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Abstract—The simplest model of a shallow seain the form of an isovelocity water layer and a fluid sediment
layer overlying ahomogeneous el astic halfspace is used to investigate the effect of the thickness of the sediment
layer and the sound velocity in it on the behavior of the frequency dependences of the amplitudes of trapped
and leaky modes and shear and longitudinal lateral waves that are excited by an acoustic point sourcein ashal-
low-water oceanic waveguide. © 2000 MAIK “ Nauka/Interperiodica” .

It iswell known that the acoustic field formed in an
oceanic waveguide can be represented as a superposition
of modes that belong to a discrete spatial spectrum and
to a continuous one [1-3]. In the framework of the inte-
gral representation of the acoustic field in a plane-lay-
ered waveguide with the use of the approach to the defor-
mation of the path of integration in the complex plane
from [1-3], the modes of the discrete spectrum are rep-
resented by the residues at the poles of the integrand.
These poles are the roots of the dispersion equation for
the corresponding waveguide system and are usually
caled modes. Naturally, the dispersion equation may
have both real and complex roots [2, 3], where the
former correspond to the trapped modes and the latter
correspond to the leaky ones (quasi-modes|[3]) responsi-
blefor the reradiation of energy to the bottom of the oce-
anic waveguide. The modes belonging to the continuous
spatial spectrum of the field are represented by the inte-
grals over the edges of the corresponding cuts originat-
ing from the branch (ambiguity) points of the integrand,
and these modes correspond to lateral waves [1-3].

Evidently, because of the additional exponential
decay of the leaky modes and the faster decrease in the
amplitudes of lateral waves with distance as compared
to the trapped modes |2, 3], the acoustic field formed in
an oceanic waveguide at large distances from the
source will mainly be determined by the trapped modes
[1-3]. However, from general considerations, one can
expect that, even at relatively small distances, the effect
of the leaky modes and lateral waves on the formation
of the spatial interference structure of the acoustic field
in an oceanic waveguide will be noticeable only in the
case of the propagation of a small number of modes.
Therefore, the determination of the contribution of
leaky modes and lateral waves to the total field is pos-
sible only for relatively low radiation frequencies and,
hence, on the background of asmall number of trapped
modes [4-6]. In rea oceanic waveguides, the condi-
tions corresponding to the propagation of asmall num-

ber of modes at relatively low radiation frequencies are
usually observed in shallow-water regions of the ocean
[7], because the number of trapped modes decreases
with decreasing water depth, aswell aswith decreasing
radiation frequency.

Since the propagation of acoustic wavesin shallow-
water oceanic waveguides is strongly affected by the
ocean bottom, it is important to study the dependence
of the contributions of the leaky modes and latera
wavesto thetotal field on the geoacoustic parameters of
the bottom. For the simplest situations, namely, for the
shallow sea bottom modeled by a homogeneous fluid
halfspace, the effects of the leaky modes[5, 6] and lat-
eral waves [5, 6, 8-10] on the formation of the spatia
interference structure of the acoustic field had been
investigated earlier. However, similar studies with the
use of the bottom model in the form of a homogeneous
elastic halfspace were performed only for longitudinal
and shear waves [10-12] the effect of which (according
to [12]) is noticeable only near the critical frequencies
of the corresponding leaky and trapped modes. Evi-
dently, theresults of such investigations are absent even
for the simplest single-layer model of the fluid sedi-
ment layer of the sea bottom with afluid or elastic base
(bedrock). It should be noted that the effect of geoa
coustic parameters of the fluid sediment layer on the
frequency dependence of the excitation of only trapped
modes was adequately investigated in the framework of
the fluid base model [1, 13-17] and was not considered
in detail in the framework of the model with an elastic
base [13, 18, 19]. Therefore, the aim of our work isto
study the effect of the thickness of the sediment layer
and the sound velocity in it on the behavior of the fre-
guency dependences of the amplitudes of modes and
lateral waves excited by a point source in a shallow-
water oceanic waveguide that is modeled by an isove-
locity water layer and a fluid sediment layer overlying
a homogeneous elastic halfspace.
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To solve this problem, we proceed from the follow-
ing assumptions. Firstly, a point source emitting an
acoustic signal of frequency f is positioned at adepth z,
in an isovelocity water layer with thickness H, sound
velocity ¢, and water density p; areceiver is positioned
in the same water layer at a depth z. Secondly, afluid
sediment layer with thickness h, sound velocity c,, and
density p, overlies a homogeneous elastic halfspace
with velocities ¢, and ¢ of shear and longitudinal
waves, respectively, and adensity p,. Then, by virtue of
the cylindrical symmetry of the problem, in the corre-
sponding coordinate system (r, z), where r is the hori-
zontal distance and z is the vertical axis originating at
the water surface and directed upwards, the solution for
the sound pressure in the water layer can be represented
intheform [3, 11-13]

i ot

P’ = pnRod(k r)e ", (1)
where

o(kr) = jw(a)H(”(ar)ada )

is the displacement potentlal and p,, is the pressure
amplitude generated by the point source in free space

on aspherica surfaceof radiusR,. Here, H(l) (&r)isthe
Hankel function of the first kind; & is the projection of
the wave vector on ther axis; w = 21 isthe cyclic fre-
guency; k = wyc; tistime; and the expression for Y(§)
is determined from the boundary conditions, which
imply a zero sound pressure at the free (upper) surface
of the water layer z = 0, the continuity of the vertical
component of the particle velocity and pressure at its
lower boundary z= —H, and the continuity of the verti-
cal components of the particle vel ocity and stresstensor
and the zero values of the tangential components of the
stress tensor at the lower boundary of the sediment
layer z=—(H + h):

_ 2v®(xy)sin(zx/H)
WO = o

z<z<0, (3

d(x) = sz—“sn(x)[Rb“v“vzcos(xz) — Sy,9Sin(X,)]

4)
+ cos(X)[ Rb*v *y,sin(x,) + Sy,gcos(x,)].

In expressions (3) and (4), the following notation is
used for convenience:

R =plp, S=plps, a=clg, b=clc,
d =clc, v = KIE,

Y, = v2—1, Y, = A/l—azvz,
= A/l—bzvz, Va4 = A/l—vzdz,

x = kHy,/v, X, = (z,+ H)x/H,
2
X, = khy,/v, g = (1+V§) —4Y,Y3.
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For —H < z < z, the expression for Y(§) is obtained
from expression (3) by interchanging z,and z (see[12]).

Asinour previous publications[11, 12], we analyze
expression (2) by using the standard procedure for the
transformation of thiskind of integrals[1-3]. Then, the
integration from —oco to oo will be reduced to the deter-
mination of the residues at the singular points of the
integrand and to the cal culation of the integrals over the
edges of the cuts originating from the branch points § =
ak, & = bk, and & = dk. Since the integrand (3) is sym-
metric with respect to the substitution of -y, for y,, the
integral taken over the edges of the cut corresponding
tothepoint & = kd iszero. Asaresult, expression (2) for
o (K, r) can be represented as a sum of three terms:

(k1) = Omoa(k, 1) + 0i(k, 1) +di(k,r),  (5)

where ¢ o4(K, ) corresponds to the modes, and ¢,(k, r)
and ¢,(k, r) correspond to the longitudinal and shear |at-
eral waves, respectively.

As was mentioned above, ¢4k, ) is determined
by the sum of residues at the poles of theintegrand from
expression (2). Therefore, from formulas (2) and (3)
with the use of the Hankel function asymptotics for
&r > 1, weobtan

ikr/v

M
1
mo k’ = —= Am m, 6
Omoa(k, 1) "/FmZO e (6)

where

2T[kD1( m)
A, = 2«/7 D,(v m)sm(zsx wH)sin(z.x/H);

Dy(v) = iSy;[Rb*vy,cos(x,)
— Sy,98n(x,) /(v cos(x)),

D,(v) = Ssin(x)[Rb4VACos(x2)

+\LZDD

E{ly2 V4Ev

02 O ]
 Syaya008(x) G ~ 20~ 4v§qm}
052 O 0

Syik O O 2 M
[H + Shisin’ (x)+——-—cos(x)DD
v cos(X)[] 0 52y4 0]

x (Rb4v4cos(x2) —Sy,gsin(x,))

2

_\y/_zcos(x)(Rb4V4y4Si N(Xz) — (g +4Y40)Y,C08(Xy)),

Yo
=2 + 12 +
q = 2YyY3 Ya Vs

2-2(1+ V3)
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Here, M is the total number of modes whose contribu-
tions are taken into account, X, = X(v,y, and v, are
dimensionless (normalized to c) phase velocities of
modeswith thenumbersm=0, 1, 2, ...; these velocities
are the solutions to the dispersion equation

®d(x) =0 8)

for the radiation frequencies exceeding the critical fre-
guencies f,, of the modes. For the zeroth (fundamental)
modewith m=0, the critical frequency isf, =0, and for
other trapped modes with the numbersm=1, 2, ..., the
critical frequencies f,, = f, ,, are determined from the
following equation obtained at v, = b:

(1+0Q)tan(x,) O

tan(xs) = —91%+Qz(1_92tan(x4))3 ®
where
v _slew
e T
RJb*-a Ryb™-a o

X; = kHA/1—b°, X, = khy/d*—b’.

If wetake into account only afinite number of leaky
modes whose contributions to the total field is substan-
tial, namely, the modes whose reradiation into the elas-
tic halfspace is caused by the presence of the shear
wave in it, we can determine the approximate val ues of
the phase velocities and critical frequencies of the
modes with a sufficient degree of accuracy.

In this connection, we note that the reradiation of
energy through leaky modes into shear waves occurs
for thefollowing interval of the angles of incidence of
the Brillouin waves corresponding to these modes:
arcsin(a) < 6 < arcsin(b), i.e., theinterval within which
the total internal reflection of the af orementioned inci-
dent waves from the lower boundary of the sediment
layer is absent. The same modes exist in the form of
trapped modes in the absence of shear waves (¢, = 0),
which is caused by the total internal reflection of the
corresponding Brillouin waves from the lower bound-
ary of the sediment layer in the range of the angles of
incidencearcsin(a) < 0 < 1/2. Theread part of the phase
velocity Vg, = Re{v,,} of each of these leaky modes
can be determined within the range of values

/bs vy n<l/a, (b<1)

Hl<ven<la, (b>1) (b

375

with fair accuracy from the dispersion equation corre-
sponding to the three-layer fluid waveguide model [13]

v,
tan(kHvl)[ v3+uv2T} = _—S\—)_[V2+ SvaT} (12)

where
2
Ni -1
v, = VRm ,
VR,m
[l
O véymdz—llvR,m, Vem>1/d 13)
Vo = [
DDA/l—vémdzlvRym, Vem<1/d,
All—azvém
V3 = —”
VR,m
D—l Vem>1/d Dtan(khv) Vrm>1/d
H= Dl Verm<1/d, Dtan(khvz) Vem<1/d.

Naturally, every value of vg , determined from
equation (12) will be a fair approximation for the
determination of the exact value of the complex quan-
tity Vi, = VR m— 1V, 1, from the dispersion equation (8).
The imaginary part v, , of this quantity is responsible
for the reradiation of energy through the corresponding
mode to the elastic halfspace. The critical frequencies
of the corresponding leaky modesf = f, ,, can be deter-
mined with sufficient accuracy from the equatlon

tan(kHA/1— a)tan(khA/d —a) = / , (14)
—a

which is obtained from equation (12) at vg ,, = 1/a.

Here, it is appropriate to note that, as will be seen
from the results of the numerical simulation described
bel ow, such an approach to the determination of the fre-
quency dependences of vg ,, and v, ,,in the framework
of the specific oceanic waveguide model has certain
advantages over the approach based on theintroduction
of an effective complex depth [20-22].

Now, we consider the contributions of the longitudi-
nal ¢k, r) and shear ¢k, r) lateral waves, which
(according to the above description and [1-3, 11, 12])
are determined by the following integral expressions
obtained from formulas (2)—(4):

“sin(zx/H)sin(z, x/H)y2y4(b k2= 283)°HSP(Er)de

o,(k r) = 2RS’ DK’ .[

ak+i0
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bk + i
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sin(z.x/H) sin(zx/H)Y5Y4Y4E He" (Er)dE

o,(k r) = 8RSbK’ I

where
X1 = = Syasin(x)sin(x,) +Y,€08(X) CoS(X,),
X, = Sy,sin(Xx)cos(X,) + Yy, cos(X)sin(X,).

To obtain the approximate expressions that are con-
venient for the integration and to determine the analyt-
ical dependences ¢,(k, r) and ¢.(k, r) resulting from
them, we perform an approximate analysis of expres-
sions (15) and (16). We begin with the study of the lon-
gitudinal lateral wave. Restricting our consideration to
the first term of the known asymptotic expansion of the
Hankel function for large values of its argument and
applying the change of variables as in the method of
steepest descent [1-3, 11, 12]

& = ak+inr, (17)

we represent the expression for the longitudinal |ateral
wave (15) in the form of an integral with respect to the
new real variablen O [0, ):

¢|(k I’) _ 4/:/,{2: |akrR52b J-Ql(n))r]Ze—f] dﬂ, (18)

where
P(n) = (d°=TP)(b*—2T})°
x /Ti(a+T))sin(xz/H)sin(xz/H),

Q(n) = krS'(b*=2T)(d*-TH X,
FI[IRD*X,, —4SJ0° — T2 J? —T2T2X, ] (a+ T)n’,
Xy, = =SJd*—TZsin(x)sin(x,,)

+ /1 =T/ cos(x)cos(X, ),

Xo = SA/dZ—Tfsin(x,)cos(sz)

+ 1T cos(x)sin(X,, ),

x = kHJ1-TZ, x5, = khJd* T/,

T, = a+in’/(kr).

From the analysis of the behavior of theintegrand in
(18), it follows that the presence of the exponential fac-
tor in this function limits the significant range of inte-
gration in expression (18) to relatively small values of
the integration variable N < N, Where 1,4 1S about
severa units. Thus, the approximate expression (18)
not only considerably simplifies the numerical calcula

2.2 2 (16)

bk+i0[Rb k* Yo X, + S(b k? -2 ) V4X1] —1652V2Y3V4E. Xl

tions for ¢,(k, r), but also allows one to obtain the cor-
responding analytical dependences. At large distances
from the source kr > 1, we can assume that the ratio
{ =n?(kr) < 1 issmall. Then, we can restrict our con-
sideration to the zeroth and first terms of the expansions
of the functions P,(n) and Q,(n) in powers of ¢, pro-
vided that the following conditions are met:

44N 280 pa 280
krb®>—2a%)  kr(l-a)  kr(d*-a) 19)
2
nmax < H ar]max < 1 h anmax

Performing the approximate transformations corre-
sponding to conditions (19) for theintegrand from (18),
we obtain an expression for the longitudinal lateral
wave in the form that is more convenient for analytical
calculations:

8i Rab'sin(x,z/H)sin(x,z,/H)

bi(k, 1) =

Jm (b*—2a%)°X2,
iakr® 2 —r]2 (20)
€ J.n e dn’
Fi(n)
where

X1 a = =SJd*—a’sin(x,) sin(x, )

+y1-a’° COS(X,) COS(Xy, 2),
X, = SJd®—a’sin(x,) cos(x; ,)
+A/1—azcos(xa)sin(x2'a),
x, = kH 2 X, . = khid’—a%,

F.(n) = 1+ian’/(kr),

2a iRb*X, J—}
o —4a
(b —2a’)" [SA/ Z_a’X; .

In the derivation of the final analytical dependences
for ¢,(k, r), we consider two limiting situations (as in
[1-3, 11, 12, 23]). First, if, in addition to conditions
(29), the conditions

Salnfnaxl(kr) <1
X, 2% 0

21)
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are met, we assume that F,(n) = 1 and, performing the
integration in expression (20), by analogy with [2] we
obtain

2iRab* sm(xazS/H)sm(x z/H)e™ jake

di(k,r) = . (22)
(b*-22%)°X}, kr®
Second, if the conditions opposite to (21) are met:
2
>
o N (k) > 1 03

|:I>(]_Ya_> 01

which is possible when the radiation frequency tendsto
the critical frequency of one of the leaky modes, f —~
fo, m (Where the critical frequency is determined from
equation (14) identical with the equality X, , = 0), we
obtain F,(n) = ian?/(kr). Performing the integration in
expression (20), by analogy with [2] we obtain

i (k, r)——Ii—sz(d ~a’)(b"-2a")’

iakr (24)

sn(xazS/H)sn(xaz,/H)
X2 a I'

To derive the corresponding approximate depen-
dences for the shear wave field, we use the same
approach asin the analysis of the expression for ¢,(k, r)
(15); namely, we use the asymptotics of the Hankel
function for &r > 1 and achange of variables similar to
(17) and typical of the method of steepest descent:

& = bk+in’r. (25)
As aresult, expression (16) takes the form
16,\/§I 4 _ibkr Pt(n) 2 —r]
k r) = ——22RSbe e"dn, (26
o.(k, 1) T IQt( N n, (26)
where

P(n) = (@ =T -THT 2 o+T,
x sin(xz/H)sin(x.z/H),

Q(n) = kr[iRb*Ja’ ~T¢X,,
— (02— 2T (P =THX, ]
+i16S°(a° - TH(d* = T)(b + TYTXE 0’

Xy, = =SJd*=TZsin(x)sin(x, ,)
+ A/l—chos(xt)cos(th),
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X1 =S dZ—Tfsin(xt)cos(xzyt)
+ A/1—Tt2cos(xt)sin(x2' 0

x = kHJ1-TZ, X, = khJd* =T,

T, = a+in?(kr).

Here, it should be noted that, as expression (18),
expression (26) is convenient for numerical integration
owing to thefast decay of theintegrand with growingn.

Assuming that, at large distances from the source
kr > 1, the conditions

2bN 2bN 2bN
kr(b®>=2a%  kr(l=b)  kr(d* b

( ) ( ) ( ) N
nmax 3 H DN <1, h bnmax

are met and performing approximate transformations
of the integrand in (26) in the same way as in going
from expression (18) to expression (20), we obtain an
approximate formula for the displacement potential of
the shear lateral wave:

iRb*Bsin(x,z/H)sin(x,z/H)

bi(k, 1) =
‘ X,
(28)
ibkr ®
<& ne dn
kr? d Fo(n) ’
where

Xy p = =Syd*—b’sin(x,) sin(x, )

+.J1-1° COS(Xp) COS( Xy, b),
X, = Syd® —b’sin(x,) cos(xX )

+ MCOS(Xb)Qn(Xz, b))
% = KHA1-D, %, = kho/d—b",
Fa(n) = 1-iBn’(kr),

_ _ RXy, b’ —a’
B - 3.2 , Q= SX 2 2
b’Q LoNd’—b

Suppose that, in addition to conditions (27), the sit-
uation under study meets the conditions

2 2
32(b?—a%) i1

nZ./(kr) <1
O Q(f)#0,

(29)
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which occur at frequencies widely different from the
critical frequencies of trapped modes, f # f; ., (wherethe
critical frequencies are determined from equation (9)
identical with the equality Q(f) = 0). Then, we can
assume that F,(n) = 1, and, by analogy with [2], from
expression (28) we obtain
sin(xpz/H)sin(xyz/H) ™"

(XoZs )2 (XpZ )6_2 (30)
Xib kr

If the conditions opposite to conditions (29) are met,
i.e., if thefrequency isacritical onef = f, ,, we assume
that F(n) = —iBn%(kr), and, by analogy with [2], from
expression (28) we obtain

du(k, 1) = ;RO

ibkr

2 .
d,(k, 1) = -2 S‘“(Xsz/H)ZSIn(xbz,/H)e_'
2 X1b r

The approximate analytical dependences obtained
for the displacement potentials of the longitudinal (22),
(24) and shear (30), (31) lateral waves allow usto make
some qualitative conclusions concerning the relative
contributions of these waves to the total field.

Near the critical frequencies of theleaky f=f, , and
trapped f = f; ., modes, the amplitudes of the Iong|tud|
nal and shear |ateral waves, respectively, decrease with
distance much slower, namely, as ¢,(k, r) ~ 1/r (24) and
¢.(k, r) ~ 1/r (31), than at other frequencies at which the
dependences ¢,(k, r) ~ 1/r? (22) and ¢(k, r) ~ 1/r> (30)
take place. Hence, at large distances from the source,
the frequency dependences of the amplitudes |¢,(k, r)|
(15) and |¢(k, )| (16) of lateral waves should exhibit
narrow, quasi-resonance peaks at the corresponding
characteristic frequenciesf = f, ,and f = f; . The char-
acteristic widths of the peaks Af  m(r) and Af (D),
decrease with distance and with i mcreas ng order num-
ber of the critical frequency, because, in both these
cases, the dimensionless parameter, which governs the

€1y

A,

0.6 2,

50 fHz

0 10 20 30 40

Fig. 1. Dependences of the normalized amplitudes of
trapped modes A, (32) on the frequency f for h = 0 (solid
lines) and 20 m (dotted lines). The mode numbers are indi-
cated near the corresponding curves.
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corresponding asymptotic behavior of |¢(k, r)| and
|d(k, )], increases: kr > 1.

Owing to the described features of the behavior of
lateral waves (for alateral wave in a waveguide with a
homogeneous fluid bottom, these features were
described earlier in [2]), a pulsed excitation of the
waveguide will be accompanied by a narrow-band fil-
tering in the longitudinal and shear wave pulses.

Expressions (6), (18), and (26) derived above alow
us to study the effect of the sediment layer on the fre-
guency dependences of the excitation amplitudes of
trapped and leaky modes (6), as well as longitudinal
(18) and shear (26) lateral waves.

To perform the corresponding numerical calcula-
tions, we use the acoustic parameters of the shallow-
water oceanic waveguide and the transmission and
reception depths that correspond to the conditions of
the full-scale experiments [11, 12, 18]: ¢ = 1538 m/s,
C, = 1700 m/s, ¢, = 2400 m/s, ¢, = 4000 m/s, p =1 X
10° kg/m?, ps=1.6 x 103 kg/m?, p;=3 x 10° kg/m?, H =
45m,h=0-20m, |z|=12m, and |z| =39 m. Asin our
previous publ ications [11, 12, 18], werestrict ourselves
to studying the behavior of ¢4k, ) (6), ¢k, r) (18),
and ¢,(k, r) (26) inthelow-frequency range0<f <60 Hz
within which the corresponding types of waves notice-
ably affect the formation of the space-frequency inter-
ference structure of the acoustic field. To simplify the
comparison of the calculated values, we consider the
frequency dependences of the normalized amplitudes
of trapped A, and leaky A, modes and shear A, and lon-
gitudinal A lateral waves:

kr
= [AdIA, Ay = [AdexpF——V, A,
|V (32)

A = bk /A, A = ok n)|/A.

In formulas (32), the amplitudes are normalized to the
maximum value A of the sum of the amplitudes of
trapped modes in the frequency range under study, 0 <
f <60 Hz, in the absence of the sediment layer (h = 0):

l
A = maxDZ|Am|a
am

The results of our numerical simulations are pre-
sented in Figs. 1-5. From the analysis of these results,
we draw the following conclusions.

First (Fig. 1), with increasing sediment layer thick-
ness h, the amplitude of the zeroth (seismic) mode
steeply decreases in the lower-frequency part 0 < f <
40 Hz of the frequency range under study and slightly
increases at higher frequenciesf > 40 Hz. According to
our previous publication [25], a decrease in the sound
velocity in the sediment layer by 100 m/s leads to a
considerable decrease in the amplitude of this mode
only for f> 20 Hz. Thus, in the frequency range 0 < f <
20 Hz, the amplitude of the zeroth mode will be mainly

(33)

h=0
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0.1r

0 10 20 30 40 50 f,Hz
Fig. 2. Dependence of the normalized amplitude of the
shear lateral wave A; (32) on the frequency f at the distance

r =20H for h =0 (solid line) and 20 m (dotted line).

Ab
0.015F
4
0.010[
0.005 - I
Y 2
0 10 20 30 40 50 f Hz

Fig. 4. Dependences of the normalized amplitudes of leaky
modes Ay, (32) on the frequency f at the distancer = 20H for
h =0 (solid lines) and 20 m (dotted lines). The mode num-
bers are indicated near the corresponding curves.

determined by the sediment layer thickness with all
other conditions being the same.

Second (Figs. 2, 3), the amplitude of the shear |at-
eral wave is by almost an order of magnitude greater
than the amplitude of the longitudinal lateral wave.
With an increase in the sediment layer thickness, the
narrow peaks in the frequency dependences of the
amplitudes of the shear (at the critical frequencies of
trapped modes f = f; ) and longitudinal (at character-
istic frequencies of leaky modes f = f, ) lateral
waves are shifted toward lower frequencies. Simulta-
neously, the height of the lowest-frequency peak of
the shear lateral wave decreases by less than 30%,
while the height of the corresponding peak of the lon-
gitudinal wave decreases. A decrease in the sound
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Fig. 3. Dependence of the normalized amplitude of the lon-
gitudinal lateral wave A, (32) on the frequency f at the dis-
tancer = 20H for h = 0 (solid line) and 20 m (dotted line).
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Fig. 5. Frequency dependences of the leaky mode reradia-
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thelongitudinal wave number k; = w/c; for h =0 (solid lines)

and 20 m (dotted lines). The mode numbers are indicated
near the corresponding curves.

V). mnormalized to

velocity in the sediment layer leads to noticeable
changes in the amplitudes of the shear and longitudi-
nal lateral waves only in the higher-frequency range
f > 20 Hz (see[25]). Naturally, the widths of all spec-
tral peaks of lateral waves are considerably reduced
with distance (see [25]).

Third (Figs. 4, 5), In the absence of the sediment
layer, theleaky modesthat occur in the frequency range
under study within distancesr > 20H make anegligible
contribution to the total field, and this contribution isby
an order of magnitude less than even that of the longi-
tudinal lateral waves. In addition, the frequency depen-
dences of the leaky modes and the longitudinal latera
waves have different positions of the corresponding
peaks. With increasing thickness of the sediment layer,
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Fig. 6. Frequency dependences of the normalized ampli-
tudes of (a) the zeroth mode A, (b) the longitudinal lateral
wave A, and (c) the shear lateral wave A; at the distance
r =20H for cg= 1700 m/s and ¢; = 1500 m/s. The numbers
near the curvesindicate the corresponding val ues of the sed-
iment layer thickness: h =0 and 10 m.

the maximum values of the leaky mode amplitudes
noticeably increase, this increase being the greater the
higher the sound velocity in the sediment layer is (see
[25]). However, because of the exponential decay of
the leaky modes with distance, their contribution to the
total field can be neglected for r > 20H.

Here, we should note an interesting fact: the fre-
guency dependences of the attenuation (reradiation)
coefficients of some leaky modes have single relative
minimaat certain frequencies (Fig. 5). With increasing
sediment layer thickness, the number of leaky modes
having such minima increases, and the corresponding
minimum values of the attenuation coefficients first
increase and then decrease. A dlight decrease in the
minimum val ues of the attenuation coefficients of leaky
modes is aso observed with a decrease in the sound
velocity in the sediment layer.

BORODINA, PETUKHOV

On the basis of the above theoretical study of the
behavior of the frequency dependences of the mode and
lateral wave amplitudesin the specific propagation con-
ditions [11, 12], one can conclude that the space-time
interference structure of broadband sound that was
observed in the experiments [11, 12] in the frequency
range below the critical frequency of thefirst mode, 0 <
f < f,,, can be only caused by the interference of the
seismic zeroth mode with the shear lateral wave. This
conclusion isjustified by thefact that, at such relatively
low frequencies, the dominant contribution to the total
field is made by the zeroth mode and the shear lateral
wave whose amplitudes are comparable in magnitude
for various allowed values of the sediment layer thick-
ness.

Naturally, the above conclusions concerning the
contributions of different types of waves to the total
field are generally valid for shalow-water oceanic
waveguides with acoustic parameters of the bottom of
the same kind as those in the experiments [11, 12, 18],
i.e., with ¢, > c. However, the situation isentirely differ-
ent when the sound velocity in water exceeds the shear
wave velocity in the bottom. Already as ¢, — c, the
critical frequencies of the trapped modesincrease with-
out bound: f; ,, — 0. Hence, for the velocities ¢, < c,
only one trapped mode will remain, namely, the zeroth
mode corresponding to the Rayleigh surface wave
maodified by the presence of the water and sediment lay-
ers. Thiswill result in the disappearance of the narrow
peaks in the frequency dependence of the amplitude of
the shear lateral wave. However, such peaks will
remain for the longitudinal lateral wave, which now
will predominate in amplitude (Fig. 6). With increasing
thickness of the sediment layer, the only relatively wide
peak in the frequency dependence of the amplitude of
the shear lateral wave noticeably decreases in height
and moves toward lower frequencies. Similar changes
are observed in the corresponding dependence for the
zeroth mode (Fig. 6).

Thus, in shallow-water oceanic waveguides with an
elastic bottom, the fluid sediment layer substantialy
affects the frequency dependences of the amplitudes of
the trapped and leaky modes, as well as shear and lon-
gitudinal lateral waves, not only at relatively high fre-
guenciesf > ¢/H, but also at relatively low frequencies
f <c/H.

In closing, we note that, by now, there exist efficient
methods that alow one to perform numerical calcula
tions on the basis of the initial integral expressions for
different parameters of acoustic fields in oceanic
waveguides with a complex bottom structure (see, e.g.,
[24]). However, the known approximate methods used
in this paper for determining the contributions of differ-
ent types of waves to the total field (see [1-3]) remain
of interest for theinterpretation of the results of the cor-
responding numerical [24] and, in particular, of the
full-scale [11, 12, 18] experiments.
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Abstract—Results of direct measurements of the acoustic pressure distribution in a phase-conjugate ultra-
sonic beam in the focus of a converging lens are presented for two types of parametric phase-conjugating
elements, namely, with flat and grooved working surfaces. It is demonstrated that grooving noticeably
improvesthe quality of focusing of an ultrasonic beam generated in water by a solid phase-conjugating element.

© 2000 MAIK “ Nauka/lnterperiodica” .

Currently, researchers connect the progress in the
utilization of the phenomenon of ultrasonic phase con-
jugation [1] mainly with such applications as acoustic
microscopy [2, 3] and ultrasonic hyperthermia [4]. In
these and many other cases of practical interest,
focused acoustic beams propagating in aliquid or lig-
uid-like media are used. We should note that, e.g., in
hyperthermia, high-quality focusing must be provided
for high-intensity and, therefore, nonlinear ultrasonic
beams. Evidently, the possibility of the practical usage
of phase-conjugating systems for such applications is
determined in many respects by the quality of phase
conjugation of focused ultrasonic beams, which is pro-
vided by these systems.

Parametric phase-conjugating systems operating
beyond the threshold of the absolute parametric insta-
bility of acoustic oscillations are among the most prom-
ising devices. Asitisknown [1, 5], they are capable of
real-time generation of phase-conjugate beams with an
intensity several orders of magnitude higher than the
intensity of an incident beam. The first quality studies
of phase-conjugate ultrasound in parametric systems
using polycrystalline ferrite materials were presented
in our previous papers [6, 7]. It was demonstrated that
considerable nonuniformity of the angular dependence
of the efficiency of phase-conjugating conversion is
inherent in cylindrical phase-conjugating elements
with flat faces loaded by a liquid medium. This may
lead to a deterioration in the quality of phase-conjugate
beams with a broad spatial spectrum because of the
unequal conversion of different spatial components of
the incident beam spectrum. It was also found that the
best resultsin smoathing off the angular dependence of
the efficiency of phase-conjugating conversion are
attained by using the effect of phase-conjugating com-
pensation of the phase distortions, which are intro-

duced by inhomogeneities directly at the input to the
phase-conjugating medium. In this case, it was possible
to expand the angular range of the phase-conjugating
conversion of plane waves incident from water upon
the phase-conjugating element up to +16° (at the level
-3 dB) without introducing any additional loss.

However, the evaluation of the quality of phase con-
jugation by the form of the angular dependence of the
efficiency of phase-conjugating conversion is not
always convenient in practice. Therefore, adirect study
of the phase-conjugating focusing for one or another
specific conditions seems to be quite important.

This paper presents the results of direct measure-
ments of the acoustic pressure distribution in a phase-
conjugate ultrasonic beam in the focus of a converging
lens for two types of the parametric phase-conjugating
element: with flat and grooved working surfaces. It is
demonstrated that grooving noticeably improves the
quality of focusing of an ultrasonic beam generated in
water by a solid phase-conjugating element.

The experimental scheme is given in Fig. 1. An
ultrasonic pulse with the duration 20 ps and the carrier
frequency f = 6.23 MHz is radiated into water by a
focusing transducer (/) with the diameter 15 mm and
the focal length 39 mm. The incident beam intensity is
low, so that its propagation is purely linear. A cylindri-
cal phase-conjugating element (2) made of nickel-cobalt
ferrite with adiameter of 36 mm and alength of 150 mm
isplaced into an inductance coil and positioned at adis-
tance of 132 mm from the transducer. This distance is
selected in such way that, in the geometric approxima:
tion, theincident beam entirely fallsinto the aperture of
the phase-conjugating element. Two ferrite samples
were used in the experiments: one of them had plane-
parallel faces, while the other had a special profile on

1063-7710/00/4604-0382%$20.00 © 2000 MAIK “Nauka/Interperiodica’



IMPROVEMENT OF THE FOCUSING QUALITY BY PARAMETRIC PHASE CONJUGATION

its liquid-loaded surface. The profile had the form of
closely cut concentric grooves that were 2.5 mm wide
and 0.6 mm deep (the curvature radius of the groove
cross-section was 1.59 mm).

When an ultrasonic pulse getsinside the phase-con-
jugating element, a parametric pumping pulse with the
frequency 2f = 12.46 MHz and duration 100 psisfed to
the coil, which leads to the generation of a phase-con-
jugate and amplified ultrasonic pulse (a more detailed
description of the operation of the used parametric
phase-conjugating system is given in our earlier papers
[1, 5, 7]). While propagating in water in the opposite
direction, the conjugate beam is focused almost at the
same point as the incident beam.

The measurements of the transverse distribution of
the sound pressure amplitude were conducted in the
focal plane using a PVDF membrane-type hydro-
phone (3) connected to a Tektronix TDS340A digital
oscilloscope via a wide-band amplifier. A short interval
(~1 ps) close to the maximum of the envelope of the
phase-conjugate pulse is selected for the analysis, and
the difference between the maximum and minimum
pressuresis calculated within it. Averaging over 64 sam-
plesis used to increase the precision of the results. The
hydrophone positioning is performed by a scanning
system with the step 0.2 mm. Since the transmission
lossis small (<3 dB), the hydrophone is amost trans-
parent to acoustic waves in the operating frequency
range. In combination with the small size of the sensitive
element of the hydrophone (~0.5 mm), this allowed
amost unperturbed measurements of the parameters of
both incident and reflected waves with arelatively high
spatial resolution. The absence of disturbances intro-
duced into the incident wave is fundamentally impor-
tant for the experiments on the real-time studies of the
phase-conjugation quality.! The angular uniformity of
reception is determined by the sufficiently wide direc-
tivity pattern of the hydrophone (30° at thelevel -3 dB).

Figure 2 showsthe results of the measurements. The
peak-to-peak pressure amplitude in the focus of the
phase-conjugate beam reached the value ~1.5 MPafor
both samples. The wave had the form given at the top
right of Fig. 2. The dotsin the figure show the normal-
ized transverse distribution of the pressure amplitudein
the incident wave. The deviation of the incident field
distribution from the theoretical dependence J,(ar)/ar
is explained by both the imperfection of the focusing
transducer and the finite dimensions of the receiving
part of the hydrophone, which lead to the effect of field
averaging. At the same time, the size of the main focal
spot is close to the theoretical value for the given lens:
1.22FA/d = 0.77 mm, where A is the acoustic wave-
length and d and F arethe aperture and the focuslength,
respectively. The dashed line corresponds to the conju-
gate wave generated by the sample with aflat operating

1 Earlier, we used |aser soundi ng of acoustic fields for this purpose.
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Fig. 1. Smplified experimental scheme. (1) A focusing
ultrasonic transducer; (2) a phase-conjugating element
made of magnetostrictive ferrite with a parametric pumping
coil; and (3) aPVDF hydrophone scanned in thefocal plane.
Thin lines with arrows show the paths of the direct and
phase-conjugate ultrasonic beams.

surface. The misfit of curves clearly manifestsitself for
large displacements from the acoustic axis (r = 1-3 mm)
and demonstrates the distortions taking place in this
phase-conjugating conversion.

The normalized distribution of a phase-conjugate
wave produced by the sample with the grooved surface
is shown in Fig. 2 by the solid line. As one can see,
there is a noticeable improvement in the quality of the
reproduction of theinitial field. As against the previous
case, a considerable suppression of the side peaks
occursin the phase-conjugate wave, with simultaneous
insignificant broadening of the central spot.

The observed improvement of quality can be
explained in the following way. The plane interface
between theliquid and the solid playstherole of acom-
plex set of narrow-band filters because of the total
reflection of some components of the incident beam
spectrum and a highly nonuniform (in amplitude)
refraction of other components. On the whole, this set
considerably reduces the effective angular aperture of
the phase-conjugating element [6, 7]. As a result, dif-
fraction-type distortions (parasitic side peaks) arise in
the phase-conjugate beam. The relief located at the lig-
uid—solid interface unifies the transmission conditions
for al spectral components incident upon the phase-
conjugating element. In this way, by transforming the
spatial spectrum of the incident beam, it expands and
smoothes out the angular dependence of the transmis-
sion coefficient of acoustic wavesthrough theinterface.
Under such conditions, a greater number of compo-
nents of the incident wave takes part in the phase-con-
jugating conversion, and this occurs with approxi-
mately equal weights for all components, which
improves the quality of phase conjugation. The recon-
struction of the initial spatial structure of the incident
beam in the process of the transmission of the phase-
conjugate wave through the same inhomogeneities is
provided by the phase-conjugate character of its front.
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Fig. 2. Normalized distribution of acoustic pressurein thefocal plane. The dotsindicate the incident beam, and the dashed and solid
lines indicate the phase-conjugate beams for the cases of the flat and grooved surfaces of the phase-conjugating element, respec-
tively. The form of the phase-conjugate wave in the focus, which is similar for both cases, is given at the top right of the figure.

Theinfluence of the nonlinearity of the propagation
medium on the quality of the parametric phase conju-
gation of focused ultrasonic beams needs special inves-
tigation, and we will consider it in our upcoming pub-
lications.

Thus, the conclusion made in our previous paper [7]
on the higher quality of the ultrasonic phase conjuga-
tion performed by phase-conjugating elements with
grooved working surfaces is confirmed experimentally
for the case of focused phase-conjugate ultrasonic
beams of high intensity.
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Abstract—For steady-state vibrations of an anisotropic elastic body of finite dimensions, amethod of the deter-
mination of the vibration energy flows in the body is proposed. The method is based on the measurements of
the surface values of the stress and displacement vectors at a part of the boundary. The proposed algorithm of
the wave field reconstruction is reduced to solving nonclassical boundary integral equations of the first kind
with smooth kernels. The formulation of these equations does not require the determination of fundamental
solutions, but represents a conditionally well-posed problem. The numerical realization of the proposed method
isbased on the Tikhonov regul arization method and the idea of the boundary element method. Numerical exper-
iments consisting in the reconstruction of the displacements and stresses at the boundary of a rectangular and
acircular domains of austenitic steel are performed in the framework of a planar problem of the orthothropic
elasticity theory. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The problem of field reconstruction in an elastic
medium is an important problem of intensimetry,
which determines the vibration energy flows in struc-
tures from the measured surface values of the stressand
displacement vectors. From the viewpoint of applica-
tions, the most interesting case is that with the zero
components of the stress vector at the boundary of an
elastic body. The formulation and the solution of the
problem of the wave field reconstruction for an isotro-
pic elastic medium can be found in the literature [1-3].
The problem has been solved on the assumption that, at
the free boundary of an elastic body, the components of
the displacement vector are known. Such a problem is
reduced to aFredholm integral equation of thefirst kind
with a smooth kernel, and is an ill-posed problem.

In this paper, we consider similar problems for an
anisotropic elastic medium. We propose an agorithm
of the wave field reconstruction on the basis of a differ-
ent type of eguations. One of the versions of these
equations has been proposed in [5] and applied to solv-
ing classical boundary-value problems of acoustics and
theory of elasticity in [6, 7, 9].

FORMULATION OF THE PROBLEM

Consider steady-state vibrations of an anisotropic
simply-connected elastic body V bounded by a smooth
surface S We assume that part of the surface S, [J Sis
availablefor the displacement measurements. Then, the
problem of the field reconstruction for the body V can
beformulated asfollows. Determine the components of
the displacement vector u; that satisfy the system of
equations[8]

Cijk|Uk,|j+p(U2Ui =0, i=123 (1)

and the boundary conditions at the surface S
Uls = Uo, 4 = CjUiNje = Pios 1 =123,
where ¢y are the components of the elastic constant
tensor satisfying the elastic symmetry relations

Cijik = Cuij 3)

and the condition of the positive definiteness of the spe-
cific strain energy

Ciji = Cjin =

1
W(e) = écijkluk,lu' 20. “4)

L=

Here, n; are the components of the unit vector of the
outer normal to the surface S The formulation of the
boundary-value problem (1), (2) is uncommon for
elliptic equations in mathematical physics and, specifi-
caly, in the theory of elasticity.

In studying the boundary-value problem with the
boundary conditions (2), the main questions to be
answered are those about the uniqueness and the stabil-
ity of the solution under small perturbations.

In the framework of the isotropic elasticity theory,
the uniqueness of the problem formulated above has
been demonstrated and the stability of this formulation
was considered by Bobrovnitskii et al. [1, 3]. In solving
the system of Fredholm integral equations of the first
kind with smooth kernels, the key step was the expan-
sion of the displacement vector in normal modes. The
cited papers also determine the criterion relating the
accuracy of the field reconstruction to the dimensional-
ity of the approximating model. We note that the
boundary-vaue problem (1), (2) can be easily reduced
to the Cauchy problem for equations (1) of the anisotro-
pic elasticity theory. For these equations, the unique-

1063-7710/00/4604-0385%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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ness is proved in much the same way as the Holmgren
theorem [4].

One of the approaches proposed in the cited papers
[1, 3] and leading to the solution of a system of Fred-
holm equations of the first kind requires knowledge of
the Green’s matrix function of the problem, which
causes mathematical difficulties in solving specific
boundary-value problems for bounded bodies. In this
paper, we propose another formulation of the operator
equations basing on the relation between the known
field components and the unknown ones.

REDUCTION OF THE PROBLEM OF THE WAVE
FIELD RECONSTRUCTION TO A SYSTEM
OF INTEGRAL EQUATIONS

To reduce the formulated nonclassica boundary-
value problem for equation (1) with boundary condi-
tions (2), we use the ideas underlying the derivation of
the systems of boundary equations for classical bound-
ary-value problems [5—7, 9]. The approach is based on
the use of the Fourier integral transform and the follow-
ing representation of the displacement vector trans-
forms[5]:

pkm(av (*))Vm(a).

U(a) = RO k=123 (5

where

Ua) = luk(x)e““’dvx;

V,(a) = [[omjnj—ia,-cmjk|ukn|]ei("’x)dsx,
m=123;
Po(at, ) = detA, A = ||AL(a, )|,
An(@, @) = Cryjg0 0 — 007 PSpy;

P(0, w) are the components of the matrix B
adjoined to the matrix A: BA = p,(a, W)E (E isthe unit
matrix); and

o = (a4, 0,035, (O,X) = 01X, +A,X, + 05X,

We note that the set of zeros of the polynomial py(a, w)

%jl isrelated to the solution of the Christ-
offel equation [8], whence it follows that p,(a, w) is
zero on three real manifolds.

Let us analyze the set of zeros of the polynomial
Po(a, w) for complex vaues of a;. We introduce the

dimensionless variables 3; = k''a;, k = w/c, and ¢ =
P/ Ca333 - At fixed values of 3, and [3,, the dimension-

for real n; =

VATUL’YAN, SOLOV’EV

less equation py(a, w) = k°py(B, 1) = 0 has six roots
Bs = BBy, Br), Wheres=1, 2, ..., 6. Inthecase Imf3, =
ImpB, = 0, these roots may include only real ones or
pairs of complex conjugate roots because of the real-
valued coefficients of the polynomia p,(B, 1). At the
next step of our analysis, we divide the set of the roots
P = {B:(B;, B,)} into two components P, and P_. When

IB: + B3] —= o, the quantities B, become purely
imaginary by virtue of the positive definiteness of the
elastic energy (4). We assign the roots, for which

ImBss>0at |B; + B3| —= oo, to the set P,; in addition,
at ImBs = 0, to the set P, we assign the roots (3, for
which Re;s> 0. Asaresult, wehave P, = {35, Bs,, B33}

Further analysis of representation (5) for the com-
plex values of a; leads to the following conclusions.
The left-hand member of equation (5) containsthe ana-
lytical functions of a;, and the right-hand member con-
tains the functions with poles on the set P. This contra-
diction is eliminated by the fact that the numerator of
the right-hand member of equation (5) vanishes on the
set P. Thisleadsto anumber of solvability relations, six
of them being independent:

Pra (0, Ay, £035(0 4, 05, W), W)

(6)

xV, (ag, d, 0. (a,d, w) =0, s=1,23.

When relations (6) are valid, the remaining equalities
(at m= 2, 3) are identically satisfied. If the domain V
possesses some symmetry properties, and some bound-
ary conditions are set, the number of independent equa-
tions may be reduced to three.

We note that the set of equalities (6) can be inter-
preted as a system of integral equations relating the
known and the unknown quantities at the boundary S

(i.e., the quantities OiNjls,» Uils, and OijNjls,» Uils,

respectively). Thus, equalities (6) represent a system of
integral equations of thefirst kind with smooth kernels,
and their inversion procedure should require a regular-
ization [10]. We note that the right-hand members of
these operator equations represent smoothing (integral)
operators of the given (measured) functions; therefore,
such a problem is a conditionally well-posed one, and
the inversion procedure can be efficiently performed
with the use of discretization and atransition to afinite-
dimensional version.

EXAMPLE: PLANE DEFORMATION
OF AN ORTHOTROPIC BODY

As an example, we consider the system of boundary
integral equations for an orthotropic body. Such prop-
erties are characteristic of austenitic steel [11] and
many composite materials in the framework of the
effective modulus concept.

No. 4
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The resolving system of integral equations has the
dimensionless form

P11 (B, £B3s(B1))V1(kBy, £kBs(PBy))

+ P13(Br £Bas(B1))Va(kBy, £kBss(B1)) = 0,
s=1,2;

P11(B1s Bs) = Vsﬁi + Bg— 1,

P13(B1, Bs) = —(Ys+Y7)BiBss
(7

V1(kBy, kBs) = I(011n1 + 043N —1k((B1nyY,

+B3ngys)u; + (BiNgy, + BsnyYs) Us)ei KB9g Ly,

V3(kBy, kBs) = I(oslnl + 033N3 —1K((B1N3Ys
L
+B3Nnyy7)uy + (BingYs + B3n) Us)elk(& “d Ly,

where
K=0./p/Cs3, Y = C11/C33, Y5 = C44/C33,
Y7 = C1alCa3,  Bas(B1) = iMs(B1), s=1,2,
172

Ke(B1) = [AL(By) —i (-1)°(A(B)YAT,
Ai(By) = (2vs) " [(Y1—2Ysy7s — V2B — (1 +Vs)],

Ay(By) = —(AL(BL))” + (vs) (1 —y1BD) (1 -YsBY).

Figure 1 shows the dependences 3:4(B,) for austen-
itic steel with the following material constants [11]:

p =0.812 x 10* kg/m?, ¢;; = 0.2627 x 10* N/n?,
C13 = 0.145 x 1012 N/m?, ¢z = 0.216 x 1012 N/m?,
and c,, = 0.129 x 10'2 N/m?.

The system of equations (7) relates the known and
unknown components of the displacement vector and
the stress vector on the contour L =L, 0 L,. We assume
that, on the part L, the quantities

ui|Ll = fi, (Iijnj|L1 =g, i=13 )
are given, and on the part L,, the quantities u I andt =

o;n;|_ (i =1, 3) are unknown. For these unknowns,
equalities (7) represent a system of Fredholm integral
equations of thefirst kind with smooth kernels, and this
system is equivalent to the initial boundary-value prob-
lem. In fact, these equations are the consegquence of the
reciprocity theorem formulated in the elasticity theory
for true fields and inhomogeneous plane waves in an
orthotropic medium.
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For such operator equations, the inversion proce-
dureisill-defined, and it is based on the combination of
the idea of the boundary element method and the
Tikhonov regularization method, as was demonstrated
earlier for the Helmholtz equations [5] and for the anti-
planar problem of the anisotropic elasticity theory [9].

As examplesillustrating the proposed approach, we
consider two planar problems for a rectangular and a
circular domain, for an orthotropic material with the
elastic constants specified above.

