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Abstract—The general relativistic spin–orbit interaction gives rise to a quasiresonant oscillation of the center
of mass of a gyroscope along the orbital normal. The oscillation amplitude appears to be measurable by
present-day instruments. The influence of oblateness of the field source is investigated. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In general relativity, the motion of a spinning test
body (gyroscope) is affected by the spin–orbit interac-
tion in two aspects: (1) the influence of the orbital
motion on the orientation of the gyroscope’s rotation
axes, and (2) the influence of the gyroscope’s intrinsic
momentum (spin) on its orbit. The first is compara-
tively simple when parallel spin transport is assumed.
This is admissible if the deviation from geodesic
motion is small. The Fermi–Walker transport along an
appointed world line is also not complicated. In a
spherically symmetric field, parallel transport along a
geodesic leads to a precession of the gyroscope’s axes
known as the geodetic or de Sitter precession [1]. In the
field of a rotating mass, the gyroscope’s axes undergo
the Schiff precession [2], to be verified in the Gravity
Probe B experiment (see [3] for details).

In this work, the second aspect of the spin–orbit
interaction is considered. The orbital motion of the
gyroscope is a sophisticated problem that has not been
fully resolved until now even in the post-Newtonian
approximation. There exist several different appro-
aches with different results in the leading approxima-
tion (see, e.g., [4–10]). The only covariant general rela-
tivistic equations of motion of the spinning test parti-
cles are the well-known Papapetrou equations [5]. This
set of equations is incomplete and requires supplemen-
tary conditions. It is generally accepted that these con-
ditions single out a representative point as the gyro-
scope’s center of mass, but there exist diverse other
opinions [9–12]. In addition, the Papapetrou equations
or alternative ones are very complicated. Their investi-
gation is usually limited to a general analysis; and
examination of the effects is typically restricted by the
motion of the gyroscope with a vertical spin, i.e., with
the gyroscope’s axes orthogonal to the orbital plane

¶ This article was submitted by the author in English.
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[13]. For example, it is known that such a gyroscope
moves along a circular orbit with the velocity differing
from the one of a body without spin [14]. In [14], the
conclusion was drawn that a gyroscope with a horizon-
tal spin leaves the geodesic plane, but an erroneous esti-
mation of this effect was given. The effect is much
larger because of the quasiresonant character of the
spin–orbit interaction, as was first revealed in [15, 16].

In the present work, the motion of a gyroscope with
horizontal spin is investigated and the general relativis-
tic effect of a quasiresonant beating is proposed.
Because of a small denominator, the speed of light is
cancelled in the oscillation amplitude, and the effect
therefore becomes quite sizeable. The obvious physical
interpretation of the effect is given. This effect is inde-
pendent of supplementary conditions and is the same in
different approaches [4–10]. Description is signifi-
cantly simplified by expanding the equations of motion
up to linear terms in the displacement from a geodesic.
Instead of studying an intricate gyroscopic orbit, a
small oscillation is investigated. This oscillation gives
sufficient information about the gyroscopic orbit. It is
shown that a Newtonian nonsphericity of the field
source causes a specific effacing of the quasiresonant
beating, leaving the oscillation amplitude measurable.

In what follows, orthonormal bases are used in cal-
culations, Greek indices run from 0 to 3, and Latin indi-
ces run from 1 to 3. The signature is (– + + +).

2. THE ESSENCE OF THE EFFECT

The general relativistic spin–orbit acceleration a
that causes the center of mass of a gyroscope to deviate
from a geodesic is on the order of

(1)a e
S
λ
---g,∼
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where

is the relativistic small parameter,  is the
Newtonian acceleration due to gravity, S is the spin of
the gyroscope, λ is its orbital moment, c is the speed of
light, M is the source mass, and G is the gravitational
constant. The motion of the center of mass of the rotat-
ing body significantly depends (in the leading approxi-
mation (1)) on the reference frame in which it is
obtained. The general expression for the spin–orbit
acceleration in the leading post-Newtonian approxima-
tion (1) is [7, 17]

(2)

The parameter σ numbers the different mass centers:
σ = 0 corresponds to the Dixon [6] and Pirani [18] con-
ditions (the intrinsic mass center), σ = 1 corresponds to
the Corinaldesi–Papapetrou conditions [19] (the center
of mass defined in the “rest” frame in which the gyro-
scope moves with the velocity v), and σ = 1/2 leads to
the results of Fock [4] and of [9, 10]. For a circular orbit
of the gyroscope (v · r = 0) with the gyroscope’s axis
lying in the orbital plane (S · (r × v) = 0), spin–orbit
acceleration (2) is independent of the parameter σ,

(3)

Parallel transport of the spin vector S means that in the
process of revolution, acceleration (3) is directed along
the orbital normal e3 and is periodic in time τ,

The frequency ωs differs from the orbital frequency ω
because of the geodetic precession ΩG,

(4)

On the other hand, the frequency of the free tidal oscil-
lation along the orbital normal is equal to the orbital
frequency. This leads to an almost resonant beating
with modulation frequency (4) and the maximum
amplitude

(5)

We note the cancellation of the speed of light c in
amplitude (5) by the small relativistic denominator ∆ω

e
GM

c2r
---------=

g GM/r2=

a 3
GM

mc2r3
-------------- S v×[=

+ 2 σ–( )r̂ S r̂ v×( )⋅( )  –  1 σ + ( ) v r ˆ ⋅( ) S r ˆ ×( )⋅ ] .

a 3
GM

mc2r3
--------------S v.×=

a e3e
S
λ
---g ωsτ β+( ).cos=

∆ω ω ωs– ΩG 3
2
---eω.= = =

A
a

2ω∆ω
---------------

S
λ
---r.= =
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given by Eq. (4). During the time 
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, the qua-
siresonant oscillation is enhanced linearly at a rate of

(6)

and reaches values measurable with present-day instru-
ments. For example, in the case of a gyroscope with a
dimension of 10

 

–1

 

 m and an intrinsic rotation period of
10

 

–1

 

 s in a near-Earth orbit of 

 

r

 

 

 

≈

 

 7 

 

×

 

 10

 

3

 

 km, we obtain
the values

(7)

Parasitic effects of a nonrelativistic origin are mutually
cancelled in the symmetric relative oscillations of two
gyroscopes with antiparallel spins.

3. CALCULATION OF THE NET EFFECT

In the post-Newtonian approximation, the static,
spherically symmetric gravitational field is described
by the tetrad

(8)

which represents the rest observers in the Schwarz-
schild metric. In this frame, the “electric” part 

 

E

 

 and the
“magnetic” part 

 

B

 

 of the Riemann tensor 

 

5

 

 (see, e.g.,
[8, 17]),

are given by

(9)

Transition to the orbital frame 

 

e

 

ν

 

 is performed by the
boost

in the  direction. The Lorentz matrix 

 

L

 

 has the stan-
dard form. Namely, the components of the 4-velocity of
the fiducial orbital motion 

 

φ

 

 = 

 

nt

 

 = 

 

ωτ

 

 are

(10)

where

and 

 

τ

 

 is the proper time. The 

 

e

 

1

 

 axis is directed along
the current radius vector, the 

 

e

 

2

 

 axis is directed along

A∆ω 3
2
---e

S
λ
---v=

e 10 10– ,
S
λ
--- 10 9– ,∼∼

A∆ω 10 9–  cm/day.∼

°eµ 1 e–( )cdt 1 e+( )dr r θdφsin rdθ–, , ,{ }=

Eij 5i0 j0, 2Bij 5iomnε j
mn ,= =

°Eij n2diag 2– 1 1, ,{ } , Bij 0,°= =

n2 GM/r3.=

°eµ Lν
µeν=

e2
°

uµ L0
µ γ 1 0 β 0, , ,{ } ,= =

γ 1 β2–( ) 1/2–
, β v /c,= =

v 1 e+( )nr, ω γv /r n 1 3e/2+( ),= = =
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the orbital motion velocity, and e3 is orthogonal to the
orbital plane,

The angular velocity vector W of rotation of the orbital
triad

has only the component

(11)

The transformation of the magnetic matrix [17]

(12)

leads to the appearance of the component

(13)

in the orbital frame. The transformation of the electric
matrix is analogous to (12) with the substitution

B  E, E  –B

(see [17]). The result is

(14)

We note that component E22 parallel to the boost is

invariant and the equality  is exact.

The equation of motion of the gyroscope’s center of
mass in the orbital frame is the equation of geodesic
deviation with spin–orbit acceleration (2) in its right-
hand side,1 

(15)

where

The dot denotes the derivative with respect to the
proper time τ. In the post-Newtonian approximation,

1 Equation (15) can be obtained by expanding the Papapetrou
equations up to linear terms in displacement ξ in the leading
approximation (1) of the spin–orbit interaction. At S = 0  a =
0, Eq. (15) is reduced to the geodesic deviation equation.

L1
1 1, L2

2 γ, L3
3 1.= = =

∇ uei Ωk
i ek=

Ω3 Ω12 ωs n.def= = =

Bij 4BklL i
[k u0 ] L j

l[ u0 ] Bpqε
p εq

km lnLk um
i Ll un

j–=

– 4Ekmεm L k[
ln u0 ]

i( Ll un
j )

°

°

°

B31 β E33 E11–( ) 3n2β= =° °

E11 2n2 1 e/2+( ), E22– n2,= =

E33 n2 1 3e+( ) ω2.= =

E33 ω2=

∇ u∇ uξ
i Ek

i ξk+ ai,=

∇ u∇ ux ẋ̇ 2W ẋ× Ẇ x× W W x×( ).×+ + +=
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the spin–orbit force applied to the intrinsic center of
mass of the rotating body is

(16)

This formula can be obtained, for example, by the
matched asymptotic expansions method [8] or directly
from the Papapetrou equations with the supplementary
conditions of Pirani or Dixon (see [17]; distinctions
between the exact conditions of Pirani and Dixon are
also discussed there).

In Eq. (15), Eik is measured on the fiducial geodesic
u, but Bik in (16) must be calculated in the frame
comoving with the gyroscope center of mass. This
“mixing” is admissible in the approximation linear in S
(Eq. (1)) and linear in ξ (Eq. (15)) if displacement ξ is
induced by the spin–orbit interaction,

On the same basis, we transport the spin vector
along the fiducial geodesic according to Fermi and
Walker,

(17)

Parallel transport equation (17) describes the known
geodetic precession (4),

(18)

For the spin in the fiducial plane (S3 = 0), equations (15)
and (16) of the center-of-mass motion become

(19)

(20)

Equations (19) describe the free oscillation with the
frequency

induced by the initial perturbation in the fiducial plane.
The difference between ω' and the orbital frequency ω
is caused by the general relativistic pericenter drift of
the perturbed quasielliptic orbit, 

If the initial perturbation in the fiducial plane is zero,
the trajectory of the gyroscope’s projection onto the
plane coincides with the circular geodesic.

mai c 1– Bk
i Sk.–=

ξ S, ξS S2 ξ2∼ ∼∼ 0.=

∇ uS Ṡ W S×+ 0,= =

Ṡ1 ωsS2, Ṡ2 ωsS1, Ṡ3– 0.= = =

S1 S ωsτ β+( ), S2cos S ωsτ β+( ).sin–= =

ξ̇̇1 2ωsξ̇2– E11 ωs
2–( )ξ1+ 0=

ξ̇̇2 2ωsξ̇1+ 0= 



,

ξ̇̇3 E33ξ3+ 3ge
S1

λ
-----.=

ω' E11 3ωs
2– n 1 3e/2–( )= =

ω ω'– 3en.=
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The equation of forced oscillations (20) along the
orbital normal,

(21)

proves to be quasiresonant due to proximity of the fre-

quencies of the natural tidal oscillation  = ω and
of the compelling force ωs . The difference of the fre-
quencies ∆ω in Eq. (4), which prevents the oscillation
from becoming resonance, is equal to the geodetic pre-
cession ΩG. The general solution of Eq. (21),

(22)

contains the amplitude A given by (5) and two integra-
tion constants, C and α. If C = 0, oscillation (22)

ξ̇̇3 ω2ξ3+ 3e
S
λ
---g ωs β+( ),cos=

E33

ξ3 A ζ C η ,cos–cos=

ζ ωsτ β, η+ ωτ α,+= =

(b)

2

3

π/2

A/r

C/r

ls

1

0

ls

(a)

M

S(τ) S(τ + π/ΩG)

e1 e2

e3
r

S/λ

lsls

λ

Fig. 1. Orbit of the gyroscope. Orbital moments of the fidu-
cial geodesic and the gyroscope are λ and λs , respectively.
(a) Precession of the gyroscope orbit at C = 0. (b) Variable
inclination of the gyroscope orbit, the constant C is arbitrary.
The orbital moment λs points at the positions marked 0 and 1
when sin((η – ζ)/2) equals 0 and 1, respectively. At points 2
and 3 it turns out that cosη = 0.

λ

JOURNAL OF EXPERIMENTAL 
describes the precession of the gyroscope’s orbit tilted
by the angle

relative to the fiducial plane, with the angular velocity
of the geodetic precession given by (4) (Fig. 1a). The
evolution of the gyroscope’s orbital moment with arbi-
trary C is presented in the Fig. 1b. If C = A, pure beating
occurs,

(23)

The center of mass oscillates along the orbital normal
with a variable amplitude modulated by geodetic pre-
cession (4). The initial condition

is provided by choosing the constant α = –β,

(24)

Within a time τ ! (∆ω)–1, the oscillation amplitude
grows at the rate A∆ω given by (6) and (7). The con-
dition

fixes the initial spin orientation sinβ = 0 along the radial
direction (see (18)).

The problem of measuring oscillation (24) is com-
plicated by the circumstance that initial perturbations
lead to the natural tidal oscillation with the orbital fre-
quency ω2 = E33 (see (21)). Therefore, gyroscopes with
antiparallel spins must be manufactured to be coaxial.
In order that the Newtonian harmonic oscillation due to
instrumental error be smaller than the relativistic oscil-
lation induced by the spin–orbit interaction, strong

restrictions on the initial perturbations ξ3(0) and 
are required,

(25)

where τf is the formation time of the amplitude mea-
sured.

4. THE EFFECT OF FIELD OBLATENESS

The Newtonian oblateness of the source does not
lead to forced gyroscope oscillations. The oblateness

affects the natural tidal oscillation frequency ,
the orbital frequency , and consequently, the angular
velocity  of the spin rotation relative to the orbital

A/r S/λ=

ξ3 2A
η ζ–

2
------------ η ζ+

2
------------.sinsin=

ξ3 τ 0=( ) 0=

ξ3 2A
∆ω
2

--------τ
ω ωs+

2
----------------τ β+ 

  .sinsin=

ξ̇3 τ 0=( ) 0=

ξ̇3 0( )

ξ3 0( ) ! ξ A∆ωτ f , ξ̇3 0( ) ! ωξ,∼

Ẽ33( )1/2

ω̃
ω̃s
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triad. The two frequencies,  and , enter the
equation of motion of the gyroscope’s center of mass,

(26)

Considering only the quadrupole moment J2 (which is
given by J2 ≈ 1 × 10–3 for the Earth), we find for an
equatorial orbit that

(27)

(28)

(29)

where R is the equatorial radius of the source. The fre-

quency  differs from the orbital frequency 
because of the Newtonian quadrupole precession ΩJ of
the orbital plane,

(30)

The gyroscope’s axis does not undergo the additional
Newtonian precession,

As a result of the difference in Eq. (30), small denomi-
nator (4) is changed as

(31)

The oscillation modulation period is then given by

and amplitude (5) becomes

(32)

The gyroscope’s orbital moment vector describes a

conic surface with the apex angle  and the time

Ẽ33( )1/2 ω̃s

ξ̃
˙̇

3 Ẽ33ξ̃3+ 3e
S
λ
---g ω̃sτ β+( ).cos=

Ẽ33 ω 1
9
4
---J2

R2

r2
-----+ 

  ,=

ω̃ ω 1
3
4
---J2

R2

r
2

-----+ 
  ,=

ω̃s ωs 1
3
4
---J2

R2

r2
-----+ 

  ,=

Ẽ33( )1/2 ω̃

ω̃ Ẽ33–
3
2
---ωJ2

R2

r2
-----– ΩJ .= =

ω̃ ω̃s– ΩG.=

∆ω̃ Ẽ33 ω̃s– ΩG ΩJ ΩJ ∆ω
J2

e
----- R2

r2
-----.≈–≈–= =

T̃
2π
∆ω̃
--------=

Ã A
ΩG

ΩJ
-------–

S
λ
--- e

J2
----- r2

R2
-----.= =

2 Ã/r
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period . The quadrupole precession period  of a
near-Earth orbit is two months. For the pure beating

(33)

within a timescale of t ! , the oscillation increases
precisely as in the case of a spherically symmetric field
(see Eq. (6)),

(34)

The maximum amplitude formed in time  in a near-
Earth orbit for a gyroscope with S/λ ~ 10–9 (see Eq. (7)) is

(35)

and is several orders as good as the present-day limit of
measuring small oscillations.

5. CONCLUSIONS

The general relativistic quasiresonant spin–orbit
interaction leads to oscillation of the gyroscope’s center
of mass relative to the fiducial geodesic along the
orbital normal. The beating amplitude does not include
the speed of light and equals the ratio of the intrinsic
moment of the gyroscope to its orbital moment. The
modulation frequency equals the angular velocity of the
geodetic precession. The oscillation represents the pre-
cession of the gyroscope orbital moment. Within an
acceptable time, the oscillation amplitude reaches val-
ues that are amenable to experimental analysis.

Taking the source oblateness into account decreases
the beating amplitude and increases the modulation fre-
quency by a factor that is equal to the ratio of the qua-
drupole precession velocity to the geodetic precession
velocity. The period of the quadrupole precession turns
out to be quite sufficient time to form a measurable
amplitude of the oscillation. The tidal acceleration, pro-
viding the quasiresonant character of the oscillation,
leads to strong restrictions that must be imposed on the
initial perturbations in order to distinguish the relativis-
tic spin–orbit oscillation in the background of the New-
tonian tidal oscillation.
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Abstract—We derive macroscopic Einstein equations, to within terms of the second order of smallness in
interaction, for a system of gravitationally interacting particles with unequal masses. We generalize the
results of [1, 2], which are applicable only to a system of gravitationally interacting particles with equal masses.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This work is a generalization of our works [1, 2],
which are devoted to the derivation of macroscopic Ein-
stein equations, to within terms of the second order of
smallness in interaction, for a system of gravitationally
interacting particles. Our previous results are general-
ized to systems of gravitationally interacting particles
with unequal masses.

We reduced the macroscopic Einstein equations to
the form

where Gij is the Einstein tensor, Tij is the energy–
momentum tensor, and χ is the Einstein gravitational
constant. The semicolon denotes a covariant derivative.
The new terms on the left-hand sides of the derived
equations are attributable to the interaction between
particles. They are traceless tensors with a zero diver-
gence. We give an explicit covariant expression for
these terms via the integrals of expressions dependent
on the single-particle distribution functions of interact-
ing particles over momentum space. These expressions
are proportional to the Einstein constant cubed and to
the particle density squared. The latter implies that
interaction effects can manifest themselves only in
high-density systems (the Universe at early evolution-
ary stages, dense objects close to gravitational collapse,
and others) or in macrosystems consisting of massive
objects (clusters of galaxies).

2. MACROSCOPIC EINSTEIN EQUATIONS

The method of deriving the macroscopic Einstein
equations is described in [1]; the notation used here is
the same as that in [1]. The macroscopic Einstein equa-

Gij ϕ ij; k
k µij+ + χTij,=
1063-7761/03/9604- $24.00 © 20587
tions are derived as follows. First, we write the system
of microscopic Einstein equations

(1)

where,  is the Einstein tensor of the Riemannian

space with metric ;  is the microscopic energy–
momentum tensor,

(2)

 is the determinant of the metric ;  is the

momentum of the particles of type a;  =

/ , χ = 8πk/c4 is the Einstein constant; k is

the gravitational constant; and (qi, ) is the Klim-
ontovich random function [3]:

(3)

Here, na is the number of particles of type a;  is the
canonical parameter along the particle trajectory: d  =

; and  and  are, respectively, the
coordinates and momentum of the lth particle of type a,
which can be determined from the equations of motion

(geodesic equations). The function  satisfies the
Liouville equation

(4)

G̃
ij χT̃

ij
,=

G̃
ij

g̃ij T̃
ij

T̃
ij

c
p̃4

ad

g̃–
---------- p̃a

i ũa
j Ña qi p̃ j,( );∫

a

∑=

g̃ g̃ij p̃a
i

ũa
i

p̃a
i g̃kj p̃a

k p̃a
j

Ña p̃ j

Ña q̃i p̃ j,( ) s̃δ4 qi q l( )
i–( )δ4 p̃ j p̃ j

l( ) s( )–( ).d∫
i 1=

na

∑=

s̃
s̃

g̃ijdqidq j q l( )
i p̃ j

l( )

Ña

p̃i∂Ña

∂qi
--------- Γ̃ j ik, p̃ j p̃k∂Ña

∂ p̃i

---------+ 0.=
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Next, the metric is represented as

(5)

where gij =  is the ensemble-averaged metric [1, 2].
In system (1), (2), and (4), we change from the quanti-
ties measured in the metric  to the quantities mea-
sured in the metric gij . All of these quantities are
denoted without an upper tilde. As a result, system (1),
(2), and (4) takes the form

(6)

(7)

Here, pi is the momentum measured in the metric gij and
Na is the random function in the space with metric gij .
An expression for this function can be obtained

from (3) by omitting the tilde in all quantities;  =

 –  is the difference between the Christoffel sym-

bols of the second kind for the metrics  and gij , ∆ij =

gij – uiuj , and ui = pi/ .

The next step involves expanding Eqs. (6) to within
terms of the second order of smallness in hij and aver-
aging the derived equations over the ensemble. When
we restrict ourselves to deriving the averaged equations
to within terms of the second order of smallness in
interaction, we can obtain a closed system of equations
for the single-particle distribution function fa(q, p) =
〈Na〉/na and for the averaged metric gij . The equation for
fa was previously derived in [1, 4]:

(8)

where

(9)

Here, (u, u') = , (u, u) = uiui, etc. The quantities with
and without a prime refer to the particles of types b and

g̃ij

g̃ij gij hij,+=

g̃ij〈 〉

g̃ij

Rij ∇ mΩij
m ∇ jΩim

m– Ωmn
m Ωij

n Ω jn
m Ωim

n–+ +

=  χ p4d

g–
----------α g

g̃
--- g̃ikg̃ jm

1
2
--- g̃ijg̃km– pk pmNa,∫

a

∑

pi∂Na

∂qi
--------- Γ j ik, pk p j∂Na

∂ pi

---------+
pi∂
∂ Ω jk

m ∆mi p
j pk Na( ).=

Ωkj
m

Γ̃ kj
m Γ kj

m

g̃ij

pl p
l

ui∂ f a

∂qi
-------- u j pkΓ j ik,

∂ f a

∂ pi

--------+

=  p4d

g–
----------∫

b

∑ Eij p p',( )
∂ f a

∂ p j

-------- f b'
∂ f b'

∂ p j'
-------- f a– 

  ,

Eij p p',( )
2πk2Lnb

c6 u u',( )2 1–[ ] 3/2
-----------------------------------------=

× 2 u u',( ) p p',( ) u p,( ) u' p',( )–[ ] 2 gij u u',( )2 1–[ ]–{

– uiu j ui'u j'– u u',( ) uiu j' ui'u j+( )+ } .

ui'u
i

JOURNAL OF EXPERIMENTAL 
a, respectively. The quantity L is an analog of the Cou-
lomb logarithm [4, 5]

(10)

For the averaged metric gij , the equations were brought
in [2] to the form

(11)

where the semicolon denotes a covariant derivative in
the space with metric gij , Gij is the Einstein tensor of
this space, and Tij is the macroscopic energy–momen-
tum tensor.

The tensors  and µij can be expressed in terms of
the single-particle distribution function fb specified in
eight-dimensional phase space in which all four com-
ponents of the four-dimensional momentum are
assumed to be independent:

where

(12)

L
kd
k
-----.

kmin

k∞

∫=

Gij ϕ ij ; k
k µij+ + χTij,=

ϕ ij
k

ϕ ij
k 1/2( ) δn

kδj
s δj

kδn
s–( )Pis

n ,–=

Pis
n χ3mbmcnbncc

6

8 2π( )3
----------------------------------

bc

∑=

× p'4 p''4 f b x'( ) f c x''( ) 1 10 u'u''( )2–[ ]d∫d∫
× u'nul'

1
2
---δl

n– 
  ui''us''

1
2
---gis– 

  glf

– u''lui''
1
2
---δi

l– 
  δs

f u''lus''
1
2
---δs

l– 
  δi

f–

× mcu'mK fm
1( ) u' u'',( ) mbu''mK fm

2( ) u' u'',( )+( )

–
χ3mb

2mc
2nbncc

7

4 2π( )3
---------------------------------- p'4 p''4 u'nul'

1
2
---δl

n– 
 d∫d∫

bc

∑

× ui''us''
1
2
---gis– 

  glf u''lui''
1
2
---δi

l– 
  δs

f–

– u''lus''
1
2
---δs

l– 
  δi

f u'u''( )2 δj
m u j' u'm+( )





–
1
2
--- δj

m u j' u'm–( ) 2 u'u''( )u'mu j''–

× f c x''( )
∂ f b x'( )

∂p j'
----------------K fm

1( ) u' u'',( )

+ u' u'',( )2 δj
m u j''u''m+( ) 1

2
--- δj

m u j''u''m–( )–
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(13)

In (12), we use the notation  and

 for the tensors that have the following form

--– 2 u'u''( )u''mu j' f b x'( )
∂ f c x''( )

∂ p j''
-----------------K fm

2( ) u' u'',( )




,

µij

χ3mbmcnbncc
6

16 2π( )3
----------------------------------

bc

∑=

× p'4d

g–
---------- p''4d

g–
---------- f b x'( ) f c x''( ) 1 10 u'u''( )2–( )∫∫

× u'qu j'δi
r u''ru j''δi

q– gqr u'u''( )2 1
2
---+ 

  ui''u j''+




+
1
2
--- u'u''( )2 1

2
---– 

  gij 2 u'u''( )ui'u j''–

– u'u''( )2 1
2
---– 

  δi
qδj

r





mcu'mJrqm
1( ) u' u'',( )(

+ mbu''mJrqm
2( ) u' u'',( ) )

χ3mb
2mc

2nbncc
7

8 2π( )3
----------------------------------

bc

∑–

× p'4d

g–
---------- p''4d

g–
---------- u'qu j'δi

r u''ru j''δi
q–





∫∫

+ gqr u'u''( )2 1
2
---+ 

  ui''u j''
1
2
--- u'u''( )2 1

2
---– 

  gij+

– 2 u'u''( )ui'u j'' u'u''( )2 1
2
---– 

  δi
qδj

r–




× u'u''( )2 1
2
---– 

  δ f
m u'u''( )2 1

2
---+ 

  u f' u'm+




---– 2 u'u''( )u f''u'm Jrqm
1( ) u' u'',( ) f c x''( )

∂ f b x'( )

∂ p f'
----------------

+ u'u''( )2 1
2
---– 

  δ f
m u'u''( )2 1

2
---+ 

  u f''u''m+

--– 2 u'u''( )u f' u''m Jrqm
2( ) u' u'',( ) f b x'( )

∂ f c x''( )

∂ p f''
-----------------





.

K fm
1( ) u' u'',( )

K fm
2( ) u' u'',( )
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in a local Lorentz frame of reference where gij = ηij is
the Minkowski tensor:

After calculating the integrals over τ', τ'', η', and η'',
these expressions take the form

(14)

(15)

These equalities are valid only in the local Lorentz
frame of reference. To derive covariant expressions for

 and , we take into account the
fact that these two tensors must be calculated in the
same frame of reference. It is convenient to choose a

K fm
1( ) u' u'',( )

1

u'0u''0
------------- k3d

k3
------- η' η'' τ'd

∞–

η'

∫d

∞–

η

∫d

∞–

η

∫∫=

× τ'' eik η' η–( ) e–ik η' η–( )–( )d

∞–

τ'

∫
× k f

+eik η'' η–( ) k f
–e–ik η'' η–( )–( )

× km
+ e–ik τ'' τ'–( ) km

– eik τ'' τ'–( )–( )

× i
c
-- k v''⋅( ) η'' τ''–( ) i

c
-- k v'⋅( ) τ' η'–( )+ ,exp

K fm
2( ) u' u'',( )

1

u'0u''0
------------- k3d

k3
------- η' η'' τ''d

∞–

η''

∫d

∞–

η

∫d

∞–

η

∫∫=

× τ' eik η' η–( ) e–ik η' η–( )–( )d

∞–

τ''

∫
× k f

+eik η'' η–( ) k f
–e–ik η'' η–( )–( )

× km
+ e–ik τ'' τ'–( ) km

– eik τ'' τ'–( )–( )

× i
c
-- k v''⋅( ) η'' τ''–( ) i

c
-- k v'⋅( ) τ' η'–( )+ .exp

K fm
1( ) u' u'',( )

2πc5

u'0u''0
------------- k3d

k2
-------δ k v''⋅ k v'⋅–( )∫=

×
k f

+km
+

kc k v''⋅–( ) kc k v''⋅+( )3
-------------------------------------------------------------





+
k f

+km
′ k f

–km
++

kc k v''⋅–( )2 kc k v''⋅+( )2
---------------------------------------------------------------

+
k f

–km
–

kc k v''⋅–( )3 kc k v''⋅+( )
-------------------------------------------------------------





K fm u' u'',( ),=

K fm
2( ) u' u'',( ) K fm

1( ) u' u'',( )– K fm u' u'',( ).–= =

K fm
1( ) u' u'',( ) K fm

2( ) u' u'',( )
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center-of-mass frame in which p'' = –p' as this frame. In
this frame of reference,

(16)

Here, v ' =  and  = v 'α = u 'α/u '0 are
the spatial components of the vector v'.

The covariant generalization of (16) is

(17)

The expressions for  and 
diverge when k  0, i.e., at large impact parameters.
This is because we integrate over an infinite range,
while actually we must restrict ourselves to integrating
only over the correlation region where the metric was
assumed to change only slightly. As in the case of deriv-
ing the kinetic equation, this difficulty can be obviated
by introducing a truncation in the divergent integral

We set the lower integration limit equal not to zero
but to kmin = 1/rmax, where rmax is the correlation length.

The above integral then takes on the value of 1/2  =

(1/2) . Experience in deriving the relativistic kinetic
equation (see [5, 6]) shows that in the case of a more
careful analysis, the integrals converge when r  ∞,
with the contribution from r > rmax to the integrals being
negligible. Estimates for rmax when the averaged metric
gij is the metric of an isotropic cosmological model are
given in [5, 6].

Tensor (17) has the following properties:

(18)

As a result, the expression for  is significantly

simplified. The tensor  = –(1/2)(  – )

K00 K0α 0,= =

Kαβ
4π2c

v 'u0' u0''kmin
2 1 mbu0' /mcu0''+( )

------------------------------------------------------------------ δαβ
v α' v β'

v '2
-------------– 

  .=

v 1'
2

v 2'
2

v 3'
2

+ + v α'

Kij u' u'',( )
4π2

kmin
2 u'u''( )2 1–[ ] 3/2

-------------------------------------------- u'u''( )2 1–[ ] gij–{=

– ui'u j' ui''u j'' u'u''( ) ui'u j'' ui''u j'+( )+– } .

K fm
1( ) u' u'',( ) K fm

2( ) u' u'',( )

kd

k3
-----

0

∞

∫ .

kmin
2

rmax
2

Kij u' u'',( ) Kij u'' u',( );=

Kiju'i Kiju''i 0; Kij K ji.= = =

Pis
n

ϕ ij
k δn

kδj
s δj

kδn
s Pis

n

JOURNAL OF EXPERIMENTAL 
rather than  appears in the macroscopic Einstein
equations. The expression for this tensor reduces to

(19)

Note that

(20)

In (13), we use the notation  and

 for the tensors that have the following
form in the local Lorentz frame of reference:

Calculating the integrals over η', η'', τ', and τ'' yields

Pis
n

ϕ ij
k χ3mb

2mc
2nbncc

7

8 2π( )3
---------------------------------- p'4d

g–
----------∫ p''4d

g–
----------∫

bc

∑–=

× 1
2
---g fkui''u j'' u'k u'u''( ) δj

f ui'' δi
f u j''+( )+

× u'u''( )2 1
2
---– 

  K fr u' u'',( )

× f c x''( )
∂ f b x'( )

∂ pr'
---------------- f b x'( )

∂ f c x''( )

∂ pr''
-----------------– 

  .

gijϕ ij
k 0, ϕ ij

i 0, ϕ ij
k ϕ ji

k .= = =

Jrqm
1 u' u'',( )

Jrqm
2 u' u'',( )

Jlmn
1( ) u' u'',( ) 1

u'0u''0
------------- k3d

k3
------- η'd

∞–

η

∫ η'' τ'd

∞–

η'

∫d

∞–

η

∫∫=

× τ''d

∞–

τ'

∫ kl
+e ik η' η–( )– kl

–eik η' η–( )–( )

× km
+ eik η'' η–( ) km

– e–ik η'' η–( )–( )

× kn
–eik τ'' τ'–( ) kn

+e–ik τ'' τ'–( )–( )

× i
c
-- k v''⋅( ) η'' τ''–( ) i

c
-- k v'⋅( ) τ' η'–( )+ ,exp

Jlmn
2( ) u' u'',( ) 1

u'0u''0
------------- k3d

k3
------- η'd

∞–

η

∫ η'' τ''d

∞–

η''

∫d

∞–

η

∫∫=

× τ'd

∞–

τ''

∫ kl
+e ik η' η–( )– kl

–eik η' η–( )–( )

× km
+ eik η'' η–( ) km

– e–ik η'' η–( )–( )

× kn
–eik τ'' τ'–( ) kn

+e–ik τ'' τ'–( )–( )

× i
c
-- k v''⋅( ) η'' τ''–( ) i

c
-- k v'⋅( ) τ' η'–( )+ .exp

Jlmn
1( ) u' u'',( )

c4

u'0u''0
------------- k3d

k3
------- V.p.

k v''⋅ k v'⋅–( )
-----------------------------------∫=
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(21)

The expression for  can be obtained from

the expression for  by the substitution
v '  v '' and vice versa. The symbol V.p. means that a
principal-value integral is calculated.

Just as in the previous case, we specify (21) in the
center-of-mass frame in which p'' = –p'. In this frame of

reference, the components  are (the spatial
indices in the three-dimensional velocity vector v 'α
are  omitted using the three-dimensional Kronecker
symbol δαβ)

(22)

(23)

(24)

(25)

×
kl

+km
+ kn

+

kc k v''⋅+( )3
-------------------------------

kl
+km

+ kn
– kl

+km
– kn

+ kl
–km

+ kn
++ +

kc k v''⋅+( )2 kc k v''⋅–( )
--------------------------------------------------------------+





+
kl

+km
– kn

– kl
–km

+ kn
– kl

–km
– kn

++ +

kc k v''⋅+( ) kc k v''⋅–( )2
-------------------------------------------------------------

kl
–km

– kn
–

kc k v''⋅( )–( )3
------------------------------------+





.

Jlmn
2( ) u' u'',( )

Jlmn
1( ) u' u'',( )

Jlmn
1( ) u' u'',( )

J000
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
-----------–=

×
mbu0'

mcu0''
------------ 

 
3

α
mbu0'

mcu0''
------------v ' 

  v '2

c2
-------,

J00α
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
-----------–=

×
mbu0'

mcu0''
------------ 

 
2

α
mbu0'

mcu0''
------------v ' 

  v α'

c2
------,

J0αβ
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
-----------

mbu0'

mcu0''
------------ 

 –=

× α
mbu0'

mcu0''
------------v ' 

  δαβ
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
-----------+

×
mbu0'

mcu0''
------------ 

  β
mbu0'

mcu0''
------------v ' 

  δαβ
v α' v β'

v '2
-------------– 

  ,

Jαβγ
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
-----------α

mbu0'

mcu0''
------------v ' 

 –=

× c2

v '2
------- δαβ

v γ'

c
------ δαγ

v β'

c
------ δβγ

v α'

c
------+ 2

v α' v β' v γ'

cv '2
-------------------–+

+
2

1 mbu0' /mcu0''+( )
---------------------------------------- 1

u0' u0''
-----------β

mbu0'

mcu0''
------------v ' 

 

× c2

v '2
------- δαβ

v α' v β'

v '2
-------------– 

  v γ'

c
------

+ δαγ
v α' v γ'

v '2
-------------– 

  v β'

c
------ δβγ

v β' v γ'

v '2
------------– 

  v α'

c
------+ .
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The functions α and β in (22)–(25) depend only on
the argument w = (mb /mc )v '. In explicit form,
they are

(26)

(27)

Here, we use the notation for the integral

For the reasons given above, we again set the lower
limit equal to kmin = 1/rmax.

The covariant generalization of these results
obtained in the local Lorentz center-of-mass frame of
reference to arbitrary frames of reference is

(28)

(29)

where z = (u'u'') = (u 'i ),

(30)

u0' u0''

α πc3

w3kmin

---------------

2
w
c
---- 1 w2

c2
------+ 

 

1 w2

c2
------– 

 
2

-----------------------------
1 w

c
----–

1 w
c
----+

-------------

 
 
 
 
 

ln+ ,=

β πc3

2w3kmin

------------------

2
w
c
---- 3 2

w2

c2
------– 3

w4

c4
------+ 

 

1 w2

c2
------– 

 
2

------------------------------------------------=

+ 3 1 w2

c2
------+ 

 
1 w

c
----–

1 w
c
----+

-------------

 
 
 
 
 

ln .

1
kmin
--------

kd

k2
-----.

kmin

∞

∫=

Jijk
1( ) u' u'',( ) Jijk

2( ) u'' u',( ) Jijk u' u'',( ),= =

Jijk u' u'',( ) A gijuk' giku j' g jkui'+ +( )=

– z gijuk'' giku j'' g jkui''+ +( )

– ui'u j''uk'' ui''u j' uk'' ui''u j''uk'+ +( ) 3zui''u j''uk''+ ]

+ C ui'u j' uk'[ z ui'u j' uk'' ui'u j''uk' ui''u j' uk'+ +( )–

+ z2 ui'u j''uk'' ui''u j' uk'' ui''u j''uk'+ +( ) z3ui''u j''uk''– ] ,

ui''

A
π

kmin
-------- µ2 2µz 1+ +( )1/2

1 µz+( )2

µ3 z2 1–( )5/2
---------------------------------------------------------------=

× 2µ z2 1– 1 3µ2 2µz 2µ2z2–+ +( )
1 µz+( ) µ2 2µz 1+ +( )

-----------------------------------------------------------------------------------

+
1 3µ2– 2µz 4µ2z2+ +

1 µz+( )2
----------------------------------------------------- 1 µz µ z2 1––+

1 µz µ z2 1–+ +
-------------------------------------------

 
 
 

ln ,
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(31)

Here, µ = mb/mc .
For µ = 1, these results are identical to those

obtained previously in [2].
Thus, we generalized the results of [2] to a multi-

component system of gravitationally interacting parti-
cles with unequal masses.

The tensor Jijk(u', u'') satisfies the identity

(32)

Because of the properties (28) and (32), we can
write expression (13) for µij in covariant form:

(33)

Here, we use the identity

Note that µij is a traceless tensor:

(34)

The tensors  and µij can be expressed using for-
mulas (19) and (33) in terms of the single-particle dis-

C
π

kmin
-------- µz 1+( )

1 2µz µ2+ +( )1/2µ3 z2 1–( )7/2
----------------------------------------------------------------------=

× 2µ z2 1– 5 7µ2 10µz 2µ2z2–+ +( ) ---------

+
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----------------------------------- 5 7µ2– 10µz 12µ2z2+ +( )
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1 µz µ z2 1–+ +
-------------------------------------------

 
 
 

ln .
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χ3mb
2mc

2nbncc
7

8 2π( )3
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----------∫ p''4d
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2
---+ 
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2
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2
---– 

  δi
qδj

r–




,

f c x''( )
p f'∂
∂

f b x'( ) z2 1
2
---– 

  δ f
m





+ z2 1
2
---+ 

  u f' u'm 2zu f''u'm–




Jrqm u' u'',( ).

p f'∂
∂

z2 1
2
---– 

  δ f
m z2 1

2
---+ 

  u f' u'm 2zu f''u'm–+

=  5z2 1
2
---– 

  u'm

mbc
---------.

gijµij 0.=

ϕ ij
k
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tribution functions fb specified in eight-dimensional
phase space in which all four components of the four-
dimensional momentum are assumed to be indepen-
dent. The transformation to the seven-dimensional dis-
tribution function Fb is made as follows:

Here, the function Fb depends only on the spatial
momentum components (the spatial components are
denoted by Greek indices).

Integrating (19) and (33) over  and , we reduce

the tensors  and µij to

(35)

(36)

Here,

are invariant volume elements in the three-dimensional
momentum space of the particles of types b and c,
respectively. The Greek index α in (35) take on only 1, 2,
3 (the spatial index). The derivative with respect to  in
(36) should be calculated as if all four momentum com-
ponents are independent. The dependence of  on 

nb f b qi p j,( ) Fb qi pα,( )δ glm pl pm mbc–( ).=

p0' p0''

ϕ ij
k

ϕ ij
k χ3mb

3mc
3c9

8 2π( )3
------------------------ p'3d

p'0 g–
-----------------∫ p''3d

p''0 g–
------------------∫

bc

∑–=

× 1
2
---g fkui''u j'' u'k u'u''( ) δj

f ui'' δi
f u j''+( )+

× u'u''( )2 1
2
---– 

  K fα u' u'',( )

× Fc x''( )
∂Fb x'( )

∂ pα'
----------------- Fb x'( )

∂Fc x''( )

∂pα''
------------------– 

  ,

µij

χ3mb
3mc

3c9

8 2π( )3
------------------------ p'3d

p'0 g–
----------------- p''3d

p''0 g–
------------------∫∫

bc

∑–=

× z2 1
2
---+ 

  ui''u j'' ui'u j'+( )




+ z2 1
2
---– 

  gij 2z ui'u j'' ui''u j'+( )– gqr

– 2 z2 1
2
---– 

  δi
qδj

r





Fc x''( )
p f'∂
∂

Fb x'( ) z2 1
2
---– 

  δ f
m





+ z2 1
2
---+ 

  u f' u'm 2zu f''u'm–




Jrqm u' u'',( ).

d2 p'

p'0 g–
-----------------,

d3 p''

p''0 g–
------------------

p f'

p0' pα'
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is taken into account after differentiation with respect
to .

The tensors and µij should satisfy the additional
condition

(37)

because the divergences of the tensors Gij and Tij

become zero.
Equation (37) imposes constraints on the depen-

dence of kmin on particle coordinates and relative veloc-
ity (the latter can be expressed in terms of z).

The macroscopic energy–momentum tensor appears
on the right-hand sides of the macroscopic Einstein
equations. This tensor can be expressed in terms of the
single-particle distribution functions Fb:

(38)

The kinetic equation for Fb , which can be obtained
from (8) by the integration over p0 and has the
form (53) from [1], should be added to system of equa-
tions (11)–(38).

3. POSSIBLE APPLICATIONS 
OF THE THEORY

The derived gravitational field equations for contin-
uous media differ from the classical Einstein equations

p f'

ϕ ij
k

glj ϕ ij  k;
k µij+( ) l; 0,=

Tij
p3d

p0 g–
---------------- pi p jFb p( ).∫

b

∑=
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by the additional terms

on the left-hand side.
These terms are proportional to the Einstein con-

stant cubed, but they are proportional to the particle
density squared. Consequently, these additional terms
can play a role only in high-density continuous media.
Such densities are possible at early evolutionary stages
of the Universe and inside objects close to gravitational
collapse. Therefore, the first applications of the derived
equations should naturally be sought in the theory of
early evolutionary stages of the Universe and in the the-
ory of gravitational collapse.
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Abstract—The gravitational and electromagnetic radiation from chiral superconducting cosmic string loops is
calculated. The formulas for energy, momentum, and angular momentum losses due to gravitational and elec-
tromagnetic radiation from chiral loops of an arbitrary configuration are derived. After summation over all
modes, expressions for the corresponding radiation rates averaged over the loop oscillation period have the form
of four-dimensional integrals. These formulas are reduced to sums over the kinks for loops composed of piece-
wise linear strings. For three examples of string loops, the total radiation rates are calculated numerically
depending on the chiral current along the string. In the limit of a nearly maximum current, which corresponds
to a stationary loop (vorton) configuration, we determine the upper bounds on the gravitational and electromag-
netic radiation. We also estimate the oscillation damping time of a nearly stationary loop. © 2003 MAIK
“Nauka/Interperiodica”.
¶ 1. INTRODUCTION

We investigate the properties of the gravitational
and electromagnetic radiation of energy, momentum,
and angular momentum from superconducting closed
cosmic strings with a chiral current. Formation of cos-
mic strings in early universe phase transitions is pre-
dicted by many particle-physics models (see, e.g.,
reviews in [1, 2]). In 1985, Witten showed that cosmic
strings can carry a superconducting electromagnetic
current [3]. Exact solutions of the equations of motion
for current-carrying cosmic strings were found by
Carter and Peter [4], Davis et al. [5], and Blanco-Pil-
lado et al. [6] in the case of a chiral (or null) current
JaJa = 0, which does not couple to any gauge field.

Ordinary cosmic strings (without a current) radiate
energy [7–12], momentum [7, 13, 14], and angular
momentum [14] in the form of gravitational waves. If
cosmic strings carry the electromagnetic current, cos-
mic string loops radiate both gravitational and electro-
magnetic waves. For a small current, the most intense
radiation is generated by a cusp on the loop. The radi-
ation from a single cusp of the chiral string loop with
a small current was studied by Blanco-Pillado and
Olum [15]. The radiation of loops in the opposite case
of a nearly maximum current was considered in [16]. In
this paper, we study the gravitational and electromag-
netic radiation from closed chiral string loops in the

entire range of the string current. The rates of energy ,

momentum , and angular momentum  losses (aver-
aged over the oscillation period) to the gravitational and

¶ The article was submitted by the authors in English.

Ė

Ṗ L̇
1063-7761/03/9604- $24.00 © 20594
electromagnetic waves can be expressed in the general
form as

(1)

where the coefficients , , , , , and

 depend on the particular string configuration and
the current on the string, + is the string invariant
length, µ is string mass per unit length, and q is the elec-
tromagnetic charge; we use the units " = c = 1. In what

follows, we calculate the coefficients , , ,

, , and  as functions of the current on the
string. It is known that for ordinary loops (without a
current), the corresponding coefficients for the gravita-

tional radiation are of the respective orders  ~ 100,

 ~ 10, and  ~ 10. We found that for loops with a

chiral current, the same coefficients , , and 
behave as follows: they rapidly decrease with the cur-
rent at small current values and slowly decrease at large
current values. In general, the gravitational radiation
rates are decreasing functions of the current on the
string. For the electromagnetic radiation, the situation
is quite different: the loss rates of the energy, momen-
tum, and angular momentum to electromagnetic waves
for all examples considered have a maximum near
some rather small value of the current.

The total rates of the energy, momentum, and angu-
lar momentum per unit time (averaged over the period)

Ė
gr ΓE

grGµ2, Ṗ
gr ΓP

grGµ2,= =

L̇
gr Γ L

grSixGµ2, Ė
em ΓE

emµq2= =

Ṗ
em ΓP

emµq2, L̇
em Γ L

em+µq2,= =

ΓE
gr ΓP

gr Γ L
gr ΓE

em ΓP
em

Γ L
em

ΓE
gr ΓP

gr Γ L
gr

ΓE
em ΓP

em Γ L
em

ΓE
gr

ΓP
gr Γ L

gr

ΓE
gr ΓP

gr Γ L
gr
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are usually calculated by summing the losses in differ-
ent Fourier modes. As noted by Allen et al. [11], such
calculations may not be accurate in practice because of
a slow convergence of the corresponding sums over
mode numbers. In this paper, we perform the summa-
tion over all radiation modes analytically and derive
formulas for the energy, momentum, and angular
momentum loss rates to the gravitational and electro-
magnetic radiation from the chiral string loops of a gen-
eral configuration. As a result, the corresponding rates
of radiation into the unit solid angle averaged over the
loop oscillation period are reduced to four-dimensional
integrals. In general, these integrals can be calculated
only numerically. For chiral loops composed of piece-
wise linear strings, these formulas lead to analytic
expressions for the energy, momentum, and angular
momentum radiation into the unit solid angle. For large
currents (close to the maximum value), we determine
the upper bounds of the gravitational and electromag-
netic radiation. For weak radial oscillations of a chiral
ring, we find the temporal behavior of the loop energy
and current analytically. For some other less symmetric
loop examples, we estimate the damping time of small-
amplitude loop oscillations.

This paper is organized as follows. In Section 2, we
review some general properties of chiral cosmic strings.
In Section 3, we derive new expressions for the energy,
momentum, and angular momentum gravitational radi-
ation rates by chiral loops of a general configuration
into the unit solid angle. These expressions are reduced
to four-dimensional integrals where summation over all
radiation modes is performed analytically. In Section 4,
we derive similar formulas for the electromagnetic
radiation rates. In Section 5, the radiation and oscilla-
tion damping to the vorton state of nearly stationary
loops are described. In Section 6, we present numerical
calculations of the electromagnetic and gravitational
radiation rates for some illustrative examples of chiral
loops and study the dependence of the chiral string radi-
ation on the current. In Section 7, we describe the
results obtained and discuss some qualitative features
of gravitational and electromagnetic radiation from
chiral loops.

2. MOTION OF A CHIRAL STRING
IN FLAT SPACE–TIME

In this section, for pedagogical reasons, we describe
some general properties of chiral cosmic strings, i.e.,
strings with a chiral current of JaJa = 0. The general
solution of the equations of motion of the chiral string
can be written as [4–6]

(2)

where t is the Minkowski time, σ parameterizes the

x0 t, x t σ,( )
+
4π
------ a ξ( ) b η( )+[ ] ,= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
string total energy as

(3)

+ is the invariant length of the string, and a(ξ) and b(η)
are arbitrary vector functions of ξ = (2π/+)(σ – t) and
η = (2π/+)(σ + t) satisfying the conditions

(4)

For closed chiral strings (loops), the vector functions
a(ξ) and b(η) form closed loops, called a- and b-loops.
The function k(η) in (4) can be expressed as [6]

(5)

where the function F(η) defines the auxiliary scalar
field

(6)

According to (6), the scalar field φ(σ, t) is an arbitrary
function of the single parameter η. The four-dimen-
sional current on the string is expressed through this
scalar field φ(σ, t) as [21]

(7)

where x' denotes ∂x/∂σ and  denotes ∂x/∂t. The
energy-momentum tensor of the string in this gauge is

(8)

Correspondingly, the total momentum and angular
momentum of the string are given by

(9)

(10)

3. GRAVITATIONAL RADIATION 
FROM CHIRAL LOOPS

We consider a periodic system with the period T. In
this system, the Fourier transform of the energy-
momentum tensor T µν(x, t) is given by [14]

(11)

where ωl = 2πl/T and n is an arbitrary unit vector. It is

E µ σ,d∫=

a'2 1, b'2 k2 η( ) 1. ≤= =

k2 η( ) 1
4F '2 η( )

µ
------------------,–=

φ σ t,( )
+
2π
------F η( ).=

jµ x t,( ) q σφ' σ t,( ) x'µ ẋµ–( )δ 3( ) x x σ t,( )–( ),d∫=

ẋ

Tµν µ σ ẋµ ẋν x'µx'ν–( )δ 3( ) x x σ t,( )–( ).d∫=

P µ σẋ σ t,( ),d∫=

L µ σ x σ t,( ) ẋ σ t,( )×[ ] .d∫=

T̂
µν ωl n,( )

=  
1
T
--- td

0

T

∫ x3 Tµν x t,( ) iωl t n x⋅–( ){ } ,expd∫
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useful to also define the Fourier transform of the first
moment,

(12)

For convenience, we define the four-dimensional sym-
bol nµ ≡ (1, n). For any periodic system, the correspond-
ing gravitational energy, momentum, and angular
momentum radiation rates per solid angle dΩ (averaged
over the period T) are given by the series

(13)

where [17]

(14)

and [14]

(15)

Here, Pij = δij – ninj is the projection operator to the
plane perpendicular to the unit vector n. It is possible to
simplify (14) and (15) further by rewriting them in the
corotating basis (e1, e2, e3) ≡ (n, v, w), where v and w
are arbitrary unit vectors perpendicular to each other
and to n. In this corotating basis, Eqs. (14) and (15)
become [14]

(16)

(17)

where

(18)

T̂
µνp ωl n,( )

=  
1
T
--- t x3 Tµν x t,( )xp iωl t n x⋅–( ){ } .expd∫d∫

dṖ
µ

dΩ
---------

dṖ
µ ωn( )
dΩ

---------------------,
dL̇
dΩ
-------

n 1=

∞

∑ dL̇ ωn( )
dΩ

-----------------,
n 1=

∞

∑= =

dṖ
µ ω( )

dΩ
----------------- nµGω2

π
----------PijPlm T̂ il*T̂ jm

1
2
---T̂ ij*T̂ lm––=

dL̇i ω( )
dΩ

----------------
G
2π
------e

ijkn j iωnlPpq 3T̂kl*T̂qp 6T̂kp* T̂ql+ 
 –=

+ ω2PlmPpq 2T̂kmq* T̂ lp 2T̂km* T̂ lpq–


– T̂ lpk* T̂mq
1
2
---T̂ lmk* T̂ pq+ 

 c.c+ .

dṖ
µ ω( )

dΩ
----------------- nµGω2

π
---------- τ pq* τ pq

1
2
---τqq* τ pp– ,=

dL̇ ω( )
dΩ

---------------
dL̇2

dΩ
---------v

dL̇3

dΩ
---------w,+=

dL̇2

dΩ
---------

G
2π
------ –iω 3τ13* τ pp 6τ3 p* τ p1+( ) ω2 2τ3 pq* τ pq---

–=

– 2τ3 p* τ pqq τ pq3* τ pq
1
2
---τqq3* τ pp+– 

 c.c+ ,

dL̇3

dΩ
---------

G
2π
------ iω 3τ12* τ pp 6τ2 p* τ p1+( ) ω2 2τ2 pq* τ pq---

+=

– 2τ2 p* τ pqq τ pq2* τ pq–
1
2
---τqq2* τ pp+ 

 c.c+ .
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Here, τpq and τpqr are the respective Fourier transforms
of the energy-momentum tensor and its first moment in
the new corotating basis. We note that only the sub-
scripts p and q with the values 2 and 3 appear in Eqs.
(16) and (18). For chiral loops, the Fourier transforms
τpq can be expressed as

(19)

where the functions Ip(l) and Yq(l) are expressed
through the “fundamental integrals,”

(20)

For the first moment (12), we can similarly find that

(21)

where

(22)

The crucial point of the calculation to follow is the
summation over all mode numbers l in expressions (13)
for the requested rates of the radiated gravitational
energy, momentum, and angular momentum. For this
summation, we first integrate expressions (20) and (22)
by parts to obtain an additional l in the denominator.
For example, the function Ii becomes

(23)

where the first term is equal to zero because of the peri-
odicity of a- and b-loops. Expressions for the functions

τ pq ωl n,( )
+µ
2

-------- I p l( )Yq l( ) Y p l( )Iq l( )+[ ] ,–=

Ii l( )
1

2π
------ ξ il ξ n a⋅+( )–{ } a' ei,⋅expd

0

2π

∫≡

Y j l( )
1

2π
------ η il η n b⋅–( ){ } b' e j.⋅expd

0

2π

∫≡

τ ijk ωl n,( )
+µ
8π
-------- Ii l( )N jk l( ) I j l( )Nik l( )+[–=

+ Yi l( )M jk l( ) Y j l( )Mik l( )+ ] ,

Mij l( )
1

2π
------ ξ –il ξ n a⋅+( ){ } a' ei⋅( ) a e j⋅( ),expd

0

2π

∫≡

Nij l( )
1

2π
------ η il η n b⋅–( ){ } b' ei⋅( ) b e j⋅( ).expd

0

2π

∫≡

Ii l( )
1

2π
------ ξ –il ξ n a⋅+( ){ } 1 n a'⋅+( )exp[ ]d

0

2π

∫=

×
a' ei⋅

1 n a'⋅+
--------------------- 1

2πil
----------–=

×
a' ei⋅

1 n a'⋅+
--------------------- –il ξ n a⋅+( ){ }exp

0

2π

+
1

2πil
---------- ξ

a' e j⋅
1 n a'⋅+
--------------------- ' –il ξ n a⋅+( ){ } ,expd

0

2π

∫
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Yj , Mij , and Nij can be integrated by parts similarly. We
finally obtain

(24)

where

(25)

Substituting (24) in (19) and (21), we find

(26)

where

(27)

Next, substituting (26) in (16) and (18), we find the
radiation rates of E, P, and L on the particular eigenfre-

Ii
1

2πil
---------- ξ(i –il ξ n a⋅+( ){ } ,expd

0

2π

∫=

Y j
1

2πil
---------- η= j il η n b⋅–( ){ } ,expd

0

2π

∫–=

Mij ξ 1
2πil
----------}ij

1

2πl2
----------}̃ij– 

  –il ξ n a⋅+( ){ } ,expd

0

2π

∫=

Nij – η 1
2πil
----------1ij

1

2πl2
----------1̃ij+ 

  il η n b⋅–( ){ } ,expd

0

2π

∫=

(i

a' ei⋅
1 n a'⋅+
--------------------- ', = j

b' e j⋅
1 n b'⋅–
--------------------- ',= =

}ij

a' ei⋅
1 n a'⋅+
--------------------- ' a e j⋅( ),=

}̃ij
a' ei⋅( ) a' e j⋅( )

1 n a'⋅+( )2
----------------------------------- ',=

1ij

b' ei⋅
1 n b'⋅–
--------------------- ' b e j⋅( ),=

1̃ij
b' ei⋅( ) b' e j⋅( )

1 n b⋅ '–( )2
------------------------------------ '.=

τ ij
+µ

8π2l2
------------ ξ η 7ijdd

0

2π

∫
0

2π

∫–=

× il ξ η– n a b+( )⋅+[ ]–{ } ,exp

τ ijk
+2µ

32π3l2
--------------- ξ η 7ijk

1
il
---7̃ijk+ 

 dd

0

2π

∫
0

2π

∫–=

× il ξ η– n a b+( )⋅+[ ]–{ } ,exp

7ij (i= j ( j=i,+=

7ijk (i1 jk ( j1ik =i} jk = j}ik,+ + +=

7̃ijk –(i1̃ jk ( j1̃ik– =i}̃ jk =̃ j}ik.+ +=
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quency ωl = 2πl/T,

(28)

(29)

where we use the notation

(30)

It is assumed that integration in (28) and (29) is over the
four-dimensional cube with the side (0, 2π); we also use
the notation d4ξ = dξdξ'dηdη'.

We now find the form of expressions (28) and (29)
suitable for summing over the modes l. Using the
known values for infinite series [18]

(31)

we obtain the final expressions for the gravitational
radiation of energy, momentum, and angular momen-

Ṗ
µ ω( )d

dΩ
----------------- nµ Gµ2

4π3l2
------------ ξ4 3 l∆x( ),cosd∫=

dL̇v

dΩ
---------

G+µ2

16π4
---------------–=

× ξ4 l∆x( )sin

l3
--------------------- 3λ2 Λ̃2+( ) l∆x( )cos

l2
----------------------Λ2+ ,d∫

dL̇w

dΩ
---------

G+µ2

16π4
---------------=

× ξ4 l∆x( )sin

l3
--------------------- 3λ3 Λ̃3+( ) l∆x( )cos

l2
----------------------Λ3+ ,d∫

∆x ξ ξ '– η η '–( )–=

+ n a ξ( ) a ξ'( ) b η( ) b η'( )–+–[ ] ,

3 7pq' 7pq
1
2
---7qq' 7pp,–=

λ2 713' 7pp 273 p' 7p1,+=

λ3 712' 7pp 272 p' 7p1,+=

Λ2 = 273 pq' 7pq 273 p' 7pqq 7pq3' 7pq–
1
2
---7qq3' 7pp,+–

Λ̃2 = 27̃3 pq
' 7pq 273 p' 7̃pqq 7̃pq3' 7pq–

1
2
---7̃qq3' 7pp,+ +

Λ3 = 272 pq' 7pq   2–  7 2 p ' 7 pqq 7 pq 2 ' 7 pq –
1
2
--- 7 qq 2 ' 7 pp ,+

Λ̃3 = 27̃2 pq
' 7pq 272 p' 7̃pqq 7̃pq2J 7pq–

1
2
---7̃qq2' 7pp.+ +

lx( )cos

l2
------------------

l 1=

∞

∑ 1
4
--- x π–( )2 π2

12
------, 0 x 2π,≤ ≤–=

lx( )sin

l3
-----------------

l 1=

∞

∑ 1
12
------ x π–( )3 π2x–[ ] π3

12
------,+=

0 x 2π,≤ ≤
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tum rates [19] from (28) and (29) as

(32)

(33)

We note that the integrals in (32) and (33) do not con-
tain the terms π2/12 and π3/12 originating in (31)
because the corresponding contributions vanish in the
integrals. The advantage of formulas (32) and (33) over
the corresponding formulas (16) and (17) is that there
are no summations over modes. However, because of
the presence of the function ∆x(mod)2π, the four-
dimensional integrals in (32) and (33) cannot be
reduced to products of lower dimensional integrals, and
therefore numerical calculations of the four-dimen-
sional integrals become more complicated.

4. ELECTROMAGNETIC RADIATION 
FROM CHIRAL LOOPS

We now consider the electromagnetic radiation
from an arbitrary relativistic periodic system in a simi-
lar way. We calculate the electromagnetic radiation by
analogy with Durrer’s calculations of the gravitational
radiation [14]. In the Lorentz gauge, a retarded solution
for the electromagnetic potential Aµ in such a system is
given by

(34)

where jµ is the four-dimensional current, and we set
tret = t – |x – x' | We consider formula (34) in the limit
r = |x | @ |x' |. Expanding (34) in a series in 1/r and tak-
ing the first two terms into account, we obtain

(35)

where n = x/r. Expanding tret in a series in |x' |/r, we

dṖ
µ

dΩ
--------- nµ Gµ2

16π3
----------- ξ4 3 ∆xmod2π π–( )2,d∫=

dL̇v

dΩ
---------

G+µ2

64π4
--------------- ξ4 [ ∆xmod2π π–( )3 ---





d∫–=

– π2∆xmod2π] λ2
1
3
---Λ̃2+ 

  ∆xmod2π π–( )2Λ2+




,

dL̇w

dΩ
---------

G+µ2

64π4
--------------- ξ4 ∆xmod2π π–( )3[ ---





d∫=

– π2∆xmod2π] λ3
1
3
---Λ̃3+ 

  ∆xmod2π π–( )2Λ3+




.

Aµ x t,( )
jµ x' tret,( )

x x'–
----------------------- x',d∫–=

Aµ x t,( )
1
r
--- jµ x' tret,( ) x'd∫=

–
1

r2
---- jµ x' tret,( )x'i x'd∫ O r 3–( ),+
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then find

(36)

Equation (36) implies the useful relation

(37)

Similarly to the case of the gravitational field (T µν 
jµ, hµν  jµ, etc.), we have the Fourier transforms of

the current  and its first and second moments  and

,

(38)

These quantities satisfy the conditions

(39)

which follow from the relations

(40)

Using (38) and (40), we obtain from (35) 

(41)

To calculate the energy and momentum radiation
losses, we keep only terms on the order of 1/r in (41).

tret t r n x'
1
2r
-----Pijx'ix' j– O x' 2/r2( ) x' .+⋅+–=

Aµ j, Aµ 0, n j– O Aµ/r( ).+=

     
     

j̃
µ

j̃
µp

j̃
µpq

j̃
µ ωl n,( )

1
T
--- t x3 jµ ωl x,( ) iωl t n x⋅–( ){ } ,expd∫d

0

T

∫=

j̃
µp ωl n,( )

1
T
--- t x3 jµ ωl x,( )xpd∫d

0

T

∫=

× iωl t n x⋅–( ){ } ,exp

j̃
µpq ωl n,( )

1
T
--- t x3 jµ ωl x,( )xpxqd∫d

0

T

∫=

× iωl t n x⋅–( ){ } .exp

j̃
0

nk j̃
k

– 0,=

–iω j̃
0 p

j̃
p

– iωnk j̃
kp

+ 0,=

iωPmn j̃
0mn

np j̃
pmn

–( ) 2Ppq j̃
pq

+ 0,=

j µ,
µ 0,=

jµ t x',( ) µ, x'p iω t n x'⋅–( ){ }exp[ ] td x3d∫ 0,=

jµ t x',( ) µ, x'2 n x'⋅( )–[ ]{∫
× iω t n x'⋅–( ){ } dtd x3exp 0.=

Aµ x t,( )
1
r
--- e

iωl t r–( )–

l 1=

∞

∑=

× j̃µ ωl n,( )
np

r
----- j̃µp ωl n,( )

iωl

2r
-------Ppq j̃µpq ωl n,( )+ +

+ c.c. O r 3–( ).+
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The radiation of energy from the system is determined
by the Poynting vector as [20]

(42)

where E and H are the electric and magnetic fields.
Using (41), we obtain from (42) 

(43)

where

(44)

We now calculate electromagnetic radiation of the
angular momentum. The angular momentum rate per
unit solid angle is given by [20]

(45)

In calculating [n × E] and [n × H], it suffices to keep
only terms on the order of 1/r, but the longitudinal
components n · E and n · H arise from terms on the
order of 1/r2 . As a result, the term r3 is canceled
in (45). This implies that the distance from the system
r does not enter the final formula, as should be the case.
Using (41) and (40), we obtain

(46)

Substituting (46) in (45), we obtain

(47)

dĖ
em

dΩ
------------

E H×
4π

-----------------,=

dṖem
µ

dΩ
------------

dṖ
µ ωn( )
dΩ

-------------------,
n 1=

∞

∑=

dṖem
µ ω( )
dΩ

-------------------- nµω2

2π
------Ppq j̃ p* j̃q.=

dL̇
em

dΩ
------------

r3

4π
------ n E×[ ] n E⋅( ) n H×[ ] n H⋅( )+[ ] .=

n E×[ ] i
e

ijkn j Ak 0,–=

=  
iωl

r
------- –iωl t r–( ){ } e

ijkn j j̃k c.c.,+exp
l 1=

∞

∑–

n H×[ ] i iωl

r
------- iωl t r–( )–{ } Pij j̃k c.c.,+exp

l 1=

∞

∑=

n E⋅ –
iωl

r2
------- iωl t r–( )–{ } Ppq j̃ pq c.c.,+exp

l 1=

∞

∑=

n H⋅
iωl

r2
------- iωl t r–( )–{ } e

pqrnp j̃rq c.c.+exp
l 1=

∞

∑=

dL̇
em

dΩ
------------

dL̇
em ωn( )
dΩ

----------------------,
n 1=

∞

∑=
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where

(48)

As for the gravitational field, we rewrite (44) and (48) in
the corotating basis (e1, e2, e3) = (n, v, w),

(49)

(50)

where

(51)

and ι p and ι pq are components of jµ and jµp in this coro-
tating basis.

For superconducting chiral strings, we obtain from
expression (7) for the current that

(52)

where the function Ii(l) is given by (20) and X(l) is

(53)

Similarly, for the first moment ι pq , we obtain

(54)

where Mpq is given by (22) and Zq is

(55)

We now integrate expressions (53) and (55) by parts to

dL̇i
em ω( )
dΩ

--------------------

=  ω 
2

 
4

 
π
 ------ e 

ijk P pq P ik e ipq – ( ) n j j ˜ k * j ˜ pq c.c.+ [ ] .

dṖem
µ ω( )
dΩ

-------------------- nµω2

2π
------ ι̃ p* ι̃ p,=

dL̇
em ω( )
dΩ

--------------------
dL̇2

em

dΩ
-----------v

dL̇3
em

dΩ
-----------w,+=

dL̇2
em

dΩ
----------- ω2

4π
------– ι 3*ι pp ι 2* ι 23 ι 32–( ) c.c.+ +[ ] ,=

dL̇3
em

dΩ
-----------

ω2

4π
------ ι 2*ι pp ι 3* ι 23 ι 32–( ) c.c.+–[ ] ,=

ι i ωl n,( )
+q µ

2
---------------- Ii l( )X l( )[ ] ,=

X l( )
1

2π
------ ηeil η n b⋅–( ) 1 b' 2– .d

0

2π

∫≡

ι pq ωl n,( )
+2

q µ
8π

------------------ I p l( )Zq l( ) X l( )Mpq l( )+[ ] ,=

Zi l( )
1

2π
------ ηeil η n b⋅–( ) 1 b' 2– b ei⋅( ).d

0

2π

∫≡
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obtain an additional l in the denominator,

(56)

where

(57)

Substituting (20), (22), and (56) in (52) and (54), we
obtain

(58)

where

(59)

Finally, substituting (58) in (49) and (51), we find the
expressions for electromagnetic radiation rates of the
energy, momentum, and angular momentum in a unit
solid angle at the frequency ωl ,

(60)

(61)

X
1

2πil
---------- η- il η n b⋅–( ){ } ,expd

0

2π

∫–=

Z j η 1
2πil
----------] j

1

2πl2
----------]̃ j+ 

 d

0

2π

∫–=

× il η n b⋅–( ){ } ,exp

-
1 b' 2–

1 n b'⋅–
---------------------- '

,=

] j
1 b' 2–

1 n b'⋅–
---------------------- ' be j( ),=

]̃ j
1 b' 2– b' e j⋅( )

1 n b'⋅–
----------------------------------------

'
.=

ι i
+q µ
8π2l2

---------------- ξ η )i –il ξ η– n a b+( )⋅+[ ]{ }expdd

0

2π

∫
0

2π

∫=

ι ij
+2

q µ
32π3l2
------------------ ξ η )ij

1
il
---)̃ij+ 

 dd

0

2π

∫
0

2π

∫=

× il ξ η– n a b+( )⋅+[ ]–{ } ,exp

)i (i-, )ij (i] j -}ij,+= =

)̃ij (i]̃ j -}̃ij.+–=

dṖem
µ ωl( )
dΩ

--------------------- nµ q µ2

8π3l2
------------ ξ4 3em

l∆x( ),cosd∫=

dL̇v
em

dΩ
-----------

+q2µ
32π4
--------------=

× ξ4 l∆x( )sin

l3
---------------------Λ̃2

em l∆x( )cos

l2
----------------------Λ2

em– ,d∫
dL̇w

em

dΩ
----------- –

+q2µ
32π4
--------------=

× ξ4 l∆x( )sin

l3
---------------------Λ̃3

em l∆x( )cos

l2
----------------------Λ3

em– ,d∫
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where

(62)

As for the gravitational radiation, we use the values
for infinite series (31) to obtain the total electromag-
netic radiation rates of the energy, momentum, and
angular momentum [19],

(63)

(64)

As a result we found expressions for the electromagnet-
ically radiated energy, momentum, and angular
momentum from chiral string loops in which the sum-
mation over modes l is carried out.

5. RADIATION
OF NEARLY STATIONARY LOOPS

We can now consider small-amplitude oscillations
of the chiral string loop (i.e., a string that is close to its
vorton state) in more detail. An arbitrary function b(η)
in the solution for string motion (2) is then such that
b'(η) = k(η) ! 1. If three-dimensional coordinates are
chosen such that the b-loop is near the origin of the
coordinate system (e.g., exactly intersects the origin of
the coordinate system), then b(η) ! 1. We now return
to expressions (13). The expressions for the functions
Yj(l) and Nij(l) can be integrated by parts twice to
increase the power of l in the denominator, while the
expressions for Ij(l) and Mij(l) are left unchanged. We

3em )p' )p,=

Λ2
em )3' )pp )2' )23 )32–( ),+=

Λ̃2
em

)3' )̃pp )2' )̃23 )̃32–( ),+=

Λ3
em )2' )pp )3' )23 )32–( ),–=

Λ̃3
em

)2' )̃pp )3' )̃23 )̃32–( ).–=

dṖem
µ

dΩ
------------ nµ q2µ

32π3
----------- ξ4 3em ∆xmod2π π–( )2,d∫=

dL̇v
em

dΩ
-----------

+q2µ
128π4
-------------- ξ4d∫=

× 1
3
--- ∆xmod2π π–( )3 π2∆xmod2π–( )Λ̃2

em

---– ∆xmod2π π–( )2Λ2
em ,

dL̇w
em

dΩ
-----------

+q2µ
128π4
-------------- ξ4d∫–=

× 1
3
--- ∆xmod2π π–( )3 π2∆xmod2π–( )Λ̃3

em

---– ∆xmod2π π–( )2Λ3
em .
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assume that b(η) is twice continuously differentiable
and b'''(η) is piecewise continuous. Integrating in (20)
and (22) by parts twice and using the smallness of b'(η),
we obtain

(65)

As has been noted, we are free to add any numerical
coefficient to (∆xmod2π – π)2 in (32) without changing
the value of the integral. Using this, we add –π2/2, and
then Eq. (32) implies

(66)

It only remains to estimate the function 3 in (66).
Using (20), (27), (30), and (65) we easily find

(67)

where b3 is the maximum value of |b'''(η) | on the seg-
ment η ∈  (0, 2π). From (66) and (67), we then estimate
the energy losses as

(68)

We next estimate the upper bounds of the radiated
angular momentum. Similarly to the case of energy and
momentum radiation, we use Eqs. (33), (30), (27), and
(65) to find the upper bounds of losses of the angular
momentum to gravitational waves,

(69)

We now consider the electromagnetic radiation in
the case of a large current. To find the first-order expan-
sion with respect to k in (53), we must take not only zero,
but also the first term in the expansion of exp(−iln · b),
into account. Subsequent integration of the resulting
expression by parts gives

(70)

Yi l( ) 1

2πl2
----------– ηeilηb''' ei,⋅d

0

2π

∫=

Nij l( )
1

2πl2
---------- ηeilη b' ei⋅( ) b e j⋅( )[ ] ''.d

0

2π

∫–=

dṖ
µ

dΩ
---------

=  nµ Gµ2

16π3
----------- ξ4 3 ∆xmod2π π–( )2 π2/2–[ ]d∫

≤ Gµ2π3

2
---------------- 3 .

3 12b3
2,≤

Ė
gr

24Gµ2π4b3
2, Ṗ

gr
24Gµ2π4b3

2.≤≤

L̇
gr

12 2π4 1 4

3 3
----------+ 

  G+µ2b3
2.≤

X l( ) . 
1

2πl2
---------- ηeilηn b'''.⋅d

0

2π

∫–
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For the function Zi , we have

(71)

Similarly to the gravitational case, we can find the
bounds of the electromagnetic radiation for a large cur-
rent. Using (70), (71), (64), (63), (62), and (59), we
obtain

(72)

The presence of the third derivative b'''(η) in (68),
(69), and (65) is not surprising and resembles the qua-
druple gravitational radiation formula (see, e.g., [20])

(73)

involving the third time derivative of the quadruple

moment Dij . Electromagnetic radiation involves  in
the dipole approach (d is the dipole moment). Arguing
similarly, we can conclude that in this case, the second
derivative of b(η), not the third, must be restricted.
However, in the first order of the expansion in k, the
dipole radiation is equal to zero, the first nonzero term
is quadruple, and we therefore again obtain the depen-
dence on b'''.

We note that it is not necessary to restrict the third
derivative b''' in general. For example, if the string has
kinks (see below), the first derivative b' is discontinu-
ous (and consequently, Yp(l) ∝  1/l, M(l) ∝  1/l). Con-
vergence of series (13), (43), and (47) is then ensured
by the behavior of fundamental integrals Ip(l) ∝  1/l at
l @ 1.

It is possible to derive rather simple expressions for
the total energy, momentum, and angular momentum
radiated by chiral loops in the limit, as the loops are
very close to their stationary states, i.e., k ! 1 in (4).
Additionally, it is supposed that k is independent of η
and the current jµ is therefore constant along the string.
Using expansions of (32), (33), (63), and (64) in powers
of k, we can write the corresponding gravitational and
electromagnetic rates as

(74)

where Kem and Kgr are numerical coefficients depend-
ing only on the loop geometry. We see that radiation
rates of nearly stationary chiral loops are proportional
to k2. The geometrical numerical factors K in Eq. (74)

Zi l( )
1

2πl2
---------- ηeilη b'' ei⋅( ).d

0

2π

∫–≈

Ė
em π4q2µb3

2, Ṗ
em π4q2µb3

2,≤≤

L̇
em

2π3 1 4π
9 3
----------+ 

  +q2µb3
2.≤

Ė
G
45
------ Ḋ̇̇ij

2
=

ḋ̇

Ė
gr

KE
grGµ2k2, Ṗ

gr
KP

grGµ2k2,= =

L̇
gr

KL
gr+Gµ2k2, Ė

em
KE

emq2µk2,= =

Ṗ
em

KP
emq2µk2, L̇

em
KL

em+q2µk2,= =
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are in turn related to the corresponding coefficients Γ in
Eq. (1) as

(75)

We now evaluate the damping time of small-ampli-
tude oscillations of nearly stationary chiral strings cor-
responding to the limit k ! 1. For simplicity, we again
assume that k is independent of η in the considered
limit (this assumption is valid in the solvable examples
considered above). The total loop charge conservation
in (7) then gives

(76)

From this equation, we find the relation between the
energy E and the parameter k of the chiral string with
small-amplitude oscillations,

(77)

where Ev = Lµ is the energy of the stationary (vorton)
chiral loop configuration at k = 0. Comparing (77) with
(74), we estimate the damping time of string oscilla-
tions [16] as

(78)

We next express (78) through the vorton length. We
have Ev = Lµ, where L is the invariant length and the
physical length of a stationary string is equal to half the
invariant length Lph = L/2 [22]. We find

(79)

Also assuming for simplicity that k depends only on
time and using Eqs. (74) and (77), we find the oscilla-
tion damping law

(80)

where k0 = k(t = 0); therefore, the damping time due to
gravitational radiation is

(81)

and the time due to electromagnetic radiation is

(82)

Γ Kk2.=

q µ
2

----------L 1 k2– const.=

E . Ev 1 k2

2
----+ 

  ,

τ
Ev

2 KgrGµ2 Kemq2µ+( )
---------------------------------------------------.∼

τ
Lph

KgrGµ Kemq2+
-------------------------------------.∼

k2 k0
2 t

1

τc
gr

------ 1

τc
em

-------+ 
 –

 
 
 

,exp∼

τc
gr Ev

2KgrGµ2
----------------------∼

Lph

KgrGµ
----------------=

τc
em Ev

2Kemq2µ
---------------------∼

Lph

Kemq2
--------------.=
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Substituting (80) in (77), we obtain

(83)

The effective number of oscillations during the damp-
ing time (oscillator quality) is

(84)

To restore the standard CGS units, we replace
Gµ2  Gµ2c, q2µ  q2µc2/" and choose the stan-
dard normalization for the string mass per unit length
Gµ/c2 = 10–6µ6 and qe = q/e for the dimensionless
charge carrier on the string, where the elementary elec-
tric charge is e = 4.8 × 10–10. As a result, the damping
times are expressed as

(85)

Oscillator quality (84) for the gravitational and electro-
magnetic radiation is given by the respective formulas

(86)

with αem = e2/c". The ratio of the damping times is

(87)

If /µ6 * 1.4 × 10–3, the electromagnetic radiation pre-
vails in the chiral loop evolution (this is valid for the
standard values µ6 ~ 1 and qe ~ 1). If, on the contrary,

/µ6 & 1.4 × 10–3 (for example, if the current is neu-
tral and there is no electromagnetic radiation at all),
then the pure gravitational radiation determines the
evolution.

6. NUMERICAL EXAMPLES 
OF RADIATING LOOPS

In this section, we apply analytical formulas (32),
(33), (63), and (64) derived above for gravitational and
electromagnetic radiation to some particular examples
of chiral loops. At the final steps, numerical calcula-
tions of four-dimensional integrals are used to find the
energy, momentum, and angular momentum radiation
rates as functions of the current on the string.

