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Abstract—The canonical profile transport model, which has been benchmarked previously for tokamaks with
a conventional aspect ratio, is applied to simulations of the spherical tokamak START. A set of Ohmic shots is
used to modify the model so that it is appropriate for the specific conditions of the spherical tokamak plasma.
The application of the model as a tool to analyze neutral beam–heated START shots allows the estimation of

the neutral beam-injection power absorbed by the plasma, , which is experimentally uncertain. The mod-

eling shows that both  and the energy confinement time increase with increasing the average density.
Finally, the modified model is used to simulate the performance of the new megaampere spherical tokamak
MAST at Culham. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

In recent years, successful experiments on the
START device (a spherical tokamak with a tight aspect
ratio A = R/a ≈ 1.3, R = 0.2–0.25 m, a = 0.2–0.25 m, cur-
rent Ip = 0.15–0.3 MA, and magnetic field B = 0.2–
0.3 T) have been performed [1–4]. The use of neutral
beam injection (NBI) allows one to increase the ion
temperature from Ti ~ 0.15 keV to Ti ~ Te ~ 0.3 keV.
Record values of the total beta βt and normalized cur-
rent Ip/aB have been achieved. Improvements in diag-
nostics [multichannel Thomson scattering (up to 30
chords) and multichannel charge-exchange recombina-
tion spectroscopy (20 chords)] permit one to obtain Te

and Ti profiles. All these achievements allow a detailed
study of the plasma energy balance.

In this paper, we invoke the canonical profile trans-
port model (CPTM) [5–6] for the analysis of the plasma
energy balance in START. The parameters of this
semiempirical transport model have been chosen by a
comparison with the experimental data from a range of
conventional aspect ratio tokamaks. A wide database of
Ohmic (OH) discharges is used to extend the CPTM to
tight aspect ratio tokamaks. Thus, the transport model
is first validated for OH discharges and then is used to
analyze NBI discharges. Here, the simulation provides
the solution of the inverse problem of the determination

of the absorbed NBI power .

Our calculations show that, at low plasma currents
(Ip < 0.18 MA) and low densities  < 2 × 1019 m–3, only
a small fraction of the beam power PNB is absorbed in
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the plasma. Apparently, in this case, the main part of the
trapped hot-ion population is lost due to poor trajecto-
ries or by charge exchange with the cold neutrals before
they transfer their energy to the plasma particles. As the

current and density rise, the ratio /PNB increases,

and at Ip > 0.2 MA and  > 4 × 1019 m–3 it achieves a
value of about 0.9–1.

The neoclassical ion thermal diffusivity  can
play a significant role in the ion energy balance at high
plasma densities. In tight aspect ratio tokamaks, the tor-
oidal field can vary over the plasma cross section by a
factor of 6–8. As a result, the poloidal and toroidal
fields at the outward plasma edge are comparable. This

effect leads to significant corrections in  [7]. Our
analysis shows that, in the collisional regime on

START, the  value at the edge decreases by a factor
of 25–40 in comparison with the basic Shafranov
expression [8]. As a result, the calculated ion energy
confinement time τEi becomes comparable with the
electron one, τEe.

The paper is organized as follows. In Section 2, the
CPTM extension to tight aspect ratio tokamaks is
described. In Section 3, the approximate expressions

for  are derived. The validation of the model by the
simulation of OH discharges is discussed in Section 4.
The results of simulations of NBI discharges are pre-
sented in Section 5. Preliminary calculations for the
MAST spherical tokamak at Culham are presented in
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Section 6. Section 7 contains the conclusions. The ana-
lytical estimates of hot-ion losses and the cold-neutral
density are presented in the Appendix.

2. THE TRANSPORT MODEL
We present here the basic CPTM expressions for the

L-mode, which we used in the calculations. The set of
transport equations consists of the equations for the
electron and ion temperatures

(1)

and the diffusion equation for the poloidal magnetic
field [5–6]. The equilibrium is obtained by solving the
Grad–Shafranov equation. We introduce the canonical
profiles of the ion and electron temperatures in
Kadomtsev’s form [9]

(2)

where k = e, i; ρ is the generalized radial coordinate
(0 < ρ < a); aj = a(q0/(qs – q0))1/2 is the current radius;
q is the safety factor; and qs is the value of q on the
magnetic surface that surrounds the current Is equal to
a fixed fraction of the total plasma current, Is = sIp. We
also put Tec(ρ) = Tic(ρ) = Tc(ρ).

We assume the following form of the heat fluxes:

(3)

where

(4)

(5)

(6)

Here,  is the convective heat flux;  is the part of
the anomalous (or neoclassical) heat flux, which is pro-

portional to the temperature gradient;  is the part of
the anomalous heat flux, which is determined by the
plasma self-organization and the tendency of the
plasma temperature profile to evolve into the canonical

profile; Γn is the particle flux;  = n  is the “stiff-
ness” of the canonical profile; and

(7)

The quantities zTk are dimensionless measures of the
deviations of the real profiles from the corresponding
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canonical profiles. We propose that the particle flux Γn

is known from the experiment and choose the following
transport coefficients:

(8)

(9)

(10)

(11)

(12)

Here, M is the atomic mass of the main plasma compo-
nent and k and δ are the plasma elongation and triangu-
larity, respectively. The transport coefficients (8)–(12)
are distinguished slightly from those used for conven-
tional tokamaks [5, 6] with the usual aspect ratio A =
R/a ~ 3. First, we complement the stiffness coefficient

 (8) by the factor (3/R)1/4, which makes this coeffi-
cient satisfy the dimensionality constraints. This factor
is not essential for conventional tokamaks but very
important for a tight aspect ratio tokamak with a small

major radius R. Second, we add the factor  in the
expression for the anomalous electron thermal diffusiv-

ity  (9). This factor is close to unity for conventional
tokamaks, but it is large for spherical tokamaks because
it includes a sharp inverse dependence on the aspect

ratio A = R/a. Note that the heat flux  containing the

thermal diffusivity  (9) is responsible for the
improvement of the energy confinement as the plasma
density increases. Expression (10) is supported by the
analysis of START discharges in the Ohmic heating
regime (see Section 4). The modified expression for q95
is discussed in the next section. We use here the follow-
ing units: T in keV, B in T, a and R in m, n in 1019 m–3,
χk in m2 s–1, and κk in 1019 m–1 s–1. The full neoclassical
conductivity σ is used throughout.

3. ION THERMAL DIFFUSIVITY

We consider carefully the neoclassical part of the

ion thermal diffusivity , because it is important
under START conditions (see also [7]). In the shots
under study, the dimensionless ion collision frequency

 is rather large:  ≈ 1 at ρ/a ≈ 0.5, and  ≈ 10
near the center and at the edge. Thus, we can find all

κ k
PC α k

PC
1/M( ) a/R( )

0.75
q a/2( )=

× qcyl a( ) Tk a/4( )( )0.5
n 3/R( )

1/4
/B const ρ( ),=

χe
an

const ρ( )=

=  α̃ e

Te a/2( )( )1 2/

n a/2( )R
----------------------------- f e

an
q β ν* a/R k δ, , , , ,( ),

f e
an

q β ν* a/R k δ, , , , ,( ) 9.4 4/q95( ) a/R( )2.5
,=

χ i
an χ i

neo
, qcyl

5a
2
B

I pR
------------1 k

2
+
2

--------------,= =

α e
PC

3.5, α i
PC

5, α̃ e 2, s≈ 0.95.= = =

κ k
PC

f e
an

χe
an

qe
an

χe
an

χ i
neo

ν i* ν i* ν i*
PLASMA PHYSICS REPORTS      Vol. 26      No. 7      2000



SIMULATION OF START SHOTS WITH THE CANONICAL PROFILE TRANSPORT MODEL 541
three neoclassical regions: banana, plateau, and Pfir-
sch–Schluter regions in different zones of the plasma
cross section. However, in tokamaks with a small
aspect ratio A = R/a < 2, the standard neoclassical

expressions for the thermal diffusivity  require
revision.

First, we consider the Pfirsch–Schluter region. The
heat flux here depends on the length of the magnetic
field line along which the Pfirsch–Schluter currents are
closed. This length LPS is proportional to the ratio

(13)

In standard tokamaks (A ≈ 3–4), this ratio is propor-
tional to q. However, for A ≈ 1.5, the pitch of the helical
magnetic field line at the outer part of the torus exceeds
the helical pitch at the inner part by many times. Corre-
spondingly, the Pfirsch–Schluter currents are closed
mainly near the outer part, where the length of the mag-
netic field line between the top and bottom of the
plasma column is several times shorter than in standard
tokamaks with the same plasma cross section and the
same values of the current and magnetic field. There-
fore, instead of q, which is determined by the equilib-
rium of a tight torus and which is large at the edge, we
should use the quantity qeff in the transport coefficients.
Approximately, qeff is determined as follows:

(14)

Here, the index “out” stands for the outer part of the
torus. We use a parabolic approximation for qeff:

(15)

where q0 = q(0).

Thus, the expression for  in the Pfirsch–
Schluter region has the form [8]

(16)

where ρi is the Larmor radius of ions and νii is the fre-
quency of ion–ion collisions. For START, we have

q95 = 10–15 and  ≈ q95(1/5–1/6); therefore, the sub-

stitution of qeff for q decreases  at the edge by a fac-
tor of 25–36.

The trapped particles are located in the outer part of
the torus; therefore, we should also substitute qeff for q

in expressions for  in the plateau and banana

regions. In the plateau region, we have  ∝  q; this
region is located in the vicinity of the point ρ/a ≈ 0.5.
Therefore, the replacement of q by qeff actually

decreases  in the plateau by a factor of 3–4. Near
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the plasma center, where R/ρ @ 1 and qeff ≈ q ≈ 1, such
a replacement is not necessary.

Of course, formula (16) is approximate and should

be refined. However, for a sperical tokamak,  is
expected to be much less than the thermal diffusivity
given by the Shafranov expression. As a result, in the
most part of the START cross section, the heat flux

 = –  will be much less than .

4. THE VALIDATION OF THE MODEL
BY OHMIC SHOTS

The transport model described in Section 2 has been
previously benchmarked for conventional aspect ratio

tokamaks at R/a ~ 2.5, q95 ~ 4, and  ~ 1 [5–6]. Our

goal now is to justify the choice of  in the form (10).
We choose a set of 21 START shots in the OH regime
(nos. 32863–35517) with maximum plasma currents in
the range 0.1 < Ip < 0.186 MA and chord-averaged den-
sities in the range 2.2 × 1019 <  < 6 × 1019 m–3. The
time behavior of the plasma current Ip, density n, toroi-
dal magnetic field B, and geometrical parameters
(minor radius a, major radius R, plasma elongation k,
and triangularity δ) were taken from the experiment.
The profiles of the electron temperature Te(ρ) and den-
sity n(ρ) were measured by Thomson scattering diag-
nostics one time per discharge at the moment t = tTS.
The value of tTS could change from shot to shot. In cal-
culations, we kept the density profile unchanged in time
but calibrated it by the interferometry measurements of
the chord-averaged density. We also put Zeff = 2 for all
shots. The dependence of the final results on the choice
of Zeff will be discussed later.

For each shot, we generate the time-history of the
discharge up to the instant t = tTS by means of the CPTM
and calculate the functionals (deviations)

(17)

or

(18)

at this instant. The separate terms in sums (17) and (18)
correspond to the measured values of the electron tem-
perature along the major radius. Then, we introduce the
mean deviations for the chosen set of the shots,

(19)

where N = 21 is the number of shots in the chosen set.
The fitting of the CPTM is performed by choosing the
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form of the anomalous factor  and its permanent
multiplier by minimizing the functionals 〈dT1〉  or 〈dT2〉 .
The scatter in the experimental points in the Thomson
scattering data makes the quantities (17) and (18) (and,
consequently, 〈dT1〉 and 〈dT2〉) nonequivalent. The mean
deviation 〈dT2〉 describes not only the uncertainty of the
model but also the dispersion of the experimental
points; therefore, we prefer to use the mean deviation
〈dT1〉  in the minimization procedure.

To take sawtooth oscillations into account, we
increase the electron heat diffusivity χe in the region

0 < ρ < ρmix ~ ρs (q(ρs) = 1)

by a value δχe, which is also determined by the minimi-
zation procedure. As a result, we obtain expression (10)

for the anomalous factor  and the value of δχe.
Simultaneously, the profiles of Te(ρ) and Ti(ρ), the
energy confinement time τE, and the heat fluxes are also
found.

The values of the deviations dT1 (open circles) and
dT2 (closed squares) for the set of 21 Ohmic shots are
shown in Fig. 1. The mean value of dT1 for this set is
approximately zero (〈dT1〉  ~ 0), but the scattering of
points is fairly large: max |dT1| ~ 20%. To clarify the
reason for such a large scatter, let us consider the
behavior of dT2 in Fig. 1. It is seen that the dT2 points
are scattered around the mean value of 〈dT2〉  ~ 20%,
which describes the average spread of the experimental
points along the electron temperature profile. However,
the value of dT1 is very sensitive to the details of the
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Fig. 1. Average deviations dT1 (open circles) and dT2
(closed squares) of the calculated electron temperature from
the experimental vs. the chord-averaged density  for the
set of 21 Ohmic START shots.

n

scattering in the experimental points, which determines
the large scattering in the dT1 points in Fig. 1. The typ-
ical experimental and calculated electron temperature

profiles, (R) and Te(R), as functions of the major
radius R for shot no. 33854 are shown in Fig. 2. In this
case, dT1 = –5% and dT2 = 19%. In spite of the large
spread of the experimental points (the apparent “hol-
low” profile), the value of dT1 is low due to the mutual
compensation of different terms in equation (17) for
dT1.

The calculations show a very weak dependence of
the deviations on Zeff. In Fig. 3, the dependence of dT1
and dT2 on Zeff is shown for shot no. 35127. The
increase in Zeff from 1 to 5 leads to a decrease in dT1
from +11% to –13% confirming our choice of Zeff = 2.
The change in dT2 in this case is very small.

5. THE SIMULATION OF NBI SHOTS

5.1. General Considerations

The total neutral beam power PNB can be represented
as a sum of several terms describing the different chan-
nels of losses:

(20)

(21)

where  is the power carried away by the shine-
through particles (the particles that pass through the

plasma),  is the power related to the particles that
were captured on poor trajectories and then leave the

plasma without energy exchange,  is the power
related to the hot ions captured on good trajectories,

 is the power that is lost due to charge exchange of

the captured hot ions with cold neutrals,  is the
power absorbed by thermal plasma particles, and αcx is
the fraction of the captured power that is lost due to

charge exchange. Only the term  is useful for

plasma heating. Semiquantitative estimates of ,

, the total cold-neutral density nn, and parameter
αcx are presented in the Appendix. One is required to

perform massive calculations to find the value of 
[10]. The multiplicity of loss channels for the beam par-
ticles and the uncertainty of many parameters deter-
mining these losses make direct calculations of the

absorbed beam power  rather unreliable. There-
fore, other methods allowing us to find this power have
to be developed. One of these methods is considered in
this section.
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Since the absorbed beam power  has the same
order of magnitude as the Ohmic power POH, we sup-
pose that the model for electron energy balance that we
verified for the OH shots is also valid for NBI shots.

The unknown values of  are to be determined dur-
ing the simulation using a minimization procedure very
similar to the case of Ohmic heating. Thus, the average
temperature deviations dT1 and dT2 described by (17)
and (18) in the case of auxiliary heating have to be min-
imized by a choice of the value of the unknown

absorbed power .

5.2. The Dependence of the Absorbed Power
on Density and Current

Figure 4 shows the value of  for the set of 37
shots versus the plasma density at the instant t = tTS.
These shots with very different parameters were chosen
from the START 1996–1998 database. Closed squares
correspond to the shots with a plasma current in the
range 0.18 < Ip < 0.25 MA, and the open circles show
the shots in the range 0.165 < Ip < 0.18 MA. We see
that, at low plasma densities  < 3 × 1019 m–3, the

absorbed power  is small. In the range of medium

plasma densities 3.3 × 1019 <  < 5.5 × 1019 m–3, 
increases with the plasma density and reaches a maxi-
mum at  ~ 6 × 1019 m–3. Within this range, one can see

the difference in  for high and low plasma currents:
the energy absorption is higher for higher plasma cur-
rents. For densities higher than  ~ 6 × 1019 m–3, the

absorbed power  decreases sharply.

The following effects can explain the peculiarities
of the absorbed NBI power shown in Fig. 4 (also see the
Appendix). The shine-through fraction of the beam

 decreases with increasing the plasma density.

Therefore, the captured power  increases, which

leads to an increase in the absorbed power . The
optical thickness of the plasma with respect to cold
neutrals increases as the plasma density rises. Thus, the
cold neutral density in the plasma core decreases expo-

nentially and the charge-exchange losses  of cap-
tured hot particles decreases sharply. At low currents,
the deviations of hot-ion trajectories from magnetic

surfaces become large and poor-orbit losses 
increase. An increase in the current leads to an
improvement of hot-ion confinement on “fat” banana
trajectories. At very high plasma densities (  > 6 ×
1019 m–3), most of the beam particles are captured near
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the plasma edge on poor trajectories. Therefore, these

particles leave the plasma instantaneously and 

(and, consequently, ) decreases.

5.3. Modeling the Evolution of NBI Shots

We describe here the simulation of the evolution of
two sets of shots (A and B). Set A includes seven shots
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Fig. 2. The profiles of the experimental and calculated elec-
tron temperatures for shot no. 33854 at t = 38 ms. The mea-
sured points are marked by squares. dT1 = –5%, dT2 = 19%.

Fig. 3. Deviations dT1 and dT2 vs. Zeff for the parameters of
shot no. 35127.
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(nos. 34034–34040) with a relatively quiet evolution of
the plasma parameters. Set B includes 13 shots
(nos. 35578–35592) with a large decrease in the toroi-
dal magnetic field to the end of the discharge. This set
relates to the experiments with a high value of βt. Inside
each set, all discharges were approximately similar, but
the Thomson scattering diagnostics was switched on at
different times t = tTS for different shots. Due to irrepro-
ducibility, the spread of the plasma parameters in the
same set for different discharges attains ±10% in the
plasma current and ±15% in the energy content.

Thus, for simulations, we have seven (for set A) or
thirteen (for set B) slightly different experimental sce-
narios for the plasma current Ip(t), toroidal magnetic
field B(t), plasma density n(t), major and minor plasma
radii R(t) and a(t), elongation k(t), triangularity δ(t),
and the corresponding values of the electron tempera-
ture and density profiles Te(R) and n(R). As in the pre-
vious section, we only simulate the ion and electron
temperatures, the other parameters being taken from
the experiment.

The simulation procedure is as follows. We evolve
each chosen shot separately up to the instant t = tTS ,
attempting to minimize the deviation dT1 at this

moment by the iteration procedure changing . WePNB
abs

0.2

3
n, 1019 m–3

0

0.4

0.6

0.8

1.0

2 4 5 6 87

PNB
abs, MW

Fig. 4. The calculated absorbed neutral beam power 

vs. the chord-averaged density  for the two sets of NBI
START shots. Closed squares correspond to the shots with
currents in the range 0.18 < Ip < 0.25 MA, and the open cir-
cles show the shots with currents in the range 0.165 < Ip <
0.18 MA. The smooth fitting of the points underlines the

increase in the absorbed power  with increasing the

density at  < 5.5 × 1019 m–3.
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finish the iterations usually when |dT1| reaches a value
of 1–3%. As a result, we obtain the value of the

absorbed power  for the chosen shot at t = tTS.
Then, we repeat the minimization procedure for the
other shots with different tTS for both sets A and B.

The results of calculations and some experimental
data are shown in Fig. 5 by points. Solid and dashed
lines join the points corresponding to the sets A and B,
respectively. Note that each point for all of the plasma
parameters in this figure corresponds to some particular
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shot at the time t = tTS . This is the reason why the lines
connecting the different points are not smooth. How-
ever, for simplicity, we will call these lines “the evolu-
tion” of the plasma parameters. Figure 5e shows the
evolution of the parameter 1 – αcx (the ratio between the
absorbed and captured powers; see the Appendix),

which does not include the poor-orbit losses .

Let us now compare the plasma time behavior in dif-
ferent sets. Set A is characterized by a quiet evolution
of Ip, B, , and Te(0). As a result, the calculated behav-

ior of  is also quiet. The absorbed power  is
low in the initial phase of the discharges, when the

plasma density is low. Then,  increases and
reaches its maximum at the moment when the plasma
current and density are maximum (Ip ~ 0.19 MA and

 ~ 5 × 1019 m–3; see also Fig. 4). At t ~ 40 ms, the

absorbed power  ~ 0.8 MW is close to the injected
beam power.

In contrast, set B is characterized by rapid time
changes of several plasma parameters. In the initial
phase of the discharge, both the plasma current and
plasma density are low. This determines the very low

level of the absorbed power  (on the order of tens
of kW). The evolution of the toroidal field B is quite dif-
ferent from set A: it decreases by a factor of two reach-
ing the very small value of B ~ 0.15 T at the end of the
discharge. The Larmor radius rL of 25-keV ions at such
a small B is very large (rL ~ 16 cm) and is comparable
with the plasma radius a ~ 20–25 cm. This also leads to

PNB
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Fig. 6. The energy confinement time τE vs. chord-averaged

density  for different currents Ip in MAST (OH regime)
for (1) Ip = 1.5 MA and B = 0.6 T, (2) Ip = 1. MA and B =
0.6 T, and (3) Ip = 0.5 MA and B = 0.3 T.
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a high value of . As a result, the maximum

absorbed power  ~ 0.4 MW is low in spite of the

large current Ip ~ 0.22 MA and optimal density  ~ 5 ×

1019 m–3 (see Fig. 5d). The low value of  correlates
with a low electron temperature measured in the shots
from set B. The time behavior of the fraction of the
absorbed power 1 – αcx calculated by the analytical
expressions presented in the Appendix is shown in
Fig. 5e. It is seen that, at the time t = 38–39 ms, the val-
ues of 1 – αc are the same for both sets A and B but the

absolute values of  differ by a factor of 2–2.5. It
also confirms the important role of the losses due to
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0.6 T for n = (1) 6 × 1019 and (2) 4 × 1019 m–3.
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poor trajectories for set B with a low magnetic field at
the end of the discharge.

6. MODELING OF MAST DISCHARGES

The MAST tokamak typically has the following
parameters: R = 0.7 m, a = 0.5 m, B = 0.6 T, and k = 1.8.
First, we simulate the time evolution of the Ohmic dis-
charges. We ramp up the plasma current to Ip = 1.5 MA
with the rate dIp/dt = 10 MA s–1. Calculations show that
the typical current diffusion time is large (0.3–0.5 s)
and approximately equals the typical duration time of
the discharge. The central electron and ion tempera-
tures attain the values of Te(0) ≈ 1.0–1.4 keV and
Ti(0) ≈ 0.5–0.6 keV and the self-inductance is on the
level of li ≈ 0.8. The monotonic profile of the current
density (evidence of the absence of the skin effect) is a
result of some favorable factors: the neoclassical resis-
tivity and relatively low temperatures at the density

 ≈ 6 × 1019 m–3. However, towards the end of the dis-
charge, q(0) < 1 so that sawtooth oscillations can
appear.

Next, we discuss the scalings of the plasma param-
eters. Figure 6 shows the dependence of the energy
confinement time τE on the density at different currents.
At low densities, τE increases with density; at high den-
sities, this dependence saturates. The higher the cur-
rent, the higher the density at which the saturation
occurs. The expected maximum τE value at a maximum
current is 30–35 ms. The energy losses through elec-
trons and ions are comparable; therefore, the saturation
of the τE( ) dependence in MAST is similar to that in
conventional tokamaks.

Figure 7 presents the dependences of τE and Te(0) on
the total power Ptot in the regimes with auxiliary NBI
heating, when 60% of the deposited power Paux is
absorbed by electrons and 40% is absorbed by ions. A
very weak degradation of confinement with increasing
the power is seen for these conditions. With the auxil-
iary power Paux ≈ 5 MW, the electron temperature
increases to Te ≈  3–3.5 keV.

7. CONCLUSION

In this paper, the CPTM is extended to the descrip-
tion of discharges in tight-aspect-ratio tokamaks (so-
called “spherical tokamaks”). The analysis of OH dis-
charges from START allowed us to specify the behav-
ior of the anomalous thermal diffusivity of electrons.
As a rule, in such discharges, the role of the ion channel
in the thermal diffusivity is small. The analysis of NBI
START discharges required us to reconsider the expres-

sions for the neoclassical ion thermal diffusivity .

As a result, the value of  at the plasma periphery
was substantially reduced in comparison with the usual
Shafranov expression. The detailed modeling of 37

n

n

χ i
neo

χ i
neo
NBI START shots showed a low efficiency of NBI
plasma heating at low plasma densities,  < 2 × 1019 m–3.
At moderate densities, 2 × 1019 <  < 4.5 × 1019 m–3, and
currents of Ip > 200 kA, the heating efficiency increases
to 80–100% and the energy confinement time τE

increases to τE ~ 3–3.2 ms. At the highest density,  >

5 × 1019 m–3, the absorbed power  decreases again
due to peripheral trapping of the beam particles. The
energy confinement times for electrons and ions (τEe

and τEi) are close to each other at the moderate plasma
density,  ~ 4 × 1019 m–3: τEe ≈ τEi ~ 2 ms. The value
of τEe increases and τEi slightly decreases with increas-
ing the plasma density. Note that the proximity of ion
and electron temperatures at high densities,  > 3.5 ×
1019 m–3, makes it difficult to distinguish experimen-
tally between the ion and electron energy transfer chan-
nels and determine τEe and τEi.

The simulation of shots with different currents
shows that the absorbed power increases with increas-
ing the current. It corresponds to the decrease in the
deviations of hot-ion trajectories from the magnetic
surfaces as the current increases.

The modeling of the set of shots confirms the low
value of the absorbed power during a significant phase
of the discharge. This is due to the combined effect of
the low plasma density, low current, and high density of
cold neutrals. The absorption becomes noticeable if the
following conditions are satisfied simultaneously:  >
3.5 × 1019 m–3 and Ip > 200 kA.

The modified CPTM is then applied to preliminary
calculations of the energy balance in MAST. The main
dependences of the plasma parameters on the plasma
density in the OH regime are found. The values of the
central temperature and τE are determined in the case of
auxiliary heating with a power up to 5 MW. Conven-
tional tokamaks with a moderate aspect ratio R/a ~ 3
and the same minor radius show the same plasma tem-
perature but at a much larger toroidal magnetic field.

It should be noted that the influence of some factors
on the discharge and their description in the model
remain uncertain. For example, the applicability of the
neoclassical conductivity to spherical tokamaks is still
unclear. A model for the anomalous ion thermal diffu-
sivity is also not completed, because this requires the
creation of a sufficiently large and reliable database for
ion temperature profiles. We hope that the new data
from MAST, which will begin operating in 2000, will
help to solve this problem.
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APPENDIX

Estimation of Hot-Ion Losses due to Charge Exchange

First, we estimate the power related to the shine-
through part of the neutral beam. We assume that the
beam particles are trapped by charge exchange and
electron ionization and neglect other atomic processes.
The e-folding length of the beam trapping is

(A.1)

where σcx and σi are the charge-exchange and electron
ionization cross sections,  is the line averaged plasma
density, and v0 is the velocity of the beam particles. For
a beam energy of E0 = 25 keV and Te = 0.2 keV, we have
σcx = 7.5 × 10–20 m2, v0 = 2.15 × 106 m/s, and 〈σive〉/v0 =
1.4 × 10–20 m2; as a result, we obtain Ltr = 1.13/  m (
is in units of 1019 m–3). We designate the length of the
beam path in the plasma as L, the dimensionless “opti-
cal” thickness of the plasma with respect to the beam as
η = L/Ltr, and the fraction of the shine-through particles
as αS = exp(–η). In notations of expression (20), we

have  = αSPNB. For START, we have L ≈ 1.0 m;

hence, for  = 2 (in units of 1019 m–3), we obtain Ltr =
0.56 m, η = 1.8, and αS = 0.16 and, for  = 4, we obtain
Ltr = 0.28 m, η = 3.6, and αS = 0.025. For real plasmas
with impurities, the values of αS should become less
due to the excitation of the beam particles and the
increase in the charge-exchange and ionization cross
sections. For other beam components with energies
E0/2 and E0/3, the values of αS are very small. Thus, for
the plasma densities  > 3 × 1019 m–3, most of the beam
particles are ionized or charge-exchanged in the
plasma.

Now, we estimate the role of hot-ion losses [the
value of αcx in (21)] determined by charge exchange
with neutrals. The characteristic charge-exchange time
equals τcx = 1/(σcxv0nn) s, where nn is the total neutral
density. For E0 = 25 keV, we have τcx = 1/(1.5nn0) ms,
where nn0 is the neutral density (in units of 1016 m–3).

The characteristic time of energy transfer from hot
ions to electrons is

(A.2)

Here, λ = 15 is the Coulomb logarithm.
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The fraction αcx of the hot-ion losses due to charge
exchange is determined as

(A.3)

The total neutral density averaged along the plasma
torus consists of four components: nn = nb + nbs + nw +
nh, where nb is the beam neutral density, nbs is the den-
sity of secondary hot neutrals, nw is the density of cold
wall neutrals, and nh is the “halo” neutral density of
warm particles.

We first estimate the averaged beam neutral density
nb. The effective length of the beam trajectory in the
plasma is determined by equation (A.1). For a tangen-
tial trajectory, the average value of the beam neutral

density along the magnetic axis is equal to nb = (1 –

1/e)Ltr/(2πR) = 0.6L/(2πηR), where  is the beam
neutral density at the input of the beam into the plasma:

 = PNB/(E0v0S). Here, PNB is the total beam power
and S is the beam cross-section area. For START con-
ditions (PNB = 0.5 MW, R = 0.3 m, and S = 0.02 m2), we

obtain  = 3 × 1015 m–3. For a tight-aspect-ratio toka-

mak, we have L ~ 2 R, so that nb = /(2 η). For

START at  = 2, we obtain η = 1.8 and nb = /6 =

0.05 × 1016 m–3 and, at  = 4, we obtain η = 3.6 and

nb = /12 ~ 0.025 × 1016 m–3.

The density of the secondary hot neutrals nbs is low
as compared to the other components, and we do not
consider it further.

Next, we consider the density of cold wall neutrals,
nw. In the 1D diffusion approximation, taking into
account multiple charge exchange with the plasma ions
and electron ionization, the e-folding length of relax-
ation of this density, Lc, has the form [11] 

(A.4)

For Te ~ Ti ~ 0.2 keV, we have σcx = 3 × 10–19 m2, vi =
2 × 105 m/s, 〈σ ive〉  = 3 × 10–14 m3 s–1, ν3 = 0.52ν1, ν =
ν1 + ν3 = 1.5ν1. From here, we obtain Lc = 0.22/  m
(  is in units of 1019 m–3) and λ = a/Lc = a /0.22,
where λ is the optical thickness of the plasma with
respect to cold neutrals. For  = 2 and a = 0.25 m, we
have λ = 2.28 and, for  = 4, we have λ = 4.56. In the
latter case, the cold neutral density in the center is a fac-
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Estimates of the densities of the different neutral components in the plasma core for nw = 2 × 1017 m–3 (at the edge), PNB =
0.5 MW, and Te = 0.25 keV

, 
1019 m–3

nb , 
1016 m–3

nw, 
1016 m–3

nh, 
1016 m–3

nn, 
1016 m–3 1 – αcx

2 0.05 6 0.3 6.35 0.025

4 0.025 0.6 0.15 0.78 0.28

6 0.016 0.06 0.08 0.14 0.75

n

tor of ten less than in the former. In real plasma geom-
etry, the cold neutral density in the center, nw(0), is sev-
eral times greater than that following from the solution
to the plane problem for a semi-infinite plasma.
Approximately, we can write nw(0) = gnw(a)exp(–λ),
where g ≈ 2–3 is a geometrical factor describing the
transformation from plane geometry to the real plasma
with an elongated cross section. We set the cold neutral
density at the edge as nw(a) = 2 × 1017 m–3 [10]. For

 = 2, assuming g = 3, we obtain nw(0) = 0.6 × 1017 m–3;
for  = 4, we have nw(0) = 0.06 × 1017 m–3.

