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Abstract—An analysis has revealed that there may be three radically different steady states of a tokamak
plasma: (i) discharges in which the electron and ion transport can be described by neoclassical theory; (ii) dis-
charges with the Spitzer longitudinal conductivity, neoclassical ion transport, and “anomalous” electron trans-
port; and (iii) discharges in which the electron transport and ion transport are both “anomalous.” The dimen-
sionless parameters responsible for the occurrence of the three types of discharges are determined. In accor-
dance with the criteria derived for the achievement of different steady states, discharges of the second type are
most typical of modern tokamaks and discharges of the third type can occur only if the turbulence is sufficiently
strong. Discharges of the first type cannot occur in the range of the working parameters of present-day tokamaks
and future tokamak reactors, but they can be ignited in a large class of magnetic confinement systems. The phys-
ical reason for the onset of different types of discharges is associated with the fact that turbulent fluctuations
play very different roles in the dynamics of the ion and electron components of a finite-size magnetized plasma.
The question of the self-consistency between the profiles is considered. A law is derived according to which the
thermal diffusivity increases toward the plasma edge. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that, in some tokamak experiments,
the plasma electron heat conductivity was anomalously
high and could exceed the neoclassical value by several
orders of magnitude [1]. However, in the same experi-
ments, the longitudinal plasma conductivity was often
very close to the Spitzer conductivity and the ion con-
ductivity was more or less neoclassical [1]. In other
experiments in modern-day large tokamaks, the ion
thermal conductivity was also observed to be anoma-
lous [2]. It is even more surprising that, in many exper-
iments, the thermal diffusivity was found to depend on
the radial profiles of the temperature and current den-
sity [1]. In order to explain the nonlocal nature of heat
transport, it is necessary to self-consistently follow the
mutual relations between the local values of transport
coefficients and the global changes in the heat transport
profile due to the onset of instabilities. Tokamak exper-
iments also revealed operating modes with different
radial profiles of the plasma parameters, i.e., different
confinement modes. In some confinement modes, the
temperature profile has a steeper drop at the plasma
edge than the density profile, and, in other confinement
modes, vice versa.

In order to explain these phenomena, which play
key roles in tokamak physics, various approaches have
been proposed in the literature. For example, Kadom-
tsev [1] attempted to theoretically describe the princi-
ple of profile consistency by applying a variational
1063-780X/00/2609- $20.00 © 20721
approach in order to minimize the plasma energy func-
tional and by using phenomenological considerations
in order to find the relation between the anomalous
thermal conductivity and deviations from the optimum
(canonical) profile. Coppi [3] tried to attribute the prin-
ciple of profile consistency to the temperature depen-
dence of the thermal diffusivity χ, χ ~ 1/T. In our papers
[4, 5], this principle was explained by the methods of
the theory of strong turbulence.

However, we emphasize that the microscopic mech-
anisms responsible for the occurrence of different
modes of confinement have not been revealed in the
cited papers. Of course, the formation of different tem-
perature and density profiles can be affected by such
factors as atomic processes, edge phenomena, and the
way in which the impurities are generated. In our study,
we show that, even if these factors are completely dis-
regarded (which corresponds to a fully ionized plasma),
the model of turbulent heat transport [4, 5] can be used
to reveal the parameter describing the relative steepness
of the decreasing temperature and density profiles in
the edge plasma and to determine the transport param-
eters of the discharge. We show that, because of the
finite dimensions and toroidal geometry of a tokamak,
the turbulent properties can differ strongly between the
plasma ions and electrons and that it is the extent to
which the turbulent properties are different that governs
which type of turbulence occurs in a discharge plasma.
000 MAIK “Nauka/Interperiodica”
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2. KINETIC EQUATIONS FOR DIFFERENT 
CONFINEMENT MODES

An accurate description of turbulent plasmas
requires that turbulent fluctuations be included in the
kinetic equation. Unfortunately, Boltzmann-like
kinetic equations (such as the Vlasov equation with the
Lenard–Balescu or Landau collision integral) are inca-
pable of incorporating turbulent fluctuations correctly
[6, 7]. These kinetic equations, which can be derived in
a standard way from the hierarchy of the Born–Green–
Kirkwood–Bogolyubov–Yvon (BGKBY) equations,
are sufficient (because of the smallness of the parame-
ter 1/ND) for describing a hypothetical fluctuation-free
media consisting of the particles undergoing Coulomb
interactions [5]. To avoid misunderstanding, we
emphasize that fluctuations of the mean (large-scale)
electric field in a plasma can also be introduced cor-
rectly into the Vlasov equation; however, such an
approach is inapplicable to fluctuations of the real
(rather than mean) electric field and surely cannot be
used to study strongly unstable nonequilibrium plas-
mas. One of us [8] proposed the method for deriving
kinetic equations that systematically takes into account
turbulent fluctuations in an unbounded plasma in the
absence of a magnetic field. In our paper [11], these
equations were generalized to the case of infinitely long
confinement systems with a straight magnetic field. The
generalized equations incorporate the total electric
field, in contrast to the Vlasov equation, which assumes
a “smoothed” electric field. In fact, in the kinetic equa-
tions proposed in [11], the total electric field serves as
a variable in the distribution functions, so that there is
no need to represent the real electric field as a superpo-
sition of the smoothed and fluctuating components, as
is done in the standard theories. In other words, the new
kinetic approach makes it possible not only to solve
Poisson’s equation but also to calculate the electron and
ion densities by means of the distribution functions
evaluated from the kinetic equations that exactly
account for the real electric field. In comparison with
the Vlasov and Fokker–Planck equations, which con-
tain only a smoothed electric field and thereby cannot
be used to describe certain nonequilibrium plasma
states correctly, the new approach significantly extends
the applicability range of kinetic treatments in plasma
theory.

Clearly, taking into account the finite dimensions of
a tokamak plasma can substantially change the struc-
ture of the kinetic equations that account for fluctuation
electric fields in a tokamak. Now, we qualitatively
describe such kinetic equations under different plasma
conditions and discuss a new concept of the confine-
ment modes.

According to [8, 11], the properties of the operators

(1)L̂ V
∂
R∂

------- A
Ze
M
------ V H R( ),[ ]+ 

  ∂
V∂

-------,+=
(2)

are of fundamental importance in deriving the kinetic
equations with allowance for fluctuations.

Note that the following formal interpretation of
these operators makes them far simpler to analyze.
Operator (1) can be regarded as a Liouville operator for
a system consisting of a single particle with mass M and
charge eZ that propagates in a magnetic field H(R) and
experiences a constant uniform force MA; i.e., the par-
ticle moves in the potential φ = –M(A, R). Operator (2)
can be interpreted in a similar manner. However, it
should be kept in mind that the particles described by
the Liouville operators (1) and (2) have nothing in com-
mon with real plasma electrons and ions.

Let us dwell on this point in more detail. The
dynamics of a multiparticle system can be described by
different formal approaches, the most simple being a
hydrodynamic description in which the treatments car-
ried out with the Eulerian and Lagrangian variables
lead to the same results. A variety of treatments is also
typical of the kinetic description: the particle dynamics
can be studied in a real three-dimensional coordinate
space, in a six-dimensional phase space of a particle,
and even in an extended nine-dimensional (three coor-
dinates of the position vector, three velocity compo-
nents, and three acceleration components) phase space
of a particle. All of these treatments are certainly equiv-
alent in solving the basic equations of motion exactly,
but each offers its own significant advantages in a
model description of the dynamic system.

Using operators (1) and (2) as one-particle Liouville
operators, we follow the dynamics of different real par-
ticles with given accelerations rather than the dynamics
of a given physical particle. In other words, we number
the particles in a Hamiltonian system and, at each
instant, we renumber them so as to assign the same
numbers to different (at different instants) particles
with fixed accelerations (we can say that the particles
are numbered by their accelerations) and follow the
dynamics of the particles with a fixed number (or accel-
eration). Below, for brevity, we will call such fictitious
particles “electrons” and “ions,” because we can do so
without causing confusion. The kinetic equations
derived in [8, 11] are based on the equalities

(3)

at (H, A) ≠ 0 and (H, a) ≠ 0, respectively. In (3), f1 and
F1 are the generalized one-particle electron and ion dis-
tribution functions. Actually, the kinetic equations [8,
11] can be obtained under conditions that are less strin-
gent in comparison with (3): it is sufficient to require
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the existence of the time scales τi and τe such that

(4)

respectively.
In the case of infinitely long confinement systems

with a straight magnetic field, conditions (3) and (4)
hold automatically, thereby imposing no restrictions.
The situation with tokamaks is radically different: the
potential forces ma and MA, which are described by the

operators  and , act to periodically increase and
decrease the velocities of the particles because of parti-
cle circulation along the torus. Hence, conditions (3)
definitely fail to hold and we may only hope to satisfy
conditions (4) for certain values of the plasma parame-
ters.

Let us determine the parameter range in which the
tokamak plasma can be described by the kinetic equa-
tions with fluctuations [8, 11]. In situations in which the
kinetic equations derived in [8, 11] are applicable, the
energy density of the fluctuation electric fields in
strongly nonequilibrium plasma states (such that
∆S/N @ 1, where ∆S is the amount by which the plasma
entropy differs from its equilibrium value and N is the
total number of plasma particles) in large aspect ratio
tokamaks can be written as (see Appendix 1)

(5)

where rD is the Debye radius, ρe is the Larmor radius,
D is the nonquasineutrality parameter, and ND is the
number of particles inside the Debye sphere.

For conditions (4) to hold, it is necessary to satisfy
the inequalities

(6)

With the characteristic electron and ion accelerations
ach and Ach estimated from (5) and for Te ~ Ti, inequali-
ties (6) can be reduced to the condition

(7)

on the electron fluctuation parameter ζe, which reflects
the allowed loss of accuracy when the electron dynam-
ics is described in terms of smoothed electric fields
rather than in terms of real plasma electric fields.

We can see that, because of the first term in the
square brackets in (7), the necessary condition (6) can
be satisfied at fairly large values of R. In fact, for a
fusion plasma with the parameters n ~ 1014 cm–3 and T ~
10 keV and for a tokamak with the major radius
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R ~ 10 m, we have

(8)

which is enough to ensure condition (7). In this connec-
tion, we will work under condition (7) below.

The parameter ζe has a clear physical meaning: it
characterizes the role of fluctuation electric fields in the
kinetics of a tokamak plasma. For ζe @ 1, the role of
fluctuation electric fields is substantial, so that they
cannot be neglected in the analysis. For ζe ! 1, the fluc-
tuation electric fields play a minor role, so that the
plasma can be regarded as a fluctuation-free medium
consisting of particles undergoing Coulomb interac-
tions, in which case we can use, e.g., the Vlasov equa-
tion with the Landau collision integral. Note that,
according to (8), the inequality

(9)

(where λst is the electron mean free path with respect to
Coulomb collisions) serves as a necessary condition for
the applicability of the “fluctuation-free” tokamak
plasma approximation.

Recall that the standard way to derive kinetic equa-
tions with the Landau or Lenard–Balescu collision inte-
gral is to consider a homogeneous plasma in the limit
of large ND. Relationships (7) and (9) imply that the
limiting transitions are not always commutative: pas-
sages to the limit of a homogeneous plasma and to the
limit ND  +∞ do not necessarily yield the same
results if performed in the opposite order.

Let us analyze the fluctuation-dominated (turbulent)
modes of plasma confinement in tokamaks more thor-
oughly. Under condition (7), a toroidal confinement
system is characterized not only by the time scales

(10)

which were introduced in (4), but also by the time τR

required for a fictitious electron to complete a revolu-
tion in the toroidal direction under the action of the

force described by the operator ,

(11)

where the factor Γ = (1 + e2/q2)1/4 reflects the magnetic
field geometry, q is the safety factor, and e = r/R. The
relationship among the time scales τR, τe, and τi governs
the type of discharge in a tokamak, i.e., the type of tur-
bulence in the confinement mode. Note that the kinetic
equations derived in [11] can be applied to tokamaks
only on time scales shorter than the time interval after

which the force described by the operator  starts to
lower the velocities of fictitious electrons down to their
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initial values, i.e., on time scales such that

τR  +∞. (12)

This limiting condition is undoubtedly satisfied under
the inequalities

(13)

which can be rewritten as

(14)

Note that, in tokamaks, the safety factor is larger than
unity; i.e, we have Γ ~ 1. For this reason, we will
neglect the geometric factor Γ in further analysis.

Physically, conditions (14) imply that both the elec-
tron and ion transport should be treated with allowance
for fluctuations. To save space, we will refer to the
plasma states in which the turbulence of both the ion
and electron components is important as the ion–elec-
tron type of turbulence or simply (i, e)-turbulence. The
(i, e)-turbulence was first investigated in our papers [4,
5] in the electrostatic approximation.

The first inequality in (13) follows from condition
(7), which can also be satisfied for confinement modes
such that

(15)

In other words, we arrive at the conditions

(16)

which indicate that the electron transport should be
treated with allowance for turbulent fluctuations, while
the ion component can be described in an almost ideal,
fluctuation-free plasma approximation. Below, such
plasma states will be referred to as the electron type of
turbulence or simply (e)-turbulence. It is these plasma
states with a pure (e)-turbulence that are the subject of
our analysis. Note that the plasma states with a pure ion
turbulence cannot occur in the range of electron-to-ion
temperature ratios that are of interest from the stand-
point of tokamaks.

We emphasize that the transition from (i, e)-turbu-
lence to (e)-turbulence is describe by the ion fluctuation
parameter

(17)

which reflects the role of turbulent fluctuations in the ion
conductivity. It is of interest to note that, if a plasma con-
tains ions of different species, then some of the ion com-
ponents can be described in the fluctuation-free approx-
imation, while the remaining ion components possess
anomalous properties and their dynamics is strongly
affected by fluctuation electric fields in a plasma.

Recall that, in a bounded plasma, the ion dynamics
can differ fundamentally from the electron dynamics
because of the small value of the factor (m/M)2 in (17).

τe ! τR, τ i ! τR,
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3. KINETIC EQUATIONS FOR (e)-TURBULENCE

In our papers [4, 5], we derived and partially ana-
lyzed the kinetic equations for (i, e)-turbulence. In
other words, we studied ion–electron turbulence, for
which the electron and ion fluctuation parameters are
both large (ζe @ 1 and ζZ @ 1). In this section, we obtain
the kinetic equations for (e)-turbulence, i.e., for the
case in which the electron fluctuation parameter is large
(ζe @ 1) and the ion fluctuation parameter is small
(ζZ ! 1). For discharges with (e)-turbulence, the fluctu-
ation electric fields should be systematically taken into
account only in describing the electron dynamics,
while the plasma ions can be treated in the fluctuation-
free approximation.

With the formalism developed in [8, 9, 11], a
straightforward way of deriving kinetic equations is to
introduce the generalized distribution functions, which
depend on the coordinates, velocities, and accelerations
of the particles. The problem at hand differs fundamen-
tally from the problem treated in [9] in that the kinetic
equations should be obtained under the conditions ζZ !
1 ! ζe; in other words, we must take into account the
condition τe ! τR for the electrons (in this sense, we
have τR = +∞) and the condition τi @ τR for the ions (in
this sense, we have τR = 0).

The method of generalized distribution functions is
advantageous in that it enables us to decouple infinite
hierarchies of equations for the multiparticle distribu-
tion functions on infinitely long time scales. This pos-
sibility stems from the fact that the formalism of gener-
alized distribution functions makes it possible to
explicitly take into account the irreversible character of
the evolution of a multiparticle system (the particles
“forget” the initial conditions) before we proceed to
decoupling the hierarchy of equations for the multipar-
ticle distribution functions. We are thus faced with the
justification of the decoupling procedure only for states
in which the particles forget the initial correlations and
the interaction between the particles gives rise to new
correlations between them rather than for arbitrary
states of the system. The possibility of carrying out the
decoupling procedure for a smaller class of the states of
the system makes the desired closed kinetic equation
far simpler to derive [9], the more so because this class
can be characterized explicitly.

Note that, if in studying the (e)-mode of confine-
ment we introduce the generalized two-particle distri-
bution function f2 (t, 1e, 2e) in the same manner as in [8],
then we can immediately write out the desired kinetic
equation for the plasma electrons:

(18)

Here, 1e = (r1, v1, a1), 1i = (R1, V1, A1), etc., where the
lowercase letters stand for the coordinates, velocities,

∂
t∂
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and accelerations of the electrons and the uppercase let-
ters mean the same for the ions. Further,

(19)

(20)

where

(21)

(22)

and Φ is the two-particle electron–ion distribution func-
tion. Note that the interval of integration over τ in (19) is
actually extended to a time τ0 such that τe ! τ0 ! τR

rather than to infinity.
Analyzing Eqs. (18) and (19) in the limit m ! M, we

can neglect V1 in comparison with v1 in (22) and can
rewrite the integral over the ion coordinates, velocities,
and accelerations in the expression for d(t, 1e) in the
form

(23)

We emphasize that the correctness of the decoupling
procedure (23) is not based on the relationship
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which nevertheless serves as a sufficient condition for
relationship (23). In fact, in accordance with the for-
malism of generalized distribution functions, a suffi-
cient condition for the decoupling relationship (23) to
be justified is the fact that, in the interval τe ! τ0 ! τR,
we can describe the electron–ion interaction in an
“averaged” fashion in the sense of (23) [9]. Note that
the electron kinetic equation derived in such a way is
valid only on time scales t such that τ0 ! t ! τR,
because it is these time scales on which the integral rep-
resentation (19) allows us to apply the averaged
description of the electron–ion interaction in accor-
dance with (23) [9].

The averaged description has a clear physical mean-
ing. With allowance for fluctuations on certain time
scales, the terms describing two-particle interactions in
the kinetic equations for generalized distribution func-
tions vanish; in other words, the particle dynamics on
these time scales is correctly described by appropri-
ately defining the averaged interaction. This assertion
was proved on the basis of the integral representations
for the generalized distribution functions (the H-theo-
rem in a gentle formulation) [9]. In Appendix 2, we
present a particular example in order to explicitly illus-
trate the phenomenon of the averaged interaction.

Now, we can readily take the limit τR  +∞ in the
kinetic equation for the electron plasma component
because this equation is valid on arbitrary time scales t
rather than over the interval τ0 ! t ! τR. Hence, the
electron dynamics in tokamaks is also characterized by
the time scale τR, which stems from the fact that ficti-
tious electrons forget the initial conditions because of
their circulation along the torus. Consequently, the dis-
tribution of the electric field fluctuations (i.e., the elec-
tron acceleration distribution) should be established on
time scales shorter than τR and should adiabatically fol-
low the possible processes that occur on longer time
scales.

Relationship (23) is easy to interpret: light electrons
move in the field of heavy ions, which, in a first approx-
imation, can be assumed to be immobile in studying the
electron dynamics. According to (23), the dynamics of
the electron plasma component is governed only by the
mean field of the plasma ions (the second factor on
the right-hand side of this relationship describes how
the acceleration of an electron changes as it moves
in the mean field of the ions). For a uniform ion distri-
bution, integral (23) vanishes, so that Eq. (18) is a
closed equation for the distribution function f2(t, 1e, 2e),
in which case the one-particle electron distribution
function is uniquely determined by (19). Consequently,
in the lowest order approximation in m/M, the ions play
the role of a neutralizing background in the formation
of the electron distribution function in a plasma with
(e)-turbulence.

We can readily see that the symmetry group gener-
ated by the closed equation derived above for the func-
tion f2(t, 1e, 2e) coincides with the group of turbulent



726 GORDIENKO, YURCHENKO
dimensionalities [4, 8, 11] so that, following [11], we
can introduce the nonquasineutrality parameter D,
which reflects the symmetry properties of the system.
After solving the corresponding functional equations,
we can use the groups of turbulent and physical dimen-
sionalities in order express the transverse electron ther-

mal diffusivity  and the energy density W of the
fluctuation electric fields (see Appendix 1) in terms of
the nonquasineutrality parameter [4, 11]:

(25)

(26)

where Ωce is the electron gyrofrequency and χcl is the
neoclassical electron thermal diffusivity. The fixed

numbers Ci (i = ) cannot be evaluated by the
method proposed here.

Now, we consider plasma states with an essentially
steady turbulence and focus primarily on the kinetics of
the ion plasma component. Since the plasma turbulence
in the initial state is almost steady, the ion velocity dis-
tribution function is close to that in the steady turbulent
state. Recall that the distribution of the fluctuation elec-
tric field in a plasma should be established on time
scales of about τR. However, by virtue of the condition
ζZ ! 1, the fluctuation electric fields cannot signifi-
cantly change the ion velocity distribution function
and, after the formation of the steady-state distribution
of the fluctuation electric field, the ion velocity distri-
bution function remains almost unchanged because
both plasma electrons and ions are almost steady. The
above considerations allow us to ignore the influence of
the turbulence-induced fluctuation electric field on the
ion dynamics in the limit ζZ ! 1. Since our approach
cannot describe how the electron motion is affected by
fluctuations, we can represent the generalized multipar-
ticle distribution functions for the plasma ions as a
product of two functions: one dependent only on the
coordinates, velocities, and time and the other depen-
dent only on the coordinates, accelerations, and time
[9]. This factorization immediately yields the Fokker–
Planck equation for the ions [9]. However, for further
analysis, we must consider this problem in more detail.

