrable reductions, because the
most detailed information can be obtained by solving
models integrable in terms of the ISTM and by devel-
oping perturbation theory for similar models. There-
fore, we also derive other integrable versions of the
original system of equations obtained when passing to
low amplitudes and/or to a negligible change in the
component of the effective spin along the magnetic
field. We show that, when passing to quasi-monochro-
matic acoustic pulses, the original system of equations
also reduces to the integrable system of equations that
previously arose in connection with various applica-
tions in nonlinear optics [14]. Next, we show that,
under the additional condition of a negligible change in
Zeeman level populations, the derived system reduces
to an integrable equation related to the Thirring model,
whose application in nonlinear optics was described,
for example, in [15]. Analysis of the derived equations
for the dynamics of acoustic waves and comparison
with the solutions of related equations obtained in non-
linear optics reveal several new physical observational
properties of the effects associated with the presence of
a longitudinal acoustic wave without a detailed solution
of the evolution equations.

This paper has the following structure. The basic
system of evolution equations that describes the
dynamics of a longitudinal–transverse wave is derived
in Section 2. The most general integrable reduction of
the original system of equations for this system was
found in Section 3.1. In Section 3.2, we give the corre-
sponding Lax representations and develop the ISTM
apparatus for this system. A one-soliton solution for
this model was found in Section 3.3. In Section 3.4, we
analyze the decay of an initially stable state and give an
asymptotic solution for the first pulse from the packet
of nonlinear oscillations that correspond to this solu-
tion. Section 4 is devoted to the derivation and discus-
sion of other integrable model reductions. In Section 5
we discuss our results.
SICS      Vol. 96      No. 3      2003
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2. THE DERIVATION OF BASIC EQUATIONS

Below, we derive the equations that describe the
dynamics of a longitudinal–transverse wave in a crystal
with paramagnetic impurities following [6]. Assume
that an external constant and uniform magnetic field B
is directed along the z axis. The Zeeman interaction of

the magnetic moment  at point a contributes  =

– B to the total Hamiltonian. The  components
can be expressed in terms of the S(a)(ra) spin compo-
nents, where ra is the radius vector of spin a, as

Here, µB is the Bohr magneton and gjk are the Lande
tensor components. Thus,

(1)

where N is the total number of spins. Since the effective
spin is 1/2, it can be decomposed into Pauli matrices:

(2)

Assume that the x, y, and z coordinates along the prin-
cipal Lande tensor axes coincide with the crystal sym-
metry axes. The Lande tensor is then diagonal in a non-

deformed unperturbed medium: gjk =  = gjjδjk ,
where δjk is the delta function. The deformation of the
crystal by an acoustic wave is described by linear cor-
rections to the Lande tensor:

(3)

where e is the crystal elastic strain tensor at the spin
location. The derivatives are taken at the point of zero
deformation. The strain tensor components can be
expressed in terms of the components of displacement
vector u = (ux, uy, uz) as

(4)

Hamiltonian (1) takes the form
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The spin–phonon interaction is described by the Hamil-
tonian

(6)

Here, Fjkpq = ∂qjk/∂epq are the spin–phonon coupling
constants [10, 16].

The dynamics of an acoustic field in a crystal with-
out anharmonicity is described by the Hamiltonian

(7)

where n0 is the mean crystal density, pj (j = x, y, z) are
the momentum density components that arise during
dynamic displacements, and ljklm is the elastic modulus
tensor of the crystal [17]. The integral in (7) is taken
over the crystal volume. We assume that the number of
phonons is large and that the classical description of the
acoustic field dynamics is valid. At the same time, a
two-level spin system requires the quantum-mechani-
cal description. For S = 1/2, the terms quadratic in spin
operators can be disregarded (for more detail, see [18]).
Here, an analogy with the interaction of a classical elec-
tromagnetic field with an optical quantum two-level
medium holds [19].

As in the case of an optical medium, we can pass
from the description of the spin dynamics to the evolu-

tion equations for the density matrix elements ,

(8)

(9)

Here, H = Ha + , where the interaction between
the spin and the field of an elastic pulse is described by
the classical Hamiltonian equations for a continuous
medium:

(10)

Here, n is the paramagnetic impurity density, the angu-
lar brackets denote an averaging over quantum states,
and the summation over the ions with spins 1/2 uni-
formly distributed in the crystal is substituted with inte-
gration over the entire space.

We consider the field evolution only along the z axis
parallel to the vector B and the fourth-order symmetry
axis. In this case, the symmetry transformation includes
the rotation through 90° around the z axis and the

Ĥ int µBB jF jkpqepqŜk
a( )

.
j k p q, , ,
∑

α
∑=

Ha
1

2n0
-------- p j

2

j

∑ 1
2
--- λ jklm

∂u j

∂xk

--------
∂ul

∂xm

---------
j k l m, , ,
∑+

 
 
 

r,d∫=

ρ̂ a( )

i"
∂ρ̂ a( )

∂t
----------- Ĥ ρ̂ a( ),[ ] ,=

∂u
∂t
------

∂H
∂p
-------,

∂p
∂t
------ ∂H

∂u
-------.–= =

Ĥ int〈 〉

Ĥ int〈 〉 µ BB jF jkpq epq r( ) Ŝk
a( )

r( )〈 〉 r.d∫
j k p pq, , ,
∑

α
∑=
AND THEORETICAL PHYSICS      Vol. 96      No. 3      2003



INTEGRABLE MODELS FOR THE DYNAMICS 499
reflections x  –x and y  –y in the z = 0 plane.

Given these conditions, the expressions for  and

 take the form [6]

(11)

(12)

where ωB = gµBB/" is the Zeeman splitting frequency of
the Kramers doublet and g = gxx = gyy = gzz .

Under these symmetry conditions, Hamiltonian
Ha is

(13)

Here, the Vogt notation is used for the subscripts:
xx  1, yy  2, zz  3, yz  4, xz  5,
xy  6.

Using (8)–(10) and (11)–(13), we obtain the basic
system of evolution equations (cf. [6])

(14)

(15)

(16)

(17)

where G|| = "ωBF11/g, G⊥  = "ωBF44/g, e|| = ezz, e⊥  = exz +

ieyz, v || = , v ⊥  = , S3 = (ρ11 – ρ22)/2, and
S⊥  = ρ21. The derived system of equations (14)–(17)
describes the propagation of acoustic pulses in a two-
level medium, with the longitudinal component in the
Bloch equations (16) and (17) leading only to a nonlin-
ear phase modulation. However, as we show below, the
longitudinal field can lead to a qualitatively new
dynamics of an acoustic pulse. Below, the group veloc-
ities of the longitudinal and transverse waves are
assumed to be equal: v ⊥  = v || = v.

Ĥs

Ĥ int

Ĥs "ωBŜz
α( )

,
α
∑=

Ĥ int
"ωB

g
----------

α
∑=

× F11ezzŜz
α( )

F44 exzŜx
α( )

eyzŜy
α( )

+( )+{ } ,

Ĥa
1
2
---

px
2 py

2 pz
2+ +

n0
----------------------------- λ11

∂uz

∂z
-------- 

 
2

+




∫=

+ λ44

∂ux

∂z
-------- 

 
2 ∂uy

∂z
-------- 

 
2

+




dr.

∂2
e⊥

∂t2
---------- v ⊥

2 ∂2
e⊥

∂z2
----------–

nG⊥

n0
----------

∂2S⊥

∂z2
-----------,=

∂2
e||

∂t2
--------- v ||

2∂2
e⊥

∂z2
----------–

nG||

n0
---------

∂2S3

∂z2
----------,–=

∂S⊥

∂t
--------- i

G||e||

"
---------- ωB+ 

  S⊥ i
G⊥ e⊥

"
------------S3,+=

∂S3

∂t
--------

iG⊥

2"
--------- e⊥*S⊥ e⊥ S⊥*–( ),=

λ11/n0 λ44/n0
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3. USING THE ISTM
TO SOLVE THE EVOLUTION MODEL

FOR ACOUSTIC PULSES WITH DURATION 

OF THE ORDER OF 

3.1. The Derivation of an Integrable Model 

Let us derive the most general integrable reduction
of the basic system of equations (14)–(17). This reduc-
tion describes the dynamics of acoustic pulses on the

order of or shorter than π  in duration. Under this
condition, the slow-envelope approximation is inappli-
cable. In real media, picosecond acoustic pulses can
correspond to this case [6]. The equations that describe
the dynamics of such pulses are difficult to analyze, but
system (14)–(17) can be simplified at low densities of
paramagnetic impurities. Such a physical situation
takes place in the overwhelming majority of cases. This
approximation is similar to the approximation used
in [20] to derive the reduced Maxwell–Bloch equations
for a two-level optical medium and is called the condi-
tion of unidirectional wave propagation. The following
approximate formal equality holds for these conditions:

where ε is a small parameter. Physically, this means that
the acoustic pulses propagate in a medium at a velocity
close to the group velocity v. The normalized impurity
density is of the same order of smallness as the deriva-
tive  = ∂z + v –1∂t of the acoustic field amplitudes. We

can now substitute v –1∂t for the derivative with respect
to z on the right-hand sides of Eqs. (14) and (15) with
an accuracy of O(ε2). Thus, when the condition of uni-
directional acoustic pulse propagation is satisfied, sys-
tem (14) and (15) reduces to

(18)

(19)

It is now easy to find from Eqs. (16)–(19) that the
amplitudes of the longitudinal and transverse fields are
related by

(20)

Here, the real function U0(t) is determined by boundary
conditions. Below, we assume that U0(t) = const.

ωB
1–

ωB
1–

∂z v 1– ∂t– O ε( ),+≈

∂χ̃

∂e⊥

∂χ̃
--------

nG⊥

2v 2n0

---------------
∂S⊥

∂t
---------,=

∂e||

∂χ̃
-------

nG||

∂v 2n0

---------------
∂S3

∂t
--------.–=

e⊥
2

e||
2ωB"

G||
-------------+ 

  2

+ U0
2

t( ).=
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Given (20), the new integrable system (16)–(19) takes
the form

(21)

where

3.2. The ISTM Apparatus for System (21) 

We will solve the problem on the entire axis for
E(τ)  0 and τ  ±∞ by assuming that the spin sys-
tem is in a stable ground state corresponding to mini-
mum energy, i.e., S3(τ, χ) = 1, S⊥ (τ, χ) = 0, τ  ±∞,
at the initial and final times. A pulse of acoustic field
E(τ, 0) with an area large enough for the formation of
solitons is assumed to be injected into the crystal. To
describe the corresponding soliton dynamics, it is con-
venient to choose the following Lax representation for
the system of equations (21):

(22)

(23)

where λ is the spectral parameter,

Here, the case β0 = 0 is not considered, although
Eqs. (21) also admit the Lax representation and the
ISTM application.

The spectral problem (22) differs from the studied
related problems associated with the solution of the inte-
grable Heisenberg and Landau–Lifshitz equations [21]
or the equations of Raman scattering, four-wave mix-
ing [13], by symmetry properties. Therefore, the ISTM
apparatus must be developed for this model by taking
into account its specifics.

∂χE iβ0 1 E 2– S⊥ iES3,+=

∂τS⊥ iβ0 1 E 2– S⊥ iES3,+=

∂τS3
i
2
--- ES⊥* E∗ S⊥–( ),–=

E
e⊥

U0 t( )
------------, χ χ̃

nG⊥
2

2"n0v
2

------------------,= =

τ t
U0G⊥

"
--------------, β0

G||

G⊥
-------.= =

∂τΦ
iλF3– λ β+( )E

λE∗– iλF3 
 
 

Φ L̂1Φ,≡=

∂χΦ 1
2λ β0+
------------------=

× iλS3 β0 λ β+( )S⊥

β0λS⊥*– iλS3– 
 
 

Φ Â1Φ,≡

F3 1 E 2– , β 1
2
--- β0

1
β0
-----– 

  , β0 0.≠= =
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The solutions of the spectral problem (22) have the
involution

(24)

where

(25)

In a standard way, we introduce the Jost functions Ψ±,
the solutions of Eq. (22) [for a potential E(τ) that rap-
idly vanishes when τ  ±∞] with the asymptotics

(26)

The symmetry properties (24) and (25) correspond to
the following matrix form of the Jost functions:

These solutions are related by the scattering matrix ,

(27)

It follows from the symmetry property (24) and (25)
that the scattering matrix can be chosen in the form

(28)

The Jost functions have standard analytical properties
(cf., e.g., [22]). The function a(λ) is holomorphic in the
upper half-plane λ, where its zeros correspond to the
soliton solutions.

Let us represent the Jost functions as

(29)

It follows from system (27) that

(30)

(31)

We substitute the components of these functions
from (29) into (30) and (31) and integrate the resulting
equations over λ from –∞ to ∞ with the weight

Φ M̂Φ λ∗( )∗ M̂
1–
,=

M̂ 0 λ β+( )/λ
1– 0 

 
 

.=

Ψ± iλσ3τ–( ), τ ∞ .±exp=

Ψ± ψ1
±    ψ 2 

± ∗ λ β + ( ) / λ –  

ψ

 

2

 

±

 

ψ

 

1

 

±

 
∗ 

 
 
 

 
.=

T̂

Ψ– Ψ+
T̂ .=

T̂ a∗ b λ β+( )/λ
b∗– a 

 
 

.=

Ψ+ τ( ) iλσ3τ–( )exp=

+
λK1 τ s,( ) λ β+( )K2 τ s,( )

λK2* τ s,( )– λK1* τ s,( ) 
 
 

iλσ3s–( )exp s.d

τ

∞

∫

ψ1
+∗ ψ1

–∗

a
---------

b
a
---λ β+

λ
------------ψ2

+,–=

ψ2
+∗ ψ2

–∗

a
---------–

b
a
---ψ1

+.+=
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exp(−iλy)(2πλ)–1. As a result, we obtain the Marchenko
equations for the right end of the axis,

(32)

(33)

Here, we denoted

(34)

where C is the contour that includes the real axis and
that passes above all poles in the upper half of the com-
plex plane. Given the residues at poles λk in the upper
half-plane, the kernel F0 can be represented as

(35)

The Marchenko equations for the left end of the axis
(for y ≤ τ) can be found in a similar way. Using the
results obtained below, we can then easily show that the
corresponding solutions are joined at y = τ.

Substituting expression (29) for Ψ+ into the spectral
problem (22) and equating the expressions for different
powers of λ yields

(36)

The following relation is also valid:

(37)

Using this relation and the condition F3 + EE* = 1, we
can easily find a relationship between the potentials E,

K2* τ y,( ) F0 t y+( ) i K1 τ s,( )∂yF0 s y+( ) s,d

τ

∞

∫+=

y τ ,≥

K1* τ y,( ) K2 τ s,( ) β i∂y+( )F0 s y+( ) s,d

τ

∞

∫–=

y τ .≥

F0 y( )
b χ( )
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----------- 1

2πλ
----------e iλy– λ ,d

C
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F0 y( )
b χ( )
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----------- 1

2πλ
----------e iλy– λd

∞–

∞

∫=

– i
b χ( )

∂λa χ;  λ λ k =( )
----------------------------------- 1

 λ k 
-----

 
e
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–

 
.

 
k

 ∑

i∂τK1 τ y,( ) E∂yK2 τ y,( ) iβEK2 τ y,( )+=

– iF3∂yK1 τ y,( ), y τ ,=

i∂τ∂yK1 τ y,( ) E∂y
2K2 τ y,( ) iβE∂yK2 τ y,( )+=

– iF3∂y
2K1 τ y,( ),

∂τK2 τ y,( ) iE∗ ∂yK1 τ y,( ) F3∂yK2 τ y,( ),+=

y τ ,=

i∂τ∂yK2 τ y,( ) iF3∂y
2K2 τ y,( ) E∗ ∂y
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K2 τ τ,( ) 1 F3 τ( )+[ ] E∗ τ( ) 1 iK1 τ τ,( )–[ ] .=
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F3 and the kernels K1, 2 in the form

(38)

(39)

3.3. A One-Soliton Solution for the Model 

The ASIT-associated soliton solutions describe the
propagation of acoustic pulses with no change in their
shape against the background of a stable ground state.
This state for system (22) is

(40)

Let us find the one-soliton solution of the problem asso-
ciated with the only eigenvalue λ. Substitute the kernel
F that corresponds to this λ value in the form

(41)

The function C0(χ),

is derived below.
To solve the Marchenko equations, we introduce

new functions:

Substituting these functions into Marchenko equa-
tions (33) and (34) and integrating them over y yields

(42)

(43)

F3 τ( )

=  
1 iK1* τ τ,( )+[ ] 1 iK1 τ τ,( )–[ ] K2 τ τ,( ) 2–

1 iK1* τ τ,( )+[ ] 1 iK1 τ τ,( )–[ ] K2 τ τ,( ) 2+
----------------------------------------------------------------------------------------------------,

E τ( )
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2 1 iK1 τ τ,( )–[ ] K2* τ τ,( )
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----------------------------------------------------------------------------------------------------.
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i
λ
--- b χ; λ( )
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-----------------------–=
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Q1 τ( ) K1 τ s,( )e iλ s– s,d

τ

∞
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Q2 τ( ) K2 τ s,( )e iλ s– s.d

τ

∞
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K1* τ y,( ) γ0* χ( )
i λ λ∗–( )

λ∗
----------------------–=

× ω τ( ) iλ∗ τ iλy–( )exp

1 γ0* χ( )ω2 τ( )+
---------------------------------------------------,

K2* τ y,( )
C0 iλ τ y+( )–[ ]exp

1 γ0 χ( )ω2 τ( )+
---------------------------------------------,=
SICS      Vol. 96      No. 3      2003



502 ZABOLOTSKII
where we denoted

Next, it is necessary to find the function C0(χ),
which can be determined from system (23) for
S3(−∞, χ) = S3(∞, χ) ≡ 1. This function can be found by
using the formula (see [22] for its derivation)

(44)

Hence, for the chosen initial and boundary conditions
that correspond to soliton dynamics, we obtain

(45)

γ0 χ( )
C0 χ( )

2 λ∗ β+( )λ

λ λ∗–( )2
-------------------------------------------,–=

ω τ( ) iτ λ λ ∗–( )–[ ]exp .=

∂χT̂ T̂ iσ3λτ–( ) Âs τ ∞ χ,–=( ) iσ3λτ( )expexp–=

+ iσ3λτ–( ) Âs τ ∞= χ,( ) iσ3λτ( )T̂ .expexp

b λ( )
∂ηa η( ) η λ=

--------------------------- χ( ) S0
2iχλ

2λ β0+
------------------ 

  ,exp–=
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Fig. 1. Dependence (47) for the soliton intensity I(τ) = |E |2
for η = 1 and various β0: β0 = 0.5 (thin solid line), β0 = 1
(dashed line), and β0 = 1.5 (heavy line). The soliton position
on the τ axis is arbitrary.
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Fig. 2. Field components versus τ for β0 = 1.1
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where S0 is a constant. It follows from the derived for-
mulas that the function C0(χ)exp(–iλτ) = exp[φ(τ, χ)]
for λ = iη + ξ is

(46)

where

Next, we set ξ = 0 for simplicity. Using (39), (42), (43),
and (45), we obtain a one-soliton solution of the model
for λ = iη in the form

(47)

where

We see from expression (46) for the phase and from
solution (47) that the soliton shape and velocity depend
on the coefficient β0, i.e., on the relative contribution of
the longitudinal field. The soliton velocity decreases
with increasing β0, starting from the group velocity v  in
the medium. At β0 ~ |λ|, the velocity reaches a mini-
mum and then again tends to the phase velocity. In
Fig. 1, the soliton intensity is plotted against τ for vari-
ous values of β0. We see from the figure that there is a
dip to zero near β0 = 1 at the line center. This dip disap-
pears at β0 ! 1 or β0 @ 1. Figure 2 shows the imaginary
and real parts of E, i.e., the y and x components of the
transverse field, respectively. As we see from this fig-
ure, they are out of phase. At β0 = 1, their positions rel-
ative to the τ coordinate axis are symmetric. It follows
from formula (38) that the normalized soliton ampli-
tude does not exceed unity. Therein lies an important
difference between the acoustic field dynamics in the
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model under consideration and the dynamics studied
in [5]. The soliton solution of the model corresponds to
a relationship between the amplitudes of the longitudi-
nal and transverse acoustic waves in the form of (20).
This condition implies that at large amplitudes such
that e|| @ 2ωB"/G||, the transverse field amplitude
decreases with longitudinal field amplitude. Note that
the coefficient G⊥  does not enter equality (20); i.e., for
the model under consideration in the approximation
used, we cannot ignore the longitudinal field amplitude
compared to the transverse field amplitude and vice
versa. Otherwise, relation (20) yields trivial solutions:
e⊥ (z, t) ≡ e⊥ (0, t) or e||(z, t) ≡ e||(0, t).

It also follows from solution (47) that the asymme-
try due to β0 differing from unity gives rise to a nonlin-
ear addition φs to the soliton phase. This addition
describes the nonlinear rotation of transverse field
polarization in the z = 0 plane and disappears when
G⊥  = G||.

3.4. The Decay of an Unstable Initial State 
of the Spin System 

Strictly speaking, one-soliton model solutions
describe the pulse evolution in a medium on the condi-
tion that a pulse with a certain area was injected into the
medium at point χ = 0. In the case of a deviation from
this condition, apart from soliton solutions, other types
of solutions, for example, the radiative solutions corre-
sponding to the continuum spectrum of the problem (22)
should also be taken into account. A nonsoliton field
dynamics associated with the generation of weak and
strong acoustic pulses is possible for some initial and
boundary conditions. Thus, for example, for a weak
seed pulse of acoustic field |E | ! 1 and S3(0, χ) = 1, no
soliton solutions emerge and the field dynamics is asso-
ciated only with the continuum spectrum of the prob-
lem (22). For low amplitudes of the acoustic field and
its derivatives, we can easily determine the scattering
coefficient ρ(χ; λ) = b/a at χ = 0:

(48)

Let E(τ, 0) = const. It is then easy to show that the scat-
tering coefficient ρ = b/a = ρ0 does not depend on λ.

For |ρ0| ! 1, Marchenko equations (31) and (33)
have the following approximate solution:

(49)

ρ 0; λ( ) ρ0
b 0; λ( )
a 0; λ( )
----------------= =

≈ λ
2
--- E∗ τ 0,( )e2iλτ τ .d
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∞
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K2* τ y,( ) F0 τ y+( ) O ρ0
3( ),+≈

K1 τ y,( ) O ρ0
2( ).∼
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The kernel F0 roughly calculated for  !
1 is

(50)

Here, J0, 1(ζ) is the Bessel function, ζ = .

Using expression (39), we obtain

(51)

Here, θ = 2 . It follows from this solution that the
dynamics of a weak initial acoustic field is described by
damped oscillations (see Fig. 3). The nonlinear effects
that give a correction on the order of |ρ0|3 can be easily
calculated by iterations using Marchenko equations (31)
and (33).

Consider the initial conditions that correspond to an
unstable state of the medium: when the field turns on,
the impurity ion spins are aligned and directed along
the magnetic field. Under the action of perturbations,
the system escapes from this state and approaches a sta-
ble state in which the spins are aligned along the field
but directed oppositely. This asymptotic state corre-
sponds to minimum energy. Let us find a solution for
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Fig. 3. Intensity I = |E |2 versus τ for a small initial deviation
from a stable ground state
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the shape of the leading edge of the general solution
that describes the system transition to a stable state.

We will solve the problem for the initial and bound-
ary conditions that correspond to an unstable state and
a small (seed) acoustic deformation of the crystal:

(52)

The seed field E(τ, 0) causes the decay of this state and
the system approaches stable state (40), which is
reached when χ  ∞.

As above, we find that ρ0(χ) does not depend on λ.
Let us calculated the kernel F (35) by taking into
account the dependence of the scattering data on χ and
conditions (52), i.e., with no allowance for the discrete
spectrum. For the initial and boundary conditions (52),
it will suffice to take into account only the contribution
from the continuum spectrum of the problem. The
dependence ρ(χ) can be determined by using expres-
sion (44):

(53)

Let us now find an expression for the kernels F0(τ + s)
and i∂yF0(τ + s) (35). To this end, we insert the new inte-

gration variable λ = µ – β0/2 in the right-hand
side of expression (35). Deforming the integration con-
tour in such a way that it bends around the point µ = i
in the upper half-plane, we obtain

(54)

where I0, 1 are the modified Bessel functions and ϑ  =

; it is also assumed that  ! 1. Simi-
larly, we find that

(55)
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It follows from this expression and from the Marchenko
equations that the kernels 

 

|

 

K

 

1, 2
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 exponentially increase
at the initial stage with increasing 

 

τ

 

; i.e., the solution for

 

|

 

E

 

|

 

 can reach values on the order of unity for arbitrarily
low amplitudes of the seed field. Another conclusion that
follows from the derived expressions for kernels (54)
and (55) is that the solution for the acoustic field is con-
centrated at 

 

θ

 

 

 

@

 

 1 for small 

 

ρ

 

0

 

 such that –  

 

@

 

 1. In
this range, the integrals in Marchenko equations (31)
and (33) can be roughly calculated by the saddle-point
method. Under these conditions, we find the solution
that describes the leading edge of the packet of gener-
ated pulses at the nonlinear stage of the process.

To approximately solve Eqs. (31) and (33), we sub-
stitute the following expressions for the kernels into
them:

(56)

(57)

We substitute 

 

K

 

1
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τ
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) from (33) into (31) and integrate
over the variable 

 

s

 

. We change to the following vari-
ables in the derived integral equation:

Subsequently, we deform the contours 
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 and 
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such a way that they bend around the points  = 

 

i

 

 and
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, respectively, in the positive and negative direc-
tions. We integrate over these variables by using the
saddle-point method. Since the exponentials mainly
contribute to the integrals, we can assume that

 

 

≈

 

  and  

 

≈

 

  in the algebraic fac-
tor that emerges in front of the exponential after the
integration. Similarly, substituting the expression for

(

 

t

 

, 

 

y

 

) from (32) into (33) and performing the proce-
dure described above, we obtain the second integral
equation. The approximation 1 + (

 

β0χτ)–1 ≈ 1 was used
to derive these equations.
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The two derived equations can easily be solved for
the new functions:

(58)

(59)

These solutions are

(60)

(61)

where θ = 2  and D = iβ0 – . Substituting
solutions (60) and (61) into the original equations
yields the kernels

(62)

(63)

Finally, we obtain the following solution for the leading
edge of the packet of pulses:

(64)
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Here,

(65)

Solution (64) corresponds to the first nonlinear oscilla-
tion or the leading edge of the asymptotic solution that
describes the evolution of the spin system from
state (52) to stable state (40). In Fig. 4, the intensity I =
|E |2 is plotted against τ for various β0. We found that the
leading edge becomes steeper and the generation delay
decreases with increasing β0. The figure shows that, as
the longitudinal field contribution increases, the pulse
at the leading edge of the packet of pulses that describes
the decay of an unstable state shortens. At the same
time, the amplitude of this pulse does not change with
increasing β0.

A numerical analysis of the original evolution sys-
tem (20) and analysis of the asymptotics for the solu-
tion indicate that it consists of a packet of damped non-
linear pulsations. In real media, relaxation and diffrac-
tion result in a significant relative suppression of the
oscillation amplitudes compared to the leading edge.
Therefore, in practice, it will often suffice to find an
expression for the first nonlinear oscillation (64). The
solution obtained shows that the asymptotics for large χ
is nonsoliton and is characterized by the self-similar

variable . As in the soliton case, the asymmetry

ψa
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------ 
  ,arg=
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  .exp+=
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Fig. 4. Dependence I(τ) = |E |2 of the leading edge of solu-
tion (64) for various β0: β0 = 0.5 (thin solid line), β0 = 1
(dashed line), and β0 = 1.5 (heavy line).
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due to a nonzero β leads to a nonlinear phase modula-
tion described by the phase ψa (65).

4. THE QUASI-MONOCHROMATIC 
APPROXIMATION

Here, we find a solution for the model that describes
the dynamics of acoustic pulses on the order of or

shorter than  in duration by using the ISTM. This
model is the most general integrable reduction of the
original system (14)–(17). However, it is also of interest
to find other integrable reductions of this model that
arise under additional assumptions. In general, these
models are easier to solve and analyze. On the other
hand, soliton solutions and other coherent structures
arise in these models from the balance between disper-
sion, cross-modulation, nonlinear mixing, etc. The cor-
responding terms in the equations simulate the real
physical effects that show up at various field amplitudes
and degrees of spin reversal in our problem. Therefore,
it is important to determine the conditions when these
effects, while being mutually balanced, give rise to soli-
tons and other coherent structures. Studying these mod-
els is also useful for solving similar nonintegrable mod-
els, because soliton and other stable solutions of inte-
grable models can be used as a zero approximation in
constructing the perturbation theory.

As above, we use the condition of equal group
velocities: v ⊥  = v ||. Let us now pass to quasi-monochro-
matic fields in system (14)–(17):

(66)

(67)

We use the slow-envelope approximation, which
requires the satisfaction of the inequalities

(68)

Let us change to the variables

and denote

To simplify the description of the dynamics of the
longitudinal field e||, we use the condition of unidirec-
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∂R
∂t
------  ! ωB R , ∂R

∂z
------  ! k R .

z̃ z
knG⊥

2

v 2n0"ωB

----------------------, τ̃ t
z
v
----– 

  ωB= =

W
e||G⊥

"ωB

-----------, Ẽ
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tional field propagation. Given these approximations
and changes, system (14) and (15) takes the form

(69)

(70)

We find from Eqs. (69), (70), and (16) that the fields W

and  are related by

(71)

Here, W1( ) is determined by boundary conditions.
Without loss of generality, we choose W1 ≡ 0. Using
equality (71), we reduce the Bloch equations (15) and
(16) to

(72)

(73)

As a result, we obtain the system of equations (69),
(72), and (73), which is formally identical to our inte-
grable system suggested previously [14]. This system
was used to describe the generation and evolution of
ultrashort electromagnetic light pulses in two-level
optical media in the quasi-monochromatic approxima-
tion. In [23], we found soliton and periodic solutions
for this model. The Lax representations for the integra-
ble system (69), (72), and (73) are

(74)

(75)

where

Some information on the field dynamics can be
obtained by analyzing the structure of this Lax pair and
by comparing it with a similar Lax pair in [23]. The
contribution of the longitudinal acoustic field shows up
in the presence of terms with the coefficient β1 in the
matrices L2 and A2. As a result, for soliton and other
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solutions, inclusion of the longitudinal field manifests
itself in a change of the pulse shape and in the appear-
ance of a nonlinear phase addition on the order of

iβ1 . Since the contribution of the longitudinal

field for a small ratio G||/G⊥  ~ ε is on the order of ε2, its
contribution to the dynamics of the transverse field in
such media can be disregarded, which is attributable to
the quasi-monochromatic approximation used above.
In the case of ultrashort pulses considered above, i.e.,

for pulses τp ~  in duration, the contribution of the
longitudinal field is the same in order of magnitude as
that of the transverse field. This difference stems from
the fact that Eqs. (69) and (71) describe the long-wave–
short-wave resonance [7], which is much less effective
than the short-wave resonance in the case considered in
preceding sections of this paper. We can conclude that
the effects related to the longitudinal field are much
more pronounced for ultrashort pulses than those in the
quasi-monochromatic limit.

In deriving system (69), (72), and (73), we assumed
the transverse field to produce rapid oscillations
between Zeeman levels. In this case, the nonlinear
effects are mainly attributable to the interaction of the
transverse field with a two-level medium. Consider the
other extreme case, where there are virtually no transi-
tions between levels; i.e., the change in S3 can be
ignored. Applying the approximations used above, we
obtain the following additional reduction of Eqs. (69),
(72), and (73):

(76)

(77)

This integrable system of equations can be reduced to
the Thirring model by a simple gauge transformation. It
also has stable soliton and other coherent solutions and
can be analyzed in detail in terms of the ISTM (see,
e.g., [15]). In this case, the existence of soliton and
other coherent structures is attributable to the nonlinear
phase modulation produced by the longitudinal field.
The transverse field manifests itself in the establish-
ment of a coherent coupling between the field and the
two-level medium in the linear limit. This example
shows that the physical conditions corresponding to a
small change in Zeeman level population should be
used to observe the coherent nonlinear effects produced
by the longitudinal field alone.

