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Abstract—The simplest model of a shallow sea in the form of an isovelocity water layer and a fluid sediment
layer overlying a homogeneous elastic halfspace is used to investigate the effect of the thickness of the sediment
layer and the sound velocity in it on the behavior of the frequency dependences of the amplitudes of trapped
and leaky modes and shear and longitudinal lateral waves that are excited by an acoustic point source in a shal-
low-water oceanic waveguide. © 2000 MAIK “Nauka/Interperiodica”.
It is well known that the acoustic field formed in an
oceanic waveguide can be represented as a superposition
of modes that belong to a discrete spatial spectrum and
to a continuous one [1–3]. In the framework of the inte-
gral representation of the acoustic field in a plane-lay-
ered waveguide with the use of the approach to the defor-
mation of the path of integration in the complex plane
from [1–3], the modes of the discrete spectrum are rep-
resented by the residues at the poles of the integrand.
These poles are the roots of the dispersion equation for
the corresponding waveguide system and are usually
called modes. Naturally, the dispersion equation may
have both real and complex roots [2, 3], where the
former correspond to the trapped modes and the latter
correspond to the leaky ones (quasi-modes [3]) responsi-
ble for the reradiation of energy to the bottom of the oce-
anic waveguide. The modes belonging to the continuous
spatial spectrum of the field are represented by the inte-
grals over the edges of the corresponding cuts originat-
ing from the branch (ambiguity) points of the integrand,
and these modes correspond to lateral waves [1–3].

Evidently, because of the additional exponential
decay of the leaky modes and the faster decrease in the
amplitudes of lateral waves with distance as compared
to the trapped modes [2, 3], the acoustic field formed in
an oceanic waveguide at large distances from the
source will mainly be determined by the trapped modes
[1–3]. However, from general considerations, one can
expect that, even at relatively small distances, the effect
of the leaky modes and lateral waves on the formation
of the spatial interference structure of the acoustic field
in an oceanic waveguide will be noticeable only in the
case of the propagation of a small number of modes.
Therefore, the determination of the contribution of
leaky modes and lateral waves to the total field is pos-
sible only for relatively low radiation frequencies and,
hence, on the background of a small number of trapped
modes [4–6]. In real oceanic waveguides, the condi-
tions corresponding to the propagation of a small num-
1063-7710/00/4604- $20.00 © 20373
ber of modes at relatively low radiation frequencies are
usually observed in shallow-water regions of the ocean
[7], because the number of trapped modes decreases
with decreasing water depth, as well as with decreasing
radiation frequency.

Since the propagation of acoustic waves in shallow-
water oceanic waveguides is strongly affected by the
ocean bottom, it is important to study the dependence
of the contributions of the leaky modes and lateral
waves to the total field on the geoacoustic parameters of
the bottom. For the simplest situations, namely, for the
shallow sea bottom modeled by a homogeneous fluid
halfspace, the effects of the leaky modes [5, 6] and lat-
eral waves [5, 6, 8–10] on the formation of the spatial
interference structure of the acoustic field had been
investigated earlier. However, similar studies with the
use of the bottom model in the form of a homogeneous
elastic halfspace were performed only for longitudinal
and shear waves [10–12] the effect of which (according
to [12]) is noticeable only near the critical frequencies
of the corresponding leaky and trapped modes. Evi-
dently, the results of such investigations are absent even
for the simplest single-layer model of the fluid sedi-
ment layer of the sea bottom with a fluid or elastic base
(bedrock). It should be noted that the effect of geoa-
coustic parameters of the fluid sediment layer on the
frequency dependence of the excitation of only trapped
modes was adequately investigated in the framework of
the fluid base model [1, 13–17] and was not considered
in detail in the framework of the model with an elastic
base [13, 18, 19]. Therefore, the aim of our work is to
study the effect of the thickness of the sediment layer
and the sound velocity in it on the behavior of the fre-
quency dependences of the amplitudes of modes and
lateral waves excited by a point source in a shallow-
water oceanic waveguide that is modeled by an isove-
locity water layer and a fluid sediment layer overlying
a homogeneous elastic halfspace.
000 MAIK “Nauka/Interperiodica”
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To solve this problem, we proceed from the follow-
ing assumptions. Firstly, a point source emitting an
acoustic signal of frequency f is positioned at a depth zs
in an isovelocity water layer with thickness H, sound
velocity c, and water density ρ; a receiver is positioned
in the same water layer at a depth zr. Secondly, a fluid
sediment layer with thickness h, sound velocity cs, and
density ρs overlies a homogeneous elastic halfspace
with velocities ct and cl of shear and longitudinal
waves, respectively, and a density ρl . Then, by virtue of
the cylindrical symmetry of the problem, in the corre-
sponding coordinate system (r, z), where r is the hori-
zontal distance and z is the vertical axis originating at
the water surface and directed upwards, the solution for
the sound pressure in the water layer can be represented
in the form [3, 11–13]

(1)

where

(2)

is the displacement potential and pm is the pressure
amplitude generated by the point source in free space
on a spherical surface of radius R0. Here, (ξr) is the
Hankel function of the first kind; ξ is the projection of
the wave vector on the r axis; ω = 2πf is the cyclic fre-
quency; k = ω/c; t is time; and the expression for ψ(ξ)
is determined from the boundary conditions, which
imply a zero sound pressure at the free (upper) surface
of the water layer z = 0, the continuity of the vertical
component of the particle velocity and pressure at its
lower boundary z = –H, and the continuity of the verti-
cal components of the particle velocity and stress tensor
and the zero values of the tangential components of the
stress tensor at the lower boundary of the sediment
layer z = –(H + h):

(3)

(4)

In expressions (3) and (4), the following notation is
used for convenience:
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For –H ≤ zr ≤ zs, the expression for ψ(ξ) is obtained
from expression (3) by interchanging zs and zr (see [12]).

As in our previous publications [11, 12], we analyze
expression (2) by using the standard procedure for the
transformation of this kind of integrals [1–3]. Then, the
integration from –∞ to ∞ will be reduced to the deter-
mination of the residues at the singular points of the
integrand and to the calculation of the integrals over the
edges of the cuts originating from the branch points ξ =
ak, ξ = bk, and ξ = dk. Since the integrand (3) is sym-
metric with respect to the substitution of –γ4 for γ4, the
integral taken over the edges of the cut corresponding
to the point ξ = kd is zero. As a result, expression (2) for
ϕ(k, r) can be represented as a sum of three terms:

(5)

where ϕmod(k, r) corresponds to the modes, and ϕl(k, r)
and ϕt(k, r) correspond to the longitudinal and shear lat-
eral waves, respectively.

As was mentioned above, ϕmod(k, r) is determined
by the sum of residues at the poles of the integrand from
expression (2). Therefore, from formulas (2) and (3)
with the use of the Hankel function asymptotics for
ξr @ 1, we obtain
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Here, M is the total number of modes whose contribu-
tions are taken into account, xm = x(vm), and vm are
dimensionless (normalized to c) phase velocities of
modes with the numbers m = 0, 1, 2, …; these velocities
are the solutions to the dispersion equation

(8)

for the radiation frequencies exceeding the critical fre-
quencies fm of the modes. For the zeroth (fundamental)
mode with m = 0, the critical frequency is f0 = 0, and for
other trapped modes with the numbers m = 1, 2, …, the
critical frequencies fm = ft, m are determined from the
following equation obtained at vm = b:

(9)

where

(10)

If we take into account only a finite number of leaky
modes whose contributions to the total field is substan-
tial, namely, the modes whose reradiation into the elas-
tic halfspace is caused by the presence of the shear
wave in it, we can determine the approximate values of
the phase velocities and critical frequencies of the
modes with a sufficient degree of accuracy.

In this connection, we note that the reradiation of
energy through leaky modes into shear waves occurs
for the following interval of the angles of incidence of
the Brillouin waves corresponding to these modes:
arcsin(a) ≤ θ ≤ arcsin(b), i.e., the interval within which
the total internal reflection of the aforementioned inci-
dent waves from the lower boundary of the sediment
layer is absent. The same modes exist in the form of
trapped modes in the absence of shear waves (ct = 0),
which is caused by the total internal reflection of the
corresponding Brillouin waves from the lower bound-
ary of the sediment layer in the range of the angles of
incidence arcsin(a) ≤ θ ≤ π/2. The real part of the phase
velocity vR, m = Re{vm} of each of these leaky modes
can be determined within the range of values
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with fair accuracy from the dispersion equation corre-
sponding to the three-layer fluid waveguide model [13]

(12)

where

(13)

Naturally, every value of vR, m determined from
equation (12) will be a fair approximation for the
determination of the exact value of the complex quan-
tity vm = vR, m – ivI, m from the dispersion equation (8).
The imaginary part vI, m of this quantity is responsible
for the reradiation of energy through the corresponding
mode to the elastic halfspace. The critical frequencies
of the corresponding leaky modes f = fp, m can be deter-
mined with sufficient accuracy from the equation

(14)

which is obtained from equation (12) at vR, m = 1/a.

Here, it is appropriate to note that, as will be seen
from the results of the numerical simulation described
below, such an approach to the determination of the fre-
quency dependences of vR, m and vI, m in the framework
of the specific oceanic waveguide model has certain
advantages over the approach based on the introduction
of an effective complex depth [20–22].

Now, we consider the contributions of the longitudi-
nal ϕl(k, r) and shear ϕt(k, r) lateral waves, which
(according to the above description and [1–3, 11, 12])
are determined by the following integral expressions
obtained from formulas (2)–(4):
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where

To obtain the approximate expressions that are con-
venient for the integration and to determine the analyt-
ical dependences ϕl(k, r) and ϕt(k, r) resulting from
them, we perform an approximate analysis of expres-
sions (15) and (16). We begin with the study of the lon-
gitudinal lateral wave. Restricting our consideration to
the first term of the known asymptotic expansion of the
Hankel function for large values of its argument and
applying the change of variables as in the method of
steepest descent [1–3, 11, 12]

(17)

we represent the expression for the longitudinal lateral
wave (15) in the form of an integral with respect to the
new real variable η ∈ [0, ∞):
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where
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several units. Thus, the approximate expression (18)
not only considerably simplifies the numerical calcula-
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tions for ϕl(k, r), but also allows one to obtain the cor-
responding analytical dependences. At large distances
from the source kr @ 1, we can assume that the ratio
ζ = η2/(kr) ! 1 is small. Then, we can restrict our con-
sideration to the zeroth and first terms of the expansions
of the functions Pl(η) and Ql(η) in powers of ζ, pro-
vided that the following conditions are met:

(19)

Performing the approximate transformations corre-
sponding to conditions (19) for the integrand from (18),
we obtain an expression for the longitudinal lateral
wave in the form that is more convenient for analytical
calculations:
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are met, we assume that F1(η) . 1 and, performing the
integration in expression (20), by analogy with [2] we
obtain

(22)

Second, if the conditions opposite to (21) are met:

(23)

which is possible when the radiation frequency tends to
the critical frequency of one of the leaky modes, f 
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expression (20), by analogy with [2] we obtain
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Here, it should be noted that, as expression (18),
expression (26) is convenient for numerical integration
owing to the fast decay of the integrand with growing η.

Assuming that, at large distances from the source
kr @ 1, the conditions

(27)

are met and performing approximate transformations
of the integrand in (26) in the same way as in going
from expression (18) to expression (20), we obtain an
approximate formula for the displacement potential of
the shear lateral wave:
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which occur at frequencies widely different from the
critical frequencies of trapped modes, f ≠ ft, m (where the
critical frequencies are determined from equation (9)
identical with the equality Q( f ) = 0). Then, we can
assume that F2(η) . 1, and, by analogy with [2], from
expression (28) we obtain

(30)

If the conditions opposite to conditions (29) are met,
i.e., if the frequency is a critical one f = ft, m, we assume
that F2(η) . –iβη2/(kr), and, by analogy with [2], from
expression (28) we obtain

(31)

The approximate analytical dependences obtained
for the displacement potentials of the longitudinal (22),
(24) and shear (30), (31) lateral waves allow us to make
some qualitative conclusions concerning the relative
contributions of these waves to the total field.

Near the critical frequencies of the leaky f = fp, m and
trapped f = ft, m modes, the amplitudes of the longitudi-
nal and shear lateral waves, respectively, decrease with
distance much slower, namely, as ϕl(k, r) ~ 1/r (24) and
ϕt(k, r) ~ 1/r (31), than at other frequencies at which the
dependences ϕl(k, r) ~ 1/r2 (22) and ϕt(k, r) ~ 1/r2 (30)
take place. Hence, at large distances from the source,
the frequency dependences of the amplitudes |ϕl(k, r)|
(15) and |ϕt(k, r)| (16) of lateral waves should exhibit
narrow, quasi-resonance peaks at the corresponding
characteristic frequencies f = fp, m and f = ft, m. The char-
acteristic widths of the peaks, ∆ fp, m(r) and ∆ ft, m(r),
decrease with distance and with increasing order num-
ber of the critical frequency, because, in both these
cases, the dimensionless parameter, which governs the
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Fig. 1. Dependences of the normalized amplitudes of
trapped modes Ac (32) on the frequency f for h = 0 (solid
lines) and 20 m (dotted lines). The mode numbers are indi-
cated near the corresponding curves.
corresponding asymptotic behavior of |ϕl(k, r) | and
|ϕt(k, r) |, increases: kr @ 1.

Owing to the described features of the behavior of
lateral waves (for a lateral wave in a waveguide with a
homogeneous fluid bottom, these features were
described earlier in [2]), a pulsed excitation of the
waveguide will be accompanied by a narrow-band fil-
tering in the longitudinal and shear wave pulses.

Expressions (6), (18), and (26) derived above allow
us to study the effect of the sediment layer on the fre-
quency dependences of the excitation amplitudes of
trapped and leaky modes (6), as well as longitudinal
(18) and shear (26) lateral waves.

To perform the corresponding numerical calcula-
tions, we use the acoustic parameters of the shallow-
water oceanic waveguide and the transmission and
reception depths that correspond to the conditions of
the full-scale experiments [11, 12, 18]: c = 1538 m/s,
cs = 1700 m/s, ct = 2400 m/s, cl = 4000 m/s, ρ = 1 ×
103 kg/m3, ρs = 1.6 × 103 kg/m3, ρl = 3 × 103 kg/m3, H =
45 m, h = 0–20 m, |zs| = 12 m, and |zr| = 39 m. As in our
previous publications [11, 12, 18], we restrict ourselves
to studying the behavior of ϕmod(k, r) (6), ϕl(k, r) (18),
and ϕt(k, r) (26) in the low-frequency range 0 < f < 60 Hz
within which the corresponding types of waves notice-
ably affect the formation of the space-frequency inter-
ference structure of the acoustic field. To simplify the
comparison of the calculated values, we consider the
frequency dependences of the normalized amplitudes
of trapped Ac and leaky Ab modes and shear At and lon-
gitudinal Al lateral waves:

(32)

In formulas (32), the amplitudes are normalized to the
maximum value A of the sum of the amplitudes of
trapped modes in the frequency range under study, 0 <
f ≤ 60 Hz, in the absence of the sediment layer (h = 0):

(33)

The results of our numerical simulations are pre-
sented in Figs. 1–5. From the analysis of these results,
we draw the following conclusions.

First (Fig. 1), with increasing sediment layer thick-
ness h, the amplitude of the zeroth (seismic) mode
steeply decreases in the lower-frequency part 0 < f <
40 Hz of the frequency range under study and slightly
increases at higher frequencies f > 40 Hz. According to
our previous publication [25], a decrease in the sound
velocity in the sediment layer by 100 m/s leads to a
considerable decrease in the amplitude of this mode
only for f > 20 Hz. Thus, in the frequency range 0 < f <
20 Hz, the amplitude of the zeroth mode will be mainly
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determined by the sediment layer thickness with all
other conditions being the same.

Second (Figs. 2, 3), the amplitude of the shear lat-
eral wave is by almost an order of magnitude greater
than the amplitude of the longitudinal lateral wave.
With an increase in the sediment layer thickness, the
narrow peaks in the frequency dependences of the
amplitudes of the shear (at the critical frequencies of
trapped modes f = ft, m) and longitudinal (at character-
istic frequencies of leaky modes f = fp, m) lateral
waves are shifted toward lower frequencies. Simulta-
neously, the height of the lowest-frequency peak of
the shear lateral wave decreases by less than 30%,
while the height of the corresponding peak of the lon-
gitudinal wave decreases. A decrease in the sound

0.2

0.1

0 10 20 30 40 50 f, Hz

At

Fig. 2. Dependence of the normalized amplitude of the
shear lateral wave At (32) on the frequency f at the distance
r = 20H for h = 0 (solid line) and 20 m (dotted line).
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2 3

Fig. 4. Dependences of the normalized amplitudes of leaky
modes Ab (32) on the frequency f at the distance r = 20H for
h = 0 (solid lines) and 20 m (dotted lines). The mode num-
bers are indicated near the corresponding curves.
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velocity in the sediment layer leads to noticeable
changes in the amplitudes of the shear and longitudi-
nal lateral waves only in the higher-frequency range
f > 20 Hz (see [25]). Naturally, the widths of all spec-
tral peaks of lateral waves are considerably reduced
with distance (see [25]).

Third (Figs. 4, 5), In the absence of the sediment
layer, the leaky modes that occur in the frequency range
under study within distances r > 20H make a negligible
contribution to the total field, and this contribution is by
an order of magnitude less than even that of the longi-
tudinal lateral waves. In addition, the frequency depen-
dences of the leaky modes and the longitudinal lateral
waves have different positions of the corresponding
peaks. With increasing thickness of the sediment layer,
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0 10 20 30 40 50 f, Hz

Al

0.02

Fig. 3. Dependence of the normalized amplitude of the lon-
gitudinal lateral wave Al (32) on the frequency f at the dis-
tance r = 20H for h = 0 (solid line) and 20 m (dotted line).
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Fig. 5. Frequency dependences of the leaky mode reradia-

tion (attenuation) coefficients δ = vI, m normalized to

the longitudinal wave number kl = ω/cl for h = 0 (solid lines)
and 20 m (dotted lines). The mode numbers are indicated
near the corresponding curves.
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the maximum values of the leaky mode amplitudes
noticeably increase, this increase being the greater the
higher the sound velocity in the sediment layer is (see
[25]). However, because of the exponential decay of
the leaky modes with distance, their contribution to the
total field can be neglected for r > 20H.

Here, we should note an interesting fact: the fre-
quency dependences of the attenuation (reradiation)
coefficients of some leaky modes have single relative
minima at certain frequencies (Fig. 5). With increasing
sediment layer thickness, the number of leaky modes
having such minima increases, and the corresponding
minimum values of the attenuation coefficients first
increase and then decrease. A slight decrease in the
minimum values of the attenuation coefficients of leaky
modes is also observed with a decrease in the sound
velocity in the sediment layer.
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0.4

0

Ac
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(c)

Fig. 6. Frequency dependences of the normalized ampli-
tudes of (a) the zeroth mode Ac, (b) the longitudinal lateral
wave Al, and (c) the shear lateral wave At at the distance
r = 20H for cs = 1700 m/s and ct = 1500 m/s. The numbers
near the curves indicate the corresponding values of the sed-
iment layer thickness: h = 0 and 10 m.
On the basis of the above theoretical study of the
behavior of the frequency dependences of the mode and
lateral wave amplitudes in the specific propagation con-
ditions [11, 12], one can conclude that the space-time
interference structure of broadband sound that was
observed in the experiments [11, 12] in the frequency
range below the critical frequency of the first mode, 0 <
f ≤ ft, 1, can be only caused by the interference of the
seismic zeroth mode with the shear lateral wave. This
conclusion is justified by the fact that, at such relatively
low frequencies, the dominant contribution to the total
field is made by the zeroth mode and the shear lateral
wave whose amplitudes are comparable in magnitude
for various allowed values of the sediment layer thick-
ness.

Naturally, the above conclusions concerning the
contributions of different types of waves to the total
field are generally valid for shallow-water oceanic
waveguides with acoustic parameters of the bottom of
the same kind as those in the experiments [11, 12, 18],
i.e., with ct > c. However, the situation is entirely differ-
ent when the sound velocity in water exceeds the shear
wave velocity in the bottom. Already as ct  c, the
critical frequencies of the trapped modes increase with-
out bound: ft, m  ∞. Hence, for the velocities ct < c,
only one trapped mode will remain, namely, the zeroth
mode corresponding to the Rayleigh surface wave
modified by the presence of the water and sediment lay-
ers. This will result in the disappearance of the narrow
peaks in the frequency dependence of the amplitude of
the shear lateral wave. However, such peaks will
remain for the longitudinal lateral wave, which now
will predominate in amplitude (Fig. 6). With increasing
thickness of the sediment layer, the only relatively wide
peak in the frequency dependence of the amplitude of
the shear lateral wave noticeably decreases in height
and moves toward lower frequencies. Similar changes
are observed in the corresponding dependence for the
zeroth mode (Fig. 6).

Thus, in shallow-water oceanic waveguides with an
elastic bottom, the fluid sediment layer substantially
affects the frequency dependences of the amplitudes of
the trapped and leaky modes, as well as shear and lon-
gitudinal lateral waves, not only at relatively high fre-
quencies f > c/H, but also at relatively low frequencies
f  < c/H.

In closing, we note that, by now, there exist efficient
methods that allow one to perform numerical calcula-
tions on the basis of the initial integral expressions for
different parameters of acoustic fields in oceanic
waveguides with a complex bottom structure (see, e.g.,
[24]). However, the known approximate methods used
in this paper for determining the contributions of differ-
ent types of waves to the total field (see [1–3]) remain
of interest for the interpretation of the results of the cor-
responding numerical [24] and, in particular, of the
full-scale [11, 12, 18] experiments.
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Abstract—Results of direct measurements of the acoustic pressure distribution in a phase-conjugate ultra-
sonic beam in the focus of a converging lens are presented for two types of parametric phase-conjugating
elements, namely, with flat and grooved working surfaces. It is demonstrated that grooving noticeably
improves the quality of focusing of an ultrasonic beam generated in water by a solid phase-conjugating element.
© 2000 MAIK “Nauka/Interperiodica”.
Currently, researchers connect the progress in the
utilization of the phenomenon of ultrasonic phase con-
jugation [1] mainly with such applications as acoustic
microscopy [2, 3] and ultrasonic hyperthermia [4]. In
these and many other cases of practical interest,
focused acoustic beams propagating in a liquid or liq-
uid-like media are used. We should note that, e.g., in
hyperthermia, high-quality focusing must be provided
for high-intensity and, therefore, nonlinear ultrasonic
beams. Evidently, the possibility of the practical usage
of phase-conjugating systems for such applications is
determined in many respects by the quality of phase
conjugation of focused ultrasonic beams, which is pro-
vided by these systems.

Parametric phase-conjugating systems operating
beyond the threshold of the absolute parametric insta-
bility of acoustic oscillations are among the most prom-
ising devices. As it is known [1, 5], they are capable of
real-time generation of phase-conjugate beams with an
intensity several orders of magnitude higher than the
intensity of an incident beam. The first quality studies
of phase-conjugate ultrasound in parametric systems
using polycrystalline ferrite materials were presented
in our previous papers [6, 7]. It was demonstrated that
considerable nonuniformity of the angular dependence
of the efficiency of phase-conjugating conversion is
inherent in cylindrical phase-conjugating elements
with flat faces loaded by a liquid medium. This may
lead to a deterioration in the quality of phase-conjugate
beams with a broad spatial spectrum because of the
unequal conversion of different spatial components of
the incident beam spectrum. It was also found that the
best results in smoothing off the angular dependence of
the efficiency of phase-conjugating conversion are
attained by using the effect of phase-conjugating com-
pensation of the phase distortions, which are intro-
1063-7710/00/4604- $20.00 © 20382
duced by inhomogeneities directly at the input to the
phase-conjugating medium. In this case, it was possible
to expand the angular range of the phase-conjugating
conversion of plane waves incident from water upon
the phase-conjugating element up to ±16° (at the level
–3 dB) without introducing any additional loss.

However, the evaluation of the quality of phase con-
jugation by the form of the angular dependence of the
efficiency of phase-conjugating conversion is not
always convenient in practice. Therefore, a direct study
of the phase-conjugating focusing for one or another
specific conditions seems to be quite important.

This paper presents the results of direct measure-
ments of the acoustic pressure distribution in a phase-
conjugate ultrasonic beam in the focus of a converging
lens for two types of the parametric phase-conjugating
element: with flat and grooved working surfaces. It is
demonstrated that grooving noticeably improves the
quality of focusing of an ultrasonic beam generated in
water by a solid phase-conjugating element.

The experimental scheme is given in Fig. 1. An
ultrasonic pulse with the duration 20 µs and the carrier
frequency f = 6.23 MHz is radiated into water by a
focusing transducer (1) with the diameter 15 mm and
the focal length 39 mm. The incident beam intensity is
low, so that its propagation is purely linear. A cylindri-
cal phase-conjugating element (2) made of nickel-cobalt
ferrite with a diameter of 36 mm and a length of 150 mm
is placed into an inductance coil and positioned at a dis-
tance of 132 mm from the transducer. This distance is
selected in such way that, in the geometric approxima-
tion, the incident beam entirely falls into the aperture of
the phase-conjugating element. Two ferrite samples
were used in the experiments: one of them had plane-
parallel faces, while the other had a special profile on
000 MAIK “Nauka/Interperiodica”
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its liquid-loaded surface. The profile had the form of
closely cut concentric grooves that were 2.5 mm wide
and 0.6 mm deep (the curvature radius of the groove
cross-section was 1.59 mm).

When an ultrasonic pulse gets inside the phase-con-
jugating element, a parametric pumping pulse with the
frequency 2f = 12.46 MHz and duration 100 µs is fed to
the coil, which leads to the generation of a phase-con-
jugate and amplified ultrasonic pulse (a more detailed
description of the operation of the used parametric
phase-conjugating system is given in our earlier papers
[1, 5, 7]). While propagating in water in the opposite
direction, the conjugate beam is focused almost at the
same point as the incident beam.

The measurements of the transverse distribution of
the sound pressure amplitude were conducted in the
focal plane using a PVDF membrane-type hydro-
phone (3) connected to a Tektronix TDS340A digital
oscilloscope via a wide-band amplifier. A short interval
(~1 µs) close to the maximum of the envelope of the
phase-conjugate pulse is selected for the analysis, and
the difference between the maximum and minimum
pressures is calculated within it. Averaging over 64 sam-
ples is used to increase the precision of the results. The
hydrophone positioning is performed by a scanning
system with the step 0.2 mm. Since the transmission
loss is small (<3 dB), the hydrophone is almost trans-
parent to acoustic waves in the operating frequency
range. In combination with the small size of the sensitive
element of the hydrophone (~0.5 mm), this allowed
almost unperturbed measurements of the parameters of
both incident and reflected waves with a relatively high
spatial resolution. The absence of disturbances intro-
duced into the incident wave is fundamentally impor-
tant for the experiments on the real-time studies of the
phase-conjugation quality.1 The angular uniformity of
reception is determined by the sufficiently wide direc-
tivity pattern of the hydrophone (30° at the level –3 dB).

Figure 2 shows the results of the measurements. The
peak-to-peak pressure amplitude in the focus of the
phase-conjugate beam reached the value ~1.5 MPa for
both samples. The wave had the form given at the top
right of Fig. 2. The dots in the figure show the normal-
ized transverse distribution of the pressure amplitude in
the incident wave. The deviation of the incident field
distribution from the theoretical dependence J1(αr)/αr
is explained by both the imperfection of the focusing
transducer and the finite dimensions of the receiving
part of the hydrophone, which lead to the effect of field
averaging. At the same time, the size of the main focal
spot is close to the theoretical value for the given lens:
1.22Fλ/d ≈ 0.77 mm, where λ is the acoustic wave-
length and d and F are the aperture and the focus length,
respectively. The dashed line corresponds to the conju-
gate wave generated by the sample with a flat operating

1 Earlier, we used laser sounding of acoustic fields for this purpose.
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surface. The misfit of curves clearly manifests itself for
large displacements from the acoustic axis (r ≈ 1–3 mm)
and demonstrates the distortions taking place in this
phase-conjugating conversion.

The normalized distribution of a phase-conjugate
wave produced by the sample with the grooved surface
is shown in Fig. 2 by the solid line. As one can see,
there is a noticeable improvement in the quality of the
reproduction of the initial field. As against the previous
case, a considerable suppression of the side peaks
occurs in the phase-conjugate wave, with simultaneous
insignificant broadening of the central spot.

The observed improvement of quality can be
explained in the following way. The plane interface
between the liquid and the solid plays the role of a com-
plex set of narrow-band filters because of the total
reflection of some components of the incident beam
spectrum and a highly nonuniform (in amplitude)
refraction of other components. On the whole, this set
considerably reduces the effective angular aperture of
the phase-conjugating element [6, 7]. As a result, dif-
fraction-type distortions (parasitic side peaks) arise in
the phase-conjugate beam. The relief located at the liq-
uid–solid interface unifies the transmission conditions
for all spectral components incident upon the phase-
conjugating element. In this way, by transforming the
spatial spectrum of the incident beam, it expands and
smoothes out the angular dependence of the transmis-
sion coefficient of acoustic waves through the interface.
Under such conditions, a greater number of compo-
nents of the incident wave takes part in the phase-con-
jugating conversion, and this occurs with approxi-
mately equal weights for all components, which
improves the quality of phase conjugation. The recon-
struction of the initial spatial structure of the incident
beam in the process of the transmission of the phase-
conjugate wave through the same inhomogeneities is
provided by the phase-conjugate character of its front.

ω

1
3

2

2ω

Fig. 1. Simplified experimental scheme. (1) A focusing
ultrasonic transducer; (2) a phase-conjugating element
made of magnetostrictive ferrite with a parametric pumping
coil; and (3) a PVDF hydrophone scanned in the focal plane.
Thin lines with arrows show the paths of the direct and
phase-conjugate ultrasonic beams.
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Fig. 2. Normalized distribution of acoustic pressure in the focal plane. The dots indicate the incident beam, and the dashed and solid
lines indicate the phase-conjugate beams for the cases of the flat and grooved surfaces of the phase-conjugating element, respec-
tively. The form of the phase-conjugate wave in the focus, which is similar for both cases, is given at the top right of the figure.
The influence of the nonlinearity of the propagation
medium on the quality of the parametric phase conju-
gation of focused ultrasonic beams needs special inves-
tigation, and we will consider it in our upcoming pub-
lications.

Thus, the conclusion made in our previous paper [7]
on the higher quality of the ultrasonic phase conjuga-
tion performed by phase-conjugating elements with
grooved working surfaces is confirmed experimentally
for the case of focused phase-conjugate ultrasonic
beams of high intensity.
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Abstract—For steady-state vibrations of an anisotropic elastic body of finite dimensions, a method of the deter-
mination of the vibration energy flows in the body is proposed. The method is based on the measurements of
the surface values of the stress and displacement vectors at a part of the boundary. The proposed algorithm of
the wave field reconstruction is reduced to solving nonclassical boundary integral equations of the first kind
with smooth kernels. The formulation of these equations does not require the determination of fundamental
solutions, but represents a conditionally well-posed problem. The numerical realization of the proposed method
is based on the Tikhonov regularization method and the idea of the boundary element method. Numerical exper-
iments consisting in the reconstruction of the displacements and stresses at the boundary of a rectangular and
a circular domains of austenitic steel are performed in the framework of a planar problem of the orthothropic
elasticity theory. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The problem of field reconstruction in an elastic
medium is an important problem of intensimetry,
which determines the vibration energy flows in struc-
tures from the measured surface values of the stress and
displacement vectors. From the viewpoint of applica-
tions, the most interesting case is that with the zero
components of the stress vector at the boundary of an
elastic body. The formulation and the solution of the
problem of the wave field reconstruction for an isotro-
pic elastic medium can be found in the literature [1–3].
The problem has been solved on the assumption that, at
the free boundary of an elastic body, the components of
the displacement vector are known. Such a problem is
reduced to a Fredholm integral equation of the first kind
with a smooth kernel, and is an ill-posed problem.

In this paper, we consider similar problems for an
anisotropic elastic medium. We propose an algorithm
of the wave field reconstruction on the basis of a differ-
ent type of equations. One of the versions of these
equations has been proposed in [5] and applied to solv-
ing classical boundary-value problems of acoustics and
theory of elasticity in [6, 7, 9].

FORMULATION OF THE PROBLEM

Consider steady-state vibrations of an anisotropic
simply-connected elastic body V bounded by a smooth
surface S. We assume that part of the surface S1 ⊂  S is
available for the displacement measurements. Then, the
problem of the field reconstruction for the body V can
be formulated as follows: Determine the components of
the displacement vector ui that satisfy the system of
equations [8]

(1)cijkluk lj, ρω2ui+ 0, i 1 2 3, ,= =
1063-7710/00/4604- $20.00 © 0385
and the boundary conditions at the surface S1

(2)
where cijkl are the components of the elastic constant
tensor satisfying the elastic symmetry relations

(3)

and the condition of the positive definiteness of the spe-
cific strain energy

. (4)

Here, nj are the components of the unit vector of the
outer normal to the surface S. The formulation of the
boundary-value problem (1), (2) is uncommon for
elliptic equations in mathematical physics and, specifi-
cally, in the theory of elasticity.

In studying the boundary-value problem with the
boundary conditions (2), the main questions to be
answered are those about the uniqueness and the stabil-
ity of the solution under small perturbations.

In the framework of the isotropic elasticity theory,
the uniqueness of the problem formulated above has
been demonstrated and the stability of this formulation
was considered by Bobrovnitskiœ et al. [1, 3]. In solving
the system of Fredholm integral equations of the first
kind with smooth kernels, the key step was the expan-
sion of the displacement vector in normal modes. The
cited papers also determine the criterion relating the
accuracy of the field reconstruction to the dimensional-
ity of the approximating model. We note that the
boundary-value problem (1), (2) can be easily reduced
to the Cauchy problem for equations (1) of the anisotro-
pic elasticity theory. For these equations, the unique-

ui S1

ui0, ti cijkluk l, n j S1

pi0,  i 1 2 3,, ,= = = =

cijkl c jikl cijlk cklij= = =

W ε( ) 1
2
---cijkluk l, ui j, 0≥=
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ness is proved in much the same way as the Holmgren
theorem [4].

One of the approaches proposed in the cited papers
[1, 3] and leading to the solution of a system of Fred-
holm equations of the first kind requires knowledge of
the Green’s matrix function of the problem, which
causes mathematical difficulties in solving specific
boundary-value problems for bounded bodies. In this
paper, we propose another formulation of the operator
equations basing on the relation between the known
field components and the unknown ones.

REDUCTION OF THE PROBLEM OF THE WAVE 
FIELD RECONSTRUCTION TO A SYSTEM

OF INTEGRAL EQUATIONS

To reduce the formulated nonclassical boundary-
value problem for equation (1) with boundary condi-
tions (2), we use the ideas underlying the derivation of
the systems of boundary equations for classical bound-
ary-value problems [5–7, 9]. The approach is based on
the use of the Fourier integral transform and the follow-
ing representation of the displacement vector trans-
forms [5]:

(5)

where

pkm(α, ω) are the components of the matrix B
adjoined to the matrix A: BA = p0(α, ω)E (E is the unit
matrix); and

We note that the set of zeros of the polynomial p0(α, ω)

for real ηj =  is related to the solution of the Christ-

offel equation [8], whence it follows that p0(α, ω) is
zero on three real manifolds.

Let us analyze the set of zeros of the polynomial
p0(α, ω) for complex values of αj . We introduce the
dimensionless variables βj = k–1αj , k = ω/c, and c =

. At fixed values of β1 and β2, the dimension-

Uk α( )
pkm α ω,( )Vm α( )

p0 α ω,( )
----------------------------------------; k 1 2 3,, ,= =

Uk α( ) uk x( )ei α x,( ) V x;d
V
∫=

Vm α( ) σmjn j iα jcmjkluknl–[ ]ei α x,( ) Sx,d
S
∫=

m 1 2 3;, ,=

p0 α ω,( ) detA, A Amk α ω,( ) ,= =

Amk α ω,( ) cmjklα jα l ω2ρδmk;–=

α α1 α2 α3, ,( ), α x,( ) α1x1 α2x2 α3x3.+ += =

α j

α
------

ρ/c3333
less equation p0(α, ω) = k6p0(β, 1) = 0 has six roots
β3 = β3s(β1, β2), where s = 1, 2, …, 6. In the case Imβ1 =
Imβ2 = 0, these roots may include only real ones or
pairs of complex conjugate roots because of the real-
valued coefficients of the polynomial p0(β, 1). At the
next step of our analysis, we divide the set of the roots
P = {β3s(β1, β2)} into two components P+ and P–. When

|  + |  ∞, the quantities β3s become purely
imaginary by virtue of the positive definiteness of the
elastic energy (4). We assign the roots, for which

Imβ3s > 0 at |  + |  ∞, to the set P+; in addition,
at Imβ3s = 0, to the set P+ we assign the roots β3s, for
which Reβ3s > 0. As a result, we have P+ = {β31, β32, β33}.

Further analysis of representation (5) for the com-
plex values of αj leads to the following conclusions.
The left-hand member of equation (5) contains the ana-
lytical functions of αj, and the right-hand member con-
tains the functions with poles on the set P. This contra-
diction is eliminated by the fact that the numerator of
the right-hand member of equation (5) vanishes on the
set P. This leads to a number of solvability relations, six
of them being independent:

(6)

When relations (6) are valid, the remaining equalities
(at m = 2, 3) are identically satisfied. If the domain V
possesses some symmetry properties, and some bound-
ary conditions are set, the number of independent equa-
tions may be reduced to three.

We note that the set of equalities (6) can be inter-
preted as a system of integral equations relating the
known and the unknown quantities at the boundary S
(i.e., the quantities σij ,  and σij , ,

respectively). Thus, equalities (6) represent a system of
integral equations of the first kind with smooth kernels,
and their inversion procedure should require a regular-
ization [10]. We note that the right-hand members of
these operator equations represent smoothing (integral)
operators of the given (measured) functions; therefore,
such a problem is a conditionally well-posed one, and
the inversion procedure can be efficiently performed
with the use of discretization and a transition to a finite-
dimensional version.

EXAMPLE: PLANE DEFORMATION
OF AN ORTHOTROPIC BODY

As an example, we consider the system of boundary
integral equations for an orthotropic body. Such prop-
erties are characteristic of austenitic steel [11] and
many composite materials in the framework of the
effective modulus concept.

β1
2 β2

2

β1
2 β2

2

pk1 α1 α2 α3s α1 α2 ω, ,( ) ω,±, ,( )
× Vk α1 α2 α3s α1 α2 ω, ,( )±, ,( ) 0, s 1 2 3., ,= =

n j S1
ui S1

n j S2
ui S2
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The resolving system of integral equations has the
dimensionless form

(7)

where

k = ω , γ1 = c11/c33, γ5 = c44/c33,

Figure 1 shows the dependences β3s(β1) for austen-
itic steel with the following material constants [11]:

ρ = 0.812 × 104 kg/m3, c11 = 0.2627 × 1012 N/m2,

c13 = 0.145 × 1012 N/m2, c33 = 0.216 × 1012 N/m2,

and c44 = 0.129 × 1012 N/m2.

The system of equations (7) relates the known and
unknown components of the displacement vector and
the stress vector on the contour L = L1 ∪  L2. We assume
that, on the part L1, the quantities

(8)

are given, and on the part L2, the quantities  and ti =

σij  (i = 1, 3) are unknown. For these unknowns,

equalities (7) represent a system of Fredholm integral
equations of the first kind with smooth kernels, and this
system is equivalent to the initial boundary-value prob-
lem. In fact, these equations are the consequence of the
reciprocity theorem formulated in the elasticity theory
for true fields and inhomogeneous plane waves in an
orthotropic medium.

p11 β1 β3s β1( )±,( )V1 kβ1 kβ3s β1( )±,( )
+ p13 β1 β3s β1( )±,( )V3 kβ1 kβ3s β1( )±,( ) 0,=

s 1 2;,=

p11 β1 β3,( ) γ5β1
2 β3

2 1,–+=

p13 β1 β3,( ) γ5 γ7+( )β1β3,–=

V1 kβ1 kβ3,( ) σ( 11n1 σ13n3 ik β1n1γ1((–+

L

∫=

+ β3n3γ5 )u1 β1n3γ7 β3n1γ5+( )u3 )eik β x,( )dLx,+

V3 kβ1 kβ3,( ) σ( 31n1 σ33n3 ik β1n3γ5((–+

L

∫=

+ β3n1γ7 )u1 β1n1γ5 β3n3+( )u3 )eik β x,( )dLx,+

ρ/c33

γ7 c13/c33, β3s β1( ) iµs β1( ), s 1 2,,= = =

µs β1( ) A1 β1( ) i 1–( )s A2 β1( )( )1/2–[ ]1/2
,=

A1 β1( ) 2γ5( ) 1– γ1 2γ5γ7 γ7
2––( )β1

2 1 γ5+( )–[ ] ,=

A2 β1( ) – A1 β1( )( )2 γ5( ) 1– 1 γ1β1
2–( ) 1 γ5β1

2–( ).+=

ui L1

f i, σijn j L1

gi, i 1 3,= = =

ui L2

n j L2
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For such operator equations, the inversion proce-
dure is ill-defined, and it is based on the combination of
the idea of the boundary element method and the
Tikhonov regularization method, as was demonstrated
earlier for the Helmholtz equations [5] and for the anti-
planar problem of the anisotropic elasticity theory [9].

As examples illustrating the proposed approach, we
consider two planar problems for a rectangular and a
circular domain, for an orthotropic material with the
elastic constants specified above.

Field Reconstruction for a Rectangle S = [0, a] × [0, b]

On L1 = {{x1 = 0, x3 ∈  [b1, b]} ∪  {x3 = b, x1 ∈
[0, a]} ∪  {x1 = a, x3 ∈  [b2, b]}}, we have the given
functions fi and gi (i = 1, 3) defined by expressions (8);
these functions correspond to the displacement and the
stress fields calculated on the basis of the generalized
Hooke law:

(9)

where Z(x1, x3) = exp[ik(β1x1 + β3x3)] and β3 = β31(β1).
The unknowns to be reconstructed on L2 = {x1 ∈  [0, a],

x3 = 0} are the quantities uj(x1, 0), σ13(x1, 0), and σ33(x1, 0).
Figure 2 shows the plots of the functions u1(x1, 0) and
u3(x1, 0) at the boundary L2 for a = 1, b = 1, b1 = b2 = 0,

(10)

Curves 1 and 2 in Fig. 2 correspond to the exact solu-
tion of system (9), and the dashed lines and stars corre-
spond to the numerically reconstructed values. Figure 3

u1 x1 x3,( ) Re p13 β1 β3,( )Z x1 x3,( )–{ } ,=

u3 x1 x3,( ) Re p11 β1 β3,( )Z x1 x3,( ){ } ,=

σ11 x1 x3,( ) c33Re ik γ1 p13 β1 β3,( )β1–({=

+ γ7 p11 β1 β3,( )β3 )Z x1 x3,( ) } ,

σ13 x1 x3,( ) c33Re ikγ5 p13 β1 β3,( )β3–({=

+ p11 β1 β3,( )β1 )Z x1 x3,( ) } ,

σ33 x1 x3,( ) c33Re ik γ7 p13 β1 β3,( )β1–({=

+ p11 β1 β3,( )β3 )Z x1 x3,( ) } ,

ka 1.1, kβ1 3,= =

kβ3 2.2507– 1.7817i.+=
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presents similar dependences for σ13(x1, 0) and σ33(x1, 0).
The calculations were performed by dividing the
boundary L2 into 20 elements. The results of the calcu-
lations demonstrate a sufficient accuracy of the field
reconstruction in the problem under study in a wide fre-
quency range.
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Fig. 4.
Field Reconstruction for a Circle S = {x1, x3|(x1 – R)2 +
(x3 – R)2 ≤ R2}

We studied the efficiency of the proposed method of
the elastic field reconstruction as a function of the size
of the boundary part L1 = {x1 = R + Rcosψ, x3 = R +
Rsinψ, ψ ∈ [ψ0, 2π]} available for the measurements of
the elastic field parameters determined by relations (9)
and (10). The unknowns are the components of the dis-
placement and stress vectors on L2 = {x1 = R + Rcosψ,
x3 = R + Rsinψ, ψ ∈ [0, ψ0]}. For R = 0.5, Fig. 4 pre-
sents the plots of the relative errors δ (curve 1) and ε
(curve 2)

of the reconstruction of the displacement and stress
vector components at the boundary L2 at ψ0 ∈  {π/8, π].

(Here, , , and  are the reconstructed values,
and the number of elements N corresponds to the con-
stant length of a boundary element with the angle ψ =
π/40.) A series of calculations performed for recon-
structing the elastic fields testifies to a fairly high accu-
racy of the field determination when the length of part L1
is three or more times as great as the length of part L2. As
the relative length of the part L2 increases, the accuracy
of the reconstruction lowers.

Figure 5 presents the plots of the functions 

(curves 1, the dark circles show the reconstructed val-

δ δ1
2 δ2

2+ , δ1

maxL2
u1 u1

N–

maxL2
u1

----------------------------------,= =

δ2

maxL2
u3 u3

N–

maxL2
u3

----------------------------------,=

ε ε1
2 ε2

2+ , ε1

maxL2
σn σn

N–

maxL2
σn

-----------------------------------,= =

ε2

maxL2
στ στ

N–

maxL2
στ

-----------------------------------=

ui
N σn

N στ
N

u1 L2

1

2

0 1 2
–0.4

–0.2

0

0.2

ψ

u1, u3

Fig. 5.
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000



FIELD RECONSTRUCTION IN AN ANISOTROPIC ELASTIC MEDIUM 389
ues) and  (curves 2, the empty squares show the

reconstructed values) for ψ0 = 3π/4. One can see that,
with the proposed computational scheme, the maximal
error of the reconstruction occurs at the ends of the
reconstructed interval. Within the interval, the recon-
struction error does not exceed 15%. The bursts of the
sought-for values at the edges are typical of the
Tikhonov regularization method realized for integrable
functions in solving the Fredholm integral equations of
the first kind with smooth kernels.