Note that, for D2 ! 1, we must treat the transport
conditions (25) and (26) as being dependent on the non-
quasineutrality parameter. However, the one-particle
distribution function fe(t, 1e) is almost insensitive to D2,
because it changes markedly only when D changes by
an amount of order unity. An analogous situation,
which was thoroughly analyzed in [5], is examined in
Appendix 1. Therefore, we can assume that, in the limit
of the small values of the nonquasineutrality parameter
D, the electron velocity distribution function is nearly
Maxwellian. This assumption and the fact that, in

χ⊥
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nTe
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ρe

----- 
 
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,=

2 3,
describing the (e)-mode of confinement, the plasma
ions should be treated in the fluctuation-free approxi-
mation immediately yield the following equation for
the one-particle ion distribution function:

(27)

where F1(t, V, R) is the ion distribution function, the
Landau collision integral Stie describes collisions
between the ions and electrons that obey a Maxwellian
distribution function, and the term Stii in the Landau
collision integral accounts for ion–ion collisions. In
fact, in deriving the closed equation for the electrons in
a plasma with (e)-turbulence, the smallness of the elec-
tron-to-ion mass ratio m/M enabled us to describe the
electrons in terms of the mean field of the ions. Since
the ion plasma component should be described with the
same accuracy, we cannot apply the method of renum-
bering the ions and must integrate (over accelerations)
the hierarchy of equations coupling the generalized dis-
tribution functions. This procedure leads to the
BGKBY hierarchy, which should be decoupled in a
standard way. Note that, in the case of (e)-turbulence,
the electrons should be treated by correctly accounting
for the total fluctuation electric field in the plasma,
while the ions can be described in terms of the
smoothed electric field, which enters the Vlasov and
Fokker–Planck equations.

Recall that kinetic equations of the form of Eq. (27),
in which the fluctuations are neglected, are valid on
time scales t ≥ 1/ωpe, beginning with the instant at
which the plasma starts to evolve, i.e., on time scales
required for the two-particle correlation function to
form [10].

In order to find the longitudinal plasma conductiv-
ity, it is sufficient to determine the relative velocity u at
which the friction force due to Coulomb collisions
between ions and electrons with the distribution func-

tion (v – u, r) is equal to the force exerted by the
electric field on the plasma electrons. Consequently,
according to Eq. (27), we find that the longitudinal
plasma conductivity is exactly equal to the Spitzer
conductivity:

(28)

Note that expression (28) was derived in the same way
as the expression for the Spitzer conductivity in a ther-
modynamically equilibrium plasma because the ine-
quality ζZ ! 1 guarantees that the ion component is in
a turbulence-free state.

Relationship (28) shows that, in a straight magnetic
field, the ion thermal diffusivity is classical and, in a
curved magnetic field, it is neoclassical. Based on what
was said above, we can conclude that, on the whole, the
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ions in a plasma with (e)-turbulence may be treated in
the neoclassical approximation.

Hence, correct to numerical factors, our approach
provides all of the transport coefficients required to
study the radial profiles of the plasma parameters in
tokamaks.

4. RADIAL PROFILES OF THE TRANSVERSE 
THERMAL DIFFUSIVITY IN A PLASMA

WITH (e)-TURBULENCE

Here, we study (e)-turbulence (ζe @ 1, ζZ ! 1) using
the methods developed in [4, 5] to describe the phe-
nomenon of self-consistency between the profiles in a
plasma with (i, e)-turbulence (ζe @ 1, ζZ @ 1). We dis-
cuss a large aspect ratio tokamak under the condition
that ion heat losses are negligible in comparison with
electron heat losses.

We assume that the radial profile of the safety factor
q(r) and the torus loop voltage U = 2πRE are both pre-
scribed and consider a tokamak plasma with a pure
Ohmic current. In this case, according to (28), we
obtain

(29)

where

and the constant in (29) stems from the expression for
the Spitzer longitudinal conductivity. In what follows,
we will often denote by const various factors that are
independent of plasma parameters, because the proce-
dure for finding these factors, although straightforward,
leads to fairly involved expressions which make the
physical meaning of the profiles to be obtained more
difficult to understand.

Thus, in a plasma with (e)-turbulence, the tempera-
ture profile turns out to be uniquely related to the
Ohmic current profile and this relationship is universal.
It is this point in which the (e)-turbulence differs funda-
mentally from the (i, e)-turbulence: according to the
analysis made in [4, 5], the (i, e)-turbulence is charac-
terized by a universal relationship between the non-
quasineutrality parameter and the radial profile of the
safety factor, whereas the radial temperature profile is
governed by the requirement that the plasma column in
a tokamak be macroscopically stable. These consider-
ations imply, in particular, that the radial temperature
and density profiles differ radically between (i, e)-tur-
bulence and (e)-turbulence; in other words, the types of
plasma turbulence and self-consistent profiles can actu-
ally be controlled by the ion fluctuation parameter ζZ.

We illustrate this conclusion by taking as an exam-
ple discharges in which the ideal ballooning modes are
most dangerous for MHD plasma stability. The (i, e)-

Te r( ) constT*
2 S r( )–

q r( )
------------------

2 3⁄
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T*
3 2⁄ e2H

U
--------- mc2, S r( )
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turbulence in such discharges was considered in [4, 5].
Under the assumption that neoclassical ion heat losses
are much smaller than “anomalous” electron heat
losses, we investigate (e)-turbulence in discharges
whose macroscopic stability is governed by the ideal
MHD ballooning modes using the formalism that was
developed in [4, 5] to study (i, e)-turbulence and taking
into account the specific features of (e)-turbulence that
were discussed above. In this connection, we do not
repeat the analysis of [4, 5] and immediately write out
the final expressions for the radial profiles of plasma
parameters (for clarity, we consider the limit Te @ Ti , in
which the ion pressure can be neglected):

(30)

(31)

(32)

(33)

where Q(r) is a power deposited in the plasma at a dis-
tance r from the chamber axis. Note that, in the case of
pure electron turbulence, the dependence of the non-
quasineutrality parameter on the plasma parameters
differs radically from that in the case of ion–electron
turbulence, which was studied in [4, 5].

Following [4, 5], we assume that the power Q(r) is a
sum of the injected neutral beam power Q0 = const and
the Ohmic heating power:

(34)

The function q(r) can be found from the principle of
maximum entropy, as was done in [4, 5]. However, for
simplicity, we obtain the radial profile of the safety fac-
tor variationally in order to provide reliable informa-
tion on the discharge structure by properly choosing the
trial function. Let us seek q(r) in the form

(35)

with the only parameter r0.
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Assuming that r0 ! a and that the total number Ne

of electrons in the plasma column is fixed, we find
from (31)

(36)

which can be rewritten as

(37)

where  = 8πT∗ /H2, with  = Ne/2π2Ra2 being the

plasma density averaged over the entire volume of the
tokamak chamber. It is important to note that

(38)

which indicates that n(0) @  under the condition

(39)

Hence, the (e)-turbulence is characterized by the fol-
lowing temperature, density, and pressure profiles:

(40)

in which case the thermal diffusivity in the region r > r0
is equal to

(41)

5. COMPARISON BETWEEN SELF-CONSISTENT 
PROFILES IN TOKAMAK PLASMAS 

WITH (i, e)- AND (e)-TYPES OF TURBULENCE

Recall that the ion dynamics is very sensitive to the
value of the parameter ζZ, so that the self-consistent
profiles can change radically. According to [4, 5], in the
limit ζZ @ 1, which corresponds to the (i, e)-turbulence,
we have

(42)

In contrast, in the limit ζZ ! 1, which corresponds to
(e)-turbulence, we have

(43)

It is noteworthy that plasmas with different types of tur-
bulence, namely, ion–electron turbulence and pure
electron turbulence, are characterized by precisely the
same radial behavior of the transverse thermal diffusiv-
ity in the edge region, the temperature and density pro-
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files being extremely different. The reason for this can
be explained based on expression (33): in the region
r @ r0 and for the safety factor whose radial profile is
described by (35), we have

(44)

where Qtot is the total input power and the pressure pro-
file is governed by the most dangerous macroscopic
instability. Therefore, the radial profile of the transverse
thermal diffusivity will differ between plasmas with
(i, e)-turbulence and (e)-turbulence only when different
plasma conditions result in different most dangerous
instabilities, more precisely, the instabilities that occur
near marginal stability for turbulent fluctuations but do
not affect turbulent transport. Consequently, our model
allows us to hope to derive a more or less favorable
radial profile of the transverse thermal diffusivity only
in a plasma column whose macroscopic structure is
“organized” so as to change the kind of most dangerous
instability.

Note that the ion fluctuation parameter ζZ changes
when approaching the plasma boundary. This circum-
stance allows us to conclude that in tokamaks a part of
the plasma column may be in a state with the developed
(i, e)-turbulence, while the state of the remaining part
may be characterized by (e)-turbulence. We can readily
see that ζZ increases toward the boundary. Conse-
quently, we may expect discharges with a hybrid struc-
ture, such that (e)-turbulence dominates in the central
plasma and (i, e)-turbulence occurs predominantly in
the edge region.

Of course, the type of confinement mode is gov-
erned by many parameters: Q(r), U, , H, R, a, etc. For
simplicity, we restrict ourselves to considering dis-
charges with Ohmic heating alone. Using (32), we can
apply the approach of [4, 5] to estimate ζZ for plasmas
with the (e)- and (i, e)-types of turbulence. As a result,
the functional dependence of the estimated quantities
ζZ and ζe on the parameters of the plasma column will
differ strongly between the (e)- and (i, e)-types of tur-
bulence. We can readily show that the parameter range
in which (i, e)-turbulence and (e)-turbulence can occur
simultaneously satisfies the condition

(45)

where  and  are the values of ζZ for the (e)- and
(i, e)-types of turbulence, respectively. This possible
property of the discharges—to exhibit a sort of bistabil-
ity—is very important and illustrative.

We do not present here the explicit expressions that
we derived for the parameter ζZ for different types of
turbulence using the above model, in which ballooning
modes are regarded as the most dangerous macroscopic
instability, because, in what follows, we will show that
this model is unrealistic for tokamaks. On the other
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hand, our model is of particular importance, because it
yields some universal (i.e., independent of the kind of
most dangerous instability) results and is the main sub-
ject of our analysis. The results that are strongly sensi-
tive to the kind of most dangerous instability will be
analyzed below in a qualitative way. Let us illustrate the
above-said with the following examples. First, we can
expect that, regardless of the kind of most dangerous
instability, tokamak discharges in a certain parameter
range will also exhibit a sort of bistability governed by
the type of ion turbulence (the change in the parameters
changes the solution to the kinetic equations, but the
number of equations remains unchanged). Second, the
thermal diffusivity should also remain unchanged,
because, as was noted above, it is only associated with
the kind of most dangerous instability rather than with
the real fastest growing mode and also depends on such
a “rough” parameter as the pressure profile [see (44)].
Finally, we expect that the real temperature and density
profiles will be intermediate between the profiles in
(42) and (43).

6. PHYSICAL INTERPRETATION 
AND CONSEQUENCES OF THE RESULTS 

OBTAINED

Note that the pure electron and ion–electron types of
turbulence that occur at different levels of ion turbu-
lence can be interpreted in a simple and illustrative way.
Since, in the limit ζe @ 1, which is of interest to us, the
electrons always behave in a more or less anomalous
fashion, the electron thermal diffusivity is definitely
anomalous, whereas the ions may exhibit neoclassical
behavior. The longitudinal conductivity is more diffi-
cult to describe, because it is governed by the states of
both the electron and ion components. In the (i, e)-
mode of confinement, the ions exhibit turbulent behav-
ior (ζZ @ 1), in which case the ion distribution at each
instant is strongly nonuniform, so that the ion back-
ground gives rise to significant spatial variations of the
electrostatic potential. As the longitudinal current flows
through the plasma, the plasma electrons can be effi-
ciently scattered by the electrostatic potential produced
by the ions; therefore, the longitudinal conductivity is
also anomalous [4, 5]. In the (e)-mode, the ion turbu-
lence is absent (ζZ ! 1): the ions are distributed uni-
formly in space and the electrostatic potential experi-
ences no macroscopic fluctuations, which efficiently
scatter the electrons. As a result, the longitudinal
plasma conductivity is exactly equal to the Spitzer con-
ductivity. Recall that, in early tokamak experiments,
the longitudinal plasma conductivity was often signifi-
cantly lower than the Spitzer conductivity, whereas
more recent experiments have revealed that the longitu-
dinal conductivity is close to the Spitzer conductivity.

On the other hand, we must keep in mind that our
model cannot pretend to explain real tokamak experi-
ments, because it neglects finite β values (i.e., the non-
potential nature of the plasma) and self-consistent mac-
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
roscopic electric fields, which give rise to the rotation
of the plasma column.

7. ABSOLUTE VALUE OF THE TRANSVERSE 
THERMAL DIFFUSIVITY

Note that the above results on the physics of trans-
verse transport in tokamaks have widely different sta-
tuses. Some of the results, namely, those that are insen-
sitive to the kind of most dangerous instability, are uni-
versal in character. Other results differ markedly
between discharges with different kinds of the most
dangerous instability. Among the most important uni-
versal results, we can mention the conclusions about
the nature of the radically different behavior of the ions
and electrons in finite-size plasmas, the assertion that
the transverse thermal diffusivity increases toward the
plasma boundary, and the explanation for the possible
existence of hybrid discharges with a Spitzer longitudi-
nal conductivity, the roughly neoclassical behavior of
the ions, and the strongly anomalous transverse elec-
tron thermal diffusivity. However, the absolute value of
the transverse thermal diffusivity is not a universal
quantity: it is very sensitive to the kind of most danger-
ous macroscopic instability. Consequently, a compari-
son between the absolute values of the calculated and
experimental transverse thermal diffusivities makes it
possible to reveal the kind of macroscopic instability
that occurs near the marginal stability for turbulent
fluctuations.

In our study, we assume that the role of the most
dangerous instability is played by ballooning modes,
because the stability criterion for these modes is suit-
able for our purposes, one of which is to compare dif-
ferent types of turbulence (electron turbulence and ion–
electron turbulence) in the problem as formulated (see
[4]). This approach can be justified by the fact that our
formulation of the problem makes it possible to reveal
some universal characteristic features of the transverse
transport (we do not pretend here to describe its specific
properties). On the other hand, in order to better under-
stand the physics of transverse transport, it is helpful to
compare the calculated results with experimental data
and to analyze (at least, preliminarily) how other kinds
of dangerous instabilities will affect the results.

We start by noting that, regardless of the kind of
most dangerous instability, formula (25) and the condi-
tions for the discharge to be steady yield the following
universal radial profile of the transverse thermal diffu-
sivity:

(46)

Moreover, for expression (46) to be valid, the main
channel for energy losses should be associated with
anomalous electron thermal diffusivity and the inequal-
ities χcl < χ⊥  ! χBohm should be satisfied. To avoid mis-
understanding, we emphasize that expression (46) has

χ⊥
Q r( )
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no singularity at r  0, because the quantity Q(r) in
the numerator in (46) approaches zero as r  0.

Expression (46) itself is physically meaningless,
because it is nothing more than a formal consequence
of the definition of the thermal diffusivity. Physically,
the only meaningful points here are the assertion that
the energy is lost mainly due to the anomalous electron
thermal diffusion and the existence of the lower and
upper bounds, χcl and χBohm, on the electron thermal
diffusivity.

Note that both kinetic and hydrodynamic processes
(macroscopic plasma displacements) can also contrib-
ute to the electron thermal diffusivity. Our approach is
capable of incorporating only the contribution of the
kinetic phenomena. In this context, the conductivity
differs fundamentally from the thermal diffusivity in
that it arises entirely from the kinetic processes (to sig-
nificantly change the conductivity requires that there be
hydrodynamic motions during which the macroscopic
parameters of a medium experience strong variations,
while a substantial change in the thermal diffusivity can
be ensured by hydrodynamic motions such that the
density and temperature fluctuate only slightly). Conse-
quently, regardless of whether the hydrodynamic pro-
cesses in a tokamak plasma are taken into account or
not, an adequate kinetic theory should give a correct
value of the conductivity.

Expression (46) demonstrates that the approach
developed here is capable of obtaining transverse ther-
mal diffusivities that agree with the experimentally
measured values. However, to calculate the discharges
self-consistently (i.e., to determine the relations among
the temperature gradient, the plasma density, and the
profile of the total heating power) requires the most
dangerous macroscopic instability to be specified, in
which case the final results are strongly sensitive to the
kind of the most dangerous instability.

In our model, the role of the most dangerous insta-
bility is assumed to be played by ballooning modes.
Under this assumption, we have demonstrated that our
approach to describing transport in tokamaks can be
used to calculate discharges self-consistently. However,
the transverse thermal diffusivities obtained from our
model turn out to be too small in comparison with the
experimentally measured values. We emphasize that
this circumstance does not discredit our approach but
simply demonstrates that either the ballooning modes
are unlikely to play the role of the most dangerous
instability or the real transport in tokamaks should be
described with allowance for hydrodynamic processes.
We must also keep in mind that, in real tokamaks, the β
values are finite.

8. CONCLUSION

In conclusion, we summarize the main results of our
work, using notation suitable for comparison with the
experimental data and theoretical results obtained in
other papers.

Under the conditions

(47)

, (48)

electrons and ions can both be treated without allow-
ance for nonequilibrium fluctuations, i.e., in the neo-
classical approximation.

However, for present-day tokamaks, conditions (47)
and (48) may fail to hold. From a practical standpoint,
the most interesting case is that described by the condi-
tions

(49)

where the ions can be modeled in the fluctuation-free
approximation, the electron dynamics should be stud-
ied with allowance for fluctuations, the longitudinal
conductivity of a tokamak plasma coincides with the
Spitzer conductivity, and the transverse ion thermal dif-
fusivity is neoclassical. Note again that, under condi-
tions (49), fluctuations should be taken into account in
describing the electron dynamics. However, the fluctu-
ations may affect the transverse electron transport in
different ways: if conditions (49) and the extremely
restrictive condition

(50)

are both satisfied, then the fluctuations change the
transverse electron transport but in a way that does not
differ greatly from the neoclassical predictions. Note
that condition (50) differs fundamentally from condi-
tions (47)–(49) in that it is independent of the tokamak
dimensions. If condition (50) fails to hold because of
the high level of turbulent noises but conditions (49) are
satisfied, then the transverse electron transport is anom-
alously high, the longitudinal plasma conductivity
remains equal to the Spitzer conductivity, and the ions
can be described roughly in terms of neoclassical the-
ory.

With the prescribed kind of the most dangerous
instability that occurs near the marginal stability for
turbulent fluctuations, our approach is capable of
describing discharges self-consistently. In the present
paper, we apply this approach to examine a particular
case such that the role of the most dangerous instability
is played by ballooning modes.

We now explain why conditions (49) are most rep-
resentative of the last generation of tokamaks. We can
readily see that the condition ζe @ 1 holds for modern
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devices because

(51)

in which case, however, we have

(52)

This indicates that, according to (49), confinement
modes with a Spitzer longitudinal conductivity can
occur only when turbulent noise is below a critical level
Wcr such that

(53)

We illustrate relationships (51)–(53), taking as an
example a large tokamak with the major radius R ~
10 m and assuming a hydrogen plasma under fusion
reactor conditions: n = 1014 cm–3, Ti = Te = 10 keV, ∆e =
104, ∆Z = 2.5 × 10–3, and Wcr/nTe = 10–4 (the electric field
corresponding to this value of Wcr is very strong: Ecr =
20 kV/cm). Hence, we see that plasmas with a Spitzer
longitudinal conductivity in discharges with a lower
noise level are representative of present-day tokamaks
and future tokamak reactors.

This example indicates that, for modern tokamaks,
the condition ζe < 1 is of interest only from a theoretical
viewpoint, because ζe > ∆e. It is this respect in which
tokamaks differ radically from other magnetic confine-
ment systems for which the condition ζe < 1 can be sat-
isfied and thus the plasma can surely be described in the
fluctuation-free approximation. In fact, according to
[13], a plasma-filled betatron with R = 20 cm is capable
of creating a plasma with n = 5 × 1010 cm–3 and Te >
10 keV, i.e., with ∆e = 2 × 10–5. The fluctuation-free
approximation undoubtedly applies to such a plasma.

Note that, under conditions (49), the state of the
plasma column is such that turbulent processes should
be taken into account in describing the electron compo-
nent but can be neglected in treating the ions. Thus, we
arrive at the notion of electron turbulence, or (e)-turbu-
lence.

A third possible case is that in which

(54)

Under these conditions, both the electrons and ions
should be described with allowance for fluctuations.
For real tokamaks, these conditions should correspond
to discharges with bad confinement properties: the lon-
gitudinal conductivity is far below the Spitzer conduc-
tivity, the turbulent noise is relatively intense, and the
transverse thermal diffusivity is high. In such dis-
charges, turbulent processes affect both the electron
and ion plasma components. The properties of this ion–
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electron turbulence, or (i, e)-turbulence, were already
studied in our paper [11].