5. DISCUSSION

We studied the dynamics of ultrashort acoustic
pulses in terms of integrable reductions of the evolution
equations that describe the dynamics of a longitudinal–
transverse wave propagating along the magnetic field in

Ẽ
2 τ̃d
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τ̃∫

ωB
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------- iR,=
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------ i 2ν0
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  R iẼ.+=
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a medium of impurity ions with an effective spin of 1/2.
Let us estimate the parameters of the medium and the
intensity of the soliton acoustic pulses that can be gen-
erated in such a medium. As an example, we choose a
MgO crystal with Fe2+ paramagnetic impurities at a liq-
uid helium temperature of T = 4 K. The effect of the
thermal Zeeman level population decreases at low tem-
peratures. Let the magnetic field strength be such that
the Zeeman splitting is ωB = 1012 s–1. The ratio of ther-
mal energy to Zeeman energy is kBT/"ωB = 0.5, where
kB is the Boltzmann constant. In this case, the condition
τp ~ ω–1 holds for pulse durations on the order of
100 ps. Under these conditions, the slow-envelope
approximation is inapplicable, which corresponds to
the case considered here except for the preceding sec-
tion. When passing to longer pulses, for example, with
τp ~ 1 ns, the slow-envelope approximation can be applied
in terms of the models considered in the preceding sec-
tion. Note that the condition ωB = 1012 s–1 corresponds to
magnetic field strengths that are quite attainable in labo-
ratory conditions. For the coefficients of the medium, we
have [8, 16] G⊥ , G|| ~ 10–13 erg; n ~ 1019 cm–3; n0 ~
3−4 g/cm3; v ⊥ , v || ≈ (5–10) × 105 cm/s; and λ11, λ44 ≈
(5–10) × 1011 dyn/cm2. Under these conditions, the
intensity of the soliton signal can be I ~ 106 W/cm2 [7].

Here, we used only the condition of equal group
velocities for the longitudinal and transverse waves and
the approximation of unidirectional acoustic wave
propagation to study the dynamics of ultrashort pulses.
Compared to the results of [6, 7], this allowed us to find
a soliton solution corresponding to a more general
physical situation and a nonsoliton solution corre-
sponding to the decay of an unstable state. On the other
hand, to observe the behavior of the field described here
requires milder physical conditions. For example, the

condition τp ! , which was used in [6], requires
using ultralow temperatures on the order of 0.1 K, as
was pointed out in the same paper. When increasing the
temperature by several degrees, the magnetic field
strength must be increased because of the thermal level
population. This necessitates using acoustic pulses with
duration on the order of 1 ps, which, in turn, necessi-
tates an allowance for dispersion. The condition τp !

 is not required to deduce the integrable model (20)
found here.

One-soliton solutions were found in most of the the-
oretical studies devoted to the dynamics of an acoustic
wave in similar problems. For one-phase solutions, to
which one-soliton and one-zone periodic solutions
belong, the condition of equal group velocities for the
transverse and longitudinal waves is unimportant. It is
easy to show that, in this case, a reduction equivalent to
the corresponding self-similar reduction of Eqs. (16)–
(19), to within the renormalization of the coefficients,
arises. If the solution for the functions in Eqs. (16)–(19)
depends on the self-similar variable τ – z/v s , then the

ωB
1–

ωB
1–
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one-soliton solution obtained above does not change
except for the changes

It thus follows, in particular, that the group velocity dif-
ference (v || ≠ v ⊥ ) gives rise to a nonlinear phase modu-
lation of the soliton in a symmetric crystal with G|| = G⊥
as well. Strictly speaking, for the model under study,
this result is valid for a low value of (v || – v ⊥ )/v ⊥ ,
because we used the approximation of unidirectional
wave propagation. After simple changes of variables
and parameters, similar one-soliton solutions of the
models presented in Section 4 can be used to describe
the ASIT for unequal group velocities of the transverse
and longitudinal waves.

In pure form, the ASIT-associated soliton dynamics
requires producing a sufficiently intense pulse with a
nearly soliton shape at the boundary of the medium for
its observation. At the same time, if the spin system was
initially in an unstable state, then the solution that
describes the transition to a stable state is a nonsoliton
one. In Section 3.4, we derived an expression for the
leading edge of the packets of nonlinear oscillations
generated in this case. Asymptotically, the dependence
of the shape of these oscillations on variables is mainly

determined by the variable . At β = 0, i.e., for

G⊥  =G||, the corresponding matrix  in Eq. (22) is
symmetric and the gauge transformation can be applied
to system (22) and (23). The latter reduces the solution
of the problem to studying the Zhakharov–Shabat spec-
tral problem. This leads to the solution of the simpler
system of Marchenko equations. It can be shown for the
initial and boundary conditions (51) that finding the
asymptotics reduces to solving a first-order equation.
The right-hand side of this equation is proportional to
the self-similar solution of the sine-Gordon equation or
the equations equivalent to the Maxwell–Bloch equa-
tions for a two-level optical medium at an exact reso-
nance. This solution is completely determined by the real
continuum spectrum of the problem (22) and is identical
to the solution of the Painleve III equation [24].

Here, we disregarded the nonlinear effects related to
the anharmonicity of the crystal lattice. At the same
time, the relative crystal deformation in the region of a
picosecond soliton can reach P/n0v  ~ 10–3, where the
pressure P ~ 1 kbar [25]. Under these conditions, the
nonlinearities related to the anharmonicity of atomic
vibrations at lattice sites significantly affect the dynam-
ics of the acoustic soliton. Including these effects can
qualitatively change the dynamics of acoustic waves in
the physical system considered above. Although we
ignored this kind of effects, they can be included in the
integrable models found above as additional perturbing
terms.

τ τ
v s v ||–
v s v ⊥–
------------------, β0 β0

v s v ||–
v s v ⊥–
------------------.

β0χτ
L̂1
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As another possible physical application of our
results, consider the recently predicted effect of anom-
alous stimulated Brillouin scattering associated with
the slowdown of light [26]. Recent progress in coherent
nonlinear optics is attributable to the development of a
theory for electromagnetically induced transparency
[27]. This phenomenon, which was observed in multi-
level optical media, causes the group velocity of light in
the medium to significantly decrease to values compa-
rable to or even lower than the speed of sound in this
medium in the presence of highly variable linear dis-
persion. Such a decrease in the group velocity of light
was experimentally found in cold and hot atomic gases
and in crystals doped by rare-earth ions. The decrease
in resonant absorption along with strong linear disper-
sion opens up new mechanisms of resonant interaction
between light and acoustic waves. Harris [28] showed
that the longitudinal gradient forces acting on two-level
atoms increase when an ultraslow optical pulse travel-
ing in a coherent medium is spatially compressed. This
increase in force leads to the formation of an atomic
bullet and opens up new mechanisms of local pondero-
motive light scattering. Matsko et al. [29] argue that,
because of the strong linear dispersion associated with
electromagnetically induced transparency, phase
matching can be achieved between the electromagnetic
and acoustic waves in a dielectric optical fiber doped by
three-level ions. To describe the interaction of an elec-
tromagnetic wave with acoustic phonons, Matsko et al.
[26] used a Hamiltonian similar to that used here to
describe the coupling between spin states and acoustic
phonons. A resonant optical medium can be simulated
by an effective two-level medium. The ponderomotive
force associated with local density variations in the
optical medium gives a contribution to the acoustic
field dynamics similar to the contribution described by
the right-hand sides of Eqs. (14) and (15). Apart from
the transverse electromagnetic field, the longitudinal
acoustic field, whose contribution to the dynamics of
the optical medium manifests itself in the emergence of
a nonlinear phase modulation, should be taken into
account in this scheme. Note that the quasi-monochro-
matic approximation can be applied to the optical field
in this model. This approximation, together with the
condition of a low doped ion density, can lead to the
reduced integrable model derived in the preceding sec-
tion. The Brillouin scattering for picosecond acoustic
pulses can be studied in terms of this model. The phase-
matching condition allows the interaction of these
pulses with quasi-monochromatic optical pulses of
similar duration to be investigated. The Brillouin scat-
tering mechanism for such ultraslow light can be used
to effectively amplify the pulses propagating in ion-
doped optical fibers.
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Abstract—A theoretical study is made into the effect of the crystal, orbital, and charge structures on the mag-
netic structure and spin-wave spectra and on the antiferromagnetic resonance (AFMR) for R0.5Ca0.5MnO3 crys-
tals of monoclinic structure. The model assumes fixed crystal, charge, and orbital structures and enables one to
determine the orbitally dependent exchange interaction and single-ion anisotropy for R = La, Pr, Tb. A 16-sub-
lattice weakly noncollinear magnetic CE-structure without a ferromagnetic component is obtained. The behav-
ior of magnetic structure in an external magnetic field is simulated, and the values of fields of spin-flop-transi-
tion for different Rs are obtained. The law of spin-wave dispersion and the field dependence of the antiferro-
magnetic-resonance spectrum are calculated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Attention given to manganites at present is not con-
fined to the well-known effect of colossal magnetore-
sistance and is directed at a large number of unusual
properties. The dielectric phases of manganites like-
wise are becoming the subject of thorough theoretical
and experimental studies. Certain difficulties involved
in studying these compounds are associated with the
description of all crystal subsystems, namely, the crys-
tal lattice and the charge, orbital and spin subsystems,
with regard for their correlation. This paper deals with
the magnetic properties of dielectric R0.5Ca0.5MnO3

manganites (R = La, Pr, Tb) of monoclinic structure.
The objective of our study is to demonstrate the effect
of the crystal, charge, and orbital structures on mag-
netic ordering and spectra of magnons.

The investigation of the correlation between the
orbital and magnetic structures of manganites was
begun quite some time ago. Starting with the studies by
Goodenough [1] and Wollan and Koehler [2], the pres-
ence of such a correlation was determined qualitatively.
The quantitative characteristics of interaction of all four
subsystems are still being discussed at present. Several
models exist, which are used for the description of
manganites. The effect of lattice distortions on the
magnetic structure is recognized today by most resear-
chers [3]; however, the inclusion of Jahn–Teller lattice
distortions, which play the main part in the formation of
unusual properties of manganites, is done differently by
different authors. In the charge-ordered phases of man-
ganites, the ordering of localized charge carriers
formed due to nonisovalent doping is assumed.
1063-7761/03/9603- $24.00 © 20510
Two models are largely used at present for explain-
ing the correlation between the crystal, orbital, and
magnetic structures in manganites. The first of these
models, referred to as the Kugel’–Khomskii model [4],
implies the formation of the orbital structure owing to
the orbitally dependent exchange interaction eventually
causing a crystal lattice distortion. Various modifica-
tions of this model are used in numerous studies [5–9].
This model is used quite frequently for prediction and
investigation of orbital excitations (orbitons) [6, 8–10].
However, the temperature of decomposition of the
orbitally ordered phase is much higher than the Neél
temperature [11, 12], which proves the assumption that
the orbital structure is formed as a result of stronger-
than-exchange interactions. The second model, referred
to as the Kanamori model [13], presumes the presence
of the cooperative Jahn–Teller effect. This model like-
wise presumes the presence of the orbitally dependent
exchange interaction; however, the main part is played
by the electron-vibrational interaction. The develop-
ment of the Kanamori model for manganites is
described in [14–17].

The description of superexchange interaction in
many-electron systems is a fairly complicated problem.
In some compounds, the signs of exchange parameters
may be defined by the Goodenough–Kanamori rules [1].
These rules, however, do not define the values of
exchange integrals. The exchange parameters were
originally calculated [5] for pure manganite; however,
they turned out to be overestimated compared to exper-
iment [18, 19]. The general approach to the description
of pure and doped manganites is based on the Hubbard
model with regard for Hund interaction, Coulomb
interaction (in-site and intersite), and Jahn–Teller inter-
003 MAIK “Nauka/Interperiodica”



        

ANTIFERROMAGNETIC-RESONANCE SPECTRUM 511

                                                                                                                                                         
action in different models. As a rule, the double-
exchange contribution is added to the Hamiltonian [6,
9, 15, 16, 20–22] in order to describe additional charge
carriers emerging when the rare-earth sublattice is
doped with alkali-earth ions. This approach is charac-
terized by a simplified model of the orbital structure
(  or -orbitals, with the x, y, and z axes

assumed to be dependent on the position of manganese
ion). In some studies, the t2g shell is disregarded. The
magnetic structure (including pure and charge-ordered
manganites) is described in the double-exchange model
[5, 7, 16]. Some models [21, 23] are incapable of
describing the experimentally observed [2, 24–26]
magnetic structure of charge-ordered manganites of the
CE type. Therefore, it is not always possible to describe
the experimental data and more exact calculations need
to be performed. The large number of experimental
studies into the crystal, charge, orbital, and magnetic
structures makes it possible to apply the semiempirical
approach to the description of the mechanism of super-
exchange interaction in dielectric manganites, which
was developed in previous papers [17, 27].

The magnetic structure of half-doped charge-
ordered manganites was studied in sufficient detail for
different compositions of the rare-earth/alkali-earth
sublattice [2, 24–26, 28–30]. These compounds are
characterized by the presence or absence of charge
ordering, and this feature is of main importance from
the standpoint of formation of some or other magnetic
structure. In the charge-ordered phase, the Mn3+ and
Mn4+ ions are present in equal amounts and are ordered
in space, the orbital structure is characteristic of the
sublattice of Mn3+ ions, the magnetic structure corre-
sponds to the CE type, and the easy magnetic axis is
directed mainly along the c axis (in Pnma notation) [2,
24–26, 28, 29, 31]. A fairly accurate symmetry classifi-
cation was performed for pure manganites [32]; how-
ever, there exists the problem of performing a classifi-
cation of the CE-structure proper of the charge-ordered
phase and experimental determination of noncollinear
components [33]. The charge, orbital, and CE-magnetic
structures may be destroyed by temperature or mag-
netic field [3].

We used the model of the orbital and magnetic struc-
tures [17, 27, 34], based on fixed crystal and charge
structures, strong electron-vibrational interaction, and
orbitally dependent superexchange. The transition to
the charge-ordered phase leads to localization of holes
on manganese ions with the formation of an ordered
structure. In compounds of half-doped orthomangan-
ites, the Mn3+/Mn4+ ions alternate in the ac plane and do
not alternate along the b axis (C type of charge struc-
ture). In so doing, the Mn3+ ions are Jahn–Teller ions
and the Mn4+ ions do not exhibit a degeneracy of the
ground state in an ideal octahedral coordination. In view
of these features, it is possible to use our model [17] to
quantitatively estimate the parameters of superex-

d
3z

2
r

2–
d

x
2

y
2–
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change interaction and Neél temperature in dielectric
manganites. In this study, we calculated the character-
istic features of a multisublattice magnetic structure of
monoclinic charge-ordered manganites, the spin-wave
spectra, and the field dependence of antiferromagnetic
resonance under conditions of the external magnetic
field directed along the easy magnetic axis. The sug-
gested model is semiempirical; however, it enables one
to obtain the magnetic structure and spectra of magnons
proceeding from the crystal structure. Our results may
be used for interpreting experimental data in case an
exact magnetic structure is required.

2. CRYSTAL AND ORBITAL STRUCTURES

At low temperatures, the R0.5Ca0.5MnO3 crystals
being treated exhibit a distorted perovskite structure of
symmetry P21/m and charge ordering [2, 24–26]. This
group is a Pnma subgroup which describes the space
symmetry of a crystal of pure manganite. Because of
the presence of manganese ions in different charge
states, which are arranged in a staggered order in the
basal plane (see Figs. 1 and 2), additional distortions
arise in the crystal. The sublattice of manganese ions is
divided into three positions (see Table 1). The ions in
positions a and b exhibit e-type distortions of oxygen
coordination, and the ions in position f do not. The orthor-
hombic distortion of an ideal perovskite lattice [35] varies
in accordance with low-symmetry distortion due to the
charge nonequivalence of the ions.

1. An R-type distortion is a rotation about the
pseudocubic [110]p axis with cell doubling on all three
axes ({k13}τ9(C1C10) in the notation of Kovalev [36] or
(ϕϕ0) in the notation of [37]). Three values of the angle
ϕ, namely, ϕ1 (a), ϕ2 (b), and ϕ3 (f), are distinguished in
the monoclinic structure, which correspond to this dis-
tortion in sign and are different in magnitude.

2. An M-type distortion is a rotation of oxygen octa-
hedrons about the [001]p axis with cell doubling on two
axes ({k11}τ3(00C2) in the notation of [36] or (00ψ) in
the notation of [37]). Three values of the angle ψ,
namely, ψ1 (a), ψ2 (b), and ψ3 (f), are distinguished in
the monoclinic structure, which correspond to this dis-
tortion in sign and are different in magnitude.

3. A Qε-type distortion describes the deformation of
e-type oxygen octahedrons (see Fig. 2) with cell dou-
bling on two axes ({k11}τ5 in the notation of [36] and
with the choice of ray [1/2 1/2 0]p). In the monoclinic
structure, this distortion is characteristic only of the
coordination of trivalent manganese ions. The doubling
occurs on a single [110]p  axis.

4. The coordination of tetravalent manganese is
characterized by an a-type distortion (uniform com-
pression) because of the smaller radius of the Mn4+ ion
compared to Mn3+.
SICS      Vol. 96      No. 3      2003
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Fig. 1. The orbital and magnetic structures of the charge-ordered phase of half-doped manganite in two neighboring planes along
the Y axis (parts (a) and (b)). The ions of oxygen and rare-earth/alkali-earth sublattice are omitted. The hollow symbols indicate
Mn4+ ions, and the solid symbols indicate Mn3+ ions. The arrows indicate the main directions of the magnetic sublattices. The bold
lines indicate the orientations of the eg orbitals. The numbers label the magnetic sublattices.
The corresponding basal distortions are accompanied
by adjustment of the lattice; as a result, a Qθ-type distor-
tion appears and e-type distortions of two positions of the
Mn3+ ion become different in magnitude. Because of the
interaction between the e-type distortions around Mn3+

ions and a-type distortions around Mn4+ ions, the Mn4+

ions shift along the  axis. This shift defines the
wave vector of the orbital structure [17].

Owing to the cooperative Jahn–Teller effect, the
orbitally degenerate ground state 5E of trivalent manga-
nese ions splits. An orbital state with the wave function

(1)

is reached on each trivalent manganese ion, where
(ϕnθ, ϕnε) are E-level basis functions and the angles φn

obey the relation (see Fig. 1) [27]

(2)

The magnitudes of these angles are expressed in terms
of distortions in the crystal,

(3)

The values of angles of the orbital structure for the
compounds being treated are given in Table 2. In the

110[ ] p

ψn ϕnθ
φn

2
----- ϕnε

φn

2
-----cos+sin=

φa φb, φ1–≈ φ5 φ9 φ13 φa,= = = =

φ3 φ7 φ11 φ15 φb.= = = =

φnsin
Qεn

Qθn
2 Qεn

2+
---------------------------, φncos

Qθn

Qθn
2 Qεn

2+
---------------------------.= =
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P21/m group, e-type distortions depend on the shifts of
ions (see Table 1) as

(4)

The orbital structure of charge-ordered manganite is
given in Fig. 1.

The “zigzag” space distribution of Jahn–Teller dis-
tortions in a crystal may be qualitatively explained in
view of the shift of an Mn4+ ion along the Z axis caused
by the adjustment of the lattice to the breathing distor-
tion of the coordination of Mn4+ ions and to the Jahn–

Qθa
1
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---------- b
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2
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2
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 –=

+
1

6
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Teller distortion of the coordination of Mn3+ ions. This
ion “carries along” the neighboring bonds, as a result of
which two mutually perpendicular bonds with oxygen
become elongated and two bonds shorten. Therefore,
the line of shift of tetravalent manganese is the dividing
line between trivalent manganese ions with positive and
negative Qε-type distortions, and the sign of these dis-
tortions does not vary along the direction of the shift. In
view of the fact that the sign of the shift of an Mn4+ ion
varies along the X axis, it is obvious that the primitive
cell is doubled in this direction. The part played by the
shift of tetravalent manganese in the formation of the
orbital structure of La0.5Ca0.5MnO3 was previously dis-
cussed by Goodenough [1]; however, he suggested
shifts in two mutually perpendicular pseudocubic
directions. In [24–26], the shift of this ion along pre-
cisely the Z axis is assumed.

3. ORBITAL DEPENDENCE
OF MAGNETIC INTERACTIONS

Isotropic Exchange 

The dependences of the parameters of isotropic
exchange of manganese ions in a crystal of charge-
ordered manganite on the orbital state of interacting

Table 1.  The coordinates of atoms in a primitive crystal cell
in the charge-ordered phase (group of symmetry P21/m;
compared to the reference book [36], the axes are turned for
comparison with the designations of Pnma axes: xyz [36] =
ZXY)

Ion (position) X(a) Y(b) Z(c)

R, A(1)-2e 1/4 + VXR1 0 VZR1

R, A(2)-2e 3/4 + VXR1 0 VZR2

R, A(3)-2e VXR3 0 VZR3

R, A(3)-2e 1/2 + VXR3 0 VZR3

Mn3+(1)-2a 0 1/4 0

Mn3+(2)-2b 1/2 –1/4 0

Mn4+(3)-4f 1/4 1/4 1/2 – VZMn

O(1)-2e uX1 0 uZ1

O(2)-2e 1/2 + uX1 0 uZ1

O(3)-2e 1/4 + uX1 0 1/2 + uZ2

O(4)-2e 3/4 + uX1 0 1/2 + uZ3

O(5)-4f + vX1 –1/4 + vY 1/4 + vZ1

O(6)-4f 5/8 + vX1 –1/4 + vY 1/4 + vZ2

O(7)-4f 1/8 + vX3 –1/4 – vY 3/4 + vZ3

O(8)-4f 5/8 + vX3 –1/4 – vY 3/4 + vZ4
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
ions of manganese in the crystal were obtained in [17]
in view of the difference between the metal-ligand dis-
tances rb (Mn3+–O),  (Mn4+–O), and rac and the

angles of superexchange bond Θb , , and Θac for

rb'

Θb'

Table 2.  The characteristic parameters of distortions of the
crystal structure on the charge-ordered phases of crystals of
R0.5Ca0.5MnO3 manganites (given along with the name of the
compound is the reference to the experimental data on which
the calculation was based)

La [24] Pr [25] Tb [26]

φa , deg –126.0° –123.6° –111.1°

φb , deg 126.3° 120.6° 112.5°

ϕ1, deg –9.1° –9.9° 11.6°

ϕ2, deg –9.1° –9.9° 11.6°

ϕ3, deg –9.3° –10.1° 11.7°

ψ1, deg 5.4° 8.0° –8.8°

ψ2, deg 3.5° 4.6° –11.6°

ψ3, deg 4.7° 6.5° 10.2°

Θb, deg 158.3° 156.3° 152.5°

, deg 158.3° 156.3° 152.9°

Θac, deg 162.3° 157.9° 152.2°

rb , Å 1.92 1.91 1.90

, Å 1.92 1.91 1.90

rac, Å 1.96 1.94 1.97

Θb'

rb'

b

c a

Z xp

X

Y, zp

yp

Fig. 2. A fragment of an R0.5Ca0.5MnO3 cell with an ε-type

distortion. The R3+ and Ca2+ ions are omitted; X, Y, Z denote
the system of coordinates of the Pnma and P21/m groups;
and xp , yp , zp denote a quasi-cubic system of coordinates.
ICS      Vol. 96      No. 3      2003
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pairs of interacting ions along the zp axis and in the
basal plane,

(5)

where

(6)

and , α, α', and β are parameters which are depen-
dent on the sort of magnetic ions in a pair and on the
sort of intermediate ion (they may be determined from
the experimental data), and φ is the angle of Jahn–Teller
distortion in a pair of ions (for an Mn3+–Mn3+ pair) or
on a single ion in a pair (Mn3+ for an Mn3+–Mn4+ pair).
In [17], the parameters of the dependence given by

Eqs. (6) were determined, namely,  = 1.24 ×

103 meV Å10, α = 1.0, β = 4.5;  = –4.22 ×

102 meV Å10, α' = 5.1,  = 0.97 × 102 meV Å10. The
dependence of the exchange on the Jahn–Teller angle is

Ji J0
i Θicos

2

ri
10

----------------------= Fi φ( ),

F1 φ( ) 1 2α φ β φcos
2

,+cos+=

Θ1 Θb, r1 rb,= =

F2 φ( ) 1
α'
2
---- φ 3 φsin–cos( ),–=

Θ2 Θac, r2 rac,= =

F3 φ( ) 1
α'
2
---- φcos 3 φsin+( ),–=

Θ3 Θac, r3 rac,= =

F4 φ( ) 1, Θ4 Θb' , r4 rb' ,= = =

J0
i

J0
1

J0
2 3,

J0
4
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8
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Fig. 3. The dependence of the angular part of exchange
integrals (6) along the b axis (1—F1) and in the basal plane
(2—F2, 3—F3) on the Jahn–Teller distortion angle (angle
of the orbital structure) φ.
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given in Fig. 3. The structural parameters for
R0.5Ca0.5MnO3 are borrowed from [24–26] and are
given in Table 2, where rb is the distance between Mn3+

and oxygen along the b axis,  is the distance between
Mn4+ and oxygen along the b axis, rac is the mean dis-
tance from Mn3+ and Mn4+ to oxygen in the ac plane, Θb

is the angle of Mn3+–O–Mn3+ superexchange coupling
along the b axis,  is the angle of Mn4+–O–Mn4+

superexchange coupling along the b axis, and Θac is the
mean angle of superexchange coupling in the ac plane.

The exchange interaction within the basal plane is a
result of the presence of the orbital and charge struc-
tures. The charge structure defines the ferromagnetic
pattern of interaction between Mn3+–Mn4+ ions,
because the orbitally independent part of this interac-
tion is negative and the presence of an orbitally depen-
dent part of interaction makes it possible to vary the
sign of interaction, so that a weak antiferromagnetic
exchange arises. The special features of the crystal and
charge structures (such as the staggered ordering of
manganese ions of different valencies and the shift of
Mn4+ along the c axis) form the orbital structure of the
Mn3+ sublattice [17]. The presence of this set of factors
causes ferromagnetic zigzags related by antiferromag-
netic exchange: weak exchange within a plane and
strong exchange between the planes.

A characteristic feature of the dependence given by
Eqs. (6), as in the case of pure manganite [17, 34], is the
possible change of magnitude and sign of the exchange
parameter in the ac plane (the minus sign indicates fer-
romagnetic interaction), which will cause a change in
the magnetic structure with unchanged crystal structure
(P21/m). This distinguishes the Jahn–Teller compounds
from other magnetic dielectrics. A possible manifesta-
tion of this feature may be the presence of magnetic
ordering of the A type in bilayered manganite [20, 27].

Single-Ion Anisotropy and Zeeman Interaction 

The single-ion anisotropy emerges in the second
order of perturbation theory with respect to spin-orbital
interaction. The expression for single-ion anisotropy of
a trivalent manganese sublattice in local axes of oxygen
octahedrons, which depends on the angle of orbital
ordering, was derived in [17, 34],

(7)

(8)

The values of Dn turn out to be positive (cosφn < 0,
P < 0) and the same for all magnetic ions in a cell, and
En has different signs and magnitudes for different posi-
tions (a and b) of Mn3+ ions.

The quantity P was determined in [34]: P ≈
−0.1 meV. Also determined in [34] was the orbital
dependence of the g-tensors of Zeeman interaction of

rb'

Θb'

Han
n( ) DnSnzl

2 En Snxl

2 Snyl

2–( ),+=

Dn 3P φn, Encos 3P φn.sin= =
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Table 3.  The parameters of superexchange interaction for the charge-ordered phases of R0.5Ca0.5MnO3 manganites (given
along with the name of the compound is the reference to the experimental data on which the calculation was based). The desi-
gnations correspond to formula (14)

R JI, meV JII, meV JIII, meV JIV, meV JV, meV JVI, meV JVII, meV

La [24] –2.33 –2.41 0.58 0.59 2.67 2.59 1.29

Pr [25] –2.16 –2.50 0.61 0.85 2.16 2.16 1.21

Tb [26] –2.07 –1.81 1.03 0.86 1.55 1.64 1.21
Mn3+ ions in local axes of oxygen coordination.
Because, in the case of field dependences of the spec-
trum, the effect of nonequivalence and anisotropy of the
g-tensors is insignificant, we assume the g-tensors of
manganese ions to be isotropic and equal to two. In this
case, the Zeeman interaction is described by the Hamil-
tonian

(9)

4. RESULTS AND DISCUSSION

The Hamiltonian

(10)

was used to calculate the magnetic properties of the
charge-ordered phase of manganites. We use the angu-
lar dependence of superexchange coupling both in the
exchange parameter according to Eqs. (6) and in the
remaining terms for taking into account the existence of
rotations of oxygen octahedrons. For spin variables in
the terms of single-ion anisotropy, the transition from
the local system of coordinates related to octahedral
axes to the generalized system is accomplished using
the matrices

(11)

The correspondence between the angles of rotation
and the orbital structure in a primitive magnetic cell is

ĤZeem 2µB H Sn⋅( ).
n

∑=

Ĥ Jmn Sm Sn⋅( )
m n>
∑ Ĥan

n( )
ĤZeem+

n 2k 1–=

∑+=

M ϕ ψ,( )

1

2
------- 0

1

2
-------

1

2
------- 0 1

2
-------–

0 1 0 
 
 
 
 
 
 
 

=

×
ψcos 0 ψsin–

0 1 0

ψsin 0 ψcos 
 
 
 
  1 0 0

0 ϕcos ϕsin–

0 ϕsin ϕcos 
 
 
 
 

.
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preassigned as follows:

(12)

The values of the angles of rotation of octahedrons
are given in Table 2. In accordance with the experimen-
tally observed magnetic structure of the CE type defined
by the signs of exchange parameters (see Table 3) in
these compounds, the magnetic cell must be doubled as
compared to the crystal structure along the c axis. So,
the magnetic cell contains 16 manganese ions, namely,
four ions in position a, four ions in position b, and eight
ions in position f. After appropriate transformations,
Hamiltonian (10) may be rewritten as the magnetic cell
energy in terms of the basis vectors of the magnetic
structure for 16 sublattices (in the nearest neighbor
approximation),

(13)

Mn1 ϕ1 ψ1 φa, ,( ) Mn5 ϕ1 ψ1 φa, ,( ),,
Mn9 –ϕ1 ψ1 φa, ,( ) Mn11 –ϕ1 ψ1 φa, ,( ),,

Mn3 ϕ2 ψ2 φb, ,( ) Mn7 ϕ2 ψ2 φb, ,( ),,
Mn13 –ϕ2 ψ2 φb, ,( ) Mn15 –ϕ2 ψ2 φb, ,( ),,

Mn2 ϕ3 ψ3,( ) Mn4 ϕ3 ψ3,( ),,
Mn6 ϕ3 ψ3,( ) Mn8 ϕ3 ψ3,( ),,

Mn10 –ϕ3 ψ3,( ) Mn12 –ϕ3 ψ3,( ),,
Mn14 –ϕ3 ψ3,( ) Mn16 –ϕ3 ψ3,( ).,

E = 
1
16
------

× 4J1 a1 A1⋅( ) c1 C1⋅( ) f1 F⋅( ) g1 G⋅( )+ + +[ ]{

+ 4J II a2 A1⋅( ) c2 C1⋅( ) f2 F⋅( ) g2 G⋅( )+ + +[ ]

+ 4J III a1 A1⋅( ) c1 C1⋅( )– f1 F⋅( ) g1 G⋅( )–+[ ]

+ 4J IV a2 A1⋅( ) c2 C1⋅( )– f2 F⋅( ) g2 G⋅( )–+[ ]

+ 2JV –a1
2 c1

2 f1
2 g1

2–+ +[ ]

+ 2JVI –a2
2 c2

2 f2
2 g2

2–+ +[ ]

+ JVII –A1
2 A2

2 A3
2 C1

2 C2
2– C3

2– F2 G2–+ + + +[ ] }
ICS      Vol. 96      No. 3      2003



516 GONCHAR’, NIKIFOROV
where f1 = S1 + S5 + S9 + S11, g1 = S1 – S5 – S9 + S11,
a1 = S1 + S5 – S9 – S11, and c1 = S1 – S5 + S9 – S11 are
the basis vectors of the magnetic structure for position
a; f2 = S3 + S7 + S13 + S15, g2 = S3 – S7 – S13 + S15, a2 =
S3 + S7 – S13 – S15, and c2 = S3 – S7 + S13 – S15 are the
basis vectors of the magnetic structure for position b;
F = S2 + S4 + S6 + S8 + S10 + S12 + S14 + S16, G = S2 –
S4 – S6 + S8 – S10 + S12 + S14 – S16, A1 = S2 + S4 + S6 +
S8 – S10 – S12 – S14 – S16, A2 = S2 + S4 – S6 – S8 + S10 +
S12 – S14 – S16, A3 = S2 – S4 + S6 – S8 + S10 – S12 + S14 –
S16, C1 = S2 – S4 – S6 + S8 + S10 – S12 – S14 + S16, C2 =
S2 + S4 – S6 – S8 – S10 – S12 + S14 + S16, and C3 = S2 –
S4 + S6 – S8 – S10 + S12 – S14 + S16 are the basis vectors
of the magnetic structure for position f; and the
exchange interaction between magnetic sublattices is
given by

(14)

+ λ i
1 aiX

2 ciX
2 f iX

2 giX
2+ + +( ){

i 1 2,=

∑

+ λ i
2 aiY

2 ciY
2 f iY

2 giY
2+ + +( )

+ λ i
3 aiZ

2 ciZ
2 f iZ

2 giZ
2+ + +( )

+ λ i
4 aiXaiZ ciXciZ f iX f iZ giXgiZ+ + +( )

+ λ i
5 aiX f iY aiY f iX ciXgiY ciYgiX+ + +( )

+ λ i
6 aiY f iZ aiZ f iY ciYgiZ ciZgiY+ + +( ) }

+ 2µB H f1 f2 F+ +{ }⋅( ),

J I J1–2 J1–8 J4–5 J5–6 J9–10= = = = =

=  J9–16 J12–13 J13–14,= =

J II J2–3 J3–8 J4–7 J6–7 J10–11= = = = =

=  J11–16 J12–15 J14–15,= =

J III J1–4 J1–6 J2–5 J5–8 J9–12= = = = =

=  J9–14 J10–13 J13–16,= =

J IV J3–4 J3–6 J2–7 J7–8 J11–12= = = = =

=  J11–14 J10–15 J15–16,= =

JV J1–9 J5–13, JVI J3–11 J7–15,= = = =

JVII J2–10 J4–12 J6–14 J8–16,= = = =

λ i
1 3

4
-------P φi 2ψi,sinsin=
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(15)

i = 1, 2.