The examples of the elastic field reconstruction con-
sidered in this paper demonstrate the efficiency of the
proposed numerical algorithm of the field reconstruc-
tion.
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Abstract—Numerical simulation and comparative analysis of acoustic fields generated by two-dimensional
phased arrays designed for ultrasonic surgery is conducted. The case of movement of a single focus by an array
with the surface shaped as a part of a spherical shell with the curvature radius 120 mm is considered. The influ-
ence of the number of elements (varying from 64 to 1024), their diameter (from 2.5 to 10 mm), frequency (from
1 to 2 MHz), and the degree of sparseness of the elements at the array surface on the field characteristics is stud-
ied. The calculations are performed for arrays with elements positioned at the surface both regularly (in square,
annular, or hexagonal patterns) and randomly. Criteria for the evaluation of the “quality” of intensity distribu-
tions in the field generated by an array in the case of movement of a single focus are suggested. Of all arrays
studied, the best quality of distributions is obtained for an array containing 256 elements of diameter 5 mm ran-
domly positioned at the array surface. The quality of the intensity distributions for arrays consisting of 255, 256,
and 1024 elements positioned regularly (in square, annular, and hexagonal patterns) is inferior to the corre-
sponding quality for arrays with randomly positioned elements. The irregularity in elements’ positioning con-
siderably improves the distribution quality by suppressing the secondary intensity peaks in the field generated
by the array; or, alternatively, it provides an opportunity to obtain the same distribution quality with a fraction
of the number of elements in the array. The effects of the number and shape of elements, errors in phase setting,
frequency modulation of signals, and non-uniform distribution of amplitudes over the array surface on the dis-
tribution quality are analyzed. © 2000 MAIK “Nauka/Interperiodica”.
In recent years, considerable interest has been
expressed in developing minimum-injury surgery tech-
niques that should provide better results than common
surgery from the viewpoint of reducing the number of
lethal outcomes, preventing side effects, and reducing a
patient’s hospital stay. Among such techniques, those
grounded upon the use of focused ultrasound for the
local destruction of in-depth structures of the human
body by high-intensity ultrasound are the subject of
numerous intensive studies.

Various methods of ultrasonic focusing in biological
tissues are discussed in the literature, e.g., the methods
based on applying single focusing transducers [1, 2],
lenses [3], and phased arrays [4–13]. A simple and
rather inexpensive technique is used in practice for a
long time. It is based on applying single focusing trans-
ducers with the surface shaped as part of a spherical
shell and with a continuous distribution of the particle
velocity over the transducer surface [1, 2]. However, an
essential disadvantage of such focusing systems is their
fixed focusing distance. Since the volume of the focal
region of a radiator is usually much smaller than the
volume of tissues subject to destruction, the means for
the mechanical movement of the radiator must be pro-
vided. From the practical application of such proce-
1063-7710/00/4604- $20.00 © 20390
dures, it is known that approximately one hour of oper-
ation is needed for the destruction of a tissue of volume
2 cm3 (G. ter Haar, private communication, 1998).
Then, up to four hours of operation are needed to
destruct such comparatively small volume as 8 cm3.
Thus, transducers with a fixed focus would hardly be
applied widely in clinical practice not only in surgery
but also for hyperthermia, which is grounded upon a
relatively short-time heating of tissues by high-inten-
sity ultrasound.

Phased ultrasonic arrays have a noticeable advan-
tage in this sense [4–13]. These arrays provide elec-
tronic dynamic focusing, i.e., an opportunity to change
the place and size of the region of action without mov-
ing the array. It is expedient to use arrays with elements
positioned at the surface shaped as a part of a sphere,
thus combining the opportunities provided by the elec-
tronic and geometric focusing [4, 5, 8]. As phased
arrays make it possible to simultaneously create several
focuses at preset areas [8–11], their application makes
it possible to considerably reduce the time of the
destruction procedure for a relatively large tissue vol-
ume [9]. The disadvantages of arrays are the presence
of secondary intensity peaks in their acoustic fields,
which are caused, in particular, by the presence of dis-
000 MAIK “Nauka/Interperiodica”
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crete structure in arrays, as well as their complexity,
and, therefore, the relatively high cost of an array and
the equipment necessary for its operation.

In order to destruct a biological tissue volume
acceptable for practice in the depth of a human body
(≥10 cm3), a two-dimensional phased array for use in
surgery must provide the focus scanning at the neces-
sary distance in three mutually perpendicular directions
and have an acoustic power not smaller than 300–400 W.
In addition, it is necessary to have the intensity in unde-
sirable secondary peaks at a level acceptable for prac-
tice. The realization of such an array is a compromise
between several contradictory requirements. In order to
increase the distance for the focus scanning, and there-
fore to extend the volume of the destruction region, it is
necessary to make the elements less directional, i.e., to
reduce their size. On the other hand, it is necessary that
the active area of the array be not smaller than 50 cm2

to meet the requirements for the radiated power with
not too high values of intensity at the surface of ele-
ments. All these considerations lead to designing arrays
containing excessively large numbers of elements, and
therefore, to an increase in the complexity and costs of
an array feeding system.

The safety of the ultrasonic action must be the deter-
mining factor in the process of designing phased arrays
for surgical applications. Therefore, the minimum level
of sidelobes and secondary intensity peaks of ultra-
sound beyond the focal region becomes one of the basic
criteria for the acoustic fields produced by an array. The
presence of such peaks can lead to undesirable over-
heating and even the destruction of structures beyond
the preset region of action. In order to reduce the influ-
ence of the sidelobes of a directivity pattern, the dis-
tance between the centers of the array elements must be
less than <λ/2 [14], where λ is the wavelength, i.e., for
example, less than 0.5 mm at the frequency 1.5 MHz.
However, with such small elements, it is necessary to
use a large number of elements and electronic channels
in order to produce an array with a large enough aper-
ture and obtain the acoustic power needed for a thera-
peutic array. In addition, the “dead” space between ele-
ments increases. The known ways of reducing the level
of sidelobes in the array directivity pattern are
grounded on the reduction of the amplitude at the ele-
ments of an array from its center to the periphery [14],
and these methods are not always applicable in the spe-
cific case under discussion because of the raised
requirements for the acoustic power of an array. One
more way grounded upon the application of arrays with
unequal distances between their elements [14] was
tested by Hutchinson, Buchanan, and Hynynen [6, 7],
who demonstrated that the reduction of the level of the
secondary intensity peaks, which was expected on
account of aperiodicity of elements, could attain 30–45%
as against arrays with equal distances between ele-
ments. Such approaches as the employment of wide-
band signals for feeding the array elements [15] and the
utilization of only a certain part of the array elements
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
[16] are known. The approach studied in this paper is
grounded upon the application of arrays with sparse
elements positioned randomly at the array surface. The
basis for this approach is the fact that the level of side-
lobes in the field produced by an array depends on the
regularity of the array structure [14]. Goss et al. [5]
demonstrated theoretically that the utilization of ele-
ments randomly positioned at the array surface (we will
call such arrays randomized for short) provides an
opportunity to improve to a certain extent the spatial
distribution of intensity in the field. Evidently, the
application of arrays with sparse elements may some-
what reduce the complexity and cost of large two-
dimensional arrays.

We conducted numerical simulation and compara-
tive analysis of acoustic fields generated by two-dimen-
sional phased arrays with random and regular distribu-
tions of elements at their surfaces shaped as parts of
spheres. We also analyzed the influence of the dimen-
sions, number, and shape of individual elements, errors
in phase setting at the elements, and the frequency
modulation of the signal on the quality of the distribu-
tions produced by arrays. The work was done for the
purpose of clearing out the array designs that provide
an opportunity to minimize the influence of secondary
intensity peaks using a relatively small number of ele-
ments and, hence, to increase the safety of possible
applications of such systems in surgery.

The technique used for calculating the acoustic
fields produced by arrays is generally similar to the
technique described by Goss et al. [5]. It consists of
three main stages: (i) calculation of the distribution of
the complex sound pressure generated by a single radi-
ating element shaped as a disk; (ii) calculation of the
distribution of the total complex sound pressure from
the given single elements positioned at a part of a
spherical shell; and (iii) calculation of the distribution
of relative intensity in the field produced by the whole
array and the analysis of such distributions with the
help of the criteria for the distribution quality evalua-
tion, as described below.

Figure 1 illustrates the calculation technique. The
distribution of the complex sound pressure from a flat
element shaped as a disk was determined with the help
of the method of a point source, according to which the
radiating surface of the disk was represented in the
form of a set of many elementary radiators [17]. The
latter were shaped as squares with a side of 0.25 mm.
Assuming the radial symmetry of an element, its three-
dimensional acoustic field can be determined by calcu-
lating the complex pressure p(rs , zs) in the plane as a
function of distance in the axial direction zs and in the
radial direction rs according to the expression [5]
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Fig. 1. Illustration of the technique used for the calculations. (a) Calculated field of a single element and (b) calculated field of an
array.
where ρ is the tissue density (1000 kg m–3), c is the
sound velocity in the tissue (1500 m s–1), k is the wave
number, u0 is the particle velocity at the surface of ele-
mentary radiators, ∆A is the area of an elementary radi-
ator, α is the attenuation coefficient in the tissue, and R
is the distance from the center of an elementary radi-
ator to the point (rs, zs) where the field is calculated.
Commonly, the calculation was performed for 40 ≤ zs ≤
180 mm and 0 ≤ rs ≤ 60 mm at every 0.2 mm in both
directions (Fig. 1a). However, in certain cases the field
was calculated starting directly from the element sur-
face. The attenuation coefficient in the tissue was taken
equal to 10 Np m–1 MHz–1. This value was used by
many researchers for similar calculations [4, 6, 9].

The calculation of the distribution of the total com-
plex sound pressure produced by an array was con-
ducted by the summation of the pressure contributions
from all single elements in the three-dimensional
region where the resultant distribution was analyzed
(Fig. 1b). At first, the complex pressure for each single
element with the center determined by the angular
coordinates φ and ϕ (the angles from the array center of
curvature to the projections of the element coordinates
onto the vertical and horizontal axes) was determined
in a cylindrical volume (Fig. 1b) as a function of dis-
tance in the axial and radial directions. The phase dis-
tribution at the elements, which is necessary for the
array focusing, was calculated by the determination of
the paths from the element centers to the place of the
focus. Then, the values of the complex pressure were
transferred from each individual cylindrical volume
into the region of analysis that was a parallelepiped
with the grid spacing 0.2 mm (Fig. 1b). The dimensions
of the region of analysis, in which the summation of the
values of complex pressure was performed, were from
50 to 160 mm in the direction of the acoustic axis of the
array and from 0 to ±30 mm (to ±40 mm in some cases)
in two other orthogonal directions. Finally, the intensity
in each cell of the grid was calculated and the intensity
distribution normalized with respect to the maximum
value of intensity in the region of analysis was deter-
mined.

The calculation of the sound pressure and intensity
distributions were conducted using (i) a computer Sili-
con Graphics Onyx2 with computer codes written in
Fortran 77 and (ii) a Pentium II PC using Microsoft
Fortran PowerStation 4.0 based on the Fortran 90 stan-
dard. The obtained distributions were analyzed using
the AVS v5 (Advanced Visual Systems Inc. Waltham,
MA), MATLAB 5.2.1, and Axum 5.0. The three-
dimensional distributions of intensity were analyzed
qualitatively in order to evaluate the field on the whole
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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(a) (b) (c)

Fig. 2. Schematic representation of arrays consisting of flat elements shaped as disks and randomly positioned at a spherical surface.
(a) 256 elements 5 mm in diameter; (b) 128 elements 7 mm in diameter; and (c) 64 elements 10 mm in diameter.
and check for the potential “hot spots” or regions
requiring special attention. Two-dimensional boundary
distributions in selected planes were basically used for
the quantitative analysis of the intensity distributions.

The two-dimensional distributions presented in this
paper corresponded as a rule to the data in the y–z plane
(Fig. 1b). This plane always contained the focus when
the position of the latter did not coincide with the array
center of curvature, and, therefore, the secondary peaks
of intensity connected with the discrete structure of the
array had to be present in this plane. In some cases (see
below), the calculation was conducted for the case
when the focus scanned in the x–z plane.

We studied the influence of the number of elements
(64, 128, 255, 256, and 1024), their diameter (2.5, 5, 7,
and 10 mm), frequency (1, 1.5, and 2 MHz), and the
sparseness of elements at the array surface on the char-
acteristics of the ultrasonic fields produced by arrays.
The calculation was conducted for the arrays with the
surface shaped as a part of a spherical shell with the
curvature radius 120 mm and elements positioned at the
surface both randomly (Fig. 2) and regularly in the
square, annular, and hexagonal patterns (Fig. 3). Only
the positions of elements are shown in the figures, but not
their size. All arrays had the same diameter of 110 mm.

A schematic representation of an array of 256 ele-
ments that are shaped as disks with diameters of 5 mm
and installed quasi-randomly at a surface in the form of
a part of a sphere (the true random distribution was
modified in such way that the minimum distance
between the element centers was 5.5 mm) is given in
Fig. 2a. The distance between the centers of the most
distant elements was 100 mm. The calculation was
conducted for three operational frequencies: 1, 1.5,
and 2 MHz. Several quasi-random distributions of ele-
ments at the array surface were studied, but the differ-
ence between results obtained for the same array was
insignificant. The calculation was also conducted for
randomized arrays of 128 elements of diameter 7 mm
(Fig. 2b) and of 64 elements of diameter 10 mm
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
(Fig. 2c). In both cases, the frequency was 1.5 MHz,
and the minimum distance between the centers of ele-
ments was 7.5 and 10. 5 mm, respectively.

Figure 3 shows the investigated arrays with regular
positioning of elements at the surface. A schematic pic-
ture of an array of 256 elements shaped as disks with
diameters of 5 mm that are installed at the surface in
square patterns is given in Fig. 3a. The minimum dis-
tance between the element centers was 5.5 mm. Fig-
ure 3b demonstrates the same array of 1024 elements
with diameters of 2.5 mm and the distance between the
centers of elements being 2.75 mm. Figure 3c shows an
annular array containing 255 elements and consisting
of the central element and nine concentric rings with
radii from 5.5 to 49.5 mm (with a step of 5.5 mm). The
rings consisted of 5, 11, 17, 23, 28, 33, 40, 46, and
51 elements, respectively. The distance between the
centers of the elements was 6 mm. An array of 255 ele-
ments positioned at the surface in hexagonal patterns
with the distance between the element centers 5.5 mm
is shown in Fig. 3d. All arrays given in Figs. 2 and 3
have approximately the same (with the precision within
1.5%) total area of all elements (about 50 cm2), and,
therefore, must radiate approximately the same acous-
tic power.

Four criteria were proposed for the evaluation of the
normalized intensity distributions calculated for vari-
ous arrays. The best quality (the criterion A) was
assigned to an intensity distribution with the values of
intensity larger than 0.1Imax (where Imax is the maxi-
mum intensity in the focus) being present only around
the focal region and absent in other regions of the stud-
ied field. This criterion agrees with the common opin-
ion that the level of secondary intensity peaks in the
field radiated by an array must be at least by 8–10 dB
lower than the maximum intensity in the focal region in
order to provide the safety of ultrasonic action on tis-
sues [4–6]. Three other criteria were used to evaluate
fields of lower quality. The quality B was assigned to
the distribution when less than 10 points or small areas
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Fig. 3. Schematic representation of arrays consisting of flat elements regularly positioned at a spherical surface. (a) 256 elements of
diameter 5 mm positioned in square patterns; (b) 1024 elements of diameter 2.5 mm positioned in square patterns; (c) 255 elements
of diameter 5 mm positioned in annular patterns; and (d) 255 elements of diameter 5 mm positioned in hexagonal patterns.
with intensity within the interval 0.1 ≤ I ≤ 0.15Imax were
present beyond the focal region. The distribution, in
which more than 10 points or small areas with the
intensity within the interval 0.1 ≤ I ≤ 0.15Imax were
present beyond the focal region, was evaluated as the
distribution of the quality C. Finally, the quality D was
assigned to distributions having at least one point or
small area with the intensity I ≥ 0.2Imax in the consid-
ered plane beyond the focal region.

Figure 4 demonstrates examples of intensity distri-
butions for a randomized array of 256 elements with
the diameter 5 mm, which is excited at the frequency
1.5 MHz for the case of the movement of a single focus.
The dependence of the quality of intensity distribution
on the position of the shifted focus is shown for the dis-
tance from the array surface z = 110 mm. One can see
that in the case of the focus shift from 10 to 16 mm
from the acoustic axis, the quality of the intensity dis-
tributions changes from grade A to grade D. The
dimensions of the analysis region were 110 mm in the
direction along the acoustic axis and 60 mm in the
direction perpendicular to it. Nine contours (from 10 to
90% of Imax with the step 10% Imax) are present within
the focal region (Fig. 4). The distribution of intensity in
the field beyond the focal region was evaluated with the
help of contours within the interval 10–20% Imax with
the step 5% Imax, or 2% Imax when necessary.

The evaluation of the quality of the intensity distri-
butions produced by this array at the frequencies 1, 1.5,
and 2 MHz is given in Fig. 5. Here, as in Figs. 6 and 7
below, the data corresponding to scanning in the direc-
tion of positive values of y are presented. In the case of
randomized arrays, the calculation was conducted for
negative values of y as well. The results were qualita-
tively analogous. As distinct from the study by Goss
et al. [5], we analyzed the ratios of the secondary and
main intensity peaks not only in the focal plane, but
also in a relatively large region of analysis before and
behind the focus. It turned out that a randomized array
of 256 elements with a diameter of 5 mm excited at the
frequency 1 MHz provided an opportunity to scan the
focus within the distance ±20 mm from the acoustic
axis, within the interval of the values of z from 50 to
130 mm, with the highest quality criterion (A) (Fig. 5a).
In the case of the frequency 1.5 MHz, the distances,
within which the focus could be shifted from the acous-
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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Fig. 4. Examples of the intensity distributions produced by an array of Fig. 2a and the criteria used for the evaluation of the distri-
bution quality. (a) Criterion A; (b) criterion B; (c) criterion C; and (d) criterion D. The cross indicates the position of the curvature
center of the array. The focus coordinates: (a) (0, –10, 100 mm); (b) (0, –14, 110 mm); (c) (0, –15, 110 mm); and (d) (0, –16, 110 mm).
The analysis region is 110 × 60 mm.
tic axis with the quality A and B, were ±10 mm within
the interval of the values of z from 70 to 120 mm and
±15 mm within the interval of the values of z from 50
to 130 mm, respectively (Fig. 5b). The volume of the
region of action with the quality A and B constitutes
63 (106) cm3 (the figures for B are given in parenthe-
ses) for the frequency 1 MHz (Fig. 5a) and 16 (49) cm3

for the frequency 1.5 MHz (Fig. 5b). In the case of the
frequency 2 MHz, this volume falls to 12.5 (16) cm3

(Fig. 5c).

The characteristics of the spatial intensity distribu-
tions, which are evaluated using the selected quality
criteria, depend on the distance at which the focus is
shifted from the array center of curvature and on the
attenuation in the medium. Figure 5 shows that, when
the focus is shifted from the center of curvature, the
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
quality of distributions deteriorates sharply. One can
also see that the largest interval of the focus shift from
the axis of an array of the A quality can be attained not
in the focal plane, but at a distance of 1–2 cm from it
toward the array. 

The ratio of the total area of elements (the active
area) in an array of 256 elements with a diameter of
5 mm to the area of the array surface is approximately
equal to 51%. Figure 6a illustrates the influence of an
increase in the degree of sparseness of elements for the
aforementioned randomized array of 256 elements
with a diameter of 5 mm (Fig. 2a) when its 128 ele-
ments are turned off in an arbitrary way. The operating
frequency is 1.5 MHz. Comparing Figs. 6a and 5b, one
can see that an increase in the degree of sparseness of
elements leads to a deterioration in the quality of the
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intensity distributions. In this case, the useful volume
of action upon tissues not only decreases noticeably,
but also shifts toward the array. Here, the maximum
distance from the array at which it is possible to focus
an A grade array is 100 mm (Fig. 6a).

Figure 6b demonstrates the intensity distributions
produced at the frequency 1.5 MHz by a randomized
array of 128 elements with a diameter of 7 mm (Fig. 2b).
Figure 6c presents similar data for a randomized array
of 64 elements with the diameter 10 mm (Fig. 2c). The
reduction of the number of randomly positioned ele-
ments from 256 to 128 and then to 64, which is accom-
panied by an increase in the diameter (from 5 to 7 and
10 mm, respectively) in order to keep constant the
active area of the array, also leads to progressive deteri-
oration of the quality of the intensity distributions
(compare Fig. 5b with Figs. 6b and 6c). The difference
between the quality of the intensity distributions of a
randomized array of 128 elements with a diameter of
5 mm and a similar array with 7-mm diameter elements
turned out to be small despite a certain difference in the
directivity of the elements (Figs. 6a, 6b). The data
shown in Figs. 5 and 6 correspond to focus scanning in
the y–z plane. The calculations performed for the x–z
plane yield qualitatively analogous results and are not
presented here.

The results of the evaluation of the intensity distri-
butions produced at the frequency 1.5 MHz by arrays
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Fig. 5. Summary of the calculation results and the evalua-
tion of the quality of intensity distributions at different ultra-
sonic frequencies for a randomized array of 256 elements
with a diameter of 5 mm (Fig. 2a). The frequencies are (a) 1;
(b) 1.5; and (c) 2 MHz. The quality criteria: (d) A; (s) B;
(×) C; and (u) D.
with regular positioning of elements in square, annular,
and hexagonal patterns (Fig. 3) are given in Figs. 7 and
8. One can see that the quality of the intensity distribu-
tions from arrays of 255 and 256 regularly positioned
elements with the diameter 5 mm (Figs. 7a, 7c, and 8)
is inferior to that for a randomized array of 256 ele-
ments with the diameter 5 mm (Fig. 5b). As we have
indicated above, the calculation is conducted for the
case of the focus moving in both the y–z plane and the
x–z plane. The intensity distributions in these planes
were almost the same for the arrays with the elements
positioned in square (Figs. 3a, 3b) or annular (Fig. 3c)
patterns. Therefore, Fig. 7 presents the distributions
obtained only in the y–z plane. However, when the pat-
tern of the array structure observed from the place of
the focus in the case of scanning along the x and y axes
is essentially different, as it takes place in the case of a
hexagonal array (see Fig. 3d), the intensity distributions
in the y–z and x–z planes are also different (Figs. 8a, 8b).
The best quality of distributions among the regular
arrays of 255 and 256 elements was observed in the
case of annular arrays (Fig. 7c), and the lowest quality
was observed for square arrays (Fig. 7a) and hexagonal
arrays in the case of scanning in the y–z plane (Fig. 8a).

The quality of the intensity distributions for an array
of 1024 elements with the diameter 2.5 mm positioned
at the surface in square patterns (Fig. 7b) was much
lower than for a randomized array of 256 elements with
a 5 mm diameter (Fig. 5b), but comparable to that of a
randomized array of 128 elements with a 7 mm diame-
ter (Fig. 6b). This suggests that the randomization of
the elements positions at the array surface leads to six-
to sevenfold economy in the number of elements and
channels exciting them with approximately the same
quality of intensity distributions. Nevertheless, from
the literature available to us and devoted to the analysis
of two-dimensional phased arrays for surgery, it fol-
lows that only regular arrays have been discussed, except
for the studies by Goss et al. [5]. In these regular arrays,
the most popular way of positioning the elements at the
surface is that in square patterns [4, 8, 10–12].

There is a noticeable difference in the character of
intensity distributions produced by arrays with random
and regular positioning of elements. The former are
characterized by distributions with secondary peaks of
intensity observed mainly along the path of a converg-
ing ultrasonic beam to the focal region (Fig. 4) and
occurred in the focal region only in the case of the low-
est quality of distributions (the data are not presented).
For arrays with regular positioning of elements, the sit-
uation was opposite. The secondary peaks connected
with the discrete character of the array structure were
observed precisely in the focal plane.

The data obtained show that the positive effect of
randomization of the array elements can be attained
when the sparseness of elements in an array with ran-
dom distribution of elements lies within a certain inter-
val (approximately from 40 to 70%). An increase in the
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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sparseness (when the active area occupies less than
40% of the array surface) leads to a reduction of radi-
ated power and a deterioration of the distribution qual-
ity. On the other hand, a decrease in the sparseness of
elements (when the active area occupies more than
70% of the array surface) will inevitably lead to the
ordering of the array structure, with all its conse-
quences.

The developed approach to the evaluation of the
quality of the intensity distributions was used for inves-
tigating the influence of various parameters and geo-
metric characteristics of arrays with a random distribu-
tion of elements on the quality of the acoustic fields
generated by them. Below, we summarize the main
results of our study.

(1) The results testify that the dimensions of individ-
ual elements have a decisive effect on the capability of
randomized arrays to move the focus with the quality
acceptable for practical applications. If the diameter of
elements is too large (e.g., 10 mm) and the directivity
pattern is too narrow, then even an extremely large
number of elements in the array does not allow one to
move the focus with the quality of intensity distribution
admissible for practice. For example, the calculations
show that, in the case of using an array of 256 elements
with a diameter of 10 mm (we should note that such an
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Fig. 6. Evaluation of the quality of intensity distributions
produced by randomized arrays: (a) an array of 128 ele-
ments randomly selected from a randomized array consist-
ing of 256 elements of diameter 5 mm (Fig. 2a); (b) an array
of 128 elements of diameter 7 mm (Fig. 2b); and (c) an array
of 64 elements of diameter 10 mm (Fig. 2c). Notations are
the same as in Fig. 5.
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array is impossible, because the total area of elements
exceeds almost twice the area of its surface), it is
impossible to move the focus away from the axis to the
distance greater than 10 mm with an acceptable quality.
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Fig. 7. Evaluation of the quality of intensity distributions
produced by arrays with elements positioned regularly at a
spherical surface: (a) an array of 256 elements of diameter
5 mm positioned in square patterns (Fig. 3a); (b) an array of
1024 elements of diameter 2.5 mm positioned in square pat-
terns (Fig. 3b); and (c) an array of 255 elements of diameter
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It follows from the obtained data that, in order to scan
at a distance of 10–15 mm with acceptable quality, it is
necessary for the diameter of elements not to exceed
five wavelengths. If this condition is satisfied, the
increase in the number of elements and, therefore, in
the total active area of the array leads to an increase in
the maximum intensity in the focus and to an improve-
ment of the quality of intensity distributions.

(2) The shape of an individual element (concave,
flat, or convex) almost does not influence the quality of
intensity distributions produced by an array. For exam-
ple, the evaluation patterns of the quality of distributions
for an array, which has the radiation frequency 1.5 MHz
and consists of 64 elements with the diameter 10 mm
and have different shapes (concave elements with the
curvature radii 6 and 12 cm and convex elements of the
same radii), barely differ from each other and from the
characteristic of an analogous array consisting of flat
elements (Fig. 6c). This result is predictable, because,
despite a significant difference between the intensity
distributions immediately near the surface of the ele-
ments of different shape (z = 0–5 cm), the distributions
in the focal region (z = 8–14 cm) are essentially the
same. It follows from here that there is no need to use
more expensive nonflat elements in the design of such
arrays.

(3) The shapes of the apertures of randomized arrays
(square or circular) do not noticeably affect the quality
of intensity distributions. For example, the intensity dis-
tributions of arrays of 256 × 5 mm elements (1.5 MHz)
with the apertures shaped as a circle (Fig. 2a) and a
square and with equal active areas and sparseness of
elements almost did not differ from each other.

(4) Errors in setting the necessary distribution of
signal phases at individual elements, for example,
because of errors in the element positioning at the sur-
face, can lead to a deterioration of quality of intensity
distributions. The calculation of intensity distributions
was conducted for a randomized array of 256 × 5 mm
elements (1.5 MHz) with three different phase distribu-
tions at the elements: (a) the calculated phase distribu-
tion corresponding to the ideally precise positioning of
elements; (b) random numbers selected within the
interval from –0.4 to 0.4 radian were added to the val-
ues of phases from case (a); and (c) random numbers
from the interval between –1.0 and 1.0 radian were
added to the values of phases from case (a). It turned
out that the deterioration of the quality of distributions
for case (b) as against case (a) was relatively small.
These data agree with the results obtained by Hutchin-
son et al. [6] and Wang et al. [13] who demonstrated
that a discrete phase setting in 4 bit (22.5°) is sufficient
for the satisfactory operation of arrays in practice. A
further increase in the phase setting error (case (c))
leads to a sharp deterioration in the quality of intensity
distributions.

(5) The utilization of such distributions of the ampli-
tudes of particle velocity at the surface of a randomized
array, when the amplitude values decrease from the
array center to the periphery, does not lead to an
improvement of the quality of intensity distributions. In
particular, the calculations were performed for the dis-
tributions of the type [1 – (r/r0)2]n (where n = 1, 2, and
r0 is the array radius) used by Skolnik [14] for regular
arrays with circular apertures. This approach, which is
effective for regular arrays, in the case of randomized
arrays leads only to an increase in the relative intensity
values in the secondary peaks, because the maximum
intensity value in the focus, which is used for the nor-
malization of these values, considerably decreases.

(6) The utilization of the frequency modulation of
signals at the elements of a randomized array provides
an opportunity to improve to some extent the quality of
intensity distributions. For example, calculations were
performed for the intensity distributions of a random-
ized array of 256 × 5 mm elements for different fre-
quencies (0.9; 0.95; 1.0; 1.05; and 1.1)f, where f is the
central frequency (1.5 MHz). The averaged distribution
for the five indicated frequencies turned out to be better
than all the others, including the distribution for the
central frequency.

The quality of the intensity distributions of the
arrays that we studied can be compared with the corre-
sponding quality for the sparse array described by Goss
et al. [5]. This array consisted of 108 elements with the
diameter 8 mm (only 64 of them were excited simulta-
neously). The frequency was 2.1 MHz. The elements
were arranged in hexagonal patterns at a part of a spher-
ical shell with a diameter of 100 mm and a curvature
radius of 102 mm. The sparseness of elements was
about 45%. The calculations performed by Goss et al.
[5] demonstrated that, in the case of the array focusing
at its curvature center, the predicted intensity level in
the secondary peaks in the focal plane was 0.13Imax.
When the focus was shifted by 5 mm from the axis, this
level increased to 0.6Imax. In the measured distribu-
tions, these levels increased to 0.38Imax and 0.9Imax,
respectively, which is unacceptable for practical pur-
poses. Goss et al. [5] estimated the possible role of a
random distribution of elements over the array surface
and predicted theoretically that, in this case, the
expected intensity level in the secondary peaks in the
focal plane should be 0.04Imax without the focus shift and
0.16Imax with the focus shift by ±5 mm. Such a small
effect of randomization obtained by Goss et al. [5] was
apparently caused by the fact that the ratio of the element
diameter to the wavelength was 11.2. As we have already
noted, one should only expect a considerable improve-
ment in the quality of intensity distributions when this
ratio is selected from the interval 0.5–5 λ.

In conclusion, we note that the results obtained in
this paper demonstrate that the irregularity in position-
ing the elements at the array surface leads to a notice-
able improvement in the quality of intensity distribu-
tions produced by an array as against a regular position-
ing of elements (in square, annular, or hexagonal
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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patterns). The calculations testify that a randomized array
that has a diameter of 110 mm and consists of 256 ele-
ments with a diameter of 5 mm, which are excited at the
frequency 1–1.5 MHz and positioned on a part of a
spherical shell with a curvature radius of 120 mm, pro-
vides an acceptable quality of intensity distributions
according to the criterion of the presence of secondary
intensity peaks in the generated field. It is demonstrated
that randomized arrays make it possible to provide
approximately the same quality of distributions as reg-
ular arrays with much greater numbers of elements
(greater by a factor of 6 to 7 in the considered case).
The number of elements and, especially, their diameter
strongly affect the capability of a randomized array to
scan the space by the focal region. The shapes of indi-
vidual elements (flat, concave, and convex elements)
barely influence the quality of the fields produced by a
randomized array. An error in setting the signal phases
at the elements within ±0.4 radian almost does not
deteriorate the quality of the intensity distributions. The
frequency modulation of signals within ±10% of the
central frequency leads to a certain improvement in the
quality of intensity distributions.

The results of the conducted numerical simulation
may be useful for designing of such arrays.
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Abstract—In the hydrological conditions of a biaxial sound channel, the cross-correlation between acoustic
signals received at points spatially separated (from 10 to 63 km) along the sound propagation track is investi-
gated. The signals are received by a narrow-beam array scanning in the vertical plane. The beam width is ~2°
at the mean frequency (1 kHz) of a pseudo-noise signal. It is noted that, as the distance between the points of
reception increases, the correlation decreases. This is mainly caused by the effect of the multipath propagation
with an incomplete resolution of signals in arrival angles, rather than by changes in the “water” signal spectrum
due to the attenuation. © 2000 MAIK “Nauka/Interperiodica”.
The study of the spatial correlation of hydroacoustic
signals in a real ocean is of both theoretical and applied
significance. The evaluation of the effect of various
oceanological factors on the cross-correlation of wide-
band signals received at different distances from the
sound source allows one to reveal the reasons of the
correlation changes and, therefore, to introduce the
necessary corrections into the models of an acoustic
waveguide. In practice, these studies are especially
important for estimating the possibility of constructing
wide-aperture arrays, as well as for determining the
efficiency of a combined processing of hydroacoustic
data received from spatially separated hydroacoustic
systems. In a series of recent papers [1–5], the prob-
lems of spatial correlation were partly considered.
However, the investigations described in these papers
were performed with omnidirectional sound receivers
and, in most cases, at small distances from the sound
source (up to several kilometers). Dahl [1] presented
the results obtained by studying the effect of sea surface
scattering on the spatial correlation in the experiments
with the separation of the points of reception along the
signal propagation track up to 15 sound wavelengths
(the frequencies ≥20 kHz), at distances from 500 to
1000 m. In studying the spatial coherence as a function
of the central frequency of broad-band acoustic signals
propagating in a shallow-water region (H = 15 m),
Badiey, Simmen, and Forsythe [2] observed a high
coherence for frequencies from 0.6 to 7 kHz. However,
the maximum separation of the receivers did not exceed
2 m, and the distance to the source was no more than
214 m. Westwood and Knobles [3] considered the prob-
lem of determining the track of a continuous broad-
band acoustic source moving in an oceanic waveguide
in the case of a good resolution of rays within a multi-
ray signal and a high spatial correlation of signals
received by horizontally separated receivers. The
1063-7710/00/4604- $20.00 © 20400
experiments were carried out with an above-water
source moving at a distance of 2 km from two receivers
separated by 438 m. Tielburger, Finette, and Wolf [4]
presented the results concerning the influence of inter-
nal waves on the spatial (and temporal) coherence of
400-Hz signals in a shallow sea. Siderius et al. [5] stud-
ied the possibility of using a vertical chain of hydro-
phones for localizing inhomogeneities in shallow-
water regions with the help of a spatial-temporal cross-
correlation function.

This paper continues the investigations of the spatial
correlation of acoustic signals propagating in compli-
cated hydrological conditions of the deep ocean [6].
The experiments were performed using a conventional
procedure: the research vessels passed at a given dis-
tance and heaved aback to the drift with transmitting
and receiving systems lowered in water. As a sound
source, we used an omnidirectional transmitter of a
continuous pseudo-noise signal with the mean fre-
quency 1 kHz in the one-octave band. The signals were
received by a 40-m vertical array with the angular beam
width ~2° at the mean signal frequency.

The experiments were carried out in mid-December
1991, in the Atlantic Ocean, not far from the Gibraltar
Strait. The geometry of the experiment was as follows:
the omnidirectional source was located at a depth of
150 m, the center of the vertical array was at a depth of
180 m, and the water depth along the whole track was
equal to ~4800 m. The spatial correlation was mea-
sured between the signal received by the array at a dis-
tance of 72 km from the source and the signals
received (at other time) at distances of 62, 95, and
135 km. The sound velocity profile c(z) corresponded
to a biaxial underwater channel, one axis being located
at a depth of ~450 m (cmin1 = 1503.2 m/s), and the other
axis at a depth of ~2000 m (cmin2 = 1502.9 m/s). Figure 1
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Sound velocity profile c(z) (left) in the test region (the Atlantic Ocean) and the ray pattern with the source (S) at a depth of
150 m (right).
exhibits the ray pattern for the measured profile c(z)
with the source located at a depth of 150 m. The arrows
at the top show the positions of the source and the
points of reception during the correlation measure-
ments. From this ray pattern, it follows that signals can
propagate between the source and the receiving array
along two paths: over rays passing only through the
upper channel, or over rays occupying the whole
waveguide thickness. Thus, we have a superposition of
the sound field zone structure with large ray cycle
lengths (~60–80 km), which is determined by the deep-
water channel, and the zone structure with smaller ray
cycle lengths (~30 km), which is formed by the upper
channel. In the deep-water channel, the first conver-
gence zone begins at a distance of ~60 km and ends at
a distance of ~75 km; the beginning of the second zone
is at a distance of ~125 km from the source. Therefore,
(with consideration for the deep-water channel only),
the spatial correlation was measured between the signal
received at the middle of the first convergence zone (the
reference signal) and the signals received at the origin
of the first zone (62 km), in the shadow zone (95 km),
and in the second convergence zone (135 km). The sep-
arations of the points of reception along the distance
were, ∆r = 10, 23, and 63 km, respectively. Evidently,
the signals propagating within the upper channel also
arrived at all points of reception.

Consider now the experimental results presented in
Fig. 2. This figure exhibits: (top) the angular spectra
(the array response versus the vertical angle of signal
arrivals) obtained by the array beam scanning in the
range of arrival angles ±23°; (center) the frequency–
energy spectra of the signal received from the direction
indicated by the arrow in the upper plot; and (below)
the autocorrelation functions obtained in the mode of
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
the array aiming at a chosen angle. Along the ordinate
axis, we plotted: for the angular spectra, the amplitudes
of the received signals A (on the linear scale) versus the
grazing angles α (in deg); for the energy spectra, the
spectral density S in dB versus the frequency f (in kHz);
and for the correlation functions, the autocorrelation
coefficient R versus the time delay τ (in ms). The angu-
lar and energy spectra presented in Fig. 2 were aver-
aged over 12 s, and the autocorrelation functions were
obtained by averaging over 1.024 s.

Figure 2a characterizes the reference signal propa-
gating without reflections from the waveguide bound-
aries and received at a distance of 72 km. Its arrival
angle equals α = –6° (see A(α)). The minus and plus
signs mean the arrivals of rays at the point of reception
from below and from above, respectively. The afore-
mentioned signal was chosen as a reference one,
because it had the highest intensity, and it was well
resolved by the array beam in the vertical plane. How-
ever, one can observe a modulation of its energy spec-
trum S with the frequency fm ≈ 250 Hz. This is caused
by the fact that the signal arrived at the point of reception
over two rays with the time difference τ = 1/fm ≈ 4 ms,
which corresponds to the position of the second peak
(marked by the arrow) on the delay axis τ for the auto-
correlation function R.

Figure 2b presents the characteristics of the signal
received at the origin of the first convergence zone (for
the deep-water channel) at a distance of 62 km. The
maximum of the array beam was aimed at the angle
α = +12°. In this case, the array beam spanned the sig-
nals arriving over a small number of rays, as demon-
strated by the angular width of the array response A and
the lack of modulation in the energy spectrum S. Some
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Fig. 2. Angular spectra A (top), frequency–energy spectra S (center), and autocorrelation functions R (bottom) at the points of recep-
tion: (a) at the middle of the first convergence zone caused by the lower channel (distance 72 km); (b) at the origin of the first con-
vergence zone (distance 62 km); (c) in the shadow zone (distance 95 km); (d) in the second convergence zone (distance 135 km).
broadening of the main peak is observed in the autocor-
relation function R, which indicates the arrival of rela-
tively weak signals with delays τ less than the correla-
tion interval determined by the frequency band of the
radiated signal.

From Fig. 1b it follows that the distance 95 km cor-
responds to the shadow zone for the signals propagat-
ing through the deep-water channel. To this distance,
only the signals can arrive that propagate through the
upper channel in the range of the grazing angles ±6.5°.
The angular spectrum of the received signals A pre-
sented in Fig. 2c is continuous, because separate rays
could not be resolved even with the use of the narrow-
beam array. The array beam was aimed at the angle
α = –2° which corresponds to the received signal of the
highest amplitude. From the irregularity of the energy
spectrum S and the multitude of small peaks in the auto-
correlation function R, we can conclude that a great
number of rays were spanned by the array beam.

Figure 2d refers to the case of the receiving array
located at a distance of 135 km. Signals can arrive to
this distance through both the upper and the lower
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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Fig. 3. Normalized cross-correlation functions R for different spatial separations ∆r = (a) 10; (b) 23 (the scale for R is doubled); and
(c) 63 km.
channels (see Fig. 1b). The angular spectrum A is con-
tinuous in the range of angles ±10°. However, the ampli-
tude of the signals with the arrival angles α ≈Å –8.5°  and
α ≈ +9° was somewhat greater than that of other sig-
nals. Therefore, the maximum of the array beam was
aimed at an angle of +9°. We can see a well-defined
modulation in the energy spectrum S and the secondary
correlation peaks in the autocorrelation function R,
which, as in the previous case, is the consequence of a
simultaneous reception of several signals spanned by
the array beam.

Having analyzed the characteristics of the sound
fields recorded at the chosen distances, we proceed to
the main issue, namely, to the cross-correlation of the
received signals. The results of measurements of the
spatial correlation function R(τ) are shown in Fig. 3,
which illustrates the variations of the normalized cross-
correlation functions R within 3 min. The averaging
time for each realization was 1.024 s, with the interval
between the realizations being 25.5 s, which equals the
period of the pseudo-noise signals. The measurement
procedure was described in detail in [6]. Since the func-
tion R(τ) was calculated between the signals received at
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
different spatial points and at different instants of time,
the scale of delays τ in Fig. 3 is a conditional one. The
zeroth delay corresponds to one of the correlation
peaks: in most cases, to the maximum peak.

The temporal variability of the cross-correlation
function R(τ) between the signals received in the first
convergence zone (in the deep-water channel) at dis-
tances of 62 and 72 km is shown in Fig. 3a. In the
curves R(τ), we can see two main correlation peaks
whose values vary from 0.70 to 0.83 and from 0.30 to
0.36, and several weak peaks with smaller values of the
correlation coefficients. This testifies to several signal
arrivals at the point of reception over different rays with
slightly different angles, which fall into the main lobe
of the array directional pattern. These signals, espe-
cially at time delays exceeding the time correlation
interval of the radiated signal, represent an interference
with respect to one another. Therefore, it is expedient to
estimate the value of the spatial correlation coefficient
|Rs| in the absence of multipath propagation. The cor-
rected correlation coefficient allowing for the interac-
tion of the signals arriving over different rays and unre-
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Table

Position of the receiving array ∆r, km αr/αs σR k σRs

In the first convergence zone 10 –6°/+13° 0.77 0.05 3 0.89 0.05

First zone–shadow zone 23 –6°/–2° 0.31 0.06 12 0.67 0.03

First zone–second zone 63 –6/+9° 0.54 0.10 9 0.84 0.03

Rmax Rs
solved by the array beam can be found from the follow-
ing expression [7]

where k is the number of the correlation peaks and N is
the number of independent measurements of the corre-
lation coefficient. In the considered case (with a 10-km
separation of the points of reception), the value of the
corrected correlation coefficient |Rs | falls in the range
0.81–0.93, and its value averaged over 8 measurements
is | | = 0.89 ± 0.05.

Figure 3b shows the cross-correlation functions R(τ)
between the reference signal (the distance 72 km) and
the signals received at a distance of 95 km from the
source, i.e., for the spatial separation of the points of
reception 23 km. At this distance, the angular spectrum
in the range ±6.5° (see Fig. 2c) was totally caused by
signals arriving over rays that were not resolved by the
array beam. As a result, the functions R(τ) at the chosen
angle α = –2° (see Fig. 3b) exhibit a large number (~12)
of correlation peaks with small correlation coefficients.
For this reason, the scale in Fig. 3b was doubled.
Because of the large number of signals spanned by the
main lobe of the directional pattern and because of the
temporal variability of their amplitudes, the values of
the correlation coefficients Rki for separate peaks vary
from 0.09 to 0.14 (for peaks with minimum values of
the correlation coefficients) and from 0.23 to 0.39 (for
peaks with maximum values). The corrected spatial
correlation coefficient |Rs| varies from 0.63 to 0.72 with

the mean value | | = 0.67 ± 0.03. The reduction of the
value of the correlation coefficient |Rs| at ∆r = 23 km as
compared to that ∆r = 10 km is explained by the incom-
plete allowance made for the interaction of many sig-
nals simultaneously falling within the array beam, rather
than by the increasing spatial separation of the points of
reception. In particular, this is confirmed by the results
obtained for large separations of the points of reception
(∆r = 63 km) with a smaller number of rays.