Finally, we discuss the halo neutral density, nh. In
the 1D plane geometry and in the diffusive approxima-
tion, the equation for nh is as follows [11]:

(A.5)

where Sh [m–3 s–1] is the source of warm neutrals due to
charge exchange of beam neutral particles with the
plasma ions. Hence, we have Sh = qcx/V, where qcx is the
total number of charge-exchanged beam particles per
second, V is an effective volume, qcx = (ν1/ν)qNB, and

(A.6)

At the medium plasma density,  ~ 3 × 1019 m–3, the
source qNB is localized in a torus T∆ with the major
radius R and minor radius ∆ !a, where ∆ is the effec-
tive radius of the beam. The effective volume of this
torus is V = 2πRπ∆2. The halo neutral density is only
interesting inside this torus because, outside it, the den-
sity of the wall neutrals is much higher than the halo
neutral density. We solve (A.5) with the boundary con-
dition dnh/dx = 0 at x = 0 and require that nh decreases
with increasing x. For a solution that is smooth at x = ∆,
we obtain 

Thus, in the plasma core (inside the torus T∆), for
ν/ν3 ≈ 3 and Te ~ Ti ~ 0.2 keV (x ≤ ∆), we obtain nh =
(Sh∆/vi)(3ν/ν3)1/2 ≈ 3(Sh∆/vi). For START, we have
∆ ≈ 0.1 m and ν1/ν = 0.8. Thus, qNB = 1.3 × 1020 s–1 and
Sh∆ = qcx∆/V = 2 × 1020 m–2 s–1. Hence, in the plasma

n
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=  PNB MW[ ] /E0 keV[ ] 10
22
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n

nh Sh∆/v i( ) 3ν/ν3( )1/2 ∆ x–( ) 3νν3/v i
2( )

1/2
( ).exp=
core at the medium plasma density, we obtain nh ~ 0.3 ×
1016 m–3. At large plasma densities (  > 3 × 1019 m–3),
the neutral beam is partially damped before it reaches
the torus T∆. In this case, we have to replace PNB in

(A.6) with  = PNBexp(–d/Ltr) ≈ PNBexp(–0.2np),
where d ~ 0.2 m is the distance between the plasma
boundary and the torus T∆ along the beam trajectory
and np is the average plasma density outside the torus
T∆. As a result, we obtain nh ~ 0.3exp(–0.2np) × 1016 m–3.

To estimate the absolute value of the wall neutral
density, we first find the influx of cold neutrals, Pn, that
is needed to supply the very large experimental value of
dN/dt ~ 2 × 1021 s–1 for shot nos. 35574–35592 (see
Section 5.3). Here, N is the total number of particles in
the plasma. The equation of particle balance is as fol-
lows: dN/dt = P – N/τp, where P = (1 – α)Pn is the total
source of charged particles, Pn is the total influx of neu-
trals, α is the plasma albedo with respect to cold neu-
trals, and τp is the particle confinement time. It is natu-
ral to choose α = 0.5 and τp = 2τE = 4 ms, where τE =
2 ms is a reasonable estimate of the energy confinement
time. As a result, we obtain Pn = (dN/dt + N/τp)/(1 – α)
and Qn = Pn/S, where Qn is the specific influx of cold
neutrals. Setting N = nVp = 2.5 × 1019 (where n = 5 ×
1019 m–3 is the volume-averaged plasma density, Vp =
0.5 m3 is the plasma volume, dN/dt = 2 × 1021 s–1, and
S = 3.5 m2), we obtain Pn ≅  1.5 × 1022 s–1 and Qn =
4.5 × 1021 m–2 s–1.

For START, the ratio Vp/Vc (where Vc is the volume
of the vacuum chamber) is very small. As a result, the
density of neutrals near the wall is very high and the
average energy of cold neutrals at the plasma edge is
low, Tn(a) ~ 2 eV. Using the expressions Qn = nnvT, for
the neutral density at the plasma edge, we obtain nn =
2 × 1017 m–3. This is consistent with the estimates for
START in [10] but is one order of magnitude larger
than the neutral density in conventional tokamaks.

The table presents the neutral densities of each com-
ponent in the plasma core at different plasma densities.
The total neutral density nn is also included. The last
column shows the value of 1 – αcx (the fraction of the

captured NBI power, ). At the low plasma density,

n

PNB
d

PNB
capt
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 = 2, only 2% of  is absorbed. For the high

plasma density,  = 6, this fraction increases to 75%.
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Abstract—The possibility is demonstrated of finding vacuum equilibrium magnetic configurations with an
exactly pseudosymmetric nonparaxial boundary magnetic surface in the vicinity of which the pseudosymmetry
condition is satisfied approximately. Equations are derived for calculating the boundary surface from a pre-
scribed particular dependence of the magnetic field strength in special magnetic flux coordinates. In calcula-
tions, magnetic coordinates serve as ordinary angular coordinates, while their “magnetic” character is specified
by additional integral conditions. As an example, a “tubular” orthogonal magnetic surface is calculated analyt-
ically. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The search for the optimum magnetic configura-
tions from the standpoint of steady-state confinement
of hot high-pressure fusion plasmas is largely based on
the analysis of the topography of the magnetic field
strength B on an equilibrium magnetic surface [1–6].
The magnetic field strength should satisfy certain nec-
essary conditions, which can be written most simply in
special magnetic flux coordinates. As an example, we
can mention the familiar Boozer [1, 2] and Mikhaœlov
[3] conditions under which there are no “superbanana”
losses in stellarators. The Boozer condition for quasi-
symmetric stellarators has the form B = B(Φ, θB), where
Φ is the toroidal magnetic flux and θB is the Boozer
poloidal angle coordinate. The Mikhaœlov condition for
pseudosymmetric stellarators is B = B(Φ, θ), where θ is
the poloidal angle in any flux coordinates with straight-
ened field lines (SFL). The Mikhaœlov condition is less
restrictive because the Boozer coordinates are a partic-
ular case of coordinate systems with SFL.

The general pseudosymmetry condition is repre-
sented as [5]

(1)

where f is a bounded function of the flux coordinates, B
is the magnetic field vector, and ρ is an arbitrary mag-
netic surface label. Depending on the choice of f, we
can formulate different requirements (in addition to the
above two requirements for stellarators) for the mag-
netic field geometry, which would improve to a greater
or lesser extent plasma confinement. The requirement
f = 0 (known as the isodynamic or orthogonality condi-
tion, since it implies that B = B(ρ) or that the magnetic
field lines are orthogonal to the B = const contours on a

B—ρ[ ] —B
B—B

------------------------- f ,=
1063-780X/00/2607- $20.00 © 20550
magnetic surface [7, 8]) makes the configuration an
ideal geometry for confining plasmas, because the drift
surfaces of charged particles coincide with the mag-
netic surfaces. Unfortunately, this requirement, which
completely eliminates neoclassical transverse trans-
port and secondary longitudinal plasma currents, lim-
iting the maximum possible β values consistent with
equilibrium, can only be achieved in the vicinity of a
straight magnetic axis in open systems or in tokamaks
with “exotic” current distributions. The requirement
f = f(ρ) (known as the quasisymmetry condition for
closed confinement systems with irrational rotational
transforms, because it ensures, as in the symmetric
case, the existence of the integral of drift motion in a
certain spatial region [9, 10]) indicates a tokamak-like
confinement and is characteristic of a new generation
of stellarators. Confinement systems with closed mag-
netic field lines provide a wider choice: f = f(ρ, λ); i.e.,
the function f can depend not only on the magnetic sur-
face label ρ but also on the magnetic field line label λ
(this generalization is a consequence of the isometric
character of a magnetic confinement system [6]). The
pseudosymmetry condition implies merely that the
function f should be bounded, in which case superba-
nana drift orbits are eliminated, although the integral
of motion is absent [3].

By an appropriate choice of the special magnetic
flux coordinates, we can reduce the general condition
(1) to a restriction on the behavior of the magnetic field
strength on a magnetic surface. This is easily seen from
the two familiar representations of the magnetic field in
arbitrary flux coordinates [11],

(2)
2πB —Φ—θ[ ] —Ψ—ζ[ ] —ρ—η[ ] ,+ +=

2πB J—θ F—ζ ν—ρ– —ϕ̃ .+ +=
000 MAIK “Nauka/Interperiodica”
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Here, we use the standard notation adopted in the liter-
ature: J(ρ) is the toroidal current; Φ(ρ) is the toroidal
magnetic flux; F(ρ) is the external poloidal current;
Ψ(ρ) is the external poloidal magnetic flux; and , η,
and ν are periodic equilibrium coordinate-dependent
functions of the arbitrary angular variables θ and ζ. For
simplicity, we consider vacuum (ν = 0 and F = const)
magnetic fields in the absence of toroidal currents
(J = 0). We choose the special coordinates θB and ζB on
the magnetic surfaces so as to drive to zero the periodic
functions  and η (this choice corresponds to magnetic
coordinates with SFL or to Boozer coordinates). As a
result, we obtain

(3)

where µ(ρ) = –ψ'/Φ' is the rotational transform and the
prime denotes the derivative with respect to ρ. To sim-
plify the presentation, it is convenient to switch to a
new flux coordinate system:1 Φ, θ = θB – µζB and
ζ = ζB. In the new coordinates, the divergence and curl
of the vacuum magnetic field B expressed simulta-
neously in the two forms,

(4)

are both identically zero. Taking the denominator and
numerator in (1) with the first and second representa-
tions of the field in (4), respectively, and accounting for
the redefinition of the function f puts the pseudosym-
metry condition (1) in the form

(5)

where  =  + f  is the surface operator.

Since the pseudosymmetry condition (1) refers to a
magnetic surface, it is possible to optimize the mag-
netic configuration layer by layer. Actually, in order for
a plasma to be well confined in a closed magnetic sys-
tem, it is necessary to satisfy condition (1) over a fairly
narrow boundary layer inside of which the local low
transverse transport plays the role of a barrier that acts
to reduce the losses from the central plasma regions.
The possibility of such a “layer-by-layer” optimization
is especially important for three-dimensional magnetic
confinement systems, because the isometry (orthogo-
nality and quasisymmetry) conditions [6] can be satis-
fied only asymptotically in a local region around a cer-
tain magnetic surface in the plasma column.

However, the question arises of how to use the pseu-
dosymmetry condition (1) in the search for good con-

1 For simplicity, this coordinate system is not distinguished by an
additional index; here and below (unless otherwise stated), all
coordinates without indices refer to this special coordinate sys-
tem.

ϕ̃

ϕ̃

2πB —Φ—θB[ ] µ —Φ—ζB[ ] ,–=

2πB F—ζB,=

2πB —Φ—θ[ ] ,=

2πB F—ζ ,=

L̂B 0,=

L̂
∂

∂θ
------ ∂

ζ∂
-----
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finement systems. It seems that the most straightfor-
ward way is to specify the magnetic field strength
B = B(θ, ζ) so as to satisfy condition (5) and to calculate
the magnetic surface in the inverted variables r =
r(θ, ζ). This problem is the inverse of the familiar prob-
lem of unambiguously determining the magnetic field
from a prescribed closed vacuum magnetic surface
(see, e.g., [12]). Here, we examine the possibility of
studying this reverse problem, in which the special
magnetic coordinates θ and ζ serve in calculations as
ordinary angular coordinates varying from 0 to 2π. We
consider only vacuum magnetic configurations. Our
paper is organized as follows. In Section 2, we analyze
specific features of the description of magnetic config-
urations in the inverted variables, in which case the for-
mulation of the boundary conditions requires separate
consideration. Taking as an example the familiar
orthogonal system with a straight magnetic axis, we
demonstrate how the reverse problem can be solved in
the paraxial approximation by using the special mag-
netic coordinates as conventional coordinates. In Sec-
tion 3, we formulate the reverse problem of calculating
an exactly pseudosymmetric boundary magnetic sur-
face and satisfying the pseudosymmetry condition
approximately in its immediate vicinity. As an exam-
ple, in Section 4, we apply the equations derived to cal-
culate a possible periodic tubular orthogonal magnetic
surface.

2. SPECIFIC FEATURES OF THE DESCRIPTION 
OF MAGNETIC CONFIGURATIONS 

IN THE INVERTED VARIABLES

We are interested in three-dimensional steady-state
vacuum magnetic configurations with a zero toroidal
plasma current J. In order for the plasma to be confined
as a whole, it is necessary for there to be a closed (peri-
odic) equilibrium boundary magnetic surface. On the
other hand, we do not require the existence of magnetic
surfaces over the entire confinement region, because
the problem under discussion implies that the special
magnetic flux coordinates can be introduced only near
the boundary surface. This possibility allows us to
solve the reverse problem, i.e., to calculate the bound-
ary surface from a prescribed dependence of the mag-
netic field strength on the magnetic variables. Then, the
magnetic field in the region enclosed by the boundary
surface can be calculated by solving a direct problem
without introducing flux coordinates.

To do this, we turn to (4) to derive the inverted mag-
netic equations for Cartesian coordinates r = r(Φ, θ, ζ).
Using the definitions of the basis vectors,

e1
r∂
Φ∂

------- g —θ—ζ[ ] , e2
r∂
θ∂

------ g —ζ—Φ[ ] ,= = = =
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(6)

 

we obtain the inverted analogues of (4):

(7)

We equate the field representations (7) to arrive at the
fundamental vector magnetic relation

(8)

Here and below, the subscripts refer to the correspond-
ing partial derivatives. For further analysis, we need
some relationships between the metric tensor elements
gik = eiek, which can be easily obtained by taking the
scalar product of (8) with different basis vectors:

(9)

The magnetic field strength can be found by taking the
scalar product of the two representations in (7):

(10)

Equations (8) can also be represented as

(11)

Equating the second derivatives of z found by differenti-
ating different pairs of the set (11) yields the consistency
conditions for this set in the form of elliptic equations:

(12)

e3
r∂
z∂
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-------– 
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The same equation can also be obtained for the z-coor-
dinate.2

In order to demonstrate an important aspect of the
solution of problems associated with magnetic config-
urations by using the inverted equations (12), we con-
sider a straight axisymmetric magnetic confinement
system. The cylindrical symmetry of the problem
allows us to seek a solution in the form x = r(Φ, ζ)cosθ,
y = r(Φ, ζ)sinθ, and z = z(Φ, ζ), in which case the metric
coefficients are found to be g12 = 0, g22 = r2, and g11 =

 + . In determining g11, we used the first equa-

tion in (11). Equations (12) can be transformed to

(13)

which coincide with the equations derived in [13, 14].
It is noteworthy that the first equation in (13) contains
the only unknown function r. An important feature of
these equations is associated with the procedure for
imposing the boundary conditions, i.e., the specifica-
tion of the boundary magnetic surface in special mag-
netic flux coordinates. However, since these coordi-
nates still remain unknown, the procedure for imposing
the boundary conditions requires separate consider-
ation. This problem is the main subject of our study. In
contrast to the direct magnetic problem, which is based
on a single equation for the magnetic potential and in
which it is a simple matter to impose the boundary con-
ditions, the reverse magnetic problem is much more
complicated because of the larger number of equations
and the difficulties in formulating the boundary condi-
tions.

One way of choosing the boundary conditions is to
use the paraxial approximation. Note that any closed
curve can be a magnetic field line along which a peri-
odic dependence of the magnetic field strength B0 can
be specified in an arbitrary fashion. Consequently,
assuming that this curve is a magnetic axis (Φ = 0), we
can specify the axis itself and the magnetic field
strength along the axis in special magnetic coordinates,

2 Note that equations (12) can also be derived in a simpler way,
namely, by writing the trivial (in Cartesian coordinates) relation-
ships ∆x ≡ 0, ∆y ≡ 0, and ∆z ≡ 0 in the above special magnetic flux
coordinates with the help of the familiar formula for transforming

the Laplace operator ∆ = . Analogously, the

inverted expressions (7) for the magnetic fields can be obtained
from the identities B ≡ (B—)r and B ≡ –1/2[[B—]r], while rela-

tionship (8) can be found from the equations  =  =  =

 for the magnetic field lines.

1

g
------- ∂

x
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------- gg
ik ∂

x
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-------- 
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------ dy

By
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2 1
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just as in ordinary angular coordinates. For example,
for a straight magnetic axis, we have x = y = 0, z = z(ζ),
and B0 = B0(ζ). Then, equations (11) are solved by
expanding the Cartesian coordinates in powers of the
magnetic flux Φ ! 1 under different a priori assump-
tions regarding the symmetry and periodicity conditions
written in special magnetic coordinates. For magnetic
configurations with closed field lines (i.e., configura-
tions with a rational rotational transform µ = n/m), writ-
ing the periodicity condition in the special magnetic
coordinates (θ, ζ) presents no difficulties because ζ
changes along the field lines and θ serves to label them.
Magnetic configurations in which the magnetic field
lines do not close on themselves (i.e., configurations
with an irrational rotational transform µ) should be
described in Boozer coordinates (θB, ζB), which are well
suited for writing the periodicity conditions. In the
above equations, the transition from one coordinate sys-
tem to another is described by the simple relationships

(14)

For example, in Boozer coordinates, equations (11)
become

(15)

and the operator  in the pseudosymmetry condition

(5) has the form  = (1 + µf)  + f .

Let us derive, as an example, the orthogonality
equation (f = 0) in the vicinity of a straight magnetic
axis. Intuitively, from the geometric viewpoint, we can
seek the desired solution (15) in the form

(16)
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which implies that the cross sections of the magnetic
surfaces are ellipses with a ratio of a/b of the semiaxes
that are rotating at a rate δ around the magnetic axis.
The angle α reflects the fact that a magnetic field line
and an ellipse rotate at different rates. Substituting (16)
into (15) yields

(17)

The requirement for the second expression in (17) to be
periodic in θB yields the relationship (b2 + a2)(  + µ) –
ab  = 0, and formula (10) taken with Φ = 0 gives the

magnetic field at the axis, B0 = . In the desired

order of smallness, solution (17) can be represented as

(18)

Expressions (16) and (18) make it possible to investi-
gate the possibility of satisfying the orthogonality con-
dition (5). Taking into account (10) and (14), we can

rewrite (5) in the form (  – µ2  = 0. At the axis,
where Φ = 0, this condition is identically satisfied. We
present the requirements for the magnetic configuration
under which the orthogonality condition is satisfied
near the magnetic axis through first order in Φ ! 1. We
must drive to zero the coefficients in front of the sine
and cosine functions in the orthogonality condition
taken with (16) and (18). As a result, we arrive at the
relationships

(19)
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We simplify (19) by switching from ζB to a new coor-

dinate, z0 = dζB, along the magnetic axis. Let the

derivative with respect to z0 be denoted by the prime.
Then, relationships (19) take the form

(20)

where the constants C and F are determined from the

periodicity conditions  = π and dζB = L

with L the period of the confinement system along the
magnetic axis. Note that, for C ≠ 0, relationships (20)
coincide with the similar relationships derived by Lortz
and Nührenberg [15]. Setting C = 0 gives the familiar
orthogonality condition for open systems with a zero
rotational transform [16, 17]. Specific periodic solu-
tions to equations (20) for magnetic systems with both
zero and nonzero rotational transforms are known.

The example analyzed above reveals two important
aspects. First, from the standpoint of calculations, the
special angular magnetic coordinates introduced here
do not differ from ordinary angular coordinates. Sec-
ond, we choose an exactly pseudosymmetric magnetic
axis (Φ = 0) and satisfy the pseudosymmetry condition
(5) asymptotically in its vicinity (Φ ! 1). In the next
section, we extend this approach to magnetic surfaces;
specifically, we calculate an exactly pseudosymmetric
magnetic surface Φ = Φ0 and satisfy the pseudosymme-
try condition (5) asymptotically in its vicinity (for Φ –
Φ0 = dΦ ! 1).

3. PSEUDOSYMMETRY NEAR A MAGNETIC 
SURFACE

In contrast to the paraxial approximation, we cannot
specify a magnetic surface in the form r = r(θ, ζ) inde-
pendently of the magnetic field strength B = B(θ, ζ) on
it. This can be seen, e.g., from the first field representa-
tion in (7), which, with allowance for (9), unambigu-
ously determines the magnetic field from the magnetic
surface specified in the form r = r(θ, ζ). However, it is
also necessary to satisfy the second field representation
in (7). An important point here is that the representation
r = r(θ, ζ) of a magnetic surface differs fundamentally
from other possible representations in that, if we solved
a direct problem, then the contours of the magnetic
field strength on a magnetic surface would coincide
with the ζ = const contours of the angular coordinate.
Since the magnetic field is not known a priori (i.e., the
magnetic coordinates remain unknown), we are trying
to perform calculations so that, in working with mag-
netic coordinates, this characteristic feature is taken

F
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into account automatically, as is the case with ordinary
angular coordinates.

A magnetic surface close to the surface r = r(Φ0, θ, ζ)
can be represented as

(21)

The expression for rΦ can be found by taking the vec-
tor product of the fundamental magnetic relation (8)
with rθ:

(22)

To determine the metric tensor element g12 on the mag-
netic surface Φ = Φ0, we consider the derivative

(23)

Substituting (22) into the right-hand side of this iden-
tity and using the relationship rΦrζθ = rθrΦζ, which fol-
lows from the equality g13θ – g23Φ = 0 [see (9)], we
transform (23) to

(24)

where k23 =  is one of the elements of the

second quadratic form of the magnetic surface [18, 19].
Consequently, the quantities g12 and rΦ and, accord-
ingly, the shape of a neighboring magnetic surface rdΦ

are governed by the shape of the surface r = r(Φ =
Φ0, θ, ζ). We emphasize that this relation between the
surfaces is nonlocal in character.

The first magnetic field representation in (4) makes
it possible to write the derivative along a magnetic field

line as  = 2π B—, which reduces (24) to the stan-

dard magnetic differential equation [20, 21]

(25)

The requirement that the solution to (25) be single-val-
ued imposes certain constraints on the right-hand side
of (25). The first constraint (see [20]) reduces to the
condition that the integral of the right-hand side over
the volume between the neighboring magnetic surfaces
be vanishing. For systems with closed magnetic field
lines, this condition has the form

(26)

For systems with irrational rotational transforms, con-
dition (26) should be written in Boozer coordinates
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according to prescriptions (14). Systems with closed
magnetic field lines should also satisfy a more severe
constraint [21]:

(27)

Consequently, the specific character of magnetic coor-
dinates results in two additional integral constraints,
(26) and (27), at the magnetic surface.

The fundamental theorem in the theory of magnetic
surfaces implies that, in order for the surface to be
determined unambiguously (correct to its orientation in
space), it is necessary to specify the first and second
quadratic forms [18, 19]. In other words, to determine
the surface requires knowledge of six functions of two
surface angular variables: three metric tensor ele-
ments—g22, g23, and g33 (the first form)—and three cur-
vature tensor elements—k22, k23, and k33 (the second
form).

From the magnetic equations (7) and (8), we can
find two functions for the first quadratic form defined
by (10) with (9):

(28)

Recall that we specify the magnetic field strength dis-
tribution B on a magnetic surface. Three of the remain-
ing four functions can be deduced from the Gauss–
Weinharten equations, which describe how the basis

vectors e2, e3, and n =  change along the coor-

dinate lines on a magnetic surface [18, 19]. Taking into
account the relationship g23 = 0, for θ = const (i.e.,
along a field line on a magnetic surface), we obtain

(29)

Analogously, for ζ = const, we have
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The consistency conditions for (29) and (29') yield
three familiar equations (the Gauss Egregium Theorem
and the Peterson–Mainardi–Kodacci equations), which
relate the elements of the metric and curvature tensors
[18, 19]:

(30)

where K is the total (Gaussian) curvature.

Hence, equations (28) and (30) constitute the set of
five equations for the six functions entering the first and
second quadratic forms for a magnetic surface. These
equations should be supplemented with the integral
conditions (26) and (27). A certain freedom in choosing
the last (sixth) function reflects the circumstance that
the magnetic surface cannot be unambiguously deter-
mined from the distribution of the magnetic field
strength. We can use this freedom to obtain pseudosym-
metry near a magnetic surface.

On the surface Φ = Φ0, the pseudosymmetry condi-
tion (5) can be satisfied by appropriately choosing the
dependence of the magnetic field strength B in the sec-
ond equation in (28), in which case no new additional
equations appear. The requirement that the pseudosym-
metry condition (5) be satisfied through first order in
dΦ ! 1 gives

, (31)

which can also be written as

(32)

In deriving these formulas, we took into account rela-
tionship (10). The scalar product to which the operator

 is applied can be represented as

(33)

where k33 =  is one of the elements of the

second quadratic form of a magnetic surface [18, 19].
Expression (33) was derived by differentiating (8) with
respect to ζ and by taking the vector and scalar products
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of the resulting relation with rζ and rθ, respectively.
Now, we can write condition (31) in the final form:

(34)

We can see that all of the quantities in (34) are deter-
mined exclusively by the shape of the magnetic surface
Φ = Φ0. Consequently, supplementing equations (28)
and (30) with equation (34) provides a closed set of
equations for calculating a pseudosymmetric magnetic
surface Φ = Φ0 and for satisfying the pseudosymmetry
condition approximately in its vicinity.

For orthogonal magnetic systems (f = 0), condition
(34) takes the simplest form:

(35)

Note that the quasisymmetry condition (34) for mag-
netic systems with an unclosed field line geometry con-
tains the shear of the magnetic field lines. As we have
already mentioned, the periodicity condition for mag-
netic systems with irrational rotational transforms
necessitates the transition to Boozer coordinates
according to prescriptions (14). In Boozer coordinates,
the quasisymmetry condition (5) with f = f(Φ) reduces

to B = B(Φ, θB – ζB). The condition for the

magnetic field strength to be periodic in θB and ζB gives

 = , where N and M are integers. The topol-

ogy of the membranes θB = const and ζB = const can
always be chosen so that N = 0; therefore, for f = –1/µ,
we arrive at the Boozer quasisymmetry condition B =
B(Φ, θB). Thus, to calculate a quasisymmetric magnetic
surface and to achieve quasisymmetry in its vicinity, we
must specify in advance not only the magnetic field
strength but also the rotational transform µ and shear
µΦ on this surface.

The equations derived should be supplemented with
the condition for the magnetic field to be finite (i.e., the
condition that there be no current-carrying windings)
inside a closed magnetic surface. To derive this condi-
tion, we turn to the Laplace equation ∆ζ = 0, which fol-
lows from the second magnetic field representation in
(4), and to the requirement that the curl of the vacuum
magnetic field be zero inside a closed magnetic surface.
The main integral Green’s formula [22] enables us to
write

(36)

L̂ k33
g33

g22
------- g33θ

k23

g22
-------

g33

g22
------- ζd∫– 

  F
2
---g33ζ f Φ.=

k33
g33

g22
------- 

 
θ

0.=

1 µf+( )
f

--------------------

1 µf+
f

--------------- N
M
-----

ζn— 1
R
------- Sd∫∫ 1

R
-------n—ζ Sd∫∫ 2πζ0+– 0,=
where R = r – r0 and the zero subscript indicates an
arbitrary point with the coordinates (θ0, ζ0) on the sur-

face. We introduce the unit vector I =  and take into

account the relationships n—ζ = 0 and —  = –  to

rewrite (36) as

(37)

As a result of the mapping of the surface S onto a unit

sphere, we have I || [IθIζ] and [IθIζ]dθdζ = 2π,

which finally lead to the condition

(38)

or

(38')

Calculating a pseudosymmetric surface with irratio-
nal µ, we naturally obtain an equilibrium magnetic sur-
face. Calculating an isometric surface with rational µ
(corresponding to closed magnetic field lines), we
again immediately arrive at an equilibrium magnetic

surface with  = const, which is a consequence of

(5). A pseudosymmetric surface with rational µ should
be calculated under the additional assumption that the

magnetic surface is equilibrium; i.e.,  = const.

Note that, in solving the above closed set of equa-
tions (26)–(28), (30), (34), and (38) for the functions
determining the first and second quadratic forms, we
used the special magnetic coordinates as ordinary
angular coordinates. Various a priori conditions for the
solutions to be symmetric, periodic, finite, etc., are for-
mulated in magnetic coordinates. The integral condi-
tions (26), (27), and (38) ensure that the angular coor-
dinates on a surface are magnetic in character.

4. TUBULAR ORTHOGONAL MAGNETIC 
SURFACE

As the simplest example of how to implement the
approach described in Section 3, we calculate a tubular
orthogonal surface with a zero rotational transform
(µ = 0) in Boozer coordinates θ = θB and ζ = ζB. By the
tubular surface, we mean a magnetic surface of a mag-
netic field that is periodic along the Z-axis. The trans-
verse coordinates x and y of a tubular surface are peri-
odic functions of θ and ζ.

R
R
-------

1
R
------- R

R 3
---------

ζI IθIζ[ ] θd ζd∫∫ 2πζ0.=

I∫∫

ζ Iθ
2Iζ

2 IθIζ( )2
– θd ζd∫∫ 2πζ0=

ζ ζ0–( ) Iθ
2Iζ

2 IθIζ( )2
– θd ζd∫∫ 0.=

dl
B
-----∫°

dl
B
-----∫°
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The orthogonality condition written in the form of

(28), g33 = , allows us to switch from ζ to

the new coordinate ω defined as

(39)

In the new coordinates, we have g33 = 1 and g23 = 0,
which substantially simplifies relationships (29), (30),
and (35). The curvature tensor elements k22, k23, and k33
and the metric tensor element g22 are determined from
the following equations, which do not explicitly con-
tain the magnetic field strength:

(40)

Since we are interested in tubular magnetic surfaces
for which the curvature in the transverse direction is
much larger than the curvature in the longitudinal
direction, we consider the approximation k22/g22 @ k33
and neglect the second term on the right-hand side of
the second equation in (40). Below, we will specify the
range of validity of this approximation and analyze its
close relation to the paraxial approximation.

It is straightforward to show that one of the possible
solutions to equations (40) is

(41)

where the prime denotes the derivative with respect to
ω and f1 and f2 are positive periodic functions that
depend only on the argument ω and satisfy the equation

(42)

Without going into the details of the derivation of
equations (41) and (42), note only that we sought tubu-

F
2πB ζ( )
----------------- 

 
2

ζ 2π
F

------ B ω( ) ω.d∫=

k22

g22

-----------
k33

g22

-----------
k23

g22

----------- 
  2

–
g22( )ωω

g22

---------------------– K ,= =

k23

g22

----------- 
 

θ

k22

g22

----------- 
 

ω

k33 g22( )ω,–=

g22k33θ g22k23( )ω,=

k33

g22

----------- 
 

θ

0.=

g22 f 1
2 ω( ) θ2sin f 2

2 ω( ) θ,2cos+=

k33

f 1'' f 2 f 1 f 2''–

f 1
2

f 2
2

–
----------------------------- g22,=

k23

f 1' f 2 f 1 f 2'–

2 g22

----------------------------- 2θ,sin=

k22

f 1 f 2

g22

-----------,=

f 1 f 1'' f 2 f 2''.=
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lar surfaces with convex cross sections (corresponding
to a positive transverse element of the curvature tensor,
k22 > 0); we also adopted the simplest angular depen-
dence of the positive definite function g22 in order to
ensure the existence of two symmetry planes: θ = 0 and
θ = π/2. The expressions obtained are valid in the

approximation f1  ! 1.

