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Abstract—A review is presented of numerous experimental data that exhibit anomalies in sound transmission
through the water–sand interface of the sea bottom at overcritical angles of incidence. These data are complemented
with those of in-sea experiments performed with a side-scan sonar for low grazing angles. It is shown that the expla-
nations given by different researchers for the anomalous phenomena are insufficient, and a development of a new
theoretical model is required to allow for all aspects of the problem. © 2002 MAIK “Nauka/Interperiodica”.
In applied acoustics, a class of problems exists
whose solutions are based on that of a simpler classical
problem of sound reflection and refraction at an inter-
face between two media. Such problems primarily
include the problems of sound propagation in a
waveguide [1], where the phenomenon of total internal
reflection plays a key role.

Muir, Horton, and Thomson [2], 1979, were the first
to express doubts about the validity or at least about the
completeness of the classical theory for describing the
reflection and refraction processes. Their paper consid-
ers an experiment on the reflection and refraction at the
interface between water and sand at a sea bottom for
bounded beams generated by a parametric sound
source. The authors argued that the experimental data
agree well with the theory only for undercritical angles
of incidence. For overcritical angles, the experiment led
to anomalous results, namely:

—the amplitude of the transmitted wave was by
10−15 dB higher than the calculated one (the amplitude
anomaly);

—the sound field in the refracted wave was spread
over a wide angular range (the anomaly of the refrac-
tion angle).

The aforementioned paper gave rise to a number of
publications and discussions in which mainly experts in
parametric sound sources participated. The conclusion
of the discussion was summarized by Williams and Sat-
koviak [3] in 1989, who attributed the amplitude anom-
aly to the specificity of calculating the performance of
the parametric projector. In their opinion, even in the
far-field zone, the sound field of the parametric source
retains its sensitivity to the structure of the transverse
aperture factor, which is governed by the distribution of
the boundary function at the pump projector; when this
factor is appropriately chosen, the theory can be cor-
rected and brought into agreement with the experiment.
1063-7710/02/4804- $22.00 © 20379
However, even the corrected theory lacks in explaining
the anomaly of the refraction angle.

The conclusions formulated in [3] seemed to be
unconvincing for Chotiros [4], whose paper appeared in
the same year and caused a new wave of publications
and discussions. In his paper, Chotiros both confirmed
the anomalous results of the previous studies [2] and
obtained the frequency dependence for the observed
phenomena. By using linear but well directed sound
sources, Chotiros nearly excluded the errors in the the-
oretically estimated signal level of the transmitted wave
and, respectively, in the anomaly of the level.

The experiments of Chotiros were performed in a
shallow-water sea with sandy bottom, with a technique
that was thereafter repeatedly used by other research-
ers. According to this technique, the transmitted waves
were received by a system of hydrophones distributed
along orthogonal axes of a cubic array. The vertically
distributed hydrophones served to analyze the vertical
structure of the transmitted wave, while the hydro-
phones distributed over the three axes of the array were
used to determine the relative time delays and the prop-
agation direction for the transmitted wave. The sound
beam was generated by a source that was at a distance
of 4.5 m from the bottom surface. The angular position
of the tower-mounted projector relative to the receiving
array could be changed so that the grazing angle of the
incident wave took the values 90°, 59°, 39°, 29°, and 22°.

The amplitude anomaly, i.e., the offset of the mea-
sured amplitude from the calculated value, along with
its frequency dependence, is illustrated by Fig. 1a taken
from [4], where the tower positions 3 and 5 correspond
to undercritical and overcritical incidence angles,
respectively (the corresponding grazing angles are 39°
and 22°). At the frequency band f = (5–80) kHz, the
estimated amplitude anomaly is A = (0–60) dB, while
002 MAIK “Nauka/Interperiodica”
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A = (10–15) dB at f = 20 kHz, which agrees with the
estimate of [2].

Figure 1b [4] illustrates the anomaly of the refrac-
tion angle. Here, the frequency dependences are pre-
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Fig. 1. Experimental characteristics of sound waves
refracted at the water–sand interface: (a) amplitude anom-
aly of the transmitted wave; (b) anomaly of the sound speed
(the refraction angle); and (c) anomaly of the propagation
velocity.
sented for the apparent and effective sound speeds in
the bottom material, which are calculated in accordance
with the Snell law from the refraction angle, sound
speed in water, and incidence angle specified by the
experimental layout. In the model representation, the
sandy bottom itself is treated as an equivalent fluid. For
tower positions 1–3 that correspond to undercritical
incidence angles, the experimental sound speed in the
sea floor agrees well with the model one, while, in posi-
tion 5, which corresponds to overcritical angles, the
effective sound speed decreases from the expected
value C = 1742 m/s to 1100–1000 m/s at higher fre-
quencies of the band f = (5–80) kHz.

Among the later publications of Chotiros [5–8],
paper [6] should be mentioned on detecting the low-
velocity wave component in the field of the transmitted
waves. In this work, a technique was proposed that was
subsequently used by other experimenters. According
to this technique, the experiment was carried out in a
hydroacoustic tank whose bottom was covered with
sand, which was prepared in a specific manner to get
minimal surface roughness. A bottom-moored vertical
chain of hydrophones was used for the signal reception.
An omnidirectional source of pulsed sound signals
could horizontally move at a distance of 0.5 m from the
bottom. From the measured amplitude and arrival time
of the pulsed signal, the parameters of transmission
were obtained and compared with the calculations. The
calculated dependences of the arrival times were plotted
for both refracted and diffracted components [1] of the
transmitted signal, with the sound speeds C = 1742 m/s
and C = 1200 m/s in the bottom material, on the
assumption that the Snell law was valid at the interface.

These experiments clearly showed that the signal
arrival times satisfactorily corresponded to the calcu-
lated sound speed, C = 1742 m/s, for the undercritical
incidence angles (curves a and b). However, as the hor-
izontal distance and incidence angle increase, the
arrival time consistently shifts to the plot (curve c) that
corresponds to the speed C = 1200 m/s in the bottom
material, thereby exhibiting the anomaly of propaga-
tion velocity (Fig. 1c [4]).

The same technique was used in [8] to measure the
angular distribution of acoustic intensity in the trans-
mitted wave. According to these measurements, the
maximum of the angular distribution changes in accor-
dance with the Snell law at undercritical angles, as if
the sound speed in the bottom material took the calcu-
lated value 1675 m/s. However, in the domain of critical
angles, another peak appears in the angular distribution
that remains predominant as the grazing angle decreases
down to 9.7°. This peak corresponds well to sound
speeds of 1100–1200 m/s in the bottom material, and the
angle of anomalous refraction is 45°–55° (Fig. 2 [8]).

The anomalies of the refraction angle and propaga-
tion speeds were used by Chotiros to propose an expla-
nation for the anomalous phenomena by applying the
theory of sound propagation in two-phase media, which
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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was earlier developed by Biot [9]. According to the Biot
theory, three types of waves can exist in a two-phase
medium like sea sand: two longitudinal waves and a
shear wave. Among these waves, the second longitudi-
nal one has an anomalously low velocity, CL2 ≈ 400 m/s,
and two other waves propagating with quite “normal”
velocities, CL1 = (1700–1750) m/s and Ct = 1000 m/s,
which correspond to the experimental data. According
to Chotiros, the second (slow) longitudinal wave is just
what can be responsible for the anomaly of the refrac-
tion angle, because it implies no phenomenon of full
internal reflection at all. However, to agree with the
experimental data, this wave should have a velocity of
1000–1200 m/s. To come to the quantitative agreement,
Chotiros varied the parameters of the two-phase
medium of the sea-sand type to obtain a specific disper-
sion dependence for the velocity of the slow longitudi-
nal wave. The resulting dispersion proved to be so
strong that it yielded a value of about 400 m/s at low
frequencies and the desired value 1000–1200 m/s at the
experimental frequencies 5–60 kHz.

In this connection, paper [10] should be mentioned,
which reports on acoustic measurements of the elastic-
ity of various bottom materials, including sandy ones
under load. As the quantity to be measured, the veloc-
ity of the slow longitudinal wave was used. It proved
to be 250–500 m/s for different loads at frequencies of
5–60 kHz, but no dispersion was observed. In the latest
papers of Chotiros [11–13], interesting additional
experimental data are presented. However, no new
arguments or information on the directly measured
velocity and dispersion of the slow longitudinal wave
can be found there.

On the other hand, an alternative point of view
appeared in recent years, and it was proposed in [14–21].
The proposed explanation is based on the well-known
theory of sound refraction by the randomly rough sur-
face of the sea bottom. This theory has been success-
fully used in [14–17] to explain the anomaly of the
refraction angle and the apparent decrease in the effec-
tive sound speed in the bottom material. In [18], quan-
titative estimates are given for the amplitude anomaly
and its dependence on the depth of the observation
point, as related to the diffraction-caused insonification
of the bottom halfspace. However, the unique experi-
mental data obtained in [19–21] with the techniques
earlier tested in a shallow sea and a hydroacoustic tank
offers convincing evidence that the proposed explana-
tion of the anomalous phenomena is at least not the
only one.

Let us consider the aforementioned experimental
data in more detail. In [19], an improved technique is
reported for the measurements in a hydroacoustic tank
whose bottom is covered with a layer of sea sand pre-
pared in a specific manner. The surface of the sand was
either smoothed to a condition of an even plane or
brought to a condition of roughness. The measuring
technique included variation of the horizontal position
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
of the omnidirectional sound source at a distance of
0.5 m from the bottom and sequential changes in the
depth of the receiving hydrophone within the bottom
bulk down to a depth of 90 cm with a step of 1.5 cm.
Upon processing the amplitude-phase information, the
technique provides the cross sections of the sound field
in the bottom, which take the form of wave fronts in the
depth–distance coordinates. These fronts characterize
the complex pattern of sound refraction and diffraction
for the entire range of incidence angles, including the
overcritical ones. Figures 3a and 3b illustrate the exper-
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imental pattern of the sound field for the smoothed sur-
face, both at low and high frequencies (5 and 50 kHz,
respectively).

At a frequency of 5 kHz, the sound field structure is
represented by a set of quasi-spherical wave fronts,
which corresponds to the refracted waves. The propa-
gation velocity of the waves along the interface corre-
sponds well to the water wave: there are no traces of the
bottom (lateral) wave. The absence of any anomalies in
the sound field structure at 5 kHz fully agrees with the
earlier conclusions of Chotiros [4].

A quite different pattern of the sound field is
observed at a frequency of 50 kHz, which is illustrated
by Fig. 3b. Two subsystems of wave fronts are visible,
one of which corresponds to the quasi-spherical
(refracted) waves in the domain of undercritical angles
and the other corresponds to a surface source located in
the domain of overcritical incidence angles. The two
subsystems interfere to produce a maximum in the sound
pressure at the apparent refraction angles 45°–55°, the
corresponding apparent sound speed in the bottom
material being 1100–1200 m/s.

It is clear that these apparent values, although agree-
ing well with those observed in [4–8], have nothing in
common neither with the slow wave predicted by the
Biot theory nor with diffraction-type sound scattering
by the bottom surface, which is treated as smooth in the
case at hand. At the frequency 50 kHz, the sound field
structure itself is anomalous in the sense that it does not
follow the classical description [1].

In [19], the sound field pattern is also presented for
a bottom with a rough surface, for both low and high
frequencies. At 50 kHz, the diffraction sound scattering
naturally deformed the structure of the wave fronts cor-
responding to the surface source in the domain of over-
critical angles, because this domain is most sensitive to
the state of the surface. The structure and position of the
interference maximum remained nearly unchanged at the
apparent refraction angles 45°–55°. The direct measure-
ments of the spatial spectrum of the sound field [19] and
sound speed in the sandy bottom [20] did not reveal the
slow wave with a velocity of 1100–1200 m/s, which is
predicted by the Chotiros–Biot theory [8].

The measurements in a hydroacoustical tank with
the technique proposed in [6] also allow one to obtain
the transmission characteristics from the measured
propagation times and to detect wave components that
have different effective velocities of propagation. Such
characteristics were found in [19], and the slow compo-
nent with an effective velocity of 1200 m/s was reliably
detected from the experimental data obtained for the
model sand with a rough surface. This component
proved to have a low level when the surface was suffi-
ciently smooth.

The aforementioned data show that the diffraction-
scattering mechanism increases the level of the low-
velocity component in the total wave field. However,
these data are insufficient to unambiguously determine
the nature of the slow component and, hence, the origin
of the propagation time anomaly.

For example, the quantitative estimate C = 1200 m/s
for the effective velocity of the transmitted wave, at
which the slow component manifests itself, is obtained
on the assumption that the refraction mechanism acts
and the Snell law is valid. If one supposes that the slow
component is the surface wave with a synchronous
excitation, the effective propagation velocity C =
(1380–1420) m/s will correspond to the same delay
times, the specific value of the velocity depending on
the parameters of the sand. It is clear that, for a wave
with such characteristics to exist, one needs either some
other model for the bottom material which differs from
that of Biot, or another mathematical model for the bot-
tom halfspace which differs from the classical one.

The important information required for understand-
ing the time anomaly is carried by the impulse
responses presented in [13], [18], and [20]. In these
works, the technique from [4] was applied to a shallow
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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sea with the use of delta-like probing pulses at various
incidence angles and horizons of observation. From the
entire body of the data obtained, one can conclude that
the impulse response is considerably distorted for lower
grazing angles and deeper horizons of observation. The
distortion of the impulse response consists in its broad-
ening, the tail part of the pulse nearly always having a
discrete structure, with pronounced arrival times of sep-
arate wave components.

According to [13], the tail components of the
impulse response can be attributed to the slow wave
predicted by the Biot–Chotiros theory. However, as we
have mentioned above, these components can be
related to the surface wave as well. The discrete struc-
ture of the impulse response can be hardly explained by
the diffraction mechanism of insonifying the bottom
halfspace with the incoherent signals scattered by the
random roughness of the bottom.

Finally, the unique experimental data reported in
[13], [18], and [20] complement the results reported in
[4] on estimating the amplitude anomaly of the trans-
mitted wave and its dependence on the parameters of
the problem. These experiments were performed in the
sea, with the use of a parametric projector and broad-
band (delta-like) pulses, for wide ranges of reception
depths and grazing angles. The following conclusions
can be drawn from the aforementioned publications:

—the amplitude anomaly grows as the reception
depth increases and the grazing angle decreases;

—the amplitude anomaly exhibits an intricate
interference-caused dependence on the frequency and
grazing angle (see [18] and [20]) and on the reception
depth [13];

—at the experimental frequencies 5–15 kHz, the
amplitude anomaly is estimated as 30–80 dB at the low
grazing angles 30°–15° (see [18] and [20]).

Note that, according to [4], the amplitude anomaly
changes by 30–40 dB per decade within the frequency
band 5–80 kHz when the reception horizon is fixed and
the grazing angle is equal to 22°.

The undoubtedly unique estimates were obtained in
[13] for the amplitude anomaly at a grazing angle of
about 4.3°, with different reception depths. To simplify
the analysis, we present these data in Fig. 4, with curve 1
corresponding to the calculated signal level in the inho-
mogeneous wave of the lower halfspace and curve 2
corresponding the experimental data given in [13]. It is
evident that the amplitude anomaly exhibits an intricate
interference-caused dependence on the reception depth,
and the signal level reaches its maximum at some hori-
zon under the surface. One can suppose that, at such
small grazing angles, the decrease in the signal ampli-
tude does not follow the exponential law in the near-
bottom layer, as the model requires: it rather increases
up to some horizon, remains inhomogeneous within the
near-bottom layer, and spherically diverges outside this
layer.
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
Let us consider the spectra of the received signals,
which are shown in Fig. 5 [13]. Figure 5a presents the
calculated and experimental power densities for the sig-
nals received by hydrophones 7 and 8, which were
located directly at the interface, z = 0. One can see that
the experimental spectrum significantly differs from
the calculated one in its low-frequency part, this differ-
ence being the evidence of a considerably broadened
signal. Figures 5b–5d correspond to hydrophones 3, 2,
and 1, whose depths are 1.0, 1.8, and 2.6 m, respec-
tively. We can see that the spectrum of the model signal
rapidly looses its high-frequency components in accor-
dance with the exponential decay of the signal ampli-
tude when the attenuation coefficient in the inhomoge-
neous wave increases with growing frequency. In con-
trast, the spectra of the signals received at certain
horizons are enriched with high-frequency components
whose level increases with increasing frequency,
thereby compensating for the losses caused by the geo-
metric spread and signal broadening. As a result, the
spectra of the signals received by the deeper hydro-
phones remain nearly uniform. The only possibility for
such a behavior is an inhomogeneous wave whose
amplitude exponentially increases in depth.

Another feature of the experimental data [13] con-
sists in the interference-caused variability of the signal
level from –20 to +9 dB relative to the calculated value
at points 4, 7, and 8, which are located either in the
water bulk near the bottom or at the bottom but are sep-
arated by 1.5–2.0 m in distance.

Unfortunately, the aforementioned discussion of
more that 20 years in duration had no appropriate rep-
resentation in Russian publications. However, it is
really interesting for those who use in practice under-
water acoustic systems that operate near the sea bottom
with overcritical (small) incidence angles. Side-scan
sonars (SSS) can be primarily attributed to such sys-
tems. In the Institute of Marine Technology Problems,
Far-East Division, Russian Academy of Sciences, rich
experience had been accumulated in operating the
SSS of a self-contained unmanned underwater vehicle
(SCUUV). With the optimal operational modes of an

1651451251058565

3

2

1

0

z, m

P, dB

1

2

Theoretical estimates
Experimental values

Fig. 4. Signal levels in the transmitted wave versus observa-
tion depth: (1) calculated and (2) experimental depen-
dences.



 

384

        

KASATKIN

                   
–40

4

(c)

Frequency, kHz
2 6 8 10 12

–20

0

20

40

60

80

BP

2

2

4

(d)

2 6 8 10 12

BP

1

1

–40

(a)

–20

0

20

40

60

80

Experiment

7
8

7, 8

Base line model

dB re 1 µPa/
(b)

BP

3

3

Hz

Fig. 5. Power spectral density of the received signals: (a) hydrophones 7 and 8 are at the bottom; (b) hydrophone 3 is at a depth of
1 m in the bottom material; (c) hydrophone 2 is at a depth of 1.8 m in the bottom material; and (d) hydrophone 1 is at a depth of
2.6 m in the bottom material.
SCUUV that moves at a height h = (10–15) m above the
bottom, the ultimate range of the SSS is 550–750 m on
each side. Such distances correspond to grazing angles
that are lower than 1°.

When the grazing angles are that small, the imped-
ance interface behaves as a pressure-release screen,
near which, according to the classical description, the
level of the sound pressure decreases as the squared dis-
tance. Such a spread law should make the SSS nearly
inoperative. However, the anomalous results were
obtained just with this unusual operational mode of the
SSS, which was tested in the Sea of Japan at depths of
H = (2500–3000) m. The experimental data obtained in
1998–1999 are presented in Fig. 6.

In the SSS images of the sea bottom, structures can
be seen that have a form of alternating dark and bright
bands. These structures characterize the interference
processes that take place in the near-bottom propaga-
tion of the SSS sound signals at low grazing angles. It
is natural to assume that, with unchanged conditions of
interference, the spatial interference period is constant,
because it is governed by nothing but the spatial fre-
quencies of the interfering waves. However, if the bot-
tom relief changes, the SSS images will exhibit only the
horizontal projection of the spatial interference period.
Therefore, in fact, Fig. 6 represents a topographic map
of the sea floor, at which the interference bands play the
role of isobaths. Close positions of the bands indicate a
sharp rise in the bottom profile, while an increase in the
apparent interfering period means smoothing of the
bottom.

Another feature of the interference is illustrated in
Fig. 7. It can be seen that there is no interference at the
flat portions of the bottom, even at overcritical inci-
dence angles and high levels of backscattering. How-
ever, if a bottom hole appears, to which a dark spot cor-
responds in the SSS image, and an extremely low back-
scattering level occurs, the interference bands do
appear at the outer side of the hole, where the hole
changes into a bottom rise.
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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200 m

200 m0

Fig. 6. Bottom image obtained in the Sea of Japan at a depth of 2500 m (the experiment of 1998).

200 m

0 200 m

Fig. 7. Bottom image obtained in the Sea of Japan at a depth of about 3000 m (the experiment of 1999).
Figures 8 and 9 show other examples of the SSS
images of the bottom, which were obtained in 2001 in
the Barents Sea at depths of 150–170 m. The height of
the SCUUV above the bottom was as small as 1–2 m,
corresponding to the grazing angles 0.2°–1.0°. The
rocky sea floor was covered with a layer of sediments.
In all images, the interference appears only at the outer
TICAL PHYSICS      Vol. 48      No. 4      2002
sides of the bottom holes, the interference structures
themselves being quite stable and regular in their
shapes.

Summarizing all experimental data obtained in
deep-water regions of the Sea of Japan, shallow-water
harbors of the Peter the Great Bay, and the Barents Sea,
we can state that the interference structures occur quite
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50 m
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Fig. 8. Bottom image obtained in the Barents Sea at a depth of 150 m (the experiment of 2001).

50 m

50 m0

Fig. 9. Bottom image obtained in the Barents Sea at a depth of 170 m (the experiment of 2001).
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regularly when the SCUUV is towed at small heights
above the bottom. For all interference structures, the
following features are characteristic:

—the interference occurs in a zone corresponding to
the overcritical grazing angles;

—the interference occurs nowhere but at the outer
side of the dark spots corresponding to the holes in the
bottom;

—the spatial period of the interference varies from
several meters to several tens of meters, depending on
the bottom relief.

The anomaly of the data obtained consists in that an
interference period as large as that cannot be explained
by the classical description, i.e., in terms of the water
and bottom-material waves for which the spatial inter-
ference period is by two orders of magnitude higher
than the observed one. Actually, the spatial interference
period of the water and bottom-material waves is gov-

erned by the simple relation L = , where λ ≈ 2 cm

is the wavelength at the SSS operational frequencies,

∆C = C2 – C1, C = (C2 + C1), and C1 and C2 are the

velocities of the water and bottom-material waves,
respectively. By specifying ∆C ≈ 0.1C for soft bottom
materials of the sediment type, we obtain the estimate
L ≈ 10λ. However, the SSS cannot resolve such a fine
spatial structure of the interference. The diffraction
scattering of the incident wave by the bottom roughness
cannot lead to such highly ordered interference struc-
tures as well. It is also evident that the Chotiros–Biot
theory fails to explain the observed interference struc-
tures due to the slow wave that occurs in a two-phase
medium like a sandy bottom.

The analysis of the data obtained in numerous and,
sometimes, unique experiments of the last two decades
leads to a conclusion that these experiments posed
many questions, but the answers given by many
researchers can explain only some individual aspects of
the problem. The scale of the problem and its impor-
tance for applied acoustics allow us to hope that further
theoretical attempts will not be restricted by correcting
the known physical statements and models.

λ C
∆C
--------

1
2
---
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Abstract—To study the mechanisms that govern the coding of temporal features of complex sound signals,
responses of single neurons located in the dorsal nucleus of the medulla oblongata (the cochlear nucleus) of a
curarized grass frog (Rana temporaria) to pure tone bursts and amplitude modulated tone bursts with a modulation
frequency of 20 Hz and modulation depths of 10 and 80% were recorded. The carrier frequency was equal to the
characteristic frequency of a neuron, the average signal level was 20–30 dB above the threshold, and the signal
duration was equal to ten full modulation periods. Of the 133 neurons studied, 129 neurons responded to 80%
modulated tone bursts by discharges that were phase-locked with the envelope waveform. At this modulation
depth, the best phase locking was observed for neurons with the phasic type of response to tone bursts. For tonic
neurons with low characteristic frequencies, along with the reproduction of the modulation, phase locking with
the carrier frequency of the signal was observed. At 10% amplitude modulation, phasic neurons usually responded
to only the onset of a tone burst. Almost all tonic units showed a tendency to reproduce the envelope, although the
efficiency of the reproduction was low, and for half of these neurons, it was below the reliability limit. Some neu-
rons exhibited a more efficient reproduction of the weak modulation. For almost half of the neurons, a reliable
improvement was observed in the phase locking of the response during the tone burst presentation (from the first
to the tenth modulation period). The cooperative histogram of a set of neurons responding to 10% modulated tone
bursts within narrow ranges of frequencies and intensities retains the information on the dynamics of the envelope
variation. The data are compared with the results obtained from the study of the responses to similar signals in the
acoustic midbrain center of the same object and also with the psychophysical effect of a differential sensitivity
increase in the process of adaptation. © 2002 MAIK “Nauka/Interperiodica”.
In the analysis of complex sound signals in auditory
systems of humans and animals, the main role is played
by the mechanisms that provide the coding of the tem-
poral variations of the signal amplitude in separate fre-
quency channels. To study these mechanisms, it is con-
venient to use anurans, which, on the one hand, have a
relatively simple auditory system and, on the other
hand, are capable of performing a detailed analysis of
both environmental sounds and communication calls of
their own species. Male frogs produce mating vocaliza-
tions for one or two weeks after hibernation. These
sounds form continuous signals with the dominant fre-
quency within 0.4–0.6 kHz and the modulation fre-
quency within 20–40 Hz [1, 2]. Such signals can be
considered as a simplified model of other complex sig-
nals, including speech. Hence, the problem of signal
encoding in the auditory system of anurans is important
for understanding the general mechanisms of the audi-
tory system operation in both animals and humans.

In studying the coding of amplitude-modulated
(AM) signals, most researchers use one of the follow-
ing types of stimuli: AM tone bursts [3–6] or continu-
ous AM signals [7, 8]. This paper studies the response
of isolated neurons to AM tone bursts. The majority of
publications concerned with this subject deal with the
case of 100% modulation depth, and the point of inter-
1063-7710/02/4804- $22.00 © 20388
est was the modulation transfer function, i.e., the
dependence of the mean firing rate or the synchroniza-
tion coefficient of the response on the modulation fre-
quency. It was demonstrated that the majority of
peripheral neurons located in the primary auditory cen-
ter, i.e., the dorsal nucleus of the medulla oblongata (a
homologue of the cochlear nucleus of mammals),
reproduce the amplitude modulation in the frequency
range from several hertz to hundreds of hertz [6, 9, 10].

Studies of the neural response of the dorsal nucleus to
stimuli with a small modulation depth are few in number.
In one publication, it was shown that, for relatively
intense stimuli, a 10% modulation is adequately repro-
duced at high frequencies of 100–160 Hz but practically
not reproduced at a lower frequency of 10 Hz.

In the auditory center of the midbrain of a frog, the
character of coding of AM tone bursts noticeably
changes. In the case of 100% modulated signals, most
neurons were found to exhibit the best phase locking
with the envelope waveform at relatively low modula-
tion frequencies (10–40 Hz). This tendency was
retained even for the neurons for which the highest fir-
ing rate was observed at modulation frequencies within
50–80 Hz [3]. A somewhat broader frequency range of
the amplitude modulation reproduction was only
002 MAIK “Nauka/Interperiodica”
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observed for some neurons of the torus semicircularis
of toads [11].

The neural responses of the midbrain to signals with
a modulation frequency of 20 Hz and modulation
depths of 80 and 10% and with a carrier intensity level
of 20–30 dB above the threshold were studied in detail
for the grass frog in [12]. A reliable discrimination of
10% amplitude modulation was observed for 104 of
186 neurons studied, and 66 of these neurons exhibited
an improvement of phase locking during the AM tone
presentation, from the initial modulation period of the
AM stimulus to the terminal one. The comparison of
these data with the fragmentary data obtained in similar
conditions for the cochlear nuclei of other anuran spe-
cies suggested that an improvement of the phase lock-
ing of the response with weak periodic amplitude vari-
ations of relatively low frequency occurs along the
auditory pathway. To verify this hypothesis, a study of
the response stimulated by signals with a modulation
frequency of 20 Hz in the cochlear (dorsal medullary)
nucleus of a grass frog (Rana temporaria) was carried
out, and this study is the subject of this paper. The
parameters of the signals were approximately the same
as in the study of the midbrain neurons [12].

The preparation of the animals, the acoustic stimu-
lation, and the methods of recording the responses were
described in a number of previous publications [8, 12,
13] and will be briefly outlined below.

Frogs collected in autumn were studied in winter
and in spring. An operation consisting in the elimina-
tion of part of the braincase above the medulla oblon-
gata was performed under hypothermia [14], and the
edges of the hole were treated with lidocaine. After the
frogs recovered from the anesthesia, they were immo-
bilized by an allopherin injection. The frog under inves-
tigation was wrapped in moist gauze to provide cutane-
ous respiration and placed on a vibration-isolated table
in a soundproof chamber. The electrodes were repre-
sented by glass pipettes filled with 2M NaCl; the
pipette ends were 0.5–3.0 µm in diameter. The elec-
trodes were positioned immediately behind the cerebel-
lum and moved by a step-motor microdrive, which was
controlled from outside the chamber. Since the cochlear
nucleus is located immediately on the dorsal brain sur-
face, the instant when it was hit by the electrode could
be detected by the abrupt appearance of an asynchro-
nous evoked activity in response to the test stimulus (a
broadband noise burst).

The neuronal responses were amplified by an MZ-4
Nichon Kohden high-impedance amplifier and a power
amplifier with a passband of 0.25–3.0 kHz. The signal
was observed by an oscilloscope and listened to
through headphones. After detecting a neuron with a
spike amplitude that provided its reliable identification
and separation from noise, its optimal (characteristic)
carrier frequency and the response threshold at this fre-
quency were determined audiovisually. The neuron
spikes were transformed by a Schmidt trigger to stan-
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
dard pulses and then entered in a PC for real-time data
processing.

The tone signals were obtained from a G3-110 ana-
log generator possessing an input for providing the
amplitude modulation. The modulating sinusoid was
supplied from a G6-28 signal generator. The tone bursts
were formed by an electronic switch controlled by a
G5-60 pulse generator, which determined the duration
and period of the stimulus presentation. The modula-
tion frequency was synchronized with the stimulus
onset in such a way that the modulating function began
from the phase corresponding to the beginning of the
amplitude decrease from the mean level (a half-period
delay of the sinusoid). The rise and fall times of a tone
burst were 5 ms. The signal intensity level was varied
by an attenuator at a step of 1 dB.

The acoustic signals were delivered to the frog’s
tympanum via a dynamic telephone through a plastic
tube. The signal presentation was ipsilateral to the cere-
bral hemisphere under study. The calibration of the
closed acoustic system was performed for each frog
with the use of a half-inch condenser microphone with
a thin probe tube. The microphone with the tube was
preliminarily calibrated in a soundproof chamber.

The main experiments were performed with
512.5-ms-long tone bursts. The AM signals included a
12.5-ms-long initial part, within which the amplitude
increased during the first 5 ms and then decreased, and
ten full 20-Hz modulation periods, which were counted
starting from the minimal amplitude value. Corre-
spondingly, the maximal amplitudes were observed
within 37.5, 87.5, and 127.5 ms after the stimulus
onset, etc. The interval between the signal presentations
usually was 1.5–2.0 s, and the number of presentations
varied from 25 to 100.

In the course of the experiment, the peri-stimulus
time histograms (PSTHs) of the response were
obtained with a 0.5-ms width of one bin. The histo-
grams were obtained in terms of the instantaneous fir-
ing rate (the number of spikes in a reading divided by
the number of presentations and the width of the bin).
To monitor the stationary character of the response, the
time dependence of the mean firing rate was recorded
at a step of 2 s. In all cases described in this paper, the
response remained stationary.

After the experiment, the neurons were classified
according to their responses to tone bursts without
amplitude modulation. The classification was per-
formed automatically by a program used earlier in
studying the torus semicircularis [12]. Preliminarily,
the PSTH of the response was summed over four
points, so that its step was equal to 2 ms. The first stage
of classification included the determination of the
response latency delay by the instant when the instanta-
neous firing rate reached a given value, which usually
was 40 spikes per second. In some cases (for neurons
with a very high spontaneous firing or a very weak
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evoked firing), the threshold value for the latency delay
could be varied by the experimenter.

The following steps of the data processing were
identical for all neurons. First, the mean spike rate was
calculated for the interval 0–12 ms after the latency
delay. This value was divided by the mean rate for the
interval 0–512 ms after the latency delay. If the result-
ing ratio was greater than ten, the neuron was classified
as a phasic unit. If this ratio was between five and ten,
the neuron was ascribed to the T1 group. Neurons char-
acterized by the ratios between two and five were
classed as T2 units, and when the ratio was between one
and two, as T3 units. In the experiments described in
this paper, no neurons with a mean firing rate increas-
ing with time were observed, and, hence, the corre-
sponding group was not considered. This classifica-
tion ignores some of the possible features of the
response development with time (e.g., chopper or
pause patterns of the discharge); however, such fea-
tures were rather uncommon.

The following analysis of the PSTHs of the response
consisted in the calculation of the coefficients of the fir-
ing synchronization with the sequential modulation
periods. The 512-ms-long time interval taken after the
latency delay was divided into the initial part (12 ms)
and ten 50-ms-long fragments. The distribution of
spikes within each of the periods was considered as a
circular vector distribution for which the synchroniza-
tion coefficient (the normalized length of the vector
sum) and the phase of the maximum (the direction of
the vector sum) could be determined [15]. The values of
these parameters were also calculated for the superpo-
sition of all ten periods. For the synchronization coeffi-
cient obtained for individual periods, we use the term
partial synchronization coefficient (PSC), and for the
quantity obtained by the superposition, we use the term
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Fig. 1. Relation between the characteristic frequencies and
latency delays of the response for 133 neurons of the
cochlear nucleus of a grass frog. Different kinds of dots rep-
resent different groups of neurons classified according to
the shape of the PSTHs.
overall synchronization coefficient (OSC). For both the
individual periods and the whole response, the reliabil-
ity of the phase locking with the envelope waveform
was estimated [16].

The results of this study are based on the data
obtained from 133 single neurons located in the cochlear
nucleus of the grass frog. The characteristic frequencies
of neurons were between 130 Hz and 1.7 kHz. In this
series of experiments, we observed a relatively small
number of neurons optimally responding to frequencies
above 1.0 kHz. This result was somewhat different
from the data obtained previously [17]. The response
thresholds at the characteristic frequencies varied from
20 to 70 dB SPL, which agreed well with the previous
data [18].

The latency delays obtained for the neurons of the
dorsal nucleus were within 6–28 ms, and only six neu-
rons exhibited latency delays longer than 20 ms. This
distribution was much narrower than that observed for
the midbrain [19], and the average value of the latency
delay was much smaller than in the midbrain. Figure 1
shows the latency delay versus the characteristic fre-
quency of neurons (on a semilogarithmic scale). No
reliable correlation between the latency delay and the
characteristic frequency could be noticed for the whole
set of neurons, as well as for the separate neuron groups
that differed in the shape of the PSTHs.

As was mentioned above, the neurons were classi-
fied into four groups according to the shape of the
PSTHs of the responses to the characteristic-frequency
tones, whose intensities were within 20–30 dB above
the threshold. Of the 133 neurons studied, 17 neurons
belonged to the phasic group, 14 to the T1 group, 53 to
the T2 group, and 49 to the T3 group. No significant
differences were observed between the characteristic
frequency distributions for the phasic, T1, T2, and T3
units. The mean values of the latency delay were 14.9,
13.6, 13.81, and 13.22 ms for the phasic, T1, T2, and T3
neurons, respectively. A two-sample t-test with differ-
ent variances revealed no reliable difference in the
mean values of the latency delay for different neuron
groups, although, qualitatively, one could notice that,
on the average, the phasic neurons responded with rel-
atively greater delays.

The response to 80% amplitude modulation was
studied for 129 neurons. Examples of the PSTH of the
response to pure tone bursts and AM tone bursts are
shown in Figs. 2 and 3. According to the shape of the
PSTH of the response to a tone burst (Fig. 2a), a typi-
cal tonic neuron 61427 (a characteristic frequency of
270 Hz) belongs to the T3 group. Like the majority of
neurons with low characteristic frequencies, it was
capable of reproducing the carrier frequency (Figs. 2d–
2f). The response to a signal with 80% modulation
depth exhibited a distinct phase locking with the mod-
ulation period (Fig. 2b) and, simultaneously, with the
period of the carrier frequency (Fig. 2e). Neuron 11207,
whose response is shown in Figs. 3a–3c, belongs to the
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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Fig. 2. PSTHs of the response of a typical low-frequency tonic neuron [the 61427 neuron; the T3 group; a signal frequency (SF) of
0.27 kHz; a signal level (SL) of 78 dB SPL] to (a, d) a 0.5-s-long pure tone burst, (b, e) a 80% amplitude modulated tone burst, and
(c, f) a 10% modulated tone burst. The abscissa axis represents the time elapsed after the signal onset, and the ordinate axis repre-
sents the instantaneous firing rate. (a–c) The plots on the left present the whole histograms, and (d–f) the plots on the right show the
region between 50 and 100 ms. (b, c) In two of the plots, the values of the overall synchronization coefficient are indicated.
T1 group, and neuron 10610 (Figs. 3d–3f) exhibited a
phasic response to the tone signal. Both these neurons
reproduce the 20-Hz modulation of the signal with even
better phase locking than that observed for the tonic
neuron. The accuracy of the phase locking with the
80% modulated signal is highest for the phasic neuron.
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
It should be noted that the great majority of the neu-
rons under study adequately reproduced the amplitude
modulation with a frequency of 20 Hz and a depth of
80% (Fig. 4, the abscissa axis). However, some differ-
ence can be noticed in the efficiency of the reproduction
of this modulation for neurons with different types of
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Fig. 3. PSTHs of the response of (a–c) a tonic neuron with a sharp short-term adaptation (11207; T1 group; SF, 0.61 kHz; SL,
74 dB SPL) and (d–f) a phasic neuron (10610; phasic group; SF, 0.62 kHz; SL, 83 dB SPL) to 0.5-s-long (a, d) pure tone bursts,
(b, e) 80% amplitude modulated tone bursts, and (c, f) 10% modulated tone bursts. The notations are the same as in Fig. 2.
the PSTH of the response. Of 17 phasic neurons, 13
reproduced the signal with the 80% modulation depth.
Four other neurons responded to the signal with 80%
modulation depth only at the beginning of the stimulus.
For 13 phasic neurons, which reproduced the modula-
tion of sound, the average value of the OSC was equal
to 0.921. All 13 neurons of the T1 group reproduced the
80% modulation of the signal with a somewhat smaller
value of the OSC: 0.71. The difference between the
groups was reliable (the probability of the coincidence
of the average values was P < 0.0002). The neurons of
the T2 group reproduced the 80% modulation with an
average OSC of 0.65 (the number of neurons was 46; in
comparison with the T1 group, P = 0.07, and with the
phasic group, P < 0.0001). Finally, the neurons of the
T3 group reproduced this signal with an average OSC
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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of 0.50 (N = 43; in comparison with other groups, P <
0.0001). Thus, in response to a signal with a large mod-
ulation depth, a phase locking with the signal envelope
was observed for almost all neurons (except for several
phasic units); however, the phase locking was weaker
for neurons with a more tonic type of the response, i.e.,
with a less pronounced short-term adaptation.

In our experiments, the neural response to AM tone
bursts with 10% modulation depth was of most interest.
In studying the auditory center of the midbrain [12], we
divided all neurons into three groups that differed in the
response to this kind of signals. Neurons of one of these
groups were incapable of reproducing weak periodic
amplitude variations. In the second group of neurons,
the modulation was reproduced with a low efficiency
for only part of the signal (usually with a low effi-
ciency). The third group of neurons, which was of chief
interest, reproduced the modulation with an efficiency
that noticeably increased from the first to the last period
of the AM tone burst. For the last periods, the efficiency
was rather high, being in some cases comparable to the
efficiency observed for the 80% modulation depth. For
the neurons of the cochlear nucleus, the aforemen-
tioned classification proved to be unsuitable. The point
is that the majority of neurons of the cochlear nucleus
reproduce the 10% modulation with a rather low effi-
ciency. In this case, it is not easy to reveal the very fact
of the modulation reproduction, much less the increase
in the strength of the phase locking of the response dur-
ing the stimulus presentation (see Figs. 2c and 3c).
Therefore, we consider the quantitative characteristics
of neurons without separating them into groups by this
feature.

The response to signals with the 10% modulation
depth was studied for 104 neurons. None of the 15 pha-
sic neurons studied in this series of the experiment were
able to reproduce the 10% modulation of the signal
(Fig. 3f). These neurons retained the phasic character of
the discharge according to the classification described
above (see the description of the experimental tech-
nique). In some cases, single pulses were observed
within the signal duration. Sometimes, it was possible
to qualitatively notice their phase locking with the
envelope waveform (Fig. 3f). However, the small num-
ber of these pulses (no more than 10–20 per 50 signal
presentations; i.e., the average probability of the pulse
appearance within one period was less than 0.04)
allowed no quantitative analysis.

Figure 4 shows the OSC for the responses to tone
bursts with 10% modulation versus the OSC character-
izing the responses to 80% modulated signals for
85 tonic neurons studied at two modulation depths. In
the case of tone bursts with 10% modulation, the aver-
age value of the OSC was equal to 0.25 for the T1 group
(N = 9), 0.18 for the T2 group (N = 45), and 0.11 for the
T3 group (N = 34). A reliable difference was only
observed between the T1 and T3 groups, but the general
tendency toward an increase in the OSC with the
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
growth of the short-term adaptation manifested itself
almost as clearly as in the case of signals with the large
modulation depth.

From Fig. 4, one can see the positive correlation
between the OSCs obtained for 80 and 10% modulation
depths. The correlation coefficient for these values is
0.70 with the following equation of the regression line
with zero initial value: OSC(10%) = 0.278 OSC(80%).

On the other hand, the same figure shows that, in the
case of the 10% modulation depth, the neurons of the
cochlear nucleus exhibit a not too high average strength
of the phase locking with the envelope waveform. Of
the 89 neurons studied, 66 units had an OSC smaller
than 0.2 and 26 units had an OSC smaller than 0.1.
Approximately half the neurons (44 of 89) had an unre-
liable response–envelope phase locking according to
the criterion P < 0.001, although, for many of these
neurons, the phase locking was reliable according to the
criterion P < 0.005.

The phase locking is much weaker than that
observed for tonic neurons of the torus semicircularis
from the group characterized by a reliable phase lock-
ing enhancement from the first to the last modulation
period of the tone burst. This is evident from Fig. 4,
where the OSC values obtained for 20 typical neurons
of the torus that belong to this group are shown by
empty circles. In the torus, one also can see a positive
correlation between the OSC(80%) and OSC(10%).
However, even in the case of equal values of the
OSC(80%), the values of the OSC(10%) in the torus are
much higher than those in the cochlear nucleus.

For 89 tonic units stimulated by a signal with a small
modulation depth, regression lines of the dependence
of the PSC on the number of the modulation period
were obtained. Figure 5 shows the squared values of the
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Fig. 4. Relation between the OSCs obtained with 80 and
10% modulated signals for 85 neurons of the cochlear
nucleus (the full dots) and 20 neurons of the torus semicir-
cularis (the empty circles). Different kinds of full dots cor-
respond to different groups of the cochlear nucleus neurons
classified according to the shape of the PSTHs.
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correlation coefficients versus the OSC value. The
asterisks mark the values (36 of 89) for which the prob-
ability of a zero correlation was smaller than 0.005. In
all these cases, as well as in all cases when the correla-
tion coefficient exceeded 0.2, the regression line had a
positive slope; i.e., the efficiency of the envelope repro-
duction increased within the stimulus duration. This
kind of dependence was observed with almost the same
probability for all three groups of tonic neurons. In the
neurons of the torus semicircularis, which belonged to
the selected group, the correlation was most clearly
pronounced (empty circles in Fig. 5).

Unexpectedly, the synchronization enhancement
during the signal presentation was observed indepen-
dently of the value of the OSC. In many cases, this
enhancement was reliable even for OSCs smaller than
0.1. Let us consider some specific examples of this kind
of neuron behavior. Neuron 11206 stimulated by a tone
burst with the 10% modulation depth had an OSC as
small as 0.129, although, because of the high mean fir-
ing rate and, hence, a large sample volume, this value
reliably differed from zero. The significance of individ-
ual PSCs, excluding the PSCs obtained for the fifth and
tenth periods, was below the chosen criterion. At the
same time, the dependence of the PSC on the period
number was characterized by a correlation coefficient
of 0.64 and was quite reliable (Fig. 6a, diamonds).
A similar behavior is characteristic of neuron 10718,
for which a reliable phase locking was observed for
only the last period.

The fact that the firing of such neurons retains the
information on the waveform of the signal envelope is
demonstrated by the relative stability of the phases of
histograms obtained for sequential modulation periods
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Fig. 5. Relation between the OSCs obtained with 10% mod-
ulated signals and the correlation coefficients of the PSCs
for 89 neurons of the cochlear nucleus (the full dots) and
20 neurons of the torus semicircularis (the empty circles).
The stars show the reliable dependences for the neurons of
the cochlear nucleus (P < 0.001). All dependences obtained
for the neurons of the midbrain are reliable.
(Fig. 6b). In the 11206 unit, for all modulation periods
starting form the third one, the values of the phase delay
were localized within 160°–190°, i.e., close to the
phase corresponding to the maximal signal amplitude
(remember that the phase was measured beginning
from the envelope minimum).

The triangles in Fig. 6a show the results obtained by
studying neuron 11207, which had relatively high val-
ues of the OSC (0.34) and PSC (see Fig. 6). The
response of this neuron, which was ascribed to the
T1 group, was illustrated in Fig. 3c. During the signal
presentation, the response was relatively weak, so that
the PSC, despite its high numerical values, was not reli-
able because of the small number of pulses in the
response to each period. The phase of the response,
except for the first period, remained within 120°–165°;
i.e., it corresponded to the increase in the signal ampli-
tude from the average value to the maximal one.

Note that, in this neuron, as in some other neurons,
the phase delay of the response to the first period was
smaller than the phase delays of the responses to other
periods. This is caused by the fact that, in the initial part
of the response, the effect of the short-term adaptation
is strongly pronounced. As a result, the initial part of
the period stands out.

Similar data for three other neurons are shown in
Figs. 6c (the dependence of the PSC on the period
number) and 6d (the dependence of the phase on the
period number). Note that, for the 10903, 11209, and
11107 neurons, no reliable dependence of the PSC on
the period number was obtained. In addition, almost all
values of the PSC statistically did not differ from zero.
However, it is evident that the responses of these neu-
rons retain the information on the signal envelope. This
is confirmed first of all by the distributions of the values
of the phase delay. One can see that most delays are
concentrated within the interval 90°–180°; i.e., they
again correspond to the phase of the amplitude increase
from the average to the maximal value.

For the superior parts of the auditory system to be
able to use the information on the temporal envelope of
the signal from the firing of the cochlear nucleus neu-
rons, it is necessary to summarize the firing of many
neurons. In this case, the phase locking of the responses
of different neurons with one signal is necessary. The
analysis of the data presented in Fig. 6 shows that the
average phase values of the responses of different neu-
rons of the cochlear nucleus are concentrated within
90°–180° with respect to the minimum, i.e., in the inter-
val where the amplitude increases from the average
value to the maximal one. However, in determining the
phase delay, we performed the subtraction of the
latency delays, which could be different for different
neurons. Assuming that the travel times of the spikes
from the cochlear nucleus neurons under study to the
region of the input summation are approximately equal,
it is possible to estimate the dynamics of the input effect
on the central neuron by the summation of the outputs
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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Fig. 6. Dependence of the (a, c) PSC and (b, d) phase of the neural response to individual modulation periods on the number of
the modulation period: (a, b) three neurons with a pronounced dependence of the PSC on the period number (10718: T3 group;
SF 1.7 kHz; SL 74 dB SPL; 11206: T3 group, SF 0.60 kHz, SL 74 dB SPL; 11207: T1 group, SF 0.61 kHz, SL 74 dB SPL) and (c, d)
three neurons with the absence of this dependence (10903: T3 group, SF 1.5 kHz, SL 75 dB SPL; 11209: T2 group, SF 0.58 kHz,
SL 56 dB SPL; 11107: T2 group, SF 0.54 kHz, SL 65 dB SPL). The stars show the values of the PSC that reliably differ from zero.
of many cochlear nucleus neurons responding to a sin-
gle signal. On the basis of the data available, the char-
acterization of the response of the set of the dorsal
nucleus neurons to some specific signal is impossible,
because, for each neuron, we used a signal with its own
optimal frequency. To qualitatively estimate the ability
of a set of neurons to reproduce the envelope, the follow-
ing operation was performed. For 30 neurons that had the
characteristic frequencies within 0.55–0.65 kHz, their
responses to signals of characteristic frequencies with
intensity levels of 65–85 dB were summarized into one
PSTH and normalized by dividing the total instanta-
neous firing rate by the number of neurons.

The results of this summation are shown in Fig. 7a.
The resulting PSTH adequately reproduces the signal
envelope, although the value of the OSC is as small as
0.108. The dependence of the PSC on the period num-
ber has a positive slope and is quite reliable (P < 0.001).
The phase is retained almost without changes within all
nine periods, starting from the second one. The first
period is an exception for the reasons indicated above.
In the case under consideration, this difference is most
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
pronounced, because the summation also includes the
phasic neurons.