Figure 3c shows the correlation functions R(τ) for the
spatial separation of the points of reception ∆r = 63 km,
for the same reference signal received at a distance of
72 km in the first convergence zone (in the deep-water
channel) and the signals with the arrival angles α ≈ +9°
(see Fig. 2d) recorded in the second convergence zone
at a distance of 135 km. These functions exhibit
approximately nine correlation peaks |Rki|, the value of

Rs Rki
2

k

∑ 
 
 

1/2

/N ,
i 1=

N

∑=

Rs

Rs
the minimum peak varying from 0.07 to 0.13, and the
value of the maximum one, from 0.36 to 0.64.The cor-
relation coefficient |Rs | (summed over all peaks) cor-
rected for each realization varied from 0.78 to 0.87,
which exceeds |Rs | for ∆r = 23 km, as was noted above.

The results obtained are presented in the table,
where the following data are given: the position of the
receiving array (relative to the sound field structure
caused by the lower channel only); the spatial separa-
tion of the points of reception ∆r; and the arrival angles
α of the reference signal (αr) and the spatially-sepa-
rated signal (αs) at which the array beam was aimed.
The table also gives the greatest correlation coefficients
| | averaged over the observation time for separate,
resolved in arrival times, signals with the standard devi-
ations σR; the average values of the corrected correla-

tion coefficients | | with their standard deviations σRs;
and the number of the correlation peaks k.

These experimental data show that an increase in the
spatial separation of the points of reception from 10 to
63 km leads to a reduction of the cross-correlation coef-
ficient. This reduction is mainly a consequence of the
interaction between the simultaneously received sig-
nals, which are an interference to one another, rather
than a consequence of the increase in distance. Thus,
the cross-correlation of signals propagating over purely
water paths is predominantly affected by the varying
number of received signals falling into the relatively
narrow (~2°) main lobe of the directional pattern, rather
than by the spectrum variation with increasing distance
due to the sound attenuation.
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Abstract—Dispersion curves are calculated for fast leaky surface acoustic waves in a periodic system of metal
electrodes on a lithium tetraborate crystal. The periodic Green’s function analysis is applied to the piezoelectric
halfspace. To allow for the mechanical properties of the electrodes, a perturbation method is developed that is accu-
rate to within the first order of the electrode thickness-to-period ratio, and the finite-element method is used to inves-
tigate the higher-order effects. The reflection factor of a system of two open electrodes is shown to have a minimum
at a certain electrode thickness. The fast leaky-to-Rayleigh wave conversion factor and the Rayleigh wave reflection
factor are studied as functions of the electrode thickness. © 2000 MAIK “Nauka/Interperiodica”.
In recent years, interest has grown considerably in
the so-called leaky surface acoustic waves (SAW),
which are described by inhomogeneous equations of
motion of an elastic medium. The leaky waves experi-
ence attenuation along the propagation path due to con-
version into bulk waves. At present, the well-known
types of leaky waves are those in quartz, lithium nio-
bate, and lithium tantalate. These waves belong to the
so-called quasi-shear leaky waves [1, 2], because their
shear component predominates. Their velocity is close
to that of the fast shear wave, and the attenuation is
caused by the conversion into the slow shear wave.
Crystal orientations are known for which the attenua-
tion of these waves is very small; in particular, in
36°YX-cut LiTaO3, it equals 0.0003 decibel per wave-
length. The leaky waves have found a wide application
in high-frequency SAW filters with low insertion loss,
because the propagation velocity of these waves is
about 1.5 times higher and the electromecanical cou-
pling factor, which determines the excitation efficiency,
is much higher than the corresponding values for the
Rayleigh waves.

Low-loss fast surface acoustic waves were discov-
ered not long ago [3, 4]. Their longitudinal displace-
ment component is the predominant one; the velocity is
close to that of the longitudinal bulk wave, i.e., it is
almost twice as high as that of the Rayleigh wave. Thus,
it is possible to further increase the operating frequency
of the SAW filters.

Fast leaky surface acoustic waves in a periodic sys-
tem of metal electrodes on a tetraborate lithium crystal
(Li2B4O7) with the orientation specified by the Euler
angles (0°, 47.3°, 90°) were theoretically and experi-
1063-7710/00/4604- $20.00 © 0405
mentally studied in [5]. The reflection factor was shown
to increase with the electrode thickness-to-wavelength
ratio. The dispersion curves were also calculated for the
zero-thick electrodes near the Rayleigh wave stopband
and near the band where the fast leaky wave is con-
verted into the Rayleigh wave.

In this paper, we study the reflection of the fast leaky
surface acoustic waves in a periodic system of metal
electrodes on a lithium tetraborate crystal. To describe
the piezoelectric halfspace, the periodic Green’s func-
tion method [6] is applied, which is particularly suit-
able for studying the SAW propagation in periodic
structures on crystals. To describe the effect of mechan-
ical properties of the electrodes, a perturbation method
is developed, which is accurate to within the first order
of the electrode thickness-to-period ratio (h/p), and the
finite-element method is used in order to overcome the
limitation that this ratio be small. In contrast to the
results reported in [5], the reflection factor of two open
electrodes is shown to vary nonmonotonically with
increasing ratio h/p. The fast leaky-to-Rayleigh wave
conversion factor and the Rayleigh wave reflection fac-
tor are studied as functions of the electrode thickness.

Consider a piezoelectric halfspace z < 0 on whose
surface a system of electrodes with a period p is
arranged; the electrode width and height are l and h,
respectively; the electrodes are parallel to the Y-axis. It
is known that, when sources of elastic stresses and elec-
tric charges are present on a piezoelectric surface, they
cause particle displacements and induce an electric
potential on the surface. The latter quantities can be
2000 MAIK “Nauka/Interperiodica”
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expressed in terms of the Fourier transform of the
Green’s function as follows:

(1)

where k is the wave number; ω is the circular fre-
quency; Ui(k, ω), T3i(k, ω), ϕ(k, ω), and σ(k, ω) (i = 1,
2, or 3 refer to the X-, Y-, or Z-axis) are the Fourier
transforms of the particle displacements, stress tensor,
electric potential, and charge, respectively. In the gen-
eral case, [G(k, ω)] is a 4 × 4 matrix and is called the
generalized or matrix Green’s function of the linear
piezoelectric halfspace [7].

The procedure of calculating the Green’s matrix ele-
ments involves the solution of the eigenvalue problem
for the equations of motion of the piezoelectric
medium; this problem can be reduced to finding the
attenuation factor characterizing the wave attenuation
in the bulk of the crystal in the direction normal to its
surface from an octic equation. When the wave number
k is real and there are no wave sources in the bulk of the
piezoelectric, only four of the eight roots correspond to
waves that are confined to the surface or carry the
energy away from the surface into the crystal bulk.
However, the wave number of the leaky wave is com-
plex. In this case, according to [8], the four attenuation
factors should be selected using the analytical expan-
sion of the Green’s function elements from the real axis
to the complex plane. The poles displaced from the real
wave number axis correspond to waves whose ampli-
tude decreases along the propagation path and
increases depthward, which testifies to the energy
transfer to the bulk waves; therefore, they correspond to
the leaky waves. This method for selecting the eigen-
values was used in this paper.

In the presence of a periodic system of electrodes,
according to Floquet’s theorem, the elastic stress and
charge density on the surface can be represented as the
functions of the x coordinate in the form

(2)

where the unknown wave number q describes the dis-
persion of the system’s eigenwaves and the functions
t3i(x, ω) and s(x, ω) are periodic with the period p.

Strictly speaking, the leaky waves are not the eigen-
waves of the piezoelectric halfspace, because their
amplitude tends to zero at a long distance from the
source. However, when the leaky wave pole on the
complex wave number plane is sufficiently close to the
real axis, a space region always exists where this wave
dominates [9]. In this region, the propagation of the
leaky wave can be considered as the eigenwave propa-
gation problem.

Ui k ω,( )
ϕ k ω,( )

G k ω,( )[ ] T3i k ω,( )
σ k ω,( )

,=

T3i x ω,( )
σ x ω,( )

iqx( ) t3i x ω,( )
s x ω,( )

,exp=
Expanding the right-hand side of (2) into the Fourier
series yields

(3)

where t3i(m, ω) and s(m, ω) are the Fourier series coef-
ficients and Q = 2π/p is the “wave number” or the
inverse vector of the periodic structure. Formulas (1)
and (3) can be used to find the Fourier coefficients for
the particle displacements and the electric potential on
the surface. The dependences of these quantities on the
coordinate can be obtained as a sum of the Fourier
series:

(4)

This expression shows that the response of the piezo-
electric halfspace can be calculated in terms of the
Green’s function

(5)

which is the response to a periodic δ-function-type
excitation.

The Green’s function completely describes the
piezoelectric substrate; however, to calculate the eigen-
waves of the periodic structure, one should specify
additional relationships between the excitations and the
responses. These relationships can be obtained by tak-
ing into account the mechanical characteristics of the
electrode structure.

We study two types of electric connections in the
electrode system: all electrodes are either connected
(short-circuited) or open (isolated from each other). In
both cases, the electric potential is constant within an
electrode. We assume that the charge resides at the
lower electrode surface, which is adjacent to the piezo-
electric. From the viewpoint of electric characteristics,
this means that the electrode is treated as an infinitesi-
mally thin one. The charge distribution across the elec-
trode width is represented by the expression

(6)

T3i x ω,( )
σ x ω,( )

=  iqx( )exp t3i m ω,( )
s m ω,( )

imQx( ),exp
m ∞–=

+∞

∑
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ϕ x ω,( )

iqx( )exp=

× G q mQ+ ω,( )[ ] t3i m ω,( )
s m ω,( )

imQx( ).exp
m ∞–=

+∞

∑

Gp q ω,( )[ ] iqx( )exp=

× G q mQ+ ω,( )[ ] imQx( ),exp
m ∞–=
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n 0=

N
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where An is an unknown coefficient of the nth-order
Chebyshev polynomial Tn(y). This formula gives a cor-
rect description of the singularities at the electrode
edges; therefore, only a small number of Chebyshev
polynomials is needed to provide an adequate descrip-
tion of the charge distribution [6]. Calculating the Fou-
rier transform of (6) yields the amplitudes of the spatial
harmonics of charge

(7)

which are involved in the right-hand member of (4).
Here, Jn(y) is the nth-order Bessel function of the first
kind.

In a system of connected electrodes, all their poten-
tials are zero. Dividing an electrode into N intervals,
setting the potential at each interval equal to zero, and
using formula (4), we obtain a system of N linear
equations in the amplitudes of the spatial harmonics
of charge sm , which, in turn, are represented by for-
mula (7).

In a system of open electrodes, the potential of each
electrode is unknown; an additional equation is given
by the condition that the total electrode charge be zero.
We multiply expression (7) by exp(iqx) (see (2)) and
integrate the result to obtain

(8)

Expressions (7) and (8) and the second equation in
(4) relate the electric characteristics of the piezoelectric
halfspace to those of the electrode structure.

We employ two approaches to describe mechanical
properties of the electrodes. The first one uses the per-
turbation theory, and the second uses the finite element
method. In both cases, the particle displacements and
the normal stresses must be matched at the interface
between the two elastic media.

The approach based on the perturbation theory
assumes that the upper medium is a layer whose thick-
ness varies with the period p and is described by the
function ζ(x). At the upper irregular boundary of the
layer, the normal elastic stress must be zero:

(9)

where nj (j = 1, 2, 3) are the components of the outer
normal to the surface z = ζ(x). When h = max |ζ(x)| ! p,
one can expand equations (9) into a power series in the
small parameter ε = h/p and restrict it to the first-order
term [10, 11]:

(10)

Here, i = 1, 2, 3 and the upper prime and the substripts
x or z mean the differentiation with respect to the coor-
dinate x or z, respectively. The elements of the stress
tensor and their z-derivatives in (10) are calculated at

sm
l

2 p
------ i–( )nπJn π l

p
---m 

  An,
n 0=

N

∑=

An i( )nJn q
l
2
--- 

 
n 0=

N

∑ 0.=

tijn j 0,=

ti3 ti1ζ x' ti3 z,' ζ+– 0.=
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the surface z = 0. By virtue of (10), the condition that
the elastic stresses in the two media be matched at the
interface z = 0 can be reduced to the form

(11)

Expanding z = ζ(x) and (11) into the Fourier series
yields the expressions for the Fourier coefficients of the
elastic stress at the surface of the piezoelectric:

(12)

where n and m are the numbers of the Fourier harmon-
ics and Am are the Fourier coefficients of the function
z = ζ(x). When the electrode cross-section is rectangu-
lar, we have

(13)

The assumption that the layer is thin can be used to
derive a relationship between the Fourier components
of stress til , the derivatives ∂ti3/∂z, and the particle dis-
placements at z = 0 [12]. For this purpose, one should
expand the particle displacements in the layer into a
power series

(14)

and substitute it into the equations of motion of the
elastic material of the layer. Then, the condition that the
stress at the upper layer boundary be zero yields

(15)

(16)

(17)

(18)

where c11, c12, and c44 are the elastic moduli and ρ is the
density of the electrode material. Relationships (12)
together with (15)–(18) completely describe the
mechanical properties of the electrode structure.

To remove the limitation that the parameter h/p be
small, we use the finite element method [13, 14]. In this
method, the continuous medium is divided into individ-
ual small elements called the finite elements. The elas-
tic displacement distribution within the elements is
interpolated by a linear combination of polynomials
whose coefficients are equal to the displacements at the
nodes of the individual elements. Then, the conditions
for minimizing the Lagrangian of the elastic body are
imposed, or Galerkin’s procedure is applied directly to
the differential equations of motion of the elastic
medium to derive equations for the elastic displace-
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ments at the element nodes. Combining the equations
that describe individual elements with the conditions
that the particle displacements and stresses at the ele-
ment interfaces be continuous yields an inhomoge-
neous system of linear equations in the displacements
of all nodes in the region occupied by the finite body.
This system can be written in the matrix form

(19)

Here, matrices [S] and [M] describe the elastic and iner-
tial properties of the medium and are called the elastic-
ity and inertia matrices, respectively; the elements of
the vector [U] are the particle displacements at the
nodes of all finite elements; and the elements of the
external stress vector [T] are given by the expression

(20)

where the polynomial N(x, z) interpolates the elastic
displacements within an individual finite element, and
the integral is calculated over the finite element bound-
aries that approximate the boundary of the elastic body.

The elastic displacements and stresses must be con-
tinuous at the interface between the electrode and the
piezoelectric crystal. We write the elastic displace-
ments at the surface of the piezoelectric as a superposi-
tion of spatial harmonics and use the condition that the
displacements at the nodes at the interface between the
electrode and piezoelectric crystal be equal to represent
the elements of the vector [U]

(21)

where Ui(kn, m) are the weighting factors, Anm are the
partial wave amplitudes, and j and xj are the number
and the coordinate of the node at the interface between
the electrode and the piezoelectric crystal.

The elastic stresses at the piezoelectric surface are
nonzero under the electrode and zero elsewhere. Intro-
ducing the unknown stresses at the nodes that lie at the
interface between the electrode and the piezoelectric
crystal and approximating the stresses within individ-
ual finite elements by interpolation polynomials, one
can calculate the elements of the vector [T] in (19) and
the Fourier components of the stresses at the piezoelec-
tric surface

(22)

where M is the total number of nodes on the electrode–

piezoelectric interface,  are the elastic stresses at
these nodes, and Nm(x) are the interpolation polyno-
mials.
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T3i
m( )
Expressions (19), (21), and (22) provide a complete
finite-element description of the system of electrodes
and give additional relationships between the sources
and the responses to them, which are necessary for
solving the eigenwave problem for the structure.

In our calculations, we assume that the electrodes
are made of aluminum, which is mostly used in prac-
tice. On (0°, 47.3°, 90°)-cut lithium tetraborate, the fast
leaky wave has a zero Y-component of displacement;
therefore, the matrix [G(k, ω)] reduces to a 3 × 3 matrix.
Combining equations (4) and relationships that
describe the electric and mechanical properties of the
electrode structure yields a system of homogeneous lin-
ear equations whose determinant depends on the
unknown wave number q. The condition that the deter-
minant be zero at the given frequency ω gives the dis-
persion relationship for the periodic structure.

When M spatial harmonics of the fast leaky wave
are taken into account, the perturbation method applied
to the system of connected electrodes yields a system of
3M + N equations in 3M unknown amplitudes of the
spatial harmonics and N unknown coefficients of the
Chebyshev polynomials in (7). For a system of open
electrodes, with allowance for (8), the dimension of the
system increases by one. The finite-element method
requires more computations. When an electrode is sim-
ulated by Px nodes in the x direction and Py nodes in the
y direction, the number of equations involved in the
system is 2PxPy + 2Px + 3M + N for connected elec-
trodes and greater by one for open electrodes. Here, the
additional unknowns are two stress components at the
electrode–piezoelectric interface.

Numerical calculations were performed for M = 10,
N = 6, Px = 7, and Py = 3. A common steepest descent
procedure was used to find the minimum of the deter-
minant of the system of equations at a given fre-
quency ω.

Figure 1 shows the imaginary part of the wave num-
ber q for a system of connected electrodes versus fre-
quency near Bragg’s stopband for the fast leaky wave.
The imaginary part of the wave number determines the
reflection factor in the stopband. The normalized fre-
quency is specified by the structure period. If p = 2π,
Bragg’s reflection condition π/p = q gives q = 0.5, and
the central frequency of the stopband is ω ≈ VL/2, where
VL is the velocity (in km/s) of the fast leaky wave on a
free surface of the crystal. The plots a given for h/p = 0
to 0.04 with 0.01 intervals. With an increase in this
parameter, the stopband broadens and the attenuation
increases at the center of the band.

Figure 2 shows the real part of the wave number,
which determines the phase velocity, for the system of
connected electrodes at the same values of h/p. It can be
seen that the wave number remains almost constant
(about 0.5) within the stopband. This means that two
fast leaky waves propagating in opposite directions are
transformed into each other in as a result of reflection.
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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In the system of open electrodes (Fig. 3), the central
frequency of the stopband is shifted toward higher fre-
quencies, which is caused by a lower electric shielding
than in the system of connected electrodes. The impor-
tant feature of this case is that the reflection factor var-
ies nonmonotonically with h/p. This behavior is
explained by the fact that the electric reflection factors
have opposite signs in systems with connected and
open electrodes. When the electrodes are sufficiently
thick, the reflection due to the mechanical perturbation
predominates over the reflection due to the electric per-
turbation of the surface, and the resulting reflection fac-
tor increases.

Solid lines in Figs. 1–3 refer to the perturbation
method; dashed lines, to the finite element method. It
can be seen that the results obtained by the perturbation
method and the finite element method are very close for
small h/p. A noticeable disagreement appears for h/p >
0.02. The greatest difference is less than 5%.

Immediately on the right of the stopband (Figs. 1,
3), a high attenuation appears due to the conversion into
the longitudinal bulk wave. A similar effect is observed
for quasi-transverse leaky waves, e.g., in 36°YX-cut
LiTaO3 [6]. The attenuation on the left of the stopband
is associated with the nature of the wave and is related
to the conversion into the longitudinal bulk wave. This
attenuation also takes place on an unperturbed surface.
However, in the system of connected electrodes, the
attenuation has a 0.006-dB/wavelength minimum at
h/p = 0.015 on the left side of the stopband, which is
twice as low as the attenuation on an unperturbed met-
allized surface.

This cut of lithium tetraborate can also support the
Rayleigh wave whose velocity VR is by a factor of 2.1
lower than that of the fast leaky wave VL. When the con-

Im(q), 10–3

10
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4

2

0

3.32 3.36 3.40 3.44 3.48 ω

Fig. 1. Imaginary part of the wave number for a system of
connected electrodes versus frequency. The parameter h/p
varies from 0 to 0.04 at a step of 0.01. The solid lines are cal-
culated by the perturbation method, and the dashed lines by
the finite element method.
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dition Q = qL + qR is met, where qL and qR are the wave
numbers of the leaky and Rayleigh waves, the reflec-
tion of the fast leaky wave accompanied by the conver-
sion to the Rayleigh wave takes place; at Q = 2qR, the
Rayleigh wave is reflected. For open electrodes (Fig. 4),
the maximum leaky-to-Rayleigh wave conversion fac-
tor varies nonmonotonically with the electrode thick-
ness, as in the case of the fast leaky wave reflection.
However, the Rayleigh wave reflection factor in sys-
tems of open or connected electrodes varies monotoni-
cally with thickness because of the lower electrome-
chanical coupling for the Rayleigh waves. The Ray-
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Fig. 2. Real part of the wave number for a system of con-
nected electrodes versus frequency for h/p = (1) 0 and
(2) 0.04.
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0

Fig. 3. Imaginary part of the wave number for a system of
open electrodes versus frequency. The parameters are the
same as in Fig. 1.
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leigh wave is also an eigenwave of the piezoelectric
halfspace. Therefore, it is more stable to perturbations
of the surface, and the leaky-to-Rayleigh wave conver-
sion factor and the Rayleigh wave reflection factor are
lower than the fast leaky wave reflection factor.

On the whole, our results are in good agreement
with the results reported in [5]. The data obtained by
the perturbation method developed above and by the
finite element method are in close agreement. The the-
oretical dispersion curves can be used to calculate the
parameters of the coupling mode technique, which is
widely used in designing SAW filters.

h/p, 10–2

Im(q), 10–3
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Fig. 4. Imaginary part of the wave number at the center of
the stopband versus h/p for (1) connected and (2) open elec-
trodes. The solid lines refer to the fast leaky-to-Rayleigh
wave conversion, and the dashed lines to the Rayleigh wave
reflection.
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Abstract—An approach to the simulation of low frequency vector wave fields in stratified media (mainly in the
ocean) is considered. The approach is characterized by an improved stability with respect to dividing the
medium into many layers of arbitrary thickness. The model for the sound field of a point source is based on an
integral representation of two-dimensional, cylindrically symmetric vector wave fields in inhomogeneous
media, so that the contributions of all types of waves are included automatically. The model medium is subdi-
vided into N horizontally homogeneous layers for which 4(N – 1) equations are formulated to satisfy the bound-
ary conditions between adjacent layers. The method of the generalized Schmidt matrix is used to obtain the
coefficients of the equations; these coefficients are substituted into the expressions (of the Fourier–Bessel inte-
gral type) for the local parameters of the field. The latter are calculated according to the numerical procedure,
and the results are used to model the distributions of the acoustic pressure and the horizontal and vertical com-
ponents of the particle velocity in liquid and elastic media. The instability of the calculation procedure may
result in a disagreement between the model and the exact solution. However, the disagreement is shown to occur
mainly in models containing excessively thick layers. A way for improving the stability of the numerical model
is suggested. The simulation results are compared with the exact analytical solution for the simplest example
and with the results obtained according to the commonly used generalized matrix procedure (the benchmark
problem). The examples of the practical application of the model for investigating more complex seismoacous-
tic wave fields in the ocean are presented. © 2000 MAIK “Nauka/Interperiodica”.
The simulation of wave fields in stratified media is a
classical problem of acoustics and, specifically, ocean
acoustics. This problem is considered in a number of
recent papers [1–11], the well-known monograph [12],
and fundamental works [13–19]. Recent activities in
such areas as oil exploration and investigation of the
sea bottom in the shelf zone are based on applied acous-
tics, and this fact makes the development of numerical
approaches to the wave field simulation an urgent prob-
lem, especially when one or several layers of the bot-
tom bulk are characterized by depth-dependent elastic
properties, so that waves of different types (including
longitudinal, shear, and surface seismoacoustic waves)
can propagate in such layers and along their bound-
aries.

A numerical procedure based on a number of known
techniques for calculating the wave fields was devel-
oped [6, 15] to simulate seismoacoustic fields in the
oceanic medium when the source and the receiver are
located at arbitrary depths in the vertically inhomoge-
neous water or bottom bulk. Each of these techniques
(e.g., [11]), as applied to the simulation problem, has
disadvantages that are partially discussed below. We
suggest a procedure that takes into account our experi-
ence in numerical simulations of vector wave fields in
elastic media and has a number of new features, partic-
1063-7710/00/4604- $20.00 © 20411
ularly, in the choice of the thickness of elastic layers
used in modeling.

We describe the wave fields in elastic media on the
basis of the vector wave equations for local the dis-
placements u and the stress tensor σik or their compo-
nents [13] along the coordinate axes. The propagation
velocities cl and ct of longitudinal and transverse waves
are related to the medium density ρ and Lame coeffi-

cients λ and µ through the relationships  = (λ + 2µ)/ρ

and  = µ/ρ [13]. In this case, a liquid medium appears
to be a particular case of an elastic medium, if one sets
the coefficient µ = 0 and requires the stress tensor to be
composed of only diagonal elements equal to the com-
ponents of the local acoustic pressure p [12, 13].

The majority of existing models consider the ocean,
including its bottom, as a horizontally stratified, cylin-
drically symmetric medium whose properties may only
slightly vary in the horizontal (radial) direction and are
independent of the azimuth angle. Here, we will not
compare the known procedures of solving the wave
equation and formally finding the parameters of wave
fields in the stratified ocean. We note only that most of
these procedures are reduced to the Green’s function
technique [12, 13, 15]. The corresponding calculation
models and procedures, their advantages, disadvantages,
and limitations are reviewed in detail in papers [6, 15].

cl
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Two approaches appear to be most convenient for
numerical simulations of low frequency fields. In the
first approach, the solution is represented in the form of
an expansion in the eigenmodes of the equation. In the
second approach, the vector wave field (solution) at
every local point is represented as an integral—the con-
volution with the Green’s function, over its domain of
definition. In the first approach, the expansion in modes
may be unstable if the velocity of shear waves in the
ground does not exceed the velocity of sound waves in
water. Without additional improvement, this approach
is adequate only for simulating the field in the water
column [5, 20], and it is much less useful in a more gen-
eral case, including the simulation of the vector fields
in elastic sediments and the underlying bottom bulk.

Because of a direct estimate of the field, the second
approach avoids these difficulties and naturally takes
into account not only the discrete spectrum of solutions
(including decaying modes), but also the continuous
spectrum. As a result, the wave field everywhere is a
superposition of all types of waves occurring in the
water medium and the bottom bulk under the given
conditions, namely, the longitudinal, shear, surface,
propagating, and inhomogeneous waves [14]. In the
absence of external sources, the equations for the dis-
placement potentials in a homogeneous elastic medium
have the form [13]

(1)

where the scalar Φ and vector Y potentials are related
to the displacement vector u through the relationship

(2)

In the case of cylindrical symmetry, the solution to
the problem on the field of an external harmonic source,
i.e., the particular solution to equations of type (1) with
specified boundary conditions is representable in the
form of the Fourier–Bessel integrals of the Green’s
function of the inhomogeneous equation for both scalar
and vector potentials Φ and Y [12]:

(3)

where ξ is the horizontal wave number; r is the horizon-
tal component of the observation point measured rela-
tive the source; zs and z are the vertical coordinates of
the source and the observation point (receiver), respec-
tively; J0(x) and J1(x) are the zero- and first-order
Bessel functions that are the solutions to the homoge-
neous equations (1); and G(z, zs, ξ) and G*(z, zs, ξ) are
the Green’s functions of the boundary-value problem
for the scalar and vector potentials. In the layer with the
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source, these Green’s functions satisfy the inhomoge-
neous ordinary differential equations

(4)

where δ(z – zs) is the Dirac delta-function and ω is the
angular frequency of the harmonic source. We consid-
ered the case in which the source of compression waves
(a monopole) is located within some layer of the con-
sidering system of layers, e.g., within the water layer.
With this assumption, only the first of equations in (1)
is actually inhomogeneous. Nevertheless, equations (4)
give us a possibility of finding the Green’s function of
the system composed of equations (1) and the boundary
conditions even for this case. The corresponding equa-
tions for Φ and Y remain homogeneous for other lay-
ers, and, for the particular case of the source of com-
pression, the equation for Y is homogeneous even in
the layer with the source (e.g., the water layer). The
same consideration is true for the equations for Green’s
functions; unlike equations (4), these equations appear
to be homogeneous. In the cylindrical coordinate sys-
tem, expressions for the horizontal (ur) and vertical (uz)
displacements can be found immediately from expres-
sion (2) with the scalar azimuth component of the
potential Y taken to be equal to –∂Θ/∂r [12], where the
function Θ(r, z) satisfies the scalar equation of type (1)
for transverse waves: ∆Θ + (ω/ct)2Θ = 0. This choice of
the vector potential component fits the requirement that
the transverse component of the displacement vector
also satisfies an equation of type (1). As in [12], we pro-
ceed from the cylindrical symmetry of the problem and
the solenoidal property of vector Y and assume that
Θ(r, z) is the unique, azimuth-independent component
of the vector potential. In this case, the displacement
components ur and uz lying in the (r, z) plane are also
independent of the azimuth, and the normal σzz and tan-
gential σrz components of the stress tensor are deter-
mined from the classical Hooke law relating the
stresses and the displacements in an elastic medium
[13]. Upon simple rearrangement, we obtain:

(5a)

(5b)

(5c)

(5d)

Clearly, the scalar potential Φ alone is sufficient to
describe the case of a liquid medium, where the dis-

d
2
G/dz

2 ω2
/c1

2
z( ) ξ2

–[ ]G+ δ z zs–( ),=

d
2G*/dz

2 ω2
/ct

2
z( ) ξ2

–[ ]G*+ d z zs–( ),=

ur ∂Φ/∂r ∂2Θ/∂r∂z,+=

uz ∂Φ/∂z ∂2Θ/∂z
2 ω/ct( )2Θ,+ +=

σzz λ ω/cl( )2Φ–=

+ 2µ ∂
∂z
----- ∂Φ/∂z ω/ct( )2Θ ∂2Θ/∂z

2
+ +[ ] ,

σrz µ ∂
∂r
----- 2∂Φ/∂z ω/ct( )2Θ 2∂2Θ/∂z

2
+ +[ ] .=
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000



SIMULATION OF THE VECTOR WAVE FIELD OF A LOW-FREQUENCY SOUND SOURCE 413
placement components u and the acoustic pressure p
are given by the formulas

(6a)

(6b)

The structure and the behavior of Green’s functions
(solutions to equations of type (4)) depend on the posi-
tion and the type of the source, the type of waves, and
the corresponding distribution of velocities of the lon-
gitudinal and transverse waves along the z axis.

In numerical field simulations, the vertically inho-
mogeneous ocean and bottom bulk is subdivided into
layers whose number N is sufficient to consider their
parameters to be homogeneous (invariable) within
every particular layer. In other words, the actual distri-
bution of parameters is replaced by a step function. The
upper boundary of the system (the water–air boundary)
is considered a perfectly soft one, and the lower layer is
usually assumed to be a homogeneous elastic half-
space. Each layer is specified by thickness h, velocities
of the longitudinal cl and transverse ct waves, coeffi-
cients of their spatial decay, and medium density ρ in
the layer. The upper layer is labeled by the index 1, and
the lower layer (halfspace), by the index N.

In an arbitrary layer labeled by index n, the poten-
tials can be represented as a superposition of the inci-
dent (direct) waves and the reflected (inverse) plane
waves:

(7a)

(7b)

where , , , and  are the amplitudes of the
corresponding waves in the expressions for the scalar
and vector potentials; the superscripts “+” and “–” cor-
respond to the direct and inverse waves, respectively;
αn and βn are the projections of the wave numbers of the
corresponding waves on the z axis,

(8)

and kn = ω/cl, n and κn = ω/ct, n are the wave numbers of
longitudinal and transverse waves in the nth layer. The
attenuation of waves in the layer is governed by the
imaginary part of the complex wave numbers kn and κn .
For example, in the case of the longitudinal wave, we
have
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where the attenuation coefficient  is measured either

in Neper per meter (  = ηnω/cl, n), or in decibel per

meter (  ≅  8.68ηnω/cl, n).

To find the solution for the system of N layers, the
fields at the interlayer boundaries are sewed together,
which is carried out by satisfying the boundary condi-
tions for every interlayer boundary. At the interface
between solid layers, the boundary conditions consist
in the continuity of the vertical and horizontal displace-
ments (conditions (5a) and (5b)) and the normal and
tangential stresses (conditions (5c) and (5d)). At the
interface between liquid layers, they are the continuity
of the vertical displacements and the pressure. At the
upper free boundary, the pressure formed by the super-
position of all waves is set to zero. At the interface
between solid (elastic) and liquid layers, the exact
boundary conditions are usually reduced to simplified
(approximate) conditions, which require that the verti-
cal displacements coincide in both layers (uz =
(1/ρω2)∂p/∂z), the total normal stress in the solid layer
be equal to the pressure in the liquid layer taken with
the inverse sign (σzz = –p), and the tangential stress in
the solid layer be equal to zero (σrz = 0), because the
viscosity of liquid is usually neglected.

The conditions at the boundary between the liquid
and solid layers require additional consideration. Here,
the condition of the coincidence of the horizontal dis-
placements is usually not set, although, strictly speak-
ing, the liquid adheres to the boundary of the elastic
layer due to the viscosity, and horizontal displacements
actually coincide. However, such a condition would
essentially complicate the structure of the equation to
be solved. Namely, for the liquid layer, one would be
forced to solve the Navier–Stokes equations [13]
instead of equations (1). At the same time, the thickness

of the corresponding boundary layer is about ,
and this value appears to be relatively small because of
the low kinematic viscosity of water (ν ≅ 10–6 m2/s).
Indeed, this thickness measures about 4 mm even for a
frequency of 0.01 Hz and decreases with increasing fre-
quency. Outside this thin layer, the flow of liquid is a
potential one, and the requirement of the coincidence of
the horizontal displacements becomes unnecessary.
Thus, the above boundary conditions at the liquid–solid
interface are justified, if the liquid motion within the
thin boundary layer can be neglected [1].

It should be noted that, in numerical field simula-
tions, we use the boundary conditions in their natural
form requiring the coincidence of acoustic displace-
ments and stresses, rather than in the form of the bal-
ance between the coefficients of reflection and refrac-
tion of separate wave parameters, as is often done. This
approach offers us an opportunity to do away with addi-
tionally checking the energy fluxes of elastic longitudi-
nal and transverse waves for the continuity at the layer
interfaces [2], because this continuity is automatically

kn''

kn''

α l n,''

ν/ω
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retained for the interfaces between elastic layers. How-
ever, for the liquid–solid interfaces, the note in the pre-
vious passage should be taken into consideration.
Neglecting the liquid motion within the boundary lay-
ers (i.e., the use of the approximate boundary condi-
tions) results in discontinuities in the wave energy flux
because of irreversible viscous losses (heat release) in
these layers [13]. One can evaluate the corresponding
energy losses Eν from the horizontal displacements of
the boundary ur(urz) on the side of the elastic medium
(in essence, we assumed that these displacements can
take on arbitrary values). It can be easily shown that
these neglected energy losses are small and measure

about Eν ≈ iρν3/2ω1/2  per unit area of the boundary.
These losses increase with the viscosity of liquid (in
proportion to ν3/2) and the frequency of the wave field
(in proportion to ω1/2); however, they can be neglected
in numerical simulations of low-frequency wave fields.
Here, it is appropriate to recall the known result
obtained by B.P. Konstantinov and revised by Savel’ev
[23] for elastic boundaries. According to Savel’ev [23],
for waves arriving at the interface between two media
with different densities at small grazing angles, the
reflection coefficient essentially varies and becomes
minimal at a certain (quite small) grazing angle. In this
conditions, the major part of the reflected energy (to
83% at the interface between liquid and a perfectly
rigid halfspace) transforms to the energy of viscous or
heat waves propagating along the boundary predomi-
nantly within the mentioned viscous layer. For higher
frequencies, the neglect of the Konstantinov effect
results in errors, especially in simulating the spatial
losses of the field; however, the contribution of viscous
waves to the energy balance of the wave field decreases
with decreasing frequency, and the boundary can be
considered as an ideal one even for small grazing
angles [23].

At every boundary, the boundary conditions and
potentials (7) form the so-called local system of equa-
tions. All local systems appear interrelated [10] and
together form a generalized (global) system of equa-
tions. In such a system, the contributions of sources at
the boundaries are simply added up. As a result, we can
obtain the generalized system of algebraic equations in

the coefficients  and . If the medium is subdivided
into N layers, the generalized system is the system of
4(N – 1) equations in 4(N – 1) unknowns in the general
case (all layers are elastic). For liquid layers, we have
only half of the equations (and unknowns). The obtained
system is usually solved according to a numerical proce-
dure of Gaussian exclusion of unknowns with partial
permutations; the details of this procedure are described
in the literature [9, 19].

Unfortunately, this generalized (global) system is
hardly solvable analytically, especially for a large num-
ber of layers. Therefore, it is convenient to rewrite the
system in matrix form and solve it using matrix algebra

ur
2

an
±

bn
±

techniques. In this context, the techniques most widely
used in recent years are the method of the Thomson–
Haskell matrix [10] and the method of the generalized
Schmidt matrix [11], the latter including the former as
a particular case.

We obtain the final solution for the displacements
and stresses (5) by integrating expressions (3) for the
potentials represented in the form (7):

(9)

Thus, the determination of the parameters of the
seismoacoustic field in the horizontally stratified
medium breaks up into two steps. The first step consists
in the numerical evaluation of the unknown coefficients

 and  in equations (7) for every discrete wave
number ξ by using the generalized Schmidt matrix that
takes into account the interlayer boundary conditions.
The second step consists in computing the integral
transforms (9) for the specified reception depth z from

the determined coefficients  and . This computa-
tion can be accomplished, for example, using the fast
Fourier transform and the asymptotic expressions for
the Bessel functions of large arguments.

Note several features that must be taken into
account in numerical simulations of wave fields. First
of all, the evaluation of integral expressions (9)
assumes that one must take into account the oscillating
behavior of the Bessel functions appearing in the inte-
grand and, especially, the features of the complex
Green’s function (4), such as singularities, branch
points, and oscillations. The distance-dependent oscil-
lation period, the peak widths, and the law of the spatial
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decay of Green’s function immediately determine the
admissible mesh width and limits of integration in
expressions (9).

Another feature is associated with the so-called
masking effect occurring in thick layers. In an arbitrary
layer with index n, one of the two fundamental solu-
tions usually increases with depth z, and the other
decreases. This behavior follows from the fact that
exponents appearing in linear equations (7) are charac-
terized by significant real parts when ξ in (8) consider-
ably exceeds kn and κn in this layer. In these conditions,
the amplitude ratio of the solutions increases as the
waves propagate from the source predominantly along
the layer, and, for thick layers, this ratio may often fall
beyond the digital possibility of a computer. As a result,
the decreasing solution seemingly disappears against
the background of the increasing solution (the masking
effect). The neglect of this effect inevitably results in
instabilities of the numerical model. In addition, the
boundary conditions cease to be satisfied, because one
fundamental solution (decreasing in z) is actually lost.

To overcome this difficulty, we suggest [21] to rep-
resent the solutions in the layer as a superposition of
transmitted and reflected waves and use recursion rela-
tionships [16] for a layer-by-layer calculation of the
partial reflection and refraction coefficients of longitu-
dinal, transverse, and exchange (i.e., corresponding to
transformations of longitudinal waves to transverse
waves and vice versa) waves at the interfaces between
elastic layers. This representation excludes the increas-
ing fundamental solution, because the expressions for
the partial reflection and refraction coefficients contain
only factors with the exponents 2αnhn, 2βnhn, and (αn +
βn)hn, where hn is the thickness of the nth layer. If these
exponents have negative real parts and if these real
parts are sufficiently large in magnitude, the reflection
coefficients necessarily approach the reflection coeffi-
cients for the corresponding layers of infinite thickness,
and all subsequent layers can be excluded from consid-
eration for the mentioned types of waves.

For example, the reflection coefficient Vn from the
nth liquid layer is related to the reflection coefficient
Vn + 1 from the subsequent layer by the recursion rela-
tionship

(10)

where Rn is the Fresnel reflection coefficient from the
interface between two semi-infinite media of numbers
(n – 1) and n. For Re[exp(2αnhn)]  0, the reflection
coefficient Vn  Rn, and the wave incident on the
upper boundary does not reach the lower boundary of
the layer. In this case, the reflected wave formally dis-
appears, and the layer can be considered as a halfspace.

As was shown earlier [22], the optimum mesh width
hn in the subdivision of an inhomogeneous liquid layer
into homogeneous sublayers is determined from the

Vn

Rn Vn 1+ 2αnhn( )exp+
1 RnVn 1+ 2αnhn( )exp+
---------------------------------------------------------,=
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condition |hn∆kn | < π, where ∆kn = k(zn + 1) – k(zn) is the
difference between the wave numbers at the sublayer
boundaries. For elastic layers, the quantity ∆kn should
be replaced by the maximum of the wave number dif-
ferences for longitudinal and transverse waves. This
maximum depends on the vertical gradient of the veloc-
ity of the corresponding elastic wave χn, which results
in the relation for the sublayer thickness in the form hn <
cnπ1/2ω–1/2|χn |–1/2, where cn is the propagation velocity
of the chosen type of waves. Clearly, the thickness hn
should be additionally checked for the masking effect
in accordance with formulas similar to (10).

In terms of wave numbers, the above criterion addi-
tionally determines the maximum horizontal wave
number ξ for which the slowest wave originating at the
source height ceases to arrive at the height of the recep-
tion point. One can replace the infinite upper limit in
integrals (9) by this maximum ξmax, and this maximum
must be redetermined every time when constructing a
particular numerical model. Besides, such a procedure
offers the possibility of creating an essentially faster
code.

To illustrate the efficiency of the suggested numeri-
cal model, we compare our simulations for one of the
simplest cases (which allows an analytical solution)
with the known exact analytical solution and the simu-
lations based on the method of the generalized Schmidt
matrix [11]. Such an approbation procedure for simula-
tions by comparing the simulated results with the
known ones has been called the benchmark problem.
To implement this procedure, we choose the wave
(sound) field of a source in the halfspace above a per-
fectly rigid boundary (halfspace). Figure 1 schemati-
cally shows the geometry of the problem (positions of
the source and the observation point) along with the
corresponding notation, and Fig. 2 shows the simulated
results [21].

S
D

h2

R

Air

Water

h1

r1

r2

r1 2, R2 h1 h2+−( )2+=

ρ = 1.3 × 10–3, t/m3

c = 330 m/s

Fig. 1. Geometry of the simple problem on the wave field in
the halfspace overlying a rigid boundary (the benchmark
problem). The source is located at the point S, the receiver
is located at the point D, R is the horizontal distance
between the points S and D, and h1 and h2 are the heights of
these points above the rigid boundary.
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As is known, the exact solution for the acoustic
pressure p in the wave field of a source of unit ampli-
tude has the form

(11)p e
ikr1/r1 e

ikr2/r2,+=
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Fig. 2. Pressure p(R) (normalized by the pressure generated
by the source at a distance of 1 m, p(1 m)) versus the hori-
zontal distance R. The calculations were performed for h1 =
h2 = 20 m and the source frequency 50 Hz. The curves p(R)
were obtained according to (a) the exact solution, (b) the
method of the generalized matrix, and (c) the proposed sta-
ble procedure.
where r1 and r2 are the distances travelled by the
direct and reflected waves to the observation point and
k is the wave number of the sound wave in the upper
halfspace.

A comparison of the curves p(R) constructed
according to the exact solution (Fig. 2a), the method of
the generalized matrix (Fig. 2b), and the proposed pro-
cedure (Fig. 2c) shows that the latter gives the best
agreement with the exact solution. At the same time,
simulations based on the method of the generalized
matrix may essentially (and sometimes unacceptably)
deviate from the exact solution. These deviations fol-
low from the fact that the commonly accepted simula-
tion procedure becomes unstable for an arbitrary subdi-
vision of the calculation region into layers parallel to
the rigid boundary.

From the practical standpoint, the simulated results
given in Figs. 3–6 are more informative. They give an
example of simulating the seismoacoustic field of a
source located in the ocean water layer. The calcula-
tions were carried out for the frequencies 0.01, 0.10,
1.00, and 10.0 Hz with the use of two different models
for the bottom structure. Model 1 was composed of the
water layer 1 overlying a sand halfspace 2; model 2 was
composed of the water layer 1 overlying a finite sand
layer 2 and a limestone halfspace 3. Every layer is char-
acterized by a thickness hn and geoacoustic parameters:
density ρn, velocities of longitudinal and transverse
waves cl, n and ct, n, and attenuation coefficients of lon-
gitudinal and transverse waves per unit frequency δl, n
and δt, n, e.g., δl, n ≅  54.5ηn/cl, n.

We used the following parameters of the layers:
1. Water layer: h1 = 150 m, ρ1 = 103 kg/m3, cl, 1 =

1450 m/s, and δl, 1 is virtually zero for the frequencies
used in the simulation (f ≤ 10 Hz).

2. Loose sediments (sand): h2 = ∞ (for model 1) or
h2 = 50 m (for model 2), ρ2 = 2 × 103 kg/m3, cl, 2 =
1800 m/s, ct, 2 = 700 m/s, δl, 2 = 0.10 dB/m kHz, and
δt, 2 = 6.0 dB/m kHz.

3. Petrified sediments (limestone): h3 = ∞ (for model 2),
ρ3 = 2.2 × 103 kg/m3, cl, 3 = 2400 m/s, ct, 3 = 1000 m/s,
δl, 3 = 0.03 dB/m kHz, and δt, 3 = 0.20 dB/m kHz.

For frequencies f ≤ 10 Hz, the attenuation coefficient
is linear in frequency, (αl, t) dB/m = δl, t, for all types of
rock and loose sediments.

The point source (monopole) creating an alternating
pressure of amplitude 1 Pa at a distance of 1 m in the
infinite water medium was located in the water layer at
a depth zs = 100 m. The reception point was located
either at the bottom of the water layer, or in the bottom
bulk, at a depth of 50 m in the sand layer. Thus, the
reception was carried out either in the bulk of the sand
halfspace (model 1), or in the bottom bulk, at the inter-
face between the sand layer and the limestone halfspace
(model 2).