Knowing the first and second quadratic forms
described by the tensor elements in (28) and (41), we
can calculate the magnetic surface r = r(θ, ζ). To do
this, we can employ, e.g., the linear equations (29) and
transform them to the new coordinates:

(43)

Taking into account that, in (43), θ = const, we intro-
duce the new variable Ω ,

(44)

and the new vector  = e2/  in order to simplify
equations (43) to

(45)

where ε = k33 /k23 ! 1. To zero order in ε, the gen-
eral solution to (45) is

(46)

where C1, 2, 3 are constant vectors. Using (41) and (44),

we find Ω = , so that solution (46) can

be rewritten as

(47)

f 1

f 2
----- 

 
2

f 1''

e2ω e2

g22ω

2g22
---------- nk23,+=

e3ω nk33,=

nω e2
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e2
* g22
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e3Ω εn,=

nΩ e2
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g22

n C1 Ωsin C2 Ω,cos+=

e2
* C1 Ωcos– C2 Ω,sin+=

e3 C3,=

f 1

f 2
----- θtan 

 arctan

n C1

f 1 θsin

g22

---------------- C2

f 2 θcos

g22

-----------------,+=

e2 C1 f 2 θcos– C2 f 1 θ,sin+=

e3 C3.=
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From the conditions

(48)

we can see that C1, 2, 3 are triply orthogonal unit vectors,
which indicates that they are the basis vectors of the
Cartesian coordinate system. To zero order in ε, from
(47) we obtain the position vector r of the magnetic sur-
face in Cartesian coordinates (x, y, z): r = (f1cosθ,
f2sinθ, ω). Treating the terms with ε in (45) as small
perturbations, we can obtain the position vector r satis-
fying conditions (48) to first order in ε:

(49)

The expressions derived do not explicitly contain
the magnetic field strength, which appears explicitly
only in the integral conditions (26), (27), and (38). We
consider condition (27), which takes the following
form in the coordinates introduced in this section:

(50)

Using solution (41), we can reduce (50) to

(51)

For periodic functions f1, 2, equality (51) should hold at
any θ; this is indeed possible if the magnetic field
strength obeys the functional dependence

(52)

where an arbitrary function w of the argument f1/f2
should be of fixed sign. We can easily verify that con-
dition (26) holds for the magnetic field strength in the
form (52). The function w is found from condition
(38'). Introducing the function W(ω) =

dω, we can reduce (38') to a linear

integral equation of the first kind [23]:

(53)
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K

 

 = 

 

 is the kernel, 

 

f

 

 =

 

Kd

 

ω

 

d

 

θ

 

,

 

 and the angular brackets stand for

averaging over the magnetic field period. Equations
(42) and (53) can be solved only numerically.

Analytically, the tubular surface approximation is
closely related to the paraxial approximation. Note, in
particular, that, for 

 

C

 

 = 0, condition (42) and the orthog-
onality condition in (20) are identical. Formally, to pass
over from the tubular surface approximation to the
paraxial approximation, we must adopt 

 

r

 

d

 

Φ

 

 in (21) as
the prescribed coordinates of the magnetic axis. This
indicates that, in the example at hand, we must set 

 

x

 

d

 

Φ

 

 =

 
y

 

d

 

Φ = 0, thereby determining the function w = f2/f1 in
(52), so that B = const/(f1 f2).

5. CONCLUSION

Our analysis shows that it is possible in principle to
find a vacuum equilibrium magnetic configuration with
an exactly pseudosymmetric nonparaxial boundary
magnetic surface in the vicinity of which the pseudo-
symmetry condition is satisfied approximately. To do
this, the special magnetic flux coordinates can be used
as ordinary angular coordinates on a magnetic surface;
the magnetic character of the flux coordinates is given
by the additional integral constraints (26), (27), and
(38). In this case, all a priori conditions for the solu-
tions to be pseudosymmetric, symmetric, periodic,
finite, etc., should be formulated in magnetic coordi-
nates.

The calculation of a nonparaxial vacuum boundary
magnetic surface with prescribed properties is the first
step in calculating the equilibrium and stability of the
plasma inside the boundary surface. This calculation is
especially important for searching for closed compact
systems with strongly rippled magnetic fields, such as
DRAKON [24]. Present-day numerical schemes [25]
are practically inapplicable to such systems because of
the very large number of spatial magnetic-field har-
monics.

In order to improve the global plasma confinement
in a device by creating an edge barrier (i.e., a boundary
region with low transverse transport), it is necessary to
satisfy one of the most restrictive versions of the pseu-
dosymmetry condition (e.g., the orthogonality, quasi-
symmetry, or isometry condition) at the boundary sur-
face, while the pseudosymmetry condition, which is
less constrained by itself, can be satisfied over the
entire region where the charged particles are confined.
Therefore, it seems worthwhile to search for “mixed”
configurations that are, e.g., pseudosymmetric over the
entire plasma column with a quasisymmetric edge
region. Whether it is possible to achieve pseudosymme-
try over the entire plasma column by enforcing quasi-
symmetry near the plasma boundary remains an open
question.

Iθ
2Iζ

2 IθIζ( )2
–

ω
0

2π∫∞–

∞∫
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Abstract—The nonlinear dynamics of magnetoacoustic and Alfvén MHD perturbations in structurally unstable
magnetic configurations with two null lines (X-lines) is studied both analytically and numerically. It is shown
that these perturbations cause the electric current to evolve nonlinearly in such a manner that a structurally
unstable configuration of the magnetic field transforms into a structurally stable configuration. Such a transfor-
mation is forbidden in ideal magnetohydrodynamics but can occur in the process of magnetic field line recon-
nection. The final magnetic configuration to which the system evolves is shown to contain no separatrices con-
necting the null lines. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In space plasmas, magnetic fields play a governing
role in the formation of structures that are bursty in
character. Such phenomena are often attributed to rapid
dissipation of the magnetic energy in highly conducting
plasmas. The magnetic reconnection, which is usually
regarded as the primary dissipation mechanism, occurs
mainly near the magnetic field lines in the vicinity of
which the current sheets (i.e., thin regions with high
current densities) form.

Magnetic reconnection generally occurs in converg-
ing plasma flows in which two different field lines
become so close to one another that the finite plasma
conductivity comes into play and may cause them to
reconnect, thereby changing both the local and global
structures of the magnetic field.

It should be noted that, even when the magnetic
reconnection occurs inside relatively small spatial
regions, the related changes in the magnetic field topol-
ogy can substantially affect the evolution and dynamics
of the entire system. Magnetic reconnection has been
studied in detail in many papers aimed at investigating
various aspects of this important physical phenomenon
(see [1–3] and the literature cited therein).

The magnetic reconnection problem is closely
related to the problem of the structural stability of vec-
tor fields. The mathematical aspects of the latter prob-
lem were discussed by Arnold [4], who defined a struc-
turally stable dynamic system as a system whose state
remains topologically equivalent to the initial (unper-
turbed) state for any sufficiently small perturbation of
the vector field. Since the magnetic field topology
changes during both spontaneous and induced mag-
1063-780X/00/2607- $20.00 © 0560
netic reconnection, it is natural to expect that the mag-
netic field should evolve from a structurally unstable
into structurally stable configuration. Note that, in this
case, the phenomenon under analysis is more compli-
cated because, during magnetic reconnection in a
highly conducting plasma, we deal with the nonlinear
interaction between two vector fields: the magnetic
field and the field of the plasma velocities. This circum-
stance significantly complicates the problem in com-
parison with the case of one vector field.

The simplest example of a structurally unstable
solenoidal vector field is a magnetic field with a third-
order null line. Such a magnetic configuration can be
described by the vector potential A0 = A0(x, y)ez such
that

(1)

where B0 is the magnetic field at the boundary of a
region with a characteristic dimension s.

The magnetic configuration described by the vector
potential (1) is structurally unstable because the critical
point (x = 0, y = 0) of the vector field B = ∇ A0 × ez is
degenerate. This stems from the fact that the eigenval-
ues of the dynamic system  = B linearized in the
vicinity of zero are equal to zero. Small perturbations of
the magnetic field described by the vector potential (1)
cause the degenerate singular point to bifurcate or dis-
appear, in which case the perturbed magnetic field can

A0 x y,( )
B0

3s
2

------- x
3

3xy
2

–( ),=

ẋ
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be expressed in terms of the perturbed vector potential

(2)

where the parameters β, γ, δ, ε, and µ are assumed to be
small. Bifurcations in similar configurations with vary-
ing parameters were thoroughly discussed in a mono-
graph by Poston and Stewart [5].

By choosing the appropriate parameters, one can
make the magnetic configuration (2) physically stable
but structurally unstable (in the MHD description, this
is equivalent to choosing the condition ∆A0 = 0 for a
plasma with a uniform density and temperature). Con-
sequently, this configuration is suitable for analyzing
magnetic reconnection in structurally unstable systems.
Note that the classical problem of the tearing instability
of an infinite current sheet [6] applies to configurations
that are both physically and structurally unstable. In
order to analyze the structural instability, we investigate
magnetic configurations that are physically stable
against resistive modes. In formulating the problem, we
assume that the magnetic field topology changes under
the action of the perturbations excited at the boundary
of the region under consideration. In other words, we
consider the regime of driven magnetic reconnection.

Our work is a continuation of papers [7–9], which
initiated the studies on magnetic reconnection in struc-
turally unstable magnetic configurations. The evolution
of a third-order magnetic null line in the presence of
magnetoacoustic perturbations was analyzed by Bul-
anov et al. [7, 8], who showed that, depending on the
form of the initial magnetic configuration and the type
of symmetry of the initially perturbed magnetic field,
the seed magnetic perturbations result in the formation
of either a current-carrying region bounded by mag-
netic separatrices or current sheets and shock waves
localized at the separatrices. The problem of global
redistribution of the electric current carried by magne-
toacoustic and Alfvén modes in a magnetic configura-
tion with two null lines was studied in [9].

Our main purpose here is to investigate the forma-
tion of current sheets in two-dimensional (2D) mag-
netic configurations with two null lines of the X-type
(in particular, in configurations with zero net electric
current) both analytically and numerically under the
boundary conditions describing the excitation of azi-
muthally asymmetric nonlinear magnetoacoustic and
Alfvén waves. We consider a structurally unstable con-
figuration in which the X-lines are connected by a sep-
aratrix (the X–X separatrix). Note that such a configu-
ration can be described by the vector potential (2)
adjusted in a desired fashion by the proper choice of
parameters. We expect that the variations in the mag-
netic topology that are either associated with a special
choice of the initial magnetic configuration or induced
by magnetoacoustic perturbations, which force the
electric current to accumulate in local regions near the
X-lines, will change the positions of the magnetic sep-
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3

3xy
2

–( ) βx
2 γy

2 δxy εx µy,+ + + + +=
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aratrices and cause a redistribution of the electric cur-
rent driven by Alfvén perturbations. As was shown in
[10, 11], the current driven by Alfvén perturbations
flows along the separatrices in their vicinities. Conse-
quently, in numerical experiments, we can expect a glo-
bal redistribution of the electric current over the entire
computation region.

We will solve the problems in the 2D approximation
in which all of the desired functions depend only on
time and the two spatial coordinates, x and y, but all
three components of the plasma velocity and magnetic
field are nonzero. It is well known that, in the linear
approximation, the Alfvén and magnetoacoustic modes
in a cold plasma in a 2D magnetic field become decou-
pled, so that we can study the current sheets associated
with both types of modes separately. However, in three-
dimensional (3D) configurations, finite-amplitude
Alfvén and magnetoacoustic modes will interact non-
linearity. Solving the problem in the 3D formulation is
the first step in providing a better insight into a more
complicated 3D magnetic reconnection, in which case
the Alfvén and magnetoacoustic modes remain coupled
in the linear approximation [11–13]. In particular, the
X–X separatrix is a 2D analogue of the limiting mag-
netic field line (which is also known as a separator) in
Sweet’s model of the magnetic configuration of a solar
active region [14, 15]. We emphasize that a magnetic
configuration with a limiting magnetic field line con-
necting two null points is structurally unstable. Hence,
the phenomenon of global redistribution of the electric
current may be of interest from the standpoint of the
theory of solar flares.

2. MAGNETIC FIELD STRUCTURE

We assume that, in a magnetic configuration with
two null lines, the magnetic field at the initial instant is
z-independent. Such a field can be described by the vec-
tor potential A0 = A0(x, y)ez having a single z-compo-
nent A0(x, y):

(3)

where g = B0/s2 and ε1 is a small parameter. In the con-
figuration defined by the vector potential (3) with ε1g > 0,
the separatrix connects two saddle X-lines with the

coordinates x = 0 and y = ± . The configuration
with such a separatrix (referred to as an X–X separa-
trix) is structurally unstable (see Fig. 1a). A structurally
stable configuration like that illustrated in Fig. 1b is
described by the vector potential

(4)

where ε2 is a small parameter. In this configuration,
there is no separatrix between two saddle points.
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Fig. 1. Contours of the z-component of the vector potential for magnetic configurations with two X-lines: (a) structurally unstable
configuration with the X–X separatrix and (b) structurally stable configuration.
3. BASIC EQUATIONS AND BOUNDARY 
CONDITIONS

We solved the set of MHD equations numerically in
a square computation region (–1 ≤ x ≤ 1, –1 ≤ y ≤ 1). At
the initial instant, the plasma in the magnetic field
described by the vector potential (1) is assumed to be
immobile. The coordinates, time, plasma density,
plasma velocity, plasma temperature, and magnetic
field are expressed in terms of the dimensionless vari-
ables

(5)

where ρ0 and T0 are the initial density and temperature,
s is the dimension of the computation region, g is pro-

r
s
--,

gst

4πρ0( )
1
2
---

-------------------,
ρ
ρ0
-----,

v 4πρ0( )1 2⁄

gs
2

----------------------------,
T
T0
-----,

B

gs
2

-------,
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portional to the characteristic quantity ∂2Bi/∂xj∂xk, and
B0 = gs2 is the magnetic field magnitude at the bound-
ary. The dimensionless MHD equations can be written
as [9]

(6)

(7)

(8)

(9)

(10)

(11)

(12)

where the operator ∇  is

(13)

and the plasma velocity has the form

(14)

The magnetic field B is characterized by three compo-
nents:

(15)

where (ex, ey, ez) are unit vectors of Cartesian coordi-
nates. The adiabatic index is set to be

(16)

The dimensionless parameter β (the ratio of the plasma
pressure to the magnetic field pressure at the boundary)
is defined as

(17)

where p0 is the initial plasma pressure. The dimension-
less magnetic diffusivity (the inverse Lundqvist num-
ber) has the form

(18)
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and the dimensionless thermal conductivity is

(19)

where va = B0/  is the Alfvén velocity. The Péclet
number Pe = k/(cpρ0va) can be assumed to be constant.
The electric current density can be expressed as

(20)

When imposing the boundary conditions, we
assumed that the perturbation is weak and that its effect
at the boundary can be described in the linear approxi-
mation (see above).

A magnetoacoustic wave excited at the boundaries
of the computation region, x = ±1 and y = ±1, is mod-
eled by the vector potential

(21)

where A0(x, y) is defined by (3) and (r, φ) are conven-
tional polar coordinates.

A gradual rise of the electric current can be modeled
by choosing the function f(ξ) in the form

(22)

where the dimensionless electric field  is specified as

(23)

The excitation of Alfvén waves is modeled by the
following boundary conditions for the z-component of
the magnetic field:

(24)

This time dependence can also be used to describe the
gradual switching-on of an external magnetic field on
the characteristic time scale tsw. In simulations, the
amplitude B1 of the z-component of the magnetic field
was set to be 0.1. The boundary conditions for the
remaining quantities were imposed in accordance with
MHD equations. At the boundary regions through
which the plasma enters the calculation domain, we
specified the plasma density and pressure: ρ = 1 and
p = 1. At the remaining boundary regions, the boundary
conditions assumed a free plasma outflow out of the
calculation domain.

All numerical results presented below were
obtained for the magnetic diffusivity  = 0.006 and a

pressure corresponding to  = 0.012. The dimension-
less thermal conductivity and dimensionless electric

field were chosen to be  = 0.01 and  = 0.03. We
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imposed two types of boundary conditions on the initial
configuration of the vector potential. In the first case,
we used the boundary conditions (21) for magnetoa-
coustic perturbations, assuming that at the initial instant
no Alfvén waves were excited; i.e., we set B1 = 0 in the
boundary condition (24). In the second case, we
assumed that only Alfvén modes described by the
boundary conditions (24) perturbations were excited

and set  = 0 in (21).Ẽ
4. RESULTS OF MHD MODELING

4.1. Magnetic Reconnection in a Structurally Unstable 
Configuration with Two Null Lines

The simulations were carried out for the initial vector
potential (1) with ε1 ≠ 0. At the initial instant, the relevant
magnetic configuration is structurally unstable.

Figure 2 shows the results of numerical modeling of
the evolution of a magnetoacoustic perturbation: (a) the
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Fig. 2. Magnetoacoustic perturbations in a configuration with the X–X separatrix: (a) the contours of the z-component of the vector
potential, (b) the velocity field v⊥  = vxex + vyey, (c) the plasma density distribution, and (d) the distribution of the z-component of
the electric current density at the time t = 10.
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ρ

jz
contours of the z-component of the vector potential,
(b) the velocity field v⊥  = vxex + vyey, (c) the plasma
density distribution, and (d) the electric current density
distribution. These results were obtained at the time t =
10 (recall that the time is expressed in units of Alfvén
time). From Fig. 2a, we can see that the separatrix
between the two null points disappears and two anti-
symmetric current sheets form in the vicinity of the X-
lines. The structurally unstable configuration becomes
structurally stable, because magnetoacoustic perturba-
SICS REPORTS      Vol. 26      No. 7      2000
tions break the symmetry of the initial magnetic config-
urations. The density perturbations are localized in the
vicinity of the separatrices.

Figure 3 illustrates the numerical results for the case
when only an Alfvén wave is excited at the boundary of
the computation region. In this case, in the 2D approx-
imation, the magnetic field topology does not change.

Figure 3 shows (a) the contours of the z-component
of the vector potential, (b) the velocity field, (c) the
contours of the z-component of the velocity, (d) the
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Fig. 3. (a) Contours of the z-component of the vector potential, (b) the velocity field, (c) the contours of the z-component of the
velocity, (d) the plasma density distribution, and the distributions of the (e) transverse and (f) longitudinal components of the electric
current density at the time t = 10 for Alfvén perturbations (24).
plasma density distribution, and the distributions of the
(e) transverse and (f) longitudinal components of the
electric current density. These results were obtained at
the time t = 10 for an Alfvén perturbation excited at the
boundaries x = ±1. By the “transverse” and “longitudi-
nal” components of the electric current density we
mean the poloidal component of the projection j of the
current density onto the xy plane and the z-component
of the electric current density.
The bulk of the transverse current flows in the vicin-
ity of the separatrix that connects two null lines of the
X-type. Recall that the topology of the initial magnetic
field does not change; this circumstance characterizes
exclusively Alfvén-type perturbations.

From Fig. 3e, we can also see that the nonlinear
Alfvén wave generates the z-component of the electric
current, which is dipole in nature near the separatrices.
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4.2 Evolution of the Plasma Density, Plasma Pressure, 
and Electric Current Density

In Figs. 2 and 3, we illustrate the plasma state in a
magnetic field in the vicinity of magnetic separatrices
in the quasi-steady stage (at t = 10). It is also very inter-
esting to investigate how the plasma parameters evolve
in the current sheet. In Fig. 4, we plot time evolutions
of the plasma density, plasma pressure, and electric cur-
rent density in a configuration with two magnetic null
lines connected by the X–X separatrix. All of the
S REPORTS      Vol. 26      No. 7      2000
parameters are computed at the point at which the elec-
tric current density in the current sheet is the highest;
the numerals next to the curves show the maximum val-
ues of the parameters. Figure 4a corresponds to the case
in Fig. 2, i.e., to the perturbations of the initial equilib-
rium state by magnetoacoustic waves excited at the
boundary of the computation region. During the time
interval 0 < t < 5.6, the plasma density is seen to be
unperturbed. After the time t = 5.6, the physical plasma
parameters decrease only slightly.
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Figure 4b refers to the case in Fig. 3, when the cur-
rent sheet forms as a result of the excitation of an
Alfvén wave. In this scenario, the plasma density
remains essentially unchanged and, after a transient
process, the system reaches a thermodynamically equi-
librium state.

In order to compare the above magnetic configura-
tions with two X-lines and one X-line, we carried out
MHD simulations of plasma dynamics in the vicinity of
an isolated X-line. Note that this problem has been dis-
cussed in detail in many papers (see, e.g., [1, 10, 11]).
Here, we are interested in the temporal evolution of the
plasma and magnetic field.

We consider an initial magnetic field defined by the
vector potential

(25)

The related magnetic configuration has a hyperbolic
null line of the X-type, which is the intersection of the
two separatrix surfaces (see Fig. 5). We describe the

A0 x y,( ) x
2

y
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–
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----------------.=
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Fig. 4. Time evolutions of (1) the plasma density, (2) the plasma pressure, (3) the z-component of the electric current density, and
(4) the perpendicular component j⊥  of the electric current density in a magnetic configuration with two magnetic null lines connected
by the X–X separatrix for (a) a magnetoacoustic wave and (b) an Alfvén wave excited at the boundary of the computation region.
At each instant, all of the quantities are taken at the point at which the component jz is the highest. The maximum values of the
parameters are shown by numerals. The j⊥  curve is scaled-up by a factor of 20.

× 20
PLASMA 
1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0
–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0

x

y

Fig. 5. Contours of the z-component of the vector potential for a magnetic configuration with one X-line.
magnetic configuration by the dimensionless parame-
ters normalized as follows:

(26)
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where the last expression characterizes the electric field
magnitude.

The z-component of the electric current is carried by
a magnetoacoustic wave that is excited at the boundary
of the computation region and propagates toward its
center. At the boundaries (x = 1, –1 < y < 1) and (–1 <
x < 1, y = 1), the component jz is expressed through the
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Fig. 7. (a) Contours of the z-component of the vector potential, (b) the velocity field, (c) the plasma density distribution, and (d) the
distribution of the longitudinal component of the electric current density at the time t = 10 for a magnetoacoustic perturbation.
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z-component of the vector potential as

(27)

where r =  and φ are ordinary polar coordi-
nates and the function f(ξ) is defined by (22).

As in the case of modeling a system with two X-
lines, we imposed conventional gas-dynamic boundary
conditions on the plasma density and plasma pressure:
at the boundary regions through which the plasma
enters the calculation domain, we set ρ = 1 and p = 1,
and at the remaining boundary regions (where the
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x
2

y
2

+

plasma freely flows out of the domain) the derivatives
of the plasma density and plasma pressure along the
characteristics were set to be equal to zero.

As in the case of numerical modeling described
above, the magnetic diffusivity was equal to  =

0.006 and the plasma pressure corresponded to  =
0.012. The dimensionless thermal conductivity and
dimensionless electric field were again chosen to be

 = 0.01 and  = 0.03. We treated only the boundary
conditions (27) with B1 = 0 in (24), which refer to mag-
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netoacoustic perturbations. The boundary conditions
corresponding to the excitation of an Alfvén wave at the
boundary of the computation region were analyzed in
detail in [11].

Figure 6 presents the results of simulation of a mag-
netoacoustic perturbation in configuration (27): (a) the
contours of the z-component of the vector potential and
(b) the electric current density distribution at t = 1 in the
linear stage. The antisymmetric magnetoacoustic per-
turbations illustrated in Fig. 6b are seen to converge.

Figure 7 displays simulation results obtained with
boundary conditions analogous to those in Fig. 6: (a)
the contours of the z-component of the vector potential,
(b) the velocity field v⊥  = vxex + vyey, (c) the plasma
density distribution, and (d) the electric current density
distribution. These results were computed at the time
t = 10. In the vicinity of a null line, one can observe the
formation of a current sheet, which is similar to that
studied in [1, 10, 11]. From Fig. 7d, we can see that, in
the nonlinear stage, the magnetoacoustic perturbation
breaks the symmetry of the initial magnetic configura-
tion and a current sheet forms in which the current does
not reverse direction. To make the picture more illustra-
tive, in Fig. 7d, the electric current is plotted with the
opposite sign, because the plasma flows toward the
half-plane where the perturbation amplitude is nega-
tive.

Figure 8 shows time evolutions of the plasma den-
sity, plasma pressure, and electric current density in a
configuration with one magnetic null line, all computed
at the point at which the electric current density in the
sheet is the highest. The maximum values of the param-
eters are also plotted.

We can see that, by the time t = 10, the system has
already reached a thermodynamically equilibrium
state.
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Fig. 8. Time evolutions of (1) the plasma density, (2) plasma
pressure, and (3) electric current density in a magnetic con-
figuration with one magnetic null line. At each instant, all of
the quantities are taken at the point at which the component
jz is the highest. The maximum values of the parameters are
shown by numerals.
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5. CONCLUSION

We have studied the transformation of structurally
unstable magnetic configurations into structurally sta-
ble configurations. In particular, we have considered
the transformation of configurations in which the finite-
amplitude net plasma electric current driven by the per-
turbations excited at the boundary of the computation
region is equal to zero. We have shown that, although
transformations to magnetic configurations that are not
topologically equivalent to the initial configurations are
forbidden in ideal magnetohydrodynamics, they can
nonetheless occur during magnetic reconnection.

Analyzing a structurally unstable magnetic configu-
ration with the X–X separatrix, we have revealed that
the final configuration has no separatrices between two
null lines and is far less symmetric in comparison with
the initial configuration. The plasma parameters and
magnetic field evolve in a fairly complicated manner. A
very interesting result is that the plasma density falls off
on a time scale of about several Alfvén times. A
decrease in the density can be explained by the fact
(which was established in [16]) that, in the vicinity of a

current sheet, the plasma density behaves as .

A nonlinear Alfvén wave gives rise to the formation
of both poloidal current sheets along the separatrices
and dipole toroidal current sheets. An investigation of
the evolution of dipole magnetoacoustic perturbations
near the magnetic X-line demonstrates the breakdown
of symmetry in the nonlinear stage when the magnetic
configuration is displaced by a finite distance and a cur-
rent sheet forms in which the current does not reverse
direction.
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Abstract—A brief review is given of papers on the RF production of a plasma whose electrons are heated due
to the parametric turbulence driven by an alternating electric pump field and maintain the discharge by ionizing
the working gas atoms. Results are summarized from studies of low-frequency parametric turbulence, specifi-
cally, ion-acoustic plasma turbulence in a magnetic field, ion-cyclotron turbulence associated with the excita-
tion of ion Bernstein modes, and lower hybrid turbulence in a plasma with ions of one or two species. The tur-
bulence level and the rate of turbulent heating of the electrons and ions are presented, and the results of model-
ing of these phenomena are described. Attention is focused on experiments in which low-frequency parametric
turbulence may be observed. © 2000 MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION

Electron beam propagation through a plasma is
accompanied by the excitation of space charge waves
and electric fields, i.e., by the onset of the beam–plasma
instability, which was discovered as early as 1949 by
A.I. Akhiezer, Ya.B. Faœnberg, D. Bohm, and E. Gross.
An electron beam propagating through a neutral gas
ionizes neutral particles and, when the electron density
reaches a certain critical level, triggers the beam–
plasma instability, which in turn gives rise to fluctuat-
ing fields and heating of the plasma electrons. In this
stage, the gas is ionized by electrons that acquire
energy in the interaction with the fluctuating turbulent
fields. The discharges of this type, which were discov-
ered in 1959–1960 by Ya.B. Faœnberg and his col-
leagues, are called beam–plasma discharges (BPD) and
have various applications (see, e.g., [1, 2]).

A plasma in a magnetic field and an alternating elec-
tric field with a sufficiently large amplitude is subject to
numerous parametric instabilities. If an alternating
electric field is switched on at the time t = 0 and if its
component in the magnetic field direction is suffi-
ciently strong, then the energy gained by the electrons
accelerated in such a field is high enough to ionize a
neutral gas and thus give rise to an electron avalanche
(the transverse electron velocity is assumed to be low,
which happens when the magnetic field is not too
weak). If the pump field frequency is low, then, as the
plasma density increases, the pump field is weakened
because of the high plasma permittivity and the screen-
ing of the longitudinal electric field. As a result, the
avalanche mechanism ceases to produce plasma even
when the plasma density is very low, in which case,
however, a parametric instability may occur, giving rise
to fluctuating electric fields and turbulent heating of the

† Deceased.
1063-780X/00/2607- $20.00 © 0575
plasma electrons, which continue to ionize the neutral
gas. Discharges of this type are naturally called para-
metric turbulence–sustained discharges.

A plasma in a magnetic field is subject to numerous
types of low-frequency oscillations. Many of these can
be excited by an external pump field. The frequencies
of these oscillations depend on the plasma density.
Higher density plasmas are characterized by the onset
of parametric instabilities on different oscillation
branches, thereby resembling the so-called “relay-race
of oscillation branches” (see, e.g., [3]).

In helicon sources, in which the plasma is created by
low-frequency electromagnetic waves—whistlers (or
helicons), whose frequencies are in the range between
the electron-cyclotron and ion-cyclotron frequency—
ion-acoustic and/or lower hybrid parametric instabili-
ties can develop and drive the plasma into turbulent
motion (see, e.g., [4]). The excitation of Alfvén waves
with frequencies below the ion-cyclotron frequency
(observed in experiments in the Uragan-3M torsatron
[5]) can be accompanied by the parametric excitation of
“kinetic” Alfvén modes, electron-acoustic modes, and
ion-cyclotron (Bernstein) modes. The development of
fast magnetoacoustic waves with frequencies above the
ion-cyclotron frequency can also be accompanied by
the onset of parametric instabilities on the branches
corresponding to these modes and on the lower hybrid
branch of oscillations. Parametric phenomena could
also be observed in the Uragan-3M [5] and Uragan-3
[6] stellarators in experiments on creating low-temper-
ature plasmas by whistlers in order to clean metal sur-
faces of the vacuum chamber, stellarator coils, and RF
antennas, as well as in the TEXTOR [7, 8], TORE
SUPRA [9], and other tokamaks in experiments on RF
plasma production by fast magnetoacoustic waves with
ω ~ ωci with the purpose of cleaning surfaces.
2000 MAIK “Nauka/Interperiodica”
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Here, we briefly review the theory and particle-in-
cell (PIC) modeling of ion-acoustic, ion-cyclotron, and
lower hybrid parametric instabilities; the turbulence
driven by these instabilities; and the related turbulent
heating of plasma electrons and ions.

2. ION-ACOUSTIC KINETIC PARAMETRIC 
TURBULENCE OF A PLASMA

IN A MAGNETIC FIELD

If an elliptically polarized low-frequency (ωci ! ω0 !
ωce) wave propagates in a plasma and if the electron
oscillatory velocity u⊥  = c(E0⊥ /B0) in this wave is

higher than the ion-acoustic speed vs = , then
the resonant interaction among the electrons moving
along the external magnetic field B0 with a velocity v||
equal to the phase velocity v|| = (ωs – pω0)/(k|| – pk||0)
(where p = 0, ±1, ±2, …) of a plasma wave driven by the
beatings of the pump wave and ion-acoustic oscilla-
tions gives rise to an ion-acoustic instability with the

growth rate γ = γe – γi – γν. Here, γe = , with γp the
electron contribution to the growth rate (p is the number
of the beat mode); γi is the damping rate caused by the
interaction of unmagnetized ions with ion-acoustic
waves; γν is the rate of collisional damping due to ion
viscosity; ωci(e) is the ion (electron) gyrofrequency;
ωs = kvs is the ion-acoustic frequency; E0 and ω0 are the
amplitude and frequency of the electric field of the
pump wave; and k||0 is the longitudinal wavenumber. If
γ ≈ γe @ γi, ν, which is valid for Te @ Ti and if the ion
temperature is not too low, then, in the case of an ellip-
tically polarized pump wave such that E0x > E0y and

, (1)

the main contribution to the growth rate comes from the
p = 1 beat mode, so that the maximum growth rate can
be estimated as [10]

(2)

For short-wavelength ion-acoustic waves, this esti-
mate is valid at ωpe @ ωce provided that k⊥ ρe @ 1,
k⊥ ρi @ 1, and kρD ! 1 and also under the conditions
2πγ @ ωci and kzvTe ! ωce. Here, ρα = vTα /ωcα are the
gyroradii of the electrons (α = e) and ions (α = i) with

the thermal velocities vTα =  and ρD = vTe/ωpe

is the screening length. Under all of the above condi-
tions, the magnetic field has a negligible impact on the
ion motion over the time during which the ion-acoustic
waves arise but strongly affects the electron motion. In
the case of a uniform pump field (k||0 = 0), the expres-
sions for γe were derived in [11, 12] and, in [10, 13],
they were generalized to the case k||0 ≠ 0.