Two possible types of turbulence, namely, (e)-turbu-
lence and (i, e)-turbulence, make it possible to ignite
bistable discharges with different sorts of radial profiles
of the plasma temperature and plasma density. Such
discharges are characterized by a universal behavior of
the transverse thermal diffusivity: it increases when
approaching the plasma boundary. With our model, the
self-consistency of the profiles can be explained in a
natural way. Of course, the physics of plasma confine-
ment in tokamaks is far more complicated and cannot
be adequately described by the electrostatic plasma
model, in particular, because it is necessary to take into
account finite β values.
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APPENDIX 1

Here, we consider some properties of the developed
turbulence in a plasma. First, we determine the ampli-
tude of the fluctuation electric fields excited in a turbu-
lent plasma. Note that the mean squared electric field
calculated by averaging over the plasma volume
diverges, because, in the vicinity of each point charge,
the electric field increases according to the law 1/r2.
The electric field averaged over the plasma “particles,”
i.e., the quantity proportional to the mean squared
acceleration of particles in a plasma, is free of this sin-
gularity (this will be especially clear if we note that the
electric fields diverging in the vicinities of point
charges make no contributions that cause the mean
squared acceleration to diverge), but it nevertheless
diverges because of the large contribution that comes
from close collisions (at least in a zeroth approxima-
tion, in which the plasma is treated as an ideal gas and
binary collisions between particles are regarded as
being completely stochastic and independent). For this
reason, it is convenient to characterize the intensity of
fluctuation electric fields in a plasma by the quantity

(A1.1)W∗ 1
48π
--------- Wee* Wii* Wei*+ +( ).=
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Here,

where f2, F2, and Φ are the generalized two-particle dis-
tribution functions. Collisions between particles with
very small impact parameters make no contributions
that cause the quantity W* introduced in such a manner
to diverge. The denominator 1/48π on the right-hand
side of (A1.1) stems from the fact that the energy den-
sity of the “collective” component of the plasma elec-
tric field is accounted for six times and the remaining
part of the denominator (8π) comes from the definition
of the energy density of the electric field. We can
readily see that the quantity W*, which naturally
appears in equations describing plasma dynamics, has
a clear physical meaning: it characterizes the role of the
collective interaction between particles. In fact, this
quantity is nondivergent, because it is not contributed
to by small-impact parameter collisions (since the sta-
tistical weighting factor of three-body collisions is
small, simple estimates show that they do not cause the
second moments to diverge), and completely incorpo-
rates the collective electric fields in a plasma.

Plasma with a developed turbulence is characterized
by the group of transformations KD × G2; i.e., the
quantity

should depend on the quantities

Moreover, this dependence should be invariant under
the transformations from the group KD × G2, while the
quantities xD, yD, and wD themselves are not invariant
and are transformed as 1/t, v2, and (v/t)2, respectively
(see [5] for details). Physically, this result, which was
thoroughly examined in [5], can be explained as fol-
lows. Each state of a turbulent plasma is characterized
by a certain group of transformations of the kinetic
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T
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equations with fluctuations. Each plasma state is invari-
ant under the transformations from “its own” group. In
other words, each state of a plasma with a developed
turbulence is characterized by a certain dynamic sym-
metry that imposes fairly stringent restrictions on the
relationships between the quantities describing this tur-
bulent plasma state. Recall that the nonquasineutrality
parameter D, on the one hand, reflects the symmetry
properties of the plasma states and, on the other hand,
characterizes fluctuations on spatial scales of about the
Debye length, thereby clarifying the role of the effects
associated with the plasma nonquasineutrality [5]. It is
an easy matter to show that, for D ≠ 0, the requirements
for the above relationship among the quantities xD, yD,
and wD to be invariant uniquely determine the func-

tional dependence wD = C(D)yD ; i.e.,

(A1.2)

where C(D) is an unknown function of the parameter D.
We emphasize that expression (A1.2) is valid only

for D ≠ 0. For D = 0, the above symmetry consider-
ations fail to give a unique relationship between the
quantity W* and the plasma parameters. The reason is
that, for D = 0, the group K0 × G2 is degenerate, thereby
generating an infinite class of relationships among the
parameters xD, yD, and wD. That is why the solutions
characterized by the symmetry group K0 require special
treatment. To study this degenerate case, the dynamic
plasma state should be described using the approach
based on equations that are invariant under the transfor-
mations from the group K0. In other words, we must
construct a kinetic equation such that the full family of
its solutions is invariant under these transformations.
The steady solution to this kinetic equation will corre-
spond precisely to the desired solution with the symme-
try group K0, because, under the transformations from
this group, the desired solution passes over to the
steady solution and, moreover, satisfies the equation
that possesses the relevant symmetry properties. In
other words, solutions that are close to the desired solu-
tion and are transformed by the operators of the group
K0 are again solutions to the same equation. Conse-
quently, the desired solution is the limiting (at D  0)
solution of the family of solutions describing the devel-
oped turbulence. We can readily show that the desired
equation is the Vlasov equation with the Landau colli-
sion integral (the Fokker–Planck equation) and that the
limit D  0 corresponds simply to a thermally equi-
librium plasma state. Hence, for D = 0, the quantity W*
is equal to C1e2n4/3 (the constant C1 is uninteresting for
further analysis).

Note that, for turbulent noises, the quantity W*
should be continuous in the limit D = 0. However, the
noise level determined by (A1.2) differs from that at
D = 0 by a power of the quantity T/e2n1/3, which is a
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large parameter of the problem because the number of
particles inside the Debye sphere ND = (T/e2n1/3)3/2 is
large. In our approach, all of the quantities are
expanded in powers of the small parameter introduced
above (the reciprocal of the number of particles inside
the Debye sphere). If the lowest order terms in expan-
sions vanish, then the next-order nonvanishing terms
come into play. These considerations immediately
yield the conclusion that, at D = 0, the unknown func-
tion C(D) equals zero. On the other hand, the require-
ment that the noise level W* be positive regardless of
the value of D gives

(A1.3)

where C2 is a nonnegative constant. Therefore, for D ≤ 1,
we have

(A1.4)

The expressions for the transverse thermal diffusivity
and conductivity of the plasma can be derived in an
analogous fashion:

(A1.5)

(A1.6)

where C3 and C4 are nonnegative constants, σSp is the
Spitzer conductivity, and χcl is the classical transverse
thermal diffusivity.

Expressions (A1.5) and (A1.6) refine the results of
[11], where the limiting value of the thermal diffusivity
at D = 0 was determined under the assumption that the
plasma state with D = 0 is insensitive to the magnetic
field strength.

Since the term C1/  in (A1.4) comes from the
contribution of the Holtsmark fluctuating electric field
to (A1.1), it is convenient to introduce the quantity W,

which accounts for the purely turbulent component of
the plasma electric field.

The results obtained show that the limiting (at
D  0) solution in the full family of solutions to the
kinetic equations with fluctuations (this family is
parameterized by the nonquasineutrality parameter D)
describes a thermodynamically equilibrium plasma
state. It is of interest to analyze these solutions in the
model with a large parameter ∆S/N, i.e., to consider
strongly nonequilibrium solutions. Note that, in an
almost ideal plasma in a thermally equilibrium state,
the entropy per particle is proportional to the logarithm
of the number of particles inside the Debye sphere.
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Therefore, if in some nonequilibrium state the change
in the entropy per particle is a finite fraction of its equi-
librium value, then in the limit of an infinite number of
particles inside the Debye sphere this change is infi-
nitely large, of course, under the condition that the
above finite fraction be nonzero. Consequently, analyz-
ing the order of limiting transitions makes it possible to
understand why the solution corresponding to a ther-
mally equilibrium state is a limiting one in the family
of solutions describing strongly nonequilibrium plasma
states.

In other words, the large value of the Coulomb log-
arithm in a turbulent plasma results in plasma states in
which, on the one hand, the plasma particle distribution
function can be regarded as being nearly Maxwellian
and, on the other hand, the plasma can be regarded as a
strongly nonequilibrium medium. Let us illustrate this
seemingly paradoxical situation using a simple exam-
ple. We consider the distribution function of the form

(A1.7)

where f0 is a Maxwellian distribution function, e is a
small quantity, and an arbitrary velocity-dependent
function ψ ensures that the correction δf decreases suf-
ficiently sharply at high velocities. The entropy of a
plasma with the distribution function f has the form

(A1.8)

so that we have

(A1.9)

which indicates that the correction to the distribution
function is on the order of ef0lnf0, while the entropy
changes due to this correction by an amount ef0ln2f0.
Consequently, at large values of the Coulomb loga-
rithm, i.e., of the quantity ln(1/f0), a situation is possible
in which the correction to the distribution function is
small and the change in the entropy is large.

However, we should make an important remark. For
the prescribed mean kinetic energy and plasma density,
the plasma entropy is maximum in the thermally equi-
librium state. In other words, for each variation of the
distribution function such that the mean kinetic energy
and the plasma density both remain unchanged, the first
variation of the entropy vanishes. Consequently, the
first variation δf of the distribution function in (A1.7)
should certainly change either the plasma temperature
or the plasma density. However, this circumstance is
unimportant for the above analysis, the more so since,
in a turbulent plasma, these plasma parameters experi-
ence strong fluctuations.

We thus arrive at the following fundamentally
important conclusion: in the range D ! 1, the distribu-
tion functions of plasma particles can be assumed to be

f f 0 δf , δf+ ee ψ– f 0 f 0,ln= =

SB f fln v,d∫–=

SB f[ ] SB f 0[ ]– e e ψ– f 0 f 0ln
2 vd∫–=

– e e ψ– f 0 f 0ln vd∫ O e
2( ),+
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Maxwellian, in which case, according to (A1.5) and
(A1.6), the transport coefficients may exceed their ther-
modynamically equilibrium values by many orders of
magnitude because of the large number of particles
inside the Debye sphere.

APPENDIX 2

We consider a test particle with charge Z0, mass M,
and velocity v directed along the z-axis. Let the test
particle move in a plasma consisting of electrons with
charge e and mass me and ions with charge Z and mass
mi. For brevity, we assume that the particle velocity v
is much higher than both the electron and ion thermal
velocities. According to [14], on time scales τ such that
τ < rD/v, where rD is the Debye radius, the distribution
function describing the change ∆p in the momentum of
a test particle on the time scale τ has the form

(A2.1)

where p(u) = exp[nUe(u)]exp[nUi(u)] and

Expression (A2.1) was derived exclusively from New-
ton’s second law by evaluating the momentum trans-
ferred from plasma particles to the test particle [14]
under the assumption of straight-line motion of the test
particle (this assumption is valid on time scales much
shorter than the mean free time of a test particle). Since
the characteristic function of the test particle is repre-
sented as a product of the characteristic functions
describing its scattering by electrons and ions, the scat-
tering events by electrons are statistically independent
of those by ions. For this reason, we restrict ourselves to
considering the distribution function for the momentum
transferred only from the electrons to the test particle:

(A2.2)

For completeness, note that, since the distribution func-

tion  for the momentum transferred from the ions is
similar in form to (A2.2),
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-------------,exp∫=
the distribution function fτ(∆p) for the total momentum
transferred to the test particle is defined as a convolu-
tion of the distribution functions for the momenta trans-
ferred from electrons and ions:

The function  can be investigated analytically.
After performing the necessary manipulations, we can
see that a portion of this function is Gaussian in shape,

(A2.3)

where  +  < 2 ln(Λ/4), Λ is defined as a solution

to the equation Λ = ln[2πΛn(vτ)3] @ 1,  =

(2πn e4Λτ)/v, and  = 2 /Λ. The tail of this func-
tion characterizes the transfer of the transverse momen-
tum and obeys the power law

, (A2.4)

where  +  > 2 ln(Λ/4) and ∆p = (px, py, pz).

The Gaussian portion of the distribution function
(A2.3) and the power-law tail (A2.4) form via different
mechanisms. The Gaussian portion stems from numer-
ous scattering events each characterized by a small
amount of the momentum transferred, i.e., from the
scattering of the test particle by fluctuations of the elec-
tric self-field of the plasma. The power-law tail is gov-
erned by binary collisions between particles with small
impact parameters, so that the tail is actually extended
to the maximum possible amount of the momentum
transferred in a binary collision event (i.e., an amount
of about p* ~ 2mev) rather than to infinity. Parentheti-

cally, if p*2 < 2 ln(Λ/4), then the power-law tail is
completely absent.

Note that, for the Gaussian portion of the distribu-
tion function (A2.3), the second moment of the
momentum transferred is equal to

(A2.5)

The power-law tail is governed by a very small fraction
of the total number of plasma particles (on the order of
1/Λ ln(Λ/4)); however, this fraction makes a large con-
tribution to the second moment:

(A2.6)
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Let us calculate the distribution function for the
momentum transferred on time scales τ @ rD/v, on
which it is necessary to take into account Debye screen-
ing. In other words, under the assumption that the elec-
tric field at a given point is created by the particles that
occur at distances shorter than the Debye radius from it,
the distribution function can be calculated at most to
logarithmic accuracy. A simple analysis shows that, in
calculations, it is sufficient to replace the functions Ue

and Ui in (A2.1) and (A2.2) with the new functions

 and  defined as

(A2.7)

(A2.8)

The distribution function  for the momentum trans-
ferred from the electrons can be calculated in an
explicit form:

(A2.9)

where  +  < 2 ln(L/4), L = ln(2πL v τ) @ 1,

and  = (2πn e4Lτ)/v. The power-law tail, which
characterizes the transfer of the transverse momentum,
has the form

, (A2.10)

where p*2 >  +  < 2 ln(L/4) and ∆p = (px, py, pz).

On time scales τ > τ* = v3/[Lln(L/4)πne4 ] such

that p*2 < 2 ln(L/4), the power-law tail of the asymp-
totic distribution function (A2.10) is completely
absent.

We emphasize that the time scale τ* is parametri-
cally shorter than the mean free time of a test particle in
a plasma. This circumstance guarantees the applicabil-
ity of our approach on such time scales. We draw atten-
tion to the factor δ(pz) in (A2.9) and (A2.10). This δ-
function has a clear physical meaning: inside the Debye
sphere, the plasma potential experiences fluctuations,
thereby changing the kinetic energy of a particle and
leading to a Gaussian distribution over pz in (A2.3) and
(A2.4). However, the fluctuations of the kinetic energy
and pz, which are driven by the fluctuating plasma
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potential, do not grow on time scales τ such that τ >
rD/v. When these fluctuations become much less
intense than the transverse fluctuations of the momen-
tum, the above δ-function appears in the corresponding
approximate expressions. The energy losses (the fric-
tion force) should be calculated with allowance for both
the fluctuation and polarization electric fields; i.e., the
losses should be calculated to higher orders in the cou-
pling constant [16].

On time scales rD/v < τ < τ*, the calculated second
moments associated with the Gaussian portion of the
distribution function (A2.9) and with the power-law tail
have the form

(A2.11)

(A2.12)

on time scales τ > τ*, the second moments are

(A2.13)

and 〈(∆p)2〉 t = 0 (the latter stems from the fact that, on
such time scales τ, the power-law tail is completely
absent).

The total second moment of the momentum trans-
ferred is a sum of the contributions from the Gaussian
portion of the distribution function and its power-law
tail:

(A2.14)

(A2.15)

(A2.16)

According to (A2.14)–(A2.16), the process of momen-
tum transfer can be regarded as being Markovian only
on time scales rD/v < τ < τ*. The momentum transfer
on short time scales τ < rD/v is always strongly non-
Markovian. On long time scales τ > τ*, the contribution
of non-Markovian effects to the second moment of the
momentum transferred is governed by the value of the

parameter M2ln(L/4)/ ; however, we will not con-
sider this point in more detail. The non-Markovian
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behavior is always associated with a certain memory
effect. The non-Markovian (nondiffusive) character of
scattering on short time scales was first discovered by
Kogan [15], who attributed this effect to the fact that the
plasma particles remember information about their
mean free paths. The non-Markovian behavior on long
time scales [see (A2.16)] is explained by the fact that
the Gaussian portion of the distribution function
remembers the mean free time of a particle. On long
time scales τ > τ*, the Gaussian portion extends over
the entire region of the power-law tail, which “shad-
ows” the role of the non-Markovian character of the
scattering of majority particles on intermediate time
scales rD/v < τ < τ*.

It is of interest to note that the factors ln(Λ/4),
ln(L/4), and L (which are parameters rather than num-
bers) in formulas (A2.14)–(A2.16) clearly demonstrate
the collective character of the argument of the Coulomb
logarithm; moreover, keeping these factors in the argu-
ments of the logarithmic functions does not imply
going beyond the accuracy adopted in our study.

From the standpoint of our problem, of fundamental
importance is the fact that, for mean free times longer
than τ*, the power-law tail, which reflects the role of
binary collisions, completely disappears and the pro-
cess by which the test particle acquires its transverse
momentum can be described in terms of collective
interactions with allowance for fluctuations. This is an
illustrative example of a gentle formulation of the
H-theorem, which was proved by one of us [9] and was
used to derive relationship (23). The above simple
example also illustrates the effect of long-term memory
of the particles, which is an important issue because
this effect naturally introduces time scales τR into prob-
lems of the theory of tokamak plasmas.
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Abstract—The trapped particle theory of turbulent transport successfully explains key features of tokamak
transport: the canonical L-mode, supershort plasma profiles, and the transport suppression by negative magnetic
shear and poloidal rotation. Here, this theory is applied to reversed-field pinch (RFP) profiles, which can be jus-
tified if the magnetic fluctuations are suppressed, and to stellarators. A canonical density profile for RFPs is sug-
gested, and it is found that no analogue of the transport suppression by negative shear in tokamaks is possible
in RFPs. In quasi-helical stellarators, on the other hand, it appears possible to create an analogue of the tokamak
reversed shear mode in the entire plasma volume. © 2000 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

Tokamaks, quasi-helical stellarators, and reversed-
field pinches (RFP) have different MHD stability prop-
erties but similar magnetic topology: the magnetic field
lines are placed on nested tori, and the drift Hamilto-
nian has one invariant direction. This means that the
turbulent transport due to drift instabilities probably
has a common nature in these devices [1]. Recently, a
dramatic improvement of the confinement was
observed in tokamaks with reversed magnetic shear [2–
6]. The aim of the present paper is to discuss whether a
similar confinement mode could also be realized in
stellarators and RFPs. We find that this should be pos-
sible in stellarators but not in RFPs.

There is a wide variety of turbulent transport models
for tokamaks, and agreement about many principal
questions is absent (see reviews [1, 7]). Our basic
assumption is that turbulent transport (like collisional
transport) is dominated by trapped particles, as was
suggested by Kadomtsev and Pogutse [8] and sup-
ported by recent simulations [9]. Together with the
hypothesis that the plasma is frozen in the poloidal
magnetic field, this gives simple and natural explana-
tions of three confinement modes in tokamaks.

(i) The particle pinch and the canonical profiles in
L-mode and supershots in a tokamak with conventional
positive magnetic shear are explained by the expansion
of a plasma parcel as it drifts outward [10, 11].

(ii) The transport suppression by reversed shear is a
result of the plasma being in a minimum energy state,
because, in this case, it is compressed as it drifts out-
ward [12].

(iii) The H-mode is explained by the absence of
trapped ions in a poloidally rotating plasma [13–15].

1 This article was submitted by the authors in English.
1063-780X/00/2609- $20.00 © 20737
The trapped particles are poorly confined because
they are not frozen in the toroidal magnetic field and
can drift outward under the influence of electrostatic
forces even in a perfect magnetic field [8]. The result of
this convection is a kind of attractor, or marginally sta-
ble relaxed state, which we call turbulent equipartition
(TEP) [10, 11]. In general, TEP is a state in which the
Lagrangian invariants are uniformly mixed. (The well-
known Taylor theory of plasma relaxation in RFPs is
based on the conservation of helicity [16], but since
helicity is not a Lagrangian invariant, that model is not
a case of TEP.)

The frozen-in law of the poloidal magnetic field
implies the existence of a Lagrangian invariant L. A rig-
orous formulation can be obtained from the drift Vlasov
equation [11, 17]:

(1)

where nµ, J is the volume density of trapped particles
with fixed values of µ and J (the two first adiabatic
invariants of the trapped particles) and r is the minor
radius. Uniform mixing of the Lagrangian invariant
leads to the radial profile nµ, J ~ Bθ/r (L = const).

The same result can be formulated in fluid language.
It is known that even a small deviation from the poten-
tial nature of the pressure forces violates the ideal fro-
zen-in law on the transport time scale. The poloidal
direction is not invariant in a tokamak, and the poloidal
torque destroys the toroidal component of the frozen-in
law. The fluid Lagrangian invariant follows from
Eq. (1) by eliminating indices:

. (2)

The Lagrangian invariant (2), as well as its counter-
part in RFPs and stellarators, is the principal tool of our

dL/dt 0, L
rnµ J,

Bθ
-----------,= =

L nr/Bθ=
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consideration. As opposed to Eq. (1), it has not been
rigorously derived, but we believe that its use in simple
considerations is still justified by the success of this
procedure in explaining the three tokamak confinement
modes, as will now be described.

Mixing of L leads to the TEP profile

. (3)

Another interpretation of this result can be useful. If
the mechanical part of the toroidal momentum pϕ =
mvϕ + eAϕ /c is neglected, profile (3) represents the qua-
silinear plateau on the toroidal distribution function,
df(pϕ)/dpϕ = 0 [17].

In tokamaks, the toroidal magnetic field varies little
and the poloidal magnetic field can be expressed
through the safety factor. Profile (3) can then be written
as n ~ Bθ/r ~ q–1. This formula is well supported by
experimental data, which are presented in [17, 18].
More data are collected in [19]. For TFTR supershots,
which are not flattened by sawtooth oscillations, nq is
constant to within 10–20% [18, 19]. A correlation
between the L-mode q-profiles and the density and
temperature profiles (the peaking of the density and
temperature profile increases with increasing 1/q peak-
ing) is a typical feature of many tokamaks and was
observed long ago [20].