We first consider the class of piecewise linear kinky
loops. Let a(ξ) and b(η) be piecewise linear functions;
that is, vector functions a(ξ) and b(η) are closed loops

E Ev 1
k0

2

2
---- t

1

τc
gr

------ 1

τc
em

-------+ 
 –

 
 
 

exp+ .∼

Q
τ
T
--- 2

L
--- τgrτem

τgr τem+
--------------------.∼=

τgr Lphc

KgrGµ
----------------, τem Lph"

Kemq2
--------------.∼∼

Qgr 1

Kgr
-------- c2

Gµ
--------, Qem 1

Kem
--------- 1

α emqe
2

--------------,∼∼

τgr

τem
------- q2

Gµ"
----------- Kem

Kgr
--------- 

  1.4 10 4– qe
2

µ6
-----Kem

Kgr
---------× .≈∼

qe
2

qe
2
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a(ξ)

b(η)

hybrid loop3-3 piecewise loop

b(η)

a(ξ)

2-4 piecewise loop

b(η)

a(ξ)

Fig. 1. Schematic view of the vector functions a(ξ) and b(η) for radiating loop examples considered in Sections 6.1, 6.2, and 6.3.
consisting of connected straight parts. The join points
of segments of a- and b-loops, where a'(ξ) and b'(η) are
discontinuous, are called “kinks”. We take the a-loop
consisting of Na and the b-loop consisting of Nb seg-
ments (parts). Kinks are labeled by i = 0, 1, …, Na – 1,
and the value of ξ on the kink labeled by i is denoted as
ξi. In what follows, we use superscripts for the segment
labels and subscripts for tensor components. Because
we use only spatial tensor components, there should be
no confusion. Without loss of generality, we can set

ξ0 = 0. We note that  = ξi + 2π because of period-
icity. Using the notation ∆ξi = ξi + 1 – ξi, Ai = a(ξi), and
ai = (Ai + 1 – Ai)/∆ξi, and similarly for the b-loop,
we find

(88)

For piecewise linear loops, the functions (p , =p , }pq ,
1pq , -, and ]p in (25) and (57) become the sums of
delta functions because of the discontinuity of a' and b'
at the kinks. For example, the function (p in (25) is
given by

(89)

Similar expressions can be obtained for the other func-
tions. Due to the presence of delta functions in (p , =p ,
}pq , 1pq , -, and ]p , the integrations in (32), (33),
(63), and (64) can be carried out easily. To obtain the
expressions for the gravitational and electromagnetic
radiation from the general formulas, we must replace

ξ
i Na+

a ξ( ) Ai ξ ξ i–( )ai, ξ ξ i ξ i 1+,[ ] ,∈+=

b η( ) B j η η j–( )b j, η η j η j 1+,[ ] .∈+=

(p
ai ep⋅

1 ai n⋅+
---------------------

ai 1– ep⋅
1 ai 1– n⋅+
---------------------------–

 
 
 

δ ξ ξ i–( ).
i

∑=
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integrations in (32), (33), (63), and (64) by summations
over the kinks and make the substitutions

(90)

Similar substitutions must be performed for the func-
tions Mpq , 1pq , X, and Zp .

6.1. 2-4 Piecewise Loop 

As the first example, we consider the chiral string
loop shown in Fig. 1. In this example, the a-loop con-
sists of two segments and lies along the z axis. One kink
of the a-loop is positioned at the origin (ξ = 0) and the
other kink (ξ = π) has the coordinates π(cosα, 0, sinα).
The positions of the b-loop kinks are as follows: the

first kink at η = 0 has the coordinates (πk/2 )(1, 0, 0),
the second kink at η = π/2 has the coordinates

(πk/2 )(0, 1, 0), the third kink at η = π has the coor-

dinates (πk/2 )(–1, 0, 0), and the position of the

fourth kink at η = 3π/2 is given by (πk/2 )(0, –1, 0).
We call this loop the 2-4 piecewise loop. The depen-
dence of the radiated gravitational and electromagnetic
energy on the mode number l is shown in Fig. 2 for the
2-4 piecewise loop with α = π/2. The decrease of the
radiated energy with the mode number l is more pro-
nounced for the larger current, as it should be physi-
cally, because the maximal speed of the string

∆x xijkl ξ i ξk– η j η l–( )–=

+ n ai ak– b j bl–+( ),⋅

(p (p
i ai ep⋅

1 ai n⋅+
---------------------

ai 1– ep⋅
1 ai 1– n⋅+
---------------------------– ,=

=p =p
j b j ep⋅

1 b j n⋅–
---------------------

b j 1– ep⋅
1 b j 1– n⋅–
---------------------------– .=

2

2

2

2
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Fig. 2. Radiated gravitational energy rate (left graph)  in the units Gµ2 and the electromagnetic energy rate (right graph) 

in the units q2µ. For the 2-4 kinky loop, the energy radiation is drawn as a logarithmic function of the mode number N for different
values of the parameter k.
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Fig. 3. The total radiated gravitational and electromagnetic energy rates  in the units Gµ2 (left graph) and  in the units q2µ
(right graph) correspondingly for the 2-4, 3-3 piecewise and hybrid kinky loops as a function of the parameter k. The following
parameters are chosen: α = π/2, β = π/2, γ = 0.

Ė
gr

Ė
em

. .
decreases as the current increases. In Fig. 3, the depen-
dence of the total radiated energy on the parameter k is
shown for α = π/2. We can see a monotonic increase of
the gravitational energy radiation with k (i.e., with a
decrease in the string current). At the same time, the
electromagnetic energy radiated by the string has a

maximum near k ~ 0.9. The value of k =  at which
the maximum for the gravitational radiation rate is
reached, is exactly 1, and for the electromagnetic radi-

ation rate,  ~ 0.9.

kmax
gr

kmax
em
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The corresponding rates for the angular momentum
as a function of the mode number are shown in Fig. 4.
For the electromagnetic radiation, we can also see weak
oscillations of the angular momentum rate in addition
to the overall decrease in the radiated angular momen-
tum with the mode number.

The total angular momentum radiation to electro-
magnetic and gravitational waves is shown in Fig. 5.
The graphs for the angular momentum rates look very
similar to the graphs for the energy radiation. The cor-
AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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Fig. 4. The angular momentum  radiated to gravitational waves in the units Gµ2 (left graph) and the angular momentum 

radiated to electromagnetic waves in the units q2µ (right graph). For the 2-4 kinky loop, the energy radiation is drawn as a logarith-
mic function of the mode number N for different values of parameter k.
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Fig. 5. The total angular momentum radiated to gravitational and electromagnetic waves,  in the units Gµ2 and  in the units

q2µ, respectively, for the 2-4, 3-3 piecewise and hybrid kinky loops as a function of the parameter k. For the 2-4 loop, α = π/2, for
3-3 loop, β = π/2, and for the hybrid loop, γ = 0.

L̇
gr

L̇
em

. .
responding gravitational radiation rates increase mono-
tonically with k, and the electromagnetic radiation of
momentum has maxima near k = 0.9. Using the general
expressions for gravitational and electromagnetic radi-
ation in Eqs. (32), (33), (63), and (64), we can easily
calculate the coefficients K in the case of large currents.

For α = π/2, we find that  = 28.36,  = 1.41,

 = 4, and  = 0.25. The radiated gravitational 

and electromagnetic  powers are approximately
equal to Kk2 in accordance with Eq. (75).

KE
gr KL

gr

KE
gr KL

gr Ė
gr

Ė
em
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Durrer [14] found that for some particular class of
ordinary cosmic string loops, the radiated angular

momentum  is antiparallel to the stationary angular
momentum Lst of the loop. This implies that the angular
momentum of the loops always decreases with time due
to gravitational radiation. Our results for the angular
momentum radiation to electromagnetic and gravita-
tional waves for string loops with the chiral current
agree with the results of Durrer in general. The chiral
loops considered in this paper also lose angular
momentum with time. However, in contrast to the

L̇
gr
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Fig. 6. The total momentum radiated to gravitational and electromagnetic waves, respectively,  in the units Gµ2 and  in the

units q2µ, for the 3-3 piecewise loop with different parameters β2 and with β1 = 0 as a function of the parameter k. The three cases
are considered with β2 = π/2, π/4, and π/8. 

Ṗ
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Ṗ
em
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examples considered by Durrer, we found that for some

configurations of chiral loops,  and  are not
exactly antiparallel to the total angular momentum of
the loop Lst , but deviate by a small angle. In Table 1, the

values εgr = (  · Lst)/ |Lst | and εem = (  ·

Lst)/ |Lst | determining the angle between  and
Lst are presented for the 2-4 piecewise loop with α =
π/4. We note that for symmetric configurations with

α = π/2, the angular momentum radiation ,  is
exactly antiparallel to Lst at any k.

6.2. 3-3 Piecewise Loop 

As the second example, we consider the two-param-
eter piecewise linear loop with a and b-loops consisting
of three segments (Fig. 1). Positions of the a-loop kinks
are given by the following coordinates: the first kink at
η = 0 is at the origin, the second kink at η = 2π/3 has

the coordinates –(π/3)(cosβ1, , sinβ1), and the third

kink at η = 4π/3 has the coordinates (π/3)(cosβ1, – ,
sinβ1). The b-loop is given by almost the same condi-
tions, except for the angle β1 replaced by β2. We call

L̇
gr

L̇
em

L̇
gr

L̇
gr

L̇
em

L̇
em

L̇

L̇
gr

L̇
em

3

3
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this loop the 3-3 piecewise loop. The total radiated
energy rates to the gravitational and electromagnetic
waves for β1 = 0 and β2 = π/2 are shown in Fig. 3. This
loop also radiates momentum and angular momentum.
The total angular momentum radiation rates are shown
in Fig. 5. In Fig. 6, the total momentum radiation rates
to electromagnetic and gravitational waves are shown
for different values of the parameters β1 and β2. For the
momentum radiation, we can see a different situation
from that in the case of the energy and angular momen-
tum radiation: for each value of k, the momentum rate
has a local maximum on the interval k ∈  (0, 2π).

6.3. Hybrid Kinky Loop 

As the third example, we consider the loop with the
configuration

(91)

The b-loop in this example is a circle in the x, y plane
and A = (cosγ; 0; sinγ) (Fig. 1). For γ = π/2, the gravi-
tational and electromagnetic radiated energy rates and

a A
ξ , 0 ξ π,≤ ≤
π ξ, π ξ 2π,≤ ≤–




=

b k ηsin η 0,cos–,( ).=
The cosine of the angle between  and Lst and between  and Lst for the 2-4 piecewise loop

k 0.2 0.4 0.6 0.8 1.0

2–4 loop, α = π/4 εgr –0.94 –0.95 –0.95 –0.96 –0.97

εem –0.97 –0.99 –0.99 –0.99 –

L̇
gr

L̇
em
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angular momentum rates are shown in Figs. 3 and 5.
The total gravitational energy radiation for k = 1 coin-

cides with the result of Allen et al. [12] (  ≈
39.0Gµ2).

6.4. Weakly Oscillating Ring Loop 

As the final example, we consider the radially oscil-
lating loop,

(92)

Unfortunately, because the calculation of integrals (32)
and (63) would take an enormous amount of computer
time, we cannot present the results for radiation rates of
oscillating rings for the entire range of currents (we
note that the radiated power diverges as the current
tends to zero). However, in the large-current limit, the
radiated power rate is easy to calculate. For loop (92),
the first nonzero term in the expansion of the radiated
power in k is proportional to k2 in agreement with (74).
It suffices to take only the first term in (13) and (43); the
other terms are of higher orders in k. Substituting (92)
in (20) and (53) and keeping the leading nonzero term
at k ! 1, we obtain

(93)

Using (93), (19), (52), (14), and (44) and integrating

over the unit sphere, we next obtain the coefficients 

and ,

(94)
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which are numerically given by Kgr = 4.73 and
Kem = 2.28.

Because of the symmetry of the oscillating ring, the
estimations of damping time (79), coefficient k (80),
and total string energy (83) become exact in the large-
current limit.

7. DISCUSSION

Electromagnetic and gravitational radiation plays an
important role in the evolution of the cosmic string net-
work. This network could be produced in early universe
phase transitions and would generate large-scale struc-
tures later. Previously, the properties of cosmic string
radiation were mainly studied for strings with a small
current or without any current. Here, we described the
radiation properties of chiral cosmic loops for the entire
possible range of currents. We succeeded in analyti-
cally summing the infinite mode series of radiation
rates for periodically oscillating string loops. The
expressions derived for the energy, momentum, and
angular momentum rates contain four-dimensional
integrals depending on loop geometry. Such an integral
representation is especially convenient for numerical
calculations of radiation from relativistically moving
loops as compared to the method of summation of a
weakly convergent mode series. To find the total rates
of the radiated energy, momentum, and angular
momentum, the expressions obtained were integrated
over the unit sphere. Applying the derived formulas to
some particular examples of chiral string loop configu-
rations, we numerically calculated the coefficients Γ in
Eq. (1) as functions of k. The corresponding calcula-
tions of the radiated energy, momentum, and angular
momentum rates were performed for the following
examples (see Fig. 1): (i) a piecewise linear kinky loop
with the a-loop consisting of two straight parts and the
b-loop consisting of four straight parts (2-4 piecewise
loop); (ii) a piecewise linear loop such that the a- and
b-loops consist of three segments each (3-3 piecewise
loop); and (iii) the hybrid loop in which the a-loop con-
sists of two straight parts and the b-loop is a circle
(hybrid kinky loop). For the first and second examples,
the four-dimensional integrals in our expressions for
radiated energy, momentum, and angular momentum
become multiple sums over the kinks. These sums can
be calculated analytically using symbolic computer
manipulations (e.g., the Mathematical program pack-
age). To find the radiation in the third example (hybrid
loop), we calculated two-dimensional integrals (origi-
nating from a smooth a-loop) and summed over the
kinks of the b-loop. Unfortunately, we could not per-
form calculations for strings with the a- and b-loops
being arbitrary smooth curves, because calculations of
the four-dimensional integrals would take an enormous
amount of computer time.
SICS      Vol. 96      No. 4      2003
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The total gravitational radiation energy, momentum,
and angular momentum rates behave similarly: they
slowly increase with k when k is sufficiently small (and,
respectively, the current is large) and rapidly increase at
large k (i.e., at small current). Overall, the gravitational
radiation rates are increasing functions of k. For the
electromagnetic radiation, the situation is quite differ-
ent: the energy, momentum, and angular momentum
losses to electromagnetic waves for all examples con-
sidered have a maximum near k ~ 0.9, i.e., when the
current is rather small. For the examples considered, the
maximum values of the coefficients Γ in (1) are approx-
imately equal to

(95)

We also found that for some nonsymmetric examples of

chiral loops, the angular momentum  that radiated to
electromagnetic and gravitational waves is not exactly
opposite to the angular momentum of the loop Lst , but
slightly differs from it (even when there is no current on
the string), unlike in the loop examples considered by
Durrer [14].

The asymptotic fading of chiral cosmic string loops
into vortons was derived. It was found that the upper
bounds on the gravitational and electromagnetic radia-
tion rates of nearly stationary loops is proportional to
the squared third derivative of the oscillation amplitude
(see Eqs. (68), (69), and (72)). We showed that if the
oscillation amplitude is small (k ! 1) and the current jµ

is constant along the string, the energy, momentum, and
angular momentum rates of radiation to gravitational
and electromagnetic waves are proportional to k2 and
the proportionality coefficient depends only on the
form of the loop (see Eq. (74)). In some examples of
chiral loops, we calculated the total radiated power in
the limit of the small-amplitude oscillations. For the
chiral ring with small-amplitude radial oscillations,
the radiated power per solid angle dΩ for the electro-
magnetic and gravitational radiation is found analyti-
cally, Eq. (94). We also estimated the damping time of
chiral loops (78) with small-amplitude oscillations. In
the case of the gravitational radiation prevalence over
the electromagnetic one, this time is τgr ~ Lph/KgrGµ,
where Kgr is a numerical coefficient depending on the
string geometry. The damping time due to the gravita-
tional radiation of the chiral loops considered is by an
order of magnitude longer than the lifetime of ordinary
cosmic strings. On the contrary, if the electromagnetic
radiation prevails, the decay time is τem ~ Lph/Kemq2. For
a radially oscillating chiral ring with a large current,
expressions (80) and (83) for the temporal evolution of
the total energy and the amplitude parameter k become
asymptotically exact.

ΓE
gr 50, ΓP

gr 1, Γ L
gr 3,≈≈≈

ΓE
em 2, ΓP

em 0.1, Γ L
em 0.1.≈≈≈

L̇
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We can find the characteristic size of the string Lv

with oscillation damping time (85) equal to the universe
lifetime t0 . 1018 s. In the case of the gravitational radi-
ation predominance, we find

(96)

for Kgr ~ 1. Chiral strings with a length of L <  (i.e.,
with the size of a typical galactic halo or less) therefore
have enough time to fade into vortons. On the other
hand, if the electromagnetic radiation prevails, we have

(97)

for Kem ~ 1 and the electromagnetically radiated chiral
loops with length shorter than the size of galactic clus-
ters have therefore transformed into vortons. We can
see that only sufficiently long superconducting cosmic
strings oscillate up to the present time. On the contrary,
small-scale chiral loops are transformed into stationary
vortons due to the oscillation damping.

It is interesting to estimate the current parameter k at
which the electromagnetic and gravitational radiation
rates become equal. From [15], we know that at small
currents, the electromagnetic radiation is given by

 ~ q2µ . For the gravitational radiation of

small currents, we have  ~ 102Gµ2. Comparing
these two expressions, we can easily find the string cur-
rent value at which these radiation rates are equal, k ~
1 – (102Gµ/q2)2 ~ 1–10–4.
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Abstract—Quantum mechanical equations of motion are obtained for particles and spin in media with polar-
ized electrons in the presence of external fields. The motion of electrons and their spins is governed by the
exchange interaction, while the motion of positrons and their spin is governed by the annihilation interaction.
For particles with spin S ≥ 1, second-order terms in spin are taken into account. The equations obtained can be
applied to describe the motion of particles and spin both in magnetic and nonmagnetic media. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

One of the most important problems in the study of
interaction of particles with matter is the quantum
mechanical description of the motion of particles and
spin. The classical theory of motion of particles and
spin has been developed in great detail (see [1, 2]). A
quantum mechanical equation of motion of relativistic
particles in an electromagnetic field was derived by
Derbenev and Kondratenko [3]. The equation of motion
for spin was found still earlier. It is well-known that the
motion of the spin of relativistic particles in an electro-
magnetic field is described by the Bargmann–Michel–
Telegdi (BMT) equation [4]. The quantum mechanical
version of this equation for spin-1/2 particles was con-
sistently derived in [5] and, for particles with arbitrary
spin, in [6, 7]. Derbenev and Kondratenko investigated
the effect of radiative effects on the spin motion [3]. A
detailed analysis of the dynamics of the polarization of
high-energy particles with regard to radiative effects is
given in [8]. A consistent quantum mechanical descrip-
tion of the interaction between relativistic particles with
arbitrary spin and an electromagnetic field with regard
to terms quadratic in spin was carried out in [7, 9]. The
equation of spin motion derived by the Lagrangian
obtained in [7, 9] is presented in [10].

The study of the motion of particles and the dynam-
ics of their polarization in media with polarized elec-
trons presents an important problem. The characteristic
features of the interaction between polarized particles
and polarized matter were analyzed in [11]. In the
present paper, we apply the results of [11] and the
expression for the Hamiltonian in the Foldy–Wouthuy-
sen (FW) [13] representation derived in [12] to find
quantum mechanical equations of motion of particles
1063-7761/03/9604- $24.00 © 20610
and spin for relativistic particles with arbitrary spin that
move in media with polarized electrons in the presence
of external fields.

Here, we do not consider strong interaction, which
may also change the polarization of particles in matter
[11, 14–16]. Also, we do not take into consideration the
effect of radiative phenomena on the polarization of a
beam. In principle, these phenomena may lead to an
additional rotation of the polarization vector and to the
radiative self-polarization (see [3, 17]). However, they
become appreciable only at high energies of particles
(for electrons and positrons, at energies greater than
10 GeV).

In this paper, we use the relativistic system of units
" = c = 1.

2. HAMILTONIAN FOR PARTICLES IN 
POLARIZED MEDIA

The FW representation [13] is the most convenient
means for describing the interaction of relativistic par-
ticles with matter and external fields by means of equa-
tions of motion of particles and spin. In this representa-
tion, the operators have the simplest form, which corre-
sponds to the form of operators in nonrelativistic
quantum mechanics. The FW representation is espe-
cially convenient for describing polarization phenom-
ena because, in other representations (for example, in
the Dirac representation for spin-1/2 particles), the
polarization operator is given by cumbersome expres-
sions (see [18]).

A formula for the Hamiltonian in the FW represen-
tation that describes the interaction of spin-1/2 particles
003 MAIK “Nauka/Interperiodica”
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with an electromagnetic field was obtained in [12]. Up
to terms linear in field, it is expressed as1 

(1)

where

µ0 = e/2m, µ' = µ – µ0, and µ are the Dirac, anomalous,
and total magnetic moments, respectively; e and m are
the particle charge and mass, respectively; π = –i∇  – eA
is the operator of kinetic momentum; Φ, A and E, H are
the potentials and the strengths of the electromagnetic
field; s is the Pauli matrix; and {…, …}+ denotes the
anticommutator.

Transition to the quasiclassical description consists
in averaging the operators over the wave functions of
stationary states. For free particles, the lower spinor in
the FW representation vanishes [19]. For particles in an
external field, the ratio of the lower spinor to the upper
is of the same order of magnitude as |Wint |/E, where Wint
is the energy of interaction between particles and the
field and E is the total energy of a particle. Thus,

Therefore, the contribution of the lower spinor is negli-
gible, and the upper spinor is sufficient for the quasi-

1 A similar formula for spin-one particles was obtained in [10].
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classical description. The motion of particles in exter-
nal electric and magnetic fields admits a quasiclassical
description; this allows one to speak of the trajectory of
particles. One can also neglect the commutators of the
operators of dynamic variables r and p and their func-
tions; this allows one to arbitrarily change the order of
these operators in quantum mechanical expressions
(see [17–20]). In [20], the present author considered the
accuracy of these assumptions when describing the
motion of particles in a magnetic field. However, the
spin of a particle remains an essentially quantum quan-
tity in any case.

For particles with arbitrary spin, the Hamiltonian
can be derived with the use of the interaction
Lagrangian + obtained in [7, 9]:

(2)

where g = 2µm/(eS), v is the velocity operator, γ is the
Lorentz factor, Q is a quadrupole moment, S is the spin
operator, and B is the magnetic induction. In
Lagrangian (2), +1 contains terms that are linear in
spin, while +2 contains quadratic terms. The Hermitian
form of relation (2) is obtained by the substitution

The spin-dependent part of the Hamiltonian is
equal to the interaction Lagrangian taken with the

+ +1 +2,+=

+1
e

2m
------- g 2– 2

γ
---+ 

  S B⋅( )




=

– g 2–( ) γ
γ 1+
------------ S v⋅( ) v B⋅( )

+ g 2– 2
γ 1+
------------+ 

  S E v×[ ]⋅( )




,

+2
Q

2s 2s 1–( )
------------------------- S ∇⋅( ) γ

γ 1+
------------ S v⋅( ) v ∇⋅( )–=

× S E⋅( ) γ
γ 1+
------------ S v⋅( ) v E⋅( )– S v B×[ ]⋅( )+

+
e

2m2
--------- γ

γ 1+
------------ S v ∇×[ ]⋅( ) g 1– 1

γ
---+ 
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γ 1+
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γ
γ 1+
------------– 
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opposite sign:

The spin-independent part of the Hamiltonian that is
significant for deriving the equations of motion of par-
ticles can easily be determined by the well-known pro-
cedure of “extension” of a derivative. For free particles
in the FW representation, the relationship between the
Hamiltonian and the momentum operator p for the
upper spinor is given by

In the presence of an external field, the extension pro-
cedure leads to the following substitutions:

As a result, the total Hamiltonian is given by

or 

(3)

We stress that, in Eq. (3), only the upper spinor is
retained and the commutators of the operators of
dynamic variables and their functions are neglected. An
approximate relation between the operators of velocity
and kinetic momentum is given by

Therefore, formulas (1) and (3) completely agree with
each other.

The polarization of the electrons of the medium
does not change the form of Hamiltonian (3) provided
that a beam contains neither electrons nor positrons.
This is attributed to the fact that the average field acting
on particles in the medium is characterized by the elec-
tric field strength E and the magnetic induction B.

However, the form of the Hamiltonian is changed
if the beam consists of electrons or positrons. There is
an exchange interaction between electrons, which is
very  strong.2 The main contribution to the exchange
interaction is made by the Coulomb exchange interac-
tion or the Coulomb scattering. The exchange magnetic
scattering yields a much smaller contribution to the
Hamiltonian; however, in magnetic crystals, it is com-
parable in order of magnitude to the contribution of an
ordinary magnetic field (see [11]). The well-known for-
mulas for the scattering amplitudes from which one can
obtain an expression for the effective interaction
Hamiltonian (see [11]) were derived for the nonrelativ-

2 Recall that the exchange interaction is responsible for the ferro-
magnetism.

* s( ) +.–=

* m2 p2+ .=

* * 0( ) * eΦ, p p– p eA.–= =

* * 0( ) * s( )
,+=

* 0( )
m2 p2+ eΦ+ γm eΦ,+= =

* s( ) +,–=

* m2 p2+ eΦ +1 +2+( ).–+=

v p/e'≈ p/γm.=
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istic case v  ! c. In this case, the magnetic field B for
electrons should be replaced in (3) by the effective
quasimagnetic field [11]

(4)

where N and P = 〈s'〉  are the polarization density and
vector (average spin), respectively, of polarized elec-
trons of matter and n = v/v  is the propagation direction
of the beam. Usually, nonrelativistic electrons, for
which Eqs. (4) hold, satisfy the following inequalities:

(see [11]).
In addition to the interaction described by Hamilto-

nian (3), there exists an annihilation interaction
between positrons and the electrons of matter; in the
nonrelativistic case, this interaction is determined by
the operator [19]

where s and s ' are the Pauli matrices for positrons and
electrons, respectively. After averaging, the expression
for the spin-dependent part of the operator of annihila-
tion interaction takes the form (P = 〈s'〉)

(5)

The effective field  corresponding to the annihi-
lation interaction is determined by

where

is the operator of magnetic moment of a positron.
Hence, one can easily derive an expression for the
effective field that acts on nonrelativistic positrons in
polarized media:

(6)

It is convenient to represent formulas (4) and (6) in
a more compact form by introducing the magnetization
vector (magnetic moment of a unit volume) M:

B Ge B Heff
c Heff

m ,+ +=

Heff
c 4π eP N

mv 2
---------------------P,–=

Heff
m 2π e N

m
----------------- P n⋅( )n,=

Heff
c

 @ B , Heff
c

 @ Heff
m

Wa
πe2

2m2
--------- 3 s s'⋅( )+[ ]δ r( ),=

Wa
s( ) πe2N

2m2
------------- s P⋅( ).=

Heff
a

Wa
s( ) m– Heff

a ,⋅=

m e
2m
-------s=

Gp B Heff
a+ B

π e N
m

-------------P.–= =

M
e N
2m
----------P.–=
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This formula takes into consideration dia-, para-, and
ferromagnetic phenomena, and formulas (4) and (6) are
rewritten as

(7)

For isotropic magnetic materials, one can introduce
a magnetic permeability µm. Then,3 

(8)

Formulas (8) for electrons and positrons in a polar-
ized medium have been derived in a nonrelativistic
approximation that admits the consideration of basic
relativistic corrections. In this approximation, an
appropriate expression for the Hamiltonian, obtained
from (3) by replacing B by G, is expressed as

(9)

where G = Ge, Gp.
Formulas (4) and (7)–(9) for electrons, which con-

tain terms proportional to 1/v 2, are valid only when the
velocities of particles are not too small. The analysis of
the limiting case of small velocities is of interest.4 This
case is described by the ordinary theory of exchange
interaction. As is known, this interaction is character-
ized by the operator [21]

where J is the exchange integral and s and s' are the
Pauli matrices for electrons in the beam and the
medium, respectively. After averaging over the coordi-
nates and summing up over the electrons of the
medium, the operator V is rewritten as

(10)

As above, it is convenient to introduce a quasimag-

netic field  defined by

3 One should take into account that the magnetic permeability
depends on the magnetic field H.

4 Under the Coulomb scattering, one can assume that electrons are
“fast” (“slow”) if their velocity is large (small) as compared to
v0 = e2/" ≈ c/137 [21]. The quantity v0 corresponds to the kinetic

energy of electrons of m /2 = 13.5 eV.

Ge B
8π
v 2
------M 4π M n⋅( )n, Gp–+ B 2πM.+= =

Ge B
2 µm 1–( )

µmv 2
-----------------------B

µm 1–
µm

--------------- B n⋅( )n,–+=

Gp

3µm 1–
2µm

------------------B.=

* m2 p2+ eΦ+=

+
e

2m
------- g S G⋅( ) g 1–( ) S E v×[ ]⋅( )+{ } ,

v 0
2

V
1
2
---J 1 s s'⋅( )+[ ] ,–=

V〈 〉 1
2
--- J〈 〉 1 s P⋅( )+[ ] .–=

Heff
c

V〈 〉 –m Heff
c⋅ e

2m
------- s Heff

c⋅( ).= =
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Then,

(11)

and the total quasimagnetic field acting on the electrons
of the beam is

Introducing the magnetization vector M and the
magnetic permeability µm, we rewrite this formula as

(12)

Let us estimate the magnitude of the quasimagnetic
field defined by formulas (11) and (12) for particles in
condensed media (paramagnetic and ferromagnetic
materials). The exchange integral J is determined by
averaging the interaction operator of electrons e2/r.
Therefore, for our estimates, we can take

where a0 is the Bohr radius of atom. Hence,

where α ≈ 1/137 is the fine structure constant. Accord-
ing to this estimate,

The actual value of  may be several times or an
order of magnitude smaller due to the incomplete over-
lapping of the wave functions in the exchange integral
(see [21]). The estimate obtained for the quasimagnetic

field  completely agrees with the theory of ferro-
magnetism.

3. EQUATIONS OF MOTION
OF PARTICLES AND SPIN

In the FW representation, we obtain operator equa-
tions of motion of particles and spin by calculating the
commutators of the Hamiltonian * (defined by formu-
las (3) and (9)) with the operators p and S:

(13)

The general solution to the problem of the motion of
a classical particle with spin in electromagnetic and
gravitational fields is given in [1, 2]. The quantum
mechanical equation of motion of relativistic particles

Heff
c m

e
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G B Heff
c .+=

G B
2m2

e2N
--------- J〈 〉 M+ B
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2πe2N
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dS
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------– i * S,[ ] .= =
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with arbitrary spin in an electromagnetic field, obtained
by Derbenev and Kondratenko in [3], is given by5 

(14)

The form of the equations of motion of particles in
polarized media does not differ from (14) if the expres-
sion for the Hamiltonian remains unchanged. In this
case, the expression for the Hamiltonian is changed
only for electrons and positrons.

Naturally, the Hamiltonians for particles with spins
S = 1/2 and S ≥ 1 are slightly different because Hamil-
tonian (3) contains terms that are quadratic in spin.
However, as a rule, these terms are very small and can
be neglected when analyzing the motion of particles.
Within the accuracy adopted in this study, the equations
of motion for particles with spins S = 1/2 and S ≥ 1 coin-
cide.

The equation of motion (14) of a particle yields a
quantum mechanical expression for the force exerted
on the particle (14) by the external field and matter. In
addition to the Lorentz force, the particle is subject to a
force due to the interaction between its magnetic
moment and a nonuniform field (the Stern–Gerlach
force [22]). This force is exerted by both magnetic and
electric fields. Depending on the orientation of the
magnetic moment (and, consequently, the spin), the
Stern–Gerlach force either pulls a particle into a region
of stronger field or expels it from this region. As a
result, a beam of particles is split according to the polar-
izations of particles.

For electrons and positrons in polarized matter, the
form of equations of motion is substantially changed.
According to (9) and (13), the equation of motion for
these particles is given by

(15)

Analysis of (15) shows that, in magnetic crystals,
where µm – 1 * 1, the Stern–Gerlach force exerted on

5 In the present paper, we do not take into consideration the motion
of particles due to the radiation reaction. This factor is significant
only for large energies. In this case, the force of radiation reaction
is mainly responsible for the deceleration of a particle and gives
rise to a comparatively small component of the velocity in the
direction perpendicular to the direction of its original motion.

dp
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electrons is substantially greater. For positrons, this
effect is less pronounced.

As we have mentioned above, for particles with
arbitrary spin, the motion of spin in a uniform electro-
magnetic field is described by the BMT equation [4].
When describing the effects associated with the non-
uniformity of the field, one should take into consider-
ation the terms that are quadratic in spin. These terms
are contained in the Hamiltonian only for particles with
spin S ≥ 1. The equation of motion of spin with regard
to these terms, which is given in [10], has the form

(16)

dS
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The quantities (dS/dt)BMT and (dS/dt)q describe the
motion of spin determined by the terms that are linear
and quadratic in spin, respectively. This equation can be
obtained by formulas (2), (3), and (13). Note that the

operator e' =  has no influence on the motion
of spin.

The essential feature of these equations for spin-1/2
particles is the vanishing of the terms that are quadratic
in spin. For particles with S ≥ 1, the terms quadratic in
spin in Eq. (16) lead not only to the rotation but also to
the oscillations of the spins of particles in a nonuniform
field [23–25].

In polarized media, the form of the equations of
motion of spin is not changed for all particles except for
electrons and positrons. For nonrelativistic electrons
and positrons, the equation of motion of spin obtained
by Eqs. (9) and (13) is expressed as

(17)

The comparison of Eqs. (15) and (17) shows that the
effect of the exchange interaction, which determines
the quasimagnetic field G, on the motion of spin is
much stronger than that on the motion of particles.

4. DISCUSSION OF THE RESULTS
AND CONCLUSIONS

The investigation carried out shows that the motion
of particles and spin in media with polarized electrons
exhibits a number of features. Although the equations
of motion of particles and spin in polarized media and
in vacuum coincide (except for electrons and
positrons), the magnitudes of the magnetic filed in
these cases may substantially differ. The relation
between the tangential components of the vector of
magnetic induction in matter (Bτ) and in vacuum (B0τ)
is as follows:6 

For an appropriately chosen geometry of a crystal,7 the
magnetic induction in a crystal is several times greater
than that in vacuum. For instance, for µm = 103, we have
B0 = B0τ = 10–3 T and B = Bτ = 1 T. These values of mag-
netic induction can be achieved due to the residual
magnetization even in the absence of external field.
Therefore, magnetic crystals can be effectively used for
the rotation of the beam polarization vector.

6 One should take into account that the permeability µm of ferro-
magnetic materials depends on the strength of the magnetic field.

7 It is desirable that the length of a crystal in the direction of the
magnetic field should be much greater than its dimensions in two
other directions. This fact guarantees that the demagnetizing fac-
tor is small.

m2 p2+
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Even for neutrons, whose magnetic moment is rela-
tively small, for B ~ 1 T, the angle of rotation of the
polarization vector per unit length is of the order of

∆Φ/∆l ~ (c/v) × 10–3 rad/cm.

For fast neutrons with v /c ~ 10–2, the rotation of the
polarization vector through an angle of about 1 rad is
attained at a crystal length of l ~ 10 cm. For slow neu-
trons, this effect is still greater.

For example, positrons generated by the β+ decay
are usually relativistic. Therefore, we estimate the rota-
tion angle of spin for these neutrons by the general for-
mula (16). For B = 1 T and γ = 5, the rotation angle of
the polarization vector per unit length is of the order of

∆Φ/∆l ~ 1 rad/cm.

If a beam of positrons passes through a crystal in a pla-
nar channeling mode, the vector of magnetic induction
must lie in the plane containing the propagation direc-
tion of the beam (z axis) and the normal to the system
of crystallographic planes (x axis). If the vector B is
collinear to the y axis, then, due to the shift of the beam
trajectory under a magnetic field, the arising electric
component of the Lorentz field compensates for the
magnetic component. As a result, the mean value of the
Lorentz force is equal to zero. In this case, 〈E〉 = –[v × B]
and the angle of spin rotation decreases, approximately
by a factor of γ.

The rotation of the polarization vector in magnetic
crystals reaches especially large values for nonrelativ-
istic electrons. It follows from (8) and (9) that the angu-
lar velocity of the spin precession for nonrelativistic
electrons is increased by a factor of (c/v)2 due to the
exchange interaction. For B ~ 1 T, we have

∆Φ/∆l ~ (c/v )3 × 1 rad/cm

in order of magnitude. In particular, when v /c ~ 0.1, we
have

∆Φ/∆l ~ 103 rad/cm.

The use of magnetic crystals may also be sufficiently
effective for the rotation of the polarization vector of
relativistic electrons.

The polarization of a medium also significantly
affects the motion of particles. In this case, the Stern–
Gerlach force, which splits a beam according to the
polarization of particles, is considerably increased. A
large value of the magnetic-field gradient can be
achieved both by placing a ferromagnetic sample in a
strongly nonuniform external field and by appropriately
shaping a sample (for example, making it in the form of
a triangular prism) so that it guarantees a nonuniform
magnetic field. However, the use of polarized media for
splitting beams according to the polarization of parti-
cles is seriously hampered by the small value of the
energy of interaction between the spin of electrons and
a quasimagnetic field *(s) (of the order of 1 eV or less)
and a multiple scattering that increases the transverse
energy of electrons of the beam. If the transverse
SICS      Vol. 96      No. 4      2003
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energy of electrons in the beam is greater than |*(s) |,
the splitting of the beam according to the polarization
of particles becomes impossible.

We also mention other phenomena that are associ-
ated with the transmission of polarized beams of parti-
cles through polarized matter. The multiple scattering
by the electrons of matter leads to the depolarization of
a beam [26, 27]. The dependence of the cross section of
scattering by polarized electrons on the polarization of
the beam leads to the dichroism. As a result, one of
polarization directions (either parallel or antiparallel to
the field) in the beam leaving the matter becomes dom-
inant. For an arbitrarily polarized beam, the dichroism
leads to an additional rotation of the polarization vector
[11, 15]. One should take into consideration the depo-
larization and dichroism in exact calculations. Note
also that the transverse energy levels of electrons are
split during channeling through magnetic crystals [28].

Thus, in this paper, we have found quantum
mechanical equations of motion of particles and spin in
media with polarized electrons. When deriving these
equations, we took into account the exchange interac-
tion for electron beams and the annihilation interaction
for positron beams. For particles with S ≥ 1, we took
into account second-order terms in spin. The analysis of
the equations obtained has shown that, in many cases,
the exchange interaction several times increases the
angular velocity of the rotation of the spin of electrons
in polarized matter.

All the results obtained in this work are also valid
for a beams of polarized nuclei.
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Room-Temperature Fluctuations in the Fluorescence
of a Single Polymer Molecule
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Abstract—A theoretical model of light absorption and emission by a polymer molecule has been developed
using recent experimental data on the room-temperature fluctuations in the fluorescence intensity of single mol-
ecules of a PPV–PPyV copolymer containing several tens of chromophores. An analysis of the experimental
data based on the proposed model shows evidence of a change in the conformation of a polymer molecule in
the triplet state. By applying the theory to the PPV–PPyV copolymer, it is possible to determine the rate con-
stants of the conformation variation, the rates of the transition from the singlet to the triplet state, and the life-
time of the triplet state of the molecule. The theory also predicts some new effects which can be verified by
experiment. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In past years, there has been successful expansion in
the field of applications of single molecule spectros-
copy (SMS). Five to ten years ago, the main objects of
investigation for SMS were relatively simple molecules
of the aromatic series, dissolved in a polymer cooled
below 4.2 K [1, 2]. In recent years, the number of objects
studied by SMS has rapidly increased. SMS techniques
have proved to be effective for studying even very com-
plicated molecular complexes, including those playing a
significant role in biological systems.

It was established that SMS can also be effectively
employed at room temperature. SMS provides impor-
tant information about the dynamics of complex quan-
tum systems at such temperatures, because spectral
investigations traditional for the molecular ensembles
can be supplemented by measurements of fluorescence
fluctuations. This is a very important circumstance,
since many objects, such as proteins and light-collect-
ing systems of centers involved in photosynthesis,
function in living organisms at room temperature.

A question always naturally arises as to what is
implied by a single molecule. Indeed, why do a dozen
anthracene molecules (chromophores) dissolved in a
polymer constitute a molecular ensemble, the room-
temperature fluorescence of which contains little infor-
mation, whereas a polymer chain containing about a
hundred such chromophores with a total molecular
weight exceeding 20000 amu can be considered as a sin-
gle molecule and the corresponding fluorescence spec-
trum is treated as providing for much more valuable
information than the spectrum of a molecular ensemble?

In answering this question, it has to be recalled that
a single molecule in SMS is probed by the light of a
continuous laser and the information on the molecular
dynamics is obtained by counting the photons emitted
1063-7761/03/9604- $24.00 © 20617
from the laser-excited molecule. In the early investiga-
tions considered in [1, 2], SMS was used to study mol-
ecules incapable of absorbing the second photon until
the photon absorbed previously is emitted. Such a mol-
ecule can be called a single photon absorber and a sin-
gle photon emitter. Unlike this, polymer molecules and
light-collecting antennas of photosynthesis centers are
characterized by so-called exciton-type absorption.
This implies that many chromophores are involved in
the absorption process, so that two or more photons can
be simultaneously absorbed and the molecules can no
longer be referred to as single absorbers. However, at a
sufficiently small intensity of the exciting light, the
exciton band may contain only one exciton and, hence,
these molecules still remain single photon emitters and
exhibit fluorescence fluctuations. Note that many com-
plicated systems, such as semiconductors with quantum
dots, can behave as single photon emitters. Some quan-
tum dots exhibit intermittency in fluorescence [3–5].
One quantum dot in a semiconductor with such fluores-
cence may contain up to a million atoms, but the emis-
sion will obey the same laws as in any other single pho-
ton emitter.

The fluctuations in fluorescence have been observed
in single quantum dots of various semiconductors [3–5],
in single light-collecting antennas (LH2) of photosyn-
thesis centers [6, 7], and in single molecules of poly-
mers [8–11], dendrimers [12–14], and proteins [15–
17]. Unfortunately, no theoretical models capable of
explaining the observed fluorescence fluctuations have
been proposed in the papers cited.

This paper is aimed at demonstrating, using a partic-
ular example, how the existing theory can be applied to
the interpretation of experimental results on the fluctu-
ating fluorescence. The experimental material repre-
sents data on the fluorescence of single molecules of a
PPV–PPyV copolymer reported by Barbara and
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Molecular structure of the PPV–PPyV copolymer studied in [8].
coworkers [8]. Their results will be treated within the
framework of a theory developed in monograph [2].
Using this theory, it is possible to formulate a model of
the electron excitation energy transfer in the polymer
and to establish how changes in conformation of the
polymer molecule can influence the fluorescence.
Then, the observed fluorescence fluctuations will reveal
the role of singlet and triplet levels of a molecule in
changing the polymer conformation.

2. PRINCIPAL EXPERIMENTAL FACTS

The results of spectroscopic investigation of bulk
polymer samples show that the light is absorbed by
numerous chromophores, while the emission takes
place after migration of the electron excitation energy
toward local minima of the Franck–Condon surface of
a polymer molecule [18]. For example, in a polymer
with anthracene molecules attached as side chains to
the backbone, the emission took place from the
anthracene molecules occurring at the ends of the back-
bone [19]. Unfortunately, in bulk materials it is difficult
to distinguish between the intermolecular and intramo-
lecular energy transfer. For this reason, Barbara’s team
studied the energy transfer in single molecules of a
poly(para-phenylene vinylene)–poly(para-pyridine
vinylene) (PPV–PPyV) copolymer in which the elec-
tron energy transfer is known to be the intramolecular
process. This process was studied by measuring the
fluorescence of individual copolymer molecules. The
structural formula of such a molecule is presented in
Fig. 1. The PPV–PPyV copolymer has a molecular
weight of about 20000 amu and contains 80–100 chro-
mophores capable of absorbing light. Figure 2 shows
the absorption and emission bands of this copolymer.

Since the optical absorption and emission bands of
the polymer molecule are structureless, no information
concerning the molecular dynamics can be extracted
from these spectra. The principal difference between
fluorescence from a single polymer molecule and that
from an ensemble of such molecules is manifested in
the kinetics of fluorescence, rather than in the spectral
characteristics (as can be seen, the two emission bands
virtually coincide). Indeed, the intensity of fluores-
cence from an ensemble of polymer molecules is time-
independent within tens of seconds, whereas the inten-
sity of emission from a single molecule fluctuates as
JOURNAL OF EXPERIMENTAL 
depicted in Fig. 3. It was demonstrated [8] that the char-
acter of the quantum intensity transient (QIT) of the flu-
orescence from a single molecule excited by the light
with λ = 514 nm remains the same. These very fluctua-
tions in the intensity of the broad fluorescence band
make it possible to study the dynamics of energy trans-
fer in a single polymer molecule at room temperature.

Figures 4 and 5 show the results of statistical data
processing for several dozens of QITs measured from
single polymer molecules [8]. According to these data,
the fluorescence from each individual polymer mole-
cule exhibits intermittency, whereby the molecule
passes from the emissive (“on”) to nonemissive (“off”)
state. In the on state, the fluorescence intensity can
reach one of the two levels, conditionally referred to as
intermediate (I1) and high (I2). Therefore, the fluores-
cence is a twofold process with respect to intensity. All
the experimental facts summarized in Section 2 under-
lie the theoretical model formulated below.

3. DOUBLE FLUORESCENCE MODEL

The process of fluorescence with two intensity lev-
els is known not only for polymer molecules. Such a
pattern was also observed for cw-laser-excited single

I, rel. units

1.0

0.8

0.6

0.4

0.2

0
400 500 600 700 800

λ, nm

Fig. 2. The absorption (dashed curve) and emission (solid
curve) bands of a concentrated sample of the PPV–PPyV
copolymer. Crosses show the fluorescence band of a single
PPV–PPyV molecule [8].
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I, rel. units
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1.5
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0.5

0
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Fig. 3. Fluorescence kinetics (quantum intensity transient)
of a single PPV–PPyV molecule continuously excited at λ =
457 nm (sampling window, 100 ms) [8].

molecules of terrylene dissolved in polyethylene [20].
The phenomenon of double fluorescence can be
described using the theory developed in [2, 21]. Figure 6
shows the experimental results obtained in [20] and
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Frequency
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0
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Normalized counts

I1

I0

I2

Fig. 4. Three fluorescence intensity levels of single PPV–
PPyV molecule: zero (I0), intermediate (I1), and high (I2)
with the normalized counts (per 100-ms sampling window)
0, 25, and 75, respectively [8].

presents an energy band diagram explaining these data
in terms of the theoretical model.

The proposed model takes into account the interac-
tion of the chromophore of a terrylene molecule with
60
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Fig. 5. Distributions of the on and off periods (with the average duration τ) in QITs observed for an excitation power of P =
1500 (a, b) and 300 W/cm2 (c, d) [8].
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the so-called two-level system of the polymer. This
two-level system models a change in conformation of
the impurity complex comprising a terrylene molecule
and the nearest environment of polymer molecules. The
rates (probabilities) of the direct and reverse conforma-
tion transitions are A and a, respectively (Fig. 6b).
According to the theory [2, 21], the coefficient of
absorption of such a system is described by a simple
expression,

(1)

where

(2)

are the envelopes of the optical lines corresponding to
the photoinduced transitions 1–0 and 3–2 depicted in
Fig. 6, χ = d · E/" is the Rabi frequency, T2 is the optical
dephasing time, and

(3)

is the probability of finding the system in quantum
state 2 at the time instant t = tsc + t0. Here, t0 is the initial
time moment, tsc is the time of counting photons, and
f(T) = [exp(–ε/kT) + 1]–1 is the same probability under
the conditions of a thermal equilibrium established in
the system at tsc(A + a) = tscR @ 1.

The vertical bands observed in Fig. 6a are called the
spectral trails. The degree of blackening in such a trail
is proportional to the number of emitted photons which,
in turn, is proportional to the probability of absorption

k ω t,( ) 1 ρ t( )–[ ] L0 ω( ) ρ t( )L2 ω( ),+=

L0 ω( ) 2χ2 1/T2

ω ω0–( )2 1/T2
2+

----------------------------------------,=

L2 ω( ) 2χ2 1/T2

ω ω0– ∆–( )2
1/T2

2+
--------------------------------------------------=

ρ tsc t0+( ) = f T( ) ρ t0( ) f T( )–[ ] A a+( )tsc–[ ]exp+

1200

0 2

t, s

Laser frequency, GHz

800

400

4 6 8 10

(‡)

1

2

3

ε

Γ1 Γ3L2L0

ω0 ω0 + ∆

0

A
a

(b)

Fig. 6. (a) Quantum jumps in the absorption band of single
terrylene molecules in polyethylene at 1.8 K [20] and (b) an
energy band diagram explaining this behavior (A and a are
the probabilities of tunneling transitions) [2, 21]. The exper-
imental data were obtained by multiply repeated scanning
over the exciting laser frequency during a single laser scan
time of tsc ≈ 1s.
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of a laser radiation quantum. According to the experi-
mental data presented in Fig. 6a, a single molecule of
terrylene randomly switches the resonance frequency
(i.e., jumps from state 0 to state 2 and back). The initial
condition in formula (3) is selected as follows (see
Fig. 6b). If the molecule jumps from state 2 to state 0 at
t0 = 0, we use formulas (1) and (3) with ρ(t0) = ρ(0) =
0, and when it jumps back (at a random time instant
t0 = t1) from state 0 to state 2, we must take ρ(t0) =
ρ(t1) = 1. Accordingly, we obtain two possible absorp-
tion coefficients,

(4)

and

(5)

which implies that the absorption coefficient fluctuates.
These fluctuations in the absorption coefficient calcu-
lated by formulas (4) and (5) are depicted in Fig. 7. Since
the absorption at the frequencies of transitions 1–0 and
3–2 is different, the intensity of fluorescence varies as
well and we obtain the pattern of double fluorescence.
The ratio of the integral fluorescence intensities for a
large scan time equals the ratio of peak intensities in
Fig. 7c. Since the fluorescence bands corresponding to
the excitation of transitions 1–0 and 3–2 virtually coin-
cide, no fluctuations in the fluorescence intensity are
observed for Rtsc = 102. On the contrary, maximum fluc-
tuations will be observed at so small a scan time as
Rtsc = 10–3.

4. FLUCTUATING FLUORESCENCE MODEL

The above model cannot explain the disappearance
of fluorescence (the appearance of dark levels) at cer-
tain time instants, that is, the presence of off periods.
This is possible within the framework of the following
model.

Since a polymer molecule is composed of many
chromophores, it is expedient to first consider a single
chromophore molecule. Figure 8 shows an energy level
diagram which is typical of organic molecules. Here,
vertical arrows indicate the quantum transitions taking
place in the laser-excited molecule. The emission from
such a molecule under continuous irradiation was studied
both experimentally [22] and theoretically [2, 22, 23].
The pattern of fluorescence in this system consists of on
periods separated by off periods. This phenomenon,
whereby photons tend to group in time, is called photon
bunching. The on period duration is determined by the
lifetime of a molecule in the singlet states 0 and 1,
whereby the quantum jumps are performed between the
ground and excited electron states with absorption of
the laser radiation quanta and emission of the fluores-
cence photons. Then the molecule jumps into a long-

k k0 1 f 1 Rtsc–( )exp–[ ]–{ } L0= =

+ f 1 –Rtsc( )exp–[ ] L2

k k2 1 f– 1 f–( ) –Rtsc( )exp–[ ] L0= =

+ f 1 f–( ) –Rtsc( )exp+[ ] L2,
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Fig. 7. Fluctuations in the absorption coefficients for various times of scanning over the laser frequency: Rtsc = 10–3 (a), 1 (b), and

102 (c). Solid and dashed curves show optical envelopes of the two types corresponding to the experimental lines averaged at a given
photon counting time tsc .
lived triplet state 2, in which it occurs for a long time
without photon emission. Thus, the lifetime in the trip-
let state corresponds to the off interval (nonemissive
state). Therefore, this model can explain alternation of
the on and off periods, but does not account for the dou-
ble fluorescence. Evidently, an adequate model of fluo-
rescence from a polymer molecule must combine the
properties of both partial models considered above.

5. THEORETICAL MODEL DESCRIBING
THE DYNAMICS OF FLUORESCENCE 
OF A SINGLE POLYMER MOLECULE

An adequate theoretical model was selected based
on the QIT data. The key elements determining a phys-
ical model explaining the observed QIT peculiarities
are as follows:

(i) there must be three fluorescence intensity lev-
els—zero, intermediate, and high (Fig. 4);

(ii) jumps from the intermediate (I1) to high (I2)
intensity level and back usually follow the intensity
drops to zero (Fig. 3);

(iii) the inverse value of the on period duration is
proportional to the excitation power, while the off
period duration is independent of this power (Fig. 5).

(iv) the duration of both on (emissive) and off (non-
emissive) periods is on the order of seconds (Figs. 3
and 5).

A polymer chain in which N regularly arranged
light-absorbing chromophores are arranged represents
a one-dimensional crystal model. Apparently, each
chromophore can be described by a triad of levels
depicted in Fig. 8. Owing to the interaction between
chromophores, N excited singlet levels form a band of
singlet excitons responsible for the optical absorption,
while 3N triplet levels account for the band of triplet
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
excitons. Occurring in the latter state, the polymer pro-
duces no fluorescence.

The interaction of solvent molecules with the poly-
mer chromophores leads to the appearance of defect
levels below the bottom of the singlet and triplet exci-
ton bands, to which the singlet and triplet electron exci-
tations will decay, respectively. These defect levels play
the role of traps for the electron excitations. The shape
of the fluorescence bands for the shallow traps, depend-
ing on the temperature and the depth of these traps, was
studied in [24].

Strictly speaking, several defect levels can occur
below the bottom of the singlet exciton band. However,
the existence of clearly pronounced fluctuations in the
fluorescence intensity followed by drops to zero level
(Fig. 3) indicates that the polymer molecule emits pho-
tons via a single channel, probably corresponding to the
lowest defect level. The model with a single defect level
seems to be quite adequate. Indeed, if there were two
independent photon emitters, the resulting pattern
would correspond to the sum of two QITs of the type
depicted in Fig. 3, randomly shifted in the time scale.
Then, the number of levels in the fluorescence intensity
in the resulting QIT would be greater than that observed
in Figs. 3 and 4.

1 (S)

2 (S)

2 (T)
1/T1

γTS

γST
k k

Fig. 8. Energy diagram for a molecule with two singlet
(0 and 1) and one triplet (2) levels corresponding to three
spin states of the molecule (T1 is the lifetime of level 1).
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The existence of an exciton band and defect levels,
which play an important role in the luminescence kinet-
ics, is practically not manifested in the shapes of the
room temperature absorption and emission bands. The
Gaussian shape of the bands presented in Fig. 2 is evi-
dence that a strong electron–phonon interaction
“masks” the structure of electron levels related to the
exciton band and defect levels. The shape of the bands
in Fig. 2 can be described using the following relations
valid for the impurity centers with strong electron–
phonon interaction [2]:

(6)

Here, 2C is the Stokes shift and ∆ω1/2 =  is the
band halfwidth determined by the formulas

(7)

where νq are the frequencies of normal vibrations of the
polymer molecule, aq are the shifts of their equilibrium
positions, and N0 is the number of vibrational modes.

Let us estimate the degree of correspondence
between formulas (7) and the experimental values C =
2604 cm–1 and ∆ω1/2 = 2500 cm–1 determined from the
curves in Fig. 2. As is known, the extensions of both the
absorption spectrum and the emission band in the aro-
matic molecules are determined by vibronic pho-
totransitions with a frequency of intramolecular vibra-

Ia f, ω( )
1

2πD
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ω ω0– C+−( )2

2D
---------------------------------– .exp=

2D 2ln

C
aq

2

2
-----νq, D

q 1=

N0

∑ aq
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2
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2 "νq

2kT
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Fig. 9. Energy diagram of a PPV–PPyV molecule subject to
conformational changes.

I

t

(a)
I

t

(b)

Fig. 10. Two types of the jumps between intermediate and
high fluorescence levels corresponding to conformational
changes taking place in the (a) ground and (b) triplet state
of the polymer molecule.
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tions of 1400–1700 cm–1. Indeed, these characteristic
vibrations are most actively manifested in the optical
spectra of aromatic substances. Such frequencies at
room temperature obey the condition "νq/kT ! 1 and,
hence, formulas (7) yield the following relation
between the Stokes shift and the band halfwidth:

(8)

where νe is the effective frequency of intramolecular
vibrations determining the extension of the optical
bands. Substituting the experimental values of C and D
into this relation, we obtain νe = 1750 cm–1, which
agrees with the frequency most effectively manifested
in the optical spectrum of aromatic substances. This
estimate confirms our assumption that the singlet exci-
ton band width is significantly narrower than the width
of the optical bands, the latter being determined by the
electron–phonon interaction.

According to the above considerations, the energy
level diagram of the polymer molecule studied can be
represented as in Fig. 9, where the system has two con-
formations corresponding to the sets of levels 0, 1, 2
and 0', 1', 2'. Levels 1 and 1' correspond to the singlet
exciton and singlet trap in two conformations. Evi-
dently, the transitions from states 1 and 1' to the ground
state are manifested by fluorescence with different lev-
els of intensity. Levels 2 and 2' correspond to the triplet
exciton and triplet trap in these conformations. Only
jumps of the polymer molecule between conformations
can explain the phenomenon of double fluorescence,
while the triplet states in these conformations are nec-
essary for explaining the existence of the off periods.

The different probabilities of transitions in the
scheme of Fig. 9 are indicated by different thicknesses
of the corresponding arrows: greater thickness corre-
sponds to higher transition probability. Therefore, we
adopt the following hierarchy of the relaxation con-
stants:

(9)

The absence of induced fluorescence in Fig. 9 is related
to the fact that the absorption is mediated by excitons
whose energy is thermalized before the emission event
takes place. Under these conditions, no resonance fluo-
rescence takes place.

Apparently, conformational changes in the time
scale of seconds can proceed either in the ground or in
the long-lived triplet state of the polymer molecule. If
this change in conformation were to take place in the
ground state, the transition from intermediate to high
fluorescence level would proceed in a jumplike manner
so that the system would not occur in the off state, as
depicted in Fig. 10a. This contradicts the fact that the
fluorescence intensity changes from intermediate to

D
aq

2

2
-----νq

2

q 1=

N0

∑ Cνe,= =

1/T1 @ k k' @ γ2 γ2' γ1 γ1' B b., , , , ,,
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high level via drops to the zero level, that is, by the
scheme depicted in Fig. 10b. For this reason, Fig. 9
indicates that a change in the conformation takes place
when the polymer molecule occurs in the triplet state of
the trap.

Balance equations for the probability of finding a
polymer molecule in one of the six quantum states
according to Fig. 9 are as follows:

(10)

This set of equations describes both the fast relaxation
in the time scale of T1 and the slower process in the
scale of singlet–triplet transitions and the transitions
between conformations. In the experiment under con-
sideration, the information on fast relaxation was lost
because of insufficiently high temporal resolution of
the experimental setup, which was capable of measur-
ing only slow relaxation. If we are interested only in
slow relaxation in the polymer molecule, the system of
equations (10) can be simplified by taking  =  = 0.
Then, the first and fourth equations yield

(11)

Substituting these expressions into the remaining four
equations, we arrive at the following system:

(12)

where the coefficients

(13)

describe the rate of effective pumping of the triplet
states via the excited singlet states in both conforma-
tions. Equations (13) describe slow relaxation in the
system after fast population of levels 1 and 1'. Using
this system, it is possible to calculate distribution of the
on and off periods with respect to duration and deter-
mine their average values. Since the polymer molecule
can occur in two fluorescent conformations, we must
observe both on and off states of two types.
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6. DISTRIBUTION 
OF THE ON AND OFF STATES

On states. The probability of finding a polymer
molecule in each of the two possible on states is deter-
mined by the formulas

(14)

The fluorescence intensity is proportional to the proba-
bility of finding the molecule in one of the two on states
and vice versa; each probability corresponds to one of
the two emission intensities. In the set of Eqs. (10),
there are terms responsible for the decay and pumping
of the on states. The decay of the on states is determined
by the set of Eqs. (10) with excluded terms describing
population of these states:

(15)

Taking into account expressions (11) and (14), we
obtain the formulas

(16)

Substituting these formulas into expressions (15), we
arrive at the set of equations determining decay of the
on states:

(17)

where

(18)

Functions describing the distribution of the on periods
with respect to their duration can be determined by
solving Eqs. (17):

(19)
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According to these results, the distributions of on peri-
ods corresponding to the fluorescence intensities I1 and
I2 can be described by the exponents with different indi-
ces. If an experiment could provide separately mea-
sured distributions of the on periods corresponding to
different fluorescence intensity levels, then it would be

possible to find directly the experimental values of 

and  having a clear physical meaning of the average
on period durations for the medium and high fluores-
cence levels. However, the experiments performed
in [8] gave a total distribution of the on period dura-
tions of 

(20)

presented in Figs. 5a and 5c, from which it follows that
the inverse average on period duration is a linear func-
tion of the excitation intensity. This conclusion fully
agrees with formulas (18) if we take into account that
kT1 ! 1 and k 'T1 ! 1. This dependence of the on period
on the pumping level additionally confirms that confor-
mational changes take place in the triplet state. If it
were in the ground state, the on period duration would
be independent of the pumping intensity.

Using the simplified formula

(21)

it is possible to estimate the rate γ1 of intercombination
transitions for the given polymer. Measuring the emis-
sion from a single polymer molecule, the electron mul-
tiplier in [8] detected about 4000 photons per second.
For a quantum efficiency of the photon detection 10–3

and the quantum yield of fluorescence on the order of
0.1, we obtain k = 4000 × 103 × 10 = 4 × 107 s–1. Sub-
stituting this value into the approximate formula (21),
we obtain an estimate of the intercombination transi-
tions probability in the given polymer molecule (at T1 =
10–9): γ1 = 1.6 × 102 s–1. Thus, the singlet–singlet tran-
sition is a million times more probable than the singlet–
triplet transition.

Off states. Now it will be shown that the theory pre-
dicts the existence of two types of off state, namely,
those following the on periods corresponding to the
medium and high fluorescence intensities. Evidently,
the probability of finding a molecule in the “dark” off
state is

(22)

In order to write equations determining decay of the off
state, it is necessary to reject all terms in Eqs. (12)
which increase the population of levels 2 and 2'. This
yields the system of equations

(23)

τon
1( )

τon
2( )

won
1( ) t( ) won

2( ) t( ),+

1
τon
------ γ1T1k≈ 1

150 ms
-----------------,=

ρoff ρ2 ρ2'.+=

ρ̇2 γ2 B+( )ρ2– bρ2',+=

ρ̇2' Bρ2   γ 2 ' b + ( ) –  ρ 2' ,=  
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upon solution of which we obtain the expressions

(24)

(25)

where

(26)

are the roots of the determinant of Eqs. (23). Substitut-
ing this solution into formula (22), we arrive at an
expression for the probability of finding a polymer mol-
ecule in the off state:

(27)

If the molecule jumped into the off state from the on

state with , we have to use the above formula with
the initial condition

(28)

Let us denote the corresponding solution by . If the
molecule jumped into the off state from the on state

with , we have to use another initial condition,

(29)

which yields the corresponding solution denoted by

. The resulting formulas for the off-state probabili-

ρ2 t( )
λ1 b– γ2'–( )ρ2 0( ) bρ2' 0( )–

λ1 λ2–
------------------------------------------------------------------e

λ1t–
=

–
λ2 b– γ2'–( )ρ2 0( ) bρ2' 0( )–

λ1 λ2–
------------------------------------------------------------------e

λ2t–
,

ρ2' t( )
λ1 B– γ2–( )ρ2' 0( )   B –  ρ 2 0( ) 
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2

 
–
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e
 λ 1 t – 
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–
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–
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2

 

–( )ρ2' 0( ) Bρ2 0( )–
λ1 λ2–

------------------------------------------------------------------e
λ2t–

,

λ1 2,
B b γ2 γ2'+ + +

2
------------------------------------=

±
B γ2 b– γ2'–+

2
----------------------------------- 

 
2

Bb+

ρoff t( )
λ1 b– γ2'–( )e

λ1t–
λ2 b– γ2'–( )e

λ2t–
–

λ1 λ2–
----------------------------------------------------------------------------------------=

+
B e

λ2t–
e

λ1t–
–( )

λ1 λ2–
---------------------------------- ρ2 0( )

+
λ1 B– γ2–( )e
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λ2 B– γ2–( )e
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----------------------------------------------------------------------------------------

+
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λ2t–
e
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--------------------------------- ρ2' 0( ).
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ρ2 0( ) 1, ρ2' 0( ) 0.= =
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ρoff
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ties  and  can be written, taking into account the
relation λ1 + λ2 = b + B + γ2 + γ2' , in the following sim-
ple form:

(30)

(31)

According to these expressions, the distribution of the
off periods following the on periods corresponding to
the fluorescence intensity levels I1 and I2 is biexponen-
tial, provided that the roots λ1 and λ2 are significantly
different.

7. FLUORESCENCE INTENSITY

The intensity of fluorescence is proportional to the
effective absorption coefficient, reflecting both the
exciton absorption and the efficiency of energy transfer
to the luminescent trap of a polymer molecule. Since
the polymer molecule performs quantum jumps
between conformations, the effective absorption coeffi-
cient will fluctuate. It is these fluctuations that appear as
quantum intermittency in the fluorescence intensity. As
demonstrated in [21], the fluctuating absorption coeffi-
cient of a single molecule is simply related to a two-
photon correlator, theoretically described in [2], or to
an experimentally measured autocorrelation function
[1, 25, 26]. The latter function is determined as [1]

(32)

where I(t) is the QIT of the fluorescence. According to
this formula, the autocorrelation function is measured
by shifting the QIT by τ in the time scale and counting
the number of photon pairs (proportional to the QIT
length and the degree of coincidence of the on periods
in the two QITs).

Here, a question arises as to how the autocorrelation
function can be calculated theoretically. It was demon-
strated [2, 23] that this function is related to a two-pho-
ton correlator p(τ):

(33)

The total two-photon correlator is determined as the
counting rate of the photon pairs separated by the time
interval τ. This value can be calculated for a given
microscopic model of the emitting system. As was dem-
onstrated in [2], the total two-photon correlator in the
system with a single fluorescent state is expressed as

(34)

ρoff
1( ) ρoff

2( )

ρoff
1( ) t( )

γ2 λ2–
λ1 λ2–
---------------- λ1t–( )exp

γ2 λ1–
λ1 λ2–
---------------- λ2t–( ),exp–=

ρoff
2( ) t( )

γ2' λ2–
λ1 λ2–
----------------- λ1t–( )exp

γ2' λ1–
λ1 λ2–
----------------- λ2t–( ).exp–=

g 2( ) τ( ) I t( )I t τ+( )〈 〉
I t( )I t ∞+( )〈 〉

--------------------------------
t ∞→
lim

I t( )I t τ+( )〈 〉
I t( )〈 〉 2

------------------------------,
t ∞→
lim= =

p τ( )
p ∞( )
----------- g 2( ) τ( ).=

p τ( )
ρ1 τ( )

T1
------------,=
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where ρ(τ) is the probability of finding the system in
the fluorescent state upon elapse of time τ after photon
emission. For a molecule with the system of levels
depicted in Fig. 9, it is easy to establish that, for kT1 ! 1,
the above probability is ρ1(τ) ≈ kT1ρ0(τ), so that

(35)

This implies that the two-photon correlator is propor-
tional to the absorption coefficient. Therefore, the inten-
sity of fluorescence is proportional to this correlator.

In the case under consideration, there are two fluo-
rescent states and, hence, two photoemission processes.
Then, we have to answer the question as to which prob-
abilities will enter the expression for a two-photon cor-
relator.

For definiteness, let us consider the case when the
fluorescence with intensities I1 and I2 proceeds from
states 1 and 1', respectively. Assume that the fluores-
cence component with intensity I2 is removed from the
experimental QIT to leave only the component with
intensity I1. Then, I = I1 and the case reduces to that
considered in [2], with

(36)

and a two-photon correlator determined by formula (34).
By the same token, when the fluorescence component
with the intensity I1 is removed and only the component
with the intensity I2 is left, we obtain the formula

(37)

where

(38)

Calculating the probabilities ρ1(τ) and  using
formulas (11), we obtain the following expressions:

(39)

Therefore, there are two-photon correlators of the two
types and, hence, two absorption coefficients and two
fluorescence processes, such that

(40)

The probabilities ρ0(τ) and ρ0'(τ) in formulas (39) are
determined from system of equations (12) with the ini-

p τ( ) kρ0 τ( ).≈

g1
2( ) τ( )

I1 t( )I1 t τ+( )〈 〉
I1 t( )〈 〉 2

-----------------------------------
t ∞→
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p ∞( )
-----------= =

g2
2( ) τ( )

I2 t( )I2 t τ+( )〈 〉
I2 t( )〈 〉 2
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t ∞→
lim

p' τ( )
p' ∞( )
------------,= =

p' τ( )
ρ1' τ( )

T1
------------.=

ρ1' τ( )

p τ( )
k

1 γ1T1+
--------------------ρ0 τ( ) kρ0 τ( ),≈=

p' τ( )
k'

1 γ1'T1+
---------------------ρ0' τ( ) k'ρ0' τ( ).≈=

p τ( ) I1 τ( ), p' τ( ) I2 τ( ).∝∝
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tial conditions ρ0(0) = 1 and ρ0'(0) = 1, respectively. The
final expressions are as follows:

(41)

(42)

where

(43)

(44)

and z1, z2, and z3 are the roots of the equation

(45)

which is obtained by equating the determinant of
Eqs. (12) to zero. The fourth root of this equation
(z0 = 0), corresponding to the conservation of probabil-
ities in Eqs. (12), is already taken into account in for-
mulas (41) and (42).

ρ0 τ( )
M0 0( )
z1z2z3
--------------

M0 z1( )e
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z1 z1 z2–( ) z1 z3–( )
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+
M0 z2( )e

z2t–

z2 z2 z1–( ) z2 z3–( )
--------------------------------------------

M0 z3( )e
z3t–

z3 z3 z1–( ) z3 z2–( )
--------------------------------------------,+

ρ0' τ( )
M0' 0( )
z1z2z3
---------------

M0' z1( )e
z1t–

z1 z1 z2–( ) z1 z3–( )
--------------------------------------------+–=

+
M0' z2( )e

z2t–

z2 z2 z1–( ) z2 z3–( )
--------------------------------------------

M0' z3( )e
z3t–

z3 z3 z1–( ) z3 z2–( )
--------------------------------------------,+

M0 z( ) z B– γ2–( ) z b– γ2'–( ) z ke'–( )=

– γ2'ke' z B– γ2–( ) bB z ke'–( ),–

M0' z( ) z B– γ2–( ) z b– γ2'–( ) z ke–( )=

– γ2ke z b– γ2'–( ) bB z ke–( ),–

z B– b–( ) z ke– γ2–( ) z ke' γ2'––( )

– Bγ2 z ke' γ2'––( ) bγ2' z ke– γ2–( )– 0,=

ρ
1.0

0.5

0
–3 –2 –1 0 1 2 3

log t [s]

ρ0'

ρ0

Fig. 11. Population of the ground electron state in two con-
formations of a polymer molecule calculated by Eqs. (39)–
(44) with B = b = 0.1 s–1, ke = 1 s–1, γ2 = 6 s–1,  = 5 s–1,

and γ2' = 2 s–1.

ke'
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In order to avoid the need of solving a cubic equa-
tion, let us consider the particular case of ke + γ2 =  +
γ2' = K. Then, the above roots are as follows,

(46)

and their values increase in the sequence z0 < z3 < z2 < z1.

8. DISCUSSION OF RESULTS 
AND COMPARISON WITH EXPERIMENT

According to the energy diagram in Fig. 9, a single
polymer molecule in Fig. 9 has two fluorescent confor-
mations, the transition between which takes place in the
triplet state. The model has been justified in Section 3,
assuming that fluorescence from a single polymer mol-
ecule can measured in experiment. Experimental evi-
dence for this was reported in [8]. The single-quantum
character of the fluorescent system is also confirmed by
the following considerations. If the experimentally
measured fluorescence were from two polymer mole-
cules, each in its own time-independent conformation
and fluorescence fluctuating between zero and the cor-
responding intensity levels I1 and I2, respectively, the
QIT of the system would also represent fluctuating flu-
orescence. However, the intensity of fluorescence in
this system would jump between the four levels: 0, I1,
I2, and I1 + I2, which contradicts the data presented in
Fig. 4.

The proposed theory predicts the presence of the on
and off periods of the two types. Therefore, the experi-
mental distributions obtained for the periods of all the
four types would allow the parameters ke , , γ2, and γ2'

to be determined. Using the presently available experi-
mental data (Fig. 5), it is possible only to estimate these
quantities by order of magnitude.

The two fluorescence intensities are determined by
formulas (39). The time fluorescence intensity kinetics
is determined by the time variation of the probability of
finding a molecule in the ground state of a given con-
formation. Using formulas (39)–(44) with the parame-
ters determined from QITs in Fig. 3, we obtain the
curves presented in Fig. 11. For these parameters, the
roots calculated by formulas (46) are as follows:

The corresponding relaxation times are

Let us consider the results presented in Fig. 11 in
more detail. In a logarithmic time scale, a smooth step

ke'

z0 0, z2 K ,= =

z1 3,
K B b+ +

2
-----------------------

K B– b–
2

---------------------- 
 

2

Bγ2 bγ2'+ + ,±=

ke'

z0 0, z3 0.084 s 1– , z2 7 s 1– ,= = =

z1 7.116 s 1– .=

t1 1/z1 0.141 s, t2 1/z2 0.143 s,= = = =

t3 1/z3 11.905 s.= =
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(accounting for approximately one order of magni-
tude), describes exponential decay. There are two such
steps in Fig.11, one of which (on the left) corresponds
to an exponential probability for the molecule to jump
to the triplet state. This transition corresponds to very
close characteristic times t1 and t2. The right-hand step
describes the exponential probability of the transition
between conformations, with the corresponding time t3.

The number of photons counted over time t is given
by the formulas

(47)

while the fluorescence intensity measured in experi-
ment is

(48)

Figure 12 shows these intensities calculated via rela-
tions (48) as functions of the counting time.

For a sampling window of 100 ms used in [8], the
fluorescence signal intensity fluctuated between two
levels (I1 and I2) indicated in Fig. 12. The ratio of these
intensities is about one third, which corresponds to
25/75 for the two nonzero peaks in Fig. 4.

The same parameters as in Figs. 11 and 12 can be
used to calculate the distribution functions for the off
period duration according to formulas (26), (30),
and (31). The result of this calculation is presented in
Fig. 13. As can be seen, the two distributions virtually

N1 t( ) p τ( ) τ , N2 t( )d

0

t

∫ p' τ( ) τ ,d

0

t

∫= =

I1 N1 t( )/t, I2 N2 t( )/t.= =

I, 103 photon/s
6

2

0
–3 –2 –1 0 1 2 3

log t [s]

4

I2

I1

Fig. 12. Plots of the intermediate and high fluorescence
intensities versus photon counting time calculated for the
same parameters as in Fig. 11.
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coincide and are close to the exponential decay curve
with a characteristic time of 250 ms.

9. CONCLUSION

Experimental data on fluctuating fluorescence
reported in [8], processed in terms of the theory of light
absorption by single molecules developed in [2, 21],
allowed a theoretical model to be constructed that
describes the electron excitation energy transfer in a
single polymer molecule to an emission center of this
fluorescent system and to determine the relaxation con-
stants for this process.

According to the proposed model, the electron exci-
tation energy in the polymer molecule is transferred
from a singlet to triplet level, after which the molecule
exhibits a conformational transition. Each conforma-
tion of the polymer molecule is characterized by a flu-
orescence intensity of its own, I1 and I2. This model
does not allow determining which atoms in the polymer
molecule change their equilibrium positions in the
course of the conformational transition. Probably, these
changes take place only in the fluorescent chro-
mophore, rather than involving the entire molecule.

Since all quantum transitions possess a jumplike
character, fluorescence of a single polymer molecule
exhibits intermittency (fluctuates). These fluctuations
in the fluorescence intensity studied as the function of
time are represented by a quantum intensity transient.

The proposed theory explains the following experi-
mental results [8]:

(i) the existence of intermediate and high fluores-
cence intensity levels in a time scale of seconds;

(ii) the alteration of dark (off) periods and two types
of bright (on) fluorescence periods in this time scale;

ρ
1.0

0.5

0 0.5 1.0
Off period, s

e–4t

ρoff
(2)

ρoff
(1)

Fig. 13. Distributions of the off period duration for the off
states of two types (calculated for the same parameters as in
Fig. 11) in comparison to the exponential decay curve with
a characteristic time of 250 ms.
ICS      Vol. 96      No. 4      2003
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(iii) the exponential distribution of the durations of
on (τon) and off (τoff) periods;

(iv) the independence of the average τoff value of the
exciting light intensity and the linear variation of the
average τon value with the inverse intensity of excitation.

Quantitative agreement of the experimental data and
calculated values is obtained for the following values of
the relaxation constants of the polymer molecule stud-
ied: conformation variation rate, 0.1 s–1; triplet state
lifetime, 0.1–0.5 s; probability of the intercombination
transition from excited singlet to triplet state, 102 s–1.

The theory predicts the following new effects:
(i) existence of the bright (on) periods of two types

with different levels of the fluorescence intensity—
intermediate (I1) and high (I2)—and two types of the
dark (off) periods, following the corresponding on peri-
ods with the intermediate (I1) and high (I2) intensities;

(ii) dependence of the I1/I2 ratio of the intermediate
to bright fluorescence levels on the signal accumulation
time (sampling window), which was equal to 100 ms in
the experiments reported in [8].

Experimental verification of these predictions and
confirmation of the important role of the triplet state in
conformational transitions would provide for signifi-
cant progress in our understanding of the process of
energy transfer in polymer chains.
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Abstract—A universal theory for calculating coherent population trapping resonances in multilevel atoms is
suggested. The theory allows arbitrary schemes of multilevel atoms and their excitations to be calculated tak-
ing into account the influence of relaxation effects in atoms, applied magnetic field, and the Doppler effect.
The experimental data obtained by high-precision diode spectroscopy of coherent dark resonances in samar-
ium vapor are systematically analyzed using the suggested theory. In the absence of a magnetic field, the model
of samarium is based on consideration of a degenerate Λ system of the 4f 66s2(7F0) 

4f 6(7F)6s6p(3P0)9   4f 66s2(7F1) active transitions. If the fourth 4f 66s2(7F2) level is taken into account,
this Λ system becomes open. Numerical simulation of coherent population trapping resonances shows that the
open character of the system decreases the contrast of resonance curves in absorption spectra without changing
resonance widths. The system under applied external longitudinal and transverse magnetic fields is correctly
described by 7- and 12-level models of atomic transitions, respectively. © 2003 MAIK “Nauka/Interperiodica”.

     

F1
0       
1. INTRODUCTION

The interaction of an electromagnetic field with an
atom is one of the most fundamental problems of quan-
tum optics. Multilevel atoms are known to exhibit a
broader spectrum of effects under these conditions than
two-level atoms because of field-induced coherence
between atomic states and quantum interference.
Three-level systems in the Λ, Ξ, and V configurations
play an important role in studying these effects, being
intermediate in complexity between two-level and mul-
tilevel atoms. Quite a number of new effects are
observed in three-level atoms, of which coherent popu-
lation trapping is one of the most intriguing phenom-
ena. This phenomenon has been extensively studied
both theoretically and experimentally (see review [1]
and the references therein). The coherent population
trapping effect most strikingly manifests itself in three-
level systems with two closely spaced long-lived levels
and the third level distant from them (Λ or V systems),
which are excited by two continuous laser fields in such
a way that the distant level is optically “coupled” with
two others. Tuning the exciting fields in resonance with
dipole transitions results in system population trapping
in the coherent superposition of two closely spaced lev-
els. This effect manifests itself in Raman absorption
spectra as a very narrow dip against the absorption line
background and in resonance fluorescence spectra as
1063-7761/03/9604- $24.00 © 0629
the absence of emission, whence the term “dark (or
coherent population trapping) resonance.”

The coherent population trapping phenomenon is
currently extensively used in various applications, such
as magnetometry, metrology, etc. [2–6]. Since the first
observation of a coherent population trapping reso-
nance in sodium vapor [2], the majority of experimental
studies of coherent population trapping resonances
have been performed with alkali metal atoms [1, 7],
whose hyperfine ground state components with charac-
teristic splittings of several GHz were used as the lower
Λ system levels. The long lifetimes of the coherent
superposition of the lower alkali metal atom states
allow high-contrast and high-Q coherent population
trapping resonances to be recorded thanks to the avail-
ability of stable high-precision laser systems tunable in
resonance transition regions and comparatively simple
phase locking of exciting light fields. For instance, res-
onances about 10 kHz wide were recorded for pure
cesium vapor [7]. A further decrease in the width of res-
onances can be achieved by introducing an inert buffer
gas (Ne, He, or Ar) into the cell for measurements at
pressures of several kPa. The residence time of atoms in
light beams then increases without disturbing coher-
ence of the superposition state of the lower levels,
which are weakly dephased by collisions with buffer
gas atoms. In particular, the narrowest resonance about
2003 MAIK “Nauka/Interperiodica”
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50 Hz wide was obtained for cesium–neon combina-
tions [7].