Te/mi
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The saturation of the ion-acoustic instability can be
attributed to the induced scattering by ions [14–17].
Since the growth rate under consideration is high
(γ @ ωci), we can neglect the magnetic field effects in
calculating the nonlinear damping rate γNL caused by
induced scattering by ions. Equating γNL to the linear
growth rate (2), we can estimate the intensity of the ion-

acoustic waves, W = W(k) with W(k) ≈

|ϕk |2/(2π ), as [10, 18]

(3)

where the numerical factor α depends on the angular
distribution of the spectral intensity in the plane orthog-
onal to the magnetic field (for an isotropic distribution,
we have α = 1/8).

Using estimate (3) and the generalized quasilinear
kinetic equation for the averaged electron distribution
function (specifically, the kinetic equation generalized
to the case of finite electron displacements aE =

(c/ω0B0)(  + )1/2 ≥ 1 in the pump field [19]),
we arrive at the following expression for the rate of tur-
bulent heating of the electrons, 1/τh = |dlnTe||/dt | [10]:

(4)

With the help of the energy balance relation

(5)

where k0 =  is the helicon wavenumber, k||0 is

the projection of the helicon wave vector onto the mag-
netic field direction, ω0 is the helicon frequency, and

W0 ≈ |B~|2/16π ≈ (1/2)(men0 )(ωce/ω0)(k0||/k0) is the
helicon energy density, we can write the effective
damping rate of the helicons in the form [10]

(6)

This relation allows us to estimate the distance over
which the helicons are damped along the magnetic field
as lturb ~ ωce/k0νeff.

Formulas (2)–(5) provide a comparison with the
results of experiments with helicon sources described
in [20, 21], which present data on the parameters of the
sources and helicons.

Typical parameter values of a helicon source are as
follows: the working gas is argon at a pressure of
15 mtorr, the plasma radius is 2.5 cm, the source length
is 160 cm, the longitudinal magnetic field is 800 G, the
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antenna device of length 15 cm excites modes with the
azimuthal numbers m = 0 and ±1, the generator fre-
quency is ω0 = 1.7 × 108 s–1, the input power is P =
1−2 kW, and the plasma density is about ~1013 cm–3.
The central plasma temperature increases along the dis-
charge axis (the z-axis) from 3 eV in the antenna region
(|z | ≤ 7 cm) to the maximum value (4.5 eV) at a distance
∆z . 15 cm from the antenna edge and, farther out, it
decreases monotonically down to 2 eV at a distance
∆z = 80 cm from the antenna. The amplitude of the hel-
icon magnetic field is maximum near the antenna,
| | = 7 G, and decreases gradually along the discharge

axis in such a way that | | = 4 G at ∆z = 15 cm and

| | = 3 G at ∆z = 45 cm. A helicon resembles a stand-
ing wave, which is a superposition of different modes,
the m = –1 mode amplitude being the maximum. The
typical values of the wavenumbers are k||0 ~ π/L|| ~
0.3 cm–1 and k0r ~ 1.6 cm–1. In this case, the amplitudes
of the components of the helicon electric field are E0r =
E0x ≈ 24 V/cm, E0ϕ = E0y ~ 6 V/cm, and E0z ~ 0.03 V/cm,
which indicates that the elliptic polarization of a heli-
con is highly pronounced.

Since, under these conditions, the transverse veloc-
ity of a helicon, uy = c(E0x /B0) ~ 3 × 106 cm/s, is one
order of magnitude higher than the ion-acoustic speed
vs = 3.1 × 105 cm/s (Te = 4 eV), a short-wavelength ion-
acoustic parametric instability can arise with the
parameters ωs ~ 0.7ω0 ~ 1.2 × 108 s–1, kx ~ ωs/vs ~
400 cm–1, ky ~ 1.8ω0/u⊥  ~ 50 cm–1, and k|| ~ 0.6 cm–1.
Unfortunately, the data on the ion temperature Ti were
not given in [20, 21]. If we assume that Te/Ti = 20 (i.e.,
Ti = 2200 K), then we obtain γi = 3 × 105 s–1, γν = 1.6 ×
105 s–1, and γe = 2.3 × 106 s–1, so that γ = γe – γi – γν =
1.8 × 106 s–1.

At a distance of 25 cm from the antenna and farther
out, the electron temperature does not exceed 3 eV and
the ion-acoustic turbulence is suppressed by intense
Landau damping by ions. The electron temperature
reaches its maximum value Te = 4.5 eV at a distance
∆z = 15 cm from the antenna edge. This is the region
where both the rate at which Ar atoms are ionized and
the emission intensity of Ar+ atoms are the highest. The
ions from the region ∆z > 0 propagate toward the
antenna at the ion-acoustic speed (the working gas is
admitted at ∆z ~ 40 cm). The energy acquired by the
ions in transit (∆t ~ ∆z/vs ~ 5 × 10–5 s) through the
region where the ionization rate is the highest (∆z ~
15 cm) is ∆ti/Te ~ ∆t/τε, where τε = mi/(2meνei) = 10–3 s
is the time scale on which the energy is exchanged
between the electrons and ions and νei = 3.8 × 107 s–1 is
the electron–ion (e–i) collision frequency at Te = 4 eV.
This indicates that Te/∆Ti ~ 20; thus, in order of magni-
tude, we have ∆Ti ≈ Ti, which agrees with the above
assumption Te/Ti = 20. In calculating Ti as a function of

Bz
~

Bz
~

Bz
~
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Te with allowance for the increment in Ti due to e–i col-
lisions and energy losses due to charge exchange, Chen
[22] found that, at Te = 4 eV, the electron to ion temper-
ature ratio is Te/Ti ≈ 17, which is also close to the esti-
mate adopted here. Hence, under the experimental con-
ditions of [20, 21], the ion-acoustic turbulence can
occur only in the region near the antenna, ∆z & 20 cm.

Using estimates (3)–(5) for the energy W of the ion-
acoustic waves, the heating rate 1/τh, and the frequency
νeff, we obtain (for Te = 4 eV) W/n0Te ~ 0.8, νeff ~ 4 ×
108 s–1, and lturb ~ ωce/k0νeff ~ 20 cm. The last estimate
agrees with the measurement results of [20, 21]. The
effective collision frequency is one order of magnitude
higher than the frequency of binary collisions (for
Te = 4 eV, the length scale for the collisional damping
of a helicon is lcoll ~ ωce/k0νei ~ 2 m).

The proposed turbulent mechanism for heating the
electrons and sustaining a helicon discharge is also sup-
ported by the analysis performed by Chen [21], who
found that the electron temperature is a decreasing
function of z because of the collisional electron heat
transfer along the magnetic field. Chen’s calculations
showed that the Te(z) profiles obtained with and without
allowance for the collisional absorption of a helicon
essentially coincide with one another and with the
experimental profiles. This indicates that the heat is
transferred from the “hot” region (near the origin of the
z-coordinate), where the electron temperature is the
highest, along the z-axis via classical heat conduction.
The region ∆z ≤ 20 cm near the antenna is characterized
by turbulent electron heating. Using estimate (5), we
find that the helicon power absorbed in this region is
P ~ (n0Te/τh)πr2∆z ~ 1, which agrees with the experi-
mental data of [20, 21].

If the pump field frequency ω0 is below the lower

hybrid frequency , then long-wavelength
(kxρLe < 1) ion-acoustic waves can be excited whose
frequency and growth rate are equal in order of magni-
tude to

(7)

(8)

where z1 = (ω – ω0)/ |k|| – k||0 |vTe = –1/ . In this
case, the frequency and growth rate should be deter-
mined from the dispersion relation in the form of an
infinite-order determinant, which cannot be solved by
equating its diagonal elements to zero (as is done in the
range kρLe @ 1) and requires a numerical treatment.

When ω0 ≤ , which is typical of experi-
ments on the RF production of low-temperature plas-
mas in the Uragan-3M [5] and Uragan-3 [6] stellara-
tors, the TEXTOR tokamak [7, 8], and the TORE
SUPRA tokamak with superconducting windings [9],
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we may expect the onset of lower hybrid parametric
instabilities.

3. ION-CYCLOTRON PARAMETRIC 
INSTABILITY

If the pump frequency is on the order of the ion-
cyclotron frequency (ω0 ~ ωci), then ion-cyclotron
waves (ion Bernstein modes) can be excited parametri-
cally. The situation in which the relative oscillatory
velocity u⊥  of the electrons with respect to the ions is
below the ion thermal velocity (u < vTi) is characterized
by the coherent excitation of short-wavelength (k⊥ ρLi @ 1,
where ρLi is the ion gyroradius) cyclotron waves under
the resonance conditions ω(n) – ω(l) ≈ Nω0, where ω(n)

and ω(l) are the frequencies of the ion-cyclotron modes
and N is an integer. In this case, the resonant particles
affect the dispersion of unstable waves only slightly if

ze = |ω(n) + mω0 |/ k||vTe @ 1 or |ze | ! 1 and zs =

|ω(n) – sωci + mω0 |/ k||vTi @ 1 (m = 0, ±1, …), so that
we can speak of a hydrodynamic instability. If the mag-
netic field–aligned velocity of the resonant electrons,
which is equal to the phase velocity (ω(n) + mω0)/k|| of
the beat wave, is on the order of their thermal velocity
(|ze | ~ 1) but |zs | @ 1, then the resonant electrons can
give rise to ion-cyclotron waves under the condition
ω(n) ≈ (N/2)ω0, where the integers N are even. (Different
possible mechanisms for the parametric excitation of
hydrodynamic [23] and kinetic [24] ion-cyclotron
instabilities were examined by Kitsenko et al.)

2

2

0.1

0 20

WE/n0T0

ωcit

0.2

40 60

1

Fig. 1. Time evolutions of the energy density of the electric
field of ion-cyclotron waves and electron-acoustic modes.
Curve 1 illustrates the theoretical level of oscillations esti-
mated from equation (11) for the pump frequency ω0 =
1.2ωci and the relative oscillatory velocity u = 0.9vTi(0) of
the electrons with respect to ions at ωpe/ωce = 0.25 and mi =
100me.
In the range k⊥ ρLi @ 1, the frequencies ω(n) and
growth rates of the ion-cyclotron parametric instabili-
ties at Te ~ Ti have the form [24]

(9)

(10)

These instabilities are saturated in the highly nonlin-
ear stage, in which the nonlinear broadening of cyclo-
tron resonances becomes important and the growth rate
vanishes when the oscillation level is equal to [19, 25]

(11)

In this case, the rates at which the longitudinal electron
temperature T||e and the transverse ion temperature T⊥ i

grow are equal in order of magnitude to [19]

(12)

PIC simulations of this instability confirmed that
these estimates are valid for plasmas with a single ion
species [26–28] (see Figs. 1, 2) and with two ion spe-
cies [29]. The frequency spectra of the largest–ampli-
tude spatial Fourier harmonics analyzed on a time scale
including the time interval over which the waves
become strongly nonlinear were found to be consistent
with the spectra evaluated using linear theory by solv-
ing the dispersion relation (in the form of an infinite-
order determinant) with allowance for the deformation
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Fig. 2. Time evolutions of (1) the longitudinal electron tem-
perature T||e, transverse ion temperatures, (2) Txi and (3) Tyi,
and (4) longitudinal ion temperature T||i for the same param-
eters as in Fig. 1. Curve 5 illustrates the theoretical evolu-
tions T||e(t) and T⊥ i(t) traced using equation (12).
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of the spectrum shape by the pump field. Figure 3
shows the frequency spectrum of the fastest growing
mode (k⊥ ρi = 1 and k||ρi = 0.05) over the interval ωcit =
60, and Fig. 4 presents the frequencies (Fig. 4a) and
growth rates (Fig. 4b) obtained by solving the linear
dispersion relation. The solutions to the dispersion rela-
tion in Fig. 4a correspond to the spectral peaks in Fig. 3.

The development of the parametric instability is
accompanied by the onset of dynamic chaos in the par-
ticle motion and in the evolution of the self-consistent
field. Figure 5 shows the maximum Lyapunov expo-
nential index as a function of the initial longitudinal
electron velocity normalized to the initial electron ther-
mal speed. The Lyapunov exponential index is equal in
order of magnitude to the linear growth rate. Figure 6
illustrates the autocorrelation function for the self-con-
sistent field. We can see that the decorrelation time is

2

0 2

|ϕ(k,ω)|

ω/ωci

4

4 61 3 5

Fig. 3. Frequency spectrum of the most unstable mode for
ω0 = 1.2ωci , k⊥ ρLi = 1, k||ρLi = 0.05, u = 0.9vTi(0),
ωpe/ωce = 0.25, and mi = 100me.
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about several periods of the pump field (or several
inverse growth rates).

The development of dynamic chaos is also evi-
denced by the fact that the phase volume is not con-
served as time elapses. Figure 7 illustrates the time evo-
lution of a volume element in the electron phase plane
(z, v||). At the initial instant t = 0, the volume element is
a unit circle in the coordinate plane (z/ρi , v||/vTi). At the
time ωcit = 20, the circle is displaced to the right by the
distances ∆z ≈ 4ρi  and v|| ≈ 0.1vTe along the corre-
sponding axes and its shape is distorted. At the time
ωcit = 40 (when nonlinear effects are more pro-
nounced), the circle becomes very narrow and resem-
bles a boomerang. At the time ωcit = 60, the circle
evolves into two closely spaced, long, thin filaments. At
the time ωcit = 100, the filaments become thinner and
break up into several parts, some of which experience a
complicated motion. Numerical modeling shows that,
in the range u/vTi(0) < 0.9, the wave intensity and heat-
ing rate decrease sharply with u, in accordance with
(11) and (12).

Based on the investigations described above, Bese-
din et al. [30] simulated the particle and energy balance
in experiments on the RF production and heating of
plasmas in the Uragan-3M torsatron. Those experi-
ments were carried out with an unshielded loop
antenna, which created both the longitudinal field
required for RF breakdown and the generation of a slow
(electrostatic) oscillation branch in the stage of excita-
tion of electromagnetic waves in the plasma and the
transverse field required for the generation of an elec-
tromagnetic Alfvén wave. The excitation of waves
under the conditions ω0/ωci = 0.8 and B0 = 0.45 T (the
absorbed power being PRF ≤ 200 kW) made it possible
to produce a plasma with the density  = 2 × 1012 cm–3

and to carry out measurements in a decaying plasma
ne
2

0.5 2.0

ω/ωci

k⊥ ρLi

4

1.0 3.01.5 2.5

3

1

0

(‡) (b)

0.06

0.5 2.0

γ/ωci

0.10

1.0 3.01.5 2.5

0.08

0.02

0

0.04

k⊥ ρLi

Fig. 4. Solution to the linear dispersion relation for the same parameters as in Fig. 3: (a) oscillation frequency and (b) growth rate.
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Fig. 5. Maximum Lyapunov exponential index vs. the initial
longitudinal electron velocity for the same parameters as in
Fig. 3.
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Fig. 6. Autocorrelation function for the electric field of
unstable waves for the same parameters as in Fig. 3.
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Fig. 7. Time evolution of a volume element in the electron phase plane (z, vz). At t = 0, the volume element is a unit circle in the
coordinate plane (z/ρLi , vz/vTi).
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(after the RF pulse was switched off). The linear
absorption mechanisms (collisional and collisionless
cyclotron damping) failed to explain the heating of the
ion plasma component (hydrogen). Using the model of
an inhomogeneous plasma cylinder and a realistic
model of the antenna, Besedin et al. [31] calculated the
distribution of the electromagnetic field generated by
the antenna in order to determine the turbulent heating
rate for plasma electrons and ions, 1/τh in (12), assum-
ing the current JA in the antenna is prescribed. However,
this plasma model accounts solely for the radial plasma
inhomogeneity and may thus lead to significant errors
in determining the field distribution in the local Alfvén
resonance region, where the plasma density and mag-
netic field can be highly nonuniform in three dimen-
sions. Consequently, the power deposition profile cal-
culated in [31] can yield only order-of-magnitude esti-
mates. The turbulent heating rate 1/τh, which turns out
to be equal to 3 × 104 s–1 in the main plasma (r/rp ≤ 0.8),
increases sharply to 2.5 × 105 s–1 at the plasma bound-
ary r = rp (where rp is the plasma radius) and, in a ten-
uous plasma outside the antenna, it becomes as high as
3 × 105 s–1. The antenna current JA was adjusted to
achieve the best agreement between the calculated and
experimentally measured fractions of the plasma-
deposited RF power, taking into account the turbulent
absorption of RF power by the ions and electrons and
the electron Cherenkov absorption. In addition, the
flow of a neutral gas admitted into the working volume
of the plasma (the neutral pressure) was assumed to be
prescribed and account was taken of such processes as
neutral gas ionization, inelastic electron–electron colli-
sions, neoclassical diffusion and neoclassical heat
conduction (which are important in the main plasma,
r/rp ≤ 0.8), and anomalous diffusion and anomalous
heat conduction (which are important in the plasma
edge region, r/rp ≥ 0.8).

The results of this modeling can be summarized as
follows:

(i) the mechanisms for both ion heating (the central
ion temperature is close to the experimentally mea-
sured temperature) and the generation of hot ions,
which accumulate in the edge region, are established;

(ii) the calculated central electron temperature Te(0)
and the calculated electron temperature profile Te(r)
agree well with those measured in experiments;

(iii) the calculated electron density profile ne(r)
coincides with the experimental profile;

(iv) in accordance with the experiment [5], the
ambipolar field calculated from the condition that the
electron and ion fluxes are equal to each other is posi-
tive at the plasma edge;

(v) the calculated neutral density coincides with the
measured one (see also [32]).

The agreement between the results from this trans-
port model for Uragan-3M and the experimental data
PLASMA PHYSICS REPORTS      Vol. 26      No. 7      2000
allows us to conclude that the model is capable of qual-
itatively (and even quantitatively) describing the real
situation, in particular, the mechanism for plasma heat-
ing.

In the ion-cyclotron frequency range, parametric
phenomena were observed in straight systems [33–37];
in the toroidal ATC device (with a zero rotational trans-
form) [38–41]; in the ASDEX [42, 43], TEXTOR
[44, 45], JET [46], JT-60 [47], and D-IIID [48] toka-
maks; and in the Uragan-3M torsatron [49, 50].

4. LOWER HYBRID PARAMETRIC INSTABILITY

A sufficiently strong pump wave (vTi ! u ! vTe)
with a frequency close to the lower hybrid frequency

ωlh = ωpi(1 + / )–1/2 (ω0 ~ ωlh) can give rise to
electrostatic hydrodynamic waves (ω > k||vTe). In the
absence of the pump field, the frequencies of these
waves are equal to

(13)

In the range q @ 1, for ω0 ≈ nω(k), the growth rate has
the form

(14)

In the range q ! 1, for ω0 ≈ nωlh, we have

(15)

In the case of small displacements, aE ~ (ku)/ω0 ! 1,
the wave frequency is described by formula (13) and
the growth rate is equal to

(16)

In both ranges q @ 1 and q ! 1, expression (16) coin-
cides with (14) and (15) taken in the limit aE ! 1.

If q ~ 1, then, for aE ≈ 1, the wave frequency differs
from the frequency (13) because of the presence of the
pump field. However, in order of magnitude, the wave
frequency remains equal to (13), so that we have

(17)

The above expressions for the growth rate in the ranges
q @ 1 and q ! 1 (for aE ~ 1) and in the range q ~ 1 (for
aE ! 1) were derived in [11, 51, 52]. Formula (14) was
obtained earlier by Aliev et al. [53], and formula (15)
was obtained by Porkolab [54] in the limit aE ! 1. The
dispersion relation for parametrically unstable lower
hybrid waves was analyzed numerically in a recent
paper by Baœtin and Ivanov [55].

We can expect that, when the lower hybrid paramet-
ric instability saturates, the nonlinear terms in the equa-
tions of motion and the electron continuity equation
will become comparable in order of magnitude to the

ωpe
2 ωce

2

ω k( ) ωlh 1 q+( )1/2, q mi/me( ) k ||
2/k2( ).= =

γ γmax∼ 1
2q
------Jn

2 aE( ) 
 

1/3

ω.=

γ γmax∼ 1
2
---qJn

2 aE( ) 
 

1/3

ωlh.=

γ γmax∼ 1/2 q1aE
2( )1/3ω, q1 q/ 1 q+( )2.= =

ω0 ω k( ) ωlh γ ku q 1∼( ).∼ ∼ ∼ ∼
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linear terms. Then, we can use estimates (17) to obtain
that, in the range q ~ 1, the electric field amplitude E ~

of the lower hybrid waves, the electron oscillatory

velocity , the electron displacement ξ ~, the deviation

 of the electron density from its equilibrium value,
and the energy density W of the lower hybrid waves are
equal in order of magnitude to

(18)

(19)

(20)

(21)

(22)

The rates at which the longitudinal electron tempera-
ture and transverse ion temperature grow under the
action of stochastic turbulent oscillations can be esti-
mated as

(23)

Estimates (18)–(23) for the lower hybrid beam
instability of a plasma with a transverse current were
derived in [56–63] under the condition ω0 ! ωlh. In
those papers, one can also find analogous estimates
obtained at u < vTi and Ti @ Te for the electron-acoustic
instability, which develops under the same conditions
and is closely related to the lower hybrid instability. In
order to describe the electron-acoustic instability, we
can use the adiabatic approximation and assume that
the velocity u is constant, i.e., that it does not change
during the instability. The frequency ω(k), growth rate
γ(k), and wave vector k of this instability are equal in
order of magnitude to those in relationship (17) for the
lower hybrid parametric instability. We can therefore
expect [11] that the electron-acoustic instability will
possess the same nonlinear properties as those
described by estimates (18)–(23) for the lower hybrid
beam instability in a plasma with a transverse current.

The nonlinear damping rate, which, according to the
theory of weak turbulence, lowers the growth rate, is

proportional to |k × k' . In other words, unstable
waves that are saturated at the level described by esti-
mates (18)–(22) are essentially three-dimensional: the

inequality |k × k'  ≠ 0 holds only for kx ≠ 0 and ky ≠ 0,
while the growing waves are those with kz ≠ 0. Model-
ing of these instabilities for the case of two-dimen-
sional waves with (kx ≠ 0, ky = 0, kz ≠ 0) showed that the
instabilities saturate from a trapping of the electrons in

v e
~

ne
~

E~ u/c( )B0,∼

v e
~ c/B0

2( ) Ẽ B̃0× u,∼∼

kξ 1 ξ v e
~/ω0∼( ),∼

ne
~ /n0 ωlh/ωce,∼

W
n0Te
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v Te
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2
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2
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2

the electric field of the waves at a level significantly
above that described by (18).

Kitsenko et al. [64] modeled the lower hybrid insta-
bility in a plasma containing two ion species with
masses m1 and m2. The frequency and growth rate of the
lower hybrid parametric instability occurring in such a
plasma in the range u @ vTi (i = 1, 2) have the form

(24)

where

(25)

Two-dimensional PIC simulations of this instability in

the ranges ω0 > ωlk and ω0 < ωlh (for kz = 0 and  !

) [64] showed the excitation of waves with frequen-
cies and wavenumbers described by (24). The develop-
ment of the lower hybrid instability is accompanied by
effective heating of the ions of both species. The insta-
bility saturates when the ion thermal velocity becomes
comparable with the relative velocity of the ions of one
species with respect to the ions of another species,
vTi ~ u, in which case the ion motion becomes highly
nonlinear. The nonlinear terms in the equations of elec-

tron motion can be neglected when  ! . In real-
ity, it is likely that the lower hybrid parametric instabil-
ity also occurs in the range u < vTi , in which decay pro-
cesses involving ion-cyclotron waves are possible in
principle. In this case, the turbulent heating rate is
lower and the established temperature is governed by
heat losses, as is the case with other heating mecha-
nisms.

If the pump frequency is on the order of the ion-
cyclotron frequency, ω0 ~ ωci, then, in a plasma with
two ion species, ion-cyclotron waves can be excited
parametrically. Kasilov et al. [65] carried out PIC sim-

ulations of this instability (at ωp1/ωc1 = 5, /  ! 1,
m2 = 2m1, n01 = n02, m1 = 100me) in the case of two-
dimensional inhomogeneous unstable waves and suffi-
ciently strong (u/vT1(0) = 8.2, 4.1, and 3.2) pump fields
and under the ion–ion hybrid resonance condition
ω0 = ωii, where

(26)

Kasilov et al. inferred the excitation of long-wave-
length (k2  !1) waves and found that the ion temper-
ature increased significantly (by a factor of 20.5, and
2.5, respectively). For u/vT1(0) = 2.1, the ion tempera-
ture was found to increase by 10% (Fig. 8). The most
unstable modes are those with kxρi ~ kyρi ≤ 0.1. In
accordance with linear theory, the frequency spectra

ω0 ω k( ) γ ku ωlh, k ||/k ! me/mi,∼∼ ∼ ∼

ωlh
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2 ωp2
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1 ωpe
2 /ωce
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|ϕk(t)| of the most unstable modes (with kxρi = 0.05 and
ky = 0) are peaked at the frequencies ω = ωci + nω0
(n = 1, 2, and 3). There is also a peak corresponding to

the lower hybrid resonance frequency (  + )1/2

(with allowance for the corrections introduced by ther-
mal dispersion). Presumably, this peak reflects the adi-
abatic excitation of a beam instability in the nonlinear
regime. The instability under consideration also is not
affected by the electron nonlinearity. The instability
saturation can be attributed to ion heating: as the ion
temperature rises, the effect of the heated ions on the
dispersion of ion–ion hybrid waves may become strong
enough to destroy the parametric resonance ω(k) ≈ ω0
for the mode with the wave vector k, so that this mode
becomes stable.

The transverse ion temperatures Tix and Tiy are
approximately the same, while the temperature of the
light ions is somewhat lower than the temperature of
the heavy ions. The time evolutions of the temperatures
T1x, y and T2x, y are oscillatory with frequencies 2ωc1 and
2ωc2, respectively. The oscillatory nature of the evolu-
tions stems from the fact that, in the nonlinear stage, the
ion distribution functions become asymmetric because
of the acceleration of the ions that are in the tails of the
distribution functions. In this stage, the ions obey a
double-humped vx distribution (with two slight peaks).
In the later stage, the ion distribution function broadens
and resembles a Maxwellian function. In this stage,

ωp1
2 ωp2

2
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Fig. 8. Time evolutions of the transverse temperatures of the
ions of two species, (T1x , T1y) and (T2x , T2y), at ω0 = ωii =
0.14ωp1 for different pump field amplitudes: curves 1–4 cor-
respond to u/vT1(0) = 8.2, curves 5–8 correspond to u/vT1(0) =
4.1, and curves 9–12 correspond to u/vT1(0) = 3.1. The
remaining parameters are m2 = 2mi, n01 = n02, T1(0) = T2(0),

/  = 25, and mi = 100me.ωp1
2 ωc1

2
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short-wavelength waves are damped and only waves
with the longest wavelengths (kxρi = 0.05) persist. A
similar effect of redistributing oscillations from the
short-wavelength to long-wavelength spectral range
during the lower hybrid parametric instability in a
plasma with one ion species was pointed out by Musher
et al. [66]. In the nonlinear stage, these oscillations
form streams in the space of the wavenumbers; the
wave vectors corresponding to the streams are gov-
erned by Landau damping. Shapiro et al. [67] showed
that, in a plasma with two ion species, the parametric
excitation of lower hybrid waves can also give rise to
the formation of nonlinear coherent structures (soli-
tons).

5. CONCLUSION

The above analysis allows us to draw the following
conclusions:

(i) Discharges sustained by low-frequency paramet-
ric turbulence have found widespread use in laboratory
experiments, plasma technology, and fusion devices.

(ii) Low-frequency parametric turbulence often
appears to be well developed, so that the results of tur-
bulence studies described above can be used only for
estimates.

(iii) PIC simulations of the low-frequency paramet-
ric turbulence revealed important turbulence properties
that are difficult to investigate experimentally. In a
number of cases, one- and two-dimensional simula-
tions fail to reveal the qualitative features of turbulence;
i.e., a full three-dimensional analysis is required.

(iv) Since the published experimental results on
low-frequency parametric turbulence are insufficient to
make a definitive comparison with analytical and
numerical calculations, it becomes desirable to obtain
further experimental data and to carry out the relevant
two- and three-dimensional simulations.
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Abstract—The possibility is studied of the formation of ordered dust-grain structures in a low-temperature
thermal plasma consisting of electrons, ions, and micron-sized charged dust grains. The range of the required
values of the coupling parameter Γ defining the degree to which the plasma is nonideal is calculated using the
results of diagnostic measurements carried out in a plasma consisting of combustion products of propane in air
with grains of different materials. The results obtained show that the most favorable conditions for the forma-
tion of strongly correlated grain structures (for both positively and negatively charged grains) take place at the
maximum grain number density and a plasma temperature close to the minimum flame temperature (~1600 K).
In this case, the optimum grain radii lie in the range 4–10 µm and the maximum value of the parameter Γ is less
than 200. Since the calculated values of Γ give an upper estimate, liquidlike ordered structures are most likely
to form in a thermal plasma. Based on the results of the analysis, it is stated that an increase in the parameter Γ
and, accordingly, the formation of plasma-crystal structures in a thermal plasma can only occur for positively
charged grains. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, thermal dusty plasmas have
attracted considerable interest in connection with both
their practical importance as a working medium in a
number of engineering areas (such as energetics, rocket
engineering, and film depositing) and fundamental
research in the physics of nonideal plasmas. Recently,
the phenomenon of self-organization of charged grains
in a low-temperature plasma, which leads to the forma-
tion of ordered structures [1–3], has been revealed. The
study of these structures has shown that they exhibit a
number of unique properties, which makes it possible
to use them as model systems in studying the funda-
mental properties of solids. A strong dependence of the
grain structures on the parameters of the bulk plasma
enables one to study phase transitions in a dusty
plasma, whereas the short relaxation time of these
structures to equilibrium, as well as the short-time
response to external perturbations, allows the dynami-
cal and structural properties of plasmas to be studied.

Traditionally, the models of a one-component
plasma or a plasma with a screened (Debye) potential
have been used to describe the interaction between the
grains. (The latter model is also known as a Yukawa
model.) In these models, classical quasineutral
unbounded plasmas are considered for which the criti-
cal (corresponding to phase transitions) values of the
Coulomb coupling parameter

(1)γ
Z p

2
e

2

r〈 〉 T p

--------------=
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are calculated numerically. Here, e is the elementary
charge; Zp is the grain charge number; 〈r〉 ≡ (4πnp/3)–1/3

is the intergrain distance; and Tp and np are the temper-
ature and number density of grains, respectively.