An additional indication of the crucial role of
trapped particles for turbulent transport is the strong
suppression of transport by reversed magnetic shear
that has been observed in simulations [9] and several
recent tokamak experiments [2–4]. This is easily under-
stood from the invariance of L = (nr/Bθ) ≈ nq, which
implies that the density and, as a result of adiabatic
compression, the temperature of a plasma parcel
increase outward instead of inward if the shear is
reversed [12, 17]. This analogue of a magnetic well
suppresses turbulent convection.

Usually only the shear of the E × B drift [21] is dis-
cussed as the reason for the transport suppression in the
H-mode [22, 23] and for internal transport barriers
[24]. However, if the trapped ions (which are the reason
for transport) are eliminated by poloidal rotation [13,
14], a transport barrier is the natural consequence. This
prediction is in agreement [15] with observations,
which supports our view that the transport is dominated
by the trapped particles.

2. REVERSED-FIELD PINCHES

According to a widely accepted explanation, mag-
netic fluctuations are the principal reason for transport
in RFPs. Recently, improved confinement in RFP plas-
mas was achieved by suppression of sawtooth oscilla-
tions in the Madison Symmetric Torus (MST) [25] and
by suppression of magnetic field fluctuations in
TPE-1RM20 [26]. In both experiments, the energy con-
finement time was three times larger than the usual
value. If the magnetic fluctuations can be suppressed,

n Bθ/r∼
weaker mechanisms like drift instabilities, which are
assumed to be the principal reason for turbulent trans-
port in tokamaks [8, 9], will have a significant impact.
In this section, we study how models for drift turbu-
lence transport in tokamaks can be applied to current or
future RFP experiments, assuming that the magnetic
turbulence can be suppressed.

Taylor’s theory of plasma relaxation [16] gives the
following minimum magnetic energy configuration for
RFPs:

(4)

where J0 and J1 are the Bessel functions. This solution
is well supported by experiments. The Lagrangian
invariant (2) is the same as in tokamaks, and we obtain
the TEP profile

. (5)

Unlike in tokamaks, the toroidal field varies signifi-
cantly over the plasma cross section, and the density
profile (5) therefore does not have a simple relation to
the magnetic shear.

How does (5) compare with observations? The
experimental density profiles in RFPs vary strongly and
are generally assumed to be dominated by magnetic
activity [27]. In two recent experiments, magnetic
activity was suppressed [25, 26], but density profiles
were reported only for TPE-1RM20 [26]. It was
observed that the plasma electron density profiles are
bell-shaped (Fig. 11 of [26]) and the central-chord aver-
aged electron density increases with the pinch parame-
ter Bθ(a)/〈Bϕ〉  (the ratio of the poloidal magnetic field at
the plasma surface to the volume averaged toroidal
magnetic field, cf. Fig. 4 of [26]). This does not contra-
dict profile (5), but having only three chord measure-
ments does not allow a detailed comparison.

As noted above, a dramatic improvement of con-
finement has recently been observed in tokamaks with
negative magnetic shear. However, the fundamental
factor is not the sign of the magnetic shear per se but
rather the sign of the radial derivative of the TEP den-
sity profile, since this determines whether a plasma par-
cel is compressed or expands if it drifts outward. For
RFPs, the TEP profile (5) decreases outward and they
are therefore analogous to tokamaks with the conven-
tional positive shear.

To summarize, the canonical density profile n ~
J1(r)/r based on trapped particle theory does not contra-
dict RFP experiments with suppressed magnetic activ-
ity. The transport suppression by negative magnetic
shear observed in tokamaks would correspond to
changing the sign of the derivative d(J1(r)/r)dr in RFPs,
which does not seem realistic.

3. QUASI-HELICAL STELLARATORS

The magnetic field in stellarators is in general three
dimensional and has no invariant direction. In this case,

Bθ α J1 r( ), Bφ α J0 r( ),= =

n Bθ/r J1 r( )/r∼ ∼
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there are two kinds of trapped particles: “toroidally
trapped” and “helically trapped.” In quasi-helical stel-
larators, which were suggested in [28], the canonical
momentum has an invariant component and only one
kind of trapped particle exists. Along the invariant
direction, the magnetic field strength is constant. This
leads to tokamak-like confinement of trapped particles
and other advantages [29].

Since the drift Hamiltonian is invariant in one direc-
tion, we may assume that there is no net force in this
direction, analogously to the absence of a net toroidal
force in tokamaks. This leads to the suggestion that the
plasma is frozen in the component B⊥  of the magnetic
field that is directed perpendicular to the invariant
direction (analogously to the poloidal field in a toka-
mak). Then, the Lagrangian fluid invariant correspond-
ing to (2) is

(6)

where a is the minor radius defined as the square root
of the volume inside the magnetic surface. (As for toka-
maks, we have no rigorous derivation of this fluid
invariant, but an invariant corresponding to Eq. (1) can
be derived from the drift Vlasov equation for trapped
particles.) The quantity a/B⊥  is a specific volume,
defined by the frozen-in law for B⊥ . Hence, if the ana-
logue of magnetic shear in a tokamak is positive (i.e.,
d(a/B⊥ )da > 0, as in a conventional tokamak), a plasma
parcel that drifts outward will expand adiabatically.
The released energy can drive an instability. Parcels of
trapped particles that are displaced inward by the
resulting turbulence are compressed, which should lead
to the following TEP profile in quasi-helical stella-
rators:

. (7)

The analogue of reversed magnetic shear in a toka-
mak is

(8)

If this is satisfied, a plasma parcel is compressed
while drifting outward and its energy decreases inward
instead of outward. Hence, if the pressure profile is
peaked in the center, the plasma is in a minimum
energy state. This leads to stability, as observed in toka-
maks with negative magnetic shear.

Unfortunately, the quantity a/B⊥  is a weak function
of the magnetic surface in typical stellarators. Our rec-
ommendation is to create profiles where condition (8)
is fulfilled globally. Perhaps, this would require a cur-
rent in the plasma core. At the magnetic axis, a and B⊥
both vanish. A strong gradient of the specific volume
and particularly strong stability could be achieved by
having B⊥  = 0 at an additional point near the axis or in
the plasma core.

In the considerations above, the component B⊥  of
the magnetic field perpendicular to the invariant direc-

L na/B⊥ ,=

n B⊥ /a∼

d a/B⊥( )/da 0.<
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tion was not presented explicitly. Many coordinates are
used in stellarators (a review is given in [30]). The con-
dition of quasi-symmetry is that the magnetic field
strength is constant along the quasi-symmetry direc-
tion. The unit vector n in this direction is given by [31]

(9)

Here, ψ and F(ψ) are the external poloidal magnetic
flux and the electric current, respectively.

If B⊥  = 0, then B is parallel to n, so that the magnetic
field strength is constant along the magnetic field. This
means that, on a magnetic surface where B⊥  = 0, there
are very few trapped particles, which allows us to sug-
gest an alternative beneficial regime for quasi-helical
stellarators. If we have B⊥  = 0 near the plasma edge, a
transport barrier without trapped particles can be cre-
ated there. This is entirely analogous to the H-mode in
tokamaks. (In that case, the absence of trapped particles
in the transport barrier is caused by poloidal rotation.)
If B⊥  = 0 near the plasma edge, the TEP profile (7) will
be strongly peaked, which is also beneficial (but very
different from the minimum energy state that would be
possible if condition (8) were satisfied).

Modern stellarators are not quasi-symmetric. Nev-
ertheless, we can try to check the TEP profile. The rea-
son is that the approximate symmetries (both the heli-
cal and toroidal symmetries, which are essential for the
two groups of trapped particles) have approximately
constant a/B⊥  and, therefore, lead to flat density pro-
files. Flat density profiles are really rather typical of
stellarators [1], in contrast to tokamaks and RFPs.

4. CONCLUSION

Predictions of confinement in RFPs and quasi-heli-
cal stellarators have been carried out for the trapped
particle dominated regime, as in tokamaks. The frozen-
in law in the appropriate magnetic field component is
the tool of analysis. The assumptions of the theory are
poorly met in present RFPs and stellarators; neverthe-
less, the density profiles are typically bell-shaped in
RFPs and flat in stellarators, in accordance with the the-
ory.

If magnetic field fluctuations can be suppressed in
future RFPs, the trapped particle instability can lead to
the universal TEP profile (5). However, the stabilization
by negative magnetic shear observed in tokamaks is not
relevant for RFPs.

Quasi-helical stellarators are promising in many
respects [29]. If, additionally, condition (8) is fulfilled,
the radial dependence of the specific volume is reversed
and the plasma is in a minimum energy state. The ana-
logue of the magnetic shear stabilization in tokamaks is
then possible in the entire plasma volume (whereas, in
tokamaks, the shear cannot be reversed near the bound-
ary). In this case, the turbulent transport could be sup-
pressed globally. This is the principal suggestion of the
present paper.

n F ψ( )B B ∇ ψ×+( )/ F ψ( )B B ∇ ψ×+ .=
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A different possibility for quasi-helical stellarators
is to have B⊥  = 0 near the plasma edge (here, B⊥  is the
field component perpendicular to the invariant direc-
tion). In this way, one could create a transport barrier
with very few trapped particles, analogously to the
H-mode in tokamaks. As in tokamaks, trapped ions
could also be eliminated by rotation, both in RFPs and
in stellarators.
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Abstract—The equilibrium of a plasma with isotropic pressure in a periodic divertor configuration with a
poloidal magnetic field is calculated. The issue of how the plasma equilibrium changes as the parameter β ≡
8πp/B2 increases is considered for a fairly representative class of pressure profiles p(ψ) (where ψ is the flux
coordinate). It is shown that the plasma can be in equilibrium up to β values (in terms of the vacuum magnetic
field at the divertor axis) on the order of unity. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the simplest (axisymmetric) version of open mag-
netic confinement systems (simple mirrors), a plasma
can be in equilibrium up to β = 8πp/B2 ~ 1; moreover,
because of the symmetry, there are no neoclassical
transverse transport in the plasma. This circumstance
has stimulated interest in alternative confinement
devices based on simple mirrors. Among such devices,
there are open-ended systems, in which the longitudi-
nal losses are fairly efficiently reduced by, e.g., electro-
static plugs (in a tandem mirror device), and closed sys-
tems with simple mirror cells aimed at confining the
main plasma. In order to maintain the plasma in equi-
librium and to reduce transverse losses, closed systems
with mirror cells should be equipped with specially
designed toroidal linking sections, but we do not con-
sider this issue here. In axisymmetric confinement
devices, the key problem is how to ensure MHD-stable
equilibrium. Several methods have been proposed for
plasma stabilization. The advantage of one of the sim-
plest methods—divertor stabilization—is the possibil-
ity of placing stabilizers (divertors) at desired positions
along the system [1–3]. In this connection, it is neces-
sary to determine β values above which the divertor
fails to stabilize the plasma. Since the magnetic field in
the divertor region is depressed and there is a magnetic
null line at the plasma boundary, the question regarding
the maximum possible β values consistent with equilib-
rium naturally arises. Knowledge of the picture of equi-
librium is also required to study the plasma stability.

Two approaches are customarily used to describe
plasma equilibrium in axisymmetric systems. The first
approach is based on the Grad–Shafranov equation in
“rigid” (e.g., cylindrical) coordinates (see review [4]).
Note that the magnetic configuration of an axisymmet-
ric open system is purely poloidal (the toroidal mag-
netic field is absent). This approach, which is generally
used to solve the problems with prescribed external
currents, is convenient for calculating plasma equilibria
1063-780X/00/2609- $20.00 © 0741
in specific confinement systems. The second approach
involves “inverse” flux coordinates (see, e.g., [5]),
which are adequate for solving the MHD stability prob-
lem, and is better suited for studying problems with a
prescribed outer boundary.

In this paper, we analyze plasma equilibrium pro-
duced by a prescribed set of ring current-carrying coils
in a poloidal magnetic configuration with divertors. We
treat the problem in the Grad–Shafranov formulation.
We examine the equilibrium of a plasma with isotropic
pressure, keeping in mind a system with longitudinal
tandem plugging or a closed system. We reconstruct the
picture of equilibrium for a fairly representative class
of pressure profiles p(ψ) (where ψ is the flux coordi-
nate) and investigate how the plasma equilibrium
changes as β increases. In order to simplify the bound-
ary conditions imposed at the open ends (which, how-
ever, have essentially no impact on plasma equilib-
rium), we present the numerical results obtained for a
periodic configuration.

2. FORMULATION OF THE PROBLEM

We describe a magnetic field configuration by the
Grad–Shafranov equation for the flux function ψ = rAθ,
where Aθ is the component of the vector potential:

(1)

Here, the plasma pressure p = p(ψ) is a given function
and jext is the prescribed current density in the external
coils. The external currents govern the vacuum config-
uration ψ = ψv . We represent the field as a superposi-
tion of the vacuum field and the field generated by the

∂2ψ
∂r2
---------

1
r
---

r∂
∂ψ ∂2ψ

∂z2
---------+– 4πr2

ψd
dp

–
4πr

c
--------- jext.–=
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plasma currents, ψ = ψv + ψp, to obtain the following
equation for ψp:

(2)

where p = p  and the boundary value ψs is

such that p(ξ) = 0 for ξ ≥ 1.
If the system has finite dimensions along the z-axis,

then the function ψp(r, z) falls off to zero with distance
from the plasma and has no singularities at the posi-
tions of the external coils:

(3)

If the system is periodic in z, then the spectrum of
the field Bz can contain the zeroth Fourier harmonic,
corresponding to the field of a uniform solenoid, in
which case we have

(4)

∂2ψp

∂r2
------------

1
r
---

∂ψp

∂r
---------

∂2ψp

∂z2
------------+– 4πr2

ψd
dp

,–=

ψv ψp+
ψs

------------------- 
 

ψp ∞( ) 0.=

ψp r ∞→
const,=

Maximum values of β0 and βL/2 and the relative displacement
of the magnetic null line for these β values from the positions
of the magnetic null line at β = 0 for different pressure pro-
files (9)

γ α β0 βL/2 δrs/rs

1 1 0.865 0.054 0.086

1 2 1.114 0.069 0.040

2 1 0.629 0.039 0.113

2 2 0.793 0.049 0.068
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Fig. 1. Arrangement of ring current-carrying coils over a
period along the z-axis and the lines ψ = const of the vacuum
magnetic field. The current magnitudes in each coil are indi-
cated.
with an unknown constant to be determined. Instead of
(4), it is more convenient to impose another boundary
condition. We consider a surface r = R such that R is
larger than the period L of the system. The nonzeroth
Fourier harmonics of the field produced by plasma cur-
rents fall off exponentially toward this surface. For the
zeroth Fourier harmonic, we have ∂〈ψp〉/∂r = 0. We sup-
plement Eq. (2) with the boundary condition

(5)

Calculations show that, even for r = R, the final results
are weakly sensitive to the position R ~ L of the surface.

At the system axis, the flux functions satisfy the
conditions

(6)

We assume that the configuration is symmetric
about the z = 0 plane, where the field vanishes at a circle
of radius r = rs, which is the intersection of the plasma
surface ψ = ψs with the plane, so that we have

(7)

In a prescribed vacuum field, the position of the circle,
r = rs, is known for β = 0.

We also assume that the configuration is symmetric
about the z = ±L/2 planes, so that

(8)

In order to cover a fairly broad class of pressure pro-
files, we choose

(9)

which describes, in particular, a stable pressure profile
near the separatrix at β = 0, γ = 1, and α ≈ 0.55 [2].
The parameter values presented below correspond
to the ranges γ, α ≥ 1. In our analysis, we do not con-
sider the limitations imposed by the plasma equilibrium
on the power index α.

3. RESULTS OF CALCULATIONS

We calculated the vacuum field from the prescribed
currents in discrete coils (Fig. 1). The magnetic null
line was ensured by reversing the currents in the coils
near the z = 0 plane.

Assuming that the system is periodic in z, we solved
a difference analogue of Eq. (2) with the boundary con-
ditions (5) and (6) iteratively with respect to the nonlin-
earity in the right-hand side. At each iteration step, we
solved the corresponding linear equation using a
method of expansion in Fourier series in the variable z
and a sweep method in the radial direction and recalcu-

∂ψp

∂r
---------

r R=

0.=

ψv 0 z,( ) 0, ψp 0 z,( ) 0.= =

r∂
∂ψ

z 0=

0 for ψ ψs.= =

z∂
∂ψ

z L/2±=

0.=

p ψ( ) p0 1 ψ/ψs( )γ–[ ]α
,=
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lated the value of ψs in accordance with condition (7).
The maximum possible β consistent with equilibrium
was determined as a maximum value above which the
iteration procedure started to diverge.

Calculations show that the plasma can be in equilib-

rium up to the value β0 ≡ 8πp0/ (0, 0), which is on the
order of unity. The maximum possible values of β0 for
several pressure profiles (9) and for a vacuum field
shown in Fig. 1 are listed in the table, which also pre-
sents the relevant β values in terms of the vacuum field
at the axis in mirror cells between the divertors, βL/2 ;

8πp0/ (0, L/2). Figure 2 shows profiles of the mag-
netic field in the equatorial plane of a divertor as func-
tions of r (Fig. 2a) and ψ (Fig. 2b) for the same pressure
profiles and for β close to its maximum value. In Fig. 3,
we plot the magnetic field lines ψ = const for one of the
pressure profiles.

As β increases, the magnetic null line is displaced in
the radial direction. The displacement δrs may be
important from a practical standpoint because the
increase in β makes it necessary to appropriately adjust
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Fig. 2. Profiles of the magnetic field in the equatorial plane
of a divertor as functions of (a) r and (b) ψ for different pres-
sure profiles (9) with (2) γ = 1 and α = 1 at β0 = 0.86, (3) γ = 1
and α = 2 at β0 = 1.114, (4) γ = 2 and α = 1 at β0 = 0.62, and
(5) γ = 2 and α = 2 at β0 = 0.79. Also shown are the vacuum
field profiles (curves 1).
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Fig. 4. Configuration with a reversed field for α = 4 and γ = 1
at β0 = 1.265: (a) field lines ψ = const and (b) radial profile
of the magnetic field in the z = 0 plane. The vacuum field Bv
is the same as in Fig. 1.



744 ARSENIN, KUYANOV
the injection system in order to control the spatial posi-
tions of the local regions where the plasma is heated.
For the magnetic configuration under analysis, the dis-
placement δrs was found to be relatively small because
of the fixed positions of closely spaced “divertor” coils
with reversed currents (see the last column in the table).
An increase in δrs/rs with increasing γ can be explained
as follows: the closer the region where the pressure gra-
dient (and, accordingly, the diamagnetic current in the
plasma) is maximum to the separatrix, the greater the
extent to which the diamagnetic current distorts the
vacuum field near the magnetic null line Bv = 0. The
separatrix can be made “undisplaced” (or fixed at, e.g.,
rs|z = 0 or rs|z = L/2) by means of feedback from the currents
in the external coils to the β value.

Calculations carried out for peaked pressure profiles
(α = 4, 5, and 6) also demonstrate the existence of equi-
librium configurations with a magnetic field that is
reversed in the vicinity of the point (r = 0, z = 0). Such
equilibria were found to exist in a narrow range of beta
values close to the maximum value of β0. Figure 4
shows an example of an equilibrium configuration with
α = 4 and γ = 1. The ability to calculate equilibrium
configurations with a reversed field indicates that our
code, which was initially devised to describe “simple”
equilibria analogous to those in Figs. 2 and 3 (without
vanishing points for the magnetic field at the axis), can
be successfully applied to calculate nonparaxial equi-
librium plasma configurations in axisymmetric open
systems.

4. CONCLUSION

We have established that, within the chosen class of
pressure profiles p(ψ), the maximum β values that can
be achieved in equilibrium configurations are on the
order of unity.

For peaked pressure profiles, we have calculated
equilibrium configurations with a magnetic field that is
reversed at the axis.