The curves in Figs. 3–6 are the horizontal sections
of the simulated field of the source. Figures 3a–6a cor-
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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respond to the vertical component of the local particle
velocity vz, and Figs. 3b–6b correspond to the horizon-
tal component vr. The parameter distinguishing the
curves is the frequency of the source. On the ordinate,
the components of the particle velocity, vz and vr, nor-
malized by their values vz, 0 and vr, 0 at a horizontal dis-
tance of 1 km from the source are plotted in decibels.
The table presents the magnitudes of the velocities vz, 0

and vr, 0 and the corresponding predictions for the
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Fig. 3. The horizontal sections of the seismoacoustic field of
particle velocities for the source frequencies 0.01, 0.10,
1.00, and 10.0 Hz. The particle velocities are normalized by
their values at a distance of 1 km. The observation point is
located at the bottom of the water layer. The medium is
composed of the water layer overlying a sand halfspace
(model 1). (a) Vertical components vz. (b) Horizontal com-
ponents vr.
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decay of the field of particle velocities at a distance of
20 km.

From the analysis of the above simulated field, it
follows that, near the bottom of the water layer, the ver-
tical components of the velocity vz and the acoustic
pressure p decrease with distance steeper than by the
cylindrical decay law (proportionally to R–1/2. This is
immediately seen from latter two columns of the table
where the decay of the field essentially exceeds the
value 13 dB expected for a cylindrical wave. The reason
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Fig. 4. The horizontal sections of the seismoacoustic field of
particle velocities for the source frequencies 0.01, 0.10,
1.00, and 10.0 Hz. The particle velocities are normalized by
their values at a distance of 1 km. The observation point
coincides with that in Fig. 3. The medium is composed of
the water layer overlying a sand layer and a limestone half-
space (model 2). (a) Vertical components vz. (b) Horizontal
components vr .
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is that shear waves are strongly attenuated in sand. As
may be shown using a thin water layer overlying a
homogeneous elastic halfspace as the model (similar to
model 1), the majority of the wave energy (about 68%)
of the point source (monopole) propagates along the
water–bottom interface in the form of surface waves
[7], and their attenuation is mainly governed by losses
in the elastic halfspace (sand). Note that paper [7],
unfortunately, does not take into account the additional
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Fig. 5. The horizontal sections of the seismoacoustic field of
particle velocities for the source frequencies 0.01, 0.10,
1.00, and 10.0 Hz. The particle velocities are normalized by
their values at a distance of 1 km. The observation point is
located in the bottom bulk, 50 m below the lower water
boundary. The medium is composed of the water layer over-
lying a sand halfspace (model 1). (a) Vertical components
vz. (b) Horizontal components vr .
loss mechanisms discussed above and the conclusions
of paper [23].

The replacement of the sand halfspace by a compar-
atively thin layer and the introduction of a new inter-
face between sand and limestone (model 2) results in a
considerable increase in the velocity components vz
and vr. Indeed, for frequencies 1 and 10 Hz, the respec-
tive velocity components at a distance of 20 km exceed
the corresponding components obtained in model 1 by
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Fig. 6. The horizontal sections of the seismoacoustic field of
particle velocities for the source frequencies 0.01, 0.10,
1.00, and 10.0 Hz. The particle velocities are normalized by
their values at a distance of 1 km. The observation point
coincides with that in Fig. 5. The medium is composed of
the water layer overlying a sand layer and a limestone half-
space (model 2). (a) Vertical components vz. (b) Horizontal
components vr .
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The magnitudes of the components vz , 0 and vr, 0 of particle velocities at a distance of 1 km and the corresponding forecasts
for an additional decay of the field of particle velocities at a distance of 20 km (p1 = 1Pa, zs = 100 m, and h1 = 150 m)

Location of the
reception point Model Frequency, Hz vz, 0 × 1010, m/s vr, 0 × 1010, m/s vz/vz, 0, dB vr/vr, 0 , dB

At the bottom of
water layer

1 0.01 0.11 80.0 –29.2 –40.3

0.10 0.74 2.80 –32.0 –26.5

1.00 3.80 3.90 –64.0 –68.9

10.0 5.40 9.40 –102.6 –95.8

2 0.01 0.0089 30.0 –12.3 –33.2

0.10 0.27 15.0 –18.3 –56.4

1.00 4.30 3.40 –18.8 –19.3

10.0 5.10 9.10 –89.0 –66.5

At a depth of 50 m in the 
bulk of the bottom

1 0.01 2.50 68.0 –32.7 –40.8

0.10 9.70 1.80 –38.0 –55.2

1.00 4.30 0.78 –64.8 –53.1

10.0 2.70 6.40 –92.0 –89.5

2 0.01 0.046 0.0022 –28.3 –13.7

0.10 0.34 0.55 –19.7 –40.8

1.00 6.90 7.50 –21.6 –26.3

10.0 4.10 5.70 –65.1 –61.9
50 and 30 dB for the reception near the bottom, and by
27 and 28 dB for the reception at the interface
between sand and limestone. For the frequencies 0.01
and 0.10 Hz, the observation point, even if it is located
at a distance of 20 km from the source, falls in the near
(Fresnel) zone of the source, where all field parameters,
including the particle velocities vz and vr , strongly
fluctuate, and this fact determines the structure of the
simulated field.

Our recent papers [24–27] describe the proposed
numerical model of the bottom bulk in more detail.
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Abstract—Theoretical expressions for the impedance characteristics of a layer bound to a rigid base are
obtained for various profiles of the normal pressure under a die that vibrates on the layer surface without pro-
ducing any shear stresses. The frequency dependences of the impedance characteristics of a homogeneous
gelatin layer and their variation with changes in the die diameter are measured by means of a specialized
software–hardware system. The impedance characteristics are calculated for the models with “uniform,”
“parabolic,” and “hyperbolic” pressure profiles under the die, and the results are compared with the experi-
mental data. The model with a uniformly distributed pressure under the die is found to be the most adequate
one. © 2000 MAIK “Nauka/Interperiodica”.
The development of mathematical models of imped-
ance characteristics of soft biological tissues is not only
of purely scientific interest, but is also important in con-
nection with the modern advances in the method of
continuously monitoring the mechanical parameters of
tissues with high time resolution on the basis of the data
of single-frequency impedance measurements [1] and
in the method of reconstructing the mechanical param-
eters of layered tissues from the data of spectral imped-
ance measurements (i.e., from the frequency depen-
dences of the impedance characteristics) [2–4]. Today,
there exist a number of models of the impedance prop-
erties of biological tissues [3–9]. The most complete
one is the three-layer model developed by Skovoroda
and Aglyamov [3] on the basis of the data of experi-
ments with human forearm tissues. However, using this
model for interpreting the experimental data on the
impedance characteristics of other parts of human
body, which are very different in their structure and
mechanical properties, or for selecting the optimal con-
ditions for such studies is difficult due to the complex-
ity of the identification of the model parameters. Such
an identification demands specialized software tools. It
seems possible to use other less rigorous but essentially
less labor-intensive computational models, namely,
“models with a power source of vibrations,” which are
grounded on the approximations used for solving the
Lamb problem [4, 10–12]. This paper demonstrates
such opportunities by comparing the calculations for a
single-layer model of the aforementioned type with the
experimental data obtained for a homogeneous gelatin
layer.

The development of such models, as well as the
model by Skovoroda and Aglyamov [3], utilizes a
known approach [10]. This approach is as follows:
1063-7710/00/4604- $20.00 © 20421
(i) consideration is restricted to the axially-symmetric
case and a general solution to the equations for an
acoustic field in a linear elastic medium is determined
in terms of the Hankel transforms; (ii) the boundary
conditions corresponding to the layered object under
consideration are set; and (iii) the stiffness K (the
impedance Z) of the object is determined as the ratio
between the force P applied to a die and the die dis-
placement U (velocity V) by using the inverse Hankel
transform. The distinctive feature of the “models with a
power source of vibrations” is the fact that simplified
boundary conditions are set at the outer surface of the
object, namely, the condition of the known normal
pressure and the condition of the absence of tangential
stress over the whole surface including the surface
under the die. The last condition is interpreted as the
condition of die slip, and, basically, it can be provided
in the experiment by special means. The pressure pro-
file under the die p(r) in the models of this class must
be selected so as to fit the experiments.

Omitting here relatively simple calculations corre-
sponding to this approach (see the paper by Timanin [4]
for details), we give the final expression for the com-
plex stiffness of the layer with the lower surface z = H
rigidly bound to the rigid base and the upper surface
z = 0 driven in the region r ≤ a by a vibrating flat round
die of radius a:

(1)

K
P
U
----=

=  
1

κ l D13 D14+( ) k2 D11 D12–( )R k( )–

k2 κ t
2+( ) D13 D14–( ) 2k2κ t D11 D12+( )–

------------------------------------------------------------------------------------------------- kd

0

∞

∫
-----------------------------------------------------------------------------------------------------------.
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Fig. 1. Block diagram of the software–hardware system for the investigation of spectra of the impedance characteristics of soft bio-
logical tissues. (1) A power amplifier (type 2707); (2) a vibration test bench (type 4801T); (3) an impedance head (type 8001); (4) a
removable die; (5), (6) amplifiers for the sensor signals (type 2626); (7) a computer with a CT4170 sound card; and (8) the object
under investigation.
Here, k is the parameter of the Hankel transform; the

parameters  = k2 –  and  = k2 –  are deter-
mined by the wave numbers of shear and longitudinal

waves  = ω2/  and  = ω2/ , where ω is the cir-

cular frequency of die vibrations and  = µ/ρ and  =
(λ + 2µ)/ρ are the velocities of shear and longitudinal
waves determined by the density ρ and the Lame con-
stants λ and µ. The determinants of the third order D1j

in expression (1) are the cofactors of the elements of the
first line in the principal determinant of the set of equa-
tions that corresponds to the boundary conditions of the
problem:

(2)

The function p(k) on the right-hand side of the first
equation of set (2) is the Hankel transform of the pres-
sure profile at the outer surface of the layer p(r). This
quantity also determines the function R(k) involved in
expression (1). In the determination of die displace-
ment from the averaged over its area displacement of

the layer surface under it [10], U = (r, 0)2πrdr,

the function R(k) has the form:

(3)
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when the pressure under the die is uniformly distributed
according to the formula p(r) = P/πa2,

(4)

when the pressure under the die is distributed according
to the “parabolic” law p(r) = 2[1 – (r/a)2]P/πa2, and

(5)

when the pressure under the die is distributed according

to the “hyperbolic” law [10] p(r) = P/2πa . At
the surface outside the die area, the pressure is absent
in all cases.

Expression (1), in which the determinants corre-
spond to the set of equations (2) for various types of the
function R(k) determined by expressions (3)–(5), will
be used below for numerical calculations and the
approximation of experimental data in order to select
the best model. The model modifications correspond-
ing to different functions R(k) will be called A-mod-
els, PA-models, and GA-models, respectively.

A specialized software–hardware system has been
constructed for the experimental investigation of the
frequency dependences (spectra) of the impedance
characteristics of biological tissues and their physical
models (for example, a gelatin layer) [4]. This system
provides the spectra of the impedance characteristics in
a digital form already in the course of the experiment.
These spectra can be easily used for further processing,
and, in particular, for the identification of the model of
a specific object. The experimental system based on
Bruel & Kjaer equipment for the generation and mea-
surement of vibrations and described earlier [7] formed
the main part of the new system. The distinctive feature
of the latter (Fig. 1) is the fact that the signal processing
is conducted not by a spectrum analyzer, but by a com-
puter using specialized software for Windows 95/98.

R k( )
8J1 ka( )J2 ka( )

k2πa3µ
------------------------------------,–=

R k( )
J1 ka( ) ka( )sin

kπa2µ
-----------------------------------,–=

a2 r2–
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The signal input is performed with the help of the
CT4170 Creative card. The software provides an
opportunity to detect at the monitor screen and save to
a disk the frequency dependences of the impedance
characteristics of the studied object within the band up
to 512 Hz. The time of the data acquisition for one
spectrum is one second, and the frequency resolution is
1.22 Hz. There is an opportunity to average a given
number of spectra of the impedance characteristics.
The compensation of the mass associated with the force
transducer, i.e., the compensation of its accelerometer
sensitivity, is performed in each experiment before the
measurements. In order to do this, the signals from the
sensors, which correspond to the die vibrations in the
air, are stored to the computer memory, and necessary
corrections to them are introduced in the measurement
procedure. Moreover, the calibration of the system is
conducted before the measurements by putting a load
of a known mass upon the operating die. The corre-
sponding signals are also stored in the computer mem-
ory and then used to normalize the impedance charac-
teristics to be determined. The frequency dependences
of the real (ReM) and imaginary (ImM) parts of the
complex inertia in grams, or the frequency depen-
dences of the real parts of the complex stiffness (ReK)
in N/m and the complex impedance (ReZ) in N s/m, are
displayed in the program windows in the measurement
mode. These values can be saved to a disk and used for
further processing. The correctness of the operation of
the new system has been tested in several special exper-
iments [4]. First, the impedance characteristics corre-
sponding to the verifying load of known mass con-
nected to the die have been recorded. Second, simulta-
neous measurements of the impedance properties of a
limp human forearm have been conducted using the
new system and a 2034 spectrum analyzer connected to
the computer in parallel.

A special series of measurements were conducted
on a homogeneous gelatin layer of thickness 30 mm
with the help of the system described above. The values
of ReK and ReZ were detected with the help of three
dies with diameters of 6, 10, and 16 mm. Each mea-
surement was performed for the static impression of the
die into the object to 1 mm. Averaging over 20 realiza-
tions was performed in the process of each impression.
The gelatin density ρ ≈ 1008 kg/m3 was determined by
additional measurements of the sample mass and vol-
ume, and the velocity of longitudinal waves in the gel-
atin sample cl ≈ 1500 m/s was determined by measur-
ing the time of propagation of an ultrasonic pulse from
the surface to the base and back. The stored experimen-
tal data were read into the files for calculating the
impedance characteristics with the help of the Matcad
software. Fitting of the rheological parameters of the
models for the best approximation of the experimental
data was performed. The experimental curves are given
below, together with the results of numerical calcula-
tions.
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
Numerical calculations in the models were per-
formed using the Matcad software directly according to
formula (1) with setting the determinants from the set
of equations (2). The viscous properties of the layer
material were taken into account by the change of its
elastic parameters for the complex operators corre-
sponding to the viscoelastic type, which can be done
for each problem of fully-developed vibrations of linear
viscoelastic bodies [14]. The simplest model, i.e., the
Voigt body, was selected as the model of the viscoelas-
tic behavior. According to this model, the Lame con-
stants must be set in the form µ = µ0 + iωη and λ = λ0 +
iωξ, where µ0 and λ0 are the static moduli and η and ξ
are the moduli of shear and bulk viscosity, respectively.
Just this expression for µ was taken as the initial one for
numerical calculations of ct and kt, which turned out to
be complex in the result. A purely real experimental
value of cl ≈ 1500 m/s was taken as initial for calculat-
ing kl. Analyzing the complex expression for cl =

, it is possible to determine that, in the
case of the reduction of frequency, its real part tends to

the value cl = , and its imaginary part
tends to zero. The validity condition for the passage to
the limit is the condition ω ! ωcr = (λ0 + 2µ0)/(ξ + 2η),
which should apparently be satisfied at a frequency
lower than 1 kHz, at which the measurements were
conducted.

The investigation of the integrands was performed
before calculating the integral in (1), and the region
where they were essentially nonzero was determined.
The upper limit of integration was selected to be of the
order of 7500 to 10500, which lies beyond this region.
Since the integrands have a singularity at small k (a suf-
ficiently sharp peak, if the material viscosity is small),
it is necessary to break the interval of integration into
two parts: the first part is relatively short (up to k = 500–
2000) and contains a peak, and the second one is longer
(the function slowly attenuates within it). The indepen-
dence of the results from the upper integration limit and
the way of division of the integration interval into parts
was verified in the process of calculation.

The identification of the model parameters, which
provide the best approximation of the experimental
data, was conducted by fitting, i.e., by the multiple rep-
etition of the following steps: setting of the model
parameters; numerical calculation of the impedance
characteristics; and visual comparison of the calculated
results and experimental data displayed in one plot on
the monitor screen. In all cases, the coincidence of the
calculated and experimental data within the area of the
low-frequency plateau of stiffness ReK was attained,
first of all, by selecting the modulus of elasticity, and,
then, the coincidence of the calculated and experimen-
tal data on the impedance ReZ in the range of medium
and high frequencies was attained by selecting the
modulus of viscosity.

λ 2µ+( )/ρ

λ0 2µ0+( )/ρ
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Fig. 2. (1) Experimental and (2) calculated impedance characteristics of a gelatin layer: (a), (b) A-model, µ = 5 kPa, η = 0.2 Pa s;
(c), (d) PA-model, µ = 5 kPa, η = 3 Pa s; and (e), (f) GA-model, µ = 4 kPa, η = 0.8 Pa s. The model parameters are d = 10 mm,
H = 3 cm, ρ = 1008 kg/m3, and cl = 1500 m/s.
The comparison of different models in their capabil-
ity to determine the properties of a homogeneous gela-
tin layer gives the following results. The best correla-
tion of the calculated and experimental data is observed
for the A-model (Fig. 2). The model reproduces the
low-frequency plateau of the curve ReK(f), the high-
frequency plateau of the curve ReZ(f), and the qualita-
tive pattern of the layer resonance. In addition, the
reproduction of all these characteristics of curves at
fixed model parameters remains the same for different
diameters of the die (Fig. 3). The high-frequency drop
in the curve ReK(f) in this model, as well as in all other
models, is reproduced as a steeper one in comparison
with the experiment. Apparently, this is connected with
the adopted approximation of the “power source of
vibrations.” An important property of the A-model is
the fact that the agreement with the experiment in the
level of loss ReZ(f) in the upper and middle parts of the
utilized range is attained automatically after setting
very small values of viscosity η and selecting the mod-
ulus of elasticity of the layer µ for the reproduction of
the level of the low-frequency stiffness plateau in the
curve ReK( f ). The variation of viscosity within the
range 0.1–1.0 Pa s almost does not influence the loss
level and determines only the forms of the resonances
of the viscoelastic layer. In order to obtain a qualitative
agreement with the experiment in these resonances, it is
necessary to set η ≈ 0.2 Pa s. Thus, this model describes
the loss in the gelatin layer in the case of the radiation in
the frequency range after the resonances as mainly “elas-
tic” loss. Since, in the case of a change in the die diame-
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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Fig. 3. (1) Experimental and (2) calculated (according to the A-model) frequency dependences of the impedance characteristics of
a gelatin layer for different diameters of the die. The model parameters are H = 3 cm, ρ = 1008 kg/m3, µ = 5 kPa, η = 0.2 Pa s, and
cl = 1500 m/s.
ter, the model reproduces the change in the loss (Fig. 3),
this representation is apparently close to reality.

The PA- and GA-models provide less agreement
with the experiments, even in the case of a single die
diameter (Fig. 2). In the PA-model in the case of a small
viscosity, the radiation loss is determined as too small,
and it is necessary to considerably increase the value of
viscosity η in order to reproduce their level. This dete-
riorates the reproduction of the form of the layer reso-
nances, and, what is more important, leads to the
description of the radiation loss in the gelatin layer as a
sum of the comparable “elastic” and “viscous” compo-
nents. However, if the die diameter is changed, the
change of loss in the model does not correspond to the
loss observed experimentally, and it is necessary to
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
select a new value of viscosity to reproduce the loss
level corresponding to the new die. In the GA-model,
the radiation loss is given correctly “on the average” in
the case of low viscosity, but slow variations are repro-
duced here around this average level. It is possible to
smooth off these variations in the curves corresponding
to the dies with the diameters d = 6 mm and 10 mm on
account of an increase in the viscosity, but they remain
in the curve corresponding to the die with the diameter
d = 16 mm.

Thus, in describing the impedance properties of a
homogeneous layer in the framework of models with
power sources of vibrations, the results that best fit the
experiment are provided by the model with a uniform
distribution of pressure under the die (excluding the
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description of the behavior of stiffness ReK at high fre-
quency). It is impossible to improve the correlation
between theory and experiment by using the “para-
bolic” or “hyperbolic” pressure profiles. On the
grounds of this conclusion, one can recommend to use
mainly the models with a uniform distribution of pres-
sure under a die for describing the properties of biolog-
ical tissues.
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Abstract—Phase modulation of weak, high-frequency, monochromatic waves interacting with strong pulsed signals
is investigated. Some estimates are obtained for the interaction between the acoustic emission pulses caused by the
crack formation in the Arctic ice cover and a high-frequency test wave. © 2000 MAIK “Nauka/Interperiodica”.
Much attention is currently given to studying the
phenomenon called acoustic emission (AE), to which
many theoretical and experimental studies are devoted
[1–3]. The importance of these investigations follows
from the nature of the phenomenon.

The acoustic emission is defined as the generation
of elastic waves that accompanies the deformation pro-
cesses in stressed materials and is related to the crack
formation and growth; in other words, the acoustic
emission can be considered as a sort of deformation
noise emitted by the material. It is this definition that
governed the choice of the AE method as the main
method of monitoring the fracture processes in materi-
als. It is used for controlling the state of high-pressure
pipes, nuclear reactors [1], various types of mines, and
rock masses [2, 3]. This method is now recognized as
appropriate for investigating the seismic conditions and
predicting earthquakes and rock bursts. In these prob-
lems, the earthquake zones are considered from the
standpoint of physics and mechanics of fracture. In this
context, a model of large-scale fracture, the so-called
cumulatively unstable model of crack formation [2],
was developed. According to this model, the formation
and development of the fracture zone can be reliably
revealed from the variations of the AE parameters,
which is confirmed by experiments [2, 3].

However, the commonly used procedure of record-
ing the AE signals encounters a number of difficulties.
First, the receivers of signals are usually located outside
the object under investigation (for example, in the case
of microseism recording, they lie on the earth’s sur-
face). As a result, reflections from the boundary, re-
reflections caused by multiray propagation, and the
presence of several types of propagating waves essen-
tially distort the received AE signals. Second, the AE
signals have a broadband frequency range. For example,
the growing cracks in a reactor housing produce signals
with frequencies ranging from 500 kHz to 2 MHz, and
1063-7710/00/4604- $20.00 © 20427
the sample fracture in laboratory conditions produces
signals in the frequency range from 3 to 30 kHz [1]. It
is also known that the spectrum of the rock mass cave-
in differs from the spectrum of a rock bump or burst by
the predomination of low frequencies [2]. These fea-
tures make it difficult to select the frequency range of
the required equipment. Today, this choice can be made
solely on an experimental basis.

In addition, almost all methods of active acoustic
control are based on linear acoustics, because nonlinear
effects appearing in interacting acoustic waves are
fairly small; in most cases, signals caused by nonlinear
effects do not exceed fractions of a percentage point.
However, it should be noted that these signals are gov-
erned by entirely different, namely, nonlinear acoustic
parameters of the medium, and these parameters are
more sensitive to the defects and structure variations
occurring in the medium as compared to the linear
parameters (the sound velocity and the absorption and
scattering coefficients), which is of particular impor-
tance for diagnostic purposes.

This paper considers the possibility of using the
nonlinear interactions between acoustic waves for
receiving the AE signals. The acoustic signal reception
due to the signal interaction with a pump wave of
higher frequency is called the parametric reception of
sound [4, 5]. The theory of parametric receivers consid-
ers the situations in which the received wave arrives at
the interaction region from afar and assumes that this
wave can be considered as a plain wave with a constant
amplitude. In this paper, we deal with the parametric
reception of the AE signals and consider the situations
in which the interaction can occur near the emission
source, which means that the received signal can
widely vary in amplitude within the interaction zone.

It is common practice to introduce nonlinear acous-
tic parameters of liquids and gases by considering the
000 MAIK “Nauka/Interperiodica”
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expansion of the pressure in terms of the density to the
quadratic terms:

, (1)

where A = ρ0(δp/δρ , B = (δ2p/δρ2)0, c0 is the lin-
ear sound velocity in the medium, and p0 and ρ0 are the
pressure and density at the equilibrium state.

With this representation of p(ρ), the nonlinearity of
the medium is characterized by the ratio B/2A.

The equation of state of a liquid or gas medium is
sometimes given by an empirical relationship of the
form

. (2)

For a gas, we have γ = Cp/Cv, and the relationship (2)
is reduced to the equation for the adiabatic curve. The
parameter γ is also a commonly accepted characteristic
of the medium nonlinearity; however, the parameter e =
1 + B/2A = (γ + 1)/2 is used more frequently. This
parameter includes both the nonlinearity of the equa-
tion of state and the nonlinear terms in the equations of
motion. Below, we will deal with the media character-
ized by high values of nonlinear acoustic parameters
(e @ 1) with the physical nonlinearity predominating in
these media, i.e.,

. (3)

The introduction of the nonlinear parameter for sol-
ids is a more complicated problem, because different
kinds of waves can propagate and interact in this case.
For solids, we restrict ourselves to considering solely
longitudinal waves, because they are most similar to the
acoustic waves in liquids and gases. In this case, we can
use formula (3) for media with high values of the non-
linear acoustic parameter.

Compare the nonlinear parameters for media of dif-
ferent types. For the majority of homogeneous materi-
als, such as water and most metals, the characteristic
values of the quadratic nonlinear parameter do not
exceed e ~ 3–10 [6]. By contrast, this parameter can
exceed 103–104 for inhomogeneous media, such as
water with gas bubbles [7] and some types of rock [8,
9, 12], which clearly demonstrates the sensitivity of the
nonlinear acoustic parameter to the inhomogeneities of
the medium.

p p0 A ρ ρ0–( )/ρ0[ ] B/2 ρ ρ0–( )/ρ0[ ]2+ +=

)ρ0
ρ0

2

p p0 ρ/ρ0( )γ
=

e B/2A γ/2≈≈ ρ0c0 δc/δp( )ρ0 p0,=

HF wave

AE source

Receiverx0 D

L

Fig. 1. Scheme of the method of acoustic tomography.
This paper presents an alternative method of record-
ing the AE pulsed signals. The method is based on the
known properties of the nonlinear interaction of a low-
frequency pumping pulse with a high-frequency mono-
chromatic wave along its propagation path that passes
near the emission source. As a result, we obtain a vir-
tual receiver located near the source, and the effect of
the signal distortions along the path on the parameters
of the received signal are considerably reduced.

In this paper, we derive the general formulas relat-
ing the parameters of the AE pulses to the parameters
of the high-frequency (HF) test wave transmitted
through the medium under study. Additionally, we
obtain some estimates allowing definite conclusions to
be made on whether or not the obtained results can
actually be used for a particular case of measuring the
AE caused by the crack formation in the Arctic ice
cover. Figure 1 shows the scheme of the suggested
method. The scheme is as follows. The plane mono-
chromatic test wave of frequency ω propagates through
the material under study (along the x axis). The receiver
is located at the point x = L. The source of the signal
(the AE pulse) lies at the point (0, D). Due to the non-
linearity of the medium, the signal affects the propaga-
tion velocity of the HF test wave. We will assume that
the amplitude of the AE pulse far exceeds the ampli-
tude of the HF signal. Then, for media with the qua-
dratic nonlinearity, the variation in the propagation
velocity of the test wave can be determined from the
expression [5]

(4)

where p is the pressure in the AE pulse; e is the nonlin-
ear parameter; and ρ0 and c0 are the equilibrium density
and velocity, respectively.

Thus, for the variation of the phase of the HF wave
at the reception point, we can write the expression

(5)

Consider a portion of the wave that has the coordi-
nate x0 at the instant corresponding to the beginning of
the AE pulse (T = 0). This portion arrives at the recep-
tion point x = L at the instant

.

We will assume that the source generates a pressure
pulse in the form of a spherical wave

.

Then, the phase shift will be given by the expression

, (6)

where r = ; N = e/ρ0c3; and one must set t =
(x – x0)/c, which is the instant the wave with the ini-

∆c e p/ρ0c0 ! c,=

∆ϕ ω ∆c( )/ c
2( ) xd∫ ω e p x t,( )[ ] / ρ0c0

3( ) x.d∫= =

t L x0–( )/c=

p A t r/c–( )/r=

∆ϕ t( ) ωN A t r/c–( )/r[ ] xd

x0

L

∫=

D
2

x
2

+

ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000



NONLINEAR INTERACTION OF ACOUSTIC EMISSION PULSES 429
tial coordinate x0 arrives at the point x. Then, we
have

(7)

Now, we substitute the integration variable with the

new variable ξ = x – x0 –  that characterizes
the time within which the considered portion of the test
wave interacts with the AE pulse. After a simple rear-
rangement, we obtain

. (8)

We set the lower limit of integration ξ = 0 (not ξ =

ξ(x = x0) = ), because negative values of ξ

correspond to x – x0 < , which means that the
HF wave will arrive at the point x prior to the emission
pulse, and, consequently, no interaction will occur. The

upper limit ξ1 = ξ(x = L) = L – x0 –  corre-
sponds to the termination of the interaction (at the
instant the considered portion of the wave arrives at the
receiver).

The quantity x0 cannot take on arbitrary values. It is
required that x0 < 0; otherwise, the portion of the wave
will arrive at the receiver without any interaction with

the pulse. Consequently, we have x0 < L –  <
0, which means that the denominator in expression (8)

varies from –x0 at ξ = 0(–x0 > 0) to  – L > 0
at ξ = ξ1 and always remains positive and nonzero. The
only exclusion is the case D = 0 corresponding to the
AE pulse source located at the x-axis. This case must be
considered in greater detail separately.

Let D = 0. In this case, the denominator in the inte-
gral formula (8) vanishes, and the integrand becomes
singular. The singularity is caused by the spherical
property of the considered pulsed signal. Note that, in
this case, the new variable ξ is a constant that coincides
exactly with the parameter x0. As a result, we cannot
use formula (8), where this variable plays the role of the
integration variable. Instead, we will use the initial rela-
tionship (6). To avoid the singularity in the integrand,
we surround the source of the AE pulse by a sphere of
radius r0, i.e., we take into account the fact that actual

∆ϕ t( ) ωN A 1/c x x0–( )([{
x0

L
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– D
2
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2

+ ) ] } / D
2
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2

+ x.d
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AE pulses cannot have an unbounded amplitude. Then,
we obtain from (8):

(9)

Since we are interested in the solution at the x axis, we
define r0 as follows:

Then, the integral formula (9) takes the form

Performing the corresponding calculations, we obtain

(10)

It is clear that the magnitude of the received signal
depends on the introduced parameter r0 and becomes
infinite at r0 = 0.

Now, we return to the general case (6). To demon-
strate the use of the obtained results, we consider the
rectangular pulse as a simple example (needless to say
that the actual AE pulses are characterized by much
more complex shapes):

Omitting the constant factor ωN in formula (8) and
using for the parameter x0 its absolute value, we obtain

. (11)

The result of integration in (11) depends on the rela-
tionship between ξ1/c and the pulse duration τ (the
upper limit equals cτ for ξ1 > cτ and ξ1 for ξ1 < cτ).
Thus, we obtain

(12)

∆ϕ t( ) = ωN A t r/c–( )/r x A t r/c–( )/r xd
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∫+d

x0

r0–
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∫–d

r0

L
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∆ϕ x0( ) ωNA x0/c( ) L/r0( )ln=
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A ξ /c( )
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
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Note that the condition ξ1 > cτ corresponds to x0 > ,

where  = cτ + L –  = cτ – ∆. Going back
to the phase variation ∆ϕ, we obtain from (12):

(13)

Let us trace the variations in the obtained solution with

distance D (or the parameter ∆ =  – L, which

additionally includes the variations of ). This behav-
ior may be of interest in tomographic applications,
which use several receivers located at different points.
Formula (13) gives the following behavior of ∆ϕ(x0) for
different ∆.

It is clear that the above parameter  uniquely
related to ∆ affects only the maximum phase variation
and determines the effective duration of these varia-
tions.

x0*

x0* D
2

L
2

+

∆ϕ x0( ) ωN A0

x0/ x0 cτ–( )[ ] , x0 x0*≥ln

x0/ D
2

L
2

+ L–( )[ ]ln

D
2

L
2

+ L– x0 x0*.≤ ≤

=

D
2

L
2

+

x0*

x0*

∆ϕmax1

∆ϕmax2

∆ϕ

x0∆1 ∆2 x*
02x*

01

∆ϕ

cτ

cτ + 2r0 x0

*

AE source

HF source

Ice

Receiver

Fig. 3. Phase shift of the test wave with allowance made for
the radius of the AE source.

Fig. 4. Scheme of the method of acoustic tomography for
the case of ice cracking.

Fig. 2. Phase shift of the test wave for different values of the
parameter ∆.
In the case ∆ @ cτ, we can determine the maximum
value of ∆ϕ according to the approximate formula

. (14)

For D = 0, we must use formula (10) for a pulse of
such a shape. Consider the second term in this formula.
It can be rearranged to the form

(15)

where the upper limit of integration depends on the
relationship between the quantity (cτ – x0)/2 (because
(2x + x0)/2 = cτ corresponds to x = (cτ – x0)/2) and the
parameter r0:

(16)

Thus, from formula (10), we finally obtain the follow-
ing relationship:

(17)

It is clear that introduction of the small parameter r0
makes it possible to obtain the results that agree well
with the earlier results (see Fig. 3 where the dashed line
represents the solution obtained from (13) for D
approaching to zero, and the smallness of the parameter
r0 is taken into account).

As was mentioned above, the actual AE pulses are
characterized by fairly complex shapes. Because of this
fact, there are no simple and clear solutions, as in the
above example with the rectangular pulse.

Let us try to derive some approximate estimates for
an arbitrarily shaped pulse.

Taking the derivative of (11) with respect to the
parameter x0 , we obtain

(18)

In this relationship, the terms may be of the same order
of magnitude within the whole region of integration.
However, for sufficiently short pulses satisfying the
condition ξ1/x0 ! 1, this formula makes it possible to
easily obtain the relationship between the derivative of
the phase of the HF wave and the corresponding param-
eters of the pulse:

(19)
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It can be readily shown that formula (19) is applica-
ble only to the HF test wave portions corresponding to
sufficiently small initial coordinates x0, which corre-
sponds to the earlier instants of observation of the
phase modulations at the receiver: t ~ ∆/c. This fact
makes it possible to simplify the initial formula (8) for
∆ϕ(x0). Indeed, we can easily obtain from (8) the fol-
lowing relationship:

(20)

This formula is valid for sufficiently short pulses
and clearly shows that the phase of the HF wave is
determined by the pulse area (in the case of pulsed sig-
nals that do not satisfy the condition of shortness, the
relationship between the phase and the integral over the
pulse envelope will be valid for the initial portion of the
pulse).

The relationship obtained above offers us a possibil-
ity to consider an additional example more consistent
with actual practice. In this example, we use the AE sig-
nal in the form of a harmonic, exponentially decaying
pulse: A = A0sin(Ωt)exp(–αt). The calculations by for-
mula (20) yield

(21)

Here, the phase variations have alternating signs.
This result can be significantly simplified. Consider

the following approximation: α/cξ1 ! 1 and Ω/cξ1 ! 1.
This approximation is consistent with the conditions of
the problem under consideration and agrees well with
the assumption ξ1/x0 ! 1 used in the derivation of the
initial formulas (20) and (21). In this case, we obtain

(22)

If we recall the relationship between ξ1 and the
parameter x0 (corresponding to the current reception
time t = (L + x0)/c in our consideration), we obtain

. (23)

To evaluate the quantity ∆ϕ, we consider expres-
sion (19) in more detail. For the characteristic scale of
variations ∆x = c∆t = c2π/Ω (where Ω is the frequency
of oscillations in the pulse), as a result of simple rear-
rangement we obtain

. (24)

The comparison of the approximate expression (23)
with the case of the rectangular pulse (17) shows a good
quantitative agreement, which is not unexpected, as
both these formulas were derived for sufficiently short
emission pulses. Namely, formula (24) was derived

∆ϕ x0( ) ωN /x0 A ξ /c( ) ξ .d

0

ξ1

∫=

∆ϕ x0( ) ωN A0/x0( ) c/ α 2 Ω2
+( )Ω( )=

– αξ1/c–( )exp α Ωξ1/c( ) (Ω Ωξ1/c( )cos+sin( ).

∆ϕ x0( )

=  ωN A0/x0( ) cΩ( )/ α 2 Ω2
+( ) 1 αξ1( )/c–( ).

∆ϕ ωN A0Ω( )/ α 2 Ω2
+( ) c ∆α+( )/x0 α–( )=

∆ϕ x0( ) 2πcNA ξ1/c( )ω/ Ω∆( )=
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under the assumption that ξ1/x0 ! 1, and formula (17)
was derived under a more strict requirement ∆ @ cτ.

Recall the relationship between the amplitude
A(ξ1/c) and the pressure in the pulse P = A(ξ1/c)/R
(here, one must set r = R, where R is the distance from
the AE source to the receiver) and the expression for the
parameter N = e/ρ0c3. Then, we obtain an estimator for
an arbitrarily shaped pulse:

, (25)

where M = P/ρ0c2 is the Mach number.

To illustrate the possibility of actually using the sug-
gested method, we consider a particular experimental
scheme. We consider such an AE source as ice crack-
ing. In the recent years, this problem became urgent
because of the increasing interest in Arctic explora-
tions. The suggested scheme is shown in Fig. 4.

The receiver is a hydrophone located in water and
receiving spherical acoustic waves of AE (because
these are the waves characterized by the lowest attenu-
ation in the case under consideration [10]).

In formula (25), we will use the following parame-
ters: e ≈ 3, ρ0 = 1000 kg/m3, and c = 1500 m/s for water;
P ~ 1 Pa at distances R ~ 100 m and Ω ~ 100 Hz for the
characteristic sources of AE in ice [10, 11]. For small
values of D, we estimate the parameter ∆ as ∆ = D2/2L
and, according to the suggested scheme, set D ~ 1 m
and L ~ 100 m. Then, if we use the frequency of the HF
wave ω ~ 100 kHz, we obtain the value of the phase
shift

,

which is quite measurable. Note that, for rocks with ε .
10 and the AE signals with the parameters 2π/Ω . 5 s
and P . 5 × 10–2 Pa, the quantity ∆ϕ estimated for the
HF wave propagating in the ground (with the parame-
ters ρ = 103 kg/m3, c . 103 m/s, R = 100 m, and ∆ .
10–2 m) reaches the value 10–1 and greater for the fre-
quencies ω . 105 Hz.

In the foregoing, we considered only media with the
quadratic nonlinearity. As follows from (8), the phase
variation ∆ϕ is determined as an integral over the pulse.
At the same time, it should be noted that the form of the
AE pulses is generally alternating in sign. For this rea-
son, we take into account the cubic nonlinearity of the
medium. In this case, the phase variation ∆ϕ will be
governed by the energy parameters of the AE pulse.
The inclusion of the cubic nonlinearity of the medium
results in an additional phase modulation of the HF test
wave [4, 5]:

, (26)

where B = β/ρ2c5 and β is the cubic nonlinear parameter.

∆ϕ 2πεωRM/Ω/∆=

∆ϕ 4 10
2–×∼

∆ϕcub ωB A
2

t r– /c( )[ ]
x0

L

∫ / D
2

x
2

+( )[ ]dx=
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Going to the variable ξ, we obtain the expression

.

Under the condition ξ1/x0 ! 1, the relationship
between ∆ϕ and the intensity of the pulsed signal
becomes more obvious:

. (27)

Recall that the new variable ξ prevents us from
using the obtained relationship for the case of the
source located at the x-axis (for D = 0). In this case, we
are again forced to return to the initial formula (26) and
to introduce the parameter r0. Carrying out the calcula-
tions similar to those described above for the case of the
quadratic nonlinearity, we obtain the final expression

(28)

As can be seen, the result again essentially depends on
the parameter r0.

Consider the example with the rectangular pulse
once again. Using the line of reasoning similar to that
used for the quadratic nonlinearity, we obtain the fol-
lowing relationship for the case of an arbitrary location
of the source of signal (i.e., for D ≠ 0):

(29)

Note that this result is similar to that obtained previ-
ously for the rectangular pulse in the medium with the
quadratic nonlinearity.

In the case of the source located at the x axis, for the
rectangular pulse, we use the formula (28) to obtain the
expression

(30)

Thus, this paper suggests a new method of monitor-
ing the AE signals. The method is based on the nonlin-
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ear interaction between the monochromatic HF test
wave and the emission pulses. The estimates show that
the suggested method is suitable for practical applica-
tions.
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Abstract—Characteristic features of the Doppler frequency shift of Rayleigh and bulk waves excited in an
elastic halfspace by a source vertically moving in a contacting gaseous halfspace (atmosphere) are studied.
© 2000 MAIK “Nauka/Interperiodica”.
In the seismology and acoustics of vibrations, one
frequently encounters the phenomenon of the genera-
tion of elastic waves by moving sources. A higher level
of high-frequency seismic background in the regions of
the passage of atmospheric fronts with the development
of catastrophic or fast atmospheric processes is one of
the examples of their manifestation. It is possible to
give many other facts that testify to the connection of
seismic vibrations with the fast-moving atmospheric
perturbations of natural origin generating them. Hurri-
cane movement of atmospheric masses, thunderstorm
phenomena, and, specifically, the lightning discharge,
which is accompanied by vertical movement of the so-
called “leader” to the Earth surface, is an example of a
moving thermal source of sound, both in the atmo-
sphere and in the surface layers of the Earth medium. It
is interesting to study the characteristics of seismic
vibrations excited in the Earth medium and affecting its
surface and deep layers due to such phenomena. In this
case, the Rayleigh surface waves and waves similar to
them are excited together with longitudinal and trans-
verse bulk waves. The generation of acoustic waves in
gaseous and liquid media by supersonic and subsonic
moving sources has been studied in detail and
described in many papers [1–4]. The analysis of the
characteristics of elastic seismic fields generated by
moving sources is presented in the literature to a much
lesser extent. Meanwhile, such type of sources is
known in seismology, and they manifest themselves,
for example, in the realization of the “ripping” mecha-
nism in the seismic center [5]. Model numerical simu-
lations have demonstrated that movement may intro-
duce certain peculiarities into the spectrum and may
lead to anisotropy in the generation of these waves,
since a moving source is an analog of a source distrib-
uted in space, and it can be characterized by an imagi-
nary aperture VR/c, where V is the velocity of source
movement, R is the distance between the source and the
receiver, and c is the velocity of wave propagation. All
1063-7710/00/4604- $20.00 © 20433
specific features of the radiation characteristics, which
are caused by the source movement, are interrelated.
The simplest feature is the frequency shift of a wave.
The manifestation of this shift becomes noticeably
more complex in the propagation through a medium
with an inhomogeneous layered structure, which
causes reflection and refraction at the interfaces.

By now, the dependence of the frequency shift of
Rayleigh waves in an elastic medium upon the velocity
of the source movement is not sufficiently investigated.
The purpose of this paper is to analyze this dependence
for a surface wave excited by a source vibrating with
the frequency Ω and moving in the upper gaseous
medium perpendicularly to the boundary of the elastic
halfspace with a subsonic velocity, i.e., when V/c < 1. It
is assumed that the density of the upper medium is very
small as against the density of the lower medium, the
sound velocity in the upper medium is noticeably less
than the velocity of compression and shear waves in the
lower medium, and the height of the source position
over the boundary is much less than the sound wave-
length. If the two first conditions are met, the excited
surface wave is an almost Rayleigh one [6]. The general
scheme of source positioning with respect to the inter-
face and the system of coordinates is given in Fig. 1.

It should be noted that the problem of the determi-
nation of the frequency and amplitude of the Rayleigh
wave was already considered earlier [7] for the case of
an oscillating force acting on the boundary of a solid
halfspace and moving uniformly along the horizontal
boundary. The solution provided an opportunity to
reveal certain features specific to both the frequency
shift and the azimuth distribution of amplitude in this
wave. The case of a static load applied to the boundary
of a solid halfspace and moving with acceleration was
also considered in the literature [8]. However, it is
impossible to use the data obtained in the cited publica-
tions in the case of a vertical movement of the source
because of the different geometry of the problem,
000 MAIK “Nauka/Interperiodica”
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which in the case under study is characterized by axial
symmetry. This fact calls for a special analysis of the
frequency shift of the Rayleigh wave in the specific
generation conditions.

Since the movement and not the type of action on
the upper medium is essential, we can use any type of
the source (monopole or dipole) for our calculations. A
point source of oscillating force F normal to the bound-
ary, which moves in the upper medium, can be repre-
sented in the form of the following spatial-time func-
tion:

(1)

Then, we proceed to the Fourier transforms of the
considered force acting on the medium. An explicit
expression for its Fourier transform with respect to
space and time can be written in the form

(2)

where k2 =  + .

Using the properties of the delta-function, we can
obtain an explicit expression for transform (2)

(3)

where c is the sound velocity in the upper medium.
We conduct further consideration under the

assumption of not too high source velocity when V ! c,
which provides an opportunity to simplify the argu-
ment of the delta-function. The integration variable ω
under the radical sign can be changed for the constant
value of the force frequency Ω. In this case, the argu-
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Fig. 1. Schematic representation of a source moving in the
air close to the boundary of an elastic halfspace.
ment of the delta-function is simplified, and the latter
takes the form

(4)

We will describe the acoustic field in the upper
medium by the scalar potential ϕ1 and the elastic field
in the lower medium by the scalar potential ϕ2 and by
the azimuth component of the vector potential ψ2. As
the force, these fields can be represented in the form of
the Fourier-Bessel expansions in the spatial and time
frequencies by virtue of the axial symmetry of the prob-
lem. An expression for the acoustic potential in the
upper medium can be readily derived using the follow-
ing considerations: the displacements at the points
belonging to an infinitely narrow region (slightly
higher and slightly lower than the horizontal line pass-
ing through the source) are equated, while the pressure
difference is set equal to the acting alternating force.