In the one-component model, the plasma is treated
as an idealized ion system against a uniform neutraliz-
ing background, so that the system as a whole is elec-
trically neutral. In this case, the interaction between
grains is described by the Coulomb potential U(r) and,
for γ higher than γ = 171 [4], a three-dimensional
ordered structure is formed. For low γ values (γ < 4), the
plasma is in the gaseous state.

In the Debye model, it is assumed that the grain
charge is screened by a charged background, which
leads to the Debye–Hückel interaction potential. With
allowance for the screening, whose effect is determined
by the relation κ = 〈r〉/rD (where rD is the screening
radius), the relevant coupling parameter

(2)

is introduced. The short-range order in such a system is
established for Γ > 1 [5]. Hence, the plasma thermody-
namics and, accordingly, phase-transition conditions in
the Debye model are described by two parameters,
namely, γ and κ.

In this paper, we consider the possibility of the for-
mation of an ordered grain structure in a low-tempera-
ture thermal plasma consisting of electrons, ions, and
micron-sized dust grains. To determine the value of Γ
in such a plasma, we use the results of diagnostic mea-

Γ γ r〈 〉 /rD–( )exp=
000 MAIK “Nauka/Interperiodica”
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surements carried out in combustion-product plasma
flows with cerium dioxide (CeO2) and aluminum oxide
(Al2O3) grains.

The charge composition of a thermal plasma
depends substantially on the easily ionized alkali-metal
(usually, Na or K) impurities, which are always present
in the dust-grain material. The alkali-metal atom den-
sity na, the gas temperature T . Tp, and the work func-
tion Wte of the thermal electrons emitted from the grain
surface determine the electrophysical properties of the
thermal plasma and significantly affect the magnitude
and sign of the grain charge. As the plasma temperature
rises, both the electron emission from the grain surface
and the degree of ionization of alkali-metal atoms
increase, which can change the magnitude and sign of
the grain charge. In turn, the alkali-metal atom density
depends on the material, number density, and size of
the dispersed-phase grains. Therefore, in order to deter-
mine the parameters of the thermal dusty plasma at
which the nonideality parameter Γ is maximum, it is
necessary to solve a self-consistent problem using both
the reference and experimental data on the emission
and chemical properties of the grain material.

2. DUST-GRAIN CHARGING IN A THERMAL 
PLASMA

In the general case, the equilibrium potential of a
dust grain embedded in a thermal plasma is established
as a result of the balance between the electron–ion
recombination on the grain surface and the thermoe-
mission (electron) current from its surface:

(3)

where Ite is the thermal electron flux and Ie and Ii are the
electron and ion fluxes that arrive from the surrounding
plasma and are absorbed by the grain.

The charge eZp of a spherical particle of radius
R ! rD is related to its surface potential ϕs with respect
to the plasma potential (which is assumed to be zero) by
the equation ϕs = eZp/R. The plasma-particle flux onto
the surface of an isolated dust grain depends on the sign
of the grain charge with respect to the absorbed elec-
trons (ions). In the orbit motion limited (OML) model,
in the absence of an external electric field, this flux can
be represented as [6, 7]

(4‡)

(4b)

where R is the grain radius, ne(i) is the electron (ion)
density, me(i) is the electron (ion) mass, and Ze(i) is the
charge number of the plasma electrons (ions). The elec-
tron (ion) velocity is assumed to satisfy the Maxwellian

Ie Ite Ii∑+ + 0,=

Ie i( ) Ze i( )ene i( ) 8πT /me i( )( )
1/2

R
2

1 e Ze i( )ϕ s /T+( ),=

Ze i( )ϕ s 0;<

Ie i( ) Ze i( )ene i( ) 8πT /me i( )( )
1/2

R
2

e Ze i( )ϕ s /T–( ),exp=

Ze i( )ϕ s 0,>
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distribution with the temperature T. The electron (ion)
density ne(i) is assumed to satisfy the plasma neutrality
condition: (ne – Zpnp) = ni.

Note that the OML model is valid for a collisionless
plasma with sufficiently small grains,

R ! rD < l,

where l is the electron (ion) mean free path.
For a thermal plasma at temperatures of ~2000 K

and atmospheric pressure, the mean free path of elec-
trons with respect to collisions with neutrals is
~100 µm, whereas that of ions is two orders of magni-
tude lower. Here, we only use the OML model because,
under the conditions in question, the error in calculat-
ing the ion fluxes does not play a decisive role.

The thermal electron flux from the charged-grain
surface is described by [8]

(5‡)

(5b)

The thermoelectronic work function Wte of various
materials usually ranges from 1 to 5 eV. If the system
under study consists of only dust grains and electrons
emitted by them (ne = npZp), then the grain charge
Zp ≥ 0 can be found from the balance between the
fluxes of electrons emitted and absorbed by the grain
(assuming that the emitted and absorbed electrons have
the same temperature):

(6)

Equation (6) is similar to the Richardson–Deshman
equation. Figure 1 illustrates the dependence of the

Ite 4πRT( )2
me Wte/T–( )/h

3
, Z pexp 0;<=

Ite = 4πRT( )2
me 1 eϕ s/T+( ) Wte eϕ s+( )/T–( )/h

3
,exp

Z p 0.>

ne 2 2πTme/h
2

( )
3/2

Wte eϕ s+( )/T–( ),exp=

ne np Z p.≡

2
Wte, eV

1 3 4 5
102

103

104

np = 107 Òm–3

np = 104 Òm–3

Zp

Fig. 1. Dependence of the grain charge Zp on the work func-
tion Wte at a temperature of T = 2000 K.
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charge number Zp on the work function Wte for grains
of radius R = 1 µm at various densities np and a temper-
ature of T = 2000 K, which is typical of combustion-
product plasmas. It is easily seen that the positive grain
charges are relatively low: Zp < 4000 R [µm]. There-
fore, the presence of easily ionized alkali-metal atoms
in such a plasma results in an additional electron flux
onto the grain, and the grain charge can even change its
sign because the thermal velocity of plasma ions is
much less than the electron velocity.

3. INFLUENCE OF ALKALI-METAL IMPURITIES 
ON THE GRAIN CHARGE

Two processes govern the electron density in an
equilibrium thermal plasma. The first process is associ-
ated with thermoelectronic emission and electron
attachment to the grain surface, and the second one is
associated with ionization and recombination pro-
cesses in the gaseous phase. For most gases, atom and
molecule ionization energies are higher than 10 eV;
hence, at temperatures below 3000 K, the charged-
component density depends on the content of easily
ionized impurities in the heated gas.

As was mentioned above, dust grains are the main
source of easily ionized impurities in a thermal plasma.
The alkali-metal atom density and, accordingly, the
electron and ion densities in the bulk plasma depend on
the size, number density, and material of the dust
grains. Hence, to choose the optimum conditions (the
size, number density, and temperature of grains) such
that the coupling parameter Γ is maximum, we should
examine how the charge of the grains depends on their
radius R, number density np, and temperature T taking
into account the content of the alkali-metal impurity in
the grain material. For grains of a given material, the
density of alkali-metal atoms emitted from the grain
surface may depend, in two limiting cases, either on the
grain surface area or the grain volume and thus can be
related to np in the following two ways:

(7‡)

(7b)

where na is the alkali-metal atom density and c and k
are certain constants that can be obtained from experi-
mental measurements carried out at one or several tem-
peratures in a plasma containing grains of the material
under study.

The well-known methods for measuring the grain
size and number density, as well as the alkali-metal
atom density, are described in detail in [9–12].

In the case of a plasma without dust grains but with
an admixture of alkali atoms [13], the electron and ion
densities,  and  (in this case,  = ), can be

na cR
2
np,=

na kR
3
np,=

ne* ni* ne* ni*
found from the Saha equation for a gas with a known
temperature and density:

(8)

where Ia is the ionization energy of an atom.
To determine the electron ne and ion ni densities at

the same alkali-metal atom density na in a dusty
plasma, when the dust grains are the only source of eas-
ily ionized atoms, the Saha equation should be comple-
mented by the quasineutrality condition

(9)

In this case, the densities of electrons and ions arriv-
ing at the surface of a positively or negatively charged
grain are determined by the relations

(10‡)

(10b)

For positively charged grains, the charge Zp can be
found from expressions (6) and (10) with no regard for
the ion flux onto the grain surface because the thermal
velocity of plasma ions is much less than the electron
velocity. To determine the maximum negative charge Zp

(for Zp < 0, Ite . 0; i.e., the thermoelectronic emission
can be neglected), we can write the balance equation
(3) in the form

(11)

This allows us to perform a more general analysis of the
maximum value of the coupling parameter Γ without
invoking additional unknown data on the grain mate-
rial.

4. ANALYSIS OF THE PARAMETERS OF A DUST 
STRUCTURE IN A COMBUSTION-PRODUCT 

PLASMA
All of the above equations are rather general and

independent of the method for producing a thermal
plasma. Here, we restrict ourselves to the analysis of a
plasma consisting of the products of combustion of pro-
pane in air at pressures near atmospheric pressure. It is
this plasma in which liquidlike plasma–dust structures
have been revealed for the first time [3]. The temperature
range typical of propane–air flames is 1600–2000 K.
When determining the coupling parameter Γ in the
plasma of combustion products, we take into account
the limitation on the maximum grain number density:

(12)
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This condition was obtained experimentally for
grains of various materials from measurements of the
limiting optical depth τ for grains at which flame inhi-
bition (quenching) occurs. The dependence of the max-

imum number density  on the grain radius R is
shown in Fig. 2. The restriction on the maximum grain
radius (R < Rlim = 20 µm) is determined by the dynamic
viscosity and velocity of the propane–air flow, i.e., its
ability to drag the grain in the Earth’s gravity field.

Let us examine the conditions for the formation of
ordered structures by using the results of measurements
carried out in a plasma with CeO2 grains when the con-
tent of alkali-metal impurities is relatively low. The
results of observations of the formation of CeO2
ordered structures in a plasma of combustion products
at temperatures of 1700–1800 K are presented in
[14, 15]. The mean diameter of grains was 1.5–2 µm,
the typical distance between grains was 〈r〉  = 15–50 µm
(which corresponded to np = 106–107 cm–3), and the
electron density was ne = (5–8) × 109 cm–3. The main
contribution to the electron and ion densities came from
the alkali-metal impurities—sodium (Ia = 5.12 eV) and
potassium (Ia = 4.34 eV), which had nearly the same
densities. However, by virtue of the lower ionization
energy of potassium, its ion density in the gaseous
phase was one order of magnitude higher.

Figure 2 shows the dependence na(R) for two types
of the functional dependence of the density of emitted
alkali-metal atoms on the grain parameters [relations
(7a) and (7b)] in the case of the limiting grain number

density . Curves are drawn for different values of
the coefficients c = (3.4–5.4) × 1013 cm–2 and k ≡ c/R* =
(3.4–5.4) × 1017 cm–3 obtained from the experimental
measurements [16]. Here, R* . 1 µm is the mean radius
of CeO2 grains for which the test measurements of np

and na were performed.

The above intervals of the c and k values were deter-
mined taking into account the contribution from exper-
imental errors in determining the grain radius R, optical
depth of the grain layer τ ~ R2np, and potassium atom
density na. The grain charge Zp was determined from
expressions (6) and (10) and the reference data on the
CeO2 electronic work function: Wte = 2.6 eV [17]. The
results of calculations of the parameter Γ for various
radii, number densities, and temperatures of grains are
presented in Figs. 3 and 4.

The analysis of the temperature dependence of the
parameter Γ for different particle radii and number den-
sities shows that, for both cases corresponding to rela-
tions (7a) and (7b), the value of Γ is maximum for the
maximum grain number density; in this case, func-
tional dependence (7a) for the density of the emitted
alkali-metal atoms gives the maximum values of the
parameter Γ that belong to the temperature range under
consideration (see Fig. 3). The lower values of the cou-

np
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np
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and alkali-metal atom density na (solid curve) as functions of
the particle radius R for the limiting grain number density for
the cases corresponding to relations (7a) and (7b) and differ-
ent values of the coefficients: c1 = 5.4 × 1013 cm–2, c2 = 3.4 ×
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pling parameter in the case corresponding to relation
(7b) are explained by the higher impurity emission and,
accordingly, a greater electron flux onto the grain sur-
face, which decreases both the grain charge and the
Debye radius (Fig. 5).
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10 20 25
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T = 1700 K

0 15

T = 1600 K

T = 2000 K
T = 2200 K

T = 1700 K
T = 1600 K

Γ

200

Fig. 4. Dependence of the parameter Γ on the radius R for
various temperatures T in the case of a positive grain charge;
solid curves correspond to relation (7a), and dashed-and-
dotted curves correspond to (7b).
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Fig. 5. Ratio Dr = rD/(4πnp/3)–1/3 of the Debye radius to the
intergrain distance as a function of radius R for different
temperatures; solid curves correspond to relation (7a), and
dashed-and-dotted curves correspond to (7b).
The nonmonotonic character of the dependences
Γ(T) and Γ(R) is governed by two competing processes:
the charging of particles due to thermoelectronic emis-
sion and the screening of grains by the electron and ion
components that are formed due to the ionization of
alkali-metal atoms. As the electronic work function
increases, the parameter Γ decreases. For Wte > 3.2–
3.4 eV, in the temperature range 1600–2200 K and the
alkali-metal atom density range under study (see
Fig. 2), the grains are no longer charged positively.

Let us determine the coupling parameter for a ther-
mal plasma with negatively charged dust grains. We
assume that the densities of ionized atoms na and elec-
trons ne remain the same (Fig. 2). To obtain the upper
estimate for the parameter Γ, we neglect the thermo-
electronic emission; in this case, the grain charge is
determined from (11). The results of calculations of the

parameter Γ for the limiting grain number density 
(Fig. 3) in the case corresponding to relation (7a) are
shown in Fig. 6.

In the case corresponding to relation (7b) (as in the
case of a positive particle charge), the parameter Γ
decreases with decreasing the grain number density

(np < ). This is because the screening length of the
grain charge decreases as the densities of plasma elec-
trons and ions increase, whereas the charge Zp itself

depends weakly on . It is easily seen that, for a neg-
atively charged grain (at Wte > 3.2–3.4 eV), the cou-
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Fig. 6. Dependence of the parameter Γ on the radius R for
different temperatures T in the case of a negative particle
charge; solid curves correspond to ne = 3 × 1010 cm–3, and

dashed-and-dotted curves correspond to ne = 3 × 1011 cm–3.
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pling parameter Γ reduces by a factor of more than 3.
Furthermore, the tenfold increase in the electron den-
sity ne (which corresponds to a 100-fold increase in the
alkali-metal atom density na) decreases the parameter Γ
by almost one order of magnitude (Fig. 6).

Assuming that, on heating, all potassium compounds
evaporate from the grain material and decompose in the
plasma, the alkali-metal atom density in the plasma vol-
ume (~1012–1013 cm–3) corresponds to the specific mass
concentration of alkaline impurities in the grain material
on the order of 10–4–10–5. This value is typical of the
alkaline-metal impurity concentration for grains of var-
ious materials if they are not specially purified.

5. CONCLUSION

An analysis of the numerical results shows that the
most favorable conditions for the formation of strongly
correlated grain structures (for both positively and neg-
atively charged grains) take place at the maximum
grain number density and a plasma temperature close to
the minimum flame temperature (~1600 K). The opti-
mum particle radii lie in the range 4–10 µm (Figs. 4, 6),
and the maximum value of the coupling parameter Γ is
less than 200. Since the obtained values of Γ give an
upper estimate, liquidlike structures are most likely to
form in a thermal plasma, in contrast to crystal struc-
tures observed in gas discharges in which the parameter
Γ attains a value of 103–104.

This result agrees with the available experimental
data on dust-grain structures in a thermal plasma.
Indeed, when studying an ensemble of dust grains in a
combustion-product plasma flow, it was found that the
maximum value of the parameter Γ was 40–50 and the
liquidlike structures were formed at grain number den-
sities of np > 106 cm–3 and plasma temperatures less
than 1900 K [14, 15]. The formation of a cloud of dust
grains was observed in a thermal plasma produced by
exploding a metal wire in air, the parameter Γ being
estimated as ~100 [18]. In the plasma of the combus-
tion products of propellants, in the boundary sheath of
the condensation region, where liquidlike plasma–
dusty structures were observed, the value of the param-
eter Γ varied from 3 to 40 [19].

Based on the above analysis, we can state that, in a
dust-grain system in a thermal plasma, the parameter Γ
can only be increased for positively charged grains with
a minimal content of easily ionized impurities. In the
limiting case of perfectly pure grains, we obtain a
plasma consisting of grains and electrons emitted by
them; it is this plasma in which a Coulomb plasma crys-
tal can be formed.
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Abstract—A stable regime of the amplification of a slow plasma wave in a plasma waveguide during the injec-
tion of a high-current relativistic electron beam is obtained. For an input-signal frequency of 9.1 GHz, there
exists a range of plasma densities in which the spectrum of the output microwave radiation lies in a 0.5-GHz-
wide band. For a 40-kW input power at a frequency of 9.1 GHz, the maximum output power is 8 MW. It is
shown experimentally for the first time that the beam–plasma amplifier can operate at frequencies of 9.1 GHz
and 12.9 GHz. The range of plasma densities in which the regime of amplification is observed agrees with the
results of calculations based on linear theory. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A cylindrical coaxial plasma waveguide, whose cen-
tral electrode is a column of magnetized plasma with a
sharp boundary, is a slow-wave electrodynamic struc-
ture. In such a waveguide, there exist slow (with a phase
velocity lower than the speed of light) eigenmodes
whose electric field has a nonzero longitudinal compo-
nent (E-modes). The maximum phase velocity of these
modes increases with increasing the plasma density np

and approaches the speed of light as np  ∞. Hence,
when an electron beam is injected into the plasma
waveguide, the Cherenkov synchronism between the
beam and a waveguide eigenmode can occur if the
plasma density exceeds a certain threshold value. The-
oretical research on the mechanism for the excitation of
the eigenmodes of a coaxial plasma waveguide by a rel-
ativistic electron beam (REB) has been carried out
since the 1970s (see review [1]).

Note that, initially, the interaction of a nonrelativis-
tic electron beam with a plasma was studied both theo-
retically and experimentally. These studies can be
divided into two groups. In the first group, the plasma
was used to change the configuration of the electric
field in vacuum microwave sources in order to improve
their parameters. This made it possible to increase the
efficiency of such sources and to create high-power
microwave amplifiers and noise masers with a fre-
quency tuning of ±30% and a rather high efficiency
(~40%) [2, 3]. On the other hand, such use of the
plasma could not significantly broaden the frequency
tuning range. In the second group of investigations, the
microwave power was generated through the coupling
between a nonrelativistic electron beam and slow
modes of a plasma waveguide. This showed promise
for creating microwave devices capable of tuning the
operating frequency over a wide range. However, such
devices have not been created because it is impossible
to provide an efficient output of such a broadband
microwave radiation from the plasma.
1063-780X/00/2607- $20.00 © 0592
It is important to note that the radial structure of the
field of slow waves in a coaxial plasma waveguide is
similar to the structure of the TEM mode of a coaxial
metal waveguide with a similar geometry if their phase
velocities are close to the speed of light (vph/c ≥ 0.8).
This circumstance significantly simplified the problem
of the output of microwave power from the plasma
waveguide and showed promise for the use of REBs for
the generation and amplification of electromagnetic
waves in beam–plasma systems.

The first successful experiment on microwave gen-
eration with the use of an REB exciting eigenmodes of
a plasma waveguide was carried out in 1982 [4]. The
experiment confirmed the main theoretical predictions
about the mechanism for the beam–plasma coupling
and showed that it is possible to attain a high (about
10%) efficiency of generation. The experiment also
demonstrated the main features of a Cherenkov plasma
maser (CPM): a broad frequency band (~40%) and the
possibility of tuning the generated frequency over a
wide range. As the plasma density varied from its
threshold value np ≈ 1 × 1013 cm–3 to np ≈ 8 × 1013 cm–3,
the generated frequency varied from 10 to 20 GHz.

In subsequent experiments on the generation of
microwave radiation in a relativistic beam–plasma sys-
tem, the accuracy of the measurements of the absolute
power and emission spectrum was increased and the
parameters of the beam, plasma, and output facility
were optimized [5–7]. The theory, in turn, developed
nonlinear time-dependent models best suiting the
experimental conditions [8, 9]. At present, a good
agreement has been achieved between the theory and
the experiment. It is shown that a CPM generates a
broad emission spectrum with a relative width no less
than 20% and that the central generated frequency can
be varied sevenfold by varying the plasma density in
the plasma waveguide. Attempts to make the emission
spectrum width comparable with that of vacuum rela-
tivistic oscillators (~3%) have been unsuccessful.
2000 MAIK “Nauka/Interperiodica”
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In order to narrow the CPM emission spectrum, it
was proposed that the signal from an external source be
fed to the CPM. In this case, the beam–plasma system
can operate either in the amplification or generation
mode, but the central radiation frequency in both
modes is governed by the frequency of the input signal.

The first successful experiment on the amplification
of microwave signals in a beam–plasma system [10]
demonstrated the possibility of amplifying an external
signal at plasma densities within a relatively narrow
interval near the threshold density. However, the ampli-
fication regime was insufficiently stable and was
accompanied by spontaneous generation at frequencies
other than the frequency of the input signal.

An efficient method for suppressing spontaneous
generation is the use of a large-volume microwave
absorber. For this reason, it is of interest to study exper-
imentally the amplification of plasma waves by an REB
in a system partially filled with a microwave absorber.
This is the aim of the present paper.

2. EXPERIMENTAL LAYOUT

A schematic of the device is shown in Fig. 1. An
annular plasma column (1) with a mean radius of
7.5 mm and thickness of 1 mm is immersed in a uni-
form longitudinal magnetic field B = 1.6 T in a cylindri-
cal metal waveguide (2) of radius 22 mm. The plasma
is produced in a hot-cathode discharge in xenon. The
cathode potential is 600 V, the discharge current is up to
100 A, and the xenon pressure is 3.5 × 10–4 torr. The
parameters of an REB (3) propagating along the
waveguide axis are the following: the electron energy is
550 keV, the current is 1.5 kA, the pulse duration is
150 ns, the mean beam radius is 10 mm, and the beam-
wall thickness is 1 mm. A microwave converter (4) is
mounted at the entrance to the plasma waveguide. The
converter excites a TEM mode, which is transformed
into the fast and slow modes of the plasma waveguide.
The slow plasma mode is amplified by the REB, is con-
verted into a TEM mode of the output metal coaxial
waveguide, and is emitted by a large-cross-section out-
put coaxial horn (5). The length of the beam–plasma
interaction is equal to 29 cm. The system design allows
the installation of an annular microwave absorber (6)
with an outer radius of 22 mm, inner radius of 11.5 mm,
and length of 14 cm. The absorber is placed at a dis-
tance of 3 cm from the conical collector of the REB at
the exit from the system. The microwave-power
absorption coefficient was 20 dB for the TEM mode in
a coaxial waveguide with an inner radius of 5 mm and
outer radius of 22 mm and was equal to 50 dB for the
TM01 mode in a hollow waveguide of radius 22 mm.
Measurements were carried out at a frequency of
9.1 GHz.

As a source of input microwave signals, we used one
of two pulsed magnetrons. The first magnetron had a
frequency of f0 = 12.9 GHz, pulse duration of 2 µs, and
PLASMA PHYSICS REPORTS      Vol. 26      No. 7      2000
power of Pin = 75 kW. The corresponding parameters of
the second magnetron were 9.1 GHz, 20 µs, and 40 kW,
respectively.

The output microwave power and radiation spec-
trum were recorded by two detectors placed in a 23 ×
10 mm2 receiver waveguide. The first detector (a broad-
band receiver) measured the total microwave power
entering the receiver waveguide. At the input of the sec-
ond detector (a narrowband receiver), one of two nar-
rowband microwave filters (with a passband ∆f =
0.29 GHz for f0 = 12.9 GHz or ∆f = 0.51 GHz for f0 =
9.1 GHz) tuned to the magnetron frequency was
installed. Both receivers had nearly the same power
sensitivity. For this reason, when the radiation spectrum
at the receiver entrance was narrower than the passband
of the microwave filter, the narrowband-to-broadband
signal ratio was equal to unity. When the radiation
spectrum at the receiver entrance was broader than the
passband of the microwave filter, this ratio was lower.
Hence, it was possible to estimate the width of the spec-
trum of output microwave radiation.

To carry out absolute measurements of the output
microwave power, we used a broadband wide-aperture
microwave calorimeter [11]. The calorimeter measured
the total energy of the output microwave pulse, and the
envelope of the microwave pulse was recorded by the
detector. This allowed us to determine the output
microwave power.

3. EXPERIMENTAL RESULTS

Figure 2a shows the output energy of spontaneous
microwave radiation on the plasma density (crosses) in
the absence of an absorber. It is seen from the figure
that self-excitation occurs if np ≥ 4 × 1012 cm–3. When an
external 40-kW microwave signal at a frequency of
f0 = 9.1 GHz is fed to the input of the beam–plasma sys-
tem, the density range in which the generation is
observed expands toward lower plasma densities. The
corresponding experimental data are shown by circles
in Fig. 2a. Hence, there exists a range of plasma densi-
ties, 2.5 × 1012 < np < 4 × 1012 cm–3, in which the output

1 2 34 56

B

Fig. 1. Schematic of the plasma relativistic microwave ampli-
fier: (1) plasma, (2) metal waveguide, (3) REB, (4) entrance
of the amplifier, (5) coaxial conical emitting horn, and
(6) microwave absorber.
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signal is detected only if the input signal is fed; this
may be interpreted as signal amplification. The output
power in this operation mode attains 60 MW.

As was mentioned above, in order to estimate the
width of the emission spectrum, the output radiation
was measured by two (broadband and narrowband)
microwave receivers that had the same sensitivity. Fig-
ure 2b shows the ratio between the powers detected by
the narrowband and broadband receivers as a function
of the plasma density. This ratio was calculated at the
time t = 75 ns after applying the voltage pulse to the
diode. The circles correspond to the presence of a sig-
nal at the entrance to the beam–plasma system. It is
seen from the figure that the power ratio is no higher
than 0.3; this means that only about 35% of the radia-
tion power falls into the sensitivity band of the narrow-
band receiver.

The data presented in Fig. 2 allow us to conclude
that, at np > 4 × 1012 cm–3, the beam–plasma system
under study operates in the regime of spontaneous gen-
eration. At 2.5 × 1012 < np < 4 × 1012 cm–3, it operates in
a mixed mode. In the regime of spontaneous genera-
tion, the output signal is unaffected by the input signal
and, in most of the pulses, the ratio between the signals
from the narrowband and broadband receivers is no
higher than 0.05. In the mixed mode, a substantial
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Fig. 2. (a) The output microwave radiation energy measured
by the calorimeter as a function of the plasma density and
(b) the ratio between the power measured by the narrow-
band and broadband receivers vs. the plasma density at t =
75 ns after applying the voltage pulse to the diode in the case
when a 40-kW signal at a frequency of 9.1 GHz is fed to the
entrance of the system (circles) and without an input signal
(crosses); the microwave absorber is absent.
(about 35%) fraction of the emission power lies within
a 0.5-GHz-wide band and the output signal is detected
only in the presence of the input signal.

To suppress spontaneous generation, we used a
large-volume microwave absorber (Fig. 1, position 6).
Figure 3a shows the output radiation energy as a func-
tion of the plasma density in the absence (crosses) and
presence (circles) of a 40-kW input signal at a fre-
quency of f0 = 9.1 GHz. It is seen from Fig. 3a that, with
an absorber, the energy of spontaneous emission gener-
ated in the range of plasma densities 2 × 1012 < np <
1.7 × 1013 cm–3 is lower by a factor more than 15 than
without an absorber. At the same time, the energy of the
amplified signal decreases only by a factor of 5, which
is evidence of the positive effect of the absorber. Fig-
ure 3a demonstrates that, in the range of plasma densi-
ties 3 × 1012 < np < 3 × 1013 cm–3, the amplified radiation
dominates over the spontaneous emission. In this case,
the maximum power of the amplified signal is 8 MW,
whereas the maximum power of spontaneous emission
is 1 MW.

Figure 3b shows the ratio between the signals from
the narrowband and broadband receivers in the pres-
ence of an absorber at t = 75 ns after applying the volt-
age pulse to the diode. It is seen that, in the range of
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Fig. 3. (a) The output microwave radiation energy measured
by the calorimeter as a function of the plasma density and
(b) the ratio between the power measured by the narrow-
band and broadband receivers vs. the plasma density at t =
75 ns after applying the voltage pulse to the diode in the case
when a 40-kW signal at a frequency of 9.1 GHz is fed to the
entrance of the system (circles) and without an input signal
(crosses); the microwave absorber is present.
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plasma densities 3 × 1012 < np < 1.2 × 1013 cm–3, the out-
put signal from the beam–plasma system always lies
within the sensitivity band of the narrowband receiver
(the power ratio is close to unity). This property funda-
mentally distinguishes this system from the above sys-
tem without an absorber as well as from the system
described in [10]. Note that the value of Pf /P was mea-
sured accurate to within 15%. That is why, for some
shots in Fig. 3b, we have Pf /P > 1.

Figure 4a shows the waveforms of the signals from
the broadband (1) and narrowband (2) receivers and the
voltage pulse at the diode (3) for a plasma density of 5 ×
1012 cm–3. As was noted above, the receivers have the
same sensitivity; consequently, the fact that the first
waveform is identical to the second one shows that the
spectrum of the output radiation lies within the pass-
band of the narrowband microwave filter throughout the
entire voltage pulse. We note that, for 9 × 1012 < np <
1.5 × 1013 cm–3, spontaneous generation occurs by the
end of the voltage pulse and the spectrum of the output
radiation broadens. This is illustrated by Fig. 4b, which
corresponds to a plasma density of 1013 cm–3. It is seen
that, during a time of ~80 ns from the beginning of the
voltage pulse, the signals from the narrowband and
broadband receivers are identical; later, they show a
different behavior. This indicates that the radiation
spectrum is wider than the passband of the microwave
filter.

Figure 5 shows the theoretical frequency depen-
dence of the linear single-pass wave-power amplifica-
tion coefficient for different plasma densities. (The
plots in Figs. 5 and 6c were calculated with the help of
a numerical code developed by M. A. Krasil’nikov.) It
follows from Fig. 5 that it is possible, first, to realize the
amplification regime (within a frequency band of about
40%) for a given plasma density and, second, to tune
the amplified frequency from 8 ± 1.5 to 35 ± 4 GHz by
varying the plasma density from 8 × 1012 to 7 ×
1013 cm–3. To verify these theoretical predictions, we
carried out experiments on the amplification of a signal
at a frequency of 12.9 GHz. A 75-kW signal was fed to
the input of the beam–plasma system with a microwave
absorber. Figure 6a shows the output radiation energy
as a function of the plasma density in the absence
(crosses) and presence (circles) of the input signal. It is
seen from Fig. 6a that, in the range of plasma densities
1013 < np < 1.6 × 1013 cm–3, spontaneous generation is
absent but there is an amplified signal with a power of
up to 4 MW. Figure 6b (similar to Figs. 2b and 3b) illus-
trates the ratio between the signals from the narrow-
band and broadband receivers at t = 75 ns after applying
the voltage pulse to the diode. A comparison of Figs. 3b
and 6b shows that the operation of the system at a fre-
quency of f0 = 12.9 GHz is less stable and the Pf /P ratio
lies within the range 0.2–0.9 for the plasma density in
the range 1013 < np < 3 × 1013 cm–3. Nevertheless, we
PLASMA PHYSICS REPORTS      Vol. 26      No. 7      2000
can conclude that the amplification also takes place at a
frequency of 12.9 GHz.