Coherent population trapping in rare-earth metal
atoms has certain special features, because the charac-
teristic distance between fine structure components
used as the lower 

 

Λ

 

 system levels is substantially larger
than the hyperfine splittings of alkali metal ground
states and amounts to 10–100 THz. The characteristic
spontaneous decay time of these levels is determined by
magnetic dipole transitions and equals several seconds,
which does not prevent the observation of supernarrow
resonances. These levels are also weakly sensitive to
atomic collisions, because they are well shielded by the
outer closed shell. For this reason, rare-earth metal
atoms also offer promise for use in metrological appli-
cations, for instance, for creating a secondary fre-
quency standard (e.g., see [8]). The samarium atom is
one of the most promising objects for metrological
applications. Its scheme of levels is much simpler than
that of cesium, especially in applied magnetic fields.
Precisely for this reason, we selected it as a “touch-
stone” for testing the general theory of coherent popu-
lation trapping in multilevel atoms developed by us.

Theoretically, the coherent population trapping
phenomenon was studied in detail for the three-level
model [1], which allows calculations to be performed

                              

δL

ωL2
γ32

δR

∆

ω13

ω23

ωL1

γ31

Ω13

Γ13

Ω23
Γ23

Γ12γ21
ω12

|1〉
J = 0

|3〉
J = 1

|2 〉
J = 1

Fig. 1. Scheme of a three-level atom in the Λ configuration
excited by two laser fields at frequencies ωL1 and ωL2. Ω13
and Ω23 are the Rabi frequencies corresponding to pumping
fields; δL is the resonance detuning at the |1〉  |3〉  tran-
sition; δR is the Raman detuning; γ31 and γ32 are the rates of
radiative decay of excited states to the |1〉  and |2〉  levels,
respectively; γ21 and w12 are the rates of decay and thermal
pumping of level |1〉  through |2〉; and Γ13, Γ23, and Γ12 are
the rates of dephasing of transitions |1〉  |3〉 , |2〉 
|3〉 , and |1〉  |2〉 , respectively.

     

          
     
JOURNAL OF EXPERIMENTAL 
analytically. The model, however, becomes much more
complex for multilevel systems, and its analytic study
turns impossible in the majority of cases. In this work,
we suggest a general theoretical model for numerically
analyzing the coherent population trapping spectra of
atoms with an arbitrary number of levels and compare
the results obtained for this model with the experimen-
tal data on samarium [9].

In Section 2, we describe the coherent population
trapping effect in terms of the simplest three-level Λ
system model. Section 3 contains a description of a
general mathematical technique for calculating station-
ary states of active atoms and the corresponding level
populations, absorption coefficients, and the dispersion
of applied fields from the point of view of the spectros-
copy of dark resonances. A method for taking into
account the Doppler effect in calculating medium
absorption is considered in Section 4. An experimental
study of coherent population trapping in samarium
vapor is described in Section 5. For samarium atoms,
completely taking into account the Zeeman structure of
lines involved in the formation of coherent population
trapping resonances requires the use of a 12-level
model. However, even a substantially simpler 4-level
model gives close qualitative agreement with experi-
ment. Section 6 contains a general description of this
model and parameters necessary for performing calcu-
lations and comparing them with experimental results.
The results obtained in calculating absorption in the
absence of magnetic fields and under longitudinal and
transverse applied fields are given in Section 7, where
these results are compared with experimental data. The
most important conclusions are formulated in Section 8.
The special features of coherent population trapping
resonances against the background of a line broadened
by the Doppler effect in longitudinal and transverse
magnetic fields are considered in the Appendix.

2. COHERENT POPULATION TRAPPING 
IN A Λ SYSTEM

In the simplest three-level system of atomic transi-
tions in the Λ configuration, two lower long-lived levels
|1〉  and |2〉  with frequency splitting ∆ are coupled with
the upper excited energy level |3〉  by two light fields
(Fig. 1). If the |1〉   |2〉  transition is forbidden in the
dipole approximation and two fields E1
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 transitions, a
narrow coherent population trapping resonance is
formed as a result of quantum interference. It manifests
itself in absorption spectra by the appearance of a sharp
maximum when one of the acting fields, for instance,
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, is scanned and the Raman detuning 
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 passes zero, which corresponds to the exact res-
onance.

To describe the nature of this physical process more
visually, different basis sets are used to consider the
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atomic system. In particular, the 
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 ground
states can conveniently be replaced by their symmetri-
cal and antisymmetric combinations 
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determined from the corresponding dipole moments
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is the effective Rabi frequency, and the phases of states
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 coincide with those of laser fields.
The matrix element of the electric dipole operator

between the ground and excited states vanishes for the
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 state at zero Raman detuning,

By far the larger part of atomic population is concen-
trated in this state named dark because of radiative
decay. As a result, fluorescence is almost fully sup-
pressed. This process of optical pumping into the
coherent dark state is known as coherent population
trapping. The coherent nature of population trapping
manifests itself by a dependence of the dark state on
laser field phases. It follows that acting field phase fluc-
tuations can decrease or even destroy coherent popula-
tion trapping, and it is necessary to stabilize the relative
phase of laser fields. Other decoherence processes and
Doppler broadening can also contribute to the destruc-
tion of coherent population trapping.

The experimentally observed line width is deter-
mined by the stability of detuning 

 

δ

 

R

 

 and phase differ-
ence 

 

∆ϕ

 

 and also by Doppler broadening, time-of-flight
broadening, Stark broadening (broadening caused by
light and external fields), broadening in nonuniform
magnetic fields, and impact broadening. The 

 

∆ϕ

 

 phase
difference can very accurately be stabilized in experi-
ments with alkali metal atoms, for instance, by modu-
lating lasers at a frequency corresponding to 

 

∆

 

. When
two independent diode lasers are used in the free gener-
ation mode, we can expect that coherent population
trapping resonances several MHz wide will be observ-
able.

3. A MATHEMATICAL TECHNIQUE 
FOR CALCULATING COHERENT POPULATION 

TRAPPING IN MULTILEVEL SYSTEMS

A description of the dynamics of quantum systems
in which relaxation processes occur requires modifying
dynamic equations in comparison with their usual form
given in traditional textbooks on quantum mechanics
and only applicable to closed systems without relax-
ation. While the dynamics of closed systems is deter-
mined by an energy operator acting on wave functions,
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--------------------------------------, –| 〉

ΩR2 1| 〉 ΩR1 2| 〉–
Ωeff

-------------------------------------,= =

Ωeff ΩR1
2 ΩR2

2+=

3 Vdip –〈 〉 1 e
iδRt

–( ) 0.∝ δR → 0
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the dynamics of systems with relaxation can only be
described by transformations of density matrix opera-
tors or of dynamic variables, that is, by superoperator
transformations. The simplest transformations of this
type also arise in systems without relaxation if these
systems are described in terms of density matrices, in
particular, by the Liouville quantum equation

The role of a superoperator transformation is here
played by the Liouvillian 

 

+

 

0

 

. To the –

 

i

 

/

 

"

 

 imaginary
factor, the Liouvillian is described by the commutator

with Hamiltonian  applied to the density matrix .
In order to introduce the corresponding superopera-

tors irrespective of the operators to be transformed, it
suffices to introduce the substitution symbol 

 

(

 

 for spec-
ifying the position into which the operator in question
should be substituted. In the Schrödinger representa-
tion, this is the density matrix. Further, we can use the
rules for handling symbolic expressions that follow
from the general definitions of the algebra of linear
operators [10], which are quite obvious. For instance,

In the symbolic representation, the Liouvillian of a
closed system has the form

(1)

Like all linear operators, superoperators can be writ-
ten in the form of the corresponding matrices after the
introduction of a linear basis in the linear space of
quantum operators. The use of this technique for sym-
bolically representing superoperators is effective in cal-
culating systems of arbitrary dimensions, especially in
calculating multilevel systems. In particular, because of
large problem dimensions, even merely writing down
the matrices that describe the evolution superoperators
becomes a technically complex task. However, if the
symbolic representation of superoperators is used,
these matrices can first be written in the symbolic form
thanks to its physical transparency, and matrix elements
can then be calculated either analytically or numeri-
cally (for large-dimensionality matrices) on a com-
puter. Technical difficulties of reproducing them are
then fully transferred to automatic computer calcula-
tions, and the results of such calculations can easily be
used in numerical calculations of applied problems
under consideration with programs written in the most
suitable programming language. We used a combina-
tion of the MATHEMATICA computer algebra pack-
age (for analytically setting superoperators) and the
Fortran language (for subsequent numerical calcula-
tions of spectra with the use of the calculated dynamic
superoperator matrices).
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3.1. Calculations of the Liouvillian 
of an N-Level Atom in the Symbolic Representation

As for the two-level system, the Liouvillian of an
N-level atom in the rotating field approximation can be
written as the sum of contributions

(2)

where +r is the radiative damping superoperator, +e is
the elastic dephasing superoperator, +i is the superop-
erator of the interaction with the laser field, and +δ is
the laser detuning superoperator, which augments the
selected unperturbed evolution operator to the superop-
erator of free atomic dynamics in zero laser field. It
includes the corresponding detunings of all acting laser
fields and takes into account that free precession at the
frequencies of these fields is included into the unper-
turbed dynamics superoperator.

Radiative damping is described by the Liouvillian
that combines the population transfer superoperator

given by the  (  projector and the polarization

damping superoperator given by the [ , (]+ anticom-
mutator,

(3)

where the two-dimensional array γkl describes the rates
of spontaneous decay (for k > l) and pumping (for k < l).

Elastic dephasing is introduced by the +e superop-
erator written in terms of the squares of commutators
and determined by the particular model of dephasing.
In order to specify it, consider two types of dephasing.
First, we can only take into account internal dephasing
in the system of two electronic states k and l > k. In con-
formity with the microscopic nature of elastic dephas-
ing caused by weak collisions [11, 12] (random transi-
tion frequency fluctuations), this dephasing is
described by the corresponding random frequency shift

superoperator –(i/2)ξ(t)[(  – ), (], where ξ(t) is
the fluctuation transition frequency shift. The resulting
relaxation superoperator averaged over random phase
fluctuations has the form

where  =  –  is the population inversion oper-

ator for the kl subsystem and  is the corresponding
dephasing rate. This type of pure dephasing is not only
related to the dephasing of the kl transition itself but
also contributes to the dephasing of all the transitions
adjacent to it. It is nevertheless convenient to consider

+t +r +e +δ +i,+ + +=

P̂lk P̂kl

P̂kk

+r γkl P̂lk ( P̂kl
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the dephasing only of the kl transition with the use of
the representation

where  =  +  is the operator of the total popu-
lation of the kl subsystem. The first term,

(4)

describes purely internal dephasing and does not influ-

ence adjacent transitions. Using all  independent
parameters, we can write the dephasing of all transi-
tions by (4) alone. For simplicity of describing the
physical nature of dephasing, it is, however, convenient
to introduce another contribution. This is equal dephas-
ings of arbitrary other levels through the kth and lth lev-
els in the absence of action on the kl transition itself,
that is, “external dephasing,”

(5)

where  is the corresponding dephasing rate.
Accordingly, the complete elastic dephasing superoper-
ator is given by the sum

(6)

The laser detuning superoperator depends on the
type of resonance under consideration and can usually
be written in the form of an antisymmetric superopera-
tor given by the commutator with population operators,

(7)

where δk is the array of frequency detunings.

The interaction with the laser field can be described
by the antisymmetric commutator with the polarization
operators

(8)

where Ωkl is the two-dimensional array of the Rabi fre-
quencies of the kl transitions.

After the introduction of the symbolic representa-
tion of the complete evolution operator [Eq. (2)] and its
components (3) and (6)–(8), we can calculate the N2 ×
N2 matrix representations of the Lt, Lr, Le, Lδ, and Li

values by the formula

Here, { } is the orthonormalized basis and parenthe-
ses denote the scalar multiplication of two operators of
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the form Tr( ), which is antilinear in the first and
linear in the second multiplier.

The { } basis can conveniently be selected as Her-

mitian and expressed via the  transition operators
represented by N × N matrices, each with a single non-
zero kl element Pkl(k, l) = 1. It is also convenient to
assume that the levels are numbered in order of increas-
ing energy, E1 ≤ E2 ≤ … ≤ EN . The corresponding basis
is then constructed as follows:

(9)

where j(k, l) is the numbering index, that is, a one-to-
one mapping of the two-dimensional set of numbers kl
(k, l = 1, N) onto the one-dimensional set j = 1, N2. This
index can, in particular, be specified in the following
way universal for any N:

For N = 2, 3, and 4, this corresponds to the following
jN = (jN(k, l)) matrices:

Basis (9) is Hermitian and orthonormalized with

respect to the ( , ) scalar product described above,
and ( , ) = δmn for all m, n = 1, N2.

3.2. Calculations of Coherent Population Trapping 
in an N-Level Atom

The technique described above can effectively be
used in analytic calculations for solving the stationary
state problem and the complete spectral problem for the
+t evolution superoperator [13, 14].
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The most important properties of coherent popula-
tion trapping are determined by the absorption of
applied field. For the Λ resonance, absorption is
described by the equation

(10)

Here,  and  are averaged positive-fre-
quency operators of the complex amplitudes of the 1–3
and 2–3 transitions, respectively; ωL and  are the fre-
quencies of biharmonic pumping fields; g and g' are the
corresponding Rabi frequencies; and γ and γ' are the
corresponding radiative damping rates. The determina-

tion of the , , or n3 stationary mean values
requires calculating the corresponding vector represen-
tation 〈0| of the  stationary density matrix by solving
the 〈0| Lt = 0 equation.

In the basis under consideration with  = ,  =

, and  = , the first three vector 〈0| elements
describe populations and should be normalized accord-
ingly. The 〈0| bra vector of the stationary density matrix
should therefore be used in the normalized form

which automatically gives correct signs of the values to
be calculated. The mean populations then coincide with
the corresponding components,  = 〈0|k , k = 1, 3,
and the complex transition amplitudes are expressed
through the components with k > 3,

These equations allow absorption to be written in an
analytic form convenient for both numerical calcula-
tions and a qualitative analysis.

We wrote a universal Fortran program for calculat-
ing level populations, absorption coefficients, and dis-
persion in an arbitrary N-level system. The program can
be used at large N > 10 values. Its important feature is
the use of a minimum necessary number of input
parameters, which is substantially smaller than the N2 ×
N2 number of Liouvillian matrix elements in the Liou-
villian generalization under consideration [Eq. (1)],
because it is not necessary to write down all Lt dynamic
matrix elements by hand. According to (2)–(8), this
matrix in reality contains a huge number of zero contri-
butions.
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4. TAKING INTO ACCOUNT
THE DOPPLER EFFECT

The technique of calculations described in Section 3
can be used to obtain the dependences of the laser radi-
ation absorption coefficient for an atom at rest on the
first field δL and Raman δR detunings. In experiments,
moving atoms interact with fields. For this reason, the
Doppler effect influences the absorption coefficient of
the medium. In the absence of simplifications, this
requires performing calculations for a continuum of
detunings simultaneously. In this work, the Doppler
effect was taken into account by the following simpli-
fied method, which qualitatively corresponds to the
approach taken in [15], but without approximately
replacing the Maxwell velocity distribution by the
Lorentz distribution.

The frequency of the laser field that interacts with an
atom that moves in an arbitrary direction is given by the
formula ω1, 2 = ωLj + δLj , which takes into account the
first-order correction for the Doppler effect. Here, δLj =
ωLjv n/c, j = 1, 2, are the detunings of the biharmonic
laser field components and v n is the projection of the
velocity of the moving atom onto the vector n of laser
beam propagation.

The number of gas particles that move at velocity v k

at temperature T is determined by the Maxwell velocity
distribution [11]

where

The δR = ωL2 – ωL1 – ∆ Raman detuning for laser
beams propagating in one direction is then considered
approximately constant for particles moving at differ-
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ent velocities. The dependence of the absorption coeffi-
cient for field ωL1 on the Raman detuning when field
ωL2 is scanned therefore has the form

(11)

where K(δL, δR) is the absorption coefficient of the atom
at rest.

5. EXPERIMENTAL OBSERVATION 
OF COHERENT POPULATION TRAPPING 

RESONANCES IN SAMARIUM VAPOR

As mentioned in Section 1, samarium is a promising
candidate for studying the feasibility of using coherent
population trapping resonances in rare-earth metal
vapors for metrological application purposes by high-
resolution nonlinear spectroscopy methods. A diagram
of the energy levels of the samarium atom is shown in
Fig. 2. We experimentally studied samarium vapor
absorption in the region of the

(12)

transition lines, which formed a Λ system.
The experimental unit is schematically drawn in

Fig. 3. The radiation sources were two semiconductor
lasers (1, 2) with external cavity resonators tuned to res-
onance wavelengths 672 and 686 nm. The lasers were
assembled according to the Littrov scheme with a col-
limating aspherical objective and a holographic grating
of 1800 lines/mm. The free detuning range of lasers
was around 5 GHz. The lasers, with radiation wave-
lengths 672 and 686 nm, radiated 2.5 and 12 mW,
respectively, in the single-frequency mode.

The spectra of the transitions in samarium that we
were interested in were studied in detail in [16] by sub-
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Fig. 2. (a) Diagram of energy levels of the samarium atom and (b) parameters used in calculations. The notation is the same as in
Fig. 1 (for the corresponding level numbers).
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Doppler absorption saturation spectroscopy. In [16],
the relative isotopic shifts and hyperfine splittings of
the levels were determined accurate to 1–2 MHz. The
154Sm isotope (abundance 22.75%) had lines shifted
with respect to the spectral lines of the other isotopes
[144Sm (3.07%), 147Sm (14.99%), 148Sm (11.24%),
149Sm (13.82%), 150Sm (7.38%), and 152Sm (26.75%)]
by 1 GHz to the red, which allowed reliable frequency
locking to the transitions in this isotope to be per-
formed. The presence of the other isotopes, however,
slightly changed the wings of the working transition
line.

Samarium vapor was generated in stainless steel
cell 7, which was 50 cm long and had glass windows at
the ends. The cell was connected to a vacuum line and
a system for buffer gas puffing. The cell was heated in
its central part (15 cm long) with coaxial direct-current
heater 8 (~500 W). The remanent magnetic field in the
cell was of fractions of an oersted unit. The cell was
placed within two pairs of Helmholtz rings 9 30 cm in
diameter, which could be used to create longitudinal
and transverse magnetic fields up to 40 Oe in the central
part of the cell. To obtain noticeable absorption, the cell
was heated to about 1000 K [9]. Vapor concentration at
this temperature was about 1011–1012 cm–3.

The 672 nm laser was tuned to the center of the

4f 66s2(7F0)  4f 66s6p(9 ) transition in 154Sm and
locked to the transmission peak of stabilized one-meter
confocal interferometer 12 with a high long-term sta-
bility (about 5 MHz/h). The width of the laser genera-
tion spectrum was less than 0.5 MHz. The 686 nm laser
was slowly retuned in the region of the 4f 66s2(7F1) 

4f 66s6p(9 ) transition in such a way that its frequency
passed the δR = 0 point. Laser generation frequency
variations were controlled by 0.5-m confocal interfer-
ometer 13 with a Q-factor of about 20 and a free disper-
sion region of 149.8 + 0.1 MHz. The mode composition
of laser radiation was controlled using spectrum ana-
lyzer 14 with a Q-factor of 50 and a free dispersion
region of 8 GHz. All interferometers were optically iso-
lated from lasers to prevent the arising of feedback.
Linearly polarized laser radiation converged into one
beam (accurate to 10–3 rad) on polarization cube 6 and
was launched into the cell with samarium vapor. The
polarization planes of the beams were mutually orthog-
onal. At the entrance to the cell, radiation power density
was 0.1 mW/mm2 for the 672 nm laser and 0.2 mW/mm2

for the 686 nm laser. After exit from the cell, the beams
were divided using holographic diffraction grating 15
(2400 lines/mm) and directed to a system for recording
(components 16, 20, and 21).

As coherent population trapping is related to atomic
system interactions with a dichromatic light field, we
only recorded changes in the adsorption of laser radia-
tion at 672 nm caused by the presence of the second
light field. For this purpose, the beam from the 686 nm

     F1
0

     

F1
0
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laser was modulated by liquid crystalline modulator 4
at a frequency of f

 

m

 

 = 600 Hz before it entered the cell,
and the signal with the same modulation frequency was
recorded in the channel of the 672 nm laser. The pres-
ence of broad excess absorption wings was caused by
collisions with buffer gas atoms [17]. The spectra of
induced absorption were recorded at both zero mag-
netic field and under applied longitudinal and trans-
verse magnetic fields. In experiments with transverse
applied fields, their direction was aligned with the
direction of 672 nm laser polarization.

6. COHERENT POPULATION TRAPPING
IN THE FOUR-LEVEL MODEL

In the experiment under consideration, apart from
the active samarium vapor levels that formed the 

 

Λ

 

 sys-
tem, the formation of coherent population trapping res-
onances involved the 4

 

f

 

6

 

6

 

s

 

2

 

 (

 

J

 

 = 2) level. Although this
level did not directly participate in the excitation of the
upper level, it absorbed part of the population as a con-
sequence of radiative decay (Fig. 2a). In addition, the

 

J

 

 = 2 level was populated by incoherent pumping from
the lower levels that formed the 

 

Λ

 

 system. It follows
that the 

 

J

 

 = 2 level played the role of a reservoir for
coherent population trapping in the 

 

Λ

 

 system under
consideration and its presence made the 

 

Λ

 

 system an
open system. In the absence of magnetic field, this four-

 

Lock
box

Lock-in

672

686

 

12
17

2

3

4

5

6 7

8
9

10

11
13

14

15

16

1

18

19 20
21

22

 

Fig. 3.

 

 Experimental unit for measuring dark resonance
spectra in samarium vapor;

 

 1 

 

and 

 

2

 

 are semiconducting
lasers with 672 and 686 nm wavelengths, respectively;

 

3

 

 and 

 

5

 

 are light-splitting cubes; 

 

4

 

 is a modulator (600 Hz
frequency); 

 

6

 

 is a polarizing cube; 

 

7 

 

is a cell with samarium
vapor; 

 

8

 

 is a coaxial heater; rings 

 

9 

 

are Helmholtz rings;

 

10

 

 and 

 

11

 

 are optical insulators; 

 

12 

 

is a confocal interferom-
eter with the region of free dispersion of 74.35 

 

±

 

 0.01 MHz;

 

13

 

 is a confocal interferometer with the region of free dis-
persion of 149.8 

 

±

 

 0.01 MHz; 

 

14 

 

is a spectroanalyzer; 

 

15

 

 is
a 2400 lines/mm diffraction grating; 

 

16

 

–

 

18

 

 are photo-
diodes; 

 

19

 

 is a generator; 

 

20

 

 is a synchronous detector;

 

21

 

 is an oscilloscope with memory; and 

 

22

 

 is the electronic
block for locking the 672 nm laser frequency to the trans-
mission peak of interferometer 

 

12

 

.
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level model takes into account the main mechanisms
that determine coherent population trapping effects.

The characteristics of the samarium atom and the
parameters of experiments necessary for a comparison
with experimental data are summarized in Tables 1, 2,
and 3. Table 1 contains the oscillator strengths of the
transitions of interest, and Table 2, the energies and
g-factors of the lower metastable levels with J = 0, 1,
and 2 and the upper level of the Λ system. The relative
populations of the metastable levels at T = 600°C are
also given (see [16]).

Dipole moment d, Rabi frequencies Ω , and decay
rates γ are calculated by the equations

where m and e are the mass and the charge of the elec-
tron, respectively; c is the velocity of light; ωJJ' is the
transition frequency; and | fJJ' | is the oscillator strength
of the J  J ' transition. The electric fields are calcu-

lated by the formula E = ; they take on the
values EL1 ≈ 270 V/m and EL2 ≈ 390 V/m at laser radia-
tion power densities at the entrance to the cell of WL1 =
0.1 mW/mm2 and WL2 = 0.2 mW/mm2, respectively [9].
The calculation results are summarized in Table 3.

The longitudinal and transverse magnetic field
intensities were 15 and 29 Oe, respectively. The Zee-
man splittings in the longitudinal magnetic field calcu-
lated as ∆ = egH/2mc were ∆' = 1.98 × 108 s–1 for the
6s6p level and ∆'' = 4.09 × 108 s–1 for the 6s2 level. The

dJ J'
2 3"e2

2m
-----------

2J 1+( ) f J J'

ωJ J'
--------------------------------,=

ΩJ J'

dJ J'E
"

------------, γJ J'

4dJ J'
2 ω3

3"c3
------------------,= =

2W /cε0

Table 1.  Wavelengths and oscillator strengths of active tran-
sitions

Transition Wavelength 
λ, nm

Oscillator
strength gf

6s2 (J = 0)  6s6p (J = 1) 672.5875 8.5 × 10–3

6s2 (J = 1)  6s6p (J = 1) 686.0927 9.5 × 10–3
JOURNAL OF EXPERIMENTAL
                               

transverse magnetic field splittings were ∆' = 2.50 ×
108 s–1 for the 6s6p level and ∆'' = 5.17 × 108 s–1 for the
6s2 level.

7. THE RESULTS OF SIMULATING
THE COHERENT POPULATION TRAPPING 

SPECTRA IN SAMARIUM VAPOR

Calculations based on the technique described in
Section 3 gave the absorption coefficients of a samar-
ium atom at rest for the three- and four-level models
(Figs. 4a and 4b, respectively). An analysis of the
dependences plotted in these figures shows that the
introduction of the fourth J = 2 level into the three-level
model has virtually no effect on the width of the reso-
nance, whereas the complete absorption value for the
four-level system is much smaller than for the three-
level one. The reason for this is population trapping at
the J = 2 level through the corresponding radiative
decay channel.

7.1. The Modification of the Spectra
in a Magnetic Field

Applying magnetic field transforms the three-level
system of the samarium atom considered above into a
seven-level one because of the splitting of the J = 1 lev-
els. The |3〉  level splits into three components (Fig. 5),
which results in the existence of three transitions to the
|1〉  level allowed by the selection rules for radiative
transitions. The probability of each of these transitions
equals one-third of the total probability of the |3〉 
|1〉  transition. Similarly, the |2〉  level also splits into
three components, and, according to the selection rules,
the |3〉  |2〉  transition transforms into six transitions,
the probability of each of them being one-sixth of the
total probability of the |3〉  |2〉  transition.

An additional decay channel in multilevel systems
compared with three-level ones is collisional depolar-
ization [18]. The depolarization of an atom caused by a
collision with another atom is related to transitions
between states with different magnetic moment projec-
tions onto the selected direction. When a magnetic field
is applied, collisions cause transitions between Zeeman
sublevels with different magnetic momentum projec-
tions for each multiplet, |m〉  |m ± 1〉 . Collisions

     

                                                       
Table 2.  Samarium energy levels determining absorption spectrum

Even levels 4f66s2(7F) Odd level 4f6(7F)6s6p(3P0)9

J Energy, cm–1 g Relative population 
at T = 600°C J Energy, cm–1 g

0 0 – 1.0

1 292.58 1.50 0.6 1 14863.85 3.10

2 811.92 1.50 0.24

F1
0
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Fig. 4. Probing field absorption coefficients in (a) three-level and (b) four-level systems as functions of Raman detuning δR at δL = 0

and different dephasing rates (s–1). The corresponding schemes of levels are given in Figs. 1 and 2.
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Fig. 5. Scheme of the Λ system of a samarium atom under applied (a) longitudinal magnetic field for linear orthogonal laser beam
polarizations and (b) transverse magnetic field; the selection rules for the first field are ωL1 – ∆m1 = ±1 (a) and 0 (b); for the second
field, ωL2 – ∆m2 = ±1; ∆' and ∆'' are the Zeeman splittings of the lower and upper levels with J ≠ 0, respectively.
                    
with changes in momentum projections destroy the
coherence of the lower Λ system levels, which influ-
ences the coherent population trapping resonance
value. We used the numerical data given in Section 6 to
perform theoretical calculations. In the calculations,
this process was taken into account by introducing
depolarization constant G between the levels of each
multiplet. This constant was used as an adjustable
parameter and was varied in the range G = 0–80γ41.

Below, we will distinguish between two applied
magnetic field configurations, namely, longitudinal and
transverse.

7.2. Longitudinal Magnetic Field

A scheme of levels for the longitudinal field config-
uration is shown in Fig. 5a. According to the selection
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
rules, six transitions are allowed for linearly polarized
fields in the system under consideration, because E1 ⊥
H (∆m1 = ±1) and E2 ⊥  H (∆m2 = ±1). The |1〉  |5〉 ,
|3〉  |5〉  and |1〉  |7〉 , |3〉  |7〉  transitions form
two Λ systems, whereas the |2〉  |6〉  and |4〉  |6〉
transitions, which are also allowed by the selection

     
               

           

Table 3.  

 

Parameters determining 

 

Λ

 

 system excitation

Rabi frequency, s

 

–1

 

Radiative decay 
rate, s

 

–1

 

Dephasing rate, s

 

–1

 

Ω

 

14

 

 = 0.58 

 

× 107 γ41 = 0.42 × 106 Γ12 = 2.4 × 104

Ω24 = 0.83 × 107 γ42 = 0.45 × 106 Γ23 = 1.6 × 104

– γ43 = 0.42 × 106 –
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Fig. 6. Dependence of the absorption coefficient of the
samarium atom at rest on δR and δL in applied longitudinal
magnetic field.
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Fig. 7. (a) Theoretical dependences of the absorption coef-
ficient of a seven-level system on Raman detuning δR in a
longitudinal magnetic field calculated taking into account
the Doppler effect at two temperatures T = 10 K (dashed
line) and T = 873 K (solid line) and (b) experimental depen-
dence of absorption coefficient in a 29 Oe longitudinal mag-
netic field at a 0.2 Torr buffer gas (Ar) pressure.
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rules, do not participate in Λ system formation but are
responsible for the formation of additional absorption
peaks (see Appendix).

The dependence of the absorption coefficient of the
samarium atom at rest on the Raman δR and laser δL

detunings for the configuration under consideration is
shown in Fig. 6; this dependence does not take into
account depolarization. Including depolarization
results, first, in an increase in induced absorption and,
second, in a monotonic decrease in the contrast of
coherent population trapping resonances. We observe
hardly any depolarization effects on the width of coher-
ent population trapping resonances.

We used (11) and the calculated absorption of the
atom at rest to determine the absorption coefficient of
the medium. The dependences of the absorption coeffi-
cient of the medium at ωL1 = const and δL = 0 on the
Raman detuning δR are shown in Fig. 7a for two tem-
peratures, T1 = 873 K (experimental temperature) and
T2 = 10 K.

Temperature variations change the absorption coef-
ficient magnitude but have virtually no effect on its
form. The reason for these changes is a temperature-
induced increase in the contribution of atoms that inter-
act with the field at large laser detunings, which
decreases absorption K(δL, δR).

For comparison, the experimental absorption spec-
trum of the probing laser field (672 nm, δL = 0) obtained
by scanning the frequency of the second controlling
field is shown in Fig. 7b. According to Fig. 7, the typical
width of experimentally observed coherent population
trapping resonances is 5–6 MHz, which is in agreement
with theoretical estimates. Because field absorption is
measured at a fixed ωL1 frequency tuned in resonance
with the atomic transition, the total width of the absorp-
tion contour as a function of the δR Raman detuning is
unbounded.

The estimates given in the Appendix show that
applying longitudinal magnetic field should split the
coherent population trapping resonance by 2∆'ω12/ω13.
The positions of coherent population trapping reso-
nances observed experimentally are in close agreement
with these results, and the splitting amounts to about
3 MHz.

The experimentally observed broad absorption con-
tour wings at large Raman detunings δR are explained
by the influence of collisions [17], namely, by the pos-
sibility of the transfer of atoms from different speed
groups to the group resonant to the light field [19]. This
mechanism was not taken into account in our calcula-
tions.

7.3. Transverse Magnetic Field

The energy level diagram for the samarium atom in
a transverse magnetic field is shown in Fig. 5b. Linearly
polarized laser radiation with frequency ωL1 can only
AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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cause transitions with ∆m = 0 (π components) in trans-
verse magnetic field H⊥  (the H⊥  vector lies in the polar-
ization plane). At the same time, laser radiation with
frequency ωL2 and the polarization plane orthogonal to
H⊥  causes transitions with ∆m = ±1 (σ components).
Two Λ systems (the transitions |1〉  |6〉 , |2〉  |6〉
and |1〉  |6〉 , |4〉  |6〉) are then formed. The
|3〉  |5〉  and |3〉  |7〉  transitions do not partici-
pate in Λ system formation.

The absorption coefficients of the atom at rest, the
depolarization effects, and the absorption coefficients
of the medium taking into account the Doppler effect
were calculated for the system in a transverse magnetic
field using the approach described in Section 4.

The special feature of absorption spectra in a trans-
verse magnetic field is the splitting of the coherent pop-
ulation trapping resonance line. The splitting of the res-
onance coincides with the Zeeman splitting value for
level J = 1 sublevels |2〉  and |4〉 , ∆ω = 2∆' (see
Appendix).

The depolarization of magnetic sublevels manifests
itself similarly to the case of a longitudinal magnetic
field (see Section 7.2). The resonance contrast is maxi-
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Fig. 8. 

 

(a) Theoretical dependences of the absorption coef-
ficient of a seven-level system on Raman detuning 

 

δ

 

R

 

 in a
transverse magnetic field calculated taking into account the
Doppler effect at 

 

T 

 

= 873 K for two magnetic sublevel depo-
larization values, 

 

G 

 

= 0 (solid line) and 

 

G

 

 = 0.5 (dashed line)
and (b) experimental dependence of the absorption coeffi-
cient in a 29 Oe transverse magnetic field at a 0.2 Torr buffer
gas (Ar) pressure.
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mum at G = 0; it decreases as G grows, but its width
remains virtually constant.

The experimental data are compared with the theo-
retically calculated absorption coefficients of the
medium in a transverse magnetic field in Fig. 8. As with
a longitudinal magnetic field, the positions and widths
of coherent population trapping resonances observed
experimentally coincide with those found in theoretical
calculations (see Appendix).
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Observation of coherent population trapping reso-
nances against the background of a Doppler-broadened line;
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 transition. (a) 
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) is the Maxwell
velocity distribution function, points

 

 a

 

 and 

 

b 

 

correspond to
particles with a definite velocity projection onto the beam
propagation direction, namely, the projection at which the
Doppler shift balances the detuning of field 

 

ω

 

L

 

1

 

 frequency
from the 

 

|

 

1

 

〉  |

 

7

 

〉

 

 and 

 

|

 

1〉  |5〉  quantum transition
frequencies, respectively; points c, d, e, and f correspond to
the velocity groups of particles for which the Doppler shift
balances detuning  of frequency ωL2 from the |3〉 
|7〉 , |2〉  |6〉 , |4〉  |6〉 , and |3〉  |5〉  quantum
transition frequencies, respectively; (b) illustration of the
formation of absorption peaks K(ω); and (c) illustration of
the formation of coherent population trapping resonances
against the background of a Doppler-broadened line.
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8. CONCLUSIONS

In this work, we suggested a theoretical model for
describing coherent population trapping in multilevel
systems that allows calculations to be performed using
a minimal set of input parameters. An analysis of the
spectroscopic characteristics of coherent population
trapping in samarium vapor in terms of this model
showed that coherent population trapping resonances in
the absence of an external magnetic field could well be
approximated by a simple four-level model.

When a longitudinal or transverse magnetic field
was applied, the spectroscopic characteristics of samar-
ium atoms were well described by a seven-level model.
The complication of the energy structure of samarium
atom levels increased the number of coherent popula-
tion trapping resonances and caused the appearance of
additional peaks in the spectra, because the system
under consideration decomposed into a set of three-
level Λ systems, each being responsible for the forma-
tion of a resonance of its own. The transitions between
the levels that did not directly participate in the forma-
tion of Λ systems contributed to the formation of
induced absorption peaks.

In the presence of magnetic field, the depolarization
of magnetic sublevels substantially influenced the
shape of the absorption line and the contrast of coherent
population trapping resonances, namely, the contrast of
coherent population trapping resonances monotoni-
cally decreased as the depolarization constant
increased.

The absorption coefficients of vapor were calculated
taking into account the Maxwell velocity distribution of
atoms and compared with the experimental data. It was
shown that temperature variations caused changes in
the absorption coefficient magnitude but had almost no
effect on its form.

The results of numerical calculations accurately
reproduced the experimental data on coherent popula-
tion trapping resonance positions and widths and on the
shape of the spectra obtained in the presence of a trans-
verse magnetic field. Qualitatively, the theoretical esti-
mates were also in agreement with the splitting of the
coherent population trapping resonance by a small
value of the order of 3 MHz observed experimentally in
a longitudinal magnetic field. The reproduction of such
a splitting in numerical calculations would, however,
require going beyond the approximations [15] usually
applied to describe the Doppler broadening effect on
the formation of coherent population trapping spectra.
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APPENDIX

 

FEATURES OF COHERENT POPULATION 
TRAPPING RESONANCES 

AGAINST THE BACKGROUND
OF A DOPPLER-BROADENED LINE

IN MAGNETIC FIELDS

 

Longitudinal Magnetic Field

 

In experiments, the frequency of the first laser is
constant and equal to 

 

ω

 

L

 

1

 

 = 

 

ω

 

13

 

 + , where  is a
small laser detuning. Only the particles that have a cer-
tain velocity projection along the light beam direction
can be in resonance with field 

 

ω

 

L

 

1

 

. This projection is
determined by the condition that the Doppler shift
should balance the detuning of field 

 

ωL1 from the fre-
quencies of the |1〉  |7〉  and |1〉  |5〉  quantum
transitions (points a and b in Fig. 9a).

The absorption of wave ωL1 is observed at the fre-
quencies ω13 + ∆'' (the |1〉  |7〉  transition) and ω13 –
∆'' (the |1〉  |5〉  transition). According to the defini-
tion of the Doppler effect, the corresponding group
velocities are

The interaction of particles in each velocity group with
field ωL1 depletes level |1〉 , whereas the populations of
levels |2〉 , |3〉 , and |4〉  increase because of upper level
decays. The second frequency ωL2 = ω23 + , where

 is the detuning of the second field, is scanned in a
wide frequency range. The c, d, e, and f points in Fig. 9a
correspond to the velocity groups of particles for which
the Doppler shift balances the  detuning of fre-
quency ωL2 from the |3〉  |7〉 , |2〉  |6〉 , |4〉 
|6〉 , and |3〉  |5〉  quantum transition frequencies. The
absorption of wave ωL2 is observed at four frequencies,
namely, ω23 ± ∆'' (the |3〉  |7〉  and |3〉  |5〉  tran-
sitions) and ω23 ± ∆' (|2〉  |6〉  and |4〉  |6〉 tran-
sitions); that is, the equations for the corresponding
velocity groups have the form

δL1
δL1

          

     
     

ωL1
ω13 ∆''+
1 v x1/c–
----------------------=

1
v x1

c
--------– 

  ω13 ∆''+
ωL1

-------------------- point a( ),=

ωL1
ω13 ∆''–
1 v x2/c–
----------------------=

1
v x2

c
--------– 

  ω13 ∆''–
ωL1

------------------- point b( ).=

δL2

δL2

δL2

               
     

          
          

ωL2
ω23 ∆''+
1 v x3/c–
----------------------=

1
v x3

c
--------– 

  ω23 ∆''+
ωL2

-------------------- point c( ),=
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If the detuning  is larger than ω23 + ∆'', points c–f are
situated to the left of point b. In all these velocity
groups (a–f), atoms are excited by radiation ωL2 or ωL1.
Equilibrium population distribution is disturbed. The c,
d, e, and f plot points (Fig. 9a) move to the right as
detuning  decreases. When points c and b coincide,
the atoms in these velocity groups simultaneously inter-
act with both fields. Two transitions that do not form a
Λ system are excited, but, because the distribution of
particles over levels is nonequilibrium and level |3〉  is
populated excessively, the absorption of the second
wave increases, which corresponds to an absorption
peak (Fig. 9b). The frequency of this absorption peak
can be determined from the condition of the coinci-
dence of velocity groups v x2 (point b) and v x3 (point c);
that is, from the condition

Using this equation, we easily find the frequency at
which the first absorption peak is observed, ωL2 = ω23 +
2∆'' + . Decreasing  further, we observe absorp-
tion peaks corresponding to the coincidence of the v x2
and v x4 (points b and d) and v x2 and v x5 (points b and e)
velocity groups. The corresponding frequencies are
ωL2 = ω23 + ∆'' + ∆' +  and ωL2 = ω23 + ∆' + .

Decreasing  further brings points c and a in coinci-
dence, which corresponds to simultaneous excitation of
the |1〉  |7〉  and |3〉  |7〉  transitions, that is, to a
coherent population trapping resonance in the Λ system
formed by the |1〉 , |3〉 , and |7〉  levels. Let us calculate the
frequency of the coherent population trapping reso-
nance peak. The condition of the coincidence of veloc-
ity groups v x1 and v x3 is

ωL2
ω23 ∆'+
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1
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It follows that the first coherent population trapping
resonance is observed at the frequency

The second coherent population trapping resonance
arises when the v x6 (point f) and v x2 (point b) velocity
groups coincide. Accordingly, we obtain the frequency
of the second coherent population trapping resonance
peak in the form

The distance between the two coherent population trap-
ping resonances is

A further decrease in  results in the appearance
of absorption peaks in the left part of the plot (Fig. 9c).
Note that the laser detuning of the second field being
nonzero results in that the distribution of peaks and res-
onances is symmetrical with respect to the frequency

(A.1)

To summarize, we observe six absorption peaks and
two coherent population trapping resonances symmet-
rically distributed with respect to the (A.1) frequency
on a Doppler broadened contour, which differs from the
picture characteristic of an atom at rest.

Transverse Magnetic Field

The reasoning is similar to that with a longitudinal
magnetic field. The absorption of wave ωL1 is observed
at the ω13 frequency (the 
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 levels,
respectively. It follows that two coherent population
trapping resonances are observed at the 
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 = 
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 ∆'
frequencies. The distance between the resonances
equals twice the Zeeman splitting of the lower level,
that is, ∆ω⊥  = 2∆'. Note that the ratio between the split-
tings of coherent population trapping resonances for

ωL2 ω23 δL1

ω12∆''
ω13

--------------.+ +=

ωL2 ω23 δL1

ω12∆''
ω13

--------------.–+=

ωL2
ac ωL2

bf– 2∆'
ω12

ω13
--------.=

δL2

ωL2 ω23 δL1
.+=

δL2
δL2
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samarium in transverse and longitudinal magnetic
fields is
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Abstract—The dynamic characteristics of self-action in three-dimensional wave packets described by the non-
linear Schrödinger equation with a hyperbolic space operator were studied analytically and numerically. The
class of the initial wave field distributions for which self-focusing effects predominated over dispersion spread-
ing and caused the arising of wave collapses was considered. The collapse of tubular wave packets was shown
to be accompanied by packet shape changes during its contraction to the axis of the system. The nonlinear sta-
bilization of collapses resulted in wave field fragmentation in the longitudinal direction followed by the expan-
sion of the bunches thus formed along the axis. The dynamics of collapses was numerically studied taking into
account medium nonlinearity saturation and nonlinear dissipation. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The self-action of a wave field is one of the main
processes that determine the dynamics of interaction
between high-power radiation and matter. The ampli-
tude of the envelope of three-dimensional wave packets
[E = ENLψ(x, y, z, τ)exp(–iωt + ikz)] that propagate
along axis z in a medium with characteristic field of
local cubic nonlinearity ENL is described by the nonlin-
ear evolution equation [1]

(1)

where v gr = (dk/dω)–1 is the group velocity of the pulse,
τ = (t – z/v gr), and ∆⊥  = ∂2/∂x2 + ∂2/∂y2. The ∂v gr/∂ω dis-
persion of group velocity in condensed media in the
optical frequency range is as a rule normal; that is, the
∂v gr/∂ω derivative is negative [2–8]. The physical (elec-
tron–positron) vacuum is also a medium with normal
dispersion [9]. In such media, Eq. (1) has a hyperbolic-
type space operator rather than an elliptical operator
characteristic of the standard nonlinear Schrödinger
equation. In terms of dimensionless variables 

equation (1) can be written as 

(2)

(here and below, tilde is omitted). Equation (2) can be also

2ik
∂ψ
∂z
------- ∆⊥ ψ

∂v gr

∂ω
----------- ω2

kc4
-------∂2ψ

∂τ2
--------- k2 ψ 2ψ+ + + 0,=

t̃
kz
2
-----, x̃ ỹ,( ) k x y,( ), z̃

τk3/2c2

ω ∂v gr/∂ω 1/2
---------------------------------= = =

i
∂ψ
∂t
------- ∆⊥ ψ ∂2ψ

∂z2
--------- ψ 2ψ+–+ 0=
1063-7761/03/9604- $24.00 © 20643
used to describe the self-action of waves (upper hybrid,
cyclotron, etc.) in a magnetized plasma [2, 10, 11].

The special features of the self-action of wave fields
described by (2) are related to the competition of wave
packet contraction in transverse directions (x and y)
caused by self-focusing and longitudinal dispersion
spreading. Studies of the dynamics of self-action of
wave packets of a Gaussian shape showed that nonuni-
form transverse compression of a wave packet caused
its splitting in the longitudinal direction [2, 3] followed
by cascade repetition of the process (multiple fragmen-
tation) [2]. Such a scenario of the development of self-
action noticeably differs from the well-known self-
focusing and wave field collapse processes. The special
features of cascade fragmentation and its threshold
characteristics were studied in [4–7]. The nontrivial
dynamics of this process is invoked to interpret the
anomalous broadening of laser pulse spectra in con-
densed media [8, 12]. We should specially mention the
works in which the coincidence of numerical simula-
tion results and the data of special experiments in which
the fragmentation of a Gaussian pulse was observed
was established [4, 5].

It was shown in [13] for the two-dimensional case
(∆⊥  = ∂2/∂x2) that self-compression-induced effects of
wave field energy concentration were most manifest if
the wave packets initially had hyperbolic intensity level
surfaces; this corresponds with the topology of the
space operator in (2). Clearly, the role played by self-
focusing effects should increase in three-dimensional
systems [14]. In this work, we undertook a more
detailed analytic and numerical study of the nonlinear
dynamics for the class of three-dimensional wave pack-
ets that experienced collapse.
003 MAIK “Nauka/Interperiodica”
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A qualitative analysis of the dynamics of axially
symmetrical three-dimensional horseshoe-shaped dis-
tributions is given in Section 2. Section 3 contains the
results of a numerical study of the evolution of a
broader class of tubular initial distributions.

2. AN ANALYTIC STUDY 
OF SELF-ACTION CHARACTERISTICS

First, consider the structural features of the dynam-
ics of axially symmetrical wave field distributions
localized near hyperbolic surfaces.

2.1. A Qualitative Study of the Structure
of the Nonlinear Schrödinger Equation 

with a Hyperbolic Space Operator

Note that Eq. (2) for a function depending on the

self-similar variable η =  (r2 = x2 + y2) is trans-
formed to the form

(3)

Equation (3) describes a “spherically symmetrical” col-
lapse, which can be classified with distributed collapses
[15, 16]. It differs from the more familiar self-focusing
of axially symmetrical beams by the formation of a sin-
gularity, extended in time, behind the focal region.
Importantly, the power flowing (reflectionlessly) into
the singularity can noticeably exceed the critical value.
It is, however, difficult to directly use the results
obtained in [15, 16]. In the problem under consider-

ation, the field is not localized along the 
hyperbolas. It follows that the “point” of the arising of
the singularity is the surface of the cone |z | = r. Within
this region (|z | > r), the dynamics of the corresponding

self-similar field distribution ψ = ψ(t, ) obeys
the equation

(4)

Equation (4) differs from (3) virtually only in the sign
of the “diffraction” term and, therefore, describes the
self-defocusing of the wave field; that is, we observe a
change in the regime of self-action. Singular solutions
to (3) with a finite energy flux into the singularity were
found in [15, 16]. They have singularities of converging
spherical waves modified by the nonlinearity |ψ| ∝
1/η(lnη)1/2. Clearly, these solutions only describe a
possible trend of the behavior of a wave field localized
in the focusing region (r > |z |). In addition, they do not
reflect the special features of the problem that are
related to a change in the self-action regime on the r =
|z | cone.

r2 z2–

i
∂ψ
∂t
------- 1

η2
-----

η∂
∂ η2∂ψ

∂η
------- ψ 2ψ+ + 0.=

η0
2 r2 z2–=

z2 r2–

i
∂ψ
∂t
------- 1

η2
-----

η∂
∂ η2∂ψ

∂η
------- ψ 2ψ+– 0.=
JOURNAL OF EXPERIMENTAL
2.2. Collapse of Wave Packets Localized Close
to Hyperbolas

The above consideration shows that a new scenario
of self-action is possible. This raises the problem of
finding the initial wave field distributions for which the
self-similar collapse regime is an attractor.

Our search will be oriented to distributions localized
near hyperbolic surfaces. It is convenient to pass to the
new variables

(5)

Such a transformation allows us to uniformly study the
evolution of a wave field distribution, even with respect
to z, both in the region with focusing nonlinearity (out-
side the cone, |z | < r, which corresponds to ζ > 0) and
in the defocusing region (inside the cone, |z | > r, or ζ <
0). For definiteness, we will consider the dynamics of
self-action in the space region 0 < z < ∞, 0 < r < ∞ (or,
in the new variables, 0 < z < ∞, –∞ < ζ < ∞). The trans-
formation of the equation and some simplifications can
conveniently be performed using the variational
approach on the basis of the corresponding Lagrangian.
For (2), the action has the form

(6)

In new variables (5), the action is written as

(7)

The processes that occur in the system will be exam-
ined using the technique traditionally applied in the the-
ory of wave self-focusing, namely, it will be assumed
that the structure of the wave field along z does not
change during the evolution and has a fixed, for
instance, Gaussian, shape,

(8)

This gives the contracted action in the form

(9)

and allows us to find the Euler equation that describes

ζ r2 z2–( )/4, z z.= =

S
i
2
--- ψψt* ψ∗ ψt–( ) ∇ ⊥ ψ 2+

∫=

– ψz
2 ψ 4

2
---------– 

 rdr dz.

S
i
2
--- ψψt*   ψ –  ∗ ψ t ( ) ζ ∂ψ

∂ζ
 ------- 

2
 + 

  ∫  =

–
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z
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---------–+
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ζ
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.

ψ u ζ t,( )

b
-------------- z2

2b2
--------– 

  .exp=

Sc
i
2
--- uut* u∗ ut–( ) ζ ∂u

∂ζ
------

2 u 4

2b 2
-------------–+ 

  ζd∫=
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the evolution of the wave field along “hyperbolas,”

(10)

This equation is a variational generalization of (3) and
(4) to field distributions bounded along hyperbolas (5).
The above approach allows us to explicitly single out
the main distinguishing feature of the problem under
consideration related to a change in the self-action
regime. The diffraction term in (10) is positive at ζ > 0,
and wave field self-focusing is therefore possible. This
term is negative at ζ < 0, and (10) then describes self-
defocusing. At the ζ = 0 boundary, where the diffraction
of the wave field is balanced by the normal dispersion
of the medium, the dispersion term vanishes. Note that
solutions to (10) with a nonzero energy flux into the
singularity are physically meaningful if ζ ≈ 0.

First, consider some special features of self-action
by analyzing the exact integral relations that follow
from (10). Note that, like the initial equation [Eq. (2)],
(10) has integrals, namely, the number of quanta and
the Hamiltonian,

(11)

These integrals can be used to show that the character-
istic “radius” of distribution (8) localized near the one-
sheeted hyperboloid (r2 – z2 = ρ),

(12)

experiences uniformly accelerated changes,

(13)

In the most interesting situation with a negative Hamil-
tonian (H < 0), the characteristic radius of the wave
packet concentrated in the focusing region (ρ ≥ 0) is
“accelerated” to the boundary between the regions,
crosses the boundary, and passes into the defocusing
region (ρ < 0), where it continues to move along the z
axis at the same acceleration rate. Negative ρ values
correspond to field distributions localized close to the
two-sheeted hyperboloid. Note that the first-order
moment ρ of distribution (8) is related to second-order
moments in the cylindrical system of coordinates as

(14)

This moment acquires an independent meaning for dis-
tributions localized near hyperbolas. It then determines
the central hyperbola close to which the field distribu-
tion is concentrated. In the approximation that we use,
Eq. (13), which describes changes in this moment, is an
obvious corollary to the equations for second-order
moments [2].

i
∂u
∂t
------

ζ∂
∂ ζ∂u

∂ζ
------ u 2u

2b 2
-------------+ + 0.=

I u 2 ζ , Hd

∞–

∞

∫ ζ ∂u
∂ζ
------

2 u4

2b 2
-------------– 

  ζ .d

∞–

∞

∫= =

ρ t( )
ζ u 2 ζd

I
-----------------,∫=

d ρ2

dt2
--------

2H
I

-------.=

ρ t( ) r2 z2–( ) ψ r2 z2– z t2, ,( )
2
r rd z.d∫=
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Changes in the characteristic scale of a wave packet
that moves with acceleration (13) will be determined
using the variational procedure. Let us minimize con-
tracted action (9) on the class of trial Gaussian func-
tions

(15)

localized close to central hyperbola (12). Substituting (15)
into (9) and integrating with respect to ζ, we obtain the
corresponding contracted action and the (Euler) equa-
tion of motion

(16)

which describes changes in the characteristic size of the
region of wave field localization a(t) during the evolu-
tion of the system.

In the problem with a negative Hamiltonian that we
are interested in (H < 0), an approximate solution
to (13), (16) can be found. Close to the boundary at
which the dispersion changes sign (ζ ≈ 0), the charac-
teristic radius decreases at a constant rate by the law

(17)

where ρ0 is the initial position of the central hyperbola
and t0 = (ρ0I/|H |)1/2 is the instant at which the central
hyperbola intersects the ζ = 0 boundary. In these condi-
tions, (16) has a solution linear in t0 – t ,

(18)

This means that, as the central hyperbola approaches
the boundary at which the self-action regime changes
(from self-focusing to self-defocusing), the amplitude
of the field tends to infinity by the law

(19)

that is, the wave packet experiences collapse.

2.3. Self-Similar Structures

Note that, in the vicinity of the singularity [that is,
under the conditions of a decrease in the characteristic
radius of distribution (15) by law (17)], there also exists
a self-similar solution of the equation under consider-
ation [Eq. (10)]. This solution has the form

(20)

u
u0

a
-------   –  ζ ρ

 
– ( )
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2
 
a
 2 -------------------exp  i φ ζ ρ – ( ) 

2
 +=

ρatt atρt– ρ3
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ρ2u0
2

4a2b
-----------,–=

ρ 2 ρ0 H /I( )1/2 t0 t–( ),≈

a A0 t0 t–( ), A0≈ 1
8
---

u0
2

b
----- 

 
1/2 ρ0

a0
----- 

 
1/6

.=

ψ ζ 0 t t0,( ) t0 t–( ) 1/2– ,∝

u
v ζ / t t0–( )( )

2b 2 t t0–( )
----------------------------------=

× i φ0 t t0–( ) ζ
2 t t0–( )
-------------------+

 
 
 

.exp
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The structure of the self-similar solution is determined
by the equation

(21)

where η = ζ/t. Parameter h is related to φ0 by the equa-
tion ∂φ0/∂t = h/t.

The self-similar mode under consideration, which is
localized near the uniformly moving central hyperbola,
is not strictly localized when η  ∞. The amplitude
of the wave that runs away can be substantially
decreased by adjusting conditions at η = 0. At η  0
and v (ζ  0)  0, (21) easily yields

(22)

It follows that the problem of finding the self-similar
mode is determined by one parameter v (η = 0) = v 0.
Equation (22) with a fixed h value can be used to mini-
mize the amplitude of the wave that runs away by
changing v 0. The structure of the self-similar mode at
h = 10 is shown in Fig. 1. The amplitude of the wave
running away is 2 × 10–5 at v 0 = 3.15941666 × 10–7 (see
inset in Fig. 1). “Enery” I [see (11)] in the self-similar
mode grows as h increases. A self-similar mode with
two maxima can be found by increasing v 0 (at a fixed h
value). The corresponding I value then increases.

To conclude this section, let us estimate the rate at
which the wave field spreads over z under collapse con-
ditions (19). We can use the initial equation (2) for the

ηd v
2

dη2
--------- dv

dη
-------

η
4
---v hv v 3+–+ + 0,=

dv
dη
------- η 0=( ) hv η 0=( ).=

4

3

2

1

0 20 40 60 80 100
ζ

v

v × 105

2

1

0

–1

–2

–3

20 40 60 80 100
ζ

Fig. 1. Structure of a localized self-similar mode with h =
10 and v(ζ = 0) = v0 = 3.15941666 × 10–7. The asymptotic
behavior of the solution at large ζ is shown in the inset.
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effective longitudinal size of a localized distribution,

b2 = , to find the relation

Substituting (12) and (15) into this relation yields the
equation

(23)

which describes changes in the characteristic longitudi-
nal size of the field. For a collimated wave packet
[db/dt(t = 0) = 0], integrating (23) with a determined
by (18) easily yields

(24)

This equation shows that the characteristic size of the
wave field in the longitudinal direction hardly changes
as the wave field “collapses” to the axis. What is more,
the obtained b(t) variations do not change the character
of the behavior of the field in the vicinity of the singu-
larity (ζ  0). This justifies the above approximation
of a fixed field structure along hyperbolas (8). A col-
lapse occurs if this structure remains unchanged.

It follows that the dynamics of self-action of a wave
packet localized close to the ρ0 = r2 – z2 > 0 hyperboloid
in a medium with a normal dispersion of group velocity
can be described as follows. A wave packet with a lin-
ear power above the critical value [which corresponds
to a negative Hamiltonian (11)], virtually does not
spread along hyperbolas, contracts in the transverse
direction, and collapses to the axis of the system. As a
result of the “fall of the wave packet onto the center,”
there occurs an unlimited field strengthening near the
axis of the system, that is, wave collapse.

3. A NUMERICAL STUDY 
OF THE DYNAMICS OF SELF-ACTION

In this section, we use numerical methods to con-
tinue our study of the dynamics of the system. Consider
the characteristics of long-term evolution of tubular
wave packets. Numerical simulation of the dynamics of
axially symmetrical localized distributions was per-
formed with the help of a code that uses the fast Fourier
transform along z and the net method along r.

Detailed numerical studies allowed us to character-
ize a fairly broad class of initial distributions that, dur-
ing their evolution, first localized near hyperboloids
and then shifted toward the axis of the system. As a
result, the field close to the origin rapidly increased and
the solution, whose accuracy was checked against the

z2 ψ 2 rd∫
d b2 2

dt2
---------- 8 ψz

2 ψ 4

2
---------+ 

  r.d∫=

d2b2

dt2
----------

u0
2

4ab
---------,≈

b2 b0
2 u0

2

4A0b0
-------------- t0 t–( ) t t0– .ln+≈
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Fig. 2. Evolution of an axially symmetrical horseshoe-shaped wave packet during its “fall onto the center;”  level

lines are shown.

ψ r z t tn=, ,( )
2

integrals of (2), became meaningless. In order to stabi-
lize the collapse and study the further evolution of the
system, we used the already commonly accepted model
procedures to regularize (2). These procedures took
into account the saturation of nonlinearity or nonlinear
radiation absorption in strong fields. The evolution of
the field in conservative systems was studied based on
the following generalization of (2):

(25)

where ψs is the field of nonlinearity saturation.

Another procedure for collapse stabilization related
to taking into account nonlinear dissipation was used in
numerical simulations to describe reflectionless
absorption of the wave field in the singularity. The char-
acteristics of the collapse in the problem under consid-
eration under a change in the self-action regime were
studied based on the equation

(26)

i
∂ψ
∂t
------- 1

r
---

r∂
∂

r
∂ψ
∂r
------- ∂2ψ

∂z2
---------– ψ 2ψ

1 ψ 2/ψs
2+

---------------------------+ + 0,=

i
∂ψ
∂t
------- 1

r
---

r∂
∂

r
∂ψ
∂r
------- ∂2ψ

∂z2
--------- ψ 2 iδ ψ 2n+( )ψ+–+ 0,=
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where δ is the nonlinear dissipation parameter. The cal-
culations were performed for n = 3 and 4.

First, we will study the dynamics of self-action for
special initial wave field distributions localized close to
hyperbolic surfaces. The principal stages of the corre-
sponding evolution of the system were analyzed above
analytically. To compare the analytic results with the
numerical simulation data, we studied the behavior of
the moments of wave field distributions. The evolution
of a more realistic wave field distribution of the type of
a tubular wave packet is analyzed at the end of this
section.

3.1. A Numerical Study of the Collapse
of Wave Packets Localized near Hyperbolas

The self-action picture described above finds sup-
port in numerical studies of the dynamics of initially
Gaussian distributions,

(27)ψ
ψ0

ar

------ –
r2 z2– ar

2–( )2

2ar
4

-------------------------------- z2

2az
2

--------– ,exp=
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which are localized in the vicinity of the r2 – z2 = 
hyperbolas. The level lines of the |ψ(r, z, t)|2 function at
successive instants are shown in Fig. 2 for the parame-
ters ψ0 = 7, ar = 2, and az = 6. The corresponding Hamil-
tonian (11) value is negative. At the initial stage, the
evolution of the wave packet predominantly occurs in
the transverse direction. As a result, the field distribu-
tion contracts to the r2 – z2 = 4 “central” hyperbola. At
t > 0.2, the displacement of the wave field toward the
straight line (conic surface) that separates regions with
different self-action regimes becomes noticeable. This
and the absence of wave packet fragmentation along the
“base” hyperbola distinguishes the evolution of the sys-
tem under consideration from the picture observed in
the two-dimensional case [13]. It appears that the dis-
placement of the wave field toward the axis of the sys-
tem prevents the development of longitudinal fragmen-
tation instability. This conclusion can be drawn from an
analysis of the fine details of structural changes in |ψ|
(rather than |ψ|2) level lines corresponding to the initial
conditions that decelerate the collapse to the center.
One of such variants is given below in a consideration
of a tubular wave packet. The specified processes (con-
traction and displacement) cause a rapid field increase
at the origin; at t ≈ 0.45, solving (2) by numerical meth-
ods becomes meaningless.

First, consider the structure of the wave field in the
focal region at t > 0.4 in the conservative case with the
use of (25) (at the nonlinearity saturation field value
ψs = 10).

Note that the characteristic wave packet radius
(Fig. 3) moves to the axis of the system (z = 0) with an
acceleration during the collapse. To emphasize the fine
details of the evolution of the wave field distribution,
|ψ| (rather than |ψ|2) level lines are shown in Fig. 4. The
contraction of the wave packet to the center of the sys-
tem (r = 0, z = 0) is accompanied by the formation of a

ar
2

ρ(t)/ρ(0)
1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4
0 0.1 0.2 0.3 0.4 0.5 0.6

t

Fig. 3. Time dependence of the coordinate of the center of
mass of a wave packet normalized with respect to the initial
coordinate, ρ(t)/ρ(0).
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strongly nonuniform (aberrational) structure in the
focal region. A comparison of the structures of the |ψ|
and |ψ|2 level lines shows that a two-scale field distri-
bution localized close to the center of the system (r ≈ 0,
z ≈ 0) is formed. The field amplitude at a maximum
reaches a value that is an order of magnitude larger than
the nonlinearity saturation field value (Fig. 5), which is
evidence of a high collapse rate.

Two processes are clearly seen in the dynamics of
the collapse (see Fig. 4). Note that some part of the field
is reflected and moves away from the axis of the sys-
tem. The behavior of the remaining part is qualitatively
similar to that observed for Gaussian initial distribu-
tions [2–5] but develops under the conditions of strong
nonlinearity saturation. Contraction, which is nonuni-

t = 0.5

t = 0.55

t = 0.6

r
1

0
2

1

0
2

1

0 0.5 1.0 1.5 2.0
z

Fig. 4. Further evolution (see Fig. 2) of the wave packet in
the focal region determined taking into account nonlinearity
saturation; |ψ| field level lines are shown.

|c|2max × 10–4

3

2

1

0 0.2 0.4 0.6
t

Fig. 5. Time dependence of the square of field amplitude at
a maximum during a conservative collapse.
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form along z (the central distribution part, where the
amplitude is larger, experiences stronger radial contrac-
tion), causes the formation of a constriction in the
center (see Fig. 4). The constriction grows tighter, and
the wave packet therefore divides in two fragments,
which move along the z axis in opposite directions.
The packet expands along z because the field ampli-
tude in it exceeds the saturating amplitude (|ψ| > ψs)
and fragments without hardly changing its transverse
dimension.

Next, consider the dissipative case. First, note that
the position of the characteristic field distribution
radius depends on time virtually in the same way as
when nonlinearity saturation is taken into account (see
Fig. 3); that is, its motion toward the axis of the system
is uniformly accelerated. The field maximum ampli-
tude during the collapse increases approximately (more
than) tenfold. This corresponds to the selected parame-
ters, but the amplitude is noticeably smaller than in the
case of nonlinearity saturation. The energy of the wave
packet during collapses decreases by 30%.

The most important structural differences manifest
themselves in the high field region. The |ψ| level lines
are shown in Fig. 6. A comparison with the correspond-
ing picture for the conservative case (see Fig. 4) reveals
two differences. First, note the absence of “reflection”
from the axis of the system. Secondly, it is as though the
wave packet near the conic surface (r = z straight lines
in Fig. 6), which separates regions with different self-
action regimes, is delayed for a time comparable with
duration of the collapse. In this sense, the situation
under consideration is more akin to that with a spheri-
cally symmetrical collapse. However, no complete
wave field absorption occurs in the singularity region
(r = |z |), and a weakened wave packet passes into the
defocusing region.

In the immediate vicinity of the center (r ≈ z ≈ 0), the
structure of the field is substantially more nonuniform
than in the conservative case.

3.2. A Study of the Collapse 
of Tubular Wave Packets

Next, consider the evolution of the more realistic
wave packet distribution

(28)

which, for instance, simulates the structure of the field
of a hollow (near the axis of the system) spatially lim-
ited wave packet. It is well known that, at a power
exceeding the critical value, tubular wave beams, uni-
form along z, experience contraction in the transverse
direction and are self-focused toward the z axis. It can
therefore be expected that, in a distribution of type (28),
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which is nonuniform along z, the central part (z ≈ 0)
will be focused toward the axis (r = 0) at a higher rate
than the peripheral part (z ~ az). As a result, a horse-
shoe-shaped wave packet distribution is formed. The
dynamics of such a distribution has been described
above.

Numerical calculations confirm this prediction. For
definiteness, let us first consider the conservative case
with nonlinearity saturation. Equation (25) with the
same saturating field value as previously (ψs = 10) will
be used. Next, we will give additional results obtained
for dissipative collapse stabilization. The following
parameters were selected: ψ0 = 0.2, ar = 2, and az = 12.
The field maximum was then situated at a distance from
the axis of a system two times larger than in the variants
considered above. Under these conditions, the system
passed into the regime already studied.

The calculation results are shown in Fig. 7, accord-
ing to which wave beam self-focusing takes a fairly
long time. The self-focusing occurs without changes in
the characteristic tubular field distribution radius. At the
next stage, a horseshoe structure is formed. This is
accompanied by the development of fragmentation
instability. In the problem under consideration, as dis-
tinct from the two-dimensional problem [13], fragmen-
tation does not play a noticeable role and is stabilized
by the displacement of the horseshoe-shaped distribu-
tion to the axis of the system. During the collapse to the
center, the pulse is divided in two. Plotting |ψ| level
lines on a larger scale (Fig. 8) gives an idea of the fine
structure of the wave field in the focal plane. A compar-
ison of this picture with the structure of |ψ|2 level lines
shows that the distribution of the wave field is two-

r
9

8

7

6

5

4

3

2

1

0 2 4 6 8 10
z

Fig. 6. Field structure during dissipative collapse stabiliza-
tion (dissipation parameter δ = 2 × 10–8) at the instant cor-
responding to the passage of the center of mass of the wave
packet (see Fig. 3) across the boundary at which the regime
of self-action changes [ρ(t = 0.5) = 0];  field level
lines are shown for the same initial conditions as in Fig. 2.

ψ r z,( )
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scale. The central part of the pulse has a somewhat
smaller amplitude than that obtained in the correspond-
ing variant of the initially horseshoe-shaped distribu-
tion localized near hyperbolas. The peripheral region of
the wave packet consists of a reflected wave (behind the
pulse) and a wave field spread along the “horseshoe;”
this field continues to move toward the axis of the sys-
tem. Because the problem has axial symmetry, this
wave field region is strengthened near the axis of the
system (z axis). It appears that, thanks to this strength-
ening, the maximum wave packet amplitude (the level
lines of this packet are shown in Fig. 8) hardly changes
over a fairly prolonged evolution.

The dynamics of self-action in the dissipative case is
similar in many respects. The only difference is the
absence of a reflected wave. The high field region cre-
ated by the peripheral part of the horseshoe structure
near the axis of the system (z axis) becomes the region
of strong absorption. Complete nonlinear absorption of
an electromagnetic pulse along the propagation path is
about 50% in this variant of calculations. The special
features of the dynamics of self-action were described
in detail in [14].

t = 0

t = 0.40

t = 0.45

t = 0.85

t = 1.05

r
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Fig. 7. Tubular wave packet evolution during collapse in the

conservative case;  level lines are shown.ψ r z t tn=, ,( )
2
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Let us perform a more detailed analysis of the evo-
lution of tubular wave packet (28) with an amplitude
1.5 times larger (ψ0 = 0.3). In the conservative case,
such an increase in the initial amplitude considerably
complicates calculations and requires using shorter
computation steps, larger arrays, a lower saturating
field value (which is fairly small as it is), etc. For this
reason, the results will be given for the dissipative
mechanism of collapse stabilization. Figure 9 shows
that, as in Fig. 7, the self-focusing of a tubular wave
beam is initially accompanied by its fragmentation in
the longitudinal direction. At the next stage, a horse-
shoe-shaped structure is formed and displaced to the
axis of the system. A noticeable wave packet fraction
then remains localized in the region of the initial tubu-
lar beam location. Note that, in this variant too, the
development of fragmentation instability does not have
any catastrophic consequences either for the horseshoe-
shaped structure or for the remaining wave packet part.
It can be suggested that fragmentation is weakened by
the development of self-focusing instability along the
radius of the beam. After the formation of the horseshoe
structure, the second ring layer is formed and experi-
ences similar evolution. Fragmentation in the center
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Fig. 8. Further evolution (see Fig. 7) of the tubular wave
packet in the conservative case close to the axis of the sys-
tem;  level lines are shown.ψ r z t tn=, ,( )
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Fig. 9. Evolution of axially symmetrical initially tubular
wave packet with amplitude ψ0 = 0.3 under dissipative col-

lapse stabilization conditions, δ = 1.8 × 10–5;
 level lines are shown.ψ r z t tn=, ,( )
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(r⊥  = 0, z = 0) causes the formation of two pairs of
strong cone-shaped field regions, which move along the
axis of the system in opposite directions. The maximum
field amplitude in the focal region remains nearly con-

stant (Fig. 10). A sharp minimum of the 
dependence at t ≈ 1.1 corresponds to the displacement
of the strong absorption region from the first pulse to the
second. Complete nonlinear electromagnetic field
absorption along the propagation path increases to 70%.

It can therefore be stated that the above numerical
study of the dynamics of self-action of tubular initial
field distributions substantiates the analytic results
obtained in Section 2. This primarily refers to the for-
mation of horseshoe-shaped self-similar field structures
followed by their accelerated motion to the axis of the
system. Also note the possibility of the existence of a
self-similar mode of a higher order (with two or more
maxima) predicted by (21). This possibility manifests
itself by the excitation of two sequential horseshoe-
shaped structures.

4. CONCLUSION

We analyzed a new scenario of the dynamics of self-
action of an axially symmetrical wave packet in a sys-
tem described by the nonlinear Schrödinger equation
with a hyperbolic space operator. The class of initial
wave field distributions whose evolution allowed the
special features of the equation under study [Eq. (2)] to
be illustrated was determined. In the competition
between self-focusing compression and wave field dis-
persion spreading along orthogonal directions, self-
focusing plays the predominant role under these initial
conditions. It causes narrowing of tubular wave packets
in the transverse direction, the formation of horseshoe-
shaped structures, and the displacement of the wave
packet toward the axis of the system, which eventually
(by virtue of cylindrical symmetry of the problem) cre-
ates a collapse regime. The spread of a horseshoe-
shaped distribution in the longitudinal direction has vir-
tually no effect on the dynamics of singularity forma-
tion. However clearly, in the regime of falling onto the
center, the peripheral part of the wave packet reaches
the axis of the system at later times and contributes to
maintaining the field at a high level during the whole
interaction time. In this sense, the type of collapse
under consideration should be considered distributed. It
is in many respects similar to a spherically symmetrical
collapse described by the nonlinear Schrödinger equa-
tion with an elliptical space operator. However, the
absence of the symmetrization of wave packet distribu-
tions in the problem under consideration and the pre-
dominance of self-focusing over dispersion make this
collapse also similar to the axially symmetrical col-
lapse of the nonlinear Schrödinger equation. Because
of the hyperbolic character of initial equation (2), wave
packet fragmentation along the axis (close to r = 0 and
z = 0) is accompanied by the formation of several pairs

ψ max
2 t( )
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of high field regions (“hot” points), which move in dif-
ferent directions. Our numerical study of this process
under the conditions of nonlinear collapse stabilization
shows that these hot points travel through distances
longer than the longitudinal pulse length without
noticeable spatial structure changes.

As concerns applications to nonlinear optics, the
self-action regime under consideration should be sub-
jected to a detailed experimental examination. First,
collapse stability with respect to the loss of axial sym-
metry and deviations from the approximation of slow
envelope changes and the paraxial approximation [17]
should be studied. These effects may play an important
role in the collapse of wave packets whose power is
much higher than the critical self-focusing power. It is,
we believe, fairly clear that the use of such a self-action
regime offers promise, for instance, for artificial photon
crystals and creating channels in condensed media with
the purpose of using such structures for the radiation fre-
quency conversion and acceleration of charged particles.
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Abstract—On the basis of diagram formalism for two-particle Green functions, the bremsstrahlung of charged
particles interacting in a dense medium is investigated. In the case of production of soft photons, exact expres-
sions for two-particle Green functions corresponding to the process of particle bremsstrahlung in the substance
are obtained. The Green functions found are fully determined by the set of closed irreducible diagrams. It is
shown that, in the case of radiation in a sufficiently dense medium in a far long-wave region of the spectrum,
the coherent multiple particle scattering results in an additional (as compared that reported earlier in [1–13])
suppression of the bremsstrahlung photon yield. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

For the first time, the influence of the scattering
medium on the radiation of fast charged particles was
considered in [1, 2]. In these papers, the suppression of
the bremsstrahlung in the long-wave region of the spec-
trum due to the multiple elastic scattering of such par-
ticles in the substance was pointed out (the Landau–
Pomeranchuk effect). In [3, 4], Migdal constructed a
quantitative theory of this effect. The methods pro-
posed in [3, 4] for calculating the spectrum of the
bremsstrahlung in a substance were further developed
in [5–8] while investigating how the frequency distribu-
tion of the bremsstrahlung is affected by the dispersion
properties of the scattering medium [5, 6], its boundary
[7, 8], and inelastic processes occurring in the sub-
stance [6]. Recently, the influence of the medium on
bremsstrahlung was investigated in [9–13], where the
application of the continual integration method for cal-
culating the spectrum of bremsstrahlung in the sub-
stance was developed [9, 10], and the Landau–Pomer-
anchuk–Migdal effect in quantum chromodynamics
[10, 11] and for the Coulomb interaction of particles in
a scattering medium [11] was considered.1 

In all the above-mentioned papers, multiple scatter-
ing in the medium was treated as a set of successive acts
of pair interactions of particles, and the influence of the
simultaneous collision of several (more than two) par-
ticles on forming the bremsstrahlung spectrum was
neglected. It is clear that effects of this kind must play
an important role in photon production in sufficiently
dense scattering media, where the gas parameter is
greater than or approximately equal to unity, and in
forming the limiting soft bremsstrahlung when parti-
cles pass through the substance.

1 A detailed analysis of publications devoted to the Landau–
Pomeranchuk–Migdal effect can be found in review [12].
1063-7761/03/9604- $24.00 © 20653
In this paper, a diagram formalism is developed for
calculating the spectrum of soft bremsstrahlung. The
formalism is based on determining two-particle Green
functions in a nonequilibrium medium. Exact rela-
tions for these Green functions corresponding to the
process of formation of the spectrum of soft
bremsstrahlung in a substance are obtained. The two-
particle Green functions obtained are determined by a
set of topologically different irreducible closed dia-
grams. It is shown that, in the case of a sufficiently
dense medium, the coherent multiple particle scatter-
ing results is an additional (as compared with that
demonstrated earlier in [1–13]) suppression of the
bremsstrahlung intensity in the medium in a far long-
wave region of the spectrum.

2. TWO-PARTICLE GREEN FUNCTIONS 
AND PARTICLE BREMSSTRAHLUNG

IN A MEDIUM

The probability of photon production by the current
jν is given by the expression [13]

(1)

where k = (ω, k) and eα are the 4-momentum and the
polarization vector of the photon, nγ is the density of the
photon states, and jν(x) is the current of the particles
producing photons. The angle brackets denote averag-
ing over a certain state of particles of the medium (in
general, this state can be nonequilibrium), and x are
4-coordinates.

d4w 4πeµeν
* 1 nγ+( )δ ω2 ωk

2–( )=

× x4
1d x4
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ik x1 x2–( )–

jµ+ x1( ) jν x2( )〈 〉 k4d

2π( )3
-------------,d∫
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The bilinear combination of currents in Eq. (1) can
be represented in the following form:

(2)

where  is the matrix element of
an operator independent of 4-coordinates; Ψα(x) are psi
operators in the Heisenberg representation; and α, β, γ,
and δ are spin variables.

Thus, the problem of determining the probability of
photon production in a medium is reduced to determin-
ing the correlator consisting of four Ψ functions. In
turn, this correlator is proportional to the two-particle
Green function.

Suppose that the influence of the particle scattering
in the medium on the change in spin states of the parti-
cles is negligible. Then, expanding the correlator

 in a complete set of
plane waves, we obtain from formulas (1) and (2) the
following expression for the probability of photon pro-
duction:

(3)

where pi = ( , pi) is the 4-momentum of the radiating
particle, s is the particle spin, uα(p) are the Dirac
spinors, T is the observation time or the time of the par-
ticle motion in the medium, and the bar over d4w
denotes the averaging and summing over the corre-
sponding spin states of the particles. The function

 is the two-particle
Green function K(4(+), 2(–), 3(–), 1(+)) in the momen-
tum representation,

(4)

Thus, the problem of determining the spectrum of
the particle bremsstrahlung in a medium in the
Keldysh formalism is reduced to determining the so-
called nonchronologized two-particle Green func-
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†( )
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tion  [14] in the momen-
tum representation. Note that the function

 is indirectly present in
formula (3), namely, in the form of integrals with
respect to appropriate momenta. Therefore, to find the
bremsstrahlung spectrum, we use, instead of the func-
tion , its various convolu-
tions with δ functions taking into account the conserva-
tion laws for photon emission with respect to the corre-
sponding arguments (with respect to the momenta p1;
p2; p3; and p4).

Introduce the following notation:

(5)

where K is the two-particle Green function [14] in the
Keldysh diagram formalism [15].

Then, formula (3) can be represented in the follow-
ing form:

(6)

where

(7)

(8)

The solid lines in relations (7) and (8) denote exact one-
particle Green functions in the medium and the dotted
lines denote the emitted photon.

The function K1(k) satisfies [14] the following dia-
gram equation:2 

2 Obviously, the equation for the function K2(k) has the same form.
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(9)

where Γ1 is the exact irreducible vertex function con-
sisting of all topologically different diagrams that can-
not be cut into two diagrams by a vertical line crossing
only two solid or dotted lines (denoting, as is usual in
the Keldysh diagram formalism [15], the particle inter-
action). The letters a, b, c, and d can take the values +
or – [14, 15].

Obviously, the following equality holds:

(10)

Suppose that the energy ω of produced photons is
low as compared with the energy E of the radiating par-
ticle and with the energy ∆E transmitted to other parti-
cles due to a single interaction with emission of a pho-
ton: ω ! min{E, ∆E}. Then, the arguments of the ver-
tex functions and the two-particle Green function in
formula (10) can be expanded into a series in the differ-
ences p – qi and p' – qi . As a result, relation (10) implies
that, up to terms on the order of ω/min{E, ∆E}, inclu-
sively, we have 

(11)
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Substituting the expression obtained into Eq. (9), we
find

(12)

Similarly, with the same accuracy, for the function
K2(k), we obtain

(13)

where Γ2 is the exact vertex function consisting of dia-
grams with more than two solid lines in the two-particle
channel; Q is the momentum transmitted as a result of
a single interaction between particles with emission of
a photon; in the case ω ! min{E, ∆E}, it is equal to [16]

(14)

where the parentheses denote the usual scalar product
and p and k are the 4-momenta of the particle and the
photon, respectively.