On the whole, the resulting distributions of neurons
in characteristic frequencies and thresholds agree well
with the data obtained for the same anuran species
(Rana temporaria) from the studies of the auditory
nerve fibers [20] and the torus semicircularis [12, 17],
as well as the studies of the same brain structure, i.e.,
the dorsal medullary nucleus [9]. However, in the series
of experiments under discussion, we observed a consid-
erable number of neurons tuned to frequencies of 0.5–
0.6 kHz and a relatively small number of neurons opti-
mally responding to frequencies above 1.0 kHz. We
noticed that, in the experiments carried out in spring,
the proportion of neurons tuned to frequencies of 0.5–
0.6 kHz was greater than in the experiments carried out
in winter. The frequency range 0.5–0.6 kHz corre-
sponds to the main spectral maximum of the mating call
of the grass frog. Presumably, our observation relates to
the manifestation of the general tendency for the receiv-
ing part of the auditory system to adjust to the parame-
ters of the acoustic stimuli that are of vital importance
for the animal.
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The comparison with the data obtained for the
cochlear nucleus [18] and torus semicircularis [19] of a
lake frog (Rana ridibunda) reveals a considerable dif-
ference between the species. More than half of the lake
frog’s neurons had characteristic frequencies higher
than 1 kHz, whereas the percentage of such neurons in
the grass frog was relatively small.

The distribution of the latency delays of the neural
responses of the dorsal nucleus (Fig. 1) agrees well with
the data presented for the leopard frog (Rana pipiens)
[5, 21] and the bullfrog (Rana catesbeiana) [22], for
which the range of variation of this parameter was
3−25 ms. Some discrepancy is observed for the phasic
neuron group, which, according to the data given in [5],
is characterized by small latency delays of the response
(4–9 ms). However, it should be taken into account that
we used tone bursts with a rise time of 5 ms, whereas in
the cited experiments [5] the rise time was 1 ms. The
delay of the response naturally increases with increas-
ing rise time of the tone burst, and this dependence is
most pronounced for the phasic neurons [23]. More-
over, since we calculated the latency delay by adding up
the readings of four neighboring histogram segments
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Fig. 7. (a) Normalized PSTH obtained by averaging the
responses of 30 neurons to a 10% amplitude modulated sig-
nal (the notations are the same as in Fig. 2); (b) dependence
of the PSC on the period number for this cooperative histo-
gram; and (c) dependence of the phase of the response on
the period number (the notations are the same as in Fig. 6).
0.5 ms wide each, a value of, e.g., 6 ms was ascribed to
the responses with the latency delays from 4 to 6 ms.

The classification of the neurons of the cochlear
nucleus according to the shape of the PSTHs was per-
formed earlier for the lake frog (Rana ridibunda) [18]
and the leopard frog (Rana pipiens) [5] on the basis of
qualitative criteria. In both cases, the principles and the
results of the classification approximately agreed with
the data reported in this paper. In particular, it was
found that, compared to the auditory nerve fiber, the
cochlear nucleus produces a new, purely phasic type of
response. The lake frog was found to have eight such
neurons out of 86 [18], and the leopard frog had 12 out
of 98 [5], which agrees well with the results obtained in
our experiments (17 out of 133). The relatively small
group of neurons with a burst-type discharge observed
in the cited experiments did not manifest itself in our
experiments with the grass frog. In all species studied,
the most typical cells were those with a moderate adap-
tation feature, which approximately corresponded to
the T2 group of our samples.

It is of interest to compare the types of the PSTH
obtained for the dorsal nucleus and the auditory nerve.
It is well known that, in anurans, even different fibers of
the auditory nerve differ in the temporal patterns of
their responses to tone bursts [24]. Moreover, in study-
ing the auditory nerve of the leopard frog and the bull-
frog [24, 25], 4–5% of neurons were found to exhibit
such a strongly pronounced adaptation that, according
to our classification scheme, they should be ascribed to
the phasic type or the T1 type. However, even in these
limiting cases, the responses lasted for no less than 60 ms
after the signal onset [25]; i.e., each response presum-
ably consisted of a burst of spikes. In the grass frog, the
neurons of this type were characterized by an inhibition
of the spontaneous activity [20]. In other experiments
[4], no phasic fibers of the auditory nerve were
detected. We believe that the purely phasic response,
which consists in the generation of one phase-locked
spike in response to the tone onset (see Fig. 3d), arises
in the auditory system of anurans (as in the auditory
systems of other vertebrates) only among the second-
order neurons. One can assume that this kind of
response occurs in specialized neurons whose function
is to determine the instants corresponding to the onset
(or an abrupt change in the parameters) of the sound
signal [26]. Note that the percentage of phasic units
continues to grow in passing to the central parts of the
auditory system [19].

The response to signals with a large modulation
depth in the neurons of the cochlear nucleus of anurans
had been studied earlier by a number of researchers [6,
9, 21, 27]. In these studies, the attention was focused on
the derivation of the modulation transfer functions. The
analysis of the functions presented in the cited publica-
tions shows that almost all tonic neurons efficiently
reproduce the 20-Hz modulation frequency [6]. Some
neurons with the phasic type of discharge were able to
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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reproduce high modulation frequencies without
responding to signals whose modulation frequencies
were 10 or 20 Hz (see Fig. 5a from [6]). This agrees
well with the results of our experiments, because
among the 133 neurons studied by us, only four units
did not reproduce the 80% modulation with a frequency
of 20 Hz, and all these units were phasic. As in the audi-
tory system of mammals [28], the low-frequency neu-
rons are able to efficiently reproduce the carrier fre-
quency and the modulation frequency simultaneously
(Fig. 2e).

It should be taken into account that, in our experi-
ments, we used only one modulation frequency, so that
the phase locking strength can be underestimated with
respect to the optimal value. However, note that the fre-
quency 20 Hz is close to the pulse rate of the mating call
of the species under study and, for most neurons, it is
close to the optimal modulation frequency.

It is possible to perform a direct comparison
between the efficiencies of coding in the auditory cen-
ters of the medulla oblongata and the midbrain of the
grass frog for the envelope of 80% modulated tone
bursts with the aforementioned modulation frequency.
In response to such tone bursts, 46% of the neurons of
the torus semicircularis are characterized by the OSCs
greater than 0.5, and 7.5% of neurons, by the OSCs
greater than 0.9 [12]. Data close to these were obtained
by other authors for the same species [27] and for other
anuran species [6].

The results of this study show that, in the case of
stimuli with high modulation indices, the average val-
ues of the OSC in the medulla oblongata are no smaller
(or greater) than in the midbrain, because PSCs exceed-
ing 0.5 were observed for 70% of neurons, and PSCs
exceeding 0.9, for 11%. In our opinion, this fact does
not testify that the modulation reproduction in the mid-
brain is inferior to that in the medulla oblongata, but it
indicates that new types of neurons specializing in the
perception of sound parameters other than amplitude
modulation appear in the midbrain. In addition, it
should be noted that the total number of neurons in the
auditory center of the midbrain is approximately an
order of magnitude greater than the number of neurons
in the cochlear nucleus. As a result, in the midbrain, the
total number of neurons that adequately reproduce the
80% modulation should be greater.

In both peripheral (this study) and central [12] parts
of the auditory system of anurans, neurons with OSCs
exceeding 0.9 were usually characterized by phasic
responses to pure tone bursts. Moreover, a general ten-
dency was observed for an increase in the OSC with
increasing short-term adaptation to the tone burst stim-
ulation. For neurons of the cochlear nucleus, this rela-
tion seems to be universal, because, in mammals, a
high-index modulation is best reproduced by just the
phasic neurons of the cochlear nucleus [29].

As for tone bursts with small modulation depths, the
coding of their amplitude modulation by the neurons of
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
the cochlear nucleus of anurans is poorly understood.
A monotone decrease in the PSC with decreasing mod-
ulation index was revealed in [6].

In our experiments, we observed no phasic units
reproducing the 10% modulation. Thus, the widely
accepted concept that phasic neurons provide a better
reproduction of the signal envelope should be reconsid-
ered. In fact, phasic units generate a phase-locked dis-
charge when they are stimulated with signals with a
large modulation depth. On the other hand, they are
usually incapable of reproducing small amplitude vari-
ations, at least at low modulation frequencies. This con-
clusion generally agrees with the results obtained for
the auditory center of the midbrain of the same object
[12], although, for several phasic neurons of the mid-
brain, we observed phase-locked responses for the last
modulation periods of a 612.5-ms-long tone burst (see
Fig. 5a from [12]). A similar effect was described for
the neurons of the midbrain of a bullfrog [30]. We
believe that, in our experiments, the absence of such
neurons in the medulla oblongata is not determined by
the sampling limitation. Presumably, the formation of
such specialized responses occurs only in the central
structures of the brain.

The main purpose of this study was the investigation
of the improvement in the phase locking of the neural
response with small variations of the signal amplitude
during a tone burst presentation. This effect was
described by us in detail for the midbrain neurons, and
now it was also observed in the medulla oblongata.
Almost half of the neurons exhibited a reliable positive
correlation of the PSC with the period number. How-
ever, the degree of this correlation was found to be
much lower than in the case of the specialized neurons
of the midbrain. In addition, the phase locking of the
response achieved for the last signal modulation peri-
ods in the medulla oblongata was weaker than the cor-
responding phase locking in the midbrain. Thus, it is
evident that the improvement of the discrimination of
small amplitude variations in the process of adaptation
manifests itself already at the periphery of the auditory
system and becomes more pronounced in the special-
ized neurons of the central parts of the brain. The poten-
tial possibility of such an improvement is determined
by a synchronous firing of the set of neurons of the
medulla oblongata (Fig. 7). It is of interest to perform a
similar analysis of the response of a set of neurons to a
single signal (or to close signals) for other parts of the
auditory system.

In our experiments, many parameters of the input
signal were fixed. The carrier frequency was always
equal to the characteristic frequency of the neuron, the
modulation frequency was 20 Hz, and the mean sound
level was about 20–30 dB above the response threshold.
Evidently, it is of interest to find out how the OSC value
and the effect of phase locking improvement with time
depend on these parameters. Preliminary data show
that, in both medulla oblongata and midbrain [12], the
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aforementioned effect is retained in a wide range of sig-
nal levels and for different carrier frequencies.

A question arises as to whether the effect under dis-
cussion is universal for the auditory systems of other
anuran species and for other vertebrate classes. Despite
the fact that no detailed description of such an effect
could be found by us in other authors’ publications, the
analysis of some of the experimental data reported in
the literature testifies to the generality of this effect. For
example, it is quite noticeable in one of the histograms
illustrating the response of the neurons of the cochlear
nucleus of a leopard frog to a tone burst with a modula-
tion frequency of 50 Hz and a 10% modulation depth
(see Fig. 8d in [6]). There also are some interesting
results indicating that the sensitivity to amplitude vari-
ations can improve during the stimulus presentation in
the auditory system of mammals. The effect is not
observed in the PSTHs obtained for the neurons of the
auditory nerve fiber of a guinea pig (Fig. 10 from [31]),
but it is visible in the PSTHs obtained for the tonic neu-
rons of the cochlear nucleus of a cat (Figs. 22 and 23
from [29]). In the midbrain of rats [32], as well as in the
midbrain of anurans [12, 30], extreme manifestations of
the effect were observed: the phasic neurons began
reproducing the signal modulation some time after the
stimulus onset. Finally, an increase with time in the effi-
ciency of the coding of small amplitude variations man-
ifests itself in psychophysical experiments [33–35].

It should be noted that in our experiments we stud-
ied only the initial stage of the adaptation process,
namely, the first ten modulation periods. At this stage,
the maximal values of the PSC were observed for the
last periods (Fig. 6a), and the function displayed no sat-
uration. Many indirect data testify that, in the medulla
oblongata, as well as in the midbrain [13], the phase
locking of the response can continue to improve for
many seconds. This is confirmed by the fact that the
synchronization coefficients obtained for 10% modula-
tion in the full adaptation conditions [7] were on the
average about 0.3–0.6, i.e., considerably greater than
the PSCs recorded in our study even for the last periods
of a tone burst. It appears that the phase locking
enhancement in the course of the long-term adaptation
in the medulla oblongata manifests itself as clearly as in
the midbrain. It is of interest to perform a quantitative
study of the dynamics of the coding of small amplitude
variations in the course of the long-term adaptation for
the neurons of the medulla oblongata.

The specific mechanism (or mechanisms) responsi-
ble for the phase locking improvement during the initial
stage (the first second) and the following adaptation
process is still poorly understood. Most likely, in the
course of the adaptation, the level of the synaptic effect
gradually adjusts to the level corresponding to the spike
generation threshold. This self-adjustment can be deter-
mined by the internal properties of the neuron. A highly
probable mechanism responsible for the improvement
of the reproduction of small amplitude variations dur-
ing the stimulus presentation is the calcium-dependent
potassium conductance. Such channels were revealed
in many elements of the auditory system, from the hair
cells of the turtle cochlea [36] to the pyramidal neurons
of the human cerebral cortex [37]. Model studies of
these channels [38] showed that their functioning leads
to an exponential decrease in the instantaneous firing
rate with a time constant varying for different neurons
as a function of the rate of secondary calcium release
from the intracellular sources. However, the most typi-
cal values of the time constants are within several tens
or hundreds of milliseconds [38], which agrees well
with our observations. The calcium-dependent sodium
current must lead to a hyperpolarization shift of the
membrane potential, i.e., to a displacement of the mean
level of the input signal relative to the threshold level of
spike generation. As a result, when intense stimuli are
presented, the input signal approaches the threshold
level and, hence, small variations of the intense signal
are more clearly discriminated.

An attractive possibility to explain the slow adjust-
ment of the level of the synaptic effect appears in con-
nection with the plastic rearrangement of synapses,
which had been recently observed in neural networks
[39]. According to these data, many neurons exhibit a
feedback between the efficiency of the synaptic input
and the firing activity at the output. With the appearance
of the exciting synaptic potential immediately before
the pulse generation, the efficiency of the given input
increases (this well-known hypothesis was formulated
by Hebb [40]), but with the appearance of the input
after the output pulse, the efficiency of the input
decreases. The effect of the input reduction is some-
what more pronounced than the positive feedback. As a
result, in the presence of a strong synaptic effect, its
level gradually adjusts to the spike generation thresh-
old, thus providing an efficient reproduction of small
variations in the input signal. Other possible mecha-
nisms include the interaction of the exciting synaptic
inputs with the delayed inhibitions [41] or a gradual
increase in the spike generation threshold.

Thus, we arrive at the following conclusions. The
second-order neurons located in the dorsal (cochlear)
nucleus of the medulla oblongata of a grass frog dis-
tinctly reproduce the 80% amplitude modulation of
tone bursts containing ten modulation periods when the
modulation frequency is 20 Hz. The reproduction of the
10% modulation is, on the average, rather weak and
manifests itself only in the response averaged over tens
of presentations. The analysis of such average
responses in the form of peri-stimulus time histograms
reveals the tendency for an enhancement of the phase
locking of the response in the course of the adaptation,
from the first modulation period to the last one.
Although this effect is reliable, it is less pronounced in
the case under study than in the specialized group of
neurons occupying a more central position [12].
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There are reasons to believe that, in a real situation
of a single presentation, the summation over sequential
stimulus presentations, which has been artificially used
in constructing the PSTHs, can be replaced by the sum-
mation over the inputs from many peripheral neurons.
This is confirmed by the relative closeness of the phase
delays of the responses of different neurons (Fig. 6), as
well as by the results of the model summation of neural
firing in response to the signals in relatively narrow fre-
quency and intensity ranges (Fig. 7).
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Abstract—The effect of an acoustic link between a buffer and a solid sample on the accuracy of the sound
velocity measurements in the sample by interference techniques and, in particular, the interference acoustooptic
technique [11] is considered. The phase difference between the waves going out of the sample and reflected
from it, which is introduced by the acoustic link, is determined. It is demonstrated that, in the range of link
thicknesses 0.1 ≤ h ≤ 1.0 µm, the correction to the sound velocity depends little on the link thickness. A proce-
dure that allows one to determine this correction and the actual sound velocity in each specific case is proposed.
© 2002 MAIK “Nauka/Interperiodica”.
The velocity of sound propagation is important both
by itself and as an instrument for investigating various
properties of materials, such as elastic properties,
piezoelectricity, phase transitions, and many other phe-
nomena [1–5]. Various techniques (including high-pre-
cision ones) adapted to different specific conditions had
been developed for sound velocity measurements [6–
10]. The requirements on the accuracy of its determina-
tion are now becoming more stringent. Recently, a new,
relatively simple technique was proposed for the sound
velocity measurements in solids (both isotropic and
anisotropic) [11]. This technique can be readily auto-
mated. The technique is based on the observation of
interference of two sound waves: the wave reflected
from the front face of a sample and the wave transmit-
ted through the sample, reflected from its rear face, and
going out of it. The medium where the interfering
waves propagate is a solid isotropic buffer made of an
optically transparent material. A thin laser beam is
transmitted through the buffer across the direction of
sound propagation, and its diffraction by the interfering
waves is observed. As the frequency of sound varies,
the phase shift between these waves also varies, and the
interference maxima and minima of the resulting wave
are detected by the corresponding maxima and minima
of the intensity of diffracted light. Since the intensity of
diffracted light is proportional to the square of the
amplitude of the resulting sound wave, the observed
light maxima turn out to be much sharper than the
sound maxima. This noticeably increases the accuracy
of the proposed technique.

A measuring cell consists of a transducer, a buffer, a
sample, and a common support shaped as a frame.
Acoustic links are introduced between the transducer
and the buffer and between the buffer and the sample.
We ignored the link influence on the phase shift
1063-7710/02/4804- $22.00 © 20400
between the waves propagating in the system [11]. The
following pulses resulting from successive reflections
are observed in the buffer when a single high-frequency
pulse is fed to the transducer: the pulse incident from
the transducer U1; the pulse reflected from the front
face of the sample U2; the pulse that entered the sample,
was reflected from its rear face, and returned into the
buffer U3; and a series of pulses U4, U5, … transmitted
through the sample several times due to multiple reflec-
tions. The carrier of all these pulses has the same fre-
quency, wavelength, and polarization. The pulses will
interfere in the case of overlapping. The interference of
the pulses U2 and U3 was studied in [11]. It was demon-
strated that, when the acoustic link is ignored, the for-
mula for the determination of the sound velocity is very
simple:

(1)

where V is the sound velocity, L is the sample length,
∆ f is the frequency interval within which the interfer-
ence maxima (or minima) are observed, and N is their
number.

In our previous paper [11], we did not analyze what
thickness of the acoustic link h should be considered as
small and what is the error introduced by it, although it
is clear that such an error must exist, because the pulses
U2 and U3 travel different distances in the acoustic link.
Naturally, it is necessary to take the acoustic link into
account in the case of high-precision measurements.

In this paper, we take into account the presence of an
acoustic link between the buffer and the sample. How-
ever, we still assume it to be sufficiently thin (the corre-
sponding criterion is given below). There is no need to
take into account the presence of an acoustic link

V
2L∆f

N
-------------,=
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between the transducer and the buffer, because it affects
only the parameters of the radiated pulse and does not
affect the process of further reasoning.

Let us consider the interference of the high-fre-
quency carrier of the pulses U2 and U3 by assuming that
they propagate perpendicularly to the interfaces. We
assign the following indices to the quantities belonging
to the adjacent media: index 1 to the buffer, index 2 to
the acoustic link, and index 3 to the sample. Let us
introduce the notations: V1 is the sound velocity in the
buffer, k1 = ω/V1 is the wave number, l is the buffer
length, V2 is the sound velocity in the acoustic link, k2 =
ω/V2 is the wave number, h is the thickness of the
acoustic link, V3 is the sound velocity in the sample,
k3 = ω/V3 is the wave number, and L is the sample
length.

Let us denote the phase shift of the high-frequency
carrier of the pulse U3 relative to U2 by ∆Φ32. It is the
sum of the phase shift produced by the sample, 2k3L,
and the phase produced by the presence of the acoustic
link, α = α( f, h). Thus, at a constant link thickness, we
have ∆Φ32 = 2k3L + α( f).

As the frequency varies, ∆Φ32 sequentially takes on
the values ∆Φ32 = 2nπ and (2n + 1)π; i.e., U2 and U3
are either in phase or in antiphase, and therefore, a beat-
ing of the summary signal amplitude A is observed.
Correspondingly, the intensity beating of diffracted
light is observed as well.

Let the nth maximum of the diffracted light intensity
be observed at the frequency f1 at the preset link thick-
ness h, i.e.,

and a certain mth maximum, where m = (n + N), at the
frequency f2:

Thus, N = m – n maxima are observed as the fre-
quency varies within ∆f = f2 – f1. We obtain

where ∆α = α(f2) – α(f1).

This yields the expressions

(2‡)

or

(2b)

2πf 1
2L
V3
------ 

  α f 1( )+ 2πn,=

2πf 2
2L
V3
------ 

  α f 2( )+ 2π n N+( ).=

2πN 2π 2L
V3
------ 

  ∆f ∆α ,+=

V3
2L∆f

N
∆α
2π
-------–

------------------=

V3
2L∆f

N
------------- 1 ∆α

2πN
-----------+ 

  .=
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The relative error is equal to ∆V3/V3 = ∆α/(2πN +
∆α).

If ∆α > 0, the presence of an acoustic link leads to
an underestimated value of V3 calculated by Eq. (1) in
comparison with the true value. To determine V3 in the
presence of an acoustic link, it is necessary to know
∆α ≡ ∆α(f1, f2, h).

To determine α and, then, ∆α as functions of fre-
quency, thickness h, and properties of the acoustic link
itself, one has to solve the problem by taking into
account an additional layer (with the thickness h)
between the buffer and the sample. The pattern of the
waves propagating in the system is given schematically
in Fig. 1, where the incidence angle is taken as nonzero
and the refraction at passage from one medium to
another is ignored for the sake of illustration. The lines
with arrows in Fig. 1 show the waves propagating in the
system that are produced by a single incident wave U1
as a result of multiple reflections. The waves U2 and U3,
which we are interested in, result from the summation
of the corresponding partial waves. Below, we will
assume that the problem under consideration is station-
ary. This allows us to ignore the time problem. The last
is possible if the incident pulse is longer than the setting
time of the stationary state τs, which can be represented
in the form τs = m2h/V2. Here, m is the numerical factor
about 20–30. If, in addition, the double time of wave
propagation along the sample (forward and backward)
τo = 2L/V3 is greater than τs, the problem can be divided
into two independent ones: (a) the wave transmission
from the buffer through the link into the sample (see
Fig. 2a) and (b) the wave transmission from the sample
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...
.
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Fig. 1. Schematic diagram of the set of waves propagating
in the buffer–acoustic link–sample–support system: U1, U2,
and U3 are the incident, reflected, and outcoming waves,
respectively.
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through the link into the buffer (see Fig. 2b). This pro-
vides an opportunity not to solve the problem of wave
transmission in the buffer–link–sample–link–buffer
system and use a known solution for the wave transmis-
sion through a layer (see, e.g., [12]). The latter condi-
tion (τo @ τs) imposes a limitation on the admissible
thickness of the link: h ! LV2/mV3. The waves in the
buffer U1, U2, U3, … are denoted by single indices in
compliance with the notation introduced in [11]. The
waves in the sample have double indices: U41, U42,
U51, …, which can be understood from Fig. 2. The
waves shown in Fig. 2 are the sum of the corresponding
partial waves.

Further, we will need the following:
—the amplitude coefficient of reflection from the

interface of the media “i” and “k” (in the case of a nor-

mal incidence) Rik = —a wave is incident from

the medium “i” and reflected back to the medium “i”;
—the amplitude coefficient of transmission through

the interface of the media “i” and “k” (in the case of a

Zi Zk–
Zi Zk+
----------------

Buffer

Acoustic link

Sample

U
1

U
2

U
3

U
41

U
42

U
51

A B

Fig. 2. Schematic diagram of stationary waves propagating
in the system: part A is for the buffer–acoustic link–sample
direction and part B is for the sample–acoustic link–buffer
direction; U1, U2, and U3 are the incident, reflected, and
outcoming waves, respectively.
normal incidence) Tik = —a wave is incident

from the medium “i” and transmitted to the medium
“k.”

Here, Zi = ρiVi is the acoustic impedance of the
medium “i,” ρi is the density, and Vi is the sound veloc-
ity in the medium “i.”

For the case given in Fig. 2a, the coefficients of
reflection from a layer R and transmission T13 have the
form

Thus, U2 = RU1 and U41 = T13U1. In the case shown
in Fig. 2b, we consider only the outgoing wave U3. To
determine this wave, we take into account the fact that
the wave U41 is transmitted through the sample,
reflected from the rear face of the sample, transmitted
through the sample again, and arrives at the acoustic
link with the phase shift 2Lk3. Thus, we have U42 =
R34U41exp(–2k3L) or U42 = R34T13U1 exp(–2k3L). Here,
R34 is the coefficient of reflection from the support. In
our case, R34 = 1 (reflection from an air gap) and U42 =
T13U1exp(–2k3L). It is easy to show that the coefficient
of transmission through the layer in the direction from
the sample is T31 = T13(Z3/Z1). Taking this into account,
we have for the outgoing wave U3

We introduce the notations 2k2h ≡ x, 2k3L ≡ y, and

T ≡ (Z3/Z1) exp(–y). In this case, U3 = TU1.

Let us reduce R and T to the forms
R = Re(R) – jIm(R) and T = Re(T) – jIm(T), where

2Zi

Zi Zk+
----------------

R
R12 R23 j2k2h–( )exp+

1 R12R23 j2k2h–( )exp+
---------------------------------------------------------;=

T13

T12T23 jk2h–( )exp
1 R12R23 j2k2h–( )exp+
---------------------------------------------------------.=

U3 Z3/Z1( )T13
2 U1 2k3L–( ).exp=

T13
2

(3‡)

(3b)

(3c)

(3d)
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Z1 1 R12
2 R23
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In the case of an overlapping of the pulses U2 = RU1
and U3 = TU1, the latter interfere, forming the summary
wave U23. Its amplitude A is equal to

(4)

Here, A1 is the amplitude of the incident wave U1,
which we take equal to unity, and |…| are the absolute
values of R and T.

We note that

Recall that the phase difference ∆Φ32 (i.e., the phase
difference between the outgoing and reflected waves,
U3 and U2) is caused by the presence of the sample
(2Lk3) and the presence of the acoustic link [α( f, h)].
Thus, we have

To determine α(f, h), it is necessary to take L = 0. In
this case, we obtain

(5)

Essentially, Eq. (5) is the solution to the problem
under consideration: at the preset parameters of the sys-
tem, it is necessary to calculate α at two limiting fre-
quencies f1 and f2 of the frequency range in use, to
determine ∆α = α(f2) – α(f1), and, then, to determine
the exact value of the velocity in the sample according
to Eq. (2).

Regretfully, there are two difficulties with this algo-
rithm: first, the exact value of the sound velocity in the
sample is unknown and, second, the thickness of the
acoustic link h is unknown. However, both these diffi-
culties can be avoided if we use the method of succes-
sive approximations and approximate the value of the
link thickness obtained either from the interference col-
ors of a thin film or from the experimental dependence
R = R( f). The value of h can be determined from the
comparison of the measured curve R = R(f ) with the
calculated curve R = R( f, h), where h plays the role of
a parameter (see Fig. 3).

The procedure of calculation is best understood
from a specific example. Let us consider the determina-
tion of the sound velocity in a typical situation of lon-
gitudinal waves and a liquid link.

A

=  A1 R 2 T 2 2 Re R( )Re T( ) Im R( )Im T( )+[ ]+ + .

Re R( )Re T( ) Im R( )Im T( )+
R T

---------------------------------------------------------------------

=  φT φR–( )cos ∆Φ32( ).cos=

∆Φ32 2Lk3 α f h,( )+=

=  
Re R( )Re T( ) Im R( )Im T( )+

R T
--------------------------------------------------------------------- .arccos

α f h,( )

=  
Re R( )Re T( ) Im R( )Im T( )+

R T
---------------------------------------------------------------------

L 0=

.arccos
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The following parameters of the system are preset:
(1) the buffer (F-4 optical glass): ρ1 = 3.67 × 103 kg/m3

and V1 = 4.1 × 103 m/s;
(2) the acoustic link (transformer oil): ρ2 = 0.897 ×

103 kg/m3, V2 = 1.425 × 103 m/s, and h = 0.2 × 10–6 m;
(3) the sample (fused quartz): ρ3 = 2.2 × 103 kg/m3,

V3 = 5.960 × 103 m/s, and L = 10–2 m.
The following parameters are determined experi-

mentally: f1 = 20.214 × 106 Hz, f2 = 49.991 × 106 Hz,
the beating number N = 100, and the approximate value
of the link thickness h . 0.3 × 10–6 m.

In the computer simulation, we assume that the range
of possible link thickness values is h = (0.05–1.0) ×
10–6 m, which certainly overlaps its possible value, and
consider the frequency range from f10 = 20 × 106 Hz to
f20 = 50 × 106 Hz, which slightly exceeds the one used
in reality.

Let us evaluate the applicability conditions of the
stationary wave approximation by taking m = 30. This
condition is valid when the film thickness is h !
V2L/V3m . 80 µm. Thus, even the thickest acoustic link
with h = 1 µm satisfies the stationary condition to a high
accuracy. As a result, the following procedure for cal-
culating the sound velocity is established:

(1) The determination of the velocity V3 = V3(0) in
the zero approximation. Here and further, the number in
parentheses denotes the order of approximation. We
calculate the sound velocity V3 = V3(0) according to
Eq. (1). In our case, V3(0) = 5955 m/s. (The velocity is
rounded off to the integral value corresponding to the
real accuracy of measurements.)

(2) The determination of the velocity V3(1) in the
first approximation. Taking Z3 = ρ3V3(0) = Z3(0) and the
link thickness h = h(1) = 0.3 × 10–6 m, we calculate
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Fig. 3. Dependence of the absolute value of the reflection
coefficient R on frequency for the link thickness h = (1) 0.1,
(2) 0.3, (3) 0.5, and (4) 1.0 µm.
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Fig. 4. Dependence of the difference ∆α(f1, f2, h) on the
thickness of the acoustic link for V3 = 5960 m/s, f10 =
20 MHz, and f20 = 50 MHz.
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α1(1) and α2(1) according to Eq. (5) for the frequencies
f1 and f2 and determine ∆α(1). Then, we calculate the
value of V3(1) according to Eq. (2). In our case, we
obtain ∆α(1) = 0.458 and V3(1) = 5959 m/s. As one can
see, V3(1) differs little from the preset V3. This can be
explained by the weak dependence of ∆α on the link
thickness in the thickness range in use (see Fig. 4). If
there is no need for higher accuracy, the calculation
may be limited to the determination of V3(1).

(3) The refinement of the link thickness. For this
purpose, we use the dependence A = A(f, h) calculated
by Eq. (4). The general form of this dependence for our
system in the frequency range with f10 = 20 MHz and
f20 = 21 MHz is presented in Fig. 5a for three values of h.
The beating in the system is clearly pronounced. The
beating amplitude strongly depends on the link thick-
ness. The frequency at which the maximal amplitude A
is observed also depends on the link thickness, and, the
greater the link thickness, the lower the frequency cor-
responding to the maximum. At the same time, the dis-
tance between the neighboring maxima almost does not
depend on the link thickness. The high accuracy in the
determination of the frequencies f1 and f2 provides a
good resolution of A = A(f, h) with respect to the link
thickness. Hence, this dependence can be used to refine
the value of h.

For this purpose, at V3 = V3(1), we determine a series
of functions A = A(f, h) in the vicinity of the frequency
f1 (the first maximum) according to Eq. (4). We select
h = h(2), at which the frequency of the maximal ampli-
tude A coincides with the experimentally determined f1
(see Fig. 5b). In our case, h(2) = 0.175 × 10–6 m.

(4) The determination of V3(2).
We repeat step 2 described above by using V3 =

V3(1) and h = h(2). In our case, we obtain ∆α = 0.516
and V3(2) ≅ 5960 m/s.

(5) The determination of h = h(3).
We repeat step 3 using V3 = V3(2). In our case, this

yields h(3) = 0.2 × 10–6 m3.
(6) The determination of V3(3).
We repeat step 2 using V3 = V3(2) and h = h(3). In

this case, we have ∆α = 0.518 and V3(3) = 5960 m/s.
As one can see, V3(2) and V3(3) almost coincide.

Therefore, the calculations can be terminated at the
third approximation.

The following conclusions can be made:
The presence of an acoustic link of any thickness

(h ≠ 0) leads to an error in the determination of the
sound velocity by interference methods. This concerns
not only the technique considered in this paper, but also
any other method using the phase difference between
the reflected and outcoming waves (see, e.g., [13, 14]).

The error in the determination of the sound velocity
without considering the acoustic link is very small
(∆V/V . 7 × 10–4). Therefore, the presence of the link
should be taken into account only in the case of high-
precision measurements.
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In high-precision measurements of the sound veloc-
ity, it is necessary to perform computer simulation of
the system using Eqs. (3)–(5).
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Abstract—Possible spatial resolution of a passive acoustic thermal tomograph is evaluated in numerical experi-
ments. A criterion for the evaluation of this parameter is proposed. The criterion is based on the formation of a dip
between two reconstructed temperature peaks with increasing distance between the thermal sources in the region
under investigation. The spatial resolution depends on the positions of a pair of temperature peaks relative to the
body surface and on the algorithm used for the reconstruction of the temperature distribution. An algorithm version
providing an adequate reconstruction of the heights of the distribution peaks is suggested. It takes into account a
priori information on the ultrasonic absorption coefficient and also the characteristics of the heat-transfer pro-
cesses and the presence of blood circulation in a human body. In the case of lateral positions of the pair of temper-
ature peaks relative to the surface, the spatial resolution is ≈1.7 cm. The prospects for the improvement of the spa-
tial resolution of a passive acoustic thermal tomographs are discussed. © 2002 MAIK “Nauka/Interperiodica”.
† Temperature within a biological object is one of its
most important characteristics. This characteristic is
widely used in medicine, in particular, for monitoring
the process of hyperthermia procedures in oncology. 

In measuring the temperature inside a human body,
the data on the temperature not only at single points of
the body but also on the 3D temperature distribution
T(x, y, z) within it are especially important. The informa-
tion carried by thermal acoustic radiation in the mega-
hertz frequency range can be used to measure the tem-
perature within a human body. The fundamentals and
prospects of the utilization of thermal acoustic radiation
parameters are considered in our previous paper [1]. 

This radiation emerges from a depth of 2–10 cm
from the body surface, depending on the frequency of
the received signal. It is detected by piezoelectric trans-
ducers. The radiation intensity is the measure of the
temperature in the medium, and it is characterized by
an effective parameter called the acoustic brightness
temperature TA. The quantity TA is the temperature of an
acoustic blackbody producing the same radiation flux
as the body under investigation. In the simplest case of
an infinite medium homogeneous in its acoustic prop-
erties and ultrasonic absorption, the value of TA mea-
sured by piezoelectric transducers is determined by the
formula 

(1)

† Deceased.

T A γ T l( ) γl–( )exp l,d

0

∞

∫=
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where l is the coordinate along the acoustic axis of a
piezoelectric transducer (the point l = 0 coincides with
the transducer position), T(l) is the temperature distri-
bution within the object under study, and γ is the energy
coefficient of ultrasonic absorption in the medium.

To obtain the spatial temperature distribution, it is
necessary to carry out a series of measurements of ther-
mal acoustic radiation by a set of piezoelectric trans-
ducers positioned on the body’s surface and scanning
the region under investigation in different directions
and at different angles. Using the data of these measure-
ments, it is possible to solve the inverse problem, i.e., to
reconstruct the initial temperature distribution, which is
the objective of tomography. Thus, we deal with a tech-
nique for the determination of the spatial distribution of
the internal temperature in a human body, i.e., with pas-
sive acoustic thermal tomography [1–5]. Up to now, the
feasibility of the technique was proved both experimen-
tally (see [1]) and by numerical simulation [1–5]. The
possibility of reconstructing both 2D and 3D distribu-
tions was demonstrated in [3]. Below, we present a the-
oretical analysis of the prospects for this technique with
respect to spatial resolution. 

The procedure of passive acoustic thermal tomogra-
phy, which is based on the utilization of the acoustic
thermal radiation of an object, includes several stages:
the data acquisition (using special signal detectors and
scanning schemes), the signal processing, and the solu-
tion of the inverse problem. At the last stage, one of the
most important problems is the high-precision recon-
struction of the peak heights in the temperature distribu-
tions. Evaluation of the possible spatial resolution of the
technique is one of the most difficult problems, because
002 MAIK “Nauka/Interperiodica”
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a combined high-precision reconstruction of several
peaks is needed. The first estimates of the spatial reso-
lution (about 1 cm [2]) were made on the basis of the
reconstruction of single-mode (one peak) distributions
of temperature. The basic method of investigation was
numerical simulation. First, we simulated the solution
of the direct problem, i.e., the acquisition of measure-
ment data on the intensity of thermal acoustic radiation.
Then, the solution of the inverse problem was simu-
lated, i.e., the reconstruction of the temperature distri-
bution from the measurements. The temperature distri-
butions considered in [2] contained small numbers of
pixels (16–25), and, therefore, the resolution estimates
could not be reliably substantiated. Values of about
1 mm were presented in [6, 7], where only theoretical
physical estimates were used. These estimates were
also of purely qualitative character. A suggestion was
made that a high spatial resolution could be obtained
using a correlation reception with the use of no less
than five sensors simultaneously [8]. These results were
obtained only in model experiments in the audio fre-
quency range. Verification of this hypothesis is a task
for the future. 

We propose using the method of a numerical exper-
iment and studying the reconstruction of bimodal tem-
perature distributions in order to analyze the spatial res-
olution of a passive acoustic thermal tomograph [3].
Ways of estimating the quality of such a reconstruction
are discussed in [4].

This paper is devoted to the estimation of a possible
spatial resolution of the technique with the use of dif-
ferent algorithms for solving the inverse problem. 

We restricted ourselves to the reconstruction of 2D
temperature distributions T(x, y). The numerical simu-
lation was performed in several stages. At first, we
selected a certain scanning scheme; then, we solved the
direct problem—i.e., we calculated the temperature
distribution in the presence of preset thermal sources
and determined the set of the corresponding acoustic
brightness temperatures; and, finally, we solved the
inverse problem—i.e., we reconstructed the initial dis-
tribution. 

The following model of a passive acoustic thermal
tomograph was used in the computer simulation. The
temperature distribution was reconstructed in a square
area with the dimensions 10 × 10 cm2. A matrix of
piezoelectric transducers was positioned at the surface,
i.e., at one side of this area (Fig. 1). We assumed that the
central reception frequency was 1 MHz. We also
assumed that the directivity pattern of piezoelectric
transducers had the form of a beam, which was an
approximation of a real directivity pattern of a focused
piezoelectric transducer. The lines originating from the
transducer points show the directions of scanning at
different rotation angles ϕ of the acoustic axis of the
corresponding sensor. 
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In solving the direct problem, we set as initial the
temperature distributions formed in an object in the pres-
ence of two point sources of temperature described as

(2)

where the characteristic width of a source is d = 0.4 cm,
xi and yi are the source coordinates (i = 1, 2), and q0 is
the normalizing factor. In this case, we took into
account the fact that the corresponding temperature dis-
tribution in a human body must satisfy the heat equa-
tion allowing for the convective heat transfer due to the
blood circulation [3–5]. In the simplest case of a
medium homogeneous in its thermal-physical charac-
teristics, the stationary equation of thermal diffusivity
has the form 

(3)

where ∆ is the Laplacian, q(x, y) is the spatial density

of temperature sources, and xD =  is the charac-
teristic length determined by the thermal diffusivity D
and the volume blood circulation λ (the amount of
liters of blood flowing through 1 kg of a tissue per 1 s);
in different tissues, the values of xD range within xD ≈
0.3–1.6 cm. The acoustic brightness temperatures were
calculated by Eq. (1), and the value of the energy coef-

qi x y,( ) q0 x xi–( )2 y yi–( )2+( )/d2–( ),exp=

T x y,( ) xD
2 ∆T x y,( )– q x y,( ),=

D/λ
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Fig. 1. Scheme of scanning of the area under study with the
dimensions 10 × 10 cm2 in the xy plane. The x coordinate is
directed into the body (the point x = 0 is the body surface),
and the y coordinate is oriented along the body surface.
Temperature readings were made at the nodes of the grid,
shown by dashed lines (the number of reading points is
NH = 225). The semicircles denote the piezoelectric trans-
ducers. The numbers 1, 2, 3, …, n are the numbers of the
scanning angles of piezoelectric transducers, which are mea-
sured with respect to the x axis. At 0 ≤ y < 5 cm, the rotation
angle is ϕ = 0°–ϕMAX; at 5 < y ≤ 10 cm, ϕ = –ϕMAX–0°; and
at y = 5 cm, –ϕMAX ≤ ϕ ≤ ϕMAX; here, ϕMAX ≈ 80°. The
heated areas A and B are positioned laterally with respect to
the surface. The arrow indicates the observation angle for
the temperature distributions given in Fig. 2. 
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ficient of absorption γ was assumed to be constant and
equal to 0.2 cm–1. A Gaussian random error with an rms
value of dTA = 0.1 K was imposed on the values of TA

calculated in such a way. 
The Tikhonov regularization method was used in

solving the inverse problem. In this case, we compared
the reconstruction quality for two different algorithms
of Tikhonov’s regularization: global and local. The lat-
ter algorithm was suggested by us for increasing the
quality of the reconstruction of the distribution peak
heights [3]. It takes into account a priori information on
the physical features of the temperature distribution
within a human body that are determined by the heat
transfer processes and the presence of blood circula-
tion, which are described by Eq. (3). The quality crite-
rion for the reconstruction of the temperature distribu-
tion was the rms reconstruction error averaged over the
whole area:

(4)

where Tr(x, y) is the reconstructed temperature distri-
bution, Nx = 15, Ny = 15, and NH = Ny .

Two algorithms tested up to now (global and local)
yield the following results in the case of reconstruction
of single-mode temperature distributions [5].

The error of the temperature reconstruction dTR
depends on the position the temperature source in
depth. For a source depth of 2.5 cm with an rms error of
a single measurement of the acoustic brightness tem-
perature dTA = 0.1 K, the reconstruction error is dTR ≈
0.3 K (reconstruction by the method of global regular-
ization). The local regularization provides an opportu-
nity to reduce dTR approximately by 10–15% in many
cases. As the distance from the temperature source to
the surface grows, dTR increases. In the case of the local
regularization, dTR increases noticeably slower with
increasing depth of the temperature source. The value
of the error is dTR ≈ 0.45 K when the distance from the
source to the surface is H = 8 cm in the case of the local
algorithm, while dTR ≈ 0.7 K for the global algorithm.
It is necessary to note that, in the case of utilization of
both algorithms, the peaks reconstructed at large dis-
tances from the surface are noticeably spread. 

The method of the local regularization is more sta-
ble in the case of reconstructing small temperature
increments, which is its essential advantage. For exam-
ple, according to the data of our calculations, in the
reconstruction of distributions with small temperature
increments (TMAX = 3 K), the global regularization tech-
nique does not yield any solution, whereas the local
regularization technique provides an opportunity to
reconstruct such temperature distributions. 

The resolution of the passive thermal tomography
was evaluated by the quality of the reconstruction of a
temperature distribution in the form of two peaks,

dT R T xi y j,( ) Tr xi y j,( )–( )2/NH

j 0=

Ny 1–

∑
i 0=

Nx 1–

∑ ,=

Nx
*

which was produced by two temperature sources in the
area under investigation [1, 3]. The reconstruction was
performed for various distances from these peaks to the
surface and various positions of these peaks with
respect to the surface, i.e., a lateral position (the line
connecting the centers of temperature sources is paral-
lel to the surface of the body), a transverse position (this
line is perpendicular to the surface of the body), and a
diagonal position (the centers of the temperature
sources lie on the diagonal of the area under study). In
this connection, we selected for evaluation a pair of
peaks with a large temperature increment of 5 K in the
maxima.

Figure 2 shows examples of the reconstruction of
temperature distributions produced by two thermal
sources, which create a bimodal temperature distribu-
tion with the maximal values TMAX = 5 K in a medium
with the value of the characteristic length xD = 1.6 cm,
in the case of increasing distance between them (the
two sources move apart). The sources are positioned
laterally, at a distance of H = 2 cm from the surface, and
move away from each other symmetrically with respect
to the line l1 (Fig. 1). Four successive stages of the sep-
aration of two sources (lines a–d) are demonstrated.
The observation angle for the temperature distributions
in the studied area is indicated in Fig. 1 by an arrow. 

The initial temperature distributions in the form of
two peaks are shown in the first column of Fig. 2. The
second and third columns, respectively, show the distri-
butions reconstructed using the algorithms of global
and local regularization. Each example of a recon-
structed distribution is obtained at a single realization
of noise in the studied set of acoustic brightness tem-
peratures TA. Two peaks were clearly resolvable in each
of the cases, a–d. Evidently, as the distance between the
peaks increases, their separation becomes even clearer.
One can see that, at this distance (H = 2 cm) from the
sources to the surface, in the case of global regulariza-
tion, the resolution of peaks in the reconstructed distri-
bution is distinctly visible at all distances d between the
sources. At the same time, in the case of the local tech-
nique, the two peaks in the reconstructed distribution
merge into one broad peak at the minimal studied dis-
tance between the sources (line a). The greater the dis-
tance between the sources, the better the peaks in the
reconstructed distributions are separated. One can also
see from Fig. 2 that the reconstructed temperature
peaks differ to a certain extent from the initial ones in
their width and shape. 

Several different criteria of resolution of two
sources are used in acoustics. In the Rayleigh criterion,
it is assumed that two point sources are resolved if the
maximal response to one of the sources coincides with
the first zero of the response to the other source. This
criterion is used mainly with respect to the sources of
monochromatic radiation. In the case of formation of
an incoherent image, this criterion is often formulated
as follows: two points can be resolved if there is a
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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Fig. 2. Examples of the reconstructed temperature distributions in the case of increasing distance d between two thermal sources
(lines a, b, c, and d correspond to d ≈ 1.7, 2.1, 2.5, and 3 cm, respectively). The sources are positioned laterally, at a distance of H =
2 cm from the surface. The first column shows the initial temperature distributions, and the second and third columns, the temper-
ature distributions reconstructed by the techniques of global and local regularizations, respectively. The observation angles for the
temperature distributions in the area are indicated by an arrow in Fig. 1. The maximal value of the temperature (in the peaks) is
equal to TMAX = 5 K, and the characteristic length is xD = 1.6 cm.
26.5% dip in the middle point between them in the dis-
tribution pattern. 

The Sparrow criterion of resolution is more general,
because it is applied equally to the formation of coher-
ent images and, e.g., to a Gaussian beam, which has no
distinct spatial zero in the response to a point source.
According to the Sparrow criterion, two point sources
are resolved if the intensity in the middle between two
points is equal to the total intensity at one point.

The case under study differs from those described
above by the fact that the reconstructed temperature
distribution fluctuates quite strongly depending on the
reconstruction realization, i.e., on the initial distribu-
tion of noise. This means that the pair of temperature
peaks to be resolved also fluctuates. Thus, the problem
of resolution of a pair of peaks is of a statistical charac-
ter in our case. Therefore, to evaluate the limit of reso-
lution, i.e., the minimal distance d between the temper-
ature sources at which two temperature peaks exist in
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
the reconstructed distribution, we used a criterion of
peak resolution different from those described above,
this criterion being of a statistical character. The crite-
rion of resolution of two temperature peaks was
assumed to be the presence of a dip between them in the
reconstructed distribution. 

We presumed that the value of the dip hr in the
reconstructed distribution was a normally distributed

random quantity with the average value . We
assumed that the peaks were located at a distance equal

to the limit of resolution when the value of  was
equal to the doubled rms dispersion σ of the value of
the reconstructed temperature on the average over the
studied area:

(5)

It can be readily demonstrated that, for the case
when the probability of a random event is evaluated

hr

hr

hr 2σ.=
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over nine realizations, this criterion means that the ini-
tial pair of temperature peaks is considered as resolv-
able when the dip in the reconstruction occurs with a
probability of P ≥ 0.95. 

The application of the criterion to a series of separa-
tions of the peaks located laterally with respect to the
surface (Fig. 2) is shown in Fig. 3. The values of the
parameters TMAX, xD, and H are the same as in Fig. 2.
Figure 3 presents the dependence of the depth of a dip
between the initial peaks, i.e., the parameter h, on the
distance d between the peaks (curve 1). Additionally,
this figure shows similar dependences for the average

dip depths  and  for the distributions recon-
structed using the global (curve 2) and local (curve 3)
regularizations, respectively. The vertical segments on
curves 2 and 3 indicate the doubled values of the rms
dispersion (±2σ) for TrGL and TrLOC, respectively. The
points a, b, c, and d in Fig. 3 correspond to the distribu-
tions given in Fig. 2 in lines a, b, c, and d. 

As the distance d between the peaks increases, the
depth of the dip between them grows in the initial dis-
tribution (curve 1) and in the distributions reconstructed
using both global and local techniques (curves 2 and 3,
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Fig. 3. Evaluation of the spatial resolution in the case of the
lateral positions of the sources. The dependence of the
depth of the dip between two peaks, i.e., the parameters h,

, and , on the distance d between the peaks.

Curve 1 corresponds to the dip depth h in the initial distri-
bution, and curves 2 and 3, to the average dip depths in the

distributions reconstructed by the global ( ) and local

( ) regularization techniques, respectively. Points a,

b, c, and d correspond to the temperature distributions
shown in Fig. 2 in lines a, b, c, and d. The parameters are
the same as in Fig. 2. The vertical segments on curves 2 and
3 indicate the doubled values of the rms dispersion (±2σ)
for TrGL and TrLOC, respectively. The dashed lines corre-

spond to the quantities  – 2σ and  – 2σ for

curves 2 and 3 (curves 2a and 3a, respectively). The resolution
limit for curve 2 corresponds to the point a (d0GL ≈ 1.7 cm),
and for curve 3, to the point b (d0LOC ≈ 2.1 cm).

hrGL hrLOC

hrGL

hrLOC

hrGL hrLOC
respectively). Curves 2 and 3 lie below curve 1, because,
in the process of the reconstruction, the temperature
peaks flatten to a certain extent (which is a consequence
of the systematic error introduced by the reconstruction
algorithm), and the depth of the dip between the peaks
decreases in comparison with the initial one. 