Field Reconstruction for a Rectangle S= /0, a] x [0, b]

On L] = {{Xl = 0, X3 D [b], b]} |:| {X3 = b, Xl |:|
[0,a]} O {x; = a, X; O [b,, b]}}, we have the given
functionsf, and g; (i = 1, 3) defined by expressions (8);
these functions correspond to the displacement and the
stress fields calculated on the basis of the generalized
Hooke law:

Up (X, X3) = Re{—p13(By, Bs) Z(Xy, X3)},
Us(Xy, X3) = Re{ pra(Br, B3)Z(Xy, X3)},
011(Xy, X3) = CxsRe{ik(—y1P13(By, Bs)B:
+Y7P1 (B B3)Bs) Z(Xy, X3) },
013(Xy, X3) = CxsRe{ikys(—pis(By, Bs)Bs
+ P1a(By, Ba)B1)Z(Xy, X3) }
O33(Xy, X3) = CxsRe{ik(—y7P1s(B1, Bs)B:
+ Pu(Bu B3)Bs) Z(Xy, X3) },

where Z(X,, X;) = explik(B,X; + Bsx3)] and B; = B5,(B)).

The unknownsto bereconstructed on L, = {x, 00 [0, &],
X, = 0} arethe quantities u(x;, 0), 015(x;, 0), and a35(X;, 0).
Figure 2 shows the plots of the functions u,(x;, 0) and
Us(X;, 0) at the boundary L, fora=1,b=1,b, =b, =0,

ka =11, kp, = 3,
kB, = —2.2507 + 1.7817i.

Curves I and 2 in Fig. 2 correspond to the exact solu-
tion of system (9), and the dashed lines and stars corre-
spond to the numerically reconstructed values. Figure 3

©)

(10)
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presents similar dependencesfor 0,5(x;, 0) and as;(X;, 0).
The calculations were performed by dividing the
boundary L, into 20 elements. The results of the calcu-
lations demonstrate a sufficient accuracy of the field
reconstruction in the problem under study in awidefre-
quency range.

0, €

04r
03

0.2 fi

Fig. 4.
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Field Reconstruction for a Circle S= {x,, x;|(x, - R} +
(%;— R <R}

We studied the efficiency of the proposed method of
the elastic field reconstruction as a function of the size
of the boundary part L, = {X;, = R+ Rcosy), x; = R+
Rsiny, Y O [, 21} available for the measurements of
the elastic field parameters determined by relations (9)
and (10). The unknowns are the components of the dis-
placement and stress vectorson L, = {X;, = R+ Rcosy,
X =R+ Rsiny, ¢ O[0, Y,]}. For R=0.5, Fig. 4 pre-
sents the plots of the relative errors d (curve 1) and €
(curve2)

N

max,_|u, —uy]

2 2 L,I¥1 1
0= J01+9d;, 0 = ——,

maxL2|u1|

max|us — uj)
max_|Us|

2 2
€ = Jej+¢ey, & =

. max |o, — o}
2 max |0

o, =

max, |o, — on|
max,_|ay|

of the reconstruction of the displacement and stress
vector components at the boundary L, at g, O {178, 1.

(Here, ul', o), and o} are the reconstructed values,
and the number of elements N corresponds to the con-
stant length of a boundary element with the angle ¢ =
17/40.) A series of calculations performed for recon-
structing the elastic fields testifies to a fairly high accu-
racy of thefield determination when the length of part L,
isthree or moretimesasgresat asthelength of partL,. As
the relative length of the part L, increases, the accuracy
of the reconstruction lowers.

Figure 5 presents the plots of the functions u1|L

(curves 1, the dark circles show the reconstructed val-

Uy, Uz
0.2
B 1
0
/ 2
-0.2
04 1 1 1 1 1
0 1 2 P
Fig. 5.
ACOUSTICAL PHYSICS Vol. 46 No.4 2000



FIELD RECONSTRUCTION IN AN ANISOTROPIC ELASTIC MEDIUM

ues) and u3|L (curves 2, the empty sgquares show the

reconstructed values) for Y, = 3174. One can see that,
with the proposed computational scheme, the maximal
error of the reconstruction occurs at the ends of the
reconstructed interval. Within the interval, the recon-
struction error does not exceed 15%. The bursts of the
sought-for values at the edges are typical of the
Tikhonov regularization method realized for integrable
functionsin solving the Fredholm integral equations of
the first kind with smooth kernels.

The examples of the elastic field reconstruction con-
sidered in this paper demonstrate the efficiency of the
proposed numerical agorithm of the field reconstruc-
tion.
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Abstract—Numerical simulation and comparative analysis of acoustic fields generated by two-dimensional
phased arrays designed for ultrasonic surgery is conducted. The case of movement of asingle focusby an array
with the surface shaped as a part of aspherical shell with the curvature radius 120 mm is considered. Theinflu-
ence of the number of elements (varying from 64 to 1024), their diameter (from 2.5 to 10 mm), frequency (from
1to 2 MHZz), and the degree of sparseness of the elements at the array surface on thefield characteristicsis stud-
ied. The calculations are performed for arrays with elements positioned at the surface both regularly (in square,
annular, or hexagonal patterns) and randomly. Criteriafor the evaluation of the “quality” of intensity distribu-
tionsin the field generated by an array in the case of movement of a single focus are suggested. Of all arrays
studied, the best quality of distributionsis obtained for an array containing 256 elements of diameter 5 mm ran-
domly positioned at the array surface. The quality of theintensity distributionsfor arrays consisting of 255, 256,
and 1024 elements positioned regularly (in square, annular, and hexagonal patterns) is inferior to the corre-
sponding quality for arrays with randomly positioned elements. The irregularity in elements’ positioning con-
siderably improves the distribution quality by suppressing the secondary intensity peaks in the field generated
by the array; or, alternatively, it provides an opportunity to obtain the same distribution quality with afraction
of the number of elementsin the array. The effects of the number and shape of elements, errorsin phase setting,
frequency modulation of signals, and non-uniform distribution of amplitudes over the array surface on the dis-

tribution quality are analyzed. © 2000 MAIK “ Nauka/Interperiodica” .

In recent years, considerable interest has been
expressed in devel oping minimum-injury surgery tech-
niques that should provide better results than common
surgery from the viewpoint of reducing the number of
lethal outcomes, preventing side effects, and reducing a
patient’s hospital stay. Among such techniques, those
grounded upon the use of focused ultrasound for the
local destruction of in-depth structures of the human
body by high-intensity ultrasound are the subject of
numerous intensive studies.

Various methods of ultrasonic focusing in biological
tissues are discussed in the literature, e.g., the methods
based on applying single focusing transducers [1, 2],
lenses [3], and phased arrays [4-13]. A ssimple and
rather inexpensive technique is used in practice for a
long time. It isbased on applying single focusing trans-
ducers with the surface shaped as part of a spherical
shell and with a continuous distribution of the particle
velocity over the transducer surface[1, 2]. However, an
essential disadvantage of such focusing systemsistheir
fixed focusing distance. Since the volume of the focal
region of a radiator is usually much smaller than the
volume of tissues subject to destruction, the means for
the mechanical movement of the radiator must be pro-
vided. From the practical application of such proce-

dures, it is known that approximately one hour of oper-
ation is needed for the destruction of atissue of volume
2 cm® (G. ter Haar, private communication, 1998).
Then, up to four hours of operation are needed to
destruct such comparatively small volume as 8 cm?.
Thus, transducers with a fixed focus would hardly be
applied widely in clinical practice not only in surgery
but also for hyperthermia, which is grounded upon a
relatively short-time heating of tissues by high-inten-
sity ultrasound.

Phased ultrasonic arrays have a noticeable advan-
tage in this sense [4-13]. These arrays provide elec-
tronic dynamic focusing, i.e., an opportunity to change
the place and size of the region of action without mov-
ing the array. It isexpedient to use arrays with elements
positioned at the surface shaped as a part of a sphere,
thus combining the opportunities provided by the elec-
tronic and geometric focusing [4, 5, 8]. As phased
arrays make it possible to simultaneously create severa
focuses at preset areas [8-11], their application makes
it possible to considerably reduce the time of the
destruction procedure for a relatively large tissue vol-
ume [9]. The disadvantages of arrays are the presence
of secondary intensity peaks in their acoustic fields,
which are caused, in particular, by the presence of dis-
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crete structure in arrays, as well as their complexity,
and, therefore, the relatively high cost of an array and
the equipment necessary for its operation.

In order to destruct a biological tissue volume
acceptable for practice in the depth of a human body
(=10 cmd®), a two-dimensional phased array for usein
surgery must provide the focus scanning at the neces-
sary distance in three mutualy perpendicular directions
and have an acoustic power not smaller than 300400 W.
Inaddition, it is necessary to have theintensity in unde-
sirable secondary peaks at alevel acceptable for prac-
tice. The realization of such an array is a compromise
between severa contradictory requirements. In order to
increase the distance for the focus scanning, and there-
fore to extend the volume of the destruction region, itis
necessary to make the elements less directiondl, i.e., to
reducetheir size. On the other hand, it is necessary that
the active area of the array be not smaller than 50 cm?
to meet the requirements for the radiated power with
not too high values of intensity at the surface of ele-
ments. All these considerations lead to designing arrays
containing excessively large numbers of elements, and
therefore, to an increase in the complexity and costs of
an array feeding system.

The safety of the ultrasonic action must be the deter-
mining factor in the process of designing phased arrays
for surgical applications. Therefore, the minimum level
of sidelobes and secondary intensity peaks of ultra
sound beyond thefocal region becomes one of the basic
criteriafor the acoustic fields produced by an array. The
presence of such peaks can lead to undesirable over-
heating and even the destruction of structures beyond
the preset region of action. In order to reduce the influ-
ence of the sidelobes of a directivity pattern, the dis-
tance between the centers of the array elements must be
less than <A/2 [14], where A isthe wavelength, i.e., for
example, less than 0.5 mm at the frequency 1.5 MHz.
However, with such small elements, it is necessary to
use alarge number of elements and electronic channels
in order to produce an array with alarge enough aper-
ture and obtain the acoustic power needed for a thera-
peutic array. In addition, the “dead” space between ele-
ments increases. The known ways of reducing the level
of sidelobes in the array directivity pattern are
grounded on the reduction of the amplitude at the ele-
ments of an array from its center to the periphery [14],
and these methods are not always applicable in the spe-
cific case under discussion because of the raised
requirements for the acoustic power of an array. One
more way grounded upon the application of arrayswith
unequal distances between their elements [14] was
tested by Hutchinson, Buchanan, and Hynynen [6, 7],
who demonstrated that the reduction of the level of the
secondary intensity peaks, which was expected on
account of aperiodicity of elements, could attain 30-45%
as against arrays with equal distances between ele-
ments. Such approaches as the employment of wide-
band signalsfor feeding the array elements[15] and the
utilization of only a certain part of the array elements
2000
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[16] are known. The approach studied in this paper is
grounded upon the application of arrays with sparse
elements positioned randomly at the array surface. The
basis for this approach is the fact that the level of side-
lobes in the field produced by an array depends on the
regularity of the array structure [14]. Goss et al. [5]
demonstrated theoretically that the utilization of ele-
ments randomly positioned at the array surface (we will
call such arrays randomized for short) provides an
opportunity to improve to a certain extent the spatia
distribution of intensity in the field. Evidently, the
application of arrays with sparse elements may some-
what reduce the complexity and cost of large two-
dimensional arrays.

We conducted numerical simulation and compara-
tive analysis of acoustic fields generated by two-dimen-
sional phased arrays with random and regular distribu-
tions of elements at their surfaces shaped as parts of
spheres. We aso analyzed the influence of the dimen-
sions, humber, and shape of individual elements, errors
in phase setting at the elements, and the frequency
modulation of the signal on the quality of the distribu-
tions produced by arrays. The work was done for the
purpose of clearing out the array designs that provide
an opportunity to minimize the influence of secondary
intensity peaks using a relatively small number of ele-
ments and, hence, to increase the safety of possible
applications of such systemsin surgery.

The technique used for calculating the acoustic
fields produced by arrays is generally similar to the
technique described by Goss et al. [5]. It consists of
three main stages: (i) calculation of the distribution of
the complex sound pressure generated by asingle radi-
ating element shaped as a disk; (ii) calculation of the
distribution of the total complex sound pressure from
the given single elements positioned at a part of a
spherical shell; and (iii) calculation of the distribution
of relative intensity in the field produced by the whole
array and the analysis of such distributions with the
help of the criteria for the distribution quality evalua-
tion, as described below.

Figure 1 illustrates the calculation technique. The
distribution of the complex sound pressure from a flat
element shaped as a disk was determined with the help
of the method of a point source, according to which the
radiating surface of the disk was represented in the
form of a set of many elementary radiators [17]. The
latter were shaped as sguares with a side of 0.25 mm.
Assuming theradial symmetry of an element, itsthree-
dimensional acoustic field can be determined by calcu-
lating the complex pressure p(rs, z) in the plane as a
function of distance in the axial direction z, and in the
radial direction r according to the expression [5]

_ jpckugAA g (@rikR
21 R

surface

p(rs Z)
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where p is the tissue density (1000 kg m™), c is the
sound velocity in the tissue (1500 m s7), k is the wave
number, u, is the particle velocity at the surface of ele-
mentary radiators, AA isthe area of an elementary radi-
ator, a isthe attenuation coefficient in the tissue, and R
is the distance from the center of an elementary radi-
ator to the point (r, z) where the field is calcul ated.
Commonly, the calculation was performed for 40 < z, <
180 mm and 0 < rg < 60 mm at every 0.2 mm in both
directions (Fig. 1a). However, in certain cases the field
was calculated starting directly from the element sur-
face. The attenuation coefficient in the tissue was taken
equal to 10 Np m! MHz!. This value was used by
many researchersfor similar calculations [4, 6, 9].

The calculation of the distribution of the total com-
plex sound pressure produced by an array was con-
ducted by the summation of the pressure contributions
from al single elements in the three-dimensional
region where the resultant distribution was analyzed
(Fig. 1b). At first, the complex pressure for each single
element with the center determined by the angular
coordinates @gand ¢ (the anglesfrom the array center of
curvature to the projections of the element coordinates
onto the vertical and horizontal axes) was determined
in acylindrical volume (Fig. 1b) as a function of dis-
tance in the axial and radial directions. The phase dis-

tribution at the elements, which is necessary for the
array focusing, was calculated by the determination of
the paths from the element centers to the place of the
focus. Then, the values of the complex pressure were
transferred from each individual cylindrical volume
into the region of analysis that was a parallelepiped
with the grid spacing 0.2 mm (Fig. 1b). Thedimensions
of theregion of analysis, in which the summation of the
values of complex pressure was performed, were from
50 to 160 mm in the direction of the acoustic axis of the
array and from 0 to £30 mm (to £40 mm in some cases)
intwo other orthogonal directions. Finally, theintensity
in each cell of the grid was calculated and the intensity
distribution normalized with respect to the maximum
value of intensity in the region of analysis was deter-
mined.

The calculation of the sound pressure and intensity
distributions were conducted using (i) a computer Sili-
con Graphics Onyx2 with computer codes written in
Fortran 77 and (ii) a Pentium 1l PC using Microsoft
Fortran PowerStation 4.0 based on the Fortran 90 stan-
dard. The obtained distributions were analyzed using
the AVS v5 (Advanced Visual Systems Inc. Waltham,
MA), MATLAB 5.2.1, and Axum 5.0. The three-
dimensional distributions of intensity were analyzed
gualitatively in order to evaluate the field on the whole
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Fig. 2. Schematic representation of arrays consisting of flat elements shaped as disks and randomly positioned at a spherical surface.
(a) 256 elements 5 mm in diameter; (b) 128 elements 7 mm in diameter; and (c) 64 elements 10 mm in diameter.

and check for the potential “hot spots’ or regions
requiring special attention. Two-dimensional boundary
distributions in selected planes were basically used for
the quantitative analysis of the intensity distributions.

The two-dimensional distributions presented in this
paper corresponded asaruleto the datain the y—z plane
(Fig. 1b). This plane always contained the focus when
the position of the latter did not coincide with the array
center of curvature, and, therefore, the secondary peaks
of intensity connected with the discrete structure of the
array had to be present in this plane. In some cases (see
below), the calculation was conducted for the case
when the focus scanned in the x-z plane.

We studied the influence of the number of elements
(64, 128, 255, 256, and 1024), their diameter (2.5, 5, 7,
and 10 mm), frequency (1, 1.5, and 2 MHz), and the
sparseness of elements at the array surface on the char-
acteristics of the ultrasonic fields produced by arrays.
The calculation was conducted for the arrays with the
surface shaped as a part of a spherical shell with the
curvature radius 120 mm and el ements positioned at the
surface both randomly (Fig. 2) and regularly in the
square, annular, and hexagonal patterns (Fig. 3). Only
the positions of elementsare shown in thefigures, but not
their size. All arrays had the same diameter of 110 mm.

A schematic representation of an array of 256 ele-
ments that are shaped as disks with diameters of 5 mm
and installed quasi-randomly at a surface in the form of
a part of a sphere (the true random distribution was
modified in such way that the minimum distance
between the element centers was 5.5 mm) is given in
Fig. 2a. The distance between the centers of the most
distant elements was 100 mm. The calculation was
conducted for three operational frequencies: 1, 1.5,
and 2 MHz. Severa quasi-random distributions of ele-
ments at the array surface were studied, but the differ-
ence between results obtained for the same array was
insignificant. The calculation was also conducted for
randomized arrays of 128 elements of diameter 7 mm
(Fig. 2b) and of 64 elements of diameter 10 mm
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(Fig. 2¢). In both cases, the frequency was 1.5 MHz,
and the minimum distance between the centers of ele-
ments was 7.5 and 10. 5 mm, respectively.

Figure 3 shows the investigated arrays with regular
positioning of elements at the surface. A schematic pic-
ture of an array of 256 elements shaped as disks with
diameters of 5 mm that are installed at the surface in
square patternsisgiven in Fig. 3a. The minimum dis-
tance between the element centers was 5.5 mm. Fig-
ure 3b demonstrates the same array of 1024 elements
with diameters of 2.5 mm and the distance between the
centers of elements being 2.75 mm. Figure 3c shows an
annular array containing 255 elements and consisting
of the central element and nine concentric rings with
radii from 5.5 t0 49.5 mm (with astep of 5.5 mm). The
rings consisted of 5, 11, 17, 23, 28, 33, 40, 46, and
51 elements, respectively. The distance between the
centers of the elementswas 6 mm. An array of 255 ele-
ments positioned at the surface in hexagonal patterns
with the distance between the element centers 5.5 mm
is shown in Fig. 3d. All arrays given in Figs. 2 and 3
have approximately the same (with the precision within
1.5%) total area of all elements (about 50 cm?), and,
therefore, must radiate approximately the same acous-
tic power.

Four criteriawere proposed for the evaluation of the
normalized intensity distributions calculated for vari-
ous arrays. The best quality (the criterion A) was
assigned to an intensity distribution with the values of
intensity larger than 0.11,,, (where I, is the maxi-
mum intensity in the focus) being present only around
the focal region and absent in other regions of the stud-
ied field. This criterion agrees with the common opin-
ion that the level of secondary intensity peaks in the
field radiated by an array must be at least by 8-10 dB
lower than the maximum intensity in the focal regionin
order to provide the safety of ultrasonic action on tis-
sues [4-6]. Three other criteria were used to evaluate
fields of lower quality. The quality B was assigned to
the distribution when less than 10 points or small areas
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Fig. 3. Schematic representation of arrays consisting of flat elements regularly positioned at aspherical surface. (a) 256 elements of
diameter 5 mm positioned in square patterns; (b) 1024 elements of diameter 2.5 mm positioned in square patterns; (c) 255 elements
of diameter 5 mm positioned in annular patterns; and (d) 255 elements of diameter 5 mm positioned in hexagonal patterns.

with intensity withintheinterval 0.1 <1 <0.151,,, were
present beyond the focal region. The distribution, in
which more than 10 points or small areas with the
intensity within the interval 0.1 < | < 0.151,, were
present beyond the focal region, was evaluated as the
distribution of the quality C. Finaly, the quality D was
assigned to distributions having at least one point or
small area with the intensity | = 0.2l ,,,, in the consid-
ered plane beyond the focal region.

Figure 4 demonstrates examples of intensity distri-
butions for a randomized array of 256 elements with
the diameter 5 mm, which is excited at the frequency
1.5 MHz for the case of the movement of asinglefocus.
The dependence of the quality of intensity distribution
on the position of the shifted focusis shown for the dis-
tance from the array surface z= 110 mm. One can see
that in the case of the focus shift from 10 to 16 mm
from the acoustic axis, the quality of the intensity dis-
tributions changes from grade A to grade D. The
dimensions of the analysis region were 110 mm in the
direction along the acoustic axis and 60 mm in the
direction perpendicular to it. Nine contours (from 10 to
90% of |, With the step 10% 1,5, are present within

thefocal region (Fig. 4). The distribution of intensity in
the field beyond the focal region was evaluated with the
help of contours within the interval 10-20% 1, With
the step 5% |y, OF 2% |, When necessary.

The evaluation of the quality of the intensity distri-
butions produced by this array at the frequencies1, 1.5,
and 2 MHz isgiven in Fig. 5. Here, asin Figs. 6 and 7
bel ow, the data corresponding to scanning in the direc-
tion of positive values of y are presented. In the case of
randomized arrays, the calculation was conducted for
negative values of y as well. The results were qualita-
tively analogous. As distinct from the study by Goss
et al. [5], we analyzed the ratios of the secondary and
main intensity peaks not only in the focal plane, but
also in ardatively large region of analysis before and
behind the focus. It turned out that a randomized array
of 256 elements with a diameter of 5 mm excited at the
frequency 1 MHz provided an opportunity to scan the
focus within the distance £20 mm from the acoustic
axis, within the interval of the values of z from 50 to
130 mm, with the highest quality criterion (A) (Fig. 53).
In the case of the frequency 1.5 MHz, the distances,
within which the focus could be shifted from the acous-
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Fig. 4. Examples of the intensity distributions produced by an array of Fig. 2a and the criteria used for the evaluation of the distri-
bution quality. (a) Criterion A; (b) criterion B; (c) criterion C; and (d) criterion D. The crossindicates the position of the curvature
center of the array. The focus coordinates: (a) (0, —10, 100 mm); (b) (0, =14, 110 mm); (c) (0, —15, 110 mm); and (d) (0, —16, 110 mm).

The analysisregionis 110 x 60 mm.

tic axis with the quality A and B, were £10 mm within
the interval of the values of z from 70 to 120 mm and
15 mm within the interval of the values of z from 50
to 130 mm, respectively (Fig. 5b). The volume of the
region of action with the quality A and B constitutes
63 (106) cm? (the figures for B are given in parenthe-
ses) for the frequency 1 MHz (Fig. 5a) and 16 (49) cn?®
for thefrequency 1.5 MHz (Fig. 5b). In the case of the
frequency 2 MHz, this volume falls to 12.5 (16) cm?
(Fig. 5¢).

The characteristics of the spatia intensity distribu-
tions, which are evaluated using the selected quality
criteria, depend on the distance at which the focus is
shifted from the array center of curvature and on the
attenuation in the medium. Figure 5 shows that, when
the focus is shifted from the center of curvature, the
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quality of distributions deteriorates sharply. One can
also see that the largest interval of the focus shift from
the axis of an array of the A quality can be attained not
in the focal plane, but at a distance of 1-2 cm from it
toward the array.

The ratio of the total area of elements (the active
area) in an array of 256 elements with a diameter of
5 mm to the area of the array surface is approximately
equal to 51%. Figure 6a illustrates the influence of an
increasein the degree of sparseness of elementsfor the
aforementioned randomized array of 256 elements
with a diameter of 5 mm (Fig. 2a) when its 128 ele-
ments are turned off in an arbitrary way. The operating
frequency is 1.5 MHz. Comparing Figs. 6a and 5b, one
can see that an increase in the degree of sparseness of
elements leads to a deterioration in the quality of the
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Fig. 5. Summary of the calculation results and the evalua-
tion of the quality of intensity distributions at different ultra-
sonic frequencies for a randomized array of 256 elements
with adiameter of 5 mm (Fig. 2a). Thefrequenciesare (a) 1;
(b) 1.5; and (c) 2 MHz. The quality criteria: (®) A; (0) B;
(*) C; and () D.

intensity distributions. In this case, the useful volume
of action upon tissues not only decreases noticeably,
but also shifts toward the array. Here, the maximum
distance from the array at which it is possible to focus
an A grade array is 100 mm (Fig. 6a).

Figure 6b demonstrates the intensity distributions
produced at the frequency 1.5 MHz by a randomized
array of 128 elements with adiameter of 7 mm (Fig. 2b).
Figure 6¢ presents similar data for a randomized array
of 64 eements with the diameter 10 mm (Fig. 2c). The
reduction of the number of randomly positioned ele-
ments from 256 to 128 and then to 64, which is accom-
panied by an increase in the diameter (from 5to 7 and
10 mm, respectively) in order to keep constant the
active area of the array, also leads to progressive deteri-
oration of the quality of the intensity distributions
(compare Fig. 5b with Figs. 6b and 6¢). The difference
between the quality of the intensity distributions of a
randomized array of 128 elements with a diameter of
5 mm and asimilar array with 7-mm diameter elements
turned out to be small despite a certain differenceinthe
directivity of the elements (Figs. 6a, 6b). The data
shownin Figs. 5 and 6 correspond to focus scanning in
the y—z plane. The calculations performed for the x—z
plane yield qualitatively analogous results and are not
presented here.

The results of the evaluation of the intensity distri-
butions produced at the frequency 1.5 MHz by arrays
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with regular positioning of elementsin square, annular,
and hexagonal patterns (Fig. 3) are given in Figs. 7 and
8. One can see that the quality of the intensity distribu-
tions from arrays of 255 and 256 regularly positioned
elements with the diameter 5 mm (Figs. 7a, 7c, and 8)
isinferior to that for a randomized array of 256 ele-
ments with the diameter 5 mm (Fig. 5b). As we have
indicated above, the calculation is conducted for the
case of the focus moving in both the y—z plane and the
x—z plane. The intensity distributions in these planes
were amost the same for the arrays with the elements
positioned in square (Figs. 3a, 3b) or annular (Fig. 3c)
patterns. Therefore, Fig. 7 presents the distributions
obtained only in the y—z plane. However, when the pat-
tern of the array structure observed from the place of
the focus in the case of scanning along the x and y axes
is essentialy different, as it takes place in the case of a
hexagonal array (see Fig. 3d), the intensity distributions
inthey—z and x—z planes are d so different (Figs. 8a, 8b).
The best quality of distributions among the regular
arrays of 255 and 256 elements was observed in the
case of annular arrays (Fig. 7c), and the lowest quality
was observed for square arrays (Fig. 7a) and hexagonal
arrays in the case of scanning in the y—z plane (Fig. 8a).

The quality of theintensity distributionsfor an array
of 1024 elements with the diameter 2.5 mm positioned
a the surface in square patterns (Fig. 7b) was much
lower than for arandomized array of 256 elementswith
a5 mm diameter (Fig. 5b), but comparable to that of a
randomized array of 128 elements with a7 mm diame-
ter (Fig. 6b). This suggests that the randomization of
the elements positions at the array surface leads to six-
to sevenfold economy in the number of elements and
channels exciting them with approximately the same
quality of intensity distributions. Nevertheless, from
the literature available to us and devoted to the analysis
of two-dimensional phased arrays for surgery, it fol-
lowsthat only regular arrays have been discussed, except
for the studies by Goss et al. [5]. In these regular arrays,
the most popular way of positioning the elements at the
surface isthat in square patterns [4, 8, 10-12].

There is a noticeable difference in the character of
intensity distributions produced by arrays with random
and regular positioning of elements. The former are
characterized by distributions with secondary peaks of
intensity observed mainly along the path of a converg-
ing ultrasonic beam to the focal region (Fig. 4) and
occurred in the focal region only in the case of the low-
est quality of distributions (the data are not presented).
For arrayswith regular positioning of elements, the sit-
uation was opposite. The secondary peaks connected
with the discrete character of the array structure were
observed precisely in the focal plane.

The data obtained show that the positive effect of
randomization of the array elements can be attained
when the sparseness of elementsin an array with ran-
dom distribution of elementslies within a certain inter-
val (approximately from 40 to 70%). Anincreasein the
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Fig. 6. Evduation of the quality of intensity distributions
produced by randomized arrays. () an array of 128 ele-
ments randomly selected from a randomized array consist-
ing of 256 elements of diameter 5 mm (Fig. 2a); (b) an array
of 128 elementsof diameter 7 mm (Fig. 2b); and (c) an array
of 64 elements of diameter 10 mm (Fig. 2c). Notations are
thesameasin Fig. 5.

sparseness (when the active area occupies less than
40% of the array surface) leads to a reduction of radi-
ated power and a deterioration of the distribution qual-
ity. On the other hand, a decrease in the sparseness of
elements (when the active area occupies more than
70% of the array surface) will inevitably lead to the
ordering of the array structure, with all its conse-
guences.

The developed approach to the evaluation of the
guality of the intensity distributions was used for inves-
tigating the influence of various parameters and geo-
metric characteristics of arrays with arandom distribu-
tion of elements on the quality of the acoustic fields
generated by them. Below, we summarize the main
results of our study.

(1) Theresultstestify that the dimensions of individ-
ual elements have a decisive effect on the capability of
randomized arrays to move the focus with the quality
acceptable for practical applications. If the diameter of
elements is too large (e.g., 10 mm) and the directivity
pattern is too narrow, then even an extremely large
number of elements in the array does not allow one to
move the focus with the quality of intensity distribution
admissible for practice. For example, the calculations
show that, in the case of using an array of 256 elements
with adiameter of 10 mm (we should note that such an
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array is impossible, because the total area of elements
exceeds almost twice the area of its surface), it is
impossible to move the focus away from the axisto the
distance greater than 10 mm with an acceptable quality.
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Fig. 8. Evauation of the quality of intensity distributions
produced by an array of 256 elements of diameter 5 mm
with the elements positioned at aspherical surfacein hexag-
onal patterns. (a) The focus shift isin the y—z plane and (b)
in the x—z plane. Notations are the same asin Fig. 5.
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It follows from the obtained data that, in order to scan
at adistance of 10-15 mm with acceptable quality, itis
necessary for the diameter of elements not to exceed
five wavelengths. If this condition is satisfied, the
increase in the number of elements and, therefore, in
the total active area of the array leads to an increase in
the maximum intensity in the focus and to an improve-
ment of the quality of intensity distributions.

(2) The shape of an individual element (concave,
flat, or convex) almost does not influence the quality of
intensity distributions produced by an array. For exam-
ple, the evaluation patterns of the quality of distributions
for an array, which has the radiation frequency 1.5 MHz
and consists of 64 elements with the diameter 10 mm
and have different shapes (concave elements with the
curvature radii 6 and 12 cm and convex elements of the
same radii), barely differ from each other and from the
characteristic of an analogous array consisting of flat
elements (Fig. 6¢). This result is predictable, because,
despite a significant difference between the intensity
distributions immediately near the surface of the ele-
ments of different shape (z= 0-5 cm), the distributions
in the focal region (z = 8-14 cm) are essentially the
same. It follows from here that there is no need to use
more expensive nonflat elements in the design of such
arrays.

(3) The shapes of the apertures of randomized arrays
(square or circular) do not noticeably affect the quality
of intensity distributions. For example, the intensity dis-
tributions of arrays of 256 x 5 mm eements (1.5 MHZz)
with the apertures shaped as a circle (Fig. 2a) and a
square and with equal active areas and sparseness of
elements aimost did not differ from each other.

(4) Errors in setting the necessary distribution of
signal phases at individua elements, for example,
because of errors in the element positioning at the sur-
face, can lead to a deterioration of quality of intensity
distributions. The calculation of intensity distributions
was conducted for a randomized array of 256 x 5 mm
elements (1.5 MHz) with three different phase distribu-
tions at the elements: (a) the calculated phase distribu-
tion corresponding to the ideally precise positioning of
elements; (b) random numbers selected within the
interval from —0.4 to 0.4 radian were added to the val-
ues of phases from case (a); and (c) random numbers
from the interval between —1.0 and 1.0 radian were
added to the values of phases from case (a). It turned
out that the deterioration of the quality of distributions
for case (b) as against case (a) was relatively small.
These data agree with the results obtained by Hutchin-
son et al. [6] and Wang et al. [13] who demonstrated
that a discrete phase setting in 4 bit (22.5°) is sufficient
for the satisfactory operation of arrays in practice. A
further increase in the phase setting error (case (c))
leads to a sharp deterioration in the quality of intensity
distributions.

(5) The utilization of such distributions of the ampli-
tudes of particle velocity at the surface of arandomized
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array, when the amplitude values decrease from the
array center to the periphery, does not lead to an
improvement of the quality of intensity distributions. In
particular, the calculations were performed for the dis-
tributions of the type [1 — (r/ry)?]" (wheren =1, 2, and
ro isthe array radius) used by Skolnik [14] for regular
arrays with circular apertures. This approach, which is
effective for regular arrays, in the case of randomized
arrays leads only to anincrease in the relative intensity
values in the secondary peaks, because the maximum
intensity value in the focus, which is used for the nor-
malization of these values, considerably decreases.

(6) The utilization of the frequency modulation of
signals at the elements of a randomized array provides
an opportunity to improve to some extent the quality of
intensity distributions. For example, calculations were
performed for the intensity distributions of a random-
ized array of 256 x 5 mm elements for different fre-
guencies (0.9; 0.95; 1.0; 1.05; and 1.1)f, where f is the
central frequency (1.5 MHz). The averaged distribution
for the five indicated frequencies turned out to be better
than all the others, including the distribution for the
central frequency.

The quality of the intensity distributions of the
arrays that we studied can be compared with the corre-
sponding quality for the sparse array described by Goss
et al. [5]. Thisarray consisted of 108 elementswith the
diameter 8 mm (only 64 of them were excited simulta-
neously). The frequency was 2.1 MHz. The elements
were arranged in hexagonal patternsat apart of a spher-
ical shell with a diameter of 100 mm and a curvature
radius of 102 mm. The sparseness of elements was
about 45%. The calculations performed by Goss et al.
[5] demonstrated that, in the case of the array focusing
at its curvature center, the predicted intensity level in
the secondary peaks in the foca plane was 0.131 .
When the focus was shifted by 5 mm from the axis, this
level increased to 0.6l . In the measured distribu-
tions, these levels increased to 0.381,,, and 0.9l 4,
respectively, which is unacceptable for practical pur-
poses. Goss et al. [5] estimated the possible role of a
random distribution of elements over the array surface
and predicted theoretically that, in this case, the
expected intensity level in the secondary peaks in the
focal plane should be 0.04l,,,, without the focus shift and
0.16l 5 With the focus shift by £5 mm. Such a small
effect of randomization obtained by Goss et al. [5] was
apparently caused by thefact that the ratio of the element
diameter to the wavelength was 11.2. Aswe have already
noted, one should only expect a considerable improve-
ment in the quality of intensity distributions when this
ratio is selected from the interval 0.5-5 A.

In conclusion, we note that the results obtained in
this paper demonstrate that the irregularity in position-
ing the elements at the array surface leads to a notice-
able improvement in the quality of intensity distribu-
tions produced by an array asagainst aregular position-
ing of eements (in square, annular, or hexagona
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patterns). The calculationstestify that arandomized array
that has a diameter of 110 mm and consists of 256 ele-
mentswith adiameter of 5 mm, which are excited at the
frequency 1-1.5 MHz and positioned on a part of a
spherical shell with a curvature radius of 120 mm, pro-
vides an acceptable quality of intensity distributions
according to the criterion of the presence of secondary
intensity peaksin the generated field. It is demonstrated
that randomized arrays make it possible to provide
approximately the same quality of distributions as reg-
ular arrays with much greater numbers of elements
(greater by a factor of 6 to 7 in the considered case).
The number of elements and, especialy, their diameter
strongly affect the capability of a randomized array to
scan the space by the focal region. The shapes of indi-
vidual elements (flat, concave, and convex elements)
barely influence the quality of the fields produced by a
randomized array. An error in setting the signal phases
at the elements within £0.4 radian amost does not
deteriorate the quality of theintensity distributions. The
frequency modulation of signals within £10% of the
central frequency leads to a certain improvement in the
quality of intensity distributions.

The results of the conducted numerical simulation
may be useful for designing of such arrays.

REFERENCES

1. R J.Fry,inUltrasound: ItsApplicationsin Medicineand
Biology, Ed. by F. J. Fry (Elsevier, New York, 1978),
Part 11, pp. 689-736.

2. C.R. Hill and G. R. ter Haar, Br. J. Radiology 68 (816),
1296 (1995).

3. R. J Laonde, A. Worthington, and J. W. Hunt, |EEE
Trans. Ultrason. Ferroelectr. Freq. Control 40, 592
(1993).

ACOUSTICAL PHYSICS Vol. 46 No. 4 2000

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

399

E. S. Ebbini and C. A. Cain, |IEEE Trans. Biomed. Eng.
38, 634 (1991).

S.A. Goss, L. A. Frizell, J. T. Kouzmanoff, et al., IEEE
Trans. Ultrason. Ferroelectr. Freg. Control 43, 1111
(1996).

E. B. Hutchinson, M. T. Buchanan, and K. Hynynen,
Med. Phys. 23, 767 (1996).

E. B. Hutchinson and K. Hynynen, IEEE Trans. Ultra-
son. Ferroelectr. Freq. Control 43, 1032 (1996).

H. Wan, P. van Baren, E. S. Ebbini, and C. A. Cain,
IEEE Trans. Ultrason. Ferroelectr. Freg. Control 43,
1085 (1996).

X. Fan and K. Hynynen, Ultrasound Med. Biol. 22, 471
(1996).

D. R. Daum and K. Hynynen, |EEE Trans. Ultrason. Fer-
roelectr. Freq. Control 45, 208 (1998).

X. Fan and K. Hynynen, Phys. Med. Biol. 41, 591
(1996).

R. J McGough, M. L. Kesdler, E. S. Ebbini, and
C.A.Cain, IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 43, 1074 (1996).

H. Wang, E. Ebbini, and C. A. Cain, |EEE Trans. Ultra-
son. Ferroelectr. Freq. Control 38, 521 (1991).

M. I. Skalnik, Introduction to Radar Systems (McGraw-
Hill, New York, 1962; Mir, Moscow, 1965).

F. Dupenloup, J. Y. Chapelon, D. J. Cathignol, and
0. A. Sapozhnikov, |EEE Trans. Ultrason. Ferroelectr.
Freg. Control 43, 991 (1996).

L.R. Gavrilov, J.W. Hand, P. Abel, and C. A. Cain, IEEE
Trans. Ultrason. Ferroelectr. Fregq. Control 44, 1010
(1997).

K. Ocheltree and L. Frizzell, IEEE Trans. Ultrason. Fer-
roelectr. Freg. Control 36, 242 (1989).

Trandated by M. Lyamshev



Acoustical Physics, \ol. 46, No. 4, 2000, pp. 400-404. Translated from Akusticheskir Zhurnal, Vol. 46, No. 4, 2000, pp. 467-472.

Original Russian Text Copyright © 2000 by Galkin, Pankova.

Spatial Correlation of Hydroacoustic Signals
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Abstract—In the hydrological conditions of a biaxial sound channel, the cross-correlation between acoustic
signals received at points spatially separated (from 10 to 63 km) along the sound propagation track is investi-
gated. The signals are received by a narrow-beam array scanning in the vertical plane. The beam width is ~2°
at the mean frequency (1 kHz) of a pseudo-noise signal. It is noted that, as the distance between the points of
reception increases, the correlation decreases. Thisis mainly caused by the effect of the multipath propagation
with an incomplete resolution of signalsin arrival angles, rather than by changesin the “water” signal spectrum
due to the attenuation. © 2000 MAIK * Nauka/Interperiodica” .

The study of the spatial correlation of hydroacoustic
signalsinareal oceanis of both theoretical and applied
significance. The evaluation of the effect of various
oceanological factors on the cross-correlation of wide-
band signals received at different distances from the
sound source allows one to revea the reasons of the
correlation changes and, therefore, to introduce the
necessary corrections into the models of an acoustic
waveguide. In practice, these studies are especialy
important for estimating the possibility of constructing
wide-aperture arrays, as well as for determining the
efficiency of a combined processing of hydroacoustic
data received from spatialy separated hydroacoustic
systems. In a series of recent papers [1-5], the prob-
lems of spatia correlation were partly considered.
However, the investigations described in these papers
were performed with omnidirectional sound receivers
and, in most cases, at small distances from the sound
source (up to several kilometers). Dahl [1] presented
the results obtained by studying the effect of seasurface
scattering on the spatial correlation in the experiments
with the separation of the points of reception along the
signal propagation track up to 15 sound wavelengths
(the frequencies =20 kHz), at distances from 500 to
1000 m. In studying the spatial coherence as afunction
of the central frequency of broad-band acoustic signals
propagating in a shallow-water region (H = 15 m),
Badiey, Smmen, and Forsythe [2] observed a high
coherence for frequencies from 0.6 to 7 kHz. However,
the maximum separation of the receivers did not exceed
2 m, and the distance to the source was no more than
214 m. Westwood and Knobles[3] considered the prob-
lem of determining the track of a continuous broad-
band acoustic source moving in an oceanic waveguide
in the case of a good resolution of rays within a multi-
ray signal and a high spatial correlation of signals
received by horizontally separated receivers. The

experiments were carried out with an above-water
source moving at adistance of 2 km from two receivers
separated by 438 m. Tielburger, Finette, and Wolf [4]
presented the results concerning the influence of inter-
nal waves on the spatial (and tempora) coherence of
400-Hz signalsin ashallow sea. Sideriuset al. [5] stud-
ied the possibility of using a vertical chain of hydro-
phones for localizing inhomogeneities in shallow-
water regions with the help of a spatial-temporal cross-
correlation function.

This paper continues the investigations of the spatial
correlation of acoustic signals propagating in compli-
cated hydrological conditions of the deep ocean [6].
The experiments were performed using a conventional
procedure: the research vessels passed at a given dis-
tance and heaved aback to the drift with transmitting
and receiving systems lowered in water. As a sound
source, we used an omnidirectional transmitter of a
continuous pseudo-noise signal with the mean fre-
guency 1 kHz in the one-octave band. The signalswere
received by a40-m vertical array with the angular beam
width ~2° at the mean signal frequency.

The experiments were carried out in mid-December
1991, in the Atlantic Ocean, not far from the Gibraltar
Strait. The geometry of the experiment was as follows:
the omnidirectional source was located at a depth of
150 m, the center of the vertical array was at a depth of
180 m, and the water depth along the whole track was
equal to ~4800 m. The spatial correlation was mea-
sured between the signal received by the array at adis-
tance of 72 km from the source and the signals
received (at other time) at distances of 62, 95, and
135 km. The sound velocity profile ¢(z) corresponded
to abiaxial underwater channel, one axis being located
at adepth of ~450 m (¢, = 1503.2 m/s), and the other
axisat adepth of ~2000 m (C;, = 1502.9 MV/s). Figure 1
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Fig. 1. Sound velocity profile c(2) (Ieft) in the test region (the Atlantic Ocean) and the ray pattern with the source (S) at a depth of

150 m (right).

exhibits the ray pattern for the measured profile c(2)
with the source located at a depth of 150 m. The arrows
at the top show the positions of the source and the
points of reception during the correlation measure-
ments. From thisray pattern, it follows that signals can
propagate between the source and the receiving array
along two paths: over rays passing only through the
upper channel, or over rays occupying the whole
waveguide thickness. Thus, we have a superposition of
the sound field zone structure with large ray cycle
lengths (~60-80 km), which is determined by the deep-
water channel, and the zone structure with smaller ray
cycle lengths (~30 km), which is formed by the upper
channel. In the deep-water channel, the first conver-
gence zone begins at a distance of ~60 km and ends at
adistance of ~75 km; the beginning of the second zone
is at adistance of ~125 km from the source. Therefore,
(with consideration for the deep-water channel only),
the spatial correlation was measured between the signal
received at the middle of thefirst convergence zone (the
reference signal) and the signals received at the origin
of the first zone (62 km), in the shadow zone (95 km),
and in the second convergence zone (135 km). The sep-
arations of the points of reception along the distance
were, Ar = 10, 23, and 63 km, respectively. Evidently,
the signals propagating within the upper channel also
arrived at all points of reception.

Consider now the experimental results presented in
Fig. 2. This figure exhibits: (top) the angular spectra
(the array response versus the vertical angle of signal
arrivals) obtained by the array beam scanning in the
range of arrival angles £23°; (center) the frequency—
energy spectra of the signal received from the direction
indicated by the arrow in the upper plot; and (below)
the autocorrelation functions obtained in the mode of
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the array aiming at a chosen angle. Along the ordinate
axis, we plotted: for the angular spectra, the amplitudes
of the received signals A (on the linear scale) versusthe
grazing angles a (in deg); for the energy spectra, the
spectral density Sin dB versusthefrequency f (in kHz);
and for the correlation functions, the autocorrelation
coefficient R versusthe time delay 1 (in ms). The angu-
lar and energy spectra presented in Fig. 2 were aver-
aged over 12 s, and the autocorrelation functions were
obtained by averaging over 1.024 s.

Figure 2a characterizes the reference signal propa-
gating without reflections from the waveguide bound-
aries and received at a distance of 72 km. Its arrival
angle equals a = —6° (see A(a)). The minus and plus
signs mean the arrivals of rays at the point of reception
from below and from above, respectively. The afore-
mentioned signal was chosen as a reference one,
because it had the highest intensity, and it was well
resolved by the array beam in the vertical plane. How-
ever, one can observe a modulation of its energy spec-
trum Swith the frequency f, = 250 Hz. Thisis caused
by the fact that the signal arrived at the point of reception
over two rays with the time difference t = 1/f,, =4 ms,
which corresponds to the position of the second peak
(marked by the arrow) on the delay axis T for the auto-
correlation function R.

Figure 2b presents the characteristics of the signal
received at the origin of the first convergence zone (for
the deep-water channel) at a distance of 62 km. The
maximum of the array beam was aimed at the angle
o = +12°. In this case, the array beam spanned the sig-
nals arriving over a small number of rays, as demon-
strated by the angular width of the array response A and
the lack of modulation in the energy spectrum S Some
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Fig. 2. Angular spectra A (top), frequency—energy spectra S(center), and autocorrel ation functions R (bottom) at the points of recep-
tion: (a) at the middle of thefirst convergence zone caused by the lower channel (distance 72 km); (b) at the origin of the first con-
vergence zone (distance 62 km); (c) in the shadow zone (distance 95 km); (d) in the second convergence zone (distance 135 km).

broadening of the main peak is observed in the autocor-
relation function R, which indicates the arrival of rela-
tively weak signals with delays 1 less than the correla-
tion interval determined by the frequency band of the
radiated signal.

From Fig. 1b it follows that the distance 95 km cor-
responds to the shadow zone for the signals propagat-
ing through the deep-water channel. To this distance,
only the signals can arrive that propagate through the
upper channel in the range of the grazing angles +6.5°.
The angular spectrum of the received signals A pre-

sented in Fig. 2c is continuous, because separate rays
could not be resolved even with the use of the narrow-
beam array. The array beam was aimed at the angle
o = —2° which correspondsto the received signal of the
highest amplitude. From the irregularity of the energy
spectrum Sand the multitude of small peaksin the auto-
correlation function R, we can conclude that a great
number of rays were spanned by the array beam.

Figure 2d refers to the case of the receiving array
located at a distance of 135 km. Signals can arrive to
this distance through both the upper and the lower
No. 4

ACOUSTICAL PHYSICS \Vol. 46 2000



SPATIAL CORRELATION OF HYDROACOUSTIC SIGNALS

- (a) -

j*”*“‘*'“
j““"*’““‘“
:""**“"

* -

R 1 051

0

e
B
SR
“..,.4'...__.

403

(b) - (©

T I

-1 I -0.5
-50 0 50 -50

Fig. 3. Normalized cross-correlation functions Rfor different spatial separations Ar = (a) 10; (b) 23 (the scale for Ris doubled); and

(c) 63 km.

channels (see Fig. 1b). The angular spectrum A is con-
tinuousin the range of angles+10°. However, the ampli-
tude of the signaswith the arrival anglesa = -8.5° and
o = +9° was somewhat greater than that of other sig-
nals. Therefore, the maximum of the array beam was
aimed at an angle of +9°. We can see a well-defined
modulation in the energy spectrum Sand the secondary
correlation peaks in the autocorrelation function R,
which, asin the previous case, is the consequence of a
simultaneous reception of several signals spanned by
the array beam.

Having analyzed the characteristics of the sound
fields recorded at the chosen distances, we proceed to
the main issue, namely, to the cross-correlation of the
received signals. The results of measurements of the
gpatia correlation function R(t) are shown in Fig. 3,
which illustrates the variations of the normalized cross-
correlation functions R within 3 min. The averaging
time for each realization was 1.024 s, with the interval
between the realizations being 25.5 s, which equalsthe
period of the pseudo-noise signals. The measurement
procedure was described in detail in [6]. Since the func-
tion R(t) was cal culated between the signalsreceived at
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different spatial points and at different instants of time,
the scale of delays 1 in Fig. 3 isaconditiona one. The
zeroth delay corresponds to one of the correlation
peaks: in most cases, to the maximum peak.