The corresponding elementary intermediate trans-
formations allow us to express the primary incident
field through the source parameters. In addition, it is
necessary to take into account the fact that the acoustic
field in the upper medium also contains the component
reflected by the media interface. The amplitude of this
component is a priori unknown. Therefore, the follow-
ing expression is valid for the acoustic potential:

(5)

According to aforesaid, the potentials describing the
elastic field of the wave in the lower medium (the scalar
potential and the azimuth component of the vector
potential) are represented by the relationships

(6)

where Q(ω, k), B(ω, k), and C(ω, k) are the unknown
functions, which are the complex amplitudes of the
reflected wave in the upper medium and the compres-
sion and shear waves in the lower medium, respec-
tively, and ρa is the density of the acoustic medium.
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It is easy to write down the expressions for the wave
displacements and elastic stresses or the acoustic pres-
sure in both media on the basis of the given expansions
of fields (5) and (6) [9]. For example, the z-component
of the displacements in the upper and lower halfspaces
can be determined by the formulas

(7)

Analogously, we can represent the expressions for
the wave stresses σzz and σzr in the lower medium and
the acoustic pressure p in the upper medium. The latter
is directly related to the potential in this medium; there-
fore, the expression p(ω, k) = ω2ρaϕ1(ω, k) is valid for
the Fourier components. In this connection, there is no
need to write down the explicit expression for pressure.
Further, we give the corresponding expressions for
stresses under the assumption that the Lame constants
of the elastic medium are equal: λ = µ:
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(8)

It is evident that now to solve the excitation problem
it is sufficient to satisfy the boundary conditions at z = 0,
i.e., along the interface plane. This leads to the neces-
sity to satisfy a set of equations that express the condi-
tion of the equality of normal displacement compo-
nents and the equality of the stress σzz to the negative
pressure value p. In addition, the condition of the zero
nondiagonal component of stress σzr at z = 0 should be
satisfied. Thus, we obtain a set of three equations con-
necting the spectral amplitudes Q(ω, k), B(ω, k), and
C(ω, k) with the parameters of the specified force:

(9)
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Here, since the delta-function is involved on the
right-hand sides of the first and the last equations (9),

the quantity ω is replaced by Ω + V . It is

known [5, 6, 9] that the real root of the dispersion equa-
tion resulting from the condition of the zero determi-
nant of the set of equations (9) is the pole point, the
half-residue at which determines the amplitude of the
Rayleigh wave excited by the source under consider-
ation. If we take into account the above assumption on
the negligibly small density of the upper medium as
against that of the lower medium, we arrive at the con-
clusion that the determinant of the set of equations vir-
tually depends only on the coefficients at the ampli-
tudes B(k) and C(k) (the index ω in the argument is
omitted by virtue of the assumption on convolution
with delta-function) in the first two equations (9). Now,

the wave number k must be treated as k = , where cR

is the Rayleigh wave velocity in the solid halfspace, and
 must be treated as the unknown wave frequency, the

dispersion equation for this frequency being given by
the expression

(10)
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Fig. 2. Frequency shift of the Rayleigh wave as a function
of the Mach number V/c for three values of the ratio of the
propagation velocities: c/cR = (1) 0.6; (2) 0.8; and (3) 0.95.
One can see from equation (10) that, independently
of the Mach number V/c, the sought-for frequency of
the Rayleigh wave detected in a fixed coordinate sys-
tem lies within the interval

(11)

which is determined only by the ratio of the propaga-
tion velocities of elastic waves in the contacting media.
The solution of equation (10) is obtained numerically
with both directions of motion being considered, i.e.,
for positive values of the velocity V > 0 and for negative
values V < 0. The results of the calculations are given in
Fig. 2, where curves 1, 2, and 3 correspond to the cases
c/cR = 0.6; 0.8; and 0.95, respectively. The curves tes-
tify that the positive values of the velocity of the source
motion (toward the interface) cause a monotonic
increase in frequency, which corresponds to the growth
of the velocity of the source motion, at least for rela-
tively small values of the Mach number V/c used for the
calculation. A steeper increase corresponds to a smaller
ratio c/cR . Conversely, in the case of the source moving
away from the interface, i.e., for V < 0, the frequency
shift is negative with the frequency decrease rate also
increasing with decreasing ratio c/cR . Moreover, in the
latter case of the source motion, when the source veloc-
ity exceeds in the absolute value some critical value
depending on c/cR, the excitation of the Rayleigh wave
becomes impossible at all frequencies. It is easy to see
that the interval of the frequency shift is fairly small in
comparison with the value of the frequency itself in the
case of the motion along the perpendicular to the inter-
face. This feature distinguishes the Doppler shift in the
Rayleigh surface wave from the frequency shifts of
compression and shear waves. The Doppler shift is also
opposite in sign to the frequency shift of waves
refracted at critical angles at the interface between two
acoustic media [10]. It is necessary to stress the oppor-
tunity of a total suppression of Rayleigh waves when
the velocity of the source motion exceeds a certain
value constituting a small fraction of the velocity of the
Rayleigh wave, which has not been noticed in earlier
studies. Explaining this statement, we should note that
the displacement amplitude in the Rayleigh wave is
determined by the half-residue at the specified pole
point. The differentiation of the left-hand side of
expression (10) with respect to k gives the denominator
of the fraction that in fact determines the half-residue
and, therefore, the amplitude of oscillations in the sur-
face wave in integral expressions (7) and (8). We do not
give the result of differentiation in this paper, as it is
rather cumbersome. However, the conducted analysis
shows that the excitation amplitude of the studied wave
vanishes at the edges of the admissible frequency range
(11). Thus, the suppression of the Rayleigh wave is not

cR
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ct
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a consequence of a large distance from the source to
the interface, when the excitation amplitude of the
wave is affected by the exponential factor on the right-
hand side of system (9), but is explained by another
reason.

If we establish a correspondence between a certain
departure angle of the ray of the primary wave at the
point of the instantaneous position of the source and
each value of the Rayleigh wave frequency in the case
of a moving source, we can construct the dependences
of the ray incidence angle on the Mach number (in real-
ity, we mean the surface of a cone with the vertex at the
source; the surface is intersected by the interface, and
its vertical section forms two symmetric inclined seg-
ments—rays). These dependences are obtained using
the fact that the oscillation frequency of a moving
source is uniquely related to the frequency of the acous-
tic wave at the reception point by the relationship  =
Ω/[1 – (V/c)cosθ], where the angle θ is counted from
the direction of source motion [4]. In our case, the angle
is counted from the positive direction of the z axis. Fig-
ure 3 shows the curves corresponding to Fig. 2 and
characterizing the dependence of the inclination angles
of rays, which are counted from the vertical line, on the
Mach number; the primary field in the upper medium is
incident upon the boundary along these rays and excites
the Rayleigh wave. Here, the case of source motion
toward the interface corresponds to the curves with the
positive Mach numbers V/c > 0, and the case of the
source moving away from the interface corresponds to
V/c < 0. The set of curves for positive values of V/c > 0
is limited by the condition V/c ! 1 and can be extended
to the right in the general case, whereas for negative
values of V/c < 0, the termination of the curves corre-
sponds to the fundamental impossibility of the Ray-
leigh wave excitation, as its amplitude vanishes and the
requirement of real values of frequency is violated
when the velocity exceeds some threshold value. It
should be noted that each ratio c/cR at V/c = 0 corre-
sponds to its own angle of excitation of the surface
wave, and this angle decreases with the decrease in this
ratio.

Let us demonstrate that the longitudinal and trans-
verse bulk waves excited in the lower medium by the
same moving source have a frequency shift that differs
from that of the Rayleigh wave. Evidently, in the calcu-
lation of the far fields of bulk waves in the lower
medium with the help of expansions (7) and (8), these
waves correspond to the contribution to the full integral
with respect to the spatial frequency k, which results
from the integration over a certain interval on the wave
number axis near the point of stationary phase corre-
sponding to this wave type [3]. The complete phase in

ω̃
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the spectrum of, e.g., shear waves is given by the
expression

(12)

We change over to the spherical system of coordi-
nates R, Θ (the radius-vector R and the angle Θ origi-
nate from the zero point at the interface and the z axis
in the lower medium) in order to designate the observa-
tion point in the elastic medium: r = RsinΘ, z = RcosΘ,
and we set the derivative of the complete phase with
respect to the variable k equal to zero. In the first
approximation with respect to the Mach number V/c,
for the point of stationary phase we have the value

(13)

The substitution of this value in expression (12)
yields

(14)

Expression (14) demonstrates that the shear wave
detected in the elastic medium must be received in all
directions at the shifted frequency Ω(1 + V/c). An anal-
ogous conclusion is valid for longitudinal waves. The
interpretation of the obtained result consists of the fact
that, in the case of small wave distances from the source
in the upper medium to the interface, only the ray nor-
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mal to the interface excites compression and shear
waves in the lower medium with the angle-independent
frequency determined by a common Doppler shift.
This provides the frequency shift for the bulk waves in
the lower medium, and this shift is equal in all direc-
tions.

In conclusion, we note that a dedicated reception of
the Rayleigh-type seismic surface waves and the set of
bulk and refracted waves generated by natural phenom-
ena mentioned above should make it possible to refine
the vertical seismic profile at the site of experiment in
the case of further spectral and correlation analysis of
acoustic and seismic signals detected by a microphone
and a geophone simultaneously, because each type of
waves refracted or captured by an interface between
layers provides a frequency shift of known value and a
corresponding amplitude of response.
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Abstract—The propagation of wide-band acoustic pulses in one-dimensional periodic structures consisting of
alternating plexiglas and water layers is studied theoretically and experimentally. The experiment is carried out
with the use of the wide-band photoacoustic spectroscopy based on the laser excitation of ultrasound and a
wide-band signal detection. The fact that the transmission spectrum of a periodic structure has alternating pass
and stop bands is confirmed experimentally. The width and localization of the stop bands strongly depend on
the thickness of the layers and on the phase velocity of ultrasound in them. It is demonstrated that defects of
the structure periodicity give rise to one or several local transmission maxima in the stop band and to a mod-
ification of the pass band. The amplitude and position of a local maximum in the stop band strongly depend
on the position of the defective layer. The experimental data agree well with the results of numerical simulation.
© 2000 MAIK “Nauka/Interperiodica”.
Studies of the structure and condition of composite
materials and items made of them is of great scientific
and practical interest. One of the basic methods of non-
destructive testing of composites is the ultrasonic tech-
nique. The majority of composite materials have peri-
odic structures, and, therefore the study of acoustic
properties of periodic structures is quite topical. It is
easy to calculate the elastic moduli and the attenuation
coefficient for ultrasound in transversely isotropic and
orthotropic composite materials in the long-wave
approximation. These studies were reviewed in our pre-
vious papers [1, 2]. In the general case, the spectrum of
the ultrasound transmission through a periodic struc-
ture consists of alternating pass and stop bands. Such
stop bands were observed experimentally in glass-rein-
forced plastic composites [3].

Experimental studies of ultrasonic propagation in
periodic structures are few in number. Basically, such
investigations are restricted to considering one-dimen-
sional periodic structures. This is connected with the
fact that multidimensional periodic systems have dif-
ferent characteristic periods of their structure in differ-
ent directions, and sources of wide-band acoustic sig-
nals are necessary for their investigation. Conventional
piezoelectric radiators are of little use for this purpose.

Scott and Gordon [4] studied both theoretically and
experimentally the ultrasonic propagation in a periodic
structure consisting of six periodically arranged glass
and water layers of thickness 1.22 and 1 mm, respec-
tively. For this structure, the presence of stop and pass
bands for ultrasound in the range 1–8 MHz was demon-
strated.
1063-7710/00/4604- $20.00 © 20439
Existence of pass and stop bands in the transmission
spectrum of a periodic structure was also demonstrated
theoretically and experimentally by James et al. [5]. It
was found that the presence of defects in a periodic
structure gives rise to a local transmission maximum in
the stop band of the transmission spectrum. Thus,
James et al. [5] demonstrated an opportunity for the
diagnostics of a periodic structure with defects.

Kushwacha [6], Young-Sang Joo et al. [7], and
Maidanic and Becker [8] theoretically analyzed the
band structure of ultrasonic transmission spectra for a
system consisting of metal cylindrical rods positioned
in parallel in the air or in a liquid. A theoretical study of
ultrasonic propagation in two- and three-dimensional
periodic structures was conducted by Kushwacha et al.
[9, 10]. The corresponding problem is solved using the
Bloch theorem and the Fourier transform, and the solu-
tion is reduced to the determination of the eigenvalues
of the wave vectors of acoustic waves propagating in
periodic structures. Papers devoted to the investigation
of the ultrasonic wave propagation in composite struc-
tures in the case of the acoustic wavelength being close
to the structure period were reviewed by Nayfeh [11],
who analyzed various theoretical models of one- and
three-dimensional ordered composite structures.

The frequency spectrum of ultrasonic transmission
through a two-dimensional structure in the form of a
system of 36 metal rods of diameter 2.34 cm positioned
in the nodes of a square grid with the period 3.7 cm was
studied by Robertson and Rudi [12]. The existence of
stop bands for the ultrasonic transmission in the fre-
quency range up to 10 kHz was proved experimentally.
000 MAIK “Nauka/Interperiodica”
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However, the absence of comparison of the experimen-
tal results with numerical simulation, a small number of
experimental points in the spectrum, and a strong irreg-
ularity of the latter do not provide enough evidence to
judge about the validity of the results.

In the majority of papers on the acoustic waves
propagation in periodic structures, only the structures
with a small number of layers were studied. This is con-
nected with the reduction of the transmission in peri-
odic structures with the increase in the number of layers
and with the limitation of the frequency range due to
the use of piezoelectric transducers. The employment
of wide-band thermooptical ultrasonic sources pro-
vides an opportunity to overcome these difficulties.
Thus, the investigation of the ultrasonic propagation in
model one-dimensional periodic structures with known
characteristics and the comparison of the experimental
data with the theoretical calculations remain being top-
ical. Hopefully, the study of the transmission spectra of
composites in a wide frequency range will make it pos-
sible to reveal their structure.

The purpose of this study is the experimental inves-
tigation of the propagation of wide-band acoustic sig-
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Fig. 1. Reference acoustic signal in distilled water: (a) the
time profile and (b) the spectrum.
nals in one-dimensional periodic structures by the
wide-band acoustic spectroscopy using a laser ultra-
sonic source; the determination of the stop bands in the
spectra of one-dimensional periodic structures with
various periods; and the experimental study of the
influence of defects of the structure periodicity on the
spectrum of ultrasonic transmission.

According to the theory, the transmission coefficient
T of a one-dimensional periodic structure containing n
layers is determined by solving 2(n + 1) coupled linear
equations, which are the relationships for pressures and
particle velocities in the ith and (i + 1)th layers. Similar
calculations were performed by Scott and Gordon [4]
and James et al. [5]. In our case, in order to determine
the coefficient T, we have solved the problem numeri-
cally using Matlab software. If we introduce a complex
value of the propagation velocity of longitudinal acous-
tic waves, it is possible to investigate the absorbing lay-
ered structures as well.

The experimental study of the transmission coeffi-
cient of acoustic waves in a layered periodic structure
was conducted using the method of the laser photoa-
coustic spectroscopy [13, 14]. This method provides an
opportunity to investigate the coefficients of transmis-
sion, reflection, and absorption of ultrasonic waves in a
wide spectral range, from hundreds of kilohertz to tens
of megahertz.

The periodic structure under investigation was
placed into a photoacoustic cell filled with an immer-
sion fluid, which in our case was distilled water. Water
also filled the unconfined space of the periodic struc-
ture and thus formed a water–plexiglas periodic struc-
ture. China ink was used as the thermooptical ultra-
sonic source. The ink was placed into a cylindrical cell
contacting with the immersion liquid (the cell bottom
was made of a thin polyethylene film matched in its
acoustic impedance with ink and water). A YAG-Nd
laser was used for the excitation of ultrasonic pulses
(pulse length 12 ns, energy 30 mJ, and spot diameter
8 mm). The ink concentration was selected in such a
way that the spectral range of the excited pulses
extended from 0.5 to 9 MHz (the pulse shape and its
spectrum are given in Fig. 1). The detection of acoustic
pulses, which were transmitted through the photoa-
coustic cell in the absence of the periodic structure and
when it was present in the ultrasonic beam, was per-
formed by a wide-band piezoelectric receiver made of
a PVDF film (thickness 30 µm). As one can see from
Fig. 1, the receiver could detect signals within the
aforementioned frequency range. The electric signal
was recorded by a digital oscilloscope of the Tektronix
TDS220 type with the analog band 100 MHz. The
oscilloscope was connected with a computer of the
IBM PC type. In the experiment, the signal-to-noise
ratio exceeded 102.

The frequency dependence of the transmission coef-
ficient of the periodic structure was determined as the
absolute value of the ratio between the spectrum of the
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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ultrasonic signal transmitted through the periodic struc-
ture placed in the cell (see Fig. 2) and the spectrum of
the reference signal transmitted through the cell in the
absence of the periodic structure (Fig. 1b). The width
and position of the stop bands strongly depend on the
thickness of the plexiglas and water layers. Therefore,
we studied two structures with equal numbers of plexi-
glas layers, but with slightly different thicknesses of
these layers.

The form of the signal transmitted through the peri-
odic structure (see Fig. 2) contains a “head” pulse,
which corresponds to a single passage of a wave
through the layers, and a series of attenuating oscilla-
tions related to the reverberation of the initial pulse in
the multilayer system. In the case under study, the system
consisted of ten 1.65 mm thick plexiglas layers posi-
tioned at a distance of 0.95 mm from each other. The
travel times of ultrasound through the plexiglas layer
and the water layer were approximately the same and
constituted 0.63 

 

µ

 

s. Since the length of the initial pulse
was less than the time of travel through the layer, rever-
berations were separated in time from the direct trans-
mitted signal. The complete track of the detected signal
contained over 

 

10

 

4

 

 points (Fig. 2 gives only the initial
part of the record), which provided the opportunity to
study the signal spectrum with necessary details. The
transmission spectrum of this periodic structure is
given in Fig. 3a (the dotted curve). In the same figure,
we present for comparison the transmission spectrum
calculated for this periodic structure according to the
matrix technique (the solid curve). Naturally, this spec-
trum consists of alternating pass and stop bands. The
positions of the stop bands measured experimentally
agree well with the calculations. The main discrepancy

between the amplitudes of the narrow minima in theory
and experiment is related to the error in the measure-
ment of the phase velocity of longitudinal acoustic
waves in plexiglas, which constitutes 1% of the veloc-
ity value, as well as to the small difference in the thick-
ness of the plexiglas plates making up the periodic
structure (about 1%). The thin solid line in Fig. 3a rep-
resents the numerical simulation of the ultrasonic trans-
mission through a one-dimensional periodic structure
with the values of the phase velocity in plexiglas and
the layer thickness changed by 1%. As one can see from
the plot, there is almost no frequency shift in the pass
and stop bands. However, the amplitudes of the narrow
minima decrease almost by half. This is caused by the
fact that the narrow transmission minima in the pass
bands represent newly formed stop bands. Since the
system is resonant, small changes in its parameters lead
to considerable changes in the transmission coefficient
for the forming bands.

The difference between the absolute values of the
transmission maxima in the pass bands in theory and
experiment may be connected with the one-dimension-
ality of the model used for the calculations. The finite-
ness of the acoustic beam leads to the generation of
shear acoustic waves at the fluid–solid interface even in
the case of normal incidence [15, 16], which may affect
the transmission spectrum of longitudinal acoustic
waves. However, taking into account such effects in the
utilized theoretical model lies beyond the framework of
this study.

The spectrum of ultrasonic transmission changes, if
one or several plexiglas layers are removed, i.e., if a
“defective” layer is created in the periodic structure. In
this case, one or several local transmission maxima
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Fig. 3. Transmission spectra of a periodic structure consisting of ten plexiglas layers and nine water layers: (a) d1 = 1.655 mm, c1 =
2.67 mm/µs, d2 = 0.94 mm, and c2 = 1.482 mm/µs (the thick line represents the calculation and the thin line shows the experiment);

the calculation performed for  = 1.64 mm,  = 2.7 mm/µs,  = 0.955 mm, and c2 = 1.482 mm/µs (the thin line); (b) the fifth

and eighth plexiglas layers are replaced by water (the thick line refers to the calculation and the thin line refers to the experiment).

d1' c1' d2'
arise in the stop band, and the pass band becomes more
irregular (Fig. 3b), the position and amplitude of the
local maximum in the stop band depending on the posi-
tion of the defective layer. The closer the defective
layer is to the system center, the greater the amplitude
of the local maximum, and the closer this maximum is
to the center of the stop band. The presence of defects
in the system can also lead to shifts of the narrow stop
bands, which is illustrated by Fig. 4a. A narrow mini-
mum that is close to the frequency 1.5 MHz in the
defective periodic structure shifts to the low-frequency
range.

As we have noted above, the transmission spectrum
of a periodic structure is very sensitive to a change in
layer thickness. To illustrate this fact, the spectrum of
ultrasonic transmission for a periodic structure consist-
ing of ten 1.5 mm thick plexiglas layers and nine 1.1 mm
thick water layers is given in Fig. 4b. One can see that
the stop bands are less dense. The thick line in the same
figure represents the transmission spectrum of a peri-
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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Fig. 4. Experimental dependences of the transmission spectra for two different periodic structures: (a) a periodic structure consisting
of ten plexiglas layers (d1 = 1.65 mm) and nine water layers (d2 = 0.94 mm) (the thin line) and the same periodic structure, where
the fifth and eighth plexiglas layers are replaced by water (the thick line); (b) a periodic structure consisting of ten plexiglas layers
(d1 = 1.47 mm) and nine water layers (d2 = 1.1 mm) (the thin line) and the same periodic structure with the eighth plexiglas layer
being replaced by water (the thick line).
odic structure with the removed eighth plexiglas layer.
One can readily see that, in contrast to the periodic
structure considered earlier (Figs. 3a–4a), a noticeable
local transmission maximum is observed in the stop
band only near 0.75 MHz, and the amplitudes of other
local maxima are much less.

Thus, the propagation of ultrasonic waves in one-
dimensional periodic structures of plexiglas and water
has been studied using wide-band photoacoustic spec-
troscopy with a laser ultrasonic source. It has been
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
demonstrated that the transmission spectrum of such
systems consists of pass and stop bands. The width and
localization of the stop bands depend heavily on the
values of the layer thickness and the phase velocity of
ultrasound in the layers. It has been shown that, when
one or several plexiglas layers is replaced by water, one
or several local transmission maxima arise in the stop
band, and the pass band is modified. The position and
amplitude of the local maximum in the stop band
depend heavily on the position of the defective layer. It
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should be noted that the transmission spectra of one-
dimensional periodic structures can be obtained in real-
time. The frequency range of the investigation is deter-
mined only by the width of the spectrum of the photo-
acoustic generator. The results presented above can be
used for nondestructive testing of various periodic
structures and composite materials.

REFERENCES

1. A. A. Karabutov, I. M. Kershteœn, I. M. Pelivanov, and
N. B. Podymova, Akust. Zh. 45, 86 (1999) [Acoust.
Phys. 45, 76 (1999)].

2. A. A. Karabutov, V. V. Murashov, and N. B. Podymova,
Mekh. Kompoz. Mater. 35, 125 (1999).

3. A. A. Karabutov and N. B. Podymova, Mekh. Kompoz.
Mater. 31, 405 (1995).

4. W. R. Scott and P. F. Gordon, J. Acoust. Soc. Am. 62, 108
(1977).

5. R. James, S. M. Woodley, C. M. Dyer, and V. F. Hum-
phrey, J. Acoust. Soc. Am. 97, 2041 (1995).

6. M. S. Kushwacha, Appl. Phys. Lett. 70, 3218 (1997).
7. Young-Sang Joo, Jeong-Guon Ih, and Myoung-Seon
Choi, J. Acoust. Soc. Am. 103, 900 (1998).

8. G. Maidanic and K. J. Becker, J. Acoust. Soc. Am. 104,
700 (1998).

9. M. S. Kushwacha, P. Halevi, L. Dobrsynski, and Djafari-
Rouchani, Phys. Rev. Lett. 71, 2022 (1993).

10. M. S. Kushwacha and P. Halevi, J. Acoust. Soc. Am. 101,
619 (1997).

11. A. Nayfeh, J. Acoust. Soc. Am. 89, 1521 (1991).
12. W. M. Robertson and J. F. Rudi, J. Acoust. Soc. Am. 104,

694 (1998).
13. V. É. Gusev and A. A. Karabutov, Laser Optoacoustics

(Nauka, Moscow, 1991).
14. A. A. Karabutov, M. P. Matrosov, N. B. Podymova, and

V. A. Pyzh, Akust. Zh. 37, 311 (1991) [Sov. Phys.
Acoust. 37, 157 (1991)].

15. D. A. Hutchins, R. J. Dewhurst, S. B. Pulmer, and
C. B. Scruby, Appl. Phys. Lett. 38, 677 (1981).

16. D. A. Hutchins, R. J. Dewhurst, S. B. Pulmer, and
C. B. Scruby, J. Appl. Phys. 53, 4064 (1982).

Translated by M. Lyamshev
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000



  

Acoustical Physics, Vol. 46, No. 4, 2000, pp. 445–449. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 46, No. 4, 2000, pp. 515–519.
Original Russian Text Copyright © 2000 by Kuz’kin.

                                                                             
Correlation Reception of a Diffraction Sound Field
in an Oceanic Waveguide

V. M. Kuz’kin
Wave Research Center, General Physics Institute, Russian Academy of Sciences,

ul. Vavilova 38, Moscow, 117942 Russia
e-mail: petniko@kapella.gpi.ru

Received September 14, 1999

Abstract—Intensity matched processing is considered for a diffracted signal when the object is detected by the
main lobe of the shadow scattered sound field. The consideration is based on the few-parameter model that ade-
quately describes the characteristics of the desired signal. It is shown that, in the absence of noise and fluctua-
tions in the parameters of the medium, the proposed algorithm provides the determination of the exact param-
eters of the signal and the moving object. © 2000 MAIK “Nauka/Interperiodica”.
Earlier, a simple physical model has been proposed
[1, 2] that provided adequate estimates for the fre-
quency-temporal parameters of a diffracted signal in an
oceanic waveguide when the object is detected by the
“shadow” field scattered by it. This model is important,
because it allows one to predict the results of numerical
calculations and makes it possible to reveal the stable
signs of the signal. Such signs are known to afford the
detection of weak signals against the background of
strong interference, if sufficiently long data acquisition
is used. By using the few-parameter model for the sig-
nal scattered by a moving object and imposing con-
straints on the possible range of changes in its charac-
teristics, one can adjust the parameters of the reference
signal (namely, those of the transfer function of the
matched filter) to obtain the maximum correlation
response. With such an algorithm of acoustical moni-
toring of localized inhomogeneities, a quality of detec-
tion can be achieved that is close to the potential limit,
and the object parameters can be predicted to a given
accuracy. This approach based on matched filtering is a
version of the method known as Matched Field Pro-
cessing (MFP) [3, 4].

In this paper, we consider the problem of recon-
structing the parameters of a moving object from the
shadow scattered field processed with the correlation
algorithm [5, 6]. We estimate the domain of strong cor-
relation where the maximum in the envelope of the nor-
malized cross-correlation function between the model
and reference signals is no lower than a given value.
Thereby, the maximum step in digitizing the parame-
ters of the reference signal can be estimated to select
reliable parameter values. To reconstruct the object
parameters from the measurements of the received sig-
nal, a two-point reception scheme is proposed with
receivers spaced in the horizontal plane.
1063-7710/00/4604- $20.00 © 20445
After [1, 2], we restrict ourselves to considering a
monochromatic transmitted signal and a horizontal
motion of the object with a constant speed, perpendic-
ularly to the base-line connecting the source and the
receiver. Then, the signal scattered by the moving
object is a pulse whose envelope is determined by the
shadow contour and whose carrier is a sinusoidal oscil-
lation with a linearly varying frequency. In practice, the
shape of the object is usually unknown. At the same
time, from physical considerations and in accordance
with [7], the shape of the envelope is of no importance,
if matched filtering oriented at the expected signal
parameters is used. This result can be explained by the
fact that the sound energy is mainly concentrated
within the main lobe of the shadow scattered field for a
convex object. Therefore, for simplicity we assume that
the signal envelope has the Gaussian form. Then, the
diffracted signal can be written [2] as

(1)

where α = 2πv2/L2; ϑ  = L2/ lv; L = (R1R2λ/R)1/2 is
the size of the first Fresnel zone; R is the horizontal dis-
tance between the fixed point source S and the fixed
receiver A1; R1 and R2 are the distances from the point
where the object crosses the base line to S and A1,
respectively (Fig. 1); 2l and v are the characteristic hor-
izontal size and speed of the object; ω0 and λ are the
acoustic frequency and wavelength; and U0 and θ0 are
the amplitude and initial phase that depend on the prop-
agation conditions. The pulse duration is specified as

the width ϑ  of its envelope at the level 1/e relative
to the maximum.

u t( ) U0 2t
2
/ϑ 2

–( ) ω0t α t
2
/2 θ0+ +( ),cosexp=

2

2
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Let us consider the autocorrelation function of sig-
nal (1):

Usually, the deviation of the instantaneous frequency
within the time interval ϑ  is small in comparison with
ω0 (αϑ ! ω0), and ϑ  far exceeds the mean period 2π/ω0
(ω0ϑ @ 2π). Then, in the entire significant domain τ,
the function Ψ(τ) can be quite accurately described by
the expression [8]:

(2)

where s = 1 + κ, κ = α2ϑ4/16 = (πm/4)2, and m = (L/l)2

is the signal base that characterizes its complexity [2].
The width ∆τ of the autocorrelation function, when
measured at the level 1/e of the maximum (energy)
value Ψ(0), is equal to

where τ∗  = 4/αϑ  = 2 l/πv is the correlation time for
the frequency-modulated carrier. This quantity is recip-
rocal of the deviation αϑ /4 of the instantaneous fre-
quency ω(t) = ω0 + αt within the envelope width ϑ /4.
For a pulse of high complexity, τ∗  ! ϑ(4/π ! m) and

∆τ ≈ 2τ∗  = (4 /π)(l/v). In contrast, if α decreases and
the carrier changes to a harmonic oscillation with an
infinite correlation time τ∗ , the pulse becomes “sim-

ple,” and ∆τ ≈ 2ϑ = L2/lv. Thus, the ratio ϑ /∆τ,
which determines the compression coefficient, is equal

to . The width of Ψ(τ) is equal to

δτ = 2ϑ  at the level Ψ(0)/2.
Suppose that the received and reference signals,

u1(t) and u2(t), belong to the class of functions (1), and
their carrier frequencies coincide (ω1 = ω2 = ω0), but

Ψ τ( ) u t( )u t τ+( ) t.d

∞–

∞

∫=
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-------U0
2ϑ sτ2
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Fig. 1. Measurement geometry: S, source; O, object; A1, 2,
receivers; SP = R1; PA1 = R2; SA1 = R; A1A2 = R3.
they have different amplitudes U1, 2, durations ϑ1, 2,
rates α1, 2 of frequency variations, and initial phases

. Let us consider the effect of such a mismatch on
the cross-correlation coefficient K12(τ) of the signals
u1, 2(t):

where Ψ1, 2(0) is the maximum value of the autocorre-
lation function for the signals u1, 2(t). By substituting
expression (1) for u1, 2(t) and performing the integra-
tion, we obtain

(3)

Here, the following notation is used:

(4)

Thus, if the mismatch takes place, the distribution
K12(τ) is a modulated oscillation with the carrier fre-

quency (τ), initial phase  = (1/2)  +

a2(  – )/(p2 + a2), and envelope |K12(τ)|.
Further, we assume that the processing procedure is

based on the envelope of the cross-correlation function,
i.e., the intensity matched processing is used. Then, the
effect of the frequency-modulated carrier and the initial
phase is ruled out. Let us derive the expression that
determines the domain of permissible deviations of the
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parameters ϑ2 and α2 from ϑ1 and α1, where the follow-
ing condition is met:

(5)

This expression serves as a closeness criterion for the
signals u1(t) and u2(t). The value of H is chosen
according to the requirements on the level of the cor-
relation response. If ϑ2 = ϑ1 and α2 = α1, we have
|K12(0)| = max = 1.

Let us specify

(6)

In the notation of (6), inequality (5) takes the form:

(7)

If one converts expression (7) to new coordinates X =
x + 1, Y = y in the Oxy plane, an equation can be
obtained for the curve of constant level for the envelope
maximum of the cross-correlation coefficient, this
curve separating the domains of weak and strong corre-
lations:

(8)

The curve (8) of the sixth order splits into two closed
lines that are symmetric about the X and Y coordinate
axes. The entire right-hand line lies in the right-hand
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half-plane of the O1XY plane, and the entire left-hand
line lies in the left-hand one. Only the line that is
located to the right of the Y axis (X > 0) has a physical
meaning. Let us consider the characteristic values of
curve (8).

1. Points of intersection with the O1X axis:

(for 0 < H ≤ 1, we have 1 ≤ X1 < ∞, 0 < X2 ≤ 1).

2. Extremum points:

(for 0 < H ≤ 1, we have 0 < X5 ≤ 1, –1 ≤ X6 < 0, 0 ≤ Y1 <
∞, −∞ < Y2 ≤ 0).

When the level H and the parameter κ increase, the
strong-correlation domains become narrower, and, in
the limiting case H = 1, they shrink to the points with
the coordinates X = ±1, Y = 0. Figure 2 shows the
curves Y(X) (8) for the domain of positive values of X
and for different values of H and κ.

According to (3), the width δτ1, 2 measured at half

the level of |K12(0)| is δτ12 = 2 , where
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--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
As follows from this expression, the signal mismatch
leads to an increase in the duration of the correlation
response, as compared to the case of no mismatch. For
x = y = 0 (H = 1), the result is evident: δτ12 = δτ.

Assume that a priori information exists on the avail-
able range of changes in the object parameters v, l, and
L: vmin ≤ v ≤ vmax, lmin ≤ l ≤ lmax, Lmin ≤ L ≤ Lmax. Then
one can define the domain of realistic values for the
parameters ϑ2 and α2 of the reference signal: (ϑmin, ϑmax)

and (αmin, αmax), where ϑmin, max = / (lv)max, min

and αmin, max = 2 / . By exhausting these
values, a combination of the parameters can be found
that meets condition (5). The parameters ϑ2 and α2
selected in such a way can be treated as the desired ones

Lmin, max
2

2

πvmin,  max
2

Lmax, min
2

that correspond to the parameters ϑ1 and α1 of the
received signal.

To exhaust the parameters in the minimum number
of steps, it is sufficient to digitize the aforementioned
domains into segments ∆ϑ i = ∆xϑ i (i = 1, 2, …, n) and
∆αj = ∆yαj (j = 1, 2, …, m) whose length is equal to the
maximum absolute errors. In other words, one should
specify:

(9)
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Fig. 2. Curves of constant level for the maximum in the envelope of the cross-correlation coefficient (1, κ = 1; 2, κ = 16): (a) H = 0.5;
(b) H = 0.9.
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 and α1, m = αmin, max. The sequence {ϑ i} is a
geometric progression: ϑ i = ϑ1(1 + ∆x)i – 1. Hence, the
number of increments is

Here the square brackets mean the integer part of a
number. According to (9), the quantity ∆αj equals to

Thus, the length of the segment ∆αj depends on both
the level H and the selected value of the duration ϑ i .
Condition (5) will be met if the domain of the values of
the parameter α2 is broken into equidistant segments of
length

As a result, we have for the number of increments:

Thus, the minimum number of combinations is esti-
mated as

(10)

For numerical calculations by formula (10), we use the
following values: lmin, max = 30 and 75 m; vmin, max = 3
and 12 m/s; R1min, max = 10 and 60 km; R = 120 km; and

n
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λ = 10 m. Then, for the reference signal, the domain
of the parameter values is estimated as follows: 7.20 ×
10 ≤ ϑ2 ≤ 2.36 × 103 s, 1.88 × 10–4 ≤ α2 ≤ 9.87 × 10–3 s–2.
For H = 0.5, we have minQ = 2 × 434; for H = 0.9,
we have minQ = 4 × 8066.

Exhausting the values of ϑ2 and α2 with selecting
their most reliable combinations according to criterion
(5) leads to uncontrolled errors in the parameters ϑ1 and
α1 of the received signal. With the specified digitiza-
tion, these relative errors are limited from above by
relation (9), and one can see that they are rather high,
even at large H. For instance, if H = 0.9, we obtain ∆x ≈
1.45 and ∆y ≈ 7.15/α2 . To reduce the errors, one can

increase the threshold level of H and/or increase the
number of combinations Q.

However, with the considered processing method,
the parameters of the desired signal can be recon-
structed exactly. Let {ϑ i , α j} and {ϑρ, ϑγ} be the com-
binations of the parameters ϑ2 and α2 at which the max-
ima in the cross-correlation coefficient envelope are H1
and H2, respectively. Note that their values may coin-
cide. Using the notation of (6), in view of relation (8),
we obtain a system of equations

(11)
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for the parameters ϑ1 and α1 of the received signal. It is
clear that the signal level is also completely recon-
structed in this case.

The considered monostatic reception scheme does
not allow the object parameters v, L, l to be recon-
structed from the measured signal parameters ϑ1 and α1.
To eliminate this ambiguity, one can implement a bistatic
reception with the receiving points being spaced by a
certain distance from each other along the base line
(Fig. 1). Note that a vertical separation of the receiv-
ers does not solve the problem under discussion [2].

Let ϑ2, 3 and α2, 3 be the parameter values for the dif-
fracted signals at the reception points A1, 2, these values
being determined by the system (11). Then, the object
parameters will be determined by the following system
of equations:

(12)

where  = R1(R – R1)λ/R and  = R1(R + R3 –
R1)λ/(R + R3). From the first equation of (12), we find

.

Assuming that L2 is known, from (12) we obtain

Hence, the bistatic measuring scheme allows one to
eliminate the ambiguity in determining the distance R1
between the source and the point at which the object
crosses the base line, and the object parameters can be
completely reconstructed.

Thus, this paper considers the algorithm for an
acoustic monitoring of a moving object with the use of
the shadow scattered field. The algorithm is based on
the a priori information on the object parameters that
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form the diffracted signal and on the intensity matched
processing. As the closeness criterion for the parame-
ters of the received and reference signals, that of the
maximum in the envelope of the normalized cross-cor-
relation function is chosen. It is shown that, in the
absence of noise and fluctuations in the oceanic
medium, the algorithm provides the exact values of the
parameters of the desired signal and the moving object.
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Abstract—The sound propagation in a mixture of gas with uniformly dispersed solid particles, whose temper-
ature is maintained above that of the gas by an external source, is considered. The dispersion properties of this
kind of suspensions are studied, and expressions for the second viscosity and the sound velocity in such sus-
pensions are derived. It is shown that, in a nonequilibrium suspension, the second viscosity may be negative.
The ranges of the suspension parameters, for which the propagation of low-frequency sound is impossible, are
determined. © 2000 MAIK “Nauka/Interperiodica”.
It is well known that one of the mechanisms of
sound absorption in relaxing media is related to the
presence of the bulk (second) viscosity in these media.
In a number of nonequilibrium media, the bulk viscos-
ity may be negative [1–4]. Examples of such media are
molecular ones with a nonequilibrium excitation of the
internal degrees of freedom, as well as nonisothermic
plasma or media with heat release. A negative bulk vis-
cosity leads to an acoustic instability of the medium
and to considerable changes in its dispersion proper-
ties. Specifically, the low-frequency sound velocity u0
may exceed the high-frequency sound velocity u∞.
Such media are also characterized by the presence of
nonequilibrium regions where low-frequency sound
cannot propagate. This opens up possibilities to use
these media for low-frequency noise control. Besides,
these media exhibit considerable changes in the condi-
tions of the laminar-to-turbulent transition [4].

In recent years, much attention has been given to
studying the sound propagation in nonequilibrium mul-
tiphase media, e.g., in dust–ion plasma [5, 6]. In this
paper, we consider the sound propagation in a mixture
of gas with uniformly dispersed solid microparticles (a
gaseous suspension) with the temperature of the micro-
particles being maintained at a level above the gas tem-
perature by an external source of energy. We show that
the dispersion properties of such suspensions can be
described by the second viscosity introduced in an
explicit form. We specify the conditions at which the
second viscosity of such a medium can be negative, and
we determine the regions within which the transmis-
sion of low-frequency sound is impossible.

We assume that the size of the solid particles far
exceeds the molecular one and is much less than the
sound wavelength. In this case, we can use a continuous
1063-7710/00/4604- $20.00 © 20450
medium model and write the gas dynamics equations
for the case of a low concentration of the solid phase
ε ! 1 in the form of equations of continuity and linear
momentum conservation:

we also use the heat transfer equations

and the equation of state for the gas

Here, the subscripts s and g correspond to the solid
and gaseous phases of the mixture; ρ, v, and T are the
density, sound velocity, and temperature characterizing
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these phases; p is the gas pressure; m0 is the molecular
mass of gas; mpar is the particle mass; ρpar is the particle
density;

is the volume force applied to the gas from the side of
the solid phase;

is the heat flux from the solid phase to the gaseous one
per particle; and τv and τT are the characteristic times of
the dynamic and thermal interactions between the
phases. For the Stokes flow conditions in a gas flowing
about the solid particles of radius Rpar, the relaxation
times τv  and τT can be expressed through the dynamic
viscosity η and the thermal conductivity χ of gas [7]:

In normal conditions, for most gases, the following
relations are valid:

 ≈ –0.5 … –1.

At other flow conditions, which are not considered in
this paper, these quantities may noticeably deviate from
the values given above. Other notations in the initial
equations are as follows: cpar is the specific heat of the
solid component, and cv∞ and cp∞ represent the specific
heat of the gaseous component at constant volume and
at constant pressure. The heat transfer equation and the
equation of state for the gas are presented in energy
units. The quantities Q and I represent the heat source
power and the heat release rate, which provide the con-
stant temperature difference ∆T = Ts – Tg . In our model,
we do not take into account the origin of the heat
source; it can be the electromagnetic energy absorbed
by the solid particles, or the plasma electron energy
transferred to the solid particles through collisions, or
other. We also neglect the possible dependence of Q
and I on the temperature and density of the phases.
According to the previous publications [1–3], the inclu-
sion of such a dependence may give rise to additional
second viscosity coefficients (both positive and nega-
tive).

f
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Applying the linearization and some simple trans-
formations, we reduce the initial system of equations to
a single equation

(1)

where

 is the mass content of the solid

phase, and  is the gas velocity disturbance.

At S = 0 (an equilibrium suspension), equation (1)
coincides with that obtained by Clarke [7].

We consider a disturbance  in the form of a
monochromatic plane wave

and substitute it into equation (1). As a result, we obtain
the dispersion relation

(2)

where

,

cv = cv 0 – iωτTcvT – iωτvcvv – ω2τTτvcv∞

are the complex specific heats of the suspension at con-
stant pressure and constant volume, and Re and Im
denote the real and imaginary parts of the quantity
ω2/k2. Their form is typical of a medium with two relax-
ation processes [2, 3]. The imaginary part of the wave
vector determines the acoustic decrement δ (or incre-
ment for k'' < 0), and the real part determines the sound
velocity u = ω/k'.

In the absence of reciprocal phase transformations,
the fairly cumbersome dispersion relation obtained by
Nigmatulin [8] for a two-phase equilibrium mixture
can be reduced to relation (2). Nigmatulin [8] did not
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provide the explicit form of the decrement δ and the
sound velocity u because of the cumbersome form of
his formulas. Earlier [2, 3] it was shown that, for k' @
k'' and Re > 0, dispersion relation (2) provides relatively
simple expressions for the aforementioned quantities:

(3)

(4)

where

is the bulk viscosity, a = cv0 – ω2τTτvcv∞; b = cp0 –
ω2τTτvcp∞; c = cvT + τvcvv/τT, and d = cpT + τvcpv/τT .

In the high- and low-frequency limits (relative to the
relaxation times τT and τv), the coefficient δ determined
by expression (3) can be represented in the form of the

superposition of partial coefficients [2]:  + ({j,
k, l, m} = {0, ∞, T, v}), where for high frequencies we
have

and for low frequencies

Here,

 = 

is the low-frequency bulk viscosity, which has the
form similar to that of the bulk viscosity in a medium
with a single relaxation process [9]. This quantity may
be negative in nonequilibrium media when cpk /cpj –
cvk /cvj > 0, i.e., in the presence of a positive feedback
between the acoustic disturbances and the rate of the
heat release from the nonequilibrium excited degrees
of freedom [1–3].

We consider four limiting cases.