Curve 3 in Fig. 3 goes into the negative region

(  < 0) at small values of d. As one can see from
Fig. 2 (line a, third column), this means that in the case
of the reconstruction of temperature peaks very close to
each other by the technique of local regularization, the
distribution form is distorted to such a great extent that
a peak appears instead of a dip in the reconstructed dis-
tribution.

The dashed lines indicate the values  – 2σ and

 – 2σ for curves 2 and 3 (curves 2a and 3a,
respectively). According to the criterion described
above, the value of d, at which a dashed line intersects
the line h = 0, is considered to be the limit of the spatial
resolution d0. This means that, at d = d0, Eq. (5) is
valid. As one can see from Fig. 3, this happens approx-
imately at the point a (d0GL ≈ 1.7 cm) for curve 2 and at
the point b (d0LOC ≈ 2.1 cm) for curve 3, where d0GL and
d0LOC are the limits of spatial resolution in the cases of
reconstruction using global and local regularizations,
respectively.

Thus, in the case of the global regularization, the
limit of resolution in space is d0GL ≈ 1.7 cm for the
given values of the parameters. In the case of the local
regularization, for the same values of the parameters,
the limit of resolution in space is d0LOC ≈ 2.1 cm. These
estimates are obtained for the lateral positions of the
peaks. The proposed criterion was also applied to other
cases of peak positions with respect to the surface.
From the results of computer simulation, it follows that,
in the presence of two temperature sources, the initial
temperature distribution is best reconstructed in the
case of the lateral positions of the sources, and the
worst reconstruction is in the case of the transverse
positions; the case of the diagonal positions is interme-
diate. The resolutions for the lateral and diagonal posi-
tions of the sources are almost the same. The resolution
in the case of the transverse position of the sources is
worse by approximately a factor of 1.5 as compared to
the case of two other positions of the peaks, because, in
the case of the transverse position, the far peak is
screened by the near one. Thus, the estimates given
above are the best. 

It is necessary to note that the better spatial resolu-
tion in the case of the reconstruction using global regu-
larization in comparison with that using local regular-
ization manifests itself only for certain types of recon-
structed distributions, e.g., in the case of small
distances from the peaks to the surface (≈2–3 cm for the
closest peak) and high values of the temperature TMAX.
It may happen that, at large distances from the surface

hrLOC

hrGL

hrLOC
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and low TMAX, global regularization will be unable to
provide the temperature reconstruction and the ques-
tion about its spatial resolution will become meaning-
less. At the same time, local regularization provides
reconstruction with a sufficiently high spatial resolu-
tion. It is necessary to note that these estimates are
made in the framework of the selected model of a ther-
mal tomograph. In particular, the position of the matrix
of piezoelectric transducers on the object’s surface is an
approximation. In the case of a real tomograph, the
matrix of piezoelectric transducers can be separated
from the surface by the thickness of an immersion
layer. We believe that a change in the tomograph
scheme will not substantially affect the result of our
consideration.

Two kinds of application of thermal tomographs are
possible in the future: for obtaining qualitative informa-
tion about the temperature distribution in a human body
and for measuring the spatial temperature distribution
with preset accuracy and spatial resolution (e.g., for the
problem of hyperthermia, the measurement accuracy
must be no worse than 0.5 K and the spatial resolution,
about ≈0.3–0.5 cm). The first of these applications can
be realized with the equipment available today, by
using the algorithms described above. The second
application requires an improvement of the parameters
of passive acoustic thermal tomographs. Since the spa-
tial resolution is determined by the quality of the recon-
struction of the distribution peaks, we expect that the
basic prospects for improving the reconstruction qual-
ity for temperature distributions, including the spatial
resolution, are connected with the improvement of
algorithms for solving the inverse problem, in particu-
lar, with the development of algorithms that allow one
to reduce the systematic error in the reconstruction of
the heights of temperature peaks. We note that acoustic
thermal tomographs can be used not only in medicine,
but also in other fields, e.g., in the food industry [9].
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
The estimates obtained above suggest that acoustic ther-
mal tomography can find its place among other modern
techniques of medical thermal imaging [10, 11]. 
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Abstract—A scheme of acoustic correlation thermotomography is considered for a medium that is inhomoge-
neous in temperature, absorption coefficient, and phase velocity of ultrasound. It is demonstrated that, with the
use of an external “illuminating” field (of thermal origin or generated artificially), it is possible to separately
reconstruct the distributions of all aforementioned parameters. © 2002 MAIK “Nauka/Interperiodica”.
The great number of papers devoted to acoustic ther-
mometry and the variety of schemes of passive ther-
moacoustic tomography considered there are evidence
of a serious interest taken in this problem both by
acoustical designers of such schemes and by research-
ers, as well as by the potential users of the correspond-
ing systems.

The properties of the fields of thermoacoustic radia-
tion are almost exactly described by the model of a nor-
mally distributed random field. The verification of any
statistical hypotheses concerning the properties of such a
field is reduced to the formation and processing of a sam-
ple space–time correlation matrix of signals received by
an antenna array. This is the reason why we concentrate
on the correlation systems of thermal tomography [1, 2].
The schemes of ray intensimetry from this point of view
are a simplified particular case of these systems. In this
connection, in this paper, we consider the process of cor-
relation measurement that serves as the basis for ther-
moacoustic devices. We also discuss the new possibili-
ties arising when additional sources of thermal fields or
specially generated random fields, whose radiation
intensities are comparable with the intensities of ther-
moacoustic fields present in the medium under investiga-
tion, are introduced into the system. This method of
tomograph operation can be called active–passive,
because it uses both types of fields in the system by vary-
ing their mutual relationships.

The basic relationship determining the mean-square
value of acoustic pressure 〈p2〉  in the simplest case of
propagation of a quasi-plane wave along a ray in a
medium nonuniformly heated and nonuniformly
absorbing, but homogeneous with respect to the phase
velocity of sound, has the form [3]

(1)

Here, x0 is the receiver coordinate, α is the absorption
coefficient (in power), and T is the absolute tempera-
ture. An important property (quite natural from the

p
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point of view of thermodynamics) is the fact that any
distribution of absorption in the isothermal conditions
does not lead to a change in the value of 〈 p2〉 , and the
informative quantity is the product of the temperature
deviation (in comparison with the average background)
and the local value of the absorption coefficient. This
follows from the fact that, at T ≡ const, the value of the
integral in Eq. (1) is identically equal to T, indepen-
dently of the form of α(x). Such a property is also inher-
ent in correlation systems. However, it has a more com-
plex character, which can be used for the enhancement
of the tomograph informative capability, as is shown
below (and described briefly in our previous paper [4]).
At the same time, the character of the formation of a
thermoacoustic signal and its correlation properties
impose certain restrictions of both fundamental and
purely technological (precision) nature. These prob-
lems are also treated below.

CORRELATION PROPERTIES
OF THERMOACOUSTIC RADIATION

OF A THIN ABSORBING LAYER

Let us consider a model that provides an opportunity
to obtain in a sufficiently simple way the results impor-
tant for the following consideration. The choice of a
model is not fundamentally important and is deter-
mined only by convenience.

Let two identical plane receivers (hydrophones 1
and 2 in Fig. 1) and a thin (much thinner than the aver-
age wavelength λ) absorbing layer be located in a vol-
ume filled with a weakly absorbing liquid medium and
bounded by walls. We assume that the receivers have
small internal losses and their material and thickness
cause small distortions of the field. Such receivers,
from the diffuse noise field inside a dish, separate the
components in the form of random plane waves propa-
gating in opposite directions that are perpendicular to
the plane of the receivers. In the case of small internal
losses, the signal from these hydrophones is determined
basically by their radiation resistance; i.e., it results
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Thin absorbing layer in an isothermal medium.
from the fluctuation effect of the medium. Despite the
fact that practical manufacture of such receivers is
rather difficult, it is fundamentally possible, and the
above assumptions simplify further consideration. We
assume also for the sake of simplicity that the far fields
of the receivers reach the bounding walls and the
absorbing layer extends along the diagonal of the inter-
section zone of the far fields of receivers 1 and 2. The
distances (along the axes of the corresponding far
fields) between the absorbing layer and the receivers
can be different. The absorbing layer is assumed to be
liquid and to have the same initial value of the real part
of the phase velocity c0 as the surrounding liquid. From
the thermal radiation of the absorbing layer, the hydro-
phones also separate random plane waves with the
fronts parallel to the plane of the hydrophones.

All aforementioned elements of the model have the
same temperature. Therefore, the intensity emitted by
the layer is such that it compensates for the correspond-
ing absorbed part of the thermoacoustic field (radiated
by the walls and filling the volume) and restores in this
way the thermodynamic equilibrium in the volume.

Let us take the plane wave ϕ0 radiated by the part of
the wall that lies in the “frontal” sensitivity zone of one
of the hydrophones (e.g., hydrophone 1). The wave
equation for the potential of the particle velocity ϕ in a
medium inhomogeneous in viscosity and with a con-
stant density ρ0 has the form

(2)

where b = (4/3)η + ξ; η and ξ are the coefficients of
shear and bulk viscosity; and f0 are the external sources
produced by fluctuation processes in the walls of the
volume. In the quasi-monochromatic approximation,

∂2ϕ
∂t

2
--------- c0

2∆ϕ–
b r( )
ρ0

---------- ∂
∂t
----- ∆ϕ( )– f 0 r t,( ),=
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Eq. (2) transforms to a reduced wave equation (a time
dependence of the form ~exp(–iωt)):

(3)

Further, we examine the near wave field of the hydro-
phones. Let the x1 axis coincide with the axis of the near
wave field of hydrophone 1 and the 1D problem along
this axis be considered. In this case, taking into account
the fact that the Green function for such a problem has
the form G(x, x') = –(i/2k0)exp(ik0|x – x'|), the Lipp-
mann–Schwinger equation for Eq. (3) is ϕ(x1) = ϕ0(x1) +

exp(ik0|x1 – x' |) dx'. Here, ϕ0 is the

unperturbed field of the sources F0. In the first Born
approximation, the solution has the form

(4)

the validity of this approximation requiring that the
condition |ϕ0(x1)| @ |δϕ(x1)| be satisfied at all x1. The
minus sign before δϕ corresponds to the attenuation of
the primary wave, which is small within the domain of
applicability of this approximation.

MECHANISM OF COMPENSATION
OF THE THERMAL RADIATION

OF AN ABSORBING LAYER

In the description of the correlation properties of the
signals u1 and u2 received by the first and second hydro-
phones, it is convenient to use the complex function of

mutual coherence: Γ12(τ) = , where the

∆ϕ ω2

c0
2

------ϕ+
ibω
ρ0c0

2
----------∆ϕ F0.+=

b x'( )
2ρ0c0
-------------∫ ∂2ϕ x'( )

∂x'( )2
------------------

ϕ x1( ) ϕ0 x1( )
k0

2

2ρ0c0
------------- b x'( )ϕ0 x'( )∫–≈

× ik0 x1 x'–( ) x'dexp ϕ0 x1( ) δϕ x1( ),–≡

u1 t( )u2* t τ+( )
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overbar means time averaging (it is assumed that the
processes are ergodic and the initial signals u1 and u2
are represented in a complex form, e.g., an analytical
form). The imaginary part of the function Γ12(τ) is the
Hilbert transform of its real part (in the case of narrow-
band signals, it is precisely the transition from cosωτ to
sinωτ).

If external radiation from the walls is incident on the
layer, the secondary sources producing the field with
the phase opposite to the initial field are generated in
the layer. In this case, the emission of such layer-scat-
tered waves occurs both in the direction of the x1 axis
and in the symmetric (with respect to the layer plane)
direction of the x2 axis, which is determined in the
geometry of the adopted model as the direction to
hydrophone 2. It is necessary to consider possible
changes that occur in the correlation properties of the
signals received by hydrophones 1 and 2 because of the
presence of the absorbing layer. The primary waves ϕ01
and ϕ02 from the corresponding regions of the absorb-
ing walls arrive at the intersection region of the far
fields of the hydrophones. They are not cross-corre-
lated. The primary waves (ϕ01 – δϕ1) and (ϕ02 – δϕ2)
attenuated by the layer go out of the intersection region,
as well as the waves (–δϕ1) and (–δϕ2) propagating in
directions symmetrical with respect to the layer. Fur-
thermore, the signals of the thermal self-radiation of the
absorbing layer ϕT arrive at both hydrophones. In the
case of the considered relative positions of the layer and
hydrophones 1 and 2, these are the correlated signals
separated by the hydrophones from the total radiation
of the layer. They are totally correlated when the layer
thickness tends to zero. Thus, the function of mutual
coherence of signals is

(here and below, the functions without the sign of com-
plex conjugation are received by hydrophone 1 at the
time moment t, and those with the conjugation sign (*),
by hydrophone 2 at the time moment t + τ). From the
signal independence, it follows that

Then, we have

(5)

In the case of the considered geometry of a thin
absorbing layer and hydrophones, the function
ReΓ12(τ) is symmetrical and the function ImΓ12(τ) is
antisymmetrical with respect to the delay time τ = 

Γ12 τ( ) ϕ01 δϕ1– δϕ2– ϕT+( )〈 | t=

× ϕ02 δϕ2– δϕ1– ϕT+( )*|t τ+ 〉

ϕ01ϕ02*〈 〉 ϕ 01δϕ2*〈 〉 ϕ 01ϕT*〈 〉 δϕ 1ϕ02*〈 〉= = =

=  δϕ1δϕ2*〈 〉  = δϕ1ϕT*〈 〉  = δϕ2δϕ1*〈 〉  = δϕ2ϕT*〈 〉

=  ϕTϕ02*〈 〉 ϕ Tδϕ2*〈 〉 ϕ Tδϕ1*〈 〉 0 τ .∀= = =

Γ12 τ( ) δϕ1δϕ1*〈 〉 δϕ 2δϕ2*〈 〉+=

– ϕ01δϕ1*〈 〉 δϕ 2ϕ02*〈 〉– ϕTϕT*〈 〉 .+

τ12
–

that is equal to the difference in the times of propaga-
tion from the layer to hydrophones 2 and 1 (for the axial
symmetry of the pattern with respect to the layer plane
shown in Fig. 1,  = 0). At such a delay, which means
“phasing” with the layer, we have

(6)

since, by virtue of the isothermal walls,

(7)

Since the appearance of additional absorbing
regions in the path of the fluctuation signal formation
does not change the power of the received signal in the
isothermal case, for the autocorrelation function of sig-
nals from hydrophone 1, the above result means that

From the comparison of this expression with Eq. (5)
with allowance for the equality  = ,
it follows that

Therefore, the correlation property of the thermal
self-radiation of the layer is exactly compensated by the
anticorrelation property of the background thermal
radiation scattered by this layer. Thus, the isothermal
with the background distribution of the absorption
coefficient of the medium does not affect the correla-
tion properties of thermal radiation in the case of ther-
mal tomography at difference delays.

CORRELATION MEASUREMENTS
IN A NONISOTHERMAL

(NONEQUILIBRIUM) CASE

The situation changes drastically in the nonequilib-
rium case, when the temperature of the background
radiation Tbg(r) differs from the intrinsic temperature
T(r) of some absorbing region of the medium. In this
case, the effect of total compensation fails and a “non-
equilibrium” distributed source of intrinsic and scat-
tered thermal noise arises with the spatial density of
power distribution IT(r) determined by the local rela-
tionship

(8)

τ12
–

Γ12 τ τ 12
–

=( ) δϕ1
2〈 〉 δϕ 2

2〈 〉 ϕ 01δϕ1*〈 〉–+=

– δϕ2ϕ02*〈 〉 ϕ T
2〈 〉+ 2 δϕ1

2〈 〉=

– 2Re ϕ01δϕ1*〈 〉 ϕ T
2〈 〉 ,+

ϕ01
2〈 〉 ϕ 02

2〈 〉 , δϕ1
2〈 〉 δϕ 2

2〈 〉 ,= =

and at τ τ 12
– ϕ01δϕ1*〈 〉 δϕ 2ϕ02*〈 〉( )*.= =

Γ11 τ( ) ϕ01 δϕ1– δϕ2– ϕT+( )〈 | t=

× ϕ01 δϕ1– δϕ2– ϕT+( )*|t τ+ 〉

=  ϕ01|t ϕ01* |t τ+×〈 〉 τ .∀

δϕ1ϕ01*〈 〉 δϕ 2ϕ02*〈 〉 τ∀

Γ12 τ( ) 0 τ .∀=

IT r( ) α r( ) T r( ) Tbg r( )–[ ] ;∼

α r( ) b r( )ω2
/ ρ0c0

3( ).=
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Since two quantities α(r) and T(r), which are usually
unknown simultaneously, are present in Eq. (8), it is
necessary to perform two measurements at different
values of the background temperature Tbg = T1 and
Tbg = T2. This gives two expressions:

(9)

where Θ1(r) and Θ2(r) are the estimated values of IT(r),
which is the power distribution density of nonequilib-
rium sources of self- and scattered radiation, at T1 and
T2, respectively. The values of Θ1 and Θ2 can be recon-
structed by one of the methods producing an unbiased
estimate on the basis of the data measured in a correla-
tion system in the case of phasing according to differ-
ence delays [5, 6]. The following estimates are obtained
from Eq. (9):

(10)

where α0 is the dimensional coefficient. If the studied
object corresponds to the considered model and is a
thin absorbing layer in a weakly absorbing medium,
Eqs. (10) solve the problem of combined estimation of
the absorption coefficient and the temperature of the
layer.

Here, we should note the possibility of a negative
value of IT(r) in the case of Tbg(r) > T(r). The negative
value can appear in estimating the radiation power of
the absorbing layer with the help of a correlation sys-
tem and is caused by the anticorrelation property of the
field scattered by the layer and the incident primary
background radiation. The sign of the radiation power
estimated by a correlation system reflects the energy
balance in a nonequilibrium situation. The negative
sign is the evidence of dominance of the external field
absorption over the thermal self-radiation.

EFFECT OF THE INHOMOGENEITY
OF THE PHASE VELOCITY IN THE MEDIUM

The situation becomes noticeably more complex if
the medium is also inhomogeneous in phase velocity
together with the inhomogeneity of the absorption
coefficient and heating temperature. Just this situation
takes place usually in reality, because the change of the
absorption coefficient is usually accompanied by
changes in the elastic and density characteristics of the
medium.

It is also convenient to monitor the effect of the
change of the phase velocity by using a thin layer as an
example. Now, we assume that, apart from the absorp-
tion, the phase velocity in the layer is different from the
velocity in the surrounding medium. Equation (3) now
takes the form

α r( ) T r( ) T1 r( )–[ ] Θ 1 r( )=

α r( ) T r( ) T2 r( )–[ ] Θ 2 r( ),=



T̂
Θ1T2 Θ2T1–

Θ1 Θ2–
-------------------------------, α̂ α0

Θ2 Θ1–
T1 T2–
-------------------,= =
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(11)

The term νϕ on the right-hand side of Eq. (11)
describes the secondary sources caused by the differ-
ence of the local value of phase velocity c(r) from the
background value c0. In the first Born approximation,
an equation analogous to Eq. (4) acquires an addi-
tional term

(12)

The imaginary unit before the second integral term in
Eq. (12) is evidence of a phase shift by ±π/2 in the wave
scattered from the inhomogeneity of ν(r) with respect
to the primary wave; i.e., it determines the advance or
delay of the total transmitted wave. Since the inhomo-
geneity in velocity does not produce thermal self-radi-
ation, no energy compensation occurs for the wave
scattered by this inhomogeneity. Its power is propor-
tional to the power of the primary wave, i.e., to the tem-
perature Tbg(r) of the background thermoacoustic field.

Now, if we abandon the requirement of sufficiency
of the first Born approximation and proceed to the iter-
ative expansion of the Lippmann–Schwinger equation
into a series, then taking into account of terms with the
order of smallness no higher than the second in Γ12(τ)
turns out to be sufficient for further consideration,
because the layer is thin (and in the general case,
because the linear dimensions of the resolution element
of a correlation system are sufficiently small, about
λ/4). In this approximation, the expression for Γ12(τ) is
analogous to Eqs. (5) and (6) with allowance for
Eq. (7), but the expansion terms corresponding to scat-
tering by the inhomogeneities b(r) and ν(r) are taken
into account in the correction δϕ up to the second order
of smallness. In this case, the basic conclusions are as
follows:

(i) The real part of the coherence function “phased”
with the layer (i.e., when τ = ) consists of a term pro-
portional to the absorption coefficient and the tempera-
ture difference (T – Tbg), and also to a term proportional
to the square of ν and the absolute temperature Tbg:

(13)
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2k0
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τ12
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Re Γ12 τ τ 12
–
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– ν2( )Tbg.+∼
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(ii) The imaginary part of the “phased” function

Γ12(τ = ) vanishes,

because Im  = –Im  at τ =  (see
Eqs. (6) and (7)). In this case, in the first Born approx-
imation, the terms of the form 〈ϕ 01(iδϕν1)*〉  and

〈(iδϕν2) 〉  compensate each other at τ = .

Nevertheless, the terms of the type 〈ϕ 0δϕ*〉  can be
reconstructed in a somewhat different experiment. For
this purpose, in the same experimental scheme given in
Fig. 1, it is necessary to introduce additional hydro-
phones 3 and 4 positioned on the other side of the layer,
opposite hydrophones 1 and 2, respectively. It is also
assumed that all hydrophones are essentially transpar-
ent to thermoacoustic radiation and possess a double-
sided sensitivity to radiation. The inclusion of some
details of the thermodynamics of measurements using
such hydrophones and the possibility of their additional
radiation due to their coupling with the input stages of
amplifiers can make the consideration somewhat more
complicated but in essence changes nothing; i.e., the
presence of hydrophones 3 and 4 does not affect the
previous conclusions. The function of mutual coher-
ence Γ32(τ) for the hydrophone pair 3–2 has two peaks

at the delays τ = ± . The value of  is equal to the
total propagation time of the signal ϕ01 from hydro-
phone 3 to the scattering layer and further to hydro-
phone 2 in the form of the waves δϕ scattered by the
components b and ν of the layer inhomogeneity (δϕ ≈
δϕb + iδϕν in the first Born approximation):

The peak Γ32(τ = – ) of the same function Γ32(τ) for

the delay τ = –  is provided by the signal propagating
from hydrophone 2 to the layer and further to hydro-
phone 3. An analogous situation takes place for the
function Γ41(τ) for the hydrophone pair 4–1.

In the case of total delays, the thermal self-radiation
of the layer ϕT is uncorrelated at the receiving hydro-
phones and does not contribute to the coherence func-

tion. In this case, the real part ReΓ32 (τ = ± ) is deter-

τ12
–

Im Γ12 τ τ 12
–

=( ) 0,=

ϕ01δϕ1*〈 〉 δϕ 2ϕ02*〈 〉 τ 12
–

ϕ02* τ12
–

τ32
+ τ32

+

Γ32 τ τ 32
+

=( )
=  ϕ01 t ϕ02 δϕ2– δϕ1– ϕT+( )*

t τ32
+

+
×〈 〉

=  – ϕ01 t δϕ1* t τ32
+

+
×〈 〉 .

τ32
+

τ32
+

τ32
+

mined by the terms proportional to bTbg and ν2Tbg, and
the imaginary part, by the term of the form νTbg:

(14)

(15)

It follows from Eqs. (13) and (14) that the difference

(16)

makes it possible to estimate the value of the product of
the absorption coefficient and the local value of temper-
ature somewhat more precisely than directly from the

value of ReΓ32(τ = ± ) at close values of T and Tbg.
In fact, the measurement of Γ32(τ) at total delays repre-
sents an active location of inhomogeneity, when the
background thermoacoustic field plays the role of the
probing radiation.

The principal terms are reduced in Eqs. (13)–(15).
Thus, the behavior of the real components of the coher-

ence functions, ReΓ12(τ = ) and ReΓ32(τ = ± ),

and the imaginary component, ImΓ32(τ = ± ), is dif-
ferent. It depends on both the change in the temperature
of the background thermoacoustic field and the type of
inhomogeneities.

CORRELATION PROPERTIES
OF THE THERMOACOUSTIC RADIATION 

OF AN INHOMOGENEOUS MEDIUM

The simplest model of a thin layer provided an
opportunity to fully clarify the behavior of the correla-
tion properties of the fields of local sources of the self-
and scattered thermoacoustic radiation.

In the general case, the analysis of the situation is
somewhat more complex, being the same in essence.
For example, in a 2D case, the consideration of the cor-
relation properties of the field of a refractive-absorbing
inhomogeneity with small wave dimensions, which is
located in a volume with absorbing walls, produces the
results analogous to those given above. They can be
obtained by considering a contour Σ (for example, a cir-
cle) containing the studied region V. It is assumed that
receivers with small wave dimensions and also small
angular (with respect to the points of the studied region)
dimensions are positioned along this contour (Fig. 2).
For further analysis, it is necessary to examine the sec-
ondary source producing a scattered signal that is cor-
related with the background field received by a fixed
pair of hydrophones Pi and Pk. For this purpose, it is
necessary to reconstruct the field within the region of
the inhomogeneity’s location by using the Kirchhoff

Re Γ32 τ τ 32
+±=( ) –

1
2
---A b( )Tbg

1
2
---B

+ ν2( )Tbg,+∼

B
+ ν2( ) B

– ν2( )≈( ),

Im Γ32 τ τ 32
+±=( ) C ν( )Tbg.∼

Re Γ12 τ τ 12
–

=( ) 2Re Γ32 τ τ 32
+

=( )–

=  Re Γ12 τ12
–( ) Re Γ32 τ32

+( ) Re Γ32 τ32
+

–( )+[ ]– αT∼

τ32
+

τ12
– τ32

+

τ32
+
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Fig. 2. Correlation system with a circular array.
equation written in two alternative forms: for the
advanced and retarded Green functions G– and G+,

(17)

Here, n' is the outer normal to the contour Σ and the

functions G±(r – r') satisfy the equation ∇ 2G± + G± =
δ(r – r').

In this case, at the site of the inhomogeneity, the
field component exciting the scatterer and correlated
with the signals received at the points Pi and Pk is deter-
mined by Eq. (17) with G–(r) and by the regions of inte-
gration in the vicinities of these points. This equation
provides an opportunity to describe the correlation
properties of the field resulting from the scattering of
the background field by an elementary inhomogeneity
and received by the receivers Pi and Pk and to combine
its correlation function with an analogous correlation
function of thermal self-radiation of the absorbing
component of the same inhomogeneity, i.e., to con-
struct a quantity Γik(τ) analogous to Γ12(τ) for a thin
layer. The correlation of the scattered signals received
by the receivers Pi and Pk reaches its maximum in this
case at a relative time delay of τ = , compensating
the difference in the propagation times of a signal from
an elementary inhomogeneity to the observation points.

An alternative form of Eq. (17) uses the retarded
Green function G+(r); i.e. it describes the field in the
region within Σ, which is produced by external sources,
using the field entering the region (as having differed

ϕ r'( )∂G
± r r'–( )
∂n'

--------------------------- G
± r r'–( )∂ϕ r'( )

∂n'
---------------– σ'd

Σ
∫ ϕ r( ),=

r V .∈

k0
2

τ ik
–
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from Eq. (17) for G–, which provides the same descrip-
tion using the field leaving the region). This equation
for G+ provides an opportunity to describe the correla-
tion properties of the same function Γik(τ), which is
analogous to the quantity Γ32(τ) for a thin layer,
between the background field entering the region and
the field scattered by the inhomogeneity within Σ, i.e. to
describe again a peculiar location mode. This means
that the background field from the walls, which is
detected by one of the receivers (e.g., Pi), reaches the
elementary scattering inhomogeneity under investiga-
tion and the field scattered by it then reaches the second

receiver Pk within a total time of . An analogous sit-
uation takes place in the case of the opposite time shift

(– ) on account of the propagation of the background
field from the second receiver Pk to the inhomogeneity
and further, to the first receiver Pi . This means that

Γik(τ) has two more peaks at the values τ =  (apart

from the peak at τ = ± ).

The examination of the correlation properties coin-
cides in many respects with that in the case of the anal-
ysis of the thin-layer model. It leads to analogous
results: the real part of the mutual coherence function of

the field ReΓik(τ = ) “phased” with the region of
inhomogeneity by a compensation of the difference in
the times of propagation to Pk and Pi is determined by
the contribution of the sum of the terms of the type

~bm + 1ν2n (m, n = ) proportional to (T – Tbg) and all
degrees of b, and also by the sum of the terms with even

τ ik
+

τ ik
+

τ ik
–

τ ik
+

τ ik
–

0 ∞,
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degrees of ν proportional to the temperature of the
background radiation Tbg. The real part of the coher-

ence function ReΓik(τ = ± ) phased by the compensa-
tion of the sum of the propagation times is determined
by the sum of the terms of the type ~bm + 1ν2n (m, n =

) proportional to the inverted absolute background
temperature, i.e., (–Tbg), and by the sum of the terms
containing even degrees of ν and also proportional to
Tbg. The difference between the real parts of the coher-

ence functions ReΓik( ) – 2ReΓik( ) in the case of
the compensation of the corresponding difference and
summary delay times provides an opportunity to deter-
mine the form of the distribution α(r)T(r), analogously
to Eq. (16). Primarily, this is the spatial distribution of
the absorption coefficient, which is an important factor
for diagnostics, since it provides an opportunity to
judge, e.g., the blood saturation of a tissue [7, 8].

The imaginary part of the coherence function,

ImΓik(τ = ± ), in the case of the compensation of the
total delay time is determined by the terms containing
all degrees of b and uneven degrees of ν and also pro-
portional to the temperature Tbg; i.e., these are the terms

of the type ~bmν2n + 1Tbg (m, n = ), the lowest of
which is the term ~νTbg. Since the dimensions of a res-
olution element for a multi-input correlation system are
sufficiently small (≤λ/2), then, as before, it is sufficient
to take into account only the term linear in b (and in the
case of a more precise examination, also the term qua-
dratic in b) and the term quadratic in ν in the real parts

ReΓik(τ = ) and ReΓik(τ = ± ), and in the imagi-

nary part ImΓik(τ = ± ), the term linear in ν and Tbg.
The expressions are similar to Eqs. (13)–(15) at the

delay times  corresponding to the required phasing.

These properties are sufficient for an almost com-
plete estimation of the acoustic parameters of a tissue
and the temperature conditions in its volume.

SCHEME OF ACTIVE–PASSIVE 
THERMOACOUSTIC TOMOGRAPHY

OF A NONUNIFORMLY HEATED 
INHOMOGENEOUS MEDIUM

A system of correlation thermotomography can be
realized in various ways [1, 2]. A correlation scheme
(Fig. 2) consisting of a circular receiving array is
selected for further analysis. Each pair of the receiving
elements of the system array (i, k) is used to estimate
the time dependence of the corresponding functional

unit of the coherence matrix: Γik(τ) = . In
the case of processing, the values of the measured
coherence functions Γik(τ) are summarized with the
weights compensating the total or difference time delay

τ ik
+

0 ∞,

τ ik
– τ ik

+

τ ik
+

0 ∞,

τ ik
– τ ik

+

τ ik
+

τ ik
±

ui t( )uk* t τ+( )
and signal attenuation in the course of the propagation
from a separated local source at the point r to the obser-
vation points and also taking into account the data
redundancy depending on the array geometry. The anal-
ysis of the formation methods for the matrix of weight-
ing coefficients and the whole algorithm goes beyond
the framework of this paper and will be presented in a
separate publication. The only point important for fur-
ther consideration is the fact that the estimates for the
spatial distribution of the power density components of
the sources of the corresponding type are formed as a
result of such a processing. Each resolution element of
the region under investigation has unknown local val-
ues of the absorption coefficient, ultrasonic phase
velocity, intrinsic temperature, and temperature of the
background field. Nevertheless, it is possible to suggest
a scheme of measurements that provides an opportunity
to evaluate all these quantities.

Let us consider the temperature dependence of the
background field formed by the local power density of
the effective primary sources of thermal field and the
secondary sources of the scattered field, as estimated in
the process of the space–time accumulation of the real
and imaginary parts of the functions Γik(τ±). At the first
stage, it is assumed that the operations of measurement
and formation of the estimate of the power density are
performed without errors; i.e., the propagation time is
compensated exactly.

The real part of the accumulated sum is Re  ≡

Re ( ), where  are the weighting

coefficients and  = tk(rj) – ti(rj) are the relative
(i.e., difference) time delays for the ith and kth receivers
and the jth spatial element of the region under investi-
gation. This real part gives the total estimate of the
power of thermoacoustic sources, which consists of

terms of the type ~bm + 1ν2n(T – Tbg) (m, n = ) pro-
portional to the product of the viscous loss coefficient
and the temperature difference (T – Tbg) and also of the
contribution of the terms with even degrees of ν (fore-
most, this is the term of the second order in ν), this con-
tribution being proportional to the absolute temperature
of background radiation. The imaginary part of the

accumulated coherence function has the form Im  ≡

Im ( ), where  is the total delay
time, and it yields the estimate of the local power distri-
bution of the sources of the background field scattered
by the velocity inhomogeneities; this estimate is deter-
mined by the terms of the type ~bmν2n + 1Tbg (m, n =

), i.e., primarily by the linear term ~νTbg. The

dependence of the accumulated total values of Re

and Im  on the temperature factors (in the case of an
exact compensation of all time delays, i.e., in the case

ΓΣ
–

Aik ; j
– Γ iki k,∑ τ ik ; j

–
Aik ; j

–

τ ik ; j
–
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+
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of focusing at the region of interest) is analogous to the
dependence considered earlier for a single value of

ReΓik(τ = ) or ImΓik(τ = ), respectively. In fact,
the formation of distributions, i.e., patterns, on the basis

of Re  and Im  represents a tomography by hyper-
bolic (τ – = const) and elliptic (τ + = const) sections.

In the case of an exact compensation, in phasing to
a definite element of inhomogeneity, the characters of
the real and imaginary parts of the total coherence func-

tions  are different and clearly defined, and the

mutual influence of  and  at the point of phasing is
virtually absent in the case of a sufficiently wide band of

utilized frequencies ∆f:  –  @ 1/∆f ∀ i, k, j.

Moreover, in the process of scanning, in the case of
phasing to a certain spatial point different from the
position of a solitary inhomogeneity, it is important that
no mutual influence of the real and imaginary parts of

the function  be present. This means that the instru-

ment functions constructed on the basis of Re  and

Im  must not affect each other. To prove this require-
ment, instrument functions of a correlation system were
calculated for the case of exact phasing of the coher-

ence function Γik(τ = ) of a point source field. It
was found that, even in the case of a narrowband signal,

the influence of the imaginary components ImΓik( )
on the real part of the instrument function is negligibly

small. The influence of the components ReΓik( ) on
the imaginary part of the instrument function is also
small. This means that a “quasi-point” inhomogeneity
of absorption produces a response of the correlation
system only in the form of the real component of the
instrument function and the imaginary component of
the response to the same inhomogeneity of phase veloc-
ity is determined by the value of ν (in this case, the real
part of the instrument function is the quantity of the
second degree of smallness with respect to ν).

As a result of the “focusing” of the matrix elements

Γik(τ), two “images” are obtained: Re (r) ≡ Θ1(r) and

Im (r) ≡ Θ3(r). These images determine the power
distribution of effective sources in the medium at cer-
tain distributions of the medium temperature T(r) and
the local temperature of the background radiation
Tbg(r) = T1(r), which can be described by the expres-
sions generalizing the first expression in Eqs. (9):

(18)

(19)

where, in the approximation of lower degrees, β(r) is
the term linear in the coefficient b(r), γ(r) is the term
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quadratic in ν(r), and ζ(r) is the term linear in ν(r), the
latter being determined by single scattering of the field
of background radiation from the velocity inhomogene-
ities ν(r). Taking only these principal terms into
account is sufficient, because signals from various spa-
tial regions with dimensions of the order of magnitude
of the resolution element contribute independently to

the estimates of , and, as has been mentioned, the
dimensions of the resolution element do not exceed λ/2.

It is impossible to determine all unknown parame-
ters of the medium from Eqs. (18) and (19). Therefore,
it is necessary to perform additional measurements at
the second background temperature Tbg(r) = T2(r).
A direct change of this temperature by heating the
absorbing walls is difficult, because it requires a long
time for heating, and it is inconvenient from all points
of view. Therefore, we suggest introducing additional
active sources of the noise field into the tomography
scheme so that this noise field is added to the thermoa-
coustic field present in the region under investigation.
These sources excited by generators of random or pseu-
dorandom signals must produce a field similar (in its
space–time correlation properties) to the natural thermal
noise field. The methods of formation of such a field
need additional discussion that goes beyond the limits of
this paper. It may be just noted that there are several tech-
nologically sensible methods of its generation.

In this case, two analogous equations for the sec-
ond value of the background temperature are added to
Eqs. (18) and (19):

(20)

(21)

We assume for simplicity that the dimensional propor-
tionality factors necessary in Eqs. (18)–(21) are taken
into account in the values of Θ1–Θ4. An additional dif-
ficulty is the fact that the temperature of background
radiation T2 created in an active way is produced totally
by external sources. In this case, the degree of penetra-
tion of external radiation into the absorbing medium is
a priori unknown. However, the local value of the tem-
perature T2(r) can be estimated using the fact that the
suggested technique is intended for medical applica-
tions.

If the temperature of all elements of the correlation
tomography system is close to the temperature of the
tissue under investigation, i.e., about 310 K, the back-
ground temperature T1(r) is close to this value with a
relative accuracy of ~10–2. A better coincidence with
the average tissue temperature can be realized by set-
ting the system temperature equal to the temperature
of a specific patient. However, as we will see below,
this is not necessary. Therefore, the value of T1(r) in
Eqs. (18)–(21) may be considered to be approximately

ΓΣ
±

β r( ) T r( ) T2 r( )–[ ] γ r( )T2 r( )+ Θ2 r( ),=

ζ r( )T2 r( ) Θ4 r( ).=
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constant and known. In this case, the estimates ζ(r) and
T2(r) follow from Eqs. (19) and (21):

(22)

Deducting Eq. (20) from Eq. (18), it is easy to obtain an
estimate

(23)

The value of γ(r) can be obtained from the already esti-
mated values of ζ(r) ~ ν(r), because γ(r) ~ ν2(r), how-
ever this is not exactly needed. This follows from the
fact that the variations of sound velocity and absorption
typical of biological tissues lead to comparable distor-
tions of the field. For example, the relative distortions
of the megahertz-range field in the course of the trans-
mission through a medium with a velocity that differs
from the background velocity by 10 m/s or has an
excessive absorption of 2 dB/cm are close, and the rel-
ative distortion of the field within the length of the res-
olution element ~1 mm does not exceed 10–2. There-
fore, the term of the second order of smallness γ(r) is
many tens of times smaller than the first order term β(r)
and can be ignored in the estimate given by Eq. (23):

(24)

The deviation of the local temperature from the
background value of T1(r) is estimated with the same
relative accuracy ~10–2 by the expression following
from Eqs. (18) and (24):

(25)

It is necessary to stress that, in the case T2(r) =
(2−3)T1(r), we have |Θ2(r)| @ |Θ1(r)|. In this case,

(26)

The resulting estimate ∆T(r) presumes the constancy of
the temperature of the background radiation T1(r) at the
first step. It is easy to perform further iterative refine-
ment of all estimates. Indeed, knowledge of the first
step estimates ∆T(r) and the distribution of the absorp-
tion coefficient b(r) from Eq. (24) provides an opportu-
nity to refine the distribution of T1(r), and, using it, also
the distribution of T2(r). In this way, one can refine the
estimate ∆T(r). The iterative procedure can be contin-
ued further if needed. However, the expediency of such
a continuation requires a very high accuracy of the ini-
tial data.
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INFLUENCE OF THE MEASUREMENT ERRORS 
AND OF THE PRECISION OF THE ALGORITHM 

OPERATIONS

It is natural that the question of the required preci-
sion of the implementation of all algorithm stages is of
major importance for the evaluation of the practical fea-
sibility and capabilities of the system solving the prob-
lems of such complexity. In fact, there are several rele-
vant questions, and they are of both fundamental and
technological nature, remaining nevertheless very
important. The question of the first kind is about the
evaluation of the required accumulation factor in a mul-
tielement correlation system that is necessary for the
precision of the estimate of the basic statistical param-
eter, i.e., temperature, to make the estimate informative.
Indeed, in the case of thermal tomography measure-
ments, the values of T(r), T1(r), and T2(r) are reflected
in the intensities of random waves, which are estimated
by correlative accumulation. To provide the physical
meaning of the intermediate and final estimates with
the precision ~δT, it is necessary for the accumulation
factor F to be sufficiently large,

(27)

since, in the opposite case, the fact of temperature vari-
ation by the value δT makes it impossible to evaluate it
statistically using the considered techniques.

The accumulation factor in a correlation system is
determined by the number of correlative pairs in use,
the band of the received frequencies ∆f, and the averag-
ing time t0:

Here, M is the number of hydrophones in the array. At
T1, 2 ~ 300°K and δT ~ 0.1°K, the accumulation factor
F > (107–108) is necessary. This can be realized readily
at M ≥ 102 and ∆ft0 ~ 105, i.e., in the case of utilization
of an extended array. On the contrary, in an array with
a small number of elements like the one given in Fig. 1,
the indicated precision can be attained only by using a
considerably longer accumulation time. In the process
of accumulation, it is necessary also to take into
account the fact that a noticeable part of the received
signal is not produced by the thermal noise of the
medium but represents noise of different origins (losses
in a transducer, input stage noise, etc.). As a result, a
several times greater accumulation factor may be
required. The value of the accumulation parameter
obtained above and satisfying the condition given by
Eq. (27) represents a lower estimate corresponding to
the observation of a solitary heated object with the
dimensions of the order of magnitude of the resolution
element. In the case of processing the data from a large
heated region, a signal from an elementary volume w is
masked by the noise radiation from other elements of
the medium with the effective volume V ' ~ 1/α3, and to

F T1 2, /δT( )2
,≥

F M M 1–( )∆f t0.∼
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estimate the temperature T of the volume w with the
precision δT, it is necessary for the ratio of the response
of the correlation system to fluctuations at the same out-
put (i.e., the signal-to-noise ratio) to exceed unity:

 ≅  F  > 1. At w ≈ (0.5 cm)3 ≈ 10–1 cm3,

V ' ≈ (10 × 10 × 1 cm) = 102 cm3, δT ≈ 0.5°K, and T ≈
300°K, an estimate F ≥ 5 × 1011 is obtained. This esti-
mate noticeably exceeds the previous estimate and
requires an increase in the parameter of time accumula-
tion up to values of ∆ft0 ~ 5 × 106 at M2 ~ 105.

A provision made for the required accumulation fac-
tor is necessary first of all for the reconstruction of the
distribution Θ1(r) with the sufficient precision, since
just this precision determines the validity of the esti-
mate ∆T(r). Errors in estimating other quantities
involved in Eq. (26) play a less important role. An
increase in the resolution requirements leads to a
sharp growth of the accumulation parameter up to val-
ues that are unreal in practice. The value of w used
above far exceeds the volume of the resolution ele-
ment. Therefore, the secondary averaging of the esti-
mates Θ1(r)÷Θ4(r) over the corresponding region w can
be used, which, naturally, smoothes the fluctuations of
these estimates.

The second important point determining the preci-
sion of the estimate of the distribution Θ1(r) is the
errors in the compensation of the propagation delay
times in the process of the reconstruction of the distri-

butions Re (r) and Im (r). The sources of such
errors can be of two types. First, these are the inaccura-
cies in hydrophone positioning in the array and the
deviations in the acoustic parameters of hydrophones.
These technical errors are reduced as the equipment is
modified. The second type is the distortions introduced
by the inhomogeneities of ultrasonic velocity in the
medium under investigation. These inhomogeneities
can be estimated beforehand in the mode of active
tomography in the same system, using techniques analo-
gous to the ones considered by Parkhomenko et al. [9].
They can be evaluated also directly from the data on the

focusing of Im (r), since this distribution is deter-
mined by terms of the form νTbg (see Eq. (22)), and the

parameter ν(r) =  –  depends on the distribu-

tion of the phase velocity. An iterative technique can be
used for the refinement of the estimate of the velocity
c(r), which leads to a considerable reduction of errors.
Another factor making the situation simpler is the fact

that the errors in focusing, i.e., in the values of 

and , are averaged over a large number of compo-
nents (~M2) and, hence, are reduced by a factor of M
(in the case of a symmetrical distribution of phasing
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errors, or at least in the case of a zero median of their
distribution). The number of receivers in a complete
correlation system lies within 102–103. As a result, the
influence of the fluctuation errors of focusing can be
reduced to the level of the corrections of the second
order of smallness. Nevertheless, possible systematic
errors can be the main origin of the errors in the estima-
tion of the temperature ∆T(r) (but not the parameters
ν(r) and b(r), which are influenced by these errors to a
lesser extent).

CONCLUSION

The proposed scheme of thermal tomography is not
the only one possible technologically. However, it pro-
vides an opportunity to evaluate all parameters of a tis-
sue and analyze the reasons and factors determining the
capabilities and limitations inherent in thermal tomog-
raphy. The proposed scheme takes into account the
basic features of the formation of a thermoacoustic field
of a complex object. The space–time correlation prop-
erties of such a field (Gaussian!) are the comprehensive
initial data (the so-called sufficient statistics). There-
fore, the estimates obtained above for the attainable
sensitivity of a thermal system are universal to a certain
extent.

The main factor providing for the success or failure
in designing highly informative systems of thermal
tomography is precision. Primarily, this is the precision
of taking into account the influence of refraction and
propagation time in a biological tissue.

A difficult technological problem is the large
amount of calculations, which was evaluated in [2]. An
important difficult problem is also the design of an
array (uniformly dense or sparse [9]) with transducers
of high degree of similarity and small internal losses.
The problem of the introduction of additional cali-
brated quasi-thermal radiation is also complicated, and
the requirements for the characteristics of the latter
need additional study.

The proposed active–passive combined method
offers some new opportunities that were not considered
in this paper, e.g., the formation of a nonstationary or
anisotropic pseudorandom field providing additional
information on the object.
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Abstract—On the basis of the experimental data on the sound field formation in the Norwegian Sea, the year-
to-year variability of the propagation conditions is estimated. A comparative analysis is performed for the data
obtained from two long-range-propagation experiments with explosion-generated signals. The experiments
were carried out in summertime (August) on a path crossing the central deep-water part of the Norwegian Sea
and were separated in time by a period of four years. Noticeable changes are found to occur in the sound speed
fields between the two experiments. These changes are related to a change in the distance between the cores of
cold waters (observed in the region of the Norwegian Basin) and warm waters (observed in the region of the
Lofoten Basin). According to calculations, the observed changes in the sound speed structure can lead to con-
siderable changes in the propagation anomaly and in the range dependence of the sound field decay. In spite of
the noticeable difference in the propagation conditions, the experimental coefficients of low-frequency attenu-
ation differ little for the two experiments. © 2002 MAIK “Nauka/Interperiodica”.
The Acoustics Institute carried out repeated experi-
ments to study the attenuation, the space–time charac-
teristics, and the energy structure of the sound field in
the underwater sound channel (USC) of the Norwegian
Sea. In the previous publication [1], these experimental
data were used to analyze the spatial variability of the
propagation conditions in the Norwegian Sea. A num-
ber of experiments carried out with cw sound sources in
the Norwegian and Lofoten basins were considered. In
two studies of long-range sound propagation, explo-
sion-generated sound signals were used. One of these
studies was performed in summertime (August), the
second (similar) was carried out four years later. In both
experiments, the same propagation paths that crossed
the central deep-water part of the Norwegian Sea were
used. It is advantageous to compare the data of these two
studies to estimate the year-to-year variability of the
propagation conditions in the Norwegian Sea.

The hydrological environment of the Norwegian
Sea is governed by the currents existing there [2, 3].
Through the Faeroe–Shetland Trench, warm salt waters
of the Atlantic Ocean pass into the Norwegian Sea (a
branch of the Gulf Stream called the Norwegian Cur-
rent). From the north and northwest, cold Arctic waters
intrude (the Eastern Greenland Current). As the Norwe-
gian Current travels north, streams separate from it and
produce large cycles that are directed counterclock-
wise. The directions of local currents and the depth to
which they penetrate are mainly governed by the gen-
eral relief of the seafloor, which is rather rough in the
Norwegian Sea. The central part of the sea is occupied
by two basins, the Norwegian and Lofoten, with sea
depths up to 3000–3600 m.
1063-7710/02/4804- $22.00 © 20423
The USC axis is shallower in the Norwegian Basin
than in the Lofoten. From south to north, the depth of the
USC axis changes from 500–600 to 1000–1100 m on the
propagation path. This change is accompanied by the
formation of the second, weakly pronounced minimum
in the sound speed, at the depths ~150–300 m. In the
course of the experiments, the sound speeds near the
surface and at the depth of the main USC differed by
18–24 m/s. Near the bottom (with a sea depth of
3300 m), the sound speed was by 32–40 m/s higher
than that near the surface. Because of the summer
warming of the near-surface water layers, a tempera-
ture-discontinuity layer occurred at depths of 25–40 m,
in which the negative gradient of the sound speed
reached –0.7 to –1.3 1/s.

Figure 1 shows the structure of the sound speed
field, which was obtained by hydrologically surveying
the path during the first and second experiments on
long-range propagation of the explosion-generated sig-
nals. In surveying, 7–10 sets of hydrological measure-
ments were performed at different distances along the
path. In Fig. 1, the neighboring isospeed curves differ
by 1 m/s. The sound speed field is related to the bottom
relief measured in the first experiment. Although each
experiment was accompanied by echo-sounding, the
measured profiles were somewhat different, because
the transmitting vessel slightly deviated from the path
on different tacks. On the other hand, the locations of
the most significant bottom rises were nearly the same
in all measured bottom profiles.