Formulas (12) and (13) imply the following expres-
sion for the function K(k) = K1(k) + K2(k) appearing in
formula (6) for the probability of photon production:

(15)
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Expressions (6) and (15) completely determine the
probability of soft photon production in the medium of
interacting particles. The term containing the function
K1(k) corresponds, as is usual in electrodynamics, to the
photon production by a particle in the initial or final
state. As for the function K2(k), it corresponds to photon
emission by a particle outside the mass surface in the
intermediate state [13, 17] (from the point of view of
the Feynman diagrams, this means photon emission
from the internal line of the corresponding diagram).
The factors in brackets in formula (15) correspond to
the additional (as compared with the one pointed out
in [1–13, 17]) suppression of bremsstrahlung due to the
coherent multiple interaction of particles in the
medium. These factor are 

(16)

The factors g1 and g2 have quite a clear physical
sense. They (up to a coefficient) represent the gas
parameter [18] determining the significance of the
coherent multiparticle interaction in the medium in the
problem under consideration.

Note that the diagram summation performed above
for the two-particle Green functions does not depend on
the nature of the produced particles and can be made in
any other situation under the following restrictions: it is
necessary that the energy of the produced particles is
sufficiently low, ω ! min{E, ∆E}, and that perturbation
theory for the vertex corresponding to the production of
appropriate particles is valid. In particular, this con-
cerns neutrino pair production in strongly interacting
media [17]. To apply the formulas obtained to such a
problem, it is necessary to replace the photon polariza-
tion vector with the weak current of the neutrino pair
and to sum over the corresponding states of the pro-
duced particles.

It should also be noted that the first nonvanishing
approximation in formula (15) is a two-loop one. This
means that, under an appropriate choice of the exact
one-particle Green functions, one can always automat-
ically ensure conservation of the currents of the corre-
sponding particles.
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3. BREMSSTRAHLUNG SPECTRUM 
RENORMALIZATION IN A DENSE MEDIUM

IN THE TWO-LOOP APPROXIMATION

We estimate the factors g1 and g2 specified by for-
mulas (16) in the first nonvanishing two-loop approxi-
mation. As is shown in [17], the contribution of func-
tions of type K2 in the soft bremsstrahlung spectrum is
equal to zero due to conservation of the vector current.
Then, in the two-loop approximation for g1, we have

(17)

where a and b take the values + or –, V(k) determines
the pair particle interaction, and Ga, b(p) are the exact
one-particle Green functions.

Let the particle interaction in the medium be such
that the collisional breadths of the particles are small as
compared with their energies. In this case, for nonrela-
tivistic particles, the one-particle Green functions G+, –

(p) and G–, +(p) are proportional [13, 17] to the follow-
ing expressions:

(18)

where γ is the collisional breadth and µ is the chemical
potential.

Then, for the production of extremely long-wave
photons, ω ! γ, in an equilibrium medium consisting of
nonrelativistic fermions, whose temperature is equal
to T, we obtain

(19)

(20)

where σB(k) is the Born scattering cross section of par-
ticle, m is the mass of a particle of the medium, ω is the
photon energy, and EF and vF are the energy and the
velocity of a particle on the Fermi surface.

When considering the bremsstrahlung of an individ-
ual nonrelativistic particle in a scattering medium, the
internal loop in relation (17) should be replaced with
the factor n/E, where n is the density of scatterers in the
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medium and E is the particle energy. As a result, for the
factor g1, we obtain

(21)

where ν is the collision frequency for the particle in the
scattering medium and v 0 is the particle velocity. In this
case, the parameter |g1| can be interpreted as the number
of scattering centers of the medium simultaneously
interacting with the particle when the latter emits a pho-
ton. If this quantity is sufficiently large, ν @ γ @ ω, the
coherent multicenter scattering results in an additional
suppression of the bremsstrahlung in the far longwave
region of the spectrum.

4. CONCLUSIONS
On the basis of diagram formalism for two-particle

Green functions in a nonequilibrium medium, the
bremsstrahlung in a substance consisting of interacting
particles is investigated. It is shown that the probability
of photon production is completely determined by the
set of these Green functions. In the case of soft photon
bremsstrahlung, the summation of the diagram series
for the corresponding two-particle Green functions is
performed. It is shown that the probability of photon
production is completely determined by a set of irre-
ducible diagrams, starting from two-loop ones, which
automatically provides conservation of the current of
corresponding particles. These diagrams correspond to
the process of photon production, both from the final
and initial states of the particles and from intermediate
states outside the mass surface. The influence of coher-
ent multiparticle interaction of nonrelativistic particles
on the formation of the bremsstrahlung spectrum in a
medium is estimated. It is shown that, in the case of a
sufficiently dense medium, the coherent effects result in
additional suppression (as compared with that indicated
earlier in [1–13]) of bremsstrahlung in the longwave
region of the spectrum. The possibilities of applying the
developed formalism to the investigation of the pro-

g1

σB k( )nv 0

γ
---------------------- ν

γ
---,∼ ∼–
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cesses of nonelectromagnetic particle production are
discussed.
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Abstract—A method for calculating the photoionization cross sections of fullerenes taking into account many-
electron correlations on the basis of the local density and random phase approximations is proposed and imple-
mented. Calculations are made specifically for fullerenes C60 and C20. It is shown that the photoionization spec-
trum of C60 acquires a plasmon resonance whose position and magnitude are in good agreement with experi-
mental results [I.V. Hertel, H. Steger, J. de Vries et al., Phys. Rev. Lett. 68, 784 (1992)] and with the results of
other calculations [M.J. Puska and R.N. Nieminen, Phys. Rev. A47, 1181 (1993)]. The emergence of a giant
resonance is predicted in the photoionization spectrum of fullerene C20 with the center at a photon energy on
the order of 27 eV, which corresponds to the frequency of resonant surface plasmon oscillations in a conducting
sphere. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Atomic clusters occupy an intermediate position
between individual atoms and a bulk material in respect
to the number of particles constituting them. For this
reason, they possess the properties typical of individual
atoms as well as the bulk material, which renders them
extremely interesting objects of investigation. In partic-
ular, resonant plasmon oscillations emerging during the
excitation of atomic clusters are characteristic prima-
rily of the electron density of conduction electrons in
metals. The dipole mode of surface plasmon oscilla-
tions is known to be responsible for the formation of a
giant resonance in the course of photoexcitation of
metallic clusters [1–8]. The excitation of plasmon
oscillations during scattering of charged particles from
metallic clusters also plays an important role [9–13].

Surface plasmon oscillations in fullerenes have been
intensely studied both experimentally [14–16] and the-
oretically [17–22] during the last decade. These studies
were initiated by the experimental work [15] devoted to
analysis of electron loss spectra on thin C60 films, in
which a giant resonance was observed with the center
at an excitation energy on the order of 28 eV. These
studies stimulated theoretical investigations of collec-
tive electron oscillations in isolated fullerenes C60 [18].
In the framework of the random phase and tight binding
approximations, the emergence of a giant resonance in
the optical response function of C60 was predicted at an
energy on the order of 20 eV. This prediction was con-
1063-7761/03/9604- $24.00 © 20658
firmed experimentally in [14], where the relative photo-
ionization cross section for isolated fullerenes C60 and
C70 was measured. The measured cross sections exhib-
ited a clearly manifested resonant nature with the reso-
nance center at an energy on the order of 20 eV. In the
subsequent series of publications, the optical response
of fullerenes C60 and C70 was studied in detail using
various methods based, as a rule, on the basis of the
density functional theory (DFT), the time-dependent
local density approximation (TDLDA), and the random
phase approximation (RPA) [15, 17, 19–22].

In the past several years, considerable attention has
been paid to the C20 cluster [23–31]. It is known that
this cluster has three isomers with the minimal total
energy, including an isomer whose structure is close to
that of a dodecahedron. It is this isomer that can be
regarded as a fullerene with the smallest size. A com-
parison of numerical results concerning the total energy
of different C20 isomers can be found in [23–27].
Attempts to study the C20 structure experimentally were
fruitless for a long time [28, 29]. Nevertheless, promis-
ing results concerning the existence and synthesis of
fullerene C20 have been obtained in [30, 31]. These
results served as an impetus to further theoretical inves-
tigations of this object. Dynamic parameters of
fullerene C20 were studied in [31, 32].

In this study, we develop a new method and calcu-
late the electronic structure and the photoionization
spectra of fullerenes C20 and C60 taking many-electron
003 MAIK “Nauka/Interperiodica”
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correlations into consideration. Calculations for C60
were made to compare the results with those obtained
by other methods. The photoionization cross section for
fullerene C20 has been calculated for the first time. We
also study the role of many-electron correlations in the
formation of plasmon resonances in the photoioniza-
tion spectra of fullerenes.

We use the atomic system of units, where |e | = " =
me = 1. The energy is expressed in rydbergs (Ry).

2. METHODS AND MODELS

2.1. Local Density Approximation 

The self-consistent field method, which was pro-
posed by Kohn and Sham [33] in the framework of the
density functional theory, has been used more and more
often for calculating the electronic structure of multi-
electron systems. In this method, a system of (gener-
ally, integrodifferential) equations of the form

(1)

is solved, where φi(r) and ei are one-electron wave func-
tions and energies.

The total electron density in this case has the form

(2)

where Ne is the total number of electrons in the system.
The effective interaction operator in Eqs. (1) has

three components:

(3)

Here, V is the operator describing the interaction of
electrons with an external field, the second term
describes the direct Coulomb interaction, and the third
term, describes the exchange-correlation interaction. In
an approximate solution of Eqs. (1), we replace exact
interaction Vxc by an appropriate approximate interac-
tion. The local density approximation (LDA), in which
the electron subsystem of atomic clusters in question
behaves as a homogeneous electron gas, turned out to
be quite useful for practical calculations. We will
employ here the widely used Gunnarsson–Lundquist
parameterization [34], in which the exchange-correla-
tion potential is represented as

(4)

where

is the Wigner–Seitz radius.
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Thus, the exchange-correlation potential is a func-
tion of the local value of density at a given point r,
which considerably simplifies the numerical procedure
of solving Eqs. (1). At first glance, the LDA is applica-
ble only in the case of a spatially homogeneous system.
Many years of experience in numerical calculations
show, however, that the LDA can be used successfully
for calculating strongly inhomogeneous systems such
as an atom or a cluster. A considerable disadvantage of
the LDA is the presence of self-action in the electron–
electron interaction operator Vee(r). This circumstance
must be taken into account in the calculation of the
electronic structure since it leads to an incorrect asymp-
totic form of the self-consistent potential.

2.2. Jellium Model for Fullerene 

It is generally accepted that fullerenes are formed by
fragments of planar graphite lattices [35]. Carbon
atoms in graphite are at the vertices of hexagons form-
ing a plane. Different planes are coupled through weak
π bonds. Atoms in a plane are connected through σ
bonds. These are covalent bonds; i.e., collectivized
electrons are concentrated on orbitals spatially fixed
relative to the atoms being coupled. Bonds are formed
with the participation of 2s and 2p electrons of carbon
atoms (four electrons from each atom). This gives
240 delocalized electrons for fullerene C60 and 80 such
electrons for fullerene C20. During the formation of
bonds, atomic orbitals are hybridized; i.e., the resultant
molecular orbital is a combination of atomic s and p
orbitals in various proportions. For example, quantum-
chemical calculations [35] show that, in the case of
fullerene C60, the σ bond in this molecule is formed via
hybridization of atomic sp2 orbitals. The remaining p
electron participates in the formation of a π bond. Thus,
the ratio of the number of σ and π orbitals in fullerene
C60 is 3 : 1. Molecular σ orbitals are localized in the
radial direction on the fullerene radius, while molecular
π orbitals, on the contrary, are directed at right angles
to the surface of the imaginary fullerene sphere.

The wave functions of the remaining two 1s elec-
trons of carbon atoms are deformed insignificantly and
are strongly localized, as before, in the region of loca-
tion of a given atom. Consequently, it appears natural to
divide all the electrons of the system into the valence
electrons and the core electrons and consider the self-
consistent motion of the valence electrons only.

The potential of the fullerene core has two parts: the
potential of interaction between the valence and core
electrons and the potential of interaction between the
valence electrons and the nuclei of carbon atoms:

(5)

Here, Nat is the number of atoms in the fullerene,
ψ1s(r' – Rα) is the wave function of the 1s electron at the

V core r( ) 6
r Rα–
------------------ 2

ψ1s r' Rα–( ) 2

r r'– Rα+
---------------------------------- r'd∫+–

 
 
 

.
α 1=
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∑=
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C4+ ion, and {Rα} is the set of the coordinates of the
atoms. Self-consistent analysis of the wave functions of
valence electrons taking into account the actual posi-
tion of all Nat carbon ions, which corresponds to the
point symmetry group of the molecule, involves con-
siderable difficulties. For this reason, a simpler but nev-
ertheless adequate model is required to study effec-
tively the dynamic response of fullerenes. For example,
here we are using the jellium model of a spherical layer
[20] for calculating the electronic structure of fulle-
renes. The main idea of this approximation is the
replacement of the actual core potential (5) by a spher-
ically symmetric potential averaged over positions
{Rα}. Such a replacement considerably simplifies the
numerical procedure of calculating the electronic struc-
ture of a fullerene. The accuracy of this approximation
obviously increases as the shape of a cluster approaches
a spherical shape. The correctness of the spherically
symmetric approximation for the core potential of
fullerene C60 in problems on calculating the dynamic
response was demonstrated earlier [20].

The positive nuclear charge of all atoms of a cluster
in our model is averaged over a sphere of radius R
(which will henceforth be referred to as the fullerene
radius). As a result, the potential created by the nuclei
is transformed into

(6)

where r> is larger from r and R.

Earlier [20], the core potential of fullerene C60 was
replaced by the potential created by the charge distribu-
tion of C4+ ions averaged over the sphere; i.e., the effect
of electrons from inner shells was reduced to simple
compensation of the corresponding part of the nuclear
charge. Here, apart from screening, we also take into
account the spatial extension of the density distribution
of 1s electrons. Consequently, the contribution of the
charge of the 1s electron cloud to the core potential is
taken into account more accurately.

In accordance with the basic principle of the jellium
model (indistinguishability of atoms of the same spe-
cies in the cluster), we assume that 1s electrons of each
C4+ ion make the same contribution to the total electron
density of core electrons. Then we can average the elec-
tron density of one of the ions over the sphere and mul-
tiply the result by the total number Nat of ions:

(7)

Here, dΩ = sinθdθdϕ is an element of the solid angle
and R ≡ (R, 0, 0) is a vector in the spherical system of
coordinates with the origin at the center of the fulle-
rene. It should be noted that we used in specific calcu-
lations the wave functions of 1s electrons obtained in
the Hartree–Fock approximation for the carbon atom.

Vn e– r( )
6Nat
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----------,–=

ρ
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The potential created by the averaged electron
density,

(8)

can be evaluated easily using the expansion in spherical
harmonics:

(9)

Integration with respect to r' is carried out numerically
(by the trapezoid method). The total core potential is
equal to the sum of two components:

(10)

In the framework of our model, we use the following
standard expansion for the wave functions of valence
electrons in fullerene:

(11)

Here, ni, li, and mi are the principal, orbital, and mag-
netic quantum numbers of the ith shell, respectively;
Ylm(θ, ϕ) is the spherical harmonic determining the
angular dependence of the wave function; and 
determines the radial dependence of the wave function
and is determined by the specific form of potential
Veff(r); then (n – l – 1) determines the number of nodes
in the radial wave function. In Eqs. (1), the angular
components of the electron wave functions can be sep-
arated, which leads to a system of self-consistent differ-
ential equations for the radial wave functions, which
can be solved numerically.

The wave functions  of an excited state of
an electron in the frozen core approximation are solu-
tions of Eq. (1), i.e., a linear nonself-consistent equa-
tion. In this approach, we take into account the fact that
an excited electron moves in the field created by all Ne

electrons and the self-consistent field at large distance
behaves as (–(Z – Ne)/r). Thus, for an electrically neu-
tral system, the (N + 1)th electron is in a field whose
range is on the order of the size of the system, i.e., the
fullerene radius. Among other things, this leads to the
absence of discrete excited states for neutral atoms in

this approximation. The wave functions  for
i > F and φi(r) for i ≤ F are solutions of the same system
of equations; consequently, they are mutually orthogo-
nal and form a complete set in the sense that

(12)

The numerical procedure of solving Eqs. (1) for the
states of the discrete spectrum is analogous to the pro-
cedure of solving Eq. (1) for the wave functions of the

V
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ground state. The solution of Eq. (1) for the states of the
continuous spectrum differs in that the electron energy
es + 1 = κ2 > 0 is given beforehand. Consequently, the
problem is no longer an eigenvalue problem.

2.3. Method for Calculating
the Photoionization Cross Sections for Fullerenes 

The total photoionization cross section is defined
as [37]

(13)

where  is the partial cross section describing
the removal of an electron from the ν1 ≡ n1l1 shell due
to its transition to state ν2 ≡ el2 belonging to the contin-
uum. The partial photoionization cross section is
defined as

(14)

where ω is the photon energy and e = enl + ω.

Photoexcitation to a discrete state is described by
the oscillator strength

(15)

where  is the reduced dipole matrix element in the
LDA approximation or in the LDA-based RPA, α =
e2/"c = 1/137 is the fine structure constant,  = e –

enl is the photon energy, and  is the number of elec-
trons in the ν1 orbital.

The photoionization cross sections and oscillator
strengths in the LDA and in the LDA-based RPA are
calculated in the form of length and velocity. In the sec-
ond case, the photoionization cross sections in the form
of length and velocity must coincide if the effect of all
the shells in a cluster is taken into account. For this rea-
son, the difference in these representations can be used
for estimating the total numerical error in the obtained
results as well as the effect of transitions from other
shells except that being considered.

Both in the one-particle approximation and in the
random phase approximation, cross sections and oscil-
lator strength must obey the sum rule:

(16)

where N is the total number of valence electrons and
{nl} is the set of quantum numbers of the correspond-
ing orbital.

σ ω( ) σν1ν2
ω( ),

ν1ν2

∑=

σν1ν2
ω( )

σν1ν2
ω( )

4π2α
3

------------
Nν1

ω
2lν1

1+
------------------ dν1ν2

2,=

f ν1ν2

Nν1
ων1ν2

3 2lν1
1+( )

-------------------------- dν1ν2

2,=

dν1ν2

ων1ν2

Nν1

N f nl n'l',

n' l',
∑

nl

∑ 1

2π2α
------------ σnl ω( ) ω,d

I

∞

∫+=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Here, we use the local density approximation as the
one-particle approximation; for this reason, dipole
matrix elements are calculated using one-particle wave
functions determined from Eqs. (1) for the ground state
and in the frozen core approximation for excited states.

In order to calculate the photoionization amplitude

taking into account many-electron correlations ,
we used the random phase approximation. The RPA
equation can be represented symbolically in the follow-
ing form:

(17)

In specific calculations, Eq. (17) is solved numeri-
cally. For this purpose, use should be made of the
matrix form of Eq. (17), expressing the matrix elements

of the photon absorption amplitude  in

terms of their values  in the one-particle
approximation, the matrix elements of the operator

 describing the propagation of an electron-hole
excitation in time, and the matrix elements

 of the electron–electron interaction [40].
It should be noted that, since we are using the local den-
sity approximation in the framework of the density
functional theory as the one-particle approximation, the
kernel of the electron–electron interaction V must be
taken [38, 39] in the form

(18)

where Exc[n] is the exchange-correlation functional. In
the LDA [34], we have

(19)

Here,  is the exchange-correlation energy of a
homogeneous electron gas of density n. In our calcula-

tions, we used for  the widely used Gunnars-
son–Lundquist approximation [34].

The numerical procedure of solving Eq. (17) used
here is completely analogous to the procedure
described in monograph [40]. However, a peculiar fea-
ture of our approach is that the matrix elements in
Eq. (17) are calculated with one-particle wave func-
tions determined from Eqs. (1) for the ground state and
in the frozen core approximation for excited states, and
not on the basis of the Hartree–Fock approximation.
For this reason, it is appropriate to refer to the compu-
tation method as the LDA-based RPA. In the frame-
work of the LDA-based RPA, the photoionization cross
section is calculated taking into account the intra- and
intershell correlations [37]. A transition is character-
ized by the definition of the {n1l1} vacancy and the
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excited {n2(e2)l2} state (n2 for the discrete spectrum and
e2 for the continuum).

3. RESULTS OF CALCULATION 
OF PHOTOIONIZATION CROSS SECTIONS 

FOR C60 AND C20

3.1. Electronic Structure of C60 and C20 

Martins et al. [36] proposed a correlation that
should be established between wave functions with a
certain number of nodes in the radial part of the wave
function and σ and π orbitals of planar graphite lattices.
The correlation is quite simple: functions without
nodes, which are strongly localized in the radial direc-
tion on the fullerene radius, correspond to σ orbitals,
while functions with a single node correspond to π
orbitals. Here, we choose the electronic configurations
of the ground state of fullerenes using this correlation.
Namely, since the ratio of the number of σ and π orbit-
als for the ground state of C60 is 3 : 1 [35], the ratio of
the number of electrons located in node-free and single-
node shells {n, l} is taken in the same proportion. This
gives 180 electrons in zero-node shells and 60 electrons
in shells with a single node in the radial wave function:

(here and below, the atomic scheme n  is used for the
electron configuration notation [41]). For fullerene C20,
the number of orbitals that can be characterized unam-
biguously as σ and π orbitals is also known: nσ = 30 and
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Fig. 1. Schematic diagram of the arrangement and values of
one-electron energies of valence electrons in C60. The fig-
ures on top of vertical segments indicate the values of the
angular momentum l of the state. Numbers 18 (for the outer
zero-node state) and 10 (for the outer single-node state)
indicate the occupational numbers for incompletely filled
states. The remaining states are filled completely.

2

JOURNAL OF EXPERIMENTAL 
nπ = 8. Since each of these orbital is doubly degenerate
in spin, this give 76 electrons in all. The remaining two
molecular orbitals cannot be classified unambiguously
as σ or π. Analogously to C60, σ and π orbitals are put
in correspondence with zero- and single-node wave
functions. The remaining electrons are arranged in
accordance with the principle of minimum total elec-
tron energy. Thus, the electronic configuration of the
ground state of fullerene C20 has the form

 

It should be noted that, in the above electronic con-
figurations, outer zero-node and single-node shells are
filled only partially. Since it is impossible to construct
the entire system of terms for a given electronic config-
uration for such a large number of electrons, we used
the averaged term approximation. In this approxima-
tion, the electron charge is smeared uniformly over an
orbital with certain {n, l}. In other words, the maximal
occupancy 2(2l + 1) of the {n, l} orbital is in fact
replaced by the actual occupancy Nnl for the given
orbital. In this case, the electron density of valence
electrons can be represented in the form

(20)

The arrangement and the values of one-particle
energies of the ground state of the valence electrons in
C60 are given in Fig. 1. Figure 2 shows the electron den-
sity and the self-consistent potential of C60, obtained in
the local density approximation.

The self-consistent potential decreases over large
distances at a higher rate than the Coulomb potential.
This is due to an irregular asymptotic form of the self-
consistent potential in the LDA since each electron
moves in the field of all 240 electrons, i.e., in the field
of a neutral system. In such cases, the wave functions
are said to be calculated in the (N + 1) basis. As a result,
the energy levels have values smaller than for a poten-
tial with a regular (Coulomb) asymptotic form. Indeed,
a decrease in the potential well width for the same
depth leads to the upward expulsion of one-particle lev-
els. In particular, this leads to a decreased value of the
ionization potential Ip = 2.88 eV, considerably lower than

the experimentally obtained value  = 7.6 eV [14].
This is correct from the physical point of view: each
electron actually moves in the field of the neutral sys-
tem and, hence, is bound less tightly. In order to verify
the applicability of the scheme with the (N + 1) basis,
we calculated the electronic structure of fullerene C60 in
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the LDA with partly eliminated self-action. For this
purpose, we represented Eqs. (1) in the form

(21)

Here, as before, we have

In order to eliminate self-action, the occupation number
for the shell being calculated is reduced by unity
(Ni  Ni – 1):

(22)

Here,

(23)

Thus, each electron is in the field of 239 electrons or, in
other words, wave functions are calculated in the N
basis. It can easily be seen that each ith shell will have
its own potential. This means, first, that the obtained
orbitals are not orthogonal and, hence, do not form a
complete set. Consequently, they cannot be used for
calculating the dynamic response of the system without
additional orthogonalization. Second, the calculations
made by using this scheme showed that the level struc-
ture remained unchanged although the value of the ion-

ization potential (  = 5.52 eV) becomes closer to the

correct value of  [14]. The level structure includes
their mutual arrangement and the spacing between the
levels. This means that, in fact, the entire electronic
structure has shifted downwards approximately by the

difference  – Ip. From the physical point of view,
this means that, since the number of electrons in
fullerene shells is quite large, the removal of one elec-
tron from the total electron density does not change its
value significantly in the surface region of fullerene.
For this reason, the form of the potential varies insignif-
icantly over distances on the order of the fullerene
radius. On the basis of the above analysis, we decided
to retain a more convenient and consistent (N + 1)
scheme for calculating wave functions, using in subse-
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quent calculations the values of one-electron energies

shifted by  – Ip on the energy scale towards higher
values.

Since the results of calculations of the electronic
structure of C60 in the framework of our model are in
satisfactory agreement with the results obtained by
other authors [17, 20, 21], we decided to use this
approximation for calculating the electronic structure
of a new object, viz., fullerene C20.

The calculated energy spectrum is shown in Fig. 3.
Zero-node orbitals are filled up to l = 5, while single-
node orbitals are filled up to l = 2. The self-consistent
potential and the electron density are depicted in Fig. 4.
As in the case of C60, the electron density is strongly
localized and has a peak at the fullerene radius. Accord-
ingly, the self-consistent potential has a sharp minimum
at the surface of the imaginary sphere into which
fullerene is inscribed. The values of one-particle ener-
gies are found to be slightly exaggerated. In particular,
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density of valence electrons, calculated in the local density
approximation.
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the value of ionization potential Ip = 4.362 eV is slightly

lower than the value  = 6.939 eV obtained from
quantum-chemical calculations [32].

3.2. Photoionization Spectra 
of Fullerenes C60 and C20 

Let us consider the results of calculations of the
photoionization cross section for fullerene C60. The
complete electron spectrum of a C60 molecule below
and above the Fermi level is represented in Fig. 1.
Excited electron states were chosen in accordance with
the selection rules for dipole transitions l  l ± 1. The
wave functions of excited states were determined in the
frozen core approximation. It was mentioned above that
an excited electron in this approximation is in a short-
range potential, in which only a limited number of dis-
crete excited state can exist. The following discrete lev-
els were determined: 3s, 4p, 5d, 4s, 6f, 8i, and 5p. It can
be seen from the figure that two discrete excited states
3s and 4p “fall” below the Fermi level. This can be
attributed primarily to the limited validity of the
assumption concerning the spherical symmetry of the
C60 core. It was shown by Yabana and Bertsch [20] that
allowance for exact (icosahedral) symmetry of the core
shifts these levels to a region above the Fermi level.
These authors predicted that taking into account the
exact symmetry of the core leads to a small correction
to the pseudopotential describing the interaction of
valence electrons with the core, which can be included
in the framework of perturbation theory.

We analyzed possible transitions starting from the
outermost 7h shell down to the 7i shell, which amounts
to 19 transitions in all. The transitions map is as follows:

7h  (8i, Eg); 6g  (7h, 6f); 5f  (Eg, 5d);

4d  (6f, 4p(5p)); 3p  (5d, 3s(4s));

2s  (4p(5p)); 10m  (En, El); 9l  (10m, Ek);

8k  (El, 8i); 7i  (Ek, 7h).

It should be noted that, since the outer zero-node 10m
and single-node 7h shells are not filled completely, the
transitions in these shells are allowed. Henceforth, we
will refer to transition from σ and π orbitals as the σ and
the π transitions, respectively.

Partial cross sections in the LDA-based RPA have a
clearly manifested resonance form. The main contribu-
tion to the formation of a giant resonance comes from
transitions from outer π orbitals. By way of example,
Fig. 5 shows partial photoionization cross sections for
the 6g shell of fullerene C60. The shapes of the partial
cross sections in the one-particle and random-phase
approximations differ significantly. Moreover, a con-
siderable redistribution of oscillator strengths takes
place. In the one-particle approximation, the main con-
tribution to the sum rule comes from oscillator
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strengths (the contribution from the continuous spec-
trum is 22% and that from the oscillator strengths is
78%), while the main contribution in the LDA-based
RPA (75%) comes from the region of the continuum.
This indicates a significant role of many-electron corre-
lations in the formation of the spectrum.

Figure 6 shows the total photoionization cross sec-
tion of fullerene C60 taking into account many-electron
correlations, which was obtained by the LDA-based
RPA method, as well as the experimental cross section
obtained in [14] and normalized in accordance with
[16]. The cross section in the LDA-based RPA is shifted

by  –  on the energy scale towards higher photon
energies. The main features of the photoionization
cross section are two resonances: a near-threshold res-
onance and a giant resonance centered approximately
at 20 eV with a width of about 10 eV. A comparison of
the theoretically predicted and experimental cross sec-
tions shows that the position and height of the giant res-
onance are reproduced correctly in our model. Figure 6
shows, however, that the theoretical and experimental
cross sections in the near-threshold region differ quali-
tatively: the theory predicts a narrow and high reso-
nance near the threshold. The conditions for its emer-
gence and origin will be discussed below.

Similar calculations were made for fullerene C20.
The complete electron spectrum of a C20 molecule
below and above the Fermi level is shown in Fig. 3. As
in the case of C60, only a few discrete levels were deter-
mined: 3s, 7i, 5f, and 4p. We analyzed all possible tran-
sitions starting from the outermost 4d shell down to the
3d shell. The transition map has the form

4d  (5f, 4p); 3p  (4d, 3s); 2s  (4p);

6h  (7i, 6g); 5g  (6h, 5f); 4f  (6g, 4d);

3d  (5f, 4p).

Since the outer zero-node 6h and single-node 4d shells
are filled incompletely, transitions in these shells are
allowed.

Figure 7 shows the total photoionization cross sec-
tion for fullerene C20 taking into account many-electron
correlations, which was obtained by the LDA-based
RPA method. It can be seen that the photoionization
cross section of a C20 molecule, calculated taking into
account many-electron correlations, has a clearly man-
ifested resonance shape. As in the case of C60, the main
features of the photoionization cross section are two
resonances, one of which is near the threshold and the
other is centered approximately at 27 eV and has a
width of about 7 eV. The conditions for their emergence
and origin will be discussed below.

3.3. Resonances in the Spectra
of C60 and C20 

The photoionization spectra of C60 and C20 fullerene
molecules have a clearly manifested resonance shape.

I p
exp I p
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The conditions for the emergence of resonances in the
photoionization spectra of two molecules and their
physical origins are identical.

The near-threshold resonances in the photoioniza-
tion spectra are completely determined by transitions
from outer π orbitals. The oscillator strengths of π–π
transitions to discrete excited states are not high in the
one-particle approximation, while narrow near-thresh-
old resonances appear in the continuous spectrum cal-
culated in the LDA-based RPA. Thus, the oscillator
strengths are redistributed when many-electron correla-
tions are taken into account. The small width of near-
threshold resonances indicates, from the physical point
of view, that a remote electron with a low energy
remains in the vicinity of fullerene for a long time.
Since the excited wave functions were calculated in the
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(N + 1) basis, the remote electron actually corresponds
to the added (N + 1)th electron. Therefore, we can draw
an analogy between the existence of metastable states
of negative fullerene ions and discrete excited states in
our approximation. It is known [42] that a large number

of metastable states exist for . The existence of

metastable states for , which are manifested during
inelastic scattering of slow electrons in fullerene C20,
was also predicted [32]. The positions of near-threshold
resonances in the spectra of C60 and C20, which were
obtained in our analysis, are in good agreement with the
energies of these metastable states. It should also be
noted that the cross sections near the threshold are
exaggerated considerably in the RPA due to limitations
of the method. Indeed, a photoelectron in this case pos-
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sesses a relatively low energy, and the core relaxation
effects, which are beyond the RPA, must be taken into
account.

The second resonance in the photoionization spectra
of C20 and C60 can be classified as a collective, or giant
resonance. It emerges in partial photoionization cross
sections in the random phase approximation taking the
electron–electron correlations into account and is
absent in the one-particle spectrum. Consequently, we
can state that the emergence of a giant resonance is a
manifestation of collective modes of cluster excita-
tions. Numerical calculations proved that it emerges
due to the interaction between π and σ transitions. This
is illustrated in Fig. 8: the interaction between π transi-
tions does not lead to a giant resonance in the partial
cross section, and only the actuation of the channel with
a σ transition leads to its emergence. This result can be
explained by analyzing the process of collective excita-
tions in terms of oscillations of the electron density cor-
responding to the spatial configuration. Indeed, σ orbit-
als are presented by zero-node wave functions in the
radial direction, which have a peak at the fullerene sur-
face and are strongly localized near this surface. Con-
sequently, the excitation of the electron density of σ
orbitals has the form of electron density oscillations in
a thin surface region, i.e., surface plasmon vibrations.

The formula for the resonance frequency of electron
density oscillations in a conducting sphere with permit-

tivity  (ωp is the frequency of plasma
oscillations in a bulk material) was derived in a number
of publications in the framework of classical electrody-
namics [43] and in the theory of linear response of mul-
tielectron systems [11]:

(24)

(ωl is the frequency of surface plasmon vibrations with
angular momentum l and Ne is the number of delocalized
electrons). For fullerene C60, we have R = 6.6624 at. units
[35] and Ne = 240; for l = 1 (which corresponds to the
excitation of dipole plasmon vibrations), we have ω1 =
20 eV. It can be seen from Fig. 7 that the position of the
giant resonance in our calculations corresponds to the
position of the dipole surface plasmon resonance. Sim-
ilarly, for fullerene C20, we have R = 3.86 at. units [32]
and Ne = 80; for l = 1 (which corresponds to excitation
of dipole plasmon vibrations), we have ω1 = 27 eV. It
can be seen from Fig. 7 that the position of the giant res-
onance in our calculations corresponds to the position
of the dipole surface plasmon resonance.

4. CONCLUSIONS
The above analysis proved that many-electron cor-

relations play a decisive role in the formation of the
photoionization spectra of fullerenes C20 and C60. The

e ω( ) 1 ωp
2 /ω2–=

ωl

l l 1+( )Ne

2l 1+( )R ful
3

----------------------------=
AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003



METHOD FOR CALCULATING PHOTOIONIZATION CROSS SECTIONS OF FULLERENES 667
photoionization cross sections of C20 and C60, which are
calculated by using a method combining the random
phase and local density approximations, display giant
resonances of the same physical origin. These reso-
nances appear as a result of collective excitations of the
electron density, viz., surface plasmon vibrations. The
method for calculating the electronic structure of
fullerenes based on the local density approximation in
the framework of the spherical jellium model of the
layer makes it possible to obtain self-consistent poten-
tials of C20 and C60, displaying a sharp minimum in the
vicinity of the fullerene surface.

The calculations made for fullerene C60 were of a
test nature since the number of theoretical and experi-
mental publications concerning the optical response of
this object is sufficiently large [14, 16–22]. The crite-
rion for verification was the comparison of the theoret-
ically predicted cross section with the experimental
cross section measured in [14]. The position and height
of the giant resonance in the photoionization spectrum
of C60 obtained by us is in good agreement with the
result obtained in the experimental work [14] and nor-
malized in accordance with [16]. This enables us to
state that the proposed method makes it possible to cal-
culate the photoionization cross section to a fairly high
degree of accuracy (at least, in the resonance region). For
this reason, this method of calculation was applied to a
new and scarcely investigated object, viz., fullerene C20.

This method was used for the first time to calculate
the photoionization cross section for fullerene C20 in a
wide photon energy range taking into account many-
electron correlations. The cross section was obtained
with allowance for correlations in all transitions. The
absolute values of photoionization cross sections
obtained in the framework of this method are of consid-
erable importance for experimental studies.

It was found that the photoionization spectrum of
fullerene C20 displays a giant resonance. The conditions
for the emergence of the resonance were investigated
and the mechanism responsible for its emergence was
identified with the excitation of surface plasmon vibra-
tions. The decisive role of collective excitations in the
formation of the photoionization spectrum of C20 was
established.

It should be noted that our method of calculations
gives too high values of photoionization cross sections
in the region of the cluster ionization threshold in view
of limitations of the random phase approximation.
However, despite this fact, the model developed by us
can be applied for studying a wide class of collision
processes involving fullerenes and spherical metallic
clusters.
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Abstract—The cross section of electron–positron pair production by two circularly polarized photons in a
static uniform electric field is calculated. The dependence of the cross section on the photon energy is deter-
mined. It is shown that the corrections to the cross section of the process involving photons of various polariza-
tions are suppressed as compared to the situation with crossed fields. © 2003 MAIK “Nauka/Interperiodica”.
The study of the production of electron–positron
pairs by photons started in the classical work by Breit
and Wheeler [1]. This phenomenon, which is of con-
siderable importance for constructing astrophysical
models, is treated in many theoretical works in spite of
the fact that it was inaccessible to experimental inves-
tigation under laboratory conditions for a long time.
For this reason, the main regularities of the process in
question have been established only theoretically. In
particular, expressions for the multiphoton process
cross section [2–11], as well as the formulas reflecting
the effect of external fields on two-photon [12–17] and
multiphoton [18–22] pair production, have been
obtained.1 Naturally, after the observation of mul-
tiphoton pair production [24] using high-energy pho-
tons generated in the inverse Compton effect [25],2

theoretical investigations were continued in [27–31].
In this paper, we analyze the effect of purely electric

field on photoproduction of pairs. Namely, we consider
the production of electron–positron pairs by two circu-
larly polarized photons propagating toward each other
along a static uniform electric field E. The choice of the
problem geometry is dictated by the following consid-
erations. If the energies of the photons differ signifi-
cantly (which is the most interesting case), the field is
close to that of a crossed field for photons propagating
at an angle to E in the center-of-mass system of the pair
being formed; such a configuration was studied, for
example, in [16]. All the results obtained here are based
on completely relativistic calculations, which enables
us to take into account the effect of the photon spin ori-
entation relative to the external field on the cross sec-
tions and to find the energy dependence of the cross

1 The state of the art by 1997 is reflected in [23].
2 The scheme for hard photon production in the inverse Compton

effect was implemented for the first time back in 1964 on the syn-
chrotron of the Institute of Physics, Academy of Sciences of the
Soviet Union [26].
1063-7761/03/9604- $24.00 © 20669
sections for any (and not only at threshold) values. Con-
sequently, this paper, together with [16] and publication
[15], in which a pure magnetic field is considered, gives
a complete qualitative pattern of the effect of static uni-
form fields on the pair production by hard polarized γ
quanta at laser beam photons.

The integral representation for the pair production
cross section σ in the lowest order of perturbation the-
ory in quantized field can be determined using the
results obtained in [32], where the polarization operator
of a photon propagating in an external field of a com-
plex configuration was calculated. This configuration
includes constant and parallel electric and magnetic
fields as well as an arbitrary plane-wave field with a
wave vector oriented along the common direction of E
and H. We assume that the magnetic field strength in
the polarization operator is zero and choose a mono-
chromatic plane wave with circular polarization for a
plane-wave field. If we expand the obtained expression
into a power series in the field strength of the external
wave, the expansion term on the mass surface, which is
proportional to the squared wave field strength, is equal
to the forward scattering amplitude for a photon with
frequency ω' from a photon of the external wave of fre-
quency ω.

In order to determine the pair production cross sec-
tion, we apply the optical theorem. Since we are prima-
rily interested in a relatively weak field whose strength
E satisfies the condition3 eE/m2 ≡ µ ! 1, we will disre-
gard modifications of the unitary relation typical of
pair-producing fields [33, 34]. This leads to an error on
the order of exp(–π/µ) associated with the contribution
from spontaneous pair production.

Taking this assumption into account, we define the
process cross section (σ+ corresponds to coinciding

3 Here, we are using the system of units in which c = " = 1.
003 MAIK “Nauka/Interperiodica”
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polarizations of photons and σ– to the opposite case) by
the formula

(1)

Here,

(2)

where m and e are the mass and charge of an electron,
r0 = e2/4πm is its classical radius, and β± = (1 ± β)/2.
Parameter t = m2/ωω' characterizes the photon energy.
In zero external field, pair production is possible only
for t < 1.

In order to find the asymptotic expansion of the inte-
grals for µ ! 1, we use the two-dimensional method of
stationary phase [35]. The application of this method
for calculating the pair photoproduction cross section
was described in detail in [16]; consequently, we will
consider only some features of computations.

It can easily be proved that the boundaries of the
domain of integration with respect of ρ and β make an
exponentially small contribution to the integral. In
order to determine the boundary contribution from inte-
gration with respect to variable x in functions B±, we
will use the following approach. Functions B± can be
expressed in terms of integral sine and cosine. Using
the well-known representation for the latter functions
(see formulas (5.2.8) and (5.2.9) in [36]), we obtain

(3)
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where

(4)

(5)

The auxiliary functions f(y) and g(y) have the following
asymptotic expansions for |y |  ∞ (|argy | < π):

(6)

Representation (3) for B± transforms expression (1)
to the canonical form for the application of the station-
ary phase approximation; there exist only two nontriv-
ial exponents in the integrals both for σ+ and for σ–:

(7)

Since S–(ρ, β) has no stationary points, in calculating
the asymptotic form of the cross sections we must take
into account only the stationary points S+(ρ, β) apart
from the line of singularities ρ = 0:

(8)

Parameter v  =  for the process in zero fields is
the velocity of formed particle in the center-of-mass
system.

Let us consider the results of calculations. As in the
case of pair production in a crossed field [16], the pro-
cess cross section can be represented as the sum of the
monotonic and oscillating parts,

(9)

the contribution to the monotonic part coming from the
line ρ = 0 and from the stationary points A and A', while
the oscillating part receives a contribution from station-
ary points B and C.

The expansion of the monotonic part of the cross
section into a power series in µ2 coincides with the

z1
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series in perturbation theory. Its first two terms are
given by

(10)

It is interesting to note that the correction to the Breit–
Wheeler cross section due to the presence of the exter-
nal field reverses its sign upon a change in the energy of
interacting photons. For example, the coefficient of µ2

in the expression for  is negative in the region of
high photon energies. It becomes positive for t > 0.37.

For , the inverse dependence is observed. The
coefficient of µ2 is positive in the high-energy range. It
becomes negative for t > 0.74.

Let us consider the oscillating part. It can be
expanded into a power series in µ. The principal terms
of the series have the form

(11)

As the photon energy decreases, the absolute value
of corrections increases and we have

(12)
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for v  ! 1. Consequently, the effective expansion
parameter in this energy range is the quantity µ/v 3.

The obtained formulas are inapplicable for |v | <
µ1/3, i.e., in the immediate vicinity of the value t = 1 cor-
responding to the pair production threshold in zero
external field. In order to estimate cross sections in this
region, we substitute t = 1 into formula (1), which
readily gives

(13)

The steepest descent method can be used for calcu-
lating the asymptotic cross sections in the prethreshold
region, i.e., for t > 1:

(14)

where  = (t – 1)1/2. For  ! 1, we have

(15)

Let us return to formulas (14). For t @ 1, these for-
mulas fail to describe the two-photon productions.
Indeed, in this case, σ± ~ exp(–π/µ); i.e., the depen-
dence on the external field strength, typical of the prob-
ability of spontaneous production of electron–positron
pairs by an electric field, takes place.

The formulas describing pair generation in the non-
relativistic approximation are similar to the well-known
result of the problem on optical transitions in semicon-
ductors near the absorption band in the presence of an
electric field (the Franz–Keldysh effect). The probabil-
ity of this process for an isotropic dispersion relation
can be obtained from formulas (12) and (15) by replac-

ing parameter µ/v 3 by eE/ (ε – ε0)3/2 (where ε is
the total energy of photons, ε0 is the forbidden gap
width, and m* is the reduced mass of an electron–hole
pair) and assuming that the overall coefficient is equal
to the absorption probability in zero field. In this case,
the quantities σ+ and σ– determine the probabilities of
the allowed [37] and forbidden transitions, respectively.
The observed analogy is quite clear since the presence
of oscillating terms in the expressions for the probabil-
ities of both processes is associated with reflection from
a potential barrier. Consequently, the meaning of
parameter µ/v 3 is also clear: a field may noticeably
change the total probability of the process if the work
done by it over the de Broglie wavelength of the particle
formed is comparable to its kinetic energy. The role of
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3µ
---------– 

  ,exp=

σ+ πr0
2 µ
4ṽ 2
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this parameter in the particle physics problem was dis-
cussed in connection with the analysis of the effect of
an external field on the beta decay probability in the
nonrelativistic approximation (see [38–41]).

It is interesting to note that, when pair production is
studied in the nonrelativistic approximation in an arbi-
trary static field or in the field of an electromagnetic
low-frequency wave [14, 27, 28], the principal terms in
the power expansion of the external field strength for
the cross sections coincide with formulas (12), (13),
and (15). This can be explained qualitatively by the fact
that it is the electric field component that mainly affects
the cross section near the reaction threshold, where the
strongest effect is observed. The value of the Lorentz
force, i.e., the effect of the magnetic field, is weaker by
a factor of v –1.4 Consequently, the formulas derived in
the nonrelativistic approximation coincide irrespective
of the type of the field. In the version of nonrelativistic
approximation used in the above-mentioned publica-
tions, spin effects were taken into account as follows:
wave functions used in calculations described pairs
with zero angular momentum [14] or with zero as well
as nonzero orbital angular momenta [27, 28]. Conse-
quently, partial cross sections averaged over the polar-
izations of the initial photons were calculated in fact.
Obviously, the partial cross section for production of
pairs with zero orbital angular momentum can also be
treated as the cross section of a process involving pho-
tons with identical polarizations and propagating
towards each other. However, the situation for partial
cross section with nonzero angular momenta is nontriv-
ial. Our calculations show that in the case when pho-
tons propagate along a purely electric field, the treat-
ment of the relevant expression as the cross section of
pair production by photons with opposite polarizations
is quite admissible.

Let us compare formulas (12), (13), and (15) with
the low-energy limit of the process cross section in a
crossed field [16]. The above formulas for σ+ coincide
with the result for the crossed field if we carry out the
substitution

(16)

i.e., replace E by the strength of the crossed field in the

center-of-mass system of the pair being formed (  is
the strength of the crossed field in the laboratory frame
of reference). However, the formulas for σ– with substi-
tution (16) differ from the cross section in the crossed
field, which has the following form near the threshold:

(17)

4 Analysis of pair production in a constant magnetic field
revealed [15] that the effective expansion parameter in this case
is µ/v2.

µ κ eẼ

m2
------ ω'

ω
-----,=

Ẽ

σ– 8
3
---πr0

2
v 3 1

1
8
--- κ2

v 6
------ 3

8
--- κ

v 3
------ 4v 3

3κ
---------cos+– 

  .=
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First of all, the dependence on the field strength in the

expression for  is obviously different. This can be
explained as follows. Since the oscillating part of the
cross section is formed due to reflection from a poten-
tial barrier, pairs with momenta directed along the elec-
tric field make the largest contribution to this compo-
nent. In the case of interaction of photons with different
polarizations, the production of a pair with zero orbital
angular momentum is ruled out. In this case, the prob-
ability of emission of a pair along the field is strongly
suppressed.

Considerations associated with the analyticity in
energy suggest that oscillating terms appear only in the
cross sections of reactions with an energy threshold.
For example, no oscillating terms appear in the total
cross section of the Compton effect in an external
crossed electric field. In the above analogy with the
problems in solid-state physics (see also [42]), the
boundary of the physical region in the momentum
space plays the role of the Fermi surface.

Let us now consider the possibility of experimental
observation of the effect of electric field on pair produc-
tion. This problem was analyzed in detail for a crossed
field in [16], and we will compare our formulas with the
results of that publication. For the second harmonic of
a neodymium laser used in the experiment described
in [24], the photon energy is ω ≈ 2.35 eV. The threshold
value is ω' ≈ 111 GeV. Thus, the strengths of the
crossed and purely electric fields in the center-of-mass
system of a pair being formed differ by a factor of χ =
(ω'/ω)1/2 ≈ 0.22 × 106 if their values in the laboratory
system are equal. Consequently (see formulas (13)), at
the reaction threshold, where this effect is the strongest,
the ratio of cross sections for photons with identical
polarizations is χ1/3 ≈ 0.6 × 102. For this reason, the con-
ditions for observing the effect in a purely electric field
are noticeably worse than for a crossed field for which
the cross section is on the order of 10% of the maximal
Breit–Wheeler cross section even for field strengths of
a few tesla. However, the cross sections for photons
with different polarizations differ by more than a factor
of χ (in our example, by a factor of 1.5 × 106).

It should be noted that the results obtained for v  &
α, where α is the fine structure constant, are generally
only qualitative since we have not considered the inter-
action of the pair components in the final state. How-
ever, the inclusion of the Coulomb interaction cannot
radically affect the main conclusions of this study.
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Abstract—An approach is proposed in the theory of multiple scattering of wave fields in two-dimensional
inhomogeneous media, which provides a universal description for wave scattering from one-dimensional peri-
odic interfaces between two dielectric media (optical gratings) and from two-dimensional periodic dielectric
structures (photonic crystals). The approach is based on the transfer matrix methodology, which involves sub-
dividing the scattering medium into elementary layers with gaps; however, in contrast to the transfer matrix
method, it leads to invariant imbedding equations for the matrix coefficients of reflection and transmission of
an inhomogeneous medium. The developed approach is applied in a quantitative analysis of two optical effects:
resonant decrease in the light reflection coefficient from the grating, associated with the profile depth effect, and
exponential-power decay of optical radiation in the forbidden band of a 2D photonic crystal upon an increase
in the number of its layers starting from one layer. The frequency spectrum for the electromagnetic radiation
power transmission through a 2D photonic crystal formed by parallel layers of infinitely long cylinders is inter-
preted taking into account the spectral dependence of the total cross section of scattering from a single cylinder.
Such an interpretation of the frequency spectrum with two forbidden gaps combined with the analysis of layer-
by-layer dynamics of its formation makes it possible to reveal the role of microscopic resonant scattering of
waves from a single cylinder and of macroscopic Bragg-type resonant scattering from a periodic system of cyl-
inders during the formation of the spectrum of radiation transmission through a photonic crystal. A physical
explanation is given for the transparency peaks in one of the forbidden gaps in the spectra of radiation trans-
mission through a perfectly ordered system of cylinders in terms of multipole resonances of scattering from a
single cylinder. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For historical reasons, the methods for describing
scattering from inhomogeneous (including periodic)
surfaces and inhomogeneous (periodic) volume dielec-
tric media in the theory of multiple scattering of wave
fields were developed independently. The scattering
from the surfaces, which is often referred to as surface
scattering [1], is usually described in terms of the bound-
ary value problem using perturbation theory [2, 3], or it
is considered on the basis of the Fredholm integral
equations written for a boundary field (which are sub-
sequently solved numerically [4]), or it is based on the
scattering (S) matrix technique [5]. In the theory of
multiple scattering in volume media, the following
three approaches are commonly used: the Watson
method of composition of scattering operators (T
matrix technique) [6], the invariant imbedding method
[7, 8], and the transfer matrix method, which has
become popular recently [9].

Intense experimental studies of electromagnetic
wave scattering from structures with a periodic dielec-
1063-7761/03/9604- $24.00 © 20674
tric “potential” (optical gratings and photonic crystals)
and from rough surfaces have stimulated the develop-
ment of several new theoretical approaches. The
description of some optical resonance effects in grat-
ings, such as Wood’s “perpendicular” anomalies [10]
associated with excitation of surface plasmons [11] in
the grating by an incident wave with a nonzero electric
vector component along the normal to the unperturbed
surface; suppression of specular reflection of light [12];
giant Raman scattering [13], as well as anomalous
absorption of light by a rough surface [14] and coherent
enhancement of back scattering of light from a rough
interface in a multimode waveguide structure [15],
were no longer confined to the solution of a traditional
diffraction problem formulated in terms of the Fred-
holm equations [16, 17]. Using approximate boundary
conditions in the form of surface impedance [18, 19],
the waves excited on the surface were calculated
exactly [20] or approximately [21], or the problem of
the wave field in the transition region of a perturbed
surface [20] was formulated analogously to the case of
003 MAIK “Nauka/Interperiodica”
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wave propagation in a periodic layered volume struc-
ture [22].

The studies of photonic crystals initiated by
Yablonovitch and John [23] led to new methods for cal-
culating the coefficients of reflection or transmission of
waves for periodic volume structures, for calculating
local fields in such structures, and for analyzing the
band structure of their frequency spectrum emerging
due to geometrical resonance during Bragg scattering
of waves. We can mention in this connection the
method of plane waves [24–26], the layer doubling
algorithm [27, 28] inherited from the theory of low-
energy electron diffraction [29], and the finite element
method [30, 31] based on discretization of the Maxwell
equations, carried out in real space, as well as the
above-mentioned transfer matrix technique [9].

The method of plane waves and the layer doubling
algorithm can be reduced to the Fredholm matrix equa-
tion, which is typical of surface scattering problems in
their traditional formulation [4]. At the same time, the
effective potential method for surface scattering
(although it was applied [15] to analysis of coherent
amplification of backward scattering in the framework
of the Rayleigh hypothesis) together with the S matrix
technique [5] and the finite element method [30, 31]
close to the invariant imbedding method [7, 8] can be
regarded as a step to a uniform description of surface
and volume multiple scattering of electromagnetic
waves.

From the practical point of view, the development of
a unified approach to the problem of multiple scattering
of optical radiation is stimulated by miniaturization of
optical and optoelectronic structures, which rules out
an unambiguous division between their surface and
volume as, for example, in the case of a planar micro-
scopic optical fiber whose surface is formed by a layer
of a colloidal hexagonal crystal made of spheres [32].

Here, we develop a unified exact approach to the
theoretical description of multiple resonant scattering
of waves from one-dimensional periodic interface
between two dielectric medial (optical gratings) and
from two-dimensional (2D) periodic dielectric struc-
tures (photonic crystals). The approach is a further
development of the transfer matrix methodology [9]
involving a virtual subdivision of a scattering medium
into elementary nonintersecting layers. The develop-
ment of the method carried out in conformity with the
method of transfer relations [33] consists in the inclu-
sion of the splitting of a transition inhomogeneous
region of a periodic surface or individual scatterers of a
periodic volume structure. From the physical point of
view, the applicability of transfer matrices both to grat-
ings and to photonic crystals is based on the possibility
of representing photonic crystals in the form of a stack
of corresponding gratings; this was demonstrated while
deriving the transfer relations [33].

We will write the invariant imbedding relations for
matrix wave coefficients of reflection and transmission
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of a periodic surface (optical grating). It will be shown
that the same equations with appropriately modified
coefficients can be used in the case of photonic crystals.
The effectiveness of the proposed approach will be
demonstrated as applied to an analysis of the following
two optical effects: (1) “parallel” anomalies on grat-
ings, observed about a century ago by Wood [34] and
studied in detail by Palmer [35]; physically, these
anomalies are not associated with the excitation of sur-
face plasmons (the electric vector of an incident wave
is parallel to the generator of the grating relief) in con-
trast to the above-mentioned “perpendicular” anoma-
lies [10]; and (2) the dependence of the depth of pene-
tration of optical radiation into a photon 2D structure
upon an increase in the number of its layers, provided
that the radiation frequency lies in the forbidden gap of
the transmission frequency spectrum of the structure.
The power transmission frequency spectrum for an
ordered system of infinitely long dielectric cylinders is
interpreted with the help of the spectral dependence of
the total cross section of scattering of incident electro-
magnetic field from a single cylinder. A comparison of
the layer-by-layer dynamics of formation of the forbid-
den gap in the transmission spectrum of a 2D photonic
crystal with the wave field attenuation depth in a layer
of a random strongly scattering dielectric 2D medium,
which is calculated on the basis of the self-consistent
theory of localization [36], enabled us to analyze the
John hypothesis [23] on the essentially feasible realiza-
tion of strong localization of photons in an ordered
medium with a moderate disorder suppressing coherent
backward scattering of photons in some of Bragg’s
directions.

2. RICCATI EQUATION 
FOR LIGHT SCATTERING 

FROM A PERIODIC 1D SURFACE 
AND FROM A 2D VOLUME STRUCTURE

Let us consider the scattering of a plane monochro-
matic electromagnetic wave from a periodic one-
dimensional (1D) interface z = f(x) between two dielec-
tric media occupying the upper and lower half-spaces in
the Cartesian system of coordinates x, y, z. Let us sup-
pose that the periodic surface has a triangular profile in
the xz plane, which is extended along the y axis
(Fig. 1a). The plane linearly polarized wave with wave-
length λ is incident from the upper half-space (z > f(x)),
whose permittivity is εbac. The lower half-space (z <
f(x)) consists of a transition region 0 < z < f(x) and a
substrate –Lo < z < 0, which have the same permittivity ε,
and a semi-infinite medium z < –Lo, similar to the
medium of the upper half-space. We consider the case
of the TE (or s) polarization, which enables us to reduce
the vector Maxwell equations to the scalar Helmholtz
wave equation.

In accordance with the transfer relation method
[33], the transition region can be divided into a system
of elementary layers perpendicular to the z axis, which
SICS      Vol. 96      No. 4      2003
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are separated by vanishingly small gaps. The Watson
rule [6] for a composition of scattering operators (T
matrices) for the system of layers leads to a mixed sys-
tem of exact matrix equations (transfer relations) for
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Fig. 1. Schematic diagram of splitting of the transition
region between two dielectric media into auxiliary layers
with gaps. The transition region has the form of (a) a peri-
odic surface with a triangular profile on a substrate of thick-
ness Lo; (b) two-dimensional volume structure, e.g., a sys-
tem of parallel layers (starting from one layer) of infinitely
long cylinders of radius R extended along the y axis, which
forms a square grating (starting from two layers) with
period Λ. The electric field vector Eo of a plane wave inci-
dent at angle α is parallel to the y axis (TE polarization). The
wave vector ko and the magnetic vector Ho of the wave lie
in the xz plane of incidence.
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the matrix wave coefficients of reflection and transmis-
sion through the system of elementary layers and the
matrix wave amplitudes of waves in the gaps between
the layers (local fields). The transfer relations make it
possible to write the generalized differential Riccati
equation for the matrix wave coefficient of reflection
and associated differential equation for the matrix wave
coefficient of transmission through a periodic surface
as well as the differential equation for the local fields in
the transition region. The imbedding parameter in these
differential equations with the “initial” (or “final”) con-
ditions is chosen along the z axis.

The Riccati equation written for the matrix coeffi-
cient Rµν(kox) of reflection from a truncated transition
region, i.e., the coefficient of reflection from an auxil-
iary surface ξ = f(x, z), which is the cross section of the
transition region by the plane z = const, has the form

(1)

for 0 < z < h. The “initial” condition for the Riccati
equation is the substrate reflection coefficient R(kox),
i.e., the condition Rµν(kox)  R(kox + 2πν/Λ)δµν, 0 for
z  0. Here, h is the maximal depth of the surface
profile and δµν is the Kronecker delta symbol. Indices µ,
ν = 0, ±1, ±2, … label the diffracted and incident spec-
tral orders. In particular, ν = 0 corresponds to the inci-
dence of a plane wave, while µ = 0 corresponds to the
direction of specular reflection.

The Riccati equation (1) contains two coefficients σ
and a, which are diagonal matrices with elements of the
form

Here, Λ is the modulation period of the surface, Vo =

− (ε – εbac)/εbac is the dielectric potential, ko =
(ω/C)(εbac)1/2 is the wave number of optical radiation,
and ω and C are the cyclic frequency of radiation and
the velocity of light in vacuum.

The physical meaning of the coefficient σ(µ) is that
the diagonal of this matrix is composed of z compo-

nents of the wave vectors  of radiation scattered to

the µth diffraction order. Vector  has the x compo-

nent  = kox + 2πµ/Λ, where kox = –kosinα. Here, α
denotes the angle of incidence of the wave.

Matrix Fµν(z) ≡ Fµ – ν(z) with elements

(2)

describes in Eq. (1) the mutual transformation of prop-
agating and evanescent waves, occurring during their

dR
dz
------- i σR Rσ+( )– aF z( ) aF z( )R+=

+ RaF z( ) RaF z( )R+

σ µ( ) ko
2 kox 2πµ/Λ+( )2–[ ] 1/2
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2πa µ( ) iVo/σ µ( ).–=
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2
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+
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+
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+
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multiple scattering from a periodic surface. In matrix
elements (2), Xo(z) denotes the root of the equation
f(x) = f(–x) = z for  0 ≤ x ≤ Λ/2.

Among all elements of the matrix reflection coeffi-
cient Rµν corresponding to z = h, only elements of the
first column Rµo have physical meaning. Indeed, the
expression for the y component of the electric field
strength of the wave in the upper half-space z > h,

(3)

where  denotes the unit vector of the z axis, shows that
the field reflected from a periodic surface is represented
by the term in the form of the sum of products of the
exponential factor and the partial reflection coefficient
Rµo for a wave incident on the grating.

Analogously to Riccati equation (1), we can write
an associated equation for the matrix wave coefficient
7µν(kox) of radiation transmission through a truncated
periodic surface:

(4)

for 0 < z < h with the “initial” condition 7µν(kox) 
7(kox + 2πν/Λ)δµ – ν, 0 for z  0. Here, 7(kox) is the
transmission coefficient for the substrate.

The y component of the electric field strength in the
lower half-space z + Lo < 0 is given by

(5)

Here,  denotes the wave vector of the µth mode in
the angular spectrum of transmitted radiation; the wave

vectors have components  =  and  = –σ(µ).
Formulas (3) and (5) describe the expansion of the elec-
tric field of a wave in spectral orders (propagating and
attenuating along the z axis) of radiation reflected from
the periodic surface and radiation transmitted through
it. The substitution of these formulas into the definition
of the Poynting vector P leads to the expressions for the
energy flux density of the reflected and transmitted
electromagnetic field,

(6)

(7)

Ey r( ) iko r hẑ–( )[ ]exp=

+ Rµo kox; h( )
µ ∞–=

∞

∑ ikµ
+ r hẑ–( )[ ] ,exp

ẑ

d7/dz i7σ– 7aF z( ) 7aF z( )R+=

Ey r( ) 7µo kox; h( )
µ ∞–=

∞

∑=

× ikµ
– r z Lo+( )ẑ+[ ]{ } .exp

kµ
–

kµx
– kµx

+ kµz
–

Π z z h=( ) koz kµz
+ Rµo kox; h( ) 2,

µ
∑+=

Π z z Lo–=( ) kµz
– 7µo kox; h( )

2
,

µ
∑=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
in which summation is carried out only over propagat-
ing spectral orders defined by the inequality |kox +
2πµ/Λ| ≤ ko . It should be noted that formulas (6) and (7)
for nonabsorbing dielectric media must lead to identi-
cal values of the field energy flux density (Poynting the-
orem).

In numerical calculations, the infinite system of equa-
tions (1) was truncated into a system of 15 × 15 equ-
ations used for calculating the reflection coefficients
Rµν to the spectral orders µ, ν = 0, ±1, …, ±7 with the
help of the Runge–Kutta method.

3. WOOD ANOMALIES

It is known from the literature (see, for example,
[21]) that the coefficient of reflection of a TE polarized
wave from a diffraction grating may sharply increase
for some values of the grating period or, on the contrary,
may abruptly decrease for some values of its profile
depth. The resonant increase in reflectance (so-called
Rayleigh type of Wood anomalies [34]) was considered
for a metallic grating to demonstrate the effectiveness of
numerical count using the transfer relation method [33].
Here, we will describe quantitatively for the first time the
resonant grating transparency effect known as “parallel”
Wood anomalies [34] investigated in [18, 35].

Figure 2 shows the dependence of the modulus of
reflectance, calculated on the basis of the Riccati equa-
tion (1) for several spectral orders, on the profile depth
h/λ for a triangular silver grating with a period λ/Λ =
1/3 + 10–7. In the case of a triangular grating profile (see
Fig. 1), function Xo(z) in the transformation matrix for
waves has the form Xo(z) = (Λ/2)(1 – z/h). For the nor-
mal incidence of a wave (α = 0), propagating spectral
orders are defined by the inequality 1/|µ| ≥ λ/Λ = 1/3 +
10–7; i.e., |µ| < 3.

Let us consider the results depicted in Fig. 2. First,
the three minima on the curve labeled by zero indicate
partial suppression of specular reflection [12]. In addi-
tion, the minima on the curves corresponding to differ-
ent spectral orders coincide with the experimental
results [35] generalized in [18] in the form of the ine-
qualities

(8)

and represented in Fig. 2 by the hatched rectangles on
the abscissa axis. Second, the minimum on the curve
corresponding to the propagating mode (three arrows in
the figure) corresponds to the maximum on the curve
corresponding to the decaying mode, indicating a con-
siderable redistribution of the energy of incident radia-
tion among various spectral orders of the reflected field.
Third, the reflectance for the spectral order µ = 3 is
close to unity, except for a grating with a shallow profile
(h/λ < 0.75). This result is of interest for near field spec-
troscopy since the third mode, being a gliding (with a
glancing angle of 0.04°) and damped mode (along the z
axis), does not carry away the field energy from the sur-

n/2 h/λ 2n 1–( )/4, n> > 1 2 …, ,=
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face. Finally, additional computations show that each
minimum on the frequency dependence of the reflec-
tance can be enhanced additionally due to oblique inci-
dence of the wave for a fixed value of the grating profile
depth. However, for an angle of incidence α > 70°, the
reflectance (its modulus and phase) is practically inde-
pendent of the grating profile depth.

Thus, the calculations made for a metallic grating
(see Fig. 2) and, in addition, for a dielectric grating
(Si3N4, ε = 4.41) confirm the assumption made in [35]
that the reason for parallel anomalies of the coefficient
of reflection of an electromagnetic wave from a grating
is multiple reflection of the wave between the slopes of
two adjacent crests of the grating, i.e., the effect of its
profile depth.

4. TWO-DIMENSIONAL PHOTONIC CRYSTALS

Riccati equation (1) and Eq. (4) associated with it
can be used directly for calculating the coefficients of
reflection and transmission of a TE polarized plane
wave from and through a 2D photonic crystal formed
by layers of rods oriented in each layer along the y axis
and forming a triangular [25, 31] or rectangular [26]
cell in the xz cross section. In this case, only the expres-
sion for Xo in the function of mutual transformation of

0
1

2

3

5

1

10–1

10–2

10–3

|Rµ, 0|

0 0.5 1.0 1.5 2.0 2.5
h/λ

Fig. 2. Modulus of the partial coefficient |Rµ, 0 | of reflection
to the µth spectral order of a TE polarized plane electromag-
netic wave (λ = 632.8 nm in a medium with εbac = 1) from
a silver grating (ε = –17.5 + i × 0.7, λ/Λ = 1/3 + 10–7) as a
function of the grating profile depth h/λ for the normal inci-
dence of the wave (α = 0) and for a semi-infinite substrate
with Lo  ∞. The curves are labeled by the number of
corresponding diffraction orders. The rectangles on the
abscissa axis illustrate inequalities (8).
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modes (2) is changed. In the particular case of a square
grating with period Λ formed by cylinders of radius R
(see Fig. 1b), function Xo is given by Xo(z) = [R2 – (z –
nΛ)2]1/2 if the inequality –R + nΛ < z < R + nΛ is satis-
fied; i.e., the cut plane z = const lies within a layer of
cylinders with number n = 0, ±1, ±2, …. If, however, the
cut plane lies between layers of cylinders, matrix (2) has
zero elements.

In the case of a nonabsorbing material (Imε = 0),
transparency (7) of a system of cylinders for the power
of incident electromagnetic field can be calculated on
the basis of Riccati equation (1) and the Poynting theo-
rem, i.e., without solving Eq. (4). Figures 3 and 4 show
the results of such a method for calculating the spectral
power transparency for a system of infinitely long cyl-
inders of radius R = 0.6 and permittivity ε = (2.9)2,
which are packed in air (εbac = 1) to form a square grat-
ing with period Λ = 4. The factor of filling the space
with cylinders is n* = πR2/Λ2 ≈ 7%. The values of
parameters are given in dimensionless form [37].

The solid curve in Fig. 3a shows that the ordered
system of cylinders for the chosen numerical values of
parameters exhibit the properties of a photon structure.
The power transmission frequency spectrum has two
regions of virtually full reflection for the wave field
with normal incidence (forbidden or opacity bands)
separated by the transparency region. We will refer to
the forbidden bands as the main (8.2 ≤ λ ≤ 12.4) and
additional (3 ≤ λ ≤ 6.5) bands. The additional band dis-
plays power transmittance spikes. It should be noted
that only the main forbidden band is shown in Fig. 4
from [37]. The range of shorter waves was not consid-
ered in [37]. At the same time, the theoretical spectrum
of a 2D photon structure formed by solid cylinders in
air (ε = 10, n* = 0.28%) shown in Fig. 3a in [38] has two
forbidden bands; the opacity band lying in the range of
shorter waves exhibits no transmittance spikes. Their
absence can probably be due to the difference in the
dielectric contrast and in geometrical parameters of the
ordered system of cylinders, such as the number of cyl-
inder layers, the cylinder radius, or the grating period.
The values of R and Λ are not given in [38], while the
values of the filling factors are ambiguous (the filling
factor is 28% in the caption to Fig. 1, which also refers
to Fig. 3a, while the factor given at the beginning of
Section 3 is two orders of magnitude smaller).

We will interpret the transparency of a 2D photonic
crystal on the basis of two effects: Bragg-type macro-
scopic multiple scattering from a periodic “potential”
and Mie microscopic resonant scattering of optical
radiation from a single “potential” (cylinder). For this
purpose, Fig. 3a shows the frequency dependence of the
total scattering cross section per unit length of an infi-
nitely long single cylinder. The dependence calculated
on the basis of formula (38) from [39] (dashed curve)
has several peaks due to the multipolarity of scattering
and labeled accordingly from 0 to 3. It should be noted
that the monopole scattering peak (excitation of the
AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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main zero eigenmode) from a cylinder of the given
radius and dielectric contrast corresponds to λ = 9.7;
the dipole (peak 1), quadrupole (peak 2), and octupole
(peak 3) resonances are excited for λ = 4.67, 3.01, and
2.22, respectively.

Let us compare the solid and dashed curves in
Fig. 3a. It can be seen that the monopole scattering
maximum corresponds approximately to the middle of
the forbidden band of the photonic crystal spectrum.
This correspondence was noted as an unexpected fact
in [40], where the method of linear combination of Mie
resonances was developed for solving multiple scatter-
ing problems for random discrete and ordered 2D
media [38]. Our calculations based on Riccati equa-
tion (1) indicate a correlation between the excitation
frequency for the zero eigenmode of a single cylinder
and the position of the main forbidden band in the
transmission spectrum for an ordered system of cylin-
ders on the frequency scale. It is important that the cor-
relation is observed for the factor n* of space filling
with cylinders from the interval 3% ≤ n* ≤ 20%, which
corresponds to the variation of the cylinder radius in the
range 0.4 ≤ R ≤ 1 for a fixed value of Λ = 4. An analysis
shows that the monopole scattering peak (peak 0 in
Fig. 3a) is shifted towards longer waves upon an
increase in the cylinder radius. The main forbidden
band also experiences a similar shift. Outside the inter-
val 0.4 ≤ R ≤ 1, the peak of monopole scattering from a
cylinder is displaced from the wavelength range cor-
responding to the forbidden band to the short-wave
(R < 0.4) to the long-wave (R > 1) region.

Thus, the position of the forbidden band for a 2D
photon structure characterized by the filling factor from
the range 3% ≤ n* ≤ 20% on the frequency scale for a
given dielectric contrast is determined by the excitation
frequency for the zero resonance in a single cylinder.
No correlation has been observed between the ampli-
tude and width of the monopole scattering peak and the
amplitude and width of the forbidden band. While the
monopole scattering peak increases in amplitude and
broadens upon an increase in the cylinder radius, the
forbidden band in the spectrum of an ordered system of
a cylinder is deepened and broadened, passing through
the maximal values, and then becomes narrower and
shallower.

The resonance scattering conditions 2πR/λ ! 1 and

2πR/λ1 ~ 1, where λ1 = λ/ , for incident monochro-
matic radiation by a Mie volume mode excited in a sin-

gle cylinder give the estimate λ ~ 2πR  ~ 10.9 (we
can mention for comparison that the monopole scatter-
ing peak is observed for λ ~ 9.7; dashed curve in
Fig. 3a). Let us detune the wavelength from the mono-
pole resonance. Longer waves (λ ≥ 12.4) do not lead to
the excitation of cylinder eigenmodes; the cross section
of scattering from a single cylinder decreases monoton-
ically; and the grating formed by cylinders becomes
virtually transparent (see Fig. 3a). A shift from the

ε

ε
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monopole resonance frequency towards shorter waves
makes the scattering cross section for a cylinder non-
monotonic due to the excitation of higher eigenmodes
of the cylinder. It can be seen from Fig. 3a that the spec-
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Fig. 3. Power transmission frequency spectra calculated
using Eq. (1) and the Poynting theorem for a TE polarized
wave incident along the normal (α = 0) from the medium
(εbac = 1) through N layers of cylinders (R = 0.6, ε = 2.92,
Λ = 4) without a substrate (Lo = 0): (a) N = 18 (solid curve);
(b) N = 2 (h) and N = 4 (n); in the inset: N = 1 (s) and N =
18 (+, evanescent spectral orders are excluded from calcu-
lation). The dashed curve in (a) is the frequency dependence
of the total scattering cross section S per unit length of an
infinitely long single cylinder; the curve with light circles
corresponds to the transparency frequency spectrum for a
layer of thickness L = 18Λ of the medium (εbac = 1) filled
with randomly arranged parallel cylinders with density n =
1/Λ2 and with the scattering cross section S(λ).
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Fig. 4. Dynamics of formation of the frequency spectrum represented by the solid curve in Fig. 3a upon an increase in the number
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(c) λ = 11.15 (s). The curves in (b) and (c) denoted by triangles and squares, respectively, are calculated by formulas (9) for values
of parameters given in Fig. 5. The insets to (b) and (c) show the same data on the semilogarithmic scale.
tral width of the dipole scattering peak (peak 1) coin-
cides with the widths of the additional forbidden band
for the photon structure. The smooth variation of the
scattering cross section for the cylinder between the
dipole (peak 1) and monopole (peak 0) resonances
ensures the monotonic shape of the right edge of the
additional forbidden band. On the contrary, the quadru-
pole and octupole resonances (peaks 2 and 3 on the
dashed curve) on the short-wave slope of the dipole
scattering peak lead to a complex structure of the short-
wave edge of the additional forbidden band for the pho-
ton structure. It should be emphasized that a compari-
son of the dipole scattering peak and scattering peaks of
a higher multipolarity with the additional forbidden
JOURNAL OF EXPERIMENTAL 
band and with the shape of its edges can be rightfully
carried out for filling factors of a 2D photonic crystal
from the range 3% ≤ n* ≤ 20%.

The above-mentioned correspondence between the
excitation conditions for the single cylinder eigen-
modes and the formation of forbidden bands in the fre-
quency spectrum of an ordered system of cylinders is
one of two reasons for which the two opacity bands for
the photon structure were referred to as the main band
(zero mode of the cylinder) and the additional band
(higher modes). The other reason is associated with the
mechanism of formation of these bands upon an
increase in the number of layers. Nearly full reflection
of waves from the range 8.2 ≤ λ ≤ 12.4 is observed (see
AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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Fig. 3b) only for an aggregate of a certain (in fact, not
large) number of layers of cylinders; i.e., the main for-
bidden band is inherent just to a crystal. The additional
forbidden band is formed starting from one layer (see
the curve with circles in the inset and the curve with
squares in Fig. 3b). It should be noted that the transpar-
ency spikes (for λ = 4.3 and 5 in Fig. 3a) in the addi-
tional band are observed even for a layer of cylinders
(diffraction grating), frequency resolution being
improved upon an increase in the number of gratings
(see Fig. 3b).

The following four remarks can be made concerning
the results shown in Figs. 3 and 4. First, two narrow
peaks (at λ = 4.3 and 5 in Fig. 3a) resemble in appear-
ance the transparency spikes in the forbidden band of
photon structures, whose emergence is usually associ-
ated with violation of the periodicity of the structures,
i.e., introduction of structural defects (see, for example,
[40, 37]). In our case, the spectra in Fig. 3 correspond
to a perfect 2D crystal. Nevertheless, the transparency
spikes at λ = 4.3 and 5 can be attributed to the emer-
gence of effective structural defects of the following
origin. When higher and higher eigenmodes are excited
in a cylinder by incident electromagnetic radiation, the
field accumulated in the cylinder is concentrated in a
thinner and thinner surface layer. This leads to radial
separation of the accumulated field. The separation
occurring for dipole and higher multipolarity scattering
from a cylinder with a constant permittivity can be sim-
ulated for monopole scattering from a cylinder with a
radially inhomogeneous dielectric function. The exist-
ence of inhomogeneous permittivity for some cylinders
leads to the emergence of a sort of dynamic defects in
the perfect photon structure in a certain frequency range
of radiation diffracted from it. It should be noted that the
variation of permittivity of scatterers is one of three ways
of introducing disorder into photon structures [38].

Second, it can be seen from Fig. 4a that the transpar-
ency of a photon structure formed by cylinders at wave-
lengths λ = 4.3 and 5 is characterized by different
dynamics of variation upon an increase in the number
of cylinder layers. Namely, the transparency changes
insignificantly at wavelength λ = 4.3 (curve 1) and by
more than an order of magnitude with a considerably
higher periodicity in the number of layers at wave-
length λ = 5 (curve 2). The same figure shows for com-
parison a certain intermediate regime (curve 3).

Third, the inset to Fig. 3b illustrates the role of eva-
nescent spectral orders emerging due to diffraction of a
TE polarized wave from a periodic 2D structure. The
curve with crosses depicts the power transmission spec-
trum for 18 layers of cylinders in the absence of mutual
transformation of propagating and evanescent waves.
The mutual transformation of these waves was elimi-
nated in calculations by carrying out summation in the
Riccati equation (1) only over propagating spectral
orders (as in the Poynting vector component (7)). The
calculations demonstrate the decisive role of mutual
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
energy redistribution of the field being diffracted
among propagating and evanescent (along the z axis)
diffraction orders in the formation of the frequency
spectrum with a forbidden band. If the field energy is
redistributed only among the propagating modes in the
course of multiple scattering of electromagnetic radia-
tion between the cylinders forming the photon struc-
ture, the amplitude of transparency variation for 18 lay-
ers of cylinders (curve with crosses in the inset to
Fig. 3b) is on the order of the amplitude of variation of
the transparency of a layer of cylinders (curve with cir-
cles), but calculated taking into account evanescent
modes also.

The final, fourth, remark is that there is no need to
prepare 18 layers of cylinders for the formation of a 2D
photon structure in actual practice. Figure 3b illustrates
the fact that a spectrally narrow opacity band with a
transmission at a level of 0.1% of the power of incident
electromagnetic radiation is formed in the transmission
spectrum for just two layers (curve with squares); four
layers of cylinders (curve with triangles) have a broader
and deeper (on the order of 10–3% of the incident radi-
ation power) forbidden band in the wavelength range
5 ≤ λ ≤ 6 and a shallow (at a level of ~5%) but broad
band in the long-wave part of the spectrum.

Let us now consider the dynamics of formation of
opacity bands for a 2D photon structure with increasing
number of cylinder layers constituting the structure.
The rate of transparency variation in the structure is
comparable with the exponential-power decrease in the
transmittance of scalar classical waves through a layer
of a discrete random medium, which has been derived
in the self-consistent theory of localization [36]. Fig-
ures 4b and 4c demonstrate the dynamics of formation
of forbidden bands (s) in the frequency spectrum of
a 2D photonic crystal (solid curve in Fig. 3a) for two
waves whose wavelengths correspond to the additional
(λ = 4.9) and main (λ = 11.15) forbidden bands. The
same figures show the results of calculation of the
transmission coefficient for waves passing through a
layer of a random medium as a function of the number
of layers (see formulas (23) and (24) from [36]),

(9)

where L = NΛ is the layer thickness, ξ is the localization
length, No = ξ/Λ, a = (lc – le)/Λ, lc = λ is the localization
threshold, le = 1/nS is the mean free path for elastic scat-
tering, and n = 1/Λ2 is the number density of scatterers
with the scattering cross section S(λ). The transparency
frequency spectrum for a random medium, calculated
by formulas (9) for L = 18Λ, is shown by the curve with
circles in Fig. 3a. A layer of the random medium is sim-
ilar to a photonic crystal consisting of N = 18 layers of
ordered cylinders as regards its thickness, number of

T loc

le/N( )2 –N /No( ), for ξ L,>exp

a/N( ) –N /No( ), for ξ L,<exp



=
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cylinders, and the mean spacing between the cylinders.
The dependences of quantities le , No , and parameter a
on the wavelength of the incident wave are shown in
Fig. 5.

A comparison of the solid curve and the curve with
circles in Fig. 3a should be preceded by the following
remark. Experiments with an ordered system of solid
cylinders in air (see Fig. 2 from [41]) and calculations
for cylindrical bubbles in water (see Fig. 2c from [42])
showed that the introduction of positional disorder into
the system of cylinders narrows the forbidden band for
the TE polarized radiation; this band becomes barely
shallower in the central part in the case of solid cylin-
ders and becomes slightly shallower in the opposite
case. It can be seen from Fig. 3a that the results of cal-
culation of transparency for a layer of a random
medium, based on formulas (9) of the self-consistent
localization theory, generally agree with the above-
mentioned results obtained in [41] as well as the calcu-
lations based on Riccati equation (1). In the transpar-
ency spectrum for a random medium layer, we can also
single out two forbidden bands, while singularities of
the type of local transparency spike can be indicated in
the additional band.