For a quantitative description of the properties of
R0.5Ca0.5MnO3, we used the values of the above-identi-
fied parameters assembled in Tables 3 and 4.

Magnetic Structure in External Magnetic Field 

The minimization of the magnetic energy in the
model given by Eq. (13) leads to a multisublattice mag-
netic structure which has a noncollinear form and is
classified for all three positions of a manganese ion as
(g1X, 0, g1Z), (g2X, 0, g2Z), (GX, 0, GZ) (see Figs. 4a
and  4c) disregarding rotational distortions and as
(g1X, c1Y, g1Z), (g2X, c2Y, g2Z), (GX, C1Y, GZ) (see Figs. 4a
and 4d) with regard for rotations, which corresponds to
the representation Γ1 k12 (a, b) and Γ2 k12 (f) of the
P21/m group. The approximate direction of the easy
magnetic axis of the antiferromagnetic structure is
slightly deflected from the c axis of the crystal. In con-
trast to pure manganite, this structure does not exhibit
weak ferromagnetism, which makes experimental
determination of its details difficult. The structure of
the entire magnetic cell approximately corresponds to
the CEZ type, which is confirmed by the experimental
results of [24, 25, 31].

Expression (13) enables one to assume the basic
components of the magnetic structure. On comparing
the coefficients of the squares of components of the
basis vectors of the magnetic structure, one can see that
the most negative coefficients are observed for the

squares of components ,  (–JV/8 + ) and ,

 (–JV/8 + ), ,  (–JVI/8 + ) and , 

(–JVI/8 + ) of trivalent manganese sublattices. In
addition, a1X and a2X, g1X and g2X, a1Z and a2Z, g1Z and
g2Z are interrelated via exchange interaction with Mn4+

ions, and a1X and a1Z, g1X and g1Z, a2X and a2Z, g2X and
g2Z are related in the anisotropy terms with the coeffi-

cients . It follows from Table 4 and formula (13)

λ i
2 1

4
---P 3 φi ϕ icos

2
cos 3 φi ϕ isin

2
2ψisinsin–( ),=

λ i
3 1

4
---P 3 φi ϕ icos

2
cos 3 φi ϕ icos

2
2ψisinsin–( ),=

λ i
4 3

2
-------P φi ϕ i 2ψi,coscossin=

λ i
5 3

2
-------P φi ϕ i 2ψi,cossinsin=

λ i
6 1

4
---P 2ϕ i 3 φi 3 φi 2ψisinsin+cos( ),sin–=

a1X
2 g1X

2 λ1
1 a1Z

2

g1Z
2 λ1

3 a2X
2 g2X

2 λ2
1 a2Z

2 g2Z
2

λ2
3

λ1 2,
1
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Fig. 4. The magnetic structure of a monoclinic R0.5Ca0.5MnO3 crystal: (a)  and  sublattices, components g1X , g1Z , g2X ,

g2Z; (b)  and  sublattices, components c1Y , c2Y; (c)  sublattice, components GX , GZ; (d)  sublattice, com-

ponent C1Y .

Mna
3+

Mnb
3+

Mna
3+

Mnb
3+

Mn f
4+

Mn f
4+
that the predominance of any of these structures is
defined by the exchange interactions with the Mn4+ sub-
lattice. Because the negative components of positions a
and b, which are of greatest magnitude, single out dif-
ferent projections of basis vectors (X and Z, respec-

tively) and  < , one can assume that the Z axis
will approximately coincide with the easy magnetic
axis of the magnetic structure as a whole owing to
exchange interaction. The same exchange (contribu-

λ1
1 λ2

3
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tions to Eq. (13) with the coefficients JI, JII < 0 and JIII,
JIV > 0) defines the basic components of the magnetic
structure g1Z, g2Z, GZ .

One can readily see that, in the absence of rotational
distortions in a crystal, the coefficients in expression (13)

are  =  =  =  = 0, from which it follows
that, in this case, structures with the components g1X ,
g2X , GX and g1Z , g2Z , GZ become equivalent.

λ1 2,
1 λ1 2,

3 λ1 2,
5 λ1 2,

6

Table 4.  The parameters of single-ion anisotropy for the charge-ordered phases of R0.5Ca0.5MnO3 manganites (given along
with the name of the compound is the reference to the experimental data on which the calculation was based). The designa-
tions correspond to formula (15)

R La [24] Pr [25] Tb [26]

i 1 2 1 2 1 2

, meV 0.006 –0.004 0.009 –0.006 –0.012 0.016

, meV 0.042 0.043 0.040 0.037 0.026 0.027

, meV –0.005 0.005 –0.009 0.007 0.013 –0.014

, meV 0.067 –0.068 0.085 –0.072 0.075 –0.071

, meV –0.011 0.011 –0.012 0.013 0.016 –0.015

, meV 0.015 0.012 0.017 0.011 –0.006 –0.017

λ i
1

λ i
2

λ i
3

λ i
4

λ i
5

λ i
6
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Table 5.  The parameters of the magnetic structure of R0.5Ca0.5MnO3 (given along with the name of the compound is the ref-
erence to the experimental data on which the calculation was based)

R αa , deg αb , deg αf , deg γa , deg γb , deg γf , deg αexp, deg

La [24] –3.57° 3.42° –4.62° –0.28° –0.25° –0.16° 20°

Pr [25] –3.87° 3.27° –9.91° 0.32° 0.29° 0.19° 35°

Tb [26] –3.73° 4.45° 12.05° –0.29° –0.21° –0.4° –
Owing to the presence of the orbital structure, the
easy magnetic axis of the crystal is singled out and non-
collinear components of the magnetic structure emerge.
The presence of the c1, 2Y- and C1Y-components is like-
wise caused by the inclusion of rotational distortions of
the crystal. Disregarding the rotations, one can write for
the respective components of the magnetic structure 

(16)

where S1 = 2 is the Mn3+ spin and S2 = 3/2 is the Mn4+

spin.
When the rotations are taken into account, the calcu-

lation is appreciably complicated; therefore, it was per-
formed in the numerical form. The values of the respec-
tive noncollinearity angles of the magnetic moments of
manganese ions are given in Table 5. According to the
experimental data of [24, 25], the magnetic structure in
monoclinic charge-ordered manganites has an easy
magnetic axis deflected from the c axis, with the direc-
tion of the latter axis being attributed to the presence of
a minor disproportion of the crystal structure that is dis-
regarded in our model. In our model, such a deflection
is qualitatively explicable. Similarly to the case of pure
and charge-ordered orthorhombic manganite [17], the
direction of the easy magnetic axis along the pseudo-
perovskite diagonal (a or c axis) is defined by the pres-
ence of magnetic anisotropy with the varying sign of
the coefficient En . In the case of monoclinic structure,
the local easy magnetic axis for position a is the yp axis,
and for position b, the xp axis. However, the coefficients
En for these positions have different signs and differ in
magnitude as well. As a result, the direction of the easy
magnetic axis slightly differs from diagonal. The value
of the X component of the magnetic structure in our
model is on the average less than the experimentally
observed value (cf., αf and αexp in Table 5). Therefore,
the orbital structure only partly defines this feature.

αa

S1λ1
4 2α f( )sin

S2 J I J III–( ) S1λ1
4 2α f( )cos+

--------------------------------------------------------------------,=

αb

S1λ2
4 2α f( )sin

S2 J II J IV–( ) S1λ2
4 2α f( )cos+

----------------------------------------------------------------------,=

2α f( )cos
S1 λ1

4 λ2
4+( ) J I J III–( ) J II J IV–( )

S2λ1
4λ2

4 J I J III J II J IV–+–( )
--------------------------------------------------------------------------,=
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Depending on the signs of exchange interaction, a zig-
zag orbital structure in combination with rotational
distortions may cause the presence or absence of weak
ferromagnetism in a crystal. The CEX, Z structure
(Γ1 k12 (a, b) Γ2 k12 (f) of the P21/m group) corresponds
to a fully antiferromagnetic structure, and the AX, Z struc-
ture (Γ1k7 (a, b, f) of the P21/m group) exhibits a weak
ferromagnetic moment similarly to pure manganite.
The transition between these structures may be accom-
plished by varying the orbital angle φ to a value exceed-
ing 140°. Such a transition may be accomplished, for
example, with the aid of external pressure. Therefore,
there exists a possibility of producing weak ferromag-
netism in a crystal with the aid of nonmagnetic stimu-
lation.

A characteristic feature in the formation of the mag-
netic structure of charge-ordered manganites is the
presence of an Mn4+ sublattice whose magnetic anisot-
ropy is low and is disregarded in our model [17]. Nev-
ertheless, owing to the strong single-ion anisotropy of
the neighboring Mn3+ ions and to the exchange interac-
tion, the sublattice of tetravalent manganese ions also
has the easy magnetic axis directed approximately to
the middle between the easy magnetic axes of Mn3+ of
position a and Mn3+ of position b.

The behavior of the magnetic structure of an antifer-
romagnet with the easy magnetic axis in an external
magnetic field is usually treated in accordance with a
simple model with one anisotropic contribution
describing the easy magnetic axis (in our case, this is

D(  +  + )). In this case, with the field
directed along the easy magnetic axis, the magnetic
structure remains unchanged up to some value of the
field (Hc1), after which the magnetic sublattices “spin
flop” (spin-flop transition) normally to the external field
direction. After that, when the external field is strength-
ened, the direction of magnetic moments gradually
approaches the field direction until saturation occurs
(spin-flip transition at Hc2). With this approach, the
behavior of the noncollinear components is not treated.

In our model, the behavior of the magnetic structure
is more complicated. This is associated, first of all, with
the inclusion of the noncollinear components of the mag-
netic structure. When the magnetic field increases along
the Z axis, the components (f1X, a1Y, f1Z), (f2X, a2Y, f2Z),

g1Z
2 g2Z

2 GZ
2
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and (FX, A1Y, FZ) – Γ3 k7 (a, b, f) interacting with f1Z, f2Z ,
and FZ are added to the available components of the
magnetic structure; this causes complication of the
behavior of the magnetic subsystem in the external
magnetic field. One can readily see that any direction of
the magnetic field within the ac plane leads to the emer-
gence of the same additional components of the mag-
netic structure. From the standpoint of symmetry, the
spin-flop transition, which is observed in these com-
pounds as well [31], fails to lead to (in distinction to
pure manganites [34]) a qualitative variation of the
magnetic structure: after the critical value of external
magnetic field is reached, the ferromagnetic component
of the structure emerges along with the change of the
approximate easy magnetic axis from Z to X. A further
increase in the field is accompanied by an increase in
the Γ3 k7-component of the structure and a decrease in
the respective components of the initial structure
(Γ1 k12 (a, b) Γ2 k12 (f)). Therefore, it is obvious that,
similarly to the case of pure manganite [34], no com-
plete saturation may be attained in this system.

The abundance of additional components of the
magnetic structure, which are important from the stand-
point of understanding the effect of external magnetic
field, significantly hampers analytical calculations.
Therefore, we will give below the results of numerical
calculations (see Fig. 5). The values of the critical field
Hc1 amounted to 4.2 T for La0.5Ca0.5MnO3, 6.4 T for
Pr0.5Ca0.5MnO3, and 5.8 T for Tb0.5Ca0.5MnO3. The
value of the field Hc1 for Pr0.5Ca0.5MnO3 – δ agrees with
the value experimentally found for Pr0.5Ca0.5MnO3 – δ in
[31] and equal to approximately 2–5 T. No other critical
fields were measured. The field of spin-flop transition
for charge-ordered manganites has a value which is an
order of magnitude less than that for pure manganite
(21 T [38], experiment; 19 T [34], theory).

Of great interest, in addition to the behavior of the
magnetic structure in an external magnetic field, is the
possibility of destruction of charge ordering by an
other-than-CE magnetic order [20] or by an external
magnetic field [3, 31, 39–42]. Different values are cited
for the external magnetic fields at which the charge-
ordered phase is destroyed. For example, for
Pr0.5Ca0.5MnO3 – δ, this value is approximately 5−8 T (at
T ~ 80 K) [31]; for Pr0.5Sr0.5MnO3, 5 or 6 T (at T < 0)
[39]; for various compositions of Pr0.5Ca0.5 − xSrxMnO3
[40], the transition is assumed to occur at fields of
approximately 20 to 30 T (T < TN) for x = 0, and no tran-
sition was experimentally observed with fields of up to
5 T even in samples with a high strontium content;
Respaud et al. [41], who investigated R0.5Ca0.5MnO3
compounds (R = La, Pr, Nd, Sm), observed the destruc-
tion of the charge-ordered phase by fields of 0–15 T for
La0.5Ca0.5MnO3, of 16–25 T for Pr0.5Ca0.5MnO3, of
5−23 T for Nd0.5Ca0.5MnO3, and of 23–26 T for
Sm0.5Ca0.5MnO3 at low temperatures (the lower value
corresponds to transition with decreasing field, and the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
higher value, to that with increasing field); Lope et al.
[42] report, for La0.5Ca0.5MnO3, fields of 0.4–3 T for
which a gradual destruction of the antiferromagnetic
phase begins at different temperatures. In spite of the
different values of the fields at which the charge-
ordered phase is destroyed, note that these fields are
close, by the order of magnitude, to fields of spin-flop
transition. In this way, is it possible to talk about the
field dependences of the magnetic structure and of the
spin-flop transition proper while treating the crystal as
being charge-ordered? Such an approximation is possi-
ble for several reasons. First, we assume the presence of
an ideal single crystal without twins and domains.
In [40–42], polycrystals were investigated. Second, as
is reported in [25, 31], at fairly low temperatures the
charge-ordered phase is stable; therefore, we can
restrict ourselves to a low-temperature approximation.
One can assume that no destruction of the charge-
ordered phase will occur in the absence of the ferro-
magnetic component of the magnetic structure and that
the mechanism of double exchange will be suppressed.
In the presence of even minor ferromagnetism, double
exchange causes the emergence in the crystal of regions
with delocalized charge carriers, i.e., with deteriorating
charge order. As was stated before, the formation of the
A structure with unchanged symmetry of the crystal lat-
tice is accompanied by the emergence of a weak ferro-
magnetic component initiating the destruction of the
charge-ordered phase. When an external magnetic field
is applied, an appreciable ferromagnetic component of
the structure may emerge right away (H is directed nor-
mally to the easy magnetic axis) or at H > Hc1 (H is
directed parallel to the easy magnetic axis, see Fig. 5).
Other directions represent an intermediate case of tran-
sition. In a polycrystal sample, the field of spin-flop
transition is the maximal field at which the ferromag-
netic moment arises in all grains of the sample. There-
fore, one can assume that the spin-flop transition may
start the destruction of, or fully destroy, the charge
ordering; therefore, the behavior of a charge-ordered

0.15

0.10

0.05

0 Hc1 H, T

M, µB/formula unit

Fig. 5. The total magnetization (per formula unit) M as a
function of the external magnetic field H.
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system in an external magnetic field may be predicted
if the field is directed along the easy magnetic axis and
little exceeds the field of spin-flop transition.

Spin Waves and Antiferromagnetic Resonance 

The dispersion dependences of magnons (Fig. 6)
were investigated for the energy given by Eqs. (12) in a
linear approximation of spin waves. Because of the
16-sublattice model of the magnetic structure, the spin-
wave spectrum has sixteen branches. The spectrum is
divided into six zones with several adjacent branches in
each zone (two in the first, second, fifth, and sixth
zones, and four in the third and fourth zones). A char-
acteristic feature of the spectral dispersion is the
marked difference between the curves in the [ξ00] and
[00ξ] directions, i.e., along the orbital zigzag and in the
perpendicular direction within the ac plane. Note that
this difference is due both to the strong ferromagnetic
interaction within the zigzag and weak antiferromag-
netic coupling between zigzags (i.e., magnetic sub-
system) and to the relative position of the orbital,
charge, and magnetic sublattices. A reduction in the
number of sublattices to six (by the scheme of 1' = 1,
13; 2' = 2, 8, 12, 14; 3' = 3, 15; 4' = 4, 6, 10, 16; 5' = 5,
9; 6' = 7, 11; 1'–6' are “new sublattices”, and 1–16 are
sublattices in the designations of Fig. 1) describes the
dispersion dependences in the [ξξ0] and [0ξ0] direc-
tions; however, in two other directions being investi-
gated, this model leads to fully identical dispersion
dependences; i.e., the effect of the orbital structure on

(a)

(b)

(c)

30
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0
30

20

10

0
30
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10

0 k = [ξ0ξ] 1 2 3 4k = [00ξ] k = [ξ00] k = [0ξ0]

E
, m

eV

Fig. 6. The dispersion dependences of the energy E of
R0.5Ca0.5MnO3 magnons for different directions of the
magnetic Brillouin zone on the wave vector ξ: (a) corre-
sponds to Tb0.5Ca0.5MnO3, (b) to Pr0.5Ca0.5MnO3, and
(c) to La0.5Ca0.5MnO3.

ξ
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the spin-wave spectrum is lost. In addition, the six-sub-
lattice model presumes disregard of rotational distor-
tions in the single-ion anisotropy, which causes the sin-
gling out of the easy magnetic axis of the crystal; i.e., it
is incapable of describing a spin-flop transition.

At k = 0, the energy spectrum of magnetic excita-
tions may be observed with the aid of AFMR (see
Fig. 7). In the absence of an external magnetic field, the
lower branches of the spectrum are split and separated
by an energy gap. The formation of such a gap is char-
acteristic of an easy-axis antiferromagnet. The removal
of degeneracy of the lower spectral branches is caused,
as in the case of pure manganite [34], by the presence
of orbitally dependent single-ion anisotropy, which is
characterized by the alteration of the easy magnetic
axis within the ac plane. The increase in splitting
between degenerate branches is a result of the presence
of the sublattice of Mn4+ ions which, in our model, do
not exhibit magnetic anisotropy.

According to our calculation results, the values of
the gap ∆E and splitting δE amounted to ∆E =
1.98 meV and δE = 1.43 meV for La0.5Ca0.5MnO3, to
∆E = 1.81 meV and δE = 0.68 meV for Pr0.5Ca0.5MnO3,
and to ∆E = 2.00 meV and δE = 1.18 meV for
Tb0.5Ca0.5MnO3. The values for Pr0.5Ca0.5MnO3 quali-
tatively agree with those experimentally found in [31]:
∆E = 0.64 meV and δE = 0.12 meV. The disagreement
between our calculation results and experimental data
may be attributed to the presence of oxygen vacancies
in the investigated sample; this, according to Hirota
et al. [38], is the reason for the presence of a minor
amount of free charge carriers. The charge carriers
bring about double exchange, which, even in the case of
low concentration, may cause marked changes in
AFMR spectra, for example, as in the case of stron-
tium-doped manganite [43].

In our opinion, the main criterion for qualitative
comparison with the given experiment may be provided
by the form of field dependence of the spectrum in the
direction of the easy magnetization axis (~c). The
behavior of the field dependence of the frequencies is
characteristic of an easy-axis antiferromagnet. When
the field increases in the direction of easy magnetiza-
tion axis, the two lower branches of the spectrum
diverge still further. At H = Hc1, a small jump is
observed associated with spin-flop transition. In regular
antiferromagnets, given this field, the lower branch has
zero energy. In our model, only a small jump of the res-
onance frequency is expected in the region of fields of
spin-flop transition. The subsequent behavior of the
field dependence is similar to that of the dependence in
the case of the field H directed normally to the easy
magnetic axis (~a), which is attributed to the weaken-
ing of the effect of this axis on the spectrum due to the
interaction between the effects of the orbital and charge
structures, namely, due to the presence of alternation of
the sublattices of trivalent manganese ions, which
exhibit a strong orbitally dependent single-ion anisot-
 AND THEORETICAL PHYSICS      Vol. 96      No. 3      2003
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Fig. 7. The AFMR energy E as a function of the external magnetic field H directed parallel to the easy magnetization axis for
R0.5Ca0.5MnO3: (a) La0.5Ca0.5MnO3; (b) Pr0.5Ca0.5MnO3; (c) Tb0.5Ca0.5MnO3; and (d) experimental data for Pr0.5Ca0.5MnO3 – δ [31].
ropy, and the sublattices of tetravalent manganese ions,
whose magnetic anisotropy may be ignored and the dis-
tortion of whose oxygen coordination has no effect on
the formation of the easy magnetic axis of the crystal.
The magnetic structures with the approximate easy axis
in the vicinity of the a axis and in the vicinity of the
c axis differ with respect to energy much less than in
the case of pure manganite [34]; therefore, the AFMR
frequency jump becomes weaker. A similar behavior
was experimentally observed [31] within the range of
measurements; however, the field dependence above
the field of spin-flop transition is extrapolated by a
straight line tending to zero in the low-field region.

5. CONCLUSION

This paper deals with a simple model describing the
dispersion and field dependences [31] of spin-wave
energy, as well as the field dependence of total magne-
tization. The model includes orbitally dependent inter-
actions, namely: the exchange and single-ion anisot-
ropy; Zeeman interaction; and orbital and charge struc-
tures that are assumed to be fixed and independent of
magnetic interactions. No anisotropic exchange is
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
present in the model, and all rotational distortions are
taken into account in other interactions.

Because of the simplicity of the model, our results
clearly demonstrate the dependence of the magnetic
structure and spectra of magnons on the orbital, charge,
and crystalline ordering. For the same reason, one can
qualitatively explain both the formation of the magnetic
structure and its behavior in an external magnetic field.
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Abstract—Various types of dislocation stoppers are identified and their basic parameters are determined.
Using dislocation loops as an example, the effect of internal stresses on the motion of linear defects in n- and
p-Si in the field of external elastic forces is estimated. It is found that preliminary magnetic treatment of silicon
plates activates the dislocation transport. In the absence of external mechanical loads, displacement of disloca-
tion half-loops (30–50 µm) in the nonuniform field of internal stresses in a silicon crystal with a scratch (stress
concentrator) is detected experimentally during isothermal annealing for 0.5–3 h at a temperature of
600−700°C. Dislocation transport is described taking into account the intrinsic (lattice) potential barrier of the
crystal and two types of stoppers on the basis of magnetosensitive point defects (dopant) and “forest” disloca-
tions. A kinetic model is proposed for describing the magnetostimulated variation of the mobility of linear
defects associated with the formation of long-lived complexes with a paramagnetic impurity. It is found exper-
imentally that the velocity of dislocations in n- and p-Si increases by a factor of 2 and 3, respectively, upon treat-
ment of the semiconductor in a magnetic field B = 1 T for 5–45 min. The “magnetic memory” effect in silicon
containing dislocations is detected and kinetic aspects of the effect under natural conditions of sample storage
after the removal of the magnetic field are considered. Partial velocities of dislocations and their delay times at
various types of stoppers are calculated from the matching of experiment with theory. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that a weak magnetic field consid-
erably affects the state of linear defects in ionic crystals,
metals, and semiconductors [1–13]. It is generally
assumed that these effects are mainly due to magneto-
stimulated evolution of electron spins of paramagnetic
impurity centers [12], which changes the mobility of
linear defects in the field of internal stresses as well as
in the field of external forces.

Available information on dislocation transport in
elementary semiconductors [8–10] does not cover a
number of important aspects of this phenomenon. For
example, there is no information on the division of the
role of various types of stoppers interacting with a mov-
ing dislocation loop in a doped semiconductor. The
1063-7761/03/9603- $24.00 © 20523
field and kinetic dependences of dislocation path
lengths in silicon subjected to magnetic field treatment
have not been described. The data on the kinetics of dis-
location path kinetics in crystals with a nonuniform
spatial distribution of linear defects in the presence of
internal stresses alone and in the field of external forces
are scarce. This study is devoted to analysis of such
problems.

We performed experiments with silicon plates
doped with phosphorus or boron (ρ = 2 or 0.5 Ω cm)
with the [111] and [100] crystallographic orientations
(Table 1). Dislocation dynamics in regions with a nonuni-
form dislocation density was studied by scribing the sur-
face of the semiconductor with a diamond prism under a
fixed load P = 0.8 N according to the technique described
Table 1.  Parameters of silicon samples

Conductivity 
type; impurity

Crystallographic
orientation ρ, Ω cm

Size (mm)
and directions

of scribing
Nd , cm–2

Deformation 
around crystal-
lographic axis

σext , MPa

n, phosphorus [111] 2 30 × 10 × 0.4
[ 00], [11 ], [111]

104–106
[ 10] 30

p, boron [100] 0.5 25 × 10 × 0.6
[100], [010], [001]

104–106 [001] 50

1 2
1
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in [9, 10]. Displacement of dislocations was caused by
internal or external tensile stresses (20–100 MPa). The
latter version was realized through four-point bending
[3–6] at temperatures of 723–973 K. The paths of dis-
location segments were analyzed using the selective
etching method [9, 10].

The magnetic field treatment was carried out
between the poles of an electromagnet (B ≤ 1 T); the
magnetic induction vector was in the plane of the plate
and was always perpendicular to inscribed scratches.
The magnetic treatment time tB varied in the range
30−2800 s for a fixed time shift t* = 180 s between the
termination of magnetic action and the beginning of
high-temperature plastic deformation. The fixation of
time t* was dictated by relaxation processes involving
magnetosensitive stoppers after the magnetic treatment
of silicon samples.

2. THERMOMECHANICAL SIMULATION
OF DISLOCATION

After scratching, a crystal always acquires local
stresses σint , whose high-temperature relaxation in the
absence of external mechanical stresses σext can lead to
generation and subsequent migration of a linear defect.
The behavior of such defects must be completely con-
trolled by the stress σint that redistributes dislocations
depending on the spatial distribution of mechanical per-
turbations in the field of a stress concentrator.

In order to construct the profile of stress σint , we
assume that internal stresses are caused by linear dislo-

σint, 107 Pa

8

6

4

2

0
20 40 60 80 100

x, µm

Fig. 1. Profile of internal stresses σint acting on a dislocation

for  = 1 and a = 80 nm. The dashed line indicates the

value of Peierls stress for the given crystal.

Θd
0
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cations of the same type, which are arranged in parallel
in the vicinity of a scratch. Let us assume that the origin
of coordinates is at the point of intersection of the slip
plane and the edge of the scratch, the z axis is parallel
to dislocations, and the xz plane coincides with the slip
plane. For the sake of definiteness, we consider that the
Burgers vectors of the dislocations are directed along
the x axis. Then the force acting per unit length of a dis-
location in the slip plane is equal to bσxy , where σxy is
the stress at the point of location of the dislocation.

The stresses created by a linear dislocation decrease
in inverse proportion to distance x – x' [14]:

(1)

where ν = 0.3 is the Poisson ratio, G = 7.5 × 1010 Pa is
the shear modulus [15], and x' is the coordinate of the
dislocation, measured from the edge of the scratch.

From a large number of dislocations emerging in the
vicinity of a scratch (Nd ≈ 2 × 1012 m–2), only an insig-
nificant part can move over the crystal. Consequently,
elastic stresses created by dislocations are determined
by their main array, which is spatially localized in a nar-
row region of length a ! xmax (xmax is the maximum
path length of “actuated” dislocations):

(2)

Here, Θd(ξ) is the number of dislocations distributed on
segment [0, a].

Equation 2 can be simplified considerably by
assuming that the dislocation distribution in the “pas-
sive” region ±a is constant:

(3)

In this case, integration of Eq. (2), taking into account
relation (3) in the indicated limits, gives the stress dis-
tribution associated with the scratch:

(4)

This equation is illustrated graphically in Fig. 1. It
can be seen that action σint on dislocations is the
smaller, the larger x. A comparison of theoretical values
of σint for silicon with the Peierls stress

makes it possible to estimate the range of action of
internal stresses (Fig. 1; xmax ≈ 60 µm). Here, b =

σxy
bG

2π 1 ν–( ) x x'–( )
-----------------------------------------,=

σxy x( )
G

2π 1 ν–( )
-----------------------

Θd ξ( ) ξd
ξ x–

-------------------.

0

a

∫–=

Θd ξ( ) Θd
0 const.= =

σint x( ) σxy x( ) –
GΘd

0

2π 1 ν–( )
----------------------- 1 a

x
---– 

  .ln= =

σP
2G

1 ν–
------------ 2πd

b 1 ν–( )
--------------------– 

 exp 2 107 Pa×= =
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0.38 nm is the modulus of the Burgers vector and d =
0.134 nm is the distance between slip planes [16].

In order to experimentally verify the role of internal
stresses, we carried out the first series of experiments
without applying an external load to the samples
(σext = 0). Typical results of these experiments are rep-
resented by curve 1 in Fig. 2.

This series of experiments is distinguished by a
clearly observed delay of transport processes at the ini-
tial stages of isothermal annealing. For example, no
appreciable change in the motion of dislocations could
be detected during the first 10 min, while the path
lengths of head dislocations during the next 5 min
attained a value of 15 µm. A starting delay in disloca-
tion transport (in silicon and germanium) under exter-
nal loading was also observed earlier by other authors
[17−19] and was attributed to the conditions of drawing
linear defects to the starting position, preliminary ther-
mal treatment regimes, and experimental conditions.

An analysis of the mobility of linear defects for
σext = 0 proved that the path lengths of dislocations rap-
idly increase in the course of isothermal annealing,
although the velocity of motion determined by the elas-
tic stress profile decreases gradually and practically
vanishes after 100 min of isothermal holding.

The obtained results enabled us to describe the time
evolution of the transport of linear defects in the field of
internal stresses in the form of the empirical depen-
dence

(5)

where t0 and  are the starting dislocation delay
time and the time of sample annealing for σext = 0, θ
being the step function 

where f = (  – t0)/ .

Approximation of experimental data allowed us to
calculate the values of the delay time (t0 = 657 s) of dis-
location motion and the maximum range of disloca-
tions (equal to 62.44 µm for t  ∞), which is in good
agreement with the results of calculations (see Fig. 1).
Consequently, for large distances x > xmax, relaxation of
internal stresses cannot be realized by motion of dislo-
cations from a scratch.

The application of an external deforming stress σext
to a sample with scratches radically changes the
dynamics of motion of linear defects since the effective

x θxmax 1 t0

tσext 0=
--------------– 

  ,=

tσext 0=

θ f f+
2 f

---------------
1, tσext 0= t0,>

0, t0 tσext 0= 0,> >



= =

tσext 0= tσext 0=
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stress σ* acting on a dislocation at any point is defined
as [20, 21]

(6)

Indeed, only the starting delay (about 11 min) and
the initial stage of dislocation transport (about 20 min)
exhibit nearly complete coincidence of the experimen-
tal results represented by curves 1 and 2 in Fig. 2 (see
the inset to this figure). It can be seen that the region of
responsibility of internal stresses for curve 2 is bounded
by point M beyond which the motion of dislocations is
controlled by external stresses determining the constant
rate of their transport (in contrast to curve 1 in Fig. 2).
Consequently, the difference in the behavior of the
curves observed beyond point M is associated with
redistribution of stresses in favor of external perturbing
forces, while the experimental results for σext obtained
in the region of influence of internal stresses require the
inclusion of σint. For this reason, theoretical treatment
of experimental data for external perturbing factors
(including magnetic field) was carried out only for
regions beyond the zone of influence of σint .