Two sound speed fields shown in Fig. 1 are notice-
ably different: mainly in the steepness of the depth
002 MAIK “Nauka/Interperiodica”



 

424

        

VADOV

          
4
0 100 200 300 400 500 600

R, km

(c)

(b)

(‡)

3

2

1.2

1.0

0.8

0.6

0.4

0.2

0

1.2

1.0

0.8

0.6

0.4

0.2

0

Z,
 k

m

Sound speed field

1465

1461

1463

1467

1465

1465

14
64

1471

1473

1467

1469

1469

1478

1475

1474

1473

1478
1475

1475
1477

1470

1.476
1.474

1.472

1.473

1.474

1.475

1.476

1.4721.4711.470

1.469

1.469

1.470
1.468

1.467

1.466
1.465

1.464

1.463

1.462

1.461

1.467 1.468

Fig. 1. Sound speed field and the bottom relief measured on the path of long-range propagation of explosion-generated signals in
two experiments separated by four years in time. The numbers near isolines indicate the sound speeds (in m/s). (a) The sound speed
field in the first experiment; (b) the sound speed field in the second experiment; and (c) the bottom relief along the path (according
to echo-sounding survey that accompanied the first experiment).
increase observed for the isospeed curves along the
path. The characteristic feature of the sound speed fields
is the existence of a core of cold waters in the Norwegian
Basin (with a sound speed of about 1460 m/s at depths of
~600–650 m). In the Lofoten Basin, a core of warm
waters exists (with sound speeds of ~1476–1478 m/s).
For the two experiments, the distance between the cores
(as measured along the path) differs by a factor of about
two. When this distance was 250–300 km (in the first
experiment), the isospeed curves became deeper rather
sharply in the region between the Norwegian and
Lofoten basins. When the cores were separated by
550–600 km (in the second experiment), the depth of
isospeed curves changed smoothly. The cold and warm
cores observed in the experiments can be undoubtedly
related to the cold Arctic and warm Atlantic waters that
are brought into the Norwegian Sea by the East-Island
Current and the branch of the Gulf Stream.

The cold core of the Norwegian Basin can be also
detected from the Naval Oceanographic Office Data
Warehouse [4]. However, the more mobile core of
warm waters, which we observed in the Lofoten Basin,
does not manifest itself in this database.
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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Fig. 2. Calculated sound fields for the (1) first and (2) second experiments separated by four years. The source and receiver depths
are (a) both 300 m and (b) 300 and 600 m, respectively.
It is worth considering the effects of sound speed
variability caused by the aforementioned changes in the
location of the warm water core. Unfortunately, the
experimental layouts (namely, the source and receiver
positions) are noticeably different for the two sets of
measurements, and comparative analysis of the effect
of environmental changes on the sound field is difficult.
To perform such an analysis, we calculated the sound
field decay on the path for both combinations of the
source and receiver positions. In the calculations, the
computer code by Vagin [5] was used for a plane sea
surface and an absorbing bottom. A number of trans-
mission and reception horizons were specified, includ-
ing those that corresponded to the experiments. Figure 2
shows the decays of the sound field level, which were
calculated for the hydrological situations of the first and
second experiments. The sound sources that moved
along the path were at depths of 300 and 600 m, the
receiver was at the 600-m horizon, at the southern end
point of the path. The difference in the decay laws are
quite noticeable. In the first case, the levels of the sound
field change by 5–7 dB (on the average) along nearly
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
the entire path. In the second case, a considerable
change in the steepness of the decay is observed (up to
10–15 dB at 1000 km).

In the second experiment with the explosion-gener-
ated sound sources, the receiving vessel was at the
southernmost point of the path. The transmitting vessel
traveled at a speed of 11 knots away from the receiving
one and dropped small explosive charges equipped with
pressure-sensitive detonators. The dropping intervals
were 7–8 min for the first and second convergence
zones and 20 min for the rest of the path. The charges
exploded at a depth of 150 m. At the moments of drop-
ping, the distance between the vessels was determined
from the travel time of the sound signal. Periodically,
the distance was corrected by means of the satellite nav-
igation systems of both vessels. In total, 100 charges
were exploded. The explosion-generated signals were
received by omnidirectional systems at the horizons
100 (above the USC axis) and 1200 m (below the USC
axis). The wind speed changed from 8 to 10 m/s during
experimentation, and the wind directions were 40° to
50° relative to the path.
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The sound speed at the 150-m depth (the horizon of
explosions) differed by 7–9 m/s from that at the USC
axis. The charges were exploded above the USC axis.
However, the USC captured the rays that left the source
at angles within ±8° relative to the horizon. At the cho-
sen reception depths, the zonal structure of the sound
field was formed. At a reception depth of 1200 m, the
sound speed was by 5–6 m/s lower than at the transmis-
sion depth. The sound speed at the reception depth 100 m
was as little as 1–2 m/s higher than at the transmission
depth.

Figure 3 illustrates the sound field calculated with
Vagin’s ray-approximation computer code for the
actual bottom relief and sound speed profiles changing
along the path. In the calculations, the reception depths
were 100 and 1200 m and the source moved at the
150-m depth, in accordance with the experimental lay-
out. The sea floor was supposed to be ideally absorp-
tive. The objective of the calculations was to consider
the zonal structure of the sound field, along with its
changes caused by the movement of the source. At a
reception depth of 100 m, up to six to seven convergence
zones are formed, the last one corresponding to a dis-
tance of about 300 km. At a reception depth of 1200 m,
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Fig. 3. Calculated sound field for the second experiment.
The source and receiver depths are (a) 150 and 100 m and
(b) 150 and 1200 m, respectively.
the zonal structure can be observed at ranges shorter
than 60–70 km.

In the vicinity of the boundary between the Norwe-
gian and Lofoten Basins, the bottom significantly rises
(to a depth of 2100 m, where the sound speed becomes
equal to that at the surface). So, at distances longer than
200–250 km, the signals reflected solely by the surface
are screened by the bottom rise and do not reach the
receivers. At the receivers, signals arrive that are either
“water” signals or those reflected from both bottom and
surface, the latter signals being strongly attenuated by
the bottom.

Thus, to estimate the attenuation coefficient (to
exclude the effects of the wavy surface) in this experi-
ment, one should analyze the decay of the sound field
received at a depth of 1200 m for the path fraction
ranging from 250 to 650 km, where a stable pattern of
total insonification exists (according to the calcula-
tions, the last shadow zone corresponds to the dis-
tances 60.5–67 km at this horizon).

Such estimates of the attenuation coefficient were
obtained for the frequency band from 160 to 800 Hz. To
exclude the known law of geometric spread, we used
the “differential” method, which has been repeatedly
used to interpret experimental data obtained in intricate
environments. This method is based on two assump-
tions. The first one consists in the concept that the geo-
metric spread is not known but the same for the whole
frequency band at hand. The second assumption is that
the frequency dependence of the attenuation coefficient
has a power-law form with no constant component.
According to the differential method, one normalizes
the sound field levels at individual frequencies to the
level at a frequency that is treated as the reference one.
By doing so, one totally excludes the unknown law of
geometric spread. From the normalized decays, the dif-
ferential attenuation coefficient is determined at each
frequency, which can be shown to be the difference
between the total attenuation coefficients at two fre-
quencies: the frequency to be analyzed and the refer-
ence one. By approximating the frequency dependence
of the differential attenuation coefficient by a power-
law function and omitting the free term, we obtain the
following expression for the total attenuation coeffi-
cient:

(1)
As a sound field characteristic that is equivalent to

the power of the explosion-generated signal within the
frequency band ∆ f, we use the quantity

where T is the signal duration and pf (t) is the pressure
in the explosion-generated signal, which is normalized
to the frequency band ∆ f. The power-spectral analysis
of the explosion-generated signals and the subsequent

β a f n.=

E f p f
2 t )( t,d

0

T

∫=
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Fig. 4. Experimental sound field decays for the second experiment at the frequencies (1) 200 and (2) 400 Hz. The source and receiver
depths are (a) 150 and 100 m and (b) 150 and 1200 m, respectively.
processing of the experimental data were performed
with the use of a computer.

As a result, the decay curves were obtained for the
sound field level. These curves can serve as the starting
data for estimating the frequency dependence of the
attenuation coefficient. Figure 4 shows the experimen-
tal decay curves at the frequencies 200 and 400 Hz, for
reception depths of 100 and 1200 m. One can notice
rather sharp changes in the decays that occur in the
vicinity of the boundary between the Norwegian and
Lofoten Basins. It is difficult to detect the zonal struc-
ture of the sound field from the experimental decays.
This difficulty seems to be caused by the too large sep-
arations (~7–8 km) of adjacent explosions. However,
the spread in the experimental levels of the sound field
received at a depth of 1200 m becomes significantly
lower starting from distances of 200–250 km, while, at
a reception depth of 100 m, the spread smoothly
decreases at distances from 250 to 500 km.

To describe the attenuation at the 1200-m reception
depth by Eq. (1) (with frequency in kHz and attenuation
in dB/km), we obtained the following values of the
parameters: a = 0.07 and n = 1.2. Remember that, for
describing the frequency dependence of sound attenua-
tion by Eq. (1), in the first experiment we obtained the
parameters: a = 0.044–0.052 and n = 0.99–0.925.

The attenuation coefficients determined from the
experiment at hand are summarized in the table. For
comparison, the next to last column of the table shows
the absorption coefficients calculated according to for-
mulas given in [6]. These absorption coefficients
depend on the temperature (T), salinity (S), and hydro-
gen exponent (pH). To calculate the absorption in the
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
Norwegian Sea, we specified the following parameters
of the sea medium: T = 272.5°K, S = 35.2‰, and pH =
8.15–8.2.

The expressions determined from the first and second
experiments lead to similar values of the attenuation
coefficient. These values calculated according to Eq. (1)
with the aforementioned parameters agree well with
each other for the whole frequency band (63–800 Hz):
the spread is no higher than ±20%. At lower (<200 Hz)
frequencies, this spread is within the estimated measur-
ing accuracy: ±0.001–0.002 dB/km. However, the
power-law exponents differs by a factor of 1.2–1.3 for
the two experiments.

The decays of the sound field received at the 100-m
depth were also used to estimate the attenuation
(although there was a zonal structure of the field up to
a distance of 300 km). In doing so, we faced certain dif-
ficulties. In the power-law approximation of the fre-
quency dependence of the differential attenuation coef-
ficients, a very high (undoubtedly overestimated) con-
stant component arose. To obtain a more realistic
estimate for this reception horizon, we used an attenua-
tion value of 0.0173 dB/km, which corresponds to the
1200-m reception depth at a reference frequency of
315 Hz. The results of analyzing the explosion-gener-
ated signals received at a depth of 100 m are presented
in the table (see the last column). Earlier, we never esti-
mated the attenuation coefficient for the case of the
transition from zonal to full-insonification structures of
the sound field.

All attenuation coefficients obtained in both the first
and second experiments (except for those presented in
the last column of the table) are shown in Fig. 5. One
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Attenuation coefficients obtained by the differential method for the path fraction bounded by the distances 250 and 650 km
from the reception point

Frequency, Hz

Attenuation coefficient, dB/km
at a reception depth of 1200 m

Absorption
coefficient, dB/km

Attenuation coefficient, 
dB/km at a reception 

depth of 100 m

experiment calculation
according to Eq. (1) calculation according to [5] experiment

160 0.008 0.0076 0.0015–0.0016 0.004

200 0.012 0.0100 0.0023–0.0025 0.007

250 0.012 0.0131 0.0035–0.0038 0.009

315 0.015 0.0173 0.0054–0.0058 0.017

400 0.025 0.0231 0.0084–0.0089 0.025

500 0.033 0.0303 0.0122–0.0130 0.034

630 0.038 0.0400 0.0175–0.0190 0.043

800 0.054 0.0534 0.0250–0.0264 0.050

Note: At the frequencies 630–800 Hz, the attenuation was determined for distances shorter than 550 km.
can conclude that, in spite of considerable changes in
the propagation conditions, the experimental attenua-
tion coefficients obtained in the two experiments dif-
fer little from each other. Comparative analysis of the
data leads to the conclusion that the summertime fre-
quency dependence of attenuation in the Norwegian
Sea can be described by the following expression: β =
{0.06 } dB/km.

At the same time, the attenuation can be only par-
tially attributed to sound absorption in the seawater;

f kHz
1.1

0.005

50 100

β, dB/km

f, Hz
200 500 1000

0.002

0.01

0.02

0.05

Fig. 5. Experimental attenuation coefficients obtained by
the differential method from the data of the (∆, h) first and
(s) second experiments. The line shows the frequency
dependence of the attenuation, as described by the expres-

sion β = {0.06 } dB/km.f kHz
1.1
i.e., an additional attenuation mechanism is required.
As we [1] have mentioned above, the most probable
cause of such high attenuation coefficients in the Nor-
wegian Sea is the sound scattering by thermal inhomo-
geneities, such as fine-structural ones whose horizontal
size is by 1–2 orders of magnitude higher than the ver-
tical size. The following considerations confirm this
concept.

(i) The Norwegian Sea is strongly influenced by cur-
rents (cold East-Island and warm North-Atlantic ones).
According to a large body of experimental data [7], a
justified conclusion can be drawn that fine-structural
inhomogeneities are generated in ocean regions that are
influenced by strong currents (like the Kamchatka one).
For such inhomogeneities, the following values of the
rms fluctuation of the acoustic refraction index are
characteristic: µ2 ≅  10–5–10–7.

(ii) In accordance with the results obtained in [8],
the attenuation coefficients obtained in our experiment
at frequencies of ~400–500 Hz can be explained by the
sound scattering from the fine-structural inhomogene-
ities if µ2 ≅ 1.4 × 10–7.

(iii) If the fine-layered ocean inhomogeneities are
supposed to be of fractal nature, the low-frequency
attenuation exhibits a power-law frequency dependence
[9] which, with certain parameters of the fractal, has an
exponent that agrees with our experimental data.

Finally, let us formulate the conclusions that can be
drawn from the above analysis of the experimental data
on the year-to-year variability of the conditions of the
sound field formation in the underwater sound channel
of the Norwegian Sea.

On the propagation path that crosses the central
deep-water region of the Norwegian Sea from south-
west to northeast, the depth of the USC axis changes
from 600 to 1000–1100 m. In different years, the
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002



        

YEAR-TO-YEAR VARIABILITY OF THE LONG-RANGE PROPAGATION CONDITIONS 429

         
steepness of this change is different, depending on the
relative positions of the cold and warm water cores
that are always present in the Norwegian and Lofoten
basins, respectively, at a depth of about 600 m. In our
experiments, separated by four years in time, the dis-
tances between these cores changed by a factor of
more than two.

For a certain steepness of the change in the depth of
the channel axis, the calculations lead to the 5- to 7-dB
change in the propagation anomaly for some depths of
the source and the receiver. At other source and receiver
depths, a noticeably different steepness of the sound
field decay can be observed.

In spite of the considerable change in the sound
speed profiles measured in the two experiments with
the explosion-generated sound signals, the low-fre-
quency attenuation coefficient determined by the differ-
ential method changes insignificantly.
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Abstract—Relations that allow one to calculate the nonlinearity parameters for some types of multicomponent
systems from the parameters involved in the equations of state are presented. Relations for estimating the deriv-
atives of the speed of sound with respect to temperature and pressure in a two-component mixture from the data
on the properties of pure components are obtained. The calculated values of the aforementioned derivatives
agree well with the values obtained from the experimental dependences of the speed of sound on temperature
and pressure in a two-component mixture. © 2002 MAIK “Nauka/Interperiodica”.
According to [1, 2], the nonlinearity parameter B/A
plays an important role in nonlinear acoustics and is of
interest for many fields of science, such as underwater
acoustics and medicine.

Quite often, the nonlinearity parameter for mixtures,
(B/A)mix, is calculated as a sum of nonlinearity parame-
ters (B/A)i for the components multiplied by their
respective molar fractions in the mixture [1].

To calculate (B/A)mix by the thermodynamic method
according to the equation [3],

(1)

where u is speed of sound, T is the temperature (K), P
is the pressure, ρ0 is the density of the unperturbed sys-
tem, CP is the isobaric molar heat capacity of a compo-
nent or the average isobaric molar heat capacity of the
mixture, and M is the molar mass of a component or the
average molar mass of the mixture, it is necessary to
know the dependence of the speed of sound on P and T
for the pure components.

This paper presents the equations for calculating
(B/A)mix from the properties of pure components for
some types of gas mixtures without knowing the depen-
dence of the speed of sound in pure components on P
and T. In addition, equations for calculating (B/A)mix on
the basis of Eq. (1) are obtained for mixtures whose for-
mation from pure components at T = const and P =
const satisfies the following conditions: (i) the change
in volume at mixing, VM, is zero, and (ii) the change in
the enthalpy at mixing, HM, does not depend on T.

To obtain the relations for calculating (B/A)mix for
some types of mixtures, we start from the formula
defining the quantity B/A [4]:

(2)
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where ρmix is the mixture density, ρmix0 is the unper-
turbed mixture density, umix is the speed of sound in the
mixture, and S is the entropy. The derivative on the
right-hand side can be represented in the form

(3)

where Vmix is the mixture volume.
Since the mixture entropy differs from the entropies

of pure components, the derivatives for the mixture in
the last two relations can hardly be expressed in terms
of similar derivatives for the mixture components. We
apply the last relation to the calculation of (B/A)mix for
a mixture of ideal gases with constant isochoric heat
capacities. To find the derivatives (∂P/∂Vmix)S and

(∂2P/∂ )S, one should consider two forms of the adi-
abatic equation [5]:

dUmix + PdVmix = 0, (4)

dHmix – VmixdP = 0, (5)

where Umix and Hmix are the internal energy and the
enthalpy, respectively. The last two equations can be
presented in another form:

(6)

(7)

where CPi and CVi are the isobaric and isochoric molar
heat capacities of the ith component of the mixture, ni
is the number of moles of the ith component in the mix-
ture, v l is the molar volume of lth component, and r is
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the number of components in the mixture. Now, we can
easily obtain the adiabatic equation:

(8)

where Kmix is the adiabatic index of the mixture:

(9)

One can easily find the expression for the derivative
(∂P/∂Vmix)S,

(10)

which can be rewritten in the form

(11)

Here, R is the universal gas constant and n is the total
number of moles of all components in the mixture.

One can easily find the formula for the second deriv-

ative (∂2P/∂ )S:

(12)

Taking into account the formula for the mixture den-
sity ρmix,

(13)

where Ml is molar mass of the lth component, we find,
according to [4], the relation for umix,

(14)

or, according to another formula following from Eq. (14),

(15)

For a mixture of ideal gases, we obtain

(16)

If all components of the mixture have the same adi-
abatic index, the relation for umix has a form similar to
that of the sound speed in a single-component ideal gas,
the only difference being that the average molar mass of
the mixture appears in place of the molar mass of the

PVmix
Kmix const,=

Kmix CPi

i 1=

r

∑ 
 
 

CVj

j 1=

r

∑ 
 
 

1–

.=

∂P
∂Vmix
------------- 

 
S

Kmix

Vmix

P
----------,–=

∂P
∂Vmix
------------- 

 
S

Kmix

Vmix
2

----------nRT .–=

Vmix
2

∂2P

∂Vmix
2

-------------
 
 
 

S

Kmix

Vmix
3

---------- Kmix 1+( )nRT .=

ρmix
1

Vmix
---------- nlMl,

l 1=

r

∑=

umix
2 ∂P

∂ρmix
------------ 

 
S ρmix 0,

,=

umix
2 Vmix

ρmix
---------- ∂P

∂Vmix
------------- 

 
S ρmix 0,

.–=

umix
2 n jM j

j 1=

r

∑ 
 
 

1–

nRTKmix.=
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
component. Taking Eq. (3) into account, one can easily
obtain the expression for the second derivative

(17)

which can be easily reduced to the form

(18)

From the last relation and Eq. (2), we derive the
expression

(19)

which is similar to the expression for a single-compo-
nent ideal gas.

Now, we obtain the formula for calculating the non-
linearity parameter of the gas mixture described by the
Shishkov–Noble–Abel equation [6], which can be pre-
sented in the form

(20)

where bmix is defined as [5]

(21)

The parameter bmix is used for calculating (B/A)mix,
for example, in the theory by Flory [1]. From Eq. (20),
according to [7], the adiabatic equation is obtained in
the form

T(Vmix – nbmix  = const, (22)

where the average isochoric molar heat capacity CVmix
is defined by the expression

(23)

Taking into account the expression
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relating CP and CV [7], and also the formulas for the
derivatives (∂P/∂T  and (∂P/∂Vmix)T,

(25)

(26)

which follow from Eq. (20), one can easily show that
the difference between the values of CP and CV for a gas
described by the Shishkov–Noble–Abel equation is
equal to R, as in the case of ideal gases. Therefore, the
adiabatic equation can be written in the form

(27)

The last formula yields the expressions for the
derivatives,

(28)

(29)

and for the sound speed umix,

(30)

where Mmix is the average molar mass of the mixture. 
Using Eq. (2), one can easily obtain the relation

(31)

which leads to the equation for the nonlinearity
parameter [8]:

(32)

At bmix = 0, the last relation yields Eq. (19).
For a gas mixture described by the van der Waals

equation [5], we have

(33)

where the mixture parameter amix is related to similar
parameters ai of the components [5]:

(34)
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As shown in [7], the adiabatic equation can be writ-
ten in the form of Eq. (22). One can easily write the adi-
abatic equation in another form:

(35)

For the derivative (∂P/∂Vmix)S, we obtain

(36)

which leads to the following relation for umix:

(37)

Formula (36) leads to the expression for

(∂2P/∂ )S:

(38)

which can be represented as

(39)

It can be easily seen that, at amix = 0, Eq. (38) coincides
with Eq. (29), and Eq. (36) coincides with Eq. (28). 

Now, taking into account Eq. (3), we find the expres-
sion for the derivative,

(40)

which at amix = 0 coincides with Eq. (31). 
From Eq. (40), we obtain
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(41)
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which at amix = 0 coincides with Eq. (32) for a gas mix-
ture described by the Shishkov–Noble–Abel equation. 

In most cases, one fails to obtain the formulas for
calculating (B/A)mix from the parameters of the compo-
nents and has to use Eq. (1), which requires information
on the pressure and temperature dependences of the
sound speed. When using the dependences of the sound
velocities in the components, ui, on P and T, one need
not compare the experimental and calculated values of
(B/A)mix. The validity of equations used in this case can
be assessed on the basis of the comparison between the
calculated values of the derivatives (∂umix/∂T)P and
(∂umix/∂P)T and the values of the same derivatives
obtained from the experimental dependence of the
sound speed on P and T. It is precisely the values of the
derivatives (∂umix/∂T)P and (∂umix/∂P)T found from the
experimental dependences of the sound speed on P and
T that allow one to determine the experimental values
of (B/A)mix [10]. Now, we consider the expression for
the adiabatic compressibility of a mixture consisting of
two components βSmix [11]:

(42)

where v i is the molar volume of the ith component; CPi
is the isobaric molar heat capacity of the ith component,
vmix is the molar volume of the mixture; αi is the expan-
sion coefficient of the ith component (i = 1, 2);

(43)
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CPmix is the isobaric molar heat capacity of the mixture,
CPmix = x1CP1 + (1 – x1)CP2; (44)

and

(45)

According to [12], Eq. (42) is valid when the isobaric
and isothermal mixing of pure components satisfies
two conditions: (i) the change in the total volume of the
system is zero, and (ii) the change in the enthalpy at
mixing does not depend on T. Many mixtures that are
formed of pure components at P = const and T = const
in compliance with these conditions include not only
ideal mixtures, but also, in particular, many regular
mixtures [5].

As follows from the well-known equality [4]

(46)

where βS is the adiabatic compressibility and ρ is the

density, the derivative (∂ /∂T)P can be found from
the formula

(47)

where ρmix is the mixture density and Mmix is the aver-
age molar mass of the mixture:

(48)

Mmix = x1M1 + (1 – x1)M2. (49)

From Eq. (42), we obtain the expression for the
derivative (∂βSmix/∂T)P:
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Formulas (47) and (50) were used to calculate the
derivative (∂umix/∂T)P for a mixture of liquids: carbon tet-
rachloride and methanol. The experimental dependence
of umix on T for this mixture and the value of the derivative
(∂umix/∂T)P calculated on its basis are presented in [10].
In the calculations, the following data on the properties
of liquid ëël4 and ëç3éç at 30°ë were used: ρ1 =
1569.7 kg m–3, ρ2 = 781.7 kg m–3, u1 = 903.9 m s–1, u2 =
1084.8 m s–1, (∂u1/∂T)P = –3.17 m s–1 K–1, (∂u2/∂T)P =
–3.22 m s–1 K–1 [10] (the subscript 1 refers to the prop-
erties of ëël4 and the subscript 2, to the properties of
ëç3éç), CP1 = 131.7 J mol–1 K–1, CP2 = 81.6 J mol–1 K–1

[13], the dependences of CP1 and CP2 on T from [14],
and the dependences of ρ1 and ρ2 on T from [15].

The fulfillment of the first of the two conditions is con-
firmed by the small difference obtained at x1 = 0.3
between the calculated value ρmix = 1180.5 kg m–3 and the

experimental one  = 1184.0 kg m–3. The value of the
derivative (∂βSmix/∂T)P is 7.123 × 10–12 Pa–1 K–1, while the
sum of the first and the second terms that occupy the two
first lines on the right-hand side of Eq. (50) along with the

term containing the derivatives (∂ /∂T)P and

(∂ /∂T)P is equal to 7.065 Pa–1 K–1.

The value of (∂umix/∂T)P calculated for x1 = 0.3
equals –2.759 m s–1 K–1, and its value obtained from the
experimental dependence of umix [10] is –2.96 m s–1 K–1

[10].

To calculate the derivative (∂ /∂T)P , we use a
formula similar to Eq. (47), which also follows from
Eq. (46):

(51)

The formula for the derivative (∂βSmix /∂P)T is simi-
lar to expression (50), differing only in that the deriva-
tives with respect to P for pure components appear in
place of the similar derivatives with respect to T, and the
term similar to the third term on the right-hand side of

Eq. (50), i.e., the term of the form CP1CP2Y 2,

is absent. The derivatives in the expression for
(∂βSmix/∂P)T were calculated using the data on the iso-
thermal compressibility of the components [13]. In the
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course of the calculations, we neglected the terms
involving the derivatives of isobaric molar heat capac-
ity with respect to P. The calculations showed that all
terms involved in the expression for the derivative
(∂βSmix/∂P)T , except for the term with the derivatives of
the sound speed with respect to P for pure compo-
nents, make no contribution to the value of the deriv-
ative (∂βSmix /∂P)T , which equals 1.04792 Pa–2. The
first term on the right-hand side of Eq. (51) is several
orders of magnitude greater than the second term. The
value of the derivative (∂umix /∂P)T calculated using the
data for pure components is –0.528 m s–1 Pa–1. The
value found from the experimental dependence of umix

on P is –0.531 m s–1 Pa–1 [10]. The cited paper [10] pre-
sents only the values of the derivatives (∂umix/∂T)P and
(∂umix/∂P)T found from the experimental dependences
of umix on P and T. In [2], the values of the nonlinearity
parameter are calculated for more complex systems
with the use of several models without comparing the
results with the experiment.

Thus, relations are obtained that allow one to calcu-
late the parameter of nonlinearity for some types of gas
mixtures from the values of their component parame-
ters involved in the equation of state. On the basis of the
relation for the speed of sound in a two-component
mixture, whose isobaric-isothermal formation is not
accompanied by changes in volume, under the condi-
tion that the enthalpy change at mixing does not depend
on T, the formulas are obtained for calculating the
derivatives (∂umix/∂T)P and (∂umix/∂P)T from the data on
the properties of the pure components. The calculation
by these formulas for a mixture of ëël4 and CH3OH
gives the values that are close to those obtained from
the experimental dependences of the speed of sound on
T and P.
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Abstract—Interference measurements of small variations in the velocity and attenuation of surface acoustic
waves (SAWs) are used to investigate water layers up to 15 nm thick adsorbed on the surface of a lithium nio-
bate crystal. The frequency dependence of the relative variation of the SAW velocity with the adsorption of
water vapor is measured in the range from 40 to 400 MHz. Acoustic techniques are used to experimentally esti-
mate the frequency dependence of the dielectric constant of adsorbed water and its dipole relaxation frequency
along with the dependence of the adsorption layer thickness on the water vapor pressure in the surrounding
medium. A simple expression is proposed for calculating the dispersion of the SAW velocity in a solid loaded
with a thin liquid layer. © 2002 MAIK “Nauka/Interperiodica”.
In a liquid spread over the surface of a solid, a thin
layer is formed under the effect of surface forces, and
this layer differs in its structure and properties from the
bulk liquid phase [1–4]. Examples of such layers with a
modified structure are thin liquid interlayers and wet-
ting and adsorbed liquid films [3]. The structuring
effect of the field of surface forces is most pronounced
when the lyophilic solid surfaces interact with polar liq-
uids [2, 3].

In a wet medium, a layer of adsorbed water is
formed on the surface of a solid, its thickness depend-
ing on the humidity of the medium and the surface
properties. The structural modification of the adsorbed
water layer is related to the rearrangement of hydrogen
bonds and to the formation of an ordered orientation
structure, which is different near the hydrophilic and
hydrophobic surfaces. The structural transformation
manifests itself in the changes that occur in the number
and energy of hydrogen bonds between molecules, in
the rotational and translational mobility, and in the vis-
cosity and density of water [1]. Close to a hydrophilic
surface, the water density is usually higher, the molec-
ular dipoles of water are mostly perpendicular to the
surface, and the mobility of molecules is lower than in
the bulk of water. The structure-sensitive physical prop-
erties of the adsorbed water depend on the layer thick-
ness and differ from those of the water bulk [1–3]. The
purpose of this work is to acoustically investigate the
water adsorbed on the surface of a lithium niobate crys-
tal and to demonstrate the possibility of investigating
the properties of liquid layers on the basis of the analy-
sis of perturbations of surface waves.

To analyze the interaction of surface acoustic waves
(SAWs) with liquid in a layered system, one should
solve a system of equations including the equations of
motion and the electrostatic equations along with the
1063-7710/02/4804- $22.00 © 20436
equations for piezoelectric media and the boundary
conditions. The analysis of the numerically calculated
dispersion curve of the SAW velocity showed [5] that,
at small values of the layer thickness, the velocity vari-
ation is linear and can be approximated by the depen-
dence ∆V/V ≈ 0.4h/λ. We assume that, when a SAW
propagates in the system formed by a liquid layer and a
solid halfspace and when the layer thickness is small
(h ! λ), the effect of the liquid layer on the relative
variation of the SAW velocity is reduced to perturba-
tions in the mechanical and electric boundary condi-
tions:

(1)

where ∆V = V – V0; V0 and V are the SAW velocities on
the free and the layer-loaded surfaces; h is the liquid
layer thickness; and λ is the SAW wavelength.

The factor A corresponds to the SAW velocity vari-
ation that results from the mechanical effect of the liq-
uid layer. It is obtained from the dispersion equation
for the system formed by the isotropic solid halfspace
and the liquid layer [6] and relates the SAW parame-
ters to the acoustic impedances of both the solid and
the liquid:

(2)

where ρf and ρs are the densities of the liquid and the
solid, respectively; Q = Vf/Vs) is the angle of
the acoustic waves’ propagation in the liquid [7]; Vf is
sound velocity in the liquid; and Vs is SAW velocity.

The factor B is obtained by the impedance method
[8] from the equality condition for the effective dielec-
tric constants of the liquid layer and the piezoelectric at
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the boundary. It relates the electromechanical coupling
coefficient k of the piezoelectric and the dielectric char-
acteristics of the medium, the liquid layer, and the
piezoelectric to the SAW velocity:

(3)

where εp, εf , and ε0 are the relative dielectric constants
of the piezoelectric, the liquid, and the air (vacuum),
respectively. The dielectric constant of air is ε0 ≈ 1, and
the dielectric constant of water is εf @ ε0. Then, expres-
sion (3) can be written in a simpler form [5]:

(4)

The difference between the exact value of the SAW
velocity variation with the normalized layer thickness
h/λ, which is numerically determined from the solution
of the system of equations for the layered structure
(water–lithium niobate), and the approximate value cal-
culated by Eq. (1) does not exceed 0.01% at h/λ ≤ 0.02.
The adsorbed water layer thickness is usually less than
35 nm [3], and, at SAW frequencies below 1 GHz, h/λ
is still less than 0.01. Therefore, Eq. (1) can be used for
analyzing both thin layers of water with bulk properties
and adsorbed water layers.The effect of the field of sur-
face forces on the adsorbed water is similar to the pres-
sure effect on the bulk water: it also increases the den-
sity and the bulk modulus. At the same time, the surface
force field leads, by redistributing the free and struc-
tured water, to a decrease in both the water density and
the mobility of water molecules. Thus, the effect of sur-
face forces differs from that of pressure, which destroys
the structure of bulk water [9], makes it denser, and
increases the translational and orientational mobility of
molecules. The process of ordering (and, hence, loos-
ening) of the bordering water is accompanied by a gen-
eral decrease in intermolecular distances. Apparently,
that is why the change in density of thin water interlay-
ers between the hydrophilic (5–30 nm thick) and hydro-
phobic (4–5 nm thick) surfaces of mica could not be
experimentally determined [1]. According to the esti-
mates given in [3], the density of water in the adsorbed
layer differs from that in the bulk by less than 1%, the
value of Ä being almost independent of the sound
velocity in water. Therefore, the tabular values of water
density in the bulk and of the corresponding sound
velocity were used in the calculations (at 20°ë and p =
1 atm, ρf = 998.2 kg/m3 and Vf = 1483 m/s).

As a result of using the tabular values of water
parameters instead of the values modified under the
effect of the surface force field, which is similar to the
effect of pressure, the factor (A + B) is determined with
an error of δ = (A – A0)/(A + B). This error can be esti-
mated using the pressure dependence of the water den-
sity ρf (p), its bulk modulus K(p), and the sound veloc-
ity in water Vf (p). The numerical calculations showed

B
πk2εp
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(see table) that, if the water density increases by 0–2%
under the effect of pressure, the bulk modulus and the
sound velocity increase by 0–12.8 and 0–6.05%,
respectively. The error in the determination of the factor
(A + B) increases monotonically from zero to 0.28%.
This demonstrates the small effect of changes in the
acoustic parameters of water on the value of the factor
Ä. In the table, ∆p = (p – 1) atm and ∆i = i(p) – i0, where
i represents ρf , K, or Vf . At 20°ë and atmospheric pres-
sure, A = 0.19468 and B = 0.21684.

It should be noted that the factor A increases with
water density and sound velocity, while the factor B
decreases when the dielectric loading varies, because the
dielectric constant of the bordering water, when mea-
sured at the same frequency in the range 0.1–10 MHz, is
usually less than that of the water bulk [3]. The decrease
in the factor A without a change in the density ρf is pos-
sible only in the case of a considerable increase in the
sound velocity in water, i.e., at high frequencies, when
the acoustic relaxation properties of water manifest
themselves [10].

To investigate the anomalous properties of thin lay-
ers, it is necessary to use highly sensitive methods for
measuring the acoustic parameters of liquids [11, 12].
In the experiment, we used a modification of the
method for measuring small variations of the SAW
velocity and attenuation [12]. The method is based on
the interference of counterphase surface waves gener-
ated in the pulse mode by two transducers. The signal
of the balance disturbance for phases or amplitudes (as
a result of adsorption, for instance) is recorded by the
third transducer. When measuring the relative varia-
tions of the SAW velocity, the sensitivity of the method
is 10–7–10–8, and, in the case of amplitude variations, it
is 10–3–10–4 dB.

A lithium niobate crystal with an optically polished
YZ-cut working surface was preliminarily cleaned in a
glow discharge and placed over the surface of twice-
distilled water in a closed thermostatically controlled
chamber. The necessary pressure of the water vapor
was predetermined and controlled with an accuracy of
0.1%. The vapor was adsorbed by the working surface
of the crystal. The frequency range of the SAW was 40–
400 MHz.

In the case of a normal dispersion, Eq. (1) leads to a
linear dependence of the relative variation of the SAW
velocity on the thickness of the liquid layer. It is well
known that the thickness of a water layer adsorbed on

Table

∆p, atm ∆ρ/ρf , % ∆K/K, % ∆V/Vf , % δ, %

112 0.5 3.14 1.35 0.09

232 1.0 6.43 2.87 0.16

360 1.5 9.55 4.36 0.23

497 2.0 12.8 6.05 0.28
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the surface of a solid depends, at a constant tempera-
ture, on the vapor pressure in the surrounding medium.
Figure 1 demonstrates the experimental dependences of
the relative variation of the SAW velocity on the rela-
tive vapor pressure (p/ps varies from zero to unity). At a
saturated vapor pressure (p = ps), the experimental
results are badly reproduced because of the intense for-
mation of droplets. It can be seen that the SAW velocity
decreases in the wet medium. The variation of the SAW
velocity with pressure is nonlinear and grows with fre-
quency.

The curves demonstrate a nonlinear dependence of
the adsorbed layer thickness and a possible dependence
of the factor (A + B) on the vapor pressure, and also a
possible dependence of the parameters of adsorbed
water, ρf , Vf , and εf , on the layer thickness. It should
be noted that curve 2 (Fig. 1, f2 > f1) cannot be
obtained by a simple scaling of curve 1 by the factor
f2/f1, which points to a possible frequency dependence
of the SAW parameters and, consequently, of the fac-
tor (A + B) in Eq. (1).

At the fixed thickness of the absorbed layer, which
is determined by the constant vapor pressure and tem-
perature, in the case of a normal dispersion, Eq. (1) also
leads to the linear frequency dependence of the relative
variation of SAW velocity. Figure 2 demonstrates an
experimental frequency dependence of the relative
variation of SAW velocity in the water layer adsorbed
on the lithium niobate surface at the constant vapor
pressure p/ps = 0.98 (curve 1). The nonlinear character
of the experimental curve 1, unlike the calculated
curves 2 and 3, also testifies to a frequency dependence
of the factor (A + B). Curve 2 corresponds to the depen-
dence given by Eq. (1) at εf = ε∞, and curve 3, to the
same dependence at εf = εs, where εs and ε∞ are the
static and the high-frequency dielectric constants of the
liquid. For water at 20°ë, we take εs = 80 and ε∞ = 5.2.
Hence, in the adsorbed liquid layer with a modified
structure different from that of the bulk liquid, a viola-
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YZ–LiNbO3
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Fig. 1 Dependence of the relative variation of the SAW
velocity on the relative water vapors pressure for the SAW
frequencies (1) 43 and (2) 388 MHz.
tion of the linear dispersion law of the SAW velocity is
observed.

Such a violation of the linear dispersion law is pos-
sible when the parameters of the liquid that enter into
factors A and B are frequency-dependent. At a fixed
layer thickness, a frequency-dependent parameter can
be the sound velocity in liquid. This assumption is valid
in the frequency range corresponding to the viscoelastic
relaxation. At the same time, in the dipole-relaxation
frequency range, a frequency-dependent parameter of
the liquid can be its dielectric constant. The processes
of the dielectric and viscoelastic relaxations are interre-
lated to the extent that the analogy between the rota-
tional and translational motion is acceptable. They are
characterized by the corresponding relaxation times (in
low-viscosity liquids, they are about 10–10 s). In the
adsorbed layer, the decrease in the rotational and trans-
lational mobility can lead to a considerable increase in
the dielectric and viscoelastic relaxation times [1].
However, according to [10], the process of the struc-
tural relaxation in the structured liquids is an interme-
diate stage of the dielectric relaxation process; this
stage defines the dielectric relaxation rate. Therefore,
the dielectric relaxation time is much longer than the
relaxation time of the bulk modulus of the liquid, and,
hence, is also much longer than the relaxation time of
its rate. Hence, the frequency region of the dipole
relaxation is below that of the viscoelastic relaxation,
and the most probable frequency-dependent parame-
ter at a fixed layer thickness is the dielectric constant
of the liquid.

It should be noted that the viscoelastic parameters of
a thin water layer can be estimated from the acoustic
measurements with the help of the technique developed
in [4, 13]. For this purpose, the measurements of ∆V/V
should be performed for different directions of SAW
propagation in the same plane of the substrate and with
the same adsorption layer in the path of wave propaga-
tion. Knowing the characteristics of a SAW in every
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Fig. 2 Frequency dependence of the variation of the SAW
velocity at a fixed vapor pressure: (1) the experimental
curve and the dependences calculated by Eq. (1) for εf =
(2) 5.2 and (3) 80.
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direction of propagation and measuring the correspond-
ing values of ∆V/V, we obtain a system of linear equa-
tions with an unambiguous solution.

The frequency dependence of the dielectric constant
of the adsorbed water is shown in Fig. 3. The curve
indicates a relaxation process with the relaxation time
τ ~ 10–8 s. The relaxation process in the water bulk with
the closest value of the relaxation time (10–10 s) is the
dielectric dipole relaxation (Debye relaxation). The dis-
persion of dielectric constant in the case of the dipole
relaxation is determined by the well-known expression

(5)

where ω is the angular frequency. The curve in Fig. 3 is
calculated by Eq. (5) at τ ≈ 2 × 10–8 s, εs = 80, and ε∞ =
5.2. The dots mark the values of the dielectric constant
calculated by Eqs. (1)–(4) from the experimental data
dor ∆V/V at frequencies in the range 40–400 MHz.

Taking into account the anomalous dispersion of a
SAW, a curve for the dependence of the adsorption
layer thickness on humidity was plotted with the help of
Eq. (1) (Fig. 4). It can be seen that the layer thickness
grows nonlinearly with increasing humidity of the envi-
ronment. When the vapor pressure reaches ps, the
dependence h = f(p/ps) should asymptotically approach
the saturation axis (p = ps); i.e., the adsorption layer
thickness should increase without limit. However, as
one can see from Fig. 4, the thickness of the water layer
adsorbed on the lithium niobate surface has a finite
value at a humidity of 100%: h0 ≅ 17 nm. A probable
reason is the modified water structure formed in the
layer under the effect of the surface force field, which
manifests itself in the difference between the saturated
vapor pressure over the adsorbed water surface and that
over the bulk water surface.

It should be noted that the decrease in both layer
thickness and temperature results in changes in the vis-
coelastic and dielectric properties of the adsorbed
water. For example, the change of the dielectric con-
stant manifests itself in an increase in the dipole relax-
ation time.

Thus, the investigation of the dispersion of the SAW
velocity in thin water layers demonstrated that the dis-
persion dependence in the adsorbed water is nonlinear
and determined by the dependence of the layer thick-
ness on humidity. The frequency measurements at a
constant thickness revealed the dispersion of the dielec-
tric constant due to the dipole relaxation. The consider-
able increase of the dipole relaxation time is caused by
the change in the structure of water in the layer under
the effect of the surface force field of the crystal. The
simple expression proposed in this paper for calculating
the SAW velocity in solids loaded with a thin layer of
liquid, as well as the method of measuring small varia-
tions of the velocity and attenuation, allow one to esti-
mate the changes in the acoustic and dielectric parame-
ters of liquids. This proposed technique opens up new

ε f ε∞–
εs ε∞–

1 ω2τ2+
--------------------,=
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possibilities for investigating the relaxation processes
in thin water layers and the bulk properties of liquids in
layered structures. It can be used for studying thin lay-
ers of other liquids. In addition, the dispersion features
of the SAW velocity should be taken into account in
designing SAW devices intended for operation in
humid conditions at frequencies that fall within the
dielectric relaxation range.
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Abstract—The effect of a pulse jam on the audibility of pure tones in the bottlenose dolphin (Tursiops truncatus)
is investigated. The pulse jam consists of a sequence of pairs of identical short pulses with a pulse spacing of
50 µs in each pair and with a pair repetition rate of 300 s–1. The test signal is represented by pure tones in the fre-
quency range 20–100 kHz. The audibility thresholds for the test signals are measured at 10-kHz steps, both in the
presence of the pulse jam and in its absence, on the basis of the conditioned-reflex method with food reinforce-
ment. The resulting dependence of the threshold shifts (TS) due to the pulse jam on the frequency of the test signal
has a complex form. This dependence can be separated into three components: (1) the oscillations of the TS curve
that correlate with the extrema of the spectral density of the jam, so that the peaks and dips of the TS curve corre-
spond to the maxima and minima of the spectral density, respectively; (2) the component monotonically decreas-
ing as the frequency grows up to 80 kHz, which distinguishes the TS curve under consideration from the rising
curve obtained for masking by random noise; and (3) the frequency-independent component of the TS curve. The
following auditory features are associated with these components: component 1 determines the timbre of the pulse
jam; component 2 is presumably related to the pitch corresponding to the frequency 1/τ; and component 3 exhibits
a rather strong auditory feature of random noise due to the random neural activity caused by the pulse jam in the
whole auditory filter band. © 2002 MAIK “Nauka/Interperiodica”.
When a sounding pulse produced by a dolphin hits
an underwater target, the echo from the latter often has
the form of a sequence of several pulses (the so-called
primary and secondary echoes) spaced at different
intervals [1, 2]. Studies of the behavior of bottlenose
dolphins showed that these animals are quite sensitive
to the difference in the intervals between the pulses
when these intervals are much smaller than 200–300 µs
[1, 3]. However, according to the data of electrophysio-
logical studies of the bottlenose dolphin brainstem [4],
the evoked neural response to the second pulse of a pair
of equal-amplitude pulses is barely detectable for pulse
spacings about 200–300 µs and grows as these intervals
increase above 200–300 µs. The fact that the behavior
studies demonstrated a high sensitivity of dolphins to
the difference in pulse spacings as small as that recom-
mends one to look for its explanation in the mechanism
of spectral auditory analysis, which has been much
studied for other animals, as well as for humans.

The spectral density of the paired pulse amplitudes
is a periodic function with maxima at n/τ, where n = 0,
1, 2, 3, … and τ is the time delay between single pulses
in each pair; i.e., the paired pulses have an oscillating
spectrum with a period along the frequency axis ( f =
1/τ). The distribution of the excitation level over the set
of auditory filters can be considered as the “auditory” or
“internal” spectrum of a physical stimulus. The internal
spectrum can be obtained experimentally by measuring
1063-7710/02/4804- $22.00 © 20441
the audibility thresholds for pure tones under the action
of another stimulus, whose internal spectrum is to be
determined. In the literature, the method of studying the
masking thresholds when pure tones are masked with
complex stimuli is referred to as the “profile analysis”
[5, 6]. This method is used, e.g., for studying speech
sounds [7].

This paper reports on the study of the internal spec-
trum of paired pulses, which form the clicks imitating
the echolocation signals of a bottlenose dolphin, with a
very small pulse spacing. Such signals are very impor-
tant stimuli for an echolocating animal in the biological
sense. The experiment consisted in measuring the
detection thresholds for pure tones in the presence of a
pulse jam and in its absence.

The experimental setup is sketched in Fig. 1. The
measurements were performed in a concrete tank.
A two-meter-long separating net was fixed with one
end to a plank (P). The animal under test occupied the
starting position at the other end of the net, away from
the plank. At a 1-m distance from the plank, acoustic
sources (S) were suspended at a depth of approximately
1.5 m on both sides of the net. The sources simulta-
neously produced the same pulse jam. A test signal (a
pure tone) could appear at any source at random. With
the appearance of the test signal, the dolphin was
expected to leave its starting position and approach the
source from which the signal was sent. When the dol-
002 MAIK “Nauka/Interperiodica”
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phin made a correct choice, it was encouraged with fish.
At the moment when the dolphin approached the
source, the test signal was turned off. The food given to
the dolphin in the case of the right choice, or the
absence of food in the case of the wrong choice, served
as a signal for the dolphin to return to the starting posi-
tion. The measurements were performed with an ani-
mal that was adjusted to life in artificial pools for years
and was used earlier in various studies of audibility
thresholds, including those with pulsed signals. In our
experiments, no preliminary training was necessary for
the dolphin to detect the tone signal in the presence of
the pulse jam (or in its absence). With the very first pre-
sentations of the test signal, whose level exceeded any
expected audibility thresholds, the dolphin correctly
accomplished the task.

Figure 2 shows the time diagram of the acoustic
stimulation. The stimulation paradigm is described in
detail in [8]. The paired pulses that represented the jam
had a fixed spacing of 50 µs and a repetition rate of
300 s–1. The pulse jam was interrupted once in a second
for a 7-ms-long pause R; i.e., the operation period of the
pulse jam T was less than 1 s by the pause length R.

N

S

P

S

Fig. 1. Schematic diagram of the experiment: the dolphin
occupying the starting position, (N) a separating net, (S) two
acoustic sources, and (P) the plank from which the test sig-
nal was controlled and the animal was rewarded with food.
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Fig. 2. Time diagram of acoustic stimulation: T is the period
of the pulse jam generation, τ is the delay between single
pulses within pairs forming the pulse jam, 1/φ is the pair
repetition rate, t is the duration of the pure tone serving as
the test signal and supplied at random to one of the two
channels (left or right) in pauses of length R, and r is the
tone delay with respect to the beginning of the pause. The
pause repetition rate and the rate of the test signal presenta-
tion coincide and are equal to 1/(T + R) = 1 s–1. The diagram
scale is arbitrary.
Within the pause, a test signal appeared at one of the
sources: a 6-ms-long piece of a sinusoid, including the
leading and trailing edges 1-ms-long each. The acoustic
pulses were obtained as a result of the shock excitation
of piezoceramic spheres by short videopulses. The
spheres were 10 mm in diameter. The duration of a sin-
gle acoustic pulse in water did not exceed 30 µs. The
oscillograms of the pulses from different sources for
the same electric pulse were recorded at the rostrum of
the animal in its starting position (the oscillograms can
also be found in [8]). The peak value of the pulses was
constant and corresponded to approximately 60 dB
over the audibility threshold for a single pulse.