It remains a challenge to find out whether MHD sta-
ble configurations with β ~ 1 can exist.
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Abstract—Results are presented from laboratory and numerical experiments on the influence of the core and
associated hydrodynamic instabilities on the high-current implosion of a plasma of exploding metal wires. The
experimental investigation of the discharge structure was carried out using the multiframe X-ray backlighting
technique with high temporal and spatial resolution (<1 ns and 1 µm, respectively); X-pinches were used as
small-sized radiation sources. The implosion of a dense Z-pinch was modeled by the free-point method with
the use of a two-dimensional radiative MHD code. The onset of instabilities at the corona–core boundary was
modeled by the NUTCY Eulerian code. The results show that hydrodynamic processes in the core are primarily
responsible for the formation of small bright regions observed in X-rays. After the reflection of a shock wave
from the axis, the rapid onset of hydrodynamic instabilities can occur at the corona–core boundary. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Exploding-wire discharges have been investigated
for a long time. Here, we only mention the relevant
work [1] and the studies on high-current radiating dis-
charges related to laser engineering (see, e.g., [2]).
Modern high-voltage generators make it possible to
carry out experiments with dense Z-pinches in which a
high-temperature radiating plasma is produced with
multiterawatt megaampere current pulses. Among all
the types of loads, the highest plasma parameters have
been achieved in discharges through thin metal wires
(solitary filaments, multiple-wire liners, and X-pinches).
This makes it possible to use discharges such as hard
UV and soft X-ray sources, thereby extending the capa-
bilities of the spectroscopy of multiply charged ions, X-
ray optics, and lithography. Their applications in con-
trolled fusion, laboratory modeling of the action of
high-power X-ray pulses, and production of inverse-
population media for short-wavelength lasers are also
studied. In particular, a number of methods were pro-
posed for laser pumping with the help of dense
Z-pinches. Finally, X-pinches have recently found a
new application as small-sized short-duration X-ray
sources in the backlighting technique used to diagnose
dense Z-pinches; this technique is also used in this
study. The demand for comprehensive studies of nano-
second exploding-wire discharges is also supported by
the fact that the processes occurring in such discharges
are closely related to the dynamics of laser plasmas.
1063-780X/00/2609- $20.00 © 20745
The studies [3] carried out with the help of a novel
technique of multiframe X-ray backlighting have
revealed a number of interesting features of nanosec-
ond electric explosions of thin (several tens of microns
in diameter) wires, clearly demonstrating the heteroge-
neous structure of such discharges. It turned out that
deep in the plasma corona, arising during the shunting
breakdown of the products of metal evaporation (which
is usually studied by optical methods), there is a dense
cold core formed on the axis of the discharge at the
beginning of the explosion.1 The corona–core bound-
ary is rather sharp. Further studies have shown that the
core is a liquid column boiling over its entire volume
during the breakdown [4]. At the corona–core bound-
ary, strong perturbations with amplitudes comparable
to the core radius arise [5]. These perturbations are
interpreted as a consequence of the Rayleigh–Taylor
and Richtmayer–Meshkov hydrodynamic instabilities,
which, in the nonlinear stage, give rise to the Kelvin–
Helmholz instability. Along with these perturbations,
constrictions typical of pinches are formed.

Because of the complicated dynamic structure, the
exploding wires occupy a special place in the class of
dense pinches. The study of such a complicated struc-
ture, may provide a new way of investigating the behav-
ior of a plasma with high density gradients by examin-

1 Only the best conductors, such as Al, Cu, Ag, and Au, can be
completely evaporated during an explosion.
000 MAIK “Nauka/Interperiodica”
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ing hydrodynamic instabilities. High densities of
released energy (100 TW/cm2 and higher) and a short
discharge duration (.100 ns) are similar to the relevant
characteristics of laser plasmas. However, unlike the
planar or spherical symmetry of targets, the cylindrical
geometry of Z-pinches is more convenient for diagnos-
ing the regions where the instabilities arise. In compar-
ison with shock tubes, pinches are advantageous
because they permit studies of instabilities under con-
ditions of intense electron and radiative heat transport.

Hence, the problem of the hydrodynamic stability of
heterogeneous Z-pinches becomes important for a gen-
eral understanding of the physics of processes occur-
ring not only in thin-wire discharges. Below, we
employ two different models. The first model describes
the compression of the central core by the pressure
pulse arriving from the hot plasma, and the second one
describes the surface effects. Currently, there is no uni-
fied approach for studying both global and surface
effects. Hence, the analysis of the latter effects, associ-
ated with the forward and backward passage of a shock
wave through the core, is of interest even if the problem
is formulated in the simplest way. This is why we
restrict ourselves to such a simple model.

2. GENERAL DESCRIPTION OF THE EFFECTS

In experiments, we used the X-ray backlighting
technique. A detailed description of this technique is
presented in [3, 5, 6]; here, we only outline its general
characteristics. The experiments were carried out with
the XP device at Cornell University (the pulse duration
is 100 ns, and the current attains 500 kA) with a diag-
nostic complex for studying wire-discharge plasmas by
the scheme mentioned above. A pair of X-pinches
placed inside a diode was used as the source, and the
load under study was placed in the return-current cir-
cuit. The choice of the material for X-pinches and the
optimization of the source sizes allowed us to achieve a
spatial resolution from one to several µm and a time
resolution better than 1 ns in the spectral range from 1
to 5 Å.

A typical picture observed is illustrated in Fig. 1,
which presents the images of the core of an exploded Ti
wire (50 µm in diameter) and the surrounding coronal
plasma. The images were obtained 49 and 68 ns from
the start of the current. On both sides of the node, spe-
cially tied to fix the position, one can see the develop-
ment of the core inhomogeneities. There are inhomoge-
neities with two characteristic scale lengths: “ripples”
with wavelengths of 20–30 µm are modulated by the
outer “envelope” (with a scale length of .1 mm) of the
corona–core boundary and the compression front. The
enlarged fragments of the images (which are presented
in the same figure) demonstrate the internal structure of
the core. In the upper fragment (49 ns), the front moves
toward the axis; behind the front, one can see perturba-
tions of the boundary. At 68 ns, the front moves back
after reflection from the axis and the perturbations
inside are less pronounced than those ahead of it. In the
lower fragment, the irregularities are seen only at the
edge; one can also see a frontal cone arriving at the sur-
face. With time, this area contracts, whereas in the
expanded region where the front has already left the
core mixing of the dense core substance with the
corona plasma is observed.

This phenomenon can be explained by the pro-
longed existence of a heterogeneous structure in nano-
second wire discharges [3]. Its development for initial
diameters of 10–50 µm was considered in [7]. This
structure produces no effects, except for emission in the
visible and soft UV spectral regions, until the front of
MHD compression of the corona reaches the core.
According to [5], the interaction between this wave and
the core plays an important role in the formation (and,
consequently, emission) of hot points emitting intense
soft X radiation from regions 20–30 µm in size on the
plasma axis. Further studies [4] showed that the core
substance is in the state of a boiling liquid metal. As
before, we can see in Fig. 2 how the shock-wave front
propagates through the core; however, due to a more
detailed resolution of the structural elements, we can
detect the presence of many vapor bubbles and capil-
lary effects. Splashes of liquid at the points where the
bubbles arrive at the corona–core boundary are also
seen. This leads us to the conclusion that such effects
may be attributed to the generation of perturbations
during the interaction between the core and the com-
pression front.

This interaction begins when the compressed coro-
nal plasma collides with the dense core, which expands
slowly by inertia after the initial explosion. In gas-
dynamics, a similar process is known as a particular
case of the decay of a discontinuity: instead of a single
shock wave incident from the corona side, a shock
wave passing to the core and a shock wave reflected
from the boundary appear. The boundary is then trans-
formed into a contact discontinuity moving toward the
axis. The megabar pressure in the corona is high
enough for hydrodynamic compression of the dense
central region to occur. After the reflection of the shock
wave from the axis, conditions arise under which the
boundary becomes unstable. The details of this process
depend largely on the initial irregularities present at the
corona–core boundary and compression front. As a
whole, this situation is similar to the acceleration of tar-
gets by laser pulses, when the hot corona evaporated
from the target surface accelerates the cold internal
core [8].

Obviously, this scheme is simplified and needs to be
studied more thoroughly. Recent calculations [9, 10] by
a modified free-point method have partly confirmed
and complemented this scheme. However, the underly-
ing physical model that provides a rather complete
description of the processes of dissipation, ionization
kinetics, and radiation transfer in a nonideal plasma
cannot be regarded as being perfect. In this model, the
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
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Fig. 1. X-ray backlighting images of the core of the exploded 50-µm-diameter Ti wire: (a) the images obtained in one shot at two
different instants and (b–e) enlarged fragments of these images.
core is introduced inadequately to the experiment (the
drop of the density is only tenfold and rather diffuse;
instead of a liquid–vapor mixture, the substance is
regarded as a dense plasma whose state corresponds to
a thermodynamic point that lies above the binodal
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
curve). There is also the problem of how to specify the
precise conditions at the boundaries and describe the
radiation transfer in a moderately dense plasma (in par-
ticular, for relatively light elements such as Ti). As a
result, the calculations did not allow the authors to
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Fig. 2. X-ray backlighting images of the core and the surrounding corona in the Ni-wire discharge.
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obtain compression parameters comparable with the
experiment or to attain the stage in which the surface
instabilities come into play. However, it is important
that the model has demonstrated the role of the struc-
ture of a wide front of the shock wave arriving at the
core. Recently, the calculation algorithm has been
improved; below, we consider the current state of the
model.
3. CALCULATION OF THE COMPRESSION 
OF A Z-PINCH WITH AN INTERNAL CORE

When calculating the compression of a plasma with
a central core, we used a fairly detailed (from the stand-
point of the number of incorporated processes) radia-
tive MHD model [9] (see also [10]) of exploding wires.
Note that, in its current state, the model still cannot ade-
quately describe a two-phase core substance, because
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
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Fig. 3. Results of MHD calculations of the propagation of the compression wave through the core in a Ti-wire discharge. The dis-
tribution of the calculation points.
the problem of describing the “cold start” of a dis-
charge is as yet unresolved. For this reason, we will
start from a specific state corresponding to the maxi-
mum expansion of the products of an electric explosion
of a metal wire. Similar to [9, 10], which dealt with
tungsten, in our model, the core was simulated by a
multifold increase in the density in the region with a
90-µm radius and a plasma corona extended to 300 µm
outside this region. In our calculations for Ti, the rela-
tive increase in the density (which was previously equal
to 10) varied from 10 to 50. However, as before, the ini-
tial state of the core was taken beyond the region where
two-phase states can exist. Initially, the core had a
smooth surface and the perturbations in the core and
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
corona were produced by introducing the initial scatter
in the parameters at a level of 1%.

Such a simulation successfully reproduced the
implosion process for a Ti wire (the wire diameter was
24 µm, the core-to-corona density ratio was 40, and the
mesh consisted of 13 × 500 cells). Initially, a compres-
sion shock wave was formed in the plasma corona. The
extension of the shock wave over the radius attained
80 µm (a value comparable with the core radius) and
was determined by the processes of emission and elec-
tron heat conduction and smoothing of the jumps in the
densities of ions with different charge numbers. The
resulting wide front is seen in the spatial distributions
of both calculation points shown in Fig. 3 and the elec-
tron density ne and temperature Te shown in Fig. 4 for a
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Fig. 4. Results of MHD calculations of the propagation of the compression wave through the core in a Ti-wire discharge. The density
and electron-temperature distributions.
time of 10 ns. At as early as 12 ns, one can see the inter-
action of the compression wave with the core; 2 ns later,
the entire core region is involved in the process of heat-
ing, which is initially almost uniform along the axis,
because both the radiation and electron heat waves pen-
etrate into the core before the shock. At the same time,
we see that a chain of perturbations arises in the corona,
increasing markedly by 15 ns. In one nanosecond, the
character of heating changes sharply: the wide front of
the implosion wave affects the core, which leads to the
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
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formation of individual hot spots in which further com-
pression occurs. The axial inhomogeneity of heating
and compression becomes more pronounced at 16 and
17 ns, between which the traces of the chain of pertur-
bations disappear in the corona plasma. After 18 ns, the
process changes fundamentally: against the back-
S REPORTS      Vol. 26      No. 9      2000
ground of the almost unchanged bulk of the plasma col-
umn, compression occurring at a growing rate is
observed only locally, namely, at the constriction points
clearly seen in Fig. 3. Heating and compression are
most pronounced during deceleration in the final stage
of implosion. Thus, for about 30 ps after 18.70 ns, the
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maximum value of ne increases by one order of magni-
tude and Te increases more than three times. The pro-
cess ends with the formation of very thin constrictions
containing one or more hot points. The calculations
yield the following plasma parameters: the pinch radius
is equal to 0.1 µm, which is close to the Rossealand
mean free path for photons; the electron density is
equal to ne . 1025 cm–3; the temperature is equal to Te =
0.8–0.9 keV; and the ion charge is 18.5. The radiation
pressure contributes appreciably to the force balance.
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
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All of this resembles the results obtained previously for
an X-pinch constriction [10] (of course, taking into
account the difference in the load material).

In calculations, we also varied the ratio between the
densities on both sides of the corona–core boundary.
With the load mass being conserved, an increase in this
ratio resulted in a decrease in the fraction of the corona
substance. This led to an enhancement of the shock
wave arising in the corona; to the intensification of the
processes occurring in the core; and, consequently, to
an increase in the density and temperature of the com-
pressed plasma.

Unfortunately, the computation of the next stage of
implosion for Ti requires much more time and leads to
problems that still remain unresolved. Among physical
circumstances, it is sufficient to mention a high (in
comparison with tungsten) transmittance of the plasma
in the model using the radiation temperature in addition
to the ion and electron temperatures. (It is seen from
Fig. 1 that turbulence must also be taken into account.)
Nevertheless, the simulation of this stage reflects the
main specific features of implosion in a heterogeneous
corona–core system: since the front of the shock wave
arriving from the corona at the core surface is rather
wide, the core falls completely in the relaxation zone
and the shock wave in the core simply has no time to
form. Nevertheless, as is seen from Figs. 1 and 2, a nar-
row compression front in the core is observed experi-
mentally. Thus, it is necessary to correct the conclu-
sions drawn from the model of a dense plasma core. In
the model of a two-phase medium containing vapor
bubbles, the compression front in the core can form due
to the change in compressibility of the core substance.
However, in this case too, a wide compression front
(rather than an abrupt jump) arrives at the core surface.

Despite the importance of the implosion processes
under consideration, our interest extends further. The
problems that emerge in simulating the implosion pro-
cess after a shock wave moving away from the axis has
been formed (either due to reflection from the axis or in
an explosion, as in an X-pinch [10]) hamper investiga-
tions of instabilities at the corona–core boundary. In
this stage, an intense turbulent mixing of the core sub-
stance and the corona plasma occurs behind the front of
the shock wave reflected from the axis. For this reason,
we now turn to another, simplified model, but it is help-
ful first to perform a preliminary analysis.

4. INSTABILITY OF THE CORONA–CORE 
BOUNDARY

Instabilities of the boundary between media with
different densities may be primarily attributed to classi-
cal hydrodynamic effects. This is promising for con-
structing (for lack of better models) simplified models
of the phenomenon, without posing the question as to
whether they have any bearing on the structure of wire
discharges: in essence, there is no peculiar MHD fea-
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
tures in them. It is seen from the above simulations that
the shock front in the corona of an exploding wire is
fairly broad and the pressure is rather uniform in space.
At the corona–core boundary, one can expect the onset
of the Rayleigh–Taylor instability (quasi-monotonic
acceleration of a dense substance by a less dense sub-
stance) and the Richtmayer–Meshkov instability (the
passage of a shock wave through the boundary between
media with different densities). As an example, we con-
sider the former instability. According to [8], its linear
growth rate is defined by the expression

Here, kz is the wavenumber of the initial perturbation at
the corona–core boundary, g is the boundary accelera-
tion taken with the opposite sign, L is the scale length
of variations in the substance density, and A = (ρc –
ρp)/(ρc + ρp) is the Attwood number (where ρc and ρp

are the mass densities of the core and coronal plasma,
respectively).

As was mentioned above, in the course a high-cur-
rent explosion, a sharp boundary arises between the
plasma corona (ρp = 10–3–10–2 g/cm3) and the liquid
central core (ρc = 10–1–1 g/cm3). The Attwood number
is equal to A . 1, and we obtain the following estimates:
L . a0ρ/∆ρ . a0/A . a0, and g . Pp/ρcL . Pp/ρca0, where
a0 is the initial perturbation amplitude and Pp is the
coronal plasma pressure. From here, we obtain the
instability growth rate

(1)

The experimental data lead to the values (Pp /ρc)1/2 .
(3–6) × 105 cm/s, and, for wavelengths of 20–30 µm
and kza0 . 1, we obtain a typical value, γRT . (2–5) ×
108 s–1. This indicates a rapid growth of instabilities
during the discharge.

Hypothetically, the initial perturbations can be
related to (i) irregularities of the wire shape, (ii) the
effect that explosive bubbles arriving at the core surface
have on the pressure distribution in the corona during
the volume boiling and surface evaporation of the core
substance, and (iii) perturbations due to MHD instabil-
ities of the plasma compressed by the corona current.
Through the corona, the first two types of initial pertur-
bations (both are characterized by scale lengths of tens
of microns, which is on the order of the initial wire
radius) affect the shape of both the core and the shock
front, whereas the third type of perturbation (with a
scale length of several hundreds of microns) affects
only the front. Our data on the boiling of the liquid core
allow us to argue for the dominant role of the second
type of perturbation, which enables the onset of both
the Rayleigh–Taylor and Richtmayer–Meshkov insta-

γRT

Agkz

1 kzL+
-----------------.=

γRT  . 
kz Pp/ρc

kza0 1 kza0+( )
--------------------------------------.
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bilities of the boundary between the media with differ-
ent densities.

As time elapses, the growth of perturbations
becomes markedly nonlinear: in the case of the Ray-
leigh–Taylor instability, this is accompanied by the for-
mation of jets; i.e., the coronal plasma penetrates the
core. Perturbations of the lateral surfaces of the jets can
also grow with time due to the Kelvin–Helmholz insta-
bility, whose growth rate depends on the velocity with
which the liquids flow with respect to one another.
Allowing for a cumulative increase in the jet velocity
during the cylindrical compression of the core sub-
stance toward the axis, we can roughly estimate this
velocity in the nonlinear stage of the Rayleigh–Taylor
instability as u . rcγRT(rc/r)2, where rc . 100 µm is the
initial core radius. Substituting this velocity into the
classical expression for the growth rate of the Kelvin–
Helmholz instability γKH . ukr(ρp/ρc)1/2, we obtain

(2)

It follows from here that, for rc = 50–100 µm and ρp/ρc .
10–2, both growth rates entering (2) become compara-
ble as soon as the jet covers a distance approximately
equal to two-thirds of the core radius. We can also find
out how the instabilities are related to the subsequent
turbulence responsible for the mixing of the core and
corona substances.

5. MODELING OF THE INSTABILITIES OF THE 
CORONA–CORE BOUNDARY

We assume that the instabilities under study are pri-
marily related to classical hydrodynamic effects and
are not too sensitive to the peculiarities of a radiative
MHD plasma. Therefore, we will only use gas-dynamic
equations supplemented with a qualitative description
of a few of the discharge features needed for our analy-
sis. It is of interest to consider what will happen if the
density jump in the core (which was “lost” in the previ-
ous simulations) is taken into consideration.

We use a NUTCY two-dimensional cylindrical code
[11] created for solving the set of gas-dynamic equa-
tions. Its important part is the block for solving the bal-
ance equations for the mass densities of the interacting
substances or parts of the system distinguished by cer-
tain properties that are chosen for each particular prob-
lem. This allows us to use this code efficiently to cor-
rectly simulate the evolution of the boundary between
two substances with different initial properties in vari-
ous problems, such as the decay of a discontinuity and
the onset of various hydrodynamic instabilities. The
code is based on the method of quasi-monotonic differ-
ence schemes with higher order approximation. The
algorithm employs the principle of splitting between
particular physical processes and uses economical,
locally one-dimensional difference schemes [12]. The
program was successfully used to simulate the onset of
hydrodynamic instabilities in experiments with shock

γKH  . γRTkrrc ρp/ρc( )1/2
rc/r( )2

.

tubes [13] and experiments on the acceleration and
compression of the materials of targets of different
geometries by a laser pulse [14].

The code implies that the plasma is ideal, neutral,
and isothermal and that there are only external forces
and energy sources. Among dissipative processes, it
includes only electron heat conduction. Among the
effects of ionization and radiation cooling, the heat bal-
ance incorporates only volume losses due to
bremsstrahlung. The ion charge numbers are taken to
be constant in both the core and the corona and corre-
spond to their averaged (throughout the entire process)
values in each medium. The absence of Joule heating is
compensated by the constancy of the temperature at the
external plasma boundary.

Computations were performed for a cylindrical
plasma fragment with axial and radial dimensions of
500 µm, which roughly complied with the conditions
of MHD compression of the Z-pinch. To model the sit-
uation close to the experiment [3, 5] (wires were made
of Ti, and the atomic weight was 47.9), two versions of
the problem were examined. The first version corre-
sponded to modeling the propagation of a shock wave
from the pinch corona into a dense core. The initial
conditions were chosen as follows (Fig. 5a): near the
axis of the dense core, the temperature, density, pres-
sure, and ion charge number were specified as T = T0 =
3 eV, ρ0 = 0.1 g/cm3, P0 = 1.81 × 10–2 Mbar, and Z0 = 2,
respectively; in the outer region of the hot corona, the
plasma parameters were specified as T0 = 100 eV, ρ0 =
10–3 g/cm3, P0 = 2.21 × 10–2 Mbar, and Z0 = 10. The
boundary between these regions was 100 µm away
from the axis. A sinusoidal initial perturbation with a
wavelength of 30 µm and amplitude of 5 µm was
imposed on the boundary. Behind the front of the shock
wave, the plasma parameters were specified as T =
316 eV, ρ = 2.85 × 10–3 g/cm3, and P = 1.99 ×
10−1 Mbar. At t = 0, the front was 20 µm away from the
corona–core boundary.

The second version of the problem corresponded to
modeling the propagation of a shock wave through a
dense core directly from the corona–core boundary.
Here, in contrast to the previous version, the boundary
was assumed to be smooth, whereas a sinusoidal per-
turbation with the same parameters was imposed on the
front (Fig. 6a). The core and corona parameters behind
the front of the shock wave were the same for both ver-
sions. In both cases, the boundary conditions were the
following: the rigid-surface reflection condition on the
axis and end-face boundaries of the calculation domain
and the conditions for conservation of the parameters
behind the shock front on the immobile outer cylindri-
cal surface.