Analyzing the dynamics of formation of the forbid-
den band in the spectrum of a layer of ordered and dis-
ordered 2D media, we note that the ordering of cylin-
ders in the short-wave range (λ = 4.9) is responsible for
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Fig. 5. Dependence of the mean free path le of the wave field
for elastic scattering (curve 1) and the localization length ξ
(curve 2 corresponds to No = ξ/Λ) on the wavelength of
radiation incident on a layer of a random medium, calcu-
lated by formulas (49) and (68) from [39] on the basis of the
self-consistent theory of localization of acoustic waves.
Curve 3 illustrates the variation of parameter a = (λ – le)/Λ.
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a much more rapid decay of the transmitted power of
electromagnetic field as compared to the exponential-
power law (9) (see Fig. 4b). At longer waves, the agree-
ment with the self-consistent theory of localization is
much better and even perfect for some wavelengths (see
Fig. 4c). It should be noted that the spectrum of the
ordered structure in the frequency range corresponding
to the main forbidden band (the reasons for using this
term were given above) is formed due to resonant scat-
tering at the fundamental Mie eigenmode of the cylin-
der with a considerable contribution from the resonant
Bragg-type scattering from the periodic system of cyl-
inders. It would be natural to expect the onset of local-
ization of classical waves in a random medium exactly
under the conditions for the existence of the main for-
bidden band after the introduction of disorder into the
periodic system of cylinders. The conservation of a cer-
tain extent of long-range disorder after the violation of
short-range ordering will ensure a Bragg-type scatter-
ing and suppression of coherent backward scattering of
photons in certain Bragg directions. The “transfer rela-
tions” with Riccati equations following from them will
make it possible (after a certain refinement) to calcu-
late, with controllable accuracy, the frequency spec-
trum of transparency of a layer of an ordered 2D
medium with any extent of disorder.

5. CONCLUSIONS

The method of transfer relations is applied to a uni-
fied theoretical treatment of resonant effects of multiple
scattering of electromagnetic radiation from a periodic
surface, and of transmission through a photonic crystal.
For the first time, the effect of anomalous decrease in
the reflection coefficient for a TE polarized wave in dis-
crete ranges of the optical grating profile depth is dem-
onstrated quantitatively. For a periodic system of paral-
lel layers of solid cylinders with permittivity ε = (2.9)2

in air, it is established that the formation of the short-
wave forbidden band in the transmission spectrum of a
photonic crystal (including narrow transparency
spikes) is mainly due to multipole Mie resonances of a
single cylinder. On the contrary, Bragg-type multiple
scattering makes a significant contribution to the for-
mation of the long-wave forbidden band; the position of
the center of this band on the frequency scale correlates
with the frequency of the monopole Mie resonance of a
single cylinder in the range 3% ≤ n* ≤ 20% of the factor
of filling the space with the cylinders. The electromag-
netic radiation decay in a photonic crystal with increas-
ing number of its layers is satisfactorily described by an
exponential-power formula from the self-consistent
localization theory in the wavelength range correspond-
ing to the long-wave forbidden band. However, order-
ing of the cylinders in the short-wave forbidden band
leads to a much faster damping of radiation.
 AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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Abstract—The decay of a dusty plasma in a photoemission cell under microgravity conditions is investigated
on the basis of the method of nonlocal moments. It is founds that plasma decay in space experiments occurs in
accordance with the mechanism of free electron diffusion followed by dust particle drift. An analytic solution
is found for the evolution of radial distributions of the dust particle concentration and the electric field under
the experimental conditions. The effect of abnormally high temperatures of dust particles is considered. The
effect of axial magnetic fields on the decay of dusty plasma is investigated. It is shown that the plasma decay
in a magnetic field is governed by the ambipolar diffusion mechanism, the decay being prolonged up to 103 s
in a magnetic field on the order of 103–104 G in strength. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Abnormally high temperatures of dust particles in a
complex plasma were reported in a number of recent
publications [1–11]. It is well known [12] that the
energy of heavy ions (and, accordingly, charged dust
particles) can “break away” from the thermal energy in
strong fields due to a drift with velocities much higher
than thermal velocities. This is due to the fact that the
mobility of dust particles is very high, for two reasons:
(1) the smallness of reduced masses of a dust particle
and a gas particle and (2) the large values of the dust
particle charge. Consequently, the velocity of dust par-
ticles may exceed the thermal velocity even in weak
electric fields. For example, bronze particles of radius
25 µm, which were used in experiments [1] and whose
charge was estimated as zd = 4 × 104e (e is the electron
charge), have equal drift and thermal velocities in Ne
under a pressure of 40 Torr in a field E ~ 0.1 V/cm. As
the field increases, the energy of dust particles increases
quadratically and can easily become as high as tens of
electronvolts. However, this is the kinetic energy of
directional (and not random) motion; for this reason,
the diffusion of, say, dust particles cannot be deter-
mined by this high kinetic energy. In almost all of the
above-mentioned publications [2–9], the motion of par-
ticles was studied in the region of strong violation of
plasma quasineutrality; consequently, high energies of
particles are associated in all probability either with
their drift or with vibrational motion due to the devel-
opment of dust–acoustic instabilities.
1063-7761/03/9604- $24.00 © 20684
Reports on abnormally high temperatures of dust
particles in experiments staged on the Mir space station
[1, 10, 11] proved to be most demonstrative. Under the
action of solar radiation with a radiance temperature of
0.52 eV, the dust component was “heated” up to tem-
peratures of 20–55 eV. Different temperatures were
obtained in different directions. This study is devoted to
an analysis of the experimental results [1] on the basis
of a more complete model of plasma decay taking into
account the nonlocal effects of the electron energy dis-
tribution function (EEDF). With a view to future exper-
iments, the effect of external magnetic field transverse
to the radial electric field of plasma polarization on the
dusty plasma decay in such a cell was also analyzed.

2. DESCRIPTION OF THE MODEL

Let us briefly describe the conditions of experiments
[1], analysis of which led to abnormally high tempera-
tures of dust particles [10, 11]. Bronze dust particles of
radius 25–50 µm, coated with a layer of cesium, were
exposed to solar radiation on the Mir space station
under microgravity conditions. Dust particles were in a
cylindrical cell of radius R = 1.5 cm and height h =
6 cm. The most important results were obtained in Ne
under a pressure p = 40 Torr. Henceforth, we will speak
only of these experiments. The expansion of a dusty
plasma consisting of heavy ions, positively charged
dust particles with a charge zd ≈ 4 × 104e, and electrons
was analyzed in [10, 11] on the basis of the ambipolar
diffusion model with an electron temperature of 1–2 eV.
003 MAIK “Nauka/Interperiodica”
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It should be noted that diffusion of dust particles makes
a negligibly small contribution to the ambipolar diffu-
sion coefficient

(1)

and cannot be determined from the ambipolar diffu-
sion. Here, e is the absolute value of the electron
charge; µd , ezd , and Td are the mobility, charge, and
temperature of dust particles, respectively; and Te is the
electron temperature.

Allis and Rose [13], who studied the transition from
free to ambipolar diffusion of charged particles in a
steady-state plasma, showed that the equality of the
electron Debye length and the diffusion length can be
conditionally taken as the boundary between these
regimes. It should be noted that, when this condition is
satisfied, the electron concentration at the center is half
the ion concentration. Under the experimental condi-
tions [1], the electron Debye length is comparable to
the diffusion length, and the validity of the assumption
made in [10, 11] concerning the ambipolar regime of
electron diffusion under the given conditions [1] is not
obvious and requires verification.

Analysis of the form of the EEDF in the cell is com-
plicated and requires separate experimental and theo-
retical studies. Here, we assume that the EEDF is of the
Maxwell type. For the electron temperature Te =
0.52 eV in neon with p = 40 Torr, the electron mean free
path is le ≈ 38 µm and the electron energy relaxation
length is lu ≈ 0.92 cm. As the electron temperature
decreases, these quantities increase monotonically, but
not more than by a factor of 3 upon a transition from
solar to room temperature. Consequently, the hydrody-
namic description can be used for transfer processes in
a photoemission plasma, but the nonlocal nature of the
EEDF must be taken into account. For this purpose, we
use here the nonlocal method of moments [14], which
includes the balance equation for charged particles, the
electron energy balance equation, and the Poisson
equation for a self-consistent field. This model is exact
in the case of the Maxwellian EEDF. The cell height in
experiments was four times larger than cell radius; for
this reason, in the first approximation, we solved the
one-dimensional problem in the cylindrical system of
coordinates. The characteristic time of dust particle
charge stabilization under the action of solar radiation
with the parameters given in [1] amounts to a value on
the order of 0.1–1 µs. Consequently, analyzing plasma
decay on a time scale of the order of seconds, we
assume that the charge of dust particles remains
unchanged; accordingly, the processes of production
and loss of electrons and production and recombination
of dust particle charge are in equilibrium. As a result,
the self-consistent system of equations describing the
decay of a dusty plasma in a photoemission cell, which

Da

µd

e
----- Te

Td

zd

-----+ 
  µdTe

e
-----------≈=
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is constructed on the basis of the nonlocal method of
moments, assumes the form (see, for example, [15])

(2)

where ne, nd, je, r, and jd, r are the concentrations and
densities of radial flows of electrons and charged dust
particles, respectively; 〈εe〉  is the mean electron energy,
which is equal to (3/2)Te for a Maxwellian EEDF; Te is
the electron temperature; he, r is the density of the radial
electron energy flux; Ws is the energy loss rate in elastic
and inelastic collisions; Er is the radial electric field
strength; and Q is the source of electron heating.

In the diffusion-drift approximation, the fluxes are
defined as

(3)

where ke, µd , and DT, Dd are the mobilities and the dif-
fusion coefficients for electrons and dust particles,
respectively; G is the electron energy diffusion coeffi-
cient; and β is a coefficient called the thermoelectric
coefficient in [14] (in [16], the term “thermoelectric
coefficient” is applied to the quantity β/ekeTe). For a
Maxwellian EEDF, the electron transfer coefficients are
connected through the Einstein relations:

(4)

The mobility of dust particles was determined by the
Stokes–Einstein formula with the Cunningham correc-
tion to the finiteness of the mean free path of the neon
atom [17]:

(5)

where lg is the mean free path for neon atoms, rd is the
dust particle radius, and η is the neon viscosity, which
is virtually independent of pressure and is equal to
3.17 × 10–5 Pa s at room temperature [18]. Table 1 con-
tains the mobilities and diffusion coefficients for dust
particles with different radii. The same table contains
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the distances over which dust particles with tempera-
ture Td = 300 K move due to diffusion over 100 s. In the
experiment [1], dust particles during this time drift over
a distance comparable to a cell radius of R = 1.5 cm.
Consequently, we can disregard the diffusion of dust
particles under the experimental conditions [1] under a
pressure of 40 Torr. (Diffusion lengths turn out to be
negligibly small as compared to drift lengths even for
Td = 55 eV.)

It was shown in [19] that a fairly wide charge distri-
bution of dust particles is formed due to photoemission.
In addition, polydisperse dust particles with radii of
25−50 µm were used in experiments [1, 10]. Let us
prove that the decay of a dusty plasma in a photoemis-
sion cell with polydisperse particles can be described
on the basis of the model for monodisperse particles.

Let fa, z be the distribution function for dust particles
over charges z and sizes a, which is normalized by the
condition

(6)

As the radius of dust particles changes in the range
from 25 to 50 µm, the Cunningham correction in neon
under a pressure of 40 Torr decreases monotonically
from 1.2 to 1.1. Consequently, we can disregard the
weak dependence of the mobility of dust particles on
the ratio of the mean free path for atoms to the radius.
In this approximation, the mobility of a dust particle of
radius a and charge z is defined as

(7)

We write the balance equation for the number of dust
particles with a radius in the range from a to a + da and
charge z:

(8)

f a z, ad∫
z

∑ 1.=

µa z,
ez

6πηa
-------------.=

∂ nd f a z,( )
∂t

----------------------
1
r
---

∂ rµa z, Ernd f a z,( )
∂r

----------------------------------------+ Ra z, ,=

Table 1.  Mobility µd, z = 1 of dust particles with unit charge,
diffusion coefficient Dd , and distance l100 = (2Ddt)1/2 tra-
versed due to diffusion during time t = 100 s for different
radii rd for the dust component temperature Td = 300 K

rd, µm 25 37.5 50

µd, z = 1,

cm2/(V s)

1.284 × 10–7 8.086 × 10–8 5.887 × 10–8

Dd , cm2/s 3.322 × 10–9 2.092 × 10–9 1.523 × 10–9

l100, µm 8.0 6.5 5.5

l100 (Td = 55 eV), 
cm

0.038 0.030 0.025
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where Ra, z is the sum of the sources of formation and
destruction of plasma particles of class (a, z). We disre-
gard the coagulation of dust particles at the plasma
decay stage. In this case, the number of particles of
class (a, z) will change only due to the change in their
charge. Summing Eqs. (8) over all possible charges and
taking into account the fact that the number of particles
of a given size remains unchanged, we obtain

(9)

where fa = , µa is the mobility of dust particles

of radius a and charge za equal to the mean charge of
particles having the given size:

(10)

Integrating over the sizes of particles, we derive from
Eq. (9) continuity equation (2) with flux (3), in which
the mobility is defined as

(11)

Here, we have introduced the charge-to-radius ratio for
a dust particle, averaged over the ensemble:

(12)

The Poisson equation for a polydisperse system of
dust particles can be reduced to the same form as in
system (2) by introducing the averaged charge of dust
particles:

(13)

For the sake of convenience, we introduce the effective
radius of dust particles through the relation

which, by the way, does not coincide with the averaged
radius

System of equations (2) was solved with the effec-
tive boundary conditions to the balance equations for
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the electron number density and energy (see [15, 20,
21] for details):

(14)

where le is the electron mean free path and γe is the Hopf
constant. The initial conditions were specified in the
form

(15)

In experiments, the rate of electron departure to the
walls,

,

was much lower than the rate of electron departure to
dust particles,

where v th, e is the thermal velocity of electrons. Conse-
quently, electrons escape to the walls as a result of dif-
fusion from one dust particle to another. Having
absorbed an electron that lost a part of its energy in col-
lisions with buffer gas atoms, a dust particle exposed to
light immediately emits another, “hot” electron. Conse-
quently, the loss of electron energy under the condition
a ! lu is directly proportional to the square of the ratio

a/lu (the ratio of the mean distance a = 1/  between
particles to the electron energy relaxation length). In
zero magnetic field, this condition is satisfied in the
cell; for this reason, we disregarded the electron energy
losses in collisions with atoms in our calculations for
zero magnetic field. For this purpose, we specified
an effective source of electron heating in balance equa-
tion (2),

which ensured the preset electron temperature Te, 0 at
the center of the photocell.

3. RESULTS OF SIMULATION
OF DUSTY PLASMA DECAY
IN ZERO MAGNETIC FIELD

Calculations were made with electron temperatures
of Te, 0 = 1000, 3000, and 6000 K. The transfer coeffi-
cients and electron energy loss rate in Ne were calcu-
lated using a Maxwellian EEDF and cross sections
from [22, 23]. The results of calculation of the evolu-
tion of dust particle concentration in the central region
of the cell, averaged over radius in the region of r <
0.5 cm, are given in Fig. 1. The data obtained in [10, 11]
are also given in figures. It can be seen from Fig. 1 that
the results obtained using our model are in good agree-

ne γele

∂ne
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∂Te

∂r
--------

r R=

0,= =

je r, r 0= 0, jd r, r 0= 0,= =

he r, r 0= 0, Er r 0= 0,= =

ne t 0=  = zdnd 0, , Te t 0=  = Te 0, , nd t 0=  = nd 0, .

νe w, De/5.7R2∼ 3–5( ) 103 s 1–×=

νe d, πrd
2ndv th e,∼ 4–9( ) 105 s 1– ,×=

nd
3

Q neWs Te 0,( ),=
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ment with experiment. The only fitting parameter in
calculations was the dust particle charge. The values of
charge, which are in good agreement with the estimates
made in [10, 11], are given in Table 2 for an ensemble of
particles with effective radii of 25, 37.5, and 50 µm. A
certain increase in the dust particle charge upon a
decrease in the dust particle concentration can be due to
a suppressed effect of neighbors on the electron con-
centration in the vicinity of a dust particle. It should be
noted that the charge depends on the predicted value of
the effective radius of dust particles so that it ensures
the experimental decay rate for a dusty plasma (see
relation (19) below).

Figure 1 also shows the plasma decay curve corre-
sponding to the ambipolar mechanism:

(16)

where νa ≈ 5.7Da/R2 ≈ 4.84 × 10–3 s–1 is the rate of
departure of charged particles due to ambipolar diffu-

nd nd t, 0= νat–( ),exp=

300

200

100

0 20 40 60 80 100 120

1

2
3

4

5

6

7

t, s

nd, cm–3

Fig. 1. Experimental and calculated time dependences of
dust particle concentration in the central region of a photo-
emission cell: Te, 0 = 6000 K, rd = 25 µm, nd, 0 = 300 cm–3,

zd = 2.9 × 104 (1); Te, 0 = 6000 K, rd = 25 µm, nd, 0 =

195 cm–3, zd = 3.2 × 104 (2); experimental results [10, 11]:

nd, 0 = 300 (3) and 195 cm–3 (4); dependences calculated by

formula (16) for νa = 4.84 × 10–3 s–1 (5) and νa = 0.035 s–1

(6); Te, 0 = 1000 K, rd = 25 µm, nd, 0 = 300 cm–3, zd = 2.9 ×
104 (7).

Table 2.  Average charge of an ensemble of dust particles with
different effective radii obtained from simulation of the dusty
plasma decay for two values of dust particle concentration

rd, µm 25 37.5 50

nd, 0 = 300 cm–3 2.9 × 104 3.6 × 104 4.3 × 104

nd, 0 = 195 cm–3 3.2 × 104 4.0 × 104 4.8 × 104
SICS      Vol. 96      No. 4      2003
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sion with coefficient Da defined by expression (1) with
Te, 0 = 6000 K. It was mentioned in [10, 11] that it is
possible to match expression (16) with experiment at
the initial stage with νa = 0.035 s–1. Such a rate of
departure of dust particles leads to a value of the prod-
uct of zdTe = 1.6 × 105 eV, which means that the electron
temperature Te = 4 eV for zd = 4 × 104 (this is deprived
of any physical meaning). It should also be noted that
the solution of the time-dependent equation for ambi-
polar diffusion in an infinitely long cylinder, which sat-
isfies the initial condition

nd |t = 0 = const,

contains not only the fundamental mode with the first

107

8 × 106

6 × 106

4 × 106

2 × 106

0

1

2

10–6 10–5 10–4 10–3 10–2 10–1

ne, cm–3

lnt

Fig. 2. Calculated time dependences of the electron concen-
tration at the photoemission cell axis for different concen-
trations of dust particles: Te, 0 = 6000 K, rd = 25 µm, nd, 0 =

300 cm–3, zd = 2.9 × 104 (1) and Te, 0 = 6000 K, rd = 25 µm,

nd, 0 = 195 cm–3, zd = 3.2 × 104 (2).

10–6 10–5 10–4 10–3 10–2 10–1

lnt

107
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6 × 106

4 × 106

2 × 106

0

ne, cm–3

1

2

Fig. 3. Calculated time dependences of the electron concen-
tration at the photoemission cell axis for different electron
temperatures: Te, 0 = 6000 K, rd = 25 µm, nd, 0 = 300 cm–3,

zd = 2.9 × 104 (1) and Te, 0 = 3000 K (2); dotted curves cor-
respond to Te = const.
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zero of the zero-order Bessel function at the boundary,
but also modes corresponding to the second, etc., zeros.
Higher modes relax and, accordingly, the field pene-
trates the central region of the cell only by a time instant
on the order of R2/Da. Consequently, the solution is
described by the simple exponential function (3) only for
large times (or provided that the profiles of charged par-
ticles are already in the form of a zero-order Bessel
function with the first zero at the boundary for t = 0).

Figure 1 shows that, under conditions of experi-
ments [1], the electron diffusion followed, in all proba-
bility, the free and not the ambipolar diffusion mecha-
nism. It can be see from Fig. 2 that almost all electrons
leave the cell volume at Te = 6000 K by the time t ~
10−2 s. Even the decrease of electron temperature to
3000 K does not change the plasma decay pattern; only
the electron departure time increases insignificantly to
t ~ 10–1 s (Fig. 3). It should be noted that, in calculations
with a constant electron temperature, i.e., without solv-
ing the electron energy balance equation, the departure
of electrons is slightly faster (see Fig. 3). During such
periods of time, dust particles practically remain sta-
tionary. Further dispersion of dust particles is deter-
mined by the system of equations, comprising the bal-
ance equation for the number of dust particles and the
Poisson equation:

(17)

For the initial distribution of dust particles, which is
independent of the radius, the solution of system (17)
can be found easily by separating the variables:

(18)

It can be seen from these relations that a decrease in the
dust particle concentration follows the hyperbolic law
(it was noted in [1] that an equilateral hyperbola suc-
cessfully describes the experimental curve for evolu-
tion of the dust particle concentration). Using initial
condition (15), we can find from Eqs. (18) that

(19)

It can be seen that the rate of departure of dust particles
is proportional to the square of the dust particle charge;
consequently, the ensemble-averaged charge of dust
particles can be determined to a high degree of accu-
racy from the experimental rate value.

Solution (18) shows that our problem of dispersion
of dust particles in a photoemission cell is equivalent to
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Fig. 4. Evolution of (a) concentration, (b) electron temperature, (c) dust particle concentration, and (d) electric field distributions
over the photoemission cell radius for Te, 0 = 6000 K, rd = 25 µm, nd, 0 = 300 cm–3, zd = 2.9 × 104, and t = 1 (1), 5.3 (2), 28 (3),
150 µs (4), 0.8 (5), 4.1 (6), 9.4 (7), 22 ms (8), 1.5 (9), 7.6 (10), 17.2 (11), 40 (12), 200 (13), and 1000 s (14).
the problem of recombination decay of a plasma con-
sisting of positive and negative ions with the same
charge zd . The recombination coefficient in the case
when drift motion prevails over diffusion is determined
by the Langevin theory, according to which [12]

The recombination decay of the plasma follows the law

analogously to Eq. (18).
Figure 4a shows the propagation of a diffusion wave

annihilating the electron component in the photoemis-
sion cell. At the initial stage of dispersion, when the
electron flux to the wall is large and is directed along
the field, electrons are strongly cooled, the cooling
occurring even in the central region (Fig. 4b). However,
with decreasing electron flux, the electron temperature
at the center is restored to the preset value, and cooling
takes place only at the wall, where the field has the
maximal value and the temperature is lower than at the
center by approximately 2000 K. This cooling of elec-
trons prolongs the electron dispersion process insignif-
icantly. It should be noted that the evolution of the
radial distributions of the dust particle concentration

βL 4πezdµd.=

nd r t,( ) nd 0, 1 βLnd 0, t+( ) 1– ,=
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and of the electric field is, in accordance with Figs. 4c
and 4d, in complete agreement with solution (18).

In calculations made for Te, 0 = 1000 K (curve 7 in
Fig. 1), it was found that the dust plasma decay in the
central region of the cell occurs with a certain delay.
This is due to the fact that electrons in the central region
for Te, 0 = 1000 K cannot escape to the walls since they
do not possess the energy required for violating the
quasineutrality condition. For this reason, diffusion of
electrons at the initial stage follows the ambipolar
mechanism, without any charge separation in the cen-
tral region. When a part of dust particles from the
periphery leave the cell, the field of the remaining par-
ticles cannot confine electrons and the electron diffu-
sion follows the free diffusion mode. After this elec-
trons rapidly escape from the cell volume, and the dis-
persion of dust particles occurs analogously to cases
corresponding to a higher electron temperature (if we
shift curve 7 by the magnitude of the initial delay, it
almost coincides with curve 1).

In calculations for the electron temperature Te, 0 =
3000 and 6000 K and for nd, 0 = 300 cm–3, the maximal
value of the wall potential equal to –8.4 V was obtained.
The radial potential distribution in neon was measured
in [24] in a tube of radius 1.7 cm under a pressure of
0.75 Torr. It was found that the wall potential φw ≈
SICS      Vol. 96      No. 4      2003
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−20 V for an electron temperature at the tube axis of
about 5 eV; i.e., the wall potential was 4Te/e. In calcu-
lations based on the nonlocal method of moments used
here, the same potential of the wall was obtained for an
electron temperature of 5.6 eV in [14] (i.e., |φw | ≈
3.5Te/e). In the steady-state regime, the wall potential is
determined from the equality of the electron and ion
currents; for this reason, the wall potential for heavy
ions can be even higher [25]. In a glow discharge in
neon under low pressures, Ne+ is the main ion. Conse-
quently, the wall potential in a photocell with heavy
dust ions for p = 40 Torr may increase as compared to
the value of the wall potential in a glow discharge by a
factor of up to ln(ki/µd) ≈ 10, i.e., to 35Te/e (here, ki is
the mobility of Ne+ ions). For Te, 0 = 3000 K = 0.26 eV,
the wall potential under steady-state conditions may be
as high as 8.75 V. This value is larger than the maximal
value of the potential obtained in calculations; conse-
quently, at such a temperature, electrons leave for the
walls even in the free diffusion mode. At Te, 0 = 1000 K,
a segment corresponding to the ambipolar diffusion
mode appears at the initial stage. After the system is rid
of dust particles at the edge and the potential drops to
approximately below 3 V, the departure of electrons is
again governed by the free diffusion mechanism. In
accordance with our estimates, for Te, 0 = 6000 K =
0.52 eV, diffusion at the initial stage of plasma decay
(provided that the mean charge of dust particles
remains unchanged) is ambipolar for nd, 0 ≥ 650 cm–3

and ne, 0 ≥ 2 × 107 cm–3. In the central part of the photo-
cell, the densities of charged particles remain
unchanged until the arrival of the diffusion wave or
until the diffusion passes to the free mode after the dis-
posal of a part of the positive charge (if the dust particle
concentration is not high enough).

Let us now estimate the drift velocity and the kinetic
energy of dust particles in the central region of the pho-
toemission cell. Using expressions (7), (18), and (19),
we derive the relation defining the local drift velocity of
a dust particle of radius a and charge z:

(20)

where q = z/a and q0 = zd/rd. The velocities of direc-
tional motion and the thermal velocities of dust parti-
cles in a photoemission cell were determined in [26] by
dividing the video image region into horizontal and ver-
tical layers of width approximately equal to 0.1 cm. It
was shown that the drift velocity distribution both in the
radial direction and along the photocell axis in the cho-
sen layers is a Maxwellian distribution. It can be seen
from Eq. (20) that the drift velocity of dust particles at
a preset distance from the cell axis is determined by
relation q = z/a. Consequently, if the dusty plasma
decay pattern under the condition of experiments made
on the Mir space station is correct, we can conclude that

v dr t r a z, , ,( )
νdr
2

-------- z
zd

----
rd

a
----

nd

nd 0,
---------

νdr
2

--------
nd

nd 0,
--------- q

q0
-----,= =
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the distribution function for dust particles over values
of q is unambiguously connected with the “drift velo-
city distribution function.” Namely, it is a Gaussian
function,

, (21)

with mathematical expectation q0 and with the disper-
sion connected with the dust particle “temperature”
determined in [10, 11, 26] via the relation

(22)

Using the value Td ≈ 51 eV of dust particle temperature
in the radial direction obtained in [26] for a vertical
layer of x = [0.7; 0.8] cm (taking into account that the
center of the video image region is displaced to the left
and has a coordinate of x = 0.32 cm), we find from rela-
tion (22) that σ ≈ 0.55q0 for nd = 300 cm–3 and σ ≈
0.65q0 for nd = 195 cm–3. Let us use the data obtained
for deriving several estimates.

The drift velocity of dust particles averaged over a
layer at the initial stage of dusty plasma decay in the
photocell, when nd ≈ nd, 0, is defined as

(23)

where rk and rk + 1 are the boundaries of the kth layer (it
should be noted that averaging was carried out in [10,
11, 26] only over the particles falling into the laser
knife plane; for this reason, the integrals for the planar
geometry are used here). Figure 5 shows for compari-
son the velocities of dust particles calculated by for-
mula (23) and determined in [28]. It can be seen that the
results obtained using our model and by determining
the velocities from the displacement over the known
time are in satisfactory agreement.

In [10, 11, 26], the “thermal” velocity of dust parti-
cles was also determined:

(24)

Using relations (20) and (21), for the initial stage of
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dusty plasma decay, we obtain

(25)

The temperature of the dust component was determined
in [10, 11, 26] from the relation

(26)

For a vertical layer of x = [0.7; 0.8] cm, we find from
Eq. (26) that the temperature of dust particles of radius
37.5 µm is Td ≈ 54.2 eV for nd ≈ 300 cm–3 and Td ≈
51.7 eV for nd ≈ 195 cm–3, which is in good agreement
with values Td ≈ 51 ± 5 eV obtained for this layer
in [26]. It can be seen that the temperature of dust par-
ticles may attain high values. It is clear from the above,
however, that it is the kinetic energy of directional
motion of dust particles. The reason for the breaking
away of the dust particle energy from the thermal
energy of buffer gas particles in an electric field is the
same as for the breaking away of the electron energy;
i.e., it is hampered energy exchange with the buffer gas
due to the large difference in mass. In the case of elec-
trons, their collisions with buffer gas particles leads to
randomization of the direction of their motion with a
rate exceeding considerably the energy loss rate; for
this reason, the drift velocity of electrons is noticeably
smaller than their thermal velocity. In the case of dust
particles, the exchange of momentum with buffer gas
particles is also hampered; consequently, the loss of
directional motion of particles occurs more or less
effectively only at thermal velocities.

The randomization of kinetic energy could occur
during collisions between dust particles, but such
events were quite rare in experiments [1]. This is due to
the fact that dust particles in the photocell move along
“smooth” electric field lines, which do not intersect. At
present, an intense quest for the mechanisms of heating
of the dust component continues; among these mecha-
nisms, the most studied are those associated with
charge fluctuations of dust particles and with electric
field fluctuations. However, neither of these mecha-
nisms can lead to the experimentally observed values of
dust particle temperature (see, for example, [9]).

In [27, 28], a conclusion concerning the possibility
of abnormally high dust particle temperatures was
drawn from a theoretical analysis of the dust compo-
nent on the basis of a chain of the BBGKY (Bogo-
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liubov–Born–Green–Kirkwood–Yvon) equations. This
conclusion is based on the erroneous assumption that
the Landau length, or the Coulomb length of ions (the
smallest spacing between an ion and a dust particle),
can be much larger than the Debye radius. This leads to
negative values of the Coulomb logarithm, which is
positive by definition. In the applicability range for the
theory developed in [27, 28], the dust particle tempera-
ture never exceeds three ionic temperatures.

It was found in [26] that thermal velocities of dust
particles in a photocell at the initial stage of dusty
plasma decay are practically independent of the layer
number. In our model, dependence on the layer number
exists, which, in our opinion, is a consequence of the
difference between the drift velocities calculated by us
and the velocities determined in [26]; this difference is
especially significant at the photocell center (see
Fig. 5). The reason for the dependence of thermal
velocities on the layer number may also be associated
with the presence of acoustic vibrations of dust parti-
cles, which must be especially noticeable against the
background of low directional velocities at the center of
the photocell. The fact that less than 60 particles were
contained in the video image region used for obtaining
the above data, while some layers contained just 1–3 par-
ticles, could also be responsible for this dependence.
Analysis of this question is beyond the scope of the
present study; so, we pass to discussion of the effect of
magnetic field on the dusty plasma decay process.

4. DIFFUSION OF CHARGED PARTICLES 
IN A PHOTOEMISSION CELL

IN MAGNETIC FIELD

The analysis carried out in the previous section
leads to the conclusion that the decay of the dusty
plasma in the photoemission cell in experiments [1]

0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80
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2

Fig. 5. Radial dependence of the layer-averaged drift veloc-
ity of dust particles: experimental data from [26] (1, 2) and
results of calculation by formula (23) (3, 4); nd, 0 = 300 (1, 3)

and 195 cm–3 (2, 4). (For calculated data, the spread due to
finite width of the layers is indicated.)
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occurred in accordance with the free diffusion mecha-
nism. In order to increase the dusty plasma confinement
time in the cell, we must either considerably increase
the electron concentration, which is difficult to realize,
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Fig. 6. Calculated time dependences of (a) electron concen-
tration and (b) dust particle concentration in the central
region of a photoemission cell in zero magnetic field for
Te, 0 = 6000 K (1) and Te = 300 K (2) and in a magnetic field

H = 103 G (3) and H = 104 G (4); Te = 300 K, rd = 25 µm,

nd, 0 = 300 cm–3, zd = 2.9 × 104.
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Fig. 7. Evolution of concentration distributions for elec-
trons (solid curves) and dust particles (dashed curves) over
the photoemission cell radius in a magnetic field H = 103 G,
Te = 300 K, rd = 25 µm, nd, 0 = 300 cm–3, zd = 2.9 × 104; t =
1.4 (1), 17 (2), 88 (3), 203 (4), and 467 s (5).
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or considerably reduce the rate of diffusive departure of
electrons. For this purpose, we must place the photoe-
mission cell in a magnetic field directed along the cell
axis; in order to suppress or prevent the departure of
electrons along magnetic field lines, we can impart a
strongly prolate or toroidal shape to the photoemis-
sion cell.

The application of a magnetic field perpendicular to
the radial field of polarization of the dusty plasma leads
to the following two effects. The first effect is a strong
decrease in the electron mobility and diffusion coeffi-
cient (as well as in the electron energy diffusion coeffi-
cient and the thermoelectric coefficient) in crossed
magnetic and electric fields [22]:

(27)

(here, ω0 is the cyclotron frequency for electrons, ν is
the frequency of elastic collisions, and ke, 0 and De, 0 are
the electron mobility and diffusion coefficient in zero
magnetic field). For example, the frequency of elastic
collisions of electrons in neon under a pressure of
40 Torr at room temperature is ν = 1.3 × 108 s–1, while
the cyclotron frequency in a magnetic field H = 104 G
is ω0 = 1.8 × 1011 rad/s. For this reason, the transfer
coefficients in such a field decrease by six orders of
magnitude, while the transport coefficients for dust
particles remain practically unchanged in this mag-
netic field.

The second effect is associated with a strong
decrease in the electron energy relaxation length during
the radial motion of electrons in spite of the fact that the
electron energy loss rate in a magnetic field remains
unchanged (in a magnetic field H = 104 G at Te = 300 K,
the energy length lu = 0.6 µm against 2.5 cm in zero
field). This leads to a strong increase in the electron
energy loss per unit length; consequently, during diffu-
sion of electrons from one dust particle to another
towards the wall, the electrons have time to reach the
thermodynamic equilibrium with the buffer gas. As a
result, the electron temperature in the photoemission
cell drops to room temperature. For such small lengths
of electron energy stabilization, the local approach can
be applied for calculating the transport coefficients, and
the energy balance equation becomes unnecessary. In
Fig. 6, the results of calculation of the evolution of dust
particle concentration averaged over the central region
with and without a magnetic field are compared. It can
be seen that the application of a magnetic field leads to
an increase in the dusty plasma confinement time up to
values on the order of 103 s.

The curves in Fig. 7 describing the evolution of the
radial distributions of concentrations of electrons and
dust particles show that diffusion in magnetic field fol-
lows the ambipolar mechanism. This leads to an
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increase in the dusty plasma confinement time in the
photoemission cell. For this reason, space experiments
with a magnetic field should be staged for studying a
dusty plasma with the ambipolar mechanism of depar-
ture of charged particles. Figure 8 shows how the elec-
tric field penetrates to the center of the cell in the course
of evolution, being reduced simultaneously at the cell
edges. In this case, the radial dependence of the field
differs from the case of zero magnetic field (see Fig. 4d)
and has a more complicated form.

The transition to the ambipolar mechanism of
plasma decay in the photoemission cell was also
observed in calculations for zero magnetic fields when
the electron heating source was switched off. In this
case, the electron temperature dropped from the initial
temperature Te, 0 = 0.52 eV to room temperature by the
time instant t = 10–5 s. Figure 6 shows the curves
describing the evolution of the electron and dust parti-
cle concentrations in these calculations. It can be seen
that thermalization of electrons in collisions with the
buffer gas considerably prolongs the dusty plasma
decay. These calculations, as well as calculations with
a magnetic field, show that, as mentioned above, the
concentrations of charged particles at the stage of for-
mation of Bessel profiles at the center of the cell are fro-
zen in the ambipolar diffusion regime. After the com-
pletion of this stage, practically all charged particles
(first electrons and then dust particles) leave the cell
approximately during the same time.

The results of calculations disregarding the electron
heating source indicate another possible way for
increasing the dusty plasma confinement time in a pho-
tocell, i.e., the replacement of neon by lighter helium,
which, in addition, has a larger transport cross section,
and the elevation of pressure to the atmospheric level.
This will reduce the electron energy relaxation length
to 100 µm (which is much smaller than the mean dis-
tance between dust particles in experiments [1]), which
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Fig. 8. Evolution of the electric field distribution over the
photoemission cell radius in a magnetic field H = 103 G for
Te = 300 K, rd = 25 µm, nd, 0 = 300 cm–3, zd = 2.9 × 104; t =
1.4 (1), 40 (2), 203 (3), 467 (4), and 1000 s (5).
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must lead to a decrease in the electron temperature to
the gas temperature. An increase in pressure (we can
expect that this will not lead to undesirable conse-
quences under the microgravity conditions) will also
reduce the electron mobility and diffusion coefficient.
All this will make it possible to increase the dusty
plasma decay time in helium to a value comparable
with the plasma decay time in neon in a magnetic field.

5. CONCLUSIONS

The numerical experiments with a dusty plasma in a
photoemission cell carried out in this study proved that
the plasma decay under the experimental conditions [1]
was governed, in all probability, by the mechanism of
free electron diffusion followed by the drift of posi-
tively charged dust particles. The results of calculations
are in good agreement both with the experimental
curves describing the evolution of the dust particle con-
centration and with the experimental values of dust par-
ticle charge. It is shown that the radial decay of the
dusty plasma in a magnetic field directed along the cell
axis is strongly retarded, and the plasma decay occurs
in accordance with the ambipolar diffusion mechanism.
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Abstract—One-dimensional numerical calculations were performed to study the dependence of conditions for
initiating thermonuclear combustion and of the target gain of direct-ignition inertial fusion targets ignited by a
short radiation pulse on the initial temperature of a preliminarily compressed fuel and the initial heat energy
distribution between plasma electrons and ions in the ignition region (igniter). The igniter parameters at which
an effective thermonuclear target explosion with a G ~ 103 target gain occurred were shown to substantially
depend on the initial temperature of the major fuel fraction and the initial heat energy distribution between
igniter electrons and ions. The heat energy of the igniter passed a minimum as the size of the igniter decreased.
The dependences of these minimum energies on the temperature of the major fuel fraction at various initial
energy distributions between igniter electrons and ions were determined. An increase in the temperature of the
major fuel fraction was shown to decrease the target gain. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the most promising directions in the area of
inertial confinement fusion is based on the direct igni-
tion concept [1, 2], according to which thermonuclear
substance compression and heating under the action of
two synchronized pulsed energy sources (drivers) is
separated in time. The compressing driver, which acts
first, effects slow compression of the target substance
along a “cold” adiabat. The second, igniting driver must
ensure a rapid heating of a small portion of the com-
pressed thermonuclear fuel (igniter) in time not exceed-
ing the time of the inertial confinement of the initial
ignition region and provide the development of a self-
sustaining thermonuclear combustion wave. The
described ignition procedure allows the energy of a DT
plasma to be minimized at a 20–50 kJ level in the
attainment of the ignition threshold and at a 0.3–1 MJ
level in the initiation of the combustion wave with a
high target gain [1, 2].

The key direct ignition problem is that of heating the
igniter by a firing pulse. We should mention two meth-
ods suggested for solving it. According to [1, 2], direct
ignition can be effected with the use of inertial thermo-
nuclear fusion targets capable of providing the internal
introduction of igniting driver energy. Such targets may
be spherical targets with one or several channels, for
1063-7761/03/9604- $24.00 © 20695
instance, conic in shape, or cylindrical targets with pin-
holes in one or both end surfaces. In [3], the formation
of a channel for introducing igniting driver radiation
directly during driver action on a spherical target was
suggested. Accordingly, two laser pulses, one to pro-
duce a channel in the target as a result of ponderomo-
tive action and the other to propagate along this channel
and supply energy to the thermonuclear substance, had
to be used. This method was named fast ignition.

Currently, various combinations of compressing and
igniting drivers have been considered. From the point
of view of energy requirements, the role of compress-
ing drivers can be played by a pulse of short-wave laser
radiation, a pulse of soft Z-pinched X-ray radiation, or
a beam of heavy ions. The feasibility has been dis-
cussed of using igniting drivers such as a beam of
“accelerator” heavy ions [1, 2], a beam of fast electrons
formed under the action of short-wave [1–3] or long-
wave [2] laser radiation on a substance, an X-ray radia-
tion pulse [4], an accelerated substance microparticle
[4], and a flow of light megavolt laser plasma ions [5]
created under the action of a laser beam on a thin plane
target-generator made of a substance of light elements
and situated separately from the thermonuclear target.
A beam of light laser plasma ions could prove to be the
most promising igniting driver type. Indeed, the forma-
tion of a beam of accelerator ions and stable accelera-
003 MAIK “Nauka/Interperiodica”
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tion of a macroparticle with the parameters necessary
for direct ignition involves serious technical difficul-
ties. The use of X-ray radiation requires solving the
problem of generating a high-power nonequilibrium
radiation pulse with an intensity of 1018–1020 W/cm2

and radiation quantum energy not higher than 500–
800 eV [4, 5]. The main advantage of an ionic igniting
driver compared with a beam of fast electrons is a
higher efficiency of energy transfer to the thermonu-
clear substance virtually without scattering of particles,
which accompanies energy transfer by fast electrons.

The key question for understanding the potentiali-
ties of various combinations of compressing and ignit-
ing drivers is the igniter firing parameters, namely, size,
temperature, and energy, that allow an effective thermo-
nuclear explosion in the target to be initiated. These
parameters are determined exclusively by the hydrody-
namics of thermonuclear plasma combustion after the
action of both drivers. Calculations of igniter firing
parameters by analytic and numerical methods were
performed in a large number of works. A detailed bib-
liography can be found, e.g., in [6]. In order to mini-
mize the energy of the compressing driver, which sub-
stantially (by an order of magnitude or more) exceeds
the energy of the igniting driver, it was assumed in all
these works that an igniter at the instant of its creation
is surrounded by a dense and cold plasma of the major
target fuel fraction in a state close to that of the com-
pletely degenerate Fermi gas. It should, however, be
understood that preliminary compression of the ther-
monuclear fuel along the required cold adiabat, which
corresponds to the degenerate final state of the sub-
stance in a spherical target, is a task far from simple.
Fulfilling it requires the use of a temporarily shaped
compressing driver pulse and very strict control of the
action of sources which preliminarily heat the sub-
stance to be compressed and are related to energy trans-
fer from the laser target crown by radiation and elec-
tronic heat conductivity.

We therefore consider it important to determine the
degree to which the temperature of the fuel surrounding
the igniter, which in real experiments can be higher
than the Fermi energy, influences the parameters of
igniter firing and the direct-ignition target gain. Clearly,
an increase in the initial temperature of the major fuel
fraction compared with the Fermi energy decreases the
target gain compared with the direct ignition regime. In
the limit of equal temperatures of the major fuel frac-
tion and the igniter, the problem reduces to the combus-
tion of a uniformly heated and compressed plasma; the
target gain then does not exceed 400–500. Neverthe-
less, in the region of major fuel fraction temperatures
much lower than the igniter temperature (5–7 keV), a
study of the dependence of the target gain on the tem-
perature of the major fuel fraction enables the condi-
tions for directly igniting inertial fusion targets to be
optimized at various ratios between the energies of the
compressing and igniting drivers.
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Another important characteristic related to the
igniter parameters and, generally, the direct-ignition
target gain is the initial distribution of heat energy
between igniter electrons and ions. The energy of all
igniting drivers specified above except for impact of a
macroparticle is first transferred to electrons, whereas
ions are only heated in electron–ion relaxation. The
transfer of energy from an igniter to the surrounding
cold fuel caused by electronic heat conductivity and
radiative relaxation processes results in cooling the
igniter before it begins to burn. Because of short igniter
combustion times in direct-ignition targets (several
dozen picoseconds), this cooling can require substan-
tially higher ignition energies then with equal initial
temperatures of igniter ions and electrons. In particular,
precisely this effect is likely to be the main reason for a
substantially higher ignition energy obtained in two-
dimensional calculations of the direct ignition of iner-
tial fusion targets by a beam of bismuth ions [7] com-
pared with estimates and calculations in which relax-
ation energy exchange was ignored.

In this work, we study the influence of the two
effects specified above, namely, the excess temperature
of the major fuel fraction over the Fermi energy and
relaxation energy exchange between igniter electrons
and ions during primary igniting driver energy transfer
to plasma electrons, on the conditions of initiating ther-
monuclear combustion and on the direct-ignition target
gain in inertial confinement fusion. The results were
obtained in numerical calculations for the model prob-
lem of combustion of a uniformly compressed spherical
deuterium–tritium plasma with the central part (igniter)
heated to a thermonuclear temperature significantly
above that of the major part of the fuel surrounding the
igniter. The computations were performed with the
TERA program, which included a procedure for Monte
Carlo calculations of energy transfer by thermonuclear
particles.

2. AN ANALYSIS OF PHYSICAL PROCESSES

The inertial fusion target gain is defined as the ratio
between the energy released in fusion reactions and the
internal energy of the whole target Ep ,

(1)

Here, Q is the energy released in complete combustion
of the unit mass of the thermonuclear fuel in the fusion
reaction (for the DT reaction, Q = 3.34 × 1011 J/g); g is
the degree of thermonuclear substance burnup in fusion
reactions, that is, the ratio between the number of
plasma nuclei that entered the fusion reaction to the ini-
tial number of nuclei; M is the mass of the plasma; and
Ep is the internal energy of the target at the initial com-
bustion time.

Gp
QgM
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It is expedient to begin a qualitative analysis of the
combustion of direct-ignition targets taking into con-
sideration the general laws of combustion of uniformly
heated and compressed targets, because simulating
combustion in uniform conditions makes it possible to
determine the ranges of variations in the initial igniter
and major fuel fraction parameters for direct ignition.
In addition, calculations show that the plasma charac-
teristics during combustion approach uniform plasma
characteristics for any effectively burning target in
which a thermonuclear explosion occurs. The target
gain of a uniform spherical DT plasma is

(2)

where cV is the specific heat capacity [for a DT mixture
of equal numbers of tritium and deuterium nuclei, cV =
1.15 × 1015 erg/(g keV)] and Tp is the initial temperature
of plasma electrons and ions (Te = Ti = Tp).

The combustion of uniform targets has been studied
in many works. In particular, a large cycle of numerical
calculations of the combustion of uniform targets were
performed by us with the TERA program in [8–11].
The main characteristics of combustion of uniform tar-
gets are as follows. The lower limit of ignition temper-
ature is Tp ~ 5–7 keV; it is mainly determined by the
condition that the rate of thermonuclear energy release
should exceed the rate of radiative energy loss. Accord-
ing to (2), the highest target gain for a uniformly heated
plasma, which corresponds to complete burnup of
plasma nuclei in fusion reactions (g = 1), is 500–400 for
the specified plasma temperatures. The degree of
plasma burnup increases with the ρR parameter (ρ is
the density and R the size of the igniter) and amounts to
considerable values of 0.2–0.3 at ρR ≥ 1 g/cm2.

For targets with ρR ≥ 1 g/cm2, a sharp increase in
energy release corresponding to the development of a
thermonuclear explosion occurs in a narrow tempera-
ture interval. The target gain G values then change from
G ! 1 to G ≥ 100 virtually in a jump. The minimum,
critical ignition temperatures for such targets (5–7 keV)
are substantially lower than the temperatures corre-
sponding to maximum DT reaction rates (T ~ 20 keV).
Indeed, at the initial stage of combustion, such targets
are nontransparent to fast charged particles, that is, par-
ticles that transfer a substantial part of released thermo-
nuclear energy to a plasma and heat it to temperatures
of several dozen keV, which substantially exceed igni-
tion temperatures. In targets with ρR < 1 g/cm2, heating
by charged thermonuclear particles is ineffective,
which results in comparatively low target gains
(G ≤ 10) and their smooth dependence on Tp in a wide
range of initial temperatures.

The numerical calculations [8–11] gave simple
approximation formulas for the degree of plasma burnup
and the uniform target gain at high parameter values

Gp
Qg

cVT p

-----------,=
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attainable in practice, 5 g/cm2 ≥ ρR ≥ 1 g/cm2. These
formulas read

(3)

(4)

where ρR is in g cm–2 and Tp in keV.

The approximate equation [12]

(5)

is very accurate and convenient for analytic calcula-
tions of the degree of burnup.

The dependences of the degree of DT plasma
burnup g on the ρR parameter constructed using ana-
lytic formulas (4) and (5) and based on uniform target
gain TERA numerical calculations are shown in Fig. 1.
Equation (5) takes into account a decrease in plasma
density (accordingly, in the thermonuclear reaction
rate) during combustion and therefore gives a correct pas-
sage to the limit of large ρR parameter values, g  1 as
ρR  ∞. On the other hand, (4) gives results that are
closer to numerical calculation data in the range of ρR
values that is most interesting for practical applica-
tions. It follows that the limits of the applicability
of (3) and (4) are determined by the inequalities G @ 1
and g ≤ 0.35. The corresponding range of target param-
eters (1 g/cm2 ≤ ρR ≤ 5 g/cm2, Tp < 100 keV) covers the

G
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Fig. 1. Degree of burnup of a uniform DT plasma g as a
function of plasma thickness ρR. The solid line corresponds
to (4), and the dashed line, to (5); n are the numerical sim-
ulation results.
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region of parameters of interest for considering direct
ignition.

According to (3), at a Tp = 7 keV ignition tempera-
ture, the target gain of a uniform DT plasma is G = 110
at ρR = 3 and G = 134 at ρR = 4.

Next, consider target combustion under direct igni-
tion conditions. In direct ignition, an igniter is created
in a short time, substantially shorter than the character-
istic time of hydrodynamic processes. Target combus-
tion calculations can therefore be performed using the
isochoric model [13–15], in which the densities of the
hot initial initiation region and the major cold fuel frac-
tion are equal at the initial instant. The target gains and
the energies of the igniting and compressing drivers are
usually estimated by selecting the initial igniter param-
eters [its mean temperature Tf and size (ρR)f] based on
the well-known criterion of a thermonuclear explosion
in an isolated plasma bunch caused by heating with
alpha particles, that is, Tf ~ 5–10 keV and (ρR)f ~ 0.3–
0.4 g cm–2. The igniter energy is

(6)

Here and throughout, igniter characteristics are labeled
by index f, and the characteristics of the cold com-
pressed fuel, by index 0. If the state of the major fuel
fraction is completely degenerate, the mass of this frac-
tion is characterized by two parameters, size (ρR)0 and
density, which, in the isochoric model, equals the den-
sity of the igniter, ρ0 = ρf = ρ. The energy of the major
fuel fraction is then

(7)

As mentioned, effective target combustion corresponds
to high values of the (ρR)0 parameter of the major fuel
fraction, (ρR)0 = 3–5 g/cm2. For the igniter and major
fuel fraction parameters specified above, the energies of
the two target components are

It follows that, if the bulk of the fuel is in the degenerate
state, the ratio between the igniter energy and the
energy of the major fuel fraction decreases as density
increases by the law Ef/E0 ∝ ρ –2/3 and equals 0.08 at
density ρ = 100 g/cm3 (Ef = 15 kJ, E0 = 200 kJ) and 0.04
at density ρ = 300 g/cm3 (Ef ≈ 1.5 kJ, E0 = 40 kJ).

E f

46T f ρR( ) f
3

ρ/100 g cm 3–( )2
---------------------------------------- kJ[ ] .≈

E0

3 ρR( )0
3

ρ/100 g cm 3–( )4/3
------------------------------------------- kJ[ ] .≈

E f
15

ρ/100 g cm 3–( )2
---------------------------------------- kJ[ ] ,≈

E0
200

ρ/100 g cm 3–( )4/3
------------------------------------------- kJ[ ] .≈
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As the energy and mass of the cold fuel are much
larger than those of the igniter, the direct-ignition target
gain is determined to a high accuracy by the combus-
tion of precisely the major part of the target,

(8)

Substituting (7) and (4) for the energy and the
degree of burnup of the major fuel fraction into (8)
yields

(9)

At equal ρR parameters of a uniform target and the
major direct-ignition target fraction (that is, at equal
burnup degrees), the ratio between the direct-ignition
target gain and the target gain of a uniform plasma is
determined by the ratio between ignition temperature
and Fermi energy,

(10)

Here, the Fermi energy is εF ≈ 1.4 × 10–2ρ2/3 keV. At a
ρ = 300 g/cm3 density of the direct-ignition target
plasma and a 7 keV ignition temperature of a uniform
target, this ratio is about 60. The direct-ignition target
gain at the density specified above is estimated at Gd ≈
5.8 × 103 for (ρR)0 = 3 g/cm2 and Gd ≈ 2.7 × 103 for
(ρR)0 = 1 g/cm2.

Clearly, the effect of superheating the major direct-
ignition target fraction in comparison with the com-
pletely degenerate state can be estimated based on the
above reasoning and Eq. (10), in which the temperature
of the superheated major plasma fraction of the direct-
ignition target should be substituted for Tp . For this rea-
son, the superheated direct-ignition target gain can be
estimated by (3) after substituting the T0 temperature of
the major fraction of the direct-ignition target plasma
for Tp ,

(11)

Calculations of the superheated direct-ignition target
gain by (11) at (ρR)0 = 3 g/cm2 give Gd* ≈ 778 at a T0 =

1 keV temperature of the major plasma fraction and
Gd* ≈ 1.23 × 103 at T0 = 0.6 keV. Note that, apart from

the temperature of a superheated target plasma being
higher than the Fermi energy, a considerable contribu-
tion to decrease in the superheated target gain com-
pared with a target with a completely degenerate
plasma is made by an increase in the number of heated

Gd
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plasma particles [the (Z + 1)/Z coefficient in (10)],
because the energy of ions is zero in the degenerate
state.

The following conclusions about the special fea-
tures of combustion of superheated direct-ignition tar-
gets can be drawn from the above consideration. In
spite of the presence of the additional T0 parameter, the
dependence of the superheated target gain on the
plasma parameters becomes simpler in a sense. At fixed
(ρR) and igniter and major target fraction temperatures,
density ρ only plays the role of a characteristic scale for
the other physical values. For instance, mass M ~

; time of target expansion ∆t ~ R/v  ~
(ρR)0/ρT1/2, where v  is the mean velocity of sound; E0 ~
MT ~ ρ–2; etc. Thermonuclear combustion can be
described as an approximately scale-invariant process
in the variables r* = ρR, t* = ρt, E* = ρ2E0, and M* =
ρ2M0. In particular, as distinguished from the direct-
ignition target with a completely degenerate plasma,
the superheated target gain at given (ρR)0 and T0 does
not depend on ρ and, accordingly, on the initial energy
E0. The exact scale invariance is only violated because
of a weak density dependence of the Coulomb loga-
rithm. This conclusion is also confirmed by the numer-
ical calculations considered below.

3. NUMERICAL CALCULATION RESULTS

Numerical calculations of direct-ignition target
gains have been performed starting with the creation of
an isochoric igniter. The mathematical model of ther-
monuclear combustion of a nonuniform spherically
symmetrical plasma is described in the TERA program
by a system of continuity equations and equations of
motion, energy exchange, and plasma state combined
with the kinetic equations of fast thermonuclear parti-
cles. The hydro- and thermodynamic processes are
described in the approximation of a one-liquid two-
temperature (Te, Ti) plasma taking into account elec-
tronic and ionic heat conductivities and electron–ion
energy exchange.

The kinetic processes with the participation of fast
thermonuclear particles and thermal radiation, which
give the major contribution to the propagation of the
combustion wave, are characterized by high density
and temperature gradients along the mean free path of
fast thermonuclear particles, spatial anisotropy of the
distribution function of these particles, a complex
energy dependence of the Coulomb collision loss, and
the existence of several connected thermonuclear reac-
tion channels. In these conditions, the most correct
method for simulating the kinetics of fast thermonu-
clear particles is the Monte Carlo method. As the flight
time of fast thermonuclear particles is considerably
shorter than the characteristic time of changes in
plasma hydrodynamic parameters, the kinetics can be
stochastically simulated by solving quasi-stationary

ρR( )0
3/ρ2
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kinetic equations at each time step of a nonstationary
difference scheme based on continuum equations. This
scheme for simultaneously solving hydrodynamic and
kinetic equations is implemented in the modified TERA
package that we use. A more detailed description of the
physicomathematical model is given in works [10, 16–
18], concerned with numerically simulating the com-
bustion of thermonuclear targets with a uniformly
heated and compressed plasma and targets with an iso-
baric distribution of parameters formed under purely
hydrodynamic compression and heating of a spherical
target.

It is assumed that, at the instant of maximum com-
pression, the target is uniform except a comparatively
small high-temperature region (igniter) in the center.
The initial conditions for an isochoric igniter (ρf = ρ)
are described by two parameters, namely, characteristic
thickness (ρR)f and temperature Tf . Further, we assume
that the major fuel is in a nondegenerate state. Its tem-
perature T0 is one of the free parameters of the problem
that determine the critical energy of the igniter,

To determine the influence of energy distribution
between igniter ions and electrons on the igniter critical
parameters, two limiting cases were analyzed. In one
variant, the temperatures of igniter ions and electrons at
the initial instant were considered equal (Ti = Te = Tf).
In the other, it was assumed that igniter electrons were
only heated at the initial instant, whereas the tempera-
ture of igniter ions coincided with the major fuel tem-
perature (Ti = T0 ! Tf).

Calculations show that, if an effective thermonuclear
explosion occurs in a DT target plasma, the degree of
burnup weakly depends on the ignition method. A study
of combustion efficiency therefore reduces to the deter-
mination of the critical (minimum) igniter parameter val-
ues that ensure stable target ignition.

The ranges of igniter and major fuel parameter vari-
ations were selected based on the analysis and esti-
mates of the preceding section. The igniter parameters
satisfied the conditions Tf ≥ 5–10 keV and (ρR)f ≥ 0.3–
0.4 g/cm2. The ρR parameter of the major fuel fraction
corresponded to a high degree of burnup, (ρR)0 >
1 g/cm2. The range of temperature variations, T0 ~
0.5−1 keV, was selected to satisfy two requirements.
First, the temperature of the major fuel fraction had to
be much lower than the critical ignition temperature of
a uniform plasma equal to 5–7 keV. On the other hand,
it had to be higher than the Fermi energy, which
amounted to several hundreds eV at densities of ρ ~
102 g/m3.

At fixed (ρR)0 and T0 major fuel parameters, series
of model isochoric configurations with different Tf and
(ρR)f central igniter parameters were constructed. At

E f

F T0( )

ρ/100 g cm 3–( )2
--------------------------------------- kJ[ ] .≥
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each selected set of parameters, two limiting initial
igniter energy distributions between plasma electrons
and ions were considered, namely, (a) Ti = Te = Tf and
(b) Te = Tf and Ti = T0 ! Tf . For each configuration, the
evolution of the target up to its complete expansion was
simulated and the target gain calculated using the
TERA package.

The results of combustion calculations for a target
with (ρR)0 = 3 g/cm2 at various initial major plasma
temperatures T0 can be considered typical. The depen-
dences of the calculated target gains on igniter temper-
ature Tf (Ti = Te = Tf) at a fixed igniter thickness ((ρR)f =
0.3 g/cm2) and two T0 temperatures are shown in Fig. 2.
According to this figure, there exist T0-dependent criti-
cal igniter temperatures Tf near which a sharp increase
in the efficiency of thermonuclear combustion occurs in
a narrow temperature interval (∆Tf ~ 0.2 keV). Depen-
dences of the same type were obtained for other (ρR)0
values, but the interval of critical values narrowed as
target thickness increased. A similar result is obtained
if calculation data are represented as the dependence of
G on (ρR)f at a fixed igniter temperature Tf [10, 19].
Changes of several percent in Ef near critical values
change the target gain from G ≤ 1 to G ~ 103.

The physical nature of the phenomenon is as fol-
lows. At near critical parameter values, the time of ther-
monuclear combustion wave propagation to the outside
plasma boundary approximately coincides with the
time of target expansion. At lower (ρR)f and Tf values,
there is sufficient time for plasma to expand hardly
without a thermonuclear explosion, and the low effi-
ciency of burning corresponds to “smoldering” of a uni-
form target without an igniter. If these values are high,

G
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Fig. 2. Target gain G for a target with (ρR)0 = 3 g/cm2 as a
function of igniter temperature Tf . The igniter ion and elec-
tron temperatures at the initial time are Ti = Te = Tf . Igniter

thickness (ρR)f = 0.3 g/cm2, major fuel temperature T0 =
(1) 1 and (2) 0.6 keV.
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a thermonuclear plasma explosion accompanied by a
high burnup with a G ~ 102–103 target gain occurs. If an
effective thermonuclear explosion does occur, the tar-
get gain reaches approximately the same maximum
value irrespective of the configuration. In other words,
the prehistory of the process weakly influences the
effectiveness of burnup. The calculated target gains at
igniter parameter values above critical tend to values
given by (11) with an obvious but small correction to
the additional igniter energy.

4. THE CRITICAL DIRECT-IGNITION TARGET 
IGNITER PARAMETERS

The critical igniter parameters were determined for
targets of thicknesses (ρR)0 = 3, 4, and 6 g/cm2. The cal-
culations showed that the critical igniter parameters
were virtually independent of target thickness (ρR)0 in
the region of problem parameter values under consider-
ation. The calculation results corresponding to various
energy distributions between igniter electrons and ions
can conveniently be compared by using the mean value

as igniter temperature Tf at Te @ Ti . Equal temperatures
Tf  then correspond to equal igniter energies in both lim-
iting cases. The critical igniter parameters (ρR)f and Tf

calculated at a T0 = 0.6 keV target temperature are
shown in Fig. 3. For fairly small igniters, the critical
ignition temperature and, accordingly, energy are sev-
eral times larger when igniting driver energy is only
transferred to plasma electrons than when energy is

T f

Te Ti+
2

----------------
Te

2
-----≈=

(ρR)f, g/cm2

0.9
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Fig. 3. Critical isochoric igniter parameters for targets with
major fuel temperature T0 = 0.6 keV. The solid line corre-
sponds to equal energy distribution between igniter ions and
electrons (Ti = Te = Tf), and the dashed line, to the situation
when the whole igniter energy is concentrated in the elec-
tronic component (Ti = T0, Tf = Te/2).
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equally distributed between electrons and ions. At
(ρR)f ≥ 0.6 g/cm2, the corresponding critical parameter
curves, however, virtually coincide.

To gain insight into the reasons for this phenome-
non, it is expedient to pass to other variables. The most
interesting question is that of the behavior of critical

igniter heat energy Ef ~ Tf, because it is directly
related to the igniting driver energy. According to [10, 11],
Ef decreases as the igniter size diminishes to some lim-
iting value (ρR)f ~ 0.3–0.4 g/cm2. When the mass of the
igniter decreases further to less than 1% of the mass of
the target, the critical Ef value becomes virtually inde-
pendent of (ρR)f . In other words, some minimum igni-
tion energy corresponds to each target, and a limiting
igniter smallest in size corresponds to this energy. A
similar result for targets with a degenerate plasma of
the major fuel fraction was obtained in the calculations
performed in [6].

The existence of a limiting igniter becomes still
more obvious if the dependence of the critical ignition
energy on igniter temperature rather than size is consid-
ered. As the absolute Ef value at fixed (ρR)f and Tf

depends on the density of the plasma, an analysis can
conveniently be performed using the dimensionless rel-
ative igniter energy Ef /E0. The dependences of the
Ef /E0 ratio on temperature Tf obtained by recalculating
the critical igniter parameters shown in Fig. 3 to Ti =
Te = Tf are plotted in Fig. 4, according to which the
energy of the igniter becomes almost constant at Tf >
10–12 keV. The minimum igniter energy Ef  does not
exceed several percent of the total target internal energy
E0, which is in agreement with the estimates made in
Section 2.

The existence of the limiting igniter is related to the
character of the temperature dependence of DT reac-
tion rates. As long as the critical igniter temperature is
below the values corresponding to a maximum reaction
rate (T ~ 15–20 keV), a substantial decrease in the crit-
ical igniter size can be balanced by a small increase in
temperature, because, in this region, the rate of thermo-
nuclear reactions sharply increases as temperature
grows. A temperature increase, however, gives no addi-
tional gain as the size of the igniter decreases further,
because the rate of thermonuclear reactions is then vir-
tually independent of temperature. Electronic heat con-
ductivity smears the absorbed energy over the region
corresponding to the critical temperature, which is sit-
uated close to a thermonuclear reaction rate maximum.
Precisely this smearing determines the limiting igniter
size.

The limiting igniter size is close to (ρR)f ~ 0.4 g/cm2

for igniters with equal initial temperatures of electrons
and ions. However, if the whole absorbed igniting
driver energy is concentrated in the electronic igniter
component, then, owing to electronic and radiative heat

ρR( ) f
3
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conductivity, part of this energy is distributed over the
target volume while the ionic and electronic tempera-
tures are equalized. This substantially increases the size
of the hot spot and, accordingly, the energy of ignition.
By way of illustration, the distributions of ionic and
electronic temperatures in a target with density ρ =
100 g/cm3 and the initial major fuel temperature T0 =
1 keV at the initial time and at the instant when the
ionic and electronic temperatures become equal, t ≈
20 ps, are shown in Fig. 5. The initial igniter size was
selected close to the limiting size of a one-temperature
igniter with (ρR)f = 0.4 g/cm2. By the time of electron
and ion temperature equalization, the size of the igniter

Ef/E0

0.08

0.06

0.04

0.02

0 10 20 30 40

Fig. 4. Relative energy fraction ∆E = Ef /E0 of an igniter
with critical parameter values as a function of igniter tem-
perature Tf (Ti = Te = Tf) for targets with T0 = 1 and 0.6 keV
major fuel temperatures (the solid and dashed lines, respec-
tively).

T, keV
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Fig. 5. Radial distributions of ionic and electronic tempera-
tures in a target with density ρ = 100 g/cm3 at the initial time
(solid lines) and at the time of equalizing ionic and elec-
tronic temperatures (t ≈ 1.9 × 10–2 ns, dashed lines).

Tf, keV
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amounts to (ρR)f ~ 0.6 g/cm2. Similar results are
obtained for other initial conditions. Because of the
smearing of the hot spot during temperature equalizing
in a two-temperature igniter, the limiting size corre-
sponding to a minimum ignition energy is close to
(ρR)f ≈ 0.6 g/cm2. Precisely for this reason, energy val-
ues and, accordingly, critical temperatures coincide in
the two limiting cases at (ρR)f ≥ 0.6 g/cm2 (see Fig. 3),
and the minimum ignition energy in the second case
increases three to four times because of an increase in
the limiting igniter size.

The exact limiting igniter parameter values and,
accordingly, minimum ignition energies depend on the
T0 temperature of the major fuel. The minimum igniter
energies Ef for direct-ignition targets at various major
fuel temperatures T0 were determined by numerical cal-
culations. The Ef value depends on target density ρ. As
mentioned, thermonuclear combustion is an approxi-
mately scale-invariant process in the r* = ρR and t* =
ρt variables. In other words, the (ρR)f and Tf critical
igniter parameters are independent of the density of the
plasma. At fixed (ρR)f and Tf , we have Ef ~ ρ–2. (We
checked this relation by numerically simulating the
combustion wave for several isochorically compressed
targets at various densities from ρ = 10 g/cm3 to ρ =
100 g/cm3. A tenfold density increase changed the

F, kJ
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Fig. 6. Minimum normalized ignition energies F(T0) =

Ef[(ρ/100 g cm–3)]2 at various major fuel temperatures T0.
The solid curve corresponds to equal additional energy dis-
tribution between igniter ions and electrons (Ti = Te = Tf),
and the dashed curve, to the situation when the whole addi-
tional energy is concentrated in electrons (Ti = T0,
Tf = Te/2).
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scaled energy variable  by less than 5%.) In
order that our calculations can conveniently be com-
pared with the results obtained by other authors, the
ignition energy will be represented in the form

The calculated temperature dependences of the mini-
mum ignition energy F(T0) = Ef (ρ/100 g/cm3)2 for both
limiting energy distributions between igniter electrons
and ions are shown in Fig. 6.

When the temperatures of ions and electrons are
equal, F(T0) decreases as temperature increases from
F = 30 kJ at T0 = 0.5 keV to F = 15 kJ at T0 = 1.2 keV.
These results are in agreement with the numerical cal-
culations performed in [18] and the analytic estimates
made in [19] for the minimum energy of an isochori-
cally compressed target igniter in a cold degenerate
plasma, (rR)f ≥ 0.47 g/cm2, Tf ≥ 10 keV and, accordingly,
Ef ≥ 50/(ρ/100 g/cm3)2 kJ [Ef ≥ 43/(ρ/100 g/cm3)2 kJ].

In the other limiting case, when all the additional
energy is only transferred to plasma electrons, igniter
smearing during ionic and electronic temperature
equalization substantially increases the minimum igni-
tion energy (F = 80 kJ at T0 = 0.5 keV and F = 60 kJ at
T0 = 1.2 keV). This result is also in reasonable agree-
ment with the calculations of igniting a cold plasma by
ion beams [6, 7, 20]. For instance, the results obtained
in [7] in simulating the ignition of isochorically com-
pressed targets with densities of ρ = 100 and 200 g/cm3

by bismuth ion beams of a 15 GeV energy can be rep-
resented in the form Ef ≥ 160/(ρ/100 g/cm3)2 kJ. More
recent calculations in a broader range of densities,
50  ≤  ρ ≤ 3000 g/cm3, gave a minimum of Ef =
140/(ρ/100 g/cm3)1.85 kJ [20]. The small deviation of
the last estimate from the usual similarity relation Ef ~
ρ–2 is caused by the density dependence of the Coulomb
logarithm (lnΛ ~ lnρ–1/2) [6] and the energy of the
degenerate electron gas of the major fuel.

In conclusion, let us estimate the igniting driver
energy required to provide the necessary direct-ignition
target igniter energy for the example of one of the
promising types of such drivers mentioned in the Intro-
duction, namely, for a beam of light ions formed under
the action of a narrow laser pulse with an energy of IL ~
1020 W/cm2 on a thin target. The degree of laser pulse
energy conversion into the energy of light ions can be
close to 10% [5]. Taking into account the calculation
data shown in Fig. 6, we arrive at the conclusion that the
laser pulse energy should be 100–150 kJ for a direct-
ignition target with a nondegenerate major fuel.

E f* ρ2E f=

E f

F T0( )

ρ/100 g  cm 3– ( ) 
2

 
--------------------------------------- kJ

 
[ ]

 
.=
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5. CONCLUSION

The more fuel temperature exceeds the Fermi
energy, the lower the ratio between the direct-ignition
target gains obtained with nondegenerate and degener-
ate major fuel plasma states. Nevertheless, direct-igni-
tion target gains, G ~ 103, remain fairly high at a T0 ≥
1 keV temperature of the major fuel and a (ρR)0 ≥
1 g/cm2 target thickness. They are several times higher
than target gains with uniform plasma combustion.
Direct target ignition occurs in a very narrow interval of
igniter parameters close to critical (changes in igniter
energy smaller than 5%). The critical minimum (ρR)f

and Tf parameters of an igniter in an isochorically com-
pressed target, the attainment of which results in the
formation of a thermonuclear combustion wave in time
substantially shorter than the fly-off time, only depend
on the major fuel temperature T0 and are virtually inde-
pendent of the thickness of the target.

If the major target fuel is in a nondegenerate state,
thermonuclear combustion can be considered approxi-
mately scale-invariant in the variables r* = ρR, t* = ρt,
E* = ρ2E, and M* = ρ2M. The exact scale invariance is
only violated by a weak density dependence of the Cou-
lomb logarithm. The plots given above allow igniter
parameters to be estimated at arbitrary target densities.

The Ef critical igniter energy is a simple function of
the Tf and (ρR)f critical igniter parameters. For fairly
large igniters, Ef decreases as the size of the igniter
becomes smaller. Nevertheless, there exists a limiting
igniter size starting with which Ef becomes size-inde-
pendent. This limiting igniter size is determined by the
existence of the optimal ignition temperature, Tf ~
10 keV. The corresponding minimum ignition energies
Ef depend only on the initial temperature of the major
fuel fraction.

The critical parameters and energy essentially
depend on the initial energy distribution between
igniter electrons and ions. At equal initial temperatures
(Te = Ti), the limiting igniter size is around (ρR)f ~
0.4 g/cm2 (the exact size depends on the major fuel
temperature). If the whole absorbed igniting driver
energy is contained in the electronic igniter component,
the size of the hot spot substantially increases during
equalization of the temperatures of ions and electrons,
and the limiting igniter size is then (ρR)f ~ 0.6 g/cm2.
Accordingly, the minimum ignition energy increases
three to four times. The critical temperature and energy
for igniters with (ρR)f @ 0.6 g/cm2 are virtually inde-
pendent of energy redistribution between ions and elec-
trons at the initial time.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
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Abstract—The results of experimental investigation of macroparticle transport in the dusty plasma of a capac-
itive high-frequency discharge under microgravity conditions are considered. Experimental data were obtained
for monodisperse polymer particles of radius ap = 1.7 µm in a wide range of plasma parameters on the Interna-
tional Space Station. Analysis of macroparticle dynamics for a strongly nonideal dusty plasma, including dif-
fusion and dust vortex formation processes, is carried out. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A dusty plasma is a strongly ionized gas containing
charged particles of a substance (dust) of micrometer
size. Such plasmas are good experimental models for
studying various transport effects in systems of inter-
acting particles which are of utmost importance for the
physics of a nonideal plasma as well as for other fields
of natural science such as the physics of condensed
media, chemistry, physics of the atmosphere, and
astronomy.

Owing to their considerable size, dust particles in a
laboratory plasma can be recorded by a video camera,
which simplifies the application of direct contactless
methods for their diagnostics. The main mechanism of
dust particles charging in a gas-discharge plasma is
associated with flows of electrons and ions. Due to
higher mobility of electrons, micrometer-size macro-
particles can acquire a considerable negative charge (on
the order of (103–105)e, where e is electron charge) and
may interact electrostatically with one another.

The main source of the kinetic energy dissipation
for macroparticles in a weakly ionized plasma of gas
discharges is their collisions with neutrals of a buffer
gas. It should be noted that a laboratory dusty plasma is
an open dissipative system on account of external fields
(electric, gravity, etc.) and forces (ion drag, thermo-
phoresis, etc.) exerted on particles by the surrounding
plasma, as well as processes of macroparticle charging
determined by the flows of the surrounding plasma to
1063-7761/03/9604- $24.00 © 20704
the particle surface. When plasma parameters change,
the charge of macroparticles can be a function of time
and the position of a particle. The joint action of the
forces of interaction between particles and dissipative
processes in such a plasma may lead to the formation of
steady-state dust structures (resembling a liquid or a
solid) as well as to complex vibrational or stochastic
modes [1–10]. Under standard laboratory conditions,
the observed dust structures are confined in the Earth’s
gravity field by the electric field of the strata (in a d.c.
glow discharge) or by the electrode layer (in an rf dis-
charge) [1–3], while the gravity field sets a limit on the
experimental results.

In recent years, considerable attention is paid to
experimental studied of dusty plasmas under micro-
gravity conditions [6–11]. Such experiments make it
possible to study a wide range of phenomena (photo-
emissive charging of atmospheric aerosols, ambipolar
diffusion, dynamics of massive dust particles for a large
size (>100 µm), and so on), which cannot be observed
in terrestrial laboratory conditions [6–8, 11]. One of the
important advantages of experiments under micrograv-
ity conditions is the possibility of operating in a wide
range of dusty plasma parameters, which is not limited
by the necessity of ensuring levitation of particles in the
gravity field. In recent experiments with rf-discharge
dusty plasma made on board the International Space
Station (ISS), a group of Russian and German scientists
discovered a number of new effects (formation of com-
plex crystal lattices, nonlinear waves, unsimilar charg-
003 MAIK “Nauka/Interperiodica”
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ing of macroparticles, etc.), which have no analogs in
ordinary laboratory conditions [10]. This experiment is
known as Plasma Crystal-3 (PC-3) since it was a con-
tinuation of the research work devoted to study of dusty
plasmas under microgravity conditions, which was
started in 1997 on board the Mir orbital complex by a
group of scientists from the Institute of High Energy
Densities together with the Energiya Rocket-Building
Corporation [6–8, 11].

In this paper, we report on a part of the results
obtained in the PC-3 experiments and pertaining to
analysis of transport processes such as macroparticle
diffusion in a strongly nonideal dusty plasma and the
dynamics of formation of dust vortices. In Section 2, var-
ious transport characteristics of dust particles in a
plasma (such as charge, diffusion coefficient, and pair
correlation function) are considered; the results of
numerical simulation of macroparticle dynamics in
Yukawa systems are given; and one of the possible
mechanisms for dust vortex formation is considered.
Section 3 deals with the results and analysis of experi-
ments carried out for monodisperse polymer particles
of radius ap ≈ 1.7 µm (density ρp ≈ 1.5 g cm–3 and mass
mp ≈ 3.1 × 10–11 g) in a wide range of plasma parame-
ters, which was ensured by variation of pressures P =
0.36−0.98 mbar and power W = 0.15–0.98 W of a
capacitive rf discharge in argon. The number density np

of macroparticles in a dust cloud varied from 0.95 × 105

to 1.25 × 105 cm–3.
The PC-3 experiment is the first physical experi-

ment made on board the ISS. The experimental equip-
ment was delivered to the ISS in February 2001; the
first series of experiments was carried out by S. Krika-
lev and Yu. Gidzenko with the participation of Ameri-
can astronaut W. Sheppard in March 2001.

Distinguished service in staging and implementa-
tion of the PC-3 experiment was rendered by Prof.
A.P. Nefedov, who passed away a short time before the
experiment was launched. The researchers partici-
pating in this experiment devote it to fond memories
of him.

2. TRANSPORT CHARACTERISTICS 
OF MACROPARTICLES IN DUSTY PLASMA

2.1. Macroparticle Charge 

The kinetics of dust particle charging in a plasma is
described by the equation

(1)

where summation is carried out over all charged parti-
cle fluxes Ij absorbed or emitted by a dust particle. In
the steady state, dZp/dt = 0, which determines the equi-
librium charge 〈Zp〉  of dust particles. For a spherical

dZ p

dt
--------- I j,

j

∑=
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particle, the relation between the dust particle charge Zp

and potential ϕs of its surface is determined by the
relation

where λ is the radius of screening the dust particle by
ions and electrons of the surrounding plasma.

Most theoretical models of charging particles with a
size ap < le(i) (le(i) is the mean free path of electrons
(ions) in a plasma) are based on the orbital motion lim-
ited approximation (OML theory). The calculation of
electron (ion) fluxes Ie(i) with a Maxwellian velocity
spectrum and temperature Te(i) to a negatively charged
spherical particle in the OML theory gives the follow-
ing expression for the equilibrium charge of particles
[12, 13]:

(2)

here,

is the mean thermal velocity of electrons (ions); mie(i)
and ne(i) are their mass and concentration, respectively;
the value of parameter χ is given by the relation

(3)

and parameter z is proportional to the ratio of the sur-
face potential ϕs of a dust particle to the electron tem-
perature:

(4)

The value of parameter z is determined by the buffer gas
ions; for argon, z ≈ 2–4 for most experimental condi-
tions in a gas-discharge plasma [12–14]. Numerical
calculations show that the value of parameter z for ther-
mal fluxes of electrons (ions) for χ < 1 changes insig-
nificantly and is close to the value z ≈ 2.9 for a solitary
particle. In a dense dust cloud with χ > 1, an increase in
the values of z and ϕs takes place [12, 14], which can be
partly compensated in some cases due to an increase in
the electron temperature under the conditions of varia-
tion of equilibrium ionization processes in the gas dis-
charge [11].