The tempora variability of the cross-correlation
function R(t) between the signals received in the first
convergence zone (in the deep-water channel) at dis-
tances of 62 and 72 km is shown in Fig. 3a. In the
curves R(1), we can see two main correlation peaks
whose values vary from 0.70 to 0.83 and from 0.30 to
0.36, and severa weak peakswith smaller values of the
correlation coefficients. This testifies to several signal
arrivals at the point of reception over different rayswith
dightly different angles, which fall into the main lobe
of the array directiona pattern. These signals, espe-
cially at time delays exceeding the time correlation
interval of the radiated signal, represent an interference
with respect to one another. Therefore, it isexpedient to
estimate the value of the spatial correlation coefficient
|R| in the absence of multipath propagation. The cor-
rected correlation coefficient alowing for the interac-
tion of the signals arriving over different rays and unre-
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Table

Position of the receiving array | Ar, km a,/ag | Riax| OR k IRy Ors
In the first convergence zone 10 —6°/+13° 0.77 0.05 3 0.89 0.05
First zone-shadow zone 23 —6°/-2° 0.31 0.06 12 0.67 0.03
First zone-second zone 63 —6/+9° 0.54 0.10 9 0.84 0.03

solved by the array beam can be found from the follow-
ing expression [7]

N D1/2
|ﬁ5| = Z §Z|Rki|zm IN,
i=1-K O

where k isthe number of the correlation peaksand N is
the number of independent measurements of the corre-
lation coefficient. In the considered case (with a 10-km
separation of the points of reception), the value of the
corrected correation coefficient |R;| falls in the range
0.81-0.93, and its value averaged over 8 measurements

is|Rs|=0.89 + 0.05.

Figure 3b showsthe cross-correlation functions R(T)
between the reference signa (the distance 72 km) and
the signals received at a distance of 95 km from the
source, i.e., for the spatial separation of the points of
reception 23 km. At this distance, the angular spectrum
in the range +£6.5° (see Fig. 2c) was totally caused by
signals arriving over raysthat were not resolved by the
array beam. Asaresult, the functions R(T) at the chosen
angle a =-2° (see Fig. 3b) exhibit alarge number (~12)
of correlation peakswith small correlation coefficients.
For this reason, the scale in Fig. 3b was doubled.
Because of the large number of signals spanned by the
main lobe of the directional pattern and because of the
temporal variability of their amplitudes, the values of
the correlation coefficients R for separate peaks vary
from 0.09 to 0.14 (for peaks with minimum values of
the correlation coefficients) and from 0.23 to 0.39 (for
peaks with maximum values). The corrected spatial
correlation coefficient |R;| variesfrom 0.63 to 0.72 with

the mean value |Rs| = 0.67 £ 0.03. The reduction of the
value of the correlation coefficient |R;| at Ar = 23 km as
compared to that Ar = 10 kmis explained by the incom-
plete allowance made for the interaction of many sig-
nals simultaneoudly falling within the array beam, rather
than by the increasing spatial separation of the points of
reception. In particular, this is confirmed by the results
obtained for large separations of the points of reception
(Ar = 63 km) with a smaller number of rays.

Figure 3c shows the correlation functions R(t) for the
spatial separation of the points of reception Ar = 63 km,
for the same reference signal received at a distance of
72 km in the first convergence zone (in the deep-water
channel) and the signalswith the arrival anglesa = +9°
(see Fig. 2d) recorded in the second convergence zone
at a distance of 135 km. These functions exhibit
approximately nine correlation peaks |R;|, the value of

the minimum peak varying from 0.07 to 0.13, and the
value of the maximum one, from 0.36 to 0.64.The cor-
relation coefficient |R;| (summed over all peaks) cor-
rected for each redlization varied from 0.78 to 0.87,
which exceeds |R;| for Ar = 23 km, as was noted above.

The results obtained are presented in the table,
where the following data are given: the position of the
receiving array (relative to the sound field structure
caused by the lower channel only); the spatial separa-
tion of the points of reception Ar; and the arrival angles
a of the reference signal (a,) and the spatially-sepa-
rated signal (a,) at which the array beam was aimed.
Thetable also gives the greatest correl ation coefficients

| Rmax | @veraged over the observation time for separate,

resolved in arrival times, signalswith the standard devi-
ations og; the average values of the corrected correla-

tion coefficients | Rs | with their standard deviations Ox
and the number of the correlation peaks k.

These experimental datashow that anincreaseinthe
spatial separation of the points of reception from 10 to
63 km leadsto areduction of the cross-correlation coef-
ficient. This reduction is mainly a consequence of the
interaction between the simultaneously received sig-
nals, which are an interference to one another, rather
than a consequence of the increase in distance. Thus,
the cross-correlation of signals propagating over purely
water paths is predominantly affected by the varying
number of received signals falling into the relatively
narrow (~2°) main lobe of the directional pattern, rather
than by the spectrum variation with increasing distance
due to the sound attenuation.
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Abstract—Dispersion curves are cal cul ated for fast leaky surface acoustic wavesin a periodic system of metal
electrodes on alithium tetraborate crystal. The periodic Green’sfunction analysisis applied to the piezoel ectric
halfspace. To alow for the mechanical properties of the electrodes, a perturbation method is devel oped that is accu-
rateto within thefirst order of the e ectrode thickness-to-period ratio, and thefinite-el ement method isused to inves-
tigate the higher-order effects. The reflection factor of asystem of two open electrodesis shown to have aminimum
at acertain electrode thickness. Thefast |eaky-to-Rayleigh wave conversion factor and the Rayleigh wave reflection
factor are studied as functions of the electrode thickness. © 2000 MAIK “ Nauka/Interperiodica” .

In recent years, interest has grown considerably in
the so-caled leaky surface acoustic waves (SAW),
which are described by inhomogeneous equations of
motion of an elastic medium. The leaky waves experi-
ence attenuation along the propagation path due to con-
version into bulk waves. At present, the well-known
types of leaky waves are those in quartz, lithium nio-
bate, and lithium tantalate. These waves belong to the
so-called quasi-shear leaky waves [1, 2], because their
shear component predominates. Their velocity is close
to that of the fast shear wave, and the attenuation is
caused by the conversion into the slow shear wave.
Crystal orientations are known for which the attenua-
tion of these waves is very smal; in particular, in
36°Y X-cut LiTaO;, it equals 0.0003 decibel per wave-
length. The leaky waves have found a wide application
in high-frequency SAW filters with low insertion loss,
because the propagation velocity of these waves is
about 1.5 times higher and the electromecanical cou-
pling factor, which determines the excitation efficiency,
is much higher than the corresponding values for the
Rayleigh waves.

Low-loss fast surface acoustic waves were discov-
ered not long ago [3, 4]. Their longitudinal displace-
ment component isthe predominant one; the velocity is
close to that of the longitudinal bulk wave, i.e, it is
almost twice ashigh asthat of the Rayleigh wave. Thus,
it ispossibleto further increase the operating frequency
of the SAW filters.

Fast leaky surface acoustic waves in a periodic sys-
tem of metal electrodes on atetraborate lithium crystal
(Li,B,O,) with the orientation specified by the Euler
angles (0°, 47.3°, 90°) were theoretically and experi-

mentally studied in[5]. Thereflection factor was shown
to increase with the e ectrode thickness-to-wavelength
ratio. The dispersion curveswere also calculated for the
zero-thick electrodes near the Rayleigh wave stopband
and near the band where the fast leaky wave is con-
verted into the Rayleigh wave.

In this paper, we study the reflection of thefast leaky
surface acoustic waves in a periodic system of meta
electrodes on alithium tetraborate crystal. To describe
the piezoelectric halfspace, the periodic Green’s func-
tion method [6] is applied, which is particularly suit-
able for studying the SAW propagation in periodic
structures on crystals. To describe the effect of mechan-
ical properties of the electrodes, a perturbation method
is developed, which is accurate to within the first order
of the electrode thickness-to-period ratio (h/p), and the
finite-element method is used in order to overcome the
limitation that this ratio be small. In contrast to the
results reported in [5], the reflection factor of two open
electrodes is shown to vary nonmonotonicaly with
increasing ratio h/p. The fast leaky-to-Rayleigh wave
conversion factor and the Rayleigh wave reflection fac-
tor are studied as functions of the electrode thickness.

Consider a piezoelectric halfspace z < 0 on whose
surface a system of electrodes with a period p is
arranged; the electrode width and height are | and h,
respectively; the electrodes are parallel to the Y-axis. It
isknown that, when sources of elastic stresses and el ec-
tric charges are present on a piezoel ectric surface, they
cause particle displacements and induce an electric
potential on the surface. The latter quantities can be
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expressed in terms of the Fourier transform of the
Green’'sfunction as follows:

{Ui(k’ ‘*’)} = [G(k W)] {Tm(k’ ‘*’)}, M)
o (k, w) o(k, w)

where Kk is the wave number; w is the circular fre-
quency: Ui(k9 (0), T3i (k’ (‘))’ (I)(k’ (L)), and O-(k’ (1)) (I = 1,
2, or 3 refer to the X-, Y-, or Z-axis) are the Fourier
transforms of the particle displacements, stress tensor,
electric potential, and charge, respectively. In the gen-
eral case, [G(k, w)] isa4 x 4 matrix and is called the
generalized or matrix Green's function of the linear
piezoelectric halfspace [7].

The procedure of calculating the Green’s matrix ele-
ments involves the solution of the eigenvalue problem
for the equations of motion of the piezoelectric
medium; this problem can be reduced to finding the
attenuation factor characterizing the wave attenuation
in the bulk of the crystal in the direction normal to its
surface from an octic equation. When the wave number
kisreal and there are no wave sourcesin the bulk of the
piezoelectric, only four of the eight roots correspond to
waves that are confined to the surface or carry the
energy away from the surface into the crystal bulk.
However, the wave number of the leaky wave is com-
plex. In this case, according to [8], the four attenuation
factors should be selected using the analytical expan-
sion of the Green’sfunction elements from the real axis
to the complex plane. The poles displaced from thereal
wave number axis correspond to waves whose ampli-
tude decreases aong the propagation path and
increases depthward, which testifies to the energy
transfer to the bulk waves; therefore, they correspond to
the leaky waves. This method for selecting the eigen-
values was used in this paper.

In the presence of a periodic system of electrodes,
according to Floguet's theorem, the elastic stress and
charge density on the surface can be represented as the
functions of the x coordinate in the form

{Tm(x’ ‘*’)} = exp(ig) {tm(x’ ‘*’)}, @

a(X, w) s(X, w)

where the unknown wave number q describes the dis-
persion of the system’s eigenwaves and the functions
t5;(X, w) and s(x, w) are periodic with the period p.

Strictly speaking, the leaky waves are not the eigen-
waves of the piezoelectric halfspace, because their
amplitude tends to zero at a long distance from the
source. However, when the leaky wave pole on the
complex wave number plane is sufficiently close to the
real axis, a space region always exists where this wave
dominates [9]. In this region, the propagation of the
leaky wave can be considered as the eigenwave propa-
gation problem.

GRIGOR’EVSKII, GULYAEV

Expanding the right-hand side of (2) into the Fourier

seriesyields
T3i(x w)
o(X, w) 3)
= ep(i) 5 {ts((;;ﬂ exp(imQX),

where t;;(m, w) and s(m, w) are the Fourier series coef-
ficients and Q = 217p is the “wave number” or the
inverse vector of the periodic structure. Formulas (1)
and (3) can be used to find the Fourier coefficients for
the particle displacements and the electric potential on
the surface. The dependences of these quantities on the
coordinate can be obtained as a sum of the Fourier
series:

{Ui(x’ w)} = exp(igx)
o (X, w) 4)

x 3 [6(a+mQ, )] (™ ©)|exp(imQx).

M= o s(m, w)

This expression shows that the response of the piezo-
electric halfspace can be caculated in terms of the
Green'sfunction

[GP(g, w)] = exp(igx)

x > [G(a+mQ w)]exp(imQx), ®

m= —co

which is the response to a periodic &-function-type
excitation.

The Green's function completely describes the
piezoel ectric substrate; however, to calculate the eigen-
waves of the periodic structure, one should specify
additional relationships between the excitations and the
responses. These relationships can be obtained by tak-
ing into account the mechanical characteristics of the
electrode structure.

We study two types of electric connections in the
electrode system: all electrodes are either connected
(short-circuited) or open (isolated from each other). In
both cases, the eectric potential is constant within an
electrode. We assume that the charge resides at the
lower electrode surface, which is adjacent to the piezo-
electric. From the viewpoint of electric characteristics,
this means that the electrode is treated as an infinitesi-
mally thin one. The charge distribution across the elec-
trode width is represented by the expression

N
s(x) = [1—(2x/|)]_llzz AT (2x/), (6)
n=0
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where A, is an unknown coefficient of the nth-order
Chebyshev polynomia T,(y). Thisformula gives a cor-
rect description of the singularities at the electrode
edges; therefore, only a small number of Chebyshev
polynomials is needed to provide an adequate descrip-
tion of the charge distribution [6]. Calculating the Fou-
rier transform of (6) yields the amplitudes of the spatial
harmonics of charge

N
_ 3 )" |0
Sm = ﬁ)nzo(_l) T[Jn%'[z)mljb\n, @)

which are involved in the right-hand member of (4).
Here, J(y) isthe nth-order Bessel function of the first
kind.

In a system of connected electrodes, all their poten-
tials are zero. Dividing an electrode into N intervals,
setting the potential at each interval equa to zero, and
using formula (4), we obtain a system of N linear
equations in the amplitudes of the spatial harmonics
of charge s,,, which, in turn, are represented by for-
mula (7).

In asystem of open electrodes, the potential of each
electrode is unknown; an additional equation is given
by the condition that the total electrode charge be zero.
We multiply expression (7) by exp(igx) (see (2)) and
integrate the result to obtain

ZAmW%%%%o. ®)
n=0

Expressions (7) and (8) and the second equation in
(4) relate the electric characteristics of the piezoelectric
halfspace to those of the electrode structure.

We employ two approaches to describe mechanical
properties of the electrodes. The first one uses the per-
turbation theory, and the second uses the finite element
method. In both cases, the particle displacements and
the normal stresses must be matched at the interface
between the two elastic media.

The approach based on the perturbation theory
assumes that the upper medium is a layer whose thick-
ness varies with the period p and is described by the
function {(x). At the upper irregular boundary of the
layer, the normal el astic stress must be zero:

tjn; = 0, 9

where n; (j = 1, 2, 3) are the components of the outer
normal to the surfacez {(x). When h=max|{(X)| < p,
one can expand equations (9) into a power seriesin the
small parameter € = h/p and restrict it to the first-order
term [10, 11]:

ts—t1 {5+ iz, L = 0. (10)

Here, i = 1, 2, 3 and the upper prime and the substripts
x or z mean the differentiation with respect to the coor-
dinate x or z, respectively. The elements of the stress
tensor and their z-derivatives in (10) are calculated at
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the surface z = 0. By virtue of (10), the condition that
the élastic stresses in the two media be matched at the
interface z = 0 can be reduced to the form

Tis = t1{x—tiz ,C. (11)

Expanding z = {(x) and (11) into the Fourier series
yieldsthe expressions for the Fourier coefficients of the
elastic stress at the surface of the piezoelectric:

16t(m)
Q 0z

where n and m are the numbers of the Fourier harmon-
ics and A, are the Fourier coefficients of the function
Z = {(X). When the electrode cross-section is rectangu-
lar, we have

h . I I
A, = Blsnﬁnnl—fﬁnnl—a%

The assumption that the layer is thin can be used to
derive a relationship between the Fourier components
of stresst;;, the derivatives dt;;/0z, and the particle dis-
placements at z = 0 [12]. For this purpose, one should
expand the particle displacements in the layer into a
power series

(n) (m)
|3_pzAnm|:t (n m)

m = —o

}(m

(13)

0, (1) (2)_2 ikx

u =[u +urz+u”z + ... ]e (14)

and substitute it into the equations of motion of the
elastic material of the layer. Then, the condition that the
stress at the upper layer boundary be zero yields

2

11 —Cp (0
ty (K @) = ik=2—22y{?,
Cuy

(15)

tiz(k, ) = 0, (16)
e T
a”ww=m&@, (18)

wherec,,, ¢,,, and ¢,, arethe elastic moduli and p isthe
density of the electrode material. Relationships (12)
together with (15)—18) completely describe the
mechanical properties of the electrode structure.

To remove the limitation that the parameter h/p be
small, we use thefinite element method [13, 14]. Inthis
method, the continuous medium isdivided into individ-
ual small elements called the finite elements. The elas-
tic displacement distribution within the elements is
interpolated by a linear combination of polynomials
whose coefficients are equal to the displacements at the
nodes of the individual elements. Then, the conditions
for minimizing the Lagrangian of the elastic body are
imposed, or Galerkin's procedure is applied directly to
the differential equations of motion of the eastic
medium to derive equations for the elastic displace-
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ments at the element nodes. Combining the equations
that describe individual elements with the conditions
that the particle displacements and stresses at the ele-
ment interfaces be continuous yields an inhomoge-
neous system of linear equations in the displacements
of al nodes in the region occupied by the finite body.
This system can be written in the matrix form

{[S] -w[MI]}[U] = [T]. (19)

Here, matrices[§ and [M] describethe elastic and iner-
tial properties of the medium and are called the elastic-
ity and inertia matrices, respectively; the elements of
the vector [U] are the particle displacements at the
nodes of al finite e ements; and the elements of the
external stress vector [T] are given by the expression

T, = IN(X, Z)Tgdr, (20)

where the polynomial N(x, z) interpolates the elastic
displacements within an individual finite element, and
theintegral is calculated over the finite element bound-
ariesthat approximate the boundary of the elastic body.

The elastic displacements and stresses must be con-
tinuous at the interface between the electrode and the
piezoelectric crystal. We write the elastic displace-
ments at the surface of the piezoel ectric as a superposi-
tion of spatial harmonics and use the condition that the
displacements at the nodes at the interface between the
electrode and piezoelectric crystal be equal to represent
the elements of the vector [U]

+00 4

Uj = z exp(iknxj) Z AnmUi(knv m)1

m=1

where Uj(k,, m) are the weighting factors, A, are the
partial wave amplitudes, and j and X are the number
and the coordinate of the node at the mterfar:e between
the electrode and the piezoelectric crystal.

The elastic stresses at the piezoelectric surface are
nonzero under the electrode and zero elsawhere. Intro-
ducing the unknown stresses at the nodes that lie at the
interface between the electrode and the piezoelectric
crystal and approximating the stresses within individ-
ual finite elements by interpolation polynomials, one
can calculate the elements of the vector [T] in (19) and
the Fourier components of the stresses at the piezoel ec-
tric surface

1)

n=—-o

I/2

Ta(k ) = r exp(-ikx) z TSON(x)dx, (22)
—I/2

where M isthe total number of nodes on the el ectrode—

piezoelectric interface, TS are the elastic stresses at

these nodes, and N,(X) are the interpolation polyno-
mials.
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Expressions (19), (21), and (22) provide acomplete
finite-element description of the system of electrodes
and give additiona relationships between the sources
and the responses to them, which are necessary for
solving the eigenwave problem for the structure.

In our calculations, we assume that the electrodes
are made of aluminum, which is mostly used in prac-
tice. On (0°, 47.3°, 90°)-cut lithium tetraborate, the fast
leaky wave has a zero Y-component of displacement;
therefore, the matrix [G(k, w)] reducesto a3 x 3 matrix.
Combining equations (4) and relationships that
describe the electric and mechanical properties of the
electrode structure yields a system of homogeneouslin-
ear equations whose determinant depends on the
unknown wave number g. The condition that the deter-
minant be zero at the given frequency w gives the dis-
persion relationship for the periodic structure.

When M spatial harmonics of the fast leaky wave
are taken into account, the perturbation method applied
to the system of connected electrodesyields asystem of
3M + N equations in 3M unknown amplitudes of the
gpatial harmonics and N unknown coefficients of the
Chebyshev polynomials in (7). For a system of open
electrodes, with allowancefor (8), the dimension of the
system increases by one. The finite-element method
requires more computations. When an electrodeis sim-
ulated by P, nodesin the x direction and P, nodesin the
y dlrectlon the number of equations involved in the
system is 2P,P, + 2P, + 3M + N for connected elec-
trodes and greater by onefor open electrodes. Here, the
additional unknowns are two stress components at the
electrode—piezoel ectric interface.

Numerical calculations were performed for M = 10,
N=6,P,=7,and P, = 3. A common steepest descent
procedure was used to find the minimum of the deter-
minant of the system of equations at a given fre-
guency .

Figure 1 showstheimaginary part of the wave num-
ber g for a system of connected electrodes versus fre-
guency near Bragg's stopband for the fast leaky wave.
Theimaginary part of the wave number determinesthe
reflection factor in the stopband. The normalized fre-
guency is specified by the structure period. If p = 2T,
Bragg's reflection condition 19p = q gives q = 0.5, and
the central frequency of the stopbandisw =V, /2, where
V, isthe velocity (in km/s) of the fast leaky wave on a
free surface of the crystal. The plotsagiven for h/p =0
to 0.04 with 0.01 intervals. With an increase in this
parameter, the stopband broadens and the attenuation
increases at the center of the band.

Figure 2 shows the rea part of the wave number,
which determines the phase velocity, for the system of
connected electrodes at the same values of h/p. It can be
seen that the wave number remains amost constant
(about 0.5) within the stopband. This means that two
fast leaky waves propagating in opposite directions are
transformed into each other in as aresult of reflection.
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Im(g), 10~
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3.32 3.36 3.40 3.44

Fig. 1. Imaginary part of the wave number for a system of
connected electrodes versus frequency. The parameter h/p
variesfrom 010 0.04 at astep of 0.01. Thesolid linesarecal-
culated by the perturbation method, and the dashed lines by
the finite element method.

In the system of open electrodes (Fig. 3), the central
frequency of the stopband is shifted toward higher fre-
guencies, which is caused by alower electric shielding
than in the system of connected electrodes. The impor-
tant feature of this caseis that the reflection factor var-
ies nonmonotonically with h/p. This behavior is
explained by the fact that the electric reflection factors
have opposite signs in systems with connected and
open eectrodes. When the electrodes are sufficiently
thick, the reflection due to the mechanical perturbation
predominates over the reflection due to the electric per-
turbation of the surface, and the resulting reflection fac-
tor increases.

Solid lines in Figs. 1-3 refer to the perturbation
method; dashed lines, to the finite e ement method. It
can be seen that the results obtained by the perturbation
method and thefinite element method are very closefor
small h/p. A noticeable disagreement appears for h/p >
0.02. The greatest difference isless than 5%.

Immediately on the right of the stopband (Figs. 1,
3), ahigh attenuation appears due to the conversion into
the longitudinal bulk wave. A similar effect is observed
for quasi-transverse leaky waves, e.g., in 36°Y X-cut
LiTaO; [6]. The attenuation on the left of the stopband
is associated with the nature of the wave and is related
to the conversion into the longitudinal bulk wave. This
attenuation also takes place on an unperturbed surface.
However, in the system of connected electrodes, the
attenuation has a 0.006-dB/wavelength minimum at
h/p = 0.015 on the left side of the stopband, which is
twice as low as the attenuation on an unperturbed met-
alized surface.

This cut of lithium tetraborate can also support the
Rayleigh wave whose velocity Vg is by afactor of 2.1
lower than that of the fast |eaky wave V. When the con-
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Fig. 2. Real part of the wave number for a system of con-
nected electrodes versus frequency for h/p = (1) 0 and
(2) 0.04.

dition Q = g, + gr ismet, where g, and gy are the wave
numbers of the leaky and Rayleigh waves, the reflec-
tion of the fast leaky wave accompanied by the conver-
sion to the Rayleigh wave takes place; at Q = 20, the
Rayleigh wave is reflected. For open electrodes (Fig. 4),
the maximum leaky-to-Rayleigh wave conversion fac-
tor varies nonmonotonically with the electrode thick-
ness, as in the case of the fast leaky wave reflection.
However, the Rayleigh wave reflection factor in sys
tems of open or connected €l ectrodes varies monotoni-
cally with thickness because of the lower electrome-
chanical coupling for the Rayleigh waves. The Ray-

Im(g), 107
6 —

3.36 3.40 3.44 348 W
Fig. 3. Imaginary part of the wave number for a system of
open electrodes versus frequency. The parameters are the

sameasinFig. 1.



0 1 2 3 4 h/p, 1072

Fig. 4. Imaginary part of the wave number at the center of
the stopband versus h/p for (1) connected and (2) open elec-
trodes. The solid lines refer to the fast leaky-to-Rayleigh
wave conversion, and the dashed lines to the Rayleigh wave
reflection.

leigh wave is also an eigenwave of the piezoelectric
halfspace. Therefore, it is more stable to perturbations
of the surface, and the |eaky-to-Rayleigh wave conver-
sion factor and the Rayleigh wave reflection factor are
lower than the fast leaky wave reflection factor.

On the whole, our results are in good agreement
with the results reported in [5]. The data obtained by
the perturbation method developed above and by the
finite element method are in close agreement. The the-
oretical dispersion curves can be used to calculate the
parameters of the coupling mode technique, which is
widely used in designing SAW filters.
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Abstract—An approach to the simulation of low frequency vector wavefieldsin stratified media(mainly inthe
ocean) is considered. The approach is characterized by an improved stability with respect to dividing the
medium into many layers of arbitrary thickness. The model for the sound field of a point sourceis based on an
integral representation of two-dimensional, cylindrically symmetric vector wave fields in inhomogeneous
media, so that the contributions of all types of waves are included automatically. The model medium is subdi-
vided into N horizontally homogeneous layers for which 4(N — 1) equations are formul ated to satisfy the bound-
ary conditions between adjacent layers. The method of the generalized Schmidt matrix is used to obtain the
coefficients of the equations; these coefficients are substituted into the expressions (of the Fourier—Bessel inte-
gral type) for the local parameters of the field. The latter are calculated according to the numerical procedure,
and the results are used to model the distributions of the acoustic pressure and the horizontal and vertical com-
ponents of the particle velocity in liquid and elastic media. The instability of the calculation procedure may
result in adisagreement between the model and the exact solution. However, the disagreement is shown to occur
mainly in models containing excessively thick layers. A way for improving the stability of the numerical model
is suggested. The simulation results are compared with the exact analytical solution for the simplest example
and with the results obtained according to the commonly used generalized matrix procedure (the benchmark
problem). The examples of the practical application of the model for investigating more complex seismoacous-

tic wave fields in the ocean are presented. © 2000 MAIK “ Nauka/Interperiodica” .

The simulation of wavefieldsin stratified mediaisa
classical problem of acoustics and, specifically, ocean
acoustics. This problem is considered in a number of
recent papers [1-11], the well-known monograph [12],
and fundamental works [13-19]. Recent activities in
such aress as oil exploration and investigation of the
seabottom in the shelf zone are based on applied acous-
tics, and this fact makes the devel opment of numerical
approachesto the wave field simulation an urgent prob-
lem, especially when one or several layers of the bot-
tom bulk are characterized by depth-dependent elastic
properties, so that waves of different types (including
longitudinal, shear, and surface seismoacoustic waves)
can propagate in such layers and along their bound-
aries.

A numerical procedure based on anumber of known
techniques for calculating the wave fields was devel-
oped [6, 15] to simulate seismoacoustic fields in the
oceanic medium when the source and the receiver are
located at arbitrary depths in the vertically inhomoge-
neous water or bottom bulk. Each of these techniques
(e.g., [11]), as applied to the simulation problem, has
disadvantages that are partially discussed below. We
suggest a procedure that takes into account our experi-
ence in numerical simulations of vector wave fields in
elastic media and has a number of new features, partic-

ularly, in the choice of the thickness of elastic layers
used in modeling.

We describe the wave fields in elastic media on the
basis of the vector wave equations for local the dis-
placements u and the stress tensor o, or their compo-
nents [13] along the coordinate axes. The propagation
velocities ¢ and ¢, of longitudinal and transverse waves
are related to the medium density p and Lame coeffi-

cients A and p through the relationships c,2 =\ +2W/p

and ct2 =W/p[13]. Inthiscase, aliquid medium appears
to be aparticular case of an elastic medium, if one sets
the coefficient u = 0 and requires the stress tensor to be
composed of only diagonal elements equal to the com-
ponents of the local acoustic pressure p [12, 13].

The magjority of existing models consider the ocean,
including its bottom, as a horizontally stratified, cylin-
drically symmetric medium whose properties may only
dlightly vary in the horizontal (radial) direction and are
independent of the azimuth angle. Here, we will not
compare the known procedures of solving the wave
equation and formally finding the parameters of wave
fieldsin the stratified ocean. We note only that most of
these procedures are reduced to the Green's function
technique [12, 13, 15]. The corresponding calculation
models and procedures, their advantages, disadvantages,
and limitations are reviewed in detail in papers [6, 15].

1063-7710/00/4604-0411$20.00 © 2000 MAIK “Nauka/Interperiodica’



412

Two approaches appear to be most convenient for
numerical simulations of low frequency fields. In the
first approach, the solution isrepresented in the form of
an expansion in the eigenmodes of the equation. In the
second approach, the vector wave field (solution) at
every local point isrepresented as an integral—the con-
volution with the Green's function, over its domain of
definition. In thefirst approach, the expansion in modes
may be unstable if the velocity of shear waves in the
ground does not exceed the velocity of sound wavesin
water. Without additional improvement, this approach
is adequate only for simulating the field in the water
column[5, 20], and it ismuch less useful inamore gen-
eral case, including the simulation of the vector fields
in elastic sediments and the underlying bottom bulk.

Because of a direct estimate of the field, the second
approach avoids these difficulties and naturally takes
into account not only the discrete spectrum of solutions
(including decaying modes), but also the continuous
spectrum. As a result, the wave field everywhere is a
superposition of al types of waves occurring in the
water medium and the bottom bulk under the given
conditions, namely, the longitudinal, shear, surface,
propagating, and inhomogeneous waves [14]. In the
absence of external sources, the equations for the dis-
placement potentialsin a homogeneous el astic medium
have the form [13]

AD —c29°®/at° = 0; AW —c20°WP/at” = 0, (1)

where the scalar ® and vector W potentials are related
to the displacement vector u through the relationship

u= (Vo) +[0,%¥], (O%) = 0. 2)

In the case of cylindrical symmetry, the solution to
the problem on thefield of an external harmonic source,
i.e., the particular solution to equations of type (1) with
specified boundary conditions is representable in the
form of the Fourier—Bessel integrals of the Green's
function of the inhomogeneous equation for both scalar
and vector potentials ® and ¥ [12]:

(r,2) = IG(Z, Z5, £)€Jo(Er)dg,

N 3)
‘P(r! Z) = IG*(Zv ZS’ E)EJl(Er)dE,

0

where ¢ isthe horizontal wave number; r isthe horizon-
tal component of the observation point measured rela-
tive the source; z, and z are the vertical coordinates of
the source and the observation point (receiver), respec-
tively; J,(x) and J,(x) are the zero- and first-order
Bessel functions that are the solutions to the homoge-
neous equations (1); and G(z, z, §) and G*(z z, &) are
the Green's functions of the boundary-value problem
for the scalar and vector potentials. In thelayer with the
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source, these Green’s functions satisfy the inhomoge-
neous ordinary differential equations

d°G/dZ” + [wlci(2) —€°]G = 8(z-z.),

“)
d°G*/dZ* + [wIc(2) - §°1G* = §(z—2),

where d(z - z) is the Dirac delta-function and w is the
angular frequency of the harmonic source. We consid-
ered the case in which the source of compression waves
(amonopoale) is located within some layer of the con-
sidering system of layers, e.g., within the water layer.
With this assumption, only the first of equationsin (1)
is actually inhomogeneous. Neverthel ess, equations (4)
give us a possibility of finding the Green’s function of
the system composed of equations (1) and the boundary
conditions even for this case. The corresponding equa-
tions for ® and ¥ remain homogeneous for other lay-
ers, and, for the particular case of the source of com-
pression, the equation for W is homogeneous even in
the layer with the source (e.g., the water layer). The
same consideration istrue for the equations for Green’s
functions; unlike equations (4), these equations appear
to be homogeneous. In the cylindrical coordinate sys-
tem, expressionsfor the horizontal (u,) and vertical (u,)
displacements can be found immediately from expres-
sion (2) with the scalar azimuth component of the
potential ¥ taken to be equal to—00/0r [12], where the
function O(r, z) satisfies the scalar equation of type (1)
for transverse waves: A® + (w/c)*@ = 0. This choice of
the vector potential component fits the requirement that
the transverse component of the displacement vector
also satisfies an equation of type (1). Asin[12], we pro-
ceed from the cylindrical symmetry of the problem and
the solenoidal property of vector ¥ and assume that
O(r, 2) is the unique, azimuth-independent component
of the vector potential. In this case, the displacement
components u, and u, lying in the (r, ) plane are al'so
independent of the azimuth, and the normal ¢, and tan-
gential g,, components of the stress tensor are deter-
mined from the classical Hooke law relating the
stresses and the displacements in an elastic medium
[13]. Upon simple rearrangement, we obtain:

u, = ad/ar +9°O/draz, (52)

u, = aP/0z+8°0/07 + (wlc,)’O, (5b)
g,, = -Aw/c)’®

(5¢)

" ZM(% [00/0z+ (w/c)?0 + %0107,

o, = p(%[26d3/62+ (0/c)?0 + 20°0107]. (5d)

Clearly, the scalar potential ® alone is sufficient to
describe the case of a liquid medium, where the dis-
ACOUSTICAL PHYSICS  Vol. 46
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placement components u and the acoustic pressure p
are given by the formulas

u = 0o, (6a)

p = —pd°d/ot. (6b)

The structure and the behavior of Green’s functions
(solutions to equations of type (4)) depend on the posi-
tion and the type of the source, the type of waves, and
the corresponding distribution of velocities of the lon-
gitudinal and transverse waves along the z axis.

In numerical field simulations, the vertically inho-
mogeneous ocean and bottom bulk is subdivided into
layers whose number N is sufficient to consider their
parameters to be homogeneous (invariable) within
every particular layer. In other words, the actual distri-
bution of parametersisreplaced by astep function. The
upper boundary of the system (the water—air boundary)
isconsidered a perfectly soft one, and the lower layer is
usually assumed to be a homogeneous elastic half-
space. Each layer is specified by thickness h, velocities
of the longitudina ¢, and transverse ¢, waves, coeffi-
cients of their spatial decay, and medium density p in
the layer. The upper layer islabeled by theindex 1, and
the lower layer (halfspace), by the index N.

In an arbitrary layer labeled by index n, the poten-
tials can be represented as a superposition of the inci-
dent (direct) waves and the reflected (inverse) plane
waves:

Pn(2) = By (2) + Pa(2) Ta)

an exp(0,2) + a, exp(—a,2),
O,(2) = 0,(2) +0,(2)

. _ (7b)
bn eXp(BnZ) + bn exp(_BnZ)1

where a,, a,, b, , and b, are the amplitudes of the

corresponding waves in the expressions for the scalar
and vector potentials; the superscripts“+” and “—" cor-
respond to the direct and inverse waves, respectively;
o, and 3, arethe proj ections of the wave numbers of the
corresponding waves on the z axis,

Uy = & ks, Bo = JE K )

and k, = w/c,_, and K, = w/c, , are the wave numbers of
longitudinal and transverse waves in the nth layer. The
attenuation of waves in the layer is governed by the
imaginary part of the complex wave numbersk, and K,,.
For example, in the case of the longitudinal wave, we
have

K, = w/C , = wlc /(1-in,) Ow/c ,(1+in,)
= w/c, ,+iwny/c , =k, +iky,
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where the attenuation coefficient k;; is measured either
in Neper per meter (k, = n,w/c ), or in decibel per
meter (o, , 08.68n,w/C_ ).

To find the solution for the system of N layers, the
fields at the interlayer boundaries are sewed together,
which is carried out by satisfying the boundary condi-
tions for every interlayer boundary. At the interface
between solid layers, the boundary conditions consist
in the continuity of the vertical and horizontal displace-
ments (conditions (5a) and (5b)) and the normal and
tangential stresses (conditions (5¢) and (5d)). At the
interface between liquid layers, they are the continuity
of the vertical displacements and the pressure. At the
upper free boundary, the pressure formed by the super-
position of al waves is set to zero. At the interface
between solid (elastic) and liquid layers, the exact
boundary conditions are usually reduced to simplified
(approximate) conditions, which require that the verti-
cal displacements coincide in both layers (u, =
(1/pw?)0p/d2), the total normal stress in the solid layer
be equal to the pressure in the liquid layer taken with
the inverse sign (o, = —p), and the tangential stressin
the solid layer be equal to zero (o,, = 0), because the
viscosity of liquid is usualy neglected.

The conditions at the boundary between the liquid
and solid layers require additional consideration. Here,
the condition of the coincidence of the horizontal dis-
placements is usually not set, although, strictly speak-
ing, the liquid adheres to the boundary of the elastic
layer dueto the viscosity, and horizontal displacements
actually coincide. However, such a condition would
essentially complicate the structure of the equation to
be solved. Namely, for the liquid layer, one would be
forced to solve the Navier—Stokes equations [13]
instead of equations (1). At the sametime, the thickness

of the corresponding boundary layer is about ./v/w,
and this value appearsto be relatively small because of
the low kinematic viscosity of water (v 0 10° m%/s).
Indeed, this thickness measures about 4 mm even for a
frequency of 0.01 Hz and decreaseswith increasing fre-
guency. Outside this thin layer, the flow of liquid is a
potential one, and the requirement of the coincidence of
the horizontal displacements becomes unnecessary.
Thus, the above boundary conditions at the liquid—solid
interface are justified, if the liquid motion within the
thin boundary layer can be neglected [1].

It should be noted that, in numerical field smula-
tions, we use the boundary conditions in their natural
form requiring the coincidence of acoustic displace-
ments and stresses, rather than in the form of the bal-
ance between the coefficients of reflection and refrac-
tion of separate wave parameters, asis often done. This
approach offers us an opportunity to do away with addi-
tionally checking the energy fluxes of elastic longitudi-
nal and transverse waves for the continuity at the layer
interfaces [2], because this continuity is automatically
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retained for the interfaces between elastic layers. How-
ever, for the liquid—solid interfaces, the note in the pre-
vious passage should be taken into consideration.
Neglecting the liquid motion within the boundary lay-
ers (i.e., the use of the approximate boundary condi-
tions) results in discontinuities in the wave energy flux
because of irreversible viscous losses (heat release) in
these layers [13]. One can evaluate the corresponding
energy losses E, from the horizontal displacements of
the boundary u,(u,,) on the side of the elastic medium
(in essence, we assumed that these displacements can
take on arbitrary values). It can be easily shown that
these neglected energy losses are small and measure

about E, = ipv*?w'?u? per unit area of the boundary.
These losses increase with the viscosity of liquid (in
proportion to v3?) and the frequency of the wave field
(in proportion to w'?); however, they can be neglected
in numerical simulations of low-frequency wave fields.
Here, it is appropriate to recal the known result
obtained by B.P. Konstantinov and revised by Savel’ev
[23] for elastic boundaries. According to Savel’ev [23],
for waves arriving at the interface between two media
with different densities at small grazing angles, the
reflection coefficient essentially varies and becomes
minimal at acertain (quite small) grazing angle. In this
conditions, the major part of the reflected energy (to
83% at the interface between liquid and a perfectly
rigid halfspace) transforms to the energy of viscous or
heat waves propagating along the boundary predomi-
nantly within the mentioned viscous layer. For higher
frequencies, the neglect of the Konstantinov effect
results in errors, especially in simulating the spatial
|osses of the field; however, the contribution of viscous
waves to the energy balance of the wave field decreases
with decreasing frequency, and the boundary can be
considered as an ideal one even for small grazing
angles[23].

At every boundary, the boundary conditions and
potentials (7) form the so-called local system of equa-
tions. All local systems appear interrelated [10] and
together form a generalized (global) system of equa-
tions. In such a system, the contributions of sources at
the boundaries are simply added up. Asaresult, we can
obtain the generalized system of algebraic equationsin

the coefficients a; and by . If the medium is subdivided

into N layers, the generalized system is the system of
4(N — 1) equations in 4(N — 1) unknowns in the general
case (al layers are elagtic). For liquid layers, we have
only half of the equations (and unknowns). The obtained
system is usually solved according to anumerical proce-
dure of Gaussian exclusion of unknowns with partial
permutations; the details of this procedure are described
intheliterature[9, 19].

Unfortunately, this generalized (global) system is
hardly solvable analytically, especially for alarge num-
ber of layers. Therefore, it is convenient to rewrite the
system in matrix form and solve it using matrix algebra

DERZHAVIN et al.

techniques. In this context, the techniques most widely
used in recent years are the method of the Thomson—
Haskell matrix [10] and the method of the generalized
Schmidt matrix [11], the latter including the former as
aparticular case.

We obtain the final solution for the displacements
and stresses (5) by integrating expressions (3) for the
potentials represented in the form (7):

00

u = i —E[a, exp(ap2) + a,exp(—0,2)]
0

+ BE[ by exp(Byz) — b, exp(—B,2)1} 1 (Er)EdE,

00

u; = J’{cxn[a;exp(anz) - a;exp(—anz)]
0

— &% by exp(B,2) + byexp(—B,2)]} Jo(Er)EdE,

00

0, = I{ (_)\nkr21 + Zunas)
) ©)

x [a exp(01,2) + 8, exp(=ap2)]

+ 21, BoE [ by exp(Br2) — by exp(—Bn2)] } Jo(Er)EdE,

00

0z = | —2{,8 g @ €XP(012) — 8, eXp(—2)]
0

~WE(E° + B[ by exp(Ba2)
+ by exp(—B,2)1} J(Er)ECE.

Thus, the determination of the parameters of the
seismoacoustic field in the horizontally stratified
medium breaks up into two steps. Thefirst step consists
in the numerical evaluation of the unknown coefficients

a. and b in equations (7) for every discrete wave
number & by using the generalized Schmidt matrix that
takes into account the interlayer boundary conditions.

The second step consists in computing the integral
transforms (9) for the specified reception depth z from

the determined coefficients a. and b . This computa-

tion can be accomplished, for example, using the fast
Fourier transform and the asymptotic expressions for
the Bessel functions of large arguments.

Note several features that must be taken into
account in numerical simulations of wave fields. First
of al, the evaluation of integral expressions (9)
assumes that one must take into account the oscillating
behavior of the Bessel functions appearing in the inte-
grand and, especidly, the features of the complex
Green's function (4), such as singularities, branch
points, and oscillations. The distance-dependent oscil-
lation period, the peak widths, and the law of the spatial
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decay of Green's function immediately determine the
admissible mesh width and limits of integration in
expressions (9).

Another feature is associated with the so-called
masking effect occurring in thick layers. In an arbitrary
layer with index n, one of the two fundamental solu-
tions usually increases with depth z, and the other
decreases. This behavior follows from the fact that
exponents appearing in linear equations (7) are charac-
terized by significant real parts when € in (8) consider-
ably exceeds k,, and K, in thislayer. In these conditions,
the amplitude ratio of the solutions increases as the
waves propagate from the source predominantly along
the layer, and, for thick layers, this ratio may often fall
beyond the digital possibility of acomputer. Asaresult,
the decreasing solution seemingly disappears against
the background of the increasing solution (the masking
effect). The neglect of this effect inevitably results in
instabilities of the numerical model. In addition, the
boundary conditions cease to be satisfied, because one
fundamental solution (decreasing in 2) is actually lost.

To overcome this difficulty, we suggest [21] to rep-
resent the solutions in the layer as a superposition of
transmitted and reflected waves and use recursion rela
tionships [16] for a layer-by-layer calculation of the
partial reflection and refraction coefficients of longitu-
dinal, transverse, and exchange (i.e., corresponding to
transformations of longitudinal waves to transverse
waves and vice versa) waves at the interfaces between
elastic layers. This representation excludes the increas-
ing fundamental solution, because the expressions for
the partial reflection and refraction coefficients contain
only factors with the exponents 2a,h,,, 23.h,, and (a,, +
Bwh,, where h, isthe thickness of the nth layer. If these
exponents have negative real parts and if these rea
parts are sufficiently large in magnitude, the reflection
coefficients necessarily approach the reflection coeffi-
cientsfor the corresponding layers of infinite thickness,
and all subseguent layers can be excluded from consid-
eration for the mentioned types of waves.

For example, the reflection coefficient V,, from the
nth liquid layer is related to the reflection coefficient
V,, ; from the subsequent layer by the recursion rela-
tionship

— I:zn + Vn+lexp(2anhn)
"1+ RV exp(20,h,)’

(10)

where R, is the Fresnel reflection coefficient from the
interface between two semi-infinite media of numbers
(n—1) and n. For Re[exp(2a,h,)] —= 0, the reflection
coefficient V,, — R,, and the wave incident on the
upper boundary does not reach the lower boundary of
the layer. In this case, the reflected wave formally dis-
appears, and the layer can be considered as a halfspace.

Aswas shown earlier [22], the optimum mesh width
h,, in the subdivision of an inhomogeneous liquid layer
into homogeneous sublayers is determined from the
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Fig. 1. Geometry of the simple problem on thewavefieldin
the halfspace overlying a rigid boundary (the benchmark
problem). The source is located at the point S, the receiver
is located at the point D, R is the horizontal distance
between the points Sand D, and h; and h, are the heights of
these points above the rigid boundary.

|
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condition |hAk, | < Tt, where Ak, = k(z,, ;) — k(z,) isthe
difference between the wave numbers at the sublayer
boundaries. For elastic layers, the quantity Ak, should
be replaced by the maximum of the wave number dif-
ferences for longitudinal and transverse waves. This
maximum depends on the vertical gradient of the veloc-
ity of the corresponding elastic wave ¥, which results
intherelation for the sublayer thicknessin theform h, <
¢ 2w '2|x, [/, where ¢, is the propagation velocity
of the chosen type of waves. Clearly, the thickness h,
should be additionally checked for the masking effect
in accordance with formulas similar to (10).

In terms of wave numbers, the above criterion addi-
tionally determines the maximum horizontal wave
number & for which the slowest wave originating at the
source height ceasesto arrive at the height of the recep-
tion point. One can replace the infinite upper limit in
integrals (9) by this maximum &, and this maximum
must be redetermined every time when constructing a
particular numerical model. Besides, such a procedure
offers the possibility of creating an essentially faster
code.

To illustrate the efficiency of the suggested numeri-
cal model, we compare our simulations for one of the
simplest cases (which allows an analytical solution)
with the known exact analytical solution and the simu-
lations based on the method of the generalized Schmidt
matrix [11]. Such an approbation procedure for simula:
tions by comparing the simulated results with the
known ones has been called the benchmark problem.
To implement this procedure, we choose the wave
(sound) field of a source in the halfspace above a per-
fectly rigid boundary (halfspace). Figure 1 schemati-
cally shows the geometry of the problem (positions of
the source and the observation point) along with the
corresponding notation, and Fig. 2 shows the simulated
results [21].
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Fig. 2. Pressure p(R) (normalized by the pressure generated
by the source at a distance of 1 m, p(1 m)) versus the hori-
zontal distance R. The calculations were performed for h; =
h, = 20 m and the source frequency 50 Hz. The curves p(R)
were obtained according to (a) the exact solution, (b) the
method of the generalized matrix, and (c) the proposed sta-
ble procedure.

As is known, the exact solution for the acoustic
pressure p in the wave field of a source of unit ampli-
tude hasthe form

ikry ikr,
p=e Ir;+e “Iry,, (11

DERZHAVIN et al.

where r, and r, are the distances travelled by the
direct and reflected waves to the observation point and
k is the wave number of the sound wave in the upper
halfspace.

A comparison of the curves p(R) constructed
according to the exact solution (Fig. 2a), the method of
the generalized matrix (Fig. 2b), and the proposed pro-
cedure (Fig. 2c) shows that the latter gives the best
agreement with the exact solution. At the same time,
simulations based on the method of the generalized
matrix may essentially (and sometimes unacceptably)
deviate from the exact solution. These deviations fol-
low from the fact that the commonly accepted simula-
tion procedure becomes unstable for an arbitrary subdi-
vision of the calculation region into layers parallel to
the rigid boundary.

From the practical standpoint, the simulated results
given in Figs. 3-6 are more informative. They give an
example of simulating the seismoacoustic field of a
source located in the ocean water layer. The calcula-
tions were carried out for the frequencies 0.01, 0.10,
1.00, and 10.0 Hz with the use of two different models
for the bottom structure. Model 1 was composed of the
water layer 1 overlying asand halfspace 2; model 2 was
composed of the water layer 1 overlying a finite sand
layer 2 and alimestone halfspace 3. Every layer ischar-
acterized by athickness h,, and geoacoustic parameters:
density p,, velocities of longitudinal and transverse
waves ¢ , and ¢, ,, and attenuation coefficients of lon-
gitudinal and transverse waves per unit frequency § ,
and 6[ m €9. 6I n 054. Sr]n/CI n:

We used the following parameters of the layers:

1. Water layer: h; = 150 m, p, = 10° kg/m?, ¢ | =
1450 m/s, and &, , is virtually zero for the frequencms

used in the simulation (f < 10 Hz).

2. Loose sediments (sand): h, = o (for model 1) or
h, =50 m (for model 2), p, =2 x 10° kg/m?, ¢, =
1800 my/s, ¢, , = 700 m/s, & , = 0.10 dB/m kHz, and
3, » = 6.0 dB/m kHz.

3. Petrified sedi ments(llmestone) h3_oo(for mode 2),
P; =2.2 x 10° kg/m?, ¢ 3 = 2400 m/s, ¢, ; = 1000 m/s,
8,3 = 0.03 dB/m kHz, and &, ; = 0.20 dB/m kHz.

For frequenciesf < 10 Hz, the attenuation coefficient
islinear in frequency, (a; ) dB/m = 9, , for al types of
rock and loose sediments.