Results of simulations for the first version are pre-
sented in Figs. 5b–5d, in which the radial profiles of the
pressure, density, and plasma temperature at different
instants are shown. At the instant t = 2 ns counted from
a certain zero time, the shock wave arrives at the axis.
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
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density contours at different instants for the problem of the passage of a shock wave through the corona–core boundary.
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Fig. 6. (a) The initial position of the boundary; the radial profiles of (b) the pressure, (c) density, and (d) temperature; and (e) the
density contours at different instants for the problem of the decay of the discontinuity at the corona–core boundary.
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Near the axis, the plasma pressure is .7.8 Mbar and the
density is . 0.42 g/cm3. By the instant t = 5 ns, the
shock front, which has been reflected from the axis and
has passed once more through the corona–core bound-
ary, approaches the outer boundary; the density
decreases to 0.02–0.05 g/cm3; and the temperature var-
ies within the range 300–450 eV.

Figure 5e shows the density contours at certain char-
acteristic instants of the evolution of the corona–core
boundary. They give evidence for a rapid growth of
hydrodynamic perturbations at the boundary. By 5 ns
(i.e., after the reflection from the axis), the onset of the
Richtmayer–Meshkov instability is seen, which can be
recognized by the change in the positions of points
where the perturbations are maximum (a typical effect
of the Richtmayer–Meshkov instability when the shock
wave passes from a heavy substance to a light sub-
stance). A nearly threefold increase in the perturbation
amplitude shows that the inverse growth rate is close to
5 ns, which is in good agreement with the analytical
estimates made in the previous section.

By 10 ns, the Richtmayer–Meshkov instability
arrives at the nonlinear stage accompanied by the for-
mation of a characteristic fungous-like perturbation of
the boundary. In addition, the evolution of the boundary
layer is significantly influenced by the Kelvin–Helm-
holz instability caused by high velocity gradients on
both sides of the boundary. This influence manifests
itself as a destruction of plasma jets, which terminates
by 15 ns with the formation of a transition layer consist-
ing of the mixed substance. It is interesting that, by
20 ns, perturbations with wavelengths smaller than the
initial ones arise because of the deformation of the
boundary in the nonlinear stages of the Richtmayer–
Meshkov and Kelvin–Helmholz instabilities. Note that,
after 10 ns (i.e., once the fungous structure begins to
form), the position of the contact boundary is stabilized
at a distance of 150–200 µm from the axis. After this
time, the width of the transition layer also remains
almost constant and is equal to 100–120 µm.

In the second version of the problem, the conditions
correspond to a simultaneous onset of the Richtmayer–
Meshkov and Rayleigh–Taylor instabilities. The results
of calculations show that, in this case, the linear growth
rates of radial hydrodynamic instabilities are close to
each other and the instabilities develop in a similar
manner in the linear stage (Figs. 6b–6d). The main dis-
tinction from the previous version is that the Kelvin–
Helmholz instability begins at an earlier time, grows
more rapidly, and almost suppresses the effects of the
Richtmayer–Meshkov and the Rayleigh–Taylor insta-
bilities in the nonlinear stage. This explains the absence
of a pronounced fungous structure and the formation of
a more compact transition layer 60–80 µm wide
(Fig. 6e). At the same time, the position of the transi-
tion layer is close to that in the first version (.120–
150 µm from the axis).
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What does all this mean in the case of exploding
wires? Due to the high effective compressibility, a spe-
cific shock front arises in the bubble-containing media.
According to the above consideration, during the front
propagation toward the core axis and then backward,
hydrodynamic instabilities can grow rapidly at the
corona–core boundary. In this case, the conditions of
the problem (a sharp boundary between the high- and
low-density substances and a diffuse shock front arriv-
ing at the boundary) enable the onset of both the Rich-
tmayer–Meshkov and Rayleigh–Taylor instabilities. In
the nonlinear stages of these instabilities, liquid flows
with high velocity gradients can arise on the perturbed
boundary, which leads to the onset of the Kelvin–
Helmholz instability. The growth rates of all these
instabilities in a high-current thin-wire discharge turn
out to be fairly high: their inverse values amount to sev-
eral nanoseconds against the background of compres-
sion lasting several tens of nanoseconds. As a result, the
hydrodynamic instabilities can affect the whole process
of the Z-pinch implosion (e.g., they can lead to the for-
mation of regular radial perturbations at the corona–
core boundary with amplitudes comparable with the
pinch size).

The results agree qualitatively with the observed
picture of mixing of the core and corona substances
after the return of the shock front. However, in the
present formulation, the problem does not take into
consideration the magnetic field or real Joule heating
and the mixing can also be attributed to the heteroge-
neous structure of the two-phase core. Therefore, the
construction of an adequate model calls for further
detailed simulations.

6. CONCLUSION

Computer simulations of the interaction between
the hot corona and the core of an exploding wire have
demonstrated a number of important features in which
this object differs from the conventional model of a
plasma column. These features are attributed to the
high density of the cold core and to the diffuse front of
a shock wave generated in the corona. We have also
revealed that the two-phase state of the core cannot be
ignored; as a consequence, the model of the dynamics
of heterogeneous (the corona–core boundary and vapor
bubbles in the liquid core) pinches calls for further gen-
eralization. Calculations using this model might answer
the question regarding the nature of mixing of the pinch
substance after the shock front returns from the core to
the corona.
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Abstract—The collisionless interaction between an expanding cylindrical plasma cloud containing singly and
doubly charged ions and a magnetized background plasma is investigated numerically using a method combin-
ing the kinetic and hydrodynamic approaches. The results presented were obtained from simulations carried out
under conditions corresponding to active space experiments on the expansion of plasma clouds in the Earth’s
ionosphere. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Collisionless interactions between plasma streams
have attracted much interest in connection with active
space experiments [1, 2], the investigation of plasma
dynamics in fusion devices [3, 4], the laboratory mod-
eling of a laser plasma in an external magnetic field
[5, 6], and the interpretation of astrophysical observa-
tions [5, 7, 8].

In this paper, we focus on the specific features of
electromagnetic interactions between rarefied plasma
streams at the initial stage of active space experiments
similar to those described in [9] and laboratory experi-
ments with laser-produced plasmas [5]. The numerical
models developed to study such interaction processes
are based on kinetic [10], magnetohydrodynamic
(MHD) [14–19], and combined kinetic and hydrody-
namic approaches [11–13]. Kinetic models, which are
capable of describing high-frequency parameters of the
interaction processes associated with small-scale elec-
tron motions, are the most laborious and have not yet
been widely used in practical applications. The models
combining kinetic and hydrodynamic approaches make
it possible to describe the structure of collisionless
shock waves on time scales governed by the motion of
the ions of both an expanding plasma and a background
plasma, but they are also fairly involved. The most eco-
nomical MHD models cannot in principle predict the
structure of collisionless shock waves driven by an
expanding plasma, but they can nevertheless fairly
accurately describe the structure of the perturbed mag-
netic field and such global parameters of the interaction
process as the mean velocity of the shock wave and the
averaged jumps in the parameters inside the shock front
[20–22].

The structure of collisionless shock waves driven by
an expanding plasma in both magnetized and unmagne-
tized background plasmas has been investigated in
detail in [11–13, 17–19]. Here, we use a hybrid model
to study the characteristic features of the interaction of
1063-780X/00/2609- $20.00 © 0759
an expanding plasma cloud containing singly and dou-
bly charged ions with the ions of the ionospheric
plasma. Our investigation is motivated by the circum-
stance that, in the stage of collisionless interaction
between a background plasma and an expanding
plasma, the latter should contain ions with different
charge numbers (this circumstance was pointed out in
some theoretical [23] and experimental [5, 6] papers).
Our aim here is to clarify how the structures of both the
plasma cloud and collisionless shock waves change in
the course of interaction. This issue is especially impor-
tant for interpreting laboratory experiments.

2. FORMULATION OF THE PROBLEM

In order to describe the collisionless interaction
between an expanding plasma (EP) ejected from a
plasma source or created as a result of the explosion of
matter and a rarefied background plasma (BP) with a
frozen-in magnetic field, we use a hybrid model in
which the ion velocity distribution functions are deter-
mined by solving the Vlasov kinetic equation and the
electron plasma component is treated using the fluid
approach. The first series of simulations was carried out
for an EP containing only singly charged ions (α = 1).
In the second series of simulations, half of the EP ions
were assumed to be singly charged and the rest of the
EP ions were assumed to be doubly charged (α = 2). In
both series of simulations, the BP was assumed to con-
tain only singly charged ions (α = 3). We denote the ion
velocity distribution functions by fα ≡ fα(r, v, t) and
write the Maxwell–Vlasov equations describing the
self-consistent behavior of the ions in a rarefied plasma
in electromagnetic fields [25–27]:

(1)

∂ f α

∂t
--------- v

∂ f α

∂r
---------

eα

mα
------ E

1
c
--- v H×[ ]+ 

  ∂ f α

∂v
---------+ + 0,=

α 1 2 3,, ,=
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(2)

(3)

(4)

where the independent variables (r, v, t) denote the
coordinate, velocity, and time; E and H are the electric
and magnetic fields; eα and mα are the charge and mass
of an ion of species α; c is the speed of light; ρe is the
space charge density; and J is the current density.

Knowing the distribution functions, we can deter-
mine the densities and macroscopic velocities of the

ions of each species, nα(r, t) = dv and uα(r, t) =

1/nα fαdv, and (if necessary) their mean tempera-

tures, Tα(r, t) = mα /(3nα) (v – uα)2dv. The total den-

sity, velocity, and temperature of the ions and the total
charge and current densities are represented by the for-
mulas

(5)

(6)

where Ve is the mean electron velocity and Nα is the
number of ion components (in the case at hand, Nα = 3).

We neglected all ionization processes that might
have affected plasma expansion: radiation ionization,
anomalous ionization due to electron heating in collec-
tive interactions, ionization of atoms by electrons with
sufficiently high energies, etc.

The mean electron velocity and electron density
were determined from the following considerations.
Since the mass of an electron is low, the electron gyro-
radius RH, e is much smaller than the ion gyroradii RH, i .
Consequently, it is natural to average the electron dis-
tribution function, which can change sharply on the
short spatial scale RH, e, over the period of Larmor elec-
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tron gyration and to examine only the guiding center
motion of the electrons. This approach implies that the
electrons should be treated as a fluid and the electron
motion should be described in terms of the mass veloc-
ity Ve and mass density ne in the hydrodynamic approx-
imation.

According to the estimates made in [11, 14], the
plasma is to a large degree electrically neutral, ρe = 0,
except for very narrow zones. Consequently, with suf-

ficient accuracy, we can set ne = .

If we neglect the electron pressure and (naturally)
collision-induced electron–ion friction (the latter is jus-
tified by the results obtained in [17, 18]), the equation
of electron motion takes the form

(7)

Neglecting electron gyration is equivalent to the
assumption that the electron gyroradius is zero (or
me = 0). In this approximation, the total force acting on
the electrons should clearly be zero:

(8)

In solving the problem, we also assumed that the
plasma is ideally conducting. Since at a height of about
h . 350 km in the Earth’s magnetosphere the character-
istic plasma conductivity is σ . 1011 s–1, the magnetic
field penetrates diffusively into the plasma on a time

scale of about τm =  . 1.4 × 10–9 . Under

the conditions V0 ~ 6 × 107 cm/s and RH, i ~ 0.2 × 106 cm,
which are typical of the expansion process under con-
sideration, the diffusion time of the magnetic field, τm =
0.56 × 102 s, is appreciably longer than the characteris-
tic expansion time. This circumstance justifies the use
of the ideally conducting plasma approximation.

The above assumptions underlie the equations of the
hybrid model that was developed in [24] and is used
here:

(9)

(10)
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where the quantities are nondimensionalized by anal-
ogy with [11]:

We choose the following normalizing parameters: V0 is
the initial velocity of the EP, n∗  is the ion density of the
unperturbed BP, H∗  is the unperturbed magnetic field

strength,  = eH∗ /m∗ c is the cyclotron frequency of

the BP ions, and  = V0/  is their gyroradius. The
tilde marks the quantities to be nondimensionalized.

Since our problem is one-dimensional and axisym-
metric, we can set E = (Er , Eϕ, Ez = 0) and H = (Hr = 0,
Hϕ = 0, Hz = H).

3. NUMERICAL METHOD

The basic set of equations was solved by the particle
method [11, 25–27]. Instead of integrating the Vlasov
kinetic equation, we traced the trajectories of a large

number of particles, Np = , where Np, α is the
number of particles that simulate the behavior of the
αth plasma species. If we denote the position vector
and the radial and azimuthal velocities of the pth parti-
cle by rp, vp, r, and vp, ϕ, then, in cylindrical coordinates,
the motion of this particle can be described by the equa-
tions

(11)

(12)

(13)

The equations of the hybrid model can be solved in
three stages, each having a clear physical meaning. In
the first stage (which can be referred to as the kinetic
stage), we solve equations (11)–(13) for each particle
by determining its position at each time step with
allowance for its interaction with the electric and mag-
netic fields. In the second stage, we find the mean mac-
roscopic velocities of the plasma medium and its den-
sity. Finally, we evaluate the electric and magnetic

t t̃ΩH
*
, r

r̃
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*
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ṽ
V0
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--------------------.= = =
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drp

dt
-------- v p r, , p 1 2 … N p,, , ,= =

dv p r,

dt
-------------

v p ϕ,
2

r
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Er v p ϕ, H+
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p 1 2 … N p., , ,=
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fields self-consistently with the mean plasma para-
meters.

We solved the kinetic equations by the following
explicit two-step scheme of second-order accuracy.

The equations solved at the first step are

where y = (y1, y2, y3) = (rp, vp, r , vp, ϕ), τ is the time step,
and the functions on the right-hand sides are taken from
the kth time step. Writing H(y1), Er(y1), and Eϕ(y1)
means that the related field magnitudes are interpolated
from the position y1 = rp of the pth particle on the Eule-
rian grid ωr = {ri , i = 1, 2, …, Ni; h = ri – ri – 1 = const}.

The equations solved at the second step are

Note that this scheme differs from those adopted in
[11, 12]. Golubev et al. [11] applied an analogous
scheme only to find r and vr. Instead of the above equa-
tion for the azimuthal velocity, they used the conserva-
tion condition for the canonical momentum of each
particle:

(14)

where the vector potential Aϕ defines the magnetic field

as H = r–1 .

One can readily see that differentiating condition
(14) with respect to time yields an equation equivalent
to Eq. (13).

We assumed that, at the initial instant, the EP is
homogeneous and is bounded by a cylindrical surface
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of radius R0 and that all of the quasi-particles of the EP
and BP are distributed uniformly in space (at equal dis-
tances). The initial velocities of the quasi-particles
were defined as

where  is the initial coordinate of the pth quasi-
particle, which contains ions of species α.

In the second stage, we had to determine the distri-
bution function of the plasma particles. Since the
method of quasi-particles implies that each of them has
finite dimensions, we wrote the distribution function in
the form

(15)

where the function Φ(r, rp) defines the density distribu-
tion of the actual particles over the pth quasi-particle
with velocity Vp and δ is the Dirac delta function.

Expression (15) implies that, in the vicinity of the
point r, the number of quasi-particles per unit volume is

(16)

To find the number of actual particles in a quasi-par-
ticle, we must integrate the relevant term in (16) over
space,

(17)

which yields the normalization condition

(18)

where ϕ(r, rp) = Φ(r, rp)/βp is the normalized function
describing the density distribution of the actual parti-
cles over the pth macroparticle.

As was mentioned in [25, 27], the choice of this
function governs which particular version of the
method of quasi-particles is used. In this paper, we

assume that the normalized function is ϕ(r, rp) = πrh

in the region |r – rp| ≤  and equals zero outside this

region.
The density of the plasma particles in the vicinity of

the point ri is equal to

(19)
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p

N p

∑ 1
2πrihhz

------------------- βpχ p ri( ),
p

N p

∑= =
where 2πrihhz is the volume of a cell in the vicinity of
the point ri and hz is the height of the cell in the z-direc-
tion. The function χp(ri) is equal to unity in the region

|ri – rp | ≤  and equals zero outside this region.

In expression (19), we pass over to dimensionless
variables and set hz = . As a result, we obtain

(20)

where  = ,  is the density of the

plasma particles that constitute the pth quasi-particle,

and  is its coordinate.

Using expressions (19) and (20), we can derive the
distribution function of the actual particles in a quasi-
particle:

(21)

The mean ion and electron velocities and the kinetic
energy of the particles of the EP and BP can be deduced
in a natural way:

(22)

Calculations according to formulas (20) and (22)
complete the second stage of the solution of the prob-
lem. The third stage consists of evaluating the electric
and magnetic fields self-consistently with the plasma
parameters by solving the equations
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Fig. 1. Mean radial plasma velocity at different instants after the plasma cloud starts to expand: (1) the CSW front in the BP and
(2) the boundary between the EP and BP. The solid and dashed curves illustrate the expansion of singly and doubly charged plasma
clouds, respectively.
where Ve, r and Ve, ϕ are the radial and azimuthal compo-
nents of the mean electron velocity Ve.

The equation for the magnetic field strength was
solved by the MacCormack explicit two-step scheme of
second-order accuracy [28]:

H̃i Hi
p τ
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+
Gi 1+

p
Si
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Gi
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Ĥi Hi
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----------------------------------, G̃–+ Ve r, H̃ ,= =
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where Oi = 2π ,  =

2π , and  = 2π .

The fluxes through the boundaries of the grid cells
were corrected numerically using the Zhmakin–
Fursenko method [29]:
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4
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2

------------------- Si
– ri ri 1–+

2
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Fig. 2. Magnetic field strength at different instants after the plasma cloud starts to expand. The solid and dashed curves illustrate the
expansion of singly and doubly charged plasma clouds, respectively.
where  = ϕi + 1/2 if {δ δ  < 0 or

δ δ  < 0} (otherwise, these functions equal
zero) and

ϕ i 1/2+* Ĥi 1/2+ Ĥi 1/2–

Ĥi 3/2+ Ĥi 1/2+

ϕ i 1/2+ νδHi 1/2+
p φ Ve r i 1+, , Ve r i, ,,( ),=

φ Ve r i 1+, , Ve r i, ,,( )
Ve r i, , Ve r i 1+, ,+

2
------------------------------------,=

δHi 1/2+ Hi 1+ Hi, δHi 3/2+– Hi 2+ Hi 1+ ,–= =
where  = ϕi – 1/2 if {δ δ  < 0 or

δ δ  < 0} (otherwise, these functions equal
zero). Here, ν is the artificially introduced viscosity.

The time step should be chosen from the condition
for our numerical algorithm to converge:

τ ≤ .

Varying the artificial viscosity ν in test simulations, we
adjusted it to be fairly low (about 0.01). The parameters
of the difference grid were chosen so that the second
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Ĥi 1/2– Ĥi 1/2+

1

h
1–

2ν/h
2

+
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Fig. 3. Radial component of the solenoidal electric field at different instants after the plasma cloud starts to expand. The solid and
dashed curves illustrate the expansion of singly and doubly charged plasma clouds, respectively.
term in the denominator on the right-hand side of the
convergence condition was less than the first term.

4. SIMULATION RESULTS

At the initial instant, a homogeneous cylindrical
plasma cloud containing either singly charged ions or
both singly and doubly charged ions of mass mα = 1, 2 =
27 amu and total density n1 + n2 = 2.7 × 108 cm–3 was
assumed to start expanding in the radial direction with
the velocity

Vr
r

R0
-----V0,=
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
where V0 = (0.035–0.35) × 109 cm/s, which corresponds
approximately to the experimental conditions of [9].
Both series of simulations were carried out for the same
density and mass of the BP ions and the same magnetic
field H∗ : n∗  = 0.96 × 107 cm–3, m∗  = 16 amu, and H∗  =
0.5 Oe. These parameter values correspond to the fol-
lowing ranges of Alfvén–Mach numbers and BP ion
gyroradii: MA ≈ 4–40 and  ≈ (0.01–0.1) × 107 cm.
In both series of simulations, the cyclotron frequency
of the BP ions was set to be  ≈ 300 s–1. The initial

radius of the plasma cloud was chosen to be R0 = 2 .

For a fixed initial expansion velocity, we simulated
the expansion of both a plasma cloud containing only

RH
*

ΩH
*

RH
*
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Fig. 4. Azimuthal component of the solenoidal electric field at different instants after the plasma cloud starts to expand. The solid
and dashed curves illustrate the expansion of singly and doubly charged plasma clouds, respectively.
singly charged ions and a cloud containing both singly
and doubly charged ions (below, we will refer to these
clouds as “singly charged” and “doubly charged”
plasma clouds, respectively). At the initial instant, the
magnetic field was assumed to be expelled from the
region occupied by the EP. The dynamics of the EP and
BP was modeled by tracing the motion of Np, 1 = 6000,
Np, 2 = 6000, and Np, 3 = 18000 particles on a uniform
spatial Eulerian grid consisting of Ni = 300 points, so
that, on average, each Eulerian cell contained about
60 particles of the BP and from 20 to 40 particles of
the EP.

The kinetic equations (11)–(13) were integrated
with a time step of about 1/100 of the cyclotron period
of the BP ions.
Although the expansion scenarios are very different
for different initial expansion velocities (or, in fact, for
different initial energies of the EP), we concentrated on
revealing the most important points in which the expan-
sion of a multicharged plasma differs from that of a
plasma cloud containing only singly charged ions. The
basic calculation version was chosen to be that with
V0 = 0.35 × 109 cm/s; the simulation results for this ver-
sion are illustrated in Figs. 1–9.