Figure 6c shows the theoretical dependence of the
linear single-pass wave-power amplification coefficient
on the plasma density for two input-signal frequencies:
9.1 GHz (curve 1) and 12.9 GHz (curve 2). A compari-
son of Figs. 3b, 6b, and 6c shows that the experimental
results are in good agreement with the results of theo-
retical calculations. For both signal frequencies, the
experimentally observed ranges of plasma densities in
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Fig. 4. Waveforms of the signals from (1) the broadband and
(2) narrowband receivers and (3) the voltage pulse at the
diode for f0 = 9.1 GHz, Pin = 40 kW, and np = (a) 5 × 1012

and (b) 1013 cm–3; the microwave absorber is present.
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Fig. 5. Frequency dependences of the single-pass wave-
power amplification coefficient calculated using linear the-
ory for the parameters of the beam–plasma system pre-
sented in Section 2 at the plasma densities of np = (1) 8 ×
1012, (2) 2 × 1013, (3) 4 × 1013, (4) 5.5 × 1013, and (5) 7 ×
1013 cm–3.
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Fig. 6. (a) The output microwave radiation energy measured
by the calorimeter as a function of the plasma density and
(b) the ratio between the power measured by the narrow-
band and broadband receivers vs. the plasma density at t =
75 ns after applying the voltage pulse to the diode in the case
when a 75-kW signal at a frequency of 12.9 GHz is fed to
the entrance of the system (circles) and without an input sig-
nal (crosses); the microwave absorber is present. (c) Depen-
dence of the linear single-pass wave-power amplification
coefficient on the plasma density at f0 = (1) 9.1 and
(2) 12.9 GHz.
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Fig. 7. Waveforms of the signals from (1) the broadband and
(2) narrowband receivers and (3) the voltage pulse at the
diode for f0 = 9.1 GHz, Pin = 40 kW, and np = 3 × 1012 cm–3;
the microwave absorber is present.
which the system operates as an amplifier are in agree-
ment with theoretical predictions. However, the theo-
retical and experimental threshold values of the density
at which the system passes over to the amplification
regime are different. This discrepancy can be explained
by the inaccuracy of the measurements of the absolute
values of the plasma density. We also note that it makes
no sense to compare the experimental and calculated
values of the amplification coefficient, because the
presence of the microwave absorber in the system was
ignored in calculations. It also follows from Fig. 6c
that, according to the theory, there exists a range of
plasma densities in which the amplification can take
place for both frequencies of the input signal. In the
experiment, at a plasma density of np = 1.2 × 1013 cm–3,
the beam–plasma system amplified the signal at fre-
quencies of both 9.1 and 12.9 GHz.

It is also of interest to compare the experimental and
theoretical dependences of the parameters of the ampli-
fication regime on the energy of REB electrons.
According to the theory, for a given frequency of the
input signal, the electron energy at which the amplifica-
tion occurs increases with increasing the plasma den-
sity. Figure 7 shows the waveforms of the signals from
the broadband (1) and narrowband (2) receivers and the
voltage pulse at the diode (3). The figure corresponds to
a plasma density of np = 3 × 1012 cm–3 and an input-sig-
nal frequency of f0 = 9.1 GHz. It is seen from the figure
that the amplification coefficient is maximum at the
leading and trailing edges of the voltage pulse when the
energy of the REB electrons is lower than the maxi-
mum energy. As the plasma density increases, the max-
imum value of the amplification coefficient shifts to the
top of the voltage pulse, where the energy of REB elec-
trons is maximum (Fig. 4a).

It is seen from Fig. 7 that, although the system oper-
ates in the amplification regime, the ratio between the
signals from the narrowband and broadband receivers
is below unity at the leading edge of the voltage pulse.
It looks as if the spectrum of the output radiation is
broader than 0.5 MHz. However, we believe that this
effect may be attributed to an insufficiently fast
response of the narrowband receiver, which cannot
trace fast signals lasting several nanoseconds. The
Q-factor of the microwave filter of the narrowband
receiver is on the order of 20; consequently, the charac-
teristic rise time of the signal is t0 = Q/f0 ≈ 2 ns. In Fig. 7,
the rise time of the first signal from the broadband
receiver is ~5 ns, which is comparable with t0. If the
signal duration is much longer than 2 ns (as, e.g., in
Fig. 4), then the narrowband receiver correctly repro-
duces the signal shape.

4. CONCLUSION

(i) A stable regime of amplification of a slow plasma
wave in a beam–plasma system has been obtained for
the first time. For a 9.1-GHz input signal, there exists a
PLASMA PHYSICS REPORTS      Vol. 26      No. 7      2000
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range of plasma densities in which the spectrum of the
output microwave radiation lies in a 0.5-GHz-wide
band throughout the entire voltage pulse at the diode.
The output power of the amplified signal attains 8 MW,
and the power amplification coefficient is on the order
of 200. The experimentally measured range of plasma
densities in which the amplification of a 9.1-GHz signal
takes place agrees well with the results of calculations
using linear theory.

(ii) It has been shown experimentally for the first
time that the beam–plasma amplifier can operate at fre-
quencies of 9.1 and 12.9 GHz. The range of plasma
densities in which the amplification is observed agrees
with the theoretical results. Moreover, the experiment
confirms the theoretical prediction that there is a value
of the plasma density at which the beam–plasma sys-
tem can amplify signals at both frequencies.

(iii) The influence of the energy of REB electrons on
the amplification band has been observed experimen-
tally. The results obtained agree with theoretical predic-
tions.
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Abstract—Results are presented on the development and experimental study of a reflex triode with a new type
of virtual cathode. In this device, a discharge excited along a ferroelectric surface is used as a source of electrons
and loop antennas are used for emitting radiation. Generation of broadband radio pulses with a central fre-
quency of ~300 MHz and power of ~80 W is achieved. © 2000 MAIK “Nauka/Interperiodica”.
Reflex triodes (RT), proposed in 1978 by Kapet-
anakus et al. [1], are now one of the main types of
superpowerful microwave oscillators with a virtual
cathode (VC). The current state of the development and
study of RTs is presented in reviews [2–4]. The main
features of present-day RTs are as follows: the use of an
explosive-emission cathode, generation of radiation at
frequencies of ~3 GHz in a gigawatt power range, horn-
type microwave output, and single-pulse operation.

In connection with a number of engineering applica-
tions, the problem of designing an RT microwave oscil-
lator with different output characteristics, specifically, a
moderate-power repetitive microwave oscillator oper-
ating at a high repetition rate, arises. Clearly, it is rather
difficult from an engineering standpoint to achieve such
operation conditions in the relativistic range of the
cathode–anode voltages (200 kV and higher). At the
same time, there exist compact pulsed voltage sources
generating voltage pulses with an amplitude of up
to10 kV at a repetition rate of up to 1 kHz and higher
(see, e.g., [5]).

However, at such voltages at a vacuum diode, explo-
sive emission is hardly possible because of the high
threshold with respect to the electric field. At voltages
of about 1 kV, such emission is certainly impossible in
diodes with a several-millimeter-wide gap. We note
that the high threshold with respect to the applied volt-
age is due to the fact that, in this scheme, explosive
emission is uncontrollable because the same voltage
pulse creates an explosive plasma and accelerates
plasma electrons.

Hence, it is necessary to search for other types of
cathodes that either have a low threshold or do not have
one at all.

Thus, in [6, 7], thermoemission microwave oscilla-
tors with a VC are described. However, the currents in
those devices were not high enough to form a proper
VC and generation was achieved due to the reflection of
1063-780X/00/2607- $20.00 © 0598
electrons from a magnetic mirror. Therefore, it seems
that the cathode must have emission characteristics
comparable to those of explosive-emission cathodes.

In [8], a scheme of extracting electrons and ions
from a plasma produced in an electric explosion was
proposed in which explosive emission could be con-
trolled and had no threshold.

The basic concept of scheme [8] is that the plasma
is produced and charged particles are extracted in two
different voltage pulses. It is also proposed to use triple
“metal–dielectric–vacuum” points as electric-field con-
centrators instead of the cathode micropoints that are
traditionally used in schemes based on explosive emis-
sion from metallic cathodes.

It is well known that a triple point (especially in the
case of a dielectric with a high permittivity) strengthens
the electric field in its vicinity. This field results in an
intense autoelectronic emission from the metal edge
near the triple point, which leads to an electric explo-
sion of the metal edge. The electric explosion, in turn,
can initiate a discharge along the dielectric surface [9].

Therefore, according to the above scheme, the emit-
ter should consist of two electrodes separated by an
insulator. A controlling-voltage pulse applied to the
electrodes initiates an electric explosion at the edge of
one of the electrodes (cathode) and, then, a discharge
along the dielectric surface. The surface-discharge
plasma short-circuits the interelectrode gap and shunts
the controlling voltage. Then, by applying a voltage
pulse of a certain polarity and amplitude to an addi-
tional extraction electrode, it is possible to obtain either
an electron beam or a positive-ion beam with the
required particle energy.

Based on this concept, a compact high-current emit-
ter was designed in [8]. This emitter not only has
parameters competing with the well-known explosive-
emission emitters but also possesses new functional
capabilities, such as controllability, the absence of a
2000 MAIK “Nauka/Interperiodica”
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threshold, and the possibility of producing positive-ion
beams. In this paper, we describe an RT with such an
emitter operating at diode voltages in the range
0.2−10 kV.

It is easy to show that the generation frequency of an
RT with a diode-gap width equal, e.g., to 5 mm, would
lie in the range 150–1000 MHz. Evidently, if the
antenna system of an RT operating in this frequency
range were made according to a conventional
waveguide–horn scheme, then it would be rather cum-
bersome.

Specifically for VC-based generators, we also elab-
orated a new output system in which the RT radiation is
emitted with the help of loop antennas placed between
the cathode and the reflector (collector) and serving
also as return-current circuits.

This kind of RT also differs substantially from the
known RTs in terms of the principle of generation. Let
us consider this in more detail. First of all, we note that
RTs [1–4] are based on electric-dipole microwave gen-
eration; in this case, the generation occurs due to oscil-
lations of the electric dipole VC–VC image at the cath-
ode. It is clear that, in order to increase the generation
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Fig. 1. Design of the RT: (1) insulator, (2) high-voltage elec-
trode for controlling the surface discharge, (3) ferroelectric
pellet, (4) grounded electrode, (5) anode grid, (6) electron
collector, (7) vacuum chamber, (8) loop antenna, and
(9) pump flange.
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power, it is necessary that the maximum possible frac-
tion of the electron flux is reflected from the VC back
to the injection site (i.e., to the cathode). Thereby, a
maximum charge in the electric dipole can be achieved
by providing the condition I/Ilim  ∞, where I is the
RT diode current and Ilim is the limiting current for
the region bounded by the anode and the collector; i.e.,
the region where the VC is formed. For this reason, in
the known RTs, the volume of this region is fairly large.

In our RT, the wires of the return-current circuit are
loop antennas emitting microwaves through magnetic-
dipole emission. Therefore, in order to ensure the max-
imum power and maximum efficiency, one must try to
attain the complete modulation of the current injected
from the diode through the anode grid into the cavity
bounded by the anode and the collector. Then, in order
to obtain the maximum emission power at a given sup-
ply power, it is necessary that the condition I/Ilim ≈ 2
holds, which can be easily achieved by varying the dis-
tance between the anode grid and the collector.

Note that this output system has additional advan-
tages: it is compact; the geometry of the entire antenna
system can be promptly rearranged to suit the operating

0

–1.5

Ucontr, kV

1.5

3.0

2
t, µs

0 4 86

(‡)

(b)

0

1.5

Idis, kA

Fig. 2. Synchronized waveforms: (a) voltage pulse at the
electrodes of the surface discharge and (b) discharge-current
pulse.
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conditions of the RT and the required directional dia-
gram; and the emission power P can be increased
according to the known value of R ∝  (Le/λ)2, where R
is the wave impedance and Le is the effective length of
the loop antenna [10]. Furthermore, loop antennas can
be used in phased arrays with RTs by catenating the
wires of two neighboring RTs in the form of ordinary
HF transformers (e.g., Tesla transformers).

Based on the above considerations, we designed and
created an RT whose scheme is shown in Fig. 1. The RT
vacuum chamber is a hollow stainless-steel cylinder
with an inner diameter of 50 mm and length of 70 mm.
On the top, the chamber is hermetically covered by an
insulator, in which three electrodes are mounted. One
of the electrodes is connected to a grid anode, the sec-
ond electrode holds a ferroelectric pellet, and the third
is grounded. The grid anode is made from a tantalum
wire 0.1 mm in diameter and has a geometrical trans-
mittance of about 80%. The ferroelectric pellet is made
from lead zirconate-titanate (TsTS-19) and is 3 mm
thick and 15 mm in diameter and has a hole 2 mm in
diameter; the ferroelectric permittivity is ε = 1060. The
emitting area of the ferroelectric source of electrons is
S = 30 mm2, and the interelectrode gap of the surface
discharge is 1.5 mm. The anode position with respect to
the emitter can be varied. A movable collector—a metal
disk 40 mm in diameter—is installed on the bottom of

0

–40

Iant, Ä

20

30 (‡)

200 f, MHz
0

400 800600

(b)

1

–30

–20

–10

10

1.1 1.2 1.3
t, µs

Iant, arb. units

Fig. 3. Generated radio pulse: (a) waveform of the current in
the loop antennas and (b) Fourier transform of the current
pulse in the loop antennas.
the chamber. The vacuum chamber is connected to the
pumping system through holes in the chamber bottom.
The collector is in electric contact with the chamber.
Since the chamber should be at the collector potential
when recording signals, the chamber is insulated from
the grounded body of the pump on which it is mounted.
The residual gas pressure in the chamber is no higher
than 3 × 10–5 torr.

As a return-current circuit and, at the same time, the
radiation-output facility, we used four symmetrically
positioned loop antennas made from a copper wire
1 mm in diameter with a length of L = 40 cm. Cali-
brated 5-Ω resistors connected in the circuit of each
loop measured the antenna currents.

To ignite a discharge along the generator surface, we
used a specially designed high-voltage pulsed genera-
tor. Figure 2a shows the waveform of the voltage pulse
Ucontr(t) with an amplitude of ~2.5 kV applied to the
discharge gap. Figure 2b presents the waveform of the
surface-discharge current Idis(t); the waveform is syn-
chronized with the voltage pulse. A constant accelerat-
ing voltage of 0.2–2 kV was applied to the grid anode.

Figure 3a shows a typical waveform of the antenna
current Iant(t); the signal was taken from calibrated
resistors and processed with an HF filter cutting off the
frequencies below 100 MHz. The waveform was
obtained for an emitter–anode gap of 5 mm and an
accelerating voltage of 1 kV. Figure 3b presents the
Fourier spectrum of this signal. It is seen that the ampli-
tude is maximum at a frequency of ≈300 MHz, whereas
numerical estimates for the frequency of electron oscil-
lations in the emitter–VC potential well yield
320 MHz. The FWHM of the central emission peak is
no less than 60 MHz. At an accelerating voltage of
2 kV, the emission frequency was higher than that in
Fig. 3 by a factor of 1.4. Thus, there is a good agree-
ment between the expected and observed frequencies,
which proves the generation mechanism based on the
modulation of the injected current by an oscillating VC.

The peak emission power was estimated by the for-
mulas presented in [10] for loop antennas whose length
is comparable with the emission wavelength. This esti-
mate yields the peak emission power at a level of ~80 W.

The pulse duration under various operating condi-
tions was no higher than 100 ns. Such a short duration
may be explained as follows: the magnetic pressure of
the discharge current expels the plasma onto the anode
grid; as a result, the cathode–anode gap of the RT is
shunted and the generation of the electron beam termi-
nates. To prolong the generation, in future experiments,
it will be reasonable to employ electron sources based
on an incomplete slipping discharge (see [11]).

So far, the RT has been mainly tested in a repetitive
mode at a repetition rate of 1 Hz. In experiments in
which the emitter operated at a repetition rate of 50 Hz,
it has also demonstrated stable operation during several
half-hour series [12]. We plan to carry out special
resource tests of the RT at a repetition rate of 50 Hz.
PLASMA PHYSICS REPORTS      Vol. 26      No. 7      2000
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Thomson Scattering in a Plasma Created
by a Short Intense Laser Pulse
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Abstract—Thomson scattering spectra from a plasma created through ionization of a gas consisting of multi-
electron atoms by a laser pulse with an intensity of about 1016 W/cm2 or higher and with a duration τimp ≤ 100 fs
are studied theoretically with allowance for electron groups with different temperatures. © 2000 MAIK
“Nauka/Interperiodica”.
The electron component of a plasma produced in the
interaction of an ultrashort intense laser pulse with mat-
ter is studied experimentally using various diagnostic
techniques such as spectroscopic and spectrometric
methods (see, e.g., [1–3]) and the methods based on the
scattering of laser light by a plasma (see, e.g., [4–6]).
One of the main parameters measured by these diag-
nostics is the electron temperature of a laser-produced
plasma. Theoretical investigations of electron heating
during ionization are, as a rule, based on a classical
paper by Corcum et al. [7]. Although experimental tem-
peratures measured by the above diagnostic techniques
are comparable in order of magnitude, they differ from
theoretical predictions [7] and, even when recorded
under similar experimental conditions, may differ from
each other by several times (see, e.g., [1, 2, 4, 5]).

This discrepancy may be explained by the fact that
the diagnostic data are processed without allowance
for the following important features of a plasma pro-
duced in the interaction of an ultrashort intense laser
pulse with matter (see [8] for details). First, the elec-
tron gas produced during the ionization of multielec-
tron atoms by an intense laser field consists of several
electron groups, differing in their temperatures on a
fairly long time scale. Second, the electron velocity
distribution function fe(v) also remains anisotropic for
a long time; moreover, the anisotropy of fe(v) is asso-
ciated with the fact that the velocity distribution of the
electrons in each group is anisotropic because, during
gas ionization, the electrons are ejected from each
atomic level preferentially in the direction of the laser
field (see, e.g., [9]). The anisotropy of the distribution
function of the electrons produced during ionization of
matter by an intense field of a harmonic electromag-
netic wave was also pointed out by Bychenkov and
Tikhonchuk [10].

The main features of Thomson scattering can be
understood by considering the spectral distribution of
the correlation function (correlator) of the electron den-
1063-780X/00/2607- $20.00 © 20602
sity fluctuations, 〈δ 〉ω, k, which characterizes the
scattering by electron density perturbations with the
wave vector k and frequency ω (see [11], p. 346). In
CGS units, the correlator can be written as (cf. [11],
p. 333)

(1)

Here, δεi(ω, k) = ,

δεe(ω, k) = , ε(ω, k) = 1 +

δεe(ω, k) + δεi(ω, k),  fe(ve) is the electron distribution

function, (vi) is the distribution function of the

ions of species α, ne = (ve)d3ve is the total electron

density, ni = (vi)d3vi ≡  is the total

ion density, me and e are the mass and charge of an
electron, and Mα and eα are the mass and charge of an
ion of species α. The wave vector of the electron den-
sity perturbations k is related to the wave vectors of
the incident and scattered light (ki and ks) in a usual
manner: k = ki – ks.

In accordance with the investigations of Delone and
Kraœnov [9], we can expect that the velocity distribution
of the electrons that are ejected from the same energy
level of the gas atoms during ionization is described by
an anisotropic Maxwellian function. According to [1],
the groups of electrons that are ejected from atomic lev-
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els with different ionization potentials are characterized
by different temperatures. The time scales on which the
temperatures of different electron groups are equalized
by electron–electron (e–e) collisions and the time
scales on which the velocity distributions of different
electron groups become isotropic due to electron–ion
(e–i) collisions differ from each other and may be very
long. This enables us to describe the total electron
velocity distribution as the sum of anisotropic Max-
wellian velocity distribution functions of the electrons
in different groups:

(2)

where Z is the degree of plasma ionization. The anisot-
ropy of the total electron distribution is associated with
gas ionization by a high-power laser pulse, which
passes along the z-axis and whose electric field vector
is in the xy plane (in particular, this may be an ellipti-
cally polarized laser pulse). Using spectra (1) to deter-
mine the parameters of the electron distribution func-
tion, we must treat the range of relatively high frequen-
cies, ω @ |k|vTi, where vTi is the characteristic ion
thermal velocity (see [11], pp. 348, 349). In this way,
we can investigate the electron distribution function
fe(ve) assuming that the contribution of the ion compo-
nent to the spectral distribution of the correlator of the

electron density fluctuations 〈δ 〉ω, k is relatively
small only when the characteristic electron thermal
velocity vTe is much higher than vTi . In a plasma cre-
ated by an intense femtosecond laser pulse transmitted
through a gas at a relatively low pressure, the condition
vTe @ vTi holds because of the difference in both the
electron and ion masses and the characteristic tempera-
tures Te and Ti . In fact, in a plasma with a relatively low
density, the efficiency of collisional ion heating in the
laser field is low, since the relative velocity of electrons
with respect to ions is high. After the passage of the
pulse, ion heating via heat exchange with the electrons
is also inefficient because of the large difference
between the ion and electron masses. That Ti is lower
than Te is evidenced, in particular, by the experiments
of [4]. In the frequency range ω @ |k |vTi, the ion com-

ponent can be assumed to be cold, (vi) = δ(vi),
in which case we have δεi(ω, k) =

− /(Mαω2). Substituting the distribution
function (2) into the expression for δεe(ω, k) yields (see
[11], p. 74)
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where J+(x) = xexp(–x2/2) /2)dt. On the other
hand, inserting (2) into (1) and integrating the resulting
expression, we obtain

(3)

where

(4)

and the angles θ and ϕ determine the direction of the
wave vector k with respect to the x-, y-, and z-axes: k =
k(sinθcosϕ, sinθsinϕ, cosθ).

Note that, for an isotropic electron distribution
(Tn, x = Tn, y = Tn, z) and when the temperatures of all of
the electron groups are the same (and are equal to T),
we obtain from (3) the following familiar expression
for the spectral distribution of the correlator of the elec-
tron density fluctuations, 〈δ 〉ω, k:

(5)

The asymptotics of this expression were investigated
analytically in [11] (pp. 348, 349). It follows from (5)
that the temperature í determined from the experimen-

tally observed function 〈δ 〉ω, k is independent of the
direction of k.

The situation is radically different when the electron
distribution function is anisotropic. We assume that a
high-power laser pulse is linearly polarized so that the
electric field E is directed along the x-axis. Starting
from the instant at which the first electron group
appears (this group consists of the electrons ejected
from the highest energy level of gas atoms), the elec-
tron temperatures Tn, y = Tn, z are low in comparison
with Tn, x on a time scale τ shorter than the characteristic
time τei, 1 of collisions between the electrons of the first
group and ions. Consequently, according to (4), we
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have Tn(θ, ϕ) = Tn, xsin2θcos2ϕ, so that the mean elec-
tron temperature T, which is determined from
〈δ 〉ω, k, depends strongly on the angles θ and ϕ:

(6)

As time elapses, e–i collisions give rise to isotropiza-
tion of the distribution functions of different electron
groups. On a time scale τ that is longer than the time
τei, j of collisions between the electrons from the jth
group and ions but is shorter than the time τei, j + 1 of col-
lisions between the electrons from the [j + 1]th group
and ions, the expression for 〈δ 〉ω, k has the form

For τ > τimp, we take into account the fact that the e–e
and e–i collision times are comparable in order of mag-
nitude, in which case the last expression for 〈δ 〉ω, k
can be simplified to

(7)

where
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ϕ  π/2, we can see that, in contrast to (6), the exper-
imentally measured temperature approaches 〈T〉 j rather
than zero.

In the case of a high-power laser pulse with circular
polarization, we have Tn, x = Tn, y, so that the electron
temperature recorded in experiments does not depend
on the position of the polarization plane (i.e., on the
angle ϕ):

Note that the theory presented makes it possible to
describe anisotropy-related effects in investigating ion
acoustic waves because, for Te @ Ti, the phase velocity
of these waves satisfies the condition vs @ vTi (see [11],
p. 79).

Thus, we have shown that, in applying the Thom-
son scattering technique to the analysis of a plasma
created through ionization of a gas by a short intense
laser pulse, it is necessary to take into account the fea-
tures of the electron velocity distribution function.
Thus, at an instant at which the plasma is probed, the
electron distribution function may be highly anisotro-
pic, moderately anisotropic, or fully isotropic, depend-
ing on the stage of the progressive isotropization and
thermalization of different electron groups. As a result,
the temperature measurements may incompletely
reflect the contributions of electron groups with aniso-
tropic velocity distributions to the total electron tem-
perature because of the relatively strong dependence
(6) of the mean electron temperature on the angles.
This circumstance may be one of the reasons for the
discrepancy between the experimental results of [3]
and [5]: the contribution of the high-temperature elec-
tron group was not captured by the temperature mea-
surements carried out in [5]. Note also that Chen et al.
[6] pointed out the difficulty in approximating the
experimental Thomson scattering spectra by the theo-
retical spectra under the assumptions that there are no
electron groups with different temperatures in a
plasma and the plasma electrons obey an isotropic
velocity Maxwellian distribution.
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Abstract—The charge density per unit length, the longitudinal component of the electric field, and the electron
density behind the front of a fast ionization wave initiated by a nanosecond negative voltage pulse in air, N2,
and H2 in the 1- to 24-torr pressure range are reconstructed from the experimental data. It is shown that the elec-
tron density behind the wave front depends weakly on the sort of gas used and, at relatively high pressures
(8−24 torr), is (2–3) × 1012 cm–3. The energy deposited in the internal degrees of freedom is analyzed. It is
shown that, for all gases used, most of the deposited energy (40–60%) is spent on the excitation of the electron
degrees of freedom. The fraction of the energy deposited in the high-energy degrees of freedom (ionization and
dissociation) monotonically decreases with increasing the pressure, whereas the fraction of the energy spent
on the excitation of the low-energy degrees of freedom (rotational and vibrational) monotonically increases.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, considerable attention has been paid
to fast ionization waves (FIWs). This type of gas dis-
charge allows the production of a substantial (tens of
liters) amount of a highly ionized nonequilibrium
plasma in a time of tens of nanoseconds [1–3]. Such a
discharge can be used to pump gas lasers and lamps [4],
initiate plasmochemical processes [5], and create fast-
operating switches [6].

From the standpoint of applications, the most
important discharge characteristics are the distribution
of the discharge energy over the degrees of freedom of
the gas and the possibility of creating the conditions for
selective excitation of certain energy levels.

However, until recently, information on both the
spatiotemporal dynamics of the energy deposited in the
FIW and the energy distribution over the degrees of
freedom was very poor. One of the few papers in this
field is [7], in which it was shown that the gas is ionized
and the electron degrees of freedom are excited mainly
behind the FIW front in a relatively weak (300–500 Td)
electric field. In [8], the energy spent on the excitation
of the electron degrees of freedom and the absolute
radiation yield in the range of 200–300 nm were ana-
lyzed and it was shown that the energy distribution in a
glow discharge differs markedly from that in an FIW.

In this paper, we study the development of a nega-
tive-polarity FIW and analyze how the fractions of the
energy deposited in different degrees of freedom
depend on the sort of gas used (N2, air, or H2) and the
total pressure.
1063-780X/00/2607- $20.00 © 20606
2. EXPERIMENT

The experimental device is described in detail in [9].
The ionization wave was excited in a molybdenum-
glass tube 17.5 mm in inner diameter, 21.5 mm in outer
diameter, and 600 mm long. The discharge tube was
surrounded by a cylindrical metal shield 60 mm in
inner diameter. Voltage pulses with an amplitude of
13.5 kV, a half-height duration of 25 ns, and a leading-
edge duration of 3 ns were applied from a high-voltage
generator at a 40-Hz repetition rate. The dynamics of
the excess charge along the discharge tube (starting
from the cathode toward the anode over the distance
L = 450 mm) was measured each 3 mm by a calibrated
capacitive detector. Signals from the detector were
recorded by an S9-4A oscillograph. The data from a
capacitive detector for air under conditions similar to
the conditions of this paper are presented and discussed
in detail in [9].

Figure 1 shows the dynamics of the signals from the
detector for N2 pressures of 4, 8, and 16 torr and for H2
pressures of 8, 16, and 24 torr. The signals are pre-
sented by the contour lines in the plane “time elapsed
from the instant when the pulse was applied to the elec-
trode”–“the distance from the electrode.” The signals
are recalculated with the use of a known capacitance
per unit length of the discharge device and are pre-
sented in units of the charge per unit length, nC/cm.
From Fig. 1, it is seen that the FIW starts with a delay
τd relative to the arrival of the high-voltage pulse at the
cathode. Another specific feature of the propagation of
a negative-polarity ionization wave is the presence of a
precursor (the region shown by a dashed line)—an ion-
ization wave with a relatively small amplitude that
000 MAIK “Nauka/Interperiodica”
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develops against the background of a high voltage drop
near the cathode at a low cathode current [10, 11]. The
structure of the ionization wave near the cathode,
where a positive uncompensated charge accumulates
during the propagation of the precursor, is rather com-
plicated [12].

The delay time of the FIW start in H2 and N2 was
determined with the use of a capacitive detector located
PLASMA PHYSICS REPORTS      Vol. 26      No. 7      2000
above the high-voltage electrode end. As the pressure
increased from 1 to 16 torr, the delay time decreased
from 12 to 6 ns for nitrogen and from 26 to 6 ns for
hydrogen. The delay time in hydrogen could be approx-
imated with a good accuracy by the expression τd [ns] =
160/(p[torr]). Thus, in hydrogen, at a pressure of less
than 8 torr, the delay time of the FIW start attained the
half-width of the high-voltage pulse; thus, the decrease
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in the pressure resulted in a decrease in the pulse ampli-
tude on the high-voltage electrode at the instant when
the FIW started.

Figure 2 presents the velocity of the FIW front prop-
agation as a function of pressure for the cross section
located 20 cm from the cathode. The FIW front velocity
at a distance of 5–40 cm from the cathode was calcu-
lated for the point at the front that corresponded to the
half-height of the signal from the capacitive detector
under the assumption of constant acceleration of the
wave front. Note that the sharp decrease in the propaga-
tion velocity of the wave in hydrogen at pressures less
than 8 torr correlates with the increase in the delay time
of the FIW start. Actually, at a pressure of 7 torr, the
delay time is close to the duration of the high-voltage
pulse. Several nanoseconds after the FIW starts, the
electrode voltage begins to decrease. Therefore, the
decrease in the wave velocity vf (p) at low pressures can
PLASMA PHYSICS REPORTS      Vol. 26      No. 7      2000



        

NEGATIVE-POLARITY FAST IONIZATION WAVE IN MOLECULAR GASES 609

                                                                           
be related to the increase in the delay time of the wave
start.

A substantial difference of the capacitive-detector
signals for air and N2 from those for H2 is a smaller
decay of the amplitude and faster approach of the signal
to its maximum value. The time needed for the signal to
reach its maximum is substantially longer in H2 than in
air and N2, which can be explained by the smaller ion-
ization cross section for H2.

3. RECONSTRUCTION OF THE CHARGE 
DENSITY PER UNIT LENGTH

In [9], it was shown that the dynamics of the charge
per unit length q(x, t) can be found by solving the equa-
tion

(1)

where x is the spatial coordinate along the discharge
axis, xp is the detector location, t is time, Vexp(xp, t) is the
current magnitude of the signal from the capacitive
detector, and fp(x) is the spatial function of the capaci-
tive-detector sensitivity. The method for determining
the spatial function of the capacitive-detector sensitiv-
ity is described in detail in [9].

Equation (1), which is a Fredholm equation of the
first kind, relates to the ill-posed problems. Therefore,
this equation can be solved only with the use of a priori
restrictions on the function q(x, t) [13].