Since discharges in noble gases are usually con-
trolled by ambipolar diffusion (plasma recombination
at the walls of the gas-discharge tube), the effect of dust
particles on equilibrium ionization processes is signifi-
cant only if the electron loss rate νep at particles in the

Z pe apϕ s, ap ! λ ,≈

z–( )exp
v Ti

v Te

-------- 1 z
Te

Ti

-----+ 
  1 zχ+( );=

v Te i( )
8Te i( )

πme i( )
-------------- 

 
1/2

=

χ
Z p〈 〉 np

zne

--------------------,=

z
Z p〈 〉 e2

apTe

-------------------.=
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dust cloud is comparable with or much higher than the
rate νab of diffusion losses of electrons [11, 15]:

(5)

where Da ≈ µiTe/e is the ambipolar diffusion coeffi-
cient for Te @ Ti , µi is the mobility of ions (Pµi ≈
1250 Torr cm2/V s for argon [15]), and Λd is a certain
characteristic scale. For a cylinder of radius R and
length L, we have [15]

The electron loss rate νep at particles in the dust
cloud can be estimated as

(6)

whence we find that electron loss rate νep at particles in
the dust cloud under typical experimental conditions
for an rf discharge in argon (P ≈ 0.25–1 Torr, Te ≈
1−3 eV) with particles of radius ap ≈ 2 µm for Λd ≈
1 cm and z = 2–4 is comparable with or higher than the
rate νab of diffusion loss (νep > νab) for dust concentra-
tions np > 104 cm–3. Thus, we can assume that the oper-
ation of a discharge under the experimental conditions
(see Introduction, np ≈ 105 cm–3) may be determined to
a considerable extent by recombination of plasma at the
surface of dust particles.

2.2. Particle Interaction Potential 

It is generally assumed that dust particles in a
weakly ionized plasma interact with one another
through the screened Coulomb potential (Yukawa
potential)

(7)

where l is distance. This assumption contradicts the
results of measurements of radial (perpendicular to the
force of gravity on the Earth) forces of interaction
between two particles, which were made in [16]. Nev-
ertheless, we can indicate at least two reasons for which
the form of the potentials determining the particle inter-
action forces may differ significantly from that given
above [16–22]. The first reason is associated with the
existence of attractive forces between dust particles due
to polarization of the surrounding plasma or other
effect caused by “dimming out” of directional plasma
flows [17–20]. The existence of attractive forces in dust
systems was actively studied in a number of theoretical
and experimental works. However, convincing experi-
mental proofs confirming the existence of attractive
forces in dust systems have not been obtained as yet.

The second reason is that the floating potential ϕs at
the particle surface is equal in order of magnitude to the
electron energy and is considerably higher than the ion

νab Da/Λd
2,≈

Λd
2 2.4/R( )2 π/L( )2+( ) 1–

.≈

νep πap
2 npv Te z–( ),exp≈

ϕ eZ p l/λ–( )/l,exp=
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energy; for this reason, the screening of particles is
essentially nonlinear. In addition, the electron–ion
recombination takes place at the particle surface; as a
result, there us no back current of ions (electrons) in the
vicinity of a dust particle and their distribution func-
tions are not Maxwellian. Consequently, the asymptotic
behavior of a potential at large distances from a dust
particle does not obey relation (7) any longer, but
exhibits a power dependence on the distance:

This effect has been comprehensively studied in the
theory of spherical electric probes [22]. The structure of
the screening cloud in the collisionless mode was cal-
culated in [21] taking into account the nonlinearity of
the Poisson equation and non-Maxwellian velocity
spectra for plasma particles. It was proved that the
screening of solitary particles is determined by the
value of λe for a particle size of ap ≈ 2λi – λe (λi and λe

are the ionic and electronic Debye radii) and by the
value of λi for particles with a size ap ! λi at distances
l < lD ≈ (5–7)λi from the particle surface. As the particle
size increases to ap > λe , the effective screening length
λ may become much larger than λe . The existence of a
non-Debye screening in a dust cloud with concentra-

tion np at mean distances lp =  > lD may suppress
the effect of the concentration of the surrounding
plasma on the particle interaction in the dust cloud and,
as a result, enhance the repulsion between particles.

2.3. Simulation of Macroparticle Dynamics
in a Dusty Plasma 

Correct simulation of the transport of macroparti-
cles in a dusty plasma requires the application of the
molecular dynamics method based on the solution of a
system of ordinary differential equation with the Lan-
gevin force Fbr taking into account random impacts of
surrounding gas molecules or other stochastic pro-
cesses leading to an increase in their kinetic tempera-
ture Tp [3, 5, 14, 23] over the temperature Tn of the sur-
rounding gas. In simulation of microscopic transport
processes in homogeneous extended clouds of interact-
ing macroparticles, pair particle interaction forces Fint
are taken into account in the system of Np equations of
motion (Np is the number of particles) in addition to
random forces Fbr , which are sources of stochastic
motion of particles,

(8)

in this case, periodic boundary conditions are used.

ϕ eZ pap/l2.≈

np
–1/3

mp

dlk

dt2
------- Fint l( ) l lk l j–=

lk l j–
lk l j–
---------------

j

∑=

– mpν fr

dlk

dt
------- Fbr;+
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Here,

l = |lk – lj | is the particle spacing; mp is the particle mass;
and νfr is the friction coefficient for dust particles,
which is determined by the frequency of their collisions
with neutrals of the surrounding gas and can be derived
in the framework of the free molecular approximation
if the particle size is smaller than the mean free path ln

of the buffer gas neutrals (ap ! ln) [24]. For argon at
room temperature, ln [µm] ≈ 62/P [mbar], while the fric-
tion coefficient for a spherical particle can be written in
the form νfr [s–1] ≈ 860P [mbar]/(ap [µm]ρp [g cm–3]).

Under the conditions of local thermodynamic equi-
librium of the dust system, the mean value of the ran-
dom force is

while the autocorrelation function [25, 26]

describes a delta-correlated Gaussian process. Here,
δ(t) is the delta function and the angle brackets denote
time averaging. In simulating equilibrium random pro-
cesses in a dust cloud, use can be made of random
increments of the macroparticle momentum,

where  is the momentum increment per degree of
freedom and ψj is a random quantity distributed in
accordance with the normal law with the standard devi-
ation equal to unity. In a correct simulation of random
forces, the step ∆t of integration with respect to time in
Eqs. (8) must satisfy the condition

where the quantity ω* characterizes the frequency of
collisions between charged macroparticles.

For liquid Yukawa systems with screening para-
meter

,

the characteristic dust frequency ω* can be represented
in the form [27]

(9)

where  is the effective charge of macroparticles:

(10)

The relation between the particle interaction and

Fint l( ) eZ p
∂ϕ
∂l
------,–=

Fbr〈 〉 0,=

Fbr 0( )Fbr t( )〈 〉 6T pmpν frδ t( )=

pbr
x mp 2T pν fr∆t/mp( )1/2ψ j,=

pbr
x

∆t ! max ν fr ω∗,{ } ,

κ lp/λ 6–7<=

ω∗ eZ p* np/πmp( )1/2,=

Z p*

Z p* Z p 1 κ κ 2/2+ +( ) κ–( )exp{ } –1/2
.=
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dissipation in the dust system is determined by the ratio

(11)

which is the scaling parameter for various dynamic pro-
cesses in dissipative dust structures, e.g., for diffusion
of macroparticles and for the dynamics of formation of
vortex motion [23, 26–28]. Analysis of the experimen-
tal conditions for particles of radius ap ≈ 2 µm upon a
change in their concentration n from 103 to 106 cm–3

and for variation of the gas pressure P from 1 to
0.01 Torr leads to the following range for the scaling
parameter:

The dynamics of macroparticles in a dissipative
(νfr ≠ 0) extended Yukawa system was studied by sev-
eral authors for parameters close to the experimental
conditions in a gas-discharge plasma (ξ ≈ 0.02–4)
[26−30]. The results of simulation show that the buffer
gas viscosity practically does not affect the degree of
correlation of macroparticles in such systems, and anal-
ysis of the phase state of the three-dimensional systems
under investigation can be based on the effective non-
ideality parameter

(12)

The normalized parameter Γ* completely deter-
mines the correlation of macroparticles (the emergence
of long-range and short-range orders in a dust system)
in Yukawa dissipative systems starting from Γ* < 1 to
the point of system crystallization. As the parameter
increases so that Γ*   = 106 (for κ < 6), a body-
centered crystalline structure is formed [29–32]. It is
proposed that a conversion of a nonideal system into a
strongly correlated liquid occurs for values of parame-
ter Γ* ≈ 22–24, for which the formation of ordered
groups of macroparticles (clusters), which is accompa-
nied by a jumplike decrease in the coordinate of the first
peak of the pair correlation function and the diffusion
coefficient for macroparticles, is observed in the course
of a numerical experiment [29, 30].

The dependences of the heights of the first peaks
gmax of the pair correlation function g(l) and their posi-
tions (l = dmax) on parameter Γ* (12) are shown in
Fig. 1a for different parameters of the Yukawa system.
A sharp increase (jump) in the value of gmax from 2.65
to 3.1 is observed in the range of the normalized non-
ideality parameter Γ* from the point of crystallization

 ≈ 102–104 to the melting point  ≈ 106–107 of
the system, where the position of the first peak of func-
tion g(l ) changes from l ≈ 1.075lp to the characteristic

body-centered lattice spacing dmax ≈ (3 /np4)1/3 ≈
1.092lp (see Fig. 1b) [29, 30]. In the same range of non-

ξ ω∗ /ν fr,=

ξ 0.02–5.≈

Γ∗ Z p*e( )2
/T plp.=

Γm*

Γ c* Γm*

3
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Fig. 1. Dependences of (a) the first maxima gmax of the pair correlation function and (b) their relative position dmax/lp on Γ*. Inter-
vals of absolute deviations of values for various cases of calculation (ξ = 0.05–1.22) are indicated. Dark circles show the results of
determining gmax for experimental correlation functions depending on the values of Γ* reconstructed from the measurements of the
macroparticle diffusion coefficient D.
ideality parameters (Γ* ≈ 102–107), the diffusion coef-
ficient of particles, which was obtained by simulation,
decreases abruptly (by more than two orders of magni-
tude) [16, 29, 30].

The diffusion coefficient for interacting macroparti-
cles can be derived from the relation [26]

(13)

where l(t) is the displacement of an individual particle
and 〈 〉 N and 〈 〉 t denote the averaging over ensemble N
and time t, respectively. This relation follows from
analysis of the diffusion transfer of particles through a
unit area element in a homogeneous medium and is
similar to the well-known Green–Kubo formula [33].
While deriving these formulas, no assumptions con-
cerning the type of thermal motion have been made;
consequently, these expression are valid for gases as
well as for liquids and solids.

Figure 2 shows the time dependence of the ratio of
the diffusion coefficient D(t) for interacting particles to
the diffusion coefficient for noninteracting Brownian
particles,

(in reciprocal drag times ) for Yukawa systems with
different parameters ξ = ω*/νfr and Γ*. Curve 6 depicts
the exact solution of the Langevin equation for nonin-
teracting particles [26]:

(14)

consequently, we have D0(t) = D0 for large values of
time as compared to the reciprocal frequency of friction

D t( ) l t( ) l 0( )–〈 〉 N
2( )t/6t,=

D0
T p

ν frmp

-------------=

ν fr
1–

D0 t( )
D0

------------ 1
1 ν frt–( )exp–

ν frt
-----------------------------------;–=
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(νfrt @ 1), while the ballistic nature of motion of a par-
ticle is manifested for small values of time (νfrt ! 1),

and D0(t) ∝  t. In the presence of interaction (see Fig. 2),
the behavior of the quantity D(t) for small values of
time remains unchanged. As the time increases, this
quantity attains its maximum value, Dmax, i.e., the value
which is expedient for determining the short-term dif-
fusion coefficient. It should be noted that coefficient
Dmax is smaller than D0 and tends to the latter upon an

∆2l t( )〈 〉 l t( ) l 0( )–〈 〉 N
2〈 〉 t 3v Tpt2≈=

0.3

75

D(t)/D0

tν fr

0.9

1500 225
0.1

0.5

0.7

6

5

4

3
21

Fig. 2. Dependences of the ratio of the diffusion coefficient
D(t) of charged particles to D0 on tνfr for various values of
parameters ξ and Γ*: ξ = 1.22, Γ* = 80 (1); ξ = 0.14, Γ* =
80 (2); ξ = 0.14, Γ* = 60 (3); ξ = 0.14, Γ* = 30 (4); ξ = 0.04,
Γ* = 80 (5); D0(t)/D0 (6).
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increase in the medium viscosity. The dependence of
the maximum of the ratio D(t)/D0 and its position
(tνfr)max on parameter ξ is shown in Fig. 3. It should be
noted that neither Dmax nor the position of the maxi-
mum (tνfr)max depends on the value of Γ*, and the
behavior of function D(t)/D0 for values of time

is determined by relation (14) for noninteracting parti-
cles. Analysis of the behavior of D(t)/D0 for small val-
ues of observation time can be useful for reconstructing
coefficient D0 or macroparticle temperature Tp (for a
given νfr from the results of measurements of D(t) if the
resolution of the measuring instrument does not permit
correct determination of the velocity spectrum of mac-
roparticles. For example, if the displacements of mac-
roparticles is recorded by a video camera with a record-
ing frequency smaller than the friction coefficient νfr ,
the measurements of the instantaneous velocity distri-
butions for macroparticles give too low a value of their
temperature [34].

With increasing time, the diffusion coefficient (13)
tends to a constant value D = , which can be

easily determined experimentally while studying a
dusty plasma [7, 11]. The ratio of the diffusion coeffi-
cient D for interacting macroparticles multiplied by
(1 + ξ) to coefficient D0 is shown in Fig. 4. It can be
seen that function D(1 + ξ)/D0 depends only on the
effective parameter Γ* for weakly correlated as well as
strongly nonideal systems. In the latter case (for
Γ* > 50), the diffusion coefficient for interacting mac-
roparticles has the form [27, 30]

(15)

where c1 = 2.9 for ξ > 0.3 and c1 = 3.15 for ξ < 0.3.
Approximation of the results of calculations by for-
mula (15) taking into account the difference in coeffi-
cients c1 is also shown in Fig. 4. Thus, we can obtain the
following two simple relations for the diffusion coeffi-
cient D in two limiting cases:

(16a)

(16b)

These relations make it possible to easily determine the
effective parameter Γ* from the results of measure-
ments of the mean particle spacing, temperature, and

t
tν fr( )max

2ν fr

--------------------<

D t( )
t ∞→
lim

D
T pΓ∗

12π ω∗ ν fr+( )mp

------------------------------------------ c1
Γ∗
Γ c*
------– 

  ,exp≈

D
lp

12
------

T pΓ∗
πmp

------------- 2.9
Γ∗
Γ c*
------– 

  , ω∗  @ ν fr,exp≈

D D0
Γ∗
12π
--------- 3.15

Γ∗
Γ c*
------– 

  , ω∗  ! ν fr.exp≈
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diffusion coefficient of particles in liquid systems and
can be useful for experimental analysis of particle
parameters such as their charge and screening radius.

2.4. Vortex Motion of Macroparticles
in a Heterogeneous Plasma 

Owing to the high mobility of electrons, nonemit-
ting dust particles acquire a negative equilibrium
charge matching the parameters of surrounding plasma
(see Section 2.1). Upon variation of plasma parameters,

0.2

0 1

Dmax/D0, 0.1(tνfr)max

ξ

0.8

2 3 4

0.6

0.4

1
2

Fig. 3. Maximum of the ratio D/D0 (1) and its position
(tνfr)max (2) as functions of parameter ξ.
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0.1
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(1 + ξ)D/D0
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0.5

0.7

Γ*

1

2

κ = 2.4
κ = 4.8

Fig. 4. Dependence of function (1 + ξ)D/D0 on Γ* for vari-
ous values of ξ and screening parameters κ as well as the
approximation of this function by relation (15) for ξ >
0.3 (1) and ξ < 0.3 (2).
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this charge can exhibit a dependence on time and on the
position of a macroparticle. The space and time varia-
tion of dust charges is one of the possible factors per-
mitting the conversion of the energy of the electric field
into the kinetic energy of macroparticles [3, 5, 14, 23].
Random fluctuations of the macroparticle charge may
cause an “anomalous heating” of dust, but fail to
explain the self-excitation of regular movements of
macroparticles and the formation of dynamic dissipa-
tive structures from them. Theoretical analysis and sim-
ulation show that such regular dust self-sustained oscil-
lations can be formed in the presence of a gradient b =
e∇ Zp of the dust particle charge and nonelectrostatic
forces Fnon (such as gravity force, thermophoretic force,
or ion drag force) orthogonal to gradient b and acting
on macroparticles of the dust cloud [23]. Spatial varia-
tions of macroparticle charges in a plasma may appear
due to inhomogeneity of the background plasma sur-
rounding a dust cloud, e.g., gradients of concentration
ne(i) or temperatures Te(i) of electrons (ions). Such con-
ditions are often created in the plasma of an inductive rf
or glow discharge [35, 36]. For example, the charge
gradient b of macroparticles in a discharge controlled
by ambipolar diffusion may attain the values

only due to weak violation of electroneutrality

of the surrounding plasma [28].
Let us consider the motion of Np macroparticles

with a charge Z(ρ, y) = Z0 + ∆Z(ρ, y) (where ρ = (x2 +
z2)1/2 is the radial coordinate of a particle and Z0 =
Z(0, 0) in an electric field E(ρ, y) of a cylindrical trap,
taking into account the pair interaction, random motion
of particles (Fbr), and a certain constant nonelectro-
static force

acting along the y axis in the cylindrical system in ques-
tion:

(17)

Here,

is the resultant electric force, where

β 0.1–0.3( )e Z p〈 〉  cm 1–≈

δn ni ne–  ! ni ne≈=

Fnon Fnon y( ) const,≡=

mp

d l2
k

dt2
-------- mpν fr

dlk

dt
------- FΣ Fnon Fbr.+ + +–=

lk ρ y,( ) iy jρ,+=

FΣ Fint Fext+=

Fint eZ ρ y,( )
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∂l
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l lk l j–=

lk l j–
lk l j–
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∑=
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y ρ y,( )i Fint

ρ ρ y,( )j+
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is the force exerted on an individual macroparticle by
all other macroparticles of the dust cloud, while the
external force is defined as

When the curl of forces acting on a macroparticle
differs from zero, system (17) can perform positive
work in compensating dissipative energy losses. This
means that infinitely small perturbations emerging in
the system due to thermal and other fluctuations may be
augmented. A detailed analysis of linearized equa-
tions (17) is given in [23], where two main cases of
instability of the dust system are considered. Under cer-
tain conditions, one of the instabilities considered
above (“dissipative” or “absolute” instability [24, 37])
may lead to the formation of large-scale vortex move-
ments (dissipative dust structures). When

,

the emergence of dissipative-type instability is deter-
mined by the condition

(18)

where

is the shift parameter determining the system reaction
to transverse perturbations and quantity ωc can be
regarded as a certain resonance frequency of the sys-
tem, defined as [24, 28]

For particles with a Coulomb pair interaction potential,
we have

Since the curl W = curlV of the macroparticle velocity
V differs from zero, condition (18) describes the emer-
gence of a vortex motion along a certain closed curve.
The direction of this rotation in a plane parallel to Fnon
for monotonic spatial dependences E(ρ, y) and Z(ρ, y)
can be determined from the sign of Ω . In the field of a
constant nonelectrostatic force (Fnon(y) ≡ const), a mac-
roparticle moves in the direction of action of this force

Fext eZ ρ y,( )E ρ y,( ) iFext
y ρ y,( ) jFext
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in the region where its charge has the maximum value.
The amplitude of the vortex motion is determined by
various nonlinear effects and/or by the boundary condi-
tions of the problem. The frequency ω of the steady-
state rotation can be estimated since an important fea-
ture of unstable systems is their tendency to act pre-
dominantly through the resonance mode ωc [37, 38],
characterizing the bifurcation point for system (17).
Assuming that

we find that, in the case of a circular motion for which

the product of the circular frequency ω and the friction
coefficient νfr for particles is proportional to the square
of the resonance frequency of the system:

We assume that the sought nonelectric force Fnon
required for the formation of the vortex motion of par-
ticles is induced by the directional motion of ions at
velocity u relative to a dust particle, i.e., an ion drag
force. The latter force is due to momentum transfer
from the ions of a dust particle and acts in the direction
of the relative motion of ions. The momentum transfer
is associated with two processes: inelastic collisions
(absorption) of ions with a dust particle and elastic scat-
tering of ions from the particle potential. It was shown
in [39] that the ion drag force for a weakly anisotropic
plasma (u ! vTi) in the case of not very large particles
prevails for elastic scattering. The ion drag force can be
estimated as

(19)

where

and Λ is a modified Coulomb logarithm integrated over
the shifted Maxwellian velocity distribution function
for ions. For the experimental conditions (ap = 1.7 µm,
ni ≈ 109 cm–3, zτ ≈ 200–300, and λD/a ≈ 20), the estima-
tion of the modified Coulomb logarithm gives (see [39])

Thus, for vTi/u ≈ 4–8, the ion drag force is FI ≈ (0.42–
1.25) × 10–8 dyne (or FI ≈ (0.15–0.4)mpg in units of

ωc
4 γ0βρFnon

mp

--------------------- 1
Z0
----- ,≈

2ω Ω≈
βρFnon

mp

--------------- 1
Z p〈 〉 ν fr

------------------ ,=

ων fr ωc
2.∝

FI
2 2π

3
--------------ap

2 nimiv Ti zτ( )2Λu,≈

τ Te/Ti, v Ti Ti/mi= =

Λ 4
zτ
-----

λD

a
------.∼
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mpg). The comparison of the ion drag force and gravity
force acting on particles on the surface of the Earth is
convenient from the viewpoint of estimating the signif-
icance of this force in land-based experiments.

The value of the regular velocity u ≈ (0.12–0.25)vTi

assumed for estimates corresponds to directional
motion of ions in electric fields E ≈ 1–2 V/cm. Such
fields may be consequences of plasma polarization in
discharges controlled by the ambipolar diffusion of
plasma particles to the working chamber walls. The
velocity of the ambipolar transport of ions can be esti-
mated as

where νni is the frequency of collisions of ions with
buffer gas neutrals and Λd is the characteristic diffusion
length (see Section 2.1) [15]. For argon (νni ≈ 8 × 106 s–1

for Te = 1–2 eV and Λd ≈ 1 cm), the value of u ≈ (3.3–
6.6) × 103 cm/s ≈ (0.12–0.25)vTi . Figure 5 illustrates
the results of simulation of problem (17) for Np = 1000,
βρ/e〈Zp〉  = –0.3 cm–1, mp ≈ 3 × 10–11 g, νfr = 200 s–1, and
〈Zp〉  = 6000 for the force Fnon = 0.4mpg acting from the
center of the system along the cylinder axis. The exter-
nal electric fields (E(y), E(ρ)) in directions y and ρ from
the center of the system were assumed to be linear
fields with equal gradients. The mean kinetic energy of
the directional motion (rotation) of particles in this case
was about 0.2 eV.

3. EXPERIMENT

3.1. Experimental Setup 

The setup intended for experiments on the ISS was
similar to that used for studying dusty plasmas under
microgravity conditions during parabolic flights and
described in detail in [9]. The main element of the

u
Te

miνniΛd

-------------------,≈

βp βp

Fnon

Fig. 5. Illustration of simulation of rotation of macroparti-
cles in the field of orthogonal vectors of nonelectric force
Fnon and charge gradient βp (cross section along the axis of
the cylindrical system).
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experimental setup was a vacuum plasma chamber
(Fig. 6) consisting of two square slabs and a square
glass insert. On each slab, disk electrodes creating an rf
discharge were mounted. Each electrode contained a
unit for injecting dust particles into the plasma (dis-
penser). A high-frequency (13.56 MHz) ac voltage was
supplied to the electrodes. The voltage could be con-
trolled in wide limits, thus varying the discharge power
W from 0.15 to 0.98 W. The value of the working pres-
sure P of the buffer gas (argon) varied from 0.36 to
0.98 mbar. The experiments were made for monodis-

Fig. 6. Vacuum plasma chamber.
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perse particles of radius ap = 1.7 µm and density ρp =
1.5 g/cm3.

Two CCD chambers with lenses and a diode laser
were installed for observing plasma-dust structures in
the system. The field of vision of a chamber is shown in
Fig. 6 and had a size of 2.8 × 2.1 cm. The laser beam
formed into a plane beam having a thickness of 150 µm
and a height of about 25 mm. The control of experimen-
tal parameters and the recording of video and digital
information obtained in the course of experiments was
ensured by a Telescience computer. Video recording
was then processed with a help of a special program,
which made it possible to identify the positions and to
calculate the displacements of individual particles. This
program was used for determining the velocity spectra
for macroparticles in various regions of the observed
dust structures.

The observed dust structures are shown in Figs. 7a
and 7b. In all cases, a region free of particles (void) was
formed at the center of the dust structure, while quasi-
stationary liquid dust structures were observed below
and above the void on the axis of the cylindrical dis-
charge flask. The motion of particles in this region was
almost “thermal” (the velocity spectrum of particles
(‡) (b)

Fig. 7. Illustration of observed dust structures in the field of vision of a video camera (2.8 × 2.1 cm) for discharge power W = 0.25 W
under various pressures P = 0.49 (a) and 0.98 (b) mbar. The regions of measurement of transport parameters of dust structures are
indicated.
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Fig. 8. Measured (bold curve) pair correlation functions g(l/lp) for W = 0.25 W and pressures P = 0.49 (a) and 0.98 (b) mbar. Fine
curves describe the functions g(l/lp) obtained from simulation for the values of Γ* indicated in the figure.
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Fig. 9. (a) Time evolution of the diffusion coefficient D and (b) velocity distribution f(V) of dust particles for experiments (W =
0.25 W): P = 0.49 mbar (curve 1, triangles) and P = 0.98 mbar (curve 2, circles) (the symbols correspond to experimental results,
and the solid curve is the Maxwell distribution function with the temperature of particles given in the table).
was close to the Maxwellian spectrum). In the radial
boundary regions of the cloud, symmetric large-scale
vortex flows of macroparticles were formed.

3.2. Experimental Analysis 
of Transport Characteristics of Macroparticles 

Analysis of transport characteristics of macroparti-
cles, such as their concentrations, diffusion coeffi-
cients, pair correlation functions, and effective charges,
was carried out in the regions of dust structures (under
the void) without regular motion of macroparticles. The

mean particle spacing lp =  and the concentrationnp
–1/3
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np of macroparticles were determined from the position
of the peak of pair correlation functions and were found
to be lp ≈ 200 µm and np ≈ 1.25 × 105 cm–3 for P <
0.86 mbar and lp ≈ 220 µm, np ≈ 0.95 × 105 cm–3 for P ≥
0.86 mbar (see Figs. 8a and 8b). To determine the tem-
perature Tp of macroparticles, which characterizes the
kinetic energy of their random motion, we measured
the velocity spectra of particles. For correcting the
results of measurements and for determining the mac-
roparticle temperature from the variance of their veloc-
ity distribution, the procedure of the best matching
between the results of measurement of macroparticle
Temperature Tp and diffusion coefficient D of macroparticles, maximal gmax and minimal gmin values of pair correlation func-
tion, and values of Γ*, D/D0, and ξ for various discharge parameters W and P

P, mbar W, mW Tp , eV D × 105,
cm2 s–1 D/D0 gmax/gmin gmax Γ* ξ

0.36 25 0.48 7.45 0.34 1.7 1.52 25 0.18

0.49 25 0.40 3.4 0.27 2.4 1.68 40 0.16

0.61 25 0.27 1.0 0.15 3.0 1.97 82 0.15

0.73 25 0.37 1.75 0.22 3.0 1.86 61 0.12

0.86 25 0.4 2.0 0.29 2.4 1.75 42 0.07

0.98 25 0.45 1.25 0.165 3.1 1.97 78 0.12

0.49 15 0.34 2.85 0.265 2.3 1.68 42 0.15

0.49 19 0.40 3.0 0.235 2.7 1.80 52 0.17

0.49 49 0.24 1.85 0.25 2.5 1.78 50 0.13

0.49 98 0.38 2.8 0.24 2.6 1.75 51 0.17
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diffusion and the numerical data for small observation
times was used (see Section 2.3). Figures 9a and 9b
illustrate the experimental values of diffusion coeffi-
cients and the velocity spectra of macroparticles.

The results of measurements of all working param-
eters of the discharge are given in the table containing
the temperature Tp of macroparticles, their diffusion
coefficient D, ratio D/D0, the peak values of the pair
correlation function g(l), and the extent of their correla-
tion (the ratio of the maximal gmax and the minimal gmin
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40
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3.3
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Fig. 10. Dependence of gmax/gmin (1) and gmax (2) on the
reconstructed parameter Γ* (see table).
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Fig. 11. Values of Γ*/  reconstructed for different dis-

charge parameters (1) and the values of the surface potential

 (2) and ϕs (3) obtained from relation (10) for ni ≈ Zpnp .
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values of g(l) for l ≠ 0). The same table contains esti-
mates of the nonideality parameter Γ* (12) and the scal-
ing parameter ξ = ω*/νfr (11) reconstructed from the
results of measurements of the diffusion coefficient D
of macroparticles (see Section 2.3) using the value of
the friction coefficient in the free molecular approxima-
tion [24].

The dependences of the ratio gmax/gmin and gmax on
the effective parameter Γ* reconstructed from the mac-
roparticle diffusion measurements are given in Fig. 10.
Good agreement between the extent of correlation
(gmax/gmin, gmax) of particles in the system and the value
of the nonideality parameter Γ* obtained is worth not-
ing. Nevertheless, the recorded values of gmax for the
experimental correlation functions g(l) were slightly
lower than the values obtained in simulation (see
Fig. 1a), and functions g(l) themselves had a noticeable
broadening in the region of small particle spacings. A
comparison of the experimental pair correlation func-
tions and the functions g(l) obtained as a result of sim-
ulation for close values of Γ* is illustrated in Figs. 8a
and 8b. The discrepancy between the experimental and
numerical results may be associated either with the pro-
cedure of experimentally determining g(l) for a boun-
ded volume containing a finite number of particles or
due to spatial inhomogeneity of the dust cloud.

The effective surface potential

(see Eq. (10)) and the ratio of parameter Γ* to its value
 ≈ 102 at the crystallization point, reconstructed for

various discharge parameters, are shown in Fig. 11. For
the screened interaction between particles, relation (10)
makes it possible to estimate either the macroparticle
charge Zp , or the value of κ = lp/λ for a given value of
one of the parameters.

Under additional assumptions, we can obtain infor-
mation on both the macroparticle charge and the
screening parameter κ. For example, if the ionization
processes in the discharge are controlled by the plasma
absorption by dust cloud particles (see Section 2.1) and
if the ion concentration ni ≈ Zpnp , the screening radius
can be found from the relation

where Ti ≈ 0.027 eV. The surface potential of macropar-
ticles,

obtained on the basis of this assumption, is shown in
Fig. 11, while Fig. 12a gives the values of κ = lp/λ and
ni ≈ Zpnp for this case.

ϕ s* eZ p/ap=

Γ c*

λ2 Ti

4πe2Z pnp

-----------------------,≈

ϕ s eZ p/ap,=
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Fig. 12. Reconstructed values of the screening parameter κ = lp/λ and ion concentration ni (a) under the assumption that ni ≈ Zpnp
and (b) for fixed values of the surface potential ϕs = 2.9 (light symbols) and 5.8 (dark symbols) eV.
Numerical calculations show that, for

,

the surface potential ϕs of macroparticles can be esti-
mated using the relation ϕs ≈ 2.9Te/e which describes
the charging of a solitary particle (see Section 2.1).
Figure 12b shows the value of the screening parameter
κ = lp/λ and the values of ion concentration ni ≈
Ti/4πe2λ2 corresponding to the reconstructed parameter
κ for fixed values of the surface potential ϕs = 2.9 and
5.8 eV (Te ≈ 1–2 eV, Zp ≈ 3400–6800). Thus, the obtained
ion concentration ni > Zpnp (χ < 1, np ≈ 105 cm–3) lies in
the range from approximately 5 × 108 cm–3 to 2 ×
109 cm–3; this is in accordance both with the results of
measurements and with the numerical data on the
plasma concentration in an rf discharge with parame-
ters close to experimental values [15, 41], which give
ni ≈ 109 cm–3. Estimation of macroparticle charges for a
fixed value of λ = λi ≈ 40 µm (ni ≈ 109 cm–3) gives Zp ≈
3600–5200 for all pressures below P = 0.98 mbar and
Zp ≈ 7700 for P = 0.98 mbar. This, in turn, makes it pos-
sible to estimate the range of electron temperatures at
Te ≈ 1–2.5 eV.

3.3. Experimental Analysis of Vortex Motion 
of Particles 

For an analysis of the vortex motion of particles (see
Fig. 7), we singled out (in the working range) the field
of velocities directed along the normal to the radius of
rotation of particles. This field was divided into individ-
ual “annular” segments of width ∆R = Rmax/20, where
Rmax is the maximal radius of identified rotation of mac-
roparticles, which was determined from the area S

χ
Z p〈 〉 np

zne

-------------------- 1 ne

Z pnp

3
-----------> 

 <=
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involved in rotation (Rmax = ). Figure 13 illus-
trates such a division. Then we determined the mean
time taken by a macroparticle to traverse a small seg-
ment of the arc of the “ring,” which was then summed
for calculating the mean period T and the rotational fre-
quency ω = 2π/T.

The results of measurements of the radial distribu-
tion of the rotational frequency ω in vortices for differ-
ent discharge modes are given in Figs. 14–16. The rota-
tional frequency of macroparticles decreased with
increasing distance R from the vortex center (see
Fig. 14). For an analysis of this decay at the initial seg-
ments of vortices (for rotational radii R < 2 mm), we
approximated the experimental data with the exponen-
tial function ω = ω0exp(–σR), where ω0 ≡ ω(R = 0), and
coefficient σ can be regarded as the radial diffusion
probability for macroparticles. This approximation is
illustrated in Fig. 14. The dependences of coefficient σ
on the maximal rotational frequency ω0 on the working

S/π

Fig. 13. Illustration of the procedure of processing of video
recordings of the vortex motion of macroparticles.
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parameters of the discharge (pressure P and power W)
are shown in Figs. 15a and 15b.

Let us consider the probability of vortex formation
due to the existence of orthogonal charge gradient b
and a certain nonelectrostatic force Fnon, e.g., the ion
drag force FI ≈ 0.3mpg, on the basis of the model
described in Section 2.4. Assuming that

we find that inhomogeneous conditions ensuring the
relative charge gradients β/e〈Zp〉  in the range from 0.07

ω0
Ω
2
----≈

βFnon

mp

------------- 1
2 Z p〈 〉 ν fr

----------------------,=

0.6

0.4
0.5

ω/ω0
1.0

1.0

3

2

1

1.5 2.0

R, mm

0

0.8

Fig. 14. Experimental (circles) dependence ω(R)/ω0 and the
approximation of this dependence by exponential functions
(solid curves) for W = 0.25 W and for different values of P =
0.36 (1), 0.49 (2), and 0.98 (3) mbar.
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to 0.2 cm–1 is sufficient for evolution of rotation with
detectable frequencies ω0 ≈ 0.1–0.16 s–1 for νfr ≈ 120–
330 s–1. It was noted above (see Section 2.4) that such
values of β/e〈Zp〉  are quite attainable in an ambipolar-
diffusion-controlled discharge and may appear due to
slight violation of electroneutrality of the surrounding
plasma.

Concluding the section, let us briefly analyze the
detected radial distributions ω(R) of angular velocities
of rotation of macroparticles in dust vortices, proceed-
ing from the exponential dependence

obtained in the course of experiments. It should be
noted that the theory of vortices in strongly nonideal
systems, in which the mean free path of particles is
comparable with or smaller than the particle spacing,
has not been developed as yet [41]. Most of the pro-
posed models pertain to the case when collisions at dis-
tances close to the Onsager radius, for which the poten-
tial energy of particle interaction is comparable with
the thermal energy of macroparticles, play a decisive
role in the system. It should also be noted that simple
analytic models for describing rotations in dissipative
systems were developed only for plane potential flows,

for which the circulation  of the velocity vector V

(where s is a length element of contour C) is equal to
zero or is independent of the choice of contour [41].
In the latter case, we are dealing with a potential flow
with circulation. Thus, the experimental investigations
of rotation of dust particles are of considerable interest
for the development of appropriate theoretical models
for describing vortices in strongly nonideal dissipative
systems.

ω R( ) ω0 σR–( ),exp∝

Vds
C∫°
0.18

0.02
0.6

σ, mm–1, µ, ω0, s–1

P, mbar

0.34

0.80.4 1.0

0.26

0.10

(‡)

0.18

0.10
0.40

σ, mm–1, µ, ω0, s–1

W, W

0.34

0.650.15 0.90

0.26

0.14

(b)

0.22

Fig. 15. Dependences of coefficient σ (triangles), maximum rotational frequency ω0 = ω(0) (circles), and parameter µ =

(ω0νfr)
1/2/ω* (bold curve) for macroparticles in a vortex on pressure P for W = 0.25 W (a) and on the discharge power W for P =

0.49 mbar (b).
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For an analysis of the dependences of coefficients
ω0 and σ for the proposed exponential approximation

,

information on the parameters of the medium in the
zone of dust rotation is required. However, it is practi-
cally impossible to determine correctly the pair correla-
tion function or the diffusion coefficients of macropar-
ticles, which would ensure a qualitative estimate of the
extent of correlation between particles in the vortex
region, because of considerable regular motion of par-
ticles as well as due to strong inhomogeneity of the
region in question. Nevertheless, we can assume that
the effective parameters Γ* and ω for macroparticles
have either close values in the entire volume of the dust
cloud or change in proportion to the discharge parame-
ters P and W. In this case, a simple approximation of the
maximal rotational frequency ω0 can be obtained on the
basis of the theory of evolution of instabilities (see Sec-
tion 2.4) if we assume that the characteristic fre-
quency ωc of the dust is proportional to the effective
frequency ω* (9). In this case, the relation µ2 =
ωνfr/ω*2 must be preserved (or be nearly the same) for

all discharge parameters since  ∝ ων fr . This
assumption is confirmed by the results of measure-
ments of the parameter

(see Fig. 15), where ω* is the effective frequency (9) in

ω R( ) ω0 σR–( )exp=

ωc
2

µ ω0ν fr( )1/2/ω∗ ω0/ω∗ ξ( )1/2≡=

1.0

0.5
0.25

σ, mm–1

4.0

0.300.20 0.35

1.5

2.0

2.5

3.0

3.5

3Γ*/Γ*c

gmax/gmin

gmax

Fig. 16. Dependences of particle correlation gmax/gmin (s),

gmax (d), and Γ*/  (n) on coefficient σ for various dis-

charge parameters.

Γc*
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the region under the void. It can easily be seen that µ ≈
0.12 ± 0.01 in all experiments.

Since there is no radial diffusion of macroparticles
in rotating solids (for a planar circular motion, ω(R) =
ω0, σ = 0), we can assume that the value of coefficient
σ will decrease upon an increase in the effective non-
ideality parameter Γ*. The relation between the particle
correlation in the space under the void and the rate of
decay of dust rotation is shown in Fig. 16. It can easily
be seen that the rate of decay of vortex motion
decreases upon an increase in the particle interaction.
Thus, parameters ξ and Γ* describing microscopic pro-
cesses in nonideal dissipative systems play a decisive
role in the dynamics of the dust vortices observed.

4. CONCLUSIONS

The results of investigation of transport processes
such as diffusion of macroparticles and formation of
dust vortices in the strongly nonideal dusty plasma of
an rf discharge under microgravity conditions are con-
sidered. Experimental results were obtained for mono-
disperse particle of radius ap = 1.7 µm in a wide range
of plasma parameters. Pair correlation functions, veloc-
ity spectra, and diffusion coefficients of macroparticles
were measured. On the basis of the results of measure-
ments, the concentrations and temperature (kinetic
energy of random motion of dust structures) of macro-
particles were obtained for the regions of dust struc-
tures in which there was no regular motion of dust;
angular velocity distributions of macroparticles in the
region of their vortex motions were also determined.
The effective parameters  and Γ* of dust structures
were reconstructed for various discharge parameters. It
was found that the degree of correlation between parti-
cles in the system, which is determined from the shape
of the pair correlation function, is in good agreement
with the value of effective nonideality parameter Γ*
reconstructed from the measurements of particle diffu-
sion. The observed dust structures were strongly corre-
lated dust liquids (Γ* ≈ 30–80).

Under the assumption of screened interaction
between particles, macroparticle charges Zp and screen-
ing parameters κ = lp/λ were estimated. Analysis of
these data shows that the screening by ions plays a signif-
icant role for dust structures under the given experimental
conditions. For the plasma parameters (Te ≈ 1–3 eV,
ni ≈ 109 cm–3) typical of the given conditions, the
charge Zp of dust particles can be in the range from
3500 to 7000e.

The dynamics of dust vortices was analyzed experi-
mentally. An empirical approximation was obtained for
the radial distribution of angular velocities of macro-
particles. It was shown that, in the presence of a consid-
erable ion drag force, a slight variation of the charge of
macroparticles is sufficient for the formation of their
vortex motion.

ϕs*
SICS      Vol. 96      No. 4      2003
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The results of experiments discussed here show that
both the microscopic motion of macroparticles and the
large-scale rotation of dust in the plasma under investi-
gation can be described using two basic parameters,
namely, the effective nonideality parameter Γ* and the
scaling parameter ξ.

The experiment Plasma Crystal-3 was realized
owing to the support and participation of the Russian
Aviation and Space Agency, Energiya Rocket-Building
Corporation, the German Space Agency, the Russian
Ministry of Industry, Science and Technology, the Ger-
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naut Training, and the Space Flight Control Center.
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Abstract—The supercritical Marangoni convection has been studied in a plane-parallel liquid layer, bounded
by a free deformable gas–liquid interface from above and by a low-heat-conductivity wall from below, occur-
ring under conditions of inhomogeneous heating in the horizontal plane. In a longwave approximation with
a small inhomogeneity of heat flux, the process is described by a system of two-dimensional nonlinear equa-
tions for the temperature perturbations, vorticity, and free surface deformation. The concept of quasiequilib-
rium, implying stability of long-range flows, is introduced, which allows the inhomogeneous heat flux to be
modeled by a step function. The linear stability is analyzed in the cases of planar and axisymmetric heat fluxes.
The boundaries of stability of the convection regimes are determined on the plane of parameters characterizing
the degree of supercriticity inside a heated spot and the depth of damping outside the spot. For an axisym-
metric spot, the domains of stability with respect to perturbations for various azimuthal numbers are estab-
lished. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the 19th century, the Italian winemaker Maran-
goni paid attention to a special kind of flows in wine
that were caused by inhomogeneous surface tension.
Representing the so-called thermocapillary or capil-
lary-concentration convection, this phenomenon was
later termed after the name of its discoverer. The wish
to decrease the role of capillary flows in technological
processes (such as obtaining ultrahigh-purity materials
on board space vehicles, laser doping in metallurgy,
etc.), as well as a basic interest in the new mechanisms
of instability development and the formation of spa-
tiotemporal structures, have inspired extensive investi-
gation in this direction.

An original study into the thermocapillary instabil-
ity of a planar layer of liquid heated from below was
undertaken by Pearson [1]. Subsequent investigations
into this phenomenon were summarized in monograph
[2]. Despite a two-century history of research, the
Marangoni flows experimentally observed under condi-
tions of inhomogeneous heating or inhomogeneous sur-
factant application are still insufficiently understood
and have not been given adequate explanation.

Experimental investigations of the Marangoni con-
vection were initiated in 1974 with a pioneering work
by Pshenichnikov and Yatsenko (reproduced in [3])
devoted to the motion of a liquid in the presence of a
point source of surfactant on the free surface. The
experiments were performed with distilled water as the
liquid medium and ethyl alcohol as the surfactant. A
10% drop in the ethanol concentration in the surface
layer changed the surface tension of water approxi-
1063-7761/03/9604- $24.00 © 20719
mately by 20 dyn/cm. The experiments showed that,
instead of a radially symmetric flow distribution, a mul-
tilobe pattern of motion takes place with the number of
lobes depending on the integral mass flow rate of the
surfactant (ethanol). At a constant supply of the surfac-
tant, the flow is steady and stable, with a sharp peak in
the radial velocity component and one vortex on each
side. As the surfactant supply increases, the intensity of
motion grows and, at a certain value of the mass flow
rate, the two-vortex motion ceases to be stationary: the
third and then the forth vortex arise from time to time
on the side opposite to the radial velocity maximum. In
this nonstationary regime, the two- and four-vortex
stages alternate unless, with further growth in the sur-
factant supply, another steady state with four vortices at
the source is established in the system. At still higher
values of the surfactant mass flow rate, a stable six-vor-
tex motion takes place, followed by an eight-vortex
stage and so on. Each transition from a stage with 2m
vortices (where m is an integer) to that with 2(m + 1)
vortices corresponds to a certain value of the surfactant
flux. The mass flow rate interval in which a stationary
2m-vortex pattern of motion exists rapidly decreases
with increasing m, so that steady states featuring no
more than ten vortices could be experimentally
observed. Note that, in the entire range of the flow
parameters studied, the observed flows exhibited a
long-range character.

Ezersky et al. [4] studied the structure of a ther-
mocapillary flow from a localized heat source situated
at the bottom of a plane-parallel liquid layer in a round
cell. The experiments were performed with 2- to 8-mm-
thick layers of silicon oil. In contrast to the system stud-
003 MAIK “Nauka/Interperiodica”
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ied in [3], thin (3-mm-thick and below) layers at small
temperature gradients always exhibited radially sym-
metric flows directed from the center of a heated spot
toward cold walls of the cell. An increase in the temper-
ature difference between the spot and periphery led to
the formation of steady-state concentric billows in the
entire cell space. Further increase in the source temper-
ature gave rise to numerous defects over the heated spot
and to running waves outside, superimposed on the
main flow. At a large liquid layer thickness (above
3 mm), no steady-state pattern of billows was observed.
With increasing heat source intensity, the pattern of
radially symmetric flow converted into that of running
waves. It was suggested [4] that the observed instability
has a shortwave character related to the combined
action of the thermocapillary and gravitational mecha-
nisms of convection.

Flow patterns analogous to those observed in [4]
were also reported in [5], where a thermocapillary flow
controlled by a lumped heat source on the surface of a
thin layer of silicon oil (with a thickness to lateral size
ratio not exceeding 0.1). This system also exhibited a
radially symmetric flow toward the cell walls. Even at
relatively small temperature differences, this flow lost
stability. The secondary structure represented concen-
tric billows arising at the boundaries of opposite flows:
the main outgoing flow and the counterflow directed
toward the heat source. Further increase in the source
temperature led to the formation of radial billows, so that
the instability acquired a three-dimensional character.

Recently, Bratukhin et al. [6] experimentally and
theoretically studied the Marangoni convection in a
liquid (decane) filling a deep pool with a flat circular
(5–7 mm in diameter) heat source placed at various
depths. With the source situated at a large depth, the
system exhibited predominantly a thermogravitational
flow with a thermal torch. The torch spreading from the
source toward the gas–liquid interface distorted the free
liquid surface, making it convex toward the gas phase.
As the source depth decreased, the capillary effects
became more pronounced, leading to the formation of a
funnel at the gas–liquid interface. At a small depth of
the heat source (1 mm and below), the liquid surface
featured spiral waves turning either clockwise or anti-
clockwise. The direction was established randomly,
right- and left-hand twist being equiprobable. As the
source approached the surface, the number of spiral
arms increased from one to ten. When the heat source
escaped on the surface, the running waves decayed to
leave a beamlike standing-wave structure analogous to
that observed in [5]. It was pointed out that the convec-
tion exhibited a long-range character [6].

This study aimed at obtaining and solving a system
of model equations reflecting the main features of
experiments described above. All systems studied pre-
viously had in common the presence of a source of
inhomogeneous heating or surface tension (surfactant),
which gave rise to a region of inhomogeneous temper-
JOURNAL OF EXPERIMENTAL 
ature or concentration distribution at the source bound-
ary. Experimental data reported in [3–6] differ in the
character of convective motions. In particular, the
experiments described in [4, 5] require taking into
account the three-dimensional character of flows,
which is a rather complicated task. For this reason, the
theoretical model constructed below is restricted to the
asymptotic longwave expansion, which allows the
problem of long-range convection [3, 6] to be reduced
to a system of two-dimensional equations. Originally
suggested by Sorokin [7], this approach to description
of a finite-amplitude convection is valid in the region of
small supercriticity. Describing the convection in a
plane- parallel layer of liquid featuring a continuous
spectrum of motions, this approach provides an answer
to the main question as to which motion is favorable.

A system of nonlinear equations of supercritical
thermogravitational convection, describing the slow
long-range dynamics of the average temperature field,
was obtained by Shtilman and Sivashinsky [8]. In appli-
cation to the Marangoni convection, this problem was
solved by Knobloch [9] in a system with nondeform-
able surface and infinitely large Prandtl numbers. Finite
Prandtl numbers lead to the predominant influence of
inertial effects in the formation of a nonpotential aver-
aged flow. Such effects were previously studied in the
case of gravitational convection [10] and were then
taken into account for capillary convection as well [8].
A generalization of the Knobloch equations to the case
of a two-layer system with deformable surface was for-
mulated by Golovin et al. [11] together with dimen-
sionless physical criteria of a longwave instability
development in the system.

A characteristic feature of the aforementioned theo-
retical investigations is the assumption concerning
homogeneous heating of the liquid layer. Inhomogene-
ity of the heat flux was taken into account only in the
case of thermogravitational convection [12]. The prob-
lem of interaction between inhomogeneous heating (or
inhomogeneous surfactant flow) and long-range super-
critical Marangoni convection remains unsolved. In
this study, the problem will be solved using an asymp-
totic longwave expansion [12, 13].

In Section 2, the problem is formulated, the dimen-
sionless quantities are introduced, and a system of two-
dimensional model equations is derived that describes
slow, long-range thermocapillary Marangoni convec-
tion in an inhomogeneously heated plane-parallel liq-
uid layer with allowance for surface deformation. Phys-
ical limitations for proposed model are indicated and
the possibility of application to the concentration
Marangoni convection is considered.

Section 3 introduces the concept of mechanical
quasiequilibrium for a long-range loss of stability,
which allows the inhomogeneous heat flux to be mod-
eled by a step function. It will be demonstrated that all
normal perturbations vary monotonically (increase or
decrease) with time. Section 3.1 is devoted to the linear
AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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stability of this quasiequilibrium for a one-dimensional
inhomogeneity of the heat flux. Neutral curves for the
symmetric and antisymmetric modes are constructed
with allowance for the surface deformation. Section 3.2
considers flow stability in the case of an axisymmetric
inhomogeneity of the heat flux and presents the neutral
curves for various values of the azimuthal “wavenum-
ber.” It will be shown that, under certain conditions, a
dipole mode (rather than axisymmetric) is most danger-
ous from the standpoint of instability development. In
the Conclusion, the results are discussed and compared
to experiment [3, 6]. The Appendix presents detailed
derivation of the system of model equations.

2. FORMULATION OF THE PROBLEM

Consider a convective Marangoni flow in a plane-
parallel liquid layer of thickness L, bounded with a free
deformable surface from above and by a low-heat-con-
ductivity wall from below. The upper halfspace is filled
by a gas. The liquid and gas are heated from below, con-
ducting an external inhomogeneous steady-state heat
flux. Therefore, the liquid is featuring a flow induced by
this inhomogeneous heating. Let us introduce a coordi-
nate system with the z axis pointing upward and the x
and y axes lying in the bottom plane. The character and
stability of convection in this system will be studied
under the following conditions: (i) the dynamic viscos-
ity and heat conductivity of the gas being lower than
those of the liquid, the gas phase characteristics do not
cause the flow instability; (ii) the heat flux inhomoge-
neity is long-range as compared to the liquid layer
thickness and is small in the sense that a local heat flux
differs only slightly from the average flux Q. All quan-
tities are rendered dimensionless, being expressed in
units of length (L), time (L2/χ), velocity (χ/L), pressure
(ηχ/L2), and temperature LQ/κ, where κ, χ, and η are
the coefficients of heat conductivity, thermal diffusiv-
ity, and dynamic viscosity of the liquid. For the sake of
convenience, with a view to applying a longwave
approximation, let us introduce the horizontal (u) and
vertical (w) velocity components; differentiation with
respect to the vertical coordinate (∂z) will be denoted by
the prime, and that with respect to the horizontal coor-
dinates will be denoted by operator ∇  = i∂x + j∂y , where
i and j are the unit vectors along the x and y axes. In
these terms, the system of dimensionless equations of
hydrodynamics [14], including the Navier–Stokes
equation and the heat conductivity equation, takes the
following form:

(1)

1
Pr
----- ∂tu u ∇ u⋅ wu'+ +( ) ∇ P– ∇ 2u u'',+ +=

1
Pr
----- ∂tw u ∇ w⋅ ww'+ +( ) –P' ∇ 2w w'' G,–+ +=

∂tT u ∇ w⋅ wT '+ + ∇ 2T T '',+=
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where G = gL3/νχ and Pr = ν/χ are the Galilean and
Prandtl numbers, respectively; ν is the kinematic vis-
cosity coefficient; and T is the temperature relative to
the value averaged over the liquid layer. As for the
boundary conditions, the bottom surface (z = 0) is char-
acterized by sticking (for the velocity) and a preset heat
flux. The upper interface, z = 1 + h(x, y), is character-
ized by the kinematic condition and the heat flux Q =
ez(–1 + q(x, y)) along the vertical coordinate axis, the
projection of which onto the normal equals the normal
component of the heat flux per unit surface area:

In addition we require the continuity of stresses at z = 0,

(2a)

and at z = 1 + h(x, y):

(2b)

where Ca = σsL/ηχ is the capillary number, Ma =
(∂σs/∂T)QL2/ηχκ  is the Marangoni number, σs is the
surface tension;  is the tensor of viscous stresses,
h(x, y) is the amplitude of the free surface deviation
from the x = 1 plane, q(x, y) is the inhomogeneous

component of the heat flux, n = (–∇ h; 1)/
is the unit vector of the normal to the free surface, tα =

(δαx, δαy, ∇ h)/  are the tangential unit vec-
tors, and the colon indicates the twofold convolution of
the viscous stress tensor.

The role of the surface tension and the gravity force
in the free surface deformation is characterized by the
capillary number and the Galilean number, respec-
tively. In the problem under consideration, these
parameters are sufficiently large (for a 1-mm-thick
water layer at 20°C and atmospheric pressure, G =
6.8 × 104 and Ca = 5.1 × 105); for this reason, the free
surface deformation is very small and does not affect
the linear stability. In what follows, we will assume that
a heat flux is close to critical throughout the liquid
layer, differing from this level to within the second-
order term in q(x, y), a slowly varying function of lat-
eral coordinates. A small parameter is defined as ε2 =
Ma/Ma* – 1, where Ma* is the critical Marangoni num-
ber defined below. For a longwave character of the flow,
the derivatives of any quantities in the lateral directions
are much smaller than those in the vertical direction.
This implies that there is another small parameter in the
problem, which is generally not related to ε. However,
we can obtain a closed system of equations by imposing
the following limitation: parameters of different physi-
cal natures are considered as quantities of the same

n ∇ T⋅ n ez –1 q x y,( )+[ ] .⋅=

u 0,    w 0, T ' –1 q x y , ( ),+= = =

∂th u ∇ h⋅+ w,=

T' ∇ h ∇ T⋅ 1– q x y,( ),+=

σ̂ : n n⋅ –Ca MaT+( )divn,=

σ̂ : n tα⋅ Matα∇ T ,–=

σ̂

1 ∇ h( )2+

1 ∇ αh( )2+
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order of smallness, so that ε ~ |∂f/∂x |/|∂f/∂z | ~ L/R,
where R is a characteristic scale of the flow or the heat
flux inhomogeneity q(x, y) in the lateral directions. For
convenience, let us calibrate the capillary number and
Galilean number as

(below, the tilde is omitted). Consider the case of low-
intensity motions in which the velocity u is of the first
order of smallness in ε (a square root of supercriticity).
Under these conditions, the vertical component of
velocity is of the second order of smallness, while the
evolution operator is on the order of ε4. Let us perform
rescaling of the horizontal coordinate, the time, and the
heat flux inhomogeneity by substituting

A remarkable feature of system (1) upon this rescaling
is that the unit of length for the lateral coordinates is
determined by the characteristic scale (R) of the heat
flux inhomogeneity.

Let us seek a solution to system (1) in the form of
expansion with respect to a small parameter repre-
sented by ε, the square root of supercriticity:

(3)

Detailed derivation of the system of evolution equa-
tions is presented in the Appendix. Here, let us only
briefly consider the main stages of this procedure.

Since the solid boundary of the system is low-heat-
conducting, the long-range motions are most dangerous
in the lateral directions [2]. For this reason, perturba-
tions of the vertical temperature gradient are small (on
the order of ε2); in lower orders of perturbation theory
(see Appendix), the temperature depends only on the
lateral coordinates x, y. The free surface deformation is
also small and the velocity field is proportional to the
gradient of the average temperature field φ(x, y, t). With
allowance for the continuity equation, this yields

The critical Marangoni number is determined in
second-order perturbation theory and coincides with
the value determined by linear analysis [2] for a system
with a nondeformable boundary: Ma* = 48 (see Appen-
dix). Vortex flows can be described (see Appendix) in
terms of the average vertical vorticity potential ψ, for

G
G̃

ε2
----, Ca

Ca˜

ε4
------, G̃ 1, Ca˜ 1∼∼= =

x εx, y εy, t ε4y, q ε2q.

u ε u0 ε2u2 ε4u4 …+ + +( ),=

w ε2 w0 ε2w2 …+ +( ),=

P ε 2– P 2– P0 ε2P2 …,+ + +=

h ε2 H0 ε2H …+ +( ),=

T T0 ε2T2 ε4T4 …+ + +=

u ∇φ , w ∇ 2φ.∝∝
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which ez∇ 2ψ ∝  〈∇ ×  u2〉  (angle brackets 〈…〉  = 

denote averaging over the coordinate z).
The system of closed evolution equations, relating

the average temperature field φ(x, y, t), the amplitude
H(x, y, t) of the free surface deviation from the plane,
and the potential ψ(x, y, t) of the average vertical vortic-
ity is obtained in the fourth order in ε (see Appendix):

(4)

where

For q(x, y) = –1, which corresponds to a homoge-
neously exceeded longwave instability threshold in the
entire layer, Eqs. (4) transform into the system obtained
in [11]. Two additional terms (proportional to ∇ (q∇φ )
and ∇ 2q) in the first equation (4) characterize inhomo-
geneity of the heat flux. These terms are qualitatively
similar to the terms proportional to ∇ (H∇φ ) and ∇ 2H,
describing the influence of the amplitude of the free
surface deviation from the plane on the dynamics of the
average temperature field (see the first equation in sys-
tem (4)). This is quite natural, since the local
Marangoni number can be modified by two methods:
via increasing the heat flux or changing the liquid layer
thickness. In addition, deformation of the surface leads
to a new mechanism of vorticity generation, this contri-
bution being proportional to ∇ H × ∇φ  (see the second
equation (4)).

The physical characteristics of the gas do not influ-
ence the loss of stability in the liquid layer under the
following conditions [11]:

(5)

where  = ηgas/η is the ratio of the dynamic viscosities
in the gas and liquid;  = κgas/κ and  = χgas/χ are the
ratios of the heat and conductivity and thermal diffusiv-

ity coefficients, respectively; and  = Lgas/L is the ratio
of thicknesses of the layers occupied by the gas and liq-
uid phases. The first condition (5) implies that the ten-
sor of viscous stresses in the gas phase is much smaller

… zd
0

1∫

∂tφ ∇φ∇ ezψ( )× ∇ 4φ ∇ 2H–+ +

+
7

6
-------∇ H∇φ( ) ∇ q∇φ( ) 15

8
------ ∇ 2q+–

– ∇ ∇φ 2∇φ( ) 7
8

------- 1 2
Pr
-----+ 

  ∇ ∇ 2φ∇φ( )+

+
3 7

4
---------- 1 1

6Pr
--------+ 

  ∇ 2 ∇φ 2 0,=

ez∇
2ψ 13

2Pr
--------∇ ∇ 2φ( ) ∇φ 7

6
--- ∇ H ∇φ ,×–×=

δ∇ 2H ∇ 4H– c∇ 2φ,–=

δ 2
15
------ G

Ca
------, c

48
5Ca
----------.= =

η̃ / L̃ ! 1, L̃
2
/χ̃  ! 1, L̃κ̃  ! 1, L̃

3κ̃  ! 1,

η̃
κ̃ χ̃

L̃
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than in the liquid; the second condition indicates that
the characteristic temperature diffusion time in the gas
phase is much smaller than that in the liquid; and the
third condition reflects the small rate of heat transfer in
the gas as compared to that in the liquid. The latter con-
dition determines the regions of longwave instability
for a sufficiently thin gas layer (the minimum
Marangoni number falls within the longwave region).
For a two-layer air–vapor system [11] at 20°C and a
pressure of 1 atm, we obtain  = 1.8 × 10–2,  = 1.6 ×
102, and  = 4.3 × 10–2. As can be seen, conditions (5)

are satisfied provided that 0.01 !  ! 10.
The system of equations (4) is also applicable to the

concentration Marangoni convection. In this case, the
average temperature field φ(x, y, t) is replaced by the
average concentration field and the thermal diffusivity
coefficient, by the surfactant diffusion coefficient. Note
that the concentration convection in thin layers [3]
always possesses a long-range character, whereby the
surfactant diffusion from liquid to gas can be ignored.

3. QASIEQUILIBRIUM: 
LINEAR ANALYSIS

As was pointed out above, the liquid layer features a
flow induced by inhomogeneous heating in the horizon-
tal plane. However, under certain conditions this
motion may play not the main role in the formation of
convective flow structures. Such a case is realized, in
particular, when both inhomogeneity of the heat flux in
the lateral directions and the related convective flow are
small in comparison to the heat flux passing through the
layer and the related long-range convection.

First, consider the heat flux inhomogeneity in the
form of a step function:

(6)

where r is the radius vector in the horizontal plane. The
heat flux discontinuity gives rise to short-range motions
at the spot boundaries (not featured by the system at the
longwave instability threshold). Therefore, these
motions are insignificant in the analysis of long-range
convection and we can speak of a mechanical
quasiequilibrium. For this reason, ∇ q = 0, ∇ 2q = 0 and
the solution φ(x, y) = 0, H(x, y) = 0, ψ(x, y) = 0 describes
the state of quasiequilibrium with respect to long-range
convection, which can be either stable or unstable.

The quasiequilibrium is stable, provided that all
long-range perturbations tend to decay. Should one or
several long-range perturbations grow with time, the
quasiequilibrium becomes unstable with respect to
these perturbations. Therefore, in order to judge the sta-
bility of a quasiequilibrium, it is necessary to consider
the development of various long-range perturbations
with time. Indeed, the form of the function (6) and the

η̃ χ̃
κ̃

L̃

q
a2, r 1,≤±

b2, r 1,>±



=
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concept of quasiequilibrium allow us to decline from
description of the main flow and to describe behavior of
the system in terms of perturbation theory. At the same
time, it is clear that flow structures arising in the pres-
ence of a thermal inhomogeneity will be qualitatively
described by two parameters: deviations from the criti-
cal heat flux inside (±a2) and outside (±b2) the spot.
Here, the minus and plus signs correspond to the heat
flux above and below the critical value, as determined
by the z axis direction selected. This formally implies
that there are four different regions on the plane of
parameters (b2, a2), of which we will consider the two
corresponding to the first and fourth quadrants. In both
these regions, the heat flux outside is always under-
stated. In the first quadrant, there is an excess heat flux
inside the spot. In the fourth quadrant, the heat flux
inside the spot is also below critical, but the reduction
is different inside and outside the spot. These very situ-
ations take place in experiments [3, 6].

Let us consider small nonstationary perturbations of
the quasiequilibrium (linear theory of stability). Under
these conditions, we may neglect the terms quadratic
and cubic in perturbations in Eqs. (4). Taking into
account (6) and using subscripts i and e to indicate the
quantities in the internal (inside the spot) and external
(outside the spot) regions, we obtain a system of linear
equations

(7)

Eliminating the surface perturbations, we obtain

(8)

The boundary conditions at |r | = 1, reflecting conti-
nuity of the average temperature field φ(x, y, t), the
velocity field u ∝  ∇φ  and w ∝ ∇ 2φ, the amplitude
H(x, y, t) of the free surface deviation from the plane,
and the Laplace pressure field (proportional to ∇ 2H) are
as follows:

(9)

The latter condition is supplementary and can be
obtained using the Green formulas [15].

∂tφi ∇ 4φi ∇ 2Hi– a2∇ 2φi+ + 0,=

δ∇ 2Hi ∇ 4Hi– c∇ 2φi,–=

∂tφe ∇ 4φe ∇ 2He– b2∇ 2φe–+ 0,=

δ∇ 2He ∇ 4He– c∇ 2φe.–=

∂t ∇ 2φi δφi–( ) ∇ 6φi a2 δ–( )∇ 4φi+ +

– c δa2+( )∇ 2φi 0,=

∂t ∇ 2φe δφe–( ) ∇ 6φe b2 δ+( )∇ 4φe–+

– c δb2–( )∇ 2φe 0.=

φi φe– φi' φe'– ∇ 2φi ∇ 2φe–= =

=  ∇ 2φi' ∇ 2φe'– ∇ 4φi ∇ 4φe– 0,= =

∇ 4φi' a2∇ 2φi' a2δφi'– ∇ 4φe'– b2∇ 2φe' b2δφe'–+ + 0.=
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Let us consider the normal perturbations of the
exp(–λt) type. Multiplying Eqs. (8) by φ*, integrating
over the space with allowance for the boundary condi-
tions (9), and using the Green formulas [15], we obtain,
upon simple but cumbersome transformations,

(10)

where q(x, y) is given by formula (6) and φ = (φi, φe).
Equation (10) is indicative of a monotonic character of
perturbations. This expression is conveniently pre-
sented in the dimensional form:

(11)

At q < c/δ, the third term in expression (11) is negative.
For a sufficiently large spot size, this term becomes pre-
dominant, so that the decrement is negative and the flow
is unstable. Thus, long-range inhomogeneity leads to
instability of the induced flow. This condition deter-
mines the boundary of the domain of instability in the

λ ∇∇ 2φ 2
V q δ+( ) ∇ 2φ 2

Vd∫+d∫=

+ δq c–( ) ∇φ 2 Vd∫ ∇φ 2 Vd∫ δ φ2 Vd∫+ 
 

1–

,

λ 1

R6
----- ∇∇ 2φ 2

Vd∫ q δ+

R4
------------ ∇ 2φ 2

Vd∫+=

+
δq c–

R2
-------------- ∇φ 2 Vd∫ 1

R2
----- ∇φ 2 Vd∫ δ φ2 Vd∫+ 

  1–

.

1

2

3
4

a2

20

16

12

8

4

0 10 20 30 40
b2

Fig. 1. The first levels of instability in the case of a one-
dimensional inhomogeneity of the heat flux for (1, 2) a sym-
metric mode φ(–x) = φ(x) described by Eqs. (12) and
(3, 4) an antisymmetric mode φ(–x) = –φ(x) described by
Eqs. (13) with the parameters (1, 3) c = 10, δ = 1 and
(2, 4) c = 0, δ = 0. The vertical dashed line b2 = c/δ separates
the domains of local and global instability. The domains of
stability are situated under neutral curves 2 and 4.
JOURNAL OF EXPERIMENTAL
first and fourth quadrants on the (b2, a2) plane: the
regions of b2 > c/δ and a2 > –c/δ correspond to a local
instability caused by the spot. For b2 < c/δ, the loss of
stability is related to the region outside the spot and
possesses a global character. We will dwell on the local
mode, since this very type of flow is observed in exper-
iment [3, 6]. It should be noted that, as R  0, the dec-
rement is always positive and an equilibrium does exist.
A small region of heating does not influence the long-
wave loss of stability. This is also related to the fact
that, in selecting the form of function (6), we ignore the
heat flux along the liquid layer and the related convec-
tive motion. This is just what allows us to speak of a
quasiequilibrium.

3.1. One-dimensional Inhomogeneity 
of Heat Flux

In this case, the role of coordinate r in the heat flux
inhomogeneity described by step function (6) is played
by the Cartesian coordinate x. In order to find the neu-
tral curves (∂t = 0), let is use the following set of func-
tions:

(12)

for a symmetric mode [φ(–x) = φ(x)], and

(13)

for an antisymmetric mode φ(–x) = –φ(x). Substituting
expressions (12) and (13) into (8) yields a system of
algebraic equations for determining the roots aj and bj:

(14)

Upon solving system (14), we obtain

(15)

where the plus and minus signs correspond to the roots
a1 (b1) and a2 (b2), respectively.

The neutral curves in the (b2, a2) plane are deter-
mined from boundary conditions (9). Figure 1 presents
the neutral curves for c = 0, δ = 0 in a system with a
nondeformable upper boundary and for c = 10, δ = 1 in

φi A1 A2 a1x( )cos A3 a2x( ),cosh+ +=

φe B1 b1 x–( )exp B2 b2 x–( ),exp+=

φi A1x A2 a1x( )sin A3 a2x( ),     x 1, < sinh+ +=  

φ

 

e

 

B

 

1

 

b

 

1

 

x

 

–

 

( )

 

exp

 

B

 

2

 

b2 x–( ), x 1,>exp+

–B1 b1 x–( )exp B2 b2 x–( ), x 1,–<exp–



=

a j
4 δ a2–( )a j

2 δa2– c–± 0,=

b j
4 δ b2+( )b j

2 δb2– c–– 0.=

a1 2,
1

2
------- a2 δ– δ a2–( )2

4 δa2 c+( )+± 
 ± ,=

b1 2,
1

2
------- b2 δ δ b2+( )2

4 δb2 c–( )–±+ ,=
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Fig. 2. The first levels of instability for the modes described by system (18) with various values of the azimuthal number m for the
parameters (a) c = 0, δ = 0 and (b) c = 10, δ = 1. The domains of stability are situated under neutral curves; the vertical dashed line
b2 = c/δ separates the domains of local and global instability.
a system with free deformable surface. These curves
correspond to the first levels of instability for the sym-
metric and antisymmetric modes. The domain of stabil-
ity is situated under the neutral curves. The vertical
dashed line shows the boundary (b2 = c/δ) separating
the domains of local and global instability. As can be
seen, the boundary of stability with respect to parame-
ter a2 (characterizing a supercritical heat flux inside the
heat spot) is determined by the damping parameter (b2)
outside the spot and approaches an asymptotic level at
sufficiently large b2 values. The influence of the param-
eters c and δ is manifested by a change in the values
b2 = c/δ corresponding to the boundaries of local insta-
bility (see expression (11)) determined by the spot (b2 >
c/δ) and global instability caused by the region outside
the spot (b2 < c/δ). The free surface deformation leads
to a decrease in the stability threshold for all levels of
both symmetric and antisymmetric modes. In the entire
region of parameters, the stability threshold for sym-
metric modes is lower than that for antisymmetric ones.

In the case of c = 0 and δ = 0, the neutral curves
admit analytical determination. Indeed, the symmetric
model is described by the relation

(16)

and the antisymmetric mode corresponds to

(17)

The results of calculations show that the neutral
curves are qualitatively similar for any values of c and
δ, whereby the predominant quantity determining the

b asin a acos+ 0,=

b2a acos a2b a2 b2+ +( ) asin– 0.=
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pattern is the ratio c/δ ~ G–1. This conclusion follows
from relation (11) for large heat flux inhomogeneities
as compared to the liquid layer thickness.

3.2. Axisymmetric Inhomogeneity 
of Heat Flux

In order to find the neutral curves (∂t = 0) in this
case, let is use a set of eigenfunctions of the Laplace
operator in a cylindrical coordinate system determined
by the symmetry of the spot:

(18)

where Jm , Im , and Km are the Bessel functions of the first
kind, the modified Bessel functions, and the Hankel
functions, respectively; the azimuthal number m deter-
mines the number of lobes [3] or spiral arms [6] in the
convective flow pattern.

Under the action of operator ∇ , Eqs. (18) yield

(19)

Substituting expressions (18) into system (8) and taking
into account relations (19), we obtain expressions for
the roots aj, bj that coincide with formulas (15). The
neutral curves in the (b2, a2) plane are determined from
boundary conditions (9).

φi A1Jm a1r( ) A2Im a2r( ) A3rm+ +[ ] eimϕ …,+=

φe B1Km b1r( ) B2Km b2r( ) B3r–m+ +[ ] eimϕ …,+=

∇ 2φi a j
2φi, ∇ 4φi– a j

4φi, ∇ 6φi a j
6φi,–== =

∇ 2φe b j
2φe,= ∇ 4φe b j

4φe, ∇ 6φe b j
6φe.= =
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Figure 2 shows neutral curves for the convective
modes (see Eqs. (18)) at various values of the parame-
ters c and δ. Here, the domain of stability of the convec-
tive mode is situated under the corresponding neutral
curve. The vertical dashed line represents the boundary
(b2 = c/δ) separating the domains of local and global
instability. As can be seen, deformation of the free sur-
face leads to a decrease in the stability threshold for the
modes with any azimuthal number m > 1. However,
which type of the modes (axisymmetric with m = 0 or
dipole with m = 1) is most dangerous depends on the
parameters c and δ. In the region of c/δ > 10, more dan-
gerous is the axisymmetric mode; at lower values of
this ratio, there is a region in the (b2, a2) plane in which
the dipole mode (m = 1) is more dangerous. Figure 3
illustrates a change in the symmetry of modes upon
symmetry breakage depending on the parameters char-
acterizing deformation of the free liquid surface.

Similarly to the one-dimensional case, the pattern of
neutral curves is sensitive with respect to the parameter
c/δ ~ G–1 and the boundary of stability with respect to
parameter a2 (characterizing a supercritical heat flux
inside the heat spot) is determined by the damping
parameter (b2) outside the spot and approaches an
asymptotic level at sufficiently large b2 values.

In the case of c = 0 and δ = 0, the neutral curves also
admit analytical determination depending on the azi-
muthal number:

(20)
Jm 1+ a( )
aJm a( )
-------------------

Km 1+ b( )
bKm b( )
--------------------+

2m

b2
-------a2 b2+

a2 b2–
----------------.=

1
2

3

4

a2

25

20

15

10

5

0 10 20 30 40 b2

Fig. 3. The first levels of instability for (1, 2) an axisymmet-
ric mode with m = 0 and (3, 4) a dipole mode with m = 1 for
the parameters (1, 3) c = 10, δ = 1 and (2, 4) c = 0, δ = 0.
The vertical dashed line b2 = c/δ separates the domains of
local and global instability. The domains of stability are sit-
uated under neutral curves.
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4. CONCLUSIONS

We have studied the Marangoni convection under
weakly supercritical conditions in a layer of liquid with
a free deformable upper surface and an inhomogeneous
heating source. In a longwave approximation with
weakly inhomogeneous heat flux, the problem reduces
to a system of two-dimensional nonlinear equations in
terms of the amplitudes of perturbations in the temper-
ature, vorticity, and free surface deformation. After
introduction of the concept of qasiequilibrium (in
which the system no longer features short-range
motions), the inhomogeneity was modeled by a step
function. This simplification opens way to studying a
still rather complicated system and characterizing
instabilities depending on the supercritical heat flux
exceeding the stability threshold inside the heating spot
and reduced heat flux (damping) outside the spot.

In the cases of planar and axisymmetric inhomoge-
neities of the heat flux, we determined the boundaries
of stability of the convective flows on the plane of
parameters characterizing supercritical heat flux inside
the spot and the degree of its damping outside the spot
for various values of the capillary and Galilean num-
bers. For an axisymmetric spot, the domains of stability
with respect to perturbations were established for vari-
ous azimuthal numbers. The results of a linear analysis
of the problem in the case of a stepwise heating inho-
mogeneity lead to the following conclusions. The type
of longwave instability of the equilibrium (global ver-
sus local mode) is determined by the degree of reduc-
tion in the heat flux outside the local source: the global
instability changes to local at a certain value of the
parameter b2 = c/δ. This threshold value, determining
the boundary of a neutral stability curve, is zero for a
nondeformable surface and increases for the other
parameters c and δ characterizing deformation of the
free surface.

In the case of an axisymmetric heating spot, the
boundary of the local instability of equilibrium and the
type of most dangerous instability mode (axisymmetric
versus azimuthal) are determined by the dimensionless
parameters a2 + c/δ, b2 – c/δ characterizing the heat
source intensity, dimensions, and the effects of the sur-
face tension and force of gravity. There is a certain
region in the space of parameters in which the dipole
mode (m = 1) is more dangerous than the axisymmetric
mode (m = 0). Deformation of the free liquid surface
provides for a new pathway for the heat dissipation,
thus changing the symmetry of modes capable of
breaking the stability of equilibrium. In the range of
control parameters c/δ < 10, there is a region on the
plane of parameters (b2, a2) in which the dipole mode
(m = 1) is most dangerous. As the control parameter
(and, hence, the surface deformation amplitude)
increases, the axisymmetric mode becomes most dan-
gerous in the entire range of heat flux discontinuities.
The instability threshold with respect to the modes with
AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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m > 1 is always higher in the entire region of parameters
studied.

A comparison with the experimental data reported
in [3] shows that the above theoretical results qualita-
tively describe the multilobe convection structures. The
neglect of the horizontal heat flux component (and,
hence, of the induced flow as well) leads to a monotonic
character of perturbation development with time, which
hinders the description of complicated oscillatory
regimes observed in [6]. A numerical analysis of sys-
tem (4) has been reported in [16].
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APPENDIX

The method of nonlinear perturbation theory
employed below is analogous to the procedure
described in [8, 11]. For the sake of convenience, the
boundary conditions (2) are transferred from the sur-
face z = 1 + h(x, y) to the plane z = 1 by using expan-
sions of the velocity, temperature, and pressure fields
into Taylor series in small deviations of the surface
from the plane (|h | ! 1). In the lowest order with
respect to the supercriticity parameter, this yields the
following equations and boundary conditions:

(A.1)

(A.2)

(A.3)

(A.4)

The solution of Eq. (A.1) determines the pressure field

(A.5)

where Q0(x, y, t) is the pressure as a function of the lat-
eral coordinates and H(x, y, t) is the surface deformation
amplitude, which are still unknown functions of recal-
culated coordinates x, y and the current time t.

P 2–' G+ 0, z 1: P 2–= = 0,=

P0' 0, T0'' 0, –∇ P0 u0''+ 0, –∇ u0 w0' ,== = =

z 0:    u 0 0 w , 0 0, T 0 ' 1,–= = = =

z 1: P0 HP–2'+ –Ca∇ 2H , w0 0,= = =

u0' Ma∗ ∇ T0, T0'– 1.–= =

P 2– G 1 z–( ), P0 Q0 GH Ca∇ 2H ,–= = =
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The solution of the second equation in (A.2) is

(A.6)

where φ(x, y, t) is an unknown temperature field, which
will be determined below in the fourth order of pertur-
bation theory.

Integrating the continuity equation (third equation
in (A.2)) with respect to coordinate z, we obtain

(A.7)

where 〈…〉  = . In this order of perturbation the-

ory, a shift of the surface (h ~ ε2) does not influence the
results of averaging through the layer.

In order to take into account the solenoidal compo-
nent of the velocity field, let us introduce the vorticity
integral

Applying the operations of rotor and divergence to the
Marangoni boundary conditions (third equation in (A.4)),
we obtain

(A.8)

Since there are no mass forces creating the vorticity, we
set ψ0 = 0. Then, the solution for the velocity is

(A.9)

In the second order of perturbation theory,

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

T0 –z φ x y t, ,( ),+=

∇ u0 zd

0

1 h+

∫ ∇ u0 zd

0

1

∫ O h( )+≈  = 0 u0〈 〉  = 0,

… zd
0

1∫

2zez∇ ψ 0 zd×
0

1

∫ ∇ ezψ0( ).×=

∇ 2ψ0 0, ∇ 2Q0
3
2
---Ma∗ ∇ 2φ.–= =

u0
3
2
--- z2

2
---- z

3
---– 

  Ma∗ ∇ 2φ,–=

w0
1
4
--- z3 z2–( )Ma∗ ∇ 2φ.=

P2' w0'',=

z 1:= P2 HP0'+ Ca∇ 2H2– 2w0' ,+=

u2'' ∇ P2 ∇ 2u0–
1
Pr
----- u0∇( )u0 w0u0'+[ ] ,+=

T1'' –∇ 2φ w0T0' u0∇ T0,+ +=

∇ u2 w2' ,–=

z 0: u2 0 w, 2 0, T2' q x y,( ),= = = =

z 1: w2 u0∇ H Hw0' , T2'– q x y,( ),= = =

u2' Ma∗ ∇ T2+ Hu0''– Ma∗ ∇ H .+=
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The search for a solution begins with the temperature
field T2. Integrating Eq. (A.12) with respect to z and
using the boundary conditions on the lower interface,
we determine the integration constant C(x, y) = q(x, y),
while the boundary conditions on the upper interface
yield the critical Marangoni number Ma* = 48. Equa-
tions (A.5) and (A.8) lead to the following relation
between the free surface deformation and the tempera-
ture field:

(A.17)

In this order of perturbation theory, integration of the
continuity equation (A.13) with respect to z must be
performed taking into account deformation of the free
liquid surface:

which leads to the relation

(A.18)

Using the kinematic condition (A.15), we obtain

(A.19)

In order to describe the solenoidal velocity field, we
introduce the vorticity potential ψ2 determined in the
same way as in zero-order perturbation theory. This
potential is related to the surface deformation as

(A.20)

Upon introducing the integral operator 

,

the solution to the system of equations (A.10)–(A.16)
obtained using relations (A.7) and (A.18)–(A.20) is as
follows:

(A.21)

(A.22)

(A.23)

∇ 2 GH Ca∇ 2H–( ) 72∇ 2φ.–=

∇ u2 zd

0

1 h+

∫ w2 1 h+( )–=

∇ u2 zd

0

1

∫ h∇ u2+ –w2 w2' h– O h2( ),+=

∇ u2 zd

0

1

∫ w2 1( ).–=

∇ u2〈 〉 12∇ H∇φ( ).=

u2〈 〉 ez ∇ψ 2 12H∇φ .+×=

Î …[ ] … zd

0

z

∫=

ez∇
2ψ2

72
Pr
------ f f ''〈 〉 2 Î

2
f f ''( )〈 〉–{ }–=

× ∇ ∇ 2φ( ) ∇φ 24∇ H ∇φ ,×–×

T2
z2

2
----– 12Î

2
f[ ]+

 
 
 

∇ 2φ=

+ 12Î f[ ] ∇φ 2 zq φ2,+ +

P2 –12 f '∇ 2φ Q2 x y,( ),+=
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(A.24)

(A.25)

(A.26)

where f(z) = z2 – z3. Below, we will omit subscript 2 in
writing the potential ψ2 determined by Eq. (A.21).