The frequency values for the test tone were selected
at random, with a step of 10 kHz equal to the half-
period of the spectral density oscillations of the paired
pulses, and in such a way that these frequencies corre-
sponded to the extrema of the spectrum of the paired
pulses. In the absence of a jam, the test tones were also
presented with a repetition rate once per second.

A specific feature of the threshold determination
with the use of a separating net is the possibility of a
binaural localization of the source of the test signal by
the analysis of interaural differences when the signal
amplitude exceeds the threshold level. However, the
source localization at threshold levels is likely to occur
in a monaural way.

The thresholds were determined by the staircase
method, which allows one to automatically maintain
the signal level in the threshold region. The signal
amplitude was gradually reduced from the level that
was preliminarily known to be above the threshold to
the level at which the dolphin made the first mistake.
After this, the amplitude was increased until the dol-
phin gave a correct response. Then, the amplitude was
decreased to the value at which the dolphin again was
mistaken, and so on. Up to ten such reversals were used
when the threshold was determined in the presence of
the pulse jam, and five to six reversals, when the jam
was absent. The signal amplitude in the threshold
region was varied at a constant step of 5 dB, and the
total number of the test stimulus presentations in the
threshold region was 20–30 at every test frequency. The
threshold value in a given series was obtained by aver-
aging the intermediate signal levels between the correct
and incorrect responses at the points of reversal. The
number of repeated sessions at every frequency was
four to five in the presence of the pulse jam and two to
three in its absence. The repeated threshold values were
also averaged. The thresholds were calculated in deci-
bels relative to an arbitrarily chosen amplitude of the
test signal at the source input.

The results of measurements are presented in Fig. 3.
The lower curve shows the frequency dependence of
the test tone detection thresholds in the absence of the
pulse jam, and the upper curve shows the correspond-
ing dependence in the presence of the pulse jam.
According to Fig. 3, in the absence of jam, the thresh-
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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olds only slightly decrease with growing frequency,
which agrees well with the threshold data reported in
[9] (for frequencies of 20–100 kHz). In the presence of
the pulse jam, a rather strong frequency dependence is
observed in the frequency range 20–70 kHz, within
which the thresholds decrease by about 30 dB.

The effect of the pulse jam on the detection thresh-
olds observed in our experiments can be caused by dif-
ferent physiological factors, namely, nonsimultaneous
masking and adaptation (and/or fatigue). To determine
the individual contributions of these two factors to the
threshold changes, special measurements are neces-
sary, which are beyond the scope of this study. There-
fore, below, we will use the term “threshold shift” (TS)
to denote the difference between the thresholds in the
presence and absence of the pulse jam with the under-
standing that it includes the total result of masking and
adaptation (and/or fatigue). By definition, the TS does
not depend on the auditory acuity in the absence of jam.

Figure 4a presents the frequency dependence of the
TS. The vertical line segments show the estimated stan-
dard errors for the difference between the average val-
ues of the TS obtained in the presence and absence of
jam. This estimate (Sx – y) can be obtained from the for-

mula [10]  = s2{x}/nx + s2{y}/ny , where s2{x} and
s2{y} are the estimates of the threshold variance near
different average values and nx and ny are the numbers
of the threshold values obtained in the presence of the
pulse jam and in its absence, respectively.

The frequency dependence of the TS has a complex
form. To make the analysis more convenient, this
dependence can be represented as a superposition of
several curves. First of all, one can notice the oscilla-
tions of the TS curve. The arrows above the curve indi-
cate the positions that correspond to the maxima and
minima of the spectral density of the pulse jam used in
the experiment. The arrows directed upwards refer to
the maxima, and the arrows directed downwards, to the
minima. One can see that the oscillations of the TS
curve correlate well with those of the spectral density of
the pulse jam up to a frequency of 80 kHz. The peaks of
the TS curve exactly coincide with the maxima of the
spectral density of the jam, and the dips in this curve
correspond to the minima. Since the correlation
between the oscillations of the TS curve and the
extrema of the pulse jam spectrum was observed for the
entire curve up to 80 kHz, we considered it possible to
combine and average the threshold data for two adja-
cent peak values. The comparison of the new mean val-
ues (with the new estimates of the standard error in the
difference between the means) and the mean value of
the TS at an intermediate frequency corresponding to
the position of the TS minimum revealed a rather high
level of statistical significance of the TS difference for
almost all extrema of the pulse jam spectrum: 99%
according to Student (and only in one case, 95%).

Sx y–
2
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Figure 4a also shows the general decrease in the TS
curve with the increase in the test signal frequency up
to 70 kHz. Connecting all peak values of the TS curve
in Fig. 4a, we obtain a broken line, which illustrates the
monotone decrease in the TS with different rates in
regions 1 and 2 and a slight increase in region 3 (at fre-
quencies above 70 kHz). Figure 4b presents the acous-
tic spectra of single pulses obtained from different
sources in response to the same electric pulse and also
the average acoustic spectrum, which was calculated by
the Fourier transformation of the single pulse oscillo-
grams. The spectrogram of a single pulse can be con-
sidered as an envelope of the spectral density oscilla-
tions of the paired pulses. The frequency dependence of
the spectral density represented by the single-pulse
spectrogram and the broken line in Fig. 4a exhibit
opposite behavior. As the frequency grows, the spectral
density of a single pulse increases, whereas the TS rep-
resented by the broken line decreases. This situation
takes place for all frequencies up to 70 kHz, and only
above 70 kHz do both the TS and the spectral density of
a single pulse increase with increasing frequency.

Let us draw a straight line parallel to the abscissa
axis through the lowest point of the TS curve. This line
shows that the level to which the TS decreases is still
rather high (it exceeds by 20 dB the audibility threshold
for a 70-kHz tone in the absence of pulse jam). We
assume that this line represents the frequency-indepen-
dent component of the total effect produced by the
pulse jam.

Consider the three aforementioned components of
the TS curve from the physiological point of view. The
correlation of the peaks of the TS curve with those of
the spectrum of paired pulses is no surprise. Psychoa-
coustic studies of masking pure tones by stimuli with
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Fig. 3. Dependence of the audibility thresholds for pure
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Fig. 4. (a) Dependence of the TS on the test tone frequency
(the thick line). The arrows above the curve indicate the
positions of the maxima (upward arrows) and minima
(downward arrows) of the spectral density of the paired
pulses forming the pulse jam. The dashed vertical line seg-
ments show the estimates of the standard error for the dif-
ference between the average thresholds obtained in the pres-
ence and absence of pulse jam. The upper points of the TS
curve form a broken line (the thin line) whose different parts
are marked by numbers 1–3. The meaning of lines 1–4 is
explained in the main body of the paper. (b) Spectrograms
of single acoustic pulses recorded in water from different
sources in response to the same electric pulse (the dashed
lines) and the average spectrogram for the two sources (the
thick line).
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Fig. 5. Curve constructed with the aim to eliminate the
effect of the slope of components 1 and 2 (see Fig. 4a).
TS’ denotes the ordinate values of the broken line relative
to line 4 (see Fig. 4a). The upward and downward arrows
indicate the positions of the maxima and minima, respec-
tively, of the spectral density of the paired pulses (the
pulse jam).
different kinds of complex spectra, e.g., by noise with
rippled or oscillating spectrum [11] or by speech
sounds [7], reveal a similar phenomenon. One can
assume that the peaks of the TS curve represent the
“hearing spectrum” of the paired pulses. Although no
correlation is observed at frequencies above 80 kHz, its
absence can be explained by the superimposition of
the ascending part of the broken line (component 3 in
Fig. 4a). Eliminating the value of the TS (the broken
line in Fig. 4a) taken with respect to the straight line
that is drawn through the inflection point of the TS
curve in the direction parallel to the abscissa axis
(Fig. 4a), we obtain a correlation between the peaks
of the TS curve and the maxima of the spectral den-
sity of the pulse jam within the whole frequency band
under study (Fig. 5), although for frequencies of 80–
100 kHz, the peak amplitude is much smaller. It should
be noted that the discrimination between the bandpass
noise with rippled and constant spectral densities by
dolphins [12] is possible for the central frequencies no
higher than 100 kHz. This result agrees with our data on
the reduced response of auditory filters with a tuning
frequency of 90–100 kHz to a complex stimulus (Fig. 5).

The correlation between the spectral density oscilla-
tions of the pulse jam and the peaks of the TS curve is
possible at frequencies no higher than the frequencies
at which the difference in the output signals of the adja-
cent auditory filters begins to manifest itself. Since, at
frequencies of 90–100 kHz, the amplitude of the peaks
of the curve shown in Fig. 5 strongly decreases, one can
expect that the ability to resolve the spectral density
oscillations by the critical band mechanism is limited
by frequencies somewhat above 100 kHz. On the basis
of the data obtained in this study, we can roughly esti-
mate the width of the critical bands. The half-period of
the spectral density oscillations of the pulse jam under
consideration is equal to 10 kHz, and the adjacent peaks
and dips of the spectral density of the jam must some-
how be resolved by the adjacent auditory filters with a
tuning frequency near 100 kHz. Therefore, as the esti-
mate of the critical bandwidth for a frequency of 100 kHz,
we can accept a value somewhat lower than 10%. This
estimate is close to that obtained for dolphins by the
method of masking one pure tone by another for a fre-
quency of 50 kHz [13].

However, it should be noted that, according to the
estimate given in [14], for dolphins, the width of an ide-
alized auditory filter at a frequency of 100 kHz has a
much smaller value: about 2.5 kHz. In the experiments
[14], the bottlenose dolphin exhibited reversals of the
spectral density ripples of bandpass noise with different
central frequencies. The number of the spectral density
peaks was fixed, but the bandwidth decreased with
increasing central frequency. The detection of the
reversals of a rippled spectral density of noise is possi-
ble using different mechanisms: the resolution of the
peaks by different critical bands and also within a sin-
gle critical band. In the latter case, to detect the rever-
sals of the noise ripples, it is sufficient that the half-
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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period of the spectral density oscillations be no smaller
than the differential threshold in frequency. In the cited
publication [14], the resolution of the peaks in fre-
quency was characterized by the threshold value of the
density of peaks in the spectral density of noise, or the
number of peaks per conditional frequency band. For a
frequency of 100 kHz, the relative density of peaks (the
ratio of the central frequency to the distance between
the peaks on the frequency scale) at the reversal detec-
tion threshold was equal to 40 [14]; i.e., the frequency
interval between the peaks, or the period of the spectral
density oscillations, was 2.5 kHz. Hence, the whole
bandwidth for the number of the spectral density peaks
in use (four) was near 10 kHz. This value coincides
with the aforementioned estimate of the critical band
(10%). In addition, the half-period of the spectral den-
sity for the threshold value presented above is equal to
1.25 kHz, which is of the same order of magnitude as
the differential threshold in frequency. Therefore, we
assume that, in the cited experiments [14], the dolphin
was likely to exhibit a reversal of the spectral density
ripples within a single critical band.

The correlation of the jam spectrum oscillations
with the peaks of the TS curve is possible up to the fre-
quency near which the adjacent auditory filters still
resolve the adjacent peaks and dips of the spectral den-
sity period. The frequency characteristics of the high-
frequency filters strongly overlap [15], and the differ-
ence between the output signals of the filters tuned to
the adjacent peak and dip decreases with increasing fre-
quency until it reaches the threshold level. Thus, the
condition for the threshold resolution of the peaks and
dips in the spectral density is ∆ft > 1/2∆f, where ∆ft is
the threshold difference between the frequencies of the
adjacent extrema of the spectrum and ∆f is the period of
the spectral density oscillations of the noise. For the
pulse jam used in our studies, ∆f = 20 kHz, and this con-
dition is satisfied near 100 kHz; i.e., the ratio ∆ft /∆f is
approximately equal to 10%. According to [13], the
tuning parameter of the auditory filter, Q10 (the ratio of
the central frequency to the bandwidth of an equivalent
rectangular filter at a level of 10 dB below the maxi-
mum of the frequency characteristic), is estimated as 6
kHz for a frequency of 108 kHz (about 6%). Thus, the
estimate obtained by us for ∆ft is close to the value of
the tuning parameter Q10 of the auditory filter, although
we did not obtain a zero amplitude of the threshold
peak (Fig. 5).

Finally, we note that the amplitude of the peaks of
the TS curve (Fig. 5) decreases at low frequencies (20–
40 kHz) as well. This result can be explained by the fact
that the level of the spectral components of a single
pulse decreases with decreasing frequency (Fig. 4b).

Thus, the results of the profile analysis allow us to
explain the oscillations of the TS curve. An unexpected
phenomenon is the monotonic decrease in the TS value
with increasing frequency (components 1 and 2 of the
broken line in Fig. 4a; the inflection at 40 kHz is
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
ignored). First, (as was mentioned above) the monotone
component of the TS and the spectrogram of a single
acoustic pulse depend on frequency in opposite ways
(Figs. 4a and 4b). Second, an important difference is
observed between the frequency dependence of the TS
curve at frequencies of 20–70 kHz (components 1 and
2 of the broken line) and the curve corresponding to the
masking of pure tones by random noise. It is well
known [16] that, for humans, the white-noise masking
at frequencies above 500 Hz grows at a rate of 10 dB
per decade. This growth is explained by the broadening
of the critical bands with increasing frequency. A simi-
lar frequency dependence of the random-noise masking
was obtained for dolphins [17]. The broken line shown
in Fig. 4a exhibits a decrease in the TS by almost 20 dB
as the frequency of the test signal increases from 20 to
70 kHz. This behavior of the TS curve cannot be
explained by conventional spectral mechanisms. Only
at frequencies of 70–100 kHz is a slight increase in the
TS with frequency observed (component 3 of the bro-
ken line in Fig. 4a), as in the case of masking by random
noise (and also according to the form of the spectral
density curve for a single pulse, Fig. 4b).

Figure 4a shows that the most substantial TS corre-
sponds to the test signal frequency equal to 20 kHz, i.e.,
to the frequency f0 = 1/τ (τ = 50 µs). This suggests that
the unusual behavior of the TS curve with frequency is
a result of a sort of masking of a simple tone by a com-
plex tone. In contrast to a simple tone, a complex tone
is represented by a periodic (a set of harmonics) and an
aperiodic signal with an oscillating spectral density. For
a complex tone, it is possible to find with fair accuracy
a pure tone whose pitch corresponds to the fundamental
frequency of the periodic signal or to the frequency f0 =
1/τ for either paired pulses or ripple noise. This kind of
noise is obtained by combining a segment of white
noise with its delayed replica. The frequency f0 = 1/τ is
often called the fundamental frequency of an aperiodic
broadband signal.

The perception of the pitch of paired pulses by
humans even in the absence of the frequency f0 = 1/τ in
the spectrum was first demonstrated in [18]. The pitch
of complex tones is sometimes called virtual, even
when the fundamental frequency is present in the spec-
trum [12].

The ability to respond to the fundamental frequency
of complex periodic sounds in which the fundamental
frequency is absent was revealed in all vertebrates ever
studied: fish, frogs, birds, cats, and monkeys (see the
review in [19]). The ability of dolphins to discriminate
between the noise types with rippled and constant spec-
tral densities was studied in [12]. The widespread abil-
ity of vertebrates to detect the spectral-time periodicity
of a complex stimulus testifies to the importance of the
auditory feature related to this kind of periodicity. This
feature can be nothing but pitch. There is no reason to
believe that dolphins are incapable of pitch perception
for complex stimuli with periodic spectra. The possibil-
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ity of explaining the unique echolocation abilities of
dolphins by the pitch extraction from a complex stimu-
lus consisting of a sequence of identical pulses has been
much discussed in the literature (see the review in [20]).

In our experiments, the dolphin seems most likely to
respond to the pitch of the pulse jam. Since the spectro-
gram of a single acoustic pulse forming the pair exhib-
its a rather steep decrease as the frequency approaches
20 kHz (Fig. 4b), the 20-dB increase in the threshold
for the 20-kHz test signal (Fig. 4a) cannot be explained
by masking of a pure tone by another tone at the same
frequency. The interval f0 = 1/τ between the peaks of
the spectrum of the pulse jam used in the experiment
was also equal to 20 kHz. Therefore, such a large TS at
the frequency 20 kHz can be attributed to only the con-
siderable pitch strength in the perception of the com-
plex tone (the pulse jam). The term “pitch strength” of
a complex sound is common in psychoacoustics (see
the review in [21]) and is an important characteristic of
the perception of complex tones [22].

The decrease in the TS with increasing frequency
(Fig. 4a) is more difficult to explain. Let us assume that
the pitch strength in the perception of a complex tone is
determined by the number of spectral peaks resolved by
the critical bands, as well as by the accuracy of the anal-
ysis of the spectral density period on the scale of “audi-
tory frequencies.” In our experiments, the number of
the spectral peaks of the pulse jam was fixed (in all
experiments, the delay between the paired pulses was
the same: 50 µs). Therefore, it is reasonable to expect
that the behavior of the broken line in Fig. 4a is deter-
mined by the accuracy of the analysis of the spectral
density period of the paired pulses. The period of the
spectral density was reproduced in the auditory system
owing to the change in the signal level at the outputs of
the adjacent critical bands. As a consequence of the
critical band broadening, every next, higher frequency,
period of the spectrum covers a smaller number of crit-
ical bands. Hence, the estimate of the spectral density
period becomes less accurate. The roughest estimate
should be obtained in the frequency region where the
adjacent auditory filters resolve only the adjacent
extrema of the pulse jam spectrum. With further broad-
ening of the critical band, even the peaks of the spectral
density cannot be resolved. We assume that, for our
pulse jam, the spectrum period with the spectral density
maximum at a frequency of 20 kHz covers approxi-
mately ten critical bands (if the critical band width is
about 10%).

If the accuracy of the analysis of the spectral density
period determines the pitch strength in the perception,
then, owing to this mechanism, different spectral
regions play different roles in the formation of the pitch
of the complex stimulus. As the tuning frequency of the
auditory filter grows, the role of the high-frequency
regions in the formation of the strength of the pitch per-
ception decreases, and, hence, the corresponding mask-
ing effect of the complex tone (the pulse jam) is
reduced. Therefore, the increase in the test tone fre-
quency in our experiment was accompanied by the drop
in the masking effect of the pulse jam pitch and,
hence, by the descent of the TS curve. At frequencies
near 100 kHz, different cases are possible, depending
on the way the critical bands are organized. (It is known
that critical bands can be arranged by the auditory sys-
tem with reference to different frequencies [16].) If the
frequency corresponding to the maximum of the spec-
trum period and the tuning frequency of the auditory fil-
ter coincide at a frequency of 100 kHz, the spectrum
period covers one full critical band and the lateral criti-
cal bands symmetric about the central one. Between the
lateral critical bands, the remainder of the spectrum
period is distributed. In this case, the difference in the
signals at the outputs of the adjacent critical bands is
present, and, hence, some information on the form of
the spectrum period is retained in the auditory system.
Another possible case of the critical band arrangement
is as follows: two approximately identical critical bands
are symmetric about the frequency corresponding to the
spectral maximum and cover the whole spectrum
period. In this case, the difference between the signals
at the outputs of the adjacent critical bands will be
absent; i.e., no information on the form of the spectrum
period will be enter the auditory system. As one can see
from Fig. 5, a small peak at 100 kHz is still observed in
the TS curve. Therefore, in our experiments, we most
probably dealt with the first of the two cases described
above.

Thus, a monotonic decrease in the TS with increas-
ing frequency of the test tone can be explained by the
decrease in the accuracy of the analysis of the spectral
density periodicity of the pulse jam in the region near
the test tone and by the related decrease in the contribu-
tion of the local piece of the spectrum to the formation
of the pitch strength. The fact that different spectral
regions play different roles in the perception of the
pitch of a complex stimulus was demonstrated in the
psychoacoustic experiments with ripple noise [23, 24].

The ability of cats to discriminate between sets of
harmonics by the fundamental frequency (300–400 Hz)
absent in the spectrum of a given set, i.e., by the pitch
of a set, was demonstrated in behavioral studies [25].
The quantitative characteristic used in these studies for
the characterization of the sensitivity of a cat to the dif-
ference in the fundamental frequencies of the sets of
harmonics testified to a monotonic decrease in the sen-
sitivity with increasing central frequency of the sets.
The authors of the cited publication [25] explain this
dependence by the decrease in the pitch strength of a set
of harmonics with growing frequency.

Now, we have to discuss the third TS component
that is shown separately in Fig. 4a as a straight line par-
allel to the abscissa axis. According to the data of psy-
choacoustic studies, when a human listens to noise with
a rippled spectral density, he perceives two different
features of the stimulus: the noise feature and the tone
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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feature [26]. The frequency-independent component of
the TS curve (Fig. 4a) represents the high level (about
20 dB) of the noise feature in the perception of the pulse
jam, this feature being unrelated to the periodicity of
the spectral density of the paired pulses.

Thus, the TS curve obtained in our experiments can
be considered as a superposition of three components.
First, we obtained an exact correlation between the
oscillations of the TS curve and the positions of the
extrema of the pulse jam spectrum on the frequency
axis: the peaks and dips of the TS curve correspond to
the maxima and minima of the spectral density of the
jam, respectively. We believe that this correlation
reflects the internal spectrum of the jam. In our opinion,
the internal (auditory) spectrum of paired pulses pro-
vides the timbre feature of the pulse jam.

In contrast to masking by random noise, in the case
of the pulse jam, the TS monotonically decreases with
increasing frequency of the test tone. The maximum of
the monotonic component of the TS curve corresponds
to the test frequency 1/τ = 20 kHz. We attribute the
monotone component of the TS curve to the pitch of the
pairs in the pulse jam. We explain the decrease in the TS
with increasing frequency of the test tone by the
decrease in the accuracy of the analysis of the period of
the spectral density oscillations in the region near the
test frequency and by the corresponding decrease in the
contribution of the local spectrum segment to the total
strength of the pitch perception.

We can surmise that the dolphin is able to manipu-
late the pitch strength of a sequence of clicks with a
small pulse spacing by raising the lower frequency limit
of the sounding pulse spectrum. This frequency
increase may result in the suppression of the lower fre-
quencies of the echo signal spectrum and a correspond-
ing reduction of the masking effect governed by the
pitch of the complex tone. In some situations, depend-
ing on the acoustic properties of the water area and on
the echolocation task, such a manipulation can increase
the noise immunity of the echo signal. Data testifying
that the sounding pulses of a dolphin can have different
lower frequency limits are presented in the review [27].

The frequency-independent component (Fig. 4a)
exhibits a rather strong noise feature, which provides
the masking effect due to the random neural activity
caused by the pulse jam within the whole auditory filter
band.
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Abstract—The possibility of determining the relaxation time of cholesteric liquid crystals with a large helix
pitch from the parameters of acoustic streaming is demonstrated experimentally. © 2002 MAIK “Nauka/Inter-
periodica”.
It is known that acoustic relaxation is a manifesta-
tion of internal nonequilibrium processes in a medium.
These processes are connected with the restoration of
its thermodynamic equilibrium that is disturbed by
fluctuations of pressure and temperature in a sound
wave. Like any nonequilibrium phenomenon, relax-
ation is determined not only by the thermodynamic
characteristics of the medium but depends essentially
on its macroscopic parameters. Starting from the time
when Mandel’shtam and Leontovich developed the
relaxation theory of liquids [1], this problem has
attracted the attention of many researchers for several
decades. It was found that acoustic relaxation leads to
deviations of the frequency dependences of sound
velocity and absorption coefficient from the form of
these dependences predicted by classical hydrodynam-
ics [2, 3]. As for liquid crystals, a rather large number
of papers have been devoted to the investigation of this
problem.The basic results of these studies are general-
ized in the monographs [4–6]. The latest publications
[6, 8] demonstrate that relaxation processes make a
decisive contribution to the mechanism of macrostruc-
tural variations of a liquid crystal layer under the effect
of ultrasound. For example, according to [7], an ade-
quate description of the mechanism of destabilization
of the planar texture of a nematic liquid crystal layer in
an ultrasonic field is possible only in the framework of
nonequilibrium hydrodynamics. According to prelimi-
nary data, the same approach to the analysis of the ori-
entation behavior of cholesteric liquid crystals leads to
the conclusion that the scaling relationships determin-
ing the threshold characteristics of the two-dimensional
domains induced in a planar layer by ultrasound depend
on the relationship between the ultrasonic frequency
ω/2π and the relaxation frequency [8]. For example, the
spatial period Λ of domains in the high-frequency
range, where ωτ @ 1, does not depend on the ultrasonic
frequency and is proportional to (P0dτ)1/2, whereas, at
low frequencies when ωτ ! 1, this period is Λ ~
(P0dω)1/2. Here, d is the thickness of the liquid crystal
1063-7710/02/4804- $22.00 © 20448
layer, P0 is the equilibrium value of the cholesteric
helix pitch, and τ is the relaxation time of the order
parameter. It is essential that the analysis of this effect
in the framework of the classical Leslie–Erickssen
hydrodynamics common in physics of liquid crystals
[9] leads to the relationship Λ ~ (P0d)1/2 within the
whole considered frequency range [6]. In view of the
above, it seems evident that an experimental verifica-
tion of these scaling relationships, which are character-
istic of the relaxation process related to the relaxation
of the order parameter of a liquid crystal and leading to
an anisotropy of the dynamic elasticity ∆E(ω, τ), pro-
vides an opportunity to determine the applicability of
the new approach to cholesteric liquid crystals and to
evaluate the admissibility of some assumptions intro-
duced in the model [8]. It is common to treat the exper-
imentally observed acoustic anisotropy of liquid crys-
tals [10] as the contribution of the sum of two indepen-
dent relaxation processes, one of which is connected
with the relaxation of the order parameter and the other,
with the relaxation of the end groups of molecules. The
model [8] takes into account only one of them. The
relaxation time of the order parameter is one of the key
factors determining the orientation behavior of a liquid
crystal system, and it is necessary for a quantitative
comparison of the theoretical predictions and experi-
mental data. Thus, the problem of the determination of
the relaxation time in cholesteric liquid crystals seems
very important. A conventional technique for investi-
gating the relaxing media is ultrasonic spectroscopy
[5], which allows one to determine the relaxation times
of various relaxation processes from the experimentally
determined frequency dependences of the acoustic
parameters of a liquid crystal. However, such a tech-
nique needs complex and cumbersome equipment that
provides an opportunity to conduct high-precision mea-
surements of the absolute values of ultrasonic velocity
or absorption in a wide frequency range.

This paper discusses the possibility of measuring
the relaxation time in a cholesteric liquid crystal with a
002 MAIK “Nauka/Interperiodica”
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weakly distorted structure (with a helix pitch of P i
10–4 cm, which is much greater than the light wave-
length) by the parameters of acoustic streaming.1 This
simple method was suggested and successfully tested
in [12] for Newtonian liquids.

Let us consider the acoustic streaming of a choles-
teric liquid, which accompanies the propagation of a
damped plane wave in the direction of the x axis from a
radiator of radius R (Fig. 1a). The radiator is positioned
in the plane corresponding to the coordinate x = 0. An
ultrasonically nonreflecting boundary lies at the dis-
tance l @ R, λ from the radiator. The fundamental set of
equations describing the acoustic streaming in a New-
tonian liquid has the form [13]

(1)

Here, U is the velocity of acoustic streaming, P and V
are the sound pressure and the particle velocity in an
ultrasonic wave, W is the energy density in the wave,
δ = 1 – Un/C0, C0 is the ultrasonic velocity in the
medium, n is the unit vector in the direction of the wave
vector, ρ and ρ0 are the densities of the medium in the
unperturbed and perturbed states, and η(0) and µ(0) are
the shear and bulk viscosities. The coefficient α in the
set of equations (1) stands for the ultrasonic absorption
coefficient in the Newtonian liquid and is connected
with its parameters by the expression

(2)

where

(3)

Here, C0 and C∞ are the ultrasonic velocities at ω  0
and ω  ∞, respectively; G∞ is the shear modulus at
ω  ∞. Taking into account Eqs. (3), we can repre-
sent Eq. (2) in the form

(4)

If we restrict the level of action and the velocity of
acoustic streaming by the conditions V/C0 < 1, U/C0 < 1,
and Re = UR/γ < 1 (γ is the kinematical viscosity), the
set of Eqs. (1) can be reduced to a form similar to that

1 It is known that the optical properties of cholesteric liquid crys-
tals change drastically when the light wavelength is comparable
with the helix pitch [11].
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of the equations for acoustic streaming of a Newtonian
liquid [12]:

(5)

This means that some conclusions derived from the
solutions of equations for streaming in a Newtonian liq-
uid can be extended to non-Newtonian liquids. Since
the configurations of these streamings coincide, the dis-
tribution of the streaming velocity of a non-Newtonian
liquid along the axis of a sound beam (y = 0) obeys the
law established for Newtonian liquids [12], namely,

(6)

where U0 = R2α/2γ. It follows from here that, on
the axis of the sound beam, there is a point with the
coordinate

(7)

at which the velocity of acoustic streaming takes the
maximal value. Thus, determining the value of xmax
experimentally, it is possible to determine the absorp-
tion coefficient and then calculate the relaxation time τ
by Eq. (4).

The experiments were conducted using a mixture of
cholesteric and nematic liquid crystals (20% choles-
teryl chloride (CC) and 80% methoxybenzylidene-p-n-
butylanilin (MBBA) and ethoxybenzylidene-p-n-butyl-
anilin (EBBA)) with the help of the setup schematically
represented in Fig. 1b. An ultrasonic source (1) (an
X-cut quartz transducer) was positioned at one end of a
dish (2) filled with the mixture under investigation. The

–∇ P αW+ η∇ 2
U ,=

∇ U 0.=

Ux U0 x/R( ) 2αx–( ),exp=

V0
2

xmax 1/2( )α=

z

R
(a)

(b)

1
x

1
2 3

4

56

7

7

Fig. 1. Measuring technique: (a) the geometry of the prob-
lem and (b) the schematic diagram of the experiment. (1) An
ultrasonic radiator; (2) a dish filled with a liquid crystal;
(3) a sound-absorbing layer; (4) a binocular magnifier in the
observation system; (5) a light beam; (6) a slot; and (7) ele-
ments of a system of thermal stabilization.
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Fig. 2. Summary of basic experimental data: (a) a pattern of a fully developed acoustic streaming of a cholesteric liquid at a fre-
quency of 6.3 MHz and (b) the frequency dependence of ultrasonic absorption (1) in the CC/MBBA/EBBA mixture at a temperature
of 40°C, (2, 3) in MBBA at the temperatures 30 and 40°C, and (4, 5) in cholesteryl linoleate at the temperatures 32 and 44°C.
other end of the dish was covered with a sound-absorb-
ing layer (3) to provide the traveling wave mode. A sys-
tem of thermal stabilization of the setup allowed one to
control the liquid temperature within the interval 20–
60°C and maintain it constant within ±0.5°C. The
geometry of the experiments was as follows: the obser-
vation of the field of streaming was conducted from
above through a binocular magnifier (4); the illumina-
tion was through a slot in a side wall of the dish by a
light beam (5) in the direction perpendicular to the axis
of the sound beam. The level of action was monitored
by the voltage across the transducer (1). The frequency
was varied in the interval 2–10 MHz.

The essence of the experiments conducted is as fol-
lows. The level of action is set so as to correspond to the
ultrasonic intensity ~1 W/cm2. For this purpose, the
radiators used in the experiments are calibrated prelim-
inarily by the acoustic radiometer technique and the
system of thermal stabilization is tuned in such way that
the temperature within the liquid crystal is maintained
constant. In the course of the setup operation, the thin
layer of the liquid crystal that is immediately adjacent
to the radiator surface is heated due to the ultrasonic
absorption and passes into an isotropic state. Since, in
this state, the liquid crystal becomes transparent to a
light beam and, in the cholesteric phase, it scatters light,
the interface between the two phases is easily identi-
fied. The acoustic streaming arising in the liquid crystal
that retains the anisotropic mesomorphic state entrains
the isotropic liquid crystal in its motion, and the isotro-
pic liquid moves in the anisotropic light-scattering
medium in the form of a thin transparent stream “draw-
ing” the streaming lines through the whole volume of
the dish. The typical pattern of a fully developed acous-
tic streaming of a cholesteric liquid is given in Fig. 2a
(top view, a frequency of 6.3 MHz). The light lines
observed against the dark background in this picture are
identified as the streaming lines, and they are produced
by the movement of the isotropic phase transparent to
light. Analyzing the relative positions of these lines, it
is possible from their density to determine the interval
of the values of x within which the maximum of the
acoustic streaming velocity on the sound beam axis
takes place and to calculate the values of α and τ. The
experimental results are given in Fig. 2b in the form of
the frequency dependence of the absorption coefficient,
α/f 2, of the investigated mixture at the temperature
40°ë (dots 1).The same figure shows the values of α/f 2

given in the literature [4, 5] for comparison. In the fre-
quency range where the coefficients of shear and bulk
viscosity do not depend on frequency, it is common to
characterize the sound absorption by the value α/f 2,
which, in this case, also does not depend on frequency
and is a parameter characterizing the properties of the
medium. The results were obtained using the conven-
tional ultrasonic spectroscopy technique for a nematic
liquid crystal (MBBA at temperatures of 30 and 40°C,
dots 2 and 3) and a cholesteric liquid crystal (choles-
teryl linoleate at temperatures of 32 and 44°C, dots 4
and 5). One can see that the experimental values of α/f 2

for the investigated mixture, which were obtained at
frequencies of 2.1, 6.3, and 10.5 MHz, almost do not
differ from the absorption observed in this frequency
range for MBBA, whereas a considerable quantitative
difference exists with respect to cholesteryl linoleate.
Such an ambiguity seems quite natural if we take into
account the ratio of the nematic and cholesteric compo-
nents in the investigated mixture. The results presented
here allow us to make a conclusion that, when applied
to cholesteric liquid crystals with a large helix pitch, the
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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Data obtained for the relaxation time in the CC/MBBA/EBBA mixture, in p-azoxyanizol (PAA), in heptyl oxybenzoic acid
(HOBA), and in the CC/CM mixture by different methods

CC/MBBA/EBBA HOBA PAA CC/CM

∆t = t – tc, °C 14 14 14

f, MHz 2.1 6.3 10.5 3–50 3–60.5 12

τ × 109, s 2.6 1.1 1 5* 2.5*          
4.4**

50[14]

Measuring technique By the parameters of acoustic streaming By the ultrasonic spectroscopy

* According to the data on the ultrasonic absorption.
** According to the data on the dispersion of the ultrasonic velocity.
method suggested in [12] for measuring the absorption
coefficient α in Newtonian liquids by the configuration
of acoustic streaming gives a correct qualitative fre-
quency dependence α( f ) and a good qualitative coinci-
dence of the absolute values of α with the experimental
data provided by conventional acoustic spectroscopy
measurements for liquid crystals of close compositions.

The next step of the study is the calculation of the
relaxation time τ of the mixture from the experimental
values of α by using Eq. (2). It follows from the data
given in the table that there is a certain difference in the
values of τ obtained for the CC/MBBA/EBBA mixture
at different frequencies. Apparently, this can be con-
nected with the fulfilment of the condition αl ≥ 1,
which reflects the influence of the dish wall on the
streaming configuration, at different frequencies. This
condition is assumed to be valid in the framework of the
theoretical ideas adopted by us for the distribution of
acoustic streaming velocities in a Newtonian liquid.
The table also gives the values of the relaxation time τ
obtained using the conventional ultrasonic spectros-
copy techniques for the following liquid crystal com-
pounds: p-azoxyanisol (PAA), heptyloxybenzoic acid
(HOBA), and a mixture of cholesteryl chloride and
cholesteryl myristate (CC/CM). These data are given
for comparison. All values given in the table correspond
to the same difference in temperatures of liquid crystals
∆t = t – tÒ = 14°C, where tÒ is the temperature of the liq-
uid crystal transition to the isotropic state and t is the
current temperature. One can see that the relaxation
times obtained in the experiments with acoustic stream-
ing in the CC/MBBA/EBBA mixture with the choles-
teric structure correlate in the order of magnitude with
the values of τ for nematic liquid crystals (PAA and
HOBA), which is caused by the high content of the
nematic component in the mixture.

The results presented above allow us to conclude
that the method of evaluating the relaxation time by the
configuration of acoustic streaming provides an oppor-
tunity to estimate rather fast and accurate the order of
magnitude of this quantity. The advantage of the
method is its simple realization without any special
complex equipment. It is also essential that there is no
need to measure the absolute values of acoustic stream-
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
ing velocities in the medium to obtain the necessary
information. To evaluate the relaxation time, it is
enough just to determine the positions of the streaming
lines. Proceeding from the fact of correlation between
the values of the relaxation time obtained by this tech-
nique and by the conventional methods of ultrasonic
spectroscopy, it is possible to make certain conclusions
not only on the potentialities of the suggested technique
in application to cholesteric liquid crystals with a large
helix pitch but also on the validity of the theoretical
model of the medium that is based on the linear rheo-
logical equation [13] for this type of mesophase in the
considered frequency range. It is also possible to con-
sider as justified the assumptions introduced in the pro-
cess of analysis, which gave rise to Eq. (6).

It is necessary to note that the accuracy of the pro-
posed method can be considerably increased by mea-
suring, if necessary, the distribution of the absolute val-
ues of velocity at the axis of the sound beam by the
known techniques proven before [15–17].
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Abstract—Sound scattering by random volume inhomogeneities (fluctuations of the refraction index in a medium)
with an arbitrary anisotropy is considered using the small perturbation method (Born’s approximation). Surfaces
(boundaries) of the inhomogeneities are deemed to be fractal ones: the energy spectra of the refraction index fluctu-
ations follow the power law with a nonintegral exponent. Formulas are obtained for the volume scattering coefficient.
Frequency and angular dependences of the scattering coefficient and their relations to the fractal dimension of inho-
mogeneities with different kinds of anisotropy and different sizes (on the sound wavelength scale) are presented. The
fractal dimension of the inhomogeneities is estimated. © 2002 MAIK “Nauka/Interperiodica”.
† The scattering of acoustic waves by volume inhomo-
geneities in the ocean is of interest from many points of
view. Due to the scattering, the sound field acquires an
additional multipath character, space–time fluctuations
of the sound field appear, and the coherence of multi-
mode signals decreases, which lowers the efficiency of
operation of various kinds of hydroacoustic systems.
When propagating in the underwater sound channel, part
of the waves leaks out of the channel because of the scat-
tering, which increases the attenuation of the propagat-
ing acoustic waves. In the last few years, propagation and
scattering of sound in the ocean has been considered
using the concept of fractals and ray chaos [1–7].

Previous studies [3] showed that random inhomoge-
neities possessing fractal properties on a certain scale
interval play a key role in the scattering of low-frequency
sound in the ocean. The cited paper [3] considered sound
scattering by random volume oceanic inhomogeneities
(fluctuations of the refraction index) whose typical hori-
zontal dimensions far exceed the vertical ones. In the
framework of the first approximation of the small pertur-
bation method used in [3], the volume scattering coeffi-
cient of sound is determined by the expression

(1)

where q = ks – k is the wave vector of the resonance har-
monics in the spatial energy spectrum G of the inhomo-
geneities and ks and k are the wave vectors of the scat-
tered and incident acoustic radiation, respectively. The
correlation function of the spatially homogeneous fluc-
tuations of the refraction index can be presented in the
factored form

(2)

† Deceased.

mv 2πk4G q( ),=

B ρ( ) µ2〈 〉 N1 ξ( )N2 η( ),=
1063-7710/02/4804- $22.00 © 20453
where 〈µ2〉  is the mean-square fluctuation and N1 and N2
are the correlation coefficients in the horizontal plane
and in depth. The inhomogeneities are deemed to be
isotropic in the horizontal plane, so that the vector argu-
ment of the correlation function r = {ξ, η} has two sca-
lar components. The horizontal correlation coefficient
is expressed as [8]

(3)

Here, Kν(X) is the McDonald function of order ν; Γ(ν)
is the gamma-function; X = ξ/ξ0, where ξ is the space
separation of observation points; and ξ0 is the horizon-
tal correlation radius. The corresponding spatial energy
spectrum given by the Fourier–Bessel transformation
of Eq. (3) has the form

(4)

where q⊥  = |q⊥ |, q⊥  is the horizontal component of the
vector q = {q⊥ , qz}. In the vertical direction, the inhomo-
geneities were deemed small-scale: η0 qz ! 1, where η0
is the vertical correlation radius of fluctuations. In this
case, the form of the vertical correlation coefficient is
inessential, since the vertical spectral density does not
depend on qz,

(5)

and the total energy spectrum of the refraction index
fluctuations is given by the expression

(6)

N1 X( ) 1

2ν 1– Γ ν( )
-----------------------XνKν X( ).=

G1 q⊥( )
νξ 0

2

π 1 ξ0
2q⊥

2+( )ν 1+
-------------------------------------,=

G2 qz( )
η0

π
-----,≈

G q( ) µ2〈 〉 G1 q⊥( )G2 qz( ).=
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Now, according to Eq. (1), the volume scattering coef-
ficient takes the form

(7)

When inhomogeneities are large-scale in the horizontal
plane (ξ0q⊥  @ 1), we have

(8)

All these results of the cited paper [3] are generalized
below to the case of anisotropic volume inhomogene-
ities of a medium.

The first generalization consists in giving up the
assumption about the isotropy of the inhomogeneities
in the horizontal plane. The refraction index fluctua-
tions are characterized by two horizontal correlation
radii ξox and ξoy . The corresponding spectral density
can be represented as

(9)

where q⊥  = {qx, qy}. Note that an energy spectrum of a
similar form was used in [7] in considering horizontally
anisotropic inhomogeneities of the sea bottom. The
horizontal correlation coefficient corresponding to
spectrum (9) is given by the Fourier transformation,
whose calculation is presented in Appendix I. The cor-
relation coefficient obtained has the same form as
Eq. (3), in which, however, X = [(ξx/ξox)2 + (ξy/ξoy)2]1/2

and ξx and ξy are the spatial separations along the X and
Y axes, respectively. If, as previously, the vertical
dimensions of inhomogeneities are large compared to
the sound wavelength, the spectrum of the small-scale
vertical inhomogeneities of the refraction index has the
form of Eq. (5) and the scattering coefficient is given by
the formula

(10)

with the high-frequency asymptotics (corresponding to
the case (ξoiqi)2 @ 1, i = x, y) of the form

(11)

The following generalization of the model of inho-
mogeneities under consideration can be obtained when
the refraction index fluctuations are three-dimensionally
anisotropic. Without resorting to the factorization of the
three-dimensional correlation coefficient N(ξx, ξy, η), we
can again use the right-hand side of Eq. (3), where now
X = [(ξx/ξox)2 + (ξy/ξoy)2 + (η/ηo)2]1/2. The three-dimen-
sional Fourier transformation of the correlation coeffi-
cient constructed in such a manner (see Appendix II)

mv
2ν
π

------ µ2〈 〉
ξ0

2η0k4

1 ξ0
2q⊥

2+( )ν 1+
---------------------------------.=

mv
2
π
--- µ2〈 〉 ν k4ξ0

2η0 ξ0q⊥( ) 2 ν 1+( )– .≈

G1 q⊥( )
νξ oxξoy

π 1 ξox
2 qx

2 ξoy
2 qy

2+ +( )ν 1+
---------------------------------------------------------,=

mv
2ν
π

------ µ2〈 〉
ξoxξoyη0k4

1 ξox
2 qx

2 ξoy
2 qy

2+ +( )ν 1+
-----------------------------------------------------=

mv
2ν
π

------ µ2〈 〉 ξ oxξoyη0k4 ξox
2 qx

2 ξoy
2 qy

2+( ) ν 1+( )–
.≈
leads to the following form of the energy spectrum of
fluctuations:

(12)

Note that the formula for the spectrum of three-dimen-
sional isotropic inhomogeneities (ξox = ξoy = ηo ≡ ξo)

(13)

where q2 =  +  + , can be found in [8].

The sound-scattering coefficient for the scattering
from three-dimensional anisotropic inhomogeneities
with spectrum (12) is given by the expression

(14)

For (ξoiqi)2 @ 1, i = x, y, and (ηoqz)2 @ 1, we have

(15)

It is of interest to compare the “vertical” spectrum
corresponding to Eq. (12) for the small-scale fluctua-
tions of the refraction index in depth with Eq. (5)
obtained in [3] under the assumption about the factor-
ization of correlation function (2). The double integra-
tion of Eq. (12) leads to the following result:

(16)

If the fluctuations are small-scale in depth ((ηoqz)2 ! 1),
then Eq. (16), as Eq. (5), is approximately independent
of qz, but its dependence on the parameter ν persists:

(17)

It is easily seen that, accurate to a constant factor,
Eqs. (17) and (5) coincide, and at ν = 1/2, they are
equal.

Consider now the frequency dependence of the vol-
ume scattering coefficient. We restrict our consider-
ation to the cases when frequency and angular variables

G q( ) Γ ν 3/2+( )
π3/2Γ ν( )

-------------------------- µ2〈 〉=

×
ξoxξoyηo

1 ξox
2 qx

2 ξoy
2 qy

2 ηo
2qz

2+ + +( )ν 3/2+
--------------------------------------------------------------------------.

G q( ) Γ ν 3/2+( )
π3/2Γ ν( )

-------------------------- µ2〈 〉
ξo

3

1 ξo
2q2+( )ν 3/2+

------------------------------------,=

qx
2 qy

2 qz
2

mv
2Γ ν 3/2+( )

πΓ ν( )
------------------------------ µ2〈 〉=

×
ξoxξoyηok4

1 ξox
2 qx

2 ξoy
2 qy

2 ηo
2qz

2+ + +( )ν 3/2+
--------------------------------------------------------------------------.

mv
2Γ ν 3/2+( )

πΓ ν( )
------------------------------ µ2〈 〉≈

× ξoxξoyηok4 ξox
2 qx

2 ξoy
2 qy

2 ηo
2qz

2+ +( ) ν 3/2+( )–
.

Gz qz( ) G q( )
µ2〈 〉

------------ qx qydd

∞–

∞

∫
∞–

∞

∫=

=  
Γ ν 1/2+( )

πΓ ν( )
--------------------------

η0

1 η0
2qz

2+( )ν 1/2+
-------------------------------------.
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are separated in the expressions for the scattering coef-
ficient. This is true only for the inhomogeneities whose
horizontal dimensions are large compared to the acous-
tic wavelength: (ξoiqi)2 @ 1, i = x, y. If, in addition,
(ηoqz)2 @ 1, the short-wave asymptotics of the scatter-
ing coefficient mv of the three-dimensional fluctuations
of the refraction index is determined from Eq. (15). In
this case, it has the form

mv ~ k–2ν + 1, (18)

where k is the sound wave number. Note that Eq. (18) is
valid independently of whether the three-dimensional
inhomogeneities are isotropic or anisotropic ones.

When the correlation function (and the energy spec-
trum) allows factorization, the frequency dependence
of the scattering coefficient depends on the form of the
vertical spectrum. If, as in [3], the vertical fluctuations of
the refraction index are small-scale ones ((ηoqz)2 ! 1),
the frequency dependence of the scattering coefficient
is determined only by the horizontal spectrum (the
inhomogeneities are “two-dimensional”), and we have

mv ~ k–2ν + 2 (19)

independently of whether inhomogeneities are aniso-
tropic or isotropic in the horizontal plane.

Now we consider the angular dependence of the
scattering coefficient when the frequency and angular
variables are separated in the expression for the scatter-
ing coefficient mv . The first of such cases was analyzed
in [3]. It refers to the refraction index fluctuations that
are large-scale and isotropic in the horizontal plane but
small-scale along the vertical. In this situation, the fre-
quency dependence, as was noted above, has the form
of Eq. (19), and the angular dependence, according to
Eq. (8), is given by the expression

mv ~ (q⊥ /k)–2(ν + 1), (20)

where q⊥  = k[cos2χ + cos2χs – 2cosχcosχscos(ϕs –
ϕ)]1/2.

Here, the grazing angles χ, χs and the azimuth
angles ϕ, ϕs characterize the directions of the incidence
and scattering of acoustic waves, respectively. In the
plane of incidence (ϕs = ϕ), angular dependence (20) of
the scattering coefficient has two maxima correspond-
ing to the condition q⊥  = 0. The first maximum is in the
direction of the acoustic wave incidence (χs = χ), and
the second maximum is in the direction of the specular
reflection with respect to the horizontal plane (χs = –χ)
(a similar conclusion was obtained in [9] in analyzing
the sound scattering by fine-structure oceanic inho-
mogeneities). The effective halfwidth of these max-
ima, which is determined by the decrease in the scat-
tering coefficient by a factor two, is equal to ∆χ =
χε1/2/(kξosinχ) for kξosinχ @ 1 and ∆χ = (4ε)1/2(kξo)–1/2

for χ = 0. Here, ξo = ξox = ξoy (isotropic inhomogeneities
in the horizontal plane) and ε = 21/(ν + 1).

This case is of special interest for the following rea-
son. If the frequency and angular variables are sepa-
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
rated in the expression for the scattering coefficient,
then the frequency dependence of the attenuation coef-
ficient β in the underwater sound channel due to the
sound scattering by the “horizontal” (i.e., strongly elon-
gated in the horizontal plane) inhomogeneities and the
frequency dependence of the scattering coefficient are
identical [3].

Consider the relation between the frequency depen-
dence of the scattering coefficient by inhomogeneities
and their fractal dimension in more detail. The volume
inhomogeneities can naturally be considered as surface
fractals. For volume inhomogeneities with a fractal sur-
face (i.e., with statistically rough surfaces characterized
by the power law G(q) ~ q–γ with a nonintegral expo-
nent γ), the following relationship between the parame-
ter γ and the fractal dimension D is valid [1]:

γ = 2d – D, (21)

where d is the dimension of the embedding space. For
“two-dimensional” (“horizontal”) volume inhomoge-
neities, d = 2, and for three-dimensional inhomogene-
ities, d = 3 and, therefore, the fractal dimension of the
boundary and surface is 1 < D < 2 and 2 < D < 3, respec-
tively, [1].