The point source (monopole€) creating an alternating
pressure of amplitude 1 Pa at a distance of 1 min the
infinite water medium was located in the water layer at
a depth z, = 100 m. The reception point was located
either at the bottom of the water layer, or in the bottom
bulk, at a depth of 50 m in the sand layer. Thus, the
reception was carried out either in the bulk of the sand
halfspace (model 1), or in the bottom bulk, at the inter-
face between the sand layer and the limestone halfspace
(model 2).

The curves in Figs. 3-6 are the horizontal sections
of the simulated field of the source. Figures 3a—6a cor-
ACOUSTICAL PHYSICS Vol. 46
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Fig. 3. The horizontal sections of the seismoacoustic field of
particle velocities for the source frequencies 0.01, 0.10,
1.00, and 10.0 Hz. The particle vel ocities are normalized by
their values at a distance of 1 km. The observation point is
located at the bottom of the water layer. The medium is
composed of the water layer overlying a sand halfspace
(model 1). (a) Vertical components v,. (b) Horizontal com-
ponents v;.

respond to the vertical component of the local particle
velocity v, and Figs. 3b—6b correspond to the horizon-
tal component v,. The parameter distinguishing the
curves is the frequency of the source. On the ordinate,
the components of the particle velacity, v, and v,, nor-
malized by their values v, , and v, , at ahorizontal dis-
tance of 1 km from the source are plotted in decibels.
The table presents the magnitudes of the velocities v,
and v, , and the corresponding predictions for the
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Fig. 4. The horizontal sections of the seismoacoustic field of
particle velocities for the source frequencies 0.01, 0.10,
1.00, and 10.0 Hz. The particle vel ocities are normalized by
their values at a distance of 1 km. The observation point
coincides with that in Fig. 3. The medium is composed of
the water layer overlying a sand layer and alimestone half-
space (model 2). (a) Vertical components v,. (b) Horizontal
components v, .

decay of the field of particle velocities at a distance of
20 km.

From the analysis of the above simulated field, it
followsthat, near the bottom of the water layer, the ver-
tical components of the velocity v, and the acoustic
pressure p decrease with distance steeper than by the
cylindrical decay law (proportionally to R, This is
immediately seen from latter two columns of the table
where the decay of the field essentially exceeds the
value 13 dB expected for acylindrical wave. Thereason
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Fig. 5. The horizontal sections of the seismoacoustic field of
particle velocities for the source frequencies 0.01, 0.10,
1.00, and 10.0 Hz. The particle vel ocities are normalized by
their values at a distance of 1 km. The observation point is
located in the bottom bulk, 50 m below the lower water
boundary. The medium is composed of the water layer over-
lying a sand halfspace (model 1). (a) Vertical components
V. (b) Horizontal components v, .

is that shear waves are strongly attenuated in sand. As
may be shown using a thin water layer overlying a
homogeneous el astic halfspace as the model (similar to
model 1), the mgjority of the wave energy (about 68%)
of the point source (monopole) propagates along the
water—bottom interface in the form of surface waves
[7], and their attenuation is mainly governed by losses
in the elastic halfspace (sand). Note that paper [7],
unfortunately, does not take into account the additional

DERZHAVIN et al.
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Fig. 6. The horizontal sections of the seismoacoustic field of
particle velocities for the source frequencies 0.01, 0.10,
1.00, and 10.0 Hz. The particle velocities are normalized by
their values at a distance of 1 km. The observation point
coincides with that in Fig. 5. The medium is composed of
the water layer overlying a sand layer and alimestone half-
space (model 2). (a) Vertical components v,. (b) Horizontal
components v, .

|oss mechanisms discussed above and the conclusions
of paper [23].

The replacement of the sand halfspace by a compar-
atively thin layer and the introduction of a new inter-
face between sand and limestone (model 2) resultsin a
considerable increase in the velocity components v,
and v,. Indeed, for frequencies 1 and 10 Hz, the respec-
tive velocity components at a distance of 20 km exceed
the corresponding components obtained in model 1 by
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The magnitudes of the components v, , and v, , of particle velocities at a distance of 1 km and the corresponding forecasts
for an additional decay of the field of particle velocities at a distance of 20 km (p; = 1Pa, z, = 100 m, and /4, = 150 m)

Location of the

reception paint Model | Frequency, Hz | v, o 10%, m/s| v, ¢ x 10'% m/s| v,/v, o, dB v /v, o, dB
At the bottom of 1 0.01 011 80.0 —29.2 -40.3
water layer 0.10 0.74 2.80 32,0 265
1.00 3.80 3.90 —64.0 —68.9
10.0 5.40 9.40 -102.6 -95.8
2 0.01 0.0089 30.0 -12.3 -33.2
0.10 0.27 15.0 -18.3 -56.4
1.00 4.30 3.40 -18.8 -19.3
10.0 5.10 9.10 -89.0 —66.5
At adepth of 50minthe 1 0.01 2.50 68.0 -32.7 —40.8
bulk of the bottom 0.10 9.70 1.80 -38.0 552
1.00 4.30 0.78 —64.8 -53.1
10.0 2.70 6.40 -92.0 —-89.5
2 0.01 0.046 0.0022 -28.3 -13.7
0.10 0.34 0.55 -19.7 -40.8
1.00 6.90 7.50 -21.6 —26.3
10.0 4.10 5.70 —65.1 —61.9
50 and 30 dB for the reception near the bottom, andby 5. N.S.Ageeva, V. D. Krupin, V. P. Perelygin, and N. V. Stu-
27 and 28 dB for the reception at the interface denichnik, Akust. Zh. 40, 181 (1994) [Acoust. Phys. 40,
between sand and limestone. For the frequencies 0.01 159 (1994)].
and 0.10 Hz, the observation point, evenif itislocated 6. M. J. Buckingham, J. Acoust. 5, 223 (1992).
at adistance of 20 km from thesource, falsin the near 7. A. D. Lapin. Akust. Zh. 38. 364 (1992) [Sov. Phvs
(Fresnel) zone of the source, where all field parameters, " Acoust. SS 198 (1992)]. (1992) [Sov. Phys
including the particle velocities v, and v,, strongly . T . . ,

: : ! 8. Formation of Acoustic Fields in Oceanic Waveguides,
fluctuate, and fhis fact determines the structure of the ™ g4y v. A, Zverev, et al. (Inst. Prikl. Fiz,, Nizhni
simulated fiela. Novgorod, 1991).

Our recent papers [24-27] describe the proposed 9. A. E. Mudrov, Numerical Methods for Personal Com-
numerical model of the bottom bulk in more detail. puters in BASC, FORTRAN, and Pascal Languages

(RASKO, Tomsk, 1991).
10. F. R. Di Napoli and R. L. Deavenport, J. Acoust. Soc.
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Abstract—Theoretical expressions for the impedance characteristics of a layer bound to a rigid base are
obtained for various profiles of the normal pressure under adiethat vibrates on the layer surface without pro-
ducing any shear stresses. The frequency dependences of the impedance characteristics of a homogeneous
gelatin layer and their variation with changes in the die diameter are measured by means of a specialized
software-hardware system. The impedance characteristics are calculated for the models with “uniform,”
“parabolic,” and “hyperbolic” pressure profiles under the die, and the results are compared with the experi-
mental data. The model with auniformly distributed pressure under the die is found to be the most adequate

one. © 2000 MAIK “ Nauka/Interperiodica” .

The development of mathematical models of imped-
ance characteristics of soft biological tissuesisnot only
of purely scientific interest, but isalso important in con-
nection with the modern advances in the method of
continuously monitoring the mechanical parameters of
tissueswith high time resol ution on the basis of the data
of single-frequency impedance measurements [1] and
in the method of reconstructing the mechanical param-
eters of layered tissues from the data of spectral imped-
ance measurements (i.e., from the frequency depen-
dences of the impedance characteristics) [2—4]. Today,
there exist a number of models of the impedance prop-
erties of biological tissues [3-9]. The most complete
one is the three-layer model developed by Skovoroda
and Aglyamov [3] on the basis of the data of experi-
ments with human forearm tissues. However, using this
model for interpreting the experimental data on the
impedance characteristics of other parts of human
body, which are very different in their structure and
mechanical properties, or for selecting the optimal con-
ditions for such studies is difficult due to the complex-
ity of the identification of the model parameters. Such
an identification demands specialized software toals. It
seems possible to use other lessrigorous but essentially
less labor-intensive computational models, namely,
“models with a power source of vibrations,” which are
grounded on the approximations used for solving the
Lamb problem [4, 10-12]. This paper demonstrates
such opportunities by comparing the calculations for a
single-layer model of the aforementioned type with the
experimental data obtained for a homogeneous gelatin

layer.
The development of such models, as well as the

model by Skovoroda and Aglyamov [3], utilizes a
known approach [10]. This approach is as follows:

(i) consideration is restricted to the axially-symmetric
case and a general solution to the equations for an
acoustic field in a linear elastic medium is determined
in terms of the Hankel transforms; (ii) the boundary
conditions corresponding to the layered object under
consideration are set; and (iii) the tiffness K (the
impedance Z) of the object is determined as the ratio
between the force P applied to a die and the die dis-
placement U (velocity V) by using the inverse Hankel
transform. The distinctive feature of the “modelswith a
power source of vibrations® is the fact that simplified
boundary conditions are set at the outer surface of the
object, namely, the condition of the known normal
pressure and the condition of the absence of tangential
stress over the whole surface including the surface
under the die. The last condition is interpreted as the
condition of die dlip, and, basicaly, it can be provided
in the experiment by special means. The pressure pro-
file under the die p(r) in the models of this class must
be selected so as to fit the experiments.

Omitting here relatively simple calculations corre-
sponding to this approach (seethe paper by Timanin [4]
for details), we give the final expression for the com-
plex stiffness of the layer with the lower surface z=H
rigidly bound to the rigid base and the upper surface
z=0drivenintheregionr < aby avibrating flat round
dieof radius a:

K=

Clo

L )
K|(D13+D14)—k2(D11—D12)R(k) dk

'!:(kz + Ktz)(D13 —Dy) - 2k2Kt(Dll +Dyy)

1063-7710/00/4604-0421$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Block diagram of the software-hardware system for the investigation of spectra of the impedance characteristics of soft bio-
logical tissues. (1) A power amplifier (type 2707); (2) avibration test bench (type 4801T); (3) an impedance head (type 8001); (4) a
removable die; (5), (6) amplifiers for the sensor signals (type 2626); (7) a computer with a CT4170 sound card; and (8) the object

under investigation.

Here, k is the parameter of the Hankel transform; the
parameters k- = k2 — kX and k! = K — k” are deter-
mined by the wave numbers of shear and longitudinal
waves k¥ = w?/c? and k¥ = w?/c’, where w is the cir-
cular frequency of dievibrationsand ¢’ =p/p and ¢’ =
(A + 2p)/p are the velocities of shear and longitudinal
waves determined by the density p and the Lame con-
stants A and Y. The determinants of the third order D;
inexpression (1) are the cofactors of the elements of the
first linein the principal determinant of the set of equa-

tionsthat corresponds to the boundary conditions of the
problem:

—ZpsztAl + 2|.1k2KtA2 + p(k2 + Ktz) B,
+ (K + k) B, = —p(K),

HK(K® + KA, + k(K + k() Ay — 2pkk, By
+2pkk,B, = 0,

(@)

KH —H KH —KH
ke A —Ke A, +Ke B, —ke B, =0,

ke A, —kk,e A, —ke""B,—ke "B, = 0.

The function p(k) on the right-hand side of the first
equation of set (2) isthe Hankel transform of the pres-
sure profile at the outer surface of the layer p(r). This
guantity also determines the function R(k) involved in
expression (1). In the determination of die displace-
ment from the averaged over its area displacement of

the layer surface under it [10], U = %I: u, (r, 0)2Trdr,
ma
the function R(k) has the form:

2
R(k) = _%‘11_(_?21 3)
kma™p

when the pressure under the dieisuniformly distributed
according to the formula p(r) = P/m&?,

83, (ka)J,(ka)
Kma’p

R(k) = “)

when the pressure under the dieisdistributed according
to the “parabolic” law p(r) = 2[1 - (r/a)*]P/m&?, and

Ji(ka)sin(ka)

R(k) = —
(k) kma’

&)

when the pressure under the dieisdistributed according

to the “hyperbolic” law [10] p(r) = P/2may/a’—r’. At
the surface outside the die area, the pressure is absent
inall cases.

Expression (1), in which the determinants corre-
spond to the set of equations (2) for various types of the
function R(k) determined by expressions (3)—(5), will
be used below for numerical calculations and the
approximation of experimental data in order to select
the best model. The model modifications correspond-
ing to different functions R(k) will be called A-mod-
els, PA-models, and GA-models, respectively.

A speciaized software-hardware system has been
constructed for the experimental investigation of the
frequency dependences (spectra) of the impedance
characteristics of biological tissues and their physical
models (for example, a gelatin layer) [4]. This system
provides the spectra of the impedance characteristicsin
adigital form already in the course of the experiment.
These spectra can be easily used for further processing,
and, in particular, for the identification of the model of
a specific object. The experimental system based on
Bruel & Kjaer equipment for the generation and mea-
surement of vibrations and described earlier [ 7] formed
the main part of the new system. The distinctive feature
of thelatter (Fig. 1) isthefact that the signal processing
is conducted not by a spectrum analyzer, but by acom-
puter using specialized software for Windows 95/98.

ACOUSTICAL PHYSICS Vol. 46

No. 4 2000



INTERPRETATION OF A LAYER MECHANICAL IMPEDANCE MEASURED

The signal input is performed with the help of the
CT4170 Creative card. The software provides an
opportunity to detect at the monitor screen and save to
a disk the frequency dependences of the impedance
characteristics of the studied object within the band up
to 512 Hz. The time of the data acquisition for one
spectrum is one second, and the frequency resolutionis
1.22 Hz. There is an opportunity to average a given
number of spectra of the impedance characteristics.
The compensation of the mass associated with theforce
transducer, i.e., the compensation of its accel erometer
sensitivity, is performed in each experiment before the
measurements. In order to do this, the signals from the
sensors, which correspond to the die vibrations in the
air, are stored to the computer memory, and necessary
corrections to them are introduced in the measurement
procedure. Moreover, the calibration of the system is
conducted before the measurements by putting a load
of a known mass upon the operating die. The corre-
sponding signals are also stored in the computer mem-
ory and then used to normalize the impedance charac-
teristics to be determined. The frequency dependences
of the real (ReM) and imaginary (ImM) parts of the
complex inertia in grams, or the frequency depen-
dences of the real parts of the complex stiffness (ReK)
in N/m and the complex impedance (ReZ) inN s/m, are
displayed in the program windows in the measurement
mode. These values can be saved to adisk and used for
further processing. The correctness of the operation of
the new system has been tested in several specia exper-
iments [4]. First, the impedance characteristics corre-
sponding to the verifying load of known mass con-
nected to the die have been recorded. Second, simulta-
neous measurements of the impedance properties of a
l[imp human forearm have been conducted using the
new system and a 2034 spectrum analyzer connected to
the computer in parallel.

A specia series of measurements were conducted
on a homogeneous gelatin layer of thickness 30 mm
with the help of the system described above. The values
of ReK and ReZ were detected with the help of three
dies with diameters of 6, 10, and 16 mm. Each mea-
surement was performed for the static impression of the
dieinto the object to 1 mm. Averaging over 20 realiza-
tions was performed in the process of each impression.
The gelatin density p = 1008 kg/m? was determined by
additional measurements of the sample mass and vol-
ume, and the velocity of longitudinal wavesin the gel-
atin sample ¢, = 1500 m/s was determined by measur-
ing the time of propagation of an ultrasonic pulse from
the surface to the base and back. The stored experimen-
tal data were read into the files for calculating the
impedance characteristics with the help of the Matcad
software. Fitting of the rheological parameters of the
models for the best approximation of the experimental
datawas performed. The experimental curves are given
below, together with the results of numerical calcula
tions.
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Numerical calculations in the models were per-
formed using the Matcad software directly according to
formula (1) with setting the determinants from the set
of equations (2). The viscous properties of the layer
material were taken into account by the change of its
elastic parameters for the complex operators corre-
sponding to the viscoelastic type, which can be done
for each problem of fully-devel oped vibrations of linear
viscoelastic bodies [14]. The simplest mode, i.e., the
Voigt body, was selected as the model of the viscoel as-
tic behavior. According to this model, the Lame con-
stants must be set intheform p = py + iwnand A = Ay +
iwg, where 1, and A, are the static moduli and ) and &
arethe moduli of shear and bulk viscosity, respectively.
Just thisexpression for 4 wastaken astheinitial onefor
numerical calculations of ¢, and k;, which turned out to
be complex in the result. A purely real experimental
value of ¢ = 1500 m/s was taken as initial for calculat-
ing k. Analyzing the complex expression for ¢ =

J(A+2W)/p, it is possible to determine that, in the
case of the reduction of frequency, itsrea part tends to

the value ¢, = ./(Ag+ 21,)/p, and its imaginary part
tends to zero. The validity condition for the passage to
the limit isthe condition w < w,, = Ay + 2Ux)/(€ + 2n),
which should apparently be satisfied at a frequency
lower than 1 kHz, at which the measurements were
conducted.

The investigation of the integrands was performed
before calculating the integral in (1), and the region
where they were essentially nonzero was determined.
The upper limit of integration was selected to be of the
order of 7500 to 10500, which lies beyond this region.
Sincetheintegrands have asingularity at small k (a suf-
ficiently sharp peak, if the materia viscosity is small),
it is necessary to break the interval of integration into
two parts: thefirst part isrelatively short (up to k=500-
2000) and contains a peak, and the second oneislonger
(the function slowly attenuates within it). The indepen-
dence of the results from the upper integration limit and
the way of division of the integration interval into parts
was verified in the process of calculation.

The identification of the model parameters, which
provide the best approximation of the experimental
data, was conducted by fitting, i.e., by the multiple rep-
etition of the following steps: setting of the model
parameters; numerical calculation of the impedance
characteristics; and visual comparison of the calculated
results and experimental data displayed in one plot on
the monitor screen. In all cases, the coincidence of the
calculated and experimental data within the area of the
low-frequency plateau of stiffness ReK was attained,
first of al, by selecting the modulus of elasticity, and,
then, the coincidence of the calculated and experimen-
tal data on the impedance ReZ in the range of medium
and high frequencies was attained by selecting the
modulus of viscosity.
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Fig. 2. (1) Experimental and (2) calculated impedance characteristics of a gelatin layer: (a), (b) A-model, u =5 kPa, n =0.2 Pas;
(c), (d) PA-model, g =5KkPa, n =3 Pas; and (e), (f) GA-model, 4 = 4 kPa, n = 0.8 Pas. The model parameters are d = 10 mm,

H = 3cm, p = 1008 kg/m®, and ¢; = 1500 m/s.

The comparison of different modelsin their capabil-
ity to determine the properties of a homogeneous gela
tin layer gives the following results. The best correla
tion of the calculated and experimental datais observed
for the A-model (Fig. 2). The model reproduces the
low-frequency plateau of the curve ReK(f), the high-
frequency plateau of the curve ReZ(f), and the qualita-
tive pattern of the layer resonance. In addition, the
reproduction of all these characteristics of curves at
fixed model parameters remains the same for different
diameters of the die (Fig. 3). The high-frequency drop
in the curve ReK(f) in thismodel, aswell asin all other
models, is reproduced as a steeper one in comparison
with the experiment. Apparently, thisis connected with
the adopted approximation of the “power source of
vibrations.” An important property of the A-model is

the fact that the agreement with the experiment in the
level of loss ReZ(f) in the upper and middle parts of the
utilized range is attained automatically after setting
very small values of viscosity n and selecting the mod-
ulus of elagticity of the layer p for the reproduction of
the level of the low-frequency stiffness plateau in the
curve ReK(f). The variation of viscosity within the
range 0.1-1.0 Pa s amost does not influence the loss
level and determines only the forms of the resonances
of the viscoelastic layer. In order to obtain a qualitative
agreement with the experiment in these resonances, itis
necessary to set n = 0.2 Pas. Thus, thismodel describes
thelossin the gelatin layer in the case of theradiationin
the frequency range after the resonancesasmainly “elas-
tic’ loss. Since, in the case of achangein the die diame-
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Fig. 3. (1) Experimental and (2) calculated (according to the A-model) frequency dependences of the impedance characteristics of
agelatin layer for different diameters of the die. The model parametersare H = 3 cm, p = 1008 kg/m>, p = 5 kPa, n = 0.2 Pas, and

¢ = 1500 m/s.

ter, the model reproduces the changein theloss (Fig. 3),
this representation is apparently close to reality.

The PA- and GA-models provide less agreement
with the experiments, even in the case of a single die
diameter (Fig. 2). Inthe PA-model in the case of asmall
viscosity, the radiation loss is determined as too small,
and it is necessary to considerably increase the value of
viscosity n in order to reproduce their level. This dete-
riorates the reproduction of the form of the layer reso-
nances, and, what is more important, leads to the
description of the radiation lossin the gelatin layer asa
sum of the comparable “€lastic” and “viscous’ compo-
nents. However, if the die diameter is changed, the
change of loss in the model does not correspond to the
loss observed experimentaly, and it is necessary to

ACOUSTICAL PHYSICS Vol. 46
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select a new value of viscosity to reproduce the loss
level corresponding to the new die. In the GA-model,
theradiation loss is given correctly “on the average” in
the case of low viscosity, but slow variations are repro-
duced here around this average level. It is possible to
smooth off these variationsin the curves corresponding
to the dies with the diameters d = 6 mm and 10 mm on
account of an increase in the viscosity, but they remain
in the curve corresponding to the die with the diameter
d =16 mm.

Thus, in describing the impedance properties of a
homogeneous layer in the framework of models with
power sources of vibrations, the results that best fit the
experiment are provided by the model with a uniform
distribution of pressure under the die (excluding the
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description of the behavior of stiffness ReK at high fre-
guency). It is impossible to improve the correlation
between theory and experiment by using the “para
bolic’ or “hyperbolic” pressure profiles. On the
grounds of this conclusion, one can recommend to use
mainly the models with a uniform distribution of pres-
sure under adiefor describing the properties of biolog-
ical tissues.

A

(o2 ¢
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Abstr act—Phase modul ation of weak, high-frequency, monochromatic wavesinteracting with strong pulsed signals
isinvestigated. Some estimates are obtained for the interaction between the acoustic emission pulses caused by the
crack formation in the Arctic ice cover and a high-frequency test wave. © 2000 MAIK “ Nauka/Interperiodica” .

Much attention is currently given to studying the
phenomenon called acoustic emission (AE), to which
many theoretical and experimental studies are devoted
[1-3]. The importance of these investigations follows
from the nature of the phenomenon.

The acoustic emission is defined as the generation
of elastic waves that accompanies the deformation pro-
cesses in stressed materials and is related to the crack
formation and growth; in other words, the acoustic
emission can be considered as a sort of deformation
noise emitted by the material. It is this definition that
governed the choice of the AE method as the main
method of monitoring the fracture processes in materi-
als. It is used for controlling the state of high-pressure
pipes, nuclear reactors [1], various types of mines, and
rock masses [2, 3]. This method is now recognized as
appropriate for investigating the seismic conditionsand
predicting earthquakes and rock bursts. In these prob-
lems, the earthquake zones are considered from the
standpoint of physics and mechanics of fracture. In this
context, a model of large-scale fracture, the so-called
cumulatively unstable model of crack formation [2],
was developed. According to this model, the formation
and development of the fracture zone can be reliably
revealed from the variations of the AE parameters,
which is confirmed by experiments[2, 3].

However, the commonly used procedure of record-
ing the AE signals encounters a number of difficulties.
First, thereceiversof signalsare usually located outside
the object under investigation (for example, in the case
of microseism recording, they lie on the earth’s sur-
face). As a result, reflections from the boundary, re-
reflections caused by multiray propagation, and the
presence of several types of propagating waves essen-
tially distort the received AE signals. Second, the AE
signals have a broadband frequency range. For example,
the growing cracks in areactor housing produce signals
with frequencies ranging from 500 kHz to 2 MHz, and

the sample fracture in laboratory conditions produces
signalsin the frequency range from 3 to 30 kHz [1]. It
is also known that the spectrum of the rock mass cave-
in differs from the spectrum of arock bump or burst by
the predomination of low frequencies [2]. These fea-
tures make it difficult to select the frequency range of
the required equipment. Today, this choice can be made
solely on an experimental basis.

In addition, almost all methods of active acoustic
control are based on linear acoustics, because nonlinear
effects appearing in interacting acoustic waves are
fairly small; in most cases, signals caused by nonlinear
effects do not exceed fractions of a percentage point.
However, it should be noted that these signals are gov-
erned by entirely different, namely, nonlinear acoustic
parameters of the medium, and these parameters are
more sensitive to the defects and structure variations
occurring in the medium as compared to the linear
parameters (the sound velocity and the absorption and
scattering coefficients), which is of particular impor-
tance for diagnostic purposes.

This paper considers the possibility of using the
nonlinear interactions between acoustic waves for
receiving the AE signals. The acoustic signal reception
due to the signal interaction with a pump wave of
higher frequency is called the parametric reception of
sound [4, 5]. Thetheory of parametric receivers consid-
ers the situations in which the received wave arrives at
the interaction region from afar and assumes that this
wave can be considered as a plain wave with a constant
amplitude. In this paper, we deal with the parametric
reception of the AE signals and consider the situations
in which the interaction can occur near the emission
source, which means that the received signa can
widely vary in amplitude within the interaction zone.

It is common practice to introduce nonlinear acous-
tic parameters of liquids and gases by considering the
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Fig. 1. Scheme of the method of acoustic tomography.

expansion of the pressure in terms of the density to the
quadratic terms:

P = Po+ AL(P—Po)/Pol + BI2[(p—po)/pol®, (1)

where A = py(3p/3p),,,» B = po (p/302), G isthelin-

ear sound velocity in the medium, and p, and p, are the
pressure and density at the equilibrium state.

With this representation of p(p), the nonlinearity of
the medium is characterized by the ratio B/2A.

The equation of state of a liquid or gas medium is
sometimes given by an empirical relationship of the
form

p = po(p/po)’ )

For agas, wehavey= C,/C,, and therelationship (2)
is reduced to the equation for the adiabatic curve. The
parameter yis also acommonly accepted characteristic
of the medium nonlinearity; however, the parameter e =
1 + B2A = (y + 1)/2 is used more frequently. This
parameter includes both the nonlinearity of the equa-
tion of state and the nonlinear terms in the equations of
motion. Below, we will deal with the media character-
ized by high values of nonlinear acoustic parameters
(e > 1) with the physical nonlinearity predominating in
these media, i.e.,

€= BI2A=Y/2 = pyCo(dC/dP),, b, - 3)

Theintroduction of the nonlinear parameter for sol-
ids is a more complicated problem, because different
kinds of waves can propagate and interact in this case.
For solids, we restrict ourselves to considering solely
longitudinal waves, becausethey are most similar to the
acoustic wavesin liquids and gases. In this case, we can
use formula (3) for media with high values of the non-
linear acoustic parameter.

Compare the nonlinear parameters for media of dif-
ferent types. For the majority of homogeneous materi-
als, such as water and most metals, the characteristic
values of the quadratic nonlinear parameter do not
exceed e ~ 3-10 [6]. By contrast, this parameter can
exceed 10°-10* for inhomogeneous media, such as
water with gas bubbles [7] and some types of rock [8,
9, 12], which clearly demonstrates the sensitivity of the
nonlinear acoustic parameter to the inhomogeneities of
the medium.

ZAITSEV et al.

This paper presents an aternative method of record-
ing the AE pulsed signas. The method is based on the
known properties of the nonlinear interaction of alow-
frequency pumping pulse with a high-frequency mono-
chromatic wave along its propagation path that passes
near the emission source. As a result, we obtain a vir-
tua receiver located near the source, and the effect of
the signal distortions along the path on the parameters
of the received signal are considerably reduced.

In this paper, we derive the general formulas relat-
ing the parameters of the AE pulses to the parameters
of the high-frequency (HF) test wave transmitted
through the medium under study. Additionally, we
obtain some estimates allowing definite conclusions to
be made on whether or not the obtained results can
actually be used for a particular case of measuring the
AE caused by the crack formation in the Arctic ice
cover. Figure 1 shows the scheme of the suggested
method. The scheme is as follows. The plane mono-
chromatic test wave of frequency w propagates through
the material under study (along the x axis). Thereceiver
is located at the point x = L. The source of the signal
(the AE pulse) lies at the point (0, D). Due to the non-
linearity of the medium, the signal affects the propaga-
tion velocity of the HF test wave. We will assume that
the amplitude of the AE pulse far exceeds the ampli-
tude of the HF signal. Then, for media with the qua-
dratic nonlinearity, the variation in the propagation
velocity of the test wave can be determined from the
expression [5]

Ac = eplpoCy < C, “4)
where p isthe pressurein the AE pulse; e isthe nonlin-
ear parameter; and p, and ¢, are the equilibrium density
and velocity, respectively.

Thus, for the variation of the phase of the HF wave
at the reception point, we can write the expression

Ap = J’w(Ac)/(cz)dx = wj'[ep(x, )1/(pocd)dx. (5)

Consider a portion of the wave that has the coordi-
nate X, at the instant corresponding to the beginning of
the AE pulse (T = 0). This portion arrives at the recep-
tion point x = L at the instant

t = (L-xp)/c.

We will assume that the source generates a pressure
pulse in the form of a spherical wave

p = A(t—r/c)/r.
Then, the phase shift will be given by the expression
L
Ap(t) = coNJ’[A(t—r/c)/r]dx, (6)

Xo

wherer = /D*+x°; N = €/p,C*; and one must set t =
(X — Xp)/c, which is the instant the wave with the ini-
ACOUSTICAL PHYSICS  Vol. 46
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tial coordinate x, arrives at the point x. Then, we
have

L

Ad(t) = u)NJ'{ Al L/c((X—X,)

—JD*+x*)]}/4/D + X’dx.

Now, we substitute the integration variable with the

@)

new variable § = X — X, — D®+ x° that characterizes
the time within which the considered portion of the test
wave interacts with the AE pulse. After a ssimple rear-
rangement, we obtain

&
A (%) = wNIA(E/c)/(— Xo—&)dE . ®)
0

We set the lower limit of integration & = 0 (not & =

E(X =Xy = —/D*+ x§), because negative values of &

correspond to X — X, < A/ D®+ x*, which means that the
HF wave will arrive at the point x prior to the emission
pulse, and, consequently, no interaction will occur. The

upper limit &, =&x=L)=L - X%, - JD?+L? corre-
sponds to the termination of the interaction (at the
instant the considered portion of the wave arrives at the
receiver).

The quantity x, cannot take on arbitrary values. It is
required that x, < O; otherwise, the portion of the wave
will arrive at the receiver without any interaction with

the pulse. Consequently, we have x, < L — «/ D’+ L% <
0, which means that the denominator in expression (8)

varies from —x, at & = 0(-x, > 0) to D*+L°-L>0
a & = &, and always remains positive and nonzero. The
only exclusion is the case D = 0 corresponding to the
AE pulse source located at the x-axis. This case must be
considered in greater detail separately.

Let D = 0. In this case, the denominator in the inte-
gral formula (8) vanishes, and the integrand becomes
singular. The singularity is caused by the spherical
property of the considered pulsed signal. Note that, in
this case, the new variable € is aconstant that coincides
exactly with the parameter x,. As a result, we cannot
useformula(8), wherethisvariable playstherole of the
integration variable. Instead, wewill usetheinitial rela-
tionship (6). To avoid the singularity in the integrand,
we surround the source of the AE pulse by a sphere of
radius r,, i.e., we take into account the fact that actual

ACOUSTICAL PHYSICS Vol. 46

No. 4 2000

429

AE pulses cannot have an unbounded amplitude. Then,
we obtain from (8):

o L
Ad(t) = wN IA(t—r/c)/rdx+IA(t—r/c)/rdx .(9)

Since we are interested in the solution at the x axis, we
definer, asfollows:

r=x for x>0, r=-x for x<0; (r=1x).
Then, theintegral formula (9) takes the form
Ad(%o)
L 1o

= wN J’A(xolc)lxdx—J’A((2x+x0)/c)/xdx )

T'o —Xo
Performing the corresponding calculations, we obtain

Ad(Xy) = wWNA(X/c)In(L/ry)

o

—wN J' A((2x + Xp)/c)/xdx.

—Xg

(10)

It is clear that the magnitude of the received signal
depends on the introduced parameter r, and becomes
infiniteat r, = 0.

Now, we return to the general case (6). To demon-
strate the use of the obtained results, we consider the
rectangular pulse as a simple example (needless to say
that the actual AE pulses are characterized by much
more complex shapes):

0A,, 0<g<ct
/c) =
A(&/c) ED, £ > cr.

Omitting the constant factor wN in formula (8) and
using for the parameter X, its absolute value, we obtain

&

f(X) = IA(E/C)/(XO—E)dE : (1D
0

The result of integration in (11) depends on the rela-
tionship between §,/c and the pulse duration T (the
upper limit equals ct for &, > ct and &, for &, < c1).
Thus, we obtain

On[xe/ (X —c1)], §12ct
f(%) = A

(12)
OIn[xy/(Jd*+ L*=L)], 0<&,<cT.
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Fig. 2. Phase shift of the test wave for different values of the
parameter A.
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Fig. 3. Phase shift of the test wave with allowance made for
the radius of the AE source.
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Fig. 4. Scheme of the method of acoustic tomography for
the case of ice cracking.

Note that the condition &, > ct correspondsto x, > X3 ,

where x¥ =ct +L - /D’ + L% = ct — A. Going back
to the phase variation A, we obtain from (12):

IN[Xo/(Xo=CT)], Xg= X
Ad(X0) = WNAY In[x,/(J/D*+ L*=L)]
JDP+LP—Lsx,< X2,

Let us trace the variations in the obtained solution with

distance D (or the parameter A = D”+ L% — L, which
additionally includesthe variationsof x3 ). Thisbehav-

ior may be of interest in tomographic applications,
which use several receivers located at different points.
Formula(13) givesthefollowing behavior of Ad(x,) for
different A.

(13)

It is clear that the above parameter x§ uniquely
related to A affects only the maximum phase variation
and determines the effective duration of these varia-
tions.
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In the case A > ct, we can determine the maximum
value of A¢ according to the approximate formula

A = ONACT/A. (14)

For D = 0, we must use formula (10) for a pulse of
such a shape. Consider the second term in this formula.
It can be rearranged to the form

q
—wWNA, I dx/x = wNAGIN(X,/—-2q),

—XglC

(15)

where the upper limit of integration depends on the
relationship between the quantity (ct — x,)/2 (because
(2X + X,)/2 = ct corresponds to X = (CT — X,)/2) and the
parameter

(cT —X%g)/2 for (cT—X%g)/2<r,
qa=0 (16)
[+ for (Ct—xg)/2>r,.
Thus, from formula (10), we finally obtain the follow-
ing relationship:

AD(x;) = ooNAO[InL/rO (for 0<x,<cT)

(17)
+ B InDxo/(x—cT)], %> ot + 21, }

O In[xo/(210)], 2y <Xy <Ct+2r,

It is clear that introduction of the small parameter r,
makes it possible to obtain the results that agree well
with the earlier results (see Fig. 3 where the dashed line
represents the solution obtained from (13) for D
approaching to zero, and the smallness of the parameter
ry istaken into account).

As was mentioned above, the actual AE pulses are
characterized by fairly complex shapes. Because of this
fact, there are no simple and clear solutions, asin the
above example with the rectangular pulse.

Let ustry to derive some approximate estimates for
an arbitrarily shaped pulse.

Taking the derivative of (11) with respect to the
parameter x,, we obtain

&

f'(xo) = A(E1/C)/ (X —&1) + J’A(E/C)/(XO—E)ZdE-( s
0

In thisrelationship, the terms may be of the same order
of magnitude within the whole region of integration.
However, for sufficiently short pulses satisfying the
condition &,/X, < 1, this formula makes it possible to
easily obtain the relationship between the derivative of
the phase of the HF wave and the corresponding param-
eters of the pulse:

Ad'(Xo) = WN[A(E,/c)/ (X —&1)]

(19)
= wNA(,/c)/A.

ACOUSTICAL PHYSICS Vol. 46 No.4 2000
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It can be readily shown that formula (19) is applica-
ble only to the HF test wave portions corresponding to
sufficiently small initial coordinates x,, which corre-
sponds to the earlier instants of observation of the
phase modulations at the receiver: t ~ A/c. This fact
makes it possible to simplify the initial formula (8) for
Ad(Xy). Indeed, we can easily obtain from (8) the fol-
lowing relationship:

&

Ad(xg) = wN/xOIA(E/c)dE. (20)
0

This formula is valid for sufficiently short pulses
and clearly shows that the phase of the HF wave is
determined by the pulse area (in the case of pulsed sig-
nals that do not satisfy the condition of shortness, the
relationship between the phase and theintegral over the
pulse envelopewill be valid for theinitial portion of the
pulse).

The relationship obtained above offers us a possibil-
ity to consider an additional example more consistent
with actual practice. Inthisexample, we usethe AE sig-
nal in the form of a harmonic, exponentially decaying
pulse: A = A,sin(Qt) exp(—at). The calculations by for-
mula (20) yield

D(%o) = (WNAYXo)(c/(a” +Q%)Q)
—exp(—a&,/c)(asin(Qg,/c) + (Qcos(Q¢E,/c)).

Here, the phase variations have alternating signs.

This result can be significantly simplified. Consider
the following approximation: a/cg, < 1 and Q/c§; < 1.
This approximation is consistent with the conditions of
the problem under consideration and agrees well with
the assumption &,/x, < 1 used in the derivation of the
initial formulas (20) and (21). In this case, we obtain

Ad (%)
= (WNAY/X,)(cQ)/(a® + Q%) (1 - (a&,)/c).

If we recall the relationship between &, and the
parameter x, (corresponding to the current reception
timet = (L + X,)/c in our consideration), we obtain

Ad = (WNAQ)/(a’ + Q%) ((c+Aa)/x,—a). (23)

To evaluate the quantity A, we consider expres-
sion (19) in more detail. For the characteristic scale of
variations Ax = cAt = c217Q (where Q isthe frequency
of oscillations in the pulse), as aresult of simple rear-
rangement we obtain

Ad(X,) = 2TCNA(E,/C) 0/ (QA) . (24)

The comparison of the approximate expression (23)
with the case of the rectangular pulse (17) showsagood
guantitative agreement, which is not unexpected, as
both these formulas were derived for sufficiently short
emission pulses. Namely, formula (24) was derived

(22)
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under the assumption that §,/x, < 1, and formula (17)
was derived under a more strict requirement A > ct.

Recall the relationship between the amplitude
A(&,/c) and the pressure in the pulse P = A(¢,/c)/R
(here, one must set r = R, where Ris the distance from
the AE sourceto the receiver) and the expression for the
parameter N = €/p,C*. Then, we obtain an estimator for
an arbitrarily shaped pulse:

A = 2MEwRM/Q/A,

where M = P/p,c? is the Mach number.

Toillustrate the possibility of actually using the sug-
gested method, we consider a particular experimental
scheme. We consider such an AE source as ice crack-
ing. In the recent years, this problem became urgent
because of the increasing interest in Arctic explora-
tions. The suggested scheme is shown in Fig. 4.

The receiver is a hydrophone located in water and
receiving spherical acoustic waves of AE (because
these are the waves characterized by the lowest attenu-
ation in the case under consideration [10]).

In formula (25), we will use the following parame-
ters: e = 3, p, = 1000 kg/m?, and ¢ = 1500 m/sfor water;
P ~ 1 Paat distancesR~ 100 mand Q ~ 100 Hz for the
characteristic sources of AE inice [10, 11]. For small
values of D, we estimate the parameter A as A = D?/2L
and, according to the suggested scheme, set D ~ 1 m
and L ~ 100 m. Then, if we use the frequency of the HF
wave w ~ 100 kHz, we obtain the value of the phase
shift

(25)

Ad 04 x 107,

which isquite measurable. Note that, for rockswith € =
10 and the AE signals with the parameters 217Q =5 s
and P = 5 x 1072 Pa, the quantity Ad estimated for the
HF wave propagating in the ground (with the parame-
tersp = 103 kg/m3, ¢ = 10> m/s, R=100 m, and A =
1072 m) reaches the value 10! and greater for the fre-
guencies w = 10° Hz.

In the foregoing, we considered only mediawith the
quadratic nonlinearity. As follows from (8), the phase
variation A¢ isdetermined asan integral over the pulse.
At the sametime, it should be noted that the form of the
AE pulsesis generaly aternating in sign. For this rea-
son, we take into account the cubic nonlinearity of the
medium. In this case, the phase variation A¢ will be
governed by the energy parameters of the AE pulse.
The inclusion of the cubic nonlinearity of the medium
resultsin an additional phase modulation of the HF test
wave[4, 5]:

L

Abyy = ooBI[Az(t—r/c)]/[(D2+xz)]dx, (26)

where B = B/p*c® and B isthe cubic nonlinear parameter.
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Going to the variable &, we obtain the expression

&
_ AEle) g
Aq)cub ("')B.!.(XO + E)Z + D2

Under the condition &,/x, < 1, the relationship
between A¢ and the intensity of the pulsed signal
becomes more obvious:

&
Ao = wB{IAZ(E/c)dz}/(x& DY. (@7
0

Recall that the new variable & prevents us from
using the obtained relationship for the case of the
source located at the x-axis (for D = 0). In this case, we
are again forced to return to theinitial formula (26) and
to introduce the parameter r,. Carrying out the calcula-
tionssimilar to those described above for the case of the
guadratic nonlinearity, we abtain the final expression

Ad = WBA’(X,/C)
b 2 2 (28
x| (L=rg)/Lry+ ooBIA ((2x + xp)/c)/x"dx .

As can be seen, the result again essentially depends on
the parameter r,,.

Consider the example with the rectangular pulse
once again. Using the line of reasoning similar to that
used for the quadratic nonlinearity, we obtain the fol-

lowing relationship for the case of an arbitrary location
of the source of signal (i.e., for D # 0):

Carctan(x, + ct)/D — arctanx,/D,

>ct
Ad = (wBAY)/D (29)
Carctan(x, + &,)/D — arctanx,/D,

Ep<€1scr.

Note that thisresult issimilar to that obtained previ-
ously for the rectangular pulse in the medium with the
guadratic nonlinearity.

In the case of the source located at the x axis, for the
rectangular pulse, we use the formula (28) to obtain the
expression

Ad = WBA’[((L—rg)/Lrg)(for 0<xy<cT)]
[RCT/Xo(Xo—CT), Xo>CT +2r, (30)
[{Xo—2rg)/(Xoro), 2rg<Xq<CT+ 2r,.

Thus, this paper suggests a new method of monitor-
ing the AE signals. The method is based on the nonlin-

ZAITSEV et al.

ear interaction between the monochromatic HF test
wave and the emission pulses. The estimates show that
the suggested method is suitable for practical applica
tions.
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Abstract—Characteristic features of the Doppler frequency shift of Rayleigh and bulk waves excited in an
elastic halfspace by a source vertically moving in a contacting gaseous halfspace (atmosphere) are studied.

© 2000 MAIK “ Nauka/Interperiodica” .

In the seismology and acoustics of vibrations, one
frequently encounters the phenomenon of the genera-
tion of elastic waves by moving sources. A higher level
of high-frequency seismic background in the regions of
the passage of atmospheric fronts with the devel opment
of catastrophic or fast atmospheric processes is one of
the examples of their manifestation. It is possible to
give many other facts that testify to the connection of
seismic vibrations with the fast-moving atmospheric
perturbations of natural origin generating them. Hurri-
cane movement of atmospheric masses, thunderstorm
phenomena, and, specifically, the lightning discharge,
which is accompanied by vertical movement of the so-
called “leader” to the Earth surface, is an example of a
moving thermal source of sound, both in the atmo-
sphere and in the surface layers of the Earth medium. It
is interesting to study the characteristics of seismic
vibrations excited in the Earth medium and affecting its
surface and deep layers due to such phenomena. In this
case, the Rayleigh surface waves and waves similar to
them are excited together with longitudinal and trans-
verse bulk waves. The generation of acoustic wavesin
gaseous and liquid media by supersonic and subsonic
moving sources has been studied in detail and
described in many papers [1-4]. The analysis of the
characteristics of elastic seismic fields generated by
moving sources is presented in the literature to a much
lesser extent. Meanwhile, such type of sources is
known in seismology, and they manifest themselves,
for example, in the realization of the “ripping” mecha-
nism in the seismic center [5]. Model numerical simu-
lations have demonstrated that movement may intro-
duce certain peculiarities into the spectrum and may
lead to anisotropy in the generation of these waves,
since amoving source is an analog of a source distrib-
uted in space, and it can be characterized by an imagi-
nary aperture VR/c, where V is the velocity of source
movement, Ris the distance between the source and the
receiver, and c is the velocity of wave propagation. All

specific features of the radiation characteristics, which
are caused by the source movement, are interrelated.
The simplest feature is the frequency shift of a wave.
The manifestation of this shift becomes noticeably
more complex in the propagation through a medium
with an inhomogeneous layered structure, which
causes reflection and refraction at the interfaces.

By now, the dependence of the frequency shift of
Rayleigh wavesin an elastic medium upon the velocity
of the source movement is not sufficiently investigated.
The purpose of this paper isto analyze this dependence
for a surface wave excited by a source vibrating with
the frequency Q and moving in the upper gaseous
medium perpendicularly to the boundary of the elastic
halfspace with a subsonic velocity, i.e.,, when V/c < 1. It
isassumed that the density of the upper mediumisvery
small as against the density of the lower medium, the
sound velocity in the upper medium is noticeably less
than the velocity of compression and shear wavesin the
lower medium, and the height of the source position
over the boundary is much less than the sound wave-
length. If the two first conditions are met, the excited
surfacewaveisan amost Rayleigh one[6]. The genera
scheme of source positioning with respect to the inter-
face and the system of coordinatesisgivenin Fig. 1.

It should be noted that the problem of the determi-
nation of the frequency and amplitude of the Rayleigh
wave was already considered earlier [7] for the case of
an oscillating force acting on the boundary of a solid
halfspace and moving uniformly along the horizontal
boundary. The solution provided an opportunity to
reveal certain features specific to both the frequency
shift and the azimuth distribution of amplitude in this
wave. The case of a static load applied to the boundary
of a solid halfspace and moving with acceleration was
also considered in the literature [8]. However, it is
impossible to use the data obtained in the cited publica-
tions in the case of a vertical movement of the source
because of the different geometry of the problem,

1063-7710/00/4604-0433%20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Schematic representation of a source moving in the
air close to the boundary of an elastic halfspace.

which in the case under study is characterized by axial
symmetry. This fact calls for a special analysis of the
frequency shift of the Rayleigh wave in the specific
generation conditions.

Since the movement and not the type of action on
the upper medium is essential, we can use any type of
the source (monopole or dipole) for our calculations. A
point source of oscillating force F normal to the bound-
ary, which moves in the upper medium, can be repre-
sented in the form of the following spatial-time func-
tion:

F = Foexp{—iQt}d(z—Vt+H)d(x)o(y). (1)

Then, we proceed to the Fourier transforms of the
considered force acting on the medium. An explicit
expression for its Fourier transform with respect to
space and time can be written in the form

[ [ [

c o
161‘;4 Im dx J; dy J; dz ;[ dt3(x)3(y)

—i(Q-w)t—ikx—ik,y—ik,z

xd(z+H-Vt)e ,

F(w, k) =

where k2 = ki, + k; .

Using the properties of the delta-function, we can
obtain an explicit expression for transform (2)

B iH ‘*—’:—kz [ 2 0
F(w, k) = F—°3e ¢ dw-Q-V /%—kzu (3)
c O

81 O

where c is the sound velocity in the upper medium.

We conduct further consideration under the
assumption of not too high source velocity when V < c,
which provides an opportunity to simplify the argu-
ment of the delta-function. The integration variable w
under the radical sign can be changed for the constant
value of the force frequency Q. In this case, the argu-
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ment of the delta-function is simplified, and the latter
takes the form

0 o? 0
S-Q-V 5 -k )
O c O

We will describe the acoustic field in the upper
medium by the scalar potential ¢, and the elastic field
in the lower medium by the scalar potential ¢, and by
the azimuth component of the vector potential ,. As
the force, these fields can be represented in the form of
the Fourier-Bessel expansions in the spatial and time
frequencies by virtue of the axial symmetry of the prob-
lem. An expression for the acoustic potential in the
upper medium can be readily derived using the follow-
ing considerations. the displacements at the points
belonging to an infinitely narrow region (slightly
higher and slightly lower than the horizontal line pass-
ing through the source) are equated, while the pressure
difference is set equal to the acting aternating force.