1. The low-frequency limit ω2τTτv ! (cv0/cv∞)2.
Here, the sound velocity is u = u0, and the acoustic dec-
rement has the form
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where the viscosity coefficient ζ0 is determined as a
sum of the partial low-frequency second viscosity coef-
ficients

2. The high-frequency limit ω2τTτv @ (cv0/cv∞)2.
Here, the sound velocity in the gaseous suspension
coincides with the sound velocity in gas u = u∞, and the
decrement has the form

where

3. In the case ωτT ! cv0/cvT , ωτv @ cv0/cvv , the
sound propagation occurs with the velocity u = uv , and
the damping decrement is determined by the expression

where

4. In the case ωτT @ cv0/cvT , ωτv ! cv0/cvv, the
sound propagation velocity is u = uT , and the damping
decrement has the form

where

For the Stokes conditions of heat transfer in the sus-
pension, we have τT ~ τv , and the “asymmetric” limit-
ing cases 3 and 4 are impossible. In the low-frequency
limit, we have δ0 ~ ω2, and in the high-frequency limit,
the quantity δ∞ is frequency independent. Such a
behavior of δ(ω) is characteristic of the sound disper-
sion in relaxing media. We note that the nonstationary
processes of heat transfer between the phases, which
are neglected in our consideration, may become signif-
icant at high frequencies. According to Nigmatulin [8],
these processes lead to an increase in the decrement
with increasing frequency in the high-frequency
region. Besides, at high frequencies, it is necessary to
take into account other mechanisms of sound absorp-
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tion related to the presence of the shear viscosity and
heat conduction in the medium.

As an example, we consider the estimates of the
decrement, sound velocity, and second viscosity for a

α = 1

α = 10
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Fig. 1. Frequency dependence of the acoustic decrement in
an equilibrium suspension for different mass contents of
solid particles.
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Fig. 2. Dependences of (a) the ratio of the low-frequency
and high-frequency sound velocities and (b) the viscosity
coefficients on the mass content of particles in an equilib-
rium suspension.
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suspension consisting of steel spherical particles (Rpar =
2 × 10–6 m) dispersed in nitrogen at normal conditions.
The mass content of particles is assumed to be α < 60,
which corresponds to their volume content ε < 0.01.

For these conditions, the decrement tends to a con-
stant value δ∞ with increasing ω, as is shown in Fig. 1.
According to Fig. 2, in an equilibrium suspension at
large values of α, the low-frequency sound velocity u0
is much less than u∞. The ratio r0 = ζ0/η @ 1 is reached
already at α ~ 1. Such large values of the ratio between
the bulk and dynamic viscosity coefficients make it
necessary to take into account the second viscosity in
studying the hydrodynamic stability of flows, including
the subsonic ones [10–12]. For coarser suspensions,

this ratio may be even greater, because τT ~ . Evi-
dently, in this case, the low-frequency sound range
(ω2τTτv ! (cv0/cv∞)2) narrows; the high-frequency dec-
rement α∞ ~ 1/τT decreases.

Figure 3 presents the frequency dependences of the
dimensionless sound velocity u(ω)/u∞ and the dimen-

sionless decrement (ω) = 2πk''/k' characterizing the
attenuation within the wavelength for α = 1 and differ-

Rpar
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Fig. 3. Frequency dependences of (a) the sound velocity and
(b) the dimensionless decrement at α = 1.
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ent values of S. For large S, the low-frequency sound
velocity may exceed the high-frequency one.

Figure 4a shows that the ratio r0 = ζ0/η strongly
depends on α, and, for α (and S), there exists a range of
values within which we have ζ0 < 0. A negative viscos-
ity leads to k'' < 0, i.e., either low-frequency sound is
amplified or its propagation is impossible [13]. It can be
shown that the amplification of sound corresponds to
the conditions ζ(ω) < 0, Re(ω) > 0, and the impossi-
bility of sound propagation corresponds to the case
Re(ω) < 0. In the suspension under study, the condi-
tions for the sound amplification cannot be satisfied for
any values of S. According to Fig. 4b, the low-fre-
quency viscosity is negative only in the region where
the sound propagation is impossible. In addition, from
Fig. 5 one can see that the frequency range of negative
viscosity is considerably narrower than the frequency
range within which Re(ω) < 0.

Thus, in this paper, we studied the dispersion prop-
erties of a suspension of microparticles in gas with the
Stokes conditions of interaction between the phases.
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Fig. 4. Dependences of the ratios (a) of the viscosity coeffi-

cients and (b) Re(0)/  on the mass content of particles at

S = 1.

u∞
2

We determined the sound velocity and the decrement,
as well as the bulk viscosity in the equilibrium and non-
equilibrium suspensions. We determined the conditions
at which the second viscosity is negative. In closing, we
note two facts. First, for other models of phase interac-
tions (and, hence, other dependences τT(Tg, ρg), τT/τv),
the existence of conditions corresponding to the sound
amplification (ζ(ω) < 0, Re(ω) > 0) is possible. Second,
whether a suspension of microparticles in gas belongs
to the sound amplifying type or to the nontransmitting
one, one can expect (by analogy with nonequilibrium
media) that the negative second viscosity will consider-
ably affect the conditions of the hydrodynamic stability
of flows in a nonequilibrium suspension. These prob-
lems require further studies.
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Abstract—The problem of a stationary acoustic flow that occurs in a standing wave field formed by two trav-
elling monochromatic plane waves incident on a plane boundary between two liquids is solved theoretically. It
is shown that the flow formed in such conditions noticeably differs from the known Rayleigh’s flow that occurs
near a rigid plane. © 2000 MAIK “Nauka/Interperiodica”.
A stationary flow that occurs in a sound field near a
solid body is determined by the viscosity of liquid and
the condition that, at the surface of the body, the veloc-
ity of the particles of liquid is equal to zero. Such flows
represent second-order effects with respect to the
acoustic Mach number. In particular, Rayleigh’s flow
occurs in the field of a standing sound wave in a planar
channel [1] or near a single rigid plane. This paper stud-
ies Rayleigh’s flow in a more general case of two arbi-
trary liquids with a plane boundary between them. The
standing wave field is formed as a sum of the fields pro-
duced by two travelling plane harmonic waves propa-
gating in one of these liquids. Considering this wave
field, it is necessary to take into account the reflection
and refraction of waves at the boundary between two
dissipative media. For each of the two media, the solu-
tion of the problem depends on the parameter

 ! 1,

where k0 = ω/c, ω is the angular frequency, c is the
sound velocity, ν is the kinematic viscosity coefficient,
and δ = (2ν/ω)1/2 is the thickness of the acoustic bound-
ary layer. The heat conductivity of liquids is neglected
for the sake of brevity. Let the unperturbed boundary
between the two media be a horizontal plane, where the
y axis is directed upwards, the surface y = 0 coincides
with the boundary between the liquids, the x axis is
directed along the boundary, and the process does not
depend on the z coordinate. In the upper liquid, two
identical plane waves propagate in the xy plane, and the
incidence of these waves on the boundary between the
liquids is symmetric about the y axis, i.e., if the phase
factor of one wave is exp[i(kx – γy)], the phase factor of
the other wave will be exp(i(–kx – γy). Here, k2 + γ2 =

, and k and γ are positive real numbers related to the
angle of incidence of the wave by the formulas k =

ε k0 ν/ω( )1/2
k0δ/ 2= =

k0
2

1063-7710/00/4604- $20.00 © 20456
k0sinθ and γ = k0cosθ; from here on, the time factor
exp(–iωt) is omitted.

In the first-order (acoustical) approximation, the
problem of the transmission of a single wave through
the boundary between two liquids was solved by
Savel’ev [2] with allowance for the viscosity (and heat
conduction) for small grazing angles. One can easily
generalize the solution to arbitrary angles. Then, in
order to obtain a standing wave along the x axis, one
should combine two solutions that correspond to the
two aforementioned waves. The resulting oscillatory
particle velocity fields that are formed in the two media
will be described by the expressions:

(1)

Here, the quantities marked with the primes refer to the
lower liquid (y < 0). The oscillatory particle velocity
vector v in liquid is represented by the sum of the
potential v1 and solenoidal v2 components; u = u1 + u2
and v = v1 + v2 are the projections of the vector v on
the x and y axes, respectively. The above expressions

take into account that k = k'; γ'2 + k'2 = , where γ' can
be either a positive real quantity or an imaginary one
(for angles of incidence exceeding the critical angle);
and σ2 = iω/ν, where the imaginary part of σ is positive
in the upper liquid and negative in the lower one. It is

u1 e
iγy–

Ae
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v 1 Ae
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e
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Bki
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iσy
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iγ'y–

kx,  v 1'cos D
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evident that k0/ |σ| ~ ε. In each of the incident waves, the
amplitude of the longitudinal (along the x axis) compo-
nent of the liquid particle velocity is taken to be equal
to unity. The quantities A and D are the reflection and
transmission coefficients, respectively; the expressions
for them and the constants B and C have the form

(2)

where ρ is the unperturbed density of liquid.
In the second-order approximation (quadratic in the

oscillation amplitude), it is necessary to take into
account both the motion and the curvilinearity of the x,
y coordinate system, because the surface y = 0 coin-
cides with the oscillating boundary between the media.
To write the equations and the boundary conditions for
the absolute motion of liquid in the moving coordinate
system, we introduce an auxiliary fixed Cartesian coor-
dinate system X, Y (where the plane Y = 0 coincides
with the unperturbed boundary between the media).
The x, y and X, Y coordinates are related as follows:

where ξ(X, t) is the deviation of a boundary element
from the plane Y = 0. Hence it follows that the time
derivative ∂/∂t taken in the fixed coordinate system
should be replaced by the operator ∂/∂t – v0∂/∂y in the
moving coordinate system (v0(x, y) = ∂ξ/∂t). In addi-
tion, we have

(3)

where a is an arbitrary vector, and the subscript y indi-
cates its projections on the y-axis of the corresponding
coordinate system. It should be noted that the x-axis is
not a straight line, and the components of the vector a
in the moving coordinate system are oblique projec-
tions of this vector on the y-axis and the tangent to the
x-axis, because the x, y coordinate system is not an
orthogonal one. Below, we present some differential

A
1 γ'ρ/γρ'– M–
1 γ'ρ/γρ' M+ +
--------------------------------------,  D

2ρ/ρ'
1 γ'ρ/γρ' M+ +
--------------------------------------,= =

M
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relationships expressed in the moving coordinate sys-
tem and obtained from the corresponding expressions
given in the Cartesian system by using formulas (3):

(4)

In the second-order approximation, the derivation of
the equations for a stationary flow in the moving coor-
dinate system is similar to that in a fixed coordinate sys-
tem [3]. Then, for each of the two liquids, we obtain

(5)

where V is the time-average velocity of liquid particles
at a fixed point of space in the given coordinate system
(the Euler velocity), the angular brackets denote the
averaging over time, ρ1 is the acoustic density, v is the
particle velocity (real) in the first-order approximation
(the complex amplitudes of the components of this vec-
tor are given by expressions (1)), the vector v0 is paral-
lel to the y axis, and Ω = ∇  × v. The terms containing
the factor v0 in the system of equations (5), as well as
the second term on the right-hand side of the first equa-
tion of this system, are caused by the motion and the
deformation of the boundary between the media. The
aforementioned term of the first equation is much less
than the left-hand member of this equation, provided
that the limiting case ρ/ρ' @ 1 is excluded from the con-
sideration. To prove this statement, we use relations (4)
and obtain the expression

In order of magnitude, this expression is equal to
~k2v0u2, whereas the left-hand member of the equation
in question is equal to ~k2uu2/ε. The comparison of
these two expressions shows that the former is an order
of magnitude (in terms of ε) greater than the latter, pro-
vided that u ~ v0 . The equality fails when u ! v0 . From
formulas (1) and (2), it follows that the equality can
hold only in the upper liquid on condition that ρ/ρ' @ 1.
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From the second equation of system (5), it follows
that the vector

(6)

is related to the mass transfer and, therefore, is equal to
the average velocity of a given particle (the Lagrange
velocity); it is this quantity that is usually observed in
experiments. Eliminating the quantity ρ1 by applying
the continuity equation in the first-order approxima-
tion, we recast expression (6) to the form

(7)

Here, we use the complex amplitudes of the oscillatory
particle velocity of the medium and of the boundary
between the media (the asterisk denotes complex con-
jugation). Only the real part of expression (7) has a
physical meaning. We introduce the stream function Ψ
in such a way that

(8)

where Ux and Uy are the components of the vector U.
Finally, we assume that the angle of the wave incidence
on the boundary is not too small, so that, in order of
magnitude, we obtain k ~ k0. Taking into account every-
thing mentioned above and excluding the case ρ/ρ' @ 1
from our consideration, we obtain a single equation for
the stream function (for each of the two media) instead
of equations (5):

(9)

.

The right-hand member of this equation is expressed
through the complex amplitudes (1), and only the real
part of the expression has a physical meaning.

Let us consider the conditions at the boundary
between the media. The kinematic condition expressed
in Cartesian coordinates has the form

.

Here, w is the liquid particle velocity vector, which
includes the stationary and the oscillatory components.
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Using relations (3), we represent this expression in the
x, y coordinates:

By averaging the latter expression over time and
assuming that the time-average position of the bound-
ary is constant (i.e., 〈∂ξ/∂t〉 = 0), we obtain 〈wy 〉 = Vy = 0.
Then, we use the condition of the equality of tangential
forces acting on a unit area of the boundary from the
side of both liquids. It can be shown that, in the x, y
coordinates, the average tangential force is given by the
expression

We assume that, in this expression, the nonlinear terms
can be neglected in comparison with the linear ones. An
additional check shows that this assumption is valid for
any two liquids excluding the case ρ/ρ' @ 1 (this case
was already excluded from our consideration). By add-
ing the equality condition for the tangential compo-
nents of the average velocity V of two liquids at the
boundary, we finally obtain the boundary conditions (at
y = 0):

(10)

The calculation of the right-hand member of equa-
tion (9) yields the equation

(11)

for the upper liquid. For the lower liquid, the function
f '(y) has a similar form with the following changes
being introduced in expression (11): A = 0, B should be
replaced by C, (1 ± A) should be replaced by D, and
exp(–iγy) should be replaced by Dexp(–iγ'y). These
changes of constants can be inferred from formulas (1)
by comparing the homogeneous equations for the upper
and lower liquids. From expression (7), for the upper
medium we obtain:

(12)

A similar expression can be obtained for the lower
medium. From expression (12), it follows that Ux = Vx
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outside the acoustic boundary layer (|σy| @ 1) and also
at y = 0 (in the latter case, the term added to Vx on the
right-hand side of (12) is purely imaginary, and, there-
fore, it should be discarded). The particular solution to
equation (11) has the form ϕ(y)sin2kx, where ϕ(y) is
calculated by the fourfold integration of the function
f(y) with respect to y. The solution to the homogeneous
(biharmonic) equation for the stream function should
have the form Φ(y)sin2kx, where the function Φ is
determined by the equation

(the numbers in parentheses indicate the order of the
derivative with respect to y). The solution to this equa-
tion for both media has the form

(13)

where N, P, N', and P' are unknown constants. The
complete solution to equation (11) is represented by the
formula

(14)

Substituting expression (14) in boundary conditions
(10) and using relations (7), (8), (12), and (13), we
derive the expressions for the sought-for constants:

(15)

(here, we take into account the relation σ = (1 + i)/δ).
The expressions for the components of the average
velocity vector U in the upper liquid have the form

(16)

For the lower liquid, we have to replace the minus sign
before ky by the plus sign (see (13)). Formulas (16) and
(15) represent the solution to the problem under study.
Let us consider some particular cases.
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In the limiting case ρ/ρ'  0, from expressions (15)
we obtain (see also (2)):

(17)

In the lower medium the flow is absent (as one would
expect). In the upper medium, according to expres-
sions (16) and (17), the average velocity at the bound-
ary of the acoustic layer (|σy | @ 1, |ky | ! 1) is deter-
mined by the formula

(18)

because, in this case, B = –(1 + A). However, |1 + A|2
is the squared amplitude of the longitudinal oscilla-
tory particle velocity in the resulting sound field
formed in the upper medium. Thus, formula (18) coin-
cides with Rayleigh’s result [1]. In the other limiting
case ρ/ρ'  ∞, we have

(19)

In the lower liquid, we obtain Rayleigh’s solution as
before, the quantity DD* being the squared amplitude
of the longitudinal oscillatory particle velocity in the
lower medium. In the upper medium, according to
expression (19), the flow must be absent. However, the
case ρ/ρ'  ∞ has been excluded from our consider-
ation. In reality, one should expect the appearance of a
weak flow in the upper liquid, and the velocity of this
flow should be an order of magnitude less (in terms of
ε) than the velocity of Rayleigh’s flow near a rigid
plane.

In the intermediate case determined by the condition

 @  @ ε (20)

for simplicity we assume that ν/ν' ~ 1, and, from (15)
we obtain

(21)
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Expression (21) can be represented in the form

(22)

where  = |1 + A |2. In this case, in formulas (16), one
should neglect the particular solution ϕ, the derivative
dϕ/dy, and the constant N. Then, the velocity field of a
stationary flow is described by the expressions

(23)

In both liquids, the flow patterns are identical and sym-
metric with respect to the boundary between the liq-
uids. The maximal flow velocity is achieved at the
boundary, and it is determined by the formula

(24)

The comparison of formulas (24) and (22) with expres-
sion (18) shows that, in this case, the flow velocity
exceeds the velocity of Rayleigh’s flow that occurs near
a rigid plane by a factor of ε–1. Besides, in contrast to
Rayleigh’s flow with its complex structure (small-scale
and large-scale vortices), the flow considered in this
paper consists of only large-scale vortices with the
characteristic size k–1.

Solution (23) retains its form in the Cartesian coor-
dinate system. The coordinates x, y in expressions (23)
determine the liquid particle position averaged over
several periods of oscillation; these coordinates
approximately coincide with the average coordinates X,
Y of the same particle. According to relations (3), we
have UX = Ux, UY = Uy + 〈u∂ξ/∂x〉. As one can see from
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formulas (22) and (23), the second term on the right-
hand side of the expression for UY is an order of magni-
tude less (in terms of ε) than the first term; hence, in the
approximation under study, it can be neglected.

Thus, the deformation of the boundary between two
liquids does not affect the solution of the problem in the
first-order approximation.

In closing, we note that the solution presented
above is valid as long as the initial equations (5) are
valid. The method of successive approximations used
in the derivation of these equations implies a small
value of the average velocity of liquid particles as com-
pared to the oscillatory particle velocity; i.e., we should
have (see (22))

Ma < ε, (25)

where Ma is the acoustic Mach number. In addition, the
Reynolds number Re for a stationary flow must be
much less than unity, because equations (5) do not take
into account the nonlinear terms (quadratic in the aver-
age velocity). Therefore, the following condition must
be satisfied:

(26)

The latter condition imposes a stronger limitation on
the allowable intensity of acoustic field (the acoustic
Mach number) than condition (25). Thus, solution (22),
(23) is valid when conditions (20) and (26) are met.
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Abstract—A model problem of sound wave propagation from a point source located in water at the center of
a spherical bubble cloud is solved. The resulting dependences of wave attenuation on the sound frequency and
bubble concentration are compared with those obtained in the approximation of a quasi-homogeneous medium.
The validity limits of this approximation are determined. © 2000 MAIK “Nauka/Interperiodica”.
The literature on sound propagation in water with
air bubbles is quite extensive. Clay and Medwin [1]
considered the propagation of sound in an unbounded
medium. Zhen (see, for example, [2]) considered the
features of sound propagation in sea water where air
bubbles are mainly located near the sea surface. Dean
[3] analyzed the sound propagation in a spherical cloud
of air bubbles generated by breaking waves. As a rule,
the contribution of bubbles to sound propagation is
described with the use of the effective complex wave
number k. For low bubble concentrations, the wave
number is calculated in the single-scattering approxi-
mation. For moderate concentrations when

〈r〉  ! λ, (1)

where 〈r〉  is the mean distance between bubbles and λ
is the sound wavelength in the medium, the wave num-
ber k is calculated in the approximation of a quasi-
homogeneous continuous medium [4]. However, for
high bubble concentrations typical of, say, breaking
wind waves in the ocean [5], the sound wavelength λ
depends on the bubble concentration, which makes it
difficult to a priori estimate the validity of the quasi-
homogeneous approximation(QHA).

The aim of this paper is to estimate the applicability
limits of the QHA by comparing the results of the field
calculations performed by two methods for a model
problem of a point source located at the center of a
spherical cloud of air bubbles. The calculations were
first carried out on the basis of the QHA and then with
allowance for multiple scattering from the bubbles. Our
aim is to also obtain an alternative approximate esti-
mate of sound wave attenuation in water with a high
bubble concentration.

Assume that all bubbles are spherical in shape and
their distribution in size has the form n(a), where a is
1063-7710/00/4604- $20.00 © 20461
the bubble radius. The bubble concentration is described
by the parameter V, which is the fraction of the medium
volume occupied by bubbles:

(2)

The wave number k used in the QHA is expressed in
terms of the complex sound velocity in water with bub-
bles, c, by the formula k = 2πf/c, where f is the fre-
quency of the emitted field. To determine the sound
velocity c, we use the known formula c = ( K)–1/2 [1],
where  is the water density and K is the compressibil-
ity of water with bubbles. According to [4], we have  =
(1 – V)ρ0 + Vρ'. According to [1], the compressibility K

can be represented as K =  + K', where ρ0 and ρ'

are the densities of water and air, respectively; c0 is the
sound velocity in water without bubbles; and K' is the
complex additional term caused by the presence of bub-
bles. Since ρ' ! ρ0, we can set  ≈ (1 – V)ρ0. Calculat-
ing the quantity K' in the same way as in [1], we obtain
the following relation for a bubble ensemble described
by the distribution n(a):

(3)

where D = ( f0/f )2 – 1, f0 and δ are the frequency and the
attenuation constant of the fundamental radial oscilla-
tions of a bubble of radius a. This expression coincides
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with that of presented in [4] for V ! 1. Denoting the
imaginary part of k by β, we obtain

(4)

The expressions for f0 and δ are presented in [1]. It
can be shown that for bubbles at a small depth, f0 ≈
(300a)–1 and δ ≈ 0.014(1 + ), where f0 is expressed
in kilohertz and a in meters.

It is clear that for large values of V, formula (3) is
not valid, since it was derived by replacing the instan-
taneous values of ρ by the time-average ones, which
is admissible only for V ! 1. Another restriction on
the applicability of formula (3) provides condition (1).
Let us estimate the form of the dependence of 〈r〉  and
λ on V. For an arbitrary frequency, this estimate is very
cumbersome. It has the most simple form for low fre-
quencies, when the sound velocity in water with bub-

bles has the form Rec = c0 , where p0

is the hydrostatic pressure [4]. On the other hand, we

have 〈r〉  ~ 〈a〉V–1/3 and 〈a〉  = (a)da. Taking into

account that λ = Rec/f and substituting these estimates
in (1), we obtain the condition of the applicability of
the QHA:

(5)

It is evident that this condition is violated for V  0.
However, as V increases, the left-hand side of this ine-
quality reaches its maximum and then decreases.
Therefore, for some conditions, inequality (1) is no
longer valid for large values of V as well. More detailed
estimates of the validity of the QHA, in particular, in
the presence of the resonance bubbles, can be obtained
by comparing the QHA with the exact solution to the
problem of wave propagation in water with bubbles.

Consider a model problem of the field of a mono-
chromatic point source located at the center of a spher-
ical homogeneous cloud of air bubbles of radius R. The
Green’s function of such a source is described by the
Dyson equation [6]. To find closed expressions for the
mean field and the total intensity, it is necessary to
make a number of simplifications. We will use the
Twersky equations [7] based on the assumption that the
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main contribution to the field (intensity) is provided by
single scattering over the paths passing through each
bubble.

We start with considering the simplest bubble cloud
model in the form of a sphere of radius R filled with
passive bubbles whose mean concentration is constant
inside the cloud and the density distribution of their
radii a is described by the function n(a). Assume that a
source of the acoustic field of frequency f is located at
the center of the cloud, and the emitted field has the
form p0(r) = exp(ik0r)/r, where r is the distance from the
cloud center and k0 = 2πf/c0 .

The scattered field averaged over an ensemble of
bubbles (the coherent field) at the distance r from the
cloud center is described by the equation

(6)

Here, σ is the scattering amplitude of a passive bubble
of radius a, ρ = (r2 + r'2 – 2rr'y')1/2, and y is the cosine
of the angle between the vectors r and r'. Since, accord-
ing to [1], σ = a/L and L = D – iδ, we obtain

(7)

where J0 = Jr + iJi.
The integration with respect to y yields

(8)

where M = . This is a Fredholm integral equation

of the second kind with the degenerate kernel, which
allows an exact solution in the form

(9)
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Figure 1 shows the dependence of r |p(r)| on r at R =
0.1 m, V = 0.01, and f = 3 kHz (curves 1 and 4 refer to
the case when p(r) is described by formula (9)). The
calculation was carried out with the use of the standard
approximation to n(a) in the form n(a) = Aa–κ for amin ≤
a ≤ amax, where κ is a constant and A (with allowance

for identity (2)) has the form A = V . For

sea water with allowance for the literature data, we set
amax = 3 × 10–3 and amin = 3 × 10–5 m. The scatter of the
estimates reported for κ is large, but most publications
provide values in the range 3–5, and these values were
used in our calculations. Curve 1 refers to κ = 3 and
curve 4 refers to κ = 5. Curves 2 and 5 represent the
same function calculated without allowance for the
bubble scattering at r > r'; in this case, β21 = β22 = 0.
Since the error introduced by this assumption is small,
we will use it in our subsequent calculations.

Let us show that the expressions obtained for p(R)
with the use of the QHA and from equation (9) coincide
for small V and R. If V and, therefore, J0 are small,

expression (3) yields c = c0 / . Hence, we

obtain p(R) = exp(ikR)/R ≈ exp(ik0R) /R

when R/f is small. On the other hand, expression (9) at
r = R and a small value of J0R/f takes the form p(R) ≈

 ≈ exp(ik0R) /R. Hence,

we determine the criterion of the proximity of the solu-
tion based on the QHA to the exact solution:

 ! 1. (10)

The curves obtained for the quantity 20
calculated on the basis of the QHA (curves 3) and from
formula (9) (curves 1) as a function of V at f = 6 kHz are
shown in Fig 2, and as a function of f at V = 0.1 in Fig. 3.
It is seen that, for large V, the error of the QHA is large,
and the use of this approximation is inexpedient. On the
other hand, to find the exact expression for the acoustic
field with allowance for multiple scattering is only fea-
sible for a very limited number of configurations of the
scattering medium (a plane layer, a circular cylinder,
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and a sphere). Therefore, for practice, it is important to
be able to describe the effect of the medium on the
sound propagation through a local attenuation coeffi-
cient β. If we assume that β weakly depends on the
form of the scattering domain and depends only on the
wave path length r in this domain, then β = (ln|rp(r)|)/r,
where rp(r) can be obtained from formula (9) by substi-
tuting the estimate of the integral J0 in this formula and
assuming that k0r is small (since a high bubble concen-
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Fig. 1. Dependence of the amplitude of a spherical sound
wave of frequency 3 kHz generated in water at the center of
a spherical cloud of bubbles of radius R on the distance r from
the source. Curves 1 and 4 are calculated from formula (9),
curves 2 and 5 from formula (9) at r = R, and curves 3 and 6
are obtained from formula (11). Curves 1–3 correspond to
κ = 5 and curves 4–6 correspond to κ = 3.
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Fig. 2. Dependence of the intensity of the spherical wave
intensity on the bubble concentration V at R = 0.1 m and f =
6 kHz for κ = 3 (solid lines) and 5 (dashed lines). Curves 1–4
are calculated from formulas (9), (17), (4), and (11), respec-
tively.
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tration in sea water is observed only in small volumes).
For f ≥ f0(amax), the estimate J0 takes the form

J0 ≈ 105A f 2  – iA(300 f)κ – 2;

for f < f0(amax), we can ignore the imaginary part.
Finally, we obtain

(11)

where r and R are expressed in meters and f in kilohertz.
Curves 3 and 6 in Fig. 1 correspond to the solution

obtained on the basis of the QHA with β being
described by formula (11). It is seen that these curves
fit the exact solution well. This is also true for curves 4
in Figs. 2 and 3. It is seen that they lie much closer to
curves 1, as compared to curves 3.

The exact calculation of the coherent component of
the field scattered within the spherically symmetric
bubble cloud can also be carried out when V is an arbi-
trary function of r. In the previous publication [8], the
result of calculations is presented for an exponentially
decreasing function V(r).

The calculation of the total intensity I of a point
source located at the center of a spherical bubble cloud
is much more complicated. Therefore, we use the Twer-
sky equations that were obtained for the same assump-
tions as equation (6). Then, we have

(12)
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Fig. 3. Dependence of the wave intensity on the source fre-
quency at V = 0.1 and R = 0.1 m. Other notations are the
same as in Fig. 2.
Here, p(r) is expressed by formula (9) and v is deter-
mined from the equation

where ρ' = (r2 + r''2 – 2rr''y')1/2 and y' is the cosine of the
angle between the vectors r and r'', and

J1 = .

The solution of equation (12) presents a compli-
cated problem. Therefore, we apply the approach used
in [7] and describe the field scattered by a bubble at the
point r' by the expression that involves the local wave
number k. Then, we obtain

(13)

As β = Imk, we can choose quantity (4) obtained on the
basis of the QHA, or any other approximation.

Substituting (13) in (12) and neglecting the field
scattered at r < r' < R, we obtain
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After integrating with respect to y, we obtain the
expression

(15)

where E1 is the integral exponential function and Λ =
2πJ1r.

In order to find an approximate solution to this equa-
tion, we need to estimate the convergence of the Neu-
mann series. As shown in [9], the convergence condi-
tion for equation (15) has the form

Using the estimate for β in the form (4) or (11), we can
show that this condition is not always realized in the
presence of the resonance bubbles. To provide the con-
vergence of the Neumann series, we use the method of
analytical continuation and replace the variable Λ by
η = Λ/(1 + Λ). Under this condition, the Neumann
series converges everywhere, and the first term of the
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series retains its previous form. In the first approxima-
tion, solution (15) is finally written as

(16)

For r > R, the intensity I is found from formula I = i/r2,
where

(17)

Curves 2 in Figs. 2 and 3 show the results of the cal-
culation of the function 10 , where β is calculated
by formula (11).

As V increases, the validity limits of formula (17)
are primarily determined by the condition that the larg-
est bubbles retain their spherical shape, as well as by
the fact that the Twersky equations were derived by
ignoring the pair correlations between the positions of
the scattering bubbles. However, this question requires
special consideration.

A general conclusion that results from the analysis
of the acoustic field attenuation in water with bubbles is
that the approximation of the quasi-homogeneous
medium is valid, as a rule, only for V of the order of
10–4 and that this approximation can only be used for
bubble clouds with fairly low bubble concentrations,
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which correspond to their life times of several seconds
after the wave breaking, when the number of the active
(radiating) bubbles in the cloud rapidly decreases. The
first seconds of the existence of the bubble cloud are of
particular interest from the standpoint of the bubble
contribution to the noise field of the ocean. However, in
this case, the noise intensity must be calculated with
allowance for multiple scattering.
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Abstract—With a view to providing sound absorption in a wide frequency range, one- and two-layer sound-
absorbing structures, in which nets are used as absorbing layers, are investigated. A semiempirical theory of cal-
culating the impedance characteristics of these structures is proposed. The theory takes into account the interaction
between the net layers for a wide range of their perforation factors. A good agreement between theory and exper-
iment is observed. It is shown that two-layer net structures are vastly superior to two-layer structures with perfo-
rated panels from the viewpoint of the sound absorbtion bandwidth. © 2000 MAIK “Nauka/Interperiodica”.
In recent years, in connection with the expected
more stringent international requirements on environ-
mental noise for airliners with high-bypass-ratio
engines, growing interest is being shown in various
measures intended for reducing the noise of fans and
turbines of aircraft engines. As practice shows, the most
effective means of reducing this noise are resonant cel-
lular sound-absorbing structures (SAS) with perforated
panels. However, one-layer cellular SAS used today
will apparently not be able to provide the required addi-
tional noise reduction from the viewpoint of both the
sound absorption bandwidth and the maximum sound
attenuation. In this connection, it is possible to point
out several directions of research aimed at developing
enhanced SAS. One of these is associated with detailed
studies of flows inside the holes of a perforated panel
and of the mechanism of sound absorption in a single
hole [1–4]. These investigations are aimed at creating
improved methods of determining the impedance char-
acteristics of SAS. Another direction of research is con-
nected with the study of the influence of the increase in
the number of degrees of freedom of a resonance struc-
ture on its acoustic efficiency. The simplest examples of
such structures are two-layer [5] and combined [6]
SAS. By properly controlling the degrees of freedom, it
is possible to provide the broadening of the sound
absorbtion bandwidth without an increase in the SAS
area. The third direction of reserarch is represented by
the studies of microporous blown-through panels used
as sound-absorbing layers. It is experimentally estab-
lished that the impedance of structures with a
microporous inlet element barely depends on the level
of sound pressure, and the associated mass is small (at
least for sufficiently deep structures). These features
make such structures attractive for use in the ducts of
aircraft engines in a wide range of operating conditions
from landing to takeoff. Current investigations are
directed at creating experimental equipment for deter-
1063-7710/00/4604- $20.00 © 20466
mining the impedance and propagation constant of
porous sound-absorbing materials [7], as well as at
developing new materials [8–11].

For the manufacture of microporous panels, various
technological processes are used, in particular, laser
boring of aluminum or titanium plates or electrolytic
deposition of nickel plates [8]. These processes do not
provide sufficiently homogeneous acoustic properties
within the panel area. In this paper, as a microporous
absorbing layer we use the net panels of so-called serge
weave which are commercially produced. Their advan-
tages are the homogeneity of acoustic properties within
the panel area and their smoothness. We investigate
one- and two-layer structures, which contain air cavi-
ties separated by partitions and net panels serving as
absorbing layers. Although the net structures have been
known for a long time [12], no adequate method of cal-
culating their impedance characteristics has been devel-
oped. In spite of the apparent simplicity, the impedance
calculations require some complicated mathematics.
Figure 1 displays photographs of a dense metal com-
mercially available net of serge weave (no. 450, made
according to the standard TU14-4-432-94) at various
magnifications. This net has the number of fibers per
decimeter of warp 450, and of weft 3640. The thick-
ness of fibers is 0.09 and 0.055 mm, respectively. The
mass of 1 m2 of the net is 0.97 kg. At high magnifica-
tion, it is seen that the surface of the net consists of
alternating “crests” and “hollows.” The height of crests
is approximately equal to the thickness of the weft
fiber.

The losses in the net holes depend significantly on
their form and size which, in their turn, depend on the
type of weave. In many types of weave and, in particu-
lar, in the serge weave, smooth inlets and outlets of
holes are formed, which prevents the formation of jet
flows. This explains in part the weak dependence of the
000 MAIK “Nauka/Interperiodica”
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impedance on the sound pressure level. The real shape
of the holes cannot be determined; therefore, in our cal-
culations we approximate them by round openings of
small diameter. We also suppose that jet flows are not
generated at high sound pressure levels. In this case, for
calculating the specific resistance of the net, we can use
the equation derived by Krendall [13] to determine the
impedance of a narrow tube of the round cross-section
of diameter d and length δ:

(1)

where 

(2)

ρ is the density of the medium, µ is the coefficient of
viscosity, ν is the kinematic viscosity coefficient equal
to ν = 14.5 mm2/s (for air), F is the net perforation fac-
tor (in percent), ω is the angular frequency, and J0 and
J1 are the Bessel functions. For tubes with metal walls
having high thermal conductivity, the internal friction
is higher, and, according to Kirchhoff, it is necessary to
use the increased value of the coefficient of viscosity
from the equation [14]

(3)

where γ = cp/cv and κ is the coefficient of thermal con-
ductivity of gas. If, instead of coefficients of viscosity
and thermal conductivity, we introduce the kinematic
viscosity coefficient ν and the coefficient of thermal
diffusivity at constant pressure τp = κ/ρcp = 18 mm2/s,
equation (3) can be written as

(4)

It should be noted that, in the investigated frequency
range, the parameter χd/2 varies within 0 < χd/2 < 10.
In these limits, there is no single asymptotic represen-
tation of Bessel functions, and, hence, they should be
calculated directly. For determining the net perforation
factor, one can use the schematic diagram displayed in
Fig. 2, which is obtained from Fig. 1. The diameter of
holes is taken equal to the thickness of the weft fibers.
The perforation factor is determined approximately by
the formulas

where l is the distance between the centers of hollows,
r is the radius of the inscribed circle, N is the number of
hollows, Psp is the weight of the sample, ρsp is the den-
sity of the material, Vsp is the volume of the sample, and
L is the width of the sample. Thus, for net no. 450, the
perforation factor equals 12%.

In calculating the impedance of an air cavity of the
structure, one should take into account the sound

ZS
jωδ
cF

----------/ 1
4

χd
------

J1 χd/2( )
J0 χd/2( )
----------------------– 

  ,=

χ jωρ/µ– jω/ν– ,= =

µ' µ 1 γ 1–( ) κ /µcp+[ ] ,=

ν' ν 1 γ 1–( ) τ p/ν+( ).=

S lr πr2/2, VS– 2SNL,= =

F 1
Psp/ρsp VS+

Vsp

-----------------------------– 
  100%,×=
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absorption on the side and back walls and the appear-
ance of the additional associated mass related to the
radiation into the cavity. In most cases, the absorption
effect is insignificant; however, for a closely positioned
back wall and for narrow resonators, it should be taken
into account. The associated mass depends not only on
the size and form of the resonator, but also on its load.
Specifically, for a two-layer structure, the load is the
second internal layer. Therefore, in determining the
cavity impedance, we will consider the more general
case when the resonator cavity is loaded by some
impedance Z0.

We consider a resonator a × b × h where a and b are
the transverse dimensions, and h is the depth. Neglect-
ing the interaction between holes in the face panel, the
air oscillations in the holes can be replaced by oscilla-
tions of a piston, the area of which is equal to the total
area of the holes. The piston can be represented as a set
of continuously distributed point sources described by
a three-dimensional δ-function with a harmonic depen-
dence on time (exp(jωt)). The equation for the pressure
p has the form

(5)

where k = ω/c is the wave number, ρ is the air density, c
is the sound velocity, V0 is the amplitude of the velocity

∂2 p

∂x2
-------- ∂2 p

∂y2
-------- ∂2 p

∂z2
-------- k2 p+ + +

=  V0ρckδ x x0–( )δ y y0–( )δ z( ),–

Fig. 1. Photographs of the face layer (net) at various magni-
fications.

l

2S

δ r

Fig. 2. On estimating the net perforation factor.



468 SOBOLEV
of a point source, and x0, y0 are the coordinates of a source
in the plane z = 0. The effect of the viscosity and the heat
conduction of the resonator walls can be described by
introducing the complex conductivities [15]

(6)

(7)

where ξ is the wave number in the z direction. The field
inside the resonator cavity must satisfy the boundary
conditions on the side walls

(8)

YR
ξ2

k2
----- 1 j+( ) νω

2c2
--------,=

YT 1 j+( ) γ 1–( ) τω
2c2
--------,=

x∂
∂p

jkY p
x 0 a,= ,±=
(9)

where

,

and the condition on the back wall

(10)

For determining Green’s function, we use the results of
the previous paper [16]. In this paper, the expression for
Green’s function in a two-dimensional lined duct for a
uniform flow with velocity V was derived:

y∂
∂p

jkY p
x 0 b,= ,±=

Y YR YT+=

z∂
∂p

jkY0 p
z h= .–=
(11)p j V0ρck
j– ξn z z0–( )( ) αnx0 ϕn–( ) αnx ϕn–( )F1 αna( ) 1 Rn

2+( )coscosexp

αn α∂
∂F

α αn= ξ∂
∂α

ξ ξn=

-----------------------------------------------------------------------------------------------------------------------------------------------------------,
n 1=

∞

∑=
where ξn and αn are the roots of the set of equations

ϕn) = –Rn; and a is the height of the duct.

In deriving equation (11), we did not assume the
local behavior of the conductance Yi , i.e., its indepen-
dence of the mode number. Moreover, the actual con-
ductance Gi, n becomes dependent on the mode number
due to the convection term, and this dependence is
accounted for in calculating the derivative in the
denominator of expression (11).

In the considered case, we have Y1(ξ) = Y2(ξ) = Y(ξ),

M = 0, z0 = 0, and  =   +

. Performing the necessary calculations, we

obtain

(12)

F ξn( ) χna( ) 1 G1 n, G2 n, /χn
2–( )tan=

+ G1 n, G2 n,+( )/χn 0,=
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∂F
∂Y
------∂Y

∂ξ
------

ξ ξn=

p Cn x0 x,( ) jξn z–( ),exp
n 1=

∞

∑=
where

(13)

(14)

and Yn is the value of Y at ξ = ξn .

Equation (12) defines the field in an infinite duct.
For determining the field of a point source in a duct of
limited length 0 ≤ z ≤ h with a rigid wall at z = 0 and a
wall with the conductance Y0 at z = h, we place the
source inside the duct and represent the solution inside
the duct as a sum of a particular solution of an inhomo-
geneous equation and a general solution of a homoge-
neous equation:

(15)

Upon satisfying the boundary conditions, we replace
the source on the rigid wall. As a result, the coefficients
An and Bn can be expressed by the formulas

(16)

Cn x0 x,( ) V0ρck–=

× j
a
---

αnx0 ϕn–( ) αnx ϕn–( )coscos
ξnUn

-----------------------------------------------------------------------,

Un

αn
2 1

4 j 1–( )
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------------------- νω
2c2
--------+ 

  kYn( )2– 2 jkYn/a+

αn
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-----------------------------------------------------------------------------------------------------,=

p Cn x0 x,( ) jξn z–( ) An x( ) jξnz–( )exp+exp
n
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+ Bn x( ) jξnz( ).exp

An Cn

1 Qn+
1 Qn–
---------------, Bn

2CnQn

1 Qn–
----------------,= =
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where

and the field in the duct 0 ≤ z ≤ h can be written as

(17)

This field corresponds to the point source V0ρckδ(x –
x0)δ(z). Evidently, the field

(18)

where (y0, y) = , βm

and φm are determined from the boundary conditions
(9), and Vm and Qm from equations (14) and (16), with
the replacement of a by b corresponds to the point
source δ(y – y0)δ(z). According to [17], we can find a
three-dimensional Green’s function by combining
solutions (17) and (18) for two-dimensional Green’s
functions and represent it as the following double sum

(19)

The constant of separation  = k2 –  is replaced in

view of the increase in dimension by  = k2 –  –

. The second index of the eigenvalues of α and β
appears due to the dependence of the conduction Y on

Qn
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p
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2
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ξ. Accordingly, all the quantities which depend on ξ
become the elements of a two-dimensional matrix.
According to the boundary conditions, the eigenvalues
αn, m and βn, m are determined by solving the following
transcendental equations

(20)

(21)

The total field generated by all sources in the hole is
determined by the integration over the hole area pS =

dx0dy0. For performing the integration, it is con-

venient to introduce the polar coordinates x0 = xc +
rcosψ, y0 = yc + rsinψ, where (xc , yc) are the coordi-
nates of the hole center. It can be shown that

where J1 is the first-order Bessel function, Wn, m =

, and r0 is the hole radius. Thus, the
expression for the total field has the form
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where Φn, m = αn, mxc – ϕn, m and Ψn, m = βn, myc –
φn, m .
Integrating (22) over the hole area, we obtain the

expression for the mean pressure p = dxdy:
1
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Setting z = 0 and using the explicit expression for Qn, m
from (16), we derive the expression for the specific
impedance of a hole radiating into the cavity:

(24)

where F = π /ab is the perforation factor of the face
panel, and Z0 = 1/Y0. Let us assume that the point (xc, yc)
is located at the center of the cell, i.e., it has the coordi-
nates (a/2, b/2). Then, cos2Φn, m = cos2Φn, m = 1, and
formula (24) reduces to

(25)

For the case of low conductivity Y ! 1, from equa-
tions (20) and (21) we have (α0, 0a)2 ≈ 2jkaY0, 0 and
(β0, 0b)2 ≈ 2jkbY0, 0. Then, for the zeroth term of expan-
sion in (25), we obtain

(26)

where

This is nothing but the impedance of a layer of thick-
ness h with the load Z0 with consideration for the
absorption at the cavity walls due to the viscosity and
heat conductivity. The influence of the boundary walls
results in the appearance of the correction factors R1
and R2, which in the case of low wall conductivity are
close to unity. In the even more special case of a rigid
back wall, when Z0 = ∞, we have

(27)

Expression (25) with the eliminated zeroth term deter-
mines the associated mass caused by the radiation into
the cavity.

In determining the impedance of a one-layer net
structure, one should take into account the effect of
both ends of the hole of the face panel on the associated
mass [18]. For finding the associated mass correspond-
ing to the second end, it is necessary to set Z0 = 0 and
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k
ξ0 0,
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h = ∞ in expression (25). Thus, the expression for the
impedance of a one-layer structure has the form

(28)

where ZS is given by formula (1), ZV(h) and ZV(∞) are
the inertial impedances determined by expression (25)

with the eliminated zeroth term, and (h) is the elas-
tic impedance determined by formula (27).