For two-dimensional inhomogeneities, we assume
D = 1.4–1.5. Such a choice is not random. From the the-
ory of the fractal dimension of cloud boundaries in the
atmosphere, it follows that 1.37 < D < 1.41, while
observations yield the value D ≈ 1.35 [10]. On the basis
of Eqs. (4), (8), (9), (11), (12), (19), and (21), we obtain
for large-scale horizontal inhomogeneities the following
values: ν = 0.3–0.25 and mv ~ k1.4–1.5. Since, in this case,
the angular and frequency variables are separated in the
expression for the scattering coefficient, the sound
attenuation coefficient due to the scattering in the
underwater sound channel has the same frequency
dependence. Thus, we arrive at the well-known
3/2-power law. It can be seen that this law does not
depend on the anisotropy of fractal two-dimensional
inhomogeneities. It is only important that their dimen-
sions are large compared with the sound wavelength.

For three-dimensional large-scale inhomogeneities,
we can assume D = 2.4–2.8. As was noted above, obser-
vations in the atmosphere show that cloud boundaries
have the fractal dimension D ≈ 1.35. One can expect
that the fractal dimension of the two-dimensional sur-
face of clouds will be D ≈ 2.7. Therefore, under the
assumption that the fractal dimension of the surface of
three-dimensional volume fluctuations of the refraction
index in the ocean is in the interval 2.4 < D < 2.8, we
obtain for the frequency dependence of the scattering
coefficient: mv ~ k0.6–0.7.

Now we assume that three-dimensional inhomoge-
neities have a “smooth” surface. This corresponds to
the fractal dimension D = 2. From Eqs. (21) and (12),
we obtain ν = 0.5, and from Eq. (18), we have mv ~ k0.
In other words, the sound scattering coefficient for the
scattering by volume fluctuations of the refraction
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index does not depend on frequency. This result was,
apparently, first obtained in [11] and discussed in detail
in [8]. For ν = 0.5, energy spectrum (13), to within a
constant factor, coincides with the spectrum corre-
sponding to the correlation function exp[–|ξ|/ξo] used in
[11]. The absence of the frequency dependence of the
scattering coefficient was also revealed for the sound
scattering by random volume inhomogeneities of the
bottom of a shallow sea [12].

If we set ν = 0.3, the spectrum of three-dimensional
isotropic volume inhomogeneities given by Eq. (13)
coincides with the spectrum of local isotropic turbu-
lence, and for the scattering coefficient, as expected, we
obtain mv ~ k0.4 [8].

Finally, from the formulas presented above, it fol-
lows that, in the low-frequency approximation, the
Rayleigh scattering occurs and long acoustic waves
“overlook” the roughness of the fractal surface of inho-
mogeneities.

In conclusion, we note that some problems of the
scattering and radiation of waves by fractal inhomoge-
neities in an elastic medium were discussed in [13].

The above-mentioned formulas for the scattering
coefficients characterizing the scattering by volume
inhomogeneities of various types can, apparently, be
useful for the interpretation of experimental data on
sound propagation and scattering in the ocean. On the
basis of comparison of the computational results and
experimental data, it would be possible to determine
which of the oceanic inhomogeneities have the greatest
effect on the acoustic field in one or another situation
and to make some conclusions about the nature of these
inhomogeneities.

APPENDIX I

To calculate the correlation coefficient of horizon-
tally anisotropic inhomogeneities that corresponds to
spectral form (9), one has to perform a Fourier transfor-
mation, i.e., to calculate the double integral

(I.1)

Note that the factor (2π)–1, as in [3], refers to a trans-
formation that is the inverse of Eq. (I.1) and determines
the energy spectrum from the correlation function.

By applying the change of variables x = ξoxqx and
y = ξoyqy , Eq. (I.1) is reduced to the form

(I.2)

N1 ξ x ξ y,( ) G1 qx qy,( )e
i ξ xqx ξ yqy+( )–

qx qydd

∞–

∞

∫
∞–

∞

∫=

=  
νξ oxξoy

π
------------------ e

i ξ xqx ξ yqy+( )–

1 ξox
2 qx

2 ξoy
2 qy

2+ +[ ] ν 1+
----------------------------------------------------- qx qy.dd

∞–

∞

∫
∞–

∞

∫

N1 ax ay,( ) ν
π
--- e

i ax x ayy+( )–

1 x2 y2+ +[ ] ν 1+
-------------------------------------- x y,dd

∞–

∞

∫
∞–

∞

∫=
where ax ≡ ξx/ξox and ay ≡ ξy/ξoy. Changing the variables
(x, y) in (I.2) to the polar variables (r, ψ), we obtain

(I.3)

For integrating with respect to the polar angle ψ, we use
the change of variables axcosψ + aysinψ = bcos(ψ + δ),

where b = (  + )1/2 and  = ay/ax. Then, with
allowance for the known expression for the Bessel
function J0(Z) of zero order, we can write

and the calculation of the correlation coefficient is
reduced to taking the ordinary integral

(I.4)

The integral in Eq. (I.4) is a particular case of the
table integral (see [14], formula 6.565.4) that leads to
the McDonald function K–ν(Z). Taking into account the
properties of the function K–ν(Z) = Kν(Z) [14], we
obtain the required correlation coefficient for the fluc-
tuations of the refraction index in the form of Eq. (3) at
X = b ≡ [(ξx/ξox)2 + (ξy/ξoy)2]1/2.

APPENDIX II

To determine the spectral density of the three-
dimensional anisotropic inhomogeneities that are char-
acterized by the correlation coefficient N(ξx , ξy, η) in
the form of Eq. (3) at X = [(ξx/ξox)2 + (ξy/ξoy)2 +
(η/ηo)2]1/2, one has to perform a three-dimensional Fou-
rier transformation:

(II.1)

Introducing the notations x = ξx /ξox, y = ξy /ξoy, and
z = η/ηo in the integrand, we reduce Eq. (II.1) to the
form

(II.2)

N1 ax ay,( ) ν
π
--- e

ir ax ψcos ay ψsin+( )–

1 r2+[ ] ν 1+
--------------------------------------r r ψ.dd

π–

π

∫
0

∞

∫=

ax
2 ay

2 δtan

e ibr ψ δ+( )cos– ψd

π–

π

∫ 2 e ibr ψcos– ψd

0

π

∫ 2πJ0 br( ),= =

N1 b( ) 2ν
J0 br( )r rd

1 r2+( )ν 1+
--------------------------.

0

∞

∫=

G qx qy qz, ,( )

=  
1

2π( )3
------------- N ξ x ξ y η, ,( )e

i qxξ x qyξ y qzη+ +( )
ξ x ξ y η .ddd

∞–

∞

∫
∞–

∞

∫
∞–

∞

∫

G qx qy qz, ,( )
ξoxξoyη0

2ν 1– Γ ν( ) 2π( )3
-------------------------------------=

× x2 y2 z2+ +( )ν /2
Kν x2 y2 z2+ +( )
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∞

∫
∞–

∞

∫
× e

i qxξ x x qyξ yy qzη z+ +( )
x y z.ddd
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Changing from the variables (x, y, z) to the spherical
coordinates (r, θ, ψ) so that x = rsinθcosψ, y =
rsinθcosψ, z = rcosθ, and dxdydz = r2sinθdrdθdψ, we
obtain

(II.3)

Taking the integral with respect to ψ, we obtain the
Bessel function of zero order (see Appendix I):

(II.4)

where

In the remaining expression

(II.5)

the integral with respect to θ

(II.6)

with the use of the substitution t = cosθ is reduced to
the table integral ([14], formula 6.677.6)

(II.7)

where

Now, the spectrum of three-dimensional anisotropic
inhomogeneities is given by the ordinary integral

G qx qy qz, ,( )
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------------------------------------- rν 2+ Kν r( )
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π
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× e
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π
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2ν 1– Γ ν( ) 2π( )2
-------------------------------------=
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π
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Iθ J0 ar θsin( )e
irqzηo θcos

θsin θd

0

π

∫≡

Iθ J0 ar 1 t2–( )e
irqzη0t

td

1–

1

∫≡

=  2 J0 ar 1 t2–( ) rqzηot( )cos td

0

1

∫ 2
br( )sin

br
------------------,=

b ξoxqx( )2 ξoyqy( )2 ηoqz( )2+ + .≡
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(II.8)

which is also a tabular one ([14], formula 6.699.3)
and is expressed through a hypergeometric function F.
The latter, at a given combination of its four argu-
ments, is reduced to an elementary function ([14],
formula 9.121.1):

(II.9)

which eventually leads to the required form of Eq. (12)
for the energy spectrum of three-dimensional anisotro-
pic fluctuations of the refraction index.
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Abstract—A computer simulation of an acoustic medium characterized by a complex density and synthesized
on the basis of a rubberlike material with massive spherical inclusions is performed. The properties of such
media are studied for continuous and discrete distributions of the inclusions in size (the resonance frequencies),
and the parameters of the medium are optimized to obtain the given properties, in particular, to provide efficient
sound absorption over a wide frequency range. Numerical results are presented. © 2002 MAIK “Nauka/Inter-
periodica”.
The problem of designing composite materials is of
interest from the viewpoint of both theory [1–9] and
applications [10, 11]. One of the types of such materials
are the so-called cavityless materials [1, 5–7, 12, 13] in
the form of a rubberlike medium containing massive
inclusions of various shapes and dimensions. For ana-
lyzing harmonic oscillations and sound absorption in
these media, it is convenient to use the notion of com-
plex density [14].

A list of both basic physical assumptions concern-
ing such media and theoretical results obtained from
them can be found in [15]. The same publication pro-
vides the experimental acoustic parameters of these
media and demonstrates their good agreement with the
theoretical values; it also presents tentative results on
sound-absorbing materials designed on their basis, the
performance of such absorbers being almost indepen-
dent of hydrostatic pressure.

In this paper, we describe the computer simulation
of the synthesis of sound-absorbing materials on the
basis of a rubberlike medium with spherical inclusions.
The effective complex density of such a medium can be
written as [1, 5]

(1)

Here, ρ1 and ρ2 are the densities of rubber and inclu-
sions, respectively; a is the radius of an inclusion; ε =
Nv/V is the volume concentration factor (N is the num-
ber of inclusions, v  is the volume of the inclusion, and
V is the total volume); (ka)p = Ψ(ka)0; η' = Ψη, where η

ρ
ρ1
----- ρ' iρ''+=

=  1
ε ρ2/ρ1 1–( )

1 ka( )2/ ka( )p
2– i ka/ ka( )p( )2η' ka+[ ]+

------------------------------------------------------------------------------------------------.+
1063-7710/02/4804- $22.00 © 20458
is the shear loss factor and Ψ = 1 + (ka)0; and (ka)0 =

 is the dimensionless resonance frequency

without regard to the shear loss. As follows from these
expressions, (ka)p is primarily determined by the inclu-
sion-to-rubber density ratio ρ2/ρ1. The greater this ratio,
the smaller (ka)p is. Other physical properties described
by Eq. (1) are detailed in [15].

We will further describe the medium under study in
terms of two parameters: the real part of the dimension-
less density, ρ0 = Re( /ρ1), and the loss factor divided
by θ = Im( /ρ1)/Re( /ρ1).

Note that, to achieve the maximal effect, lead inclu-
sions (ρ2 = 11000 kg/m3) were used in [15]. In this
paper, to synthesize a lighter material, we use inclu-
sions with ρ1 = 5500 kg/m3, e.g., pebbles. The density
of the host medium (rubber) is ρ1 = 1130 kg/m3.

Figure 1 shows ρ0 and θ as functions of the dimen-
sionless frequency ka calculated for spherical inclu-
sions of this material with the volume concentration
from 0.05 to 0.2 (0.2 is the maximal admissible concen-
tration for these media) taken as a parameter and with
the shear loss factor of rubber equal to 0.3.

As can be seen from the figure, at small ka, ρ0 tends
to the constant static value

(2)

With increasing ka, ρ0 rapidly decreases below unity,
because the type of the response changes from inertial
to elastic, the effective loss θ exhibiting a typically res-
onance behavior. At the resonance frequency, ρ0 = 1
and θ is close to its maximal value. It can also be noted

η
2
---

9ρ1

2ρ2 ρ1+
--------------------

ρ
ρ ρ

ρ0 1 ε ρ2/ρ1 1–( ).+=
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Real part ρ0 of the dimensionless complex density of the composite material and loss factor θ as functions of the dimension-
less frequency for different concentrations of spherical inclusions with a density of ρ2 = 5500 kg/m3: ε0 = (1) 0.05, (2) 0.10, (3) 0.15,
and (4) 0.20 kg/m3.
that ρ0 and θ rather weakly depend on the shear loss
factor η.

Figure 1 reveals that the medium exhibits absorbing
properties in a relatively narrow frequency range (about
0.5–0.6 wide). Therefore, to provide the sound absorp-
tion over a wide frequency range (e.g., about a decade
band or wider), it is necessary to use a variety of inclu-
sions with different resonance frequencies. The values
of these frequencies and the corresponding concentra-
tions must be chosen or determined from certain addi-
tional assumptions.

To make original expression (1) more convenient for
further analysis of the medium under investigation and
for the synthesis of sound-absorbing materials, we rep-
resent it in a different form. Since we have

where ω is the circular frequency of sound, ω0 is the cir-
cular resonance frequency of the inclusion, c is the
velocity of shear waves in rubber, and χ is a constant,
expression (1) can be written as

(3)

where

(4)

ka ωa/c, ka( )p ω0a/c χ ,= = =

ρ
ρ1
----- ρ0 1 iθ+( ) 1

ρ2

ρ1
----- 1– 

  R ω ω0,( ),+= =

R ω ω0,( )
εω0

2

ω0
2 ω2 1 iη'–( )– iχωω0+

-------------------------------------------------------------.=
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Consider new dimensionless variables

where ω01 = χc/a1 is the lowest resonance frequency
indicated by number 1 and a1 is the radius of the corre-
sponding inclusion.

With these notations, Eq. (4) can be rewritten as

(5)

Formulas (3) and (5) can be used to calculate the
complex density of the medium with inclusions and, in
particular, for the synthesis of such a medium with the
prescribed properties. In the following, we consider
several such problems, which will help us to achieve
our goal, i.e., to develop a sound-absorbing material for
hydroacoustic purposes.

As can be seen from Eqs. (3) and (5), the complex
density strongly depends on the concentration ε of the
inclusions with the resonance frequency Ω0, so that we
can write ε = ε(Ω0).

At first, we consider (as in [6]) the case of a contin-
uous spectrum of resonance frequencies and, therefore,
a continuous spectrum of inclusion sizes. Assume that
inclusions of each radius are uniformly distributed over
each part of the space with linear dimensions smaller
than the acoustic wavelength. Let the continuous func-
tion ε(Ω0) be given on the interval 1 ≤ Ω0 ≤ ∆, where
unity corresponds to the lowest resonance frequency

Ω ω
ω01
--------, Ω0

ω0

ω01
--------,= =

R Ω Ω0,( )
εΩ0

2

Ω0
2 1 iη'–( )Ω2– iχΩΩ0+

---------------------------------------------------------------.=
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and ∆ =  with ω0N being the highest resonance fre-

quency.

In this case, Eqs. (3) and (5) can be written as

(6)

where

(7)

Let us write the denominator in Eq. (5) as

(8)

where a1 and a2 are the roots of the equation ∆(Ω0, 1) = 0:

It is significant that any continuous function ε(Ω0) must
satisfy the condition

(9)

where ε0 is the maximal total concentration, assumed to
be equal to 0.2.

Below, we consider several examples with simple
functions ε(Ω0), which allow one to obtain analytical
solutions for the complex density of the medium.

(1) ε(Ω0) = 

By virtue of Eq. (9), the normalization factor ε1 can

be expressed here as ε1 = . With allowance for

Eq. (8), the integration in Eq. (7) yields

(10)

Here, Fi = (a2 – a1)–1 , i = 1, 2.

(2) ε(Ω0) = 

In this case, we have

(11)

(3) ε(Ω0) = const = ε1.

ω0N

ω01
---------

ρ
ρ1
----- ρ0 1 iθ+( ) 1

ρ2

ρ1
----- 1– 

  R Ω( ),+= =

R Ω( )
ε Ω0( )Ω0

2 Ω0d

Ω0
2 1 iη'–( )Ω2– iχΩΩ0+

---------------------------------------------------------------.

1

∆

∫=
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2 a1 a2+( )ΩΩ0– a1a2Ω

2,+=

a1 2,
iχ
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----- 1 χ2

4
-----– iη'+ .±=

ε Ω0( ) Ω0d

1

∆

∫ ε0,≤

ε1

Ω0
2

------.

ε0∆
∆ 1–
------------

R Ω( )
ε0∆

∆ 1–
------------ Ω( ) 1– F2 Ω( ) F1 Ω( )–[ ] .=

∆ aiΩ–
1 aiΩ–
------------------ln

ε1

Ω0
------.

ε1

ε0

∆ln
--------- and R Ω( )

ε0

∆ln
--------- a2F2 Ω( ) a1F1 Ω( )–[ ] .= =
In this case, we obtain

(12)

Formulas (10)–(12) thus determine the complex
density of a medium with a continuous spectrum of res-
onance frequencies (or inclusion dimensions) distrib-
uted by the above laws. The complex density of such a
medium calculated by these formulas was found to dif-
fer little from the complex density of a medium with
inclusions of one size. The above concentration distri-
bution laws differ primarily in the upward shift that
they introduce in the resonance frequency (reducing the
dependence of the concentration on the resonance fre-
quency).

Although the continuous spectrum of inclusion
dimensions gives a general idea of the frequency
dependence of the complex density, such a medium can
only be implemented with inclusions of particular
dimensions, i.e., on the basis of a discrete spectrum of
the latter. In this case, the formula for the complex
density can be obtained from Eqs. (6) and (7) by spec-
ifying ε as

(13)

By substituting Eq. (13) into Eq. (7), we obtain

(14)

This formula can be written in a slightly different
form as

(15)

This expression contains two systems of parame-
ters: Ω0n and ε(Ω0n). The values of Ω0n can be specified
as a geometrical progression with a geometric ratio a,
which corresponds to a uniform distribution on a loga-
rithmic scale. In this case, we have

We assume that Ω01 = 1. The geometric ratio a can be
defined as

(16)

At ∆ = 10 and N = 4, we obtain a = 2.16. The utility of
this choice will become clear from the following dis-
cussion.

It is evident that ε(Ω0n) must satisfy the relationship

(17)

ε1

ε0

∆ 1–
------------ and=

R Ω( )
ε0

∆ 1–
------------ ∆ 1– Ω a2

2F2 Ω( ) a1
2F1 Ω( )–[ ]+{ } .=

ε ε Ω0( )δ Ω0 Ω0n–( ).=

R Ω( )
ε Ω0n( )Ω0n

2

Ω0n
2 1 iη'–( )Ω2– iχΩΩ0n+

--------------------------------------------------------------------.
n 1=

N

∑=

R Ω( )
ε Ω0n( )

1 1 iη'–( ) Ω/Ω0n( )2– iχ Ω/Ω0n( )+
-------------------------------------------------------------------------------------.

n 1=

N

∑=

Ω0n aΩ0 n 1–( ); Ω0n a n 1–( ); ∆ a N 1–( ).= = =

a ∆ N 1–( )– .=

ε Ω0n( )
n 1=

N

∑ ε0.≤
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For distributions ε(Ω0n) considered above, we obtain

(1) ε(Ω0n) = .

Since ε1  = ε0, the formula for a sum of

a geometrical progression yields

(2) ε(Ω0n) = .

Likewise, we obtain ε1 = ε0 .

(3) ε(Ω0n) = const = ε0, εn = .

Figure 2 illustrates the real part of the complex den-
sity and the loss factor of the medium calculated at N =
4, ∆ = 10, and a = 2.16 for discrete-spectrum inclusions.

Figure 2a shows three families of functions with the
rubber loss factor as a parameter. Note that, in case 3,
the real part of the complex density drops linearly (on a
logarithmic scale) with increasing frequency from 1 to
10 and is almost independent of the rubber loss factor.
In this case, the loss factor θ (Fig. 2b) is nonmonotonic
and also weakly depends on the rubber loss factor.
Unlike case 3, in the other two cases, the lower reso-
nance frequencies are to some extent enhanced.

The medium with massive inclusions can be synthe-
sized not only by specifying the concentration as a
function of frequency, as we have done above, but also
by choosing a special discrete function, so as to provide
the required property of the medium. As an example,
consider the synthesis of a medium with a constant loss
factor θ = θ0 in a given frequency range. Let us write the
complex density using Eq. (3) with the function R given
in the form

(18)

The problem can be solved in terms of the criterion

where Ωk are the frequencies at which the condition is
imposed and K = 100 is the number of the frequencies.
This criterion minimizes the mean deviation of θ from
the required value θ0 within the given frequency range.
The solution algorithm numerically optimizes (by one
of the usual methods [17]) the variable parameters εn. In

ε1

Ω0n
2

--------

1

a2 n 1–( )----------------
n 1=
N∑

ε1 ε0
a2 1–( )a2 N 1–( )

a2N 1–
------------------------------------.=

ε1

Ω0n

--------

a 1–( )aN 1–

aN 1–
----------------------------

ε0

N
----

R Ω( )
εn

1 1 iη'–( )a 2 n 1–( )– Ω2– iχa n 1–( )– Ω+
---------------------------------------------------------------------------------------.

n 1=

N

∑=

1
K
---- θ Ωk( ) θ0–

k 1=

K

∑ min,=
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this example, n = 1, 2, 3, and 4. The feasibility condi-
tions are as follows:

(19)

The solutions are summarized in Tables 1–3.

The calculations were performed for ∆ = 11 and 16;
the rubber loss factor η = 0.1, 0.3, and 0.5; and the fea-
sible loss factor of the medium θ0 = 0.1, 0.15, and 0.2.
In addition to the above quantities, the tables show the
total concentration ε and the mean-square deviation δ.

The main conclusion that can be drawn from the
data presented in the tables is that, with increasing θ0,
the total concentration ε increases, remaining smaller
than its maximal admissible value of ε0 = 0.2, and that
the mean-square deviation δ from the required value θ0
is less than 0.4% in all cases considered.

Figure 3 illustrates the complex density calculated
for η = 0.3. Figure 4 plots the loss factor on an enlarged
scale. The figures clearly show the behavior of θ in the
given frequency range. It can be seen that oscillations
in the curves become smaller with increasing η, as is
also seen from the tables. In essence, we have thus
optimized the characteristics shown above in Fig. 2b
(case 3). The method described above can be applied to
synthesize media subject to other conditions imposed
upon the complex density, but the solution must also
satisfy conditions (19).

The most interesting application of the composite
materials considered in this paper is their use as sound-
absorbing materials for hydroacoustic purposes.
Hydroacoustic absorbers should provide a sufficiently
high sound absorption and a weak reflection from the
absorber–water interface; i.e., their wave impedance
should be close to that of water. Such a sound absorber
can be synthesized in terms of the criterion of minimal
reflectivity over the given frequency range, which
allows for both aforementioned requirements.

We will solve the synthesis problem for two cases.
In the first case, we assume that the sound absorber is a
homogeneous (to be more precise, quasi-homoge-
neous) layer containing inclusions of various dimen-
sions. In the second case, the sound absorber will have
the form of an inhomogeneous layer consisting of a
number of sufficiently thin homogeneous layers, each
of which contains inclusions of a particular dimension.

εn 0; ε≥ εn ε0.≤
n 1=

N

∑=

Table 1.  η = 0.1, ∆ = 11

θ0 ε1 ε2 ε3 ε4 ε δ

0.10 0.0186 0.0152 0.0143 0.0225 0.0706 0.0021

0.15 0.0309 0.0248 0.0223 0.0337 0.1117 0.0031

0.20 0.0457 0.0352 0.0321 0.0449 0.1570 0.0039
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Fig. 2. (a) Real part of the complex density and (b) loss factor of the medium for different functions ε(Ω0n): (1) (Ω0n) ~ (Ω0n)–2,
(2) ε(Ω0n) ~ (Ω0n)–1, and (3) ε(Ω0n) = const.
It is known that the reflection coefficient can be
written as

(20)

where Z is the specific input impedance of the absorber
normalized by (ρ0c0) for water. For the absorber in the

V
Z 1–
Z 1+
------------,=

Table 2.  η = 0.3, ∆ = 11

θ0 ε1 ε2 ε3 ε4 ε δ

0.10 0.0242 0.0190 0.0173 0.0264 0.0869 0.0015

0.15 0.0413 0.0309 0.0277 0.0398 0.1397 0.0023

0.20 0.0627 0.0444 0.0394 0.0533 0.1998 0.0031
form of a homogeneous layer, its complex density is
determined by Eqs. (6) and (18) and its impedance Z is

(21)

for a layer with a zero back loading (ZL = 0) or

(22)

ρ

Z i m 2πL0 mΩ( )tan–=

Z i m 2πL0 mΩ( ),cot=

Table 3.  η = 0.5, ∆ = 16

θ0 ε1 ε2 ε3 ε4 ε δ

0.10 0.267 0.0198 0.0177 0.0283 0.0925 0.00095

0.15 0.0459 0.0325 0.0286 0.0427 0.1497 0.0014

0.20 0.0693 0.0482 0.0397 0.0578 0.2090 0.0020
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Fig. 3. Complex density of the synthesized material; the loss factor in rubber is equal to 0.3.

Fig. 4. Loss factor in the medium of Fig. 3 on an enlarged scale.
for a layer with an infinite loading (ZL = ∞). Here,

where l is the layer thickness; λ0 is the acoustic wave-
length in water at the lowest resonance frequency of the
inclusions ω01; and  is determined by Eqs. (3) and
(18), in which εn are the variable parameters (as above).
Note that the parameter L0 relates the layer thickness in
terms of wavelength to the dimensionless resonance

m
ρ
ρ0
-----, L0

l
λ0
-----, Ω ω

ω01
--------,= = =

ρ

ICAL PHYSICS      Vol. 48      No. 4      2002
frequencies of the inclusions, which allows us to use
the dimensionless representation of the results.

We optimize the absorber in terms of the criterion

(23)

which provides the minimal mean reflectivity , where
the frequencies Ωk, at which the layer is optimized,

V̂
1
K
---- V Ωk( )

k 1=

K

∑ min,= =

V̂
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Fig. 5. Reflection coefficient of the synthesized sound absorber for η = 0.3 and ZL = 0: L0 = (1) 0.5, (2) 0.75, (3) 1.0, (4) 1.25, and
(5) 1.50.
belong to the interval Ω01–Ω0N, and K = 100 is the total
number of these frequencies. We use a logarithmic fre-
quency scale, which allows us to emphasize the impor-
tance of the lower frequencies of the range. The reflectiv-
ity V is determined by Eq. (20) with the use of Eq. (21)
or Eq. (22). To satisfy the second feasibility condition
of those given by Eqs. (19), a four-layer absorber is syn-
thesized by varying only the first three quantities εn, the
fourth one being determined as ε4 = ε0 – (ε1 + ε2 + ε3).

Table 4.  ZL = 0

L0 ε1 ε2 ε3 ε4

0.50 0.0407 0.0291 0.1041 0.0262 0.1261

0.75 0.0852 0.0736 0.0209 0.0202 0.0724

1.00 0.1351 0.0321 0.0228 0.0150 0.0592

1.25 0.1450 0.0211 0.0203 0.0135 0.0497

1.50 0.1594 0.0103 0.0191 0.0121 0.0457

V̂

Table 5.  ZL = ∞

L0 ε1 ε2 ε3 ε4

0.50 0.0136 0.1377 0.0209 0.0278 0.1114

0.75 0.0997 0.0567 0.0246 0.0191 0.0801

1.00 0.1241 0.0386 0.0.218 0.0155 0.0572

1.25 0.1469 0.0196 0.0206 0.0129 0.0511

1.50 0.1589 0.0116 0.0182 0.0113 0.0451

V̂

This choice of εn allows one to synthesize the absorber
for an arbitrary maximal concentration ε0.

Since the complex density weakly depends on the
loss factor in rubber, we solved the problem only for
η = 0.3. The results are summarized in Tables 4 (for
ZL = 0) and 5 (for ZL = ∞) and shown in Fig. 5 (only
for ZL = 0).

The results presented above can be used to draw the
following conclusions.

The material synthesized is a highly efficient sound
absorber: with increasing wave thickness  of the layer

from 0.5 to 1.5, the reflection coefficient  averaged
over the frequency range decreases from 0.12 to 0.05,
while the bandwidth of effective absorption increases
by a factor of approximately 10 to 30. It is essential that
the average performance is independent of the type of
the load applied to the absorber (results for ZL = 0 and
ZL = ∞ are almost the same). The reflectivity curves
have the form of the response of a bandpass filter with
the ripples caused by the interference of waves reflected
from the front and back surfaces of the absorber.

Although the absorber synthesized in the form of a
homogeneous layer shows a fairly high efficiency, it is
reasonable to synthesize an absorber in the form of an
inhomogeneous layer consisting of a number of rela-
tively thin homogeneous layers. Such a study can be
conducted primarily with the aim of finding a possibil-
ity for designing a thinner absorber than that in the pre-
vious case.

V
)

V

)
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Fig. 6. Reflection coefficient of a layered sound absorber. The thickness of each layer is Lq = 0.1. The numbers indicate the total
number of layers.
The solution of this optimization problem also relies
on Eq. (20), which should be rewritten as

(24)

Here, Vq is the reflection coefficient of the qth layer
loaded by q – 1 previous layers and Zq is the corre-
sponding impedance related to the impedance Zq – 1
through the recurrent relationship

(25)

Here, the notations m and L introduced above refer to
the qth layer.

The inhomogeneous (layered) absorber was synthe-
sized using a model in which each layer contains inclu-
sions of a particular dimension that can change from
layer to layer. Preliminary calculations showed that the
maximal concentration of inclusions (ε0 = 0.2) must be
used in each layer, because the inclusion density is rel-
atively small. The complex density is determined by
Eqs. (6) and (7); the optimality criterion for V = Vq is
given by Eq. (23) with Ω0q being the variable parame-
ter. The calculations were performed for two layer
dimensions: Lq = 0.1 and 0.2 at ZL = 0.

Tables 6 and 7 present the dimensionless resonance
frequencies Ω0q for each layer, the total number of lay-

ers n, and the average reflection coefficient  of the nth
layer.

Vq

Zq 1–
Zq 1+
---------------.=

Zq

–i mq 2πLq mqΩ( )tan Zq 1–+

1 i 2πLq mqΩ( )Zq 1– mq( ) 1–
tan–

------------------------------------------------------------------------------------.=

V

)
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The corresponding frequency behavior of the reflec-
tion coefficient is shown in Figs. 6 and 7. The results
show that the first (counted from the back surface) lay-
ers have higher resonance frequencies, which decrease
as the total number of layers increases. Accordingly, the
region of high efficiency of the absorber extends toward
the lower frequencies, and the average reflection coef-
ficient decreases to 0.11–0.13. Since, in this case, the
total absorber thickness L0 is equal to 0.5 (Table 6) or
0.6 (Table 7), the comparison with the data of Table 4
shows that the layered absorber does not have any
advantages over the homogeneous absorber of the same
thickness. As follows from the above theoretical study,
absorbing materials synthesized as rubberlike media
with inclusions of relatively low density feature a rather
high efficiency over a wide (about one decade) fre-

Table 6.  Lq = 0.1

n 1 2 3 4 5

Ω0q 5.93 2.80 1.79 1.31 0.91

0.4876 0.3009 0.1805 0.1235 0.1067V

)

Table 7.  Lq = 0.2

n 1 2 3

Ω0q 4.28 1.58 1.40

0.3342 0.1547 0.1307V

)
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Fig. 7. Same as in Fig. 6 for Lq = 0.2.
quency range. At the lowest frequency, their thickness
is less than half the sound wavelength in water, which
makes them comparable with sound absorbers made
with, e.g., lead inclusions [15].
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Abstract—Expressions are obtained for determining the noise immunity of a receiving antenna with a planar
aperture under the action of different types of inhomogeneous acoustic fields. The inhomogeneity of these fields
is shown to considerably affect the noise immunity of the antenna, which should be taken into account in esti-
mating the antenna efficiency. © 2002 MAIK “Nauka/Interperiodica”.
Until recently, in the studies of the effect of acoustic
fields on receiving antennas, it was assumed that these
fields are homogeneous or inhomogeneous throughout
the whole acoustic space far from the antenna [1] or
they are homogeneous near the antenna in the planes
parallel to the plane where the acoustic sources are
located [2]. In particular, homogeneous fields result
from homogeneous forces acting on structures [2, 3].

However, in recent years, the effect of inhomoge-
neous fields whose sources are located near the antenna
has become the object of interest [4].

This paper considers the effect of a number of inho-
mogeneous acoustic fields encountered in practice on
an antenna with the aim of revealing new features aris-
ing in the antenna response in comparison with the case
of homogeneous fields.

To simplify the problem, we assume that the antenna
has a planar aperture and is composed of point trans-
ducers arranged in an array with a spacing shorter than
a quarter-wavelength of sound in the surrounding
medium. In these conditions, the aperture of the
antenna can be considered as continuous and perfectly
transparent for sound. We do not introduce temporal
delays in separate transducers; as a result, the signal at
the antenna output is formed as the sum of signals from
its every unit area, and the phase of each term of this
sum is governed only by the action of the acoustic field
on the corresponding unit area of the aperture.

For such an aperture transparent for sound, the inte-
grator output signal reduced to the aperture surface and
expressed in terms of the squared pressure magnitude
can be written according to [5] as

(1)

where |Pa |2 is the squared magnitude of the acoustic
field reduced to the aperture surface, S1, 2 is the aperture

Pa
2 1

S2
----- K x1 y1 x2 y2, , ,( ) S1 S2,dd

S2

∫
S1

∫=
1063-7710/02/4804- $22.00 © 20467
surface, and K(…) is the spatial correlation function of
the acoustic field acting on the aperture.

If the acoustic field acting on the aperture is homo-
geneous in the aperture plane, the correlation function
K(…) depends only on the differences in the coordi-
nates on the aperture surface (x1 – x2 and y1 – y2). By
contrast, if the field is inhomogeneous in the aperture
plane, the function K(…) depends on the coordinates
x1, y1, x2, and y2.

If the sound pressure P(x, y) is known for any point
of the aperture surface, the correlation function is deter-
mined as

(2)

where * denotes the complex conjugate quantity and
M[] denotes the mathematical expectation over the
space of realizations (in the case under consideration,
over the angles of arrival of sound waves).

Consider the following three types of inhomoge-
neous acoustic fields:

(I) A wave traveling from the source along the plane
in which the acoustically transparent aperture is located
(Fig. 1)

(3)

where P0 is the pressure at the unit distance from the
source. Such a wave is arbitrarily called the quasi-
spherical wave. In the case of a perfectly hard plane,
n = 1, and we deal with a purely spherical wave; in the
case of a perfectly soft plane, n = 2. Intermediate situa-
tions are also possible, and they depend on the relation-
ship between the wave impedance of the surrounding
medium and the impedance of the plane.

Since the acoustic pressure varies with distance
from the source, this field is an inhomogeneous one.

(II) An acoustic wave produced by a linear obstacle
(rib) located on a plate under an incident diffuse field of
bending waves (Fig. 2).

K x1 y1 x2 y2, , ,( ) M P x1 y1,( )P* x2 y2,( )[ ] ,=

P x y,( ) P0
1
R
--- 

 
n

ikR( ),exp=
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According to [6], for frequencies below the critical
frequency fcr determined from equating the bending
wavelength in the plate to the wavelength in the sur-
rounding medium, the rib driven by a bending wave
incident at an angle ψ (see Fig. 2) generates a wave, in
which the pressure for kR > 1 is given by the expres-
sion [2]:

(4)

where ρc is the wave resistance of the surrounding

medium;  is the velocity of oscillations in the bend-
ing wave incident on the rib at the angle ψ (Fig. 2); R is
the radius vector connecting the rib with the observa-
tion point in the plane normal to the line along which
the rib is attached to the plate; ϑ  is the angle between
the normal to the plate at the site of the rib attachment
and the radius vector R; χm = 1 for the one-side contact
of the plate with the surrounding medium; χm = 2 for the
two-side contact of the plate with the surrounding

Pψ x y z ψ, , ,( ) ρcẆψ–

2πkRχmbβ3/2
-------------------------------------=

×
ϑ 1 q1

2 ψsin
2

–[ ]
1/4

cos
Lz

----------------------------------------------------Lc

× ikby ψsin ikR 1 q1
2 ψsin

2
– i

π
4
---–+ 

  ,exp

Ẇψ

x

y

L
S

a

–b/2

+b/2

0

Fig. 1. Reference system for a quasi-spherical wave propa-
gating along the aperture. The source is located at the point
S, and the distance between the source and the aperture is L.

x

y

z –b/2

–a/2

b/2

a/2

–z0

(x, y)
0 ϑ

ψ

Fig. 2. Reference system for an aperture under the effect of
the field of a plate with a stiffening rib. The distance
between the aperture and plate planes is z0, and the distance
between the rib and the projection of the aperture center on
the plate is L.
medium; b = ρc/ωm (ω is the angular frequency and m
is the mass of the plate per unit area); β = fcr/f; Lz is the
function depending on the parameters of the plate and
the angles ϑ and ψ [6]; Lc is the function depending on
the parameters of the plate, the mechanical impedances
of ribs with respect to the transverse force and the bend-
ing momentum, and the angles ϑ and ψ [6]; q1 = kb/k (kb

is the wave number of bending waves in the plate); and
k is the wave number in the liquid.

As can be seen from the structure of the exponent,
only the bending waves incident on the rib at angles ψ <

 generate acoustic waves in the liquid; other-

wise, a nonwave field is formed in which the pressure
decreases with the distance from the plate according to
an exponential law.

The critical frequency ψcr =  depends on

the dimensionless wave number of bending waves q1.
The lower the frequency f relative to the critical fre-
quency fcr , the greater the wave number q1 and, hence,
the smaller the angle ψcr . Thus, for frequencies much
lower than fcr , only the bending waves that are almost
normally incident on the rib contribute to the sound
radiation of the plate with the rib. In this case, a quasi-
cylindrical wave propagates in the liquid from the rib
and the phase front of this wave is described by the fac-
tor exp(ikbysinψ).

In accordance with Eq. (4), the acoustic pressure
depends on both the radius vector  and the angle ϑ ;
therefore, this field is inhomogeneous.

(III) The nonwave field of bending waves at fre-
quencies f < fcr (Fig. 3).

The bending waves propagating along a plate gen-
erate only the nonwave field in the surrounding
medium, and the pressure in this field is described by
the formula [6]

(5)

where x and y are the coordinates in the plate plane; z is
the normal to the plate; and kx and ky are the projections

of the wave number of bending waves  on x and y
axes, respectively.

The acoustic field described by Eq. (5) is homoge-
neous.

However, in real shell structures, the vibration
energy flux propagating along them forms a quasi-dif-
fuse field of bending waves. This field exhibits a diffuse
behavior in the region of the shell bounded by the stiff-
ening ribs. The velocity of oscillation of bending waves
in such cells decreases with increasing distance from
the source of vibration (e.g., along the x axis) [7].

1
q1
-----arcsin

1
q1
-----arcsin

R

RH x y z ψ, , ,( )

=  
iρcẆψ–

q1
2 1–

-------------------- ikxx ikyy kz q1
2 1––+( ),exp

kb
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To take this factor into account, one should multiply
Eq. (5) by the factor

(6)

where af is the coefficient determining the attenuation
of vibration along the shell [7]. With allowance for this
fact, the nonwave field of bending waves proves to be
an inhomogeneous field.

Substituting Eqs. (3), (4), and (5) with allowance for
Eq. (6) into Eq. (2), we obtain the correlation function
for a fixed propagation direction for either a quasi-
spherical wave (the first type of the field) or a bending
wave propagating at an angle ψ to the x axis (the second
and third types of the field). For the second and third
types, the field of bending waves exhibits a diffuse
behavior. For this reason, in calculating the correlation
function by Eq. (2), one should carry out the integration
with respect to the angle ψ from 0 to 2π and multiply

the result by . Then, substituting the correlation

functions in Eq. (1), we determine the squared magni-
tude of the acoustic pressure reduced to the aperture
surface.

In what follows, we consider the changes in the
aperture noise immunity normalized by its concentra-
tion coefficient Ω:

(7)

where |PNr|2 is the squared magnitude of the pressure
measured with a nondirectional receiver positioned at
the center of the aperture.

Consider the quantity χ for the field of the first type.
When the source is located far from the aperture, the

field at the aperture surface is nearly homogeneous, and
the calculation by Eq. (7) yields

(8)

where a is the size of the aperture along the direction of
wave propagation and b is the size of the aperture in the
transverse direction.

From Eq. (8), it follows that the maximal aperture
immunity occurs for coska = 1, i.e., for ka = 2πn (n =
1, 2, 3, …). This condition corresponds to the situation
when the size of the aperture along the direction of
wave propagation measures an even number of half-
wavelengths.

In this case, the contributions of the positive and
negative half-waves to the output signal of the antenna
are mutually canceled and we obtain |Pa|2  0 and
χ  ∞. The only obstacle to increasing the quantity χ
is the scatter in amplitudes and phases of transducers
[5], which limits the quantity χ by a value of 30 dB for
actual apertures.

The minimal value of the quantity χ occurs for
coska = –1, i.e., for ka = π(2n + 1) (n = 1, 2, 3…). In

a f x–( ),exp

1
2π
------

χ
PNr

2

Pa
2Ω

---------------,=

χmax
πa

b 1 ka( )cos–[ ]
------------------------------------,=
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this case, the size of the aperture along the direction of
wave propagation measures an odd number of half-
wavelengths and the antenna output signal is formed by
a half-wave remaining after the cancellation of other
half-waves. Then, we have

(9)

For a = b, we have χmin = π/2 (about 2 dB).

Figures 4 and 5 show the quantity χ calculated for
the aperture with a = b = 4 m; different curves corre-
spond to the plane wave, the spherical wave with n = 1,
and the quasi-spherical wave with n = 2 propagating
along the aperture.

As may be seen, in the case n = 1, the maximal noise
immunity is between 20 and 30 dB even for a source
located far from the antenna (L/a ~ 5); i.e., the maximal
noise immunity is fairly strongly limited by the incom-
plete cancellation of the positive and negative half-
waves because of the spherical divergence of the wave
front.

On the other hand, the minimal noise immunity
increases as the source approaches the aperture (L/a =
1). This occurs because, in contrast to the cases of the
plane wave and a distant source (L/a = 5), the positive
and negative half-waves are partially canceled along
the y axis (along the direction perpendicular to the
direction of the wave propagation) in the process of the
formation of the antenna output signal.

The amplitude of the quasi-spherical wave (n = 2)
decays more rapidly with distance between its front and
the source as compared to the spherical wave. For this
reason, both maximal and minimal noise immunity
decrease more substantially, because the positive and
negative half-waves are canceled to a lesser extent over
the aperture surface, especially when the source is
located not far from the aperture.

Now, we consider the noise immunity χ calculated
for the second type of inhomogeneous field formed by

χmin
πa
2b
------.=

y

z

xa

–b/2

+b/2

0

Vibration energy flux

–z0

Fig. 3. Reference system for an aperture under the effect of
the nonwave field of bending waves in the plate. The dis-
tance between the aperture and plate planes is z0.
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Fig. 4. Noise immunity of the aperture under an incident spherical wave (n = 1).
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Fig. 5. Noise immunity of the aperture under an incident quasi-spherical wave (n = 2).
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Fig. 6. Noise immunity of the aperture under the effect of the acoustic field of the plate with a stiffening rib.
the plate with a stiffening rib driven by the field of inci-
dent bending waves.

Figure 6 shows these results for the aperture with
a = b = 4 m for different distances between the aperture
center and the rib and the distance between the aperture
plane and the plate plane z = 1 m. The critical frequency
of the plate is fcr = 6000 Hz; the impedances of the rib
relative to the transverse force and the bending momen-
tum are 1000, which means that the rib is relatively
massive; and the coefficients are b = 0.13 and χ = 1. As
may be seen from Fig. 6, the maximal noise immunity
of the antenna occurs for relatively large distances
between the rib and the aperture.

For the rib located near the boundary of the aperture
(L/a = 0.5) and, especially, when it is opposite the aper-
ture center (L/a = 0), the noise immunity of the aperture
rapidly decreases, because the negative and positive
half-waves are incompletely canceled over the aperture
surface due to the divergence of the wave front from the
point where the rib is attached to the plate and due to
the directional property of this radiation. The swing of
oscillations of the quantity χ also decreases as the rib
approaches the aperture center.

For the third type of inhomogeneous field, the quan-
tity χ was calculated for the plate with fcr = 6000 Hz,
USTICAL PHYSICS      Vol. 48      No. 4      2002
b = 0.13, and the distance between the aperture plane
and the plate plane z0 = 0.5 m. The size of the aperture
was the same as in the previous cases, a = b = 4 m. Con-
sidering a homogeneous field of bending waves in the
limit kq1a, kq1b @1, we obtain an approximate expres-
sion for the minimal values of χ:

(10)

From Eq. (10), it follows that the higher the frequency
(q1 decreases), the lower the minimal noise immunity,
because the wavelength of bending waves decreases at
higher frequencies and the cancellation conditions
worsen.

This result is shown in Fig. 7, displaying the curves
for the homogeneous field (the vibration W is not
damped as the vibration energy propagates from the
source along the structure) and the inhomogeneous
field (the vibration W is damped; in the calculations, we
used α f = 0.174(f/1000)1/2, where f is the frequency).

As can be seen, the noise immunity noticeably
decreases in the case of the inhomogeneous field and
the swing of oscillations χ also considerably decreases.

Thus, from the investigation described above, it fol-
lows that inhomogeneous fields acting on continuous

χmin
π
4
---

kq1
3S

a b+( )
-----------------.=
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Fig. 7. Noise immunity of the aperture under the effect of the nonwave field of bending waves in the plate.
apertures considerably affect their noise immunity in
comparison with the case of homogeneous fields and
this effect should be taken into account in estimating
the efficiency of such apertures.
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Abstract—For practical-purpose studies in underwater acoustics, a new method is proposed to determine
the bottom reflection coefficient on the basis of multiple bottom–surface reflections. The method allows one
to obtain the angular dependence of the bottom reflection coefficient at grazing angles from several degrees
to several tens of degrees in the audio and infrasonic frequency bands. The sound field structure is studied in
deep-water regions of the Black (2000 m) and Arabian (4000 m) seas at frequencies within 10–400 Hz. For
the regions under investigation, the frequency-angular dependence of the reflection coefficient is obtained
with the use of the proposed method. The data for the Black Sea are compared with those provided by the
conventional method based on the use of single and double bottom and bottom–surface reflections. Experi-
mental data on the values and variations of the bottom reflection coefficient are presented for different deep-
water and shallow-water regions of the World Ocean. The presence of shear waves in the bottom sediments
is revealed, and the effect of these waves on the frequency-angular dependence of the reflection coefficient
is demonstrated. © 2002 MAIK “Nauka/Interperiodica”.
To predict and calculate underwater sound fields at
long ranges, it is necessary to know the bottom reflec-
tivity at low audio and infrasonic frequencies for small
grazing angles. The conventional technique used for
measuring the bottom reflection coefficient is mainly
suitable for short distances and, therefore, cannot be
applied in long-range studies. The well-known modifi-
cations of the conventional technique, which are the
only ones that have been put to practice, are based on
using single bottom or double bottom–surface reflec-
tions [1–3]. These modifications allow one to perform
the measurements and obtain the data for a limited
range of grazing angles (higher than 10°–15°), mainly
at frequencies of several kilohertz. With the conven-
tional technique, due to its technical restrictions, low-
frequency and small-angle measurements cannot be
performed. Here, on the basis of a large body of exper-
imental data obtained by the author in both shallow-
and deep-water regions of the World Ocean, a new
method is proposed for studying the bottom reflection
coefficient on the basis of multiple bottom–surface
reflections. This method allows one to estimate the
reflection coefficient at low audio and infrasonic fre-
quencies and at grazing angles from 1°–2° to 30°–40°.
The proposed method provides a much higher accuracy
of measurements than the conventional one and yields
reliable (averaged over the path and the number of
reflections) data on the bottom reflectivity in situations
that are close to those of practice. In addition, the com-
binations of frequencies and angles studied here are not
considered in the known publications but are the most
1063-7710/02/4804- $22.00 © 20473
important for computing long-range sound propagation
and evaluating the performance of long-range underwa-
ter acoustic systems. The proposed method can be mod-
ified for both deep- and shallow-water applications.
With this method, underwater explosions are the most
advantageous as broadband sound sources.