3. THEORETICAL ANALYSIS

Let us suppose that the motion of dislocations in the
field of external forces is determined by three main
types of stoppers: (i) those associated with the intrinsic
barrier of the lattice (subscript i = 1), (ii) magnetosen-

σ∗ σint σext.+=

1000

800
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400

200

0 1 2 3 4

t, 103 s

x,
 µ

m 10 2 3 4
t, 103 s

100

200

400
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xmax, µm

30 6 9 12 15
120

100

80

60

40

20

x m
ax

, µ
m

tσ ext = 0, 103 s

1

2

M

1

2

Fig. 2. Time dependence of the range of head dislocations
from a scratch inscribed on the (100) surface of p-Si under
a load of 8.4 N (ρ = 1 Ω cm, T = 950 K): annealing in the
absence of external load (1) and under an external load of
60 MPa (2). The inset shows the initial segment of the
curves.
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sitive point defects (i = 2), and (iii) intersecting linear
defects including “forest” dislocations (i = 3).

Depending on physical conditions, local barriers
pinning a dislocation can be overcome in parallel or in
series. The dominating manner of overcoming obsta-
cles depends on the ratio of the Peierls barriers σP and
acting external stresses σ* [22, 23]. If the applied stress
is much lower than the Peierls stress, the motion of dis-
location at velocity v ' is accompanied by the formation
of paired kinks [22, 23]. Otherwise, the motion of dis-
locations is controlled by consecutive overcoming of
stoppers along a route parallel to that in question in the
direction of dislocation motion [24]. When the contri-
butions from quantities σP and σ* are commensurate,
these two independent routes become equivalent. Let us
consider this situation in greater detail.

Let τ' be the mean time of transition of a dislocation
(σP @ σ*) from one metastable state to another. If the
number of such transitions is

where Ci is the concentration of stoppers per unit path
length of the dislocation, the mean velocity of its
motion on a segment of length x is given by

(7)

The mean time

is determined by transport processes involving paired
kinks with the linear density ρk , the concentration  of
stoppers per unit length along the dislocation line, and
the times  of overcoming the kinks of the relevant
types of stoppers. Taking this into account and assum-
ing that the dislocation length L > 1/ρk , we can write the
resultant velocity of the dislocation in the form

(8)

which matches the equation derived in [22]. Here, lk =

 is the distance between the nearest stop-

pers and v k =  is the velocity of a kink
provided that it overcomes m stoppers in succession.1 

1 A similar result for the kink velocity vk was obtained in [23],
where the dynamics of dislocations in crystals with a high Peierls
barrier in the presence of point defects (m = 2) was studied.

n' x Ci,
i 1=

m

∑=

v '
x

n'τ'
--------.=

τ'
1

2ρk

-------- Ci'τ i

i 1=

m

∑=

Ci'

τ i'

v '
2nk

Ci

i 1=

m

∑ 
 
 

Ci'τ i'
i 1=

m

∑ 
 
 

------------------------------------------ 2nklkv k,= =

Cii 1=
m∑( )–1

Ci'τ i'i 1=
m∑( )

–1
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For σ* > σP, velocity v '' of dislocations is limited by
point and linear defects which form a discrete spectrum
of obstacles [24]. In this case, the resultant velocity v
of dislocations and their mechanical mobility µm = v /F
are determined by the contribution of each type of stop-
pers under investigation:

(9)

where F is the force acting on a defect, τi =
τ0iexp(Ei/kBT) are the delay times of dislocations at the
corresponding types of stoppers, and Ei is the Peierls
barrier (i = 1) and the pinning energies at the corre-
sponding types of stoppers (i = 2, 3).

Indeed, a moving dislocation encounters different
types of stoppers on its path, being held at them for
characteristic times. Depending on the number ni = xCi

of encountered barriers, the dislocation traverses a seg-
ment of length x during the time

(10)

Then the resultant velocity of dislocations in the field of
elastic stresses can be represented in the form

(11)

which confirms the validity of formula (9). Equation (11)
shows that the resultant velocity v  is controlled by the
maximum value of Ciτi .

For σP ≈ σ*, we must take into account both contri-
butions to the resultant velocity of a dislocation:

However, in our investigations (see curve 1 in Fig. 2,
corresponding to experiment with zero external load),
this version of stress distribution is realized only in a
narrow spatial domain localized in the vicinity of the
scratched region of the crystal and should not be taken
into account specially. In the framework of this
approach, let us analyze components Ciτi .

The first type of stoppers is associated with intrinsic
relief of the crystal lattice (Peierls relief), which con-
trols the dislocation transport in a defect-free crystal.
This enables us to represent the first term, C1τ1, in the
form of a constant independent of coordinates and of
the time of dislocation travel. Consequently, the partial

µm
1
F
--- τ1C1 τ2C2 τ3C3+ +( ) 1– ,=

τ τ ini

i 1=

3

∑ x τ iCi.
i 1=

3

∑= =

v
x
τ
-- τ iCi

i 1=

3

∑ 
 
 

1–

,= =

v v ' v ''+   =  2 n k C i

i

 

1=

 

m

 ∑ 
 
 
 
 C i ' τ i ' 

i

 

1=

 

m

 ∑ 
 
 
 
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 τ i C i
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3
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velocity of the dislocation must also be constant:

(12)

The situation with the second (magnetosensitive)
type of stoppers with concentration C2, which we iden-
tified with boron or phosphorus in silicon, is more com-
plicated. Any of these paramagnetic impurities is redis-
tributed between impurity centers with concentrations
C2a and C2b with different orientations of electrons
spins and the corresponding delay times τ2a and τ2b .

Following the logic of Eqs. (9)–(11) and the mate-
rial balance equation

(13)

we can easily show that, in Eq. (9), we have

(14)

In this case, the partial velocity v 2 associated with mag-
netosensitive stoppers must obey the law

(15)

or

(15')

However, components C2, in contrast to C1, are not
constant in time t since the number of stoppers with
shorter delay times increases actively in a magnetic
field, and relaxation processes occurring after the ces-
sation of magnetic treatment (t > tB) are characterized
by the return of the magnetostimulated subsystem of
structural defects to the initial unperturbed state. This
requires the inclusion of the evolutionary change in com-
ponents C2 at various stages of stopper redistribution.

If relaxation processes following magnetic treat-
ment (e.g., for C2a) occur at a rate of 

(16)

the concentration of stoppers accelerating the motion of
dislocations due to smaller values of τ2a must vary as

(17)

where k is the rate constant of recovery of the electronic
subsystem, t* = t – tB is the relaxation time for magne-

tostimulated changes, and  is the initial value of the
concentration of stoppers with the corresponding orien-
tation of electron spins.

The initial value of concentration  is determined
by the magnetic perturbation level. For a fixed field, the
rate of redistribution of magnetosensitive stoppers in

v 1
1

C1τ1
----------- const.= =

C2 C2a C2b,+=

τ2C2 τ2aC2a τ2bC2b+ C2τ2b C2a τ2b τ2a–( ).–= =

v 2 τ2aC2a τ2bC2b+( ) 1– ,=

v 2 C2τ2b C2a τ2b τ2a–( )–[ ] 1– .=

dC2a

dt
----------- kC2a,–=

C2a C2a
0 kt∗–( ),exp=

C2a
0

C2a
0
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favor of C2a can obviously be represented by equations

(18)

or

(18')

where k2a and k2b are the rate constants of formation of
stoppers with different spin orientations. The solution
to this equation has the form

(19)

where  is the equilibrium value of concentration for
tB = 0.

Thus, the dislocation velocity controlled by magne-
tosensitive stoppers must obey Eq. (15) taking into
account expressions (17) and (19):

(20)

As regards the third type of stoppers with junctions of
linear defects [15], their effect on the values of quantities
v  and µm are manifested via the dislocation density Nd.
The concentration of such stoppers can be defined as

(21)

where γ is the number of slip planes and α and β are the
angles between the slip planes and the Burgers vectors
of interacting dislocations, respectively.

In this case, the dislocation path length in the range
of large values of Nd must obey the law

(22)

and must increase indefinitely for small values of C3τ3,
giving way to transport control by other stoppers.

4. EXPERIMENTAL RESULTS 
AND DISCUSSION

We verified experimentally the basic equations con-
sidered here using the technique described above. The
main experimental results are represented in Figs. 3–7.
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dtB
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Preliminary treatment of samples in a magnetic field
actuates dislocations, accelerating their motion in the
crystal. The effectiveness of this action, which is iden-
tified as “magnetic memory”, is preserved for at least
three days, after which the mobility of dislocations and,
hence, their velocity abruptly decrease, tending to val-
ues for the initial samples that have not experienced
magnetic treatment (Fig. 3). The observed changes in
the v (t*) dependence upon a monotonic attenuation of
magnetic memory over 73 h are in good agreement with
Eq. (19) for fixed values of tB . The rate constants k of
recovery of the electronic subsystem determined from
this matching are given in Table 2.

Figure 4 shows that the expulsion of linear defects
to the field of elastic stresses strongly depends on
the dislocation concentration profile,2 increasing, for
example, for n-Si by a factor of 3 upon a decrease in Nd

from 3 × 106 to 0.3 × 106 cm–2. The strongest variations
of velocity v  occur in spatial regions with large values
of Nd , while the velocities of “fast” dislocations in the
vicinity of small values of Nd are practically constant or
change insignificantly. The depth of penetration of indi-
vidual dislocations in the temperature range under
investigation is a linear function of the time of isother-
mal annealing of the crystal (0.5–16 h). This indicates
the dominating role of “dislocation” stoppers with con-
centration C3 only in defective regions adjacent to
scratches, where their effect on the resultant velocity v
of expulsion is manifested most clearly. This allows us
to eliminate the effect of the type of stoppers in ques-
tion for the most remote dislocations, thus tracing the
effect of the magnetic perturbation factor alone.

2 The term “concentration profile” is applied to the spatial distribu-
tion of etch pits in the vicinity of a stress concentrator.

v , 10–8 m/s

7

6

5

4

3

0 2 4 6 8
t*, 103 min

1

2

Fig. 3. Evolution of the dislocation velocity during sample
storage under natural conditions after treatment in a mag-
netic field B = 1 T for 20 min. Symbols correspond to exper-
iment; bold segments of the curves are the results of calcu-
lations based on Eq. (20) (v  = 3.7 × 10–8 and 2.4 × 10–8 m/s
for tB = 0 for p-Si (1) and n-Si (2), respectively).
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The temporal effect of magnetic field (B = 1 T) on
remote dislocations is ambiguous both for n- and for
p-Si (Fig. 5). In spite of quantitative difference, we can
trace a clear tendency to an increase in velocity and,
hence, the concentration C2a of stoppers upon an
increase in the time of magnetic treatment of the plates.
This points to a decisive role of magnetosensitive
stoppers with concentration C2a and its components in
the transport of dislocation segments in the range of
small Nd .

Good agreement between our experimental results
and Eq. (19) enabled us to obtain numerical estimates
for the main parameters of dislocation transport (see
Table 2) for a fixed degradation time t*. For example,

Nd, 106 cm–2

2

1

15 35 55 75 95
x, µm

1

2

0

3

Fig. 4. Spatial distribution of dislocations from a crack in
the course of plastic deformation of silicon for 40 min at T =
948 K, tB = 0: n-Si (1) and p-Si (2).

v
, 1

0–
8  m

/s

1.4

0.8

0.6

0.4

0.2
0 0.5 1.0 2.0 2.5

tB, 103 s

1

2

1.5

1.2

1.0

0.4 0.8 1.2 1.6 2.00
8

7

6

5

4

v
, 1

0–
8  m

/s

tB, 103 s

Fig. 5. Dependence of the maximum velocity of expulsion
of dislocations in silicon on the time of magnetic treatment
of the sample in field B = 1 T. Symbols correspond to exper-
iment; the curves are the results of calculations based on
Eq. (20).
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Table 2.  Parameters of magnetostimulated dislocation transport after isothermal annealing for 40 min; B = 1 T, t* = 180 s

Crystal 
type ρ, Ω cm

Impurity
concentration, 

1022 m–3

C2,
107 m–1

,

107 m–1
τ2b , s τ2a , s

k2b ,
10–2 s–1

k2a ,
10–2 s–1

k,
10–6 s–1

p 0.5 4.0 3.4 3.3 0.64 0.02 1.3 2.0 1

n 2 0.5 1.8 1.4 1.17 0.06 0.34 0.76 5

C2a
00
the curves in Fig. 6 characterize the redistribution of
stoppers with concentration C2i and partial velocities of
dislocations v 2i = (C2iτ2i)–1 with different delay times
after controllable stages of magnetic treatment. Large
delay times for dislocations at magnetosensitive stop-

v
2i

, 1
0–

8  m
/s

6.0

4.5

3.0
0 0.5 1.0 2.0

tB, 103 s

1
2

1.5

7.5

2.8

2.4

2.0

1.6

1.2

v
2a

, 1
0–

8  m
/s

1

3

3

2.01.51.00.50

1.2

1.6

2.0

C
2i

, 1
07  

m
–

1

tB, 103 s

Fig. 6. Effect of magnetic treatment time for n-Si on the
concentration redistribution of magnetosensitive stoppers
and partial velocities of dislocations, calculated by for-
mula (19): C2a, v2a (1), resultant velocity (2), and C2b ,
v2b (3).

v , 10–8 m/s
4

3

2

1

0
4 5 6 7 8

1/√Nd, 10–6 m

v
, 1

0–
8  

m
/s

0

4

2

4 8 12 16 20

1/√Nd, 10–6 m

Fig. 7. Dependence of the velocity of expulsion of disloca-
tions in spatial regions controlled by stoppers with concen-

tration C3 (solid lines) on the quantity 1/  determining

the distance between dislocations at 903 (1), 873 (2), and
823 K (3). The inset shows the total v (Nd) dependence.

Nd

1

3

2
1

2

3
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pers (see Table 2), which are approximately 1010 times
longer than the characteristic times of spin conversion
(10–11–10–10 s [1–4, 12]) are also worth noting. Conse-
quently, the delayed response of velocity v 2 to the mag-
netic perturbation factor (see Fig. 4) is connected with
delayed processes of formation of complexes on the
basis of impurity centers with differently oriented spins
rather than with spin conversion:

(23)

Here, superscripts “+” and “–” determine the configu-
ration of electron spins of impurity centers and ξ2i are
structural component of the C2i complexes.

The quantitative information obtained above con-
cerned individual dislocations located at large distances
from scratched regions of the crystal. At the same time,
regions in the silicon crystal with large values of Nd ,
i.e., with the dominating effect of “dislocation” stop-
pers C3, also carry important information, which can be
extracted on the basis of matching the experimental
(Fig. 7) and analytic (see Eq. (21)) values of v3.

Indeed, the velocity of expulsion of dislocations in
spatial regions controlled by the type of stoppers in
question (see Fig. 7) is correctly described by for-
mula (21) for all temperature regimes under investiga-
tion. This enables us to determine the average time of
dislocation pinning at the corresponding stoppers, τ3 =
50 s, as well as the energy barrier E = 0.9 eV for over-
coming these stoppers. The activation barriers of dislo-
cation depinning from magnetosensitive stoppers,
which have been determined from the values corre-
sponding to individual dislocations, are equal to 2.1 eV.
The obtained values are in accord with the available
data from the literature [15, 21].

5. CONCLUSIONS

Thus, we have analyzed the dislocation dynamics in
silicon in the field of internal and external stresses in
monocrystalline silicon plates. We fixed experimentally
the motion of dislocation segments in the field of inter-
nal stresses over a distance of 30–50 µm from a crack
during isothermal annealing of the silicon plates for
0.5–3 h in the temperature range 600–700°C. The

C2a C2a
+ ξ2a,+≡

C2b C2b
– ξ2b.+≡

k2a

k2b
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motion observed is associated with the interaction
between dislocations in the vicinity of a stress concen-
trator.

We studied the mechanism of motion of dislocations
in the presence of three types of stoppers. It was found
that preliminary treatment of silicon plates by a weak
magnetic field increases the velocity of expulsion of
dislocation segments by a factor of 2–3. We determined
the dependence of the maximal path length of disloca-
tions of the time of exposure of the samples to a mag-
netic field and described the kinetics of magnetostimu-
lated changes in the framework of the model of spin-
dependent response of structural defects. Quantitative
characteristics of dislocation transport under perturbing
action of a magnetic field were determined, and the
energy parameters of depinning of linear defects from
“dislocations” and magnetosensitive stoppers were
estimated.
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Abstract—Heat capacity of the PbMg1/3Nb2/3O3 compound is measured using the methods of adiabatic and
differential scanning calorimetry in the temperature range 80–750 K. Two blurred anomalies on the Cp(T)
dependence are observed in wide temperature intervals of 200–400 K and 500–700 K. The results of studies
are discussed together with data on the structure and phonon spectrum in the framework of spherical random
bond–random field model. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Perovskite-like compounds attract considerable
interest owing to rich diversity of their physical proper-
ties and possible applications in various technological
schemes. Magnetic, dielectric, optical, and electric
properties of perovskite-like materials have been stud-
ied extensively. New phenomena observed in doped
(mixed) perovskites are of special importance.

The perovskite structure is characterized by relative
simplicity of the crystal lattice structure, on the one
hand, and by striking flexibility, on the other hand,
which makes it possible to vary the set of ions forming
the lattice over a wide range, thus obtaining the
required combination of properties of the material. The
substitution of a combination of two cations B and B' of
different valence for cation B in the ABX3 perovskite,
which gives ABx X3, is one of the methods modi-
fying the perovskite properties. Among mixed oxygen-
based perovskites, compounds with x = 1/2 and x = 1/3
have been studied most extensively. Depending on the
size and valence of the cations, both these types of the
compound can be obtained either in an ordered or a dis-
ordered state.

The main type of ordering in the cation sublattice in
compounds with the AB1/2 X3 composition is alter-
ation of layers of B and B' ions perpendicular to the
triad axis [111] of the simple cubic cell. This gives rise
to a structure of the so-called ordered perovskite, or

elpasolite, with the Fm m symmetry; the formula of
this compound can be written as A2BB'X6. Such an
ordering emerges when the sizes and charges of the B
and B' ions differ significantly.

B1 x–'

B1/2'

3

1063-7761/03/9603- $24.00 © 0531
In the case of ABx X3 perovskites with x = 1/3,
ordered structures with alternating B, B', and B' layers
are formed for A = Ba and B = Zn, Mg; B' = Nb, Ta [1].
On the other hand, compounds with A = Pb demon-
strate ordering of B' and B'' = (1/3)B' + (2/3)B layers
alternating along the [111] direction. This type of
ordering with a long-range order is observed in
PbMg1/3Ta2/3O3. In other Pb-containing compounds, no
long-range order is observed. According to the results
of structural analysis, ordered regions have a size on the
order of 20−800 Å [1, 2].

Compounds with such a small correlation length of
ordering are characterized by relaxor-type behavior.
Relaxors possess three main features of dielectric
response. The phase transition has a clearly manifested
diffusion nature, and the permittivity and the tempera-
ture corresponding to its maximal value depend signif-
icantly of the measuring field frequency. The response
in weak fields does not obey the Curie–Weiss law. The
room-mean-square polarization exists in a temperature
range 200–300 K higher than Tmax (the temperature cor-
responding to the permittivity peak), but the average
polarization P differs from zero at a temperature much
lower than Tmax.

The PbMg1/3Nb2/3O3 (PMN) compound belongs to
the family of an oxygen-containing mixed perovskite-
like compound and is a classical representative of mate-
rials with relaxor behavior [3]. This compound has a
broad peak of ε in the vicinity of Tmax ≈ (250–270) K
and displays a strong low-frequency permittivity dis-
persion. On the other hand, spontaneous polarization is
observed at low temperatures (below 250 K) only in
polarized samples in electric fields of strength higher
than a certain critical value [4] or in those with PbTiO3
admixtures [5]. Such dielectric behavior was initially

B1 x–'
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explained by the diffusion nature of the ferroelectric
phase transition associated with fluctuations of the con-
centration of Mg2+ and Nb5+ ions of different valence in
the B sites of the Pm3m-cubic structure of the ABO3
perovskite.

Over several decades, PMN has been studied using
various methods, but a large number of questions con-
cerning the nature of phase transitions and anomalous
behavior of physical properties of this crystal in a wide
temperature range remain unanswered. Moreover, the
crystal structure and its variation in a wide temperature
range are still objects of discussion.

The main attention in the study of relaxors is paid to
dielectric properties of these materials, their structure,
and spectral parameters. Thermodynamic properties,
especially heat capacity and its behavior in a wide tem-
perature range, were studied casually. Nevertheless,
thermal parameters of the system may be important in
the developing and refining models of the phenomena
in question. Calorimetric studies have indisputable
advantages since this method makes it possible to
detect any type of heat capacity anomalies, which are
associated with the electric as well as with the elastic
subsystem.

The temperature dependence of heat capacity of
PMN was studied by many authors [6–8]. In [6], heat
capacity was measured by the differential scanning cal-
orimeter method in the temperature range 140–790 K.
The spread in experimental points exceeded 15%, and
analysis of heat capacity was carried out only after
averaging, which did not allowed the authors of this
work to draw unambiguous conclusions on the type of
the Cp(T) behavior. In [7, 8], measurements were con-
fined to a temperature of 300 K, which is insufficient
for tracing the variation of heat capacity in the region of
the permittivity maximum (about 250–350 K). The
authors of these publications were mainly interested in
the behavior of heat capacity at low temperatures and in
the form of the vibrational spectrum of the compound.

Here, we report on the results of heat capacity stud-
ies in PMN in a wide temperature range of 80–750 K
and analyze its behavior in temperature regions in
which anomalies in the electrical and structural proper-
ties were observed by many authors.

2. SAMPLE AND MEASURING TECHNIQUE

The experimental sample was in the form of a finely
dispersed powder and was prepared at the Center of
Material Development and Structural Studies
(CEMES) in Toulouse (France). The compound was
manufactured using solid phase synthesis from a mix-
ture of corresponding oxides [9].

Heat capacity was measured using two methods. In
the temperature range 80–350 K, measurements were
made using the adiabatic calorimetry method enabling
us to obtain absolute values of the total heat capacity to
a high degree of accuracy. A powder sample was placed
JOURNAL OF EXPERIMENTAL
into an indium container, which was sealed in a helium
atmosphere. Helium was used as a heat-exchange gas
for leveling out the temperature over the sample. The
sample mass was 3.17 g and the container mass was
8.5 g. Measurements were made using the traditional
method of discrete heating and in an automated regime
of continuous heating [10] at a temperature variation
rate of dT/dt ≈ 10–1 K min–1. In our experiments, we
measured the total heat capacity of the sample and the
container. The heat capacity of the container was mea-
sured separately. The error of heat capacity measure-
ments depends on the method of heating and amounts
to (0.1−1.0)%.

In a high-temperature range of 360–750 K, mea-
surements were made on an updated and automated
DSM-2M differential scanning calorimeter. In this
case, the sample mass was 0.51 g. The error of heat
capacity measurements with such a calorimeter is
slightly larger than that with an adiabatic calorimeter
and amounts to 2–3%.

3. RESULTS AND DISCUSSION

The results of heat capacity measurements in PMN
are presented in Fig. 1. The spread in experimental
points relative to the smoothing curve does not exceed
1.5%. The error of measurements slightly exceeding
the conventional value is due to the fact that the heat
capacity of the sample amounts to only a small part of
the total heat capacity of the container–sample system.
The obtained results are in good agreement with the data
obtained in [7, 8] in the temperature range 80–270 K and
differ from the results obtained in [6]. The curve
describing the temperature dependence of specific heat
does not exhibit clearly manifested anomalies typical of
traditional phase transitions. However, in temperature
regions near 300 and 650 K, two broad, blurred anom-
alies in heat capacity are observed.

3.1. Separation of the Lattice Component 
of Heat Capacity 

Since we are dealing here with experimental results
obtained in a wide temperature range, we must take into
account in our analysis the anharmonic contributions to
the lattice heat capacity at high temperatures, which
may lead to a considerable difference between the iso-
baric and isochoric heat capacities. Thermal expansion
of PMN has been studied repeatedly [9, 11]. The vol-
ume expansion coefficient in the temperature range from
300 to 700 K varied from 4 × 10–6 to 30 × 10–6 K–1. To
our knowledge, data on compressibility of PMN are
not available. We estimated the value of this quantity
using the result of publication [12], devoted to the
study of the effect of pressure on the unit cell parame-
ters of the PbZr0.5Ti0.5O3 compound allied with PMN.
The bulk compressibility modulus was estimated as
2.3 × 10–11 Pa–1.
 AND THEORETICAL PHYSICS      Vol. 96      No. 3      2003
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Using the above estimates, we calculated the anhar-
monic contribution to the heat capacity of PMN, which
amounts to approximately 1 J/mole K at 700 K. In view
of the smallness of this value, which is within the
experimental error, the difference between Cp and Cv

was disregarded in the subsequent analysis. The small
value of the anharmonic contribution is due to a small
value of the thermal expansion coefficient.

The expression for the lattice heat capacity CL can
be derived from the general relation

(1)

where E is the internal energy of the system, n(ω) is the
Bose–Einstein distribution function, and G(ω) is the
density of vibrational states.

The density of state function G(ω) for crystals with
a complex composition is unknown as a rule in the
entire frequency range. For this reason, we must resort
to a simplified approach to obtain a quantitative
description of the temperature dependence of heat
capacity. In most cases, the analysis of the temperature
dependence of heat capacity and the separation of the
lattice and anomalous contributions are carried out
using a simple model describing the lattice heat capac-
ity of the compound by a combination of the Debye and
Einstein functions.

In the case of PMN, such an approach was used in
[6], but the treatment of the temperature dependence of
heat capacity in a wide temperature range (140–790 K)
in the framework of the Debye model with ΘD =
422.1 K obviously does not fit the real situation. The
results of analysis of the data obtained in this approxi-
mation are represented by the dashed curve in Fig. 1
and lead to a different value of ΘD = 520 K. It can
clearly be seen that the temperature dependence of heat
capacity in the low-temperature range has a non-Debye
form [7, 8]: the heat capacity of PMN decreases with
temperature almost linearly down to the minimal values
attained in experiment. Such deviations from the C ∝
T3 dependence are attributed in [8] to the excitation of
Einstein oscillators, are typical of a large number of
crystals, and are associated with anomalies of real fre-
quency distribution functions in the low-frequency
spectral region (below 100 cm–1). The results of lattice
heat capacity treatment by a combination of the Debye
and Einstein functions are shown by the dashed curve
in Fig. 1. In the temperature range 30–200 K, the latter
model describes experimental results much better.

Another version of the lattice capacity approxima-
tion was implemented in the framework of the fracton
model proposed on the basis of analysis of the lattice
vibration spectrum of PMN by the inelastic neutron
scattering method [13]. Gvasaliya et al. [7, 13] believe
that the phonon regime is realized at frequencies of

CL
∂E
∂T
------

T∂
∂ ωG ω( )n ω( )"ωd∫ 

  ,= =
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ω ≤ ω1, while the fracton regime with spectral dimen-
sion d is observed for ω1 ≤ ω ≤ ω2:

(2)

Three parameters (d, ω1, and ω2) were determined
by us from analysis of experimental data: "ω1/kB =
43.7 K, "ω2/kB = 800 K, and d ≈ 0.8. A rather nonreal-
istic value of fracton dimension d is obtained, in all
probability, since the dependence G(ω) ∝  ωd – 1 was
assumed to be valid for ω ≥ ω1, although it follows
from the results obtained in [13] that such a dependence
holds only in a narrow frequency range.

Thus, the G(ω) function used here is rather a certain
approximate description of the real frequency spectrum
and cannot serve as an argument supporting or rejecting
the existence of fractons in the lattice vibration spec-
trum [7, 13]. Nevertheless, such an approximation
makes it possible to describe the lattice heat capacity
correctly in the entire temperature range under investi-
gation (see Fig. 1).

The anomalous component ∆Cp = Cp – CL of heat
capacity, separated by all of the above three methods, is

G ω( )
ω2, ω ω1,≤

ωd 1– , ω1 ω ω2.≤ ≤



∝
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Fig. 1. Temperature dependence of the heat capacity of
PbMg1/3Nb2/3O3. Data for the temperature range 7–80 K
are borrowed from [8]. Lattice heat capacity is approxi-
mated in the framework of the Debye model (dotted curve),
a combination of the Debye and Einstein functions (dashed
curve), and in the framework of the model developed in [7,
13] (solid curve). The inset shows heat capacity in the tem-
perature range 0–50 K.
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depicted in Fig. 2. In the temperature range T > 100 K,
the heat capacity has a low sensitivity to fine details of
the vibrational spectrum, and the difference in the val-
ues of ∆Cp obtained by approximating the lattice heat
capacity by a combination of the Debye and Einstein
functions and on the basis of a simple description of the
lattice vibration spectrum is small and lies within the
error of measurements. It should also be noted that the
value of Cp – Cv estimated above does not exceed
10−15% of the anomalous heat capacity.

The ∆Cp(T) dependence clearly displays two
regions of anomalous behavior of heat capacity. The
temperature range 200–450 K coincides with the
region of anomalous behavior of permittivity [3],

16
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100 200 300 400 500 600 700 8000
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Fig. 2. Anomalous component of the heat capacity of the
PbMg1/3Nb2/3O3 compound determined by interpolating
the lattice heat capacity in the framework of the Debye
model (d), Debye–Einstein model (s), and the model pro-
posed in [7, 13] (.).
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Fig. 3. Temperature dependence of the anomalous entropy
of the PbMg1/3Nb2/3O3 compound.
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while deviations from the regular behavior of the
refractive index [14], lattice parameters, and thermal
expansion coefficient [9] were observed earlier in the
temperature range 550−700 K.

The change in entropy associated with the anoma-
lous behavior of heat capacity and calculated by the
formula

is depicted in Fig. 3.
In order to find reasons for the emergence of anom-

alous behavior of heat capacity of PMN, we consider
the structural features of this material and the available
models of phenomena occurring in it.

3.2. Anomalous Behavior at High Temperatures 

The concept of polar nanoregions is one of the most
important concepts associated with microscopic prop-
erties of relaxors. The first experimental proof of the
existence of such regions was obtained by Burns, who
studied the refractive index n(T) of single crystals of
some disordered ferroelectrics and relaxors including
PMN [14]. The refractive index behavior deviates from
the linear dependence at temperature Td (600–650 K for
PMN), which is much higher than Tmax. It was
supposed that such an unexpected behavior is due to
randomly oriented local polarized regions, which are
formed in a nonpolar crystal structure below Td . This
temperature is often referred to as the Burns tempe-
rature.

Later, high-resolution electron microscopy studies
of PMN [15] at T < Td revealed the presence of chemi-
cally ordered (1 : 1) clusters in which Mg2+ and Nb5+

ions, which are in the position B, alternate along the
axes of the perovskite cubic lattice. The size of these
clusters is on the order of 10 Å. In [16, 17], a two-phase
model of the PMN structure was proposed on the basis
of structure analysis by the neutron elastic scattering
method at low temperatures, viz., a cubic structure with
a long-range order and nanoregions with a rhombohe-
dral R3m structure and with a correlation length on the
order to 100 Å. In these polar nanoregions, Pb and
Mg/Nb ions are displaced relative to oxygen ions in the
[111]c directions.

Neutron inelastic scattering experiments [18, 19]
with relaxors above the Burns temperature revealed a
TO vibration branch for all wave vectors and a TO
mode at the center of the Brillouin zone. The value of
("ω0)2, where ω0 is the frequency of this mode,
decreases linearly upon cooling down to Td . Such a
behavior matches the behavior of the soft mode in
PbTiO3 and other displacement-type ferroelectrics. At
the Burns temperature, a phase transition occurs, lead-
ing to a rhombohedral (R3m) distortion of Nb-rich clus-

∆S T( )
∆Cp

T
---------- Td

100  K 

T

 ∫
 

=
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ters and to the emergence of polarization in these clus-
ters. However, the correlation length of such clusters is
quite small and macroscopic polarization does not
appear in the sample.

In the region of soft mode condensation at the Burns
temperature, anomalous behavior of heat capacity of
PMN can be expected, which was indeed observed in
our experiments in the temperature range 600–700 K.
The anomaly blurring is probably due to the fact that
individual clusters have different phase transition tem-
peratures.

The approximate change in entropy during the high-
temperature transition is on the order of (0.4–0.5)R
(R is the universal gas constant); this means that pro-
cesses of the order–disorder type, which are associated
with ordering of lead ions in interoctahedral cavities
below the Burns temperature, play a significant role in
the formation of polar nanoregions.