Now we determine the impedance of a two-layer net
structure. Let the depth of the first layer be h1 and the
depth of the second layer be h2. For the inner net, the
loads are: on one side, a rigid wall at the distance h2
and, on the other side, the face net at the distance h1.
The impedance of the second layer is determined by the
expression similar to (28):

(29)

where ZV(h1) is found from formula (25) with the elim-
inated zeroth term and with the load Z0 = ZS + 1; ZV(h2)
is determined by formula (25) with the eliminated

zeroth term and with the load Z0 = ∞; and (h2) is
determined by formula (27). For the outer net, the loads
are: on one side, the impedance Z2 at the distance h1
and, on the other side, an air column of infinite height.
The impedance of a two-layer structure is the sum of
the impedance of the face net, the inertial impedance of
the face net loaded by Z2, the inertial impedance of the
face net with the load corresponding to an infinite air
column, and the impedance of a layer of thickness h1
loaded by the impedance Z0 = Z2 determined from for-
mula (26):

(30)

For calculating the inertial impedance by formula (25),
it is necessary to know the roots of the dispersion equa-
tions (20) and (21). It is seen from these equations that,
due to the nonlocal behavior of the admittance Y, the
eigenvalues along the x- and y-axes are related to each
other through the axial (along the z-axis) wave number.
Hence, these two equations should be solved simulta-
neously. For the case of low conductivity Y ! 1, the
roots can be found analytically. Indeed, the dispersion
equation along the x-axis can be written in the form

(31)

where

The dispersion equation along the y-axis can be written
similarly by substituting β for α and b for a. The index
n corresponds to the mode number along the x-axis, and
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the index m corresponds to the mode number along the
y axis. For the case of m = n = 0 for a zero wave, to a
good approximation we obtain

(32)

(33)

Replacing a by b in (33), we obtain the expression for

. If n is nonzero and m is zero, we have

(34)

Relations for β0, m and  are derived from (34) by

substituting b for a, m for n, and  for . Finally,
for m ≠ 0 and n ≠ 0, expressions for αn, m and ξn, m have
the form

Expressions for βn, m are obtained by replacing a with b.
The formulas obtained above were used for calcu-

lating the impedance of one- and two-layer sound
absorbing structures with the nets of serge weave as
sound absorbers. The depth of the air cavity in the sam-
ples of one-layer SAS ranged from 4 to 35 mm. For the
two-layer samples, we determined the influence of the
distance h1 between the nets, as well as the depth h2 of
the cavity behind the inner net. The total depth of two-
layer SAS varied from 16 to 38 mm. The samples
were tested using a high-level interferometer by the
standard standing-wave method in the frequency range
0.8–5 kHz. The processing of the test results made it
possible to obtain the values of the real X and imaginary
Y parts of the impedance Z and the values of the absorp-
tion coefficient α.
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Figure 3 illustrates the comparison between the cal-
culations and the experiment for the impedance of a
one-layer structure with the depth of the air cavity h =
10 mm. In the investigated frequency range, the real part
of the impedance barely depends on frequency. The iner-
tial parameter M (determined from formula (25) with the
eliminated zeroth term, as a quantity multiplied by the
wave number) is very small, which corresponds to the
gentle slope of the curve ImZ in this frequency range.
For lesser depths of the air cavity, the resistance ReZ
and the inertial parameter increase at low frequencies
due to the effect of the back wall. For all investigated
one-layer structures, in the resonance region, the real
part of the impedance ReZ is close to the ρc of the air.
Away from the resonance to lower frequencies, these
relations fail: a slight growth of ReZ and M is observed.
The figure shows a good agreement between the theory
and the experiment.

Figure 4 illustrates the comparison of the calcula-
tions and the experiment for a two-layer net structure
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1.6 2.5 4.0

Fig. 3. Frequency dependences of the real and imaginary
parts of the impedance of a one-layer net SAS (h = 10 mm).

Fig. 4. Frequency dependences of the real and imaginary
parts of the impedance of a two-layer net SAS (h1 = 10 mm,
h2 = 15 mm).
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with the depth of the second layer 15 mm and the depth
of the first layer 10 mm. The figure demonstrates the
agreement between theory and experiment.

The calculations and the experiment show that, with
a small depth of the first layer, the two-layer structure
behaves like a one-layer structure of the summarized
thickness with a higher resistance and a lower resonant
frequency. The lower resonant frequency is caused by
the greater inertial parameter due to the influence of the
second layer. With the increase in the depth of the first
layer, the second resonance appears at a higher fre-
quency, and the first resonance shifts to lower frequen-
cies. The operating region of a two-layer structure is a
wide frequency range, which includes both resonant
frequencies.

Due to the small associated mass, net structures,
especially two-layer structures, have a broader fre-
quency band of the absorption coefficient than struc-
tures with perforated panels. Figure 5 shows the com-
parison of the experimentally measured absorption
coefficients of one- and two-layer SAS with perforated
panels and a two-layer net SAS. The total depth of all
structures was 20 mm. The perforation factor of the
panels was 10%, the panel thickness 0.8 mm, and the
diameter of openings 1.5 mm. As is seen from Fig. 5,
the two-layer net structure has a much broader fre-
quency characteristic of α than the two-layer structure
with perforated panels.

In some cases, namely, when the face layer of the
lining is heavily contaminated, the net structure may
lose its absorbing qualities, and it is appropriate to use
combined two-layer SAS having a perforated panel as
a face layer and a net panel as an inner layer.

Figure 6 displays the comparison of the calculated
absorption coefficients for three versions of two-layer
structures: with two perforated panels, with the face

α
1.0

0.8

0.6

0.4

0.2

0
f, kHz

One-layer SAS with h = 20 mm
Two-layer SAS with h1 = 6 mm, h2 = 14 mm
Net SAS with h1 = 6 mm, h2 = 14 mm

1.00 1.06 2.50 4.00

Fig. 5. Comparison of the absorption coefficients of one-
and two-layer SAS with perforated panels and two-layer net
SAS.
perforated panel and the inner net panel, and with two
net panels. In the calculations, we assumed that h1 =
h2 = 10 mm and the parameters of the perforated panels
were F1 = F2 = 10% and d1 = d2 = 1.5 mm. It is seen
from Fig. 6 that the SAS with the face perforated panel
and the inner net panel is intermediate in terms of the
absorption coefficient between the two-layer SAS with
perforated panels and nets.

It should be noted that the geometric parameters of
SAS were chosen for the calculations on the basis of
experimental data for ensuring a high sound absorption
in the frequency range of interest. However, these
parameters are not optimal from the viewpoint of the
earlier paper [19]. By solving the corresponding
inverse problem, it is possible to select the geometric
parameters in such a way that the absorption coefficient
will be unity at two frequencies of the given frequency
range. In this case, the advantages of using the nets will
be more evident, because the dip in the frequency char-
acteristic of α in the region between the frequencies of
tuning will be noticeably less for the net structures.

Thus, the comparison between theory and experi-
ment shows that, for all relations between the depths of
the first and second layers, which are of practical inter-
est from the point of view of using them in the ducts of
aircraft engines, the calculation of the impedance of a
two-layer net structure is in a satisfactory agreement
with the experiment. This means that the proposed
method of calculating net SAS characteristics can serve
as a basis for solving the inverse problem of determin-
ing the optimal geometric parameters of net SAS for
the ducts of aircraft engines with the aim to provide the
maximum sound absorption bandwidth.

α
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0.6

0.4

0.2

0
f, kHz0.50 2.25 5.601.25 3.60

1
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Fig. 6. Frequency dependences of the absorption coeffi-
cient of two-layer structures: (1) with perforated panels,
(2) with face perforated and inner net panels, and (3) with
net panels.
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Abstract—Ultrasonic wave propagation is studied in the framework of the continual model of a nonconducting
perfect solid with frozen-in magnetization. The theoretical results are found to agree well with the experimental
data. © 2000 MAIK “Nauka/Interperiodica”.
The concept of frozen-in magnetization was used in
our previous paper [1] in deducing ferrohydrodynamic
equations. The acoustic approximation of these equa-
tions allowed us to describe the experimental results on
the anisotropy of the ultrasonic velocity in magnetized
magnetic fluids [2] and predict a new Alfven-type
hydrodynamic wave [3].

Below, we show that the concept of frozen-in mag-
netization is also useful for studying solid magnetized
media. The proposed theory of elastic wave propaga-
tion is based on the model of a perfect solid with a mag-
netization frozen into it [4]. The limits of applicability
of this model are determined by the following condi-
tions: ωτ @ 1, where ω is the frequency of the elastic
disturbance and τ is the relaxation time of the magnetic
field strength relaxing to its thermodynamic-equilib-
rium value, and ω ! ω0, where ω0 is the Larmor fre-
quency.

Let us formulate the conditions of the magnetization
freezing in the material of a solid. The magnetization of
a body can be represented as a result of an infinitesimal
displacement of two imaginary “liquids” possessing
magnetic charges; these charges completely compen-
sate each other at any point of the medium when the
“liquids” are not displaced. A solid with a magnetiza-
tion M is magnetically equivalent to such a body with
the same magnetization, if the volume density ρm and
the surface density σm of magnetic charges of this body
satisfy the conditions

where Mn is the projection of M on the outer normal to
the body. Then, the condition of the magnetization
freezing in the material of the solid at every point of its
volume is equivalent to the condition of freezing-in for
the magnetic charges and is expressed in the form

ρm divM,  σm– Mn,= =

ρm' dV' ρmdV ,=
1063-7710/00/4604- $20.00 © 20474
where the prime indicates the quantities corresponding
to the displaced points of the body, the displacement
value being characterized by the Lagrange variations
δ*q. Thus, the magnetic charges of infinitesimal vol-
ume elements of the medium remain constant under the
variation. Then, we obtain the relation

Now, we consider the displacement vector l that char-
acterizes the displacement of a particle with a positive
charge relative to one with a negative charge. The
Lagrange variation of this vector is given by the for-
mula

Using the two relations obtained above, we derive
the expression for the variation of the magnetization
M = ρml:

.

Dividing both members of this equality by an infinites-
imal time interval dt, we obtain an equation for the
varying magnetization:

.

It is convenient to introduce the specific magnetization,
i.e., the magnetization per unit mass m = M/ρ, where ρ
is the density of the solid. With allowance for the con-
tinuity equation, we reduce the equation obtained
above to the form

(1)

δ∗ ρm ρmdiv δ∗ q( ).–=

δ∗ l δ∗ r l+( ) δ∗ r( )– l∇( )δ∗ q.= =

δ∗ M M∇( )δ∗ q M ∇δ ∗ q( )–=

dM
dt

--------- M∇( )v Mdivv–=

dm
dt

-------- m∇( )v.=
000 MAIK “Nauka/Interperiodica”
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In our previous publication [4], we presented a sys-
tem of magnetoelastic equations for a nonconducting
perfect solid with a magnetization frozen into it:

(2)

The system of equations is closed by setting a specific
form of the internal energy density u, which depends on
the invariants of the tensor composed of the spatial
derivatives qi, j of the displacement vector qi for individ-
ual points of the solid, on the specific entropy s, and on
the components of the specific magnetization vector mi .
The latter two equations of system (2) are the Maxwell
magnetostatic equations, where ψ is the scalar potential
of the magnetic field.

The derivation of this system of equations is based
on the generalized principle of virtual displacements
[5] and on the concept of magnetization frozen in the
material of the body. It is analogous to the derivation of
the ferrohydrodynamic equations with frozen-in mag-
netization, which is described in detail in our previous
publication [1].

The specific feature of system (2) is the equation for
the magnetization that expresses (as was shown above)
the condition of the magnetization freezing in the mate-
rial of the solid. The system of magnetoelastic equa-
tions (2) makes it possible to study the behavior of sol-
ids without restricting oneself to the case of magnetic
saturation.

Let us consider the propagation of longitudinal and
shear linear waves in an elastically isotropic, noncon-
ducting solid in terms of the system of equations (2). At
the first step, we set the form of the functional depen-
dence of the internal energy. We assume that the inter-
nal energy density U = ρu of the solid is an additive
function (see [6, 7])

(3)

dρ
dt
------ ρ ∂

∂t
-----

∂qi

∂xi

------- 
 + 0;=

dmi

dt
--------- mk

∂
∂xk

--------
∂qi

∂t
------- 

  ;=

ρ
d

2
qi

dt
2

--------- ∂
∂xn

-------- ρ ∂u
∂qk n,
------------ δki

∂qk

∂xi

--------– 
 


=

+ ρmn
∂u
∂mi

-------- 
 

s p,

 Hi

∂ ρm j( )
∂x j

-----------------;–

∇ 2ψ 4π
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-----------------;  Hi
∂ψ
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-------.–= =
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2
--- εxx εyy εzz+ +( )2 µ εxx

2 εxy
2 εxz

2 εyy
2

+ + +(+=

+ εyz
2 εzz

2 ) β1 mx
2εxx my
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2
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2
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2
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2
+ +( ),
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where  is the strain

tensor, λ and µ are the Lame coefficients, β1 and β2 are
the adiabatic constants of magnetoelastic coupling, and
K is the anisotropy constant.

We assume that the solid under study is placed in a
homogeneous, stationary, constant external magnetic
field of strength H, and the z-axis of the Cartesian
coordinate system is directed along the magnetic field
vector.

Then, in an unperturbed state, the magnetization
vector has only one nonzero component mz = m0. With
allowance for the explicit form of the functional depen-
dence of the internal energy (3), equations (2) linear-
ized near the unperturbed state have the form

(4)

Without loss of generality, we consider the propagation
of plane monochromatic waves with the cyclic fre-
quency ω and the wave vector k lying in the yz plane.
We denote the angle between the wave vector k and the

εij
1
2
---

∂qi

∂x j

-------
∂q j

∂xi

--------+ 
  1

2
--- qi j, q j i,+( )= =

ρ0

∂2
qx

∂t
2

---------- λ 2µ+( )
∂2

qx

∂x
2

---------- µ
∂2

qx

∂y
2

---------- µ m0
2β2+( )

∂2
qx

∂z
2

----------+ +=

+ λ µ+( )
∂2

qy

∂x∂y
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∂2
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z axis by ϑ . As a result, the system of equations (4)
takes the form

(5)

where

From the first equation of this system, it follows that the
velocity of the transverse elastic wave is determined by
the expression

(6)

because the particle displacements in this wave occur
along the x axis (qx ≠ 0, qy = 0, qz = 0).

The second and third equations of system (5) yield
the dispersion equation

The solutions to this equation determine the velocity
of the quasi-longitudinal elastic wave (qx = 0, qy ≠ 0,
qz ≠ 0)

(7)

and the velocity of the quasi-transverse elastic wave

(8)

Here, we use the following notation:
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In the zero magnetization limit, formulas (6)–(8) yield
the well-known results [6]:

. (9)

Relations (9) remain also valid when the magnetic field
is orthogonal to the wave vector (ϑ  = π/2) and the mag-
netization is arbitrary. At ϑ  = 0, the velocities of the
transverse and quasi-transverse waves described by
relations (6) and (8) coincide.

We note that at ϑ  = 0, from the latter two equations
of system (5) it follows that the elastic wave whose
velocity is determined by formula (7) is a purely longi-
tudinal one, and the elastic wave with the velocity
determined by formula (8) is a purely transverse one.
The superscript A marking the velocity of the trans-
verse wave in formula (6) means that this wave is an
analog of the Alfven wave in magnetohydrodynamics
[8] and ferrohydrodynamics [1–3]. In the limiting case
µ  0, which corresponds to a magnetized fluid,

expression (6) yields the relation  ∝  m0cosϑ , which
coincides with the expression for the velocity of an
Alfven wave propagating in a magnetic fluid with a fro-
zen magnetization [1–3]. Below, we will call this wave
the modified transverse wave.

Experimental studies of the effect of magnetic field
on the velocity of ultrasonic wave propagation are usu-
ally based on the measurements of the relative variation
of the ultrasonic velocity. Therefore, we recast expres-
sions (6)–(8) to the form

(10)

(11)

(12)

and consider the behavior of the resulting dependences.
To obtain numerical estimates, we perform the cal-

culations by using the parameters: ρ0 = 8.8 g/cm3, c0l =
5.5 × 105 cm/s, c0t = 3 × 105 cm/s, K = 0, and ms = 55 Gs.
These values correspond to nickel [9]. The dependence
of the specific magnetization on the external field can
be approximated by the simple relation

.

The experimental data for nickel are adequately
described by this formula at H∗  = 700 Oe.
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Let the solid be a magnetically isotropic one; then,
we set β1 = 2β2 = 106 g2/cm6 and K = 0.

Figure 1 shows the angular dependence of the relative
variation of the longitudinal wave velocity (curve 1) cal-
culated by formula (10) and similar dependences for
the transverse wave velocities (curves 2 and 3) calcu-
lated by formulas (12) and (11) (respectively). The
dependences presented in Fig. 1 correspond to the case
of magnetic saturation (m0 = ms). We note that the
angular dependences of the transverse wave and the
modified transverse wave are noticeably different,
which can be used in the experimental check of the
proposed theory.

The effect of the magnetizing field on the relative
variation of the elastic wave velocity is illustrated in
Figs. 2 and 3. The curves in Fig. 2 describe the case of
the parallel orientation of the wave vectors and the
magnetic field vector, i.e., ϑ  = 0°; the curves in Fig. 3
correspond to the case ϑ  = 30°. In both figures, curves
1 refer to the quasi-longitudinal wave, curves 2 refer to
the quasi-transverse wave, and curves 3 refer to the
modified transverse wave. We note that, in the case of
the parallel orientation of the wave vectors and the
magnetic field, the relative variations of the velocities
of the transverse and the modified transverse waves are
identical, and, therefore, curves 2 and 3 in Fig. 2 coin-
cide.

(∆c/c0) × 103

3

2

1

0

–1

30° 60°
ϑ

90°

1

2

3

Fig. 1. Dependence of the relative variation of the elastic
wave velocity on the propagation direction in the case of
magnetic saturation: (1) the quasi-longitudinal wave, (2) the
modified transverse wave, and (3) the quasi-transverse
wave.
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The comparison of our results with the known
experimental data, which are reviewed in the mono-
graphs [9, 10], shows their qualitative agreement. It
should be noted that the previous theoretical models
provide no adequate explanation for the fact that, in
polycrystalline nickel, the relative variation in the
transverse wave velocity caused by a magnetic field is
two to three times as great as the corresponding varia-
tion for the longitudinal waves, while the saturation for
shear waves occurs at higher magnetic fields [11].

As one can see from Fig. 4, these results are ade-
quately described by the proposed theory. Curves 1 and
2 are calculated by formulas (11) and (10), respectively.
The values of the adiabatic constants were taken to be
β1 = 1.45 × 106 g2/cm6 and β2 = 1.65 × 106 g2/cm6.

We also point out the qualitative agreement of our
theoretical results with the experimental data on the
velocity of longitudinal ultrasonic waves in amorphous
magnetized ribbons [12]. Unfortunately, an exact
numerical comparison with these data is impossible,
because the aforementioned publication [12] provides
no basic physical parameters of the specimens, such as
density, magnetization, and elastic moduli.

The experimental study [13] of elastic waves propa-
gating in magnetite in a wide temperature range
showed that, in magnetic field oriented parallel to the
wave vector, the velocity of longitudinal waves is

0 2000 4000
ç, Oe

(∆c/c0) × 103

2.5

2.0

1.5

1.0

0.5

1

2

Fig. 2. Dependence of the relative variation of the elastic
wave velocity on the magnetic field strength at ϑ  = 0: (1) the
quasi-longitudinal wave, (2) the quasi-transverse wave, and
(3) the modified transverse wave.
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Fig. 3. Dependence of the relative variation of the elastic
wave velocity on the magnetic field strength at ϑ  = 30°:
(1) the quasi-longitudinal wave, (2) the quasi-transverse
wave, and (3) the modified transverse wave.

Fig. 4. Comparison of the theoretical results with the exper-
imental data [10]: the relative variation of the propagation
velocity for the longitudinal (circles) and transverse
(squares) waves.
greater than in the case of the orthogonal orientation of
magnetic field, which agrees with our results.

In closing, we formulate the main results of our
study.

It is shown that, in a nonconducting solid with a fro-
zen-in magnetization, the propagation of three types of
waves is possible: the modified transverse wave, the
quasi-transverse wave, and the quasi-longitudinal one.

At ϑ  = 0, the quasi-longitudinal wave degenerates
into a purely longitudinal one, and the modified trans-
verse wave and the quasi-transverse wave merge into a
single purely transverse wave.

The theoretical results are found to agree well with
the experimental data on the dependence of the velocity
of longitudinal and transverse waves in polycrystalline
nickel on the magnetizing field strength.
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Abstract—The matrix method and its numerical realization are considered in calculating the complex reflec-
tion coefficients and refraction indices of plane sound waves for geoacoustic models of the ocean bottom in the
form of homogeneous elastic (liquid) absorbing layers overlying an elastic halfspace. In calculating the reflec-
tion coefficients at high frequencies or in the presence of a large numbers of sedimentary layers, a passage from
the Thomson–Haskell matrix approach to the Dunkin–Thrower computational scheme is performed. The results
of test calculations are presented. With the aim of developing resonance methods for the reconstruction of the
parameters of layered elastic media, the behavior of the frequency-angular dependences of the reflection
coefficient are studied for various geoacoustic bottom models. The structure of the angular and frequency
resonances of the reflection coefficients is revealed. The dependence of the structure (the position, width, and
amplitude) of two types of resonances on the parameters of the layered bottom is considered. © 2000 MAIK
“Nauka/Interperiodica”.
The interest in considering the processes of the
reflection and propagation of sound in waveguides with
an elastic layered bottom is related to the development
of the methods and means for the diagnostics and
reconstruction of the bottom characteristics, as well as
to the urgency of mineral, oil, and gas prospecting at a
sea shelf by acoustic methods. To model the sound
interaction with the ocean bottom, the reflection coeffi-
cients of plane waves are conventionally used. The
mathematical methods of describing plane wave inter-
actions with elastic layered media have been developed
in a number of classical works [1–6]. The matrix
method of calculating the plane wave reflection coeffi-
cients and refraction indices, which was developed by
Molotkov [3, 4], was successfully used in our previous
paper [7] for interpreting experimental data. The
method of tensor impedances allowing the calculation
of the reflection coefficients for media with piecewise-
constant elastic and inertial parameters is presented by
Machevariani et al. [5]. In this case, the problem is
reduced to a set of Riccati differential equations, which
can be solved by the Runge–Kutta method. Prikhod’ko
and Tyutekin [6] used the impedance method for
numerically calculating the elastic wave characteristics
in continuously layered solid media. Many publications
[8–11] are devoted to studies of the reflection and
propagation of sound in layered elastic media. How-
ever, the use of complex bottom models in the model-
ing of sound reflection and propagation began only in
recent years. Our interest is in the study of both the
1063-7710/00/4604- $20.00 © 0479
necessity to take into account the bottom parameter
variation with depth [12, 13] and the relation between
the sea bottom reflectivity and its acoustic characteris-
tics [14–17].

In this paper, we numerically realized the Thom-
son–Haskell matrix method [18, 19], which is conven-
tionally used for describing layered elastic media.
According to this method, each elastic medium is char-
acterized by a fourth-order matrix, and the whole sys-
tem is described by a matrix that is obtained by multi-
plying the characteristic matrices of all media. The ele-
ments of this matrix allow one to calculate the
interference reflection coefficients and refraction indi-
ces, as well as the dispersion characteristics of the inter-
ference waves. However, the domain of the validity of
the Thomson–Haskell computational scheme turns out
to be basically restricted. In this connection, we passed
from the fourth-order characteristic matrices to the
sixth-order matrices first suggested by Dunkin [20] and
Thrower [21]. Theoretically developed by Molotkov
[3, 4] and numerically realized in this paper, the
Dunkin–Thrower approach allowed one to increase the
accuracy of computer calculations of the reflection
coefficients of plane waves. A program based on the
matrix method was tested, and the test calculations
were compared with data on the angular dependences
of reflection losses for the reflection from a hypotheti-
cal turbudite layers [22]. The numerical calculations
were used to illustrate the behavior of the frequency-
angular resonances and absorption effects for various
2000 MAIK “Nauka/Interperiodica”
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layered elastic/liquid bottom models. Changes in the
structure of resonances (their location, width, and
amplitude) with the variations in the radiation fre-
quency, grazing angle, and shear elasticity in the layer
and the underlying halfspace was considered. These
investigations were performed with the aim of develop-
ing the resonance methods for the reconstruction of the
parameters of a layered elastic bottom.

The physical model of the medium is presented as
a set of n plane-parallel elastic layers overlying an
elastic halfspace. The z axis is directed upward, along
the normal to the horizontally stratified elastic layers
j = 1, 2, … n, where n is the number of the elastic lay-
ers. Within a sedimentary elastic layer, the density ρj ,
the velocities of the longitudinal clj and transverse ctj
waves, and the attenuation coefficients of the longitudi-
nal ηlj and transverse ηtj waves are deemed to be con-
stant. The water column (0) and the elastic base (∞) are
homogeneous halfspaces. In all layers, including the
elastic halfspace, the attenuation effects are taken into
account by introducing the complex velocities of the
longitudinal and transverse waves cj = cre + icim . In turn,
the wave numbers will also be complex quantities.

We consider only vertically polarized waves the SV-
type, for which the components of the displacement
vector U are confined in the (x, z) plane and the dis-
placement along the y axis is absent. The displacement
vectors can be written in terms of the scalar ϕ and the
vector ψ potentials

(1)

For the SV-wave, the potential ψ has a single y-compo-
nent in an elastic medium and equals zero in water. In
the Cartesian coordinates, the displacements in each jth
layer are expressed in terms of the potentials ϕj and ψj:

(2)

these potentials satisfying the Helmholtz equations

(3)

where  =  – ξ2,  =  – ξ2, and ξ =
(ω/c0)sinθ0 . The relation of the normal σzz j and the tan-
gential σxz j components of the stress tensor to the
potentials ϕj and ψj has the form

(4)

U gradϕ rotψ.+=

Ux ∂ϕ j/∂x ∂ψ j/∂z,–=

Uz ∂ϕ j/∂z ∂ψ j/∂x,+=

∆ϕ j α j
2ϕ j+ 0,=

∆ψ j β j
2ψ j+ 0,=

α j
2

klj
2 β j

2
ktj

2

σxzj 2µ j ∂2ϕ j/∂x∂z ∂2ψ j/∂z
2

–( ),=

σzzj λ j∂
2ϕ j/∂x

2
–=

+ λ j 2µ j+( )∂2ϕ j/∂z
2 ∂2ψ j/∂x∂z,+
where λj and µj are the Lame constants; clj =

 and ctj = . The given layered
elastic system is excited by a plane wave of the unit

amplitude  = 1, which is assumed to arrive from the
liquid halfspace. The wave system in the liquid and
elastic halfspaces is written as

(5)

where  = V is the reflection coefficient in the liquid

halfspace, and  = Wl and  = Wt are the refraction
indices of the longitudinal and the transverse waves in
the elastic halfspace. At the interface between the liquid
and the elastic media, three boundary conditions are
set, while, at the boundaries of the elastic media at z =
Hj, the conditions of the rigid contact are fulfilled, and
four boundary conditions can be written [1]. The solu-
tions of equations (3) in the elastic layers j are repre-
sented in terms of the potentials ϕj and ψj describing the
longitudinal and the transverse waves

(6)

where , , , and  are some arbitrary func-
tions that characterize the elastic waves propagating in
the positive (with the superscript –) and negative (with
the superscript +) directions of the z-axis. Substituting
expressions (6) in the boundary conditions [1] and per-
forming the differentiation at the boundaries, we obtain
4(n + 1) equations in 4(n + 1) unknowns. We introduce

the column vector Zj = ( , , , )T, the diago-
nal matrix Lj = [exp(iαjhj), exp(–iαjhj), exp(iβjhj),
exp(–iβjhj)], and the characteristic matrix of the 4th
order Aj for the jth layer, where hj is the layer thickness
[3, 4]. For the system of n elastic layers and the elastic
halfspace, the following matrix equation is valid:

(7)

where D =  × An – 1 × Ln – 1 ×  × … × Aj × Lj ×

 × … × A1 × L1 ×  × A∞ is the matrix of the 4th
order with the elements Dlm, where l, m = 1, 2, 3, 4, and
this matrix characterizes the elastic halfspace. For the
combined description of the liquid and layered elastic
halfspaces, with allowance for (6), we can write six
boundary conditions. In this case, the liquid halfspace
is characterized by the matrix of the 2th order Qpv ,

λ j 2µ j+( )/ρ j µ j/ρ j

ϕ0
+

ϕ0 z( ) ϕ0
+

iα0z–( )exp ϕ0
–

iα0z( ),exp+=

ψ0 z( ) 0,=

ϕ∞ z( ) ϕ∞
+

iα∞z–( ),exp=

ψ∞ z( ) ψ∞
+

iβ∞z–( ),exp=

ϕ0
–

ϕ∞
+ ψ∞

+

ϕ j ϕ j
+

iα jz( )exp ϕ j
–

iα jz–( ),exp+=

ψ j ψ j
+

iβ jz( )exp ψ j
–

iβ jz–( ),exp+=

ϕ j
+ ϕ j

– ψ j
+ ψ j

–

ϕ j
+ ϕ j

– ψ j
+ ψ j

–

Zn D Z∞,×=

An
1–

An 1–
1–

A j
1–

A1
1–
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where p, v = 1, 2. For solving the system of linear
algebraic equations with respect to  = Wl,  = Wt,ϕ∞

+ ψ∞
+
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 = V, Ux∞, Uz∞, and σzz ∞, we use the principal deter-
minant ∆ of the set of equations
ϕ0

–

. (8)∆

0 Q11D21 Q12D41+( ) Q11D23 Q12D43+( ) 0

1– Q21D21 Q22D41+( ) Q21D23 Q22D43+( ) 0

0 D11 D13 1–

0 D31 D33 0

1

0

0

0

=

The solutions of the set of equations are found accord-
ing to Cramer’s rule: χk = ∆k/∆, k =1, 2, 3, where χk has
the meaning of the plane wave reflection coefficient V
in the liquid halfspace and the refraction indices of the
longitudinal Wl and transverse Wt waves in the elastic
halfspace.

In order to write the reflection coefficient and the
refraction indices, we introduce the matrix of the 4th
order D that characterizes the whole layered elastic
medium. However, in the numerical calculation of the
matrix D in the domain

 @ 1,  Reαj @ Reβj , (9)

where klj = ω/clj , αj = , and βj = , the
matrix method using the Thomson–Haskell conven-
tional approach becomes inconvenient because of the
error, which is continuously accumulated for high fre-
quencies or for great numbers of layers, as well as in the
intervals between the limiting angles relating to the jth
layer. In this connection, in writing a program, we used
the Dunkin–Thrower [20, 21] matrix formalism, which
allows one to extend the domain of validity of the
matrix method and to eliminate the basic restrictions of
the Thomson–Haskell approach [3, 4]. The direct tran-
sition from one approach to the other was realized on
the basis of the theorem on the properties of the Gant-
makher associate matrices, when the characteristic
matrix D of the 4th order is set in correspondence with

the matrix  of the 6th order, with the elements being
second-order minors of the matrix D:

(10)

From the theorem on the properties of Gantmakher
associate matrices [23], it follows that the minor matri-

ces , , , and  corresponding to the matrices

D, , Lj , and Aj satisfy the relationship  =  ×

 ×  ×  × … ×  ×  ×  × … ×

 × L1 × A1 × A∞ and represent sixth-order matrices.
In this case, the determinants of the set of six equations
written at the boundaries can be expressed in terms of

kljh j Reα j

klj
2 ξ2

– ktj
2 ξ2

–

D̂

Dlm
ip Dil Dim

Dpl Dpm

.=

D̂ Â j
1–

L̂ j Â j

A j
1–

D̂ Ân
1–

Ân 1–
1–

L̂n 1– Ân 1– Â j
1–

L̂ j Â j

Â1
1–
the elements of the matrices of the second and sixth
orders. Then, the reflection coefficient and the refrac-
tion indices of the longitudinal and transverse waves
are determined by the following expressions

(11)

where Kls is the transfer matrix between the liquid and
layered elastic halfspaces

. (12)

The use of the sixth-order matrices has some advan-
tages, because the quantities that are very large in
domain (9) are canceled in the calculation of the ele-

ments of the matrix . This allows one to perform cor-
rect calculations, provided that condition (9) is ful-
filled.

The Dunkin–Thrower matrix method was realized
as a computer program. The results of test calculations
are represented as dependences of the bottom reflection
losses RL(θ) or the reflection coefficient V(θ) on the
grazing angle θ: RL(θ) = –20 |V(θ)|), where |V| =

 is the modulus of the complex
reflection coefficient V; RRRR(V) and (V) are the real and
imaginary parts of V. For testing the program, we used
the computational data for RL(θ) for a turbidite layer
(table), which are presented in the paper by Vidmar and
Foreman [22]. The calculations of the reflection losses
for all grazing angles were performed with the use of
the numerical integration of the Helmholtz equation
[22], and the results of these calculations are presented
in Fig. 1a. The dependences RL(θ) obtained in this
paper with using the Dunkin–Thrower matrix method
are presented in Fig. 1b, where the set of layers with
gradients of the longitudinal and transverse velocities
of sound, density, and attenuation was approximated by
17 elastic homogeneous layers. The test calculations
agree well with the published results. The reflection
losses increase between the critical angle θt = 50° for

χ1 V ∆1/∆ Q Kls D̂××{ } 11/ Q Kls× D̂×{ } 21,= = =

χ2 Wl ∆2/∆ D33/ Q Kls× D̂×{ } 21,= = =

χ3 Wt ∆3/∆ D– 31/ Q Kls× D̂×{ } 21,= = =

Kls
0 0 0 1– 0 0

0 0 0 0 0 1
=

D̂

(log

RRRR V( )2
IIII V( )2

+
IIII
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The physical parameters for the hypothetical turbidite layer [22]

Depth, m cl, m/s ηl, dB/m cl, m/s ηt, dB/m ρ, g/cm3

Water 1530 … … … 1.03

0 1510 0.0013 116 0.169 1.53

36 1582 0.0020 283 0.112 0.579

120 1674 0.0040 391 0.172 1.689

518 1992 0.0027 621 0.087 2.010

Elastic halfspace 4460 0.00016 2400 0.00079 2.460
transverse waves in the halfspace and the critical angle
θl = 70° for longitudinal waves in the same halfspace.
The calculations show that the shear elasticity in the
sedimentary layers modifies the resonance structure
between the critical angles θt = 50° and θl = 70°, but its
effect is weak outside of this region (Fig. 1). The pro-
gram for the calculation of the plane wave reflection
coefficients and refraction indices for the set of homo-
geneous elastic layers overlying the elastic halfspace
made it possible to analyze the dependence of the reso-
nance structure on the layered medium parameters both
for the previously considered model of a liquid layer
overlying a liquid halfspace [24] and for more compli-
cated combinations of liquid and elastic layers.

Consider the effect of the acoustic parameters of the
bottom on the resonance structure of the reflection
coefficients for various bottom models. Figure 2 exhib-
its the frequency-angular dependences of the reflec-
RL, dB
30

20

10

(a)

0

30

20

10

(b)

0 20 40 60 80
 Grazing angle, deg

Fig. 1. Reflection loss versus the grazing angle at the frequency f = 20 Hz for a hypothetical turbidite layer of thickness 518 m (table):
(a) a gradient set of layers (the numerical integration of the Helmholtz equation [22]); (b) an approximation by 17 homogeneous
elastic layers (the Dunkin–Thrower matrix method).
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Fig. 2. Absolute value of the reflection coefficient on the frequency–grazing angle plane (c0 = 1500 m/s, ρ0 = 1 g/cm3, h1 = 0.7 m,
cl1 = 1455 m/s, ηl1 = 0, ρ1 = 1.45 g/cm3, cl∞ = 1575 m/s, ηl∞ = 6.35 × 10–4, ct∞ = 1455 m/s, ηt∞ = 6.35 × 10–4, and ρ∞ = 2.6 g/cm3).
tion coefficient V(f, θ) for the simplest bottom model
in the form of a liquid layer overlying an elastic half-
space (c0 = 1500 m/s, ρ0 = 1g/cm3, h1 = 0.7 m, cl1 =
1455 m/s, ρ1 = 1.45 g/cm3, cl∞ = 1575 m/s, ηl∞ = 6.35 ×
10–4, ct ∞ = 1455 m/s, η t ∞ = 6.35 × 10–4, and ρ∞ =
2.6 g/cm3). The parameters with indices 0, j = 1, and ∞
correspond to the water layer, sedimentary layer, and
elastic halfspace, respectively. In the frequency–graz-
ing angle plane, the calculated values of V(f, θ) form a
complicated structure that consists of regular sequences
of peaks and dips. The dependences of this kind are
ascribed to resonance phenomena, the resonance struc-
ture containing all the necessary information on the
medium interacting with sound [24]. Usually, the reso-
nances of the reflection coefficients are interpreted as
the maximum values of the transmission coefficient. In
this case, the reflection coefficients have minimum val-
ues. In this paper, the resonances of the reflection coef-
ficient will be interpreted as the behavior of the reflec-
tion coefficient near its local minimum.

The characteristic feature of the computational
results presented in Fig. 2 is that the frequency reso-
nances are observed even at shallow grazing angles of
the order of 1°–2°, which is associated with the allow-
ance for the velocity of the transverse wave propagation
in the halfspace ct ∞ . The behavior of the reflection
coefficients near shallow grazing angles in the case of a
liquid halfspace was considered in detail in [24]. The
inclusion of the absorption in a liquid sedimentary
layer (ηl1 = 6.35 × 10–4) leads mainly to a decrease in
the reflection coefficient and the resonance amplitudes
with increasing frequency. Note that at grazing angles
less than the critical angle, θ < θcr = 20°, and at frequen-
cies exceeding 6000 Hz, the resonance peaks are
smoothed out and become hardly observable. This is
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
associated with the fact that a major part of the incident
energy is absorbed in the layer at shallow grazing
angles. At grazing angles exceeding the critical angle,
θ > θcr = 20°, this effect is also present, but is much less
pronounced.

In realistic bottom models, it is necessary to take
into account the intrinsic sediment layering. Therefore,
if we add a liquid layer of the same thickness to the
model shown in Fig. 2 (h1 = h2 = 0.7 m, cl2 = 1555 m/s,
ηl2 = 0, and ρ2 = 1.65 g/cm3 and the layers are arranged
so that their impedance increases with depth), the sim-
ple periodicity of resonances in the frequency–grazing
angle plane will not be observed. The number of peaks
remains the same; however, the resonance structure of
the reflection coefficient acquires additional modula-
tion, and the resonance amplitudes change. For layers
of different thickness, h1 ≠ h2, the reflection coefficient
modulation is even more irregular.

Figure 3 (line 1) exhibits the calculation results for
V(f) in the range from 5 to 2100 Hz at a fixed grazing
angle of θ = 2°. The bottom model was assumed to be a
liquid layer overlying an elastic halfspace. At a fre-
quency of fr1 = 925 Hz, the first local minimum of the
reflection coefficient is observed, i.e., the first fre-
quency resonance. In this case, the structure of reso-
nances is easily distinguished in the representation of
the amplitude of the process by the Breit–Wigner reso-
nance curve on the background of a weakly varying
base [25]. The width of the frequency resonance Γ is
measured near the local minimum of the reflection
coefficient when the amplitude of the process reaches
half its value A/2. We similarly introduce the notions of
the position γ and width θrn of the angular resonances
of the reflection coefficient. The structure of the fre-
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Fig. 3. Frequency dependences of the reflection coefficient V(f) and the resonance structure (fm is the nth resonance position, Γ is its
width, and A is the amplitude) at a fixed grazing angle θ = 2°: (line 1) a liquid layer overlying an elastic halfspace; (line 2) two liquid
layers overlying an elastic halfspace; (line 3) a liquid and an elastic layer overlying an elastic halfspace; and (line 4) an elastic layer
overlying an elastic halfspace.
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Fig. 4. Absolute value of the reflection coefficient on the frequency–grazing angle plane; the bottom model consists of a liquid and
an elastic layer of the same thickness overlying an elastic halfspace (h1 = 0.7 m, cl1 = 1455 m/s, ρ1 = 1.45 g/cm3, h2 = 0.7 m, cl2 =

1455 m/s, ct2 = 300 m/s, ρ2 = 1.45 g/cm3, cl∞ = 1575 m/s, ηl∞ = 6.35 × 10–4, ct∞ = 1455 m/s, ηt∞ = 6.35 × 10–4, and ρ∞ = 2.6 g/cm3).
quency and angular resonances depends on the acoustic
properties of the sea bottom and contains all the neces-
sary information on the medium interacting with
sound.

The inclusion of additional liquid layers (Fig. 3,
line 2) changes the frequency resonance position fr2,
decreases the width Γ and the amplitude A of the reso-
nance. The analysis of the resonance structure is com-
plicated because of the considerable increase in the
number of the bottom parameters. The inclusion of the
shear elasticity in the second sedimentary layer in the
calculation of V(f) (Fig. 3, line 3) leads to further dis-
placement of the first resonance peak fr3 and further
changes in its width Γ and amplitude A, as compared to
the resonance structure measured for more simple mod-
els with one liquid layer (Fig. 3, line 1) or two liquid
layers (Fig. 3, line 2). If we consider two elastic layers
overlying the halfspace (ct1 = 300 m/s, ct2 = 500 m/s),
then, the frequency dependence of the reflection coeffi-
cient at a fixed grazing angle of θ = 2° (Fig. 3, line 4)
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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Fig. 5. Reflection coefficient on the frequency–shear wave velocity plane for a fixed grazing angle θ = 2° and cl∞ > c0 > cl1: (a) in
the layer and (b) in the halfspace.
will develop new resonances whose width Γ and ampli-
tude A will differ from those measured for simpler bot-
tom models.

The inclusion of shear elasticity in sedimentary lay-
ers is of particular interest in calculating the reflection
coefficients. Taking into consideration the transverse
waves in the second sedimentary layer (ct2 = 800 m/s,
rest parameters correspond to Fig. 2) significantly
changes the frequency-angular dependence of the
reflection coefficient (Fig. 4). Now, a simple periodicity
in frequency is not observed, and the angular depen-
dence also becomes more complicated. For the grazing
angles less than the critical angle θ < θcr = 20°, new res-
onances appear, which contain additional information
about the environmental parameters. At the normal
incidence of a plane wave on a layered elastic medium
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
(when the grazing angle is θ = 90°), the shear wave is
not excited, because the tangential component of a
compression wave is absent at the interface. The strong
dependence of the reflection coefficient on many
parameters, which occurs in this bottom model, makes
it difficult to estimate the effect of shear waves on the
sound propagation in a shallow sea. However, in this
case the reflection coefficient significantly changes at
shallow grazing angles (Fig. 4). Using simpler bottom
models at frequencies of several hundreds hertz can
lead to errors in the estimates of the sound field inten-
sity. More definite conclusions about the influence of
one or another model of the layered elastic bottom on
the sound propagation in a shallow sea can be obtained
by analyzing the sound reflection coefficients and the
angular structure of the acoustic field using specific
geophysical data on the bottom structure.
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The effect of the transverse waves in the sedimen-
tary layer and the halfspace on the reflection coefficient
and the resonance structure can be inferred from the
behavior of the reflection coefficients in the frequency–
transverse wave velocity plane in the sedimentary layer
(f, ct1) and in the halfspace (f, ct∞). We considered a bot-
tom model in the form of an elastic layer overlying an
elastic halfspace (h1 = 0.7 m, cl1 = 1455 m/s, η l1 = 0,
ct1 = 5–1400 m/s, ρ1 = 1.45 g/cm3, cl ∞ = 1575 m/s,
η l ∞ = 6.35 × 10–4, ct∞ = 1455 m/s, η t∞ = 6.35 × 10–4,
and ρ∞ = 2.6 g/cm3). Figure 5a exhibits the results of the
calculations of the reflection coefficient as a function
V(f, ct1) at a fixed grazing angle θ = 2° for the frequency
and the transverse sound velocity in the sedimentary
layer varying within the ranges f = 1–10000 Hz and
ct1 = 5–1400 m/s, respectively. With allowance for the
transverse sound velocity in the layer ct1, an additional
modulation of the reflection coefficient appears. As the
velocity ct1 increases from 50 to 200 m/s, the resonance
structure becomes more complex, and with further
increase in ct1, additional resonance peaks appear, and
the frequency and angular positions of the resonance
peaks change. It should be noted that the values of the
transverse velocity in solids and in sea sediments can-
not be arbitrary. Nevertheless, the use of the wide range
of variation for ct1 in Fig. 5 seems to be justified for the
sake of illustration.

The effect of shear elasticity in the underlying half-
space ct∞ on the resonance behavior is shown in Fig. 5b.
The reflection coefficient V(f, ct1) is presented at a fixed
grazing angle θ = 2° for the frequency and transverse
sound velocity varying in the ranges f = 1–10000 Hz
and ct∞ = 100–1000 m/s, respectively. The bottom
model in the form of a liquid layer overlying an elastic
halfspace (the parameters correspond to Fig. 2) was
used. The displacement of the reflection coefficient
minima in frequency with increasing ct∞ is evidently
related to the change in the phase of signals reflected
from the lower boundary of the sedimentary layer. The
dependence of the positions of the resonance minima of
the reflection coefficient on ct∞ can be used to develop
a procedure of determining the shear velocity of sound
in the halfspace for known characteristics of the sedi-
mentary layer.

Thus, in this paper, we present the results of calcu-
lating the reflection and transmission coefficients for
layered elastic media using the matrix method. It is
shown that, for increasing the accuracy of these calcu-
lations, it is necessary to use matrices of the sixth order.
The results of testing the computer program are also
presented. The frequency-angular dependences of the
reflection coefficient are considered for the bottom
models consisting of one and two liquid/elastic sedi-
mentary layers overlying an elastic halfspace. The
clearly defined resonance structure revealed for a sim-
ple bottom model is retained as a whole, if we add to it
some realistic details such as the layering, attenuation,
and shear elasticity. The resonance structure of the
reflection coefficients is investigated in order to
develop a resonance approach for solving the inverse
reflection problem, because the position, width, and
amplitude of resonances can easily be measured in
experiments. The problem of how to relate such reso-
nances to the acoustic bottom parameters for the cases
more complicated than those described in the literature
[24–27] is the subject of our current investigations.
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To obtain focused ultrasound in the megahertz fre-
quency range, the usual practice is to employ radiators
with the active element in the form of a spherically con-
cave, polarized piezoceramic plate [1–3]. The structure
of acoustic fields generated by such radiators is deter-
mined by the distribution of the particle velocity over
the radiating surface of the piezoelectric plate and by
the structural characteristics of the latter. In the cited
publications [1–3], the distribution of the particle
velocity over the radiating surface of a piezoelectric
plate is assumed to be uniform. Ermolov et al. [4]
showed the possibility of a frequency-modulated exci-
tation of focusing piezoelectric plates of nonuniform
thickness. The use of such plates makes it possible not
only to extend the frequency range of the generated
fields [4], but also to control the distribution of the par-
ticle velocity over the radiating surface of the active
element. This fact is used as the basis for the develop-
ment of single-channel focusing ultrasonic radiators
with electrically controlled spatial and time structures
of the generated fields (EC STS) by means of the fre-
quency modulation of the voltage applied to the focus-
ing piezoelectric plates of varying thickness [5].