Numerous experiments on studying the sound fields in
deep- and shallow-water regions of the ocean show that
the field structure involves signals that are reflected by the
surface and bottom from 2–3 to 30–60 times, this number
depending on the specific region, range, positions of the
source and receiver, sound frequency, parameters of the
sediments, relief, and structure of the bottom. A weak
reflectivity is often characteristic of offcoast deep-
water basins with porous silt sediments or of underwa-
ter crests and faults with an extremely rough relief.
Such ocean regions are the northern and central parts of
the Pacific Ocean, the Philippine Sea, the central part of
the Atlantic Ocean (including the regions of Cape Verde
and the Canary Islands), the Central Atlantic Range, the
abyssal areas of central and southern regions of the
Indian Ocean, and other deep-water regions. A high
bottom reflectivity is typical of coastal regions with
thick, high-density bottom layers and a flat bottom pro-
file. The latter type of regions is represented by ample
deep-water areas of the Arabian Sea, the Bay of Bengal
in the Indian Ocean, the Norwegian Sea, certain regions
of the Mediterranean and Black seas, and some ice-cov-
ered areas of the Arctic Ocean. The bottom reflection
coefficient ranges from 0.1–0.2 (the Canary Basin and
the central regions of the Indian and Pacific oceans) to
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Dependence of amplitude A on time t for the sound field generated by an explosive sound source in the Black Sea, at a dis-
tance of 140 km, with a sea depth of 2000 m. The frequencies are 10–128 Hz. The source and receiver depths are 35 and 60 m,
respectively. For 32 Hz, the following features are indicated: (0) the quartet of the shock-wave signals; (1) the signal quartet gener-
ated by the first gas-bubble oscillation; (2) the quartet of the second oscillation; and (3) the quartet of the third oscillation. The signal
amplitudes are plotted on a linear scale.
0.95–0.98 (the western regions of the Black Sea and the
northern regions of the Indian Ocean). In shallow-water
sea and ocean regions, the range of the reflection coef-
ficient is even broader. For example, in the 40-m-thick
water layer of the South China Sea with a rocky bottom,
at a distance of 150 km, explosion-generated signals
were received whose amplitudes were 30 dB above the
interfering noise at the frequencies 10–200 Hz. The
equivalent number of bottom and surface reflections
was 1500 at the optimal frequency (125 Hz). In this
case, the effective reflection coefficient is 0.9970 to
0.9976, or even 0.9980 if one takes into account the
losses caused by reflections from the water–air bound-
ary. To illustrate the aforementioned facts, let us con-
sider some typical structures of the sound field which
were obtained in different regions of the World Ocean
and included the components refracted in water and the
bottom–surface reflections. To this end, we chose two
of the aforementioned deep-water regions that differ in
their characteristics of the water medium and in the
parameters of the bottom sediments. These two regions
are the northwestern part of the deep-water basin of the
Black Sea and the deep-water plateau of the Arabian
Sea in the Indian Ocean.

Figure 1 illustrates the space–time and frequency–
power structures of the sound field generated by an
explosive sound source in the deep-water basin of the
Black Sea with a depth of 2000 m, at a distance of
140 km. The sound field is formed by the refraction
components and bottom–surface reflections. The sig-
nal records are shown on a linear scale for 1/3-octave
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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frequency bands. The propagation path 200 km in
length passed 100–300 km southeast of the Crimea.
The sound speed profile is shown in Fig. 2a. The depth
of explosion was 35 m, that of reception was 60 m. The
explosive charge was 25 kg in mass. The frequency
band of efficient radiation begins from 2–3 Hz. The fre-
quency band under study was 5–300 Hz.

As the plots indicate, up to 20–25 unresolved signal
quartets of bottom–surface reflections, along with the
refraction components, are present in the sound field
structure at frequencies of 10–25 Hz. As the frequency
grows, the number of quartets sharply decreases, and, at
a frequency of 100 Hz, there are no bottom reflections
in the field structure. At this frequency, the sound field
is totally formed by the “water” components refracted
in deep layers of the sound channel and reflected by the
surface. The frequency band within which the rays
freely penetrate through the discontinuity layer to the
surface is 1.8 to 800 Hz. At low frequencies, each group
of bottom–surface reflections consists of 12–16 compo-
nents that are produced by the signal quartets of the
shock wave and two to three oscillations of the gas bub-
ble. A frequency of 32 Hz is most advantageous to
detect the quartets of bottom reflections produced by
the shock wave (which are not time-resolved) and the
signals of three gas-bubble oscillations. At this fre-
quency, one can also determine the parameters of the
signals: their time resolution, relative amplitudes, and
periods of oscillations.

Because of the extremely strong frequency depen-
dence of bottom reflectivity, the total duration of the
refracted and bottom-reflected signals is 15–17 s at fre-
quencies of 10–25 Hz, while it is as small as 1 s at 100 Hz.
As the frequency decreases, the duration of the
refracted components themselves drops from its maxi-
mal value (1.1 s) at high frequencies to nearly zero at
frequency of 1.8 Hz, the latter being the critical fre-
quency of the waveguide, which determines the filter-
ing properties of the sound channel. At frequencies of
10, 16, and 32 Hz, the refracted components are pro-
tracted to 280, 480, and 610 ms, respectively. For the
bottom reflections, these values are 13–17 s; i.e., the
bottom-reflected components are 30 to 50 times longer
(and more intense) than the refracted ones.

The level ratios in the shock wave and three initial
gas-bubble oscillations are 8, 14, and 20 dB at 100 Hz,
and 1, 4, and 9 dB at 32 Hz. In the sets of bottom reflec-
tions, pronounced maxima and minima are observed
that do not correlate in frequencies and grazing angles
and can be attributed to the bottom stratification and to
the propagation of elastic waves in the sediments. In
addition, at frequencies of 10 and 16 Hz, one can notice
a dependence of the level of the field components on
their arrival times, which is not evident at first glance.
In this case, the component amplitudes do not decrease
in time when the grazing angle and number of reflec-
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tions increase. In contrast, they increase to reach their
maxima at grazing angles of 15°–24°. At frequencies of
10 and 16 Hz, the interference maxima of bottom
reflections are higher than the refracted components:
they reach 4–5 and 6–9 dB, respectively. At grazing
angles of 24°–30°, the amplitudes of bottom reflections
begin to drop steeply: for instance, at 16 Hz, they lose
4–6 dB per consequent reflection, or 0.17–0.25 dB per
bounce. As the frequency grows, the starting point of
the drop and, hence, that of narrowing of the angle
range of power-determining components smoothly
shifts towards lower grazing angles. The position of the
starting point is governed by the angle of total internal
reflection at each frequency and by the parameters of
the bottom layers that are responsible for the reflection
at this frequency. The corresponding near-bottom graz-
ing angles are 24°–25° at frequencies of 5–25 Hz and
2°–6° at higher frequencies. The sound speed changes
from 1506–1507 m/s in the upper bottom layer to
1660 m/s in deeper layers, the sound speed in water
being 1505 m/s. The above considerations testify to a
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Fig. 3. Same as in Fig. 1 for the Arabian Sea, at a distance of 920 km, with a sea depth of 3800–4500 m. The frequencies are 100
and 400 Hz. The source depth is 600 m, and the receiver depth is 300 m. The signal amplitudes are plotted on a logarithmic scale.
very strong frequency-angular dependence of the bot-
tom reflection coefficient in the ocean region at hand
and to a gradient-type dependence of the physical
parameters of upper bottom layers on the depth. Hence,
in modeling the waveguide to compute the sound fields
for a broad frequency band, the parameters of the sound
channel (sound speed, bottom density, attenuation coef-
ficient, and sound speed profile if ray-approximation
calculations are to be performed) should be specified
individually for each frequency.

Figure 3 shows the sound field structure in the Ara-
bian Sea for a distance of 920 km from the source, at
frequencies of 100 and 400 Hz. The ocean depth is
3800–4500 m. The sound speed profiles on the
1000-km path are shown in Fig. 2b. The depth of explo-
sions (with a charge mass of 25 kg) is 600 m, the recep-
tion depth is 300 m, and the depth of the channel axis is
1700 m. The sound frequencies that are efficiently gen-
erated by the explosion start from 20–25 Hz. The signal
records are presented on a logarithmic scale, with a
3-mm/s tape speed of a paper-tape recorder. At both fre-
quencies, the systems of the refracted and bottom–sur-
face-reflected signals are well pronounced. The weakly
time-resolved arrivals (signal quartets) of 2-s duration,
which are first to arrive, are the signals that are refracted
in the upper layers of the waveguide and reflected by
the bottom, along with purely refracted components
propagating in the channel without interacting with the
bottom and the surface. The water-path quartets in the
first signal group are the last two arrivals with the max-
imal amplitudes. With the conditions at hand, the mean
horizontal velocities of the sound waves that are bot-
tom-reflected at low grazing angles are higher than
those of the purely refracted components. As a result,
the bottom-reflected–refracted components are first to
arrive. Naturally, their levels are lower than those of the
water-path components and tend to zero (in accordance
with the sharp decrease in the focusing factor) as the
grazing angles approach zero. All subsequent arrivals
are combined surface–bottom reflections. Their total
duration is 17 s at frequency of 400 Hz, and up to 50 s
at 100 Hz. The comparison of the frequency–power
sound field structures presented in Figs. 1 and 3 shows
that, at distance of 920 km in the Arabian Sea, the bot-
tom-reflected signals with 25–30 reflections from the
boundaries exist at both frequencies, 100 and 400 Hz,
while there is no bottom-reflected component at the
140-km distance in the Black Sea. The amplitudes of
the bottom reflections are rather high: they are by as lit-
tle as 8–20 dB lower than those of the refracted signals.
Detailed analysis of the shape of individual compo-
nents shows that, with a higher number of reflections
and, hence, higher grazing angles, the time resolution
of the sound field components is better, and one can
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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Fig. 4. Same as in Fig. 1 for a near-field zone in the deep-water (5000 m) Canary Basin of the Atlantic Ocean, at a frequency of
3 kHz (the speed of the paper tape is 16.8 mm/s). The distances between the source and receiver are (a–c) 4 and (d) 20 km. The
source depths are (a, b) 150 and (d) 300 m. The receiver depths are (a) 10 and (b–d) 90 m.
detect separate arrivals in the quartets. In addition, the
envelope of the signal system at 100 Hz exhibits a num-
ber of amplitude maxima and minima, with level differ-
ences of 10–20 dB, which can be related to the angular
dependence of the reflection coefficient and are gov-
erned by the bottom stratification and shear waves in
the sediments. In the maxima, the amplitudes of the
bottom reflections are comparable with the amplitudes
of the refracted sound waves. As the number of bottom
reflections and the related grazing angles increase, the
attenuation at 400 Hz also increases and becomes notice-
ably higher than that at 100 Hz: it is equal to 2–4 dB per
bounce.

To estimate the performance and efficiency of the
conventional methods of determining the frequency-
angular dependence of the bottom reflection coefficient
from single (double) reflections, let us consider the
sound field structure for typical (but most favorable in
the sense of angular resolution) deep-ocean situations.
Figure 4 shows the signal records obtained at a fre-
quency of 3 kHz, at distances of 4–20 km (the internal
shadow zone), in the Canary Basin of the Atlantic
Ocean. The ocean depth was 5000 m. The transmission
depths were 150 and 300 m, the reception depths were
10 and 90 m. In the figure, additional gain values are
shown relative to the forerunner level, which were
applied to the bottom–surface reflections. At all dis-
tances, there are isolated signals, which are the first to
arrive, and signal quartets of single, double, or triple
bottom and bottom–surface reflections. The single
arrivals are the diffracted field formed at short distances
from the source due to the initial surface reflections of
the direct signal. The surface-scattered part of the
acoustic energy is captured by the surface sound chan-
nel and propagates in it up to long distances. Subse-
quently, as these components propagate and undergo
secondary reflections by the wavy surface (with sec-
ondary scattering), they penetrate under the discontinu-
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
ity layer and constitute the forerunners in the shadow
zone. Their amplitudes are strongly decreased and lie
much lower than the spherical spread curve. The exist-
ence of these components cannot be explained by the
classical theory of sound propagation in stratified
waveguides and, of course, is not taken into account in
the sound field calculations.

With explosion depths of 150 and 300 m and a
reception depth of 90 m, the bottom–surface reflections
are well resolved in all initial quartets. However, at dis-
tances greater than 20–30 km, the resolution of the
components in the initial and subsequent quartets fails.
With a reception depth of 10 m (even at a frequency of
3 kHz), there is no component resolution in the signal
pairs. At the chosen distances and positions of the
source and the receiver, the delay times are 5–500 ms, and
the relative variations of the amplitudes reach 4–6 dB.
The delay time of single reflections is 4 s at a distance
of 4 km, with grazing angles of 40°. At a distance of
20 km, the initial quartet is delayed by 1.6 s. The differ-
ences in the arrival times are 50 ms within the pairs and
150 ms between the pairs. The grazing angles corre-
sponding to the three quartets are 26°, 45°, and 56°. As
the distance increases and becomes closer to the first
convergence zone (65–75 km), the grazing angles
decrease and tend to zero. At the same time, the delay
times and amplitudes in the signal quartets also tend to
zero. In such situations, the time resolution of individ-
ual components and the solution of any inverse problem
are improbable, if feasible at all. Hence, by using the
method of single bottom reflections (even with large
depths and high frequencies), one fails to approach low
grazing angles in determining the bottom reflection
coefficient. In subsequent reflections, the conditions of
resolving the components in the quartets theoretically
become better but, in practice, their resolution is hardly
feasible, even with a smooth bottom profile and a
calm sea.



 

478

        

STUDENICHNIK

                                            
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 5 10 15 20 25 30 35
α, deg

K

1

2

3

4

5

0 5 10 15 20 25 30 35

6

7 8

Fig. 5. Frequency-angular dependences of the averaged bottom reflection coefficients for the Black Sea. The dependences are
obtained with the method of multiple bottom–surface reflections. Curves 1–8 correspond to the frequencies 10, 15, 25, 32, 40, 64,
100, and 128 Hz, respectively.
The aforementioned examples demonstrate the
angular resolution that can be attained with the conven-
tional method of measuring the bottom reflection coef-
ficient by single reflections. When the sea depth is less,
the angular resolution of the field components is much
worse, and the minimal grazing angles that can be stud-
ied increase. In practice, the only way to settle the prob-
lem is to use the amplitudes of multiple bottom–surface
reflections, which are obtained by averaging the inter-
ference oscillations over the frequency of the summed
quartets within the filtering band.

The procedure of determining the reflection coeffi-
cient consists in that, with the known waveguide
parameters (sea depth, sound speed profile, and a pri-
ori information on the bottom characteristics) and the
known relative source and receiver positions, one cal-
culates the time, angular, and power characteristics of
the sound field for the interval of grazing angles that
is sufficient to identify the field components and to
find the frequency-angular dependence of the bottom
reflectivity. By comparing the experimental and the
calculated component parameters at different points
of the path and by determining the number of reflec-
tions and the corresponding grazing angles, the signal
level is determined (from both experimental and cal-
culated data), to which the levels of all components
are to be normalized, and the loss is found for each
component in view of the known number of bottom–
surface reflections. To exclude additional errors and to
obtain the most reliable information on the bottom
reflectivity, it is advantageous to perform the experi-
ment at calm sea. If the surface is noticeably wavy,
losses in surface reflections at high frequencies can be
comparable with losses in bottom reflections, or even
higher than those. Upon performing the aforemen-
tioned procedures and identifying the components, the
reflection coefficient itself is determined from the fol-
lowing relation:

where f is the frequency, α is the grazing angle, n is
the number of reflections of the chosen signal, B is
the total signal loss in the nth reflection (in view of
the normalized signal levels), R0 is the horizontal dis-
tance, Rn is the distance traveled by the signal at a
grazing angle α for the nth reflection, and A is the
focusing factor for the nth component.

The proposed method allows one to perform the
measurements in wide bands of frequencies and graz-
ing angles with a high measurement accuracy.

Figure 5 shows the frequency dependences of the
bottom reflection coefficient, which were obtained in
the Black Sea at frequencies of 10–128 Hz for the graz-
ing angles from zero to 40°–50°. To obtain these
curves, we used records of the signals received at dis-
tances of 5 to 180 km. A well-pronounced frequency
dependence of the reflection coefficient can be noticed.
At low frequencies (up to 30–40 Hz), the reflection
coefficient monotonically decreases from unity to
0.20–0.35 at angles of 20°–30°, such behavior being
typical of a waterlike half-space with losses (in the
absence of shear waves). As the frequency increases,
the angles of total internal reflection change from 30°

K f α n, ,( ) B Rn/R0( )A[ ]= 1/n,
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(which corresponds to a sound speed of 1730 m/s in the
sediments) to 8° at frequencies of 60–128 Hz (which
corresponds to the 1520-m/s sound speed in the upper
bottom layer and the 1505-m/s sound speed in water).
At frequencies higher than 60 Hz, a minimum at an
angle of 8°−15° occurs in the angular dependence of
the reflection coefficient. This minimum can be
related to the stratification of the upper sediment
layer, such stratification being significant at the fre-
quencies at hand, and to the propagation of shear
waves (with velocities of 600–700 m/s) in the consol-
idated bottom layers, as well as to high losses of lon-
gitudinal and shear waves.

Figure 6 serves to compare the data obtained by the
proposed method with the reflection coefficient mea-
sured by using the conventional method, along with the
associated measuring errors. Here, the data of exper-
imenting in the Black Sea are presented for single and
double bottom–surface reflections at 5, 10, 32, and
100 Hz. The data agree only at frequencies of 30 Hz
and higher. At frequencies of 5–25 Hz, particularly, for
grazing angles of 13°–27°, the difference between the
two sets of data is substantial. Low values of the reflec-
tion coefficient and values that exceed unity are the
consequences of inevitable errors and the phenomenon
of sound focusing in the water layer and at surface
reflections, along with sound refraction in the bulk of
sediments. The inaccuracy in the amplitude measure-
ments, which accompany the conventional methods,
directly appear in the value of the reflection coefficient.
With the method of multiple reflections, such an inac-
curacy is much lower or fully eliminated because of the
natural averaging of the absolute values of the errors,
which, in addition, are normalized to the number of
reflections.

Figure 7 shows the angular dependence of the bot-
tom reflection coefficient, which was obtained in the
Arabian Sea at frequencies of 100 and 400 Hz for the
grazing angles from zero to 20°–25°. The records of the
signals received at distances of 300–1000 km were
used. Similarly to the Black Sea, a minimum exists at a
grazing angle of 5°–15° that is determined by shear
waves in the sediments. Judging from the levels of the
dips and from the absolute values of the reflection coef-
ficient, the losses of both longitudinal and shear waves
are lower in this region. At low frequencies, the velocity
of longitudinal waves is 1730 m/s in the Arabian Sea
(just as in the Black Sea), the sound speed in water
being 1530 m/s. Thus, for these two regions, the differ-
ence in the main bottom parameters consists in nothing
but the values of losses for longitudinal and shear
waves at the frequencies at hand.

The results presented in this paper show how widely
different the properties of bottom sediments and, hence,
the characteristics of sound fields in different regions of
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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the World Ocean can be. The aforementioned consider-
ations also demonstrate the importance of choosing and
developing the adequate model for the bottom and the
entire waveguide to explain the experimental data in a
broad frequency band, to predict the sound field charac-
teristics, and to evaluate the performance of various
underwater acoustic systems in different ocean regions.
In developing the waveguide model, especially in mod-
eling the bottom, one should take into account the bot-
tom stratification, the existence of longitudinal and
shear waves with their specific attenuation, the gradi-
ents of the sound speed and density in the layers, and,
above all, the frequency dependences of the sound
speed and attenuation coefficient in the sediments.
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Abstract—The acoustic field of a spherical source in an ideal waveguide is considered with allowance for the
diffraction by the source. The consideration uses the previously obtained results on the diffraction by a spherical
source in a halfspace with ideal boundaries. The resultant field is shown to be representable as an infinite sum
of the fields of some equivalent sources. The errors that appear when the number of these sources is limited are
estimated. The field produced by the sphere in an ideal waveguide is calculated with and without allowance
made for the scattering. © 2002 MAIK “Nauka/Interperiodica”.
Scattering by inhomogeneous inclusions in bounded
waveguides has been the subject of many publications.
Here, we only mention the works cited in the recent
paper [1], on the results of which this study is based,
and also two other papers [2, 3]: one of them [2] solves
the problem of scattering of the field produced by a
point source from a transparent layered cylinder
(island) in a layered waveguide with ideal boundaries,
and the other [3] addresses the sound scattering by a
rigid spheroid placed in a layered waveguide under the
assumption that the boundaries and inhomogeneities of
the medium do not affect the amplitude of the scattered
field. The consideration presented below does not use
the assumption about the absence of the effect of the
boundaries on the scattering amplitude.

An approach to the solution of the problems of the
sound diffraction by inhomogeneities located in an
ideal halfspace with a plane boundary was considered
in the previous publication [1]. Expressions for the
amplitude of the field scattered by a perfectly soft
sphere in the particular case of a perfectly rigid or soft
boundary were obtained within the low-frequency
approximation, in particular, when the sphere itself was
a source of the primary field. Based on the results
obtained in [1], this paper studies the acoustic field pro-
duced by such a sphere in an ideal acoustic waveguide
with a perfectly soft upper boundary and perfectly rigid
lower boundary.

An exact solution to this problem can be obtained by
a technique similar to that applied in [1] to the half-
space: it is necessary to sum up all plane waves multi-
ply reflected from the boundaries and scattered from
the sphere. However, below, we will obtain a solution in
a different way.

As applied to the case when the scattering occurs
from the primary source itself, the results obtained in
[1] can be interpreted as follows. The sound scattering
1063-7710/02/4804- $22.00 © 20481
from the source due to the halfspace boundary is equiv-
alent to the situation with no scattering but with another
source whose shape and position coincide with those of
the original source and whose field exactly reproduces
the scattered field outside the original source. The real
source, which creates the primary and scattered fields,
is thus replaced by two sources that cause no scattering,
but the field they produce outside the original source
exactly coincides with the real field. We will character-
ize these sources by the radiation pattern D0(ϑ, ϕ) in
free space (the primary source) and by the scattering
pattern D1(ϑ , ϕ) (the fictitious source of the scattered
field). Then, the total field outside the source–scatterer
is completely described by an equivalent source with
the directional pattern D(ϑ , ϕ) = D0(ϑ , ϕ) + D1(ϑ , ϕ).
Note that D1(ϑ, ϕ) depends not only on frequency, but
also on the source depth z0 and on the conditions at the
halfspace boundary.

Let us place the primary source into a homogeneous
layer with a perfectly soft upper boundary and perfectly
rigid lower boundary. The effect of one boundary, say,
of the upper one, is equivalent to that of a source that pro-

duces the scattered waves with the pattern (ϑ, ϕ).
Similarly, the lower boundary also produces an equiva-
lent source of the scattered waves with the pattern

(ϑ , ϕ), which was also obtained in [1]. Here and
below, subscripts 0 and 1 indicate that the function D
describes the effect of the surface (0) or bottom (1). The
field in the waveguide will be described by a resultant

source with the pattern D(ϑ, ϕ) = D0(ϑ, ϕ) + (ϑ, ϕ) +

(ϑ , ϕ) = D0 + D1. The process, however, must be

iterated. The sources with the patterns  and 
should be considered themselves as primary sources,
whose fields will also be scattered from the original
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(real) source. The source  will induce the sources

 and , while  will create sources  and

. The superscript (in this case, 2) is the number of
times the boundaries participate in forming a particular

scattering pattern. In turn, , , , and 

will create the sources  and ,  and ,

 and , and  and , and so on, the
number of sources increasing at each iteration. The pat-
tern of the resultant source will thus be represented by
the series (the arguments are omitted)

(1)

As follows from physical considerations, this series
must converge. It is only left to determine its conver-
gence rate in each particular case, after which it can be
represented as a sum of a finite number of terms. Sub-
sequently, the field in the waveguide can be evaluated
with allowance for the scattering by the technique
described in [4, 5] with the function D(ϑ , ϕ) of Eq. (1)
as the source pattern. In view of the axial symmetry of
the problem, the field produced by the directional
source in the ideal waveguide under study can be repre-
sented as [4, 5]

(2)

Here, H is the depth of the waveguide; ξn are the
eigenvalues of the transverse boundary-value problem;

θn =  are the characteristic inci-

dence angles of the normal waves; and D1(θ) = D(π – θ)
and D2(θ) = D(θ), θ ∈ [0, π/2 – j∞), where D(θ) is
given by Eq. (1). Note that the domain of the function
D(θ) is θ ∈ [0, π/2 – j∞) and θ ∈ (π/2 + j∞, π], where z
and z0 are the depths of the receiver and transmitter
respectively [2].
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Thus, let a spherical source of radius R0 with the
radiation pattern D0 ≡ 1 be placed at a depth of z0 in an
ideal waveguide of height H. Then, according to [1], we
have

(3)

(4)

Here, the constants are defined as

(5)

(6)

where α = j2k(H – z0), and

(7)

(8)

and α = j2kz0. The constants A and B are determined
by properties of the sphere as a scatterer. Then, the total

pattern  +  has the form

(9)

As follows from Eq. (9), the pattern D1 of the sec-
ondary-wave source is the sum of a constant and a
cosine term with the amplitude a2 + c2. To find the
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Fig. 1. Dependences P0(r) and Ps(r) for F = 25 Hz and R0 = 8 m.
source pattern D2 =  +  +  + , it is neces-
sary to substitute the components of Eq. (9) for unity on
the right-hand side of integral equation (26) of the cited

paper [1]. For example, to find , it is necessary to
substitute –c1 – c2cos(θ) on the right-hand side of this

equation. The pattern  will have the same structure

 = –  – cos(θ), the order of smallness of these

constants however becoming higher:  = O(|ci|2). The
situation with the remaining components of D2 is simi-
lar. Note that the analysis of the decay of coefficients in
Eqs. (5)–(8) with increasing distance from the reflect-
ing boundary shows that their asymptotic behavior is
the same. The structure of the component patterns of D3

is the same: a sum of a constant and a product of
another constant by the function cos(θ); however, the
order of smallness of these constants becomes higher
by one, and so on. For example, the order of smallness
of the coefficients of the component patterns of Dn is
equal to n with respect to the initial coefficients ai and
ci , i = 1, 2. Thus, series (1) is majorized by the series
D = 1 + q + q2 + q3 + …, where q = 4|max(ai, ci)| and ai

and ci are the same as in Eq. (9). Hence, if series (1) is
truncated to a finite sum D ≈ D0 + D1, where D0 = 1 and
D1 is given by Eq. (9), the error will be strictly less than
ε = q2/(1 – q). Then, if q is known and its value is admis-
sible, series (1) can be truncated to the finite sum D ≈
D0 + D1.

To analyze q, we calculated coefficients (5)–(8) as
functions of frequency, radius of the sphere, and dis-
tance between the boundary and the center of the sphere
(from Eqs. (5) and (6) for the rigid boundary and from
Eqs. (7) and (8) for the soft boundary). The results for
which q ≤ 0.4 (i.e., the coefficients ai and ci in Eq. (9)
are equal to or less than 0.1) are summarized in the
table.

D00
2

D0
2

D10
2

D11
2

D00
2

D00
2

D00
2

c1' c2'

ci'
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The table gives the distances between the boundary
and the center of the sphere; beyond them, all coeffi-
cients ai and ci are equal to or less than 0.1. The error in
calculating the pattern as D ≈ D0 + D1 will not exceed
26.6%.

We developed a program that calculates the acoustic
pressure as a function of the horizontal distance, PS(r),
from Eq. (2). Figures 1–6 show PS(r) calculated from
Eq. (2) with D1(θ) = 1 + (a1 – c1) – (a2 + c2)cosθ and
D2(θ) = 1 + (a1 – c1) + (a2 + c2)cosθ for various frequen-
cies F and sphere radii R0. For the sake of comparison,
these figures also show the function P0(r) that corre-
sponds to no scattering from the source, i.e., to the case
D1(θ) = D2(θ) = 1 [note that, in this case, the error in
calculating the pattern as D ≈ D0 is ε = q/(1 – q)]. All
plots are calculated for H = 100 m, z = 45 m, and z0 =
50 m. By comparing the functions plotted in each of
these figures, one can estimate the degree of the field
disturbance due to the scattering. The plots show that
the disturbance is usually smaller than expected,
because the quantity q is overestimated.

The technique proposed above can be used to obtain
formulas describing different scatterers and waveguides. 

It should also be noted that, when obtaining the
above results, it was significant that Eq. (2) could be

Table

F, Hz
R0, m         10 25 50 75 100

10 250 285 750 1000 2000

5 120 125 130 300 400

4 90 100 110 180 300

2.5 60 70 75 100 105

2 45 60 63 80 82

1 28 30 32 48 51
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Fig. 2. Dependences P0(r) and Ps(r) for F = 25 Hz and R0 = 10 m.
used to calculate the field produced by a source whose
pattern could be represented by Eq. (9) for angles θ
both greater and smaller than π/2. For example, expres-
sions for the field of an extended source, which were
obtained in [6] by the Green function method, would be
inapplicable in this case.

The results obtained above for a source that is a scat-
terer itself can easily be extended to a passive scatterer
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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Fig. 5. Dependences P0(r) and Ps(r) for F = 80 Hz and R0 = 4 m.
that does not produce the primary field. The calcula-
tions in this case are even simpler.
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Abstract—Modern language studies are characterized by a variety of forms, ways, and methods of their devel-
opment. In this connection, it is necessary to specify the problem of the development of their internal differen-
tiation and classification, which lead to the formation of specific areas knowledge. An example of such an area
is speechology—a field of science belonging to fundamental, theoretical, and applied linguistics. © 2002 MAIK
“Nauka/Interperiodica”.

The XI Session of the Russian Acoustical Society was held in Moscow on November 19–23, 2001. The scope
of the session covered a wide range of problems of modern acoustics, and the participants of the session included
acousticians from almost all regions of Russia. Considerable interest was aroused among the participants by the
section “Speech Acoustics and Acoustic Problems of Applied Linguistics.” The editorial board of Acoustical Phys-
ics decided to publish part of the papers presented at this section and devoted to the most topical problems of this
promising field of research. This issue contains three such papers, and other papers concerned with this subject
will appear in the following issues. They were not additionally refereed before publishing. 

XI Session of the Russian Acoustical Society
1 Intensification of the integration processes in sci-
ence characterizes one of the central features of the
modern scientific progress. Hence, the problem of the
synthesis of scientific knowledge and an interdiscipli-
nary interaction of sciences becomes of primary impor-
tance. The rise and development of speechology on the
basis of phonetics, phonology, physiology, psychology,
electronics, communication engineering, new informa-
tion technologies, etc., represents an example of an
interdisciplinarity exchange of scientific achievements
and an interconnected development of many scientific
directions.

Speechology, as the special area of linguistic knowl-
edge, has come into being fairly recently. An essential
contribution to the successful development of the
above-stated interdisciplinary field of knowledge was
made by various research groups working both in our
country and abroad.

Speechologists participate in solving problems that
are of direct economic and defensive importance [1].
The following problems are being developed by experts
in this field of knowledge: automatic recognition and
understanding of speech; artificial intelligence; effec-
tive dialogue in natural man–computer language; auto-

1 This paper was submitted by the author in English.
1063-7710/02/4804- $22.00 © 20486
matic control systems; analysis and synthesis of speech;
variance of human speech in the act of communication;
paralinguistic characteristics of speech; methods of
determining the quality of communication channels for
connected speech; methods of automatic quality con-
trol and transfer of speech through communication
channels; perception of acoustic and phonetic features
of speech elements in the presence of noise and distor-
tion in communication channels; interlanguage inter-
ference regarding sound and intonation structure;
cybernetic systems of speech dialogue; hardware–soft-
ware means for objectification of control in the process
of computer-assisted second language learning and the
detection of foreign language simulation; interaction of
verbal and nonverbal components in the act of commu-
nication; functional and system-typological research of
languages in Russia, the Commonwealth of Indepen-
dent States of the former USSR (CIS), and other coun-
tries; information retrieval systems; speaker identifica-
tion and verification of speaker systems and the emo-
tional status of speaker systems.

For the solution of the aforementioned problems, it
is necessary to use linguistic knowledge carrying the
necessary information on the object and environment
under investigation with reference to various aspects of
002 MAIK “Nauka/Interperiodica”
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science, industry, defense, protection of intellectual and
other property, security, etc.

In this connection, special importance is assumed by
applied linguistics engaged in the development of com-
puter systems functioning on the basis of natural lan-
guage: systems of automatic recognition and under-
standing of speech (both written and oral), natural lan-
guage interface systems, systems simulating natural
abilities of humans, linguistic components of expert
systems, lingware of information retrieval systems,
automated translation systems, automated lexico-
graphic systems, etc. [2, 3].

Man–machine communication by means of speech
is economical, effective, and convenient. Modern sys-
tems of speech recognition (including those for military
purposes) contain various language levels, each of them
carrying its functional load: acoustic, parametric, lexi-
cal, syntactic, semantic, and pragmatic levels. The pur-
pose of modern systems of speech recognition is to use
the maximal amount of nonacoustic information, espe-
cially information of higher (semantic and pragmatic)
levels.

Speech recognition based on the analysis of an
acoustic signal requires a detailed acoustic characteris-
tic of the signal. The identification of specific words
requires the allocation of additional phonetic sub-
classes inside the generalized classes, so that, in the
end, the hierarchy of phonetic classes has the form of a
binary tree of decisions. The procedure of constructing
an optimal tree of decisions made on the basis of a gen-
eralized classification is proposed.

At the first stage, the terminal chains, i.e., the mini-
mal phonetic classes necessary for the identification of
all words of the dictionary, are constructed. In choosing
the terminal chains, the following criteria are used: a set
of phonetic oppositions must correspond to the sim-
plest acoustic means; the result should be the minimal
number of phonetic oppositions.

At the second stage of the decision tree formation,
the integration of the two low-level classes (beginning
from the terminal classes) into one higher level class is
performed, and so on, up to the level of the generalized
classes.

The enhancement of the degree of speech recogni-
tion is achieved by two methods based on the following
procedures: (a) the development of a more perfect pho-
netic system consisting of contextual variants of pho-
nemes and probable contexts obtained as a result of rel-
evant classification and (b) the adaptation in relation to
the phonetic models of training, which uses maximal
general information.

The method using the contextual acoustic variants
of phonemes is based on the correction of the speech
realization of phonemes depending on the subsequent
vowel (or consonant), while the method of training by
means of maximal general information uses the lan-
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guage model of parts of speech and a multilevel strat-
egy of decoding. The application of each of these meth-
ods separately raises the efficiency of recognition in
comparison with the existing methods, and the combi-
nation of the two offered methods is characterized by
maximal efficiency.

Speech recognition using the dynamic transforma-
tion of phonemic patterns, which takes into account the
acoustic (phonetic) environment, is based on a method
developed with the use of the data on the variability of
acoustic realizations caused by the sound co-articula-
tion effect in speech flow. The method is intended for
recognition systems with a large dictionary and with
the use of phonemic patterns. The main principle
underlying the construction of this system is the
dynamic transformation of phonemic patterns depend-
ing on the acoustic–phonetic context of the coarticulat-
ing parameters.

In the development of automatic speech recognition
systems, the use of models based on Markov chains is
productive. The given model includes four basic com-
ponents: the extraction and the analysis of differential
features, acoustic–phonetic decoding, lexical analysis,
and syntactic analysis.

There are methods of recognition based on key
words. At each stage, the list of key words is defined.
Each word is represented by means of phonetic tran-
scription, which is either given directly or can be
received from grapheme transcription with the help of
a grapheme–phoneme transcriptor used in the process
of text–speech synthesis (TTS). The system correlates
each word in the list with part of a phonemic matrix,
and if the number of correlations is high enough, the
word is recognized. The task at the pragmatic level is
the recognition of one or several key words at each
stage of the dialogue.

There are a number of efficient dialogue systems
[4]. For example, the KEAL dialogue system is
intended for performing specific tasks (such as infor-
mation inquiry, order, or input). The mode of the dia-
logue is defined by a user question. Each functional
cycle of the system includes the input and reception of
an oral message, the formation of an answer, the perfor-
mance of actions determined by the answer, and the
transition to the following cycle.

The traditional version of this system consists of the
following modules: a phonetic analyzer, a phonetic
word detector, an acoustic word detector, a syntactic
analyzer, an interpreter of the analysis, a prosodic seg-
mentation program, a phonetic–spelling transcription
program, a speech generator, and a dialogue device.

The phonetic analyzer allows one to change from a
real speech signal to its phonetic representation. Each
segment extracted by the phonetic analyzer corre-
sponds to a set of ordered answers arranged in the order
of their decreasing probability. The set of answers is
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called the phonetic spectrum of a phrase. The phonetic
analysis is carried out step by step: at the first stage, the
coding of a sound signal in digital form is performed by
a vocoder. At the second stage, the segmentation of the
digital signal is performed, and at the last stage, pho-
nemes are identified. The central part of the system is
the dialogue device, which performs two functions:
first, it determines what types of phrases have the great-
est probability of being pronounced by the operator
according to the dialogue context and, second, it decides
what kind of communication the dialogue will compose
(information inquiry, answer to a question, etc.).

There also exists a multipurpose system of speech
recognition. This system can be easily adapted without
substantial modification to a variety of applications in
the field of man–computer dialogue. The transfer of
information in the given system can be divided into lev-
els as follows: (1) during the dialogue, a small database
allows one to carry out communications between mod-
els at the highest level; (2) the common analytical base
has a set of language constants which are used in the
recognition process. The prosodic analyzer, whose
functioning is based on the assumption about the signif-
icant modifications of the fundamental frequency, is of
special interest.

The systems most advanced and best suited to the
modern requirements on the automated recognition
systems are the DRAGON systems. For example, the
DRAGON DICTATE system recognizes discrete
speech utterances separated from each other by a pause.
In a dialogue with the DRAGON DICTATE, an inexpe-
rienced user pronounces 15 words per minute and an
experienced user, up to 60 words. The TANGORA sys-
tem (IBM) can be ascribed to the class of similar sys-
tems with a speech input. This system recognizes a dic-
tionary of 20000 words and word collocations pro-
nounced separately. The advantage of the given system
is speaker-independent recognition. The user adapta-
tion is realized within 20 min. The VIA VOICE system
(IBM) is a recent achievement [12]. The VIA VOICE
has the ability to learn 64000 to 260000 words and fits
any user. The technological development of the major-
ity of modern systems of speech synthesis is based on
one of three approaches:

(1) the synthesis consists in the reproduction of a
preliminarily coded speech wave;

(2) the voice tract is modeled, and this model is con-
trolled via parameters whose values are obtained on the
basis of the analysis of the input text;

(3) the linear predictive coding (LPC) method is
used, in which the control is performed by the prelimi-
narily obtained parameters that are not “evaluated”
from the input text and are segmented from the speech
wave.

The charges on synthesizer development depend on
the method used. In the case of a preliminarily coded
speech signal, each new utterance should be coded and
sent to the memory of the device. Hence, the cost of
synthesis directly depends on the cost of the page stored
in the memory device and the length of the text.

The cost of the synthesis based on the LPC method
depends on the same parameters, but, since in this case
the model is controlled and the speech does not directly
depend on the input text in each specific case, the cost
of memory is lower (up to two orders of magnitude).
The cost of the synthesis based on the control of certain
acoustic (or articulatory) parameters of speech practi-
cally does not depend on the length of the text and the
cost of memory.

The basic part of the charges falls onto those mod-
ules of the program which concern the rules and devia-
tions from the rules of spelling, the phonology, and the
phonetics of the language of the input text. For each
specific language, these modules should be created
anew.

The classical base of acoustic parameters is repre-
sented by the data received from the formant speech
analysis, including the information concerning the for-
mant frequencies, the frequency and amplitude of the
pulse voice generator, and the amplitude and frequency
of the noise generator. The complexity of the task can
not be simplified so as to use only the phonetic alphabet
(e.g., cannot be reduced to establishing a conformity
between spelling and phonetic transcription). It is nec-
essary to note that the existing alphabets are of insuffi-
ciently high qualitaty to provide a satisfactory synthe-
sis. Therefore, the development of additional criteria is
necessary in creating the rules for the letter–sound
transformation.

The development of software for the microproces-
sor controlling the synthesizer represents a three-step
process.

First, it is necessary to receive the description of the
pronunciation (segmental and suprasegmental informa-
tion) of the language under consideration.

Second, this description should be formulated as a
set of rules.

Third, these rules should be maximally economical.
The analysis of a speech signal on the basis of a lin-

ear prediction consists of the decomposition of its spec-
trum into two components: the smoothed spectrum rep-
resented as the model of a spectrum whose characteris-
tic contains only poles, and the spectrum of the function
of excitation containing the information on the predic-
tion error. In an ideal case, the order of the filter should
be chosen so that the signal of the prediction error rep-
resents an uncorrelated sequence in the case of nonvo-
calized sounds or a sequence of pulses following at reg-
ular intervals with the period of the fundamental tone
for vocalized sounds.

In some applications of a linear prediction, where a
detailed behavior of the spectrum of both vocalized and
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002



        

LINGUISTIC KNOWLEDGE AND NEW TECHNOLOGIES 489

  
nonvocalized sounds is of interest (in particular, in the
synthesis of speech), it is necessary to examine a range
of frequencies from 0 up to 10 kHz. To guarantee a high
degree of coordination of the smoothed spectrum, it is
necessary to choose a sampling frequency no lower
than 20 kHz and then to use an inverse filter whose
order is no less than 20.

Since, in practice, the exact spectral representation
of nonvocalized sounds does not require the large num-
ber of factors necessary for vocalized speech, it is expe-
dient to analyze separately the low-frequency and high-
frequency ranges with a smaller quantity of factors
allowing, nevertheless, an exact description of the spec-
trum.

To obtain good results with the help of a linear pre-
diction, it is important to take into account the analyzed
ratios and their dependence on the choice of the
method, the sampling frequency, the order of the
model, the type of the temporary window, and the pre-
emphasis of a signal.

The existing difference between natural and synthe-
sized speech obtained on the basis of the linear predic-
tion methods is partially determined by the limitations
of the model having only poles, which is most essential
for nasal sounds. Therefore, it is expedient to use the
polar model of a linear prediction including zeros into
it. In using the LPC method, all selected spectral
parameters of a speech signal are included in the values
of the coefficients evaluated automatically during the
analysis of speech. The advantages of using the LPC
method in the synthesis of speech are mainly related to
a more accessible and completely automated procedure
of analysis and, also, a less complex structure in com-
parison with other methods.

The application of the LPC-method with the inclu-
sion of formant parameters allows one to obtain better
(more naturally sounding) synthesized speech. The
application of the special program of coding the lin-
guistic units and characteristics on the basis of TMS in
combination with the LPC method allows one to gener-
ate a better speech.

Characterizing the role of linguistics in the develop-
ment of expert systems (ES), it is necessary to empha-
size that the basis of an expert system is formed by the
extensive stock of knowledge about a specific area.
Such an approach to designing systems on the basis of
the use of knowledge represents a revolutionary change
with consequences of a revolutionary nature, because
the traditional formula DATA + ALGORITHM 
PROGRAM is replaced with a new architecture relying
on the knowledge base and a “logical-conclusion
machine,” so that we now have KNOWLEDGE +
CONCLUSION  SYSTEM.

If, for first-generation ESs, it was important to obtain
plausible reasoning; today, the problem of the self-train-
ing of expert systems is urgent. Any ES should contain a
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knowledge base, a logical-conclusion machine, a lin-
guistics processor, and an explanation interface. The
knowledge base contains the facts, statements, and
rules. The facts represent the short-term information:
they can change, e.g., during a discourse. The rules rep-
resent more long-term information, i.e., how to derive
new facts or hypotheses from the known ones. The
knowledge base has a wide array of creative possibili-
ties, as it actively tries to fill in the missing information.

The linguistics processor performs the dialogue
interaction with the user (expert) in the language natu-
ral to him (natural language, professional language,
diagram language, tactile influence, etc.).

The purpose of the interaction component is as fol-
lows:

(a) to organize the user–expert system dialogue, i.e.,
to distribute the functions of the dialogue participants
during the cooperative performance of the task;

(b) to carry out the processing of a separate message
in view of the current condition of the dialogue, i.e., to
carry out the transformation of the message from the
natural language form to the form of internal represen-
tation or inverse transformation.

The importance of explanations in the ES is caused
by a number of factors. First, one can hardly expect that
users will know all of the opportunities and understand
all of the actions of the ES. Second, the importance is
caused by the fact that the ESs are intended for use in
illegibly formalized areas, i.e., for tasks having no algo-
rithmic solutions. Under the conditions of the absence
of a theory that could guarantee the accuracy of the
results, it is necessary to develop the means for giving
the users the opportunity to test the reliability of the
methods and the knowledge used by the ES for decision
making.

According to the general ES circuit, the following
knowledge is required for its proper functioning:

(1) the knowledge of the solution process for a given
task, i.e., the managing knowledge used by the inter-
preter;

(2) the knowledge of the language of the dialogue
and the method of organization of the dialogue that are
used by the linguistics processor;

(3) the knowledge of the method of representation
and updating of the knowledge used by the knowledge
acquisition component;

(4) the supporting structural and managing knowl-
edge used by the explanatory component.

The dependence of the knowledge structure on the
requirements of the user is represented as follows:

—What kind of task with what kind of data does the
user want to perform?

—What are the preferred ways and methods of task
performance?
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—What restrictions on the number of results and
methods for their acquisition should be imposed to
achieve the desired results?

—What language should be used and how should
the dialogue be organized?

—What degree of generality/specification of knowl-
edge about the problem area is accessible to the user?

—What are the purposes of the user?
The whole variety of models of the knowledge rep-

resentation can be divided into two types: logical and
heuristic. The basis of the logical models of knowledge
representation is the concept of a formal system. Exam-
ples of formal theories can be the calculations of pred-
icates and any specific system of productions. The use
of calculating predicates has become especially inten-
sive after the creation of powerful search procedures for
a conclusion: the method of resolutions and the inverse
method. These methods were enriched by heuristic pro-
cedures, which have considerably increased the effi-
ciency of acquiring a conclusion. The methods listed
above are systems of a deductive type, i.e., they use the
model of obtaining a conclusion from the given system
of premises by means of a fixed set of output rules.

The further development of predicate systems are
systems of an inductive type in which the output rules
are derived by the system on the basis of the processing
of a finite number of training examples.

In logical models of knowledge representation, the
relations existing between several units of knowledge
are expressed only by the means that are represented by
syntactic rules of the formal system used. Unlike for-
mal models, heuristic models have various means for
transmitting specific features of one or another problem
area. For this reason, heuristic models surpass the logi-
cal in both adequate representation of the problem area
and the efficiency of the output rules in use. In ESs, it is
possible to ascribe the network, frame, and productive
models to heuristic models.

To illustrate the use of linguistic knowledge for
applied purposes, we present some examples of ESs.

(1) Airline information service systems. The voice
inquiry in these automatic systems concerns the reser-
vation of tickets and flight schedules. The input lan-
guage of the system is spoken English, but it is limited
by the given topic. The output speech includes mainly
words of the input language.

(2) Electronic cash devices with spoken language
input commands for calculations. The input language
is determined by the type of operations. The system is
supplied with a visual feedback.

(3) Air traffic control. The input language is com-
pletely defined by a technical sublanguage; however,
the deviations in pronunciation while under a high level
of stress are taken into account. This task is extremely
important but also extremely complicated, because it is
necessary to work in real time in the presence of noise
with a high reliability (no lower than the reliability of a
human controller).

(4) Check of rocket readiness. The user enters the
information into the computer about the condition of
different rocket units and answers the questions of the
machine analyzing this information. In comparison
with other systems, in this system, man and machine
seem to interchange roles. A semantically limited lan-
guage and a specially trained speaker are used.

(5) Medical information (e.g., illness data) dictat-
ing system. The system does not include diagnosing
but is connected with it. The input language is con-
nected speech, but it mainly consists of short phrases
containing compressed information about the illness.

(6) Voice input of information of artificial intelli-
gence—modeling of human behavior in an unfamil-
iar environment, taking decisions, etc. The input lan-
guage is colloquial English (preferably, brief simple
sentences). A wide semantic model is used. The speech
output is absent. The requirements of a real time scale
are eliminated.

(7) Inventory task. The user, moving in a room,
says the names of the objects he finds. The speech input
provides hands-free operation in order to move the
objects and to make necessary measurements. For
higher reliability, the items of information on the
arrangement of objects are included in the system.

(8) Control of robot behavior by oral commands.
Speech control is especially attractive when man and
robot perform joint tasks.

The BBN company is engaged in developing the
system of speech understanding, SPEECHLIS. The
language of the LUNAR information-retrieval system
(which enabled one to analyze samples of lunar rock
obtained from the space flight of Appolo-11) is used as
the language of this system. The LUNAR system
answers questions such as “What is the average concen-
tration of rubidium in high-alkali samples?” Or per-
ceives commands such as “Print the list of the potas-
sium/rubidium ratios for the samples of rock containing
no silicon.” The first dictionary structure of the LUNAR
system contained about 3500 words, and the grammar
of the language was a subset of general English gram-
mar.

Let us discuss one more example of a system of
speech understanding, which, at the beginning, was
developed by the SPC company (Santa-Monica, Cali-
fornia) and, at the final stage, by Stanford Research
Institute. The basic difference of the Voice Controlled
Data Management System (VCDMS) from other sys-
tems, such as SPEECHLIS, HWIM, and HEARSAY-II,
consists in that it is based on the syntax of spontaneous
English dialogue, which allows one to use very short
elliptical constructions in the dialogue with this system.
VCDMS used the problem-oriented language of access
to information retrieval system of the data about the
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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underwater fleet of the USA, Great Britain, and the
USSR. The main volume of the dictionary included 450
words. The system was able to remember the informa-
tion on the earlier pronounced phrases and to decode
the current phrases on the basis of the results of recog-
nition of the previous utterances. In VCDMS, in the
interpretation of sentences, the artificial intelligence
ideology is used most intensively.