Taking into account the results of structural studies
and the fact that polarization may have eight equivalent
directions of the [111]c type, we could expect that the
entropy variation as a result of ordering in the entire
crystal is ∆S = Rln8. The obtained value of entropy
variation amounts to only 20–25% of this value and is
in accordance with the volume fraction of polar nanore-
gions obtained from an analysis of structural data [17].

3.3. Analysis of the Behavior of Heat Capacity 
in the Framework 

of the Random Bond–Random Field Theory 

Since the discovery of relaxors more than 30 years
ago, several models have been proposed for explaining
the existence of the ε peak and other peculiar dielectric
properties. These are the models of diffusion phase
transitions, dipole glasses, reorienting polar clusters,
etc. In recent years, the spherical random bond–random
field (SRBRF) model has become most popular [20, 21].

The PMN compound below the Burns temperature
is treated in the model [20] as a heterogeneous material
consisting of Nb-rich regions (or polar clusters)
implanted in a quasi-regular array of chemically
ordered (1 : 1) regions (chemical clusters). Polar clus-
ters have a typical size of several nanometers and can be
reoriented. It is these clusters that are responsible for
the observed dielectric behavior. On the contrary,
chemical clusters are static and are regarded as sources
of random electric fields.

The model Hamiltonian of the system of interacting
polar clusters can be formally written in the form

(3)

where Si is the dimensionless order parameter, propor-
tional to the dipole moment of a cluster; Jij are random
interactions or bonds; hi are random local electric

H
1
2
--- JijSi S j⋅

i, j

∑ hi Si⋅
i

∑ g Ei Si,⋅
i

∑–––=
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fields; and Ei is the external electric field [20]. As in the
theory of spins and dipole glasses, it is assumed that
random bonds have a Gaussian distribution and

(4)

Random fields also obey the Gaussian distribution, and

(5)

Equilibrium values of polarization,

,

and of the order parameter of dipole glass (or the
Edwards–Anderson parameter),

,

can be determined from the conditions of the free
energy minimum:

(6)

(7)

where z is a Lagrangian multiplier introduced to
enhance the spherical conditions, simplifying the solu-
tion [20]. Equilibrium values of P, q, and z are defined
by the following expressions:

(8)

In zero external field (E = 0), the system has two sets of
solutions. One of them (P = 0, q ≠ 0) corresponds to the
phase without a long-range order, or dipole glass (SG),
while the other (P ≠ 0, q ≠ 0) describes the phase with
a long-range order, or ferroelectric (FE) phase. The fer-
roelectric phase (P ≠ 0) can exist only if the parameter
J0 of interaction between clusters exceeds a certain crit-

ical value, J0 > J0c = .
The temperature of transition to the ferroelectric

state is defined as

(9)

The phase diagram of the model is shown in Fig. 4.
In the case of PMN, the interaction parameter J0 is

Jij[ ] aν
c J0/N , Jij( )2[ ] aν

c
J2/N .= =

hiµ[ ] aν
c  = 0, hiµh jν[ ] aν

c  = ∆δijδµν, µ = x y z., ,

Pµ
1
N
---- Siµ〈 〉

i

∑=

qµ
1
N
---- Siµ〈 〉 2
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2
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---βf βJ0P2 1
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---β2J2q2– 2z–=

+ 2z β2J2q+( )ln
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2
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2z β2J2q+
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apparently smaller than the critical value, and a transi-
tion to the ferroelectric phase with the emergence of a
macroscopic order parameter (polarization) is not
observed. Accordingly, classical heat capacity anoma-
lies are also absent. However, the existence of parame-
ter q and its temperature variation leads to the emer-
gence of an additional contribution to free energy and
heat capacity.

The form of temperature dependences of these con-
tributions was determined as a result of our numerical
calculations for various values of the model parameters.
The results of calculation of the temperature depen-
dences of order parameter, free energy, entropy, and
heat capacity for ∆/J2 = 0.0001, 0.001, and 0.005 and
for E = 0, J0 = 0 are presented in Figs. 5–8. It can be
seen that, even in the absence of a phase transition to
the ferroelectric phase, the heat capacity has a broad
anomaly with a peak at T = J. For PMN, the value of J

J0/J

3.02.52.01.51.00.50
T/J

FE

SG0.5

1.0

1.5

2.0

2.5

3.0

Fig. 4. Phase diagram of the random bond–random field
model. Dotted lines correspond to ∆ = 0.
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Fig. 6. Temperature dependence of the free energy in the
SRBRF model for E = 0, J0 = 0, and ∆/J2 = 0.0001, 0.001,
and 0.005.
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Fig. 5. Temperature dependence of the order parameter q
for E = 0, J0 = 0, and ∆/J2 = 0.0001, 0.001, and 0.005.
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Fig. 7. Temperature dependence of entropy in the SRBRF
model for E = 0, J0 = 0, and ∆/J2 = 0.0001, 0.001, and 0.005.
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is on the order of 300 K, and the observed heat capacity
anomaly in the temperature range from 150 to 450 K is
in qualitative agreement with the SRBRF model [18, 19].

4. CONCLUSIONS
Our results and the data from the literature lead to

the following pattern of the processes occurring in
PMN. Above the Burns temperature (≈700 K), PMN is
a heterogeneous material containing ordered (1 : 1)
regions as well as regions rich in niobium. The sizes of
these regions are on the order of tens of nanometers. As
the temperature decreases, a transition to the polar R3m
phase takes place at the Burns temperature in regions
with an excess of niobium; this transition is accompa-
nied by soft mode condensation and appearance of the
blurred heat capacity anomaly. The polarization direc-
tions in polar nanoclusters are distributed at random,
and macroscopic polarization does not emerge in the
system. Further cooling does not lead to any structural
changes. Anomalous behavior of dielectric properties
and heat capacity in the temperature range 200–400 K
is associated with changes occurring in the system of
reorientable polar clusters and a transition to the glass-
like state.

The results obtained are in good agreement with the
results of structural studies and with conclusions of the
spherical random bond–random field (SRBRF) model.
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Abstract—The temperature behavior of the dielectric response εhis(T) at a frequency of 1 kHz (110 K < T <
300 K), δε(T) = [εhis(T) – εZFC(T)], and of the order parameter q(T), characterizing ε(T) in a relaxor, is investi-
gated for the relaxor Cd2Nb2O7 on samples with different thermal and electric histories in a dc field much
weaker than the polarization saturation field. In a weak field (Edc = 0.95 kV/cm), the behavior of δε(T) ∝  χnl
changes in the region Tf = 184 K and the εhis(T) curves diverge monotonically at lower temperatures, indicating
the development of the glassy state in the system. Analysis of the behavior of q(T) in the framework of the
model of spin and dipole glasses shows that random interactions of polar microscopic regions in the presence
of random fields play a dominating role in the phase formed below Tf in the ZFC and FH/ZFC regimes. The
relative contribution of random fields increases in the FC regime in a weak field and is manifested in the
ZFH/FC regime both below and above Tf . © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent decades, various models have been pro-
posed for explaining peculiar dielectric behavior of
relaxors (relaxation dispersion of ε*(T) in a wide fre-
quency range; slowing down of the dynamics of polar
microscopic regions, accompanied by relaxation time

freezing for T  ; and nonergodic behavior at low
temperatures). These models include a system of reori-
ented polar clusters [1, 2]; a superparaelectric [3, 4] or
frustrated (inhomogeneous) ferroelectric split into nan-
odomains under the action of random fields [5, 6]; and
dipole glass with randomly interacting polar micro-
scopic regions in the presence of random fields [7–10].
In spite of intense studies, the following questions
remain unclear: (i) Is a relaxor system in zero external
electric fields a dipole glass or a frustrated ferroelec-
tric? (ii) What state (glassy or ferroelectric) develops in
the system below Tf? (iii) What is the role of dc field Edc

in this case? In order to clarify the situation, the temper-
ature dependences of (a) static dielectric nonlinearity

α3 = ε3/  in field Edc and in zero field (ε1 and ε3 are the
first and third harmonics of dielectric response) [9, 10]
and (b) quasistatic nonlinear susceptibility χnl =

[ε(Edc) – ε(0)]/3  in the frequency range from
100 Hz to 1 MHz, which can be determined from the
dielectric response of the system as a function of the field
for fixed values of temperature (ε is the permittivity in
field Edc and in zero field, while εs is the static permittiv-
ity) [6, 11] were investigated in PMN (PbMg1/3Nb2/3O3)

T f
+

ε1
4

Edc
2 εs

4

1063-7761/03/9603- $24.00 © 20538
and PLZT (Pb1 – xLax(ZryT1 – y)O3). It was found that a
transition from the ergodic to a nonergodic (glassy)
relaxor state occurs in the vicinity of Tf in a weak field
Edc, while the ferroelectric phase is formed in a strong
field. However, in the frequency range corresponding to
relaxation dispersion (1 Hz–1 MHz), which is most
interesting for understanding the nature of the relaxor
state developing below Tf , the dielectric nonlinearity of
the system decreases rapidly [10]. The nonlinear sus-
ceptibility χnl(T), which can be determined in the
course of field scanning, exhibits an anomaly not at Tf ,
as predicted by the theory of phase transition to the
glassy state [12], but at T > Tf [6, 11]. In the case when
χnl(T) ∝  [ε(Edc, T) – ε(0, T)] was determined from the
measurements of the dielectric response as a function
of temperature for fixed values of the field, an anomaly
was observed at Tf , but the measurements were made
only in a strong field inducing the ferroelectric state
[13]. Analogously to many glass systems [14], the per-
mittivity in the case of field cooling [εFC(T) ≡ ε(Edc, T)]
of PMN and PLZT in the phase formed below Tf does
not coincide with the permittivity for zero field cooling
[εZFC(T) ≡ ε(0, T)] in view of the violation of ergodicity
of the system [4, 8, 13, 15–17]. However, the results of
such measurements do not give an idea of the behavior
of relaxor in zero field as well as in weak and strong
fields Edc.

In order to clarify the nature of the relaxor state
developing below Tf and the effect of a weak dc field on
the relaxation behavior of the system at low tempera-
003 MAIK “Nauka/Interperiodica”
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tures, we analyze here the behavior of (i) permittivity
εhis(T) at a frequency of 1 kHz in a weak field Edc for
samples with different thermal and electric histories
both in traditional ZFC and FC regimes and in the
FH/ZFC (heating in a field following zero field cooling)
and ZFH/FC (zero field heating following cooling in
the field) regimes and (ii) difference δε(T) = [εhis(T) –
εZFC(T)] and order parameter q(T) characterizing the
deviation of the temperature dependence ε(T) for relax-
ors from the Curie–Weiss law [7, 18] using the relaxor
Cd2Nb2O7 as an example. In previous studies, the
behavior of q(T) for relaxor samples with different ther-
mal and electric histories has not been investigated at
all. Since the value of q(T) in the general case of glass
systems is determined by random interactions, as well
as random local electric fields and external field Edc [4,
9, 14, 18], such investigations are of prime importance
for understanding the origin of freezing of an ergodic
relaxor state below Tf .

The choice of the relaxor Cd2Nb2O7 with the pyro-
chlore-type structure for our experiments was dictated
by (i) scarce information on the relaxor state formed in
it below Tf ≈ 184 K [19−21] as compared to perovskites

PMN and PLZT; (ii) high symmetry (Fd3m – ) of

the paraelectric phase, as in perovskites (Pm3m – );
and (iii) a new type of structural disorder in relaxor sys-
tems (orientation disorder of dipoles [22] in contrast to
composition disorder in perovskites [1, 3]). Since pyro-
chlores, as well as perovskites, belong to the cen-
trosymmetric cubic system, familiar models of spin and
dipole glasses can be used for analyzing their peculiar
dielectric behavior [9–11, 14, 18]. In contrast to perovs-
kites, the relaxor state develops in Cd2Nb2O7 simul-
taneously with ferroelastic (below Ts = 205 K) and
ferroelectric (below TC = 196 K) states, εmax(T) at fre-
quencies below 13 MHz being observed for Tmax < TC

[19–22].

2. EXPERIMENTAL TECHNIQUE

Experiments were carried out on ceramic samples
possessing a high density (94–96% of the theoretical
value) and prepared in accordance with standard tech-
nology [20]. Analysis of the samples by X-ray powder
diffractometry at room temperature confirmed their
pyrochlore-type structure, and no other phases were
detected.

Measurements were made on samples having the
shape of plates 10 mm in diameter and a thickness of
about 2 mm; silver paste electrodes were deposited on
the parallel surfaces of the plates. The permittivity
εhis(T) of the samples was measured at a frequency of
1 kHz (in the relaxation dispersion range) with the help
of a P5079 capacitance bridge in a weak ac field of
Eac ≈ 12 V/cm and in a dc field of Edc ≈ 0.95 kV/cm. The

Oh
7

Oh
1
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dielectric hysteresis loops for Cd2Nb2O7, as well as for
other relaxors, are extended; as a result, the difference
between the coercive field and the polarization satura-
tion field is significant (for a given sample, at 120 K, we
have Ecoer ~ 1 kV/cm and Ecryt ~ 2.5 kV/cm). Conse-
quently, field Edc ≈ 0.95 kV/cm can change neither the
diameter of domains in the frustrated ferroelectric nor
the permittivity in the region of TC [21, 23–25]; it can-
not induce a frustrated ferroelectric state in the region
of Tf [10, 13], but may affect the interaction between
polar microscopic regions [11, 15]. Our measurements
were made in the regimes of slow cooling and heating
the sample at a rate of 1 K/min; the temperature was
stabilized to within ±0.1 K. Sample cooling (ZFC and
FC) was always started from 300 K (i.e., at a tempera-
ture for which dispersion of ε(T) is absent [19, 20] and
high enough to “erase” all effects produced by previous
measurements). At 110 K (i.e., away from Tf), field Edc
was applied or removed and the sample was heated
(FH/ZFC or ZFH/FC) after holding for about 5 min at
this temperature. Such fundamental measurements
aimed at testing the glass nature of the phase below
Tf [14] have not been made earlier on Cd2Nb2O7 in spite
of the large number of publications devoted to analysis
of ε(T) in a dc field [21, 23–25].

3. RESULTS AND DISCUSSION

Monotonically diverging εhis(T) curves and splitting
between εZFC(T) and εFC(T), as well as between εZFC(T)
and εFH/ZFC(T), εZFH/FC(T) observed in the temperature

1 2
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4ε

0.8 1.0 1.2 1.4

T/Tf

2400

1800

1200

600

120 160 200 240
T, K

0.6

Fig. 1. Temperature dependences of the real part of permit-
tivity εhis(T) of the Cd2Nb2O7 ceramic at a frequency of
1 kHz in a weak electric field Edc = 0.95 kV/cm for samples
with different thermal and electrical histories: ZFC (1),
FH/ZFC (2), FC (3), and ZFH/FC (4).
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interval 110 K < T < Tf in a weak field (Fig. 1), clearly
indicate that the state of the compound is similar to spin
and dipole glass states [14]. As T   (  ≈
191 K), the divergence between the εhis(T) curves
remains significant and depends on the thermal and

Tmax
– Tmax

–

1
2

3

δε
0.8 1.0 1.2 1.4

T/Tf

200

0

–200

–600

120 180 240
T, K

0.6

–400

300

Fig. 2. Temperature dependences of the difference δε(T)
between εhis(T) and εZFC(T) shown in Fig. 1: FC (1),
FH/ZFC (2), and ZFH/FC (3).
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Fig. 3. Temperature dependences of the order parameter
q(T) calculated using formula ε(T) = C[1 – q(T)]/[T – Θ(1 –
q(T))] [18] for εhis(T) shown in Fig. 1. The values of effec-
tive parameters for the samples are as follows: Curie con-
stant C = 0.67 × 105 K, the Weiss–Curie temperature Θ =
181 K; ZFC (1), FH/ZFC (2), FC (3), ZFH/FC (4); 5 is the
solution to the system of equations (2) for ∆ = 0, P = 0,
Edc = 0 (spin glasses).
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electrical histories of the samples. In the region T >
Tmax, the divergence becomes gradually smaller and
disappears near 270 K.

Writing the relation between field E and polariza-
tion P(E, T) induced by it in the form of a power series
P = ε0[ε(0, T)E – χnl(T)E3 + χ4(T)E5 + …] (for a cubic
structure with a center of symmetry) and considering
that the value of ε(0, T) ≈ εs is measured in a weak ac
field Eac , while nonlinear effects in the region of Tf are
relatively small as compared to ε(0, T) (for example,
ε(0, T) ~ 2200 at Tf; see Fig. 1), the change in the
dielectric response (ε = 1 + ∂P/∂E) induced by field Edc
can be represented as a function of nonlinear suscepti-
bility:

(1)

where ε0 is the permittivity of vacuum and χnl(T) and
χ4(T) are nonlinearities of the second and fourth order,
respectively. It is well known that the nonlinear suscep-
tibility χnl(T) acquires an anomaly in the region of Tf

upon a transition of the system to the dipole glass state
[8, 11], while the normalized nonlinear susceptibility

tends to infinity: χnl(T)   ∞ [6, 12, 26]. Figure 2
shows for comparison the experimental curves δε(T) =
[εhis(T) – εZFC(T)] in the case of εhis ≡ εFC, which is
described by the phenomenological relation (1), as well
as for εZFH/FC and εFH/ZFC. In the interval 110 < T <
205 K, in the FC and FH/ZFC regimes, the value of
δε(T) is negative and passes through a minimum whose
position coincides with Tf (curves 1 and 2). In the
ZFH/FC regime, the type of anomaly differs sharply:
δε(T) passes through a minimum at a temperature of
195.8 K = Tf + 11.8 K, reverses its sign at Tf , and passes
through a maximum at a temperature of 181.4 K = Tf  –
2.6 K (curve 3).

Formula

describing the dielectric response of relaxors with a
glass behavior [7, 18], was used for calculating depen-
dences q(T) for εhis(T) observed upon variation of
experimental conditions (Fig. 3). In contrast to mag-
netic spin glasses, the order parameter q(T) of
Cd2Nb2O7 does not vanish above Tf in all cases. At the
same time, in contrast to traditional dipole glasses, the
q(T) dependence in the region of Tf varies not monoton-
ically, but has a kink. Below 160 K, the order parameter
q(T) ∝  T–1; above 190 K, it is relatively small and
exhibits a weak dependence on temperature; the anom-
aly is absent in the region of transition to the glass state
(anomalies in the vicinity of Ts and TC are associated
with a phase transition [22]). Such a behavior of q(T) is
typical of dipole glasses and relaxors in the presence of

δε T( ) εFC Edc T,( ) εZFC 0 T,( )–=

=  3χnl T( )Edc
2 ,–

εs
1–

ε T( ) C 1 q T( )–[ ] / T Θ 1 q T( )–( )–[ ] ,=
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random interactions and, simultaneously, random fields
[9, 14]. Analogously to εhis(T), a divergence between
qZFC and qFC, qFH/ZFC, qZFH/FC is observed in the temper-
ature range from 110 to 270 K. Below 160 K, the
qFH/ZFC and qZFH/FC curves virtually coincide, while
above 160 K, these curves diverge monotonically. In
the region of Tf , we have qZFH/FC ≈ qZFC, while qFH/ZFC ≈
qFC. These features of the behavior of qhis(T) indicate
that the dynamics of the glass state in a weak dc field
depends on the thermal and electrical histories of the
samples.

With regard to glass behavior, the free energy of
relaxors is determined by two order parameters,

(where Pi and Pj are the local polarizations of clusters);
q and P satisfy the system of two equations for an iso-
tropic relaxation system [9, 18],

(2a)

(2b)

where J2 and ∆ are the dispersions of random interac-
tions between polar microscopic regions and of random
fields, respectively; β = 1/kT, k being the Boltzmann
constant; and kTf = (J2 + ∆)1/2. The solutions to Eqs. (2)
for q(T) in the case of formation of the glass phase
(J0 ! (J2 + ∆)1/2; i.e., J0 = 0, ∆ ≠ 0, but ∆/J2 ! 1, P = 0,
and Edc = 0) show that an increase in parameter ∆/J2

leads to an increase in q(T) [9, 14, 18]. It was found
experimentally that Edc ≠ 0 also leads to an increase in
q(T) [7]. Taking into account these results—as well as
the fact that the value of qFH/ZFC for relaxors in the glass
phase increases upon the application of a weak field but
remains smaller than qFC up to Tf , while the value of
qZFH/FC decreases after the field removal but remains
greater than qZFC (see Fig. 3)—we can assume that the
application or removal of field Edc at a low temperature
causes a change not only in the value of parameter ∆/J2,
but also in the relative contribution J2 and ∆ of random
interactions and random fields. As a result, in the ZFC
and FH/ZFC regimes, the behavior of q(T) is mainly
determined by random interactions between polar
microscopic regions, which limit an increase in q(T) in
the presence of random fields ∆ and a weak external dc
field Edc. In the FC regime, the relative contribution of
random fields increases, elevating the value of q(T) for
the ZFH/FC regime relative to the ZFC regime both
above and below Tf .

4. CONCLUSIONS

The temperature behavior of the dielectric response
of the relaxor Cd2Nb2O7 at a frequency of 1 kHz

P T( ) Pi〈 〉〈 〉 J , q T( ) PiP j〈 〉〈 〉 J≡≡

q β2J2 q ∆/J2+( ) 1 q–( )2 P2,+=

P β 1 q–( ) J0P Edc+( ),=
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(belonging to the relaxation dispersion frequency
range) in a weak dc field is investigated for the first time
for samples with different thermal and electrical histo-
ries with the aim of clarifying the origin and evolution
of the relaxor state upon a transition to a phase develop-
ing below Tf . Detailed analysis of the temperature
dependences ε(E), δε(T) = [εhis(T) – εZFC(T)], and q(T)
has been carried out taking into account modern con-
cepts of peculiarities of spin and dipole glasses as well
as relaxor with the glass behavior. It is shown that the
behavior of a relaxor in the phase developing below Tf

is determined by random interactions (contribution of
which predominates) as well as random fields (the rel-
ative contribution of the latter increases in a weak dc
field). The result obtained is of fundamental importance
since it forms the basis for understanding the behavior
of a relaxor in the temperature range below Tf in a
strong dc field and the reasons for the formation of the
state of a (frustrated or normal) ferroelectric in a struc-
turally disordered system.
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Abstract—It is shown that the photon avalanche mechanism can be used for producing nonequilibrium elec-
tron–hole pairs by low-intensity IR light with a photon energy smaller than the energy gap of a semiconductor
by a factor of 3–5. A type II heterostructure with deep quantum wells is proposed to be employed for this pur-
pose. In the model under investigation, the photon avalanche effect is due to a combination of a cascade of one-
and two-photon transitions and Auger-type transitions. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The processes of nonequilibrium electron–hole pair
(EHP) production in semiconductors and insulators by
intense low-frequency light have been studied in detail
(see, for example, [1]). Such processes include inter-
band tunneling in a strong electromagnetic field, mul-
tiphoton interband transitions, cascade transitions
through local levels in the energy gap, and avalanche
pair production. In the case of the avalanche mecha-
nism, free charge carriers (electrons or holes) must pos-
sess a kinetic energy sufficient for generating a new
EHP. Charge carriers can acquire such an energy only
in the field of a high-intensity electromagnetic wave as
a result of a cascade of indirect intraband transitions
whose probabilities decrease rapidly with the light fre-
quency ω. Multiphoton Auger-type processes [2, 3]
occupy an intermediate position between the “ordi-
nary” multiphoton and avalanche EHP production. In
this case, the major part of energy required for the EHP
production comes from the absorption of several pho-
tons, and only the remaining part is due to the kinetic
energy of a free electron or a hole heated by light,
which is smaller than the energy gap width Eg . For all
the processes listed above, the production of an appre-
ciable number of EHPs with an energy exceeding 3"ω
is possible only for a light intensity j * 109 W/cm2. This
also applies to multiphoton EHP production in systems
with quantum wells (QW), although the production rate
in such systems decreases upon an increase in the num-
ber of photons involved in the elementary act of transi-
tion more slowly than in bulk materials [4]. Here, we
disregard radiation in the far IR range, for which the
probabilities of transitions involving a large number of
photons are high in some cases [5–7], and assume that
the light frequency is high as compared to the vibra-
tional excitation energies of the crystal.

In this study, we propose a new efficient mechanism
for producing a large number of nonequilibrium EHPs
1063-7761/03/9603- $24.00 © 20543
with an excitation energy of (3–5)"ω for moderate
intensities j ~ 104–106 W/cm2 of long-wave light. Such
a mechanism can be realized using a type II semicon-
ducting heterostructure with deep QWs. The model
considered below includes a cascade of one- or two-
photon transitions combined with Auger-type transi-
tions, which lead to the photon avalanche effect.

Starting from the work by Chivian et al. [8], the pho-
ton avalanche has become one of the most effective
methods of exciting short-wave luminescence by long-
wave pumping. The photon avalanche effect has been
studied so far for systems of rare earth impurity ions
(see, for example, [8–14]). We will describe the photon
avalanche mechanism using a simple three-level sys-
tem as an example. We denote by 1, 2, and 3 the ground
state and two excited states of rare earth ions. State 2 is
usually regarded as a metastable state. In the absence of
pumping, only state 1 is filled. Let the pumping fre-
quency ω be close to the frequency ω32 of transition
between states 2 and 3, but far from the resonance at the
frequency of transition between states 1 and 2 (ω21 < ω32).
For low light intensities j, nothing happens in the sys-
tem since only optical 2  3 transitions could occur
between the unfilled states. The situation changes when
intensity j becomes higher. Let us suppose that one of
the rare earth ions passes to state 2 in some way or
other. Having absorbed a quantum "ω, the ion is trans-
formed into state 3. Due to the cross-relaxation mecha-
nism, the ion returns from state 3 to state 2, but one of
neighboring rare earth ions is excited in this case from
the ground state 1 to state 2. Thus, two ions are in
state 2 now. In turn, each of these ions can participate
in similar processes, and so on. As a result, a large num-
ber of electrons belonging to different ions are accumu-
lated in state 2. This leads to a strong absorption at
2  3 transitions and, hence, to a high occupancy of
level 3. In this case, luminescence at a frequency Ω > ω
is possible on the 3  1 transition. The key role in the
003 MAIK “Nauka/Interperiodica”
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photon avalanche effect is played by the competition
between relaxation loss of electrons in state 2 and accu-
mulation of electrons in this state owing to light absorp-
tion and cross-relaxation transfer of excitation. The
photon avalanche effect is characterized by (a) a clearly
manifested threshold nature of the phenomenon (the
populations of excited states and light absorption at fre-
quency ω increase jumpwise for j ≈ jth) and (b) a sharp
increase in the setting time τeq for a quasi-equilibrium
electron distribution in the range of threshold light
intensities jth . The values of jth decrease upon an
increase in the concentration of the rare earth ions. The
threshold nature of the photon avalanche effect has
made it possible to analyze this effect in terms of the
Landau theory of second-order phase transitions [11].

Various schemes of avalanche up-conversion in
impurity systems were proposed and implemented dur-
ing the last decade (see [11, 12] for detailed references).
In particular, an effective avalanche cascade scheme of
up-conversion in the eight-level model of Tm3+ ions in
YLF treated in [14] makes it possible to generate radi-
ation at a wavelength of λ ~ 0.29 µm for pumping with
λ = 1.11 or 0.649 µm.

The typical quasi-equilibrium times τeq in the elec-
tron system of rare earth ions for the photon avalanche
effect range from 1 to 100 ms for the threshold pumping
energies Esw ~ 0.1–10 µJ/µm2 required for switching
the avalanche mechanism. Such a slow course of the
photon avalanche effect in systems of rare earth ions
naturally limits the possibilities of practical application
of this phenomenon in optoelectronics. In this connec-
tion, a semiconducting scheme with doped QWs was
proposed in [15, 16]. In this scheme, switching to the
avalanche up-conversion regime can be executed over a
much shorter time with smaller energy expenditures.
The advantages of such a scheme are due to large val-
ues of oscillator strength for transitions between size
quantization subbands, on the one hand, and short
relaxation times in the electron system of QWs on the
other hand. The role of interionic cross-relaxation tran-
sitions in a doped QW is played by intersubband Auger-
type transitions in the well. In the system considered
in [15, 16], peculiar features of the photon avalanche
effect, such as the threshold nature of the process and a
strong increase in times τeq for pumping intensities
close to the threshold values, are preserved. The photoin-
duced dynamics in a doped QW is described in [15, 16]
by a system of nonlinear balance equations for their
populations of the three lower subbands 1, 2, and 3 (res-
onant optical transitions occur between subbands 2
and 3). Analysis of these equations proved that the sys-
tem has two stationary points, viz., a stable node and an
unstable node. For the bifurcation value of light inten-
sity j ≈ jth , these two stationary points degenerate into
one point. If the probability WA of an Auger process in
which, as a result of the collision of an electron from
JOURNAL OF EXPERIMENTAL
subband 3 with an electron from subband 1, both elec-
trons pass to subband 2 can be represented in the form
WA ≈ γAn1n3, then we have [16]

(1)

where n0 is the total (two-dimensional) concentration of
charge carriers in a QW, Wij are the rates of relaxation
transitions between the ith and jth subbands, and σij are
the cross sections of light absorption in a transition
between the ith and jth subbands. Formula (1) is valid
for n0γA > Wij, σ12 = 0. For finite (but small, as compared
to σ23) values of σ12, the (formal) bifurcation intensity

jth is complex-valued:  =  + i . However,  !

 for values σij, Wij , and n0 of current interest. Conse-
quently, if the value of j increases, then the quasi-equi-
librium values of n2 and n3 sharply increase, while the
value of n1 decreases in the vicinity of jth . With increas-
ing σ12, the change in the population densities ni near
the threshold becomes smoother. The following expres-
sion for the time τeq was derived in [16] for j = jth:

(2)

It can be seen that the value of τeq increases upon a
decrease in the rate of arrival of electrons to state 2, in
which their number may increase in the avalanche
manner.

The scheme of the photon avalanche effect in a sys-
tem with type II QWs proposed (see Section 2) differs
substantially from that considered in [15, 16] and
makes it possible to attain luminescence at a wave-
length exceeding that of the exciting light by a factor of
3–5 for moderate pumping intensities. The switching
energy Esw in this case is on the order of 1–10 pJ/µm2;
i.e., it is four to five orders of magnitude lower than in
the system of rare earth ions. It should be noted that a
rigorous treatment of the proposed scheme involves
considerable difficulties. Nevertheless, we can expect
that the extremely simplified approach adopted here
will enable us to obtain a qualitative pattern of the pro-
cess, whose main features will remain unchanged in a
more detailed analysis.

2. SCHEME OF CASCADE AVALANCHE
UP-CONVERSION
IN TYPE II QWs

Let us consider a heterostructure consisting of com-
ponents A and B and characterized by a type II band
diagram (Fig. 1). A region of width 2a occupied by
component A of the heterostructure (region A) is a rect-
angular well for electrons of depth Uc and a rectangular
barrier for holes of height Uv . We assume that the well
depth Uc is quite large (about 1.5–2 eV). Component B

jth

W21 n0γA W31 W32+ +( )
σ23 n0γA W21 W32––( )

--------------------------------------------------------≈ ,

j̃th jth' jth'' jth''

jth'

τeq
1

2W21
------------

n0γAσ23

σ12 W21 2W31 W32+ +( )
--------------------------------------------------------.∼
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is located outside this region (region B). We assume that
the well for electrons contains three size-quantization
subbands labeled 1, 2, and 3 in increasing order in
energy. The energy gaps "ωij between subbands are
regarded as larger than temperature T. We also assume
that ω32 > ω21, and the frequency of incident light is
ω ≈ ω32 ("ω ~ 0.5–0.8 eV). In contrast to [15, 16], we
assume that, under equilibrium conditions, the electron
states in the QW are empty (we will also consider the
case when subband 1 contains a small number of elec-
trons; see Section 7). If light intensities j are low, only
a small number of nonequilibrium electrons appear in
subband 1 due to one- or two-photon indirect transi-
tions (in the r space) from states in the valence band v
in region B. Since the frequency of light is higher than
the frequency ω21 of direct transitions between sub-
bands 1 and 2, only weak indirect transitions may occur
(in the k⊥  space) between these subbands. Rapid reso-
nant photoexcited transitions could occur between sub-
bands 2 and 3, but these subbands remain virtually
empty for small values of j. The situation changes dra-
matically for high values of j. As a result of the two-step
cascade of weak transitions v   1 and 1  2, a cer-
tain number of electrons are still in states with k⊥  ≠ 0 of
subband 2. These electrons rapidly relax to the bottom
of the subband. After this, they may either “drop” to
subband 1 due to relaxation involving phonons (see
Section 5), or absorb a photon "ω and pass to sub-
band 3. The oscillator strength for allowed resonant
transitions 2  3 is very high. Electrons may drop
from subband 3 to subbands 2 and 1 owing to relaxation
with the participation of phonons, but the Auger relax-
ation mechanism also proves to be quite efficient [15]:
due to the Coulomb interaction between an electron in
subband 3 and an electron in subband 1, both electrons
pass to subband 2. Each of these electrons may lead to
the emergence of two electrons in subband 2 in the
same way, and so on. For high intensities j of light, the
number of electrons arriving in subband 2 via this
mechanism is larger than the number of electrons leav-
ing to subband 1. In this case, the populations in sub-
bands 2 and 3, as well as in the states of the continuous
spectrum of the conduction band c, increase in an ava-
lanche manner. It should be emphasized that the core of
the above-described mechanism of photon avalanche
triggering (mechanism I) is strong absorption of light
during transitions between excited states of the system,
which is combined with the 31  22 Auger transition,
leading to multiplication of electrons in subband 2.