The corresponding elementary intermediate trans-
formations allow us to express the primary incident
field through the source parameters. In addition, it is
necessary to take into account the fact that the acoustic
field in the upper medium also contains the component
reflected by the media interface. The amplitude of this
component isa priori unknown. Therefore, the follow-
ing expression is valid for the acoustic potential:

—F ° ® O 2 H
01= 5 J’Hé”(kr)kdkfém—g_v 2 v
8m pa_m J 0 c 0

2 —i wt «
x expi [< —K|z+ Hle—zdw+I D(krykdk  (5)
C w 2,

00

X [ Qe k)exp —i

2 _
% —K%|z—H|e"“"dw.
c

According to aforesaid, the potential s describing the
elastic field of thewave in thelower medium (the scalar
potential and the azimuth component of the vector
potential) are represented by the relationships

0, = J’Hgl)(kr)kde B(w, K) expiz /%—kze_'wtdw,
—o o |

(6)

W, = J’Hél)(kr)kdk [ Sl Kexpiz /% —Ke"'dw,
—00 —o0 t

where Q(w, k), B(w, k), and C(w, k) are the unknown
functions, which are the complex amplitudes of the
reflected wave in the upper medium and the compres-
sion and shear waves in the lower medium, respec-
tively, and p, is the density of the acoustic medium.
ACOUSTICAL PHYSICS Vol. 46
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It is easy to write down the expressions for the wave
displacements and elastic stresses or the acoustic pres-
sure in both media on the basis of the given expansions
of fields (5) and (6) [9]. For example, the z-component
of the displacementsin the upper and lower halfspaces
can be determined by the formulas

(JL)2 2
= —k
W

—00

2 2

2 —iwt +ilz+ H| -k
Q U ?

O
x3-Q -V 5 -KTe dw
O C O
+i[H () (kr)kdk
0
2 —iwt —ilz-H| W’ K2
f 2 _KQ(w, ke “dw, O
Uy, = —i J'H(l)(kr)kdk
® > it +i %z—kzz
J @ _K’B(w Ke “ dw
VG
—iwt+i —2 K’z
« dow.

J’Hél)(kr)k deC(w k)e

Analogously, we can represent the expressions for
the wave stresses g, and o, in the lower medium and
the acoustic pressure p in the upper medium. The latter
isdirectly related to the potential in this medium; there-
fore, the expression p(w, k) = w’p,d,(w, k) isvalid for
the Fourier components. In this connection, there is no
need to write down the explicit expression for pressure.
Further, we give the corresponding expressions for
stresses under the assumption that the Lame constants
of the elastic medium areequal: A = |

0?20
0, = uIHél)(kr)kko’ B(w, k)DZk ~-=0

c’0
2
—iwt+i ——kz o

x e doo+2|uJ'H(1)(kr)k3dk
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—iwt+i [=-Kz
IC((.o k) /—-k F
®)

2
o, = —2|pJ’H§1)(kr)k ko’ B(w k) (& K
o o G
St +i “—’Zz—kzz o
G

x e dw—pJ‘HS’(kr)kzdk

ZD —iwt+i ﬁz—kz
J'C(o) k)[?_k ——%e o

Cy

do.

It is evident that now to solve the excitation problem
it is sufficient to satisfy the boundary conditionsat z=0,
i.e., aong the interface plane. This leads to the neces-
sity to satisfy a set of equations that express the condi-
tion of the equality of normal displacement compo-
nents and the equality of the stress o,, to the negative
pressure value p. In addition, the condition of the zero
nondiagonal component of stress g, at z= 0 should be
satisfied. Thus, we obtain a set of three equations con-
necting the spectral amplitudes Q(w, k), B(w, k), and
C(w, k) with the parameters of the specified force:

O, w0 P A
uEek? - LB, k) + 2ipk | —KC(w, k)
O c U C

2 2 ())2 2
—iH -k iH [= -k
g _ ko ¢

Q(w, k) = —=e
g’

| 2 [l
x3—-0 -V [ -Kq
U C U
2
2i |2 —K*B(o k)+[2k ——[C(w Ky =0, (9
C| Ct
(A)z 2 2
i /?—k B(w, k) + k*C(w, k)
|

+0’p,e
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Fig. 2. Frequency shift of the Rayleigh wave as a function
of the Mach number V/c for three values of the ratio of the
propagation velocities: ¢/cg = (1) 0.6; (2) 0.8; and (3) 0.95.

Here, since the delta-function is involved on the
right-hand sides of the first and the last equations (9),

2
the quantity w is replaced by Q + V /%—kz. It is
c

known [5, 6, 9] that the real root of the dispersion equa-
tion resulting from the condition of the zero determi-
nant of the set of equations (9) is the pole point, the
half-residue at which determines the amplitude of the
Rayleigh wave excited by the source under consider-
ation. If we take into account the above assumption on
the negligibly small density of the upper medium as
againgt that of the lower medium, we arrive at the con-
clusion that the determinant of the set of equations vir-
tually depends only on the coefficients at the ampli-
tudes B(k) and C(k) (the index w in the argument is
omitted by virtue of the assumption on convolution
with delta-function) in the first two equations (9). Now,

the wave number k must be treated as k = CQ , Where cg

R
isthe Rayleigh wave velocity in the solid halfspace, and
@ must be treated as the unknown wave frequency, the
dispersion equation for this frequency being given by
the expression

(10)
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One can see from equation (10) that, independently
of the Mach number V/c, the sought-for frequency of
the Rayleigh wave detected in a fixed coordinate sys-
tem lieswithin the interval

Ck W C
SRy W R

c o (11)

which is determined only by the ratio of the propaga-
tion velocities of elastic wavesin the contacting media.
The solution of equation (10) is obtained numerically
with both directions of motion being considered, i.e.,
for positive values of the velocity V > 0 and for negative
valuesV < 0. Theresults of the calculationsare givenin
Fig. 2, wherecurves ], 2, and 3 correspond to the cases
c/cg = 0.6; 0.8; and 0.95, respectively. The curves tes-
tify that the positive values of the velocity of the source
motion (toward the interface) cause a monotonic
increase in frequency, which corresponds to the growth
of the velocity of the source motion, at least for rela-
tively small values of the Mach number V/c used for the
calculation. A steeper increase corresponds to asmaller
ratio c/cg. Conversely, in the case of the source moving
away from the interface, i.e., for V < 0, the frequency
shift is negative with the frequency decrease rate also
increasing with decreasing ratio c/cz. Moreover, in the
latter case of the source motion, when the source veloc-
ity exceeds in the absolute value some critical value
depending on c/cg, the excitation of the Rayleigh wave
becomes impossible at all frequencies. It is easy to see
that the interval of the frequency shiftisfairly small in
comparison with the value of the frequency itself in the
case of the motion along the perpendicular to the inter-
face. Thisfeature distinguishes the Doppler shift in the
Rayleigh surface wave from the frequency shifts of
compression and shear waves. The Doppler shiftisalso
opposite in sign to the frequency shift of waves
refracted at critical angles at the interface between two
acoustic media[10]. It is necessary to stress the oppor-
tunity of a total suppression of Rayleigh waves when
the velocity of the source motion exceeds a certain
value congtituting a small fraction of the velocity of the
Rayleigh wave, which has not been noticed in earlier
studies. Explaining this statement, we should note that
the displacement amplitude in the Rayleigh wave is
determined by the half-residue at the specified pole
point. The differentiation of the left-hand side of
expression (10) with respect to k gives the denominator
of the fraction that in fact determines the half-residue
and, therefore, the amplitude of oscillations in the sur-
facewavein integral expressions(7) and (8). We do not
give the result of differentiation in this paper, as it is
rather cumbersome. However, the conducted analysis
shows that the excitation amplitude of the studied wave
vanishes at the edges of the admissible frequency range
(11). Thus, the suppression of the Rayleigh waveis not
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a consequence of a large distance from the source to
the interface, when the excitation amplitude of the
waveis affected by the exponential factor on theright-
hand side of system (9), but is explained by another
reason.

If we establish a correspondence between a certain
departure angle of the ray of the primary wave at the
point of the instantaneous position of the source and
each value of the Rayleigh wave frequency in the case
of amoving source, we can construct the dependences
of theray incidence angle on the Mach number (in real-
ity, we mean the surface of aconewith the vertex at the
source; the surface is intersected by the interface, and
its vertical section forms two symmetric inclined seg-
ments—rays). These dependences are obtained using
the fact that the oscillation frequency of a moving
sourceisuniquely related to the frequency of the acous-

tic wave at the reception point by the relationship w =
Q/[1 — (V/c)cosB], where the angle 8 is counted from
thedirection of source motion [4]. Inour case, theangle
is counted from the positive direction of the zaxis. Fig-
ure 3 shows the curves corresponding to Fig. 2 and
characterizing the dependence of the inclination angles
of rays, which are counted from the vertical line, onthe
Mach number; the primary field in the upper mediumis
incident upon the boundary along these raysand excites
the Rayleigh wave. Here, the case of source motion
toward the interface corresponds to the curves with the
positive Mach numbers V/c > 0, and the case of the
source moving away from the interface corresponds to
V/c < 0. The set of curves for positive values of V/c > 0
islimited by the condition V/c < 1 and can be extended
to the right in the general case, whereas for negative
values of V/c < 0, the termination of the curves corre-
sponds to the fundamental impossibility of the Ray-
leigh wave excitation, asits amplitude vanishes and the
requirement of real values of frequency is violated
when the velocity exceeds some threshold value. It
should be noted that each ratio ¢/ci at V/c = 0 corre-
sponds to its own angle of excitation of the surface
wave, and this angle decreases with the decrease in this
ratio.

Let us demonstrate that the longitudinal and trans-
verse bulk waves excited in the lower medium by the
same moving source have a frequency shift that differs
from that of the Rayleigh wave. Evidently, in the calcu-
lation of the far fields of bulk waves in the lower
medium with the help of expansions (7) and (8), these
waves correspond to the contribution to the full integral
with respect to the spatial frequency k, which results
from the integration over a certain interval on the wave
number axis near the point of stationary phase corre-
sponding to this wave type [3]. The complete phase in
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Fig. 3. Inclination angle of the ray of the initial incident
wave exciting the Rayleigh wave as a function of the Mach
number V/c for ¢/cg = (1) 0.6; (2) 0.8; and (3) 0.95.

the spectrum of, e.g., shear waves is given by the

expression
5 b & 4 o
0 0+ %—kzg 0
, Cc O
exp|B<r+z > —kzg (12)
[l C U
0 U
0 O
0 O

We change over to the spherical system of coordi-
nates R, @ (the radius-vector R and the angle © origi-
nate from the zero point at the interface and the z axis
in the lower medium) in order to designate the observa-
tion pointinthe elastic medium: r = Rsin©, z= RcosO,
and we set the derivative of the complete phase with
respect to the variable k equal to zero. In the first
approximation with respect to the Mach number V/c,
for the point of stationary phase we have the value

c_Q Vi
k = i CEgn@. (13)

The substitution of this value in expression (12)
yields

g VLD

iMm+-+R 14
explgl CEF_t (14)

Expression (14) demonstrates that the shear wave
detected in the elastic medium must be received in all
directions at the shifted frequency Q(1 + V/c). An ana-
ogous conclusion is valid for longitudinal waves. The
interpretation of the obtained result consists of the fact
that, in the case of small wave distances from the source
in the upper medium to the interface, only the ray nor-
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mal to the interface excites compression and shear
waves in the lower medium with the angle-independent
frequency determined by a common Doppler shift.
This providesthe frequency shift for the bulk wavesin
the lower medium, and this shift is equal in all direc-
tions.

In conclusion, we note that a dedicated reception of
the Rayleigh-type seismic surface waves and the set of
bulk and refracted waves generated by natural phenom-
ena mentioned above should make it possible to refine
the vertical seismic profile at the site of experiment in
the case of further spectral and correlation analysis of
acoustic and seismic signals detected by a microphone
and a geophone simultaneously, because each type of
waves refracted or captured by an interface between
layers provides a frequency shift of known value and a
corresponding amplitude of response.

ACKNOWLEDGMENTS

The work is supported by the Russian Foundation
for Basic Research, project no. 99-02-16957.

©

10.

ZASLAVSKII

REFERENCES
V. E. Ostashev, Sound Propagation in Moving Media
(Nauka, Moscow, 1992).
D. I. Blokhintsev, Acoustics of a Moving | nhomogeneous
Medium (Nauka, Moscow, 1981).
L. M. Brekhovskikh and O. A. Godin, Acoustics of Lay-
ered Media (Nauka, Moscow, 1989).
P. M. Morse and K. U. Ingard, Theoretical Acoustics
(McGraw-Hill, New York, 1968).
K. Aki and P. Richards, Quantitative Seismology: Theory
and Methods (Freeman, San Francisco, 1980; Mir, Mos-
cow, 1983), Vol. 1.
I. A. Viktorov, Surface Acoustic Wavesin Solids (Nauka,
Moscow, 1981).
Yu. M. Zadavskit, Akust. Zh. 34, 536 (1988) [Sov. Phys.
Acoust. 34, 310 (1988)].
V. V. Krylov, ActaAcustica 82, 642 (1998).
W. Nowacki, Theory of Elasticity (PWN, Warszawa,
1970; Mir, Moscow, 1975).
Yu. M. Zaslavskii, Akust. Zh. 45, 274 (1999) [Acoust.
Phys. 45, 239 (1999)].

Trandated by M. Lyamshev

ACOUSTICAL PHYSICS Vol. 46 No.4 2000



Acoustical Physics, \ol. 46, No. 4, 2000, pp. 439-444. Translated from Akusticheskir Zhurnal, Vol. 46, No. 4, 2000, pp. 509-514.

Original Russian Text Copyright © 2000 by Karabutov, Kozhushko, Pelivanov, Podymova.

Photoacoustic Study of the Transmission of Wide-Band
Ultrasonic Signalsthrough Periodic
One-Dimensional Structures

A. A. Karabutov, V. V. Kozhushko, |. M. Pelivanov, and N. B. Podymova
International Laser Center, Moscow Sate University, Vorob’ evy gory, Moscow, 119899 Russia
e-mail: ivan@gpwpl.phys.msu.su
Received June 8, 1999

Abstract—The propagation of wide-band acoustic pulsesin one-dimensional periodic structures consisting of
alternating plexiglas and water layersis studied theoretically and experimentally. The experiment is carried out
with the use of the wide-band photoacoustic spectroscopy based on the laser excitation of ultrasound and a
wide-band signal detection. The fact that the transmission spectrum of a periodic structure has alternating pass
and stop bands is confirmed experimentally. The width and localization of the stop bands strongly depend on
the thickness of the layers and on the phase velocity of ultrasound in them. It is demonstrated that defects of
the structure periodicity give rise to one or several local transmission maximain the stop band and to a mod-
ification of the pass band. The amplitude and position of alocal maximum in the stop band strongly depend
on the position of the defective layer. The experimental dataagree well with the results of numerical simulation.

© 2000 MAIK “ Nauka/lnterperiodica” .

Studies of the structure and condition of composite
materials and items made of them is of great scientific
and practical interest. One of the basic methods of non-
destructive testing of compositesis the ultrasonic tech-
nigue. The majority of composite materials have peri-
odic structures, and, therefore the study of acoustic
properties of periodic structures is quite topical. It is
easy to calculate the elastic moduli and the attenuation
coefficient for ultrasound in transversely isotropic and
orthotropic composite materials in the long-wave
approximation. These studieswerereviewed in our pre-
vious papers[1, 2]. In the general case, the spectrum of
the ultrasound transmission through a periodic struc-
ture consists of alternating pass and stop bands. Such
stop bands were observed experimentally in glass-rein-
forced plastic composites [3].

Experimental studies of ultrasonic propagation in
periodic structures are few in number. Basically, such
investigations are restricted to considering one-dimen-
siona periodic structures. This is connected with the
fact that multidimensional periodic systems have dif-
ferent characteristic periods of their structure in differ-
ent directions, and sources of wide-band acoustic sig-
nals are necessary for their investigation. Conventional
piezoelectric radiators are of little use for this purpose.

Scott and Gordon [4] studied both theoretically and
experimentally the ultrasonic propagation in a periodic
structure consisting of six periodically arranged glass
and water layers of thickness 1.22 and 1 mm, respec-
tively. For this structure, the presence of stop and pass
bandsfor ultrasound in the range 1-8 MHz was demon-
strated.

Existence of passand stop bandsin the transmission
spectrum of a periodic structure was also demonstrated
theoretically and experimentally by James et al. [5]. It
was found that the presence of defects in a periodic
structure givesriseto alocal transmission maximum in
the stop band of the transmission spectrum. Thus,
James et al. [5] demonstrated an opportunity for the
diagnostics of a periodic structure with defects.

Kushwacha [6], Young-Sang Joo et al. [7], and
Maidanic and Becker [8] theoretically analyzed the
band structure of ultrasonic transmission spectra for a
system consisting of metal cylindrical rods positioned
inparalel intheair or inaliquid. A theoretical study of
ultrasonic propagation in two- and three-dimensional
periodic structures was conducted by Kushwacha et al.
[9, 10]. The corresponding problem is solved using the
Bloch theorem and the Fourier transform, and the solu-
tion is reduced to the determination of the eigenvalues
of the wave vectors of acoustic waves propagating in
periodic structures. Papers devoted to the investigation
of the ultrasonic wave propagation in composite struc-
turesin the case of the acoustic wavelength being close
to the structure period were reviewed by Nayfeh [11],
who analyzed various theoretical models of one- and
three-dimensional ordered composite structures.

The frequency spectrum of ultrasonic transmission
through a two-dimensional structure in the form of a
system of 36 metal rods of diameter 2.34 cm positioned
inthe nodes of a square grid with the period 3.7 cmwas
studied by Robertson and Rudi [12]. The existence of
stop bands for the ultrasonic transmission in the fre-
guency range up to 10 kHz was proved experimentally.

1063-7710/00/4604-0439%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Reference acoustic signd in distilled water: (a) the
time profile and (b) the spectrum.

However, the absence of comparison of the experimen-
tal resultswith numerical simulation, asmall number of
experimental pointsin the spectrum, and astrong irreg-
ularity of the latter do not provide enough evidence to
judge about the validity of the results.

In the majority of papers on the acoustic waves
propagation in periodic structures, only the structures
with asmall number of layerswere studied. Thisiscon-
nected with the reduction of the transmission in peri-
odic structures with theincrease in the number of layers
and with the limitation of the frequency range due to
the use of piezoelectric transducers. The employment
of wide-band thermooptical ultrasonic sources pro-
vides an opportunity to overcome these difficulties.
Thus, the investigation of the ultrasonic propagation in
model one-dimensional periodic structures with known
characteristics and the comparison of the experimental
datawith the theoretical cal culations remain being top-
ical. Hopefully, the study of the transmission spectra of
compositesin awide frequency range will makeit pos-
sibleto reveal their structure.

The purpose of this study is the experimental inves-
tigation of the propagation of wide-band acoustic sig-

KARABUTOV et al.

nals in one-dimensional periodic structures by the
wide-band acoustic spectroscopy using a laser ultra-
sonic source; the determination of the stop bandsin the
spectra of one-dimensional periodic structures with
various periods; and the experimental study of the
influence of defects of the structure periodicity on the
spectrum of ultrasonic transmission.

According to the theory, the transmission coefficient
T of aone-dimensional periodic structure containing n
layersis determined by solving 2(n + 1) coupled linear
equations, which are the relationships for pressures and
particle velocitiesin theith and (i + 1)th layers. Similar
calculations were performed by Scott and Gordon [4]
and James et al. [5]. In our case, in order to determine
the coefficient T, we have solved the problem numeri-
cally using Matlab software. If we introduce a complex
value of the propagation velocity of longitudinal acous-
tic waves, it is possible to investigate the absorbing lay-
ered structures as well.

The experimental study of the transmission coeffi-
cient of acoustic waves in alayered periodic structure
was conducted using the method of the laser photoa-
coustic spectroscopy [13, 14]. This method provides an
opportunity to investigate the coefficients of transmis-
sion, reflection, and absorption of ultrasonic wavesin a
wide spectral range, from hundreds of kilohertz to tens
of megahertz.

The periodic structure under investigation was
placed into a photoacoustic cell filled with an immer-
sion fluid, which in our case was distilled water. Water
also filled the unconfined space of the periodic struc-
ture and thus formed a water—plexiglas periodic struc-
ture. China ink was used as the thermooptical ultra-
sonic source. Theink was placed into acylindrical cell
contacting with the immersion liquid (the cell bottom
was made of a thin polyethylene film matched in its
acoustic impedance with ink and water). A YAG-Nd
laser was used for the excitation of ultrasonic pulses
(pulse length 12 ns, energy 30 mJ, and spot diameter
8 mm). The ink concentration was selected in such a
way that the spectral range of the excited pulses
extended from 0.5 to 9 MHz (the pulse shape and its
spectrum are given in Fig. 1). The detection of acoustic
pulses, which were transmitted through the photoa-
coustic cell in the absence of the periodic structure and
when it was present in the ultrasonic beam, was per-
formed by a wide-band piezoel ectric receiver made of
a PVDF film (thickness 30 um). As one can see from
Fig. 1, the receiver could detect signals within the
aforementioned frequency range. The electric signal
was recorded by a digital oscilloscope of the Tektronix
TDS220 type with the analog band 100 MHz. The
oscilloscope was connected with a computer of the
IBM PC type. In the experiment, the signal-to-noise
ratio exceeded 102

Thefregquency dependence of the transmission coef-
ficient of the periodic structure was determined as the
absolute value of the ratio between the spectrum of the
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Fig. 2. Acoustic signal in aperiodic structure consisting of ten equivalent plexiglaslayers(d; = 1.655 mm and ¢; = 2.67 mm/pus) and
nine equivalent water layers (d, = 0.94 mm and ¢, = 1.482 mm/ps).

ultrasonic signal transmitted through the periodic struc-
ture placed in the cell (see Fig. 2) and the spectrum of
the reference signal transmitted through the cell in the
absence of the periodic structure (Fig. 1b). The width
and position of the stop bands strongly depend on the
thickness of the plexiglas and water layers. Therefore,
we studied two structures with equal numbers of plexi-
glas layers, but with dlightly different thicknesses of
these layers.

The form of the signal transmitted through the peri-
odic structure (see Fig. 2) contains a “head” pulse,
which corresponds to a single passage of a wave
through the layers, and a series of attenuating oscilla-
tions related to the reverberation of the initia pulsein
the multilayer system. In the case under study, the system
consisted of ten 1.65 mm thick plexiglas layers posi-
tioned at a distance of 0.95 mm from each other. The
travel times of ultrasound through the plexiglas layer
and the water layer were approximately the same and
constituted 0.63 ps. Since the length of the initial pulse
was less than the time of travel through the layer, rever-
berations were separated in time from the direct trans-
mitted signal. The complete track of the detected signal
contained over 10* points (Fig. 2 gives only the initial
part of the record), which provided the opportunity to
study the signal spectrum with necessary details. The
transmission spectrum of this periodic structure is
given in Fig. 3a (the dotted curve). In the same figure,
we present for comparison the transmission spectrum
calculated for this periodic structure according to the
matrix technique (the solid curve). Naturaly, this spec-
trum consists of aternating pass and stop bands. The
positions of the stop bands measured experimentally
agree well with the calculations. The main discrepancy
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between the amplitudes of the narrow minimain theory
and experiment is related to the error in the measure-
ment of the phase velocity of longitudina acoustic
waves in plexiglas, which constitutes 1% of the veloc-
ity value, aswell asto the small differencein the thick-
ness of the plexiglas plates making up the periodic
structure (about 1%). The thin solid linein Fig. 3arep-
resentsthe numerical simulation of the ultrasonic trans-
mission through a one-dimensional periodic structure
with the values of the phase velocity in plexiglas and
the layer thickness changed by 1%. Asone can seefrom
the plot, there is aimost no frequency shift in the pass
and stop bands. However, the amplitudes of the narrow
minima decrease almost by half. Thisis caused by the
fact that the narrow transmission minima in the pass
bands represent newly formed stop bands. Since the
systemisresonant, small changesin its parameters|ead
to considerable changes in the transmission coefficient
for the forming bands.

The difference between the absolute values of the
transmission maxima in the pass bands in theory and
experiment may be connected with the one-dimension-
ality of the model used for the calculations. The finite-
ness of the acoustic beam leads to the generation of
shear acoustic waves at the fluid—solid interface evenin
the case of normal incidence[15, 16], which may affect
the transmission spectrum of longitudina acoustic
waves. However, taking into account such effectsin the
utilized theoretical model lies beyond the framework of
this study.

The spectrum of ultrasonic transmission changes, if
one or severa plexiglas layers are removed, i.e., if a
“defective’ layer is created in the periodic structure. In
this case, one or several local transmission maxima
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Fig. 3. Transmission spectra of a periodic structure consisting of ten plexiglas layers and nine water layers: (a) d; = 1.655mm, ¢, =
2.67 mm/ps, d, = 0.94 mm, and ¢, = 1.482 mm/ps (the thick line represents the cal culation and the thin line shows the experiment);

the calculation performed for d; = 1.64mm, ¢; =2.7 mm/us, d;, =0.955 mm, and ¢, = 1.482 mm/us (the thin line); (b) thefifth
and eighth plexiglas layers are replaced by water (the thick line refersto the calculation and the thin line refers to the experiment).

arise in the stop band, and the pass band becomes more
irregular (Fig. 3b), the position and amplitude of the
local maximum in the stop band depending on the posi-
tion of the defective layer. The closer the defective
layer is to the system center, the greater the amplitude
of the local maximum, and the closer this maximum is
to the center of the stop band. The presence of defects
in the system can also lead to shifts of the narrow stop
bands, which isillustrated by Fig. 4a. A narrow mini-
mum that is close to the frequency 1.5 MHz in the

defective periodic structure shifts to the low-frequency
range.

Aswe have noted above, the transmission spectrum
of a periodic structure is very sensitive to a change in
layer thickness. To illustrate this fact, the spectrum of
ultrasonic transmission for a periodic structure consist-
ing of ten 1.5 mm thick plexiglaslayersand nine 1.1 mm
thick water layersis given in Fig. 4b. One can see that
the stop bands are less dense. Thethick linein the same
figure represents the transmission spectrum of a peri-
2000
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Fig. 4. Experimental dependences of the transmission spectrafor two different periodic structures: (a) aperiodic structure consisting
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(d; = 1.47 mm) and nine water layers (d, = 1.1 mm) (the thin line) and the same periodic structure with the eighth plexiglas layer

being replaced by water (the thick line).

odic structure with the removed eighth plexiglas|ayer.
One can readily see that, in contrast to the periodic
structure considered earlier (Figs. 3a—4a), anoticeable
local transmission maximum is observed in the stop
band only near 0.75 MHz, and the amplitudes of other
local maxima are much less.

Thus, the propagation of ultrasonic waves in one-
dimensional periodic structures of plexiglas and water
has been studied using wide-band photoacoustic spec-
troscopy with a laser ultrasonic source. It has been

ACOUSTICAL PHYSICS Vol. 46
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demonstrated that the transmission spectrum of such
systems consists of pass and stop bands. The width and
localization of the stop bands depend heavily on the
values of the layer thickness and the phase velocity of
ultrasound in the layers. It has been shown that, when
one or several plexiglaslayersisreplaced by water, one
or severa local transmission maxima arise in the stop
band, and the pass band is modified. The position and
amplitude of the loca maximum in the stop band
depend heavily on the position of the defective layer. It
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should be noted that the transmission spectra of one-
dimensional periodic structures can be obtained in real-
time. The frequency range of the investigation is deter-
mined only by the width of the spectrum of the photo-
acoustic generator. The results presented above can be
used for nondestructive testing of various periodic
structures and composite materials.
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Abstract—Intensity matched processing is considered for adiffracted signal when the object is detected by the
main |obe of the shadow scattered sound field. The consideration is based on the few-parameter model that ade-
quately describes the characteristics of the desired signal. It is shown that, in the absence of noise and fluctua-
tions in the parameters of the medium, the proposed algorithm provides the determination of the exact param-
eters of the signal and the moving object. © 2000 MAIK “ Nauka/Interperiodica” .

Earlier, a simple physical model has been proposed
[1, 2] that provided adeguate estimates for the fre-
guency-temporal parameters of adiffracted signal inan
oceanic waveguide when the object is detected by the
“shadow” field scattered by it. Thismodel isimportant,
becauseit allows oneto predict the results of numerical
calculations and makes it possible to revea the stable
signs of the signal. Such signs are known to afford the
detection of weak signals against the background of
strong interference, if sufficiently long data acquisition
is used. By using the few-parameter model for the sig-
nal scattered by a moving object and imposing con-
straints on the possible range of changes in its charac-
teristics, one can adjust the parameters of the reference
signa (namely, those of the transfer function of the
matched filter) to obtain the maximum correlation
response. With such an algorithm of acoustical moni-
toring of localized inhomogeneities, aquality of detec-
tion can be achieved that is close to the potential limit,
and the abject parameters can be predicted to a given
accuracy. This approach based on matched filtering isa
version of the method known as Matched Field Pro-
cessing (MFP) [3, 4].

In this paper, we consider the problem of recon-
structing the parameters of a moving object from the
shadow scattered field processed with the correlation
algorithm [5, 6]. We estimate the domain of strong cor-
relation where the maximum in the envel ope of the nor-
malized cross-correlation function between the model
and reference signals is no lower than a given value.
Thereby, the maximum step in digitizing the parame-
ters of the reference signal can be estimated to select
reliable parameter values. To reconstruct the object
parameters from the measurements of the received sig-
nal, a two-point reception scheme is proposed with
receivers spaced in the horizontal plane.

After [1, 2], we restrict ourselves to considering a
monochromatic transmitted signal and a horizontal
motion of the object with a constant speed, perpendic-
ularly to the base-line connecting the source and the
receiver. Then, the signal scattered by the moving
object is a pulse whose envelope is determined by the
shadow contour and whose carrier is a sinusoidal oscil-
lation with alinearly varying frequency. In practice, the
shape of the object is usually unknown. At the same
time, from physical considerations and in accordance
with [7], the shape of the envelope is of no importance,
if matched filtering oriented at the expected signal
parametersis used. Thisresult can be explained by the
fact that the sound energy is mainly concentrated
within the main lobe of the shadow scattered field for a
convex object. Therefore, for simplicity we assume that
the signal envelope has the Gaussian form. Then, the
diffracted signal can be written [2] as

u(t) = Ugexp(=2t7/9%) cos(wot + at’/2+6,), (1)

where a = 2v/L% 8 = L%./21v; L = (RRMR)2 is
the size of thefirst Fresnel zone; Risthe horizontal dis-
tance between the fixed point source S and the fixed
receiver A;; R, and R, are the distances from the point
where the object crosses the base line to S and A,,
respectively (Fig. 1); 2l and v arethe characteristic hor-
izontal size and speed of the object; wy, and A are the
acoustic frequency and wavelength; and U, and 6, are
the amplitude and initial phase that depend on the prop-
agation conditions. The pulse duration is specified as

the width ﬁﬁ of its envelope at the level 1/e relative
to the maximum.

1063-7710/00/4604-0445%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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s P A, A

Fig. 1. Measurement geometry: S, source; O, object; A »,
receivers, SP=R; PA; = Ry; SA| =R AjA, = Rs.

Let us consider the autocorrelation function of sig-
nal (1):

00

Y(1) = J’u(t)u(t +1)dt.

Usually, the deviation of the instantaneous frequency
within the time interval 9 is small in comparison with
Wy (09 < W), and 9 far exceeds the mean period 217w,
(wy© = 2m). Then, in the entire significant domain T,
the function W(t) can be quite accurately described by
the expression [8]:

Y(1) = ﬁT

U Sexp(—sr ’19 )coswor 2)
wheres=1 + K, K = 02316 = (Timy4)2, and m = (L/)?
is the signal base that characterizes its complexity [2].
The width At of the autocorrelation function, when
measured at the level 1/e of the maximum (energy)
value W(0), isequa to

AT = @ = ._—D_ZST ,
«/_S 182+Ti

where 1= 4/a9 = 2./21/mv isthe correlation time for

the frequency-modulated carrier. This quantity isrecip-
rocal of the deviation ad/4 of the instantaneous fre-
guency w(t) = w, + at within the envelope width §/4.
For a pulse of high complexity, 1< 9(4/mm< m) and

AT =217= (4./2/m(1/v). In contrast, if a decreases and

the carrier changes to a harmonic oscillation with an
infinite correlation time 1y the pulse becomes “sim-

ple” and At = 29 = /2L¥lv. Thus, the ratio /29/At,
which determines the compression coefficient, is equal
to A/[1+ (T[m/4)2]/2. The width of W(1) is equal to

0T =29 ./In2/s at the level W(0)/2.

Suppose that the received and reference signals,
u,(t) and u,(t), belong to the class of functions (1), and
their carrier frequencies coincide (w, = w, = ), but

KUZ’KIN

they have different amplitudes U, ,, durations 9, ,,
rates a, , of frequency variations, and initial phases

950)2 . Let us consider the effect of such a mismatch on
the cross-correlation coefficient K,,(t) of the signals

U; »(D):
Wi,(1)

JW1(0)W,(0)

00

Wi(1) = Iul(t)uz(t+T)dt,

—00

Kpp(T) = = |Kpo(1)| exp(i0:2(T)),

where W, ,(0) is the maximum value of the autocorre-
lation function for the signals U, »(t). By substituting
expression (1) for u; ,(t) and performing the integra-
tion, we abtain

|K12(T)| =

2
J9.9,8/a% + p

><exloEa(b —ac) - (aq —2bpg + Cp )D

- a+p S
1
0,(1) = éarctang

p(q —pr)— (bp 2abg+a’ 9}
a+p

Here, the following notation is used:

295 +93) . T(97-93)
8792 8792
_T(9:+9)
- 2q2
2979 @
_%-ay o T(a;+ay)
p - 2 ] - 4 )
TZ(CX —-dy)
r = wor_i_% (0) 9;0)-

Thus, if the mismatch takes place, the distribution
K,»(T) is a modulated oscillation with the carrier fre-
quency 01 (1), initial phase 82 = (1/2) arctan(p/a) +
az(eéo) - ei"’ )(p? + @), and envelope [K,(T)|.

Further, we assume that the processing procedureis
based on the envel ope of the cross-correlation function,
i.e., theintensity matched processing is used. Then, the
effect of the frequency-modulated carrier and theinitial
phase is ruled out. Let us derive the expression that
determines the domain of permissible deviations of the

ACOUSTICAL PHYSICS Vol. 46
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parametersd, and a, from 9, and a,, where the follow-
ing condition is met:

2 1
|K12(0)] = 2H
4la’ + pz«/alﬁz

This expression serves as a closeness criterion for the
signals u,(t) and u,(t). The value of H is chosen
according to the regquirements on the level of the cor-
relation response. If 3, = 8, and a, = a,, we have
|K2(0)| = max = 1.

0O<H<1l. (5

L et us specify
0, = 9,+A%; a; = a,+tAd; X = AS/9,,
_ (0)
y = Ad/a,.
In the notation of (6), inequality (5) takes the form:
J1+X >H, k= 282 (7)

J%L+X+XD+ (1+x)

If one converts expression (7) to new coordinates X =
X + 1, Y = y in the Oxy plane, an equation can be
obtained for the curve of constant level for the envelope
maximum of the cross-correlation coefficient, this
curve separating the domains of weak and strong corre-
lations:

4X% = H[(1+ X)) +kY2X. (8)

The curve (8) of the sixth order splits into two closed
lines that are symmetric about the X and Y coordinate
axes. The entire right-hand line lies in the right-hand
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half-plane of the O, XY plane, and the entire left-hand
line lies in the left-hand one. Only the line that is
located to the right of the Y axis (X > 0) has a physical
meaning. Let us consider the characteristic values of
curve (8).

1. Points of intersection with the O, X axis:
, = Hiz(li N1-HY,

X,1>0, X;3,<0

X34 = X1,

(forO<H<1,wehavel £ X, <o, 0<X,<1).
2. Extremum points:

X5,6 =t

2-H

2J1-H*
H* /k

1,-1<X,<0,0<Y, <

with Yy, = Y(Xg) = Y(Xe) = #

(forO<H<1,wehave0 < Xs <
00, —0 < Y, <0).

When the level H and the parameter K increase, the
strong-correlation domains become narrower, and, in
the limiting case H = 1, they shrink to the points with
the coordinates X = +1, Y = 0. Figure 2 shows the
curves Y(X) (8) for the domain of positive values of X
and for different values of H and k.

According to (3), the width 81, , measured at half
thelevel of |K,,(0)|is 01, =2./In2/p, where

2 2 2
4 X0 2 X YO X0 4 yOjoH
e §Br koo B o SRy Yool R

p:

As follows from this expression, the signal mismatch
leads to an increase in the duration of the correlation
response, as compared to the case of no mismatch. For
x=y=0(H=1), theresult is evident: dt,, = OT.
Assume that a priori information exists on the avail-
able range of changesin the object parameters v, |, and
L: Viin € V £ Vi Imin €€ s Linin € L < L Then
one can define the domain of redlistic values for the
parametersd, and a, of thereference signal: (3 1in» 9 ma)

2
and (amina amax)f Where'amin, max — I—min, max/'\/é(l V)max, min

and Ol pin mex = 2TV rznmy max/ L,iax, min - BY exhausting these
values, a combination of the parameters can be found
that meets condition (5). The parameters 9, and a,
selected in such away can betreated asthe desired ones
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that correspond to the parameters 9, and a, of the
received signal.

To exhaust the parameters in the minimum number
of steps, it is sufficient to digitize the aforementioned
domainsinto segments A%, =Axd; (i=1, 2, ..., n) and
Aa; =Aya; (j=1,2, ..., m) whoselengthis equal to the
maximum absolUte errors. In other words, one should

specify:
[ 4
AX = Xz_xl = 2——1—#,
. )
21—
Ay = Y, = ————r,
1 H4/\/R
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(a) B (b)
24 H 1.5+
| 2
16H \; 1.0+
8H 0.5
“\3\\\_‘7 I !
0 K X 0 i X
_8H -05F
—16 H -1.0F
_24H 1.5
_32 1 1 1 1 1 1 1 1 | | | | | | |
1 2 3 4 5 6 7 8 05 1.0 15

Fig. 2. Curves of constant level for the maximum in the envel ope of the cross-correlation coefficient (1, k = 1; 2, k = 16): (a) H = 0.5;

(b) H = 0.9.

where Ad; = 9, , - 9; and Ag; = ;. — 0;. Herg, 9, , =
D min. max and Opm= am,n max - The sequence {9} Isa
geometric progression: 9; = 9,(1 + Ax)'~ 1. Hence, the
number of incrementsis
- |:|og(‘9max/'8min) +1i|.
log(1 + AXx)

Here the sguare brackets mean the integer part of a
number. According to (9), the quantity Aa; equalsto

_ 8J1-H*
Thus, the length of the segment Aa; depends on both
the level H and the selected value of the duration §;.

Condition (5) will be met if the domain of the values of
the parameter a, is broken into equidistant segments of

length
8J1—H*
H*9Z
As aresult, we have for the number of increments;

_ amax_amin
m-—[——7§;——}

Thus, the minimum number of combinations is esti-
mated as

Aa

Ao =

minQ = nxm. (10)

For numerical calculations by formula (10), we use the
following values: |, . max =30and 75 M; Viyin max = 3
and 12 m/s; Ry in, max = 10 and 60 km; R= 120 km; and

A =10 m. Then, for the reference signal, the domain
of the parameter valuesis estimated asfollows: 7.20 x
10<9,<236%x10°s,1.88x 10*<0,<9.87 x 107 52,
For H = 0.5, we have minQ = 2 x 434; for H = 0.9,
we have minQ = 4 x 8066.

Exhausting the values of 4, and o, with selecting
their most reliable combinations according to criterion
(5) leadsto uncontrolled errorsin the parameters 3, and
a, of the received signal. With the specified digitiza-
tion, these relative errors are limited from above by
relation (9), and one can see that they are rather high,
even at large H. For ingtance, if H = 0.9, we obtain Ax =

1.45and Ay=17. 15/0(219§ . To reduce the errors, one can

increase the threshold level of H and/or increase the
number of combinations Q.

However, with the considered processing method,
the parameters of the desired signal can be recon-
structed exactly. Let {3, a;} and {3, 9,} be the com-
binations of the parameters& ;anda, aI Whl ch the max-
imain the cross-correlation coefficient envelope are H,
and H,, respectively. Note that their values may coin-
cide. Using the notation of (6), in view of relation (8),
we obtain a system of equations

2

8949 = (HYA)[L+ (3.9,
o, = J'+ 22
H™9]

(11)

2

8819, = (AN + (9./9,)7]
a, = v+ 2a?2
H"9]
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for the parameters 9, and a, of thereceived signal. It is
clear that the signal level is aso completely recon-
structed in this case.

The considered monostatic reception scheme does
not allow the object parameters v, L, | to be recon-
structed from the measured signal parameters9d, and a,.
To eiminate thisambiguity, one can implement abistatic
reception with the receiving points being spaced by a
certain distance from each other aong the base line
(Fig. 1). Note that a vertical separation of the receiv-
ers does not solve the problem under discussion [2].

Letd, ; and a, 5 bethe parameter valuesfor the dif-
fracted signals at the reception points A, ,, these values
being determined by the system (11). Then, the object
parameters will be determined by the following system
of equations:

L, o/ /2Iv

2mv’/ Li 2

D3 =
0J
Lo, 5

where L = R(R- R)MR and L = R(R + R, —
ROM(R + Ry). From the first equation of (12), we find

_ (1=y)R(R+Ry)

(12)

Rl - R(l—y)+R3 ) V = '32/‘83.
Assuming that L, is known, from (12) we obtain
L JnL,
v = —,/a,, | = —=.
Bl e,

Hence, the bistatic measuring scheme allows one to
eliminate the ambiguity in determining the distance R,
between the source and the point at which the object
crosses the base line, and the object parameters can be
completely reconstructed.

Thus, this paper considers the algorithm for an
acoustic monitoring of a moving object with the use of
the shadow scattered field. The algorithm is based on
the a priori information on the object parameters that

ACOUSTICAL PHYSICS Vol. 46 No. 4 2000
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form the diffracted signal and on the intensity matched
processing. As the closeness criterion for the parame-
ters of the received and reference signas, that of the
maximum in the envelope of the normalized cross-cor-
relation function is chosen. It is shown that, in the
absence of noise and fluctuations in the oceanic
medium, the algorithm provides the exact values of the
parameters of the desired signal and the moving object.
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Abstract—The sound propagation in amixture of gas with uniformly dispersed solid particles, whose temper-
ature is maintained above that of the gas by an external source, is considered. The dispersion properties of this
kind of suspensions are studied, and expressions for the second viscosity and the sound velocity in such sus-
pensions are derived. It is shown that, in a nonequilibrium suspension, the second viscosity may be negative.
The ranges of the suspension parameters, for which the propagation of low-frequency sound isimpossible, are

determined. © 2000 MAIK “ Nauka/Interperiodica” .

It is well known that one of the mechanisms of
sound absorption in relaxing media is related to the
presence of the bulk (second) viscosity in these media.
In anumber of nonequilibrium media, the bulk viscos-
ity may be negative [1-4]. Examples of such mediaare
molecular ones with a nonequilibrium excitation of the
internal degrees of freedom, as well as nonisothermic
plasmaor mediawith heat release. A negative bulk vis-
cosity leads to an acoustic instability of the medium
and to considerable changes in its dispersion proper-
ties. Specifically, the low-frequency sound velocity u,
may exceed the high-frequency sound velocity u,.
Such media are aso characterized by the presence of
nonequilibrium regions where low-frequency sound
cannot propagate. This opens up possibilities to use
these media for low-frequency noise control. Besides,
these media exhibit considerable changes in the condi-
tions of the laminar-to-turbulent transition [4].

In recent years, much attention has been given to
studying the sound propagation in noneguilibrium mul-
tiphase media, e.g., in dust—on plasma [5, 6]. In this
paper, we consider the sound propagation in a mixture
of gas with uniformly dispersed solid microparticles (a
gaseous suspension) with the temperature of the micro-
particles being maintained at alevel above the gastem-
perature by an external source of energy. We show that
the dispersion properties of such suspensions can be
described by the second viscosity introduced in an
explicit form. We specify the conditions at which the
second viscosity of such amedium can be negative, and
we determine the regions within which the transmis-
sion of low-frequency sound isimpossible.

We assume that the size of the solid particles far
exceeds the molecular one and is much less than the
sound wavelength. In this case, we can use acontinuous

medium model and write the gas dynamics equations
for the case of alow concentration of the solid phase
€ < 1 intheform of equations of continuity and linear
momentum conservation:

9ps _ _9(psvy)

ot ox

9Py _ 9Py

ot ox '
0(psvy) _ _0(psve)
ot 0x ’

0(Pgvy) _ _O(P+PgVg) , ..
ot 0x '

we also use the heat transfer equations

CVW%_bd_pg = &QS_| + ngﬂ),
dt  pydt  p;my, g
dT, Mya
Cparﬁ = Q_Qs_vsf pp

and the equation of state for the gas

— png
p = —

Here, the subscripts s and g correspond to the solid
and gaseous phases of the mixture; p, v, and T are the
density, sound vel ocity, and temperature characterizing

1063-7710/00/4604-0450$20.00 © 2000 MAIK “Nauka/Interperiodica’
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these phases; p is the gas pressure; m, is the molecular
mass of gas, m,, isthe particle mass, p,, isthe particle
density;

f = ps(vs_ Vg)
Ty,

is the volume force applied to the gas from the side of
the solid phase;

— (Ts — Tg) Cpar

Qs -

is the heat flux from the solid phase to the gaseous one
per particle; and 1, and 11 are the characteristic times of
the dynamic and thermal interactions between the
phases. For the Stokes flow conditionsin a gas flowing
about the solid particles of radius R, the relaxation
times 1, and 1 can be expressed through the dynamic
viscosity n and the thermal conductivity X of gas[7]:

Mper
6MR N’

Myer Cpo
MeATIR X

T, T =

In norma conditions, for most gases, the following
relations are valid:

E = M:l T = &J%:
T, 2mx " 1;0p
T,0T
_ 107 _
= =-05...-1.
Trr T oT, 0.5

At other flow conditions, which are not considered in
this paper, these quantities may noticeably deviate from
the values given above. Other notations in the initial
equations are as follows: ¢, is the specific heat of the
solid component, and c,., and c,,, represent the specific
heat of the gaseous component at constant volume and
at constant pressure. The heat transfer equation and the
equation of state for the gas are presented in energy
units. The quantities Q and | represent the heat source
power and the heat rel ease rate, which provide the con-
stant temperature difference AT = Ts— T, In our model,
we do not take into account the origin of the heat
source; it can be the electromagnetic energy absorbed
by the solid particles, or the plasma electron energy
transferred to the solid particles through collisions, or
other. We also neglect the possible dependence of Q
and | on the temperature and density of the phases.
According to the previous publications[1-3], theinclu-
sion of such a dependence may give rise to additional
second viscosity coefficients (both positive and nega-
tive).
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Applying the linearization and some simple trans-
formations, we reduce theinitial system of equationsto
asingle equation

2

A, 0A;

TTTvpr? + TTCpTW

(1)

oA
+ Tvcpv'ét—v + CpOAO = 0,

where
2 2
A = d vg_%a vzg,
x> u’ ot
Cyi T .
u'= 22§ ={wT,v,0};
viMo
Cpr = Cpws  Cyr = (1+0)Cyor;

Cov = Cpw T AVCpy| 1+ S(Trr—T1,—1) |;
Cvv = Cyo* AVCp,(1+ STry);
Cpo = Cpew T AVCy| 1+ S(Trr—T1, —T,/T7) |;
Cyo = [ Cuw +AVCy(1+ Styy) [(1+a);
S = AT/T,;
a = PPy = €Ppal Py iSthe mass content of the solid

V = MyCoa/ My Cpoos

phase, and v 4 isthe gas velocity disturbance.
At S= 0 (an equilibrium suspension), equation (1)
coincides with that obtained by Clarke[7].
We consider a disturbance ué in the form of a
monochromatic plane wave
uy = e, k= Kk +ike
and substituteit into equation (1). Asaresult, we obtain
the dispersion relation
(,02 CpT

k2

4 = Re+ilm, )
va

o

where
Cp = Cpo—iWT1CH7r —iWT,Cp, — mererpw ,
C, = C,— IWT{C 7 — IWT,Cy, — WT{T,Cre

are the complex specific heats of the suspension at con-
stant pressure and constant volume, and Re and Im
denote the real and imaginary parts of the quantity
w’/K2. Their formistypical of amedium with two relax-
ation processes [2, 3]. The imaginary part of the wave
vector determines the acoustic decrement & (or incre-
ment for k" < 0), and the real part determines the sound
velocity u= wk'.

In the absence of reciprocal phase transformations,
the fairly cumbersome dispersion relation obtained by
Nigmatulin [8] for a two-phase equilibrium mixture
can be reduced to relation (2). Nigmatulin [8] did not
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provide the explicit form of the decrement & and the
sound velocity u because of the cumbersome form of
his formulas. Earlier [2, 3] it was shown that, for k' >
k'and Re> 0, dispersionrelation (2) providesrelatively
simple expressions for the aforementioned quantities:

()] 5
2u’(w)py
1
2_2\rp
[?
u= (i') = Erg(az*‘Cdzooz‘[;.)D - e "
K Omy(a®+ wt7¢’) 0
where
2
((w) = Py 0 Trp(ad—bo)

20 2 2.2 2
w Ged a“+wTC

is the bulk viscosity, a = C,y — WTT,Cpe; b = Cy —
W T1T,Cpe; C= Cy7 + T,C,, /Ty, @A d = Cyr + T, Gy /Tr.

In the high- and low-frequency limits (relative to the
relaxation times 1 and 1,), the coefficient 6 determined
by expression (3) can be represented in the form of the

superposition of partial coefficients [2]: 6ka + 85 ({,

k, I, m} ={0, o, T, v}), where for high frequencies we
have

i 2
(ikCuk
PRI
T; ujcvjpg

6}k:6}°k°: i ={T,v}

and for low frequencies
2

i i Zi' W
Sjk = By = ~—.
2ukpg

Here,

2 2
i _ TiCy(U; —Uy)Pg
= —
vk

is the low-frequency bulk viscosity, which has the
form similar to that of the bulk viscosity in a medium
with asingle relaxation process[9]. This quantity may
be negative in nonequilibrium media when ¢ /c, —
Cu/Cyj >0, i.e., inthe presence of a positive feedback
between the acoustic disturbances and the rate of the
heat release from the nonequilibrium excited degrees
of freedom [1-3].