The experimental error in determining the detector
signal as a function of time did not exceed ±5% in the
narrow (several nanoseconds) front region and ±3%
over most of the signal. At the front, the error was due
to the amplitude–frequency characteristics of the detec-
tor and, in the rest of the signal, it was due to the ran-
dom scatter in the data. Such an error allowed a series
of different charge distributions q(x, t) that satisfacto-
rily described the same experimental data.

To solve equation (1), we used a standard method in
which q(x, t) was presented as a function with a certain
number of inflection points (points in which the second
derivative of q(x, t)|t = const changes its sign) [13]. In con-
trast to [9], we assumed that there were no oscillations
at the front of the charge distribution.

It follows from this assumption that q(x, t) has no
more than one point of inflection at the wave front. The
position of this point on the front depends on the shape
of the initial signal. The lower the noise of the initial
experimental data, the more accurately this position can
be determined. Analysis of the tested distributions
shows that, for the 3–5% measurement error on the
wave front, the position of the inflection point can be
determined accurate to the front width. Therefore, we
further assume that the inflection point always coin-
cides with the beginning of the charge front (point x2).

Vexp xp t,( ) q x t,( ) f p x xp–( ) x,d

∞–

+∞

∫=
PLASMA PHYSICS REPORTS      Vol. 26      No. 7      2000
For q(x, t), we chose a nonpositive function, which
is convex downward with respect to the argument x in
the interval [x1, x2], i.e., from the cathode boundary of
the region in which the reconstruction is performed to
the zero-charge point (for x > x2, we always have
q(x, t) ≡ 0). Note that point x1 was fixed (x1 was inde-
pendent of time, whereas x2 changed with time). With
the given set of functions, a bounded and integrable
sensitivity function fp(x), and a single-valued integral
operator (in our case, these conditions hold), the prob-
lem becomes well posed [13] and reduces to finding the
minimum of the following functional with respect to
q(x, t) and x2(t) on this set of functions at any instant:

(2)

From (2), it is seen that  = Φ(x2) is a function of x2.

Thus, it is necessary first to find the position x2 of the
charge front (i.e., the minimum of the function Φ(x2))
and then, for the known x2, solve (1) and obtain the
sought distribution q(x, t). For each instant, the problem
of finding the minimum of Φ(x2) was solved by the
bisection method. For each fixed x2, the minimum of
functional (2) was sought with the use of a standard
code described in [13].

Near the cathode, the reconstruction accuracy was
low, because the a priori condition of convexity of the
distribution of the charge per unit length along the dis-
charge tube was violated there. This violation was
related to the complex structure of the wave near the
cathode. Therefore, the reconstruction was performed

F q x2 t( ),( ) t const=

=  Vexp xp t,( ) f p x xp–( )q x t,( ) xd

x1

x2 t( )

∫–
t const=

.

min
q

F

2

1 10

vf , cm/ns

p, torr

1
2
31

0

3

4

5

Fig. 2. FIW front velocity vf calculated for the point corre-
sponding to the half-height of the signal from the capacitive
detector in (1) air, (2) nitrogen, and (3) hydrogen.
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in the region that began at the distance x1 = 5 cm from
the cathode (at a distance on the order of half-width of
the sensitivity function, ∆f ~ 5 cm, the contribution
from the charge located on the cathode can be
neglected). Near the low-voltage electrode, the data
were lost because the measurement region was limited
along the discharge tube. In this case, the contribution
from the charges located outside the region within
which the capacitive detector could be moved limits the
reconstruction accuracy at the ends of this region. For
these reasons, in this study, we did not consider the
regions of width ∆f near the electrodes.

We compared the experimental detector signals
Vexp(x, t) with the convolution of the reconstructed
charge density with the sensitivity function, V(x, t) =

(x – xp)q(x, t)dx. Within the experimental error,

V(x, t) and Vexp(x, t) coincided.

4. RECONSTRUCTION OF THE ELECTRIC FIELD

From the reconstructed charge density per unit
length of the discharge chamber, we reconstructed the
longitudinal component of the electric field. The field
was calculated under the assumption that the excess
charge was accumulated near the glass surface. This
assumption seems more reasonable for the region
behind the FIW front because, after the onset of the
FIW, the reconstructed charge density per unit length
near the high-voltage electrode is close to the charge
density per unit length on the electrode surface.

For the FIW propagating in H2, we estimated the
maximum width of the region (near the surface of the
discharge tube) in which the discharge is accumulated.
For this purpose, we measured the charge density per
unit length on the cathode (x = –∆f) and near the cath-
ode (x = +∆f) in the discharge tube. Knowing the differ-
ence in the charge density per unit length on the cath-
ode and at x = +∆f, we could find the maximum differ-
ence in the capacitance per unit length δCmax(t) at
x = +∆f and on the cathode

(3)

The difference in the capacitance per unit length
which is defined by (3) allows us to evaluate the mini-
mum distance rmin from the axis of the discharge tube at
which the charge is accumulated. By using the well-
known formula for the capacitance of the capacitors
connected in parallel, we obtain

where C0 is the capacitance per unit length of the dis-
charge device above the electrode, ε0 is the dielectric
constant, and r0 is the inner radius of the discharge tube.

f p∞–

+∞∫

δCmax t( ) q ∆f– t,( ) q +∆f t,( )–( )/Uc t( ).=

δCmax–
C0 C0 δCmax–( )
-------------------------------------

r0

rmin
--------ln

2πε0
--------------,=
For rmin, we obtain

Estimates show that, at a distance of 10–15 cm from
the front of an FIW propagating in H2, the excess
charge is accumulated at the distance r0 – rmin < 2 mm
from the glass surface.

When approaching the front, the radial distribution
of the charge seems to become more uniform. However,
since the charge per unit length changes relatively
slowly behind the front, we will assume the charge to
be mainly located near the glass surface.

To find the field in the discharge tube, we numeri-
cally solved Poisson’s equation taking into account the
real geometry of the discharge device. We also assumed
the distribution of the electric field to be axially sym-
metric [9] and quasi-steady (the latter is always valid
for high pressures; for low pressures, it is valid up to the
back front, which moves with a velocity close to the
speed of light). The preliminary calculations showed
that, if the charge distribution behind the FIW front var-
ies slightly along the x-axis, the longitudinal compo-
nent of the field varies insignificantly in the radial
direction and the radial component is mainly concen-
trated near the glass surface. This allows us to consider
the problem in the one-dimensional approximation.

Under the above assumptions, the longitudinal com-
ponent of the electric field can be represented in the
form (further, we always use the notation E ≡ Ex)

where E0(x) is the electric field on the symmetry axis of
a uniformly charged ring with the radius equal to the
inner radius of the tube and with the unit electric
charge.

Figure 3 presents the distribution of the FIW electric
field at a 16-torr pressure for the gases under study. It
should be noted that the assumption about the accumu-
lation of the excess charge near the glass surface is vio-
lated at the FIW front, so that the obtained value can
only be the low estimate for the electric field. At the
same time, the method used in this paper for recon-
structing the electric field allows a sufficiently good
accuracy of determining the field in the region behind
the FIW where the field is weak. Since it is this region
that mainly contributes to the gas excitation [7], it is the
most important for the analysis of the energy deposited
in different degrees of freedom.

rmin r0

2πε0δCmax–
C0 C0 δCmax–( )
------------------------------------- 

  .exp=

E x t,( ) q s t,( )E0 x s–( ) s,d

∞–

+∞

∫=
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and (c) H2. The distance between contour lines is 200 V/cm.
5. ACCUMULATION OF ELECTRONS. 
CORRELATION WITH THE ELECTRIC-FIELD 

DYNAMICS

Using the data on the dynamics of the charge per
unit length, we can calculate the current along the dis-
charge gap:

(4)Jx x t,( ) d
dt
----- q s t,( ) s.d

0

x

∫=
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The electric field calculated above allows us to estimate
the time during which the plasma space charge is neu-
tralized:

where σ is the plasma conductivity and S is the cross-
section area of the discharge tube. Starting with the
point of the maximum of E(t), the characteristic time of
the onset of the FIW substantially exceeds the time dur-

τn
1

4πσ
----------

jx

4πE
----------

Jx

4πSE
--------------,= = =
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ing which the space charge is neutralized (τn < 0.1 ns
for all pressures and gases used). This estimate con-
firms the validity of the assumption about the accumu-
lation of the excess charge near the glass wall of the dis-
charge tube.
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By using the known longitudinal electric-field com-
ponent E(x, t) and the data on the drift velocity vdr(E/p)
[14] and assuming the electron density to be constant
over the radius, we obtain the expression describing the
dynamics of the electron density behind the FIW front:

(5)

Assuming the transport collision frequency to be fixed,
the drift-velocity data from [14] were extrapolated to
the region E/p > 330 V/(cm torr). This assumption
insignificantly affects the results of this work, because
the main excitation of internal degrees of freedom of
the gas occurs in substantially weaker fields of E/p ≤
200 V/(cm torr).

The electron density was calculated in the parameter
ranges

(6)

where tmax is the instant the wave arrives at the last mea-
surement point. The last limitation is due to the fact that
the procedure of the current calculation is invalid for
t  >  tmax. The limitations on the values of J(x, t) and
E(x, t) are related to the increase in the error in deter-
mining the current and electric field near the zero val-
ues, as well as the electric field near its peak value.

Figure 4 shows the dynamics of the electron density
in an FIW in air, N2, and H2 at a 16-torr pressure. In
nitrogen (Fig. 4b) and hydrogen (Fig. 4c), the nonzero
density is recorded after 5 ns, which correlates well
with the delay time of the wave start (Figs. 1c, 1d, 1f).
In air, we did not measure the parameters above the
electrode; in this case, the point t = 0 corresponded to
the beginning of the voltage growth in the plasma at the
distance x = ∆f from the high-voltage electrode.

In air and nitrogen, the maximum value of the elec-
tron density decays no more than one and a half times
as the FIW travels from 10 to 30 cm, whereas in hydro-
gen the maximum electron density decays three times
at the same distance. The increase in the electron den-
sity with time is substantially sharper in air and N2 than
in hydrogen. The irregular behavior of ne(t) on large
time scales seems to result from the increase in the error
in determining ne on the back front due to the sharp
decrease in the current and electric field.

Now, we will analyze the behavior of the field and
electron density in the fixed section of the discharge
tube. The values of E(t) and ne(t) at a 20-cm distance
from the cathode are presented in Fig. 5.

Although the proposed method for determining the
electric field at the wave front (at the point where E(t)
is maximum) gives only the lower estimate, the
obtained values of the reduced electric field can attain
1 kV/(cm torr) in nitrogen and air. This value exceeds

ne x t,( )
jx

ev dr

-----------
Jx

evdr S
--------------.= =

Jx x t,( ) 0,<
0.7min E x t,( ) E x t,( ) 0,

t
< <

t tmax,<
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the threshold for the emergence of runaway electrons.
The duration of the field peak does not exceed 5 ns;
then, the electric field decreases to tens or hundreds of
V/(cm torr), which corresponds to the intensive excita-
tion of the internal degrees of freedom of the gas. The
electric field behind the wave front increases and the
reduced electric field decreases with increasing the
pressure. The observed behavior of the electric field is
in good agreement with the previous papers [7, 9].

In agreement with [7], the gas ionization occurs
mainly behind the front of an FIW (i.e., behind the
region where the electric field is maximum). The time
needed for the electron density to reach its maximum
value somewhat increases with increasing the pressure.
It is most clearly seen in hydrogen, where this time var-
ies from 5 to 10 ns as the pressure varies from 6 to
24 torr. The maximum value of ne first increases with
increasing the pressure (in a range of 1–2 torr for N2
and air and 6–7 torr for hydrogen) and then remains
almost unchanged (at a level of ~(2–3) × 1012 cm–3). In
this case, the maximum density and the largest rate of
its growth at the front are attained in air (Fig. 4a), which
is explained by a greater ionization coefficient than in
pure N2 or H2. The FIW propagation in hydrogen is
characterized by the slowest increase in the electron
density (Fig. 4c) and a wider forward front of the wave.

To check the self-consistency of the approach devel-
oped, we calculated the first Townsend ionization coef-
ficient α(E, p) from the available experimental data. A
comparison of the data obtained with data available in
the literature allows an independent verification of the
reconstructed values of ne and E/p.

The balance equation for the electron density
including ionization and drift has the form

(7)

from which we obtain the Townsend coefficient

(8)

We average the obtained ionization coefficient
α(x, t) and electric field E(x, t) over the region behind
the wave front where the electric field is slowly varying
along x (Fig. 3) and transform the obtained depen-
dences 〈α (t)〉x and 〈E(t)〉x into the dependence of α/p on
the reduced field E/p. Figure 6 presents, as an example,
the calculated ionization coefficient for N2 as a function
of the reduced field. Within a wide range of E/p, the
data are in good agreement with the well-known data
[1]. The scatter in the data at the lowest pressures can
be related to the experimental noise, whereas the devi-
ations at the highest pressures can be due to possible
step ionization at low values of E/p. On the whole, the
good agreement of the ionization coefficient with the
data of other authors confirms the self-consistency of

∂ne

∂t
--------

∂v drne

∂x
----------------+ α v dr ne,=

α x t,( ) 1
v dr

---------- v dr x∂
∂

t∂
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∂ v drln
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the problem and the accuracy of the reconstruction of
the field and electron density behind the wave front.

Note that, within this approach, we have to neglect
the effects related to the nonlocal character of the elec-
tron energy distribution function (EEDF) near the FIW
front. As was mentioned in [7, 15], these effects can
significantly change the ionization rate constant. At the
same time, the drift electron velocity behind the FIW
front almost always corresponds to the local value of
the electric field. A more detailed analysis of these
effects will be presented in our subsequent papers.
Here, we only emphasize that the comparison with the
published data on α is rather qualitative, although it is
very important from a methodical standpoint.

6. ENERGY DEPOSITED IN THE INTERNAL 
DEGREES OF FREEDOM OF A GAS

Knowing the electric field and the electron density
at a fixed point x, we can calculate the energy Wi(x)

ne, cm–3
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Fig. 5. Electron density (symbols) and electric field (lines)
in an FIW as functions of time for (a) air at pressures of
(1) 1, (2) 4, and (3) 16 torr; (b) N2 at pressures of (1) 1, (2) 4,
and (3) 16 torr; and (c) H2 at pressures of (1) 6, (2) 8, and
(3) 24 torr.
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deposited in different degrees of freedom during the
pulse of duration T∗ :

(9)Wi x( ) N ∆ε j
i

ne x t,( )k j
i

E x t,( )/ p( )

0

T*

∫ 
 
 

t,d
j

∑=
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Fig. 6. Reduced Townsend ionization coefficient α/p as a
function of the reduced field E/p for N2 at pressures of (1) 1,
(2) 2, (3) 4, (4) 8, and (5) 16 torr.
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Fig. 7. Specific deposited energy per pulse (averaged over
the length of the discharge tube) in (a) air, (b) N2, and (c) H2.
Open circles show the measured deposited energy, and
closed circles show the deposited energy calculated by for-
mula (9).
where ∆  and (E/p) are the energy loss and the rate
constant of the excitation of the jth component of the ith
degree of freedom and N is the concentration of the

excited component. The excitation constants (E/p)
were calculated in [16–18] with the use of an EEDF
obtained in the two-term approximation to the Boltz-
mann equation.

Since the electric field was calculated within the
interval [0; T∗ ] and the electron density in the interval
[0; tmax], where tmax < T∗  [see (6)], the value of ne was
extrapolated to the interval [tmax; T∗ ] as ne = ne(tmax) =
const. Such an extrapolation could systematically
underestimate the value of the deposited energy, espe-
cially the fraction of energy spent on the excitation of
the low-energy degrees of freedom. As the pressure
increases, this effect becomes less important due to the
increase in tmax. The estimates show that, for the pres-
sure corresponding to the maximum FIW velocity,
ne(T∗ ) exceeds ne(tmax) by no more than 30%. In addi-
tion, tmax corresponds to the decrease in J(t), and most
of the deposited energy corresponds to the maximum
current. Thus, the extrapolation of a fixed value of ne(t)
to the region t > tmax should not substantially change the
energy distribution.

The ratio of deposited energy  to the total energy
of the initial pulse is presented in Fig. 7 for different
pressures. The deposited energy is determined from the
current-shunt data as the difference between the ener-
gies of the pulse incident on the discharge gap and the
reflected pulse. This method is described in more detail
in [2]. The same figure shows the total deposited energy
averaged over the reconstruction interval (∆f, L – ∆f)
and calculated by the formula

(10)

where V0 is the volume of the discharge tube. It is seen
that, accurate to within 3% of the energy of the incident
pulse, both methods for determining  give the same
result.

In N2 and air, the total deposited energy as a func-
tion of pressure has a maximum near the maximum
FIW velocity; this is in qualitative agreement with
[19, 20]. In hydrogen, the total deposited energy
increases with the pressure. In H2, the dependence of
the delay time of the FIW start on the pressure is more
sharp: τd varies from 26 ns for p = 6 torr to 6 ns for p =
24 torr, whereas in nitrogen, τd = 12 ns for p = 1 torr and
τd = 6 ns for p = 16 torr. As a result, when the hydrogen
pressure increases from 6 to 24 torr, the duration of the
current pulse increases from approximately 20 to 90%
of the duration of the current pulse in the supplying
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cable. Such a sharp increase in the current duration
results in a monotonic growth of the deposited energy.

The fractions of the energy deposited in different
degrees of freedom and calculated by the relations sim-
ilar to (10) are shown in Fig. 8. Here, the 100% value
corresponds to the total energy  deposited in the gas.
Both the fraction and the absolute value of the energy
deposited in the low-energy degrees of freedom (vibra-
tional and rotational) monotonically increase with
increasing the pressure (Fig. 8). A fraction (up to 8%)
of the total deposited energy is spent on the excitation
of the rotational degrees of freedom in H2; in air and N2,
this excitation is almost absent.

It is clearly seen that the excitation of the electron
degrees of freedom is the dominant channel of the elec-
tron energy loss (40–60% of the total deposited energy)
for all pressures and gases used. The energy spent on
hydrogen dissociation is always larger than that spent
on ionization. In air, the fractions of the energy spent on
dissociation and ionization become comparable at a
pressure of p ~ 1 torr. At the same time, in nitrogen, the
curves showing the energy spent on dissociation and
ionization as functions of the pressure intersect in the
region where the FIW propagation velocity has a max-
imum with respect to the pressure. In hydrogen, similar
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Fig. 8. The fractions of the energy (per pulse) deposited in
the internal degrees of freedom [(1, 5) ionization, (2, 6)
excitation of the electron terms, (3) dissociation, (4) excita-
tion of the vibrational levels, and (7) excitation of the rota-
tional levels] for (a) air [curves (1)–(4) correspond to N2 and
curves (5) and (6) correspond to O2], (b) nitrogen, and (c)
hydrogen.
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curves are expected to intersect at lower pressures (p <
6 torr). Note also that the fractions of the energy spent
on dissociation and ionization are comparable; there-
fore, the degrees of dissociation and ionization in the
FIW are of the same order.

The fraction of energy spent on ionization during
the discharge does not exceed 35% of the total depos-
ited energy for all pressures and gases used and
decreases monotonically with pressure. We note that,
for all gases, the absolute value of this energy as a func-
tion of pressure reaches its maximum in the pressure
range corresponding to the maximum FIW velocity.

7. CONCLUSION

It is shown that the maximum electron density
behind the FIW front depends weakly on the pressure
and sort of gas used. In the parameter range corre-
sponding to the gas pressures that are optimum for
wave propagation, we have ne ~ (2–3) × 1012 cm–3 for all
gases used.

The obtained values of ne correlate with the ioniza-
tion coefficient in the given gas. Thus, the lowest values
of the electron density are obtained for hydrogen and
nitrogen, and the maximum ones are obtained for air,
where the presence of O2 leads to an appreciable
increase in the ionization rate in a high electric field as
compared to pure nitrogen.

A weak dependence on the sort of gas is also
observed for the reduced electric field behind the FIW
front, where the rate of gas excitation is maximum. In
this region, the characteristic value of the reduced field
is in the range of 200–500 Td. In the pressure range cor-
responding to the optimum conditions for the develop-
ment of an FIW in hydrogen, this value is somewhat
smaller than in nitrogen or air. An analysis showed that,
in all of the regimes of the FIW propagation, most of
the energy at the wave front is spent on gas ionization
and production of runaway electrons. A sharp increase
in the electron density from the background values
ahead of the wave front to ne ~ 1011 cm–3 at the front in
a time of 3–5 ns (for E/N on the order of several kTd)
leads to an increase in the plasma conductivity and a
substantial decrease in the electric field. Further ioniza-
tion and excitation of the gas proceeds in a substantially
weaker field behind the FIW front; the energy distribu-
tion over different degrees of freedom in the gas is
determined by the processes occurring just in this
region.

We have shown that, for all gases used, the main
channel of the electron energy loss in an FIW is the
excitation of the electron degrees of freedom (40–60%
of the deposited energy). The energy spent on ioniza-
tion is somewhat less (from 10 to 35%) and decreases
monotonically with increasing the gas pressure. At the
same time, the energy deposited in the vibrational and
rotational degrees of freedom of H2 molecules
increases with increasing the pressure.
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Abstract—A three-dimensional radiative gas-dynamic model is applied to calculating the parameters o
tinuous optical discharge in crossed CO2 laser beams in air at atmospheric pressure. © 2000 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

For a continuous optical discharge (COD) to 
implemented in practice, it is necessary to ensure
conditions under which a stable COD may exist in a 
flow. The experimental data on the parameter rang
which a COD can occur in a focused ëé2 laser beam in
an air flow are presented by Generalov et al. [1], who
showed that the discharge is stable in parallel and 
pendicular (with respect to the laser beam) gas flo
and is unstable in a gas flowing toward the beam. As
gas flow velocity increases, the COD contracts an
displaced toward the beam waist. According to [2, 
the conditions for a stable discharge to occur in a 
flow can be determined theoretically. Numerical sim
lations carried out by Surzhikov and Chentsov [2] 
the basis of the radiative gas-dynamic model allow
them to determine the domain in the laser power–lon
tudinal flow velocity variables in which the discharg
may exist; this domain agrees well with the experim
tal data of [1]. In [3], we applied an analogous approa
to simulate a three-dimensional COD in a transve
gas flow under conditions corresponding to the exp
ments of [1]. The excitation of localized microwav
discharges by crossed electromagnetic beams in
Earth’s atmosphere was studied in [4, 5].

Our aim here is to apply the physical model dev
oped in [2] to calculate the parameters of a CO
excited in the intersection region of ëé2 laser beams in
air at atmospheric pressure as functions of the gas 
velocity and the ratio between the laser powers. O
study is related to the practical implementation o
COD and is motivated by the following factors: th
possibility of exciting the discharge in a desired spa
region by unfocused laser beams, the possibility of r
ing the total laser power in the intersection region of 
electromagnetic beams using lasers of limited pow
and the possibility of exciting more stable discharg
with simultaneous remote control of their shapes a
dimensions.
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2. MODEL

We consider a COD excited by crossed ëé2 laser
beams in an air flow at atmospheric pressure (Fig
under the following model assumptions [2, 3]: the flo
is subsonic and laminar, the plasma is in equilibriu
the refraction of laser light and the interaction betwe
the laser beams are both negligible, and the laser be
are Gaussian in shape. We determine the COD para
ters by solving the following set of three-dimension
equations consisting of the continuity equation, 
Navier–Stokes equation, the energy balance equa
the equation for selective radiation transport in the m
tigroup diffusion approximation, and the transpo
equation for laser light along the optical axes in 
geometrical-optics approximation:

with QR ≈ (Ukp – Uk) and

Here, V(Vx = u, Vy = v , Vz = w) is the mean mass veloc
ity; p is the deviation of the pressure from p0 = 105 Pa;

T is the temperature;  is the deformation rate ten
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ρ, Cp, η, λ, and µ are the density, heat capacity, visco
ity, thermal conductivity, and the absorption coefficie
of the laser light, respectively; χk, Uk, and Ukp are the
group values of the absorption coefficient and of 
densities of plasma and blackbody emissions avera
over each of the Nk spectral intervals; c is the speed of
light; ρ0 is the density of the cold gas; g(0, 0, gz = –g)
is the gravity acceleration; PL1 and PL2 are the powers of
the laser beams of radii RL1(z) and RL2(y); and (x, y, z) are
Cartesian coordinates. The optical axes of the la
beams are assumed to be parallel to the z- and y-axes.

2.1. Boundary Conditions

In Cartesian coordinates, the boundary conditio
on the faces of the computation region in the form o
rectangular parallelepiped—x = {0; x1}, y = {y0; y1},
z = {z0; z1}—are as follows. At the entrance (y = y0) and
side faces (x = x1, z = {z0; z1}), the cold gas flow along
the y-axis is uniform, the flow velocity being V0, and no
thermal radiation fluxes enter the computation reg
from the outside:

u = 0, v  = V0, w = 0, T = T0, Uk + (2/3χk)∂Uk/∂n = 0,

where the derivative is taken along the outer norma
the face. At the face x = 0, we impose the symmetr
conditions

The length y = y1 of the computation region is chose
such that the pressure changes insignificantly and
flow is essentially one-dimensional at the exit boun
ary:

u 0, ∂v /∂x ∂w/∂x 0,= = =

∂p/∂x 0, ∂T/∂x 0, ∂Uk/∂x 0.= = =

z

x

COD

PL1

V0

y

PL2

Fig. 1. Schematic of a COD in crossed laser beams in a gas
flow.
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That the boundary conditions play only a minor ro
upstream of the exit boundary was confirmed 
numerical simulations carried out with different valu
of y1.

2.2. Solution Technique

We solved the above set of equations numeric
using the SIMPLE finite-difference scheme [6] on
nonuniform grid of 25 × 55 × 55 cells along the x-, y-,
and z-axes, respectively; the grid was made finer (
reducing the grid size to about 0.1 mm) in the zo
where the COD parameters changed abruptly, ther
making it possible to resolve the steepest front (fr
the side of the incident flow) of the discharge on spa
intervals as short as 8–10 grid sizes. A posteriori anal-
ysis revealed that the grid parameters affected the 
numerical results only slightly.

3. RESULTS

We calculated the parameters of a COD in cros
horizontal and vertical laser beams with the sa
geometry (the beam radii were 0.3 cm in the cross 
tions y = y0 and z = z0 of the computation region, th
focal points were at 3 cm on the related axes, and
waist radii were Rk = 0.045 cm) and with the sam
power (PL1 = PL2 = 2.5 kW) in a horizontal flow of a
“cold” (T0 = 300 K) gas (air) with the velocity V0 = 0.5
and 6 m/s (Fig. 1). The boundary coordinates of 
computation region were x1 = 2 cm, y0 = –2 cm, y1 =
3 cm, z0 = 0, and z1 = 5 cm. For comparison, we als
present the results obtained for discharges excited 
single horizontal laser beam or a single vertical beam
power 5 kW. The thermal-physics, transport, and o
cal (Nk = 10) parameters of air at atmospheric press
were specified in accordance with the data from [7–

Our numerical results show that the high-tempe
ture core of a COD is localized in the intersecti
region of the laser beams (Fig. 2). The overall flow p
tern agrees qualitatively with the results obtained
[2, 3]. The cold gas is observed to flow at a slower r
inside the discharge front, where the pressure is 
vated and the gas flows around the high-tempera
core preferentially in a laminar fashion, without givin
rise to vortex structures. For the burning regimes un
analysis (V0 ≥ 0.5 m/s and PL = 5 kW), the buoyancy
force has an insignificant effect on the COD paramet
This result can be attributed to the small discha
dimensions (the characteristic velocity associated w

the buoyancy force per square centimeter is VA ~  ≈
0.4 m/s) and the significant rate at which the gas
accelerated as it traverses the discharge front from
side of the incident flow [10]. Even for a COD in an a

u w 0, ∂ρv /∂y 0, p 0,= = = =

∂T/∂y 0, ∂Uk/∂y 0.= =

2gl
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flow with the velocity V0 = 0.5 m/s, the horizontal com
ponent of the flow velocity inside the core increa
sharply to Vm ≈ 7.5 m/s, thereby neutralizing the effe
of the buoyancy force. The gas-dynamic model o
slowly burning COD [10] yields the estimate Vm ≈

V0 ≈ 6.2 m/s. Two-dimensional simulation
carried out by Raœzer and Surzhikov [11] also reveale
that the vortex flow driven by the buoyancy force in
cylindrical chamber with closed ends has an insign
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by one laser beam in a longitudinal or transverse 
flow (Fig. 3). The fraction of the total laser power di
sipated in the discharge plasma is 1.3 kW, the fracti
of the absorbed power of the vertical and horizon
beams being 0.4 and 0.9 kW, respectively. The d
charge excited by a single laser beam in a longitudi
or transverse gas flow absorbs 4.1 or 2 kW of the la
power, respectively. According to the experimental d
[1], the point (V0 = 6 m/s, PL = 2.5 kW) in the plane of
the flow velocity–laser power variables lies below t
domain where the COD can exist in a longitudinal 
transverse gas flow; consequently, the vertical la
beam appears to fix the discharge core in space and
bilize the COD throughout the waist region where t
beam is almost cylindrical in shape.

Our supplementary simulations also confirmed th
a stable COD can occur in the intersection region
two unfocused beams with diameters 2Rk. In this case,
the discharge parameters were found to be almost
same as those in the case of two focused beams (Fig
When the diameters of the unfocused beams w
increased by a factor of two, the discharge was “blo
off.” We can expect that the region where a discharge
two crossed laser beams is stable will be smaller t
that in the case of a COD in a single beam. This exp
tation is supported by the above results, according
which the discharge should become smaller in size 
a lower fraction of laser power should be dissipated
well as by the discharge blowing-off revealed in sim
lations at the boundaries (V0 = 11 m/s, PL1 = PL2 = 2.5
kW) and (V0 = 6 m/s, PL1 = PL2 = 1.5 kW) of the domain
where a COD is stable [1]. With the existing restrictio
on the laser power, the excitation of discharges
crossed beams makes it possible to increase the 
laser power fed into the discharge and, accordingly
increase the limiting flow velocity above which the di
charge is unstable.

The core of a COD in an air flow with the velocit
V0 = 0.5 m/s is cross-shaped. The laser beams p
essentially the same role in the formation of the d
charge core. This conclusion is confirmed by the f
that the total power input into the discharge is alm
equally shared between the beams (the fraction
1.4 kW comes from the vertical beam and the fract
of 1.5 kW comes from the horizontal beam) and by t
experimentally observed [1] stable COD excited by
gas
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single 2.5-kW laser beam in a longitudinal or tran
verse gas flow with a velocity of 0.5 m/s.

4. CONCLUSION

Our three-dimensional simulations have reveal
the possibility of both obtaining a stable COD i
crossed laser beams and controlling the shape of 
discharge and its dimensions by varying the flow velo
ity, the power of the lasers, and the direction of las
beams.
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Abstract—A two-dimensional radiative gas-dynamic model is applied to calculating the parameters of
tinuous optical discharge in a vertical focused CO2 laser beam in air at atmospheric pressure in the Earth’s 
itational field. © 2000 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Theoretical investigations of a continuous optic
discharge (COD) in a focused ëé2 laser beam using the
radiative gas-dynamic model equations [1–4] revea
the picture of discharge burning and the features of 
interaction of an external cold-gas flow with the di
charge. On the basis of the gas-dynamic mechanism
authors of [5, 6] succeeded in explaining the differen
between the experimentally observed velocity at wh
the COD front moves toward the laser source and 
conventional velocity of the discharge propagation in
slowly burning regime. In [7, 8], we calculated th
parameters of a COD in a focused ëé2 laser beam in air
at atmospheric pressure as functions of both the rota
rate of the longitudinal (along the laser beam axis) 
flow [7] and the velocity of the transverse gas flow [8
Numerical investigations of a COD in an external g
flow somewhat overshadowed the problem of a f
convective flow in a discharge excited in a gravitation
field. Raœzer and Surzhikov [9] presented the resu
from calculations of the parameters of a COD excited
a 6-kW ëé2 laser beam focused into the geometric ce
ter of a cylindrical chamber with closed ends. Th
showed that, for certain ratios between the radius of
chamber and its height, vortex flows may form insi
the discharge, which, however, have an insignific
impact on the discharge parameters.