Each of these figures shows the computation results
obtained at three subsequent times, 0.032, 0.096, and
0.16 s, after the plasma cloud started to expand; these
times correspond to 1000, 3000, and 5000 time steps.

Figures 1–5 display the mean radial ion velocity, the
magnetic field strength, the radial and azimuthal com-
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
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Fig. 5. Particle density of the EP and BP at different instants after the plasma cloud starts to expand: (1) the outer boundary of a
singly charged plasma cloud, (2) local peaks in the density profiles of the doubly charged ions in a doubly charged EP cloud, and
(3) local peaks in the density profiles of the singly charged ions in a doubly charged EP cloud. The solid and dashed curves illustrate
the expansion of singly and doubly charged plasma clouds, respectively.

0

0

ponents of the solenoidal electric field, and the total
density of the EP and BP ions, respectively. In each fig-
ure, the solid and dashed curves illustrate the simula-
tion results for singly and doubly charged plasma
clouds, respectively.

We point out the following features of the expansion
processes.

(i) The EP gives rise to a collisionless shock wave
(CSW) in the BP. In Fig. 1, the outer boundary of the
shock front driven by an expanding, singly charged ion
cloud is denoted by the symbol 1 and the outer bound-
ary of the EP is marked by the symbol 2. The distance
between these boundaries is distinctly seen to increase
as time elapses. The reason is that the ions at the outer
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
boundary of the expanding cloud are decelerated, in
which case part of the kinetic energy of the EP is trans-
ferred to the BP ions via electromagnetic interactions.

(ii) Inside the shock front (i.e., in the region between
the outer boundaries of the CSW and the EP), the BP is
seen to experience a complicated multistream motion.
This is illustrated in Fig. 6, which shows the phase por-
trait of the BP ions in the case of expansion of a doubly
charged cloud. The points in Fig. 6 correspond to every
sixth particle. Inside the shock front, there are regions
where a significant number of particles move either in
the positive or negative direction. At the outer boundary
of the CSW, we see the formation of periodic wavelike
structures, i.e., the regions where the ions are alterna-
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Fig. 6. Dynamics of particles of the BP during the expansion of a doubly charged plasma cloud.
tively accelerated and decelerated. These structures are
seen most vividly at the time t = 0.16 s over distances
(35–40) . The upper part of the figure (which corre-
sponds to the time t = 0.032 s) clearly illustrates the
structure of the CSW front: the particles that started to
move under the action of the solenoidal electric field
form a loop in which the ions that were initially closer
to the symmetry axis and started to move earlier turn
out to be located at larger distances from the axis than
the ions that started to move at later times. In fact, we
observe the breaking of the CSW front. At first glance,
the ion motion inside the CSW is stochastic. However,
analyzing the overall dynamic picture of the processes,
we can see that the looplike motion repeats over and
over again. However, we must keep in mind that the
particles not only experience radial motion but also

RH
*

rotate in the azimuthal direction (around the symmetry
axis).

(iii) The magnetic field is expelled from the region
into which the plasma cloud expands. Figure 2 shows
that, at subsequent times, the magnetic field is dis-
placed by distances of about 9, 19, and 25 . In the
course of expansion, the magnetic field strength is
observed to oscillate stochastically inside the shock
front; the peak strengths of the magnetic field are larger
than the background magnetic field strength by a factor
of three. Due to the displacement of the magnetic field,
the perturbed region is essentially free of the electric
field. From Figs. 3 and 4, we can see that the solenoidal
electric field is generated preferentially inside the
shock front and that the peak azimuthal component
exceeds the peak radial component by a factor of more

RH
*
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than two. The peak azimuthal component is maximum
at the outer boundary of the CSW, while the peak radial
component is maximum at the symmetry axis. This
result is consistent with the physical mechanism for the
generation of the solenoidal electric field: according to
equations (23), the solenoidal electric field is excited by
the EP ions that enter the region occupied by the mag-
netic field.

(iv) In the course of expansion, an initially homoge-
neous plasma cloud evolves into a plasma shell. In
Fig. 5, which illustrates the evolution of the total den-
sity of the EP and BP ions, the boundary of the singly
charged plasma cloud is marked by the symbol 1. At
large radial distances from the symmetry axis, only the
density of the BP ions oscillates. We can clearly see
that, in contrast to the case of a singly charged plasma
cloud (illustrated by solid curves), an expanding doubly
charged plasma cloud does not evolve into a plasma
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Fig. 7. Dynamics of particles of a singly charged EP cloud.
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shell. The dynamics of a doubly charged cloud is char-
acterized by the separation of ions of different species:
doubly charged ions (marked by the symbol 2 in Fig. 5)
are mostly concentrated inside the cloud, while singly
charged ions (marked by the symbol 3) are accumu-
lated at the outer boundary of the cloud. Such behavior
of the ions in the doubly charged EP cloud is illustrated
in Fig. 1, which shows the profiles of the mean radial
velocity. We can see the regions where doubly charged
ions move back to the symmetry axis, thereby making
the mean plasma velocity negative. At times later than
those designated in Fig. 1, singly charged ions also start
to move back to the symmetry axis, but doubly charged
ions again start to expand. Comparing the expansion of
singly and doubly charged plasma clouds, we empha-
size that, on the whole, a doubly charged cloud is
slowed down at a higher rate and drives a slower CSW.
In Fig. 1, we can see that, at the time t = 0.16 s, the outer
boundary of the CSW driven by a singly charged EP
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Fig. 8. Dynamics of singly charged particles during the
expansion of a doubly charged plasma cloud.
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cloud is farther from the symmetry axis than the outer
boundary of the CSW driven by a doubly charged EP
cloud, the distance between the outer boundaries being
about ~2.5 . The structures of singly and doubly
charged plasma clouds are demonstrated in Figs. 7–9.
Figure 7 illustrates the expansion of a singly charged
plasma cloud, and Figs. 8 and 9 refer to a doubly
charged cloud. We can see that, at the times indicated,
singly charged ions move preferentially in the radial
direction away from the symmetry axis, while doubly
charged ions move mostly back to the axis. A compari-
son between Figs. 7 and 8 clearly shows that, on the
whole, the ion motion in a doubly charged EP cloud
becomes stochastic earlier than that in a singly charged
cloud.

Plasma clouds that start to expand at lower initial
velocities evolve in an analogous manner. We point out
another characteristic feature of the expansion pro-
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Fig. 9. Dynamics of doubly charged particles during the
expansion of a doubly charged plasma cloud.
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cesses: if the magnetic field is not initially expelled
from the region occupied by the plasma cloud, then
doubly charged ions start to decelerate earlier than sin-
gly charged ions. The remaining features of the expan-
sion of doubly charged plasma clouds are as described
above.

5. CONCLUSION

Using a hybrid numerical model (i.e., a model com-
bining the kinetic and hydrodynamic approaches), we
have solved the problem of the collisionless slowing
down of the expansion of a cylindrical, doubly charged
plasma cloud in a magnetized ionospheric plasma.

We have carried out a comparative analysis of the
slowing down of the plasma steams of both singly
charged ions and singly and doubly charged ions. Sim-
ulations performed for Alfvén–Mach numbers ranging
between 4 and 40 revealed the following characteristic
feature of the initial stage of the slowing down of a dou-
bly charged EP cloud: doubly charged ions are mostly
concentrated inside the cloud, while singly charged
ions are accumulated at the outer boundary of the
cloud. On the whole, a doubly charged plasma cloud is
slowed down on shorter time scales and gives rise to
slower CSWs in the ionospheric plasma.
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Abstract—The possibility is demonstrated of splitting the eigenfrequencies of MHD plasma waves in a stel-
larator with a weakly rippled helical confining magnetic field. The distribution of the fields of an Alfvén wave
in the satellite Alfvén resonance region is investigated when the influence of the helical ripple in a confining
magnetic field on the resonance structure is comparable with the effects of the finite ion Larmor radius, electron
inertia, and collisions between plasma particles. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The effect of the helical ripple in a confining mag-
netic field on the MHD eigenmodes in stellarator plas-
mas is of interest in connection with the problem of
plasma heating by these modes. Girka and Kovtun [1]
showed that the helical field ripple generally causes the
eigenfrequency of MHD waves to shift by an amount
that is second order in the small parameter characteriz-
ing the deviation of the magnetic surfaces from being
circular.

It is well known that the spectra of MHD oscilla-
tions of a plasma cylinder in an axial magnetic field are
degenerate with respect to the sign of the axial wave-
number. Unlike in the case of an axial magnetic field, in
which each MHD eigenmode propagates indepen-
dently, the helical ripple in a stellarator magnetic field
causes the eigenmodes to propagate as a wave envelope
that contains (in addition to the fundamental harmonic
proportional to ∝ expi(kzz + mϑ – ωt)) satellite harmon-
ics proportional to ∝ expi[(kz – jks)z + (m + jl)ϑ – ωt]
(here, m is the azimuthal mode number; kz is the axial
wavenumber of the fundamental mode; l is the polarity
of a stellarator; and j = ±1, ±2, …, ks = 1α with α = 2π/L
and L the pitch of the helical winding). The methods
developed in [1] and the results obtained there may turn
out to be inapplicable to investigating the propagation
of MHD waves such that the axial wavelength of the
fundamental mode is two times longer than the helical
pitch and the azimuthal wavenumber of the fundamen-
tal mode is two times smaller than the polarity of the
stellarator; specifically,

(1)

The reason is that the fundamental mode and one of the
satellite modes are characterized by the same |kz |. In
contrast to the case of a rippled toroidal magnetic field
[2], in a helical stellarator magnetic field, the azimuthal

ks 2kz, l 2m.= =
1063-780X/00/2609- $20.00 © 20772
wavenumbers of the satellite modes differ from the azi-
muthal wavenumber of the fundamental mode. For
MHD waves, the nonreciprocity effect (which indicates
that eigenmodes with azimuthal wavenumbers of oppo-
site signs have different frequencies) is often insignifi-
cant. In Section 3, we investigate the MHD eigenmodes
of an inhomogeneous plasma cylinder under the reso-
nance conditions (1), which can be satisfied in a stellar-
ator with an even polarity and even number of helical
magnetic field periods. Since the helical magnetic field
is weak, we can describe degenerate spectra using per-
turbation theory.

Girka et al. [3] demonstrated the possibility of addi-
tional heating of stellarator plasmas in the satellite

Alfvén resonance (SAR) regions r = , in which we
have

(2)

where ωcσ and ωpσ are the cyclotron and plasma fre-
quencies of particles of species σ (σ = i for ions and σ =
e for electrons), Nz = ckz/ω is the axial refractive index,
and the correction Ns to this index is Ns = cks/ω. In the
case of induced oscillations, the axial wavenumber kz is
assumed to be prescribed (it is governed by the spectral
characteristics of the antenna). The ion cyclotron fre-

quency  = eB0/mic in (2) is defined in terms of the
unrippled axial magnetic field B0.

In the vicinity of resonances (2), the satellite har-
monics of the electromagnetic field of MHD waves
grow in amplitude and are converted into small-scale
“kinetic” Alfvén waves. Paper [3] was aimed at investi-
gating the case that is most favorable for Alfvén heat-
ing: the SAR region was assumed to be located deep in
the plasma core, where the helical confining magnetic
field of a straight stellarator is weakly rippled and the

rA
±( )

ε1
0( ) r( ) 1 ωpi

2 r( ) ω2 ωci
0( )2–( )⁄∑–≡ Nz Ns+−( )2.=

ωci
0( )
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plasma is hot. In this case, the extent to which the mag-
netic surfaces deviate from being circular due to the
inhomogeneity of the axial magnetic field B0 is smaller
than the width δr of the SAR region,

(3)

which is defined in terms of the finite ion Larmor radius

ρLi = vTi/ωci, where vTi =  is the ion thermal
velocity and Ti is the ion temperature. The quantity a* =

 in (3) is the characteristic distance in

which the plasma density varies. In the SAR region, the
radial profiles of the amplitudes of the satellite modes
are governed just by the finite ion Larmor radius ρLi and
electron inertia (see, e.g., [4–6]).

In Section 4, we study the SAR structure in the edge
plasma, where the deviation of the magnetic surfaces
from being circular is most pronounced and the plasma
is usually colder than in the core.

2. FORMULATION OF THE PROBLEM

We consider the propagation of a wave with the fre-
quency ω ! ωpe , |ωce | in a straight stellarator, assuming
that the plasma pressure is low in comparison with the
magnetic field pressure. In the paraxial approximation,
the magnetic field B0 = erB0r + eϑB0ϑ + ezB0z of an l ≥ 2
stellarator can be described by the single harmonic [7]

(4)

where

a is the radius of a cylindrical surface that a filamentary
helical coil with current J is wound on, Kn(ξ) and In(ξ)
are the modified Bessel functions, and the prime
denotes the derivative with respect to the argument. The
equilibrium plasma density is a function of magnetic
surfaces, n(r, θ) = n(r0), where

(5)

We introduce the orthonormal coordinate vectors
(e1, e2, e3) associated with the lines of the magnetic field
B0: e3 = B0/ |B0|, e1 = grad(r0)/ |grad(r0)|, and e2 = e3 × e1.
We solve the Maxwell equations in these coordinates,
taking into account the following relationship between
the electric induction vector D and the electric field E
of the wave:

(6)

δr ρLi
2 a∗( )1 3⁄

,∼

Ti mi⁄

ε1
0( )ln∂ r∂⁄ rA

±( )
1–

B0r ∆lB0αr lθ( ), B0ϑsin ∆lB0 lθ( ),cos= =

B0z B0 ∆lB0αr lθ( ),cos–=

∆n
nbnIn' ksr( )

B0αr
------------------------, ∆n

nbnIn ksr( )
B0αr

------------------------,= =

bn 8Jaks
2Kn' ksa( ) nc( ) 1– , θ ϑ αz,–= =

r0 r 0.5r∆l 2θ( )cos–= O ∆l
2

( ).+

D ε1 E1e1 E2e2+( ) ε3E3e3 iε2e3 E.×–+=
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The components of the permittivity tensor of a cold,
weakly collisional plasma have the form

(7)

In (6), the integral operator ε3 determines the absolute
value of the longitudinal component of the vector D.

Solving the Maxwell equations in the small electron
inertia limit (|ε3 |  ∞), we find that the longitudinal
component E3 of the wave electric field vanishes over
the entire plasma column, E3 = (B0rEr + B0ϑE0ϑ +
B0zEz)/ |B0 |  0. With this relationship between the
components of the wave electric field, we can neglect
the effects of collisions, electron inertia, and the finite
ion Larmor radius in order to reduce the Maxwell equa-
tions to the following set of equations for the compo-
nents of the wave electromagnetic field in cylindrical
coordinates:

(8)

ε1 1 ωpi
2 r0( ) ω2 ωci

2–( ),⁄
i

∑–=
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2 r0( )ω ω2 ωci
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To solve Eqs. (8), we need to know the first-order
expressions for the tensor components ε1 and ε2:

(9)

where  ~ ,

(10)

(11)

(12)

3. SPLITTING OF THE SPECTRA OF MHD 
PLASMA WAVES IN A WEAKLY RIPPLED 

HELICAL MAGNETIC FIELD

In the problem of eigenmodes, the solution to
Eqs. (8) should satisfy the following boundary condi-
tions. The wave field inside a metal chamber should be
finite, and the tangential component of the electric field
should vanish at the inner surface of the chamber
(E2|r = a = 0). If there is a vacuum gap between the
plasma column and the chamber, then the tangential
component E2 of the electric field and the longitudinal
component B3 of the wave magnetic field should be
continuous at the plasma–vacuum boundary. Further
analysis in this section refers to an l = 2 stellarator.

The symmetry properties of the problem [see rela-
tionship (9)] allow us to seek a solution to Eqs. (8) for
the axial component of the magnetic field of an MHD
wave using the well-known procedure for deriving the
secular equation (i.e., for applying perturbation theory
to the case in which the spectrum is degenerate):

(13)

where  ~ . The expressions for
the remaining components of the magnetic and electric
fields of an MHD wave are similar to (13).

ε1 2, r θ,( ) ε1 2,
0( ) r( ) ε1 2,

1( ) r( ) lθ( )cos O ∆l
2( ),+ +=

ε1 2,
1( ) ∆lε1 2,
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+ 2
ωpi
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r∆l
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ωpi

2 r( )ω 3ωci
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ωci
0( ) ω2 ωci
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--------------------------------------------------αr∆l.

i

∑

Bz C0
+( )ψ1

0( ) r( ) C1
+( )ψ1

+( ) r( )+( )eiθ[=

+ C0
–( )ψ1

0( ) r( ) C1
–( )ψ1

–( ) r( )+( )e iθ–

+ C3
+( )ψ3

+( ) r( )e3iθ C3
–( )ψ3

–( ) r( )e 3iθ–+ ] iωt–( ),exp

C1 3,
±( ) ψ1 3,

±( ) ∆2C0
±( )ψ1

0( )
3.1. Solution to Eqs. (8) in the Zeroth Approximation

In the absence of current-carrying helical coils (∆2 =

0), the radial profile (r) (j = 1, 3) of the axial com-
ponent of the magnetic field of an MHD wave satisfies
the equation

(14)

where

(15)

(16)

(17)

with N = cα/ω being the axial refractive index for the
fundamental mode.

The distribution of the RF fields of MHD waves in a
plasma cylinder with a radially nonuniform density
profile can be obtained numerically from Eq. (14) (see,

e.g., [8]). Consequently, the solutions (r) to

Eq. (14) that are finite at r = 0 and the solutions (r)
that have a singularity at r = 0 and correspond to waves
with the axial wavenumber jα can be assumed to be
known. In this section, the plasma density profile is
assumed to be such that the fundamental Alfvén reso-
nance (AR), for which

(18)

holds, and the SAR (2) are both absent. Under these

assumptions, the functions (r) and (r) can be
chosen to be real.

The dispersion relation for MHD oscillations of a
plasma cylinder in an axial magnetic field is well
known. The solution ω = ω0 to the dispersion relation
describes MHD waves in a stellarator plasma in the
zeroth approximation. An analysis of the dispersion
relation shows that, for small-scale fast magnetosonic
(FMS) waves propagating nearly perpendicular to the
magnetic field in a plasma cylinder, the nonreciprocity
effect is weak:

(19)

where nr is the number of half-waves whose total length
is equal to the radius of the plasma column. It is the
eigenfrequency of waves with the azimuthal wavenum-
ber m = ±1 and axial wavenumber kz =  that is
expected to be split by the helical ripple in a stellarator
confining magnetic field.

ψ j
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r
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k j
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k ⊥
2
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2 1 ω ωci⁄+( ) m
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3.2. Solution to Eqs. (8) in the First Approximation

Linear inhomogeneous differential equations for the

amplitudes (r) can be derived by substituting the
wave field components (13) into Eqs. (8) and collecting
terms proportional to ∝ exp(ijαz):

(20)

where the operator  is defined as

(21)

The quantities  and  with j = 3 in (21) have the
form

(22)

(23)

For simplicity, here and below, we omit the subscript 2
in ∆2 and . To find a small first-order correction to

the amplitudes (r) of the fundamental harmonics,

we set j = 1 in expressions (22) and (23) for  and

 and replace the superscripts (±)  ( ) on the
right-hand sides of these expressions. As a result, we
obtain the amplitudes of the fundamental harmonics of

the radial and azimuthal components (  and ) of
the electric field:

(24)

(25)
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where

(26)

(27)

To calculate the operator , it is sufficient to collect
terms that are zero order in ∆ in expression (21) taken

with the amplitudes  and .

The solutions to Eq. (20) that are finite at r = 0 have
the form

(28)

with the Wronskian Wj = d /dr – d /dr.

The integration constants  ~ ∆  are determined

from the condition when amplitudes  [which are
proportional to exp(±3iθ)] of the satellite harmonics of
the azimuthal electric field of an MHD wave vanish at

the metal surface of the chamber ( (a) = 0), where

(29)

The integration constants  ~ ∆  are found from
the condition

(30)

which implies that the energy of the wave magnetic
field, calculated to first order in ∆, coincides with the
energy calculated in the zeroth approximation. In quan-
tum mechanics [9], this corresponds to the normaliza-
tion condition for the wave function.
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3.3. Dispersion Relation for MHD Waves
in a Stellarator Filled Entirely with a Plasma

First, we assume that the plasma fills the entire vol-
ume of a chamber that coincides in shape with the
boundary magnetic surface,

(31)

We single out the fundamental harmonics, which are
proportional to exp(±iθ), in the boundary condition at
the metal surface to obtain the dispersion relation

(32)

where

(33)

(34)

The eigenfrequency of MHD waves can be found
from dispersion relation (32) in the form

(35)

where the correction δω introduced by the helical ripple
in an external magnetic field is equal to

(36)

When the dependence D(0)(ω) is not specified analyti-

cally (e.g., when the field distributions  and 
are found numerically), the derivative ∂D(0)/∂ω in (36)
can be calculated perturbatively [10].

We apply the above formulas to investigate how the
helical ripple in a confining magnetic field affects the
frequency of small-scale FMS waves propagating in a
plasma with a uniform density profile. In this case, the
solution to Eqs. (14) is expressed in terms of the first-

order Bessel function,  = J1(k1r), and the frequency
ω0 has the form

(37)
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where vA = cωci/ωpi is the Alfvén velocity and j1, s is the
sth root of the Bessel function: J1( j1, s) = 0. The correc-
tion to the frequency of these waves is equal to

(38)

3.4. Dispersion Relation for MHD Waves in a Plasma 
Column Separated from the Chamber by a Vacuum Gap

In present-day stellarators, the plasma column is
usually separated from the cylindrical chamber by a
vacuum gap. In accordance with the boundary condi-
tion at the surface of a circular metal chamber, the axial
component of the magnetic field of an MHD wave in
the vacuum gap has the form

(39)

where

(40)

The conditions at the outermost magnetic surface
with a mean radius ap yield the dispersion relation in a
form similar to (32).