In order to obtain an equation describing evolution
of the temperature field φ, let us pass to the fourth order
of perturbation theory. Using the continuity condition,

(A.27)

we obtain (in this order of the theory) the following
equation with the boundary conditions

(A.28)

(A.29)

(A.30)

which determine the dynamics of the temperature per-
turbations. 

Averaging with respect to coordinate z with allow-
ance for Eqs. (A.29) and (A.30) yields

(A.31)

u2 24 Î f[ ] 2z Î f[ ]〈 〉–{ }∇∇ 2φ–=

+ 2zez ∇ψ 2 x y,( )× z2

2
---- z

3
---– 

  ∇ Q2+

+
72
Pr
------ Î

2
f '( )2[ ] 2z Î

2
f '( )2[ ]〈 〉–{ }∇ ∇φ 2

+24zH∇φ 144
Pr

--------- Î
2

f f ''( )[ ] 2z Î
2

f f ''( )[ ]〈 〉–{ }∇φ∇ 2φ,+

w2
f
6
--- ∇ 2Q2 24 Î

2
f[ ] z2 Î f[ ]〈 〉–{ }∇ 2∇ 2φ+=

– 12z2∇ H∇φ( )

–
72
Pr
------ Î

3
f '( )2[ ] z2 Î

2
f '( )2[ ]〈 〉–{ }∇ 2 ∇φ 2

+
144
Pr

--------- Î
3

f f ''( )[ ] z2 Î
2

f f ''( )[ ]〈 〉–{ }∇ ∇φ∇ 2φ( ),

∇ Q2 936 Î f[ ]〈 〉 ∇∇ 2φ–=

+ 72 ∇ H ∇ ∇φ 2– H∇φ ∇ q φ2+( )+ +{ }

+
216
Pr

--------- f f ''〈 〉 2 Î
2

f f ''( )[ ]〈 〉–{ }∇φ∇ 2φ

–
108
Pr

--------- f '( )2〈 〉 2 Î
2

f '( )2[ ]〈 〉–{ }∇ ∇φ 2

+  36 ∇∇ 
2 φ ,

φ ∇ u2 w2'+( ) 0, T2 ∇ u0 w0'+( ) 0,= =

∂tφ ∇ u2φ u0T2+( ) w2φ w0T2+( )'+ +

– w2 ∇ 2T2– T4'',=

z 0:   T 4 ' 0,= =

z 1:   T 4 ' T 2 '' H ∇ H ∇φ –+ 0,= =

∂tφ ∇ u2φ u0T2+〈 〉 w2φ z 1=+ +

– w2 ∇ 2T2+〈 〉 ∇ H∇φ( ) 12H ∇φ 2.+=
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Upon changing the scale,

,

and using relation (A.18) for the calculation of (A.31),
we arrive at the system of equations (5). Note that the
fields φ2 (A.22) and H2 (A.10) do not influence the
dynamics of the average temperature field φ.
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Abstract—A modified Poisson–Boltzmann model has been proposed which makes it possible to describe the
screening of strongly charged macroparticles in liquid electrolyte Z : Z solutions in the case when parameter
B = ZeQ0/εRT @ 1 (Q0 is the surface electric charge, T is the temperature, ε is the solution permittivity, and Z
is the valence of ions) provided that the solution is dilute: κR ≡ (8πZ2e2ni0/εT)1/2R ! 1 (ni0 is the equilibrium
number density of ions). It is assumed that the charge Q0 of a macroparticle appears as a result of adsorption of
ions of a certain polarity on its surface. Quantitative criteria of division of dissolved ions into capable and incapa-
ble of adsorption are formulated. For aqueous solutions, the adsorption mechanism always leads to values of
B @ 1. It is shown that the charge inversion effect predicted by other authors on the basis of different models
must be observed for such solutions for all Z ≥ 1. The effect of Brownian movement of macroparticles on their
screening is considered. It is shown that viscous forces emerging during such movement lead to peripheral
destruction (“washing out”) of the screening ionic shell of macroparticles and, as a result, to violation of their
electroneutrality. This results in the emergence of two types of oppositely charged compound particles with
small radii close to R and with radii much larger than R, the charge polarity of the latter being opposite to the
polarity of Q0. It is found that both types of ions of compound particles obey the “law of distribution” of the
mean energy of their electric field, expressed by formula (29). The problem of ionic screening of gas bubbles
accompanied by the formation of bubstons (bubbles stabilized by ions) is considered separately. It is shown that
the bubston radius R in pure water and in aqueous solutions of electrolytes is equal to 14 nm irrespective of the
ion number density ni0. The value of ni0 determines the number density nb of bubstons themselves, which are
formed spontaneously under equilibrium conditions. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A macroparticle (in particular, a gas bubble) in a liq-
uid solution of electrolyte acquires an electric charge
Q0 owing to certain physicochemical processes on its
surface. Under equilibrium conditions, this charge is
screened by the ionic shell with electric charge density
δ(r). Henceforth, we will consider only spherical parti-
cles of radius R and, accordingly, assume that charge
density δ(r) is spherically symmetric. The screening
(quasineutrality) condition can be written in the form

(1)

(r is the distance from the particle center). Depending
on the value of parameter B = ZeQ0/εRT (here and
below, we assume that Q0 > 0 and consider a binary
Z : Z solution, where Z is the valence of dissolved ions,
e is the elementary charged, T is the temperature in
energy units, and ε is the permittivity of the liquid; the
Gaussian system of units is used), particles can be
divided into weakly charged when B ! 1 and strongly
charged when B @ 1.

Q0 4π r2δ r( ) rd

R

∞

∫+ 0=
1063-7761/03/9604- $24.00 © 20730
In the case when B ! 1, using the Poisson–Boltz-
mann equation in the Debye–Hückel approximation,
we obtain the well-known result [1] for the charge den-
sity distribution δ(r), satisfying condition (1):

(2)

(2a)

Here, lB = e2/εT is the Bjerrum length (lB = 7 Å for water
at room temperature), aD is the Debye radius, and ni0 is
the equilibrium density of ions (for r = ∞). A distin-
guishing feature of weakly charged particles is that, in
accordance with Eq. (2), the sign of density δ(r) is
opposite to the sign of the surface charge Q0 for all val-
ues of r ≥ R; in other words, counterions always prevail
in the screening ionic shell (ions adsorbed at the surface
of a particle will be referred to as auxiliary and charge-
forming ions). As a result, ionic screening of a charged
macroparticles is impossible, in accordance with
Eq. (1), for finite values of radius r. For a long time, this
circumstance was indisputable for specialists in colloi-

δ r( )
Q0κ

2

4π 1 κR+( )
----------------------------e κ r R–( )–

r
------------------, r R,≥–=

κ aD
1– 8πZ2e2ni0/εT Z 8πlB/ni0.= = =
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dal systems irrespective of values of parameter B. How-
ever, some experimental data that have been obtained in
recent years obviously have contradicted the concept of
a screening ionic shell with absolute prevalence of
counterions. Above all, this concerns the experimental
proof of attraction of likely charged macroparticles in
aqueous solutions of electrolytes under certain condi-
tions [2–4], which contradicts the Deryagin–Landau–
Verwey–Overbeck (DLVO) theory [5, 6] based on the
Debye screening (2). Such contradictory facts also
include recent experimental results on electrophoresis
of macroparticles in solutions of various electrolytes,
indicating an ambiguous dependence of the electro-
phoretic mobility of particles on the polarity of their
surface charge [7–9]. An example of such a contradic-
tion is the situation with stable gas bubbles (bubstons)
in pure water. According to [10, 11], such bubbles must
carry a positive surface charge of adsorbed H+ ions,
which is screened by both types of intrinsic OH– and H+

water ions. At the same time, experiments on electro-
phoresis of bubbles in pure water indicate that their
charge is negative. In contradiction to [10, 11], it is con-
cluded from these data that OH– ions are adsorbed on
the surface of bubbles in pure water.

These contradictions, as well as other facts, stimu-
lated a large number of theoretical publications [11, 12],
in which the so-called inversion (or superscreening)
effect of the charge of macroparticles in aqueous solu-
tions of electrolytes is predicted. The effect is that the
charge density distribution δ(r) for strongly charged
particles in the ionic shell can reverse its sign upon an
increase in r. In this case, the sign of the total charge
within a sphere with a certain finite value of radius r > R,

(3)

can be inverted; i.e.,  = – . The existence
of this effect opens wide possibilities in interpreting the
experimental facts mentioned above. In the cited publi-
cations, theoretical concepts are developed according
to which condensation of counterions can occur on the
surface of a macroparticle with the formation of a two-
dimensional strongly correlated liquid for large values
of B. Under certain conditions, the charge density (per
unit area) of such a liquid may exceed in absolute value
the unscreened (initial) surface charge density Q0/4πR2,
which is the main reason for charge inversion. Accord-
ing to the results obtained by these authors, the screen-
ing of the inverted charge can be successfully described
on the basis of the Poisson–Boltzmann equation.

An important step in explaining the details of the
charge inversion effect was publication [13], which
described the results of numerical counting aimed at
studying the structure of the screening ionic shell of a
strongly charged macroparticle in an aqueous salt solu-
tion. It was assumed that charge Q0 = 20e and that the

Q r( ) Q0 4π x2δ x( ) x,d

R

r

∫+=

Q r( )sgn Q0sgn
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ionic salt solution is a binary 2 : 2 or 1 : 1 solution. In
this case, parameter B = ZeQ0/εRT ≡ 20Z(lB/R); conse-
quently, parameter B for 2 : 2 and 1 : 1 solutions was
equal to 280/R(Å) and 140/R(Å), respectively. In calcu-
lations, only the Coulomb interaction between dis-
solved ions and between ions and charged macroparti-
cles was taken into account for T = 300 K. For various
concentrations of both types of solutions, only three
values of parameter B were taken into account: B = 14
(2 : 2 solution, R = 20 Å, and 1 : 1 solution, R = 10 Å),
B = 22.4 (2 : 2 solution, R = 12.5 Å), and B = 28 (2 : 2
solution, R = 10 Å). The main result obtained in [13] is
as follows: inversion is absent for B = 14 and inversion
is present for B = 22.4 and 28. It is significant that the
sign reversal of charge Q(r) always occurs not jump-
wise, as follows from the concepts of the formation of
a two-dimensional liquid of counterions, but as a result
of a smooth tendency of Q(r) to zero for r  R + ∆r,
where ∆r is the scale of a considerable decrease
(approximately, to one-third of the initial value) in the
volume density of counterions near the particle surface
(in the immediate vicinity of the surface, their density
is maximal, but finite). Thus, the results obtained in
[14] indicate that, first, the inversion effect is indeed of
the threshold type in parameter B. Second, charge
inversion occurs not at the particle surface proper, but
as a result of gradual mixing of counterions with sec-
ondary ions upon an increase in (r – R). For large values
of B, such mixing leads to prevalence of secondary
ions, i.e., to sign reversal of the charge density δ(r) and
to the emergence of inversion of charge Q(r). These
conclusions make it possible to refute the model of the
inversion effect, which stems from ideas on surface
condensation of counterions (formation of a two-
dimensional liquid) and consider another model, which
is free of such concepts. This model is proposed here as
applied to dilute solutions of electrolytes, for which
parameter ζ ≡ κR ! 1. We proceed from the fact that the
charge Q0 of a macroparticle emerges on its surface as
a result of adsorption of one of two types of ions dis-
solved in the liquid (Z : Z solution). The possibility of
such an ion-adsorption mechanism of emergence of Q0

for gas bubbles was considered in our earlier publica-
tion [11]. Here, we consider the possibilities of the ion-
adsorption mechanism for spherical macroparticles
formed from an arbitrary dielectric with permittivity
εp ! ε (e.g., solid dielectric spheres, oil drops, or gas
bubbles in aqueous solutions) on another theoretical
basis (as compared to [11]). The term “macroscopic”
will be henceforth applied to particles for which R @
3δl ~ (0.3–1.0) nm (δl is the radius of a liquid mole-
cule). In the course of model construction, this concept
will be refined, but in all cases we will speak of nanom-
eter-size and coarser particles. The main result of this
analysis (Section 2) is as follows: macroparticles
present in a liquid ionic solution and capable of stable
adsorption of ions on their surface are always strongly
charged (B @ 1) and, hence, their ionic screening
SICS      Vol. 96      No. 4      2003
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always differs from the Debye screening (2). Quantita-
tive conditions for the selection of dissolved ions in
respect to the possibility of their strong adsorption are
formulated. Section 3 is devoted to quantitative analy-
sis of the proposed model of screening of strongly
charged particles; the conditions for the emergence of
the charge inversion effect are considered. In Section 4,
we consider the effect of thermal (Brownian) move-
ment of macroparticles on their screening. It should be
emphasized that, although we consider liquid solutions
of electrolytes, the results obtained pertain equally to
pure liquids with ion-type conductivity. In particular,
this also applies to pure (e.g., distilled) water contain-
ing only its own ions H+ and OH–, appearing due to
thermal electrolytic dissociation of H2O molecules.

2. STRONGLY CHARGED MACROPARTICLES:
RESULTS OF ADSORPTION 

OF DISSOLVED IONS OF CERTAIN POLARITY 
ON THEIR SURFACE

If the surface charge Q0 of a particle is due to
adsorption of ions with charge Ze > 0 on its surface,
parameter

(4)

where  is the surface density of adsorbed ions and

 ≡ R [nm] is (here and below) the radius of a particle
in nanometers. The last equality in relation (4) corre-
sponds to aqueous solutions at room temperature. It

shows that, for  ≥ 1014 cm–2 = 1 nm–2 and  > 1,
parameter B @ 1 irrespective of valence Z.1 

The possibility of adsorption of an ion at the surface
of a liquid coating a macroparticle is due to the exist-
ence of attraction energy between the ion and a neutral
macroparticle (atom or molecule), which is known to
be equal to (–βq2/2r4), where β is the electronic polar-
izability of the neutral particle, q is the ion charge, and
r is the distance between the ion and the particle. In our
case, we must set q = Ze and r = (δl + δi), where δi is the
ion radius. The adsorption energy UAD in this case is
determined by the maximal (absolute) value of the
energy corresponding to simultaneous attraction of the
ion to three surface molecules of the liquid with the for-
mation of a densely packed tetrahedron.2 Thus, we can

assume that UAD = (3/2)Z2e2β/ , where δ0 = (δl + δi).
For δ0 ~ 3 Å and β ~ 10–24 cm3, we have UAD ~

1 It should be noted that all numerical estimates will henceforth be
referred to aqueous solutions at room temperature without special
stipulations.

2 In the rigid sphere model, such an arrangement of an ion corre-
sponds to its location in a “crater” of the surface layer of spheri-
cal molecules.

B ZeQ0/εRT 4πZ2lBRγi
AD= =

≈ 9Z2Rγi
AD nm( ) 2– ,

γi
AD

R

γi
AD R

δ0
4
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(Z/2)2 eV/ion ≈ 5Z2 kcal/mol, which is a typical value
of adsorption energy at the liquid surface. The desorp-
tion energy UD = UAD – UL , where UL is the adsorption
activation energy determined by the energy of lateral
Coulomb interaction of adsorbed ions located at
adsorption centers. This energy should be set equal to
UL = Z0(Ze)2/[(ε/2)d], where Z0 is the coordination
number of such centers and d is the spacing between the
nearest centers. The fact that UL is doubled as compared
to the conventional energy of Coulomb interaction
(term (ε/2) appears instead of ε) is due to the location
of interacting charges (ions) on the liquid surface
proper.3 The values of Z0 and d are determined here
from the condition that the packing of molecules of liq-
uid on the surface of a macroparticle is close to dense;
consequently, the molecules form a two-dimensional
hexagonal lattice. Naturally, this condition idealizes the
surface of the macroparticle itself, presuming that it has
no microscopic structure. According to such concepts,
uniform distribution of adsorption centers with the
maximal surface density must correspond to their
arrangement at sites (craters) of such a lattice with

spacing d = 2 δl between the centers. This value of d
is the minimal distance for which each of the three liq-
uid molecules in a tetrahedron can interact only with a
single ion, thus ensuring the maximal energy UAD . Each
adsorbed ion (adsorption center) in this case is at the
center of its own Wigner–Seitz cell with the minimal

possible area SWS = ( /2)d2 = 6 . For a hexago-
nal lattice, Z0 = 6 and, hence, energy UL =

2 Z2e2/(εdl); for the desorption energy, we obtain

(5)

where  = [(3/2)Z2e2/(εδl)](1/A ), A = /εβ, and
α0 = (1 + δi /δl). The necessary condition for adsorption
is UD > 0 (i.e., a potential barrier must exist). Adsorp-
tion is stable if the ratio (UD/T) is quite large. Form con-
dition UD > 0, we obtain the condition that must be
imposed on the ratio δi/δl:

(6)

Thus, in accordance with the model we are dealing
with, only dissolved ions whose radii δi satisfy condi-
tion (6) are capable of adsorption in principle. The

3 Here, we use the well-known result from electrostatics [15],
according to which the energy of interaction between two charges
q located on the plane surface of half-spaces having permittivities
ε and εp and separated by distance d is 2(q2/d)/(ε + εp). The appli-
cability of this result to the case in question is ensured by the gen-
eral requirement R @ d of the model and the assumption that
εp ! ε.

3

3 3 δl
2

3

UD UAD UL– UD
0 1
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SCREENING OF STRONGLY CHARGED MACROPARTICLES 733
more stringent this condition, the higher the energy UD

and, accordingly, the more stable the adsorption. It
should be noted that condition (6) does not contain the

valence Z of ions; only energy  is a function of
valence. For aqueous solutions, δl = 1.23 Å, β = 1.47 ×
10−24 cm3, ε = 81, parameter A = 1/64, and condition (6)
assumes the form

(6a)

i.e., only ions with δi < 1.29δl = 1.59 Å are capable of
adsorption in principle. For example, in salt solutions
of NaCl (Na+ and Cl– ions) and KCl (K+ and Cl– ions),
only cations Na+ and K+ are capable of adsorption since
the anion radius  = 1.81 Å, while  = 0.98 Å and

 = 1.33 Å. In accordance with relation (5), energy

UD for these cations is equal to 0.84 and 0.24 eV,
respectively. At room temperatures, this corresponds to
a ratio (UD/T) @ 1; i.e., adsorption of these cations in
water is always stable, and charge Q0 emerging on a
macroparticle is always positive.

It would be interesting to analyze the possibility of
adsorption of intrinsic H+ and OH– ions. The ion radii

 = 0.62 Å and  = 1.53 Å,4 i.e., not only H+ ions,

but also OH– ions can be adsorbed in principle. How-
ever, the ratio (UD/T) @ 1 for H+ ions, while for OH–

ions, in accordance with relation (5), ratio ((UD/T) ≈
1.8; i.e., the adsorption of these ions is unstable, and
they cannot compete with H+ ions in relation of adsorp-
tion. This means that macroparticles in pure water must
be positively charged. It should be noted that the con-
clusions concerning the specific examples considered
by us here coincide with the conclusions given in [11].

The assumptions concerning the arrangement of ion
adsorption centers make it possible to determine imme-

diately the surface density  of stably adsorbed ions:
since Wigner–Seitz cells densely cover the entire sur-

face of a macroparticle, we have  = 1/SWS , where

SWS = 6  is the area of a cell. Thus,

(7)

4 The values of  and  were determined by us on the basis

of experimental data on hydration energies ∆G of H+ and OH–

ions and using the Born model of hydration. In accordance with
this model, ∆Gi = (Z2e2/2δi)(1 – 1/ε). For H+ ions,  =

264 kcal/mole [16]. In water, 1/ε ! 1 and, hence, we can assume
that  = e2/2  = 0.62 Å for the effective radius of H+ ions

in water. The hydration energy of OH– ions in water is  =

107 kcal/mole. Consequently,  = /  = 2.46  =

1.53 Å.
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It should be emphasized once again that this result corre-
sponds only to stable adsorption, for which (UD/T) @ 1,
and is hence independent of the solution temperature
and of the valence Z of ions. In other words, if ions
capable of stable adsorption at a given temperature are
dissolved in a liquid with the molecular radius δl , the
surface density of adsorption in this case is determined
by formula (7) irrespective of the ion density ni0. The
latter statement is valid in all cases when dissolved ions
are intrinsic ions of the liquid; consequently, their den-
sity is determined by temperature T (and by the energy
of electrolytic dissociation of liquid molecules) and
does not depend on their possible adsorption at parti-
cles. If, however, ions are impurities (the density of
intrinsic ions is negligibly small), only their total
number per unit volume is conserved during adsorption
at particles and, hence, the density of free ions
decreases. The above assumptions are valid only pro-
vided that the density of particles in the solution is np !

ni0/(4πR2 ) ~ ni0(δl/R)2, i.e., provided that adsorp-
tion does not affect the density ni0 of dissolved ions. It
should also be noted that formula (7) is not valid for gas
bubbles (see Section 5). For aqueous solutions, δl =

1.23 Å and, hence,  = 6.4 × 1014 cm–2, and the gen-

eral requirement R @ 2 δl of the model leads to the
universal limitation R ≥ 4 nm on admissible sizes of

macroparticles (since 2 δl = 0.43 nm). The above

value of  is typical of most molecular liquids. The
only exception is organic liquids with “giant” mole-

cules for which the value of  can be considerably
smaller.

The results of this section confirm its title: if a solu-
tion contains ions capable of adsorption at the surface
of a macroparticle, i.e., satisfying conditions (6) and
(UD/T) @ 1, these ions always charge these particles
strongly (B @ 1) in accordance with relation (4) irre-
spective of the concentration of ions themselves (the
latter quantity determine only the stabilization time of
adsorption).

3. SCREENING
OF STRONGLY CHARGED PARTICLES

Quasineutrality condition (1), which must be
observed for arbitrary values of B, implies that the ionic
charge Q(r) contained within a sphere of radius r > R
(see relation (3)) tends to zero with increasing (r – R).
This leads to the situation when the value of
Ze|Q(r)|/εrT becomes smaller than unity for large val-
ues of (r – R) and, hence, the density δ(r) of the screen-
ing ionic charge for such values of (r – R) must have the
Debye form; i.e., (C/r)exp[–κ(r – R)], where κ is
defined by formula (2a)). On the other hand, it was
shown in the Introduction that, in accordance with
numerical counting [14], the decrease in δ(r) from the

γi
AD

γi
AD

3

3

γi
AD

γi
AD
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734 N. F. BUNKIN, F. V. BUNKIN
maximal value δ(R) for small values of (r – R) must be
much more rapid, but smooth. On the basis of these two
features of the behavior of density δ(r), our construc-
tion of the model of screening of strongly charged mac-
roparticles stems from the representation of δ(r) in the
entire range of values of (r – R) in the form

(8)

where C1 and C2 are the sought parameters independent
of r. It was mentioned above that we will consider only
dilute solutions for which ζ ≡ κR ! 1. It will be clear
from subsequent analysis that parameter ξ ≡ bR is on
the order of or greater than unity in accordance with
what has been said concerning the behavior of δ(r) for
small (r – R); consequently, ζ/ξ ! 1 in all cases.

The substitution of Eq. (8) into relation (1) and the
inclusion of the boundary condition C1 + C2 = Rδ(R)
gives a system of two equations in C1 and C2. Its solu-
tion, accurate to terms on the order of ~ζ2, has the form

(9)

where

(9a)

For strongly charged particles, the density of charge
δ(R) on the surface of a particle must be completely
determined by the density ni(R) of counterions having
the charge (–Ze)(sgnδ(R) = –sgnQ0). Consequently,
δ(R) = –Zeni(R), and parameter F > 0 is defined by the
formula

(10)

Equations (9) and (10) contain two as yet unknown
parameters, viz., the number density ni(R) of counteri-
ons at the surface ni(R) and ξ = bR.

In order to determine ni(R), we use the Boltzmann
equation

(11)

Here, ϕ(R) is the potential of the electric field produced
by the charge density distribution δ(r) in form (8). The
number density ni(R) of counterions defined in this way
(and, hence, potential ϕ(R)) increases indefinitely with B.
It is this circumstance that mainly stimulated other
authors to develop the concept of counterion condensa-
tion at the surface of a particle, leading to the formation
of a two-dimensional liquid mentioned in the Introduc-
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tion. Remaining in the framework of our model, we
proceed from the fact that the counterion density ni(R)

for B @ 1 attains its maximal but finite value 

that depends only on the surface density  of
adsorbed ions. In this case, Eq. (11) should be regarded
as the equation determining the value of ϕ(R) which, in
turn, depends on ξ, C1, and C2 in accordance with

Eq. (8) and, ultimately, only on ξ and  in accor-
dance with Eqs. (9) and (10). As a result, parameter ξ
can be defined in terms of  and other given
parameters of the problem.

First of all, we determine the dependence of ϕ(R)

on ξ and . The solution of the Poisson equation
∇ 2ϕ = –(4π/ε)δ(r) for an arbitrary distribution δ(r) sat-
isfying quasineutrality condition (1) with the boundary
conditions ϕ(∞) = 0, ϕ'(R) = –Q0/εR2 can be repre-
sented in the form

(12)

Substituting expression (8) into this formula, integrating,
setting r = R, and taking into account expressions (9), we
obtain

(12a)

where, in accordance with Eq. (10),

(13)

Substituting now ni(R) =  into the left-hand side
of Eq. (11) and expression (12a) into its right-hand side,
we obtain the following relation between ξ and

:

(14)

where α = L/B, L = ln[ /ni0]. In this case, quan-
tity f (see Eq. (9a)) assumes the form

(14a)

It remains for us to determine the value of .
Counterions are not capable of adsorption (they do not
satisfy condition (6), and if this condition is satisfied,
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SCREENING OF STRONGLY CHARGED MACROPARTICLES 735
UD/T ≤ 1 for these ions), but being near the surface of a
macroparticle, they are attracted to it by the Coulomb
forces exerted by adsorbed ions. The latter are located
at the centers of their Wigner–Seitz cells covering the
entire surface of the particle. The maximal surface den-

sity  of counterions obviously corresponds to their
arrangement at the same distance 2δl from three
adsorbed ions, each of which mainly interacts with only
one counterion (Fig. 1). It is this arrangement that cor-
responds to a stable state. Since each counterion in this
case corresponds to three individual Wigner–Seitz

cells, we have  = 1/3SWS = 1/8 . Assuming

further that  = [ ]2/3, we obtain

(15)

For aqueous solutions, the number density  =
3.1 × 1021 cm–3.

It can be seen from Eq. (8) that distribution δ(r)
must vanish at a certain point r = r0 if quantities C1 and
C2 have opposite signs. In accordance with relations (9),
this is observed for f > 0 or, in accordance with
Eq. (14a), for ξ < (1 – α)/α. Introducing a new variable,

(16)

we have

(16a)

consequently, condition f > 0 assumes the form

(17)

When this inequality holds, we can easily obtain the
following expression for the position of point r0:

(18)

At this point, the charge density δ(r) of the ionic shell
changes its sign: sgnδ(r < r0) = –sgnδ(r > r0) (Fig. 2).
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d1 = 2δl

d 2 3δl=

Fig. 1. Ion adsorption centers (dark circles) form a two-

dimensional hexagonal lattice with spacing d = 2 δl
between centers (δl is the radius of liquid molecules
depicted by large circles). Each center (adsorbed ion) is at
the center of its Wigner–Seitz cell, having an area of SWS =

6  (hatched circles). The density of adsorbed ions is

 = 1/SWS . Small light circles denote the positions of
surface counterions, each of which corresponds to three

individual Wigner–Seitz cells. Consequently, Γi = /3.
The distance between each of the three adsorbed ions and
the surface counterion is d1 = 2δl .
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Fig. 2. The charge density in the ionic shell δ(r); δ(R) =
−eZni(R) is the charge density on the surface (ni(R) is the
density of counterions at the surface); Q0 is the surface

charge;  is the charge in a

sphere of radius r > R.
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736 N. F. BUNKIN, F. V. BUNKIN
This must also lead to sign inversion of the total charge
Q(r), occurring at a certain value of radius r1 ≠ r0. Let
us determine r1. On the basis of Eqs. (1), (3), (8), and
(9), we have

(19)

(19a)

It follows from relation (19) that the necessary condi-
tion for Q(r) vanishing is, as before, the inequality
f > 0, i.e., inequality (17). In this case, the equation for
y1 ≡ r1/R has the form

(20)

Since (ξ/ζ)2 @ 1, it follows from expression (20) that
radius r1 < r0; i.e., the sign inversion of the total charge
Q(r) (sgnQ(r < r1) = sgnQ0 = –sgnQ(r > r1)) occurs at
such distances from the particle surface where the sign
of the charge density remains unchanged (sgnδ(r1) =
sgnδ(R0) = –sgnQ0) (see Fig. 2). In accordance with
formula (19a), charge Q(r) attains its extreme value at
point r = r0. On the basis of Eqs. (19) and (18), we
obtain the following relation (accurate to terms on the
order of (ζ/ξ)2) for this value of Q(r0):

(21)

As the value of r increases further, charge Q(r) tends to
zero.

Let us now consider inequality (17), viz., the condi-
tion for the existence of the charge inversion effect in
dilute solutions (ζ ! 1). This condition can be written
in the form

(22)

where α1 is the smaller of two positive roots of the
equation

i.e.,

(22a)

Substituting this value into inequality (22) and consid-
ering that, in accordance with relations (2a), (4), (7),
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(15), and (16), parameters B and L can be represented
in the form

we arrive at condition

(23)

where Ψ(λ) = λ[1 + λ(1 – )] is a monotoni-
cally increasing function of λ. Let us analyze the fulfill-
ment of this inequality for aqueous solutions (lB = 7 Å,
δl = 1.23 Å), for which lB/δl = 5.7 and λ is defined, in

accordance with Eq. (16), by the formula λ = /4 with
an accuracy admissible for our model. It follows hence
that the range of possible values of λ is determined by
the range of values of  permissible in the model. The

minimal value  is determined by the minimal mac-
roparticle radius R = 4 nm for an aqueous solution,
which was estimated by us earlier. Hence, we can
assume that  = 4 and, accordingly, λmin = 1. The

maximal value  must correspond to the condition
ζ = κR ! 1 for dilute solutions. Setting ζ = 0.1, we
obtain, in accordance with Eq. (2a),  ≈ (8/Z) ×
108/  [cm–3]. Since the value of  decreases upon

an increase in density ni0, while  is independent of

density, inequality ni0 <  must be satisfied in the

framework of the model, where  is determined

from the condition  = . These formulas lead to

 = (4/Z2) × 1016 cm–3 = (7/Z2) × 10–5 M. Thus, the
above results are valid for aqueous solutions only for
ionic densities ni0 < 4 × 1016 cm–3 = 7 × 10–5 M (and
only for Z = 1). If we are dealing with pure water with
pH = 7, and the density of adsorbed H+ ions is ni0 = 6 ×
1013 cm–3 = 10–7 M, we have  ≈ 102 and, accor-
dingly, λmax = 25. It can easily be verified that inequal-
ity (23) holds for all aqueous solutions satisfying the

condition of their being dilute (ni0 < ), i.e., in the
entire range of possible values of λ (1 < λ < 25) irre-
spective of valence Z.
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SCREENING OF STRONGLY CHARGED MACROPARTICLES 737
Let us consider quantitative estimates for a particle
of radius R = 4 nm (  = 4, λ = 1 in a 1 : 1 aqueous solu-
tion (we assume that ζ = 0.1 and, accordingly, ni0 =

 = 4 × 1016 cm–3 = 7 × 10–5 M). For such a particle,
the adsorbed charge Q0 = 1300e, B = 224, L = 11.2, α =
L/B = 0.05, ξ = 2, α1 = 0.27, and Bα1 = 60 > L = 11.2
(i.e., condition (22) is satisfied). Radii r0 and r1 are
equal respectively to 16 and 7 nm, while the maximum
(absolute) value of inverted charge Q(r0) = –900e.

4. EFFECT OF BROWNIAN MOTION 
OF MACROPARTICLES ON THEIR SCREENING

While considering the screening of macroparticles
by the ionic shell, we tacitly assumed that a particle in
a liquid solution is at rest and, hence, its ionic shell is
not subjected to hydrodynamic action (such a shell will
be referred to as an equilibrium shell). As a matter of
fact, macroparticles perform thermal Brownian move-
ment, and such an action is inevitable. In this case, a
compound particle with total charge Qc , which consists
of the initial macroparticle of radius R and surface
charge Q0 and a certain layer of the liquid with the “fro-
zen-in” ionic shell distorted by motion, is involved in
motion. If the velocity of the particle is small, we can
assume that the distortion of the ionic shell under
steady-state conditions boils down to washing out (van-
ishing) of the equilibrium charge density distribution
δ(r) due to viscous forces of a peripheral layer r > ac ,
while the remaining part of this distribution (r < ac) is
spherically symmetric as before. Such a pattern is
widely used in theoretical treatment of electrophoresis
(see, for example, [17]); in this case, the radius ac of a
compound particle is usually referred to as the hydro-
dynamic radius of a colloidal particle and the spherical
surface with such a radius is called the glide surface. At
the same time, there are no publications (to our knowl-
edge) in which this concept is used for clarifying the
role of thermal motion of a particle. Our task is to estab-
lish the relation between parameters Qc and ac of a com-
pound particle and the initial parameters Q0 and R of
the macroparticle and of the solution itself. As before,
we assume that the solution is dilute (ζ ! 1).

The physical foundation for solving the formulated
problem is that the pressure of viscous forces destroy-
ing the ionic shell during its motion is always opposed
by the electrostriction-induced pressure pstr compressing
the compound particle and associated with its charge Qc,
which coincides in the given model with the charge Q(r)
considered above for r = ac (see Eq. (3)), i.e.,

(24)

and δ(r) is the equilibrium charge density distribution
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ac

∞

∫–= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
defined in the previous section. The electric field
strength at the surface of a compound particle (r = ac) is

Ec = Qc/ε , while the pressure is given by

(25)

The steady-state (stationary) state corresponds to the
equality of the spherically symmetric pressure pstr to the
maximal absolute value of the negative pressure of vis-
cous forces (i.e., the pressure of detachment from the
rear side relative to motion), which sets in for a certain
value of radius ac of the glide surface. Under the lami-
nar flow conditions for a particle with velocity u, the
maximal pressure of detachment is given by [18]

(26)

(η is the viscosity of the liquid); consequently, for the
given velocity u, parameters Qc and ac can be defined,
in compliance with our model, from the equation

(26a)

and Eq. (24).
In thermal motion of particles, their velocity u = u(t)

(here and below, u stands for the velocity component
along a certain fixed direction s) is a steady-state ran-
dom process with the mean value 〈u〉  = 0 and the spec-
tral intensity

(27)

Here, mc is the mass of a compound particle, which can

be set equal to (4π/3)ρ  (if the density of the macro-
particle itself is close to the density ρ of the liquid or if
R ! ac), and τ0 = mc/5πηac is the correlation time of
process u(t).5 Obviously, it would be incorrect to sub-
stitute the quantity 〈u2〉1/2 = (T/mc)1/2 for u into Eq. (26).
As a matter of fact, the motion of a Brownian com-
pound particle consists of fast “vibrations” with ampli-
tudes smaller than its radius ac (the relative amplitude
of such vibrations is 〈u2〉1/2(τ0/ac) ~ 0.1(T/ρv 2ac)1/2 ~

10–2/  [nm] ! 1, v  = η/ρ ~ 10–2 cm2/s) and “smooth”
displacements with amplitudes comparable with or
greater than ac . For our problem, the second type of

5 While defining τ0, we use for the Stokes frictional force the for-
mula F = 5πηacu corresponding to the motion of a liquid drop in
a liquid with the same viscosity η.
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motion is of interest since only such movements of a
compound particle may lead to viscous washing out of
the peripheral layer of the ionic shell. The smooth
velocity process u1(t) of interest to us corresponds to
the low-frequency part of spectrum g(ω) in the interval

(0, ), where τ1 @ τ0, and can be represented as pro-
cess u(t) averaged over interval τ1:

(28)

The spectral intensity g(ω) of this process is given by

(28a)

and u(t) for the complete process can be written in the
form of the sum

(28b)

Spectrum g2(ω) vanishes for ω = 0 and has a width of

∆ω2 ≈ . It is responsible only for small vibrations of
the particles mentioned above and makes zero contribu-
tion even to their diffusive movements (since the diffu-
sion coefficient D2 = πg2(0) = 0). Smooth displacement
of particles are controlled by spectrum g1(ω), which, in

accordance with Eqs. (28a), has a width of ∆ω1 ≈ ;
accordingly, the correlation time of process u1(t) is
equal to τ1. Washing out of the peripheral layer is the
most effective on intervals of unidirectional motion of
a particle, i.e., in the intervals between successive
extrema of process u1(t). It is well known (see, for
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u1 t( )
1
τ1
---- e
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Fig. 3. ac is the radius of a compound particle and Qc ≡
Q(ac) is its charge.

ac
(1) ac

(2) ac
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example, [19]) that the mean value of such intervals
coincides in order of magnitude with the correlation
time of a random process, i.e., with time τ1 in our case.
During this time, the particle is displaced on the aver-

age by  = . We use the condition

 = ac to determine the value of interval τ1
(spectral width ∆ω1) for which the washing out is the

most effective: τ1 = ac/ . However, τ1 =

〈u2〉τ 0/  in accordance with Eqs. (28a). This leads to

the expression  = τ0/ac = T/5πη , which
does not depend on mass mc , required for the substitu-
tion into formula (24). The substitution of this expres-

sion for  into Eq. (26a) gives

(29)

where K = (3/2)T is the average thermal energy of the
particle; the left-hand side of this formula defines the
energy of the electric field created by the compound
particle. It is important to note that the expression
establishing the relation between ac and Qc was derived
on the basis of Eqs. (25), (26), and (27), i.e., universal
results of macroscopic electrodynamics, hydrodynam-
ics, and statistical physics (the theory of Brownian
motion). Thus, it is not associated in any way with our
model (including the condition κR ! 1) and, being
independent of viscosity η, is of the thermodynamic
nature: in the steady state, the energy of the electric
field of a compound particle for an arbitrary value of the
adsorbed charge Q0 is a function of the temperature of
the medium only (and is close to its mean kinetic
energy).

It should also be noted that this result is not associ-
ated in any way with the sign inversion effect and is also
valid for weakly charged macroparticles, for which B !
1 and the Debye screening (2) takes place. The charge
of a compound particle in this case is given by

(30)

Here, for all values of ac , charge Qc has the same sign
as charge Q0 and tends monotonically to zero with
increasing ac . As a result, the system of equations (29)
and (30) has only one pair of roots (Qc, ac) for all pos-
sible temperatures, which corresponds to a single type
of compound particles. We will not dwell on detailed
analysis of this exotic case (from the viewpoint of our
model) and we return to strongly charged particles. In

accordance with Eqs. (19) and (24), the quantity  as
a function of ac has a two-hump shape (Fig. 3), and the
system of equations (24) and (29) for T < T* (T* will

∆S2〈 〉 1/2 ∆u1
2〈 〉 1/2τ1

∆S2〈 〉 1/2

u1
2〈 〉 1/2

u1
2〈 〉

u1
2〈 〉 1/2

u2〈 〉 ac
2

u1
2〈 〉 1/2

Qc
2

2εac

----------- 0.8
3T
2

------ 
  0.8 K,= =

Qc Q0

1 κac+
1 κR+
-----------------e

κ ac R–( )–
.=

Qc
2

AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003



SCREENING OF STRONGLY CHARGED MACROPARTICLES 739
be defined below) has formally three pairs of roots

( , ) (i = 1, 2, 3), the relation between Qc and ac

in each pair being

(31)

It can easily be seen, however, that only two pairs of

roots ( , ) and ( , ) correspond to stable
states of compound particles; i.e., only two types of
compound particles can exist and have such parame-

ters. Parameters ( , ) are found to be impracti-

cable. This follows from the fact that, for radii ac < 

(but for ac > ), pressure pstr < pv (see Fig. 3); conse-
quently, the particle size must continue to decrease in
the course of Brownian motion (ionic shell is washed

out) down to value . For ac >  (but ac < ),
pressure pstr > pv and, hence, motion does not hamper
the growth of the ionic shell of a compound particle up

to value . At the same time, radii  and  cor-
respond to stable states since the condition

 = –  holds for small

deviations (ac – ).

Thus, compound particles can be divided into two

types: “small” particles with radii  ≡  and

charges ( /e) = (2.4 /lB)1/2 (sgn  = sgnQ0) and

“coarse” particles with radii  ≡  and charges

− /e = (2.4 /lB)1/2 (  = – ; it should be
recalled that Q0 > 0 by hypothesis). Such a division of
compound particles into two types with opposite charge
polarities is a peculiar manifestation of the charge
inversion effect; its presence follows from independent
data on parameters of compound particles.

In accordance with Eqs. (21) and (30), temperature
T* is defined by the formula

(32)

Using formulas (14), (14a), and (18) and taking into
account the fact that α ~ 0.1 and ζ ≤ 0.1, we obtain the

approximate formula (T*/T) ≈ 102Z2(RlB ). For
aqueous solutions (for Z = 1), this gives (T*/T) ~

102  [nm–2] ≥ 103; i.e., for any temperature T, all

three pairs of roots ( , ), i.e., both types of com-
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pound particles, must exist. Since (T/T*)1/2 ! 1, for
small compound particle we have6 

(33)

Parameters ( , ) for coarse compound particles
can be determined from Eq. (29), into which we must
substitute only the second term of formula (19) (the first

term is exponentially small since ((  – R)b @ 1).
Using formula (32) and the above approximate formu-
las for (T*/T), we can easily obtain the following
approximate results (we assume that (r0/R) ~ 3,
(T*/T) ≥ 103):

(34)

For ln(3T*/T) ≈ 10 and ζ = 0.1, we obtain

(34a)

It is worth noting that parameters  and  do not
depend on the adsorbed charge Q0 to within terms on

the order of (T/T*)1/2, while  and  depend on it
only logarithmically.

It would be interesting to analyze the electro-
phoretic mobility of compound particles. This process
is linear; i.e., mobility µc is independent of the external
electric field E only if the field in the solution is E/ε !

Ec ≡ Qc/ε  = (1/ε) / . In order to satisfy
this condition for both types of compound particles, it
is necessary that

(35)

6 It can easily be verified that  = r1[ ]. The

approximate expression for r1 ≈ R(1 + 2/ ) follows from

Eq. (20), taking into account the fact that ξ ≈ /2.
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It can easily be verified that this condition is equi-

valent to the condition uc !  = (T/5πη )
imposed on the velocity of compound particles for lin-
ear electrophoresis and, hence, does not affect the
Brownian mechanism of their formation. For aqueous
solution, relation (35) leads to the condition E !

7.4 × 104/  [V/cm], which can be satisfied in
traditional experiments on electrophoresis up to R ~
103 nm = 1 µm.

The electrophoretic mobility µc can be determined
from the equality of the ponderomotive force Qc(E/ε)
acting on a compound particle to the Stokes force
5πηacuc. It follows hence that µc = uc/E = Qc/5πacηε
and, in accordance with Eq. (30), we obtain

(36)

Mobilities  and  have opposite signs and their
ratio is given by

(36a)

Thus, the positive mobility of small compound parti-
cles (for Q0 > 0) is always higher in absolute value than
the negative mobility of coarse compound particles.

Let us now determine the electrical conductivity of
a colloidal solution, which is due to the electrophoretic
effect in question (molar-ionic conductivity). Since the
densities of both types of compound particles are iden-
tical and equal to the density np of macroparticles them-
selves, we have the following expression for the current
density jp:

On the basis of Eqs. (36) and (36a), we derive the fol-
lowing expression for the molar-ionic conductivity σp:

(37)

This formula contains the only characteristic of colloi-
dal particles as charge carriers, namely, their number
density np; conductivity σp does not depend on radius R
or on the adsorbed charge Q0. At room temperature and
viscosity η ~ 10–2 g/ cm s = 1 cP, conductivity σp ~
10−24np cm–3 Ω–1 cm–1, which corresponds to values of
conductivity for nonpolar liquids for np > 106 cm–3. This
indicates that the molar-ionic conductivity we are deal-
ing with may be the main conductivity in such liquids;
i.e., it can be much higher than the ionic impurity con-
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ductivity σi (in nonpolar liquids, it usually prevails over
the intrinsic ionic conductivity). The latter is defined by
the formula

(38)

where Dcat and Dan are the diffusion coefficients for
impurity cations and anions, ni0 is their density, Z is
their valence, and the conductivity ratio is given by

(38a)

For typical values of (Dcat + Dan) ~ 3 × 10–5 cm2/s, the
ratio σi/σp ~ (10Z)2(ni0/np) and, hence the molar-ionic
conductivity prevails when np > (10Z)2ni0. In nonpolar
liquids, ionic concentrations are relatively low, and the
fulfillment of this condition is quite feasible (especially
for Z = 1). In addition, owing to small values of ni0, the
condition κR ! 1 for dilute solutions holds for a wide
range of particle sizes. This in turn extends the limits of
applicability for our model so that we can assume on its
basis that colloidal solutions in nonpolar liquids mainly
have the form of an ensemble of two types of oppositely
charged compound particles. Among other things, this
conclusion explains the fact that, in order to improve
the insulating properties of nonpolar liquids, we must
first of all try to purify a liquid from colloidal particles
and only at the last stage to reduce the impurity ion den-
sity ni0. The purification from particles itself can be car-
ried out through electrophoresis with adsorption of
oppositely charged compound particles at the surface of
the electrodes.

The construction of the model and results obtained
on its basis were applied so far to the case of macropar-
ticles with a preset radius R limited only by two condi-

tions: R @ 2 δl (R ≥ 4 nm for aqueous solution) and
κR ! 1 (condition for dilute solutions). In the next sec-
tion, we will consider the problem of screening of gas
bubbles in an electrolyte solution. In this case, radius R
of the stable macroparticles formed is no longer a preset
quantity, but is determined by the parameters of the liq-
uid itself and by the charge of dissolved ions.

5. BUBSTONS

The model of ion adsorption at the surface of mac-
roparticles and their screening by an ionic shell used in
the above analysis can be extended to the case of gas
bubbles, which makes it possible to consider their stabil-
ity on a theoretical basis differing from that in [10, 11]
(we will henceforth consider 1 : 1 aqueous solutions).
The concept of a bubston (bubble stabilized by ions)
was introduced by us for the first time in [10]. This con-
cept reflects the possibility of the existence of nanome-

σi

ni0Z2e2 Dcat Dan+( )
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-----------------------------------------------.=
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ter-size stable gas bubbles, associated with adsorption
of dissolved ions of a definite polarity on their surface,
in liquid solutions of electrolytes (in particular, in pure
water displaying ionic conductivity due to intrinsic
thermal H+ and OH– ions). The necessary condition for
the stability is the mechanical equilibrium condition,
under which the surface tension pressure 2σ/R (σ is the
surface tension; σ = 73 erg/cm2 for aqueous solutions
under normal conditions) is balanced by the negative
(tensile) ponderomotive pressure pE associated with the
presence of the surface electric charge Q0. We assume
that an ionic solution together with equilibrium gas
bubbles present in it is in equilibrium with the external
gaseous medium (e.g., atmospheric air) under a pres-
sure p0; accordingly, the concentration cg of the gas dis-
solved in it obeys the Henry’s law: cg = Γ(T)p0. How-
ever, the condition of equilibrium between the dis-
solved gas and the gas in a bubble under pressure pb

also implies that cg = Γ(T)pb (with the same value of the
Henry coefficient Γ(T)). It follows hence that, in com-
plete equilibrium, the pressure in the bubbles pb = p0
(i.e., it is balanced by the external pressure) and, hence,
is not reflected in the necessary stability condition
2σ/R = pE . It is important that pressure pE depends only
on the surface charge Q0 and not on the entire charge dis-

tribution for r ≥ R and is equal to pE = (1/8πε) /R4 =

(2π/ε)e2( )2. This follows from the general defini-
tion of pressure p = (∂Φ/∂V)T , where Φ is the free
energy of the system under investigation. In our case,
the system is a region of the medium with a radius
r ≥ R,  in which the electric field differs from zero
(the field in the bubble is equal to zero in view of the
central symmetry). For this reason, energy Φ =

(1/2ε) , and volume V = (4π/3)(r3 – R3).

The pressure exerted by a bubble on the system (i.e., for
r = R) is p(R) = –(1/4πR2)(dΦ/dR) = (1/8πε)Q2(R)/R4 ≡
(1/8πε) /R4. This is obviously just the pressure pE

stretching the bubble. The same definition implies that
the pressure exerted on the outer surface of the region
is p(r) = (1/4πr2)(dΦ/dr) = (1/8πε)Q2(r)/r4. For r = ac ,
this expression coincides with the expression used by
us for pstr . 

The equality 2σ/R = pE leads to

(39)

A question arises: what value of  should be substi-

tuted into this formula? The value  = 6.4 × 1014 cm–2

used by us earlier in accordance with formula (7) was
obtained for macroparticles with preset values of radii
R ≥ 4 nm (these can be solid particles or drops of an
alien liquid). The substitution of this value into Eq. (39)
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gives R = 2 Å, which is a physically meaningless result.
The reason is that radius R of a bubston is not a preset
quantity, but is determined from the self-consistent
mechanical equilibrium condition 2σ/R = pE for the
maximal density of stably adsorbed ions, which satis-
fies the general condition R @ d of the model, where d
is the spacing between ion adsorption centers on their
surface. As applied to gas bubbles, the physical mean-
ing of the condition R @ d is that the discrete distribu-
tion of adsorbed ions at the lattice sites must be such
that the tensile pressure pE associated with these ions
must differ from the spherically symmetric pressure
ensuring the bubston stability only insignificantly.
However, it is necessary that the total number Ni of
adsorbed ions be large enough; for R @ d, the number
Ni = 4πR2/SWS = (8π/31/2)(R/d)2 ≥ 103 (we assume that
SWS = (31/2/2)d2; see below). 

As before, we assume that the surface arrangement
of liquid molecules for gas bubbles also forms a
densely packed hexagonal lattice; consequently, the ion
adsorption energy in this case is defined by the formula

UAD = (3/2)e2β/  derived in Section 2 (for Z = 1).
However, by virtue of condition R @ d, the admissible
distances d between adsorption centers in this case
exceed the minimal distance d = dmin = 2 × 31/2δl (corre-

sponding to density  = 6.4 × 1014 cm–2; see below).
For such a lattice, the complete set of possible dis-
tances d is defined by the formula d = kδl , where coef-
ficient k can assume the following discrete values (in
increasing order):

(40)

Remaining in the framework of the model, we must

assume that  = 1/SWS, where SWS is the area of a
Wigner–Seitz cell corresponding to d = kδl with a cer-
tain value of k from series (40). For a densely packed

hexagonal lattice, SWS = (31/2/2)d2 and, hence,  =

(2/31/2)(k2 )–1. Substituting this value into Eq. (39),
we obtain

The requirement R @ d = kδl leads to the following con-

dition for admissible values of k: k3 @ (4π/3)e2/(σε );
for aqueous solutions, this means that (k/4.4)3 @ 1.
From the series (40) of possible values of k, this condi-

tion holds only for k ≥ 10. However, since  ∝  1/k2,

the requirement that  must have the maximal value
dictates that only one value, k = 10, should be chosen.
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In this case, (k/4.4)3 ≈ 12, the surface density of
adsorbed ions is

(40a)

the volume density of counterions on the surface of
bubstons is

(40b)

the total number of adsorbed ions is

(40c)

and the bubston radius is

(40d)

Thus, our model of adsorption permits only one
value of the bubston radius, which depends neither on
the species of dissolved ions nor on their density ni0.
The equilibrium density of bubstons themselves in the
solution must naturally depend on the latter quantity. In
other words, our model predicts that the bubston radius
R = 14 nm is universal for all (1 : 1) aqueous solutions
of electrolytes, including pure water. Bubstons them-
selves turn out to be strongly charged since parameter

B for them is B = 4πlBR  = 94. It should be empha-
sized that this conclusion holds only for pure water and
for (1 : 1) aqueous solutions. It can easily be seen that,
for (Z : Z) aqueous solutions, the bubston radius R =
14 × 10–4(k4/Z2) (nm), where the value of k must satisfy
the condition (k/4.4Z2/3)3 @ 1. For Z = 2, this condition
holds for the value of k = 16 from series (40) and,

hence, R = 23 nm. For Z = 3, the value of k = 12
must be chosen from series (40); consequently, R =
29 nm.

Let us now prove that the maximal density  =
7.6 × 1013 cm–3 of adsorbed ions (which determines the
universal value of the bubston radius of 14 nm) can
indeed set in for k = 10, when the distance d between
adsorption centers is equal to 10δl . The activation
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energy of ion adsorption for d = kδl is UL = 12e2/εd =
(12/k)e2/εδl and, accordingly, the desorption energy is

(41)

(in the latter formula, it is assumed that A = 1/64). It fol-
lows hence that, in contrast to conditions (6) and (6a),
the necessary condition UD > 0 for adsorption of bub-
stons assumes the form

(42)

or δi < 1.98, δl = 2.44 Å. It holds for a wide class of sin-
gly charged ions, in particular, for all ions emerging
during dissolution of alkali metal salts such as bro-
mides, fluorides, or iodides. It can easily be seen, how-
ever, that from two species of ions in the solution, only
the ions with smaller radii δi can experience stable
adsorption. However, in contrast to the case with d =
dmin = 2 × 31/2δl , when the division of ions into those
capable and incapable of adsorption is determined
precisely by the fact that UD < 0 (or UD/T ≤ 1) for
coarser ions, in the present case such a division is based
on the difference in the desorption rates for ions with
different values of δi . We will mark ions with larger and
smaller radii by superscripts “1” and “2,” respectively

(  < ). Let us compare the desorption probabili-
ties for such ions during the same time interval t (pro-
vided that ions were initially in the adsorbed state).
These probabilities are given by

where

is the desorption probability for the nth ion per unit
time, τn is the mean lifetime for such an ion in the
adsorbed state, and νn is the vibrational frequency of
this ion in the adsorbed state. Assuming that w1 ! 1, we

have t = τ1w1 = (w1/ν1)exp( /T). Then we obtain the
following expression for probability w2:

(43)

UD UAD UL–
3
2
--- e2

εδl

------- 1

Aα0
4

---------- 1
8
k
---Aα0

4– 
 = =

=  96
e2

εδlα0
4

------------- 1
α0

4

8k
------– 

 

δi/δl 8k( )1/4 1–[ ] k 10=< 1.98=

δi
1( ) δi

2( )

wn 1 λnt–( )exp–[ ] , n 1 2,,= =

λn τn
1– νn UD

n( )/T–( )exp= =

UD
1( )

w2 1 exp
τ1w1

τ2
-----------– 

 –=

=  1
ν2w1

ν1
-----------

UD
1( ) UD

2( )–
T

------------------------- 
 exp– .exp–
 AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003



SCREENING OF STRONGLY CHARGED MACROPARTICLES 743
It follows hence that, for τ1w1/τ2 > 1 or (  –

)/T > ln(ν1/ν2w1), the desorption probability for
coarse ions is w2 ≈ 1, while that for small ions (during
the same time interval) is w1 ! 1. Using relation (41),
we can write these inequalities in the form

(44)

where  = (1 + /δl), εδlT/96e2 = 1.8 × 10–3. When
this inequality is satisfied, and the lifetime τ1 > τ2/w1 @
τ2, coarse ions cannot compete with small ions in rela-
tion to adsorption, although both species satisfy the
necessary condition (42). While drawing this conclu-
sion, we naturally assume that the fluxes of ions of both
species to the bubble surface are equal (for 1 : 1 solu-
tion) and, hence, vacant adsorption centers are filled
with small ions with a probability p ≈ 1 for τ1/τ2 @ 1.
Quantity p is the probability of filling, in some way or
another, a vacancy with a small ion over time τ1 @ τ2.
Such an event may occur via one of a multitude of sta-
tistically independent events: (1) a small ion is
adsorbed immediately (probability p10 = 1/2); (2) it is
adsorbed after the adsorption of a coarse ion, followed
by desorption (p11 = (1/2)(1/2)); (3) it is adsorbed after
double adsorption followed by desorption of coarse
ions (p12 = (1/2)(1/2)2); etc., to the case when the
adsorption of a small ion follows N-fold adsorption and
desorption of coarse ions (p1N = (1/2)(1/2)N), where
N = [τ1/τ2] is an integral part of (τ1/τ2). Here, we
assume that the time interval between acts of desorp-
tion followed by adsorption is t ! τ2, which is quite

admissible since t ~ 1/ni0 π  ≤ 1 ms (  ~ 105 cm/s
is the mean thermal velocity of ions, while lifetimes τ1, 2
are measured in hours. Consequently, the probability is
given by

Considering ion adsorption in aqueous solutions of
electrolytes, we assumed that these solutions are binary
(with only two species of ions), which apparently con-
tradicts the actual situation. Indeed, in addition to dis-
solved ions, solutions always contain intrinsic H+ and
OH– ions with a concentration approximately equal to
10–7 M, and competition between the adsorption of
small dissolved ions and H+ ions becomes significant.
The case when the concentration of dissolved ions is
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much higher than the concentration of H+ ions is of
practical importance. In this case, we can easily prove
that the probability of filling vacant adsorption centers
with H+ ions is equal to the ratio of their concentration
to the concentration of dissolves ions, i.e., smaller than
unity. This means that intrinsic ions in aqueous solu-
tions cannot compete in respect to adsorption with dis-
solved ions. Naturally, this conclusion is valid not only
for bubstons, but also for any macroparticles: when the
concentration of aqueous solutions of electrolytes is
much higher than 10–7 M, the macroparticles (including
bubstons) present in these solutions are charged by
small dissolved ions.

Let us demonstrate the validity of inequality (44) for
specific pairs of ions: (H+, OH–) (pure water), (Na+, Cl−)
(NaCl salt solution), and (K+, Cl–) (KCl salt solution).
The logarithmic dependence of the right-hand side of
inequality (44) on the ratio (ν2/ν1) does not require high
accuracy in determining its value, and we can use the
approximate formula

(45)

where m1, 2 are the masses of the ions. The “exact” for-
mula derived by us on the basis of classical mechanics
has the form

For k = 10, the last factor is on the order of unity. For
the above three pairs of ions, we obtain, respectively,
ν1/ν2 = 13, 3.7, and 1.6. Assuming that w1 ≈ 0.1, we
obtain the following values for the right-hand side of
inequality (44): 9 × 10–3, 6.5 × 10–3, and 0.9 × 10–3. The
left-hand sides are equal respectively to 1.4 × 10–1,
6.8 × 10–2, and 2.7 × 10–2; consequently, inequality (44)
indeed holds, and the surface charge Q0 is formed due
to adsorption of H+, Na+, and K+ ions, respectively.

In addition to the features of bubstons considered
above (distinguishing them from other macroparticles),
they have one more peculiarity associated with the
behavior of compound bubstons. The latter term is
applied to particles consisting of bubstons proper (ion-
stabilized gas bubbles) with a surface charge Q0 and a
layer of liquid surrounding them, into which the ionic
shell of a bubston distorted by its motion remains fro-
zen in. As before, we denote the total charge of such a
particle by Qc and its radius by ac . As compared to the
compound particles considered in Section 4, compound
bubstons not only participate in Brownian movement,
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but also display regular tendency to emersion at the free
surface of the liquid as a result of action of buoyancy
forces. The velocity uc of such emersion can be deter-
mined from the condition of equality of the Stokes
force FST = 5πηacuc (see Footnote 5) and the buoyant

force (FA – Fg), where FA = (4π/3)ρg  is the buoyancy

force and Fg = (4π/3)ρg(  – R3) is the force of gravity
(g being the acceleration due to gravity). This gives

(46)

Let us compare this velocity with the root-mean-square
value of the smooth component of the velocity of

Brownian motion (see Section 4)  = T/5πη .

The velocity ratio uc/  = (4π/3)ρgR2ac/T. For

uc/  ! 1, i.e., for

, (47)

regular emersion of compound bubstons should not
affect the influence of Brownian movement on the ionic
shell, which was established in Section 4. Since the
bubston radius R = 14 nm, the left-hand side of inequal-
ity (47) does not exceed 3 × 10–8ac nm; i.e., condition (47)
obviously holds. This, in turn, means that quantities Qc

and ac must be connected through the universal rela-
tion (29) (see comments on formula (29) in Section 4).
For dilute solutions with κR ≤ 0.1 (or ni0 ≤ 4 ×
10−4/lBR2 ≈ 3 × 1015 cm–3 = 5 × 10–6 M), when our
screening model gives another independent relation
between Qc and ac in the form of a two-hump depen-

dence of  on ac (see Fig. 3), we arrive at the division
of compound bubstons into two types described in Sec-
tion 4, viz., small compound bubstons with parameters

( , ) and large ones with parameters ( , ).
However, formulas (33) and (34) turn out to be inappli-
cable for determining these parameters since they were
derived for macroparticles with preset values of radii

R ≥ 4 nm and for the surface density of ions  = 6.4 ×
1014 cm–2 (in this case, we could assume, in particular,
that ξ ≈ /2). In the case of bubstons, these formulas
need refining. We will do this below as applied to bub-
stons (and, accordingly, compound bubstons) in pure
water (ni0 = 6 × 1013 cm–3). In this case, in accordance
with formulas (2a), (14), (14a), (18), (20), and (32), we
have the following values of parameters: ζ = κR = 1.4 ×
10–2, L = 14.5, α = L/B = 0.15, ξ = 2.8, F0 = 2.4, f = 0.15,
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y0 = r0/R = 5.0, y1 = r1/R = 1.9, and (T*/T) = 390. Using
these values, we obtain for parameters ac and Qc

 ≈ r1 = 27 nm, /e = (24r1/lB)1/2 = 9.6.

For /R ≡ x, we have the equation x = (2ζ)–1ln[(5T*/T) ×
(1 + ζx)2/x], whose solution gives

/R = 175 or  = 92  = 2.5 µm,

/e = ( / )1/2( /e) = 9.6( /e) = 9.2.

Thus, we find that radii  and  for pure water differ
approximately by two orders of magnitude, while

charges  and  differ, accordingly, by an order of

magnitude. The electrophoresis rates  and  also
differ approximately by an order of magnitude, while
condition (35) of electrophoresis linearity in the present

case, when  = 2.5 µm, is E ! 200 V/cm. The molar-
ionic conductivity σb of water associated with bubstons
is defined by formula (37), where the bubston density
nb is substituted for np . This value of conductivity is
always smaller than the intrinsic ionic conductivity σi

of pure water, which is known to be ~10–8 Q–1 cm–1

(millipores).
At the same time, the presence of compound bub-

stons in water must impart the latter a number of spe-
cific properties that have not been studied comprehen-
sively as yet. These properties are primarily due to the
fact that such formations contain in their cores (bub-
stons themselves of radius R = 14 nm) a free (bubston)
gas whose pressure in equilibrium coincides with the
external gas pressure p0 (see above). Pressure p0 itself
does not affect the mechanical equilibrium condition
for bubstons and their radius, but naturally determines
the number of gas molecules Ng = (4π/3)R3(p0/T) in a
bubston; for p0 = 1 atm, number Ng ≈ 300. Under con-
ditions of complete thermodynamic equilibrium
between the solution with bubstons contained in it and
the surrounding gaseous medium, the bubston number
density nb must also be a function of pressure p0. This
follows from the fact that continuous spontaneous
(fluctuation-induced) nucleation of microscopic bub-
bles takes place in the liquid under such conditions, fol-
lowed by their growth to the state of bubstons. Micro-
scopic bubbles themselves are formed at molecules of
the dissolved gas (or their associates), which play the
role of inhomogeneities in the liquid. The specific rate
(per unit volume) of bubston formation must increase
with the concentration cg of the dissolved gas. In the
equilibrium state, the increase in the number of bub-
stons is compensated by their destruction as a result of
emersion at the liquid surface. As a result, the equilib-
rium density nb must vanish for cg = 0 and must increase

ac
sm Qc

sm
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l ac
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in proportion to , i.e., in proportion to , for small
cg . Thus, with increasing external gas pressure p0, the
specific concentration Ngnb of the free bubston gas in

the liquid increases in proportion to .

Another aspect of specific properties of water asso-
ciated with the presence of compound bubstons in it is
that the interaction between them must lead to the for-
mation of bubston clusters, viz., peculiar mesoscopic
structure, in water. Experimental data on the optical
(laser) breakdown of pure water in its transparency
region may serve as a proof of the existence of such a
structure. The physical mechanism of this effect, which
was proposed and studied theoretically in [20] on the
basis of the concepts of bubston clusters, was subse-
quently confirmed by many authors [21–27]. The exist-
ence of a bubston cluster structure in water in equi-
librium with the external gaseous (air) medium may
play a certain role in active life of fishes and other
organisms.

6. CONCLUSIONS

Analysis of the screening of strongly charged parti-
cles shows that the charge inversion effect can be inter-
preted in the framework of a modified Poisson–Boltz-
mann model. The quantitative basis of this model is
formed by Eqs. (8), (11), and (12) combined with the
quasineutrality condition (1) and the assumption that
liquid molecules are arranged on the surface of macro-
particles in the form of a densely packed two-dimen-
sional hexagonal lattice. This assumption makes it pos-

sible to connect the surface density  of adsorbed

ions and the volume density (R) of counterions on
the surface of a macroparticle with the radius δl of liq-
uid molecules through Eqs. (7) and (15) for particles
with a preset radius or Eqs. (40a) and (40b) for bub-
stons. The proposed model provides a quantitative
description of selective adsorption of ions at the macro-
particle surface, leading to the emergence of surface
charge Q0. The sign of charge Q0 in this case is deter-
mined by the sign of ions capable of adsorption. Quan-
titative criteria for the division of dissolved ions into
those capable and incapable of stable adsorption have
been formulated. Our analysis of the effect of the
Brownian motion of macroparticles on screening shows
that the charge inversion effect is manifested in the for-
mation of two types of compound particles of opposite
polarities, which strongly differ in their radii and in the
absolute values of charges. In this case, the equiparti-
tion law expressed by formula (30) is observed for the
mean energy of the electric field created by both types
of compound particles. This result brings our concepts
concerning the interaction of macroparticles in liquid
(including aqueous) solutions of electrolytes to a new
qualitative level. For example, according to these con-
cepts, coagulation of identical macroparticles in a solu-

cg
2 p0

2

p0
3

γi
AD

ni
max
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tion should be attributed not to the interaction of likely
charged particles (as was done in numerous theoretical
publications), but to the interaction of oppositely
charged compound particles of different sizes and abso-
lute values of the charges.

Naturally, the proposed model requires further
refinement, primarily in respect of the suspension of
the requirement that the solution must be dilute (ζ =
κR ! 1). The charge inversion effect should naturally
be preserved after abandoning this requirement. It can
obviously be stated that the effect of Brownian move-
ment on screening must also be preserved qualitatively,
but the quantitative parameters of the compound parti-
cles formed in this case may change.
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Abstract—The results of nonempirical calculation of energies of three polytypes (cubic, two-layer hexagonal,
and six-layer hexagonal) are given for RbMnX3 (X = F, Cl, Br) crystals. The calculation is performed using an
ionic crystal model with regard for the deformability and the dipole and quadrupole polarizabilities of ions. The
behavior of these crystals under the action of hydrostatic pressure is studied. It is demonstrated that, at normal
pressure, the RbMnCl3 and RbMnBr3 crystals have a six-layer hexagonal structure. At pressures above 11 kbar,
RbMnCl3 passes to a phase with a cubic structure; RbMnBr3 at pressures above 90 kbar passes to a phase with
a two-layer hexagonal structure. The RbMnF3 crystal under normal conditions has a cubic structure and expe-
riences no phase transformations under the effect of pressure. The obtained results are in satisfactory agreement
with the known experimental data. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

RbMnX3 (X = F, Cl, Br) crystals belong to the fam-
ily of perovskite-like crystals of the general formula
ABX3. The structures of these compounds may be rep-
resented as a three-dimensional packing of rhombohe-
dral layers of AX3, where A is a large cation and X is an
anion. Small cations B are located between layers and
occupy the centers of octahedrons formed by anions.
The packing of layers may be cubic (Fig. 1a) when the
anion octahedrons are bound by corners, or hexagonal
(h packing) (Figs. 1b and 1c) when the octahedrons are
bound by faces. The majority of ABO3 oxide com-
pounds are crystallized in a perovskite structure
(c packing); this structure and the physical properties of
these substances have been fairly well studied by
numerous researchers using both experimental and the-
oretical (including ab initio) methods. In compounds in
which X is halogen (F, Cl, Br), both c packing and h
packing may be realized, as well as mixed ch packings.
For example, RbMnF3 has a cubic perovskite structure,
and RbMnBr3 apparently has a hexagonal structure
with a two-layer h packing. The RbMnCl3 crystal also
has a hexagonal structure, but with a six-layer packing
of RbCl3 layers (Fig. 1c). Here, pairs of face-bound
octahedrons are interconnected via intermediate octa-
hedrons bound to them by corners. Such a six-layer
packing is designated as hcc packing. Almost no theo-
retical calculations of such hexagonal structures and of
the physical properties of such compounds were per-
formed because of the fairly complex structure and
large number of atoms per unit cell.
1063-7761/03/9604- $24.00 © 20747
From the standpoint of a rigid ion model, the forma-
tion of hexagonal structures is energetically disadvan-
tageous because, in the case of the h packing of AX3

layers, the ions B come very close together, which leads
to a loss in the Madelung energy. Note, however, that
hexagonal packings are formed, as a rule, in com-
pounds in which X is an easily polarizable anion (Cl,
Br, I). The environment of some ions in hexagonal
structures is not centrally symmetric; consequently, in
calculating the energy of hexagonal structures, one
must take into account the polarization energy arising
due to the emergence of induced electric moments
(dipole, quadrupole, and so on) in such structures. The
importance of inclusion of the polarization energy was
emphasized in [1–4], where a number of structures (flu-
orite, rutile, layer structures, and the like) in com-
pounds of the general formula MX2 were investigated.
Wilson and Madden [1] demonstrated that experimen-
tally observed structures with a symmetry lower than
cubic are stabilized only if the total crystal energy
includes the contribution by the polarization energy
associated with the emergence of induced dipole
moments on ions of low-symmetry structures. How-
ever, all of the short-range interactions in [1] are written
in a parametric form, and the number of parameters is
quite large (from six to ten). Wilson et al. [2], who used
the same parametric model of polarizable ions [3] in the
investigation of different phases of ZrO2, likewise took
into account the polarization energy due to induced
quadrupole moments and demonstrated that this energy
played an important part in low-symmetry structures.
However, Wilson et al. [2] themselves indicate that the
003 MAIK “Nauka/Interperiodica”
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parametrization of the energy associated with quadru-
poles is poorly validated.

The electrostatic lattice energies (Madelung energy
and dipole energy) for five ideal structures with differ-
ent sequences of close-packed layers of AX3 (X = F, Cl,
Br, I, O, S) and ABX3 compounds were calculated by
Weenk and Harwig [4]. They assumed the same energy
of short-range spherically symmetric ion–ion interac-
tions in different polytypes and ignored short-range
dipole–dipole interactions. It was found in [4] that a
two-layer hexagonal packing (h) turned out to be the
stablest structure in ideal structural polytypes of ABX3
compounds (including oxide compounds).

We used the nonparametric generalized Gordon–
Kim model [5] to calculate the energetics of different
polytypes for RbMnX3 crystals, where X = F, Cl, Br. In
calculating the total energy of these crystals, allowance
was made for induced moments, both dipole and qua-
drupole. The model and method of calculation are
described in Section 2. Section 3 gives the results of

c packing h packing

hcc packing

(a)

(c)

(b)

Fig. 1. The arrangement of octahedrons in different poly-
types of ABX3: (a) cubic packing (perovskite structure),
(b) two-layer hexagonal packing, (c) six-layer hexagonal
packing.
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calculation of the total energy of three crystals, and
Section 4 deals with the investigation of the effect of
hydrostatic pressure. And, finally, our main results are
described in Section 5.

2. MODEL: METHOD OF CALCULATION

In the Gordon–Kim model for ionic crystals, the
total electron density is written as the sum of electron
densities of separate ions making up a crystal,

(1)

The electron densities of separate ions are calculated
with regard to the crystalline potential approximated by
a charged Watson sphere,

(2)

The radii of Watson spheres in separate ions were found
from the condition of minimal total energy of crystal.

In the original Gordon–Kim model, the electron
density of ions was taken to be spherically symmetric;
however, as was observed in [5], distortions of the elec-
tron density of any multipole symmetry are possible in
an actual crystal. Ivanov and Maksimov [5] suggested a
generalization of the Gordon–Kim model, enabling one
to take into account multipole density distortions of any
order. Here, we allowed for the dipole and quadrupole
distortions of electron density,

(3)

Pair interactions are calculated within the theory of
density functional,

(4)

The total crystal energy has the form

ρ r( ) ρ r Ri–( ).
i

∑=

V r( )
–Z ion/Rw, r Rw,<
–Z ion/r, r Rw.>




=

ρ r( ) ρ l( ) r( ),
l 0=

2

∑=

ρ l( ) r( ) ρ l( ) r( )Ylm θ φ,( ).
m l–=

l

∑=

Φij
ll' F ρi

l( ) r' Ri–( ) ρ j
l'( ) r Ri–( )+{ }=

– F ρi
l( ) r Ri–( ){ } F ρ j

l'( ) r Ri–( ){ } .–

E E0 Ed d– Eq q– Ed q– Eself,+ + + +=

E0
1
2
--- ZiCij

0( )Z j

i j, 1=

Na

∑– Φij
00( ) Vi V j Ri R j–, ,( ),

i j, 1=

Na

∑+=
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(5)

where E0 is the interaction energy of spherically sym-
metric ions; Ed – d , Eq – q , and Ed – q are, respectively, the
energies associated with the interaction of dipole and

quadrupole moments;  = ∇ n(|Ri – Rj |)–1 is the long-

range part of interactions; Eself =  is the
ion self-energy; and Na is the number of atoms per unit
cell. In calculating the short-range interactions given by
Eq. (4) for the kinetic energy, the Thomas–Fermi
approximation [6] was used, and for the exchange-corre-
lation energy, the Hedin–Lundqvist approximation [7].

The long-range interactions  were calculated by
the Ewald method. The calculation for ion was per-
formed using Liberman’s codes [8]. The modified
Sternheimer equation [9] was used to calculate the
dipole αd and quadrupole αq polarizabilities and the
respective components of electron density.

The dipole  and quadrupole  moments were
found from the condition of minimal energy with
respect to the relevant moment,

Ed d–
1
2
--- di

α δij

α i
d Vi( )

---------------


α β, 1=

3

∑
i j, 1=

Na
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---+ Φi j αβ,
11( ) Vi V j Ri R j–, ,( ) Cij αβ,

2( )– 
 d j

β

+ di
α Φi j α,

10( ) Vi V j Ri R j–, ,( ) Cij α,
1( ) Z j–( ),

α 1=

3

∑
i j, 1=

Na

∑

Eq q–
1
2
--- qi

αβ δij

α i
q Vi( )

---------------
α β γ δ, , , 1=

3

∑
i j, 1=

Na
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–
1
36
------ Φij αβγδ,

22( ) Vi V j Ri R j–, ,( ) Cij αβγδ,
4( )–( ) q j

γδ( )

–
1
6
--- qi

αβ Φij αβ,
20( ) Vi V j Ri R j–, ,( ) Cij αβ,

2( ) Z j–( ),
α β, 1=

3

∑
i j, 1=

Na

∑

Ed q–
1
6
--- qi

αβ

α β γ, , 1=

3

∑
i j, 1=

Na
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× Φij αβγ,
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∂di
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(6)

 are elements of the matrix reciprocal to the matrix
of dipole–dipole interaction in expression (5);

3. RESULTS OF CALCULATION
OF TOTAL ENERGY

As was mentioned in the Introduction, ABX3 halides
may have both cubic and hexagonal structures. We will
restrict ourselves to the discussion of structures of three
types, namely, cubic with a perovskite structure
(c packing) and two hexagonal with two-layer and six-
layer packings (h and hcc packings, respectively), and
calculate the energies for three crystals, RbMnF3,
RbMnCl3, and RbMnBr3, in these structures.

RbMnF3 crystal has a structure of ideal perovskite

with an  space group and one molecule per unit

di
α Aij

αβ

β 1=

3
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Na

∑=
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cell [10]. In this structure, the coordinates of all atoms
in a unit cell are fixed,

(7)

RbMnBr3 crystal is characterized by a sequence of
structural phase transitions, and, in the opinion of Kato
et al. [11], the crystal structure in all phases has a dis-
torted form of two-layer hexagonal packing. Appar-

ently, no highly symmetric hexagonal phase with a 
space group and two molecules per unit cell (Fig. 1b) is
observed in this crystal up to the melting point [11].
The positions of all cations in a two-layer hexagonal
packing are fixed, and the anions have one free para-
meter,

(8)

In an ideal structure, x = 1/6.

The structure of RbMnCl3 crystal is the most com-
plex of the structures treated by us. In this crystal, a six-
layer hcc packing with six molecules per unit cell is
realized in a highly symmetric phase [12]. All ions in
this structure have two crystallographically nonequiva-
lent positions each,

A Rb( ) 1 b( ) 1/2 1/2 1/2

B Mn( ) 1 a( ) 0 0 0

X 3 c( ) 1/2 0 0

D6h
4

A Rb( ) 2 c( ) 2/3 1/3 1/4

B Mn( ) 2 a( ) 0 0 0

X 3 h( ) x 2x 1/4
JOURNAL OF EXPERIMENTAL 
(9)

In this case, five free parameters are observed. In an
ideal hexagonal structure, i.e., in a structure in which
anions form regular octahedrons, these parameters
assume the values

We will first discuss the case of ideal structures with
close-packed layers of MnX3 (X = F, Cl, Br). In this
case, the unit cell parameters a, b, and c for the struc-
tures being treated are related by stringent relations:

c (cubic perovskite)

;

h (two-layer hexagonal)

;

hcc (six-layer hexagonal)

where a0 is the distance Rb–X (X = F, Cl, Br).