The general VCDMS structure includes three basic
components: (1) the acoustic–phonetic processor,
which provides the formation of a data array containing
the information on the phonetic structure of the utter-
ance; (2) the procedure of lexical comparison, which
makes comparisons of the predicted words on the basis
of the syllabic level by using the acoustic–phonological
rules; and (3) the linguistic processor, which contains
the grammar analysis (parsing) unit and the dialogue
level control unit (discourse level controller) including
the model of the user and the semantic memory. The
speech signal was limited to a frequency of 9 kHz and
was supplied to the 12-digit A/D converter, where it was
quantized with a frequency of 20 kHz. Then, the digi-
tized speech was passed through the D/A converter, and
the resulting analog speech was transmitted through
three bandpass filters with the passbands 150–900,
990–2200, and 2000–5000 Hz. At intervals of 10 ms,
two parameters were taken from the filters: the maxi-
mal amplitude and the number of zero cross values. The
resulting six parameters were used for primary acoustic
marking of every 10-ms segment. The system takes into
account that various contextual words predicted by the
thematic memory “grow old” from sentence to sen-
tence, and the probability of their usage decreases. If
the probability of the predicted word decreases below a
predetermined threshold, this word drops out of consid-
eration for some time. In VCDMS, all these operations
are performed by the dialogue unit (Discourse), which
is the most original part of the system. The procedures
that realize the Discourse are based on the study of the
dialogue between people jointly carrying out some
work. The influence of the context on the character of
the dialogue is found and formalized, and two kinds of
contextual influence are considered. The global context
provides one kind of restrictions in the interpretation of
the utterance. These restrictions are used in the identifi-
cation of the group of a noun. The second kind of
restrictions is related to the current context of the adja-
cent utterances. They are used in the interpretation of
reduced and elliptical expressions and, in particular,
add additional fragments to a reduced utterance.

At the moment, the main work on constructing large
systems capable of recognizing speech is concentrated
at IBM, Sperry Univac, and some other companies.
This research acquires a more and more applied charac-
ter. At Bell Laboratories, the development of systems
for the recognition of both isolated sentences and con-
nected speech is in progress, while IBM and Sperry
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
Univac work mainly with connected speech. As a rule,
the information on the syntax and semantics of natural
problem-oriented language is not used in these systems
of speech recognition. The input phrases intended for
the analysis do not contain stylistic mistakes, omis-
sions, interjections, false inserts, etc.

Thus, lingua-cybernetics, considered as the science
studying the general laws of reception, storage, trans-
fer, and transformation of linguistic information in
complex controlling and controlled systems, covers not
only technical, but also biological and social systems.

Lingua-cybernetic systems of the future, intended
for performance of a wide class of management func-
tions and realized by computers, should have some spe-
cial properties characteristic of control systems existing
in living organisms.

Devices developed to this day in many respects rank
below humans, although they already are beginning to
perform some functions of human intelligence.

Modern computers can perceive and processes vari-
ous information (numerical, symbolic, etc.), including
the information necessary for the creation of images of
the environment. In this connection, the branch of
cybernetics connected with language and speech
becomes of special importance. Its development is
being planned today and is stimulated by the advanced
level of new information technologies.

The recognition, synthesis, coding, and decoding of
speech should play an important role in the multimedia
community of the future with easy-to-operate man–
machine interfaces. The systems of speech recognition
include not only systems capable of distinguishing
messages, but also systems that recognize individual
speakers. Services using these systems will include the
selection of voice, the access to and control of a data-
base, clauses, various ordering services, dictation and
editing, automated translation, telecommunication,
safety control, digital communication, help for the
handicapped (for example, help in reading for the blind
and in speaking for mute persons). The most promising
area for the application of speech technologies lies in
telecommunications. Some technologies will play a
major role in this communication revolution, but the
development of speech becomes one of the key points.
Owing to the synthesis of speech and technology of rec-
ognition, telephone booths will be used as personal ter-
minals for communication with computer systems. It is
expected that, in the future, the speaker recognition
technique will be widely used as a method of identity
verification in banking, domestic service, information
services, etc.

The systems of speech recognition should be robust
and should be able to distinguish connected speech. It
is necessary to develop methods that are stable against
changes in voice, physical status of a speaker, manner
of speaking, and additional background noise, as well
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as to characteristics of a local network, telephone net-
work, microphones, etc. For such systems, it is also
important to impose restrictions on tasks and the dictio-
nary. To solve these problems, the development of auto-
mated adaptation techniques is necessary. One of the
major problems is the detection and normalization
(adaptation) of individual characteristics of the human
voice.

Recently, research in the field of recognition (iden-
tification and verification) of a speaker are directed
toward the development of new approaches and tech-
nologies that include text-independent methods of rec-
ognition based on vector quantization and Markov
chains, normalization of parameters and distance, and
model adaptation.

The problems of speech recognition include
dynamic spectral characteristics, robustness, adapta-
tion–normalization techniques, language modeling, the
use of acoustic and perceptual restrictions, and the
approach to recognition of spontaneous speech on the
basis of detection.

In spite of the fact that the research in recognition,
synthesis, and indexing of speech are mainly carried
out independently of each other, an increasing interac-
tion between these aspects can be observed. The neces-
sity of research into the human brain will grow accord-
ing to the need for solving the fundamental problems of
recognition and synthesis of speech. Man–machine
communication by means of spoken language is effec-
tive and convenient. Moreover, plenty of research is
being carried out in the field of automatic speech recog-
nition by computer. The results of this research show
that the automatic recognition and understanding of
speech is rather complicated, except when the dictio-
nary of the words to be recognized is limited. The pur-
pose of modern systems of recognition and understand-
ing of speech is the maximal use of nonacoustic infor-
mation and, especially, higher-level information, i.e.,
semantic and pragmatic data. For the purposes of an
effective utilization of linguistic information, at the
input level one must have only those sentences which
describe a certain limited object domain.

Spoken language is one of the fastest forms of dia-
logue. In addition, speech allows one to communicate
simultaneously in various forms. One of the basic fac-
tors that stimulated the use of speech devices is their
ability to carry out dialogue in industrial areas and in
other fields of special communications.

One of the priority directions of modern speechol-
ogy is forensic phonetics in the field of phonoscopics.
The range of problems is characterized by reference not
only to oral, but also to written speech. Concerning the
latter, an example is a computer program developed for
the detection of plagiarism and the proof of authorship.
The basic program is the automated comparative anal-
ysis of lexicosyntactic features of texts.
The modern status of forensic phonetics is charac-
terized by the presence of three basic directions: exam-
ination of material by subjects who are not professional
experts; methodological problems in the field of
speaker identification; and technological means for the
processing (analysis) of speech and the interpretation
of the resulting data.

The methodological direction covers such problems
as the strategy of the development of special question-
naires for experts; a mathematical base for solving the
problem of processing the acoustic data and the corre-
lation between the latter and the identified attributes;
the relation between perceptive-acoustic and acoustic
methods of estimating the fundamental frequency (F0),
the average values of formants (Fn), etc.; study of the
techniques for masking a voice; taking into account the
characteristics of communication channels (ortho-
phone, telephone, digital) in practical criminality
examination; specificity of the expert activity working
with material in a foreign language (one example is the
Albanian language in Macedonia in the context of
material examination by Austrian experts); the problem
of the dependence of acoustic–phonetic parameters on
a number of extralinguistic factors (background noise;
alcoholic and other kinds of intoxication; characteris-
tics of the transfer tract; degree of the physical stress of
the speaker, e.g., after running various distances; etc.);
the study of the influence of the compression and cod-
ing of a speech signal on individual attributes of a
voice; the value of the information about the specificity
of consonantism and vocalism that is received as a
result of perceptive-phonetic analysis; etc.

The technological direction (processing of a speech
signal and the interpretation of data) includes the devel-
opment of a linguistic database for an electronic ency-
clopedia intended for expert phonoscopists with refer-
ence to Russian and covering various theoretical areas,
as well as practical recommendations for its usage [6].
In addition, the development of the basic principles and
procedures used for phonogram enhancement in techni-
cally difficult cases and also the development of tech-
nology for speech filtration are being continued.

In summary, it is possible to conclude that the devel-
opment of modern speechology and applied linguistics
[7–9] is characterized by the following directions: the
stochastic speech model, new information technolo-
gies, semantic networks in real-time dialogue systems,
multimodal approach, statistical and combined meth-
ods of processing of a speech material and stochastic
concepts of speech understanding, neural networks in
real-time dialogue systems, remote training on the basis
of the hypertext approach and new information technol-
ogies (multimedia systems, Internet, e-mail, electronic
encyclopedias [10], etc.), the concatenative concept of
text–speech transformation, multipurpose expert
speech systems, formation of speech databases and
speechological knowledge, multilingual systems of
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recognition and understanding of speech with the use of
various communication channels and inclusion of ele-
ments of automated translation, and the development of
systems for the identification of a speaker and his phys-
ical and emotional status.
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Abstract—Procedures for the formation of states of the hidden Markov models are described. Formant ampli-
tudes and frequencies are used as state features. The training strategy is presented that allows one to calculate
the parameters of conditional probabilities of the generation of a given formant set by a given hidden state with
the help of the maximum likelihood method. © 2002 MAIK “Nauka/Interperiodica”.
First, we briefly describe the general model of a ran-
dom signal generated by a chain of hidden random
events [1]. Let several hidden random events si i =
1…M from a set Ω generate a random process xt whose
values are measured at discrete, equally spaced instants
t and belong to a finite set Ξ. The change of events si in
time is the Markov process specified by the matrix of
conditional probabilities R with the elements rij(t) = r(ht =
si|ht – 1 = sj; t), where ht is the current state of the chain
of events. If the state of the hidden process is known,
the properties of the observed process X are given by

the conditional probability ψ(xi| ; s ∈ Ω ), where

 is the sequence of the random process ordinates,

i.e.,  = xt – 1, xt – 2, …, xt – k. The conditional proba-

bilities ψ(xt| ; s ∈ Ω ) can be specified in the para-

metric form ψ(xt| ; qs), where qs is the n-dimen-
sional vector of parameters characterizing the effect of
the state s on the formation of the observed process (the
determination of this vector is equivalent to the deter-
mination of the state s).

In practice, the concept of hidden random processes
appeared very fruitful for analyzing the data of experi-
mental observations. In the field of speech recognition,
this concept added the variety of hidden Markov models
and the hierarchical composition approach of dynamic
programing (the HCDP-approach) by Vintsyuk. In line
with these advancements, there are a number of practi-
cal problems whose solutions require higher accuracy.
Examples of such problems are the choice of the class
of functions specifying the conditional probabilities
ψ(xt| ; qs), the segmentation, and the estimation of
parameters of conditional probabilities (training).

Representation of the conditional probability

ψ(xt| ; qs) used in the general model of a signal is
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inconvenient for analyzing and processing speech sig-
nals, because the instantaneous signal amplitude is
known to carry no information about the phonetic com-
position of speech. To make the representation more
convenient, we explicitly include the formant composi-
tion of sound in the arguments of the conditional prob-

ability: ψ({(A, ω) | ; qs), where {(A, ω)  is a
set composed of Nt amplitudes A and frequencies ω of the

sound formats at the instant t and  = {(A, ω) ,

{(A, ω) , …, {(A, ω) .

Thus, the general model describing the properties of
the speech signal requires the specification of the fol-
lowing elements: Λ = (Ω, R, Ψ), where Ψ is the set of

conditional probabilities ψ({(A, ω) | ; qs) speci-
fied for every state s.

The further determination of the properties of the

conditional probabilities ψ({(A, ω) | ; qs) needs
some additional information about the preliminary pro-
cessing of the speech signal.

The method of determination of the formant param-
eters has been described in an earlier paper [2]. Here,
we briefly outline its main concept. The sequence of
readings of a speech signal is segmented into a subse-
quence of spectral windows in which the Fourier spec-
tra are calculated. The spectra obtained are smoothed
out using the fifth-order Butterworth filter with a cutoff
frequency of 360 Hz. The recursive Butterworth filter is
known to induce a nonlinear phase shift, which can be
removed using the method of opposing filtration. In the
latter method, the data are first processed with a linear
filter and, then, the resulting data are processed with the
same filter in the inverse order [3]. As a result of this
processing, we obtain a smoothed spectrum with har-
monics in the form Ft[n∆ω], where t is the number of
the segment on which the spectrum was obtained, n is

}t
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the number of a spectral harmonic, and ∆ω is the spec-
tral error. We approximate the harmonics of the
smoothed spectrum Ft[n∆ω] by a sum of Gaussian
functions. The parameters of the Gaussian functions,
namely, the amplitude and the frequency, are consid-
ered as the formant characteristics. This way, we find
the instantaneous positions of the formants.

Now, we obtain the dynamic characteristics of the
formants, or, in other words, we find the formant trajec-
tories. The basis of the method for obtaining the for-
mant trajectories was described in [4]. Here, we
describe this method in detail because of the use of
some additional operations.

Let a sequence of sets of formants {(A, ω) ,

{(A, ω) , …, {(A, ω)  be obtained as a result of
the approximation of a spectral sequence. Compare two

adjacent sets, Lt = {(A, m)  and Lt + 1 = {(A, m) .

For a pair of parameters in the sets Lt and Lt + 1, we
introduce the probability measure of similarity

This formula assumes that A and ω are independent
random quantities governed by the Gaussian distribu-
tion, σA and σω are the variances of the corresponding
quantities (the model parameters), and i and j are the
order numbers of parameters in the corresponding sets
Lt and Lt + 1.

Below, we will assume that every pair (A, m)
observed in a set can either appear, or disappear, or be
continued to the following set. To reveal the behavior of
a given pair of parameters, one should maximize the
matrix P.

Let us maximize the matrix P. With this aim, we find
the maximal element and assume that its position cor-
responds to the ith row and jth column. In this column
and row, we replace all elements with zeros except for
the maximal element, thus obtaining a new matrix P'.
With the matrix P', we perform the same operation. The
process is repeated until all rows or columns are
exhausted. At every step of the process, we store the
value of the maximal element and its position in the
matrix. If the maximal element value appears below the
preset threshold, we replace the corresponding matrix
element with zero. If the matrix is not a square one,
redundant rows (columns) will remain. In fact, this
means that the number of parameter pairs in the set Lt is
greater (less) than the number of parameter pairs in the
set Lt + 1. In the maximized matrix, a row composed of
zeros will correspond to the parameter pairs that disap-
peared or appeared.
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If the sequence of sets Lt, Lt + 1, …, Lt + n includes a
sequence of parameter pairs {(A, ω)t, (A, ω)t + 1, …,
(A, ω)t + n} (one pair in each set) such that a nonzero
element of the maximized matrix exists for arbitrary
adjacent pairs of this sequence, this sequence of param-
eter pairs will be called the formant trajectory.

Calculations of the formant trajectories for solitary
pronounced phonemes showed that the observed trajec-
tories have two undesirable features: random disconti-
nuities and fluctuations, which appear because of the
instability of the speech-tract state during the phoneme
pronunciation and also because of the errors introduced
by the measuring instruments and algorithms. The
elimination of these random discontinuities and fluctu-
ations would considerably simplify the observed
dynamic pattern of formants.

The following algorithm is used for eliminating the
random discontinuities of trajectories. Let trajectory 1
composed of points {y1, y2, …, yg} lying to the left of
the trajectory 2 composed of points {yg + m, yg + m + 1, …,
yg + m + d} (the parameter y can be replaced with either
the amplitude or the frequency of the formants), where
m is the time interval between the end of trajectory 1
and the beginning of trajectory 2. We consider the dis-
continuity between trajectories 1 and 2 as eliminated
when the following conditions are satisfied:

(1)

In essence, these conditions impose limitations on the
slopes of the lines approximating trajectories 1 and 2. If
conditions (1) are satisfied, the end point of trajectory 1
is connected with the starting point of trajectory 2 by a
line. Random fluctuations along the trajectory are
removed using the method of moving average.

We represent the conditional probability ψ({A,

ω) | ; qs) in the form

(2)

where  = {(A, ω , …, (A, ω , (A, ω , …, (A,

ω } and  = {(A, ω , (A, ω , …, (A, ω }.
Representation (2) describes two types of condi-

tional dependences: (a) the function ϕ((A, ω | ; as)
describes the probability of the appearance of the ith for-
mant depending on the surrounding formants at the cur-
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rent instant, this function being independent of the
index of the trajectory in which the formant i is incorpo-

rated; (b) the function φ((A, ω | ; bs) describes
the probability of the appearance of the ith formant in
the jth trajectory of the speech signal.

We specify the conditional probability of the first
type by the function

(3)

where for brevity we omit the temporal index.
The conditional probability of the second type will

be specified by the function similar to function (3):

(4)

The parameters as, bs, cs, and ds determine the state
s. To obtain these parameters, we use the following
training strategy. Assume that the structure of each pro-
nounced syllable of the consonant–vowel (c–v) type
has the form 0c–c–cv–v–v0; i.e., the syllable is gener-
ated by five different hidden states. The segmentation
procedure suggested in [5] makes it possible to divide
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the syllable into the required number of nonoverlapping
acoustic segments.

Let ρs acoustic segments correspond to the hidden
state in the training sample. With the use of the maxi-
mum likelihood method, which consists in the minimi-
zation of the functionals

we determine the required parameters of the hidden
state. Here, t0 and t1 are the boundaries of the speech
segment that includes the realization of the hidden
state.
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Experiment on Investigating the Voice Cords Functioning
by the Speech Signal1

A. V. Nikolaev

Moscow State Linguistic University, ul. Ostozhenka 38, Moscow, 119992 Russia

e-mail: anikolayev@mail.ru

Abstract—A practical application of linear prediction methods for calculating the pulse function that models
the functioning of vocal cords is described. Some characteristics of the pulses of this function enable one to
draw some conclusions about the speaker’s individual features (and, possibly, about the quality of sound). The
first part of the paper is devoted to the theoretical background of the described method. The second part presents
a detailed algorithm of the program realization of the method in the MATLAB 5.2 environment and analyzes
the results of the experiment made on Russian vowels. © 2002 MAIK “Nauka/Interperiodica”.
1 This paper reviews the results of the practical appli-
cation of a poorly investigated method for modeling
voice-source functioning by the speech signal. The
method allows one to calculate the function approxi-
mately describing the form of the fundamental tone
pulses. The algorithm is developed on the basis of the
linear speech production model described by the
equation

(1)

where x ={x(n), …, x(n + p)} represents the speech sig-
nal samples; h(n) represents the discrete values of the
voice source excitation function (i.e., it describes the
functioning of the vocal cords); and a = {a1, a2, …, ap}
is the vector of the linear prediction coefficients of the
backward prognosis, which characterize the resonance
properties of the speech tract.

A researcher can operate only with the values of the
speech signal samples x = (x(n)…x(n + p)). The excita-
tion function h(n) is unknown. Therefore, in evaluating
the coefficients a = {a1, a2, …, ap}, the excitation func-
tion is set equal to zero and is replaced in Eq. (1) by dis-
crepancies. Using then the least-squares method, we
arrive at the following matrix:

(2)

where R = {rkm} is the covariance matrix of size pxp
with the elements calculated as

(3)

1 This paper was submitted by the author in English.

x n( ) a1*x n 1+( ) … ap*x n p+( ) h n( ),+ + +=

R a⋅ b,=

rkm x k i+( )*x m i+( ),
i

∑=

k m, 1 2 … p,, , ,=
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where a = {a1, a2, …, ap is the column vector with the
desired values of the line prediction coefficients and
b = {b1, b2, …, bp} is the vector of the free terms

(4)

Since the number of unknown elements of vector a
is equal to the order of the matrix, the desired coeffi-
cients can be found using one of the known methods. In
addition, matrix R can be used for modeling the func-
tioning of the vocal cords. As shown in [1, 2], the deter-
minant of the matrix formed by the above method rep-
resents a pulse train in which the pulses appear in the
regions of the disclosure of the vocal cords, i.e., the
pulses are “synchronous” with the fundamental tone of
the speech signal. We can assert that the determinant of
such a matrix represents a convenient function for
approximating the excitation function h(n).

Let us denote this function as Mp(n), where p is the
matrix order. Each of the values of this function can be
set in correspondence with the values of x(n). Starting
with this sample of the speech signal, we can form a
vector of length (N + p – 1), where N is the length of the
analysis window and p is the order of the matrix R.
Thus, the cycle variable i used in forming the matrix
elements takes values from n to (n + N + p – 1).

During the experiment, the results were presented in
a graphical window. Each window consisted of two
parts: upper and lower. The oscillogram (i.e., the values
x(n) of the speech signal samples) was displayed in the
upper part, while the lower part was used for displaying
the changes in the values of the function Mp(n).

bk x k i+( )*x i( ),
i

∑=

k m, 1 2 … p., , ,=
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Fig. 2. Speaker E., sound [a].
The method under discussion was realized in the
MATLAB 5.2 environment. We investigated four sta-
tionary Russian vowels: [Ë], [˚], [Û], [˝], [(Ó)], and [‡],
pronounced by seven speakers: three men and four
women, from 20 to 30 years old. The sounds were input
in a PC with Windows 98 via a sound card. The sam-
pling rate was 12 kHz with 16 bits per sample.

The program works as follows. The speech signal
samples are read to form a one-dimensional array,
which is displayed on the screen, so that the user can
choose the region he is interested in (see Fig. 1).

Before processing, the signal is filtered through a
digital FIR-filter with a passband from 300 Hz to
3400 kHz. Then, for every discrete time moment j
from the chosen region, the program forms a one-
dimensional array consisting of the values of the
speech signal {x( j), …, x(j + N + p – 1)}. Each array is
processed in the following way:

(i) The array is normalized by the average value.
(ii) A matrix R = {rkm} of size pxp is formed from

the array elements on the basis of Eq. (3).
(iii) The determinant of the matrix is calculated.

(iv) The determinant value is stored in a one-dimen-
sion array.

This procedure is repeated in cycle for every dis-
crete time moment of the chosen range. Thus, we obtain
a one-dimensional array storing the values of the func-
tion Mp(n). The length of this array is equal to the length
of the chosen region. Finally, the program displays two
graphs: the speech signal samples from the chosen
region (the lower graph) and the corresponding values
of the function Mp(n) (the upper graph).

Analyzing the graphs of the function Mp(n) obtained
for different speakers and speech sounds, we arrive at
the following question: what factors determine the form
of its pulses? Can we believe that this function retains
both the individual features of the speaker and the fea-
tures common for the same sound pronounced by dif-
ferent speakers (although the latter idea contradicts the
linear model of speech production, which declares the
independence of the speech-source functioning from
the resonance parameters of the speech tract)? Can we,
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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consequently, use the information about the form of the
pulses in solving the problems of speaker identification
and speech recognition?

Figures 2–7 show the graphs for two speakers, E.
and N., both men, who pronounced the Russian sounds
[a], [e], and [o]. The fundamental frequency of speaker
E. was 200 Hz and of speaker N., 150 Hz. Comparing
PHYSICS      Vol. 48      No. 4      2002
the graphs of the excitation function Mp(n) of these two
speakers, one can clearly see their individual differ-
ences. In particular, the pulses of the excitation function
of speaker N. have an evident symmetrical form with
one peak at the vowels [a] (Fig. 3) and [(o)] (Fig. 7). The
pulses of speaker E. at these vowels (Figs. 2, 6) are non-
symmetrical and have several peaks. The pulses of
speaker N. at the sound [e] (Fig. 5) are also nonsym-
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metrical, but they again differ noticeably from the
pulses of speaker E. at the same sound (Fig. 4). The
pulses of N. have a slight slope on the right-hand side,
whereas the pulses of E., on the left-hand side.

It is much more difficult to single out the features
that characterize each vowel (if it is possible at all in
view of the aforementioned assumption that function-
ing of the voice source does not depend on the reso-
nance parameters of the speech tract). Still, from
Figs. 2 and 3, one can see that the pulses at the sound
[a] have an obviously greater porosity, as compared to
the two other sounds in both speakers.

Unfortunately, the size of this paper does not allow
us to present more graphs. Analyzing them, we could
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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Fig. 7. Speaker N., sound [o]. 
find that the pulses have also other features characteriz-
ing both the speaker and the sound. In addition, one
should take into account that we have obtained only
preliminary results, which are insufficient for serious
conclusions. At the moment, we face the task of a more
thorough and deeper development of the described
algorithm. Nevertheless, there is no doubt that the
method described above has demonstrated its potential-
HYSICS      Vol. 48      No. 4      2002
ities, and it seems to be promising for application in dif-
ferent areas of digital signal processing.
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In Memory of Leonid Mikhaœlovich Lyamshev
(August 30, 1928–March 28, 2002)
Leonid Mikhaœlovich Lyamshev—one of the
founders of modern acoustics, editor-in-chief of Akus-
ticheskiœ zhurnal (Acoustical Physics), chairman of the
Scientific Council on Acoustics of the Russian Acad-
emy of Sciences, head of a department of the Andreev
Acoustics Institute, doctor of science (phys.–math.),
professor, and winner of the USSR State Award—
passed away.

Lyamshev’s contribution to science is great. It is
characterized not only by the new, rapidly progressing
directions of research founded by Lyamshev, the mono-
graphs and papers written by him, and the results of his
scientific and organizational activities, but also by
several generations of students educated by Lyam-
shev, many of whom have grown into prominent sci-
entists. Personally, Lyamshev was a researcher totally
devoted to science and an exceptionally honest and
respectable man.
1063-7710/02/4804- $22.00 © 20502
Lyamshev grew up in a family of teachers. After he
graduated from secondary school with a gold medal
and, then, from the Moscow Electrotechnical Institute
of Communication, he became (in 1951) a postgraduate
student of the Lebedev Physical Institute of the Acad-
emy of Sciences of the USSR. At that time, he began his
intensive and fruitful research in physical acoustics,
which had never been interrupted within more than half
a century. The first problem that attracted Lyamshev’s
attention was reflection and scattering of sound from
finite elastic plates and shells in liquid. Already the first
results obtained by Lyamshev showed his individual
style, which was characterized by a combination of an
exact mathematical description of the phenomenon
under investigation and its profound physical interpre-
tation with a solid substantiation and a high reliability
of the results. During the first years of his work in sci-
ence, Lyamshev discovered and described the nonspec-
ular reflection of sound from plates performing longitu-
dinal vibrations, the resonance scattering of sound from
shells in liquid, and some other phenomena, which
formed the basis of an extended field of research in
modern acoustics: the studies of the scattering of sound
from elastic bodies. Currently, this direction of research
is represented by more than a thousand publications
including several monographs. The results obtained by
Lyamshev in the early 1950s formed the subject of both
his candidate dissertation (1954) and his first mono-
graph: L.M. Lyamshev, Sound Reflection from Thin
Plates and Shells in Liquid (Akad. Nauk SSSR, Mos-
cow, 1955).

Another problem that attracted Lyamshev’s atten-
tion at that time was the reciprocity principle. In acous-
tics, this principle was first formulated by Helmholtz in
the middle of the 19th century. Fifty years later, Ray-
leigh presented its mathematical proof for the case of
discrete systems with a finite number of degrees of free-
dom. Within another fifty years, Lyamshev gave a rig-
orous mathematical proof of the reciprocity principle
for arbitrary continuous linear media containing arbi-
trary numbers of elastic bodies, screens, and bound-
aries: L.M. Lyamshev, “On the Problem of the Reci-
procity Principle in Acoustics,” Doklady Akad. Nauk,
vol. 125, no. 6 (1959) (see also other publications on
this issue). The results presented in this paper remain
the most general among hundreds of publications con-
cerned with the subject. Since the reciprocity principle
002 MAIK “Nauka/Interperiodica”
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is widely used for solving practical problems, the paper
by Lyamshev is one of those most frequently cited in
the literature on acoustics.

The next direction of research developed by Lyam-
shev was the scattering and radiation of sound in a mov-
ing medium. The topical problems associated with this
subject lie at the boundary between acoustics and
hydrodynamics and are characterized by extreme com-
plexity. However, Lyamshev’s studies in this area were
also successful, and he obtained a series of important
fundamental results. Among them, the most significant
achievement is the development of the theory of hydro-
dynamic flow noise. Lyamshev studied in detail the
effect of the physical and structural parameters of a
body in a flow on the sound component of the flow
noise. The series of experimental and theoretical stud-
ies carried out by Lyamshev and his students (who had
already appeared at Lyamshev’s laboratory at that
time), together with his colleagues from the Acoustic
Institute and other institutions, played a crucial role in
the improvement of the design of low-noise vessels. In
1964, Lyamshev received his doctoral degree and pub-
lished a number of key papers on flow noise, including
“Acoustics of a Controlled Boundary Layer,” Vestnik
Akad. Nauk SSSR, no. 7, 1973. One more fundamental
paper by Lyamshev was published later: “Determina-
tion of Impedance in Acoustics of Moving Media,”
Doklady Akad. Nauk SSSR, vol. 261, no. 1 (1981). The
generalization of the notion of impedance, which was
proposed in this paper, allowed the transfer of all results
from acoustics of stationary media, including the
Fresnel reflection formulas, to acoustics of moving lay-
ered media without introducing any changes.

In the early 1970s, Lyamshev initiated and began the
development of an entirely new direction of research:
laser acoustics. It originates from the effect of sound
generation in liquid by laser (optical) radiation.
Together with his colleagues and students, Lyamshev
developed the theory of sound generation by a laser
beam, carried out experiments, and proposed new solu-
tions to practical problems. In particular, he proposed
and experimentally substantiated the method of remote
laser-acoustic sounding of the hydrosphere, in which
lasers were used for both generation and detection of
sound. In 1989, Lyamshev published the monograph
Laser Thermooptical Excitation of Sound (Nauka, Mos-
cow, 1989) where he described and analyzed the results
obtained by that time in laser optics. The laser-acoustic
studies carried out by Lyamshev gained worldwide rec-
ognition. Today, this area of research is a promising and
rapidly progressing branch of modern physics.

The problem that was addressed by Lyamshev and
his colleagues in the 1980s was adjacent to the afore-
mentioned phenomenon: they considered sound gener-
ation by penetrating radiation. The studies of the radia-
tion-acoustic effects that accompany the interaction of
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
single particles or particle beams with matter open up
new promising possibilities for visualizing and control-
ling the internal regions of opaque materials in biology
(radiation-acoustic microscopy), geology (neutrino-
acoustic sounding of the Earth), astrophysics (detection
of cosmic neutrinos), etc. Lyamshev’s publications con-
cerned with this field of research include a skillfully writ-
ten monograph, which will certainly have an impact on
following generations of scientists: L.M. Lyamshev,
Radiation Acoustics (Nauka–Fizmatlit, Moscow, 1996).

In recent years, Lyamshev developed one more new
direction of research: fractal acoustics. He was one of
the first to realize the important role of fractals in
acoustics. He showed that many acoustic objects and
processes possess fractal properties, the consideration
of which makes it possible to explain many anomalous
experimental facts related to the radiation, propagation,
and scattering of sound waves. For example, the spe-
cific spectral shape of reverberation observed in the sea
was explained by the fractal properties of the wavy sea
surface: L.M. Lyamshev, “On the Fractal Nature of Sea
Surface Reverberation,” Akusticheskiœ zhurnal (Acous-
tical Physics), vol. 47, no. 2 (2001). Owing to Lyam-
shev’s effort, fractal acoustics has gained acceptance as
one of the most promising directions of research in
modern acoustics.

Lyamshev had been deeply involved in organiza-
tional activities in science. He devoted much of his
energy to the development of Akusticheskiœ zhurnal
(Acoustical Physics). Starting from 1963, he had been
the deputy editor-in-chief and from 1987, editor-in
chief of this journal. His attitude toward the authors
who presented their papers for publication was benevo-
lent, as well as demanding. Lyamshev paid very much
attention to his work in the journal. The high scientific
level and prestige of the journal are to a great extent due
to Lyamshev’s supervision. In 1973, Lyamshev became
chairman of the Scientific Council on Acoustics of the
Russian Academy of Sciences, and he held this post
until the last days of his life. The Andreev Acoustics
Institute played an important role in the life of Lyam-
shev. Since the day the institute was established (1954),
Lyamshev worked there together with Yu.M. Sukha-
revskiœ, L.M. Brekhovskikh, G.D. Malyuzhinets,
M.A. Isakovich, and other well-known scientists. At
this institute, he advanced from junior researcher to first
deputy director. Over many years, including the last
few, he headed the department of the institute that was
he himself organized. Lyamshev received the title of
professor in 1969, he was a winner of the State Award
(1985), a bearer of the Order of the October Revolution
(1972), and a member of the Russian Academy of Nat-
ural Sciences (since 1992).

The name of Lyamshev is well known outside Russia,
and not only from his publications. He was twice elected
member of the International Commission on Acoustics
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(1975–1981 and 1994–1998). He was a member of the
Council of the Federation of Acoustical Societies of
Europe (1984–1997) and received the title of Honor-
ary Member of the International Institute of Acoustics
and Vibration (1999). He took part in many Interna-
tional Congresses on Acoustics and conferences
where he gave plenary and invited talks. He also gave
lectures at universities of Europe, United States,
Japan, and China.
Today, acoustics has suffered a bereavement. How-
ever, the ideas put forward by Lyamshev will be devel-
oped further by the next generation of acousticians. As
for those who were lucky to be acquainted with
Leonid Mikhaœlovich Lyamshev, they will forever
keep in their hearts the memory of this excellent sci-
entist and wonderful person. 

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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CHRONICLE

   
Yuriœ Pavlovich Lysanov
(On His 80th Birthday)
February 23, 2002, marked the 80th birthday of
Yuriœ Pavlovich Lysanov, leading researcher of the
Andreev Acoustics Institute, professor, Doctor of Phys-
ics and Mathematics, and laureate of the USSR State
Award.

Lysanov graduated from Perm State University in
1952. His first research project was concerned with the
scattering of electromagnetic waves from a rough sur-
face. It was carried out at the Acoustical Laboratory of
the Lebedev Institute of Physics of the Academy of Sci-
ences of the USSR when Lysanov was a graduate stu-
dent. After graduation, Lysanov became a postgraduate
student at the Lebedev Institute of Physics. In 1955, he
completed his postgraduate courses and started work-
ing as a researcher in ocean acoustics and in related
fields of geophysics.

Lysanov carried out comprehensive studies of the
propagation, scattering, and diffraction of waves in the
ocean. He is the author of more than 150 scientific pub-
63-7710/02/4804- $22.00 © 20505
lications and 12 inventions and the author and co-
author of six monographs. The monograph Theoretical
Fundamentals of Ocean Acoustics (1982), written by
Lysanov together with L.M. Brekhovskikh, has gained
wide recognition among the scientific community. This
monograph has seen two editions in English (1982 and
1991) and is often cited in leading scientific publica-
tions. Studies of the sound scattering in the ocean are
described in another monograph, Ocean Acoustics,
written by Lysanov together with a group of authors.
These studies brought him the USSR State Award in
Science and Engineering in 1976.

Lysanov was the first to derive an exact integral
equation for the field scattered from a rough surface and
to obtain its approximate solution. The method of the
integral equation proposed by Lysanov covers the
methods of small perturbations and Kirchhoff approxi-
mations as limiting cases and, what is especially impor-
tant, takes into account the multiple scattering of
waves. Lysanov substantially contributed to the devel-
opment of the methods of wave diffraction by surfaces
with nonuniform impedances. In this connection, one
should note the new modification of the Rayleigh
method for describing the resonance phenomena in the
conditions of propagation of a grazing wave. In collab-
oration with Yu.Yu. Popov, Lysanov revealed a new
type of creeping waves propagating around a rough
sphere.

Another direction of Lysanov’s research is related to
sound propagation in irregular waveguides with rough
boundaries. Lysanov obtained and studied the decay
law and the angular spectra of the coherent and incoher-
ent components of an acoustic field in the case of long-
range propagation in a surface sound channel in the
conditions of multiple scattering from a rough ocean
surface. He developed the theory of prereverberation of
sound in the ocean and proposed an unconventional
method for solving the problem of normal wave excita-
tion in an irregular waveguide with inseparable vari-
ables in the Helmholtz equation.

A large group of Lysanov’s works is concerned with
studying the scattering of sound from the ocean bottom.
In this area, an approximate theory was developed for
describing the strong time fluctuations of sound signals
scattered from the ocean bottom in the case of a moving
transmitting–receiving system. The spectral and corre-
lation characteristics of the fluctuations were studied
for different kinds of transmission, velocities of
motion, and parameters of roughness and inhomogene-
002 MAIK “Nauka/Interperiodica”
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ities of the bottom relief. The main conclusions of this
theory were confirmed by a large body of data obtained
from full-scale experiments in the ocean. The afore-
mentioned theoretical results formed the basis for the
acoustic methods of determining the parameters of the
bottom relief and the inhomogeneities of the underwa-
ter ground, as well as for the new correlation methods
of determining the velocities of motion and displace-
ment of a ship relative to the bottom. Geoacoustic bot-
tom models were developed for both shallow-water and
deep-water regions of the ocean. The most interesting
results were obtained for shallow seas. The statistical
model developed for the upper sediment layer with
allowance for the anisotropy of volume inhomogene-
ities provided the first adequate theoretical interpreta-
tion for ample experimental data on the backscattering
of sound. Lysanov is a coauthor of the acoustic method
developed for iron-manganese concretion prospecting
and exploration at the bottom of a deep ocean.

One more group of Lysanov’s works is related to
studying the effect of regular and random inhomogene-
ities of the sea medium on sound scattering by a rough
ocean surface.

Lysanov made an important contribution to the
study of the effects of intrathermocline vortex lenses
and the fine structure of hydrophysical fields on an
acoustic field in the ocean. He showed that these factors
considerably affect the spatial structure of an acoustic
field.

In recent years, Lysanov concentrated on the long-
range propagation of acoustic signals generated by
underwater earthquakes and low-frequency sound
attenuation in the ocean. Together with L.M. Lyamshev,
he described the fractal properties of random volume
inhomogeneities, which determine the attenuation of
sound in the course of its propagation in an underwater
sound channel. For these studies, the two authors
received the prize from the International Academic
Publishing Company “Nauka/Interperiodica” for the
best publication in Acoustical Physics (1998).

Lysanov also made a considerable contribution to
the organization of full-scale studies in the ocean: he
participated in four expeditions of the research ships
Sergeœ Vavilov and Petr Lebedev, and three of these
expeditions were headed by him.

Since 1962, Lysanov has been involved in tutorial
activities in higher educational institutions. Today, he is
a professor at the department of Thermohydromechan-
ics of the Ocean at the Moscow Institute of Physics and
Technology. He pays much attention to the education of
highly trained specialists: one doctoral and 12 candi-
date dissertations have been prepared under his super-
vision.

Lysanov is a World War II veteran.

He is deeply involved in scientific-organizational
activities. He is a member of the editorial boards of
Izvestiya Akad. Nauk, Atmospheric and Oceanic Phys-
ics and Oceanology and a member of the Scientific
Council on Acoustics of the Russian Academy of Sci-
ences, the Council of the Russian Acoustical Society,
the Scientific and Dissertation councils of the Acoustics
Institute, and the Dissertation Council of the General
Physics Institute of the Russian Academy of Sciences.

Lysanov takes an active part in international scien-
tific relations. Many times he presented his papers at
the International Congresses on Acoustics and at inter-
national symposiums.

We wish Yuriœ Pavlovich Lysanov good health and
further success in his creative work.

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 48      No. 4      2002
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Romual’d Anatol’evich Vadov
(On His 70th Birthday)
December 24, 2001 marked the 70th birthday of
Romual’d Anatol’evich Vadov, one of the eldest mem-
bers of staff of the Andreev Acoustics Institute, senior
researcher, and Cand. Sci. (Phys.–Math.).

Vadov joined the staff of the newly founded Acous-
tics Institute of the Academy of Sciences of the USSR
in 1954 after graduating from the Physics Faculty of
Leningrad State University.

He started his research activities at the institute mas-
tering and improving the reverberation technique for
measuring the sound absorption in liquids and together
with experimental studies of the electrolytic relaxation
absorption of sound in artificial and natural seawater.
Studies of the absorption of sound in the course of its
propagation in a marine medium became the main sub-
ject of his investigations over many years.

At the end of the 1950s, Vadov conducted a series of
laboratory measurements of the coefficient of sound
absorption (at frequencies of 30–120 kHz) in seawater
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and electrolytes. A relation connecting the absorption
coefficient at high frequencies with the salinity and
temperature of seawater resulted from the generaliza-
tion of these data. In the first half of the 1960s, he car-
ried out full-scale measurements of the absorption
coefficient in several regions of the ocean (which dif-
fered in salinity and temperature of water) by using an
original technique at frequencies of 8–25 kHz. The
results of these measurements proved the validity of the
aforementioned relation, and it was recommended for
use in the design of new equipment. At the end of
1960s, Vadov developed a new technique and con-
ducted full-scale measurements of the dependence of
sound absorption in seawater on hydrostatic pressure.

Starting from the mid-1960s, Vadov conducted active
experimental studies of low-frequency (<5–8 kHz)
sound attenuation in the case of sound channeling. First
of all, he was interested in oceanic regions differing
noticeably in salinity and temperature of water, such as
the Black, Baltic, and Mediterranean seas. In the mid-
dle of the 1980s, Vadov proposed relations for estimat-
ing the sound attenuation at frequencies higher than
200–300 Hz. The relations were based on an analysis of
experimental data on attenuation obtained in these
regions, taking into account the results of theoretical
and experimental studies of the low-frequency absorp-
tion in seawater which had already been published at
that time. At the same time (at the end of 1970s), on the
basis of the analysis of underwater acoustic conditions
for several tracks investigated by him, he demonstrated
that the deviation of the real law of geometrical spread
from the cylindrical law in the case of channeling can
reach 10–15 dB per 1000 km. This fact explained the
anomalously high values of the attenuation coeffi-
cient (determined by the deviation of the decay law of
the sound field level from the cylindrical law)
observed in single experiments at frequencies lower
than 200–300 Hz.

Experiments on the channeling of explosion signals
were conducted by Vadov in ocean regions with widely
different oceanological parameters. The data of these
experiments were analyzed not only to determine the
attenuation, but also to reveal the regional characteris-
tics of the formation of the time and energy structures
of sound fields. Special attention was paid to the exper-
imental studies of the acoustic signal propagation in
complex oceanological conditions (at a sharp drop in
sea depth in the region of the continental slope or prop-
agation tracks intersecting frontal zones and currents).
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Since the end of the 1960s, Vadov has mastered
computer methods for both the computation of sound
fields and the processing of experimental data. With the
development of this technology, new, previously
impossible opportunities for analyzing the fine struc-
ture of sound fields arose. For example, in the mid-
1990s, Vadov developed a technique and software for
the computer processing of elementary (single-beam)
explosion signals that were separated in time for mea-
suring the phase shift in the case of a signal touching a
caustic. He conducted such measurements and obtained
unexpected results (a measured phase shift was not
always a multiple of 90°). This and several other some-
what unexpected but very interesting results of the anal-
ysis of experimental data obtained by him have since
been physically explained.

Vadov has published about 170 works (scientific
reports, articles, and papers presented at scientific con-
ferences and seminars) on the basis of his research.
Now, Vadov works on the development of the experi-
mental database “Long-Range Propagation of Sound in
the Ocean” with the aim of storing and generalizing this
priceless experimental material. The basis for this
database is the data of the experiments conducted by
Vadov in 18 oceanic expeditions on research vessels
of the Acoustics Institute and Naval Hydrographical
Service.

Vadov took part in many research and development
projects and participated in tests of new devices. His
name is well known to the research community of the
Acoustics Institute and other research and industrial
institutions working in adjacent fields. His work is
highly appreciated by the institute administration and
the government, which awarded him the Order of
Honor and four medals.

Romual’d Anatol’evich Vadov has devoted over
47 years of his life to research in underwater acoustics.
He continues to work actively. We wish him good
health and new achievements.

Translated by M. Lyamshev
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St. Petersburg Seminar on Computational and Theoretical 
Acoustics of the Scientific Council on Acoustics

of the Russian Academy of Sciences
In 2001, the St. Petersburg Acoustical Seminar con-
tinued its regular work. The seminar sessions were held
at the traditional time (Tuesdays, 18:30) in the confer-
ence hall of the Institute of Mechanical Engineering
Problems, Russian Academy of Sciences (Bol’shoœ pr. 61,
Vasil’evskiœ Ostrov).

In 2001, the seminar suffered a bereavement. One of
the seminar leaders, Honored Scientist and Engineer,
Professor Evgeniœ L’vovich Shenderov passed away.
A special session of the seminar was devoted to this sad
event. D.P. Kouzov recounted Shenderov’s work with
the seminar and his role as leader in developing it.
A detailed paper describing Shenderov’s life and
research was presented by M.D. Smaryshev.

Twenty sessions of the seminar were held in 2001.
As before, in addition to papers on acoustics, some
studies in wave mechanics, which were close to acous-
tics from the point of view of both the physical pro-
cesses and the mathematical apparatus, were discussed.

Two papers were concerned with the propagation of
surface waves. A.V. Osetrov studied the acoustoelastic
effect, i.e., the effect of the residual mechanical stress
present in a solid crystalline layered heterostructure on
the propagation velocity of surface acoustic waves.
A calculation technique generalizing the method of
transfer matrices was proposed in the paper, and several
anomalous effects related to acoustoelasticity were
analyzed (H.-J. Frolich, R. Koch, and E. aChilla took
part in the research). A.V. Aref’ev examined the charac-
teristic features of the surface wave propagation in a
viscoelastic medium described by the Maxwell–Boltz-
mann–Volterra model with an arbitrary dependence of
parameters on the vertical coordinate. The study was
conducted in the framework of the ray approach.

A series of papers was devoted to the problems of
acoustic diffraction. In his last report at the seminar,
Shenderov presented integral relations generalizing the
Helmholtz integral to the case of an arbitrary acoustic
medium and demonstrated that, in the case of an inho-
mogeneous medium, an additional factor depending on
the density distribution in the medium appears in the
integrand. M.A. Lyalinov constructed a scattering pat-
tern for a plane acoustic wave scattered from a narrow
impedance cone with an arbitrary cross section. Using
the Kantorovich–Lebedev technique, the problem was
reduced to that for a spectral function at a unit sphere
with a small orifice cut out by the cone (J.M. Bernard
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participated in the study). V.V. Zalipaev investigated the
short-wave scattering of a plane longitudinal wave from
a flat crack in an isotropic elastic medium. The crack
edges were assumed to be smooth. He obtained a uni-
form asymptotics in the vicinity of the caustic and the
“light–shadow” boundary. S.V. Romashkin analyzed the
transmission of longitudinal and transverse waves
through a grating formed by parallel equidistant elastic
cylinders for which the breaking of adhesive bonds
with the medium at their boundaries is taken into
account. The boundary conditions were formulated in
the linear slip approximation. Expressions for the
reflection and transmission coefficients were obtained
and analyzed numerically. A considerable effect of the
adhesive bond breaking on the scattering properties of
the grating was revealed.

The paper by V.V. Fok and E.L. Shenderov demon-
strated an interesting relation between the problems of
acoustic diffraction and quantum field theory. The
authors found that the problem of quantization of the
Teichmuller space (a phase space with a dimension of
2 + 1 and a constant negative curvature) leads to equa-
tions similar to the Malyuzhinets equations obtained
for problems of acoustic diffraction in angular
domains.

Three seminar sessions were devoted to wave propa-
gation in one-dimensional elastic structures. E.V. Shish-
kina considered wave propagation in an infinite spiral
rod. She took into account all possible types of vibra-
tions and compared the resulting refined theory with the
common “rod” model of longitudinal vibrations of a
spring. Two reports by S.N. Gavrilov dealt with vibra-
tions of a string located on an elastic base. The source
of vibration was a moving inertial concentrated load.
He demonstrated that, in this model, natural vibrations
localized near an inclusion are possible in the case of a
uniform motion of the load. The evolution of vibrations
was described for a slowly accelerated load.

Two papers discussed acoustic processes in
closed volumes with elastic walls. Yu.A. Lavrov and
V.D. Luk’yanov obtained an exact analytical solution
to the problem of natural vibrations within a spherical
sector with the spherical part of the boundary formed
by a thin elastic shell. They conducted a numerical and
asymptotic investigation of this solution. O. Al-Arja
(Jordan) jointly with Lavrov presented the results of a
study of forced acoustic processes in a rectangular
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room with perfectly rigid walls and divided into two
parts by an elastic screen. The results were based on an
exact analytical field representation.

Two reports were devoted to the propagation of flex-
ural-gravity waves in plates floating at the surface of a
liquid. M.G. Zhuchkova and Kouzov investigated the
transmission of such a wave through a system of rigid
supports. The reflection and transmission coefficients,
and also the force and moment responses of the sup-
ports, were calculated. Yu.A. Mochalova analyzed the
vibrations of a plate of a finite width under the effect of
a moving load. The calculation was performed in the
framework of the theory of shallow water. Resonance
velocities of the load movement were discovered at
which the plate deflection increases without a limit.

The paper by O.V. Izotova was concerned with the
refined theory of a thin plate flexure. The plate was
described by the equations of the three-dimensional
theory of elasticity and assumed to be rigidly fixed at
one part of the lateral surface, while the other part
remained free. An asymptotic approximation for the
plate flexure under the effect of a transverse load was
constructed.

The report by E.I. Kartuzov was devoted to the the-
oretical solution of the problem on the determination of
the distribution of a control load exciting transverse
oscillations of an elastic fin to provide its translational
motions with maximal thrust. He obtained the ampli-
tude and phase characteristics of the transverse oscilla-
tions of the fin and the control load for the optimal
modes of operation.

Two papers considered gravity waves at the surface
of an incompressible liquid. Mochalova studied water
oscillations over a circular punch lying on an elastic
base at the bottom of a water basin. It was demonstrated
that, at certain values of parameters, eigenfrequencies
take place that correspond to localized modes of oscil-
lation. D.A. Indeœtsev examined the formation of high-
amplitude internal waves in a two-layer liquid. These
waves result from the formation of a localized mode
over a massive platform.

Finally, a paper devoted to the general development
of the mathematical apparatus was discussed at the
seminar. As is known, integral equations whose kernels
depend on the difference between the arguments are
widely used in diffraction problems. V.F. Pulyaev intro-
duced integral equations with almost periodic kernels,
which represent the generalization of the equations
mentioned above. He developed a general theory of
their solvability using certain special classes of func-
tions.

More detailed abstracts of papers and other informa-
tion on the seminar can be found at the website
http://mph.phys.spbu.ru/~george/seminar.html.

D. P. Kouzov

Translated by M. Lyamshev
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