In contrast to the model of the photon avalanche
effect in a doped QW [15, 16], another Auger process
emerges and plays a significant role in the photon ava-
lanche effect in a type II structure: an electron from
subband 3 interacts with an electron from the valence
band in region B, and both electrons enter subband 1
(see Section 4). In this case, the total number of elec-
trons in the QW increases, which lowers the threshold
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
light intensity jth . This Auger process combined with
mechanism I ensuring, among other things, a transition
of electrons from subband 1 to subband 3 forms the
core of another avalanche mechanism (mechanism II).

Our calculations show that, in the case of single-
photon pumping of initiating electrons to subband 1 for
cascade avalanche pair production, mechanism I alone
would be sufficient in general. However, mechanism II
plays an important part in this case, lowering the thresh-
old value of intensity to a considerable extent. In the
case of two-photon pumping (in a reasonable range of
parameters), mechanism I should be necessarily sup-
plemented with mechanism II for initiating an ava-
lanche. Mechanism II alone (in the case of pure cascade
excitation in the 1  3 channel) cannot trigger the
photon avalanche effect.

In this study, we also consider explicitly the photo-
induced transitions from subband 3 to the states of the
continuous spectrum of the conduction band, electron
trapping from the continuum to the energy levels in the
QW, and recombination of nonequilibrium photoex-
cited electrons and holes.

3. TRANSITIONS BETWEEN ELECTRON STATES 
IN A QW AND THE STATES

OF CONTINUOUS SPECTRUM 
IN THE VALENCE BAND 

AND CONDUCTION BAND

In order to roughly estimate the probabilities of opti-
cal transitions between the states of the continuum of
the valence band and conduction band and the states of

c

v

1

2

3

AB B

Uc

Uv

E
~

g

"ω

"ω

"ω
"ω

Fig. 1. Diagram of transitions in a type II QW in the case of
cascade avalanche up-conversion. Vertical undulated lines
with arrows mark optical transitions, solid lines with arrows
indicate Auger transitions 3v   11, and dashed lines with
arrows show Auger transitions 31  22.

"ω
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size-quantization subbands in a well for electrons in
region A, we use the simplest model with one-band
wave functions:

(3)

where un, m(r) are the Bloch amplitudes for the nth band.
The dimensionless coordinates and wave vectors
appearing in the formulas given below are measured in
units of a and a–1, respectively, where a is the half-
width of the QW. The enveloping even (+) and odd (–)
wave functions in the valence band, where region A is a
barrier for holes having a height Uv , and the enveloping
wave functions for electron states in the QW of depth
Uc have the form

(4)

where

(5)

For even and odd states in the well, quantities ki are
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defined as the roots of transcendental equations

(6)

For overlap integrals of the wave functions of the
valence band and the wave functions of the first and
second levels in the well, we have, respectively,

(7)

(8)

where

(9)

and L is the normalization length of the sample along
the axis of the nanostructure growth.

Expressions for the probabilities of one- and two-
photon transitions between the valence band and sub-
band 1 have the form

(10)

(11)

(12)

where  =  + , E0i = "2 /2mc is the energy
of the ith subband for k⊥  ≠ 0; S is the sample cross sec-
tion, perpendicular to the growth axis; m is the mass of
a free electron; pvc is the conventional interband

momentum operator;  is the energy gap between the
top of the valence band in region B and the bottom of
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the QW in region A; and Fω is the amplitude of the field
of an electromagnetic wave whose polarization vector
is directed along the growth axis. Here and below, the
energy is measured from the bottom of the QW in
region A.

Integrating with respect to d2k⊥  with the help of the
δ function, we obtain

(13)

Figure 2 shows the dependence of  = /(Sj p)
on ∆v . Here and below, we use the following values of
parameters in our calculations: Uc = 1.74 eV, Uv =
0.1 eV, a = 3 nm, mv = 0.5m, and mc = 0.04m. In calcu-

lating , we used  = 0.9 eV. For a number nw of
QWs per unit length along the growth axis of a nano-
structure approximately equal to 5 × 105 cm–1, the sin-
gle-photon absorption coefficient at the v   1 transi-
tions amounts to 102–103 cm–1.

Let us now write the expression for the probability
of an optical transition between a state at the bottom of
subband 3 in the QW and a state with energy Ec =

"2 /2mca2 in the continuum. Omitting computational
details, we can write

(14)

where c is the velocity of light in vacuum; ε is the per-
mittivity;

(15)

and j1(z) = (sinz)/z2 – (cosz)/z is a spherical Bessel
function of the first kind. The dispersion of probability
W3c is given in Fig. 3. Generally speaking, the energy
dependence of W3c described by formulas (14) and (15)
is nonmonotonic and is characterized by sharp peaks
associated with virtual states in the continuum. How-
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ever, these peaks are exhibited at energies much higher
than the values of our interest.

4. PROBABILITIES
OF AUGER TRANSITIONS

Let us consider Auger transitions of the following
type: an electron with a 2D wave vector k3⊥  from sub-
band 3 in the QW interacts with an electron having
wave vector kv = (kv ⊥ , kv ||) in the valence band in region
B. As a result, both electrons pass to subband 1 of the
QW to occupy states with wave vectors k11⊥  and k12⊥ .
The momentum transferred in this case in the plane per-
pendicular to the growth axis of the nanostructure is
given by

(16)q0 k3⊥ k11⊥– k12⊥ kv ⊥ .–= =

14

12

10

8

6

4

2

0 0.2 0.4

σv1
(1), 1021 MW–1 s–1 σv1

(2), 105 cm2 MW–2 s–1

14

12

10

8

6

4

2

0

∆v , eV

Fig. 2. Cross sections of one- and two-photon absorption
via transitions between the valence band in region B and the
lower subband in the QW.
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Fig. 3. Dependence of the light absorption cross section σ3c
for the transition 3  c on ∆c = E3c + "ω – Uc.
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Representing the Coulomb interaction in the form of
an expansion into a 3D Fourier series and carrying out
standard transformations, we obtain the following
expression for a direct matrix element constructed on
functions (3)–(6):

(17)

where

are the overlap integrals of Bloch amplitudes for the
mth and nth bands, which are assumed, for the sake of
simplicity, to be functions of only q0 and not of K. In
turn, we have

(18)

where

s is a Pauli spin matrix, V is the periodic lattice poten-
tial, and p is the momentum operator. Integrating in
Eq. (17) with respect to dq||, we obtain

(19)
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The expression for the transition probability can be

Mk3⊥ kv ⊥ k3⊥ q0– kv ⊥ q0+, , ,
d( ) 4πe2

aε
-----------=

× q||d∫ z1 z2

iq|| z1 z2–( ){ }exp

q0
2

q||
2+

-------------------------------------------dd∫∫
× β3* z1( )β1 z1( )βv* z2( )β1 z2( )Θ q–

cc( )Θq
v c( ),

Θq0

mn( ) rumK* r( )unK q0+ r( )d∫=

Θq
cc( ) 1, Θq

v c( ) cq0, c "
m
----

pcv

Eg

--------,∼≈≈

p p
"

4mc2
------------ s∇ V[ ] ,+=

Mk3⊥ kv ⊥ k3⊥ q0– kv ⊥ q0+, , ,
d( ) kv ||( )

=  
4π2e2

εa2
-------------χ|| i Ĩ1 2 θq0p⊥
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written in the form

(22)

where ∆v = (E03 – 2E01 – ) and f(k3⊥ ) is the electron
distribution function for subband 3. Superscripts d and
e mark the direct and exchange matrix elements of the
transition. In order to simplify computations of the sev-
enfold multiple integral in the right-hand side of
Eq. (22), we can use the following considerations.
Under the assumption that the rate of the intrasubband
relaxation of electrons in subband 3 is higher than that
of other relaxation processes, we assume that all elec-
trons in subband 3 are near its bottom and we can set

k3⊥  = 0 in the integrand, so that  =

(2π)2n3a2.

The integration over the angles between k3⊥  and q0
is eliminated with the help of the δ function. Omitting
intermediate calculations, we can write

(23)

(24)

(25)

The characteristic dependence (∆v) is depicted in
Fig. 4.
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An approximate expression for the probability of
Auger transitions of the 31  22 type has the
form [16]

(26)

where α ~ 1 is a coefficient describing weak interfer-
ence of the direct and exchange contributions to the

probability of the Auger process,  ≡ 4a2ni ,  ≡
4a2mcδ/"2, and δ = E03 – 2E02 + E01. The dimensionless

function I( , , ) in the right-hand side of Eq. (26)
is successfully approximated by the expression

(27)

where a0 ≈ 0.1255, b0 ≈ 2.44, c0 ≈ 0.1, d0 ≈ 0.38, and

 ≈ 7.37. For  & 1, the quantity I( , , ) is vir-

tually independent of . For very large , we have

I (d)( , , ) ∝  δ–4.

Let us consider the role of charge carrier heating due
to intrasubband absorption of light. In the case of con-
ventional interband Auger recombination, the inclusion
of heating (to be more precise, the quasi-equilibrium
non-Fermi component of the distribution function; see,
for example, [2]) is of fundamental importance since
only charge carriers with a kinetic energy exceeding a
certain threshold value can take part in an Auger pro-
cess. The situation is different for Auger-type processes
considered by us here: electrons in subband 3 with zero
kinetic energy can participate in such a process. The
role of heating is played to a certain extent by the inter-
subband photoexcitation of carriers, which is taken into
account explicitly in our model. The only requirement
is that the values of δ and ∆v be positive, which is pre-
sumed by us here. In the case of deep QWs and high
values of "ω we are dealing with, heating of electrons
by light is weak in view of the smallness of the intra-
subband light absorption coefficient (which is two to
three orders of magnitude smaller than the coefficient
of intersubband absorption). For example, in the most
interesting range of intensities j ~ jth , the change in the
electron temperature can hardly exceed 10 K according
to rough estimates. Naturally, this cannot lead to appre-
ciable consequences for the effects treated here. At the
same time, electron heating (in a broad sense) must be
taken into account in the high-intensity range along
with other factors complicating analysis in this case
(see the end of Section 6). However, the intrasubband
photoexcitation could play, in principle, an important
role indeed only for small values of δ, ∆v & 30–50 meV.
It should be noted that a possible increase in the proba-
bility of Auger-type processes might only increase the
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3

d0δ̃–( )exp+[ ]
1–

≈
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δ̃ δ̃
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effectiveness of the mechanism of cascade avalanche
pair generation considered here, lowering the threshold
value jth of light intensity.

5. INTERSUBBAND RELAXATION RATE

Intersubband relaxation in QWs is primarily due to
the interaction between electrons and optical phonons.
The problems of electron–phonon interaction in sys-
tems with QWs have been considered by many authors
(see, for example, [17–28]). The complexity of the
problem is due to the fact that confinement strongly
modifies the vibrational spectrum of the system as well
as the electron-vibrational interaction. In particular, the
interaction of electrons both with confinement modes
and with interface modes must be taken into account cor-
rectly. Intersubband scattering was treated in [22, 28]. In
the case of interest to us, when the optical phonon
energy "ωL is smaller than the energy E01 of the lower
subband in the well, the expression for the rate of tran-
sitions between the first and second subbands derived
in [22] takes the form

(28)

where ε∞ and ε0 are the high-frequency and static per-
mittivities. In [28], the following expression was
obtained instead of (28):

(29)

here, Λ is the function of kinetic energy of an electron,
which assumes values approximately equal to (1–2) ×
10–1 in the energy range of interest. Both the formulas
lead to an estimate of W21 ~ 1011 s–1.
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Fig. 4. Dependence of the rate of Auger transitions
3v   11 on ∆v  = E03 – 2E01 – Ev .
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6. BALANCE EQUATION
FOR POPULATIONS

While constructing balance equations, it should be
borne in mind that, for high pumping intensities j, the
electron concentrations in subbands 2 and 3 become
comparable and photoinduced transitions involving
both absorption and emission of a photon must be taken
into account. This does not apply to transitions v  
1, 1  2, and 3  c, since electrons or holes in final
states for these transitions possess a fairly high kinetic
energy; losing this energy due to rapid intrasubband or
intersubband relaxation, the carriers leave the reso-
nance energy range.

The system of equations for concentrations p, n1, 2, 3 ,
and nc of nonequilibrium holes in the valence band,
electrons in the three subbands, and electrons in the
continuum of the conduction band, respectively, has the
form

(30)

the initial conditions being n2, n3, nc , p = 0, n1 = n10 for
t = 0. Superscript q assumes values 1 or 2 for one- and
two-photon transitions between the valence band in
region B and subband 1 in the QW. Equations (30)
contain “two-dimensional” concentrations p, p0, and nc

of particles from the continuous band spectrum, which
differ from the conventional concentrations , , and

 in factor nw (see Section 3):  = ncnw , etc. Terms
−dcnc(p0 + p) and –d1n1(p0 + p) describe conventional
bimolecular recombination of electrons in the conduc-
tion band and subband 1 with holes from the valence
band in region B. The quantity p0 stands for the equilib-
rium concentration of holes. For the sake of simplicity,
we assume that the equilibrium concentration of elec-
trons in the conduction band is equal to zero. In formu-
las (30), Wc3 is the rate of electron capture from the con-
tinuous spectrum of the conduction band to subband 3
of the QW. Cross sections σij of optical transitions
between the ith and jth subbands are estimated taking
into account the fact that typical bandwidths of inter-
subband absorption are equal to 10–30 meV (see, for
example, review [29]). In this case, for resonant tran-
sitions between neighboring subbands, we obtain
σi, i + 1 ~ 1 cm2/(ps MW) × (a/5 nm)2. The value of σ12

ṅc σ3c jn3 Wc3nc– dcnc p0 p+( ),–=
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for a nonresonant indirect transition decreases upon an
increase in the resonance detuning. For δ ~ 100 meV,
the value of σ12 is 3–4 orders of magnitude smaller
than σ23.

In accordance with the energy and momentum con-
servation laws, the states of two electrons in subband 2,
into which these electrons enter as a result of the Auger
transition 31  22, are characterized by relatively
large values of wave vectors k21⊥  and k22⊥  for not very
small values of resonance detuning ω – ω21. Numerical
calculations show, however, that for light intensities j of
interest to us, concentration n2 may prove to be suffi-
cient for filling these states. In this case, saturation of
Auger transition probabilities takes place, which can be
described approximately by a factor of [1 + (n2/nf)r]–1.
The results of numerical calculations given below were
obtained with nf ≈ 3 × 1012 cm–2 and r = 4. A variation
of the values of nf and r in reasonable limits or of prob-
ability Wc3 of free electron capture by the QW does not
change the results qualitatively. This circumstance as
well as analysis of the dependence of solutions to
Eqs. (30) on other parameters (see discussion in Sec-
tion 7) suggests that multiparticle effects will not
change the results qualitatively. Owing to these effects,
the positions of peaks and the intensity of intersubband
optical transitions are generally determined by the
charge carrier concentration in the QW (see review [30]).
A comparison of theory and experiment shows (see, for
example, [31]) that the contribution to the short-wave
shift of intrasubband IR absorption peaks comes from
depolarization effects (plasmon shift) and exciton-type
effects (interaction of an excited electron with a hole in
the ground state) as well as the effects of direct and
exchange Coulomb interactions. A change in the elec-
tron populations in subbands 1, 2, and 3 can generally
affect the values of σi, i + 1 to a certain extent. Neverthe-
less, this effect can hardly be significant in the case of
deep QWs under investigation, when plasma frequen-
cies ω0 of electrons in a well are smaller than the gaps
ωij between size quantization subbands for all values of
concentration ni of interest.

Figure 5 shows the dependence of populations n1, 2, 3
and nc on the time elapsed from the beginning of pump-
ing. The quasi-equilibrium time τeq as a function of
pumping intensity j is shown in Fig. 6 for one- and
two-photon versions of the photon avalanche effect.
Figure 7 depicts the dependences of quasi-equilibrium
populations n1, 2, 3 and nc on the pumping intensity j. In
our calculations, we used the following values of the
parameters appearing in the right-hand sides of
Eqs. (30): a = 3 × 10–7 cm, α = 1.2, W31 = 0.02 ps–1,
Wc3 = 0.01 ps–1, W32 = 0.07 ps–1, W21 = 0.1 ps–1, τaug =
2 ps, n10 = 0, δ = 0.05 eV, σ12 = 0.003 cm2/ps MW, σ23 =

2 cm2/ps MW, σ3c = 0.025 cm2/ps MW,  = 1.5 ×

1010 MW–1 ps–1,  = 104 cm–2 MW–2 ps–1, p0 = 3 ×

σv 1
1( )

σv 1
2( )
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1010 cm–2, d1 = 0.01 cm2 s–1, and dc = 0.003 cm2 s–1 (see
also Section 3). It should be borne in mind that system
of equations (30) is obviously inapplicable for j @
10 MW/cm2. In this case, the Rabi frequency ωR for
transitions between subbands 2 and 3 is much greater
than 1013 s−1, i.e., ωR @ τ–1, where τ is the characteristic
time of electron momentum relaxation in subband 2
or 3. In such a situation, where we are dealing with the
optical Stark effect, a completely different approach is
required (see, for example, [32, 33]). In addition, for
j > 10 MW/cm2, we must also take into account elec-
tron heating in the field of a light wave and a number of
nonlinear processes. Nevertheless, we present the ni(j)
dependences for large j also in order to demonstrate the
form of solutions to system of equations (30).

7. DISCUSSION

The system of balance equations (30) obviously
provides only a very rough description of the kinetics of
photoinduced transitions in a system with type II QWs;
strictly speaking, a much more detailed approach is
required in this case. At the same time, it will be clear
from the discussion that the qualitative form of solu-
tions to Eqs. (3) is not very sensitive to the description
of elementary processes controlling together the photon
avalanche effect. It can hence be expected that a more
rigorous solution of the problem would not lead to a
qualitative revision of the results obtained here. It
should be borne in mind that such a solution is
extremely complicated.

The qualitative features of the photon avalanche
effect in a type II QW are practically the same for one-
and two-photon transitions between the valence band in
region B and the lower size quantization subband in
region A. However, since (i) less stringent constraints

35

30

25

20

15

10

5

0 2 4 6 8
t, ns

0

n, 1012 cm–2

Fig. 5. Dependence of the populations of size quantization
subbands and the conduction band on the time elapsed from
the beginning of a pumping pulse; j = 2 MW/cm2. Here and
in Fig. 7 the populations n1, n2, n3, and nc are shown by
solid, dashed, dotted, and dot-and-dash lines, respectively.
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are imposed on the energy spectrum parameters of the
heterostructure, (ii) a higher ratio of the energy of an
EHP produced to a pumping light quantum is attained,
and (iii) the threshold nature of the effect is manifested
most clearly in the two-photon version of the photon
avalanche effect, we will mainly consider the results
pertaining exactly to this case.

The complexity of the “simplified” system of non-
linear equations (30) hampers its qualitative analysis of
the type carried out in [11, 12, 16] and the derivation of
simple formulas like Eqs. (1) and (2). For this reason,
we will use the results of numerical calculations. It can
be seen from Fig. 7b that there exists a threshold light
intensity j = jth for which the populations ni (i = 1, 2, 3)
and nc change jumpwise by several orders of magni-
tude1 (n1 and n2 change by five and ten orders of mag-
nitude, respectively). For the values of parameters used
in our computations, we have jth ≈ 149.3 kW/cm2. In a

wide range of jth < j <  (  ≈ 21.5 MW/cm2), the
populations vary smoothly: n1 and n2 attain their peak
values and start decreasing, while n3 and nc increase
monotonically. The populations of subbands 2 and 3 are

leveled out for values of j in the vicinity of . In this
case, the main light absorption channel (resonant inter-
band transitions 2  3) is blocked. In addition, in
view of a high electron concentration in subband 2, the
states in this subband which are final for the main “ava-
lanche-forming” Auger-type process 31  22 turn
out to be occupied. Finally, the rate of bimolecular
recombination of electrons and holes increases. Taken
together, this leads to a sharp decrease in the light
energy being absorbed and to a rapid decrease in the

1 Naturally, while comparing theory and experiment, we must take
into account the real intensity distribution over the light beam
profile.

jth
1( ) jth

1( )

jth
1( )

105

10–1

10–2

104

103

102

10

1

0.1 1 10 100 1000
j, MW/cm2

τeq, ns

Fig. 6. Dependence of the quasi-equilibrium time τeq for
populations on light intensity j for one-photon (solid curve)
and two-photon (dashed curve) transitions between the
valence band and the lower size quantization subband.
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populations with increasing j in the region of j ≈ ,
although the change is not as strong as near jth . For j >

, the populations vary smoothly with the light inten-
sity. In this region, populations n2 and n3 are almost
identical and nc @ n2, 3 @ n1.

Since the model of cascade avalanche production of
pairs under investigation includes a large number of
various processes, the stability of the obtained pattern
of nonlinear EHP production relative to changes in the
parameters appearing in Eqs. (30) should be investi-
gated. Let us first consider the effect of variation of the
parameters on the threshold intensity value jth. The
dependence of jth on the initial occupancy n01 of the
lower subband is correctly described by the formula

(31)

where ϑ1 ≈ 1.225 × 10–9 and ϑ2 ≈ 3.65 × 10–9 for the
chosen values of the remaining parameters. It can be
seen that the threshold intensity decreases by a factor of
2.5 as compared to jth(0) even for n01 ~ 109 cm–2. This
fact can be used, in principle, for controlling light by
light. Indeed, the presence (absence) of an additional

jth
1( )

jth
1( )

jth n01( ) jth 0( ) 1 ϑ 1n01+( )/ 1 ϑ 2n01+( ),≈

0.1 1 10 100 1000

j, åW/Òm2

n, 1012 Òm–2

10–1

10

1

(a)

(b)

10–2

10–3

10–1

10

1

10–2

10–3

10–4

Fig. 7. Dependence of the equilibrium populations on light
intensity for (a) one- and (b) two-photon transitions
v   1.
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weak light pulse inducing the v   1 transitions cre-
ates a situation in which a fixed pumping intensity j is
higher (lower) than the threshold value.

The dependence of jth on the two-photon absorption

cross section  can be approximated by the formula

(32)

where  = /(104 cm2 MW–2 ps–1). For the cho-
sen values of other parameters, we have j0 ≈
0.05965 MW/cm2, χ0 ≈ 477 MW/cm2, χ1 ≈ 5098, and

χ2 ≈ 145.616. If  varies in a wide range from 0.05
to 105 for which approximation (32) is valid; the value
of jth decreases just to one-third of its initial value.

The dependence of jth on the rate of the Auger tran-
sitions 3v   11 can be described by a relation of the
same type as (31):

(33)

where τaug is measured in picoseconds and j1 ≈
0.801 MW/cm2, π1 ≈ 13.92, and π2 ≈ 82.54 for the
adopted values of the other parameters. As the value of

 increases from 0.005 to 50 ps–1, the value of jth

decreases by a factor of less than 5.
If we simultaneously change the values of bimolec-

ular recombination rates d1 and dc by a factor of φ, we
obtain the following expression for jth:

(34)

here, j(0) ≈ 0.05 MW/cm2, ν ≈ 0.09448 MW/cm2, and
λ ≈ 0.96913. For example, if φ increases from 0.01 to
100, the values of jth increase from 0.05 to
6.6 MW/cm2. However, there are no grounds to assume
that the recombination rates may correspond to values
of φ @ 1. However, in the region of realistic values of
φ & 1, threshold intensities depend on the recombina-
tion rate only slightly. At the same time, the second

threshold intensity  (see Fig. 7) increases with
decreasing φ. In this case, the decrease in populations
n1, 2, 3 and nc becomes smoother and loses its “critical-
ity.” It should be recalled that the results obtained for
j * 10 MW/cm2 should be treated with care since the
applicability of the balance equations (30) in the range
of such high pumping intensities is dubious.

In the model of the photon avalanche effect in a
doped QW considered in [15, 16], where the total num-
ber of electrons in the QW is fixed, the threshold pump-
ing intensity is independent of the cross section of the
photoinduced transition 1  2 (see formula (1) in
Section 1). The photon avalanche effect in impurity
systems possesses a similar property [8–14]. The situa-

σv 1
2( )

jth σ̃v 1
2( )( ) j0 χ0/ 1 χ1 σ̃v 1

2( )/χ2( )exp+[ ] ,+≈

σ̃v 1
2( ) σv 1

2( )

σ̃v 1
2( )

jth τaug( ) j1 1 π1τaug
1–+( )/ 1 π2τaug

1–+( ),≈

τaug
1–

jth φ( ) j 0( ) νφλ ;+≈

jth
1( )
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tion is different in the model considered by us here. The
dependence of jth on σ12 is approximated by the expres-
sion

(35)

where j12 ≈ 1.924 MW/cm2, f ≈ 1720, g1 ≈ 9181, g2 ≈
5.287 × 106, and σ12 is measured in cm2 ps–1 MW–1. As
the value of σ12 increases from 3 × 10–4 to 1.5 ×
10−2 cm2 ps–1 MW–1, the value of jth decreases from 1.6
to 0.05 MW/cm2. For σ12 * 10–2 cm2 ps–1 MW–1, i.e., in
the case when absorption via transitions between the
first and second subbands is close to resonant absorp-
tion, the system of equations (30) requires an appropri-
ate modification. The reason for the discrepancy
between the results obtained in [15, 16] and our results is
that the absorption via the 1  2 transition in [15, 16]
occurs from the ground state and the absorption in our
case takes place from the excited state, while absorption
from the ground state occurs only during the v   1
transitions. The value of jth indeed exhibits a weak

dependence on cross sections  (see above).

At the same time, the quasi-equilibrium times τeq

increase with decreasing  in the same way as they
increase with decreasing σ12 in the situation considered
in [15, 16] (cf. formula (1)). Figure 6 shows that, in the
case of two-photon transitions v   1, the values of τeq
are one to two or even more (for j ≈ jth) orders of mag-
nitude higher than in the case of single-photon transi-

tions. This is due to the inequality  @ jth.

Let us consider for comparison a purely cascade
scheme of EHP excitation. To this end, we eliminate the
Auger transitions 31  22 and 3v   11, but
assume that transitions between subbands 1 and 2 are of
the resonant type; i.e., we increase cross sections σ12 by
three orders of magnitude, leaving the values of the
other parameters unchanged. In this case, for j > jth, the
populations n1, 2, 3 and nc turn out to be many orders of
magnitude (seven for j = 200 kW/cm2) smaller than in
the cascade avalanche scheme.

Systems In0.53Ga0.47As (region A)/AlAs0.56Sb0.54
[34, 35] (the band parameters of this system are close to
those used in our calculations) or In0.3Ga0.7As
(region A)/AlAs (region B) [36] may serve as examples
of type II heterostructures with deep QWs.

8. CONCLUSIONS

The analysis carried out here proves that the photon
avalanche effect emerges when a type II heterostructure
with deep QWs is exposed to IR light with a frequency
resonant to the transition between the second and third
size-quantization subbands. The effect shows a threshold
behavior, with relatively low (~10–100 kW/cm2) thresh-

jth σ12( ) j12 1 f σ12+( )/ 1 g1σ12 g2σ12
2+ +( ),≈

σv 1
1 2,( )

σv 1
1 2,( )

σv 1
1( ) σv 1

2( )
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old intensities of the IR light. For intensities above the
threshold, the number of electron–hole pairs generated
is considerable, which gives rise to photoconduction in
the direction of the nanostructure growth and to recom-
bination luminescence at a wavelength smaller than
that of exciting light by a factor of 3–5. The times for
the establishment of quasi-equilibrium distributions in
the electron system may be in the nano- or picosecond
range depending on pumping conditions. These times
increase sharply for pumping intensities close to the
threshold values.
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Abstract—We consider pseudogap effects for electrons interacting with gapless modes. We study generic 1D
semiconductors with acoustic phonons and incommensurate charge density waves. We calculate the subgap
absorption as it can be observed by means of photoelectron or tunneling spectroscopy. Within the formalism of
functional integration and adiabatic approximation, the probabilities are described by nonlinear configurations
of an instanton type. Particularities of both cases are determined by the topological nature of stationary
excited states (acoustic polarons or amplitude solitons) and by the presence of gapless phonons that change
the usual dynamics to the quantum dissipation regime. Below the free-particle edge, the pseudogap starts
with an exponential (stretched exponential for gapful phonons) decrease of the transition rates. Deeply
within the pseudogap, they are dominated by a power law, in contrast to a nearly exponential law for gapful
modes. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION:
PSEUDOGAPS IN 1D SYSTEMS

This paper is devoted to the theory of pseudogaps in
electronic spectra in application to photoelectron spec-
troscopy (PES). We study the influence of quantum lat-
tice fluctuations on electronic transitions in the subgap
region for one-dimensional (1D) systems with gapless
phonons. Low-symmetry systems with gapful spectra
were recently addressed by the authors [1], and we refer
to this paper for a more comprehensive review and ref-
erences. Here, we show that sound branches of phonon
spectra drastically change the transition rates, making
them much more pronounced deeply within the
pseudogap. We consider two types of systems: generic
1D semiconductors with acoustic electron–photon
(e−ph) coupling (conducting polymers, quantum wires,
and nanotubes) and incommensurate charge density
waves (CDWs) [2], which possess a gapless collective
phase mode.

The pseudogap concept [3] refers to various systems
where the gap in their bare electronic spectra is partly
filled and subgap tails occur. Even for pure systems and
at temperature T = 0, there can be a rather smeared edge

, while the spectrum extends deeply inward the gap
until some absolute edge Eg , which can be even zero
(no true gap at all). The most general reason is that sta-
tionary excitations (eigenstates of the total e−ph sys-
tem) are self-trapped states, polarons or solitons, whose

Eg
0

¶This article was submitted by the authors in English.
1063-7761/03/9603- $24.00 © 0555
energies Wp and Ws are below the free electron ones,

thus forming the absolute edge at Eg < . Nonstation-

ary states filling the pseudogap range  > E > Eg can
be observed only via instantaneous measurements such

as optics, PES, or tunneling. Particularly near , the
states resemble free electrons in the field of uncorre-
lated quantum fluctuations of the lattice [4]; here, the
self-trapping does not have enough time to develop.
However, approaching the exact threshold Eg , the exci-
tations evolve towards eigenstates, which are self-
trapped e–ph complexes. The pseudogaps must be com-
mon in 1D semiconductors precisely because of favor-
able conditions for self-trapping [5]. The pseudogap is
especially pronounced when the bare gap is opened
spontaneously as a symmetry breaking effect. In quasi-
1D conductors, this symmetry breaking is known as the
Peierls–Fröhlich instability leading to CDW formation.
Here, the picture of the pseudogap was first suggested
theoretically [3] (we also recall [6] and another model
[7]) in relation to the absence of a long-range order in
1D CDWs at a finite temperature. In this approach, the
smearing of the mean-field electronic gap 2∆0 corre-
sponds to the disappearance of the true Peierls–
Fröhlich transition in favor of a smooth crossover. The
pseudogap shape was related to, and derived from, the
temperature-dependent finite correlation length ξ. An
alternative picture was suggested in [4] and further
developed in [8]. It concentrates on effects that persist
even at zero temperature and are due to a strong inter-
action between bare electronic excitations and pertur-

Eg
0

Eg
0

Eg
0
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bations (the amplitude and phase phonons) of the CDW
ground state. Here, the pseudogap in instantaneous
electronic spectra is related to the transformation of
electrons into solitons.