We consider four limiting cases.

1. The low-frequency limit w’TT, < (C,/Cye)’-
Here, the sound velocity isu = u,, and the acoustic dec-
rement has the form

2
w o

TO vO
O = Orp+ 0y = —3
2UoPg

MOLEVICH, NENASHEV

where the viscosity coefficient ¢, is determined as a
sum of the partial low-frequency second viscosity coef-
ficients

(o = Zlo +0,

2 2
ZT _ T1Cyr(Ur —Ug)Pg
TO CVO '
2. The high-frequency limit «’1:T, > (C,(/Cr0)*
Here, the sound velocity in the gaseous suspension
coincides with the sound velocity in gas u = u,,, and the
decrement has the form

2 2
v o _ Tvcvv(uv_uo)pg
ZVO - .

CVO

T 2 v 2

Teo o0 1 o0 c o C
600 — 60°T+6;V — = E}l T2VT+Z VZVVD
2U.,CyPgl T7 1, U

where

2 2
— TTCVm(uw - uT)pg

2 2
T _ Tvcvw(uoo_uv)pg
ZooT - .

v
L] ZOOV - CVV

Cut

3. In the case wt < ¢,/Cy1, WT, > C,/C,,, the
sound propagation occurs with the velocity u=u,, and
the damping decrement is determined by the expression

2 v 2
TO Voo w O ZV C, 0
5=6M+6V0=2—3E¢:w el
Pg .U wT,c, U

where

2 2
T _ TTCvoo(uoo_uv)pg
Zoov - .

Cvv

4. In the case Wt > C,0/C,7, WT, < C,/Cyy, the
sound propagation velocity isu = uy, and the damping
decrement has the form

2
W

3
2pgur

0 Y2 O
[Z»:T + ZZVO2 v20 D,
O

W T1Cyr

_ xTw v0o _
O = O + 0oy =

where

2 2
ZV _ TVCVoo(uoo_uT)pg
T — .
Cvr

For the Stokes conditions of heat transfer in the sus-
pension, we have 11 ~ T, and the “asymmetric” limit-
ing cases 3 and 4 are impossible. In the low-frequency
limit, we have §, ~ «?, and in the high-frequency limit,
the quantity o, is frequency independent. Such a
behavior of d(w) is characteristic of the sound disper-
sion in relaxing media. We note that the nonstationary
processes of heat transfer between the phases, which
are neglected in our consideration, may become signif-
icant at high frequencies. According to Nigmatulin [8],
these processes lead to an increase in the decrement
with increasing frequency in the high-frequency
region. Besides, at high frequencies, it is necessary to
take into account other mechanisms of sound absorp-
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Fig. 1. Frequency dependence of the acoustic decrement in
an equilibrium suspension for different mass contents of
solid particles.

tion related to the presence of the shear viscosity and
heat conduction in the medium.
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suspension consisting of steel spherical particles (R, =
2 x 107 m) dispersed in nitrogen at normal conditions.
The mass content of particlesis assumed to be a < 60,
which corresponds to their volume content € < 0.01.

For these conditions, the decrement tends to a con-
stant value &,, with increasing w, asis shown in Fig. 1.
According to Fig. 2, in an equilibrium suspension at
large values of a, the low-frequency sound velocity u,
ismuch lessthan u,,. Theratior,={,/n > 1 isreached
aready at a ~ 1. Such large values of the ratio between
the bulk and dynamic viscosity coefficients make it
necessary to take into account the second viscosity in
studying the hydrodynamic stability of flows, including
the subsonic ones [10-12]. For coarser suspensions,

this ratio may be even greater, because 1; ~ Rsa, . Evi-
dently, in this case, the low-frequency sound range
(W4T, < (C,0/C,.)?) Narrows; the high-frequency dec-
rement o, ~ 1/ decreases.

Figure 3 presents the frequency dependences of the
dimensionless sound velocity u(w)/u,, and the dimen-

As an example, we consider the estimates of the sionless decrement &(w) = 21KK'/K characterizing the
decrement, sound velocity, and second viscosity for a  attenuation within the wavelength for a = 1 and differ-
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Fig. 2. Dependences of (@) the ratio of the low-frequency
and high-frequency sound velocities and (b) the viscosity
coefficients on the mass content of particlesin an equilib-
rium suspension.
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Fig. 3. Frequency dependences of (&) the sound velocity and
(b) the dimensionless decrement at o = 1.
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Fig. 4. Dependences of the ratios (a) of the viscosity coeffi-

cients and (b) Re(0)/ ui on the mass content of particles at
S=1.

ent values of S For large S the low-frequency sound
velocity may exceed the high-frequency one.

Figure 4a shows that the ratio r, = {,/n strongly
dependson a, and, for a (and ), there exists arange of
values within which we have {, < 0. A negative viscos-
ity leadsto k' < 0, i.e, either low-frequency sound is
amplified or its propagationisimpossible[13]. It can be
shown that the amplification of sound corresponds to
the conditions {(w) < 0, Re(w) > 0, and the impossi-
bility of sound propagation corresponds to the case
Re(w) < 0. In the suspension under study, the condi-
tions for the sound amplification cannot be satisfied for
any values of S. According to Fig. 4b, the low-fre-
guency viscosity is hegative only in the region where
the sound propagation is impossible. In addition, from
Fig. 5 one can see that the frequency range of negative
viscosity is considerably narrower than the frequency
range within which Re(w) < 0.

Thus, in this paper, we studied the dispersion prop-
erties of a suspension of microparticlesin gas with the
Stokes conditions of interaction between the phases.

MOLEVICH, NENASHEV

1o, 103
2~

0 0.1 0.2 0.3
Re/u2

04 1 1 1 1
0 20 40 60 80
Wiy

]
100

Fig. 5. Frequency dependences of the ratios (a) of the vis-
cosity coefficients and (b) Re/ufo aS=1,a=10.

We determined the sound velocity and the decrement,
aswell asthebulk viscosity in the equilibrium and non-
equilibrium suspensions. We determined the conditions
at which the second viscosity isnegative. In closing, we
note two facts. First, for other models of phase interac-
tions (and, hence, other dependences 1+(T,, Py), T1/T)),
the existence of conditions corresponding to tghe sound
amplification ({(w) < 0, Re(w) > 0) is possible. Second,
whether a suspension of microparticles in gas belongs
to the sound amplifying type or to the nontransmitting
one, one can expect (by analogy with nonequilibrium
media) that the negative second viscosity will consider-
ably affect the conditions of the hydrodynamic stability
of flows in a nonequilibrium suspension. These prob-
lems require further studies.
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Abstract—The problem of a stationary acoustic flow that occurs in a standing wave field formed by two trav-
elling monochromatic plane waves incident on a plane boundary between two liquidsis solved theoretically. It
is shown that the flow formed in such conditions noticeably differs from the known Rayleigh’s flow that occurs
near arigid plane. © 2000 MAIK “ Nauka/Interperiodica” .

A stationary flow that occursin a sound field near a
solid body is determined by the viscosity of liquid and
the condition that, at the surface of the body, the veloc-
ity of the particles of liquid is equal to zero. Such flows
represent second-order effects with respect to the
acoustic Mach number. In particular, Rayleigh’'s flow
occursin thefield of a standing sound wave in a planar
channel [1] or near asinglerigid plane. This paper stud-
ies Rayleigh’s flow in a more general case of two arbi-
trary liquids with a plane boundary between them. The
standing wavefield isformed as a sum of the fields pro-
duced by two travelling plane harmonic waves propa-
gating in one of these liquids. Considering this wave
field, it is necessary to take into account the reflection
and refraction of waves at the boundary between two
dissipative media. For each of the two media, the solu-
tion of the problem depends on the parameter

£ = ky(Viw)"? = kdlW2 <1,

where k, = w/c, w is the angular frequency, c is the
sound velocity, v is the kinematic viscosity coefficient,
and d = (2v/w)"? isthe thickness of the acoustic bound-
ary layer. The heat conductivity of liquidsis neglected
for the sake of brevity. Let the unperturbed boundary
between the two mediabe ahorizontal plane, wherethe
y axis is directed upwards, the surface y = 0 coincides
with the boundary between the liquids, the x axis is
directed along the boundary, and the process does not
depend on the z coordinate. In the upper liquid, two
identical plane waves propagate in the xy plane, and the
incidence of these waves on the boundary between the
liquids is symmetric about the y axis, i.e., if the phase
factor of onewaveisexpl[i(kx—yy)], the phase factor of
the other wave will be exp(i(—kx — yy). Here, k> + y> =

ké , and k and y are positive real numbers related to the
angle of incidence of the wave by the formulas k =

k,sin@ and y = k,cos8; from here on, the time factor
exp(—iwt) is omitted.

In the first-order (acoustical) approximation, the
problem of the transmission of a single wave through
the boundary between two liquids was solved by
Savel’ ev [2] with allowance for the viscosity (and heat
conduction) for small grazing angles. One can easily
generalize the solution to arbitrary angles. Then, in
order to obtain a standing wave along the x axis, one
should combine two solutions that correspond to the
two aforementioned waves. The resulting oscillatory
particle velocity fieldsthat are formed in the two media
will be described by the expressions:

u, = (6" + Ae")coskx,

v, = (AeiW—e'iW)%sinkx,
_ ioy _ Bki ioy .
u, = Be “coskx, v, = —Fe sinkx, €))
u; = De"Vcoskx, v; = —D%e‘iy‘ysinkx,
u, = Ce'”Vcoskx, vj = —%lflem'ysinkx.

Here, the quantities marked with the primes refer to the
lower liquid (y < 0). The oscillatory particle velocity
vector v in liquid is represented by the sum of the
potential v, and solenoidal v, components; u=u, + U,
and v = v, + v, are the projections of the vector v on
the x and y axes, respectively. The above expressions

take into account that k=K'; y? + k? = k(')2 ,Wherey can
be either a positive real quantity or an imaginary one
(for angles of incidence exceeding the critical angle);
and 02 = iw/v, where the imaginary part of o is positive
in the upper liquid and negative in the lower one. It is

1063-7710/00/4604-0456%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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evident that k,/|o|~ €. In each of theincident waves, the
amplitude of the longitudinal (along the x axis) compo-
nent of the liquid particle velocity is taken to be equal
to unity. The quantities A and D are the reflection and
transmission coefficients, respectively; the expressions
for them and the constants B and C have the form

_1-yplyp'—M _ 2p/p'
1+yplyp'+M’ 1+yplyp'+ M’
2 "2
M = K(A-p/p)
p VO
VO%Hp'ﬁ'D
2(plp' =1 @
B = (p/p'=1) ,
oIVe' P |vO
(L+vy'plyp +M)%L+p'«/;'D
C = 2(1-plp) ,

v P VD
(1+yplyp +M)%l+pﬁm

where p is the unperturbed density of liquid.

In the second-order approximation (quadratic in the
oscillation amplitude), it is necessary to take into
account both the motion and the curvilinearity of thex,
y coordinate system, because the surface y = 0 coin-
cides with the oscillating boundary between the media.
To write the equations and the boundary conditions for
the absolute motion of liquid in the moving coordinate
system, we introduce an auxiliary fixed Cartesian coor-
dinate system X, Y (where the plane Y = O coincides
with the unperturbed boundary between the media).
Thex, y and X, Y coordinates are related as follows:

X
X = IA/1+(a§/aX)2dx= X, y=Y-§,
0

where &(X, t) is the deviation of a boundary element
from the plane Y = 0. Hence it follows that the time
derivative 0/0t taken in the fixed coordinate system
should be replaced by the operator d/dt — v,0/dy in the
moving coordinate system (v,(X, y) = 0&/at). In addi-
tion, we have

0 _0 9§90 0 _ 0

0X ~ ox oxdy aY oy’

08
“ox’

where ais an arbitrary vector, and the subscript y indi-
cates its projections on the y-axis of the corresponding
coordinate system. It should be noted that the x-axisis
not a straight line, and the components of the vector a
in the moving coordinate system are oblique projec-
tions of this vector on the y-axis and the tangent to the
x-axis, because the x, y coordinate system is not an
orthogonal one. Below, we present some differentia

3)

ay = a, ay = a,ta,z2
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relationships expressed in the moving coordinate sys-
tem and obtained from the corresponding expressions
given in the Cartesian system by using formulas (3):

da, Oda, 9fda,_da, azz
(Oxa), = 5 By Taxdox oyl g2 2
2 2 2 2
¢ =9 f,0 f_,080f _Eg' )
x> oy’ OXOX0y Hx20y
_ 0da, Oa,
Ofa = g+ 5

In the second-order approximation, the derivation of
the equations for a stationary flow in the moving coor-
dinate system issimilar to that in afixed coordinate sys-
tem [3]. Then, for each of the two liquids, we obtain

(0 0r) —vx O(0 Gr) + O x [ x (v—Vvp)]O

0o’

= V=
X’

O E[V +<%1(v—vo)>} =0,

where V isthe time-average velocity of liquid particles
at afixed point of space in the given coordinate system
(the Euler velocity), the angular brackets denote the
averaging over time, p, isthe acoustic density, v is the
particle velocity (real) in the first-order approximation
(the complex amplitudes of the components of thisvec-
tor are given by expressions (1)), the vector v, is paral-
lel to they axis, and Q = 0 x v. The terms containing
the factor v, in the system of equations (5), as well as
the second term on the right-hand side of thefirst equa-
tion of this system, are caused by the motion and the
deformation of the boundary between the media. The
aforementioned term of the first equation is much less
than the left-hand member of this equation, provided
that thelimiting case p/p' > 1 isexcluded from the con-
sideration. To prove this statement, we use relations (4)
and obtain the expression

2
+5<"_2gg xV)+vMAOxvV)g  (5)
y

v xv)Q
. OEaU'z ZaEauz
aXaxay x> ay’

In order of magnitude, this expression is equa to
~k?v,u,, whereas the left-hand member of the equation
in question is equa to ~k’uu,/e. The comparison of
these two expressions shows that the former is an order
of magnitude (in terms of €) greater than the latter, pro-
vided that u ~ v,,. The equality failswhenu < v,,. From
formulas (1) and (2), it follows that the equality can
hold only inthe upper liquid on condition that p/p' > 1.
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From the second equation of system (5), it follows
that the vector

U= V+<%1(V—Vo)> ©)

isrelated to the masstransfer and, therefore, isequal to
the average velacity of a given particle (the Lagrange
velocity); it is this quantity that is usually observed in
experiments. Eliminating the quantity p, by applying
the continuity equation in the first-order approxima-
tion, we recast expression (6) to the form

i .
U=V+ Z)(v—vo)dlvvﬂ. (7)

Here, we use the complex amplitudes of the oscillatory
particle velocity of the medium and of the boundary
between the media (the asterisk denotes complex con-
jugation). Only the real part of expression (7) has a
physical meaning. We introduce the stream function W
in such away that

o | L oV
UX - ayl Uy - aX1 (8)

where U, and U, are the components of the vector U.
Finally, we a$ume that the angle of the wave incidence
on the boundary is not too small, so that, in order of
magnitude, we obtain k ~ k. Taking into account every-
thing mentioned above and excluding the case p/p' > 1
from our consideration, we obtain a single equation for
the stream function (for each of the two media) instead
of equations (5):

Dy = L U3 v o'
2v “axay ( o) V2
our j adurO.
- divv, )]
V oy Z2wgy’Q

The right-hand member of this equation is expressed
through the complex amplitudes (1), and only the real
part of the expression has a physical meaning.

Let us consider the conditions at the boundary
between the media. The kinematic condition expressed
in Cartesian coordinates has the form

gi WxaE =w, (Y=28).

Here, w is the liquid particle velocity vector, which
includes the stationary and the oscillatory components.

MURGA

Using relations (3), we represent this expression in the
X, y coordinates:

0¢ _

5 - W (y=0).

By averaging the latter expression over time and
assuming that the time-average position of the bound-
ary iscongtant (i.e., [d¢/otC= 0), we obtain W, =V, = 0.
Then, we usethe condition of the equality of tangentl a
forces acting on a unit area of the boundary from the
side of both liquids. It can be shown that, in the x, y
coordinates, the average tangential force is given by the
expression

oV, aV, 07 0§Pu aJv
vp[ ax ay +<uax oxLbx oy }
We assume that, in this expression, the nonlinear terms
can be neglected in comparison with the linear ones. An
additional check shows that this assumptionisvalid for
any two liquids excluding the case p/p' > 1 (this case
was aready excluded from our consideration). By add-
ing the equality condition for the tangential compo-
nents of the average velocity V of two liquids at the
boundary, we finally obtain the boundary conditions (at

y=0):

V,=V,, V,=0, V, =0,
, 10
oV, avxD LoV, +aVXD (19)

pDax oy~ Dax ay O
The calculation of the right-hand member of equa-
tion (9) yields the equation
O0'W = f(y)sin2kx,
D —iol

f(y) = Btki YH 1+A)H£1+3VD (11)

+B[(1-i)e? +i] N%D[e“w—u A(l-e™)]E
0

for the upper liquid. For the lower liquid, the function
f'(y) has a similar form with the following changes
being introduced in expression (11): A= 0, B should be
replaced by C, (1 £ A) should be replaced by D, and
exp(—iyy) should be replaced by Dexp(-iy'y). These
changes of constants can be inferred from formulas (1)
by comparing the homogeneous equations for the upper
and lower liquids. From expression (7), for the upper
medium we obtain:

U, v+'k—B(1+A)%L+VEe'°DVsn2kx (12)

A similar expression can be obtained for the lower
medium. From expression (12), it follows that U, = V,
ACOUSTICAL PHYSICS  Vol. 46
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outside the acoustic boundary layer (Joy| > 1) and aso
at y = 0 (in the latter case, the term added to V, on the
right-hand side of (12) is purely imaginary, and, there-
fore, it should be discarded). The particular solution to
equation (11) has the form ¢(y)sin2kx, where ¢(y) is
calculated by the fourfold integration of the function
f(y) with respect to y. The solution to the homogeneous
(biharmonic) equation for the stream function should
have the form ®(y)sin2kx, where the function ® is
determined by the equation

o™ —gk?d? + 16k*d = 0

(the numbers in parentheses indicate the order of the
derivative with respect to y). The solution to this equa-
tion for both media has the form

® = e™(N+Py), ® =& (N+Py), (13)
where N, P, N', and P' are unknown constants. The
complete solution to equation (11) isrepresented by the
formula

W = (& +¢)sin2kx. (14)

Substituting expression (14) in boundary conditions

(10) and using relations (7), (8), (12), and (13), we
derive the expressions for the sought-for constants:

BEké[(l A)B“‘“‘ }
g R

(15)
. _ CLk& y?o. 3
N'= 5w [D%_ED_Z }
|:| [N U 1
P = ———Q—C———,—,—E[@ké'-%:,igu%ﬁg}
. PV
16w6%+p—vm

(here, we take into account the relation o = (1 + i)/9).
The expressions for the components of the average
velocity vector U in the upper liquid have the form

U, = [ e 2p(1- 2ky)+d¢}sin2kx,
(16)

U, = —[e “YP(N + Py) + ¢] 2k cos2kx.

For the lower liquid, we have to replace the minus sign
before ky by the plus sign (see (13)). Formulas (16) and
(15) represent the solution to the problem under studly.
Let us consider some particular cases.
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Inthelimiting case p/p’ — 0, from expressions (15)
we obtain (see dso (2)):

3k . __cchp M
P = 50 BB P = - 1600 p

=0. 17)
In the lower medium the flow is absent (as one would
expect). In the upper medium, according to expres-
sions (16) and (17), the average velocity at the bound-
ary of the acoustic layer (Joy| > 1, |ky| < 1) is deter-
mined by the formula

U, = Psin2kx = g£|1+Alzsin2kx, (18)

because, in this case, B =—(1 + A). However, |1 + AP
is the squared amplitude of the longitudinal oscilla-
tory particle velocity in the resulting sound field
formed in the upper medium. Thus, formula (18) coin-
cides with Rayleigh’s result [1]. In the other limiting
case p/p' — oo, we have

= __BDB/\/7 0
16wdp' ’
3k 3kD

' U=
P SwCC 8%

(19)
p4d

In the lower liquid, we obtain Rayleigh’s solution as
before, the quantity DD* being the squared amplitude
of the longitudinal oscillatory particle velocity in the
lower medium. In the upper medium, according to
expression (19), the flow must be absent. However, the
case p/p' — oo has been excluded from our consider-
ation. In reality, one should expect the appearance of a
weak flow in the upper liquid, and the velocity of this
flow should be an order of magnitude less (in terms of
€) than the velocity of Rayleigh's flow near a rigid
plane.

In the intermediate case determined by the condition
1.P5 (20)
e p

for simplicity we assume that v/v' ~ 1, and, from (15)
we obtain

p /vO
BBE%“-p'A/;'D
pvV'D
16“)6%[+pVD
P VO
_ CC[%HpﬁD

16(»6‘%[ + 5—3%

2D
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Expression (21) can be represented in the form

u %_Eg
16wd W' '
e

where ug = |1 + A]. Inthis casg, in formulas (16), one

should neglect the particular solution ¢, the derivative
d¢/dy, and the constant N. Then, the velocity field of a
stationary flow is described by the expressions

U, = Pe?(1-2ky)sin2kx,

P=P = (22)

U, = —Pe Y 2kycos2kx,
(23)

U, = Pe™(1+ 2ky)sin2kx,

U, = —Pe™2kycos2kx.

In both liquids, the flow patterns areidentical and sym-
metric with respect to the boundary between the lig-
uids. The maximal flow velocity is achieved at the
boundary, and it is determined by the formula

U, = Psin2kx. (24)

The comparison of formulas (24) and (22) with expres-
sion (18) shows that, in this case, the flow velocity
exceedsthe velocity of Rayleigh’s flow that occurs near
arigid plane by a factor of €!. Besides, in contrast to
Rayleigh’s flow with its complex structure (small-scale
and large-scale vortices), the flow considered in this
paper consists of only large-scale vortices with the
characteristic sizek™!.

Solution (23) retains its form in the Cartesian coor-
dinate system. The coordinates x, y in expressions (23)
determine the liquid particle position averaged over
several periods of oscillation; these coordinates
approximately coincidewith the average coordinates X,
Y of the same particle. According to relations (3), we
have Uy = U,, Uy = U, + [II0¢/0xL1As one can see from

MURGA

formulas (22) and (23), the second term on the right-
hand side of the expression for Uy isan order of magni-
tudeless (in terms of €) than thefirst term; hence, inthe
approximation under study, it can be neglected.

Thus, the deformation of the boundary between two
liquids does not affect the solution of the problem inthe
first-order approximation.

In closing, we note that the solution presented
above is valid as long as the initial equations (5) are
valid. The method of successive approximations used
in the derivation of these equations implies a small
value of the average vel ocity of liquid particles as com-
pared to the oscillatory particle velocity; i.e., we should
have (see (22))

Ma< g, (25)

where Ma isthe acoustic Mach number. In addition, the
Reynolds number Re for a stationary flow must be
much less than unity, because equations (5) do not take
into account the nonlinear terms (quadratic in the aver-
age velocity). Therefore, the following condition must
be satisfied:

2
Re = . gM& o4
vky g3

(26)
The latter condition imposes a stronger limitation on
the allowable intensity of acoustic field (the acoustic
Mach number) than condition (25). Thus, solution (22),
(23) isvalid when conditions (20) and (26) are met.
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Abstract—A model problem of sound wave propagation from a point source located in water at the center of
a spherical bubble cloud is solved. The resulting dependences of wave attenuation on the sound frequency and
bubble concentration are compared with those obtained in the approximation of aquasi-homogeneous medium.
The validity limits of this approximation are determined. © 2000 MAIK “ Nauka/Interperiodica” .

The literature on sound propagation in water with
air bubbles is quite extensive. Clay and Medwin [1]
considered the propagation of sound in an unbounded
medium. Zhen (see, for example, [2]) considered the
features of sound propagation in sea water where air
bubbles are mainly located near the sea surface. Dean
[3] analyzed the sound propagation in aspherical cloud
of air bubbles generated by breaking waves. As arule,
the contribution of bubbles to sound propagation is
described with the use of the effective complex wave
number k. For low bubble concentrations, the wave
number is calculated in the single-scattering approxi-
mation. For moderate concentrations when

MO< A, (1)

where [1[Jis the mean distance between bubbles and A
is the sound wavelength in the medium, the wave num-
ber k is calculated in the approximation of a quasi-
homogeneous continuous medium [4]. However, for
high bubble concentrations typical of, say, breaking
wind waves in the ocean [5], the sound wavelength A
depends on the bubble concentration, which makes it
difficult to a priori estimate the validity of the quasi-
homogeneous approximation(QHA).

The aim of this paper isto estimate the applicability
limits of the QHA by comparing the results of the field
calculations performed by two methods for a model
problem of a point source located at the center of a
spherical cloud of air bubbles. The calculations were
first carried out on the basis of the QHA and then with
allowance for multiple scattering from the bubbles. Our
am is to also obtain an alternative approximate esti-
mate of sound wave attenuation in water with a high
bubble concentration.

Assume that all bubbles are spherical in shape and
their distribution in size has the form n(a), where a is

the bubble radius. The bubble concentration is described
by the parameter V, which is the fraction of the medium
volume occupied by bubbles:

00

V = 4T[/3J’a3n(a)da. ()

Thewave number k used in the QHA isexpressed in
terms of the complex sound vel ocity in water with bub-
bles, c, by the formula k = 27tf/c, where f is the fre-
guency of the emitted field. To determine the sound

velocity ¢, we use the known formulac = (p K)"2 [1],
where p isthewater density and K isthe compressibil-
ity of water with bubbles. Accordingto[4], wehave p =
(1-V)py + Vp'. According to [1], the compressibility K
1_\2/ + K', where p, and p'
PoCo
are the densities of water and air, respectively; ¢, isthe
sound velocity in water without bubbles; and K' is the
complex additional term caused by the presence of bub-
bles. Sincep' < p,, wecanset p = (1 -V)p,. Caculat-
ing the quantity K' in the same way asin [1], we obtain
the following relation for a bubble ensemble described
by the distribution n(a):

can be represented asK =

1_ 1A= V) an(a)da

where D = (f,/f )>— 1, f, and & are the frequency and the
attenuation constant of the fundamental radial oscilla-
tions of abubble of radius a. This expression coincides
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with that of presented in [4] for V < 1. Denoting the
imaginary part of k by 3, we obtain

12

B = .J2rflc [(N*+ M3 2= N]

2
N = (1—V)2+—(1_V)2C°Jr,
. 4)
M = (1-V)cydi
2 1
Ttf
mDnada . - dnada
J=f——, Ji = )
‘(l:D2+62 'C[D2+ 5

The expressions for f, and o are presented in [1]. It
can be shown that for bubbles at a small depth, f, =

(300a) ' and &= 0.014(1 + féjz), wheref, is expressed
in kilohertz and ain meters.

Itisclear that for large values of V, formula (3) is
not valid, since it was derived by replacing the instan-
taneous values of p by the time-average ones, which
is admissible only for V < 1. Another restriction on
the applicability of formula(3) provides condition (1).
Let us estimate the form of the dependence of TilJand
A on V. For an arbitrary frequency, thisestimateisvery
cumbersome. It has the most simple form for low fre-
guencies, when the sound velocity in water with bub-

-1/2
1.4poc§D
TOD , Where p,

is the hydrostatic pressure [4]. On the other hand, we

have 0~ [AV-173 and (0= o an(a)da. Taking into

account that A = Rec/f and substituting these estimates
in (1), we obtain the condition of the applicability of
the QHA:

bles hastheform Rec = ¢, %l +

1.4cp V2
Ve +_-9|§-99_E > [&f/c,. (5)
0

It is evident that this condition is violated for V — 0.
However, asV increases, the left-hand side of thisine-
quality reaches its maximum and then decreases.
Therefore, for some conditions, inequality (1) is no
longer valid for large values of V aswell. More detailed
estimates of the validity of the QHA, in particular, in
the presence of the resonance bubbles, can be obtained
by comparing the QHA with the exact solution to the
problem of wave propagation in water with bubbles.

Consider a model problem of the field of a mono-
chromatic point source located at the center of a spher-
ical homogeneous cloud of air bubbles of radiusR. The
Green's function of such a source is described by the
Dyson equation [6]. To find closed expressions for the
mean field and the total intensity, it is necessary to
make a number of simplifications. We will use the
Twersky equations[7] based on the assumption that the

POSTNOV

main contribution to the field (intensity) is provided by
single scattering over the paths passing through each
bubble.

We start with considering the simplest bubble cloud
model in the form of a sphere of radius R filled with
passive bubbles whose mean concentration is constant
inside the cloud and the density distribution of their
radii a is described by the function n(a). Assume that a
source of the acoustic field of frequency f is located at
the center of the cloud, and the emitted field has the
form py(r) = exp(ikyr)/r, wherer isthe distance from the
cloud center and k, = 211f/C,.

The scattered field averaged over an ensemble of
bubbles (the coherent field) at the distance r from the
cloud center is described by the equation

p(r) = po(r)
o exp(ikyp) . ©)
+2n‘!-([:|'l p(r)r o—p n(a)dadr'dy.

Here, o is the scattering amplitude of a passive bubble
of radiusa, p = (r> + r'>2 = 2rr'y)'2, and y is the cosine
of the angle between the vectorsr andr'. Since, accord-
ingto[1],c=a/LandL =D —id, we obtain

R1

p(r) = po(f)+2nJ0IJ'p(r-)r-2

0-1

_ ik
oP(ke) 4 (7,
p
where J, = Jr + iJi.
The integration with respect to y yields

p(r) = Do(f)+M{J'p(f')r;lexp(ikof)Sinkor'df'
0
®)

R

+Ip(r')$exp(ikor')sinkordr},

4,
iko
of the second kind with the degenerate kernel, which

alows an exact solution in the form

where M = . ThisisaFredholm integral equation

p(r) = [Ciexp(ikyr) + C,sinkyr]/r, 9)
where
C - 1+MBZZ
' 1+M(Byy+B) + MZ(BnBzz— BZlBlZ)’
C, = M,

1+M(By+Byp) + MZ(BnBzz —B2uB12) ’

1-cos2kyr i sin2k,rg
= —_— 4+ 4 —
Bu 2k, 2% 2k, O
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exp(2ikyR) — exp(2ikyr)

B = IMBy, By =

2ikg '
B, = cos2kyR — cos2k,r
2 = 2K,
i sin2kyR—sin2k,r
* SR+ 2k O

Figure 1 shows the dependence of r|p(r)jonr at R=
0.1 m,V=0.01, and f = 3kHz (curves I and 4 refer to
the case when p(r) is described by formula (9)). The
calculation was carried out with the use of the standard
approximation to n(a) in theform n(a) = Aa™ for a;, <
a < a,, Wherek is a constant and A (with allowance
3(1-«k/4)

T[( a:;axK - a:"linK)

sea water with allowance for the literature data, we set
A = 3 X 1073 and a,,, = 3 x 10 m. The scatter of the
estimates reported for K is large, but most publications
provide values in the range 3-5, and these values were
used in our calculations. Curve / refersto k = 3 and
curve 4 refersto Kk = 5. Curves 2 and 5 represent the
same function calculated without allowance for the
bubble scattering at r > r'; in this case, ,; = By = 0.
Since the error introduced by this assumption is small,
we will use it in our subsequent calculations.

Let us show that the expressions obtained for p(R)
with the use of the QHA and from equation (9) coincide
for small V and R. If V and, therefore, J, are small,

for identity (2)) hastheform A=V . For

2
CyJ
0 OZD. Hence, we

2nf 0

[l
expression (3) yields ¢ = CO/EIH

R
obtain p(R) = exp(ikR)/R = exp(ik,R) %l + i%%ﬁe
when R/f is small. On the other hand, expression (9) at
r = Rand asmall value of J,R/f takes the form p(R) =

exp(ikyR)
R(1-icyJoR/f)
we determine the criterion of the proximity of the solu-
tion based on the QHA to the exact solution:

ColJo R/ < 1.

= exp(ikOR)%H i—C—O%QBB/R. Hence,

(10)

The curves obtained for the quantity 20 log|Rp(R)|
calculated on the basis of the QHA (curves 3) and from
formula(9) (curvesi) asafunctionof Vatf=6kHz are
showninFig2, andasafunctionof fatV=0.1inFig. 3.
Itisseen that, for largeV, the error of the QHA islarge,
and the use of this approximation isinexpedient. Onthe
other hand, to find the exact expression for the acoustic
field with allowance for multiple scattering is only fea-
sible for avery limited number of configurations of the
scattering medium (a plane layer, a circular cylinder,

ACOUSTICAL PHYSICS Vol. 46

No. 4 2000

463

r/R

r|p(r)|, dB

Fig. 1. Dependence of the amplitude of a spherical sound
wave of frequency 3 kHz generated in water at the center of
aspherical cloud of bubblesof radiusRon the distancer from
the source. Curves 1 and 4 are calculated from formula (9),
curves2 and 5 from formula(9) atr = R, and curves3and 6
are obtained from formula (11). Curves 1-3 correspond to
K =5 and curves 4-6 correspond tok = 3.

logV
T

—40

-80

-120
dB

Fig. 2. Dependence of the intensity of the spherical wave
intensity on the bubble concentrationVa R=0.1mandf =
6 kHz for k = 3 (solid lines) and 5 (dashed lines). Curves 1-4
are calculated from formulas (9), (17), (4), and (11), respec-
tively.

and asphere). Therefore, for practice, it isimportant to
be able to describe the effect of the medium on the
sound propagation through a local attenuation coeffi-
cient B. If we assume that 3 weakly depends on the
form of the scattering domain and depends only on the
wave path length r in this domain, then 3 = (In|rp(r)])/r,
where rp(r) can be obtained from formula (9) by substi-
tuting the estimate of theintegral J, in thisformulaand
assuming that kyr is small (since a high bubble concen-



f, kHz
10! 10!
1

dB

Fig. 3. Dependence of the wave intensity on the source fre-
quency a V = 0.1 and R = 0.1 m. Other notations are the
sameasinFig. 2.

tration in seawater is observed only in small volumes).
For f = fy(a,4), the estimate J, takes the form

4—K

K—4
(300f)  —amn —iAB00f)<-2;

4—K
for f < fy(an,), We can ignore the imaginary part.
Finally, we obtain

Jo = 105AF2

B= r_lln[l + 15A(300)< < IR°
(11)
+211(300)°Af

2(300f)" ~* —an, Rz}
4—K '
wherer and Rare expressed in metersand f in kilohertz.

Curves 3 and 6 in Fig. 1 correspond to the solution
obtained on the basis of the QHA with 3 being
described by formula (11). It is seen that these curves
fit the exact solution well. Thisis also true for curves 4
in Figs. 2 and 3. It is seen that they lie much closer to
curves /, as compared to curves 3.

The exact calculation of the coherent component of
the field scattered within the spherically symmetric
bubble cloud can also be carried out when V is an arbi-
trary function of r. In the previous publication [8], the
result of calculationsis presented for an exponentially
decreasing function V(r).

The calculation of the total intensity | of a point
source located at the center of a spherical bubble cloud
is much more complicated. Therefore, we use the Twer-
sky equations that were obtained for the same assump-
tions as equation (6). Then, we have

1(r) = Ip(r)|’
2 PUST ' y)|°n(a)dadr'd 2
+ n.!'.!)':['ll(r)r [v(r,r',y)|"n(a)dadr'dy.

POSTNOV

Here, p(r) is expressed by formula (9) and v is deter-
mined from the equation

aexp(ik
V(I’, rl, y) — pL(p Op)
R1 . ,
exp(ikop’)

+ 21, [ [v(r, ", y)r? = dr dy’,
! :

wherep' = (r2 +r"2—2rr"y")'? and y' isthe cosine of the
angle between the vectorsr and r", and

n(a)azda
Jy = [—F——.
i T

The solution of equation (12) presents a compli-
cated problem. Therefore, we apply the approach used
in[7] and describe the field scattered by abubble at the

point r' by the expression that involves the local wave
number k. Then, we obtain

v(r,r',y) = aexp(ikp)/(Lp). (13)

As 3 = Imk, we can choose quantity (4) obtained on the
basis of the QHA, or any other approximation.

Substituting (13) in (12) and neglecting the field
scattered at r < r' < R, we obtain

I(r) = |p(r)I®

1r
+ 2 [ ! (r')r'z-e-XP-(F-)‘Ez-@p—)dydr'.
-10

After integrating with respect to y, we obtain the
expression

(14)

1(r) = Ip(r)?

1

(15)
+ AII (WHIEL(2Br(1—p)) —EL(2Br (1 +p))]ldu,
0

where E, is the integral exponential function and A =
21, r.

In order to find an approximate solution to thisequa-
tion, we need to estimate the convergence of the Neu-
mann series. As shown in [9], the convergence condi-
tion for equation (15) hasthe form

1

A< {J'HEl(ZBF(l—H)dM} = 2Pr.
0

Using the estimate for 3 in the form (4) or (11), we can
show that this condition is not always realized in the
presence of the resonance bubbles. To provide the con-
vergence of the Neumann series, we use the method of
analytical continuation and replace the variable A by
n = N1 + A). Under this condition, the Neumann
series converges everywhere, and the first term of the
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series retains its previous form. In the first approxima:
tion, solution (15) isfinally written as

I(r) Olp(r)|®

1

2 (16)
+nju|p(ur)l E1(2Br(1—p))dy.
0

Forr > R, theintensity | isfound from formulal = i/r?,
where

R1 2
| = ROp(R)%+ 2nJ1III(r)Mdrdx,
0 ) p; (17)

p; = (Rz—rz(l—xz))ﬂz— rX.

Curves2 inFigs. 2 and 3 show the results of the cal-
culation of the function 10logi , where 3 is calculated
by formula (11).

As V increases, the validity limits of formula (17)
are primarily determined by the condition that the larg-
est bubbles retain their spherical shape, as well as by
the fact that the Twersky equations were derived by
ignoring the pair correlations between the positions of
the scattering bubbles. However, this question requires
specia consideration.

A genera conclusion that results from the analysis
of the acoustic field attenuation in water with bubblesis
that the approximation of the quasi-homogeneous
medium is valid, as arule, only for V of the order of
10* and that this approximation can only be used for
bubble clouds with fairly low bubble concentrations,
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which correspond to their life times of several seconds
after the wave breaking, when the number of the active
(radiating) bubbles in the cloud rapidly decreases. The
first seconds of the existence of the bubble cloud are of
particular interest from the standpoint of the bubble
contribution to the noise field of the ocean. However, in
this case, the noise intensity must be calculated with
allowance for multiple scattering.
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Abstract—With a view to providing sound absorption in a wide frequency range, one- and two-layer sound-
absorbing structures, in which nets are used as absorbing layers, are investigated. A semiempirical theory of cal-
culating theimpedance characteristics of these structuresis proposed. The theory takesinto account theinteraction
between the net layers for awide range of their perforation factors. A good agreement between theory and exper-
iment is observed. It is shown that two-layer net structures are vastly superior to two-layer structures with perfo-
rated panels from the viewpoint of the sound absorbtion bandwidth. © 2000 MAIK “ Nauka/Interperiodica” .

In recent years, in connection with the expected
more stringent international requirements on environ-
mental noise for airliners with high-bypass-ratio
engines, growing interest is being shown in various
measures intended for reducing the noise of fans and
turbines of aircraft engines. As practice shows, the most
effective means of reducing this noise are resonant cel-
lular sound-absorbing structures (SAS) with perforated
panels. However, one-layer cellular SAS used today
will apparently not be ableto provide the required addi-
tional noise reduction from the viewpoint of both the
sound absorption bandwidth and the maximum sound
attenuation. In this connection, it is possible to point
out several directions of research aimed at developing
enhanced SAS. One of these is associated with detailed
studies of flows inside the holes of a perforated panel
and of the mechanism of sound absorption in a single
hole [1-4]. These investigations are aimed at creating
improved methods of determining the impedance char-
acteristicsof SAS. Another direction of researchiscon-
nected with the study of the influence of theincreasein
the number of degrees of freedom of aresonance struc-
ture onits acoustic efficiency. The simplest examples of
such structures are two-layer [5] and combined [6]
SAS. By properly controlling the degrees of freedom, it
is possible to provide the broadening of the sound
absorbtion bandwidth without an increase in the SAS
area. The third direction of reserarch is represented by
the studies of microporous blown-through panels used
as sound-absorbing layers. It is experimentaly estab-
lished that the impedance of structures with a
microporous inlet element barely depends on the level
of sound pressure, and the associated mass is small (at
least for sufficiently deep structures). These features
make such structures attractive for use in the ducts of
aircraft enginesin awide range of operating conditions
from landing to takeoff. Current investigations are
directed at creating experimental equipment for deter-

mining the impedance and propagation constant of
porous sound-absorbing materials [7], as well as at
developing new materials [8-11].

For the manufacture of microporous panels, various
technological processes are used, in particular, laser
boring of aluminum or titanium plates or electrolytic
deposition of nickel plates [8]. These processes do hot
provide sufficiently homogeneous acoustic properties
within the panel area. In this paper, as a microporous
absorbing layer we use the net panels of so-called serge
weave which are commercially produced. Their advan-
tages are the homogeneity of acoustic propertieswithin
the panel area and their smoothness. We investigate
one- and two-layer structures, which contain air cavi-
ties separated by partitions and net panels serving as
absorbing layers. Although the net structures have been
known for along time [12], no adequate method of cal-
culating their impedance characteristics has been devel -
oped. In spite of the apparent simplicity, the impedance
calculations require some complicated mathematics.
Figure 1 displays photographs of a dense metal com-
mercialy available net of serge weave (no. 450, made
according to the standard TU14-4-432-94) at various
magnifications. This net has the number of fibers per
decimeter of warp 450, and of weft 3640. The thick-
ness of fibersis0.09 and 0.055 mm, respectively. The
mass of 1 m? of the net is 0.97 kg. At high magnifica-
tion, it is seen that the surface of the net consists of
alternating “crests’ and “hollows.” The height of crests
is approximately equal to the thickness of the weft
fiber.

The losses in the net holes depend significantly on
their form and size which, in their turn, depend on the
type of weave. In many types of weave and, in particu-
lar, in the serge weave, smooth inlets and outlets of
holes are formed, which prevents the formation of jet
flows. Thisexplainsin part the weak dependence of the
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impedance on the sound pressure level. The real shape
of the holes cannot be determined; therefore, in our cal-
culations we approximate them by round openings of
small diameter. We also suppose that jet flows are not
generated at high sound pressure levels. Inthis case, for
calculating the specific resistance of the net, we can use
the equation derived by Krendall [13] to determine the
impedance of a narrow tube of the round cross-section
of diameter d and length &:

_ Jwé/%l.— 4 3i(xd/2)h

Xd3,(xd/2)0 W

where

X = J=joplp = J=jwlv, 2
p is the density of the medium, p is the coefficient of
viscosity, v is the kinematic viscosity coefficient equal
tov = 14.5 mm?/s (for air), F isthe net perforation fac-
tor (in percent), w is the angular frequency, and J, and
J, are the Bessdl functions. For tubes with metal walls
having high thermal conductivity, the internal friction
is higher, and, according to Kirchhoff, it is necessary to
use the increased value of the coefficient of viscosity
from the equation [14]

Ju = L+ (y=1) ke, 3)

wherey = c,/c, and K isthe coefficient of thermal con-
ductivity of gas. If, instead of coefficients of viscosity
and thermal conductivity, we introduce the kinematic
viscosity coefficient v and the coefficient of thermal
diffusivity at constant pressure 1, = K/pc, = 18 mm?s,
equation (3) can be written as

W= N+ (v =1)/T0v). @

It should be noted that, in the investigated frequency
range, the parameter xd/2 varies within 0 < xd/2 < 10.
In these limits, there is no single asymptotic represen-
tation of Bessel functions, and, hence, they should be
calculated directly. For determining the net perforation
factor, one can use the schematic diagram displayed in
Fig. 2, which is obtained from Fig. 1. The diameter of
holes is taken equal to the thickness of the weft fibers.
The perforation factor is determined approximately by
the formulas

S=Ir—mr?2, Vs= 2SNL,

— Psp/ Psp + VS[I
F= %l_v—spﬂx 100%,

where | is the distance between the centers of hollows,
r istheradius of theinscribed circle, N isthe number of
hollows, Pg, is the weight of the sample, pq, is the den-
sity of the materlal Vg, isthe volume of the sample, and
L is the width of the sample. Thus, for net no. 450, the
perforation factor equals 12%.

In calculating the impedance of an air cavity of the
structure, one should take into account the sound
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Fig. 1. Photographs of the face layer (net) at various magni-
fications.

Fig. 2. On estimating the net perforation factor.

absorption on the side and back walls and the appear-
ance of the additional associated mass related to the
radiation into the cavity. In most cases, the absorption
effect isinsignificant; however, for aclosely positioned
back wall and for narrow resonators, it should be taken
into account. The associated mass depends not only on
the size and form of the resonator, but also on its load.
Specificaly, for a two-layer structure, the load is the
second internal layer. Therefore, in determining the
cavity impedance, we will consider the more general
case when the resonator cavity is loaded by some
impedance Z,,.

We consider aresonator a x b x hwhereaand b are
the transverse dimensions, and h is the depth. Neglect-
ing the interaction between holes in the face panel, the
air oscillations in the holes can be replaced by oscilla-
tions of a piston, the area of which is equal to the total
area of the holes. The piston can be represented as a set
of continuously distributed point sources described by
athree-dimensional -function with aharmonic depen-
dence on time (exp(jwt)). The equation for the pressure
p hasthe form

2 2 2
Q....EZJ + Q.._.g + Q....FE) + k2p
ax~ 9y 0z &)
= —Vpckd(X —Xo) (Y — ¥0)d(2),
where k = wyc is the wave number, p isthe air density, ¢
is the sound velocity, V, is the amplitude of the velocity
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of apoint source, and X, Y, arethe coordinates of asource
in the plane z= 0. The effect of the viscosity and the heat
conduction of the resonator walls can be described by
introducing the complex conductivities [ 15]

2
Y= S5+ 25 ©)
Yr= (1+))(y-1) |53, %)
2c

where & isthe wave number in the zdirection. Thefield
inside the resonator cavity must satisfy the boundary
conditions on the side walls

op _ .
Ix +]KYP|, g o (8)

SOBOLEV

QJ|Q)
< IO

= £jKYP|, g b ©)

where
Y = Yg+ Y,
and the condition on the back wall

ap _

37 (10)

—JKkYopl, - p-

For determining Green’s function, we use the results of
the previous paper [16]. In this paper, the expression for
Green's function in atwo-dimensional lined duct for a
uniform flow with velocity V was derived:

o= iVopckexp(—J'En(Z—Zo))COS(GnXo—d)n) COS(0X — §,) F1(3) (1 + RY)

a

where &, and o, are the roots of the set of equations
F(&n) = tan(Xs@)(1 =Gy, nGy w/X7)
+(Gyn+ Gy )/Xn = O,
an = (k=Mg,)*-&,

2
G, = |kYi%L—M%E, i = 1,2
2 2
a,+G
Fi(a,a) = ——="—; R, = G,/a,; M = V/c;
an_Gl,nGz,n

tan( ¢,) = —R,; and aisthe height of the duct.

In deriving equation (11), we did not assume the
local behavior of the conductance Y;, i.e., its indepen-
dence of the mode number. Moreover, the actual con-
ductance G; , becomes dependent on the mode number
due to the convection term, and this dependence is
accounted for in calculating the derivative in the
denominator of expression (11).

In the considered case, we have Y, (§) = Y,(§) = Y(§),

oF oF Ja
M=0,2=0 ad =+ = = 2T +
“ 0l 00y 08¢
oFoY . Performing the necessary calculations, we
0YO¢ |e=¢,
obtain

p = Z Ch(Xo X) eXp(=j&,l2), (12)
n=1

oF
"o

: 11
a (11)

or=01ﬁ

£€=¢,

where
C(Xo X) = =Vopck

xlCOS(GnXO—q)n)COS(O(nX—d)n) (13)

a &nUn ’
4(i-1) jvw .
aﬁ%H% 2—(:25—(kYn)2+21kYn/a
Un = 2 2 ]
a, —(kYy,) (14)

and Y, isthevalueof Yat & =¢,,.

Equation (12) defines the field in an infinite duct.
For determining the field of a point source in a duct of
limited length 0 < z< hwith arigidwall at z=0and a
wall with the conductance Y, at z = h, we place the
source inside the duct and represent the solution inside
the duct as a sum of aparticular solution of an inhomo-
geneous eguation and a genera solution of a homoge-
neous equation:

P =5 Calxo X)exXp(=j&nld) + An(X) eXp(-j&2)

n _ (15)
+Ba(x)exp(j€,2).