A1 Rb1( ) 2 b( ) 0 0 1/4

A2 Rb2( ) 4 f( ) 1/3 2/3 z1

B1 Mn1( ) 2 a( ) 0 0 0

B2 Mn2( ) 4 f( ) 1/3 2/3 z2

X1 6 h( ) y1 2y1 1/4

X2 12 k( ) y2 2y2 z3

z1 –1/12, z2 1/6, z3 1/12,= = =

y1 1/2, y2 1/6.= =

ac b c a0 2= = =

ah b 2a0, ch 2a0 6/3= = =

ah b 2a0, ch 2a0 6,= = =
Table 1.  The values of the Watson sphere radii, dipole and quadrupole polarizabilities of ions, and self-energy of RbMnX3
crystals

Crystal Rw , Å αd, Å3 αq, Å5 Eself, eV

RbMnF3 Rb 1.98 1.12 1.97 –120521.7921

Mn 2.88 0.78 0.85

F 1.32 0.79 1.01

RbMnCl3 Rb 1.75 1.14 2.02 –149971.5256

Mn 2.22 0.84 0.96

Cl 1.39 3.12 7.52

RbMnBr3 Rb 1.72 1.15 2.04 –324847.5789

Mn 2.22 0.84 7.52

Br 2.18 4.25 12.22
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Table 2.  The calculated values (per molecule) of the total energies Etotal = E – Eself and of individual contributions (Ec, Made-

lung energy; Es, energy of short-range spherically symmetric ion–ion interactions; , , and , energies of long-

range dipole–dipole, quadrupole–quadrupole, and quadrupole–dipole interactions, respectively; and , , and ,
short-range parts of these interactions, respectively) for ideal close-packed structures

E, eV

RbMnF3
a0 = 3.11 Å

RbMnCl3
a0 = 3.63 Å

RbMnBr3
a0 = 3.85 Å

c h hcc c h hcc c h hcc

Ec –40.5623 –37.6163 –39.6310 –34.6722 –32.1426 –33.8919 –32.6861 –30.3322 –32.0129

Es 3.7548 3.8042 3.7675 2.9107 2.8909 2.8898 2.4462 2.4549 2.4604

0.0 –2.4809 –0.7853 0.0 –4.0991 –1.3888 0.0 –4.2000 –1.4459

0.0 1.8489 0.6014 0.0 2.9942 1.0591 0.0 3.0232 1.0873

–0.2286 –0.1249 –0.1963 –0.6357 –0.2520 –0.5269 –0.7159 –0.2804 –0.5950

0.2146 0.1049 0.1803 0.6341 0.2409 0.5225 0.6952 0.2747 0.5850

0.0 –0.0697 –0.0211 0.0 –0.1791 –0.1318 0.0 –0.2020 –0.1706

0.0 0.0568 0.0185 0.0 0.1547 0.1247 0.0 0.1865 0.1692

Etotal –36.8215 –34.4770 –36.0660 –31.7631 –30.3921 –31.3433 –30.2606 –29.0753 –29.9197

Ed–d
c Eq–q

c Ed–q
c

Ed–d
s Eq–q

s Ed–q
s

Ed–d
c

Ed–d
s

Eq–q
c

Eq–q
s

Ed–q
c

Ed–q
s

The total crystal energy given by expression (5) was
minimized over the cell parameter of the cubic structure
and over the radii of Watson spheres for all ions. These
radii of Watson spheres were maintained for hexagonal
structures as well, and, therefore, all contributions to
the total crystal energy for different structures were cal-
culated with the same values of self-energy, spherically
symmetric electron density, and dipole and quadrupole
polarizabilities of ions. The values of the Watson sphere
radii, self-energy of ions, and dipole and quadrupole
polarizabilities of ions for the crystals being treated are
given in Table 1. The calculated values of individual
contributions to the total energy for three structures
being treated are given in Table 2.

A cubic perovskite structure (c packing) turns out to
be more advantageous energetically for all three crys-
tals in ideal structures with close-packed layers,
although the difference between the energies of c pack-
ing and of two- and six-layer (h and hcc, respectively)
hexagonal packing (as well as between the energies of
h and hcc structures) decreases appreciably with
increasing radius and polarizability of anion.

We will now discuss individual contributions to the
crystal energy for different structures, as given in
Table 2. One can see in this table a significant loss in
the Madelung energy Ec in hexagonal h and hcc pack-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ing. At the same time, the energy of short-range inter-
actions of the spherical part of the electron density of
ions is almost the same for the structures being dis-
cussed. The main part in the stabilization of hexagonal
structures is played by the polarization energy associ-
ated with the interaction between dipole distortions of
the electron density of ions in noncentrally symmetric
positions in hexagonal structures. Note that, if we take
into account only the long-range contribution by pair

interactions  to the crystal energy, a two-layer
hexagonal packing turns out to be most advantageous
for the RbMnCl3 and RbMnBr3 crystals. Energetically
more advantageous for RbMnF3 is a perovskite struc-

ture. The respective energies E ' = Ec + Es +  (see
Table 2) have the following values (in eV):

Ed d–
c

Ed d–
c

RbMnF3 –36.8075 c( ), –36.2930 h( ),

–36.6488 hcc( )
RbMnCl3 –31.7615 c( ), –33.3508 h( ),

–32.3969 hcc( )
RbMnBr3 –30.2399 c( ), –32.0773 h( ),

–30.9984 hcc( )
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Table 3.  The unit cell parameters and the coordinates of ions in different structures

RbMnF3 RbMnCl3 RbMnBr3

Cubic

ac Calculation 4.4 5.1 5.5

Experiment [10] 4.2

Two-layer hexagonal

ah Calculation 5.9 6.7 6.8

Experiment [14] 7.5

ch Calculation 6.0 6.9 7.2

Experiment [14] 6.6

x/ah Calculation 0.1587 0.1727 0.1867

Six-layer hexagonal

ah Calculation 6.2 7.1 7.3

Experiment [12] 7.1

ch Calculation 15.7 19.0 20.8

Experiment [12] 17.8

y1/ah Calculation 0.4880 0.5008 0.5088

Experiment [12] 0.4928

y2/ah Calculation 0.1590 0.1456 0.1563

Experiment [12] 0.1616

z1/ch Calculation –0.1253 –0.1310 –0.133

Experiment [12] –0.0888

z2/ch Calculation 0.1510 0.1543 0.1376

Experiment [12] 0.1603

z3/ch Calculation 0.0873 0.1000 0.106

Experiment [12] 0.0820
This result agrees with the findings of Weenk and Har-
wig [4] (in performing the calculations for fluorine
compounds, they used values of a0 and αd different
from those used by us and found almost the same ener-
gies for the c and h packings). However, one can see in
Table 2 that the combined polarization energy of

dipole–dipole interactions  +  (note that the

quantity  includes both the contributions by pair
short-range interactions and the contributions by many-
particle interactions, including long-range ones) is

much lower than . This is associated with the fact
that the long-range field due to the lattice point charges
and the field due to extended charges of an ion, which
are induced on that ion when it is found in a noncen-
trally symmetric position, are opposite in sign and

Ed d–
c Ed d–

s

Ed d–
s

Ed d–
c

JOURNAL OF EXPERIMENTAL
largely compensate each other. One can see in Table 2
that the contribution made to the total crystal energy by
interactions associated with quadrupole distortions of
the electron density of ions is small compared to the
dipole–dipole energy and approximately the same for
all structures being treated.

We will now turn to actual hexagonal structures. In
this case, the total crystal energy given by expression (5)
was minimized with respect to both the lattice parame-
ters and all free parameters for the respective structure.
In so doing, the Watson sphere radii given in Table 1
were preserved for the actual hexagonal structures as
well, because our calculation results have demonstrated
that, in the case of transition from one structure to
another and during minimization over the lattice
parameters, the Watson sphere radii either do not
change at all or change insignificantly, even in the case
 AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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Table 4.  The values of dipole and quadrupole moments of ions in different structures (in atomic units)

RbMnF3 RbMnCl3 RbMnBr3

Cubic

qzz X 0.0745 0.068 –0.309

Two-layer hexagonal

d Rb 0.00 0.00 0.00

Mn 0.00 0.00 0.00

X 0.191 0.620 0.965

qxx Rb 0.025 0.004 –0.016

Mn –0.030 –0.032 –0.033

X 0.044 –0.247 –1.183

qyy Rb 0.025 0.004 –0.016

Mn –0.031 –0.034 –0.035

X –0.059 –0.125 0.031

Six-layer hexagonal

d Rb1 0.0 0.0 0.0

Rb2 0.166 0.197 0.230

Mn1 0.0 0.0 0.0

Mn2 0.014 0.267 0.064

X1 0.102 0.372 0.520

X2 0.062 0.477 0.808

qxx Rb1 0.029 0.065 0.077

Rb2 0.011 0.021 0.029

Mn1 0.059 0.136 0.146

Mn2 –0.024 –0.054 –0.056

X1 0.006 –0.077 –0.361

X2 –0.047 –0.318 0.299

qyy Rb1 0.028 0.065 0.077

Rb2 0.011 0.021 0.029

Mn1 0.059 0.136 0.146
of a six-layer hexagonal structure with two nonequiva-
lent positions of ions.

Table 3 gives the calculated parameters of structures
along with all of the available experimental data. The
predicted unit cell parameters agree with the experi-
mental data within 1 to 8%. The greatest difference is
observed in the case of determining the parameter ch for
hexagonal structures (6–8%). The calculated six-layer
hexagonal structures are more extended along the
z axis than the experimentally obtained structures. The
agreement between the calculated coordinates of ions
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
in a unit cell and the experimentally observed positions
is within the same limits; in such a way, the ion shifts
exhibit the same tendency as that observed experimen-
tally.

The calculated values of dipole and quadrupole
moments of ions for three structures are given in
Table 4. Note that, in hexagonal structures, the total
dipole moment of the unit cell is zero. The tensors of
quadrupole moments were reduced to the principal
axes, with two of three principal values being indepen-
dent, qzz = –(qxx + qyy). In a cubic structure, qxx = qyy =
SICS      Vol. 96      No. 4      2003
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Table 5.  The calculated values (per molecule) of the total energies Etotal = E – Eself and individual contributions (designations
are the same as in Table 2)

E, eV
RbMnF3 RbMnCl3 RbMnBr3

c h hcc c h hcc c h hcc

Ec –40.5623 –39.1902 –40.3444 –34.6722 –32.6301 –33.8317 –32.6861 –29.0245 –31.3275

Es 3.7548 5.0400 3.9007 2.9107 3.1097 2.8239 2.4462 1.9673 2.4971

0.0 –2.4313 –0.2443 0.0 –4.1234 –0.8318 0.0 –4.4966 –1.3753

0.0 2.0824 0.1405 0.0 2.8193 0.1261 0.0 1.8115 –0.1070

–0.2286 –0.1247 –0.2044 –0.6357 –0.1133 –0.4500 –0.7159 –0.03979 –0.4177

0.2146 0.1167 0.1870 0.6341 0.0778 0.4072 0.6952 –0.2429 0.2511

0.0 –0.0812 –0.0095 0.0 –0.1207 –0.0850 0.0 –0.1175 –0.1515

0.0 0.0748 0.0073 0.0 0.1046 0.0563 0.0 0.0061 0.0591

Etotal –36.8215 –34.5136 –36.5671 –31.7631 –30.8761 –31.7850 –30.2606 –30.1364 –30.5716

Ed–d
c

Ed–d
s

Eq–q
c

Eq–q
s

Ed–q
c

Ed–q
s

−qzz/2. The calculated unit cell parameters, the coordi-
nates of ions, and the values of dipole and quadrupole
moments were used to calculate individual contribu-
tions and the total energy for three crystals in two hexa-
gonal structures; the results are given in Table 5.

One can see in Table 5 that, in the case of hexagonal
structures, the crystal lattice relaxation to equilibrium
values of the unit cell parameters and coordinates of
ions in the lattice brings about a redistribution of the
values of different contributions to the total crystal
energy and brings about a still finer (compared to ideal
packings) balance between these contributions. In a
RbMnF3 crystal, the cubic phase with a perovskite
structure, in accordance with the experimental results
of Copla et al. [10], remains more advantageous com-
pared to nonideal hexagonal structures, although the
values of the energies of the latter (compared to the
energies of ideal structures) are much closer to the
value of the energy of cubic structure.

In the RbMnCl3 crystal, in accordance with the
experimental results of Goodyear et al. [12], a structure
with a six-layer hcc packing turns out to be stablest,
although the energy of cubic c packing is very close to
the energy of the latter hexagonal structure. Note that,
in our calculation, the energetic advantage of a six-
layer hexagonal structure compared to a cubic perovs-
kite structure is caused by the contributions made to the
total crystal energy by quadrupole–quadrupole and
quadrupole–dipole interactions. The polarization
energy associated with dipole distortions of the electron
JOURNAL OF EXPERIMENTAL 
density of ions proves insufficient for the stabilization
of the hexagonal structure in this crystal.

The dipole contribution to the total crystal energy
stabilizes the six-layer hexagonal structure in
RbMnBr3. The energy of the hcc structure in this crys-
tal is much lower than those of the c and h structures.
The energetic advantage of the six-layer hexagonal
structure in the RbMnBr3 crystal is defined by two fac-
tors: first, the higher dipole polarizability of bromine
ion results in a greater contribution by the dipole energy
compared to such contribution in compounds with flu-
orine and chlorine; and, second, the shifts of ions in
RbMnBr3 are such that the difference between the
Madelung energies of the c and hcc structures in this
compound is much less than in RbMnCl3.

Note that the results of this calculation demonstrate
that, for all three crystals being treated, the two-layer
hexagonal structure turns out to be energetically disad-
vantageous compared both to the cubic perovskite
structure and to the six-layer hexagonal structure.

4. PHASE TRANSITIONS UNDER PRESSURE

Under the effect of hydrostatic pressure, many
ABX3 halogen compounds experience phase transi-
tions between different polytypes, preferably to struc-
tures with a large fraction of cubic-packed layers [13].
Here, we give the results of calculation of enthalpy,

H Ω( ) E Ω( ) Eself–( ) PΩ+=
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(E(Ω) is given by expression (5), P is the pressure, and
Ω is the unit cell volume) for three crystals being
treated in different structures. In deriving the equation
of state, the enthalpy H(Ω) with the preassigned value
of pressure P was minimized with respect to volume; in
such a way, the ratio c/a between the unit cell parame-
ters was maintained for all values of pressure. The Ω(P)
equation of state and the H(P) dependence of enthalpy
are given in Figs. 2–4. One can see in these figures that
the three crystals being treated behave differently under
the effect of hydrostatic pressure. In RbMnF3, the per-
ovskite structure remains energetically advantageous
under the effect of hydrostatic pressure as well. The
RbMnCl3 crystal at pressures above 11 kbar makes a
transition from the phase with a six-layer hexagonal
packing to the phase with a perovskite structure. The
value of pressure P = 11 kbar obtained in this calcula-
tion agrees very well with the experimentally obtained
value of P = 7 kbar [13]. The unit cell volume decreases
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Fig. 2. (a) The equation of state and (b) the pressure depen-
dence of enthalpy for the RbMnF3 crystal. Solid curve,
cubic structure; dashed curve, six-layer hexagonal struc-
ture; dot-and-dash curve, two-layer hexagonal structure.
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during the hcc  c transition, and the resultant value

of the unit cell parameter of the cubic phase  =
5.094 Å likewise agrees well with the experimentally

obtained value of  = 5.058 Å [13].

The behavior of the RbMnCl3 and RbMnBr3 crystals
under the effect of hydrostatic pressure supports the
statement made in the literature [10] about the stabili-
zation, under pressure, of the phase with a perovskite
structure in ABX3 halides. However, in the case of the
RbMnBr3 crystal, the phase with a perovskite structure
is not realized in this calculation up to pressures of
100 kbar (Fig. 4). Moreover, one can see in Fig. 4 that,
at P > 90 kbar, the phase with a two-layer hexagonal
packing becomes more advantageous energetically in
this crystal. We are not aware of any experimental
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Fig. 3. (a) The equation of state and (b) the pressure depen-
dence of enthalpy for the RbMnCl3 crystal. Solid curve,
cubic structure; dashed curve, six-layer hexagonal struc-
ture; dot-and-dash curve, two-layer hexagonal structure.
The inset shows the pressure dependence of the difference
between the enthalpies of the six-layer hexagonal and cubic
structures.
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investigations of RbMnBr3 under the effect of hydro-
static pressure.

5. CONCLUSIONS

We used a nonparametric model of ionic crystal
with regard for the dipole and quadrupole polarizabili-
ties to calculate the energies of three structures, namely,
cubic (c packing), two-layer hexagonal (h packing),
and six-layer hexagonal (hcc packing) for RbMnF3,
RbMnCl3, and RbMnBr3 crystals, and investigated the
behavior of these crystals under the effect of hydro-
static pressure.

150

140

130

120

Ω, Å3

(a)

–24

–32

H, eV

(b)

–26

–28

0 20 40 80

P,  kbar

160

0.6
0.4

0
–0.2
–0.4
–0.6

0 20 40 80 100

H – Hh, eV

P, kbar
60

0.2

60 100

–30

Fig. 4. (a) The equation of state and (b) the pressure depen-
dence of enthalpy for the RbMnBr3 crystal. Solid curve,
cubic structure; dashed curve, six-layer hexagonal struc-
ture; dot-and-dash curve, two-layer hexagonal structure.
The inset shows the pressure dependence of the difference
between the enthalpies of the cubic and two-layer hexago-
nal structures (solid curve) and the six-layer hexagonal and
two-layer hexagonal structures (dashed curve).
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It was found that, in the RbMnF3 crystal, the phase
with a perovskite structure is stable both under normal
conditions and under the effect of pressure; in such a
way, the energy of this phase is significantly lower than
the energies of the phases with h and hcc packings.

In the RbMnCl3 crystal, the hexagonal hcc structure
turns out to be stablest; under the effect of hydrostatic
pressure, this crystal makes a transition to the phase
with a perovskite structure. The calculated values of the
phase transition pressure and of the unit cell parameter
agree well with the experimental data.

In the case of the RbMnBr3 crystal, we failed to
observe an energetic advantage of a two-layer hexago-
nal structure under normal conditions. In our calcula-
tions, the energy of a six-layer hexagonal structure is
always lower, in spite of the fact that the polarization
energy of a two-layer hexagonal structure gives a
greater negative contribution to the total crystal energy
than the polarization energy in a six-layer hexagonal
structure.
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of Sm0.55Sr0.45MnO3 Manganite near Tc in a Magnetic Field

of up to 26 kOe: Fluctuation Effects 
and Colossal Magnetoresistance Development Scenario

Sh. B. Abdulvagidov*, I. K. Kamilov, A. M. Aliev, and A. B. Batdalov
Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, 

Makhachkala, Dagestan, 367003 Russia
*e-mail: lowtemp@datacom.ru

Received October 2, 2002

Abstract—The fluctuation effects in Sm0.55Sr0.45MnO3 manganite are quantitatively characterized and the
colossal magnetoresistance (CMR) development scenario in this manganite near Tc is refined based on the
results of high-precision measurements of the heat capacity and electric resistance in a broad range of temper-
atures (77−300 K) and magnetic fields (up to 26 kOe). The experiments revealed a new type of hysteresis related
to a jumplike change in the critical temperature Tc due to the phase transition from the ferromagnetic to para-
magnetic state. The influence of the order parameter fluctuations on the heat capacity of Sm0.55Sr0.45MnO3 was
experimentally observed and quantitatively estimated for the first time. A fluctuation mechanism of CMR devel-
opment near Tc is proposed. On approaching Tc in a strong magnetic field, the system exhibits a transition from
one- to three-dimensional critical behavior. It is shown that, in the presence of a magnetic field, the behavior of
microscopic ferromagnetic regions in Sm0.55Sr0.45MnO3 changes near Tc from static into dynamic. It is estab-
lished that the CMR in this manganite exhibits an anisotropy depending on the mutual orientation of the applied
magnetic field and the electric current passing through the sample. The electric resistance of Sm0.55Sr0.45MnO3
is adequately described within the framework of a double exchange model. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The phenomenon of colossal magnetoresistance
(CMR) in manganites, as well as the related effects and
phase transitions, have been known and studied for a
rather long time [1]. Nevertheless, the nature of CMR
and related transformations still remains unknown.
Apparently, new experimental data obtained by high-
precision techniques are necessary. The thermal proper-
ties of manganites have also been insufficiently studied
[2]. Moreover, problems such as the influence of fluctu-
ations on the heat capacity and electric resistance of
manganites, which are very important for elucidating
the mechanism of CMR near Tc in these compounds,
have not been experimentally investigated at all.

Manganites are characterized by a deep interrelation
of the magnetic, lattice, and electron subsystems. In our
opinion, this a rare phenomenon in solid state physics,
where a crystal lattice is usually considered as a factor
of the same kind as space and time, establishing rules
governing the electric and magnetic phase transforma-
tions. For example, features of the crystal lattice struc-
ture influence the effective masses of charge carriers
and their densities in semiconductors, effective masses
of polarons in insulators, virtual photon energies in
superconductors, and exchange integrals in ferro-, ferri,
1063-7761/03/9604- $24.00 © 20757
and antiferromagnets. It turned out that, in contrast to
all these systems, the magnetic and exchange interac-
tions in manganites are the most important factors,
which determine the electron and lattice properties of a
crystal. For this reason, the crystal lattice of manganites
is referred to as “soft,” pliable to the action of magnetic
fields and exchange interactions. Indeed, a change in
the unit cell volume of manganites in the course of a
spontaneous magnetostriction near Tc is comparable to
the values of analogous changes accompanying struc-
tural phase transitions.

As is known, the antiferromagnetic matrix in man-
ganites behaves as a dielectric “parent rock” featuring
nucleation of the ferromagnetic phase. However, the
CMR in manganites is always induced by the magnetic
phase transition from the ferromagnetic to paramag-
netic state. This suggests that the CMR can probably
take place in the absence of an antiferromagnetic
matrix, that is, in a usual ferromagnet. Such a substance
must behave as a metal in the ferromagnetic state and
as a semiconductor or insulator in the paramagnetic
state. In this case, CMR would allow a trivial explana-
tion, being analogous to the electrical resistance van-
ishing in high-temperature superconductors as inter-
preted within the framework of the fluctuation theory of
003 MAIK “Nauka/Interperiodica”
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phase transitions. Alternation of the conductivity type
in such substances is possible due to their giant magne-
tostriction [3, 4], which can under certain conditions
lead to such changes in the energy band structure of a
solid (appearance of the conduction band), that is, to a
classical phase transformation of the Mott transition
type [5].

This work aimed at quantitatively studying the fluc-
tuation effects, refining the CMR development scenario
near Tc, and elucidating the mechanisms of electric
conductivity in ferromagnetic and paramagnetic states
of manganites. The composition Sm0.55Sr0.45MnO3 has
proved to be a good choice (probably optimum among
all manganites) for these purposes.

Technology used for the synthesis of
Sm0.55Sr0.45MnO3 ceramics is described in detail else-
where [6]. According to X-ray diffraction data, the
samples represented a single-phase orthorhombic per-
ovskite with the lattice parameters a = 0.5424(1) nm,
b = 0.7678(2) nm, c = 0.5434(2) nm. Scanning electron
microscopy showed the material to be homogeneous
with an average grain size of 2 µm, a good cleavage
character, and a porosity of about 20%. Electron-probe
microanalysis revealed homogeneous grain composi-
tion in accordance with the empirical formula
Sm0.55Sr0.45MnO3. The oxygen number determined by
iodometric titration [7] amounted to 3.02.

Thermal behavior of the samples was studied in an
automated setup for heat capacity measurements on
small samples by ac calorimetry with a relative error
not exceeding 0.1% [8]. The average temperature in the
calorimeter was measured by a copper–constantan ther-
mocouple with a wire diameter of 100 µm; the temper-

H = 0

H = 26 kOe

100

75

50

100 150 200 250
T, K

Cp, J/(mol K)

Fig. 1. Temperature variation of the heat capacity of
Sm0.55Sr0.45MnO3 manganite measured in the (s) heating
and cooling (d) mode without an applied magnetic field and
in a field of 26 kOe. For the sake of clarity, the latter curve
is shifted by 10 J/(mol K) upward.
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ature oscillations were detected with a chromel–con-
stantan thermocouple with a wire diameter of 25 µm.
The temperature was varied at a rate not exceeding
0.01 K/min (in the vicinity of the phase transition,
0.005 K/min). The sample temperature oscillations at a
frequency of 2 Hz were excited by alternating light flux
from an incandescent lamp. The amplitude of these
oscillations did not exceed 0.05 K, which is especially
important for the measurements in the neighborhood of
the phase transition. The electric resistance of samples
was measured by the standard four-point-probe tech-
nique.

2. RESULTS AND DISCUSSION

2.1. Heat Capacity Measurements 

Figure 1 shows the curves describing variation of
the heat capacity of a Sm0.55Sr0.45MnO3 sample in a
temperature range from 77 to 300 K. The measure-
ments were performed in the heating and cooling mode
without applied magnetic field and in a field of 26 kOe.
As can be seen, the heat capacity profiles of
Sm0.55Sr0.45MnO3 measured both with and without an
applied field exhibit anomalies with hysteresis in the
neighborhood of Tc . Moreover, the critical temperature
Tc also depends both on the applied field strength H and
on the temperature variation direction. The measure-
ments at H = 0 in the heating mode (indicated by a plus
superscript), which corresponds to the phase transition
from the ferromagnetic to paramagnetic state, yield

 = 128.6 K; in the cooling mode (indicated by minus
superscript), which corresponds to the reverse transi-
tion from the paramagnetic to ferromagnetic state,

 = 113.3 K. In a magnetic field of H = 26 kOe, the

corresponding characteristic values are  = 152.7 K

and  = 150.6 K. Thus, the critical temperature
increases with the applied magnetic field strength. At

the same time, the width of the hysteresis ∆Tc =  –

 decreases from ∆Tc(0) = 15 K to ∆Tc(26 kOe) = 2 K.
The magnitudes of jumps in the heat capacity, calcu-
lated by extrapolation of the experimental values
obtained before and after the phase transition, were

 = 4.3 J/(mol K) and  = 4 J/(mol K) at H = 0

and became nearly equal =  = 8.7 J/(mol K)
at H = 26 kOe. Taking into account that the hysteresis
in magnetic materials can be related to a long-term
relaxation or a first-order phase transition, the measure-
ments were repeated at various heating and cooling
rates and in different temperature cycling intervals.
However, the Tc (and, hence, the ∆Tc) values obtained
with and without applied field remained unchanged. An
analysis of these results showed that the observed
behavior can be given a consistent physical interpreta-
tion only assuming that the system exhibits a tempera-
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ture-induced paramagnet–ferromagnet phase transition
with a jumplike change in Tc , that is, the ferromagnetic
and paramagnetic phases are characterized by different
Tc values.

Previously [6], experimental results on the phase
transition in Sm0.55Sr0.45MnO3 were given a preliminary
explanation in terms of the electronic phase separation
model, according to which this manganite at T < Tc is
an antiferromagnetic dielectric with ferromagnetic
inclusions (metal clusters). However, subsequent thor-
ough analysis of the data reported in [6] showed that
there is no need to use this model, since
Sm0.55Sr0.45MnO3 manganite has no antiferromagnetic
dielectric matrix. Later, the validity of this approach
was fully confirmed by the results of experiments with
neutron diffraction and muon spin relaxation [9, 10].
According to these data, no phase separation at all takes
place in Sm0.55Sr0.45MnO3: below Tc , this manganite
occurs in a homogeneous ferromagnetic state with a
magnetic moment of manganese ions (3.37µB for satu-
ration at T = 4 K) close to that in the completely ordered
state (3.55µB) and without any signs of an antiferro-
magnetic phase at T < Tc . In addition, according to the
neutron diffraction data, the molar volume of
Sm0.55Sr0.45MnO3 near Tc exhibits a significant decrease
(lattice contraction) upon the transition to the ferro-
magnetic phase. In our opinion, this change in the
molar volume is caused by the giant spontaneous mag-
netostriction. Since the space symmetry group (Pnma)
remains the same in the entire temperature range, no
structural phase transition (according to the phase tran-
sition classifications of Ehrenfest and Landau) takes
place in the system. The lattice parameters change in a
very special manner: the rhombic base sharply con-
tracts (which corresponds to a jump in the temperature
dependence of a and c values), while the b value varies
to a much lower extent. We believe that such changes in
the interatomic distances and bond angles in the unit
cell base plane lead to an increase in the energy of indi-
rect exchange interaction between manganese ions and,

hence, in the  value for the ferromagnetic phase.
Therefore, a transition from ferromagnetic to paramag-
netic phase takes place in a crystal lattice with a differ-

ent (according to our data, higher) value of  that
accounts for the observed hysteresis in the behavior of

Sm0.55Sr0.45MnO3. Therefore, an increase in  and 
and a decrease in the hysteresis width ∆Tc in the mag-
netic field are explained by the fact that the lattice param-
eters and the bond angles between magnetically active
manganese ions in Sm0.55Sr0.45MnO3 before and after the
phase transition become closer due to the giant sponta-
neous magnetostriction.

Thus, Sm0.55Sr0.45MnO3 manganite is characterized
by the hysteresis behavior of a new type related to a
jumplike change in Tc . This behavior has nothing in
common, except a similar appearance in the curves,

Tc
+

Tc
+

Tc
+ Tc

–

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
with hysteresis related to a phase transition of the first
order. Hence, such a hysteresis cannot be considered as
sufficient evidence for the first-order phase transition
and it would be incorrect to judge the phase transition
type based upon a single qualitative sign, the presence
or absence of a hysteresis loop [11], as it is frequently
done (see, e.g., [10, 12, 13]). Judging the phase transi-
tion type proceeding from the presence or absence of
hysteresis (or, which is even worse, from the hysteresis
width and the anomaly sharpness and magnitude) is
essentially the same as doing this based on the latent
heat of the transition (assuming that small and large
values of this heat unambiguously correspond to phase
transitions of the second and first order, respectively).
Unfortunately, the aforementioned classifications of
phase transitions according to Ehrenfest and Landau
are almost not employed in the investigations of man-
ganites. This opinion was recently supported by Sala-
mon et al. [14], who indicated that the ferromagnetic
transformation in La0.7Ca0.3MnO3 manganite should be
classified as a second-order transition in view of the
absence of hysteresis, otherwise the sharpness of the
heat capacity change could be evidence of the first-
order transition. For correctly determining the phase
transition type, it would be important to experimentally
detect an infinite jump in the heat capacity. However, in
practice we can only measure a sufficiently large heat
capacity (two orders of magnitude greater than the
value outside the transition neighborhood), which is
related to random noise always present in the measure-
ment tract.

As can be seen from Fig. 1, the heat capacity in a
zero field smoothly varies from a value corresponding
to the ferromagnetic phase to that characteristic of the
paramagnetic state. According to the Landau classifica-
tion, this corresponds to a continuous variation of the
order parameter from unity in the ferromagnetic state to
zero in the paramagnetic state and implies that the sam-
ple exhibits a second-order phase transition. The phase
transition in Sm0.55Sr0.45MnO3 at the Curie temperature
in a zero magnetic field is adequately described by the
Landau theory of phase transitions [15], the only spe-
cial feature being that the ferromagnet–paramagnet

transition takes place at , and the reverse transition,

at a different temperature . In the absence of mag-

netic field,  is significantly lower than , while in a
field of 26 kOe, the critical temperatures approach one
another: ∆Tc(26 kOe) ≈ 2 K.

In addition, application of the magnetic field leads
to a λ-shaped peak in the heat capacity, which is char-
acteristic of the systems subject to a significant influ-
ence of fluctuations in the vicinity of Tc . This fact indi-
cates that the phase transition in Sm0.55Sr0.45MnO3 man-
ganite should be described within the framework of the
fluctuation theory of phase transitions [16]. Since such
a behavior is usually not typical of ferromagnets, we

Tc
+

Tc
–

Tc
– Tc

+
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propose a simple explanation for the origin of a
λ-shaped peak in the heat capacity profile of
Sm0.55Sr0.45MnO3 observed in the magnetic field. The
width of the critical region in the vicinity of Tc is deter-
mined by the Ginzburg–Levanyuk relation

(1)

where ε = |T/Tc – 1 | is the reduced temperature, ∆Cp is
the heat capacity jump at Tc , and ξ is the correlation
radius [17, 18]. Evidently, at T < Tc , a ferromagnetic
phase dominates in which fluctuations of the paramag-
netic phase take place when the temperature falls
within the interval [Tc , (ε + 1)Tc], while at T > Tc , a
paramagnetic phase dominates with temperature fluctu-
ations of the ferromagnetic phase taking place within
the interval [(ε – 1)Tc , Tc]. In the presence of hysteresis,
the appearance of paramagnetic (ferromagnetic) fluctu-
ations in the ferromagnetic (paramagnetic) phase is
possible provided that the temperature in the fluctuating
region would spontaneously increase (decrease) by a
value not smaller than the hysteresis width ∆Tc .

In the absence of magnetic field, Sm0.55Sr0.45MnO3
is characterized by ∆Tc = 15 K. This corresponds to a
significant change in the internal energy dU = Cpξ3∆Tc
of the fluctuating regions and, according to thermody-
namics and statistical physics, implies an extremely
small probability of fluctuations. For this reason, the
correlation radius of the temperature fluctuations is sig-
nificantly smaller than the correlation radius of fluctua-
tions in the magnetic order parameter. In contrast,
∆Tc = 2 K for a field of H = 26 kOe corresponds to a sig-

ε 1

32π2
-----------

kB

∆Cpξ
3

--------------- 
  2

,=

H = 0

H = 26 kOe

T, K

∆Cp, J/(mol K)

5

0
120 130 140 150 160 170

Fig. 2. Temperature variation of the anomalous part of the
heat capacity of Sm0.55Sr0.45MnO3 manganite, ∆Cp = Cp–
CB, determined (s) for heating in the absence of a magnetic
field and for (n) heating and (m) cooling in a field of 26 kOe.
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nificantly lower value of dU. In this case, the ∆Tc value
becomes much lower than the usual width of the fluctu-
ational ε-neighborhood (ε = Tc ± 10 K for ferromagnets
and antiferromagnets, ferroelectrics, and other sub-
stances). The correlation radius of the temperature fluc-
tuations turns out to be comparable with the correlation
radius of fluctuations in the magnetic order parameter
and, according to formula (1), the probability of fluctu-
ations sharply increases, which is manifested in exper-
iment. Thus, the heat capacity of Sm0.55Sr0.45MnO3
behaves in accordance with the Landau theory of phase
transitions in the absence of magnetic field and obeys
the fluctuation theory of phase transitions in a field of
26 kOe.

In order to quantitatively estimate the fluctuation
effects near Tc , we separated the anomalous heat capac-
ity contributions from the measured temperature
dependences of ∆Cp (Fig. 1). This was achieved by sub-
tracting a regular heat capacity contribution CB , repre-
senting the heat capacity of Sm0.55Sr0.45MnO3, mea-
sured in a zero field in the cooling mode, approximated
by a cubic polynomial

(2)

with the coefficients

a0 = –62.67944 J/(mol K),

a1 = 1.51493 J/(mol K2),

a2 = –0.00618 J/(mol K3),

a3 = 1.08297 × 10–5 J/(mol K4).

Figure 2 shows the temperature dependence of the
anomalous part of the heat capacity, ∆Cp = Cp – CB , in
the absence of a magnetic field (for measurements in
the heating mode) and in a field of 26 kOe (for both
heating and cooling stages). As can be seen from these
data, the ∆Cp values in the zero field change from one
almost constant value, corresponding to the paramag-
netic phase, to another almost constant value, charac-
terizing the ferromagnetic phase, without any visible
signs of fluctuation effects (no λ-shaped peak of heat
capacity). A qualitatively different pattern of the phase
transition is observed in the magnetic field of 26 kOe,
whereby a λ-shaped peak (characteristic of the second-
order phase transitions) is observed in both heating and
cooling modes.

Above Tc , the fluctuational contribution (indicated
by plus superscript) is [19, 20]

(3)

where C+ = kB/8πξ3 is the critical amplitude of heat
capacity above Tc , α = 2 – d/2 is the critical index of
heat capacity, and d is the fluctuation space dimension.

CB a0 a1T a2T2 a3T3+ + +=

∆Cp C+ε α– ,=
 AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003



HEAT CAPACITY AND ELECTRIC RESISTANCE OF Sm0.55Sr0.45MnO3 MANGANITE 761
In Fig. 3a, the anomalous part of the heat capacity in
a zero magnetic field is plotted as ∆Cp versus T/Tc – 1
in a double logarithmic scale for Tc = 127.5 K (corre-
sponding to the heat capacity peak). In the interval
where log(T/Tc – 1) varies from –3 to –2, the plot is lin-
ear with a nearly zero critical index of heat capacity
(α = 0.03). This result confirms the above assumption
concerning the absence of any significant influence of
the order parameter fluctuations on the phase transition
in a zero field (according to the Landau theory, α = 0).
In the narrow interval where log(T/Tc – 1) varies from
−1.6 to –1.4, the linear plot with α = 10.26 (far from
any standard values) is evidence of the absence of a
fluctuational smearing of the phase transition in
Sm0.55Sr0.45MnO3 heated in a zero field. Thus, the Curie
point observed for Sm0.55Sr0.45MnO3 in a zero field can
be a classical example of the second-order phase tran-
sition, in full agreement with the Landau theory of
phase transitions [15], which ignores the effect of the
order parameter fluctuations on the phase transition.

According to the scaling theory [16], the Tc value is
determined as a temperature at which the critical indi-
ces below and above this point are equal. However, in
our case this scaling procedure is inapplicable because
of a significant difference between critical temperatures
of the ferromagnetic and paramagnetic phases of
Sm0.55Sr0.45MnO3. We have somewhat modified a pro-
cedure for determining Tc , so as to take into account the
difference of critical temperatures for the ferromag-
netic and paramagnetic manganite phases. The initial Tc
values were taken equal to the temperatures of heat

capacity maxima observed in the heating ( ) and

cooling ( ) stages. Then, these values were varied
with sequentially decreasing temperature steps (0.1,
0.01, and 0.001 K) until the critical indices α for the
ferromagnetic and paramagnetic phases would coin-

cide. This procedure yielded  = 153.425 K and  =
151.400 K.

In order to provide for the most reliable evaluation
of the effect of fluctuations on the heat capacity of
Sm0.55Sr0.45MnO3 in the vicinity of Tc , we have used Tc
as a single fitting parameter. Analogous data processing
is usually performed with several fitting parameters,
including a regular part of the heat capacity and some
other quantities.

Figures 3b and 3c show the anomalous part of the
heat capacity determined in the heating and cooling
modes for a magnetic field of 26 kOe, plotted as ∆Cp

versus T/Tc – 1 in a double logarithmic scale for the
corresponding values of Tc determined as described
above. As can be seen, log∆Cp varies as a linear func-
tion of log(T/Tc – 1) in approximately the same temper-
ature intervals. The heat capacity parameters of
Sm0.55Sr0.45MnO3 calculated according to the fluctua-
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Tc
+ Tc

–
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tion theory of phase transitions are presented in the
table.

As can be seen from the data in the table, the critical
indices α and heat capacity amplitudes C+ for
Sm0.55Sr0.45MnO3 heated and cooled in a magnetic field
of 26 kOe correspond to physically meaningful dimen-
sions d of the fluctuation space and the correlation radii
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Fig. 3. Double logarithmic plot of ∆Cp versus reduced tem-
perature T/Tc – 1 for Sm0.55Sr0.45MnO3 manganite for (a)
heating in a zero field (Tc = 127.5 K) and for (b) heating and

(c) cooling in a field of 26 kOe (  = 153.425 K and  =

151.400 K, respectively). 
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The parameters of phase transitions in Sm0.55Sr0.45MnO3 manganite in a magnetic field, calculated taking into account the
fluctuation effects

Tc, K H, kOe Interval of logε α C+, J/(cm3 K) d ξ, Å

Heating stage

153.425 26 [–2.8, –1.9] 0.50 0.0018725 3.00 6.64

[–1.9, –1.3] 1.50 2.401 × 10–5 1.00 28.39

Cooling stage 

151.400 26 [–2.8, –1.93] 0.50 0.0021748 3.00 6.32

[–1.93, –1.45] 1.50 2.32 × 10–5 1.00 28.72
ξ comparable with the crystal unit cell parameters of
the manganite studied. Far from Tc , the dimensionality
of fluctuations is d = 1. On approaching Tc (logε =
−1.9), the system exhibits the transition to three-dimen-
sional critical behavior (d = 3), whereby the size of fer-
romagnetic grains increases as well. Note that the fluc-
tuation space dimensions equal, to within the second
decimal digit, the real (integer) physical values.
Another remarkable fact is that the correlation radii ξ of
the magnetic order parameter for Sm0.55Sr0.45MnO3
determined from our experimental heat capacity data
(see table) agree well (or even coincide to within the
experimental error) with the analogous values deter-
mined by De Teresa et al. [10] from the results of small-
angle neutron scattering (SANS) experiments.

The SANS data [10] also showed that the lifetime of
the so-called ferromagnetic clusters in
Sm0.55Sr0.45MnO3 exposed to a strong magnetic field
never exceed 10–12 s. Therefore, it would be expedient
to use a common terminology and refer these clusters as
the magnetic order parameter fluctuations described
within the framework of the well-known fluctuation
theory of phase transitions. On the other hand, an anal-
ysis of the data in Fig. 3a shows that the microscopic
ferromagnetic regions cease to fluctuate in a zero field
and behave as static, so that the term “ferromagnetic
cluster” would be more expedient under these condi-
tions. Thus, the application of a magnetic field changes
the pattern of coexisting ferromagnetic and paramag-
netic phases in Sm0.55Sr0.45MnO3 near Tc from static to
dynamic.

The results of our investigation of the fluctuation
effects in Sm0.55Sr0.45MnO3 manganite suggest that the
CMR has a fluctuational nature as well. In the mangan-
ite sample exposed to a magnetic field at T > Tc , fluctu-
ations of the ferromagnetic phase in the form of drop-
lets with a characteristic size on the order of ξ = 7 Å
appear near Tc in the dominating paramagnetic phase
volume. The magnetization vectors of these droplets
are oriented predominantly along the applied field, thus
favoring the mutual attraction of dipoles with the for-
mation of something like ferromagnetic filamentary
JOURNAL OF EXPERIMENTAL
domains. This behavior resembles the orientation of
iron filings on a sheet of paper along the lines of a mag-
netic field created by a U-shaped permanent magnet. As
the magnetic field strength grows, the length of these
filamentary domains increases to become comparable
with the sample dimensions and the electric resistance
sharply drops to produce the CMR effect. In addition,
the ordering of magnetic moments of the ferromagnetic
clusters in the magnetic field favors the conversion of
bonds at the cluster boundaries from insulating to con-
ducting, which is manifested by a shift of the effective
percolation point upward in the temperature scale [14].
Thus, the appearance of a percolation threshold does
not even require any direct contact between ferromag-
netic clusters or droplets.

It should be noted that the formation of such a
domain structure in a zero field is hindered by very
strong forces of surface tension at the boundaries
between ferromagnetic and paramagnetic phases.
These forces are caused by the giant spontaneous mag-
netostriction of Sm0.55Sr0.45MnO3 manganite [4]. In addi-
tion, the formation of this structure in a zero field is
impossible because the fluctuations in Sm0.55Sr0.45MnO3
are almost completely suppressed due to the large dif-
ference between critical temperatures of the ferromag-
netic and paramagnetic phases.

If the above CMR scenario is valid, a sample of
Sm0.55Sr0.45MnO3 manganite in a magnetic field must
exhibit an anisotropy in the electric resistance depend-
ing on the mutual orientation of the applied magnetic
field and the electric current passing through the sam-
ple. This anisotropy is expected to be maximum at Tc
and to decrease with temperature at T < Tc while being
absent in the paramagnetic state at T > Tc . This was
confirmed by the results of our measurements of the
anisotropy of the electric resistance of a
Sm0.55Sr0.45MnO3 sample in a magnetic field of 26 kOe.
Indeed, a relative change in the resistance measured for
the perpendicular and parallel or antiparallel mutual
orientations of the current and the magnetic field direc-
tions was ρ⊥ /ρ|| – 1 = 0.102, 0.191, and 0 at T = 77, 139,
and 300 K, respectively. A relative change in the CMR
 AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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magnitude was (CMR)||/(CMR)⊥  – 1 = 0.104, 0.127,
and 0, respectively.

Thus, Sm0.55Sr0.45MnO3 manganite at a temperature
and a magnetic field strength corresponding to the
aforementioned filamentary domain structure forma-
tion exhibits a one-dimensional critical fluctuation
behavior (see table). On approaching Tc from above (by
decreasing the sample temperature or increasing the
field strength at T > Tc), the intensity of fluctuations
increases and they acquire a three-dimensional charac-
ter, thus favoring realization of the finite-dimensional
scaling in the magnetic field.

2.2. Electric Resistance 

Figure 4 shows a family of temperature depen-
dences of the electric resistance of Sm0.55Sr0.45MnO3

measured at various magnetic field strengths (0. 6, 13,
and 26 kOe) in the heating and cooling modes plotted
in the logρ versus 1/T coordinates. As can be seen from
these data, the electric resistance also exhibits hystere-
sis, which is suppressed by the magnetic field and
shifted toward higher temperatures. The applied mag-
netic field strongly suppresses the electric resistance,
thus leading to a CMR effect that is most pronounced at
Tc . In addition, the transition from metallic to semicon-
ductor conductivity in a zero field is sharp, while the
same transition in a field of 26 kOe proceeds within a
10 K interval, which corresponds to the width of a fluc-
tuation region in usual ferromagnets. This smearing of
the transition region probably reflects the increasing
role of fluctuations in the magnetic order parameter. In
a zero field, the width of the critical temperature region
for Sm0.55Sr0.45MnO3 is virtually zero, which favors
rapid change in the character of the electric conductiv-
ity type. In a field of 26 kOe, the fluctuation region sig-
nificantly increases and microdomains of a ferromag-
netic phase appear at T > Tc in the (still predominant)
paramagnetic phase. These domains produce a decrease
in ρ on approaching Tc and lead to a percolation thresh-
old of the fluctuation nature at T = Tc . Apart from the
different character of the temperature dependences of ρ
at T > Tc and T < Tc in manganites and high-T supercon-
ductors, the effect of fluctuations on the CMR in both
media is much alike, except that the percolation thresh-
old is not as clearly manifested in the ferromagnetic
phase of manganites (because of finite ρ) as in high-T
superconductors, where this phenomenon leads to com-
plete vanishing of the nonzero electrical resistance.

Thus, an analysis of the results of electrical resis-
tance measurements in Sm0.55Sr0.45MnO3 depending on
the temperature in a zero and nonzero magnetic field
shows that smearing of the temperature interval of the
metal–semiconductor transition and the appearance of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the percolation threshold in the magnetic field are
related to the effect of thermodynamic fluctuations on
the phase transition at Tc .

A sharp decrease in the electric resistance of
Sm0.55Sr0.45MnO3 measured in a zero field in the cool-
ing mode and a less steep variation of ρ(T) in the heat-
ing mode can be explained as follows. For a qualita-
tively different temperature behavior of the electric
resistance of Sm0.55Sr0.45MnO3 above and below Tc
(increase in the ferromagnetic state against decrease in
the paramagnetic one), the hysteresis observed upon
the transition to the ferromagnetic state in the cooling
mode leads (because of a decrease in Tc as compared to
that in the paramagnetic state) to a greater difference in
resistances of the ferromagnetic and paramagnetic
phases at the transition temperature. This is manifested
by a sharp drop in the electric resistance measured in
the cooling mode. For the same reasons, measurements
in the heating mode lead to the opposite effect: the hys-
teresis observed upon the transition to paramagnetic
state leads (because of an decrease in Tc as compared to
that in the ferromagnetic state) to a smaller difference
in resistances of the ferromagnetic and paramagnetic
phases at the transition temperature. This is manifested
by a less steep anomaly in the electric resistance mea-
sured near Tc in the heating mode.

In addition, an analysis of the temperature depen-
dences of the electric resistance of Sm0.55Sr0.45MnO3
measured in various magnetic fields (Fig. 4) led us to
the conclusion that the electric resistance of
Sm0.55Sr0.45MnO3 in a magnetic field is described well
by a double exchange model, which is characterized by

logρ [Ω cm]

Fig. 4. Temperature dependences of the electric resistance ρ
of Sm0.55Sr0.45MnO3 manganite in various magnetic fields
H = 0 (circles), 6 (triangles), 13 (squares), and 26 kOe
(nablas) (black and open symbols correspond to heating and
cooling modes, respectively). The inset shows the same
curves plotted in different coordinates.
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a superexponential growth of ρ(T) and T < Tc , a rela-
tively high Tc value, and a semiconductor-type relation
logρ(T) ∝  1/T at T > Tc . According to the double
exchange model, the charge carrier relaxation rate
depends on the mutual orientation of the spins of ions
in the neighboring lattice sites. In the absence of a long-
range magnetic order (in the paramagnetic phase) or in
the vicinity of Tc (where the thermodynamic fluctua-
tions disordering the spins of the neighboring ions are
strongly developed), the charge carriers can exhibit
localization.

Therefore, according to the double exchange model,
the fluctuation effects (leading to ordering or disorder-
ing of spins in microscopic regions with a characteristic
size on the order of ξ) seem to significantly influence
behavior of the electric resistance near Tc .

Recently, Izyumov and Skryabin [21] showed that
the temperature dependence of the electric resistance in
such a system is described by the formula

(4)

where 〈S0S1〉  is the pairwise correlation function for
spins in the neighboring sites and W is the seeding band
width. Note that the exponent contains two factors
exhibiting opposite variation with the temperature. At
T < Tc , the first factor is small in the ferromagnetic
region, thus making the electric resistance small as
well. In the vicinity of Tc , this factor sharply grows and
attains a constant level at T > Tc (paramagnetic phase),
where spins in the neighboring sites are no longer cor-
related. Here, the second factor in the exponent
becomes predominant, since the metal–semiconductor
transition of the Mott type at the Curie point must lead
top a significant change in the mobility edge (Ec), the
chemical potential (µ), and the seeding band width (W).
The linear portions of the temperature dependence of
the electric resistance at T > Tc are well approximated
by formula (4) with the seeding band width W =
110.79 meV. For T < Tc , the electric resistance of
Sm0.55Sr0.45MnO3 is also described by formula (4),
where the first term in the exponent sharply increases
on approaching Tc . As can be seen from Fig. 4, the elec-
tric resistance of Sm0.55Sr0.45MnO3 at T < Tc exhibits a
superexponential growth with increasing deviation
from the exponential law (see the inset in Fig. 4). Thus,
the results of the electric resistance measurements for
Sm0.55Sr0.45MnO3 agree well with the double exchange
model.

3. CONCLUSIONS

We have experimentally observed and interpreted a
new type of the hysteresis behavior related to a jump-
like change in Tc due to the phase transition from ferro-

ρ T( ) ρ0

1 S0S1〈 〉 /S2–

1 Sz〈 〉 /S+
-------------------------------- W

4kT
---------

 
 
 

,exp=
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magnetic to paramagnetic state. The effect of the order
parameter fluctuations on the heat capacity and electric
conductivity of Sm0.55Sr0.45MnO3 manganite was
experimentally observed and quantitatively estimated
for the first time. A fluctuation mechanism of the CMR
development near Tc is proposed. The heat capacity of
Sm0.55Sr0.45MnO3 exhibits a change from behavior
according to the Landau theory in the zero magnetic
field to behavior described by a fluctuation theory of
phase transitions. On approaching Tc in a strong mag-
netic field, the system exhibits a transition from one- to
three-dimensional critical behavior. It is shown that, in
the presence of magnetic field, the behavior of micro-
scopic ferromagnetic regions in Sm0.55Sr0.45MnO3
changes near Tc from static into dynamic. It is estab-
lished that the electric resistance ρ of Sm0.55Sr0.45MnO3
manganite exhibits an anisotropy depending on the
mutual orientation of the applied magnetic field and the
electric current passing through the sample. The elec-
tric resistance of Sm0.55Sr0.45MnO3 is adequately
described within the framework of the double exchange
model. In this manganite, unlike usual ferromagnets,
the magnetic field increases the intensity of the order
parameter fluctuations in the vicinity of Tc , rather than
suppressing these fluctuations. A smooth change in the
conductivity type observed in Sm0.55Sr0.45MnO3 at Tc is
related to the influence of fluctuations on the electric
resistance. A fluctuational scenario of the CMR devel-
opment is proposed, which is realized in
Sm0.55Sr0.45MnO3 manganite in the vicinity of Tc .
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Abstract—The adiabatic motion of electrons in curvilinear quantum wires was studied. It was assumed that
the cross section of a wire was constant along its length. The potential that limited electron motion across a wire
and the shape of the cross section of the wire were considered arbitrary, while the curvature and the torsion
(defined as the derivative of the cross section rotation angle with respect to the length) were assumed to be
small. An effective nonrelativistic Hamiltonian for the motion of electrons along a wire with the conservation
of transverse quantum numbers was obtained. The spin-orbit coupling Hamiltonian related to the curvature and
torsion of a wire was found. Particular cases of a rectilinear twisted quantum wire with a noncircular cross sec-
tion and a curvilinear quantum wire on a plane were studied. Various transverse potential models limiting the
motion of electrons were considered. In particular, the coefficients of the effective Hamiltonian for quantum
wires with rectangular and circular cross sections and hard walls and for wires with a parabolic potential were
found. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, rapid technological progress has
made it possible to create various low-dimensional sys-
tems of complex geometrical shapes [1–4] such as
scrolls, rings, helices, and other structures. Electronic
states in curved low-dimensional systems have been
studied both theoretically and experimentally (e.g., see
[5–10]). It is known that curvature causes the appear-
ance of an effective geometrical potential [11–13],
which augments the large energy levels of transverse
quantization. Corrections to the longitudinal kinetic
energy, which are inversely proportional to the thick-
ness of the layer, arise in addition to the geometrical
potential in systems with an asymmetric potential that
limits transverse motion [14].

As distinct from mathematical lines, one-dimen-
sional systems should be considered taking into
account their transverse geometry. For this reason, one-
dimensional systems are characterized not only by cur-
vature but also by the shape of their cross sections. A
local one-dimensional Hamiltonian of the system
should be determined both by the local curvature of the
system and by the torsion of the wire along its axis. The
particular case of a rectilinear twisted wire was consid-
ered by us in [15].

The purpose of this work is to obtain an effective
Hamiltonian for electrons in a curved and, possibly,
twisted quantum wire. We consider quantum wires of a
constant cross section with both circular and noncircu-
lar symmetry. We will construct an adiabatic Hamilto-
nian for the motion of electrons along wires. Next,
some particular cases will be analyzed.
1063-7761/03/9604- $24.00 © 20766
First, a Hamiltonian not taking into account the spin
of electrons will be obtained. Further, an additional
term for spin-orbit coupling will be found.

Various quantum wires to which the statement of
our problem pertains are shown in Figs. 1 and 2. Some
of them are particular cases of quantum wires obtained
in [1].

2. PROBLEM STATEMENT

The motion of electrons with a quadratic and isotro-
pic spectrum in a bent and/or twisted quantum wire is
considered. Ignoring its thickness, we see that the wire
satisfies the equation

(1)

where q3 is the length of the arc along the a(q3) curve.
This one-dimensional description is, however, insuffi-
cient for taking into account the shape of the wire. As
the wire has a finite thickness, Eq. (1) only determines
some medial line that passes along the wire.

The system under consideration can be treated as a
uniform rectilinear wire whose cross section has an
arbitrary shape; the wire is twisted along its axis and/or
bent (see Fig. 2). The curvature and torsion of the wire
will be considered to arbitrarily depend on q3. Mathe-
matically, a wire can be described as a locus formed by
a plane figure that moves along a curve in such a way
that its plane remains normal to the curve at points of
intersection and that the curve everywhere intersects
the figure at the same point of the figure.

r a q3( ),=
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(a) (b)

(d)(c)

Fig. 1. Examples of curved quantum wires with constant cross sections: (a) helix with a constant pitch formed from a wire of a
circular cross section, (b) curved thin band without internal torsion, (c) twisted curved wire with a square cross section, and
(d) adjoined left and right helices with circular cross sections.
Generally, we will restrict the motion of electrons
across a wire by an arbitrary (not necessarily rigid)
potential U(r). The potential that satisfies our assump-
tions should equally depend on local coordinates trans-
verse with respect to the curve in an arbitrary cross sec-
tion with accuracy to coordinate system rotations
around the tangent to the curve. Let us select a system
of (curvilinear) coordinates in which the potential does
not depend on q3. The moving trihedron of the curve
will be constructed from the tangent t(q3) = ∂3a, normal
n(q3) = ∂3t/|∂3t |, and binormal b(q3) = t × n. We also
introduce the vectors related to it,

(2)

Here, φ(q3) is the angle of rotation of the cross section
around t. Let us define new coordinates by the relation

(3)

In qi coordinates, the transverse potential has the form
U = U(q⊥ ), where q⊥  = (q1, q2).

We assume that the thickness of the wire is small
compared with its radius of curvature; in addition, the
product of wire torsion ω ≡ ∂3φ and its thickness will be
considered small. These parameters determine the adi-
abatic character of electron movement along the wire;
namely, electrons that move along the wire retain the
number of their transverse quantization subband. Sche-
matically, an effective Hamiltonian is constructed as
follows. The initial Hamiltonian is expanded into a
series in powers of thickness, and the wave function is
sought in the form of its expansion in transverse adia-

n1 n φ b φ, n2sin–cos n φ b φ.cos+sin= =

r q( ) a q3( ) q1n1 q2n2.+ +=
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batic states. This gives a one-dimensional Hamiltonian
for motion in a certain transverse quantization subband.

3. AN EFFECTIVE NONRELATIVISTIC 
HAMILTONIAN

The Schrödinger equation in the new coordinates
takes the form

(4)

Here, Gij is the contravariant metric tensor inverse to
the covariant metric tensor Gij = ∂ir · ∂jr and G = detGij .

1
2µ
------ 1

G
-------- ∂i GGij∂ j( )

i j,
∑ U q1 q2,( )+– Ψ EΨ.=

Fig. 2. Segment of a curved and twisted wire with an asym-
metric cross section.
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Based on (3) and (2), we obtain the ∂ir derivatives in
the form

(5)

(6)

In (5), we use the notation l = (cosφ, sinφ); κ = |∂3t | is
the curvature of the curve; and τ(q3) = (t · ∂3t × t)/κ2

is the geometrical torsion of the curve. This equation
follows from the Serret–Frenet formulas ∂3n = –κt +
τb, ∂3b = –τn.

Using (5) and (6), we obtain

(7)

(8)

(9)

where ζ = τ – ω. The wave function should be normal-
ized according to the condition

Let us introduce the new function Ψ = ΦG–1/4 to elimi-

nate  from the volume element in the normalization
of the wave function. As we are interested in the limit
of small wire thickness d, the coefficients of the
Schrödinger equation will be expanded in ζq⊥  and Q
bearing in mind that q⊥  ~ d and the action of ∂1, 2 on
transverse wave functions gives values on the order
of 1/d.

After the corresponding substitutions, the Schrödin-
ger equation takes the form

(10)

where pj = –i∂j , p = (p⊥ , p3), and M = q1p2 – q2p1 is the
operator of momentum projection onto the third axis.

Let us expand wave function Φ in transverse states
ψn(q⊥ ) in the wire,

(11)

∂3r t 1 κ q⊥ l⋅( )–( )=

+ τ ω–( ) q⊥ l×[ ] 3 n× q⊥ l⋅( )b+( ),

∂1 2, r n1 2, .=

∂3
2

Gij

1 0 q2ζ–

0 1 q1ζ

q2ζ– q1ζ G ζ2q⊥
2+ 

 
 
 
 

,=

Gij 1
G
----

G ζ2q2
2+ ζ2q1q2– ζq2

ζ2q1q2– G ζ2q1
2+ ζq1–

ζq2 ζq1– 1 
 
 
 
 
 

,=

G 1 κ q⊥ l⋅( )–( )2 1 Q–( )2,≡=

Ψ 2
G q3d∫ 1.=

G

p⊥
2 p ζM–( )2 κ2

4
-----–+ Φ 2µ E U–( )Φ,=

Φ q( ) ψn q⊥( )χn q3( ).
n

∑=
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These states satisfy the equation

(12)

where En is the transverse-state energy in the wire. As a
result, we obtain the χn(q3) longitudinal part of the
wave function as a solution to the system of equations

(13)

Here and throughout, braces denote the symmetrization
of operators,

In one-dimensional equations, we will omit index 3 in
coordinate and momentum denotations. In (13), the
commutators of ζ, κ, and l with longitudinal momen-
tum p are small. Nevertheless, we cannot ignore them,
because the Hamiltonian should remain Hermitian.

First, consider a nondegenerate spectrum of trans-
verse states. We will seek states formed from a certain
transverse state n and assume that all other χn' (n' ≠ n)
values are small compared with χn . Accordingly, we
will only leave the diagonal term in (13). The (M)nn

diagonal matrix element vanishes, and (13) is simpli-
fied to

(14)

Here, βn = (M2)nn . An additional criterion for the valid-
ity of the approximation that we use is fairly small val-
ues of the {ζ, p}(M)nn' off-diagonal terms. We will show
that this condition is satisfied if pd ! 1, that is, in the
vicinity of transverse quantization subband bottoms,
but is violated as the longitudinal energy of electrons
increases.

Term a in (14) is the well-known geometrical poten-
tial [11] caused exclusively by the curvature of the wire
and independent of its internal structure.

Term b is determined by the internal and geometri-
cal torsion of the wire. This term depends on the form
of the transverse potential and transverse wave func-
tions via the (M2)nn matrix element. The value of this
element is on the order of one if the cross section of the

p⊥
2

2µ
------ U+ 

  ψn Enψn,=

p2

2µ
------ En

κ2

8µ
------–+ χn

1
2µ
------ ζ2 M2( )nn'[

n'

∑+

– 2 ζ p,{ } M( )nn' 2 κ l p2,{ } q⊥( )nn'+ ]χ n' Eχn.=

A B,{ } 1
2
--- AB BA+( ).=

hnχn
p2

2µ
------ κ2 q( )

8µ
------------

1
2µ
------βnζ

2 q( )+–≡

+
1
µ
--- κ l p2,{ } q⊥( )nn χn E En–( )χn.=

       

      

a b

c
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wire is neither too prolate nor too symmetrical. This
term is positive (a particle is repelled from the region
where |ζ| is large), which distinguishes it from the geo-
metrical potential, which attracts a particle to the region
with maximum curvature. Term b vanishes if internal
and geometrical torsion values are equal. In addition, it
vanishes for a wire with a circular cross section for all
nondegenerate states (states with zero momentum pro-
jections onto the axis), in particular, for the ground
state.

Term c in (14) contains the diagonal matrix element
that corresponds to the transverse coordinate [(q⊥ )nn]. If
we are only interested in states in one (for instance, the
lower) transverse quantization subband, (q⊥ )nn can be
reduced to zero by selecting the origin for q⊥ . The
(q⊥ )nn matrix elements with all n are zero for U(q⊥ )
potentials symmetrical with respect to rotations around
axis 3 through 2π/N (N = 2, 3, …) angles including axi-
ally symmetrical potentials. In particular, parabolic
potentials and quantum wires with rectangular cross
sections and hard walls have such symmetry properties.

In the more general case of a quantum wire with a
nonsymmetrical potential, the c term does not vanish.
This term is centrifugal in origin; that is, the centrifugal
force drives an electron traveling along a curvilinear
wire to the external side of a bent wire and thereby
changes the potential energy of the electron in the non-
symmetrical well potential. We obtained a similar term
for motion over a curvilinear surface [14].

This contribution depends on the longitudinal
momentum of the electron and is a small addition to its
kinetic energy. The c term is, however, significant if the
longitudinal energy of the electron becomes fairly high.
A comparison of terms a and c shows that c is larger
than a if p2 ≥ κ/d. At low energies, the geometrical
potential makes the major contribution. Note that term
c is responsible for the dependence of the Hamiltonian
on angle φ, that is, on the orientation of the cross sec-
tion with respect to the normal to the curve.

Note that our result differs from that obtained
in [11–13] by the presence of the b and c terms, which
depend on the torsion of the wire, in addition to the geo-
metrical term determined by curvature. Generally,
these contributions cannot be ignored. Only if the wire
has a circular cross section can the result be reduced to
the geometrical potential (see below). The reason for
the error is the unjustified neglect of the internal quan-
tum wire structure in passing to the limit of an infinitely
thin wire. The b and c terms, which depend on trans-
verse wave functions, make the Hamiltonian not unam-
biguous in the limit of an infinitely thin wire. (However,
the absence of a limit already follows from the diver-
gence of the energy of transverse states.)

At a fairly high longitudinal energy, we must take
into account terms linear in p in (13). Formally, these
terms are largest in order of magnitude among all the
terms caused by wire curvature and torsion. Neverthe-
less, the diagonal elements of this perturbation vanish,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and the effective one-subband Schrödinger equation
should be constructed in second-order perturbation
theory.

Let us write the main terms of (13) in the form

(15)

Next, express small χn' (n' ≠ n) components through χn ,
substitute them into the equation for χn, and then stop
iterations,

(16)

The ζ(q) function is a smooth function of coordinates.
For this reason, the action of the hn and {ζ, p} operators
on the wave function only slightly changes the longitu-
dinal momentum. The denominator in (16) can there-
fore be replaced by En – En', which gives

(17)

(18)

where

(19)

The βn and γn constants are fully determined by the
transverse potential. Generally, the βn dimensionless
value is on the order of 1, and the γn dimensional con-
stant is of the order of the squared wire thickness. The
term with γn gives a correction to the kinetic energy
which is small in the ζ2γn ~ (ζd)2 ! 1 parameter. The
ratio between this term and the contribution propor-
tional to βn is determined by the ratio between the p2/2µ
longitudinal electron energy and the distance between
transverse levels.

In the particular case of a quantum wire with a sym-
metrical potential, the effective Hamiltonian can be
written in the form

(20)

If the curvature and torsion ζ are constant, they shift
subband bottoms by (4βnζ2 – κ2)/8µ and change the

hn En E–+( )χn
1
µ
--- ζ p,{ } M( )nn'χn' .

n'

∑=

hn
1

µ2
----- ζ p,{ }

M( )nn'
2

hn' En' E–+
---------------------------- ζ p,{ }

n'

∑– χn

=  E En–( )χn.

Hn
1

2µ
------ p2 1

4
---κ2– βnζ

2+=

– γn ζ p,{ } 2 2 q⊥( )nn κ l p2,{ }+ ,

    d

Hnχn E En–( )χn,=

γn
2
µ
---

M( )nn'
2

En' En–
--------------------.

n' n≠
∑=

Hn
1

2µ
------ p2 1

4
---κ2– βnζ

2 γn ζ p,{ } 2–+ .=
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effective mass of the electron, 1/µ  1/µ(1 – γnζ2).
The sign of subband bottom shifts is determined by the
ratio between the curvature and torsion values.

Another particular case is a twisted rectilinear wire.
In such a wire, κ = τ = 0. If the state in the vicinity of
the band bottom is only considered, (20) can be used to
obtain a one-dimensional Schrödinger equation with
the effective potential βnω2/2µ:

(21)

This result was obtained by us in [15].
The derived effective Hamiltonian allows the prob-

lem of electron movement in a quantum wire to be
reduced to solving a purely one-dimensional
Schrödinger equation with variable coefficients. The
known, exactly solvable, one-dimensional problems
can be used to consider special types of bent and/or
twisted quantum wires.

4. THE βn AND γn CONSTANTS 
FOR PARTICULAR QUANTUM WIRE 

POTENTIALS

Let us calculate the βn and γn values for typical
U(q⊥ ) potentials. First, consider a potential of the rect-
angular box type –ai/2 < qi < ai/2 with solid walls. The
n = (n1, n2) transverse states are characterized by two
numbers n1, 2 = 1, 2, …, and

p2 βnω
2+[ ]χ n 2µ E En–( )χn.=

En
π2

2µ
------

n1
2

a1
2

-----
n2

2

a2
2

-----+
 
 
 

.=

Fig. 3. Dependence of γn/ab on e for various n.

(n1, n2)
(1, 1)
(2, 1)
(3, 1)
(2, 2)

γn1n2

1.2

0.8

0.4

0

–0.4

–0.8

–1.2
0 2 4 6 8 10

∈

JOURNAL OF EXPERIMENTAL 
The βn and γn coefficients are found in the form

(22)

(23)

where e = a2/a1is the ratio between the sides of the rect-
angle and

The dependence of /a1a2 on parameter e is

shown in Fig. 3. The (e) value has the obvious

symmetry property (e) = (1/e). The (e)
dependence for the n = (1, 1) ground state does not have
singularities. Resonances at higher levels correspond to
the conditions of the arising of degenerate states,

Another example is the parabolic confining potential

We then have

The βn and γn values are given by

(24)

(25)

The applicability of (23) and (25) is limited by the
closeness of the denominators to zero.

βn
1
12
------ π2

en1( )2 n2

e
----- 

 
2

+ 
 =

– 6
en1

n2
-------- 

 
2 n2

en1
-------- 

 
2

+ 
  ,

γn
212ab

π6
e

------------- C n1 n1',( )C n2 n2',( )
n1

2n2
2n1'

2
n2'

2

n1
2 n1'

2
–( )

4
n2

2 n2'
2

–( )
4

------------------------------------------------
n' n≠
∑=

×
n2

2 n2'
2

– e
2 n1

2 n1'
2

–( )–( )
2

e
2 n1

2 n1'
2

–( ) n2'
2

n2
2–+

---------------------------------------------------------,

C n1 n1',( )
1 1–( )

n1 n1'+( )
–

2
----------------------------------.=

γn1n2

γn1n2

γn1n2
γn2n1

γn1n2

e
2 n1

2
n1'

2
+( ) n2

2 n2'
2

–+ 0.=

U q⊥( )
µ ω1

2q1
2 ω2

2q2
2+( )

2
--------------------------------------.=

En ω1 n1
1
2
---+ 

  ω2 n2
1
2
---+ 

  , n1 2,+ 0 1 2 …, , ,= =

βn
1

4ω1ω2
----------------=

× 2n1 1+( ) 2n2 1+( ) ω1
2 ω2

2+( ) 2ω1ω2–[ ] ,

γn
1

2µω1ω2
--------------------=

× ω1 ω2–( )2n1 n2 1+ +
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ω1 ω2–
------------------+ .
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5. A DEGENERATE SPECTRUM

If the spectrum of transverse states is degenerate,
perturbation theory is inapplicable because the energy
denominators then vanish. At the same time, the
momentum projection M and q⊥  operators give matrix
elements between different states of this group that
generally do not vanish. A degenerate spectrum arises,
for instance, in quantum wires with a square section or
in a parabolic potential with multiple frequencies.

In the case of degeneracy, terms that belong to the
degenerate group only remain in Eq. (13), which can
then be used as an effective Schrödinger equation.

A particular case of degeneracy is axial potential
symmetry, U(q⊥ ) = U(q⊥ ). The selection of angle φ(q)
is then arbitrary for symmetry reasons. For instance, φ
can be set equal to zero. Clearly, the observed values
should not depend on the selection of φ. Transverse
motion states ψnm are classified according to the projec-
tion of momentum m values. All states except those
with zero projections are doubly degenerate with
respect to the sign of the momentum projection. The
matrix element of q⊥  vanishes, and the Schrödinger
equation for the states with a given momentum projec-
tion can then be diagonalized,

(26)

The mζ value plays the role of a vector potential. Tor-
sion can be excluded from this equation by passing to a
new u(q) wave function,

The possibility of excluding torsion from (26) is
directly related to the arbitrariness of selecting φ.
Indeed, the geometrical and internal torsion terms enter
into the equation as additive values, and if physical val-
ues do not depend on φ, they should also be indepen-
dent of τ. It follows that the effective Schrödinger equa-
tion for a wire with a circular cross section reduces to
the introduction of the geometrical potential. However,
if the frame of reference is selected along geometrical
directrices n and b, the wave function acquires an addi-
tional phase (Berry phase [16]), which is multiple to the
angle of rotation of the geometrical directrices. Indeed,
if a bent quantum wire has a circular cross section, this
wire is nevertheless characterized by anisotropy
imposed by the normal to the curve. Rotations of the
normal along the wire are equivalent to rotations of
wire directrices, which determine the Berry phase.

p mζ–( )2

2µ
----------------------- κ2

8µ
------– χm E En–( )χm.=

χm im ζ qd∫ 
 
 

u q( ),exp=

p2

2µ
------ κ2

8µ
------– u E En–( )u.=
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6. A PLANE QUANTUM WIRE

Most often, quantum wires formed on a plane sur-
face have been studied. Such wires are described by
plane curves, and one of the directrices of their cross
section is the normal to the surface. This means that
both τ and ω vanish, and Hamiltonian (20) only retains
the geometrical potential,

(27)

By way of example, consider a plane snakelike curve
y = asin(bx). The curvature of the curve at point x is

Let us return from q to Cartesian variable x. The
Schrödinger equation is then obtained in the form

(28)

On the assumption that the curve is not steep (ab ! 1),
we obtain the Mathieu equation in the principal order,

(29)

7. A HELICAL QUANTUM WIRE
Next, consider a quantum wire that has the form of

a helix wound on the surface of a cylinder with a con-
stant pitch D. The a(q3) function for such a helix has the
form

(30)

where S = . Using (30), we easily obtain
equations for the curvature and geometrical torsion,

(31)

In the nondegenerate case and in the absence of internal
torsion (ω = 0), the Hamiltonian takes the form

(32)

Hamiltonian (32) is independent of coordinates, pre-
serves the momentum, and immediately gives the

Hn
1

2µ
------ p2 1

4
---κ2– .=

κ ab2 bx( )sin

1 a2b2 bx( )cos
2

+[ ]
3/2

---------------------------------------------------.–=

1

1 a2b2 bx( )cos
2

+
----------------------------------------------

x∂
∂ 1

1 a2b2 bx( )cos
2

+
----------------------------------------------

x∂
∂ χ

+
a2b4 bx( )2sin

4 1 a2b2 bx( )2cos+[ ]
3

----------------------------------------------------χ 2µ En E–( )χ .=

χ'' 2µ E En–( ) a2b4

2
---------- 1 2bx( )cos–( )+ χ+ 0.=

a q3( ) R
2πq3

S
------------cos R

2πq3

S
------------sin

Dq3

S
---------, , 

  ,=

2πR( )2 D2+

κ R
2π
S

------ 
 

2

, τ 2πD

S2
-----------.= =

Hn
1

2µ
------ p2 1 2 q⊥( )nn κ γnτ

2–+[ ]=

+
1

2µ
------ βnτ

2 1
4
---κ2– .
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energy spectrum. The multiplier of p2 determines the
renormalized effective mass, but the corresponding cor-
rections are small in adiabatic parameters. If the trans-
verse potential has the symmetry properties specified
above, the term with |(q⊥ )nn| vanishes. The second term
in the right-hand part of Eq. (32), which equals

is the shift of subband bottoms caused by curvature and
torsion. This shift may be either positive or negative,
and it depends on the number of the subband.

8. SPIN-ORBIT COUPLING

The initial spin-orbit coupling Hamiltonian for the
conduction band has the form

(33)

Here, α is the effective spin-orbit coupling constant in
a volume crystal. In semiconductors of the A3B5 type,
this constant for the Γ1 band valley is given by

(e.g., see [17]), where Eg is the forbidden bandwidth
and ∆ is the spin-orbit splitting of the valence band.

We will only consider nondegenerate transverse
states. Let us transform Hamiltonian (33) and write it in
the curvilinear system of coordinates introduced above.
Averaging over transverse states then gives the effective
spin-orbit coupling Hamiltonian.

After the transformation, Hamiltonian (33) in the
space of Φ functions takes the form

(34)

Here, the covariantly transformed Pauli matrices are
determined by the equations

(35)

Using (5) and (6), we obtain

(36)

For convenience, we introduced the n3 ≡ t vector
in (36). The rotated  Pauli matrices are functions of
only the longitudinal coordinate (q3).

After expanding (34) in powers of q1, 2 and averag-
ing over transverse states with number n, we obtain the

1

2µR2
-------------

βn D/2πR( )2 1–

1 D/2πR( )2+( )2
----------------------------------------,

*SO
iα s ∇ U×[ ]∇ .–=

α 2Egm( ) 1– ∆ 2Eg ∆+( )
Eg ∆+( ) 3Eg 2∆+( )

------------------------------------------------=

*SO αe
ijk 1

G1/4
---------σ j ∂kU( )pi

1

G1/4
---------.=

σ j K jiσi, K ji ∂ jri.= =

σ j σ̃ j ζδ j3 q1σ̃2 q2σ̃1–( ), σ̃ j+ n j( )iσi.= =

σ̃ j
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effective spin-orbit coupling Hamiltonian in the princi-
pal order,

(37)

The Ai and Aij values are determined by the values aver-
aged over transverse wave functions (〈…〉n = (…)nn),

(38)

(39)

The Ai values can be written differently without explic-
itly including potential U,

(40)

(41)

(42)

The order of magnitude of A and Aij can be inferred

from the last equations. Generally, Ai ~ µ1/2 and
Aij ~ En .

Equation (37) can also be written in terms of the
projections of the σt , σn , and σb Pauli matrices onto the
unit vectors of the basis (t, n, b),

(43)

Spin-orbit coupling Hamiltonian (37) contains torsion
only in combination with vector A. Vector A vanishes if
the q1, 2 variables in the U(q⊥ ) potential are separable or
if this potential possesses a center of inversion. Spin-
orbit coupling is then determined exclusively by the
curvature of the wire. The A12 tensor component van-
ishes if the potential has a symmetry plane (q1  –q1
or q2  –q2). The spin-orbit coupling Hamiltonian
can then be written as

(44)

Hn
SO α ζ A1σ̃1 A2σ̃2+( ) κσ̃3 l1A2 l2A1–( )+[=

+ κ σ̃1 l1A12 l2A22+( ) σ̃2 l1A11 l2A21+( )–[ ] p,{ } ] .

A1 i q2 ∂1U( )∂2 ∂2U( )∂1–( )〈 〉 n,=

A2 –i q1 ∂1U( )∂2 ∂2U( )∂1–( )〈 〉 n,=

Aij qi∂ jU〈 〉 n.=

A1
i

2µ
------ ∂2

2∂1〈 〉 n, A2–
i

2µ
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2∂2〈 〉 n,–= =

A11
1

2µ
------ 1 2q1∂1+( ) ∂1

2 ∂2
2+( ) n,=

A22
1

2µ
------ 1 2q2∂2+( ) ∂1

2 ∂2
2+( ) n,=

A12 A21
1
µ
--- q1∂2 ∂1

2 ∂2
2+( ) n.–= =

En
1/2

Hn
SO α ζ A lσn A l×[ ] 3σb–⋅( ) κ A l×[ ] 3σt–[=

+ κ l1
2 l2

2–( )A12 l1l2 A11 A22–( )–( )σn[{

– l1
2A11 l2

2A22 2l1l2A12–+( )σb ] p }, ] .

     
     

Hn
SO α

2
--- κ A11 A22+( )σb{–=

+ κ A11 A22–( ) σn 2φsin σb 2φcos+( ) p, } .
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In particular, for nondegenerate subbands in an axi-
ally symmetrical potential (including the lowest sub-
band), Hamiltonian (44) takes the simple form

(45)

9. SPIN-ORBIT COUPLING 
FOR PARTICULAR POTENTIALS

Let us calculate Ai and Aij for the above-mentioned
wire models; that is, for a harmonic potential, for a box
with a rectangular cross section and hard walls, and for
a cylindrical wire with hard walls. In these models, A1 =
A2 = A12 = 0.

The Aii values for a harmonic potential are easily
calculated directly and are determined by the equation
Aii = ωi(ni + 1/2).

In order to determine matrix elements containing
the derivatives of the potential for a well with infinite
walls, we must accurately perform the passage to the
limit of an infinite potential, because the wave function
tends to zero as U  ∞ in the region of potential
action. For this purpose, we can use the following tech-
nique.

Consider the generalized problem of a quantum
wire with an arbitrary shape and hard walls. Let its
boundary be described by the equation f(q⊥ ) = 0. For
definiteness, we assume that f(q⊥ ) < 0 everywhere
inside and f(q⊥ ) > 0 everywhere outside the wire. The
potential of the walls will be selected in the form
U(q⊥ ) = U0θ(f(q⊥ )), where U0  ∞. We must find the
matrix elements (f1(q⊥ )∂U(q⊥ ))nn' , where f1(q⊥ ) is some
function.

At large but finite U0 values, the wave function

behaves as exp(–kξ), where k =  and ξ is the
shortest distance from the boundary. It follows from the
continuity of the wave function and its derivatives at the
boundary that ∂ξψ/ψ|ξ = 0 = –k. When U0 tends to infin-
ity, ψ(ξ = 0) tends to zero, whereas ∂ξψ|ξ = 0 remains
finite. Expressing the wave function through its deriva-
tive yields

(46)

This formula can be treated as the replacement of
the f1(q⊥ )∂U(q⊥ ) perturbation by the operator

where N(q⊥ ) = ∂f/|∂f | is the normal to the boundary.
The new form of perturbation is independent of the
potential value at the boundary.

Hn
SO α A11 κσb p,{ } .–=

2µU0

f 1 q⊥( )∂U q⊥( )( )nn'

=  
1

2µ
------ ∂ξ f 1 q⊥( ) ∂ f q⊥( )( )δ f q⊥( )( )∂ξ( )nn' .–

1
2µ
------ N ∂⋅( ) f 1 ∂f( )δ f( ) N ∂⋅( ),–
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This technique can also be used to calculate the Ai

and Aij values according to (37). As a result, we obtain
diagonal elements of the form

(47)

for a quantum wire with a rectangular cross section and
hard walls.

The wave functions with m = 0 are nondegenerate
for a cylindrical wire of radius R with hard walls. They
are given by the Bessel functions ψn(r) = CJ0(λnr/R),
where r = |q⊥ |, λn are zeros of the zero-order Bessel

function, and En = /2µR2. For symmetry reasons,
A11 = A22. Using (39) and then (46), we find

(48)

Note in conclusion that, in this work, we presented
adiabatic effective Hamiltonians for the motion of elec-
trons in bent and twisted quantum wires. We considered
the general case of a nonplanar quantum wire with a
constant cross section, not necessarily circular. The
problem was solved for a quadratic simple isotropic
energy spectrum of electrons in the presence and
absence of degeneracy of transverse states. In the deri-
vation of the Hamiltonian, we did not restrict our con-
sideration to states near transverse quantization sub-
band bottoms. The analysis was performed taking into
account spin-orbit coupling. Various examples of
curved and twisted wires with different transverse
potentials were considered.
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