Experimentally, pseudogaps in incommensurate
CDWs were first addressed by optic [9–11] and more
recently by the PES and ARPES (momentum-resolved
PES) methods [12]. The earlier experiments were theo-
retically interpreted in [13] by compilation of the
approaches in [3, 4, 7]. Detailed theories of the subgap
absorption in optics have been developed for systems
with low symmetries (nondegenerate, such as semicon-
ductors with gapful phonons, or discretely degenerate
such as the dimerized Peierls state). They first addressed
the general type of polaronic semiconductors [14]
with  emphasis on long-range Coulomb effects, and
then the 1D Peierls system, emphasizing solitonic
processes (see [15] and references therein). The
authors recently [1] extended the theory of pseudogaps
to single electronic spectra in application to PES, and
particularly intriguing, to ARPES probes. However,
properties of incommensurate CDWs are further com-
plicated by the appearance of a gapless collective
mode, resulting in drastic changes. The case of acoustic
polarons in a 1D semiconductor belongs to the same
class, although this is not usually noticed.

A specific property of 1D systems with continuous
degeneracy (with respect to the phase for incommensu-
rate CDWs and to displacements for usual crystals) is
that even a single electronic process can create topolog-
ically nontrivial excitations—solitons. For incommen-
surate CDWs, a single electron or hole with the energy
near the gap edges ±∆0 spontaneously evolves to a
nearly amplitude soliton, while the original particle is
trapped at the local level near the gap center. The
energy near 0.3∆0 is released, at first sight, within the

time  ~ 10–12 s. We see in what follows that there
actually also exists a long-scale adaptation process that
determines shapes of transition probabilities. Similarly,
the usual acoustic polaron in 1D semiconductors is
characterized by an electronic density of ρ ~ ∂ϕ/∂x self-
localized within the potential well, and hence, there is a

finite increment ϕ(+∞) – ϕ(–∞) ~  of the lattice

displacements ϕ over the length x, which is the signa-
ture of topologically nontrivial solitons. These systems
with continuous degeneracy form a special class that
shows particular properties and must be studied differ-
ently than in [1]. They are addressed in this paper.

2. FUNCTIONAL INTEGRALS
AND INSTANTONS FOR PES

As a function of the frequency Ω and momentum P,
the absorption rate I(Ω , P) for ARPES can be expressed

ωph
1–

ρ xd∫
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in terms of the spectral density of the one-electron
retarded Green function G(t, t '; x, x ') as

(1)

We here address the simple PES, not resolved in
momenta, which measures the integrated absorption
intensity:

(From now on, we omit all constant factors and set the
Planck constant " = 1; Ω is then measured with respect
to a convenient level, the band edge for semiconductors
or the middle of the gap for CDWs.)

We use the adiabatic approximation, which is
valid when changes of electronic energies are much
larger than the relevant phonon frequencies. Elec-
trons move in a slowly varying phonon potential, e.g.,
Re[∆(x, t)exp(2ikFx)] for an incommensurate CDW,
and at any instant t their energies E(t) and wave func-
tions ψ(x, t) are therefore defined as eigenstates for the
instantaneous lattice configuration and depend on time
only parametrically. In what follows, we work in the
Euclidean space it  t, which is adequate for studies
of classically forbidden processes [14, 16, 17]. The
integrated absorption intensity is then given by a func-
tional integral over lattice configurations,

(2)

where ψ0 is the wave function of the particle (which is
actually a hole for PES) added and extracted at
moments 0 and T. Only the lowest singly filled local-
ized state is relevant for calculations of subgap pro-
cesses. The energy E0 of this state is split inside the gap.
The action

(3)

is expressed through the Lagrangians Lj[∆], where the
subscripts j = 0, 1 correspond to ground states for 2M
(the bare number) and 2M ± 1 electrons in the potential
∆(x, t). The main contribution comes from saddle points
of S, instantons, which are extrema with respect to both
the function ∆(x, t) and the time T. There are also spe-
cial cases [1], particularly important for ARPES, where
the extremum must be taken for the entire integrand
in (2), with the wave functions in the prefactor taken
into account. Otherwise, the stationary point is deter-
mined by dS/dT = 0, that is, E0(0) = E0(T) = Ω , which
determines T(Ω).

I P Ω,( ) Im Xe iPX–d∫ TeiΩTG X T 0 0, , ,( ).d

0

∞
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I Ω( )
1
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I Ω( ) Td

0
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∫ D ∆ x t,( )[ ]ψ 0 0 T,( )ψ0
+ 0 0,( )e S– ,∫∝

S S ∆ x t,( ) T,[ ]
∞–

0

∫
T

∞

∫+
 
 
 
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∫ ,+= =
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In what follows, we concentrate on most principal
features, setting aside calculations of prefactors and the
problem of the momentum dependence necessary for
ARPES. For a simpler case of nondegenerate systems,
they have been studied in [1].

3. CREATION OF AMPLITUDE SOLITONS
IN INCOMMENSURATE CDWS

We first consider the subgap electronic spectra for
the incommensurate CDW described by the Peierls–
Fröhlich model. The incommensurate CDW order
parameter is the complex field ∆ = |∆(x, t)|exp[iϕ(x, t)]
acting on electrons by mixing states near the Fermi
momenta points ±kF . The Lagrangians Lj consist of the
bare kinetic and potential lattice energies and of the
sum over the filled electron levels, in the jth state,

where vF is the Fermi velocity in the metallic state and
ω0 is the amplitude mode frequency (ω0 ! ∆0 is the
condition for the adiabatic approximation).

The important fact is that the stationary state of the
system with an odd number of particles, the minimum
of V1, is an amplitude soliton, with the midgap state
E0 = 0 occupied by a single electron. Evolution of the
free electron with the initial energy E0 = ∆0 to the
amplitude soliton with Ws = 2∆0/π < ∆0 can be
described by the known exact solution for intermediate
configurations characterized by the single intragap E0 =
∆0cosθ with 0 ≤ θ ≤ π, whence –∆0 ≤ E0 ≤ ∆0. It was
found [8] (see also reviews [18, 19]) to be the chord
soliton with 2θ as the total chiral angle, ∆(+∞)/∆(–∞) =
exp(2iθ) (see Fig. 1 and the Appendix for details). The
filling numbers ν = 0, 1 of the intragap state correspond
to labels j = 0, 1. The term V0(θ) monotonically

L j x
2 ∂t∆

2

πv Fω0
2

----------------d∫ V j ∆ x t,( )[ ] ,+=

Im∆s (x)

Re∆s (x)θ E0

Fig. 1. Trajectory of the chord soliton with phase tails in the
complex plane ∆.
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increases from V0(0) = 0 for the 2M ground state to
V0(π) = 2∆0 for the 2M + 2 ground state with two free
holes. The term V1(θ) = V1(π – θ) is symmetric and
describes both a particle on the 2M ground state and a
hole on the 2M + 2 ground state. Obviously, V1(0) =
V1(π) = ∆0, while the minimum is reached at θ = π/2,
that is, for a purely amplitude solution: minV(θ) =
V1(π/2) = Ws < ∆0, where Ws = 2∆0/π is the amplitude
solution energy (see Fig. 2). Therefore, to create a
nearly amplitude soliton with θ = 90°, the light with
Ω ≈ Ws is absorbed by the quantum fluctuation with
E0(θ) = Ws, which is close to the chord soliton with the
angle θ ≈ 50°.

We note that the amplitude soliton, being an
uncharged spin carrier with the topological charge one,
is a quasiclassical realization of a spinon in systems
with nonretarded attraction of electrons (that is, with
high, rather than low, phonon frequencies). Therefore,
our analysis is also qualitatively applied to arbitrary non-
adiabatic electronic systems provided they are found in
the spin-gap regime. (See also the next section.)

It is tempting to use the static solution, with some free
parameter, as an ansatz for the time-dependent process;
this proved to be successful in gapful cases [1, 15]. Here,
however, setting θ  θ(t), we would arrive at ∂t∆ ≠ 0
for all x, and the action would therefore be infinite, S
being proportional to the system length. The vanishing
probability simply reflects the fact that a globally finite
perturbation, characteristic of topologically nontrivial
solitons, cannot spread over the whole length in a finite
time. More generally, as a topologically nontrivial
object, the amplitude soliton cannot be created in a pure
form: adaptational deformations must appear to com-
pensate the topological charge. These deformations
develop over long space–time scales and can be
described in terms of the gapless mode, the phase ϕ,
alone. Allowing the time evolution of the chiral angle
θ  θ(t) within the core, we must therefore also

2∆0

∆0

π/2 π
θ

V

V0

V1

V2

2∆0/π

0

Fig. 2. Self-trapping terms Vν for chord solitons as func-
tions of the chiral angle 2θ for various fillings ν.
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unhinder the field ϕ  ϕ(x, t) for all x and t. The
resulting trajectory is shown in Fig. 1 for an instant of
time. Starting from x  –∞ and returning to x  ∞,
the configuration closely follows the circle |∆| = ∆0,
changing almost entirely by phase. Approaching the soli-
ton core, the phase approximately matches the angles ±θ
that delimit the chord part of the trajectory. The entire
trajectory is closed, which leads to a finite action.

Except for a short time scale T < ξ0/u (see Section 4.2)
characterized by small θ and large lengths ξ = ξ0/sinθ,
the configuration ∆(x, t) can be divided into the inner
part, the core at |x | ~ ξ, and the outer part |x | @ ξ, where
only perturbations of the phase ϕ(x, t) are important.
The inner part can be described by the chord soliton
∆ChS(x, t). The chord angle 2θ(t) evolves in time from
θ(±∞) = 0 to θm in the middle the T interval. As T 
∞, that is, near the stationary state of the amplitude soli-
ton, θm  π/2. This value is actually preserved during
most of the T interval, and the changes between θ = 0
and θ = π/2 are therefore concentrated within finite
ranges τ0 ~ ξ0/u ! T near the termination points. At
large scales, we can see only a jump ϕ(x, t) ≈ θ(t)
with θ(t) ≈ θmΘ(t)Θ(T – t), where Θ is the standard step
function. Because the configuration stays close to the
amplitude soliton during the time T, the main core con-
tribution to the action is

(4)

where the first correction  = const comes form
regions around the instants 0 and T independently. The
significant T-dependent contribution δS(T) comes from
interference of regions 0 and T. Their interaction via
gapful excitations, such as the amplitude mode, decays
exponentially as δSgap ∝  exp(–ω0T). There are no other
contributions for low-symmetry systems, but for an
incommensurate CDW, there are sound modes provid-
ing the main effect, to be addressed below.

Matching the inner and outer regions is not well
defined unless we consider the full microscopic time-
dependent model, which is impossible. Fortunately, the
long-range effects can be treated easily if we generalize
the scheme suggested earlier for static problems of soli-
tons in the presence of interchain interactions [8, 20].
The outer region is described by the action for the
soundlike phase mode,

(5)

where u is the phase velocity. The conditions on ϕ at
xs ± 0 are due to the source provided by the chord soli-
ton that is formed around xs and enforces the disconti-

xsgn

Score Ws Ω–( )T δScore,+=

δScore
0

Ssnd ϕ x t,( ) θ t( ),[ ]
v F

4π
------ x t

∂tϕ
u

-------- 
 

2

∂xϕ( )2+ ,dd∫∫=

ϕ t xs 0±,( ) θ t( ),+−=
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nuity 2θ. Integrating exp[–Ssnd(ϕ, θ)] over ϕ(x, t) with
this condition, we arrive at the action for θ(t),

(6)

The last form of this action is typical of the quantum

dissipation problem [21], where S ~ . In our
case, this dissipation arises from the emission of phase
phonons forming a long-range tail in the course of the
chord soliton development. Together with Vj , this
action can be used to prove the above statements on the
time evolution of the chord soliton core.

We now recall that  = ∂tθ is peaked within narrow
regions on the order of ξ0/u around the time instants t =
0 and T = 0 and is close to zero elsewhere. Then

(7)

There is an even more phenomenological standpoint
(see [22] for more details and examples of combined
topological defects). The amplitude soliton creates the
π-discontinuity along its world line (0 < t < T, 0). To be
topologically allowed, that is, to have a finite action, the
line must terminate with half-integer vortices located at
(0, 0) and (0, T), whose circulation must provide the
compensating jump δϕ = π along the interval (∆ 
−∆ combined with ϕ  ϕ + π leaves the order param-
eter ∆exp(iϕ) invariant). The standard energy of vorti-
ces for (5) then leads to action (7). Contrary to the usual
2π-vortices, the line connecting the half-integer ones is
a physical singularity whose tension gives (4).

Minimizing Stot = Score + Ssnd with respect to T, we
obtain the power law near the amplitude soliton edge
Ω ≥ Ws,

(8)

which is much more pronounced than the exponential
law for gapful cases (see (15) below).

Our derivation suggests a literal long-range order at
large (x, t) distances and neglects all fluctuations of the
phase except perturbations enforced by the instanton.
However, the mean fluctuations of the phase diverge
and the order parameter decays in accordance with a
power law. These long-range fluctuations are not
related to the instanton and can be taken into account a
posteriori. This can easily be done by noticing that the
eigenfunctions in the prefactor in (2) transform as
Ψ0  Ψ0exp[iϕ(x, t)/2], and being averaged, contrib-
ute the action term

Ssnd θ[ ]
v F

2π2u
------------ t1 2, θ̇ t1( ) t1 t2–( ) θ̇ t2( )lnd∫∫≈

=  
v F

2π2u
------------ t1 2,

θ t1( ) θ t2( )–
t1 t2–

--------------------------- 
 

2

.d∫∫

ω θω
2∑

θ̇

Ssnd

v F

4u
------ uT

ξ0
------.ln≈

I Ω( )
Ω Ws–

Ws

----------------- 
 

β
, β∝

v F

4u
------,=

δSϕ
1
8
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4v F
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Therefore, the effect of phase fluctuations, as well as the
major role of the form factor, is simply a correction to the
value of the index in (8), β  β* = vF/4u + u/4vF.
Within our adiabatic approximation u/vF ! 1, the correc-
tion is small, but it builds a bridge to quantum nonadia-
batic models where exactly β* appears as the index of the
single-particle Green function with γρ = u/vF identified
as the charge channel exponent. The link is completed by
noting that the amplitude soliton is a realization of the
spinon and that the phase discontinuity in (5) is equiva-
lent, together with fluctuations, to applying the operator

which is our limit for bosonization.

4. ACOUSTIC POLARON 
AND THE FREE EDGE

4.1. One-Dimensional Semiconductors
with Acoustic and Optical Polarons 

Behavior near the free edge Ω ≈ ∆0 is dominated by
small fluctuations η in the gap amplitude, |∆| = ∆0 + η,
and at the Fermi level, δEF = ϕ'vF/2, via the phase gra-
dient ϕ' = ∂xϕ. We consider it in the framework of the
general problem of a combined (gapful and acoustic)
polaron. The simpler, compared to the CDW, single-
particle formulation bears similar qualitative features
but allows a more detailed analysis. We consider elec-
tron (hole) states in a 1D dielectric near the edge of a
conducting (valence) band. We take into account the
gapful mode η with the coupling g0 and the sound mode
(for which we keep the “phase” notation ϕ) with the
velocity u and the coupling gs . In generic semiconduc-
tors, the sound mode is always present as the usual
acoustic phonon, while the gapful mode can be present
as an additional degree of freedom. In all CDWs, the
gapful mode is always present as the amplitude fluctu-
ation |∆| = ∆0 + η while the sound mode appears in
incommensurate CDWs as the phase ∆ = |∆|exp(iϕ).

Within the adiabatic approximation for the electron
wave function Ψ, the action S (at imaginary time) is
given by

(9)

i
2
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π
2
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∫d∫
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For the incommensurate CDW case, we therefore have

m = ∆0/ , g0 = 1, gs = vF/2, Ks = vF/2π, K0 = 4vF/π,
23/2u/vF = ω0/∆0, and Ω is counted with respect to the
edge ∆0 rather than to the middle of the gap as in the
previous section.

It is well known [5] that the stationary state, i.e., the
time-independent extremum of (9), corresponds to the
self-trapped complex, the polaron. Here, it is composed
equally of η and ϕ', which contribute additively to the
static coupling (while the dynamics is completely dif-
ferent):

The polaronic length scale l for η ~ ϕ' ~ |Ψ|2 ≡ ρp(x) is
l = 2λ/m and the total energy is Wp = –mλ2/24. The con-
ditions |Wp | @ ω0 and λ @ u define the adiabatic, Born–
Oppenheimer, approximation. For the CDW case, λs =
vFπ/2 and λ0 = vFπ/4, and therefore, λ ~ vF; and we
arrive at |Wp | ~ ∆0 and l ~ ξ0 = vF/∆0, which are the
microscopic scales where the single electronic model
can be used only qualitatively. The full-scale approach
for nearly stationary states was considered in Section 3,
but the upper pseudogap region near the free edge ∆0 is
described by model (9) even quantitatively and the
most efficiently.

We can integrate over the fields ϕ and η at all (x, t)
to obtain the action in terms of ψ alone, which is now
defined only on the interval (0, T) for t,

(10)

Here, the retarded self-attraction potentials are

(11)

An equivalent form, suitable at large T, is obtained via
integrating by parts,

(12)

where U(x, t) = u–2Us + .
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The absorption near the absolute edge Ω ≈ Wp is
determined by long-time processes when the lattice
configuration is almost statically self-consistent. The
first term in (12) is nothing but the action Sst of the static
polaron whose extremum at a given T is

The second term in (12), Str, collects contributions only
from short transient processes near the impact moments
t = 0, T, which are seen by the long-length part as
∂tρ(x, t) ≈ ρp(x)[δ(t) – δ(t – T)], where ρp is the density
for the static polaron solution. We obtain

with C0 ~ 1. We see the dominant contribution of the
sound mode that grows logarithmically in T, while the
part of the gapful mode decays exponentially. If the
sound mode is present, the extremum over T is

(13)

We find that near the absolute edge Ω ≈ Wp , the absorp-
tion is given by a power law with the index α that must
be large within our adiabatic assumption, α @ 1,

(14)

For incommensurate CDW parameters, we obtain α =
vF/4u, in full accordance with the exact treatment (8).

Only in the absence of sound modes, λs = 0, the gap-
ful contribution can determine the absolute edge. Min-
imization of S = Score + δSgap over T then leads qualita-
tively to the result in [1],

(15)

for Ω ≈ Wp .

4.2. Free-Electron Edge Vicinity 

We now consider the opposite regime near the free
edge Ω ≈ 0 (Ω  Ω – ∆0 for the incommensurate
CDW). Here, entering the pseudogap at Ω < 0, the
absorption is determined by fast processes of quantum
fluctuations: their characteristic time T = T(Ω) is short
compared to the relevant phonon frequency, T ! ω0,
u/L, where L = L(Ω) is the characteristic localization
length for the fluctuational electron level at E0 = Ω.
Because T is small, we can neglect all variations in time

Sst TδΩ, δΩ–≈ Ω W p.–=

Str x1 2, ρp x1( )ρp x2( )U x1 x2– T,( )d∫∫≈
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within (0, T). We then estimate action (10), term by
term, as

(16)

where Ci ~ 1. The condition for its extremum with
respect to both L and T yields

which provides a reasonable interpolation for the
absorption in the closest and the more distant vicinities
of the free-electron edge. For the purely acoustic case
λ0 = 0, a variational estimation of the numerical coeffi-
cient as C1 ≈ 1/6, C2 ≈ 0.06 gives

(17)

The validity condition uT/L ~  ! 1 is satisfied
by definition of the edge region. This condition is com-
patible with the low boundary for the frequency, S @ 1,
and hence, –Ω/Wp @ u/λs , which is small as our basic
adiabatic parameter.

For gapful phonons alone, λs = 0 and we arrive at the
known result

(see [1] and references therein). However, it was not
quite predictable that among the laws S ∝ |Ω| 3/2 and S ∝
|Ω|, it is the smallest contribution to S that wins, propor-
tional to |Ω|3/2 at the lowest |Ω| and to |Ω| for larger |Ω|.
For the incommensurate CDW, in particular, we have
λ0/λs ~ 1 and u/ω0 ~ ξ0, and there is no space for the
intermediate asymptotic regime lnI ∝  Ω at |Ω| ! ∆0:
beyond the region with S ∝ |Ω| 3/2, the amplitude fluctu-
ations dominate, the phase-only description is invalid,
and the particular nature of amplitude solitons must be
taken into account. This regime was considered in Sec-
tion 3.

The difference between the laws lnI ∝  –|Ω|/u and
lnI ∝  –|Ω|3/2/ω0 can be interpreted easily. Indeed, for
gapful phonons, we expect the frequency scale to be
ω0  ωk = uk ~ u/L ~ u|Ω|1/2, where k ~ 1/L is a char-
acteristic wave number and L is the localization length
of the fluctuation providing the bound state at –Ω . Then
|Ω|3/2/ω0  |Ω|3/2/ωk ~ |Ω|/u.

While law (17) appears to be the simplest one, it is
actually quite uncommon and its derivation is problem-
atic in all systems (cf. [14]). In our case, we note that
only at λ0 ≠ 0, action (16) has the usual saddle point,
a minimum over L and a maximum over T. However,
for the purely acoustic case λ0 = 0, the minimum over L
appears only along the extremal line over T. Contrarily,
at a given T, the action collapses to either L  0 or
L  ∞ depending on the value of T with respect to the

S
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threshold T* ~ (muλs)–1, which is precisely the inverse
width in (17). The paradox can be resolved by inspect-
ing the generic real time formulation (2), but the neces-
sary insight is obtained more easily by another treat-
ment, presented in the next section.

4.3. Quantum Fluctuations 
as an Instantaneous Disorder 

with Long-Range Space Correlations 

It has already been noticed that in a 1D system, the
optical absorption near the band edge can be viewed as
for a quenched disorder emulated by instantaneous
quantum fluctuations. This asymptotically exact reduc-
tion to the time-independent model can be performed as
follows. After neglecting the retardation at T ! ω0, u/L,
the self-interaction term in (10) can be decoupled by the
Hubbard–Stratonovich transformation via a time-inde-
pendent field ζ with the correlator D(x) = U0(x, 0) +

Us(x, 0),

(18)

After integration over Ψ and rotation to the real time, it
finally becomes the expression for the density of states:

where E[ζ(x)] is the eigenfunction in the random
field ζ,

For the dispersionless phonon alone, e.g., the amplitude
mode in the CDW, D(x) = U0(x, 0) ~ δ(x), and the
known exact results for the uncorrelated disorder [23]
provide us with the asymptotic pseudogap formula

(19)

For the CDW parameters, it becomes

(20)

Below, we concentrate only on a more problematic
case of the sound mode. The correlator D(x) of the “dis-
ordered potential” ζ is precisely the mean square of
quantum fluctuations of the phonon potential ζ =

∂x
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vF/2ϕ'(x, t) at coinciding times: in the Fourier represen-
tation, we have

The probability distribution for the Fourier components
ζk is

, (21)

which implies that the component with k = 0 is
excluded, P(ζ0) = 0. The constraint

(22)

agrees with the properties of the potential proportional
to ϕ' in the time-dependent picture of the previous sec-
tion, which satisfies condition (22) at any finite t (see
Fig. 3). Contrary to the usual expectations of the
method of optimal fluctuations, the potential well cre-
ating the level E must here be accompanied by compen-
sating barriers. Condition (22) is linked to the paradox
in the previous section, i.e., the absence of a finite min-
imum over the length scale at a given T. Indeed, we can
no longer rely on the existence of a bound state at an

arbitrarily shallow potential, E0 ~ –m( )2,

which is zero under condition (22).

While the divergence at small k (large x) is physical,
the one at large k in (21) must be regularized to apply in
the real space. We proceed by introducing an auxiliary
field µ(x) such that ζ = dµ/dx = µ'. We finally arrive at
the model of the “nonlocal acoustic disorder,”

(23)
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Fig. 3. The acoustic polaron field ϕ(x, t) as a function of x
at some moment t. 
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Here, the integral in the exponent is already regular at
small x. The divergence at large x maintains con-
straint (22), otherwise

and the integral in (23) would diverge logarithmically,
leading to zero probability.

Unfortunately, we are unaware of exact studies for
disordered systems with such long-range correlations.
Usual scaling estimations [24] for characteristics µ and
l give |Ω| ~ 1/ml2 ~ |µ|/l, then |µ| ~ |Ω/m |1/2, and there-
fore, lnI ~ –µ2λs/u ~ –|Ω|λs/u, in accordance with direct
estimations and result (17) for the general time-depen-
dent model.

5. DISCUSSION AND CONCLUSIONS

We summarize the obtained results as follows.
The pseudogap starts below the free edge by

(stretched) exponential dependences

(24)

with different powers γ = 3/2 for gapful phonons and
γ = 1 for sound photons. If both modes are present, then
the smallest one, with γ = 3/2, dominates at small Ω .
This regime corresponds to free electronic states
smeared by instantaneous uncorrelated quantum fluctu-
ations of the lattice.

Deeply within the pseudogap, approaching the
absolute threshold Ws or Wp , the exponential law
changes for the power law I(Ω) ∝  (Ω – Ws)β with a large
exponent β. This contribution dominates over the
smooth one from gapful modes I ∝  exp(const ×
δΩlnδΩ). The power-law regime corresponds to cre-
ation of nearly amplitude solitons surmounted be com-
pensating phase tails. Its description provides a semi-
classical interpretation for processes in fully quantum
systems of correlated electrons in the spin-gap regime,
with the amplitude soliton being a version of the
spinon.

These results are different from anything used ear-
lier in either theoretical discussions or interpretation of
experimental data [13]. They can vaguely explain
unusually wide pseudogaps observed in experiments
even at low temperatures for well-formed incommensu-
rate CDWs.

Our results have been derived for single electronic
transitions, PES and tunneling. They can also be
applied to intergap (particle–hole) optical transitions as
long as semiconductors are concerned. For incommen-
surate CDWs, the results are applied to a vicinity of the
free edge. However, the edge at 2Es disappears in favor
of the optically active gapless phase mode.

µ +∞( ) µ –∞( )– ζ x( ) xd

∞–

∞

∫= 0≠

I –const Ω–( )γ[ ]exp∝
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We emphasize in this respect that there cannot be a
common pseudogap for processes characterized by dif-
ferent time scales. We must distinguish [8] between
short-living states observed in optical, PES (and maybe
tunneling) experiments, and long-living states (ampli-
tude solitons and phase solitons) contributing to the
spin susceptibility, NMR relaxation, heat capacitance,
conductivity, etc. States forming the optical pseudogap
are created instantaneously; particularly near the free
edge, they are tested over times shorter than the inverse

phonon frequencies τopt ~ "/Eg <  and many orders
of magnitude beyond the lifetimes required for current
carriers, and even much longer times for thermody-
namic contributions. It then follows that analysis of dif-
ferent groups of experimental data [13] within the same
picture must be reconsidered. The lack of discriminat-
ing different time scales also concerns typical discus-
sions of pseudogaps in high-Tc superconductors.

We conclude that the subgap absorption in systems
with gapless phonons is dominated by formation of
long space–time tails of relaxation. It applies to both
acoustic polarons in 1D semiconductors and solitons in
CDWs. Near the free edge, a simple exponential,
Urbach-type law appears, competing with stretched
exponential laws typical of tails from optimal fluctua-
tions. A deeper part of the pseudogap is dominated by a
power-law singularity near the absolute edge.
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APPENDIX

Electronic energies in a complex field ∆ are deter-
mined by the Dirac Hamiltonian

In the ground state, |∆(x, t)| = ∆0, we have ϕ = const, and

the electronic spectrum is E2 =  + , where vF is
the Fermi velocity. However, these free states are not
proper excitations. The evolution of added electrons or
holes with the initial energy E0 ≥ ∆0 to the amplitude
soliton with Ws = 2∆0/π < ∆0 can be described by an
exact solution for intermediate configurations charac-
terized by the singly occupied arbitrary positioned
intragap state E0 = ∆0cosθ with 0 ≤ θ ≤ π, whence
−∆0 < E0 < ∆0. It was found [8] to be the chord soliton

ωph
1–

–iv F∂x ∆

∆∗ iv F∂x

, ∆ ∆ eiϕ .=

v F
2 k2 ∆0

2
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with 2θ being the total chiral angle, ∆(±∞) = exp(±iθ)
(see Fig. 1). Namely,

(25)

with an arbitrary ϕ0 = const. The potentials Vν are
known [8] to be given by (see Fig. 2)

where ν is the filling number of the intragap state, that
is, ν = 0, 1 for j = 0, 1 while ν = 2 is equivalent to j = 0
for the ground state extended by the two particles, N =
2M + 2. The term V0(θ) monotonically increases from
V0(0) = 0 for the 2M ground state to V0(π) = 2∆0 for the
2M + 2 ground state with two free holes. Obviously,
there is an opposite dependence for V2(θ) = V0(π – θ).
Therefore, the total phases slip 2θ = 0  2θ = 2π real-
izes the spectral flow across the gap, also accompanied
by the flow of particles for ν = 2 that makes it favorable.
The term V1(θ) = V1(π – θ) is symmetric and describes
both the particle on the 2M ground state and the hole on
the 2M + 2 ground state. Apparently, V1(0) = V1(π) = ∆0
(the degenerate ground states are the 2M one with an
additional free electron for θ = 0 and the 2M + 2 one
with an additional free hole for θ = π), while the mini-
mum is V1(π/2) = Ws < ∆0, where Ws = 2∆0/π is the
amplitude soliton energy. Therefore, the stationary state
of the system with an odd number of particles, the min-
imum of V1, is the amplitude soliton with the midgap
state E0 = 0 occupied by a single electron.

We note that being an uncharged spin carrier with
the topological charge equal to unity, the amplitude
soliton is a semiclassical realization of a spinon in sys-
tems with nonretarded attraction of electrons (that is,
with high, rather than low, phonon frequencies).
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Abstract—A rearrangement of the ground state of a Wannier–Mott exciton upon an increase in its momentum
is considered. The phase diagram of the electron and the hole experiencing the Coulomb interaction on the mag-
netic momentum–external magnetic field plane is investigated. A jumplike exciton–magnetoexciton “phase”
transition is observed upon an increase in the momentum in fields B weaker than a certain value B < Btr1. As
momentum P increases above a certain critical value Ptr(B), the ground state of the system changes from the
hydrogen-like state polarized by the Lorentz force to the magnetoexciton state in which the average distance
〈r〉  between the electron and the hole increases jumpwise in the transverse direction relative to the field. As the
exciton momentum increases, its wave function is extended along the magnetic field, acquiring the shape of a
strongly prolate ellipsoid. It is interesting that the momentum of the transition tends to a finite value P0 > 0 even
for B  0. At the point of transition, the exciton energy–momentum relation changes jumpwise from a qua-
dratic law to a relation virtually independent of the momentum. For B < Btr1, the exciton–magnetoexciton tran-
sition becomes blurred. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the ground state of a Wannier–
Mott exciton changes significantly in strong magnetic
fields in which the characteristic interaction with the
field (separation "ω between the Landau levels)
becomes much larger than the exciton binding energy
Ry* [1–6].

Since the Schrödinger equation is invariant to simul-
taneous translation of the electron and the hole and to
the corresponding gauge transformation (see [6]), there
exists a three-dimensional vector, viz., “magnetic
momentum” P, which is transformed into the conven-
tional momentum in zero magnetic field [3]. The exci-
ton energy–momentum relation E(P) in very strong
magnetic fields changes significantly; in particular, the

“magnetic mass” m⊥ (B) = (∂2E/∂ )–1 determining the
exciton dispersion for small values of P in directions
transverse to the field noticeably increases [4–6]. In
addition, the curve describing the exciton energy as a
function of P⊥  in a strong magnetic field has a point of
inflection, and the energy–momentum relation acquires
the form E(P⊥ ) ∝  1/P⊥  instead of the quadratic form.
This determines the characteristic of a magnetoexciton,
viz., an exciton in strong magnetic fields.

Is the rearrangement of an exciton into a magne-
toexciton just a blurred transition (crossover)? We will
study here the energy–momentum relation of an exci-
ton in arbitrary magnetic fields and show that a jump-

P⊥
2

1063-7761/03/9603- $24.00 © 20564
like transition occurs in weak magnetic fields, while
crossover takes place in magnetic fields exceeding a
certain critical value.