Upon satisfying the boundary conditions, we replace

the source on therigid wall. As aresult, the coefficients
A, and B, can be expressed by the formulas

_ ~1+Q, _ 2C,Q,
An - Cnl—Qn, n — 1_in (16)
ACOUSTICAL PHYSICS Vol. 46 No.4 2000
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where
_ & —kY
Qn En+kY0exp( ZJE h)
and thefield in the duct 0 < z< h can be written as
n( 0 X)

p(—jEnZ) + Qnexp(jE,nZ)] -(17)

Z 1-Q)
This field corresponds to the point source V, pckd(x —
%)0(2). Evidently, the field

2Cn(Yo, ¥)
Z (1-Qu)
X [exp(—j Emz) + Qmexp(J Emz)]’

]COS(BmyO (pm)COS(Bmy (pm) B
EmVim "

and @, are determl ned from the boundary conditions
(9), and V,,, and Q,,, from equations (14) and (16), with
the replacement of a by b corresponds to the point
source d(y — Y,)0(2). According to [17], we can find a
three-dimensional Green’s function by combining
solutions (17) and (18) for two-dimensional Green's
functions and represent it as the following double sum

(18)

where Ci, (Yo, y) =

p = z z 4C (Xo, X)Cm(yO’ y)

227 1-Qun (19)
x [exp(_JEn mz) + Qnmexp(JEn mz)]'
The constant of separation &2 = k& — o is repl aced in

view of theincreasein dimension by En m=K—0; -

Bn, m- The second index of the eigenvalues of a and 3
appears due to the dependence of the conduction Y on

469

&. Accordingly, al the quantities which depend on ¢
become the elements of a two-dimensional matrix.
According to the boundary conditions, the eigenvalues
o, mand B, , are determined by solving the following
transcendental equations

tan(a,, ,a) = —ija”' mYn.m (20)
R T (A
2k n mYn m
tan (B, o) = —2LePunYon @
B2 1+ (KY, )
iKY, m IKY, m
ten(9) = T8 (@) = g

The total field generated by all sources in the hole is
determined by the integration over the hole area pg =

P dx,dy,. For performing the integration, it is con-

venient to introduce the polar coordinates x, = X, +
rcosy, y, = Y. + rsiny, where (x., y.) are the coordi-
nates of the hole center. It can be shown that

21 o

J = Jo'quJO'cos[an,m(xo+rcosw)—cbn,m]

x COS[Bn, m(yO + rSinLIJ) _(pn, m]l’dl’

271
= W 0‘]1(\Nn, mro) COS(Gn' mXc
nm

X COS(Bn, mYc— (pn, m)i
where J, is the first-order Bessel function, W, , =

Ja? .+ Ba ., and 1, is the hole radius. Thus, the

expression for the total field has the form

_q)n,m)

8VOkT[r0J1(Wn, er) COSCDH’ mCOSLlJn, m( exp(—j En, mz) + Qn, mexp(J En, mz))

Ps _

abg,

Wn, m(l - Qn, m)Un, mVn, m ’

(22)

x COS(G n, mX - ¢ n, m) COS(Bn, my - (pn, m) ’

where @, , = oy X, —
®n, m-

¢n,m and l'lJn,m = Bn, mYc —

Integrating (22) over the hole area, we obtain the
expression for the mean pressure p = iz J J’ < Psdxdy:
TIr

16kaV0T[J1(Wn m 0) COS ch mCOS l'IJn m(exp( Jzn mz) + Qn mexp(JEn m ))

gl

n,m Enm
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Setting z= 0 and using the explicit expression for Q,, ,
from (16), we derive the expression for the specific
impedance of a hole radiating into the cavity:

_ D
Zy V,opcF

16KJ3(W,, mf'0) COS" Dy, 1nCOS Wy, 1
& mWa, m 0Un, mVi,m

 EnnZo * jktan(E, mh)
jEn, mZOtan(En, mh) + k’

where F = nré/ab is the perforation factor of the face
panel, and Z, = 1/Y,. Let us assume that the point (., V)
islocated at the center of the cell, i.e., it has the coordi-
nates (a/2, b/2). Then, cos’®, ,, = cos®, ,, = 1, and
formula (24) reducesto

(24)

"2

16kJ5(W,, fo)
Z, = :
Y Zzn W2 nFoUn oV
 En.mZo * jKtan (&, wh)
jEn, mzotan(an, mh) + k

For the case of low conductivity Y < 1, from equa-
tions (20) and (21) we have (a, ,a)* = 2jkaY, , and
(Bo. ob)* = 2jkbY, o. Then, for the zeroth term of expan-
sionin (25), we obtain

Zy+ jktan(&y 0h)/&00

(25)

0 _— -1
2 = (RiR) €0, 0Zotan(&q oh)/k + 1’ (26)
where
R, = 1+ (2(j —1)/ka)x/var2c?,
R, = 1+ (2(j —1)/kb) v/ 2¢®.

This is nothing but the impedance of a layer of thick-
ness h with the load Z, with consideration for the
absorption at the cavity walls due to the viscosity and
heat conductivity. The influence of the boundary walls
results in the appearance of the correction factors R,
and R,, which in the case of low wall conductivity are
close to unity. In the even more special case of arigid
back wall, when Z, = o0, we have

.k
2= g,

Expression (25) with the eliminated zeroth term deter-
mines the associated mass caused by the radiation into
the cavity.

In determining the impedance of a one-layer net
structure, one should take into account the effect of
both ends of the hole of the face panel on the associated
mass [18]. For finding the associated mass correspond-
ing to the second end, it is necessary to set Z, = 0 and

(RyR,) ™ot (&, ). (27)

SOBOLEV

h = o in expression (25). Thus, the expression for the
impedance of aone-layer structure has the form

Z, = Zg+ Zy(h) + Z,(w) + Z{(h), (28)

where Zg is given by formula (1), Z,(h) and Z,(x) are
the inertial impedances determined by expression (25)
with the eliminated zeroth term, and Z{ (h) isthe elas-
tic impedance determined by formula (27).

Now we determine the impedance of atwo-layer net
structure. Let the depth of the first layer be h; and the
depth of the second layer be h,. For the inner net, the
loads are: on one side, arigid wall at the distance h,
and, on the other side, the face net at the distance h,.
Theimpedance of the second layer is determined by the
expression similar to (28):

Z, = Zg+ Zy(hy) + Zy(h) + ZP(hy), (29

where Z,(h,) isfound from formula (25) with the elim-
inated zeroth term and with the load Z, = Zg + 1; Z\(h,)
is determined by formula (25) with the eliminated

zeroth term and with the load Z, = «; and Z{¥ (h,) is

determined by formula (27). For the outer net, the loads
are; on one side, the impedance Z, at the distance h,
and, on the other side, an air column of infinite height.
The impedance of a two-layer structure is the sum of
the impedance of the face net, the inertial impedance of
the face net loaded by Z,, the inertial impedance of the
face net with the load corresponding to an infinite air
column, and the impedance of a layer of thickness h,
loaded by the impedance Z, = Z, determined from for-
mula (26):

Z = Zg+ Z,(hy) + Zy(w0) + Z(hy). (30)

For cdculaing theinertia impedance by formula (25),
it is necessary to know the roots of the dispersion equa
tions (20) and (21). It is seen from these equations that,
due to the nonlocal behavior of the admittance Y, the
eigenvalues along the x- and y-axes are related to each
other through the axial (along the z-axis) wave number.
Hence, these two equations should be solved simulta-
neously. For the case of low conductivity Y < 1, the
roots can be found analytically. Indeed, the dispersion
equation along the x-axis can be written in the form

a, matan(a, ,a)

. Eﬁm hw TW
= 2ka(i—-1 LI R -1) |—|,
( ){ K 202+(y ) ZCZ}

where

€1y

2 _ 2 2 2
En,m - k _an,m_Bn,m'

The dispersion equation along the y-axis can be written
similarly by substituting 3 for a and b for a. The index
n corresponds to the mode number along the x-axis, and
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the index m corresponds to the mode number along the
y axis. For the case of m=n = 0 for a zero wave, to a
good approximation we obtain

1-25pi-nv-1) [14]

a+tb,. . o
o2, = __( _1)[500 /vw+( 1 } (33)
2C C

Replacing a by b in (33), we obtain the expression for
[330 . If nisnonzero and mis zero, we have

Eo0 = (32)

_nir, 2(j =1k VW gy [TO
T a T [S”’O 202+(y 1 ZCZ}
Eﬁ—(nn/ka)z—BéO/kz, when nm<ka
[0, when n1t>Kka,

Sio = (34)
Bo.o-
Relations for 3, ., and Eévm are derived from (34) by

substituting b for a, mfor n, and ag , for B . Finaly,
form#0andn# 0, expressionsfor a,, ,,and §,, ,, have
the form

2 2 2
E.n,o =K _O(n,o_

nm 2(1

_ 1k VW W
- I, Al [sn,m[—czﬂv—l) =

L — (n1vka)® — (mrvkb)?
— D 2 2
Sim = %When (ntUka)” + (mmvkb) <1
D, when (nmt>ka)”+ (mmvkb)’> 1,

Eﬁ,m = kz_aﬁ m_Bﬁ,m-
Expressionsfor 3, ., are obtained by replacing a with b.

The formulas obtained above were used for calcu-
lating the impedance of one- and two-layer sound
absorbing structures with the nets of serge weave as
sound absorbers. The depth of the air cavity in the sam-
ples of one-layer SAS ranged from 4 to 35 mm. For the
two-layer samples, we determined the influence of the
distance h, between the nets, as well as the depth h, of
the cavity behind the inner net. Thetotal depth of two-
layer SAS varied from 16 to 38 mm. The samples
were tested using a high-level interferometer by the
standard standing-wave method in the frequency range
0.8-5 kHz. The processing of the test results made it
possibleto obtain the values of thereal X and imaginary
Y parts of the impedance Z and the values of the absorp-
tion coefficient a.
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ReZ, ImZ
2L'—H—I—I_l—'—l—l—l—l—n
1 ]
0_
—1F
2k
_3F
_4 — ReZ, ImZ, calc.
_5 = ReZ exp.

x ImZ, exp.
-6
_7 1 1 1 1 1 1 1 1 1 1 1 1 ]
0.80 125 1.80 225 280 3.60 f kHz

Fig. 3. Frequency dependences of the real and imaginary
parts of the impedance of aone-layer net SAS (h = 10 mm).

ReZ, ImZ
3_
> 00 o0 o <
: S 0o OO
0_ —=
“1k
) — ReZ, ImZ, cdc.
¢ ReZ, exp.
3L = ImZ, exp.
_4T 1 1 1 1 1 1 1 1
1.0 1.6 2.5 4.0 f, kHz

Fig. 4. Frequency dependences of the real and imaginary
parts of theimpedance of atwo-layer net SAS (hy = 10 mm,
hy, =15 mm).

Figure 3 illustrates the comparison between the cal-
culations and the experiment for the impedance of a
one-layer structure with the depth of the air cavity h=
10 mm. In the investigated frequency range, thereal part
of theimpedance barely depends on frequency. Theiner-
tial parameter M (determined from formula (25) with the
eliminated zeroth term, as a quantity multiplied by the
wave number) is very small, which corresponds to the
gentle slope of the curve ImZ in this frequency range.
For lesser depths of the air cavity, the resistance ReZ
and the inertial parameter increase at low frequencies
due to the effect of the back wall. For al investigated
one-layer structures, in the resonance region, the real
part of the impedance ReZ is close to the pc of the air.
Away from the resonance to lower frequencies, these
relationsfail: adight growth of ReZ and M is observed.
Thefigure shows a good agreement between the theory
and the experiment.

Figure 4 illustrates the comparison of the calcula-
tions and the experiment for a two-layer net structure
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Fig. 5. Comparison of the absorption coefficients of one-
and two-layer SASwith perforated panels and two-layer net
SAS.

with the depth of the second layer 15 mm and the depth
of the first layer 10 mm. The figure demonstrates the
agreement between theory and experiment.

The calculations and the experiment show that, with
asmall depth of the first layer, the two-layer structure
behaves like a one-layer structure of the summarized
thickness with a higher resistance and alower resonant
frequency. The lower resonant frequency is caused by
the greater inertial parameter due to the influence of the
second layer. With the increase in the depth of the first
layer, the second resonance appears at a higher fre-
guency, and the first resonance shifts to lower frequen-
cies. The operating region of atwo-layer structure is a
wide frequency range, which includes both resonant
frequencies.

Due to the small associated mass, net structures,
especialy two-layer structures, have a broader fre-
guency band of the absorption coefficient than struc-
tures with perforated panels. Figure 5 shows the com-
parison of the experimentally measured absorption
coefficients of one- and two-layer SAS with perforated
panels and a two-layer net SAS. The total depth of all
structures was 20 mm. The perforation factor of the
panels was 10%, the panel thickness 0.8 mm, and the
diameter of openings 1.5 mm. Asis seen from Fig. 5,
the two-layer net structure has a much broader fre-
guency characteristic of a than the two-layer structure
with perforated panels.

In some cases, namely, when the face layer of the
lining is heavily contaminated, the net structure may
lose its absorbing qualities, and it is appropriate to use
combined two-layer SAS having a perforated panel as
aface layer and a net panel as an inner layer.

Figure 6 displays the comparison of the calculated
absorption coefficients for three versions of two-layer
structures: with two perforated panels, with the face

SOBOLEV

1.0

0.8

0.6

0.4

0.2

0 1 1 1 1 1
0.50 1.25 2.25 3.60 5.60 f, kHz

Fig. 6. Frequency dependences of the absorption coeffi-
cient of two-layer structures: (1) with perforated panels,
(2) with face perforated and inner net panels, and (3) with
net panels.

perforated panel and the inner net panel, and with two
net panels. In the calculations, we assumed that h, =
h, = 10 mm and the parameters of the perforated panels
wereF, =F,=10% and d, = d, = 1.5 mm. It is seen
from Fig. 6 that the SAS with the face perforated panel
and the inner net panel is intermediate in terms of the
absorption coefficient between the two-layer SAS with
perforated panels and nets.

It should be noted that the geometric parameters of
SAS were chosen for the calculations on the basis of
experimental datafor ensuring a high sound absorption
in the frequency range of interest. However, these
parameters are not optimal from the viewpoint of the
earlier paper [19]. By solving the corresponding
inverse problem, it is possible to select the geometric
parametersin such away that the absorption coefficient
will be unity at two frequencies of the given frequency
range. In this case, the advantages of using the netswill
be more evident, because the dip in the frequency char-
acteristic of a in the region between the frequencies of
tuning will be noticeably less for the net structures.

Thus, the comparison between theory and experi-
ment shows that, for all relations between the depths of
the first and second layers, which are of practical inter-
est from the point of view of using them in the ducts of
aircraft engines, the calculation of the impedance of a
two-layer net structure is in a satisfactory agreement
with the experiment. This means that the proposed
method of calculating net SAS characteristics can serve
as abasis for solving the inverse problem of determin-
ing the optimal geometric parameters of net SAS for
the ducts of aircraft engineswith the aim to provide the
maximum sound absorption bandwidth.
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Abstract—Ultrasonic wave propagation is studied in the framework of the continual model of anonconducting
perfect solid with frozen-in magnetization. The theoretical results are found to agree well with the experimental

data. © 2000 MAIK * Nauka/Interperiodica’ .

The concept of frozen-in magnetization was used in
our previous paper [1] in deducing ferrohydrodynamic
equations. The acoustic approximation of these equa-
tions allowed us to describe the experimental results on
the anisotropy of the ultrasonic velocity in magnetized
magnetic fluids [2] and predict a new Alfven-type
hydrodynamic wave [3].

Below, we show that the concept of frozen-in mag-
netization is also useful for studying solid magnetized
media. The proposed theory of elastic wave propaga
tion isbased on the model of aperfect solid with amag-
netization frozen into it [4]. The limits of applicability
of this model are determined by the following condi-
tions. w1 > 1, where w is the frequency of the elastic
disturbance and 1 is the rel axation time of the magnetic
field strength relaxing to its thermodynamic-equilib-
rium value, and w < Wy, where w, is the Larmor fre-
quency.

L et usformulate the conditions of the magnetization
freezing in the material of asolid. The magnetization of
abody can be represented as aresult of aninfinitesimal
displacement of two imaginary “liquids’ possessing
magnetic charges, these charges completely compen-
sate each other at any point of the medium when the
“liquids’ are not displaced. A solid with a magnetiza-
tion M is magnetically equivalent to such a body with
the same magnetization, if the volume density p,,, and
the surface density a,,, of magnetic charges of this body
satisfy the conditions

p, = —divM, o, = M,,

where M, isthe projection of M on the outer normal to
the body. Then, the condition of the magnetization
freezing in the material of the solid at every point of its
volume is equivalent to the condition of freezing-in for
the magnetic charges and is expressed in the form

pLdV' = p,dV,

where the prime indicates the quantities corresponding
to the displaced points of the body, the displacement
value being characterized by the Lagrange variations
0*q. Thus, the magnetic charges of infinitesimal vol-
ume elements of the medium remain constant under the
variation. Then, we obtain the relation

8Py = —praiv(3Lh).

Now, we consider the displacement vector | that char-
acterizes the displacement of a particle with a positive
charge relative to one with a negative charge. The
Lagrange variation of this vector is given by the for-
mula

80 = 8r +1)-3(r) = (10)80.

Using the two relations obtained above, we derive
the expression for the variation of the magnetization
M = p,l:

M = (MO)30g—M (3 ).

Dividing both members of this equality by an infinites-
imal time interval dt, we obtain an equation for the
varying magnetization:

dM _ M
v (MO)v—-Mdivv.

It is convenient to introduce the specific magnetization,
i.e., the magnetization per unit mass m= M/p, where p
is the density of the solid. With allowance for the con-
tinuity equation, we reduce the equation obtained
above to theform

dm _
i (mO)v. (1)

1063-7710/00/4604-0474%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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In our previous publication [4], we presented a sys-
tem of magnetoelastic equations for a nonconducting
perfect solid with a magnetization frozen into it:

dp, . 9990_ .
dt patﬂaxiD =0

0 990
ox, ot O

dm _
dt

dZQi _ 0 ou fsWn
p? = ﬁ%a—qk’nﬁki—a—)ﬁm (2)

The system of equations is closed by setting a specific
form of theinternal energy density u, which dependson
the invariants of the tensor composed of the spatia
derivatives g; ; of the displacement vector g; for individ-
ual points of the sol id, on the specific entropy s, and on
the components of the specific magnetization vector m.
The latter two equations of system (2) are the Maxwell
magnetostatic equations, where Y isthe scalar potential
of the magnetic field.

The derivation of this system of equations is based
on the generalized principle of virtual displacements
[5] and on the concept of magnetization frozen in the
material of the body. It isanalogous to the derivation of
the ferrohydrodynamic equations with frozen-in mag-
netization, which is described in detail in our previous
publication [1].

The specific feature of system (2) isthe equation for
the magnetization that expresses (as was shown above)
the condition of the magnetization freezing in the mate-
rial of the solid. The system of magnetoelastic equa
tions (2) makes it possible to study the behavior of sol-
ids without restricting oneself to the case of magnetic
saturation.

Let us consider the propagation of longitudinal and
shear linear waves in an elastically isotropic, noncon-
ducting solid in terms of the system of equations (2). At
the first step, we set the form of the functional depen-
dence of the internal energy. We assume that the inter-
nal energy density U = pu of the solid is an additive
function (see[6, 7])

A 2 2 2 2 2
U= é(sxx+8yy+€zz) + u(sxx +8xy+8xz+8yy
2 2 2 2 2
+ Syz + Ezz) + Bl(mxsxx + mysyy + mzszz)

+ 2Bz(mxrny‘c'xy + rnymz‘c'yz + mzmxszx)

3)

2 2 2 2 2 2
+K(mmy + mym; + mym;),
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- 1094, 990 _
where g;; = ZQXI- + 0
tensor, A and L are the Lame coefficients, 3, and 3, are

the adiabatic constants of magnetoel astic coupling, and
K is the anisotropy constant.

1 . _
Z(qi,j +(q; ;) isthestrain

We assume that the solid under study isplaced in a
homogeneous, stationary, constant external magnetic
field of strength H, and the z-axis of the Cartesian
coordinate system is directed along the magnetic field
vector.

Then, in an unperturbed state, the magnetization
vector has only one nonzero component m, = m,. With
allowance for the explicit form of the functional depen-
dence of the interna energy (3), equations (2) linear-
ized near the unperturbed state have the form

0°q 0’q,, 0°g 25,20

P2 = (A+2p) 2+ p 4 (i + i)

"ot ox oy’ “oZ
azqy 2 azqz 3 amX
+(A+ H)axay()\ T MoBo) 505, MK
92 g, 0’ il
ot oy 0x 0z
OZQX 2 azqz 3 amy'
+ ()\ + u)axay()\ + “’ + rnOBZ)ayaZ+ mOKEI

9’q, o',
Bo at‘i = (A +2u+ 2mc2)l31)a—; @)

oy U
om, _ 9 9%
ot %9z0ot O
om _ 2 0%0
ot %9z00gt O
om, _ . 09%n
ot %9z0ot O

Without loss of generality, we consider the propagation
of plane monochromatic waves with the cyclic fre-
guency w and the wave vector k lying in the yz plane.
We denote the angle between the wave vector k and the
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z axis by 9. As a result, the system of equations (4)
takes the form

[00" —k*(CaSin’9 + (C + A) c0s )] g = 0;
[0 —K*(cqsin’® + (co, + B) cos'9)]q,
—[K*(ci +b)sin28]q, = O; )

[k(c] +b)sin28]q,
—[wz—kz(cgtsinzﬁ + (cf)I +A|)COSZ'8)]qZ =0,

where

2 - At2u 2 _ . 2 _ Co*Ca.
o = v Cot = = G = ;
Po Po 2

2 2
C C
C§ _ o > Ot, AI 4%1)mt2)’
A = 2m§(82+m§K). b = B,y
t Po C T 2pg

From thefirst equation of this system, it followsthat the
velocity of the transverse elastic wave is determined by
the expression

ctA = A/c§t+Atcoszf), ©6)

because the particle displacements in this wave occur
aong thex axis (q, # 0, g,= 0, ¢, = 0).

The second and third equations of system (5) yield
the dispersion eguation

W' —20°(c? + A,cos™9) + 2k*ci (A Sin*Y
+ Atcoszs +2Bs n28)00528 + k‘l[(ZCgtAs
+A,At00328 + 4bzsin28)c0528 + c§| cgt] = 0.

The solutions to this equation determine the velocity
of the quasi-longitudinal elastic wave (g, = 0, g, # 0,
g, # 0)

C =Jc§ +Asc0528 + (cg—Adcosza)A/l—AsinZS @

and the velocity of the quasi-transverse elastic wave

C = Jcsz + Ascoszﬁ - (cs —Adcoszﬁ)A/l —Asin29 ‘®)
Here, we use the following notation:

A, = (A +D)I2; Ay = (A =-1)/2;
CH(Dg+ 2b) + b’

(cj + 0y 008219)2 -

A =
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In the zero magnetization limit, formulas (6)—8) yield
the well-known results [6]:

A+2
ct=cf‘=c0t=£); G =Cy = | p“. )

Relations (9) remain a so valid when the magnetic field
isorthogonal to the wave vector (3 = 192) and the mag-
netization is arbitrary. At & = 0, the velocities of the
transverse and quasi-transverse waves described by
relations (6) and (8) coincide.

We note that at 9 = 0, from the latter two equations
of system (5) it follows that the elastic wave whose
velocity is determined by formula (7) isapurely longi-
tudinal one, and the elastic wave with the velocity
determined by formula (8) is a purely transverse one.
The superscript A marking the velocity of the trans-
verse wave in formula (6) means that this wave is an
analog of the Alfven wave in magnetohydrodynamics
[8] and ferrohydrodynamics [1-3]. In the limiting case
i — 0, which corresponds to a magnetized fluid,
expression (6) yields the relation ctA 0 mycosd, which
coincides with the expression for the velocity of an
Alfven wave propagating in amagnetic fluid with afro-

zen magnetization [1-3]. Below, we will call thiswave
the modified transverse wave.

Experimental studies of the effect of magnetic field
on the velocity of ultrasonic wave propagation are usu-
ally based on the measurements of the relative variation
of the ultrasonic velocity. Therefore, we recast expres-
sions (6)—(8) to the form

80 _G=Co = L (p ooy —c?

Col Col 2C§| ° (10)
+(c§+Adcoszﬁ)A/1—Asin28);

BG _GCu o 1 (24 p 0088

Co G 2e ) (11)

—(c§ + Adcoszﬁ)A/l—AsinZB);

A A
Ac C. —C A o
— = 2= “cosd

(12)
Cot Cot 2

and consider the behavior of the resulting dependences.

To obtain numerical estimates, we perform the cal-
culations by using the parameters. p, = 8.8 g/cm’, ¢, =
5.5 x10° cm/s, ¢ =3 x 10° cm/s, K=0, and m, =55 Gs.
These values correspond to nickel [9]. The dependence
of the specific magnetization on the external field can
be approximated by the simple relation

m, = mgtanh EHiE
*

The experimental data for nickel are adequately
described by this formulaat H;= 700 Oe.
ACOUSTICAL PHYSICS Vol. 46

No. 4 2000



ULTRASONIC WAVE PROPAGATION IN A SOLID WITH FROZEN-IN MAGNETIZATION

(Ac/cy) % 103
3 —

-1t

Fig. 1. Dependence of the relative variation of the elastic
wave velocity on the propagation direction in the case of
magnetic saturation: (1) the quasi-longitudinal wave, (2) the
modified transverse wave, and (3) the quasi-transverse
wave.

Let the solid be a magnetically isotropic one; then,
we set 3, =23, = 10° g?/cmS and K = 0.

Figure 1 showsthe angular dependence of therelative
variation of the longitudina wave velocity (curve 1) cal-
culated by formula (10) and similar dependences for
the transverse wave velocities (curves 2 and 3) calcu-
lated by formulas (12) and (11) (respectively). The
dependences presented in Fig. 1 correspond to the case
of magnetic saturation (m, = my). We note that the
angular dependences of the transverse wave and the
modified transverse wave are noticeably different,
which can be used in the experimental check of the
proposed theory.

The effect of the magnetizing field on the relative
variation of the elastic wave velocity is illustrated in
Figs. 2 and 3. The curvesin Fig. 2 describe the case of
the paralel orientation of the wave vectors and the
magnetic field vector, i.e., 8 = 0°; the curvesin Fig. 3
correspond to the case & = 30°. In both figures, curves
1 refer to the quasi-longitudinal wave, curves 2 refer to
the quasi-transverse wave, and curves 3 refer to the
modified transverse wave. We note that, in the case of
the paraléd orientation of the wave vectors and the
magnetic field, the relative variations of the velocities
of the transverse and the modified transverse waves are
identical, and, therefore, curves 2 and 3 in Fig. 2 coin-
cide.
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Fig. 2. Dependence of the relative variation of the elastic
wave velocity on the magnetic field strength at 9 = 0: (/) the
quasi-longitudinal wave, (2) the quasi-transverse wave, and
(3) the modified transverse wave.

The comparison of our results with the known
experimental data, which are reviewed in the mono-
graphs [9, 10], shows their qualitative agreement. It
should be noted that the previous theoretical models
provide no adequate explanation for the fact that, in
polycrystalline nickel, the relative variation in the
transverse wave velocity caused by a magnetic field is
two to three times as great as the corresponding varia-
tion for the longitudinal waves, while the saturation for
shear waves occurs at higher magnetic fields [11].

As one can see from Fig. 4, these results are ade-
guately described by the proposed theory. Curves 1 and
2 arecalculated by formulas (11) and (10), respectively.
The values of the adiabatic constants were taken to be
B, =1.45 x 10° g’/cm® and 3, = 1.65 x 10° g?/cm®.

We also point out the qualitative agreement of our
theoretical results with the experimental data on the
velocity of longitudinal ultrasonic wavesin amorphous
magnetized ribbons [12]. Unfortunately, an exact
numerical comparison with these data is impossible,
because the aforementioned publication [12] provides
no basic physical parameters of the specimens, such as
density, magnetization, and elastic moduli.

The experimental study [13] of elastic waves propa-
gating in magnetite in a wide temperature range
showed that, in magnetic field oriented paralld to the
wave vector, the velocity of longitudina waves is
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Fig. 3. Dependence of the relative variation of the elastic
wave velocity on the magnetic field strength at 9 = 30°:
(Z) the quasi-longitudinal wave, (2) the quasi-transverse
wave, and (3) the modified transverse wave.
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Fig. 4. Comparison of the theoretical resultswith the exper-
imental data [10]: the relative variation of the propagation
velocity for the longitudina (circles) and transverse
(squares) waves.

greater than in the case of the orthogonal orientation of
magnetic field, which agrees with our results.

In closing, we formulate the main results of our
study.

It is shown that, in anonconducting solid with afro-
zen-in magnetization, the propagation of three types of
waves is possible: the modified transverse wave, the
guasi-transverse wave, and the quasi-longitudinal one.

At § = 0, the quasi-longitudinal wave degenerates
into a purely longitudina one, and the modified trans-
verse wave and the quasi-transverse wave merge into a
single purely transverse wave.

The theoretical results are found to agree well with
the experimental data on the dependence of the velocity
of longitudinal and transverse waves in polycrystalline
nickel on the magnetizing field strength.
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Abstract—The matrix method and its numerical realization are considered in calculating the complex reflec-
tion coefficients and refraction indices of plane sound waves for geoacoustic models of the ocean bottomin the
form of homogeneous elastic (liquid) absorbing layers overlying an elastic halfspace. In calculating the reflec-
tion coefficients at high frequencies or in the presence of alarge numbers of sedimentary layers, apassage from
the Thomson—Haskell matrix approach to the Dunkin—Thrower computational schemeisperformed. Theresults
of test calculations are presented. With the aim of devel oping resonance methods for the reconstruction of the
parameters of layered elastic media, the behavior of the frequency-angular dependences of the reflection
coefficient are studied for various geoacoustic bottom models. The structure of the angular and frequency
resonances of the reflection coefficientsisrevealed. The dependence of the structure (the position, width, and
amplitude) of two types of resonances on the parameters of the layered bottom is considered. © 2000 MAIK

“Nauka/Interperiodica” .

The interest in considering the processes of the
reflection and propagation of sound in waveguides with
an elastic layered bottom is related to the development
of the methods and means for the diagnostics and
reconstruction of the bottom characteristics, as well as
to the urgency of mineral, oil, and gas prospecting at a
sea shelf by acoustic methods. To model the sound
interaction with the ocean bottom, the reflection coeffi-
cients of plane waves are conventionally used. The
mathematical methods of describing plane wave inter-
actions with elastic layered media have been devel oped
in a number of classical works [1-6]. The matrix
method of calculating the plane wave reflection coeffi-
cients and refraction indices, which was developed by
Molotkov [3, 4], was successfully used in our previous
paper [7] for interpreting experimental data. The
method of tensor impedances allowing the calculation
of the reflection coefficients for media with piecewise-
constant elastic and inertial parameters is presented by
Machevariani et al. [5]. In this case, the problem is
reduced to a set of Riccati differential equations, which
can be solved by the Runge—-Kutta method. Prikhod' ko
and Tyutekin [6] used the impedance method for
numerically calculating the elastic wave characteristics
in continuously layered solid media. Many publications
[8-11] are devoted to studies of the reflection and
propagation of sound in layered elastic media. How-
ever, the use of complex bottom models in the model-
ing of sound reflection and propagation began only in
recent years. Our interest is in the study of both the

necessity to take into account the bottom parameter
variation with depth [12, 13] and the relation between
the sea bottom reflectivity and its acoustic characteris-
tics[14-17].

In this paper, we numerically realized the Thom-
son—Haskell matrix method [18, 19], which is conven-
tionally used for describing layered elastic media.
According to this method, each elastic medium is char-
acterized by a fourth-order matrix, and the whole sys-
tem is described by a matrix that is obtained by multi-
plying the characteristic matrices of all media. The ele-
ments of this matrix allow one to calculate the
interference reflection coefficients and refraction indi-
ces, aswell asthe dispersion characteristics of theinter-
ference waves. However, the domain of the validity of
the Thomson—Haskell computational scheme turns out
to be basically restricted. In this connection, we passed
from the fourth-order characteristic matrices to the
sixth-order matrices first suggested by Dunkin [20] and
Thrower [21]. Theoretically developed by Molotkov
[3, 4 and numericaly realized in this paper, the
Dunkin-Thrower approach allowed one to increase the
accuracy of computer calculations of the reflection
coefficients of plane waves. A program based on the
matrix method was tested, and the test calculations
were compared with data on the angular dependences
of reflection losses for the reflection from a hypotheti-
cal turbudite layers [22]. The numerical calculations
were used to illustrate the behavior of the frequency-
angular resonances and absorption effects for various

1063-7710/00/4604-0479%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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layered elastic/liquid bottom models. Changes in the
structure of resonances (their location, width, and
amplitude) with the variations in the radiation fre-
guency, grazing angle, and shear elagticity in the layer
and the underlying halfspace was considered. These
investigations were performed with the aim of devel op-
ing the resonance methods for the reconstruction of the
parameters of alayered elastic bottom.

The physical model of the medium is presented as
a set of n plane-parallel elastic layers overlying an
elastic halfspace. The z axisis directed upward, along
the normal to the horizontally stratified elastic layers
j=1,2,...n,wheren isthe number of the elastic lay-
ers. Within a sedimentary elastic layer, the density p;,
the velocities of the longitudinal ¢; and transverse c;
waves, and the attenuation coefficients of the longitudi-
nal n;; and transverse n,; waves are deemed to be con-
stant. The water column (0) and the elastic base («) are
homogeneous halfspaces. In al layers, including the
elastic halfspace, the attenuation effects are taken into
account by introducing the complex velocities of the
longitudinal and transverse wavesc; = G, + iC,,. Inturn,
the wave numbers will also be complex quantities.

We consider only vertically polarized waves the Sv-
type, for which the components of the displacement
vector U are confined in the (x, 2) plane and the dis-
placement along the y axis is absent. The displacement
vectors can be written in terms of the scalar ¢ and the
vector Y potentials

U = grad¢ + roty. (1)

For the SV-wave, the potential { has a single y-compo-
nent in an elastic medium and equals zero in water. In
the Cartesian coordinates, the displacementsin each jth
layer are expressed in terms of the potentials ¢; and y;:

Uy, = 0¢;/0x—0y;/0z,
U, = 0¢;/0z+ ay;/0x,
these potential s satisfying the Helmholtz equations

(@)

Ad;+ajd; = 0,

5 3)
Ay, +Biy; =0,

where of = ki — & B} = k; - & and & =
(w/cy)sinB,. Therelation of the normal 0,,; and the tan-
gential o,,; components of the stress tensor to the
potentials ¢; and ; has the form

Oy = 214(0%0,/0x02—0°Y,192),
Gzzj = —7\102¢j/0x2 (4)

+(A+ 2Uj)62¢j/022 + OZLIJj/E)xaz,

FOKINA, FOKIN

where A\; and y, are the Lame constants, ¢; =

J(\; +2y;)/p; and c; = /u;/p;. The given layered

elastic system is excited by a plane wave of the unit

amplitude ¢, = 1, which is assumed to arrive from the

liquid halfspace. The wave system in the liquid and
elastic halfspacesiswritten as

0o(2) = doexp(—iagz) + doexp(ia2),
Yo(2) = 0,
0.(2) = O exp(-ia,2),
Wa(2) = Y.exp(-iP.2),

where ¢, = V isthe reflection coefficient in the liquid

halfspace, and ¢., =W, and Y., = W, arethe refraction
indices of the longitudinal and the transverse wavesin
the elastic halfspace. At theinterface between theliquid
and the elastic media, three boundary conditions are
set, while, at the boundaries of the elastic mediaat z=
H;, the conditions of the rigid contact are fulfilled, and
four boundary conditions can be written [1]. The solu-
tions of equations (3) in the elastic layers | are repre-
sented interms of the potentials ¢; and y); describing the
longitudinal and the transverse waves

(&)

0, = o, exp(ia;2) + ¢, exp(-ia;2),
W; = Y, exp(iB;2) + ¥; exp(-ip;2),

where ¢/, ¢;, W/, and Y are some arbitrary func-
tions that characterize the elastic waves propagating in
the positive (with the superscript —) and negative (with
the superscript +) directions of the z-axis. Substituting
expressions (6) in the boundary conditions[1] and per-
forming the differentiation at the boundaries, we obtain
4(n+ 1) equationsin 4(n + 1) unknowns. We introduce

the column vector Z, = (¢, ¢;, W}, ;)T, the diago-
nal matrix L; = [exp(ia;hy), exp(-ia;hy), exp(iBh),
exp(—iBhy)], and the characteristic matrix of the 4th
order A for the jth layer, where hy isthe layer thickness

[3, 4]. For the system of n elastic layers and the elastic
halfspace, the following matrix equation is valid:

Z,=DxZ, )

(6)

whereD = A7" x A, x Ly % Ajly x X A XL x

Aj—1 X XA XL x Af x A,, isthe matrix of the 4th
order with the elements D,,,, wherel, m=1, 2, 3, 4, and
this matrix characterizes the elastic halfspace. For the
combined description of the liquid and layered elastic
halfspaces, with alowance for (6), we can write six
boundary conditions. In this case, the liquid halfspace
is characterized by the matrix of the 2th order Q,,,

ACOUSTICAL PHYSICS Vol. 46 No.4 2000
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where p, v =1, 2. For solving the system of linear
algebraic equations with respect to ¢, =W, Y. =W,

481

¢, =V, Uy, U,.,, and 0., We use the principal deter-
minant A of the set of equations

0 (QuDy +QpDy) (QuuDy+QppDys) O

A = =1 (Q2 D2 + QxDy4y) (QxDas+ QpDys) 0

The solutions of the set of equations are found accord-
ing to Cramer’srule: X, = AJA, k=1, 2, 3, where X, has
the meaning of the plane wave reflection coefficient V
in the liquid halfspace and the refraction indices of the
longitudinal W, and transverse W, waves in the elastic
halfspace.

In order to write the reflection coefficient and the
refraction indices, we introduce the matrix of the 4th
order D that characterizes the whole layered elastic
medium. However, in the numerica calculation of the
matrix D in the domain

kjhjRea; > 1, Req; > Ref;, )

WherekIj =00/C|j, aj= ,klzj _EZ’ and Bj = lktzj_EZ’the

matrix method using the Thomson-Haskell conven-
tional approach becomes inconvenient because of the
error, which is continuously accumulated for high fre-
guenciesor for great numbersof layers, aswell asinthe
intervals between the limiting angles relating to the jth
layer. In this connection, in writing a program, we used
the Dunkin—Thrower [20, 21] matrix formalism, which
allows one to extend the domain of validity of the
matrix method and to eliminate the basic restrictions of
the Thomson—Haskell approach [3, 4]. The direct tran-
sition from one approach to the other was realized on
the basis of the theorem on the properties of the Gant-
makher associate matrices, when the characteristic
matrix D of the 4th order is set in correspondence with

the matrix D of the 6th order, with the elements being
second-order minors of the matrix D:

DiI Dim

Dif = .
Dp| me

(10)

From the theorem on the properties of Gantmakher
associate matrices [23], it follows that the minor matri-

cesD, A", [;, and A; corresponding to the matrices
D, A’*, L;, and A satisfy the relationship D = A" x
Aty x Doos x Anly xox AY x ) x Ay x L x

Al x L, x A, x A, and represent sixth-order matrices.
In this case, the determinants of the set of six equations
written at the boundaries can be expressed in terms of
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the elements of the matrices of the second and sixth
orders. Then, the reflection coefficient and the refrac-
tion indices of the longitudinal and transverse waves
are determined by the following expressions

X1 =V = AJA = {QxKgx D}y { Qx Kigx D} 5,
X2 = W, = Ay)/A = Dgg/{ Qx K% I5}21, (11)
Xs = W, = Ag/A = —Dg/{Qx Kis X I5}211

where K, is the transfer matrix between the liquid and
layered elastic halfspaces

000-100
000001

Kys = . (12)

The use of the sixth-order matrices has some advan-
tages, because the quantities that are very large in
domain (9) are canceled in the calculation of the ele-

ments of the matrix D . Thisallows oneto perform cor-

rect calculations, provided that condition (9) is ful-
filled.

The Dunkin-Thrower matrix method was realized
as a computer program. The results of test calculations
arerepresented as dependences of the bottom reflection
losses RL(6) or the reflection coefficient V(0) on the

grazing angle 6: RL(6) = —20log([V(8)]), where |V| =

A/§)‘t(V)2+S‘(V)2 is the modulus of the complex

reflection coefficient V: R(V) and I (V) aretherea and
imaginary parts of V. For testing the program, we used
the computational data for RL(8) for a turbidite layer
(table), which are presented in the paper by Vidmar and
Foreman [22]. The calculations of the reflection losses
for all grazing angles were performed with the use of
the numerical integration of the Helmholtz equation
[22], and the results of these calculations are presented
in Fig. 1a. The dependences RL(6) aobtained in this
paper with using the Dunkin—Thrower matrix method
are presented in Fig. 1b, where the set of layers with
gradients of the longitudinal and transverse velocities
of sound, density, and attenuation was approximated by
17 elastic homogeneous layers. The test calculations
agree well with the published results. The reflection
losses increase between the critical angle 6, = 50° for
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The physical parameters for the hypothetical turbidite layer [22]
Depth, m ¢, mis n;, dB/m g, mis Ny, dB/m p, glem®
Water 1530 1.03
0 1510 0.0013 116 0.169 153
36 1582 0.0020 283 0.112 0.579
120 1674 0.0040 391 0.172 1.689
518 1992 0.0027 621 0.087 2.010
Elastic halfspace 4460 0.00016 2400 0.00079 2.460

transverse waves in the halfspace and the critical angle
6, = 70° for longitudinal waves in the same halfspace.
The calculations show that the shear elasticity in the
sedimentary layers modifies the resonance structure
between the critical angles 6, = 50° and 6, = 70°, but its
effect is weak outside of this region (Fig. 1). The pro-
gram for the calculation of the plane wave reflection
coefficients and refraction indices for the set of homo-
geneous elastic layers overlying the elastic halfspace

RL,dB
30r ()

20

made it possible to analyze the dependence of the reso-
nance structure on the layered medium parameters both
for the previoudly considered model of a liquid layer
overlying aliquid halfspace [24] and for more compli-
cated combinations of liquid and elastic layers.

Consider the effect of the acoustic parameters of the
bottom on the resonance structure of the reflection
coefficients for various bottom models. Figure 2 exhib-
its the frequency-angular dependences of the reflec-

30

(b)

20

10

1
0 20 40

60 80

Grazing angle, deg

Fig. 1. Reflection loss versusthe grazing angle at the frequency f = 20 Hz for ahypothetical turbiditelayer of thickness518 m (table):
(a) agradient set of layers (the numerical integration of the Helmholtz equation [22]); (b) an approximation by 17 homogeneous

elastic layers (the Dunkin—Thrower matrix method).
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tion coefficient V(f, 8) for the simplest bottom model
in the form of aliquid layer overlying an elastic half-
space (¢, = 1500 m/s, p, = 1g/lcm’, h, = 0.7 m, ¢, =
1455 m/s, p, = 1.45 g/em?’, ¢, = 1575 m/s, n;,, = 6.35 x
10, ¢ = 1455 m/s, N, = 6.35 x 104, and p,, =
2.6 g/cm?). The parameterswith indices 0, j = 1, and «
correspond to the water layer, sedimentary layer, and
elastic halfspace, respectively. In the frequency—graz-
ing angle plane, the calculated values of V(f, 6) form a
complicated structure that consists of regular sequences
of peaks and dips. The dependences of this kind are
ascribed to resonance phenomena, the resonance struc-
ture containing al the necessary information on the
medium interacting with sound [24]. Usually, the reso-
nances of the reflection coefficients are interpreted as
the maximum values of the transmission coefficient. In
this case, the refl ection coefficients have minimum val-
ues. In this paper, the resonances of the reflection coef-
ficient will be interpreted as the behavior of the reflec-
tion coefficient near itslocal minimum.

The characteristic feature of the computational
results presented in Fig. 2 is that the frequency reso-
nances are observed even at shallow grazing angles of
the order of 1°-2°, which is associated with the allow-
ancefor the velocity of the transverse wave propagation
in the halfspace ¢,,,. The behavior of the reflection
coefficients near shallow grazing anglesin the case of a
liquid halfspace was considered in detail in [24]. The
inclusion of the absorption in a liquid sedimentary
layer (n,; = 6.35 x 10~*) leads mainly to a decrease in
the reflection coefficient and the resonance amplitudes
with increasing frequency. Note that at grazing angles
lessthan thecritical angle, 8 < 6, =20°, and at frequen-
cies exceeding 6000 Hz, the resonance peaks are
smoothed out and become hardly observable. This is
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associated with the fact that amajor part of theincident
energy is absorbed in the layer at shalow grazing
angles. At grazing angles exceeding the critical angle,
0> 0., = 20°, thiseffect isalso present, but is much less
pronounced.

In realistic bottom models, it is necessary to take
into account the intrinsic sediment layering. Therefore,
if we add a liquid layer of the same thickness to the
model showninFig. 2 (h, =h, =0.7 m, ¢, = 1555 m/s,
N, =0, and p, = 1.65 g/cm? and the layers are arranged
so that their impedance increases with depth), the sim-
ple periodicity of resonances in the frequency—grazing
angle plane will not be observed. The number of peaks
remains the same; however, the resonance structure of
the reflection coefficient acquires additional modula-
tion, and the resonance amplitudes change. For layers
of different thickness, h, # h,, the reflection coefficient
modulation is even more irregular.

Figure 3 (line 1) exhibits the calculation results for
V(f) in the range from 5 to 2100 Hz at a fixed grazing
angle of 8 =2°. The bottom model was assumed to bea
liquid layer overlying an elastic halfspace. At a fre-
guency of f,; = 925 Hz, the first local minimum of the
reflection coefficient is observed, i.e., the first fre-
guency resonance. In this case, the structure of reso-
nances is easily distinguished in the representation of
the amplitude of the process by the Breit-Wigner reso-
nance curve on the background of a weakly varying
base [25]. The width of the frequency resonance I is
measured near the local minimum of the reflection
coefficient when the amplitude of the process reaches
half itsvalue A/2. We similarly introduce the notions of
the position y and width 6, of the angular resonances
of the reflection coefficient. The structure of the fre-
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guency and angul ar resonances depends on the acoustic
properties of the sea bottom and contains al the neces-
sary information on the medium interacting with
sound.

The inclusion of additional liquid layers (Fig. 3,
line 2) changes the frequency resonance position f,,,
decreases the width I and the amplitude A of the reso-
nance. The analysis of the resonance structure is com-
plicated because of the considerable increase in the
number of the bottom parameters. The inclusion of the

shear elasticity in the second sedimentary layer in the
calculation of V(f) (Fig. 3, line 3) leads to further dis-
placement of the first resonance peak f,; and further
changesinitswidth " and amplitude A, as compared to
the resonance structure measured for more simple mod-
els with one liquid layer (Fig. 3, line /) or two liquid
layers (Fig. 3, line 2). If we consider two elastic layers
overlying the halfspace (c;; = 300 m/s, ¢, = 500 m/s),
then, the frequency dependence of the reflection coeffi-
cient at a fixed grazing angle of 8 = 2° (Fig. 3, line 4)

ACOUSTICAL PHYSICS Vol. 46 No.4 2000
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will devel op new resonances whose width I and ampli-
tude A will differ from those measured for simpler bot-
tom models.

Theinclusion of shear elasticity in sedimentary lay-
ersis of particular interest in calculating the reflection
coefficients. Taking into consideration the transverse
waves in the second sedimentary layer (¢, = 800 m/s,
rest parameters correspond to Fig. 2) significantly
changes the frequency-angular dependence of the
reflection coefficient (Fig. 4). Now, asimple periodicity
in frequency is not observed, and the angular depen-
dence also becomes more complicated. For the grazing
angleslessthan thecritical angle8 < 6., = 20°, new res-
onances appear, which contain additional information
about the environmental parameters. At the normal
incidence of a plane wave on alayered elastic medium
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(when the grazing angle is 8 = 90°), the shear wave is
not excited, because the tangential component of a
compression wave is absent at the interface. The strong
dependence of the reflection coefficient on many
parameters, which occurs in this bottom model, makes
it difficult to estimate the effect of shear waves on the
sound propagation in a shallow sea. However, in this
case the reflection coefficient significantly changes at
shallow grazing angles (Fig. 4). Using simpler bottom
models at frequencies of several hundreds hertz can
lead to errorsin the estimates of the sound field inten-
sity. More definite conclusions about the influence of
one or another model of the layered elastic bottom on
the sound propagation in a shallow sea can be obtained
by analyzing the sound reflection coefficients and the
angular structure of the acoustic field using specific
geophysical data on the bottom structure.
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The effect of the transverse waves in the sedimen-
tary layer and the halfspace on the reflection coefficient
and the resonance structure can be inferred from the
behavior of the reflection coefficientsin the frequency—
transverse wave velocity planein the sedimentary layer
(f, ¢;) and inthe halfspace (f, ¢...,). We considered abot-
tom model in the form of an elastic layer overlying an
elastic halfspace (h, = 0.7 m, ¢;; = 1455 m/s, n;; =0,
C, = 5-1400 m/s, p, = 1.45 g/cm’, ¢, = 1575 m/s,
Niw = 6.35 X 104, €, = 1455 M/S, N, = 6.35 X 1074,
and p,, = 2.6 g/cm?). Figure 5aexhibitsthe results of the
calculations of the reflection coefficient as a function
V(f, ¢;;) at afixed grazing angle 6 = 2° for the frequency
and the transverse sound velacity in the sedimentary
layer varying within the ranges f = 1-10000 Hz and
c;; = 5-1400 m/s, respectively. With allowance for the
transverse sound velocity in the layer ¢, an additional
modulation of the reflection coefficient appears. Asthe
velocity ¢, increases from 50 to 200 m/s, the resonance
structure becomes more complex, and with further
increase in ¢, additional resonance peaks appear, and
the frequency and angular positions of the resonance
peaks change. It should be noted that the values of the
transverse velocity in solids and in sea sediments can-
not be arbitrary. Nevertheless, the use of the widerange
of variation for ¢, in Fig. 5 seemsto bejustified for the
sake of illustration.