Here, based on the physical model developed
Surzhikov and Chentsov [4], we calculate the param
ters of a COD in a vertical focused ëé2 laser beam per-
pendicular to the Earth’s surface in air at atmosphe
pressure in the Earth’s gravitational field, determine 
discharge parameters as functions of the laser po
and reveal the peculiarities of the discharge instabi
at near-threshold laser powers.

2. MODEL

We consider a COD excited by a focused ëé2 laser
beam in air at atmospheric pressure (Fig. 1), assum
that the discharge plasma is in equilibrium, the gas fl
is subsonic and laminar, the refraction of laser light
negligible, and the laser beam is Gaussian in shape
1063-780X/00/2607- $20.00 ©0621
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We determine the COD parameters by solving 
following set of equations consisting of the continu
equation, the Navier–Stokes equation, the energy 
ance equation, the equation for the selective radia
transport in the multigroup diffusion approximatio
and the transport equation for laser light in the geom
rical-optics approximation:
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Here, v  and u are the projections of the velocity vect
onto the r- and z-axes; T is the temperature; p is the
pressure; ρ, Cp, η, λ, and µ are the density, heat capaci
at a constant pressure, viscosity, thermal conductiv
and the absorption coefficient of the laser light, resp
tively; ρ0 is the density of the cold gas; g(0, 0, gz = –g)
is the gravitational acceleration; χk, Uk, and Ukp are the
group values of the absorption coefficient and of 

z

L

COD

PL

R

g

r

Fig. 1. Schematic of the computation region for a COD in
the Earth’s gravitational field.
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Fig. 2. Isotherms (the temperature increment between adja-
cent contours is 2 kK) and gas streamlines (Gmax = 0.41 g/s)
in a COD at PL = 3 kW. The dashed curve corresponds to the
laser beam boundary.
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densities of plasma and blackbody emissions, avera
over each of the Nk spectral intervals; c is the speed of
light; and PL and RL(z) are the laser power and th
radius of the laser beam.

2.1. Boundary Conditions

The boundary conditions at the rectangular conto
around the computation region (Fig. 1) are as follow
The inflow and outflow of a cold gas at atmosphe
pressure are normal to the lower (horizontal) and s
boundaries, through which no thermal radiation flux
enter the computation region from the outside:

where Vτ is the velocity component tangent to th
boundary and ∂/∂n is the derivative along the outward
facing normal to the boundary.

At the axis r = 0, we impose the symmetry cond
tions

The conditions at the upper boundary correspond t
one-dimensional gas flow:

2.2. Solution Technique

As in [6–8], we solved the above set of equations
physical variables numerically using the SIMPL
finite-difference scheme [10] under conditions corr
sponding to air at atmospheric pressure; the data
thermal-physics, transport, and optical (Nk = 10) prop-
erties were taken from [11–13].

3. COMPUTATION RESULTS

We calculated the parameters of a COD in a verti
laser beam in the Earth’s gravitational field as functio
of the laser power (PL = 2.4, 3, and 5 kW) at T0 = 300 ä
and p0 = 105 Pa. The radius of the laser beam was 0.3 c
the focal point was at 3 cm, and the waist radius w
0.045 cm. The sizes of the computation region we
chosen based on numerical experiments so as to en
a weak effect of the boundary conditions on the CO
parameters.

According to our simulation results (Fig. 2), th
high-temperature core of the COD is localized in t
focal region and is shifted toward the laser beam. W
can see steep thermal and gas-dynamic fronts (from

z 0 0 r R< <,=

0 z L r,< < R= 


 : p p0 Vτ, 0,= =

T T0 Uk 2/3χk( )∂Uk/∂n+, 0,= =

0 z L, r< < 0: ∂u/∂r 0, v 0,= = =

∂p/∂r 0, ∂T/∂r 0, ∂Uk/∂r 0.= = =

z L, 0 r R: ∂ρu/∂z< < 0, v 0,= = =

p p0, ∂T/∂z 0, ∂Uk/∂z 0.= = =
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side of the incident laser light) and trailing edges of 
discharge core (Fig. 3). Ahead of the thermal fro
there is a gas halo, which is heated by the thermal 
from the core due to heat transfer. In a COD in an ex
nal axial gas flow, no halo appears, because the ind
convective cooling dominates over the heating due
heat transfer [1–4]. The buoyancy force acts to initi
an upward stream of the heated gas, thereby giving
to the formation of a complicated gas-dynamic flo
structure consisting of two toroidal vortices rotating
opposite directions. The gas that permanently enters
halo from the outside (because of the continuity of 
flow) is heated, expands in the radial direction, and
accelerated by the buoyancy force (Figs. 2, 3). As in
case of an external axial gas flow [6], the gas is de
erated by increasing the positive pressure gradient 
traverses the front of the discharge core. In the reg
behind the front (where the pressure falls off sharp
the gas is rapidly accelerated and expands. Inside
discharge core, the pressure is depressed and rem
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essentially unchanged and the rate at which the ga
accelerated by the buoyancy force is lower. Fart
along the discharge axis, the change in the discha
parameters is governed by the reverse gas motion f
the discharge region where the laser power is dissipa
toward the trailing edge, which is elongated due to c
vection and in which the gas is slowly cooled main
via heat transfer.

For lower laser powers, the discharge is shorter
the axial direction, the core temperature is lower, an
smaller fraction of laser energy is dissipated in the d
charge plasma (Pd = 4, 1.6, and 0.9 kW for PL = 5, 3,
and 2.4 kW, respectively), but the pressure gradient (
excessive pressure) at the thermal front and the velo
at which the gas flows through the front are both hig
(Fig. 3). Inside the core, the pressure and mass velo
ρu remain almost unchanged. At the trailing edge, 
negative pressure gradient, which ensures that 
same amount of gas flows from the laser power de
sition region toward the trailing part of the dischar
0
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(ρu = const), also does not change. The front of the c
and its trailing edge propagate toward each other: 
laser power of 2.4 kW, they come together in the bea
waist cross section z = 4 cm. This laser power is th
lowest (threshold) power above which the iteration p
cedure converges to a nontrivial solution. All of the d
charges simulated iteratively at a power of 2.3 kW a
lower were observed to inevitably terminate. The co
puted threshold turned out to be 0.4 kW higher than t
obtained by Raœzer and Silant’ev [14], who solved th
equations for a COD in an immobile gas numerica
by the relaxation method with allowance for the refra
tion of laser light.

That the discharge has a threshold in terms of 
laser power is confirmed by our simulations, which a
provide evidence for two different steady regimes illu
trated in Fig. 4 by two (low-temperature and high-tem
perature) branches of the dependence Tm(PL) of the
maximum temperature on the laser power. These c
acteristic features of discharges in electromagne
fields were revealed by Raœzer [15] on the basis of the
model of a spherical COD. However, in performin
two-dimensional simulations, Raœzer and Silant’ev [14]
found that, no matter how the discharge was seede
the plasma, it ultimately terminated or reached t
same steady regime. In that paper, the existence of
different model solutions for the same values of t
external parameters was attributed to imperfections
the analytic model. In actuality, the model simulatio
of [14] captured only one regime because the solut
with a low temperature is unstable against fluctuatio
(iterative approximations) of the temperature in t
course of a run. Consequently, in iterations, the num
ical solution always converged to a steady solution c
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Fig. 4. Maximum temperature and the fraction of the laser
power dissipated in the discharge plasma as functions of the
laser power. The solid curves illustrate the results of calcu-
lations based on the model of a spherical COD [15].
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responding to the high-temperature branch of t
dependence Tm(PL). To obtain solutions describing both
branches of Tm(PL), it is necessary to specify, instead o
the laser power PL, the fraction Pd of laser power dissi-
pated in the discharge plasma, which is unique
related to Tm (a similar approach was applied in [16] t
a low-frequency inductive transformer-type dischar
and, in [17], to a spherical and a cylindrically symme
ric microwave discharge). This conclusion is justifie
by the simulation results illustrated in Fig. 4. Th
parameters of a discharge in the unstable regime (Pd =
0.25 kW at PL = 3 kW; see Figs. 3, 5) are consiste
with the qualitative predictions obtained in [15].

To estimate the effect of the buoyancy force, w
simulated a COD for PL = 3 kW, taking the gravita-
tional acceleration to be overstated by a factor of 5. 
found no qualitative changes in the overall pattern 
the gas flow and gas heating. Quantitatively, the pr
sure gradients at the front of the discharge and at
trailing edge are larger and, in the discharge core, 
negative pressure is less depressed and the gas 
velocity is higher, the sizes of the region in which th
laser power is dissipated being unchanged.

4. CONCLUSION

We have calculated the parameters a COD in
focused vertical (perpendicular to the Earth’s surfac
ëé2 laser beam in air at atmospheric pressure in 
Earth’s gravitational field as functions of the las
power.

We have shown that the buoyancy force gives rise
the formation of a vortex structure of the discharge. T
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Fig. 5. Isotherms (the temperature increment between adja-
cent contours is 2 kK) and gas streamlines (Gmax = 0.32 g/s)
in a COD at PL = 3 kW in the unstable regime. The dashed
curve corresponds to the laser beam boundary.
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a

amount of gas flowing through the discharge is ind
pendent of the laser power and is governed by the p
sure at the discharge front.

Inside the core of a COD, the pressure is depress
At the trailing edge of the core, the pressure gradien
negative and is weakly sensitive to the laser power.

The dimensions of a COD are governed by the la
power and are independent of the gravitational acce
ation. At the near-threshold laser power, the front of t
discharge and its trailing edge are brought together.
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Abstract—It is shown that a curved magnetic field can be used to separate ions in a multicomponent plasma.
Without selective ion preheating, the separation over one cycle is inefficient: the separated ion fractions will
only be enriched with ions of the corresponding isotopes. Selective ion cyclotron resonance heating makes it
possible to achieve essentially a complete separation of the ions. © 2000 MAIK “Nauka/Interperiodica”.
At present, plasma methods for processing various
kinds of waste (in particular, radioactive waste) in order
to extract the most harmful components are widely dis-
cussed. For this purpose, it is possible to employ the
phenomenon of particle drift in curved magnetic fields.
This phenomenon underlies some of the proposed
schemes for direct conversion of plasma thermal energy
into electrical energy [1] and for isotope separation by
selective ion-cyclotron resonance (ICR) heating [2].

These schemes make use of the fact that the drift
velocity of a charged particle in a curved magnetic field
depends on the particle energy,

where B is the magnetic induction, R is the radius of
curvature of the magnetic field lines, ε|| and ε⊥  are the
thermal ion energies in the directions parallel and per-
pendicular to the magnetic field, c is the speed of light
in vacuum, and e is the electron charge. In such a field,
charged particles with different energies are separated
out automatically: when they travel a distance ∆s along
the magnetic field, they are displaced in the direction of
the binormal to the magnetic field lines (in the z-direc-
tion) by different distances ∆z = Vdr∆s/v||, depending
on their longitudinal and transverse energies, ε|| and ε⊥ .

Note that particles with the same energy but with
different masses also experience different displace-
ments because v|| ∝  m–1/2 so that, even in an isothermal
multicomponent plasma in which all of the ions have
the same mean energy, a curved magnetic field can be
used to separate ions by mass. This method appears to
be efficient only for separating different chemical ele-
ments, but is unlikely to be used to separate isotopes of
the same element, because the difference in mass
between the isotopes is too small.

The ions of different elements should be separated
in a system with a curved magnetic field, and the sepa-
rated ions should be collected at plates that are installed
at the end of the system and have finite dimensions

Vdr
c

eBR
---------- 2ε|| ε⊥+( ),=
1063-780X/00/2607- $20.00 © 0626
along the z-axis (see figure). As in [1, 2], the charge
separation in the plasma can be eliminated by heated
cathodes; it is convenient to arrange them at the oppo-
site end of the system.

An accurate calculation of the fraction of ions that
are extracted from the plasma requires a knowledge of
the ion distribution over thermal velocities and the ini-
tial spatial distribution f(ε, χ, z0), where χ is the pitch
angle. In this case, the distribution over ε, χ, and z1
(where z1 is the coordinate at the exit from the system)
depends on the ion mass: f(ε, χ, z1 – ∆z(ε, χ, mi)), where

∆z =  = . We

assume that the magnetic field lines are arcs of circles
with the lengths ∆s = R∆θ.

Under the assumptions that the ion distribution over
thermal velocities is Maxwellian and that the ion distri-
bution over the coordinate z0 at the entrance to the sys-
tem is Gaussian with a characteristic dimension a,

f(z0) = exp , we can find the fraction of

VdrR∆θ
v ||

------------------- 2εmi
c∆θ
eB

----------2 χcos
2 χsin

2
+
χcos

------------------------------------

1

πa
----------

z0

a
---- 

 
2

– 
 

1

2 3 z

R∆θ

General scheme for ion separation by a curved magnetic
field in a multicomponent plasma: (1) plasma source,
(2) heated cathodes, and (3) absorbing plates. Solid curves
illustrate the magnetic field lines.
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ions of species α that are deposited on a plate occupy-
ing the interval l1 < z < l2:

where ξ1, 2; α =  – ρi, α∆θ ,

ρi, α = , and ωi, α is the cyclotron frequency of

the ions of species α.
In the simplest system under discussion, the displace-

ment along the z-axis is determined by the magnetic field
line curvature and is equal in order of magnitude to ρi∆θ.
The displacement can be increased by imposing a helical
magnetic field, in which case, however, the separation is
also far from being complete. Clearly, the degree of sep-
aration can be increased by passing the working mixture
through the system several times.

An essentially complete separation over one cycle
can be achieved via selective ion preheating, as is usu-
ally done in ICR-based isotope separators [3]. If it is
necessary to separate out the groups of chemical ele-
ments that differ in mass (e.g., actinides and lan-
thanides), then the ions of the elements of one group
should be ICR heated in a nonuniform magnetic field.
The energy of the cyclotron gyration of the ions that
have crossed the ICR heating zone increases by an
amount equal to

where L is the spatial scale on which the magnetic field
decreases and E is the left-polarized electric field (i.e.,
the electric field that rotates in the same direction as the
ions). For L = 102 cm, mi = 102 a.u., B = 1 kG, and
ε = 1 eV, the RF field required to heat the ions to 102 eV
is relatively weak: E ≈ 1 V/cm.

Since the magnetic field in the heating system is
weakened, the transverse energy gained by the ions in
the ICR heating zone is partially converted into their

longitudinal energy, cosχ ≈ , where ∆B is the
drop in the magnetic field across the system.

A separator based on the preheating of one of the
ion species should satisfy the following two main
requirements. First, hot ions should be separated out
from the cold ions; i.e., they should be displaced along
the z-axis by a distance larger than the initial transverse
dimension l0 of the plasma stream. Second, hot ions
passing through the stream of cold ions should not be
cooled via Coulomb collisions.

The first requirement can be represented as

Nα
4
π
--- χ χ ww

2
w

2
–( ) ξ ξ2

–( ),expd

ξ1 α,

ξ2 α,

∫expd

0

∞

∫sind

0

π/2

∫=

l1 2,
 2 χcos

2 χsin
2

+
χcos

------------------------------------w
 1

a
---

2T
mα
------

1
ωi α,
---------

∆ε π
2
---mi c

E
B0
----- 

  2 Lωi

v ||
---------,≈

∆B/B

∆z Vdr'
R∆θ
v ||'

----------- l0,>=
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which is equivalent to the condition

(1)

Here, the transverse dimension of the plasma stream is
assumed to be several times larger than the ion Larmor
radius ρi0 in terms of the initial temperature: l0 ≈ a1ρi0.
The primed quantities refer to hot ions. Condition (1) is
satisfied, provided that the ions are heated to 102 eV
(see above) and that a1 = 10 and ∆θ = 3.

Now, we turn to the second requirement—the con-
dition for the plasma to be collisionless. Let N be the
total number of particles that enter the system per unit

time, so that the plasma density is n ≈ ≈ . For

example, for N ≈ 1021 particle/s, which is equivalent to a
current of 102 A, the plasma density is n ≈ 3 × 1013 cm–1.

For R = 3 × 102 cm and ε' = 102 eV, the time T1 = l0/
required for hot ions to drift through the stream of cold
ions is T1 ≈ 3 × 10–4 s. The collision frequency can be

estimated from the formula νi ≈  ≈ 103 s–1

(where the plasma density is in units of cm–3 and the
energy is in eV). We can readily see that, with the
parameter values adopted above, the second require-
ment is also satisfied.

This requirement can be written as the condition

(2)

Here, the energy is again in units of eV and the remain-
ing quantities are expressed in electrostatic units. Con-
ditions (1) and (2) imply that the higher the energy ε',
the more complete the separation.

Our estimates show that the method proposed here
for ion separation can be implemented with the cur-
rently available experimental equipment.
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Abstract—Analytic expressions for pair electron–grain and ion–grain radial distribution functions are derived
under the assumption of a short-range binary interaction between mobile particles and an immobile charged
grain, which is treated as a point particle. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, dusty plasmas have been actively
studied both experimentally and theoretically [1–6].
The problem of ion and electron distributions around a
dust grain is important for an adequate description of
the properties of dusty plasmas. In some cases, theoret-
ical approaches to studying ordinary plasmas fail to
describe dusty plasmas [7–9]. To explain the experi-
mentally observed evolution of micron-size dust grains
into ordered structures requires knowledge of the law
of electrostatic interaction between the grains. It is also
important to understand the role played by the interac-
tion between the grains and a buffer gas, because, in
experiments, the degree of gas ionization is usually no
higher than 10–2. For example, the attracting forces
between the grains can be explained in terms of the
screening effect, which occurs when the molecules of a
buffer gas flow freely around the grains [4].

Here, based on the solution to a dynamic problem
and using the binary interaction approximation, we
derive the pair correlation function of a mobile plasma
particle and an immobile charged grain, which is
treated below as a point particle. This approach is justi-
fied either when two particles are so close to one
another that the effect of the remaining particles on
their dynamics can be neglected or when the charge of
one of the particles is very large (as in the case of dusty
plasmas).

2. DEBYE APPROXIMATION 
FOR A PAIR CORRELATION FUNCTION

We consider a fully ionized plasma consisting of
ions with mass M and positive charge ze and electrons
with mass m and charge –e. Let the plasma also contain
an immobile point particle of charge Z0e > 0 sur-
rounded by a spherically symmetric, charged cloud of
ions and electrons. The plasma density in the cloud
depends only on the distance r from the point charge.
Poisson’s equation for the mean electric potential ϕ(r)
of the point charge has the form

(1)∆ϕ– 4πe Z0δ r( ) zNi r( ) Ne r( )–+[ ] .=
1063-780X/00/2607- $20.00 © 20628
The radial distribution of the particles of species a
around the immobile point charge is usually described
by a Boltzmann distribution function [7],

(2)

where Na0 is the volume-averaged particle density; Ta is
the temperature; ϕ is the mean electrostatic potential
around the immobile point charge; and za = –1 and z for
the electrons and ions, respectively. In the weak inter-
action approximation, zaeϕ/Ta ! 1, we can expand the
exponential function in (2) in a series, in which case
Poisson’s equation (1) has a solution in the form of the
Yukawa potential:

(3)

where the Debye radius rD = (4π e2Na0/Ta)1/2

defines the screening length for the Coulomb field of
the immobile point charge [7]. In the case of potential
(3), the correlation function gab, i.e., the function
describing the correlation between mobile particles of
species a and immobile particles of species b with
charge Z0e, has the form [7–9]

(4)

where rw = zZ0e2/T is the classical radius of interaction
(the Landau length). Expression (4) is valid under the
conditions that the pair correlations be weak and that
the three-particle correlations be insignificant in com-
parison with the pair correlations:

(5)

Linearizing the exponential functions in (2) and (4)
also yields a physically meaningful potential of the
interaction between particles on short radial scales on
which conditions (5) fail to hold. Moreover, keeping
terms of the second order and higher in the expansion
is physically meaningless (see [9] for details).

Na r( ) Na0 zaeϕ /Ta–( )exp ,=

ϕ r( )
Z0e

r
-------- r/rD–( )exp ,=

za
2

a∑

gab r( )
zaZ0e2

rTa

--------------- r/rD–( )exp–
rw

r
----- r/rD–( )exp ,–= =

gab ! 1, gabc! gab.
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3. ELECTRON–GRAIN CORRELATION 
FUNCTION IN THE BINARY BALLISTIC 

APPROXIMATION

In an ideal plasma, the characteristic particle-energy
and particle-momentum relaxation lengths are much

longer than the mean distance  between the parti-
cles. Consequently, in the immediate vicinity of an
immobile point charge, we can neglect the forces
exerted by the remaining plasma particles. In a suffi-
ciently small vicinity of an immobile point charge, the
trajectories of the particles and their density are
described by the equations of motion in a central field.

With allowance for electron interaction only with an
immobile grain, which is treated as a point particle of
charge Z0e, we obtain the radial distribution of the elec-
tron density around the grain. Let the absolute value of
the velocity of all the electrons be the same (V0) and let
the mean electron density be Ne0. The flux of the elec-
trons with impact parameters in the range (ρ, ρ + ∆ρ) is
equal to 2πρ∆ρNe0V0. We consider a spherical layer
bounded by spheres of radii r and r + ∆r around the
immobile point particle; the volume of the layer is
equal to 4πr2∆r. The radial electron velocity in the
spherical layer depends only on the radius of the layer
and is determined from the solution to the Kepler prob-
lem [10]:

(6)

Each electron that enters the spherical layer passes
through it twice and stays inside the layer during the
time ∆t = 2∆r/Vr . The electron density ∆Ne(r, ρ, ∆ρ)
provided in the spherical layer by the flux Ne0V0 of elec-
trons with impact parameters in the range (ρ, ρ + ∆ρ) is
governed by the number of electrons that enter the layer
per unit time, the time required for the electrons to
traverse the layer, and the layer volume: ∆Ne(r, ρ, ∆ρ) =
Ne0V0ρ∆ρ/r2Vr. We integrate ∆Ne(r, ρ, ∆ρ) over all pos-
sible impact parameters in the range 0 < ρ < ρmax, where
ρmax is determined by the condition Vr = 0, to obtain

(7)

This distribution also determines the pair correlation
function for electrons with velocity V0. If, at large dis-
tances from the immobile point particle, the electrons
obey a Maxwellian velocity distribution with tempera-

Na
1/3–

Vr V0 1
2Z0

2e2

mV0
2r

-------------- ρ2

r2
-----–+

 
 
  1/2

.=

Ne r V0,( )
Ne0

r2
--------=

× ρ 1
2Z0e2

mV0
2
r
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r
2

-----–+
 
 
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ture T, then we must average (7) over the velocities. As
a result, we obtain

(8)

The integral I(x) in (8) is expressed through an incom-
plete Gamma function and has the following asymptot-

ics: I(x) ≈ 1 + x for x ! 1 and I(x) ≈  for x @ 1. Since
the Landau length in a collision between an electron
and the immobile point particle is equal to rw = Z0e2/T,
the pair correlation function can be written as

(9)

4. ION–GRAIN CORRELATION FUNCTION

The density of the ions having the same velocity V0
can be evaluated in an analogous manner:

If the ions obey a Maxwellian velocity distribution,
then their density can be expressed as

(10)

The domain of integration in (10) is determined from
the condition for the expression under the square root to
be positive. For a pair ion–grain correlation function,
we have

The problem of a collision event between two
mobile particles is equivalent to the problem of scatter-
ing in the central field, in which case the mass of a par-
ticle should be replaced with the reduced mass of two
particles [10]. Thereby, the correlation functions
derived above can be used to calculate the correlations
between mobile particles.

Ne r T,( )

=  
2Ne0

π
----------- x

Z0e2

rT
----------+ 

 
1/2

e x– xd

0

∞

∫ Ne0I
Z0e2

rT
---------- 

  .=

x

gab r( ) rw/r 1– for r ! rw,=

gab r( )
rw

r
----- for r @ rw.=

Ni r V0,( ) Ni0 1
2zZ0e2

MV0
2r

----------------–
 
 
  1/2

, for r
2zZ0e2

MV0
2

----------------,>=

Ni r V0,( ) 0, for r
2zZ0e2

MV0
2

----------------.<=

Ni r T,( )
4Ni0

π
----------- x x2 zZ0e2

rT
-------------– 

 
1/2

e x
2– dx

xmin

∞

∫=

=  Ni0
zZ0e2

rT
-------------– 

 exp .

gaa r( ) exp
zZ0e2

rT
-------------– 

  1– exp
rw

r
-----– 

  1.–= =



630 MAŒOROV
The electron and ion density distributions around
the immobile point grain, (9) and (10), and the pair cor-
relation functions all have the Debye asymptotics on
spatial scales that are longer than the radius of interac-
tion, rw = zZ0e2/T (the Landau length), and shorter than
the Debye radius. On spatial scales of about the Landau
length and shorter, the asymptotics differ radically
from the Debye asymptotics: being functions of dis-
tance, the correlations between oppositely charged par-
ticles obey the square-root law gab ≈ rw/r rather than the
law gab ≈ (rw/r)1/2 in (4).

5. THE CASE OF A DUSTY PLASMA

The results obtained are of interest from the stand-
point of dusty plasmas. Dust grains usually acquire a
negative charge, which may be very large: Z0 ~ –106

[1, 2]. In a dusty plasma with intense electron thermal
emission, the grains may acquire a positive charge. In
both cases, the region where the ion–grain correlations
are strong can substantially affect the plasma parame-
ters. However, the approach applied in some papers to
describing the processes in dusty plasmas by using the
Boltzmann distribution for mobile particles around the
grains is unjustified.

Analyzing experiments with positively charged dust
grains [3], Nefedov et al. [5] derived corrections to the
Debye interaction potential by retaining third-order
terms in the expansion of the exponential function in
the Boltzmann distribution (2). Although the authors of
[5] considered the potential of the interaction between
the grains, such an approach can only be used to deter-
mine the mean potential around a single grain.

The corrections to the Debye interaction potential
that were obtained in [5] are, as noted above, physically
meaningless and even fail to give a correct answer to
the question of whether the realistic screening potential
is higher or lower than the Debye screening potential.
The surface potential obtained in [5] is lower than the
Debye potential; this corresponds to a screening stron-
ger than the Debye screening. However, formulas (8)
and (9), which were derived with allowance for particle
dynamics around a grain, imply that the grain charge
should be screened to a lesser extent than in the case of
Debye screening. Additionally, higher order correc-
tions may turn out to be of no less importance than the
third-order corrections.

The screening potential derived in [5] merely
describes the repulsion of the grains. To explain the
experimentally observed formation of dust crystalline
structures and dust clouds requires that there be a
potential that acts to attract the grains on long spatial
scales and repulse them on short scales (which should,
however, be larger than the Debye radius). A more sys-
tematic approach is to solve the problem of the interac-
tion between two grains, each surrounded by an elec-
tron cloud (i.e., to take into account the polarization of
the surrounding electron clouds in the interaction
between the grains).

Tkachev and Yakovlenko [6] described a dusty
plasma by numerically solving Poisson’s equation with
a Boltzmann electron density distribution. They calcu-
lated the structures of a “Debye atom” (a positively
charged grain surrounded by an electron cloud) and a
“Debye quasi-molecule.” This terminology was used in
[6], but it seems worthwhile to use the term “Boltz-
mann” (rather than “Debye”). Recall that the Debye
approximation, which is based on the linearization of
the exponential function in the Boltzmann distribution,
provides physically meaningful asymptotics on short
spatial scales too. Explaining the experiments of [3],
Tkachev and Yakovlenko arrived at the conclusion that
the dust grains experienced exclusively attracting
forces due to excessive screening and polarization of
the electron clouds around the grains. Note that, in a
series of papers on modeling the processes of the
extraction of ions from a collisionless plasma during
laser isotope separation (see the literature cited in [6]),
collisional models (such as the hydrodynamic model
and the model with the Boltzmann density distribution)
were applied without any justification. The method for
modeling a collisionless plasma in the problem of laser
isotope separation was considered in more detail in my
recent paper [11].

In the experiments of [3], the distribution functions
of the electrons incident onto the grain surface and the
thermal-emission electrons differ greatly from one
another. That is why the electron distributions around a
point charged grain, which were derived in this paper,
may differ substantially from the real distributions.
Clearly, our results are applicable to finite-size dust
grains only when the distribution functions of the parti-
cles incident onto the grain surface and the particles
emitted by the grain are the same. If these distribution
functions are very different, then the results obtained
here for a point charged grain should be refined.
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NEW 
BOOKS

   
New Textbook on Plasma Electrodynamics: 
A. F. Aleksandrov and A. A. Rukhadze, 

Course on Electrodynamics of Plasmalike Media
(Mosk. Gos. Univ., Moscow, 1999)
The textbook is written by prominent physicists and
acknowledged experts in plasma electrodynamics. One
of the authors (A.A. Rukhadze) belongs to a remark-
able group of physicists who founded this field of sci-
ence. The book is written in a dynamic, visual, and
physically clear language. The principal points and
most important problems are clearly highlighted with-
out going into unnecessary technical details, which
favorably distinguishes this textbook from others. We
believe that this book will help students and experts
working in the fields of plasma physics, electronics,
and physics of solid plasmas. The book reads easily and
with pleasure. It is evident that the authors greatly
enjoy this fundamental and very complicated (but, at
the same time, very important for modern technological
applications) field of science. Theoretical consider-
ations carried out at a high scientific level [however,
without significant mathematics, a bias toward method-
ology, or a tendency for “rigorous” (often only at first
sight) proofs or populist oversimplification] are appro-
priately supplemented and illustrated by estimates,
numerical results, and quoted experimental data.

In our opinion, an obvious advantage of the book is
that it presents problems with solutions on each subject.
This assists not only in better understanding the sub-
jects but also in the transfer of skills in this area. Since
the problems are not “academic” in essence but are
related to the new issues of present-day science and
technology (as an example, we can mention free-elec-
tron lasers, whose history does not amount to even two
decades), they evoke a positive response from the
reader.
1063-780X/00/2607- $20.00 © 20632
For future editions, we would like to suggest that the
authors should supplement the list of the recommended
literature with reviews and monographs recently pub-
lished in Russian and English.

Also, we would like to make the following com-
ments:

1. In our opinion, the difference between the prob-
lem formulations by A.A. Vlasov (1938) and L.D. Lan-
dau (1946) is covered insufficiently. Vlasov solved an
eigenvalue problem (i.e., a Cauchy problem), and it
would be a mistake if he obtained damped solutions. In
contrast, Landau solved an initial problem, i.e., the
problem on the relaxation of an initial perturbation. In
such a problem, the damping or growth of the perturba-
tions (e.g., the beam–plasma instability discovered by
Ya. B. Faœnberg, A.I. Akhiezer, and D. Bohm and
E. Gross) is quite natural.

2. It is worthwhile to include the treatment of non-
equilibrium distributions of waves and particles (see
papers by V.E. Zakharov, B.B. Kadomtsev, V.I. Petvi-
ashvili, R.Z. Sagdeev, E.A. Kuznetsov, S.S. Moiseev,
V.M. Kontorovich, A.V. Kats, V.I. Karas’, V.E. Novi-
kov, etc.).

Finally, note that the book of these remarkable
authors is excellent and can be recommended to a wide
circle of readers.

Ya. B. Faœnberg, Academician 
of the National Academy 
of Sciences of Ukraine 
V. I. Karas’, Professor 
000 MAIK “Nauka/Interperiodica”
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