We analyze the behavior of a 3D exciton with a non-
zero momentum in the entire range of magnetic fields,
including relatively weak fields. In our calculations, we
use the method of numerical solution of the
Schrödinger equation in imaginary time. In fields
smaller than a certain critical value, there are two dif-
ferent modes for the ground state of the exciton depend-
ing on its momentum. In the first mode (weak magnetic
field and small momentum), the ground state of the
exciton corresponds to a weakly polarized hydrogen-
like function since the Coulomb interaction between
the electron and the hole plays the major role for the
effective potential describing the exciton internal struc-
ture. In the second mode (momenta exceed the critical
values), the main contribution to the effective potential
comes from the terms describing the interaction of the
electron and the hole with the external magnetic field
(magnetoexciton mode). In weak magnetic fields, an
increase in the exciton momentum turns out to cause a
jumplike transition between these two modes, and the
wave function of the exciton “jumps” from the Cou-
lomb minimum to the magnetic minimum of the effec-
tive potential. As a result of this transition, the width of
the wave function increases sharply from the character-
istic size of a hydrogen-like state, viz., effective Bohr
radius a* = "2e/2µe2, to the characteristic size of a mag-

netoexciton, viz., the magnetic length l =  (it"/µωc
003 MAIK “Nauka/Interperiodica”
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should be recalled that we are speaking of weak fields
in which l @ a*). Here, ωc = eB/2µc is the cyclotron fre-
quency, µ = memh/(me + mh) is the reduced mass (me and
mh are the masses of the electron and the hole), and e is
the permittivity of the material. In this direction of the
magnetic field, the exciton wave function is extended
significantly. This is due to the fact that the effective
potential of the problem has only one (Coulomb) mini-
mum in the direction of the magnetic field, but the wave
function in this case is localized far from the character-
istic region in which the Coulomb interaction is strong
(far from the region of zero spacing between the elec-
tron and the hole); for this reason, the state is weakly
connected in the direction of the field.

The dependence of the mean distance between the
electron and the hole on exciton momentum, which is
connected to polarization of a moving exciton, also
reflects this structural transformation of the wave func-
tion upon an increase in its momentum. According to
calculations, for an exciton momentum smaller than a
certain critical value Ptr, its polarization is a linear func-
tion of the momentum and the coefficient in this depen-
dence is associated with the exciton polarizability. For
a momentum exceeding Ptr, the polarization is also a
linear function, but with a different coefficient. This is
due to the fact that the distance between the effective
potential minima for P > Ptr is also a linear function of
the momentum, but with a considerably larger coeffi-
cient, 〈r〉  = cP/eB⊥  (which increases upon a decrease in
the magnetic field) as in the case of an exciton in very
strong magnetic fields. In a small region of the momen-
tum in the vicinity of the transition (near Ptr), this
dependence is nonlinear. This is due to the fact that, in
the vicinity of the transition region, the wave functions
concentrated in one of the minima are strongly
extended towards the other minimum. For small
momenta in arbitrary magnetic fields, the exciton
energy–momentum relation is quadratic in the mag-
netic momentum with a coefficient depending on the
field. We have determined the magnetic field depen-
dence of the exciton effective mass from the calculated
dispersion.

2. MODEL

Let us consider an electron and a hole in a magnetic
field. The initial Hamiltonian has the form

It was mentioned above that the Schrödinger equation
is invariant to simultaneous translation of the electron

H
1

2me

--------- i"
re∂
∂ e

c
--A re( )–

2

=

+
1

2mh

--------- i"
rh∂
∂ e

c
--A rh( )+

2 1

e re rh–( )2
-----------------------------.–
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and the hole and to the corresponding gauge transfor-
mation [6]. The infinitesimal operator of this transfor-
mation commutes with the Hamiltonian, which corre-
sponds to the magnetic momentum conservation law.
Let the magnetic field be directed along the z axis. In
the cylindrical gauge A = [B × r]/2, the magnetic
momentum has the form [3, 4]

Here, we have made the substitution

Subscript 2D on the vectors indicates that we are using
only the x and y components of a vector, which are
transverse to the magnetic field.

We are seeking steady-state solutions, which are the
eigenfunctions of the magnetic momentum:

Ultimately, the Hamiltonian of the system for function
ψ assumes the form

where

We choose dimensionless units for the coordinate,
energy, and momentum:

(all results that are given below, including the figures,
are expressed in these units). For a dimensionless con-
trolling parameter, we take the ratio of the characteris-
tic Coulomb and magnetic energies: b = "ωc/E0. The
other controlling parameter of the equation is the
dimensionless momentum.

P2D i"
R2D∂
∂ e

2c
------ B r×[ ] , Pz+– i"

z∂
∂

.–= =

r rh re, R– mere mhrh.+= =

ψ' R r,( ) i
e

2c
------ B R×[ ]– r⋅ 

 exp ψ R r,( ).=

H
1

2M
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η
--- 

 
2

P2D
2 "

2µ
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eB"
2cη
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2µ
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In dimensionless variables, the Hamiltonian has the
form

(1)

3. COMPUTATIONAL METHOD

We must find the wave function of the ground state
and its eigenvalue. In the time-dependent Schrödinger
equation

,

we formally pass to the imaginary time t ' = it. In this
case, the equation assumes the form

(2)

Obviously, for t  ∞ and for any initial condition, the
solution to this equation,

tends to the wave function ψ0(r) of the ground state.
Here, ψn(r) and En are eigenfunctions and eigenvalues
of operator H. Consequently, we can solve Eq. (2) by
the following method of stabilization (we are seeking a
steady-state solution). We will use the explicit algo-
rithm

We proceed further as follows. First, we set a reason-
able approximation ψ0 of the wave function as the ini-
tial state. It can be, for example, a function of the type
exp(–x2) since the solution to our equation for the
ground state has a similar form. This is done to reduce
the computation time. Then we carry out an iteration in
time and normalize the next approximation (ψ1) of the
wave function:

this procedure is repeated until the wave function stabi-
lizes (does not vary significantly).

The energy can be determined from the obtained
wave function as the mean value of the Hamiltonian in
this function:

H
1
4
--- µ

η
--- 

 
2M
µ
-----P2D

2 ∆– ib
µ
η
---Lz+=

+
b
2
---r2D P2D– 

 
2 1

r
-----.–

i"
t∂

∂ ψ Hψ=

"
t∂

∂ ψ Hψ.–=

ψ r t,( ) Cnψn r( ) Ent–( )exp
n

∑ ,=

ψn 1+ ψn dt,  H ψ 
n .–=

ψ1∗ ψ1 rd∫ 1;=

E0 ψ0*Hψ0 r.d∫=
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4. DISCUSSION

We carried out detailed simulation of a 3D exciton
for various values of magnetic field and momentum in
order to study its “phase” diagram. For concreteness,
we took the parameters of the problem for GaAs:

As regards the qualitative analysis that will be
described below, it is more general in nature.

The effective potential of the exciton (the last two
terms in dimensionless Hamiltonian (1)) is determined
by two competing interactions: the Coulomb electron–
hole potential and the interaction of the electron and the
hole with the external magnetic field. Qualitative anal-
ysis of the behavior of this effective potential of the
exciton upon an increase in its momentum (Fig. 1)
helps to grasp the behavior of the wave function, thus
explaining the structural transformations experienced
by the exciton upon an increase in momentum P. It is
convenient to depict schematically these changes in the
exciton internal structure upon a change in the mag-
netic field and momentum in the form of a “phase” dia-
gram of an exciton in a magnetic field in the B–P plane
(Fig. 2); we will consider this diagram in detail.

Let us first consider the case of weak magnetic fields
(Btr1 > B > 0) in Fig. 2. For large values of momentum,
the effective potential acquires two minima (cf.
Figs. 1a, 1b and Figs. 1c, 1d): the first minimum is asso-
ciated with the Coulomb interaction between the elec-
tron and the hole, while the second is due to the para-
bolic magnetic potential. Each of these minima is asso-
ciated with a certain set of stationary states. For a large
distance between the minima (i.e., in weak magnetic
fields), the overlap of the wave functions of the lower
states is negligibly small. For momenta P < 

 

P

 

tr

 

, where

the Coulomb energy level 

 

E

 

C

 

 lies below the magnetic
level 

 

E

 

m

 

 (Fig. 3). Thus, for small values of momentum,
the hydrogen-like state is the ground state of the exci-
ton, while the state at the magnetic minimum is an
excited state. With increasing momentum, the arrange-
ment of energy levels at the minima changes and the
lower level at the magnetic minimum becomes the
ground state for 

 

P

 

 > 

 

P

 

tr

 

; this corresponds to a magne-
toexciton. In view of weak overlapping of the wave
functions, the repulsion of the corresponding levels is
small even in the resonance case, i.e., at the point of
quasi-intersection of the quadratic dependence 
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corresponding to the Coulomb minimum, with the
magnetoexciton energy 
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, corresponding to the
bound state at the magnetic minimum (at zero Landau
level). Point 
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 Fig. 1.  
 Transformation of the effective potential upon an increase in momentum in field 

 
B 

 
= 0.5 T for 

 
P

 
 = 0.1 (a), 0.4 (b), 0.8 (c),

and 1.5 (d). For better visualization, the 

 

U

 

(x, y, z) curves are plotted for y = 0 and z = 0. For small values of P, the effective potential
has only a “Coulomb” minimum at point x = 0. As the momentum increases, a new (“magnetic”) minimum also appears.
curves describing the energies of the ground states at
the local (Coulomb and magnetic) minima of the effec-
tive potential (see Fig. 3). After the transition, the state
at the Coulomb minimum becomes excited. The fol-
lowing interesting fact is worth noting: the exciton
momentum at the point of transition differs from zero
even when the magnetic field tends to zero (cf. expres-
sion for Ptr). A sharp transition in momentum is present
up to the critical value of the magnetic field Btr1, at
which each local minimum is associated with its own
set of bound states. In fields stronger than Btr1, there are
no bound states at the individual minima of the effec-
tive potential and the wave function of the exciton
ground state covers both minima. In this case, the tran-
sition is blurred into a crossover from the region with
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the Coulomb mode to the magnetoexciton mode. The
width of the crossover region increases with the field.
Finally, for B = Btr2, the magnetoexciton is the ground
state even for small values of momentum.1

Figure 4 shows the results of calculation of the exci-
ton ground state energy as a function of momentum for
different values of the magnetic field. For small values
of momentum, the energy in arbitrary fields increases in
accordance with a quadratic law. As the momentum
increases further, the curve describing the dependence
of energy on momentum acquires a point of inflection

1 It should be noted that, in contrast to the two-dimensional indi-
rect exciton considered in [5], the effective potential for a 3D
exciton has two minima and not one for large momenta even in
strong fields.
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as in strong magnetic fields [4, 6], after which the
energy remains virtually unchanged. The sharpest vari-
ation is observed for B < Btr1. For large values of the
field, this transition is blurred into a crossover, and the
E(P) dependence changes smoothly from a quadratic
law to a constant value corresponding to the Landau
level. Such a behavior of the exciton energy is associ-

B

Btr2

I
II

III

PtrI

II

Btr1

0

Fig. 2. “Phase” diagram of an exciton. Roman numerals indi-
cate the domains of existence of the “Coulomb” exciton (I),
magnetoexciton (II), and magnetoexciton (ground state) for
a metastable “Coulomb” exciton (III).
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Fig. 4. Exciton energy as a function of momentum for dif-
ferent values of magnetic field.
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ated with a change in the structure of the effective
potential (see above).

It is interesting to analyze the behavior of the exci-
ton wave function. For values of the exciton momentum
from a small neighborhood of Ptr, the wave function,
which is at one of the minima, begins to be deformed
with increasing P so that it is extended in the direction

E

EL

EC

Em

P

EC

Fig. 3. Momentum dependence of energy at the local min-
ima of the effective potential: transition from the Coulomb
regime to a magnetoexciton. Similar quasi-intersections are
also observed for excited levels (EL is the Landau level).
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Fig. 5. Average distance 〈r〉  between the electron and the
hole as a function of momentum in different magnetic
fields.

0
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of the other minimum of the effective potential. In this
transition, the distance between the electron and the
hole increases sharply to a value of 〈r〉  = cP/eB charac-
terizing the regime of a strong magnetic field (see
Figs. 5 and 6) [4, 6], and the wave function shifts from
the Coulomb minimum to the magnetic minimum. As a
result of the transition, the exciton wave function is
strongly extended in the direction of the magnetic field.
As a matter of fact, the effective potential has only one
(Coulomb) minimum in the magnetic field direction; in
this case, the wave function is localized far from the
characteristic region in which the Coulomb interaction
potential is high. Consequently, the state in the direc-
tion of the field is weakly connected (see Fig. 7). As the
momentum increases, the wave function resembles a
strongly prolate ellipsoid. We can estimate the ratio of
the widths of the wave function after the transition
(characteristic regions of exciton localization) in planes
xz (along the field) and xy (across the field). Only one
(Coulomb) minimum exists along the z axis (in the
direction of the magnetic field); in this case, the cha-
racteristic size of localization of the exciton wave func-
tion in the direction of the field is determined by the
potential

where ρ0 = 2P/B. Obviously, the characteristic localiza-
tion region in this potential is given by

The characteristic size Rxy of the wave function in the xy
plane is determined by the magnetic minimum since the
wave function is concentrated just at this minimum
after the transition:

The ratio of these sizes is

The rearrangement of the exciton internal structure
upon a change in the magnetic field and the exciton
momentum (sharp transition in weak fields and cross-
over in strong fields) also affects the behavior of the
exciton polarization. In connection with Fig. 5, which
describes the change in the position of the maximum of
the exciton wave function upon an increase in momen-
tum P, we can make the following remarks. For P ≠ 0,
polarization of the exciton takes place. Indeed, when

U z( )
e2

z
2 ρ0

2+
-------------------- e2

ρ0
----- 1 z2

2ρ0
2

--------–
 
 
 

,–≈–=

Rz ρ0 P/B.∼≈

Rxy
h

mωc

---------- 1
B
---.∝≈

Rz

Rxy

------- P

B
--------.∝
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the exciton moves in the frame of reference associated
with the center of mass, the electric field

is induced. For small values of P, field E is weak and the
response to the electric field is linear in this region:

where α is the polarizability of the hydrogen-like state.
The linear dependence of the induced dipole moment
on P corresponds to the linear dependence of the posi-
tion of the maximum of the exciton wave function (in
relative coordinates) on P. The region of this linear
dependence extends to values of P for which the Cou-
lomb interaction suppressed due to the shift of the
effective potential minimum becomes equal (in order of
magnitude) to the interaction with the magnetic field. In
this region, the effective potential for the exciton
becomes noticeably distorted as compared to the initial
Coulomb potential well. For values of momentum
exceeding P = Ptr, the polarization remains linear, but

E
1

mc
------- P B×[ ]=

d e r〈 〉 α E( ) α
mc
------- P B×[ ] ,= = =

(a) (b)

(c) (d)

y y

x x

y y

Fig. 6. Transformation of the wave function of the ground
state of an exciton in the xy plane upon an increase in the
momentum depending on the magnetic field for P = 0 (a),
0.5 (b), 0.8 (c), and 1.0 (d); B = 1 T.
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(a)

x

(b)

x

(c)

z

(d)

z

x x
z z

Fig. 7. Transformation of the wave function of the ground state of an exciton in the xz plane upon an increase in the momentum
depending on the magnetic field for P = 0 (a), 0.5 (b), 0.8 (c), and 1.4 (d); B = 2 T.
the coefficient of this dependence changes; i.e., the
average distance 〈r〉  increases sharply. In the region of
crossover, i.e., in magnetic fields B > Btr1 in the vicinity
of the momentum Ptr, the law of polarization differs sig-
nificantly from a linear dependence. This is due to the
fact that the exciton wave functions concentrated at one
of the minima in this region of the phase diagram are
strongly deformed so that they are extended in the
direction of the other minimum.

In the range of small momenta, the energy–momen-
tum relation for excitons can be described by a parabola
(see above) whose parameter is the effective mass of an
exciton in a magnetic field, meff = 1/2β, where β is the
slope of this parabola. Figure 8 shows the dependence
of the exciton effective mass on the magnetic field. In
zero magnetic field, the effective mass is equal to the
initial mass M =  + , as expected. As the mag-
netic field becomes stronger, the exciton effective mass
increases monotonically (see Fig. 8).

It should be noted that a similar sharp rearrangement
of the structure in magnetic fields weaker than atomic
fields B0 = m2ce3/"3 ≈ 2 × 105 T is also possible for an
atom moving at a very high velocity.

me* mh*
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meff

0.35

0.30

0.25

0.20
0 1 2 3 4 5 6

B

Fig. 8. Effective mass meff of an exciton as a function of
magnetic field B.
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Abstract—We study the stochastic processes of markovization and demarkovization in chaotic signals of
human electroencephalograms (EEGs) during epilepsy using various measures of demarkovization and mark-
ovization, namely, the statistical spectrum of a non-Markovity parameter, power spectra of the time correlation
function and memory functions of junior orders, and local relaxation and kinetic parameters. The results dem-
onstrate the superiority of the new measures in comparison to the traditional nonlinear measures. We conclude
that the applied measures are more appropriate for the quantification of markovization and demarkovization in
EEG data and the prediction of epilepsy seizure. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

We develop a new approach that could provide us
with a powerful means of discrete time series analysis
and processing. The subject of our study is human elec-
troencephalogram (EEG) records, because we address
our work to those who are interested in signal process-
ing in live complex systems. In studying natural com-
plex systems, very little is usually known about their
internal structure and the relationship between their
components. The time series describing the dynamics
of one or several parameters are typically used for
obtaining diagnostic information. The received infor-
mation is inadequate for describing all the degrees of
freedom of this system. Quantitative and qualitative
methods proposed recently allow constructing the
framework for the description of natural complex sys-
tems. It allows diagnosing diseases without going into
detail of the internal structure underlying natural com-
plex systems. A similar approach can be used to
describe and investigate diversified complex systems as
they are related only to the concepts of this framework.
Here, we present the results of applying a new frame-
work involving ideas of discrete non-Markovian sto-
chastic processes to the analysis of electric potentials of
brain. It turns out that discussing the results in terms of
demarkovization and markovization is the best way to
uncover the features of seizure dynamics.

Brain cells communicate by producing tiny electri-
cal impulses. In an EEG, electrodes are placed on the

¶This article was submitted by the authors in English.
1063-7761/03/9603- $24.00 © 20572
scalp over multiple areas of the brain to detect and
record the electrical pulses within the brain. The EEG
is used to help diagnose the presence and type of sei-
zure disorders, confusion, head injuries, brain tumors,
infections, degenerative diseases, and metabolic distur-
bances that affect the brain.

It is well known that epilepsy is one of the most seri-
ous diseases of the human brain [1, 2]. The dynamics of
the electric signals accompanying it belongs to a class
of nonlinear, nonstationary, and nonergodic processes
of complex systems of a live nature [3, 4]. The discrete
and non-Markovian properties of time variation of the
signals and the sudden alternation of the behavior
regimes must be taken into account in analyzing the
electrical activity of brain potentials. Together with the
fast change of chaotic and regular modes in the behav-
ior of the system, this creates serious problems for the
diagnosis and treatment of patients with epilepsy sei-
zure. This is why traditional methods of nonlinear
dynamics, such as the Lyapunov exponent, Kolmog-
orov–Sinai entropy, and correlation and fractal dimen-
sions, are not sufficiently sensitive for the purpose of
distinction between different chaotic regimes in epi-
lepsy.

2. BASIC THEORY

Our approach is based on the recent theory for sta-
tionary [5] and nonstationary cases [6] of discrete sto-
chastic processes in complex systems. We analyze the
stochastic process on the basis of the chain of the cou-
003 MAIK “Nauka/Interperiodica”



        

STOCHASTIC PROCESSES OF DEMARKOVIZATION AND MARKOVIZATION 573

                                                         
pled non-Markovian discrete equations for the initial
discrete time correlation function (TCF) a(t) (t = mτ),

(1)

where λn is the eigenvalue spectrum of the Liouville

operator i  and Λn are the general relaxation para-
meters,

The kinetic nonlinear finite-difference Eqs. (1) are
analogous to the well-known chain of kinetic equations
of the Zwanzig–Mori (ZM) type. These ZM equations
play a fundamental role in the modern statistical
mechanics of nonequilibrium phenomena with contin-
uous time. Kinetic Eqs. (1) can be considered a dis-
crete-difference analogy of hydrodynamic equations
for physical phenomena with discrete time. By analogy
with [5–7], we define the generalized nonlinear non-
Markovity parameter in the frequency-dependent case
as

(2)

where i = 1, 2, … and µi(ω) is the power spectrum of
the ith memory function. It is convenient to use this
parameter for quantitative description of long-range
memory effects in the system considered together with
memory functions defined above. The values of εi(ω)
allow us to obtain a quantitative estimate of non-Mark-
ovity effects and the statistical collective memory in the
chaotic changes of the experimentally measured EEG
data. The parameters εi(ω) allow classification of all the
observed processes into three important types [5]. A
Markov process corresponds to the situation where the
non-Markovity parameter takes an indefinitely large
value εi(ω)  ∞, and the quasi-Markov processes
correspond to the case where εi(ω) > 1. The limit case
εi(ω) ≈ 1 describes non-Markovian processes. In this
case, the time scale of memory processes and the corre-
lation dynamics (or the nearest junior and senior mem-
ory function) coincide with each other.
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3. EXPERIMENTAL DATA

We quantitatively demonstrate the stochastic
description of the time–frequency peculiarities of epi-
lepsy. We use experimental data [8] on human EEGs.
These files show tonic–clonic seizures of two subjects
recorded with a scalp-right-central (C4) electrode
(linked earlobes reference). It contains a total of 3 min
with about 1 min preseizure, the seizure, and some
postseizure activity. The sampling rate is 102.4 Hz (see
the papers cited in [8] for more details).

4. NUMERICAL CALCULATIONS

We consider a discrete time series of the electric
activity as a one-point stochastic process

(3)

It is convenient to introduce the normalized time corre-
lation function for the quantitative description of time
series,

(4)

where σ2 is the variance, N is the number of measure-
ments, and τ is a finite discretization time. The key ele-
ment of the theory consists in transition from contin-
uum values, variables, and equations to discrete ones.
We then obtain a Liouville-like equation of motion for
multidimensional state vectors. We can use the method
of projection operators in a finite-dimensional vector
space. This allows splitting the Liouville-like discrete
equation of motion into two mutually orthogonal sub-
spaces, one of which is relevant and the other is irrele-
vant to discrete time correlations. We have also devel-
oped the method for obtaining the set of dynamic
orthogonal variables by the Gram–Schmidt orthogonal-
ization procedure.

Dynamical orthogonal variables were calculated
from initial time series (3) by the formulas (see [5, 6])
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where the parameters λi and Λi were calculated using (2).
Simple, but cumbersome calculations show that the first
short-memory function mn(t) represents a normalized
TCF of the first dynamic variable Wn ,

(6)

We then obtain a chain of finite-difference discrete
non-Markovian kinetic equations for the initial time
correlation function and memory functions of various
orders. We note that all the involved kinetic and relax-
ation parameters, the time correlation function, and the
memory functions can easily be found and calculated
directly from the experimental time series. The spectra
of memory functions were calculated using the fast
Fourier transform.

mn t( )
Wn 0( )Wn t( )〈 〉

Wn 0( )〈 〉 2
----------------------------------.=
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5. NON-MARKOVIAN PROPERTIES OF EEGs

We have analyzed the time and frequency evolution
of the signals during tonic–clonic seizure by means of
the time-window technique. We find that the memory
function spectra and the statistical spectrum of the non-
Markovity parameter are valuable for quantitative and
qualitative analysis of epileptic seizures. Numerical
parameters based on the theory of discrete non-Mark-
ovian processes provide quantitative information about
the state of the brain before, during, and after the sei-
zure.

Non-Markovian properties are known to play an
essential role in the time dynamics of complex systems.
On the basis of our theory [5, 6], we can calculate mem-
ory functions Mi(t), i = 0, 1, 2, 3 directly from experi-
mental data by Eqs. (2.41)–(2.46) in [6]. We analyze the
properties of memory functions by calculating their
power frequency spectra. For a quantitative estimation
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Fig. 1. Time record of the first four orthogonal variables W0 (a), W1 (b), W2 (c), and W3 (d) of the sampling of electric activity during
the tonic–clonic seizure under study. The difference in the dimensions of the four variables must be taken into account in analyzing
the scales. The general form of all signals has definite similarity. Simultaneously, some differences in time behavior, Wi(t), are made
evident, especially for the states before and after the seizure. We emphasize that the whimsical entanglement of regular and chaotic
components is omnipresent in the time-recording window of all the signals. We also note that the difference between the raw EEG
data before, during, and after the seizure is sufficiently dramatic. However, simple registration of this fact does not allow us to reveal
such subtle features of EEG spectra as the presence or absence of the chaotic or regular components in the signal.
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Fig. 2. The window-time behavior of the power spectra µi(ω), i = 0 (a), 1 (b), 2 (c), and 3 (d), for the considered sampling with the
tonic–clonic seizure from the short-time window dynamics of the human brain electric activity. The sharp reduction (by almost one
order) of intensity of the low-frequency components of the spectra (in the region of δ and ϑ  rhythms) attracted our attention at the
transition from µ0 to µ1, µ2, and µ3. The spectra µi(ω), i = 1, 2, 3, contain rather strong noises distributed at regular intervals in the
entire frequency region. The intensity in the region of δ and ϑ  rhythms sharply decreases in the first half of the seizure (7th, 8th, 9th
and, in part, 10th windows) in all µi, i = 0, 1, 2, 3. The sharp increase in the intensity in the low-frequency region of the spectrum
by almost 100 times (in the regions of δ and ϑ  rhythms) is observed in the second half of the seizure (11th, 12th, and 13th windows).
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of the non- degree of Markovity, we use the frequency-
dependent generalized non-Markovity parameter εi(ω)
introduced by us previously [5]. From the theory in [5,
6], we can also calculate the quantitative values of the
kinetic and relaxation parameters λ1, λ2, λ3, Λ1, and Λ2
that give additional information on the properties of the
complex system under study.

For the observed EEG spectra, we divide the entire
time evolution data into nonoverlapping epochs of
1024 data points each. The dynamics of the first four
dynamical orthogonal variables W0, W1, W2, and W3 of
the entire data set is presented in Fig. 1. For each epoch,
we have calculated the power spectra of the first four
memory functions µ0(ω), µ1(ω), µ2(ω), µ3(ω) and the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
first three points of statistical spectra of the non-Mark-
ovity parameter ε1(ω), ε2(ω), and ε3(ω) [5]. The time
evolution of the spectra is shown in three-dimensional
diagrams (Figs. 2 and 3). The time evolution of the
numerical parameters λ1, λ2, λ3, Λ1, Λ2 is presented in
Fig. 4.

We emphasize that strong demarkovization of the
stochastic changes of brain electrical potentials with
decreasing numerical values εi to the point of unity is
exhibited during a tonic–clonic seizure. The chaotic
regime of the system is then replaced by the steady non-
Markovian-state regime.

It can be seen from Figs. 1a–1d that the time evolu-
tion of the dynamic orthogonal variables Wi , i = 0, 1, 2,
Fig. 3. The window-time behavior of the first three points of the non-Markovity parameter εi(ω), i = 1 (a), 2 (b), and 3 (c), for the
long sampling including the tonic–clonic seizure during epilepsy. For the state before the seizure, the quasi-Markovian behavior
(ε1 ~ 10) of the first point ε1(ω) in the low-frequency region (with δ and α rhythms) is obvious. The beginning of the seizure (7th,
8th, 9th, and 10th windows) exhibits a strong non-Markovity (ε1 ~ 1) on all frequencies of the full spectrum. A weak non-Markovity
in the region of δ and ϑ  rhythms (ε  4) is found during the seizure. A strong non-Markovity on all frequencies is established
immediately after termination of the seizure (14th window). The frequency behavior of ε3(ω) is characterized by steady non-Mark-
ovity (ε3  1) in all the windows and in the entire frequency region. A weak quasi-Markovian noise (in the region of α and β
rhythms) appears before the seizure (2nd and 5th windows) and at the end of the seizure (12th, 13th, and 14th windows). The behav-
ior of parameter ε2(ω) is rather peculiar. A strong non-Markovity (ε2 ~ 1) appears long before the seizure (3rd, 4th, 5th, and 6th
windows). Further development of the seizure is accompanied by a slight noise in ε2(ω) in the region of α and β rhythms. The ter-
mination of the seizure results in a strong non-Markovity (ε2 ~ 1) in the 13th window. Noisiness in the entire frequency range of the
14th window then occurs. The steady non-Markovity (ε2 ~ 1) is appreciable in the 15th, 16th, and 17th windows, appearing after
termination of the seizure. The low-frequency (in the region of δ rhythms with ε2 ~ 1) and high-frequency (in the top border of the
γ-spectrum with ε2 ~ 3) sites of the spectrum are intensely noisy.
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Fig. 4. The window-time behavior of the kinetic (λ1 (a), λ2 (b), and λ3 (c)) and relaxation (Λ1 (d) and Λ2 (e)) parameters for the
time sampling at epilepsy with the tonic–clonic seizure. The kinetic parameters λ1, λ2, and λ3 are always negative and increase with
seizure. The relaxation parameters Λ1 and Λ2 change sharply with the sign change from the beginning of the seizure. The most dra-
matic changes in the behavior of Λ1 and Λ2 occur during the seizure in the opposite directions.
3, can be smoothed. Therefore, the scales of these vari-
ables before and during the seizure are practically iden-
tical. The beginning of the seizure (see Figs. 2a–2d) is
characterized by a sharp recession of low-frequency
peaks in the spectrum µ0(ω) (7th–10th windows); these
peaks in µ0(ω) rise sharply at the end of the seizure and
immediately after the seizure. The spectra of µj(ω), j =
1, 2, 3, differ by white noise and low-frequency bursts
on the tail of the seizure. These bursts are most appre-
ciable in the behavior of the spectra µ2(ω) and µ3(ω).

The behavior of the first three points in the statistical
spectrum of the non-Markovity parameter εi(ω), i = 1,
2, 3 (see Fig. 3), turn out to be most indicative and
demonstrative. The state before the seizure can be con-
sidered quasi-Markovian in the 1st–6th windows for
the first level in the low-frequency region (here, ε1(ω)
reaches a value of 10) and in the 1st and 2nd windows
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
for the second level (ε2(ω) ~ 1.5). The beginning of the
seizure (the 7th and 8th windows) is accompanied by
the strong non-Markovity of the first level (εi(ω) ≈ 1).
The increase in low-frequency non-Markovity on the
first (ε1 ~ 3.8), second (ε2 ~ 1.5), and the third (ε3 ~ 1.5)
relaxation levels is visible at the end of the seizure
(10th–13th windows). The behavior on the third level
with a value of ε3 ≈ 1 can be considered non-Mark-
ovian.

Non-Markovian relaxation behavior on the second
level is noteworthy (see Fig. 3b). The strong non-Mark-
ovity (ε2 ≈ 1) in the entire frequency region appears
long before the seizure in the range from the third to the
sixth windows. The weak noise at the mean frequencies
is appreciable during the seizure (10th–12th windows).
The ending of the seizure coincides with the non-Mark-
ovian 13th and quasi-Markovian 14th windows. The
SICS      Vol. 96      No. 3      2003
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appearance of a strongly pronounced non-Markovian
state on the second level with a value of ε2 ≈ 1 is there-
fore a clear precursor to the seizure. It is significant that
a similar precursor is absent in other non-Markovian
markers.

The relaxation (λ1, λ2, and λ3) and kinetic (Λ1 and
Λ2) parameters calculated with the formulas of the the-
ory (see Fig. 4) are very sensitive to approaching the
seizure. All the parameters λi, i = 1, 2, 3, always remain
negative and change within wide limits: (–0.97 ≤ λ1 ≤
−0.15, –1.03 ≤ λ2 ≤ –0.74, and –1.03 ≤ λ3 ≤ –0.89) in
units of τ–1. Parameters Λ1 and Λ2 change sign at the
time of the seizure. This corresponds to alternation in
the type of solution to the discrete nonlinear kinetic sto-
chastic equation (see Eqs. (2.56)–(2.58) in [6]). All of
the above parameters are sensitive to approaching the
seizure. A sharp decrease in the values and the sign
alternation of λi and Λi can also be considered a quan-
titative precursor to a seizure.

Therefore, the increase in parameters εi(ω) can be
considered a markovization of the stochastic process. It
may signify an increase in the chaotic components of
EEG signals. Simultaneously, a decrease in εi(ω) to
unity is related to demarkovization of the process under
study and to an increase in the regular components of
the signals. It is obvious from Figs. 1–4 that the specific
alternations, fast and sudden changes of chaotic and
regular regimes, are inherent features of the stochastic
variation of electric potentials during epileptic seizure.

6. CONCLUSIONS
We have clearly demonstrated that the set of kinetic,

relaxation, dynamic, and spectral parameters and char-
acteristics of a discrete stochastic process are valuable
for quantification of stochastic processes of markoviza-
JOURNAL OF EXPERIMENTAL
tion and demarkovization in EEG data and for predic-
tion of and precursor to epileptic seizure. Because a
similar situation is typical of the majority of the phe-
nomena in live systems, our findings are most relevant
for life sciences.
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