In this paper, we present the description of focusing
ultrasonic radiators with EC STS, the results obtained
by calculating the fields generated by these radiators,
and the corresponding experimental estimates. The fol-
lowing ways of controlling the spatial and time struc-
ture of the fields are possible: swing of the focal area (in
a direction normal to that of the ultrasound propaga-
tion), displacement of the focal area (in the direction of
the ultrasound propagation), and rotation of the focal
area (about the direction of the ultrasound propaga-
tion).

The piezoelectric plate of the radiator that excites
the swing of the focal area has spherically concave
inner and outer surfaces. The centers of the spheres are
shifted by the distance ∆ in the direction normal to that
of the ultrasound propagation. This geometry provides
the required distribution of the piezoelectric plate
thickness within the radiating surface area. The piezo-
electric plate of the radiator that excites the displace-
ment of the focal area has hyperboloid-shaped outer
1063-7710/00/4604- $20.00 © 0488
and inner surfaces with different parameters, which
depend on the required range of the focal area displace-
ment.

The acoustic field generated by a radiator with EC
STS is calculated by using the Rayleigh integral [3]; the
variation of the particle velocity and the acoustic pres-
sure with time is determined by the factor exp(–iωt),
where ω is the circular frequency of excitation. The
Rayleigh integral has the form

(1)

Here, the integration is performed over the radiating
surface S, p(r) is the acoustic pressure at the point of
observation, u is the amplitude of the normal compo-
nent of the particle velocity of the radiating surface (the
normal is directed toward the medium), r is the radius
vector of the observation point, r' is the radius vector of
the surface element dS', k = ω/c0 is the wave number, ρ0
is the density of the medium, and c0 is the sound veloc-
ity in the medium.

Fig. 1a shows the results of calculating the acoustic
field (at a level of –3 dB) generated by a piezoelectric
plate of typical dimensions (a diameter of 45 mm and a
curvature radius of 75 mm) under excitation by a voltage
whose frequency discretely varies at a step of 10 kHz in
the frequency range from 820 to 940 kHz. The pressure
distribution reflects the swing of the focal area about
the Z-axis in the XOZ plane. The maximal swing ampli-
tude Hs is about 5 mm, which is confirmed by the
experimental results. The effective region of ultrasonic
treatment is formed in the swing plane as a result of the
spatial averaging of the generated fields; this region dif-
fers from the focal area of a radiator with a uniform dis-
tribution of the particle velocity by a much greater ratio
between its transverse and longitudinal dimensions.

In a piezoelectric plate that provides the displace-
ment of the focal area in the direction of the ultrasound
propagation, a sequential excitation of ring-shaped
regions with different curvature radii takes place. The
inner and outer surfaces of the piezoelectric plate can
be approximated by a set of concave, axially symmetric

p r( ) iρ0c0
k

2π
------

u r'( )e ik r r'––

r r'–
------------------------------ S'.d

S

∫–=
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regions with different curvature radii. This representa-
tion simplifies the calculation of the generated field, as
well as the manufacture of the radiator prototypes. In
this case, the calculation of the generated fields is also
performed by formula (1). Figure 1b presents the distri-
bution of the pressure (at a level of –3 dB) generated by
the piezoelectric plate with the diameter 78 mm and
with the inner surface approximated by a set of three
concave, axially symmetric regions with different cur-
vature radii (from 45 to 75 mm). The calculation is per-
formed for the resonance excitation frequencies 820,
880, and 940 kHz.

The results of the calculations and the experimental
check show that the centers of the focal areas move
along the direction of the ultrasound propagation with
the amplitude Hd up to 15–17 mm (for a plate with the
aforementioned parameters) at the selected excitation
frequencies.

The change in the position of the focal area of a radi-
ator with EC STS is accompanied by a displacement of
the point of application of the radiation pressure force.
Thus, the focusing ultrasonic radiators with EC STS
allow one to excite mechanical vibrations along a given
direction deep inside the object under treatment, i.e., in
the immediate region of interest. This offers a possibil-
ity of using the radiators with EC STS for increasing
the resolution of the Doppler ultrasonic diagnostics [6].

Besides, the response of inhomogeneous viscoelas-
tic media to focused ultrasonic fields with EC STS
gives rise to an amplitude modulation of the frequency-
modulated excitation voltage of the corresponding radi-
ators. The origin of this effect lies in the variation of the
acoustic impedance of the object within the focal area
displacement, this variation being determined by the
structure and state of the object. Thus, the arising
amplitude modulation reflects the spatial distribution of
the acoustic parameters of the object under treatment.
By processing the data on the variation of the modula-
tion depth and its dependence on the modulation fre-
quency, it is possible to estimate the parameters of the
object without placing any sensors in the region of
interest, i.e., noninvasive measurements are possible.

The noninvasive measurement channel that is
formed when a radiator with EC STS is used, can be
characterized by the frequency range of the aforemen-
tioned modulation and the dynamical range. The mod-
ulation frequency range is limited by the mass and elas-
tic properties of the piezoelectric plates. The upper
boundary of the modulation frequency range Fmax
determined from the experiment for the piezoelectric
plates with typical parameters reaches 10 kHz.

The dynamical range of the measured values of the
modulation depth is determined by the formula

(2)DAM 20
mAM

m1 m2–
------------------,log=
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where mAM is the maximum possible value of the mod-
ulation depth due to the variation in the acoustic resis-
tance of the object under treatment within the displace-
ment of the focal area; m1 is the extraneous modulation
depth, which is determined by replacing the object
under treatment by its homogeneous simulator; and m2

is the deterministic component of the extraneous mod-
ulation depth, which is determined mainly by the
amplitude-frequency characteristic of the radiator in
the excitation frequency range and measured in the
course of the channel calibration.

The dynamical range of the modulation depth mea-
sured for the object under treatment represented by dif-
ferent simulators of biological tissue reaches 30–40 dB
depending on the modulation frequency.
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Fig. 1. Distribution of acoustic pressure in the XOZ plane:
(a) pressure generated by the piezoelectric plate that excites
the swing of the focal area (in the frequency range from 820
to 940 kHz at a step of 10 kHz); (b) pressure generated by
the piezoelectric plate that excites the displacement of the
focal area (in the frequency range from 820 to 940 kHz at a
step of 60 kHz).
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The channel capacity achieved in the noninvasive
measurements of the parameters of the object under
treatment is determined by the formula

(3)

where ∆F is the modulation frequency range (∆F ≈
Fmax) and PS/PN is the signal-to-noise power ratio cor-
responding to DÄå .

Taking into account the experimental results, i.e.,
∆F = 104 Hz and the minimal value DÄå = 30 dB, we
obtain that the maximal value of the channel capacity
achieved for the noninvasive measurements of the
parameters of the object under treatment exceeds
0.1 Mbit/s.

This value provides a high accuracy of the charac-
terization of the object under treatment.

V ∆Flog2 1
PS

PN
------+ 

  ,=
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Abstract—The sound field generated by a point source of volume velocity in a room with a Helmholtz res-
onator is determined. The shift produced by the resonator in the natural frequencies of the room is calculated.
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It is well known that, in the low-frequency range,
the natural frequencies of a room are widely separated
from each other, and, therefore, the transfer function of
such a room is fairly inhomogeneous [1, 2]. To improve
the acoustical properties of rooms in the low-frequency
range, one can use Helmholtz resonators [3, 4]. Serving
as efficient sound absorbers at resonance frequencies,
the resonators installed in a room smooth out its trans-
fer function. The problem of the interaction of a reso-
nator with the normal modes of a room is not only of
practical, but also of theoretical interest. Due to the
strong coupling of oscillations, the resonator may
appreciably change the natural frequencies of the room
that are close to the natural frequency of the resonator.
Below, we determine the sound field of a point source
of volume velocity in a room with a Helmholtz resona-
tor and calculate the shift produced by the latter in the
natural frequencies of the room.

Let us consider a room of volume V bounded by a
rigid surface S. The room is filled with a homogeneous
medium of density ρ; the sound velocity in the medium
is c. A harmonic point source with the volume velocity
Q1 is positioned at a point with the radius vector r1.
According to [1], the sound pressure p(1) generated in
the room by such a source is expressed by the formula

(1)

where pn(r) are the fundamental functions, ωn are the
natural frequencies, ω is the sound frequency, kn =
ωn /c, k = ω/c, and the summation is performed over all
fundamental functions. The functions pn(r) satisfy the
equation

the boundary condition  = 0 at the surface S, and

p
1( ) r( ) iωρQ1/V

pn r1( )

k
2

kn
2

–( )
-------------------- pn r( ),

n
∑=

∆ pn kn
2
pn+ 0,=

∂pn

∂n
--------
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the orthogonality and normalization relations

According to formula (1), the sound field formed in
the room infinitely grows as the frequency ω
approaches one of the natural frequencies of this room.
Let us show that the introduction of a resonator into the
room changes the natural frequencies of the latter. The
resonator provides an efficient sound absorption at res-
onance frequencies, and the sound field formed in the
room with a resonator remains finite at any frequency.

We consider a resonator positioned at a point with
the radius vector r2. The resonator being excited by the
pressure field p(1) generates the field p(2):

(2)

where Q2 is the volume velocity of the resonator. The
resulting sound field in the room with the resonator is
obtained as a sum of the fields p(1) and p(2):

(3)

The quantity Q2 can be obtained from the equation
of motion of the resonator under the pressure field p(1).
The Helmholtz resonator is an oscillatory system with
one degree of freedom, and its dimensions are small
relative to the sound wavelength at the resonance fre-
quency. We denote the displacement of the air mass in
the resonator gorge by X(t). Then, the equation describ-
ing the corresponding forced oscillations can be repre-
sented in the form

(4)

pn pm Vd
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∫ 0 for n m,  pn
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Vd
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∫≠ V .= =
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where M is the air mass in the resonator gorge, R is the
friction coefficient, κ is the coefficient of elasticity, and
S0 is the cross-sectional area of the resonator gorge.
Equation (4) can be reduced to the form

(5)

where Z = 1/ {R + i(κ/ω – ωM)} is the acoustic
impedance of the resonator,

 

is the added acoustic impedance of the resonator,

 

is the mutual acoustic impedance, and Q2 = S0 eiωt.
From equation (4), we obtain the volume velocity of

the resonator

Substituting Q2 in formula (3), we obtain the total field
in the room with the resonator:

(6)

This field can be represented in the form

(7)
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Determination of the natural frequencies of a room with a
resonator.
where the prime indicates that the corresponding
impedance is calculated by ignoring the term with the
number m = n. According to formula (7), the field p is
finite at ω = ωn.

The natural frequencies of the room with the resona-
tor are the roots of the equation

(8)

This equation can be represented in the form

(9)

Equation (8) can be solved by the graphical method, by
finding the points of intersections of the branches of the
curve ImZ22(ω) with the curve –ImZ(ω). The figure
shows the approximate form of these curves. The
abscissas of the intersection points yield the sought-for
values ω = Ωn of the natural frequencies of the room
with the resonator. These frequencies obey the relation

ωn < Ωn < ωn + 1.

At high frequencies (ω @ ω0, where ω0 is the natural
frequency of the resonator and ImZ(ω0) = 0), the
abscissas of the points of intersection are close to the
frequencies ωn and lie to the right of them. For these
roots, from equation (9), we obtain the approximate
expression

where Im[Z(ωn) + (ωn)] < 0.

At low frequencies (ω ! ω0), the abscissas of the
points of intersection are also close to the frequencies
ωn, but they lie to the left of them and correspond to the
other (preceding) branch of the curve ImZ22(ω).
According to equation (9), for these roots we obtain the
approximate formula

where Im[Z(ωn) – (ωn)] > 0.

At frequencies of the order of ω0, the abscissas of
the points of intersection of the curves lie well away
from the frequencies ωn, and, therefore, the natural fre-
quencies Ωn can only be determined by numerical
methods. Note that the behavior of the natural frequen-
cies in a room with a resonator is similar to the behavior
of the natural frequencies in a narrow tube with imped-
ance plugs [5].
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At a frequency ω that is equal to the natural fre-
quency Ωm, the sound field in the room with a resonator
is determined by the formula

This field is infinite at R = 0 and finite at any R ≠ 0.
The resonance peaks of the transfer function can be
flattened by increasing the friction coefficient of the
resonator. It is expedient to place the resonator at one
of the antinodes of the normal modes, e.g., at a corner
of the room. The resonator can be installed either
inside the room or on one of the walls. Resonators of
different structures can be used. The dependence of
the natural frequency ω0 of the resonator on its
parameters had been studied in a number of publica-
tions [6–9].

p r( ) iΩmρQ1/V
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2
pn r( )

R Ωm
2 ωn

2
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n

∑=

× R pn r1( ) S0
2
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Abstract—Thermooptical excitation of sound in a liquid by a laser radiation with a harmonically modulated
intensity randomly distributed over the beam cross-section is considered. The processes are considered to be
statistically homogeneous. It is assumed that the spatial spectrum of the intensity fluctuations in a laser beam
is described by a power (fractal) law. It is demonstrated that the acoustic field in a liquid has a fractal structure.
© 2000 MAIK “Nauka/Interperiodica”.
Theoretical treatment of laser-induced sound excita-
tion in condensed media (for example, liquids) is usu-
ally conducted under the assumption that the transverse
distribution of intensity in a laser beam is quite deter-
minate. It is often assumed that this distribution is axi-
ally symmetric and has the Gaussian form [1, 2]. In
reality, it is not uncommon that the transverse distribu-
tion of intensity in a laser beam fluctuates. 

Recently, it has been demonstrated [3] that the mode
structure of the radiation of an unstable-cavity laser is
fractal. In particular, it has been found that the fractal
dimension of the intensity distribution of a laser with
the aperture shaped as a narrow slit has the value D =
1.6. In the case of a circular aperture, the fractal dimen-
sion was found to be D = 1.3. 

Below, we consider the thermooptical excitation of
sound in a liquid by a laser radiation with a harmoni-
cally modulated intensity and a fractal spatial spectrum
of the intensity fluctuations. It is necessary to note that
the effect of spatial and time fluctuations of the laser
radiation intensity on the sound excitation in a liquid
was considered earlier by Bunkin [1], but the character
of their distribution was not specified. 

Let us assume that a laser beam propagating from
the upper halfspace (atmosphere) in the positive direc-
tion of the z axis of the rectangular coordinate system
(x, y, z) is incident upon the free surface of a liquid
occupying the lower halfspace z > 0. The absorption of
the laser radiation in the liquid results in the formation
of thermal sources of sound. The equation of the laser
thermooptical generation of sound has the form 

(1)

Here, p is the sound pressure; k, Cp, and µ are the coef-
ficient of thermal expansion, the specific heat, and the

∆ k2+( ) pµ i
kmω
Cp

-----------AµI x y,( ) µz–( ).exp=
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absorption coefficient for optical radiation, respec-
tively; A is the coefficient of light transmission through
the liquid boundary (from here on, we assume that A =
1); m is the modulation index; I(x, y) is the intensity dis-
tribution in the laser beam at the liquid surface; k = ω/c;
and c is the sound velocity in the liquid. The time factor
exp(–iωt) is omitted here and below. 

The solution of equation (1) can be written in the
form [2] 

(2)

where (r'/r) is the solution to the boundary problem
on the diffraction of the field of a point source posi-
tioned at the point r where it is necessary to determine
the field p(r). We consider the field p(r) in the Fraun-
hofer zone. In this case, (r'/r) can be represented in
the form 

(3)

where α2 + β2 + γ2 = k2 and r = (x2 + y2 + z2)1/2. 

We assume the intensity distribution in the beam to
be a random function, so that I(x, y) = I0 f(x, y), where
〈 f(x, y)〉  = 0, and the random processes to be statistically
homogeneous. 

Taking this into account, substituting expression (3)
into expression (2), and integrating with respect to z, we

p r( ) i
kωm
Cp

-----------µ I x' y',( ) µz'–( )exp
Ω
∫=

× p̃ x' y' z'/x y z, ,, ,( )dx'dy'dz',

p̃

p̃

p̃ r'/r( ) ikr( )exp
4πr

--------------------- i α x' βy' γz'–+( )–[ ]exp{=

– i α x' βy' γz'++( )–[ ] } ,exp
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obtain an expression for the mean-square sound pres-
sure 〈|p(r)|2〉: 

(4)

where B(ξ, η) = 〈 f(x', y')f(x'', y'')〉  is the normalized cor-
relation function of the intensity fluctuations of the
laser radiation, ξ = |x' – x'' |, η = |y' – y'' |, and σ is the area
of the laser spot at the liquid surface. The integration
with respect to ξ and η is extended to the region of the
action of laser radiation at the liquid surface. How-
ever, if B(ξ, η) decreases rapidly within the dimen-
sions of the cross-section of the laser beam and B(∞) =
0, the integration can be extended to the interval from
–∞ to +∞. 

The properties of statistic fractals are often charac-
terized by structural (correlation) functions and their
spectra. Their specific feature is the fact that they are
described by power laws. This follows from the prop-
erty of scaling of the fractal structures [4]. 

The power spectrum of fluctuations is an important
parameter of the statistical fractals in the wave prob-
lems. This spectrum has the form 

(5)

where q is the wave number of spatial fluctuations and
the exponent δ for the objects with a fractal surface is
determined by the expression 

(6)

where D is the fractal dimension and d is the space of
embedding. 

Let us consider the spatial spectrum of the laser
radiation when the aperture is shaped as a narrow slit in
the x direction. In this case, we can write the expression 

(7)

where B2(η) ≈ 1, because the distribution of intensity
fluctuations of laser radiation in the transverse direction
can be considered totally correlated. The normalized
correlation function in the longitudinal direction can be
represented in the form [5] 

(8)

where Γ(ν) is the gamma-function, Kν(ξ/ξ0) is the Mac-
donald function, and ξ0 is the correlation length of
intensity fluctuations of laser radiation in the longitudi-
nal direction. We should note that B(0) = 1 and B(∞) =
0, while  ~ (ξ/ξ0)ν, i.e., the correlation func-
tion has a power-law form, and from this point of view
it can be used for describing the fractal structure of the
intensity fluctuations of an unstable laser radiation.
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Substituting expressions (7) and (8) into expression (4)
and performing the integration, we obtain 

(9)

where η0 is the transverse dimension of the laser spot at
the liquid surface and G(α) is the spectral density of
intensity fluctuations of laser radiation: 

(10)

At αξ0 > 1, the spectral density G(α) has a power-law
(fractal) form 

(11)

Now let us consider the case of a circular aperture.
The expression for the mean-square fluctuation of
sound pressure (4) can be represented in the form 

(12)

where 

(13)

k⊥  is the component of the wave vector k in the horizon-

tal plane,  = α2 + β2,  = |ρ' – ρ''|, and a is the radius
of the laser beam at the liquid surface. 

We write down the correlation function B(ρ) in the
form (8), substituting ρ for ξ and ρ0 for ξ0, where ρ0 is
the correlation length of fluctuations of laser radiation. 

We obtain the following expression for spectral den-
sity (13): 

(14)

At k⊥ ρ0 > 1, we have 

(15)

It is necessary to determine the particular value of
the parameter ν to calculate the acoustic field in the liq-
uid in each of the considered cases. The value of the
dimension of the space of embedding for the conditions
of the numerical experiment [5] is equal to d = 2. From
expressions (5), (6), (11), and (15), we have ν = 0.7 for
a slit aperture and ν = 0.35 for a circular aperture, if we
take the corresponding fractal dimensions D = 1.6 and
D = 1.3 obtained from the numerical experiment [5]. 

One can see from the analysis of expressions (9)–(11)
and (12)–(15) that the acoustic field excited by radia-
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tion of an unstable-cavity laser in a liquid has a fractal
structure. Indeed, under the conditions µ ! k, kξ0sinθ >
1, and kl @ 1, or kρ0sinθ > 1 and ka @ 1, where l is the
length of the slit aperture and a is the radius of the laser
spot at the liquid surface, we have the following expres-
sion for the mean-square sound pressure at the observa-
tion point x0z: 

(16)

where C is a constant determined by the problem
parameters. 
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Nikolaœ Grigor’evich Bibikov
(On His 60th Birthday)
February 13, 2000, marked the 60th birthday of the
Leading Researcher of the Andreev Acoustics Institute
Nikolaœ Grigor’evich Bibikov, a prominent Russian
specialist in biological and physiological acoustics.

Bibikov was born in Moscow in 1940. He was
among the first graduates of the Biophysics department
of the Faculty of Physics of Moscow State University.
This department combined a top-level education in
physics with one in modern biology, which was a new
subject in Russia at that time.

Upon graduation, Bibikov once and for all selected
his area of research: the study of the acoustic signal
processing in the animal brain. At the time, this subject
attracted the interest of one of the founders of the
Acoustics Institute of the Russian Academy of Sci-
ences, Academician N.N. Andreev, who organized a
special laboratory for studying this phenomenon. The
laboratory was headed by the young graduate of the
Moscow Physicotechnical Institute N.A. Dubrovskiœ—
now the director of the Andreev Acoustics Institute.
3-7710/00/4604- $20.00 © 20497
According to the advice given to Bibikov by
Andreev and other researchers (especially G.V. Gle-
kin), the first objects of Bibikov’s studies were amphib-
ians, which are characterized by a well-defined set of
sounds used for communication and a relatively simple
brain. Many basic features of the response of the neural
elements of these animals (such as thresholds, spectral
and temporal characteristics, and binaural properties)
were first described by Bibikov as early as in the 1960s.
In these descriptions, he used some physical and math-
ematical approaches that allowed him to obtain direct
numerical estimates of the nerve cell parameters for
simulation purposes. These studies were summarized
in the candidate dissertation (in physics and mathemat-
ics) defended by Bibikov in 1972.

One of the main results obtained by Bibikov contra-
dicted the concepts adopted by his American col-
leagues and consisted in the fact that the abilities of the
amphibian brain are not limited to only classifying the
signals of different species, but extend to analyzing in
detail the frequency-temporal features of all signals
perceived by the auditory periphery. Moreover, the
mechanisms of signal processing in the amphibian
brain were found to be close to those observed in mam-
mals.

In 1992, Bibikov defended his doctoral dissertation
(in biology), and in the following years, he concen-
trated on studying phenomena first observed by him-
self: the increase in the differential sensitivity of the
auditory system in the process of adaptation, and the
role of the internal and external noise in the formation
of the huge dynamical range of efficient operation of
the auditory system. These studies again revealed the
similarity between the main mechanisms of acoustic
signal processing in animals and humans. For example,
the psychophysical experiments revealed a reduction in
the recognition thresholds for the amplitude modula-
tion in the process of adaptation.

Bibikov obtained a number of remarkable results in
the course of his objective studies of the auditory sys-
tem of dolphins (he was the first to use the nontraumatic
method of recording the auditory potentials of these
animals), as well as in estimating some kinds of biolog-
ical noise in the ocean.

In parallel with his work at the Andreev Acoustics
Institute, Bibikov carried out investigations in coopera-
tion with scientists from Darmstadt Technical Univer-
sity and Konstanz University (Germany), the Univer-
sity of Illinois and the University of Kansas (USA), and
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the Beijing Biophysics Institute (China). He is the
author of more than 130 publications. His papers have
been presented at many international scientific confer-
ences. He has also given lectures at more that 15 uni-
versities in Western Europe and the United States.

Being one of the leading Russian specialists in bio-
acoustics, Bibikov chairs the section of the Russian
Acoustical Society; he is a member of the Acoustical
Society of America and a member of the International
Brain Research Organization. He is also member of
some other Russian and International scientific organi-
zations. In 1998, Bibikov was elected corresponding
member of the Russian Academy of Natural Sciences
for the Division of Physics.

We wish Nikolaœ Grigor’evich Bibikov good health
and further success in his creative endeavors.

Translated by E. Golyamina
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Sergeœ Nikolaevich Gurbatov
(On His 50th Birthday)
Sergeœ Nikolaevich Gurbatov—doctor of physics
and mathematics, professor, laureate of the Russian
Federation State Award, and chair of the Acoustics
department of Lobachevskii State University, Nizhni
Novgorod—turned fifty.

Gurbatov was born on February 8, 1950. In 1967, he
graduated from high school with a medal and began
studying at the Faculty of Radiophysics of Nizhni
Novgorod (Gor’ki) State University. Since then, all his
activities have been inextricably linked with the Faculty
of Radiophysics. In 1977, he completed his post-grad-
uate project and defended his candidate dissertation
(under the supervision of Professor A.N. Malakhov).
Gurbatov worked as an assistant professor and an asso-
ciate professor at the department of Statistical Radio-
physics. In 1986, he became the chair of the Acoustics
department, and since 1994, has been the dean of the
Faculty of Radiophysics at Nizhni Novgorod State Uni-
versity. In 1985, he defended his doctoral dissertation
(in physics and mathematics), which was entitled
-7710/00/4604- $20.00 © 20499
“Nonlinear Interaction and Scattering of Random
Waves in Dispersion-Free Media.” In 1988, he received
the title of Professor at the Acoustics department.

Gurbatov’s scientific interests are related to the the-
ory of nonlinear random waves and turbulence, waves
in randomly inhomogeneous media, nonlinear acous-
tics, and ocean acoustics.

Gurbatov studied the effect of multiple scattering in
plane-layered, randomly inhomogeneous media on the
reflection of sound pulses localized in space and time
and revealed the universal waveform of the reflected
waves. He performed a series of studies related to the
problems of remote sensing in the ocean. In connection
with the problem of the diagnostics of internal waves in
the ocean, he investigated the accuracy of Doppler
sensing methods in the presence of sound scattering by
discrete inhomogeneities. He also studied the possibil-
ity of using parametric acoustic radiators for the remote
sensing of the inhomogeneous structure of the ocean.

Gurbatov developed the statistical theory of highly
nonlinear random waves and fields of different physical
origin, with the only common feature being the absence
of dispersion. The latter property leads to an avalanche-
type generation of harmonics and to the formation of
quasi-ordered structures that determine the dynamics
and statistics of random fields. He studied in detail the
role of the inertial nonlinearity in the formation of the
probabilistic and spectral-correlative properties of
fields and waves of different physical origin. In partic-
ular, he studied the statistical properties of nonlinear
random fields in chaotic particle flows in gases, with
allowances for the pressure and the interaction of the
diverging waves. He established that, for all these
media, the common characteristic feature is the devel-
opment of a local and statistical self-similarity.

In 1984–1985, Gurbatov, together with his col-
leagues, proposed the so-called “stick-together” model,
which describes the nonlinear stage of the evolution of
gas consisting of gravitationally interacting particles
(this model received further development in the follow-
ing publications). The model is based on the three-
dimensional Burgers equation and represents a general-
ization of the known Zel’dovich approximation. It has
found application in astrophysics for describing the
evolution of the large-scale structure of the Universe.

Gurbatov performed fundamental theoretical stud-
ies of nonlinear acoustic noise waves. He proposed the
methods of their statistical description that allowed a
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detailed analysis of the nonlinear self-action and inter-
action of waves at all stages before and after the shock
formation. He studied the processes of the nonlinear
transformation of broadband noise signals and intense
acoustic pulses of complex structure. He developed the
statistical theory of parametric arrays and performed
theoretical and experimental studies of the effect of
refraction and waveguide inhomogeneities on the para-
metric generation of sound. In experiments performed
in cooperation with L. Bjørnø (Denmark) on the prop-
agation of intense acoustic noise, the existence of a uni-
versal asymptotics of the energy spectrum was con-
firmed.

Gurbatov is the author of more than 150 scientific
papers published in the leading Russian and foreign jour-
nals. Together with A.N. Malakhov and A.I. Saichev, he
wrote the monograph Nonlinear Random Waves in
Dispersion-Free Media (Nauka, Moscow, 1990); an
extended version of this monograph was published in
England in 1991. Gurbatov and Rudenko are the
authors of the chapter on statistical nonlinear acoustics
in the monograph summarizing the results obtained in
nonlinear acoustics within the last twenty years and
published under the title Nonlinear Acoustics in the
United States in 1996 (editors D. Blackstock and
M. Hamilton). Gurbatov is a co-author of the textbook
Acoustics in Problems (edited by S.N. Gurbatov and
O.V. Rudenko, Nauka, Moscow, 1998), which was pub-
lished as a result of the cooperation between research-
ers from the Acoustics departments of Moscow State
University and Nizhni Novgorod State University.
Gurbatov chairs the Council that confers the degrees
of doctor of science at the Faculty of Radiophysics of
at Nizhni Novgorod State University and the Expert
Council on Radio-wave physics of the Competition
Center for Fundamental Natural Sciences of the Minis-
try of Higher Education of the Russian Federation.
Gurbatov is the vice president of the Russian Acousti-
cal Society and a member of the American Acoustical
Society; he acted as a member of the Program commit-
tees of a number of All-Russian and International sci-
entific advanced-study schools; he also chaired the
Organizing committee of the International Advanced-
Study School on Dynamic and Stochastic Wave Phe-
nomena (Nizhni Novgorod, 1992 and 1994).

In 1997, a team of researchers including Gurbatov
received the Russian Federation State Award for the
series of works presented under the common title
“Dynamics of Intense Noise Waves and Nonlinear
Structures in Dispersion-Free Media.”

Gurbatov heads (together with Professor Saichev) the
leading Russian scientific school in “Physics of Nonlin-
ear and Random Waves in Application to the Problems
of Acoustics and Radio-Wave Physics.”

Sergeœ Nikolaevich Gurbatov celebrates his 50th
birthday in the prime of his creative life. We wish him
further success.

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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Papers—Prize Winners from the International Academic 
Publishing Company “Nauka/Interperiodica” in 1996–2000
In 1995, the International Academic Publishing
Company “Nauka/Interperiodica” has founded special
prizes to reward the authors of the most remarkable
papers that appear in the journals published by this
company. The prizes are intended for original scientific
works first published in the journals or a series of works
mainly published in these journals. The total number of
prizes is 55, for more than 90 journals. The prize recip-
ients are selected in yearly competitions.

Five papers from the Acoustical Physics were
among the prize winners of 1996–2000. These papers
are briefly reviewed below.

In 1995, the prize was given to Yu.M. Sukharevskiœ
(from the Andreev Acoustics Institute) for his paper
entitled “Statistics of Basic Acoustical Parameters of
Deep-Water Oceanic Regions and the Probabilistic
Range of Sonar Systems” (Acoustical Physics, 1995,
vol. 41, no. 5, pp. 749–763).

It is well known that the operating range of a sonar
system depends heairly on the hydrophysical condi-
tions in the oceanic medium. Many years of studies in
ocean acoustics resulted in the development of algo-
rithms and computer programs, which allow one to
estimate the operating range of a sonar system with the
given technical parameters in the most severe environ-
mental conditions. The development of hydroacoustic
technologies, including their information branch,
makes it possible to design sonars with parameters that
are optimized to the acoustic conditions of the ocean.
New possibilities open up for increasing the operating
range and improving the efficiency of the systems. An
important but poorly studied aspect of the latter prob-
lem is the determination of the sonar probabilistic
range that can be realized in actual hydrophysical con-
ditions of the ocean. The paper by Sukharevskiœ, who is
one of the founders of hydroacoustic studies in Russia,
is devoted to this topical problem.

For the hydrophysical conditions corresponding to
deep-water oceanic regions, Sukharevskiœ determines
the statistics of the basic acoustic parameters of the
ocean: the sound propagation anomaly in the oceanic
waveguide and the ambient noise level in the ocean; he
also studies the statistics of the ratio of these quantities,
which determines the signal-to-noise ratio of a sonar
and, hence, the sonar operating range. Sukharevskiœ
considers the problem of the determination of the prob-
abilistic range that is realized with a given statistical
1063-7710/00/4604- $20.00 © 20501
probability for a given sonar system in given hydro-
physical conditions in the ocean. This problem is
solved by using the CRV method (CRV means the log-
arithmic coefficient of range variation) developed by
Sukharevskiœ on the basis of the theory of optimal fre-
quencies. With this method, it is possible, from the
known (i.e., determined from the solution of the echo-
ranging equation) operating range of a sonar system of
a given type (passive or active) with arbitrary technical
parameters in arbitrary conditions, to directly deter-
mine the range of a system of the same type, with other
arbitrary parameters in other conditions or a set of con-
ditions (provided that the statistics of the parameters is
known). For active sonar systems, Sukharevskiœ esti-
mates the “reverberation range” in adverse conditions
of a shallow sound channel at high wind speeds. This
estimate allows for the range decrease in the presence
of the reverberation noise, as well as in the case of the
suppression of the reverberation noise, by applying a
known broadband signal and a coherence processing;
i.e., it allows for the range decrease related to the addi-
tional attenuation of the coherent part of the signal. The
paper by Sukharevskiœ is a generalization of the results
of numerous full-scale and numerical experiments.

Yu.I. Bobrovnitskiœ and T.M. Tomilina (Blagonra-
vov Institute of Machine Science, Russian Academy of
Sciences) received the prize in 1996 for their paper,
entitled “General Properties and Fundamental Errors of
the Method of Equivalent Sources” (Acoustical Phys-
ics, 1995, vol. 41, no. 5, pp. 649–660).

Calculating the field of sound radiation or scattering
from an elastic body is one of the fundamental prob-
lems in acoustics. This problem was formulated more
than hundred years ago, and it still attracts the attention
of researchers because of the wide area of application
of the results and the absence of adequate computa-
tional techniques. The problem has no analytical solu-
tion for most practically important cases, except those
of the bodies of the simplest shapes. The progress in
computer technology stimulated the development of
numerical methods. Recent years have seen an increas-
ing number of publications in which the problem of
sound radiation is solved by the so-called method of
equivalent sources. In particular, this method is used as
an alternative of the popular boundary-element method.
The comparison of these methods showed that the
machine time required by the method of equivalent
000 MAIK “Nauka/Interperiodica”
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sources is several times shorter than that required by the
other method, provided that the results are obtained
with the same accuracy. However, the practical applica-
tion of the method of equivalent sources is hindered by
the absence of justified recommendations for the choice
of the algorithms and by the unknown limits of validity
of this method.

The purpose of the paper by Bobrovnitskiœ and Tomi-
lina was to systematically investigate the general prop-
erties of the method of equivalent sources in relation to
the specific features of the representation of the field
produced by a source (scatterer) in the form of equiva-
lent acoustic sources. The authors analyzed the funda-
mental errors of this method and formulated several
problems whose solutions may reveal the possibilities
for increasing the accuracy of the method.

Bobrovnitskiœ and Tomilina studied the method of
equivalent sources as it applied to the problem of sound
radiation by complex elastic structures. The method
consists in replacing a real source by a system of simple
internal equivalent sources. It has a number of advan-
tages (high rate and controlled accuracy of computa-
tions). However, as was mentioned above, the method
is not yet formalized in terms of the algorithms because
of the insufficient theoretical basis. Bobrovnitskiœ and
Tomilina considered the problem of the loss of accu-
racy of the method at the so-called internal resonance
frequencies. They showed that, mathematically, this sit-
uation means the functional incompleteness of the sys-
tem of the fields of equivalent sources, and, physically,
it can be represented as a “shunting” of the external
medium by its inner volume. It was found that a number
of general properties of the method (inadequate condi-
tionality, spatial oscillations of sources) are related to
the behavioral features of inhomogeneous waves or, in
other words, higher spatial harmonics of the field,
which are characterized by fast oscillations along some
coordinates and fast decay along other coordinates.
These spatial harmonics of the field determine the con-
dition of the representability of acoustic fields by
equivalent sources. Considerable study was given to the
fundamental errors of the method due to the incom-
pleteness of the fields of the internal equivalent sources.
The dependence of these errors on the arrangement of
sources and on the errors in the input data was dis-
cussed. Bobrovnitskiœ and Tomilina formulated four
unsolved theoretical problems related to the choice of
the optimal values for the parameters of the algorithm.
As an example, they performed an analytical study by
using the Neumann radiation problem for a sphere. The
validity of the results obtained for the sources of other
geometrical shapes and the physical interpretation of
the results were discussed in detail.

In 1997, the prize was awarded to V.G. Andreev,
V.N. Dmitriev, Yu.A. Pishchal’nikov, O.V. Rudenko,
O.A. Sapozhnikov, and A.P. Sarvazyan (Moscow State
University) for the paper entitled “Observation of Shear
Waves Excited by Focused Ultrasound in a Rubber-like
Medium” (Acoustical Physics, 1997, vol. 43, no. 2,
pp. 123–128).

Acoustic waves propagating in an absorbing
medium transfer their momentum to the medium. In
liquids, which do not possess shear elasticity, this effect
gives rise to acoustic streaming. In solids, where such
hydrodynamic streaming is impossible, elastic stresses
occur. As a result, the sound absorption region should
become a source of elastic perturbations, specifically,
shear waves. It is generally believed that, in the course
of longitudinal wave propagation in a homogeneous
solid, shear waves can appear only as a result of the lon-
gitudinal wave reflection from the boundaries. How-
ever, one can expect that even in media with weak
sound absorption, the excitation of shear stresses
should be noticeable in regions characterized by high
intensity gradients of longitudinal waves. The subject
of the paper was the experimental study of this effect
and its theoretical substantiation.

High intensity gradients of longitudinal waves arise
at the “waist” of a focused acoustic beam whose trans-
verse dimensions can be comparable with the longitu-
dinal wavelength. However, even at the focus of a rela-
tively intense and short wave, the arising shear stresses
and the corresponding strains may be fairly small, and
their measurement may be difficult. To increase the
shear strains, the authors used a medium with a small
shear modulus that was several orders of magnitude
less than the longitudinal elastic modulus. Another
important requirement was using a nondestructive
method for detecting the effect. For this purpose, the
authors chose the optical method.

The paper by Andreev et al. presents the results of
the experiment in which the shear wave excited owing
to the absorption of the longitudinal wave was
detected. The authors used a focused beam of longitu-
dinal waves of frequencies 1–2 MHz propagating in a
transparent rubber-like medium. The shear waves were
detected by a probing light beam. The measured veloc-
ity of the sound wave coincided with its theoretical
value calculated from the known shear modulus of the
medium. A theoretical model of the effect was devel-
oped, which made it possible to calculate the charac-
teristics of the generated shear wave as the functions of
the parameters of the medium and the initial longitudi-
nal wave. The theory adequately describes the experi-
mental results.

In 1998, the prize winners were Yu.P. Lysanov and
L.M. Lyamshev (Andreev Acoustics Institute) for their
paper entitled “Sound Scattering by Random Volume
Inhomogeneities with a Fractal Spectrum” (Acoustical
Physics, 1998, vol. 44, no. 4, pp. 434–436).

Numerous experimental data testify that the fre-
quency dependence of the low-frequency sound attenu-
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
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ation in an underwater sound channel in the ocean is
described by the so-called “three-halves power law.”
This dependence had no explanation. Recently, it has
been found that the attenuation and its frequency
dependence can be attributed to the sound scattering by
volume inhomogeneities, i.e., by fluctuations of the
refractive index that occur in the underwater sound
channel, if one takes into account the anisotropy of
these inhomogeneities and selects an adequate correla-
tion function for their description (Lysanov). However,
this model was insufficient for a full understanding of
the phenomenon. Lyamshev has put forward the idea
that the attenuation may have a fractal origin, because
the exponent in the frequency dependence is a frac-
tional number. The study performed in collaboration by
the two authors showed that the three-halves power law
has a fractal origin, and the volume inhomogeneities in
the underwater sound channel have the form of clouds
with fractal boundaries, or more precisely, clouds–mul-
tifractals.

In their paper, Lysanov and Lyamshev considered
the sound scattering by random anisotropic volume
inhomogeneities (refraction index fluctuations) in
terms of the small perturbation method. The inhomoge-
neities are assumed to be highly anisotropic, namely,
small-scale in depth and large-scale in the horizontal
plane. According to the results of multiple experimental
studies in the ocean, this type of inhomogeneities is
typical of the oceanic medium. The paper reveals the
relationship between the observed frequency depen-
dence of the attenuation of low-frequency sound prop-
agating in the underwater sound channel and the fractal
properties of highly anisotropic inhomogeneities.
Lysanov and Lyamshev were the first to reveal the frac-
tal origin of the low-frequency sound attenuation in the
underwater sound channel and to theoretically justify
the experimental frequency dependence of attenuation
described by the three-halves power law. The attenua-
tion of sound is caused by its scattering from the bound-
aries of the volume inhomogeneities and the leakage of
the scattered waves out of the underwater sound chan-
nel. It was found that the fractal dimension of the
boundaries of volume inhomogeneities in the ocean
virtually coincides with the fractal dimension of the
cloud boundaries in atmosphere. Since the atmosphere
is a stratified medium, clouds in the atmosphere are
generally not self-similar, but self-affine. In this con-
nection, clouds in the atmosphere are considered as
multifractals. This is also true for the volume inhomo-
geneities in a stratified ocean. Hence, one can consider
the volume inhomogeneities (refractive index fluctua-
tions) in the ocean as clouds–multifractals with an
inherent spectrum of fractal dimensions (spectrum of
singularities). The absolute values of the attenuation
coefficient, which are calculated for the low-frequency
sound propagation in the underwater sound channel in
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000
the ocean on the basis of the proposed theoretical
model, agree well with the average values obtained
from the full-scale experiments. Thus, one can con-
clude that not only the frequency dependence of low-
frequency sound attenuation has a fractal origin, but
also the highly anisotropic volume inhomogeneities in
the underwater sound channel represent clouds–multi-
fractals, and in some sense they are similar to clouds in
the atmosphere.

The 1999 prize went to A.P. Brysev, F.V. Bunkin,
L.M. Krutyanskiœ, V.L. Preobrazhenskiœ, A.D. Stakhov-
skiœ (General Physics Institute, Russian Academy of
Sciences), Yu.V. Pyl’nov (Moscow Institute of Radio
Engineering, Electronics, and Automation), M.F. Hamil-
ton, K.B. Cunningham, and S.J. Younghouse (Univer-
sity of Texas at Austin, USA). Their paper was entitled
“Nonlinear Propagation of a Quasi-Plane Conjugate
Ultrasonic Beam” (Acoustical Physics, 1998, vol. 44,
no. 6, pp. 738–748).

Phase conjugation is a wave field transformation
that results in a reversal of the direction of wave propa-
gation with the initial phase and amplitude distributions
being retained. The phenomenon of phase conjugation
for ultrasonic waves attracts the attention of researchers
because of the specific features of conjugate wavefronts
and unique possibilities offered by the phase conjuga-
tion technique for physical studies, nondestructive test-
ing, technology, and medicine.

In the last few years, considerable progress has been
made in studies of the phase conjugation of ultrasonic
beams. This progress is mainly due to the efforts of
Russian scientists, namely, the authors of the aforemen-
tioned paper. (One of them, Bunkin, pioneered the sys-
tematic studies of the physical methods of phase conju-
gation in acoustics of liquids.) In particular, using the
principles of the parametric phase conjugation in mag-
netostrictive ceramics, they applied a pumping mag-
netic field and observed the phase conjugation for
ultrasound at the frequencies 5–30 MHz with a gigan-
tic (up to 80 dB) amplification relative to the incident
wave. These results were publisher earlier in Acousti-
cal Physics.

The propagation of intense conjugate ultrasonic
beams is accompanied by nonlinear distortions, which
can have an adverse effect on the quality of phase con-
jugation. This problem is the subject of the paper
awarded in 1999.

The paper presents the results of the experimental
and theoretical studies of the phase conjugation of
ultrasound and the studies of the nonlinear propagation
of a quasi-plane conjugate ultrasonic beam in water. A
quantitative agreement between the experimental and
theoretical results was obtained for the initial intensity
of the conjugate beam 2 W/cm2 in the region before the
shock formation. An increase in the waveform distor-
tion was observed with an increasing intensity of the
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conjugate beam and with the distance traveled by the
beam. By a numerical simulation of the conditions
close to the experimental ones, it was demonstrated
that, up to the aforementioned intensity of ultrasound,
the distortions of the transverse profile of the conjugate
beam are mainly caused by the finite size of the conju-
gator aperture.

The development of highly efficient methods of
acoustic phase conjugation opened up a new stage in
the development of both physics and technical applica-
tions of conjugate ultrasonic beams. One might expect
that, already in the next few years, new ultrasonic
phase-conjugation systems will be designed for special
applications.

L.M. Lyamshev

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 46      No. 4      2000


	373_1.pdf
	382_1.pdf
	385_1.pdf
	390_1.pdf
	400_1.pdf
	405_1.pdf
	411_1.pdf
	421_1.pdf
	427_1.pdf
	433_1.pdf
	439_1.pdf
	445_1.pdf
	450_1.pdf
	456_1.pdf
	461_1.pdf
	466_1.pdf
	474_1.pdf
	479_1.pdf
	488_1.pdf
	491_1.pdf
	494_1.pdf
	497_1.pdf
	499_1.pdf
	501_1.pdf