The effect of shear elasticity in the underlying half-
space ¢, 0n the resonance behavior isshown in Fig. 5h.
Thereflection coefficient V(f, ¢,)) is presented at afixed
grazing angle 6 = 2° for the frequency and transverse
sound velocity varying in the ranges f = 1-10000 Hz
and ¢, = 100-1000 m/s, respectively. The bottom
model in the form of aliquid layer overlying an elastic
halfspace (the parameters correspond to Fig. 2) was
used. The displacement of the reflection coefficient
minima in frequency with increasing ¢, is evidently
related to the change in the phase of signals reflected
from the lower boundary of the sedimentary layer. The
dependence of the positions of the resonance minimaof
the reflection coefficient on ¢, can be used to develop
a procedure of determining the shear velocity of sound
in the halfspace for known characteristics of the sedi-
mentary layer.

Thus, in this paper, we present the results of calcu-
lating the reflection and transmission coefficients for
layered elastic media using the matrix method. It is
shown that, for increasing the accuracy of these calcu-
lations, it isnecessary to use matrices of the sixth order.
The results of testing the computer program are also
presented. The frequency-angular dependences of the
reflection coefficient are considered for the bottom
models consisting of one and two liquid/elastic sedi-
mentary layers overlying an elastic halfspace. The
clearly defined resonance structure revealed for asim-

FOKINA, FOKIN

ple bottom model isretained asawhole, if we add to it
some realistic details such as the layering, attenuation,
and shear elasticity. The resonance structure of the
reflection coefficients is investigated in order to
develop a resonance approach for solving the inverse
reflection problem, because the position, width, and
amplitude of resonances can easily be measured in
experiments. The problem of how to relate such reso-
nances to the acoustic bottom parameters for the cases
more complicated than those described in the literature
[24-27] isthe subject of our current investigations.
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To obtain focused ultrasound in the megahertz fre-
guency range, the usual practice is to employ radiators
with the active element in theform of aspherically con-
cave, polarized piezoceramic plate [1-3]. The structure
of acoustic fields generated by such radiators is deter-
mined by the distribution of the particle velocity over
the radiating surface of the piezoelectric plate and by
the structural characteristics of the latter. In the cited
publications [1-3], the distribution of the particle
velocity over the radiating surface of a piezoelectric
plate is assumed to be uniform. Ermolov et al. [4]
showed the possibility of a frequency-modulated exci-
tation of focusing piezoelectric plates of nonuniform
thickness. The use of such plates makes it possible not
only to extend the frequency range of the generated
fields [4], but also to control the distribution of the par-
ticle velocity over the radiating surface of the active
element. This fact is used as the basis for the devel op-
ment of single-channel focusing ultrasonic radiators
with electrically controlled spatial and time structures
of the generated fields (EC STS) by means of the fre-
guency modulation of the voltage applied to the focus-
ing piezoelectric plates of varying thickness [5].

In this paper, we present the description of focusing
ultrasonic radiators with EC STS, the results obtained
by calculating the fields generated by these radiators,
and the corresponding experimental estimates. The fol-
lowing ways of controlling the spatial and time struc-
ture of thefieldsare possible: swing of thefocal area (in
a direction normal to that of the ultrasound propaga-
tion), displacement of the focal area (in the direction of
the ultrasound propagation), and rotation of the focal
area (about the direction of the ultrasound propaga-
tion).

The piezoelectric plate of the radiator that excites
the swing of the focal area has sphericaly concave
inner and outer surfaces. The centers of the spheres are
shifted by the distance A in the direction normal to that
of the ultrasound propagation. This geometry provides
the required distribution of the piezoelectric plate
thickness within the radiating surface area. The piezo-
electric plate of the radiator that excites the displace-
ment of the focal area has hyperboloid-shaped outer

and inner surfaces with different parameters, which
depend on the required range of thefocal areadisplace-
ment.

The acoustic field generated by a radiator with EC
STSiscalculated by using the Rayleigh integral [3]; the
variation of the particle velocity and the acoustic pres-
sure with time is determined by the factor exp(—icwt),
where w is the circular frequency of excitation. The
Rayleigh integral hasthe form

- K u(r')e—lk\r—r\
p(r) 'pocoz,.J T —r] ds. (1)
S

Here, the integration is performed over the radiating
surface S p(r) is the acoustic pressure at the point of
observation, u is the amplitude of the normal compo-
nent of the particle velocity of the radiating surface (the
normal is directed toward the medium), r is the radius
vector of the observation point, r' isthe radius vector of
the surface element dS, k = wyc, is the wave number, p,
isthe density of the medium, and ¢, is the sound veloc-
ity in the medium.

Fig. 1a shows the results of calculating the acoustic
field (at alevel of —3 dB) generated by a piezoelectric
plate of typical dimensions (a diameter of 45 mm and a
curvature radius of 75 mm) under excitation by avoltage
whose frequency discretely varies at astep of 10 kHz in
the frequency range from 820 to 940 kHz. The pressure
distribution reflects the swing of the focal area about
the Z-axisin the XOZ plane. The maximal swing ampli-
tude H is about 5 mm, which is confirmed by the
experimental results. The effective region of ultrasonic
treatment isformed in the swing plane as aresult of the
spatial averaging of the generated fields; thisregion dif-
fersfrom thefocal areaof aradiator with auniform dis-
tribution of the particle velocity by a much greater ratio
between its transverse and longitudinal dimensions.

In a piezoelectric plate that provides the displace-
ment of the focal areain the direction of the ultrasound
propagation, a sequential excitation of ring-shaped
regions with different curvature radii takes place. The
inner and outer surfaces of the piezoelectric plate can
be approximated by aset of concave, axially symmetric

1063-7710/00/4604-0488%20.00 © 2000 MAIK “Nauka/Interperiodica’
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regions with different curvature radii. This representa-
tion simplifies the calculation of the generated field, as
well as the manufacture of the radiator prototypes. In
this case, the calculation of the generated fields is also
performed by formula(1). Figure 1b presentsthe distri-
bution of the pressure (at alevel of —3 dB) generated by
the piezoelectric plate with the diameter 78 mm and
with the inner surface approximated by a set of three
concave, axially symmetric regions with different cur-
vature radii (from 45to 75 mm). The calculation is per-
formed for the resonance excitation frequencies 820,
880, and 940 kHz.

The results of the calculations and the experimental
check show that the centers of the focal areas move
along the direction of the ultrasound propagation with
the amplitude H, up to 15-17 mm (for a plate with the
aforementioned parameters) at the selected excitation
frequencies.

The changein the position of thefocal areaof aradi-
ator with EC STSis accompanied by adisplacement of
the point of application of the radiation pressure force.
Thus, the focusing ultrasonic radiators with EC STS
allow oneto excite mechanical vibrations along agiven
direction deep inside the object under treatment, i.e., in
the immediate region of interest. This offers a possibil-
ity of using the radiators with EC STS for increasing
the resolution of the Doppler ultrasonic diagnostics[6].

Besides, the response of inhomogeneous viscoel as-
tic media to focused ultrasonic fields with EC STS
givesrise to an amplitude modulation of the frequency-
modulated excitation voltage of the corresponding radi-
ators. Theorigin of thiseffect liesin the variation of the
acoustic impedance of the object within the focal area
displacement, this variation being determined by the
structure and state of the object. Thus, the arising
amplitude modul ation reflects the spatial distribution of
the acoustic parameters of the object under treatment.
By processing the data on the variation of the modula-
tion depth and its dependence on the modulation fre-
guency, it is possible to estimate the parameters of the
object without placing any sensors in the region of
interest, i.e., noninvasive measurements are possible.

The noninvasive measurement channel that is
formed when a radiator with EC STS is used, can be
characterized by the frequency range of the aforemen-
tioned modulation and the dynamical range. The mod-
ulation frequency rangeislimited by the massand elas-
tic properties of the piezoelectric plates. The upper
boundary of the modulation frequency range F
determined from the experiment for the piezoelectric
plates with typical parameters reaches 10 kHz.

The dynamical range of the measured values of the
modulation depth is determined by the formula

m
Day = 20log—2M_, (2)
m, —m,
ACOUSTICAL PHYSICS Vol. 46

No. 4 2000

489
X, mm

20+
(a)

10

940 kHz

-10

=20

|
20 40 60 80 100

10.0
75 ®

5.0
25

880 kHz
820 kHz

-2.5
-5.0
=75
~1.0 1 1 1 1

20 40 60 80
Z, mm

1
100

Fig. 1. Distribution of acoustic pressure in the XOZ plane:
(a) pressure generated by the piezoelectric plate that excites
the swing of thefocal area (in the frequency range from 820
to 940 kHz at a step of 10 kHz); (b) pressure generated by
the piezoelectric plate that excites the displacement of the
focal area (in the frequency range from 820 to 940 kHz at a
step of 60 kHz).

where my,, is the maximum possible value of the mod-
ulation depth due to the variation in the acoustic resis-
tance of the object under treatment within the displace-
ment of the focal area; m, isthe extraneous modulation
depth, which is determined by replacing the abject
under treatment by its homogeneous simulator; and m,
is the deterministic component of the extraneous mod-
ulation depth, which is determined mainly by the
amplitude-frequency characteristic of the radiator in
the excitation frequency range and measured in the
course of the channel calibration.

The dynamical range of the modulation depth mea-
sured for the object under treatment represented by dif-
ferent simulators of biological tissue reaches 3040 dB
depending on the modulation frequency.
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The channel capacity achieved in the noninvasive
measurements of the parameters of the object under
treatment is determined by the formula

P
V = aFlog,H + 520 3)
N

where AF is the modulation frequency range (AF =
Fra) and Pg/Py is the signal-to-noise power ratio cor-
responding to D ;.

Taking into account the experimental results, i.e.,
AF = 10* Hz and the minimal value D,,, = 30 dB, we
obtain that the maximal value of the channel capacity
achieved for the noninvasive measurements of the
parameters of the object under treatment exceeds
0.1 Mbit/s.

This value provides a high accuracy of the charac-
terization of the object under treatment.
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It is well known that, in the low-frequency range,
the natural frequencies of aroom are widely separated
from each other, and, therefore, the transfer function of
such aroomisfairly inhomogeneous|1, 2]. Toimprove
the acoustical properties of roomsin the low-frequency
range, one can use Helmholtz resonators|[ 3, 4]. Serving
as efficient sound absorbers at resonance frequencies,
the resonators installed in a room smooth out its trans-
fer function. The problem of the interaction of areso-
nator with the normal modes of aroom is not only of
practical, but also of theoretical interest. Due to the
strong coupling of oscillations, the resonator may
appreciably change the natural frequencies of the room
that are close to the natural frequency of the resonator.
Below, we determine the sound field of a point source
of volume velocity in aroom with a Helmholtz resona-
tor and calculate the shift produced by the latter in the
natural frequencies of the room.

Let us consider a room of volume V bounded by a
rigid surface S The room isfilled with a homogeneous
medium of density p; the sound velocity in the medium
isc. A harmonic point source with the volume velocity
Q, is positioned at a point with the radius vector r,.
According to [1], the sound pressure pV generated in
the room by such a source is expressed by the formula

1 . n(l1
o) = prQl/VZ(EZ( k)z) 0.(1), 1)

A

where p,(r) are the fundamental functions, w, are the
natural frequencies, w is the sound frequency, k, =
w,/c, k= wyc, and the summation is performed over all
fundamental functions. The functions p,(r) satisfy the
equation

Ap,+kipy = O,

op,

the boundary condition — o

= 0 at the surface S, and

the orthogonality and normalization relations

lpnpmdv =0 for nzm, Jpﬁdv = V.

According to formula (1), the sound field formed in
the room infinitely grows as the frequency w
approaches one of the natural frequencies of this room.
L et us show that the introduction of aresonator into the
room changes the natural frequencies of the latter. The
resonator provides an efficient sound absorption at res-
onance frequencies, and the sound field formed in the
room with aresonator remains finite at any frequency.

We consider a resonator positioned at a point with
the radius vector r,. The resonator being excited by the
pressure field pt"’ generates the field p®:

p?(r) = nprzfvz z)pn( ) @

where Q, is the volume velocity of the resonator. The
resulting sound field in the room with the resonator is
obtained as a sum of the fields p¥ and p®:

p=p™+p? |oop/Vz

(k —Kd) 3)

*{Qypn(ry) +Q2pn(r2)} P(r)-

The quantity Q, can be obtained from the equation
of motion of the resonator under the pressure field p.
The Helmholtz resonator is an oscillatory system with
one degree of freedom, and its dimensions are small
relative to the sound wavelength at the resonance fre-
guency. We denote the displacement of the air massin
the resonator gorge by X(t). Then, the equation describ-
ing the corresponding forced oscillations can be repre-
sented in the form

MX +RX +kX
= —s{pP(ry) + p?(r,)} exp(<iwt),

“)
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Determination of the natural frequencies of a room with a
resonator.

where M isthe air mass in the resonator gorge, Risthe
friction coefficient, k is the coefficient of elasticity, and
S is the cross-sectional area of the resonator gorge.
Equation (4) can be reduced to the form

ZQ, = H{Z,Q, +Z,Q,}, 5)

where Z = 1/S§{R + I(K/w — wM)} is the acoustic

impedance of the resonator,

P2y _ Pa(r 2)
Q: (K* —kz)

is the added acoustic impedance of the resonator,

O
p(ra) _ . P(r 1) Prm(T 2)
o T T

is the mutual acoustic impedance, and Q, = §, X €,

From equation (4), we obtain the volume vel ocity of
the resonator

Q, = —QuZp/(Z+ Zy).

Substituting Q, in formula (3), we obtain the total field
in the room with the resonator:

p=iwpQ,/V

Zy = = |oop/Vz

Zy, =

0 po(r)_ (6)
ZDpn 1) (Z+Z )pn( Z)E(I( k)

Thlsfleld can be represented in the form

Epn(ro—(z )pn(rz)m
D L2) —pi0), @

[(kz 2) 10p pn(r.Z) 0

] V(Z+2Z,)0O

LAPIN

where the prime indicates that the corresponding
impedance is calculated by ignoring the term with the
number m = n. According to formula (7), the field p is
finiteat w= w,.

Thenatural frequencies of the room with the resona-
tor are the roots of the equation

IM[Z(w) + Z»(w)] = 0. ®)

This eguation can be represented in the form

wpc’pz(ry)
W = of - ——oPC Polle) ©)

IM[Z(w) + Zp,(w)]V

Equation (8) can be solved by the graphical method, by
finding the points of intersections of the branches of the
curve ImZ,,(w) with the curve -imZ(w). The figure
shows the approximate form of these curves. The
abscissas of the intersection points yield the sought-for
values w = Q, of the natural frequencies of the room
with the resonator. These frequencies obey the relation

Wy < Q< Wy g

At high frequencies (w > «’, where o’ isthe natural
frequency of the resonator and ImZ(w’) = 0), the
abscissas of the points of intersection are close to the
frequencies w, and lie to the right of them. For these
roots, from equation (9), we obtain the approximate
expression

w,pC’pa(r,)
IM[Z(03,) + Zpp (03) ]V

2 2
Q, = w, -

where Im[Z(wy,) + Z5, (w,)] <O.

At low frequencies (w < ), the abscissas of the
points of intersection are also close to the frequencies
w, but they lieto the left of them and correspond to the
other (preceding) branch of the curve ImZ,,(w).
According to equation (9), for these roots we obtain the
approximate formula

0, = o SnPCP(r2)
T ImZ(w,) + Zo(wy)]V

where Im[Z(w,) — Z5, (w,)] > 0.

At frequencies of the order of w’, the abscissas of
the points of intersection of the curves lie well away
from the frequencies w,,, and, therefore, the natural fre-
guencies Q,, can only be determined by numerical
methods. Note that the behavior of the natural frequen-
ciesinaroom with aresonator issimilar to the behavior
of the natural frequenciesin anarrow tube with imped-
ance plugs[5].
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At a frequency w that is equa to the natural fre-
guency Q,, the sound field in the room with aresonator
is determined by the formula

2
P =10,0Q/V S B

x [RPA(F1) = S5 Z12(Q0) Po(r )]

Thisfield isinfinite at R = 0 and finite at any R # 0.
The resonance peaks of the transfer function can be
flattened by increasing the friction coefficient of the
resonator. It is expedient to place the resonator at one
of the antinodes of the normal modes, e.g., at acorner
of the room. The resonator can be installed either
inside the room or on one of the walls. Resonators of
different structures can be used. The dependence of
the natural frequency «” of the resonator on its
parameters had been studied in a number of publica-
tions [6-9].
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Abstract—Thermooptical excitation of sound in aliquid by alaser radiation with a harmonically modulated
intensity randomly distributed over the beam cross-section is considered. The processes are considered to be
statistically homogeneous. It is assumed that the spatial spectrum of the intensity fluctuations in a laser beam
is described by apower (fractal) law. It is demonstrated that the acoustic field in aliquid has afracta structure.
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Theoretical treatment of laser-induced sound excita-
tion in condensed media (for example, liquids) is usu-
ally conducted under the assumption that the transverse
distribution of intensity in alaser beam is quite deter-
minate. It is often assumed that this distribution is axi-
ally symmetric and has the Gaussian form [1, 2]. In
reality, it is not uncommon that the transverse distribu-
tion of intensity in alaser beam fluctuates.

Recently, it has been demonstrated [ 3] that the mode
structure of the radiation of an unstable-cavity laser is
fractal. In particular, it has been found that the fractal
dimension of the intensity distribution of a laser with
the aperture shaped as a narrow dlit has the value D =
1.6. Inthe case of acircular aperture, the fractal dimen-
sionwasfoundtobeD =1.3.

Below, we consider the thermooptical excitation of
sound in aliquid by alaser radiation with a harmoni-
cally modulated intensity and afractal spatial spectrum
of the intensity fluctuations. It is necessary to note that
the effect of spatia and time fluctuations of the laser
radiation intensity on the sound excitation in a liquid
was considered earlier by Bunkin [1], but the character
of their distribution was not specified.

Let us assume that a laser beam propagating from
the upper halfspace (atmosphere) in the positive direc-
tion of the z axis of the rectangular coordinate system
(X, y, 2) is incident upon the free surface of a liquid
occupying the lower halfspace z> 0. The absorption of
the laser radiation in the liquid results in the formation
of thermal sources of sound. The equation of the laser
thermooptical generation of sound has the form

kmaw

2 _ .
(A+K)pp = i=2

Aul(x y)exp(-uz). (1)
p

Here, p isthe sound pressure; k, C,, and [ are the coef-
ficient of thermal expansion, the specific heat, and the

absorption coefficient for optical radiation, respec-
tively; A isthe coefficient of light transmission through
the liquid boundary (from here on, we assume that A =
1); misthemodulation index; 1(x, y) istheintensity dis-
tribution in the laser beam at the liquid surface; k = wy/c;
and cisthe sound velocity in theliquid. The timefactor
exp(—iwt) is omitted here and below.

The solution of equation (1) can be written in the
form [2]

. koom
p(r) =i——pu[I(X,y)exp(-uz)
Cp §[ )

x p(X,y,ZIx vy, z)dxdydz,

where p(r'/r) is the solution to the boundary problem
on the diffraction of the field of a point source posi-
tioned at the point r where it is necessary to determine
the field p(r). We consider the field p(r) in the Fraun-
hofer zone. In this case, p(r'/r) can be represented in
the form

p(rr) = Z8UD epi(ax + By -y2)]

—exp[—i(ax + By +yZ)]},

3)

whereo? + B2+ 2=k andr = (¢ + y* + )12,

We assume the intensity distribution in the beam to
be a random function, so that 1(x, y) = 1,f(X, ), where
O(x, y)[= 0, and the random processesto be statistically
homogeneous.

Taking thisinto account, substituting expression (3)
into expression (2), and integrating with respect to z, we
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obtain an expression for the mean-square sound pres-
sure [p(r)|?

KRw2m? 1 HZVZ 2
Cp A4TCr (W’ +y?)’

xJ’J’B(E, n)exp[—i(ag +pn)]dédn,
&n

Op(r)l*0=

o

“)

where B(§, n) = O(x, y)f(x", y")Os the normalized cor-
relation function of the intensity fluctuations of the
laser radiation, { =X —X"|,n=|y -y"|,and o isthearea
of the laser spot at the liquid surface. The integration
with respect to & and n is extended to the region of the
action of laser radiation at the liquid surface. How-
ever, if B(§, n) decreases rapidly within the dimen-
sions of the cross-section of the laser beam and B() =
0, the integration can be extended to the interval from
—00 t0 + 00,

The properties of statistic fractals are often charac-
terized by structural (correlation) functions and their
spectra. Their specific feature is the fact that they are
described by power laws. This follows from the prop-
erty of scaling of the fractal structures[4].

The power spectrum of fluctuations is an important
parameter of the statistical fractals in the wave prob-
lems. This spectrum has the form

G(q) 0g’, (5)

where g is the wave number of spatial fluctuations and
the exponent & for the objects with a fractal surfaceis
determined by the expression

5 =D-2d, (6)

where D is the fractal dimension and d is the space of
embedding.

Let us consider the spatial spectrum of the laser
radiation when the aperture is shaped asanarrow dlitin
the x direction. Inthiscase, we can writethe expression

B(&,n) = By(&)By(n), (N

where B,(n) = 1, because the distribution of intensity
fluctuations of |aser radiation in the transverse direction
can be considered totally correlated. The normalized
correlation function in the longitudinal direction can be
represented in the form [5]

B(E) = —— 0k, B0 ®)

27 (v) N

wherel (v) isthe gamma-function, K, (&/¢,) isthe Mac-
donald function, and &, is the correlation length of
intensity fluctuations of laser radiation in the longitudi-
nal direction. We should note that B(0) = 1 and B() =
0, while B(&)g<¢, ~ (&/€0)", i.€., the correlation func-
tion has a power-law form, and from this point of view
it can be used for describing the fractal structure of the
intensity fluctuations of an unstable laser radiation.
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Substituting expressions (7) and (8) into expression (4)
and performing the integration, we obtain
kzwzmz 1 MZVZ
loonoG(a), 9)
Cf, 4Tl2r2(p2 + y2)2
wheren, isthe transverse dimension of the laser spot at

the liquid surface and G(a) is the spectral density of
intensity fluctuations of laser radiation:

10
M)+ =
Ir3 &,
JT (v ved’

Y 1y
At a&, > 1, the spectral density G(a) has a power-law
(fractal) form

G()qz,»1 D" (11)

Now let us consider the case of a circular aperture.
The expression for the mean-square fluctuation of
sound pressure (4) can be represented in the form

Op(r)|*0=

G(a) =

(10)

Kw'm® 1

2
CP

2 2
Op(r)’D= ——EL—1ma’G(k.), (12)
ATCr (U™ +y°)

where

+o00

G(ky) = IB(p)exp(—ikup)dp, (13)

k- isthe component of the wave vector kin the horizon-

tal plane, kX =02+ P2, p = |p' - p"|, and aistheradius
of the laser beam at the liquid surface.

We write down the correlation function B(p) in the
form (8), substituting p for & and p, for &,, where p, is
the correlation length of fluctuations of laser radiation.

We obtain the following expression for spectral den-
sity (13):

rv+1) P
ST (V) (1+K2p2)
At k-p, > 1, we have

G(kp) Ok (15)

It is necessary to determine the particular value of
the parameter v to calculate the acoustic field in the lig-
uid in each of the considered cases. The value of the
dimension of the space of embedding for the conditions
of the numerical experiment [5] isequal to d = 2. From
expressions (5), (6), (11), and (15), we havev = 0.7 for
adlit apertureand v = 0.35 for acircular aperture, if we
take the corresponding fractal dimensions D = 1.6 and
D = 1.3 obtained from the numerical experiment [5].

One can seefrom the analysis of expressions (9)—(11)
and (12)—(15) that the acoustic field excited by radia-

G(ky) =

(14)

v+1®

2(v+1)
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tion of an unstable-cavity laser in aliquid has a fractd
structure. Indeed, under the conditions 4 < k, k&,sin@ >
1,andkl > 1, or kp,sin@ > 1and ka > 1, wherel isthe
length of the dlit aperture and a isthe radius of the laser
spot at the liquid surface, we have the following expres-
sion for the mean-square sound pressure at the observa-
tion point X0z

Ip(n* 0Cq’ 0K, (16)

where C is a constant determined by the problem
parameters.
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CHRONICLE

Nikolai Grigor’evich Bibikov
(On His 60th Birthday)

February 13, 2000, marked the 60th birthday of the
Leading Researcher of the Andreev Acoustics Institute
Nikolai Grigor’evich Bibikov, a prominent Russian
specialist in biological and physiological acoustics.

Bibikov was born in Moscow in 1940. He was
among thefirst graduates of the Biophysics department
of the Faculty of Physics of Moscow State University.
This department combined a top-level education in
physics with one in modern biology, which was a new
subject in Russia at that time.

Upon graduation, Bibikov once and for al selected
his area of research: the study of the acoustic signal
processing in the animal brain. At the time, this subject
attracted the interest of one of the founders of the
Acoustics Institute of the Russian Academy of Sci-
ences, Academician N.N. Andreev, who organized a
specia laboratory for studying this phenomenon. The
laboratory was headed by the young graduate of the
Moscow Physicotechnical Institute N.A. Dubrovskii—
now the director of the Andreev Acoustics Institute.

According to the advice given to Bibikov by
Andreev and other researchers (especially G.V. Gle-
kin), thefirst objects of Bibikov’s studies were amphib-
ians, which are characterized by a well-defined set of
sounds used for communication and arelatively simple
brain. Many basic features of the response of the neural
elements of these animals (such as thresholds, spectral
and temporal characteristics, and binaural properties)
werefirst described by Bibikov as early asin the 1960s.
In these descriptions, he used some physical and math-
ematical approaches that allowed him to obtain direct
numerical estimates of the nerve cell parameters for
simulation purposes. These studies were summarized
in the candidate dissertation (in physics and mathemat-
ics) defended by Bibikov in 1972.

One of the main results obtained by Bibikov contra-
dicted the concepts adopted by his American col-
leagues and consisted in the fact that the abilities of the
amphibian brain are not limited to only classifying the
signals of different species, but extend to analyzing in
detail the frequency-temporal features of all signals
perceived by the auditory periphery. Moreover, the
mechanisms of signal processing in the amphibian
brain were found to be close to those observed in mam-
mals.

In 1992, Bibikov defended his doctoral dissertation
(in biology), and in the following years, he concen-
trated on studying phenomena first observed by him-
self: the increase in the differential sensitivity of the
auditory system in the process of adaptation, and the
role of the internal and external noise in the formation
of the huge dynamical range of efficient operation of
the auditory system. These studies again revealed the
similarity between the main mechanisms of acoustic
signal processing in animals and humans. For example,
the psychophysical experiments revealed areductionin
the recognition thresholds for the amplitude modula-
tion in the process of adaptation.

Bibikov obtained a number of remarkable resultsin
the course of his objective studies of the auditory sys-
tem of dolphins (he wasthefirst to use the nontraumatic
method of recording the auditory potentials of these
animals), aswell asin estimating some kinds of biolog-
ical noisein the ocean.

In parallel with his work at the Andreev Acoustics
Institute, Bibikov carried out investigationsin coopera-
tion with scientists from Darmstadt Technical Univer-
sity and Konstanz University (Germany), the Univer-
sity of Illinoisand the University of Kansas (USA), and

1063-7710/00/4604-0497$20.00 © 2000 MAIK “Nauka/Interperiodica’



498

the Beijing Biophysics Institute (China). He is the
author of more than 130 publications. His papers have
been presented at many international scientific confer-
ences. He has also given lectures at more that 15 uni-
versities in Western Europe and the United States.
Being one of the leading Russian specialistsin bio-
acoustics, Bibikov chairs the section of the Russian
Acoustical Society; he is a member of the Acoustical
Society of America and a member of the International
Brain Research Organization. He is also member of

NIKOLAI GRIGOR EVICH BIBIKOV

some other Russian and International scientific organi-
zations. In 1998, Bibikov was elected corresponding
member of the Russian Academy of Natural Sciences
for the Division of Physics.

We wish Nikolai Grigor’evich Bibikov good health
and further successin his creative endeavors.

Translated by E. Golyamina
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CHRONICLE

Ser gei Nikolaevich Gurbatov
(On His50th Birthday)

Sergei Nikolaevich Gurbatov—doctor of physics
and mathematics, professor, laureate of the Russian
Federation State Award, and chair of the Acoustics
department of Lobachevskii State University, Nizhni
Novgorod—turned fifty.

Gurbatov was born on February 8, 1950. In 1967, he
graduated from high school with a medal and began
studying at the Faculty of Radiophysics of Nizhni
Novgorod (Gor' ki) State University. Since then, all his
activities have been inextricably linked with the Faculty
of Radiophysics. In 1977, he completed his post-grad-
uate project and defended his candidate dissertation
(under the supervision of Professor A.N. Malakhov).
Gurbatov worked as an assistant professor and an asso-
ciate professor at the department of Statistical Radio-
physics. In 1986, he became the chair of the Acoustics
department, and since 1994, has been the dean of the
Faculty of Radiophysicsat Nizhni Novgorod State Uni-
versity. In 1985, he defended his doctoral dissertation
(in physics and mathematics), which was entitled

“Nonlinear Interaction and Scattering of Random
Wavesin Dispersion-Free Media” 1n 1988, he received
the title of Professor at the Acoustics department.

Gurbatov’s scientific interests are related to the the-
ory of nonlinear random waves and turbulence, waves
in randomly inhomogeneous media, nonlinear acous-
tics, and ocean acoustics.

Gurbatov studied the effect of multiple scattering in
plane-layered, randomly inhomogeneous media on the
reflection of sound pulses localized in space and time
and revealed the universal waveform of the reflected
waves. He performed a series of studies related to the
problems of remote sensing in the ocean. In connection
with the problem of the diagnostics of internal wavesin
the ocean, he investigated the accuracy of Doppler
sensing methods in the presence of sound scattering by
discrete inhomogeneities. He also studied the possibil-
ity of using parametric acoustic radiatorsfor the remote
sensing of the inhomogeneous structure of the ocean.

Gurbatov developed the statistical theory of highly
nonlinear random waves and fields of different physical
origin, with the only common feature being the absence
of dispersion. Thelatter property leadsto an avalanche-
type generation of harmonics and to the formation of
quasi-ordered structures that determine the dynamics
and statistics of random fields. He studied in detail the
role of the inertial nonlinearity in the formation of the
probabilistic and spectral-correlative properties of
fields and waves of different physical origin. In partic-
ular, he studied the statistical properties of nonlinear
random fields in chaotic particle flows in gases, with
allowances for the pressure and the interaction of the
diverging waves. He established that, for all these
media, the common characteristic feature is the devel-
opment of alocal and statistical self-similarity.

In 1984-1985, Gurbatov, together with his col-
leagues, proposed the so-called “ stick-together” model,
which describes the nonlinear stage of the evolution of
gas consisting of gravitationally interacting particles
(thismodel received further development in the follow-
ing publications). The model is based on the three-
dimensional Burgers equation and represents ageneral -
ization of the known Zel’dovich approximation. It has
found application in astrophysics for describing the
evolution of the large-scale structure of the Universe.

Gurbatov performed fundamental theoretical stud-
ies of nonlinear acoustic noise waves. He proposed the
methods of their statistical description that allowed a
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detailed analysis of the nonlinear self-action and inter-
action of waves at all stages before and after the shock
formation. He studied the processes of the nonlinear
transformation of broadband noise signals and intense
acoustic pulses of complex structure. He devel oped the
statistical theory of parametric arrays and performed
theoretical and experimental studies of the effect of
refraction and waveguide inhomogeneities on the para-
metric generation of sound. In experiments performed
in cooperation with L. Bjerng (Denmark) on the prop-
agation of intense acoustic noise, the existence of auni-
versal asymptotics of the energy spectrum was con-
firmed.

Gurbatov is the author of more than 150 scientific
papers published in the leading Russian and foreign jour-
nals. Together with A.N. Malakhov and A.l. Saichev, he
wrote the monograph Nonlinear Random Waves in
Dispersion-Free Media (Nauka, Moscow, 1990); an
extended version of this monograph was published in
England in 1991. Gurbatov and Rudenko are the
authors of the chapter on statistical nonlinear acoustics
in the monograph summarizing the results obtained in
nonlinear acoustics within the last twenty years and
published under the title Nonlinear Acoustics in the
United States in 1996 (editors D. Blackstock and
M. Hamilton). Gurbatov is a co-author of the textbook
Acoustics in Problems (edited by S.N. Gurbatov and
O.V. Rudenko, Nauka, Moscow, 1998), which was pub-
lished as aresult of the cooperation between research-
ers from the Acoustics departments of Moscow State
University and Nizhni Novgorod State University.

SERGEI NIKOLAEVICH GURBATOV

Gurbatov chairsthe Council that confersthe degrees
of doctor of science at the Faculty of Radiophysics of
at Nizhni Novgorod State University and the Expert
Council on Radio-wave physics of the Competition
Center for Fundamental Natural Sciences of the Minis-
try of Higher Education of the Russian Federation.
Gurbatov is the vice president of the Russian Acousti-
cal Society and a member of the American Acoustical
Society; he acted as amember of the Program commit-
tees of a number of All-Russian and International sci-
entific advanced-study schools; he aso chaired the
Organizing committee of the International Advanced-
Study School on Dynamic and Stochastic Wave Phe-
nomena (Nizhni Novgorod, 1992 and 1994).

In 1997, a team of researchers including Gurbatov
received the Russian Federation State Award for the
series of works presented under the common title
“Dynamics of Intense Noise Waves and Nonlinear
Structuresin Dispersion-Free Media.”

Gurbatov heads (together with Professor Saichev) the
leading Russian scientific school in * Physics of Nonlin-
ear and Random Waves in Application to the Problems
of Acoustics and Radio-Wave Physics.”

Sergei Nikolaevich Gurbatov celebrates his 50th
birthday in the prime of his creative life. We wish him
further success.

Trandated by E. Golyamina
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INFORMATION

Papers—Prize Winnersfrom the International Academic
Publishing Company “ Nauka/lnter periodica’ in 1996—2000

In 1995, the International Academic Publishing
Company “Nauka/lnterperiodica’ has founded specia
prizes to reward the authors of the most remarkable
papers that appear in the journals published by this
company. The prizes are intended for original scientific
worksfirst published in thejournals or aseries of works
mainly published in thesejournals. The total number of
prizesis 55, for morethan 90 journals. The prize recip-
ients are selected in yearly competitions.

Five papers from the Acoustical Physics were
among the prize winners of 1996-2000. These papers
are briefly reviewed below.

In 1995, the prize was given to Yu.M. Sukharevskii
(from the Andreev Acoustics Ingtitute) for his paper
entitled “ Statistics of Basic Acoustical Parameters of
Deep-Water Oceanic Regions and the Probabilistic
Range of Sonar Systems’ (Acoustical Physics, 1995,
vol. 41, no. 5, pp. 749-763).

It iswell known that the operating range of a sonar
system depends heairly on the hydrophysical condi-
tions in the oceanic medium. Many years of studiesin
ocean acoustics resulted in the development of algo-
rithms and computer programs, which alow one to
estimate the operating range of a sonar system with the
given technical parameters in the most severe environ-
mental conditions. The development of hydroacoustic
technologies, including their information branch,
makes it possible to design sonars with parameters that
are optimized to the acoustic conditions of the ocean.
New possihilities open up for increasing the operating
range and improving the efficiency of the systems. An
important but poorly studied aspect of the latter prob-
lem is the determination of the sonar probabilistic
range that can be realized in actual hydrophysical con-
ditions of the ocean. The paper by Sukharevskii, whois
one of the founders of hydroacoustic studiesin Russia,
is devoted to thistopical problem.

For the hydrophysical conditions corresponding to
deep-water oceanic regions, Sukharevskii determines
the statistics of the basic acoustic parameters of the
ocean: the sound propagation anomaly in the oceanic
waveguide and the ambient noise level in the ocean; he
also studies the statistics of theratio of these quantities,
which determines the signal-to-noise ratio of a sonar
and, hence, the sonar operating range. Sukharevskii
considersthe problem of the determination of the prob-
abilistic range that is realized with a given statistical

probability for a given sonar system in given hydro-
physical conditions in the ocean. This problem is
solved by using the CRV method (CRV means the log-
arithmic coefficient of range variation) developed by
Sukharevskii on the basis of the theory of optimal fre-
guencies. With this method, it is possible, from the
known (i.e., determined from the solution of the echo-
ranging equation) operating range of a sonar system of
agiven type (passive or active) with arbitrary technical
parameters in arbitrary conditions, to directly deter-
mine the range of asystem of the same type, with other
arbitrary parametersin other conditions or a set of con-
ditions (provided that the statistics of the parametersis
known). For active sonar systems, Sukharevskii esti-
mates the “reverberation range” in adverse conditions
of a shallow sound channel at high wind speeds. This
estimate allows for the range decrease in the presence
of the reverberation noise, as well asin the case of the
suppression of the reverberation noise, by applying a
known broadband signal and a coherence processing;
i.e, it allowsfor the range decrease related to the addi-
tional attenuation of the coherent part of the signal. The
paper by Sukharevskii is a generalization of the results
of numerous full-scale and numerical experiments.

Yu.l. Bobrovnitskii and T.M. Tomilina (Blagonra-
vov Institute of Machine Science, Russian Academy of
Sciences) received the prize in 1996 for their paper,
entitled “ General Properties and Fundamental Errors of
the Method of Equivalent Sources’ (Acoustical Phys-
ics, 1995, val. 41, no. 5, pp. 649-660).

Calculating thefield of sound radiation or scattering
from an elastic body is one of the fundamental prob-
lems in acoustics. This problem was formulated more
than hundred years ago, and it still attracts the attention
of researchers because of the wide area of application
of the results and the absence of adequate computa-
tiona techniques. The problem has no analytical solu-
tion for most practically important cases, except those
of the bodies of the ssimplest shapes. The progress in
computer technology stimulated the development of
numerical methods. Recent years have seen an increas-
ing number of publications in which the problem of
sound radiation is solved by the so-called method of
equivalent sources. In particular, this method is used as
an alternative of the popular boundary-element method.
The comparison of these methods showed that the
machine time required by the method of equivalent
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sourcesissevera timesshorter than that required by the
other method, provided that the results are obtained
with the same accuracy. However, the practical applica-
tion of the method of equivalent sourcesis hindered by
the absence of justified recommendationsfor the choice
of the algorithms and by the unknown limits of validity
of this method.

The purpose of the paper by Bobrovnitskit and Tomi-
linawas to systematically investigate the genera prop-
erties of the method of equivalent sourcesin relation to
the specific features of the representation of the field
produced by a source (scatterer) in the form of equiva
lent acoustic sources. The authors analyzed the funda
mental errors of this method and formulated several
problems whose solutions may revea the possibilities
for increasing the accuracy of the method.

Bobrovnitskii and Tomilina studied the method of
equivalent sources asit applied to the problem of sound
radiation by complex elastic structures. The method
consistsin replacing areal source by asystem of simple
internal equivalent sources. It has a number of advan-
tages (high rate and controlled accuracy of computa-
tions). However, as was mentioned above, the method
isnot yet formalized in terms of the algorithms because
of the insufficient theoretical basis. Bobrovnitskii and
Tomilina considered the problem of the loss of accu-
racy of the method at the so-called internal resonance
frequencies. They showed that, mathematically, thissit-
uation means the functional incompl eteness of the sys-
tem of the fields of equivalent sources, and, physically,
it can be represented as a “shunting” of the external
medium by itsinner volume. It wasfound that anumber
of general properties of the method (inadequate condi-
tionality, spatial oscillations of sources) are related to
the behavioral features of inhomogeneous waves or, in
other words, higher spatial harmonics of the field,
which are characterized by fast oscillations along some
coordinates and fast decay along other coordinates.
These spatial harmonics of the field determine the con-
dition of the representability of acoustic fields by
equivalent sources. Considerable study was given to the
fundamental errors of the method due to the incom-
pleteness of thefields of theinternal equivalent sources.
The dependence of these errors on the arrangement of
sources and on the errors in the input data was dis-
cussed. Bobrovnitskii and Tomilina formulated four
unsolved theoretical problems related to the choice of
the optimal values for the parameters of the algorithm.
As an example, they performed an analytical study by
using the Neumann radiation problem for a sphere. The
validity of the results obtained for the sources of other
geometrical shapes and the physical interpretation of
the results were discussed in detail .

In 1997, the prize was awarded to V.G. Andreev,
V.N. Dmitriev, Yu.A. Pishcha’nikov, O.V. Rudenko,
O.A. Sapozhnikov, and A.P. Sarvazyan (Moscow State
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University) for the paper entitled “ Observation of Shear
Waves Excited by Focused Ultrasound in a Rubber-like
Medium” (Acoustical Physics, 1997, vol. 43, no. 2,
pp. 123-128).

Acoustic waves propagating in an absorbing
medium transfer their momentum to the medium. In
liquids, which do not possess shear elasticity, this effect
gives rise to acoustic streaming. In solids, where such
hydrodynamic streaming is impossible, elastic stresses
occur. As a result, the sound absorption region should
become a source of elastic perturbations, specifically,
shear waves. It is generally believed that, in the course
of longitudinal wave propagation in a homogeneous
solid, shear waves can appear only asaresult of thelon-
gitudinal wave reflection from the boundaries. How-
ever, one can expect that even in media with weak
sound absorption, the excitation of shear stresses
should be noticeable in regions characterized by high
intensity gradients of longitudinal waves. The subject
of the paper was the experimental study of this effect
and its theoretical substantiation.

High intensity gradients of longitudina waves arise
at the “waist” of afocused acoustic beam whose trans-
verse dimensions can be comparable with the longitu-
dinal wavelength. However, even at the focus of arela-
tively intense and short wave, the arising shear stresses
and the corresponding strains may be fairly small, and
their measurement may be difficult. To increase the
shear strains, the authors used a medium with a small
shear modulus that was several orders of magnitude
less than the longitudinal elastic modulus. Another
important requirement was using a hondestructive
method for detecting the effect. For this purpose, the
authors chose the optical method.

The paper by Andreev et al. presents the results of
the experiment in which the shear wave excited owing
to the absorption of the longitudina wave was
detected. The authors used a focused beam of longitu-
dinal waves of frequencies 1-2 MHz propagating in a
transparent rubber-like medium. The shear waveswere
detected by a probing light beam. The measured vel oc-
ity of the sound wave coincided with its theoretical
value calculated from the known shear modulus of the
medium. A theoretical model of the effect was devel-
oped, which made it possible to calculate the charac-
teristics of the generated shear wave as the functions of
the parameters of the medium and theinitial longitudi-
nal wave. The theory adequately describes the experi-
mental results.

In 1998, the prize winners were Yu.P. Lysanov and
L.M. Lyamshev (Andreev Acoustics Institute) for their
paper entitled “Sound Scattering by Random Volume
Inhomogeneities with a Fractal Spectrum” (Acoustical
Physics, 1998, val. 44, no. 4, pp. 434-436).

Numerous experimental data testify that the fre-
guency dependence of the low-frequency sound attenu-
ACOUSTICAL PHYSICS  Vol. 46

No. 4 2000



PAPERS—PRIZE WINNERS

ation in an underwater sound channel in the ocean is
described by the so-caled “three-halves power law.”
This dependence had no explanation. Recently, it has
been found that the attenuation and its frequency
dependence can be attributed to the sound scattering by
volume inhomogeneities, i.e.,, by fluctuations of the
refractive index that occur in the underwater sound
channel, if one takes into account the anisotropy of
these inhomogeneities and selects an adequate correla-
tion function for their description (Lysanov). However,
this model was insufficient for a full understanding of
the phenomenon. Lyamshev has put forward the idea
that the attenuation may have a fractal origin, because
the exponent in the frequency dependence is a frac-
tional number. The study performed in collaboration by
the two authors showed that the three-hal ves power law
has afractal origin, and the volume inhomogeneitiesin
the underwater sound channel have the form of clouds
with fractal boundaries, or more precisely, clouds—mul-
tifractals.

In their paper, Lysanov and Lyamshev considered
the sound scattering by random anisotropic volume
inhomogeneities (refraction index fluctuations) in
terms of the small perturbation method. The inhomoge-
neities are assumed to be highly anisotropic, namely,
small-scale in depth and large-scale in the horizontal
plane. According to the results of multiple experimental
studies in the ocean, this type of inhomogeneities is
typical of the oceanic medium. The paper reveds the
relationship between the observed frequency depen-
dence of the attenuation of low-frequency sound prop-
agating in the underwater sound channel and the fractal
properties of highly anisotropic inhomogeneities.
Lysanov and Lyamshev were thefirst to reveal the frac-
tal origin of the low-frequency sound attenuation in the
underwater sound channel and to theoretically justify
the experimental frequency dependence of attenuation
described by the three-halves power law. The attenua-
tion of sound is caused by its scattering from the bound-
aries of the volume inhomogeneities and the leakage of
the scattered waves out of the underwater sound chan-
nel. It was found that the fractal dimension of the
boundaries of volume inhomogeneities in the ocean
virtually coincides with the fractal dimension of the
cloud boundaries in atmosphere. Since the atmosphere
is a sratified medium, clouds in the atmosphere are
generally not self-similar, but self-affine. In this con-
nection, clouds in the atmosphere are considered as
multifractals. Thisis also true for the volume inhomo-
geneities in a stratified ocean. Hence, one can consider
the volume inhomogeneities (refractive index fluctua-
tions) in the ocean as clouds—multifractals with an
inherent spectrum of fractal dimensions (spectrum of
singularities). The absolute values of the attenuation
coefficient, which are calculated for the low-frequency
sound propagation in the underwater sound channel in
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the ocean on the basis of the proposed theoretical
model, agree well with the average values obtained
from the full-scale experiments. Thus, one can con-
clude that not only the frequency dependence of low-
frequency sound attenuation has a fractal origin, but
also the highly anisotropic volume inhomogeneities in
the underwater sound channel represent clouds—multi-
fractals, and in some sense they are similar to cloudsin
the atmosphere.

The 1999 prize went to A.P. Brysev, F.V. Bunkin,
L.M. Krutyanskii, V.L. Preobrazhenskii, A.D. Stakhov-
skii (General Physics Institute, Russian Academy of
Sciences), Yu.V. Pyl'nov (Moscow Institute of Radio
Engineering, Electronics, and Automation), M.F. Hamil-
ton, K.B. Cunningham, and S.J. Younghouse (Univer-
sity of Texas at Austin, USA). Their paper was entitled
“Nonlinear Propagation of a Quasi-Plane Conjugate
Ultrasonic Beam” (Acoustical Physics, 1998, vol. 44,
no. 6, pp. 738-748).

Phase conjugation is a wave field transformation
that resultsin areversal of the direction of wave propa-
gation with theinitial phase and amplitude distributions
being retained. The phenomenon of phase conjugation
for ultrasonic waves attracts the attention of researchers
because of the specific features of conjugate wavefronts
and unique possibilities offered by the phase conjuga-
tion technique for physical studies, nondestructive test-
ing, technology, and medicine.

Inthelast few years, considerable progress has been
made in studies of the phase conjugation of ultrasonic
beams. This progress is mainly due to the efforts of
Russian scientists, namely, the authors of the af oremen-
tioned paper. (One of them, Bunkin, pioneered the sys-
tematic studies of the physical methods of phase conju-
gation in acoustics of liquids.) In particular, using the
principles of the parametric phase conjugation in mag-
netostrictive ceramics, they applied a pumping mag-
netic field and observed the phase conjugation for
ultrasound at the frequencies 5-30 MHz with agigan-
tic (up to 80 dB) amplification relative to the incident
wave. These results were publisher earlier in Acousti-
cal Physics.

The propagation of intense conjugate ultrasonic
beams is accompanied by nonlinear distortions, which
can have an adverse effect on the quality of phase con-
jugation. This problem is the subject of the paper
awarded in 1999.

The paper presents the results of the experimental
and theoretical studies of the phase conjugation of
ultrasound and the studies of the nonlinear propagation
of a quasi-plane conjugate ultrasonic beam in water. A
guantitative agreement between the experimental and
theoretical results was obtained for the initial intensity
of the conjugate beam 2 W/cm? in the region before the
shock formation. An increase in the waveform distor-
tion was observed with an increasing intensity of the
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conjugate beam and with the distance traveled by the
beam. By a numerical simulation of the conditions
close to the experimental ones, it was demonstrated
that, up to the aforementioned intensity of ultrasound,
the distortions of the transverse profile of the conjugate
beam are mainly caused by the finite size of the conju-
gator aperture.

The development of highly efficient methods of
acoustic phase conjugation opened up a new stage in

LYAMSHEV

the development of both physics and technical applica-
tions of conjugate ultrasonic beams. One might expect
that, already in the next few years, new ultrasonic
phase-conjugation systems will be designed for special
applications.

L.M. Lyamshev

Trandated by E. Golyamina
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