We investigate the splitting of the spectra of magne-
tosonic waves in a plasma cylinder separated from a
circular metal chamber by a narrow vacuum gap such
that |m|(a – ap) ! a. The frequency of FMS waves prop-
agating nearly perpendicular to the magnetic field

(  @ ) is equal to

(41)

where kA = ωωpi/(cωci) is the Alfvén wavenumber. The
helical ripple in a magnetic field gives rise to the fol-
lowing correction to the frequency of such FMS waves:

(42)

The splitting of the eigenfrequency of FMS waves [see
(42)] is less pronounced than that deduced in the previ-
ous subsection [see (38)], because the small parameter

 in (4) falls off sharply (almost exponentially) with

decreasing radius, (ap) < (a). A smaller splitting
can also be explained by the fact that the main contri-
bution to δω in (38) comes from the noncircular shape
of the metal chamber, while correction (42) was derived
under the assumption that the chamber is circular.

If the plasma column is separated from the metal
chamber by a wide vacuum gap such that κ1(a – ap) @ 1,
then correction (36) to the frequency of MHD waves
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becomes exponentially small, in which case the fre-
quency of FMS waves is equal to

(43)

3.5. Conclusions Regarding the Possible Splitting
of the MHD Wave Spectra

The above analysis of the effect of the helical ripple
in a confining magnetic field on the eigenmodes and
eigenfrequencies of MHD waves under the resonance
conditions (1) imposed on the axial wavelength and
azimuthal wavenumber of the fundamental mode
allows us to draw the following conclusions.

(i) In the resonant case, the helical ripple in a con-
fining magnetic field gives rise to the splitting of the
eigenfrequencies of MHD waves, ω = ω0 ± δω, if the
nonreciprocity effect for these waves is insignificant.
The corrections δω to the eigenfrequencies are small
first-order quantities, unlike in the nonresonant case, in
which they are of the second order.

(ii) In the resonant case, the eigenmodes are stand-
ing waves. The positions of the nodes of a standing
wave with the higher frequency ω = ω0 + δω coincide
with those of the antinodes of a standing wave with the
lower frequency ω = ω0 – δω and are situated at the sur-
faces at which the confining magnetic field is the weak-
est. The reason for this is that the larger the strength |B0 |
of the uniform magnetic field, the higher the eigenfre-
quencies of Alfvén and FMS waves.

(iii) The superposition of two standing eigenmodes
with close frequencies ω = ω0 ± δω gives rise to a beat
wave. The beat frequency δω depends on both the
external parameters (J, ωci , L, ap , and a) and the plasma

density (  ∝ n). Consequently, the measurements of
the frequency of a beat wave with the axial wavelength
2L can serve to diagnose the plasma density.

(iv) The splitting of the eigenfrequency of MHD
waves by the helical magnetic field can be observed
experimentally. A similar effect was discovered in toka-
mak experiments (see, e.g., [11]): the longitudinal elec-
tric current caused the spectra of MHD waves to
become nondegenerate in the sign of the axial wave-
number.

(v) In an inhomogeneous stellarator plasma, satel-
lite Alfvén resonances (2) (in the vicinity of which both
of the satellite harmonics proportional to exp(±3iθ) are
converted into small-scale kinetic waves) are located
deep in the plasma core, where the plasma density is
higher than that near the fundamental Alfvén resonance
(18) by a factor of nine. Thus, it may be expected [3]
that the additional heating of a stellarator plasma in the
SAR regions by MHD waves whose fundamental mode
is proportional to ∝ exp(±iθ) will be significant.

(vi) Our results may also be useful for investigating
the dispersion properties of MHD waves such that the
axial wavelength and azimuthal wavenumber of the

ω v A ap⁄( ) j1 k, κ1 kA⁄+( ) 1 0.25∆ ap( )+( ).=

kA
2
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fundamental mode, whose amplitude is proportional to
∝ exp(±3iθ – iωt), exceed those at resonance (1) by a
factor of three. Taking into account not only the main
term ∝ expilθ but also the resonant term ∝ exp3ilθ in
the expression for the total confining magnetic field [7]
leads to a correction δω ∝ , whose value is deter-
mined by (36), while the correction to the eigenfre-
quency introduced by the main (nonresonant) term is

δω ∝ . Thus, we can see that these corrections may
be comparable in magnitude.

4. STRUCTURE OF THE SAR AT THE PLASMA 
EDGE IN A STELLARATOR

The symmetry properties of the problem allow us to
investigate the SAR structure by looking for a solution
to Eqs. (8) in the form of a wave envelope:

(44)

Here, along with the fundamental harmonic, which is
excited by the antenna and is proportional to ∝ expikzz,
and the first satellite harmonic, which is proportional to
∝ expi(kz – ks)z and whose amplitude has a singularity

 ∝ [  – (Nz – Ns)2]–1 inside the SAR region in a
cold plasma, we also include the second satellite har-
monic, which is proportional to ∝ expi(kz – 2ks)z. The
reason for this is that because of the helical ripple in a

confining magnetic field the harmonic  is most

strongly coupled to  and .

We analyze Eqs. (8) in the narrow layer approxima-
tion. In other words, we assume that the width δr of the
resonance region is small in comparison with the char-
acteristic dimension a* on which the plasma density
varies and impose the conditions

(45)

which imply that, in the SAR region, the variations of
the fields in the radial direction are much larger than
those along the poloidal and axial coordinates.

4.1. Solution to Eqs. (8) in the SAR Region

Under the above assumptions, Eqs. (8) reduce to the

following coupled equations for the amplitudes ,

, and :
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(46)

(47)

(48)

For simplicity, here and below, we omit the subscript l
in  and ∆l. The small coefficient β of the second
derivative in (47) is equal to

(49)

The right-hand side of Eq. (47) varies slowly in the
SAR region; in the order of magnitude, we have A(+) ~

(Nz – Ns)2 .

The solution to the inhomogeneous Airy equation (47)
that describes a wave carrying the energy away from
the SAR region and decreases in inverse proportion to
the distance from the SAR has the form

(50)

where

(51)

The propagation direction of a small-scale wave is gov-
erned by the sign of s:

(52)

The width δr ~  of the resonance region is deter-
mined by the helical ripple amplitude of the confining
magnetic field and is equal in order of magnitude to

(53)

Outside the SAR region, the amplitude  of the
second satellite harmonic is a second-order quantity,

 ~ ∆  ~ ∆2  [1]. When approaching the

SAR region, the amplitude  increases more

sharply than the amplitude ; namely,  ∝

[  – (Nz – Ns)2]–2. As a result, the amplitude of the
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first satellite harmonic grows more gradually. Inside the
SAR region, the amplitudes of the satellite harmonics
are much larger than those on the outside; in order of
magnitude, we have

(54)

These estimates imply that, even inside the SAR
region, the satellite harmonics have a negligible impact

on the radial profile (r). Near the SAR region, the

amplitude  of the first satellite harmonic of the
azimuthal electric field changes insignificantly:

(55)

Inside the SAR region, this component of the wave
electric field remains equal in order of magnitude to

that on the outside:  ~ ∆ .

In the resonance region, the amplitude  of the
first satellite harmonic of the axial component of the
electric field of an MHD wave has a higher order singu-

larity than , specifically,  ∝ [  – (Nz –

Ns)2]–2. Nevertheless, the amplitude  remains

small in comparison with , so that, in order of
magnitude, we have

(56)

4.2. SAR Structure with Allowance for Collisions 
between Plasma Particles, the Finite Ion Larmor 

Radius, and Electron Inertia

With allowance for the effects of collisions, the
finite ion Larmor radius, and electron inertia, the results
of the previous section coincide with the results
obtained in [3]. To incorporate these effects, it is suffi-
cient to make the following replacement in Eq. (47):

(57)

Here, the term i  describes collisions between
plasma particles [12] and the quantity εT accounts for
the effects of the finite ion Larmor radius ρLi [13]. An
analysis of (57) shows that, in studying the SAR struc-
ture, electron inertia can be neglected under the condi-
tion

(58)
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and the finite ion Larmor radius can be ignored when

(59)

As the plasma temperature in the SAR region
increases (all other conditions being the same), the
effects of the finite ion Larmor radius and electron iner-
tia on the SAR structure become more significant [the
strong inequalities (58) and (59) weaken] and even turn
out to be more important than the effect of the helical
ripple in a confining magnetic field [the strong inequal-
ities (58) and (59) change sign]. In this case, the reso-
nance region broadens and is described by expression
(3) and the amplitudes of the satellite harmonics
decrease and become equal in order of magnitude to
[cf. (54)]

(60)

4.3. Conclusions Regarding the Effect of the Helical 
Ripple in a Confining Magnetic Field on the SAR 

Structure

We have studied the distributions of the electromag-
netic fields of MHD waves in the SAR region (2) in a
cold plasma in a strong uniform axial magnetic field
and a weak helical magnetic field. The results obtained
can be summarized as follows.

(i) We have determined conditions (58) and (59),
under which the helical ripple in the confining mag-
netic field B0 affects the SAR structure more strongly
than the finite ion Larmor radius ρLi and electron iner-
tia. In stellarators, conditions (58) and (59) can be sat-
isfied at the plasma edge, where the deviation of the
magnetic surfaces from being circular is most pro-
nounced and the plasma is hotter than in the core.

(ii) The helical ripple in the field B0 does not change
the RF power absorbed by the plasma in the SAR
region. Our investigations generalize the analysis of
Girka et al. [3], who studied plasma heating near the
SAR and determined the absorbed power, to the case in
which the effect of the helical ripple is comparable in
importance to or even stronger than the effects of the
finite ion Larmor radius and electron inertia [see
replacement (57) and estimate (60)].

(iii) In contrast to Alfvén waves, FMS waves with
the axial wavenumber |kz| > ω/c and frequency ω > ωci

experience no fundamental AR. (The conversion and
resonant absorption of FMS waves with |kz | < ω/c and
ω > ωci in the edge plasma were studied by Girka and
Stepanov [6].) However, if such FMS waves satisfy the
additional condition |kz – ks | < ω/c, then they will expe-
rience SAR (2) in a stellarator plasma. Since, in the

core of a fusion plasma, we have  > , the point

r =  of this SAR lies in the plasma edge. Conse-
quently, this SAR may give rise to undesirable heating
of the edge plasma in stellarators.

β @ Nz
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(iv) Interest in studying the SAR structure in the
case of a moderately rippled helical magnetic field is
also associated with the following circumstance.
Before proceeding to a detailed analysis of the prob-
lem, it is natural to suppose that, in the SAR region, the
satellite harmonic may be larger in amplitude than the
fundamental harmonic, in which case we could expect
that striction nonlinearity would come into play and/or
the turbulent absorption of RF power would occur via
the satellite harmonic. However, a thorough investiga-
tion showed that, even in the SAR region, the amplitude

 of the satellite harmonic always remains smaller

than the amplitude  of the fundamental harmonic
[see (54)].

(v) Since, in the SAR region, the amplitudes of the
fundamental harmonics of the fields of an MHD wave
change only slightly, the ponderomotive potential U
[14] acts exclusively to displace the point of the SAR
by a small distance δrstr = (U/T)a* from the plasma
axis. Thus, the initial assumption that the striction
effects are insignificant is equivalent to the requirement
that the influence of the nonlinear effects on the SAR
structure be weaker than the influence of the helical rip-
ple in the field B0.

(vi) In the nonlinear stage of growth of cyclotron
waves, the ions are scattered by turbulent pulsations, so
that we can speak of the effective scattering frequency,

i.e., the effective collision frequency,   εl eff [15].
Since the effective frequency at which the ions are scat-
tered by turbulent pulsations is proportional to the cube
of the amplitude of the electric field of the pump wave,

accounting for the amplitude  of the first satellite
harmonic leads to a significant increase in εl eff inside
the SAR region in comparison with that on the outside,
in which case we obtain an order-of-magnitude esti-

mate εl eff  εl eff(1 + 1.5 ).
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Abstract—The feasibility of using Bernstein modes for producing electron cyclotron current drive in toroidal
devices is examined. It is shown that the negative role of trapped particles may reduce upon increasing the lon-
gitudinal slowing-down factor of waves. Numerical geometrical-optics calculations of the propagation and
absorption of waves were performed for the scheme in which radiation is launched from the low-field side as
an ordinary wave, linearly converted into an extraordinary wave, and finally converted into Bernstein mode. An
analysis is performed for medium-sized toroidal devices. Based on numerical simulation, the parameters deter-
mining the efficiency of current drive, namely, the characteristic values of the resonant energies and the longi-
tudinal slowing-down factor of waves in the region where most of the microwave power dissipates, are found.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As has already been noted (see, e.g., [1, 2]), the use
of Bernstein modes (B-modes) for producing nonin-
ductive currents in toroidal devices has some advan-
tages. First, for these waves, a significant longitudinal
slowing-down factor may be achieved in the region
where the energy is dissipated. The longitudinal (with
respect to the constant magnetic field B) refractive
index can attain the value n|| ≈ n⊥ Bθ/Bϕ, where Bϕ is the
toroidal magnetic field component, Bθ is the poloidal
component, and n⊥  is the transverse refractive index1

(see [1, 3]). In the absorption region, n⊥  can be esti-

mated as n⊥ ~  [1] (where βT is the ratio of the ther-
mal velocity vT to the speed of light c) and the longitu-
dinal slowing-down factor attains an appreciable value,

n|| ≈  [1–3], which increases the efficiency of non-

inductive current drive (CD) [4–6]. Second, the absorp-
tion coefficient of the electrostatic Bernstein modes is a
factor of about mc2/Te (where m is the electron mass and
Te is the electron temperature) higher than the absorp-
tion coefficients of the normal electromagnetic modes.
Hence, in an inhomogeneous magnetic field, most of
the wave power is absorbed in the region where the

1 For Bernstein modes excited in a toroidal plasma, the toroidal
component of the wave vector is naturally conserved, whereas its
component lying in the plane of the minor cross section almost
coincides with the transverse wave vector. The longitudinal com-
ponent of the wave vector is determined by the projection of the
poloidal component of the wave vector onto the field direction
rather than by the toroidal component.

βT
1–

1
βT

-----
Bθ

Bϕ
------
1063-780X/00/2609- $20.00 © 20781
wave is in resonance with higher energy electrons; con-
sequently, the efficiency of CD increases.2 

As the device sizes increase, the traditional (“classi-
cal”) method of excitation of Bernstein modes by
launching the extraordinary (X) wave from the high-
field side and its conversion into the B-mode in the
upper hybrid resonance (UHR) region [3] becomes
inefficient because of the strong cyclotron absorption
of the X-mode (before it reaches the UHR region). In
addition, the “inner” launching poses some technolog-
ical problems. For this reason, it is worthwhile to con-
sider the method for exciting B-modes via linear con-
version from the ordinary (O) to extraordinary (X)
wave and, finally, to the Bernstein mode, i.e., the so-
called O–X–B mode conversion scheme proposed in
1973 [7] for heating an overdense plasma and success-
fully implemented in W7-AS [8]. Previously, the O–X–B
mode conversion was observed in ionospheric experi-
ments in the radio frequency range (the so-called “radio
window” effect [9]).

An assessment of the CD efficiency by such a
sophisticated scheme requires numerical simulation of
the propagation and absorption of radiation (it was per-
formed for the first time in [10, 11] in the model formu-
lation of the problem).

This paper is arranged as follows. In Section 2, we
consider an additional mechanism for enhancing the
CD efficiency at higher n|| by reducing the negative
effect of the trapped electrons. In Section 3, the charac-
teristic features of the linear mode conversion scheme

2 The efficiency is proportional to the square of the resonant elec-

tron velocity  [4].v res
2
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are briefly outlined. In Section 4, we present the results
of numerical simulations of the propagation and
absorption of radiation and estimate the CD efficiency
for the O–X–B scheme. In Section 5, we draw some
conclusions.

2. REDUCTION OF THE EFFECT OF TRAPPED 
ELECTRONS AT HIGH VALUES OF n||

If we ignore toroidal inhomogeneities,3 then, for
electron cyclotron CD (ECCD) at the fundamental har-
monic of the gyrofrequency, all possible current com-
ponents can be written in the form of the sum [5, 6]

(1)

where the first term jFB corresponds to the Fisch–
Boozer mechanism associated with the anisotropy of
plasma conductivity [4], the second term j|| is the cur-
rent associated with an increase in the longitudinal
electron momentum due to both the absorption of the
longitudinal momentum of electromagnetic waves [4,
6] and the ponderomotive action of the static magnetic
field [6, 12], the third term jfr (of negative sign)
describes the current degradation associated with the
neoclassical friction between trapped and passing elec-
trons [6, 13], and the last term jOk is the Ohkawa current
related to the imbalance of trapped and untrapped pop-
ulations under the action of electromagnetic radiation
[14]. The Ohkawa current is negative for sufficiently
low values of n|| [4] but can change its sign as n||
increases4 [1].

Within the approximation of a “flat-bottom” mag-
netic well [5, 6, 13, 15], following the method
described in [5, 6], we write the general expression for
the sums of parasitic components:

(2)

where Pu is the power density absorbed by transit (other

than “banana”) particles, Dc = νc , νc is the Coulomb
collision frequency of thermal electrons, α = (1 + Zeff)/2,
Zeff is the effective ion charge number, x is the cosine of
the electron pitch angle, v is the particle-velocity mod-

3 For instance, ripples.
4 The steady-state Ohkawa current is associated with the passage of

transit particles into the “banana” region. As n|| increases, the
angle between the lines along which quasilinear diffusion occurs
and the boundary of the banana domain in phase space decreases.
(In principle, at high particle energies, such a distortion in the ori-
entation of quasilinear-diffusion lines can also be produced by
relativistic effects; however, for n|| ≠ 0, this effect takes place even
if the relativistic change of mass is omitted.) For a sufficiently
high n||, quasilinear diffusion leads to the conversion of banana
particles into transit particles and the Ohkawa current changes its
sign (see [1]).

j jFB j|| j fr jOk,+ + +=

j fr jOk+

=  
4e

4 2α+( )
---------------------xc

Pu

Dcm
----------- v 2〈 〉 R 2 xd

xc

1

∫ vv 3 f a v x,( )d

0

∞

∫–
 
 
 

,–

v T
3

ulus, fa(v, x) is the asymmetric component of the distri-
bution function, xc = (2ε/(ε + 1))1/2 is the quantity deter-
mining the boundary of the banana domain in phase
space, ε is the inverse aspect ratio, and m〈v2〉R/2 is the
average kinetic energy of resonant electrons.

It is evident from formula (2) that, as the antisym-
metric part of the distribution function increases (pro-
vided that the values of Pu and 〈v2〉R remain
unchanged), the toroidal degradation of the electron
CD reduces. It is the asymmetric part of the distribution
function that increases with increasing n|| [4], which
leads not only to an increase in the current component
j|| associated with the longitudinal wave momentum,
but also to a reduction of negative toroidal effects. It
should be emphasized that relation (2) is general and is
valid even in the case when a “parasitic” current is only
associated with the component jfr (see [6]). In the case
of high values of Zeff (the Lorentz gas), due to the
inverse dependence of f a on the parameter α = (1 +
Zeff)/2, the effect of a finite value of n|| on the toroidal
degradation of the ECCD is negligibly small [5].

3. THE SCHEME USING THE O–X–B MODE 
CONVERSION

In this scheme, radiation is launched as an ordinary
wave from the low-field side at a certain optimal (“crit-
ical” [9]) angle. In this case, at the point where the
plasma frequency ωp is equal to the radiation frequency
ω, the O-mode is completely converted into the
X-mode. The critical angle is determined by the longi-
tudinal refractive index in the region of wave conver-
sion:

(3)

where u = /ω2 and ωc is the electron gyrofrequency.
If the launching angle is not optimal, then the power
conversion coefficient decreases (see, e.g., [7, 8, 16]).

Achieving a significant conversion for a wave beam
with a finite angular width is a separate complicated
problem; perhaps for this reason the use of the O–X–B
scheme for plasma heating has long been considered to
be conjectural. However, successful experiments in
W7-AS [8] demonstrated that the problem of creating
an appropriate beam could be solved.

4. NUMERICAL SIMULATIONS

To estimate the efficiency of noninductive CD by
the O–X–B scheme, a numerical code was created and
computations were performed.

A plasma was assumed to be a cylinder with the axis
in the y-direction. The radial profile of the current

n|| n||opt
u

1 u+
---------------- 

 
1/2

,= =

ωc
2
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density was taken to be

(4)

where r is the radial coordinate in the plane of the
minor cross section and a is the minor plasma radius.

The ray trajectories and the absorbed power were
calculated in a geometrical-optics approximation, the
Hamiltonian of the ray trajectories being determined
from the dispersion relation. For a cold-plasma
approximation, we used the well-known Appleton–

j j0 1 r2 a2⁄–( ),=

z, cm

Ip = 100 kA

ω = ωc
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6 8
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Fig. 1. Ray trajectories for Ip = 100 kA: (a) minor cross sec-
tion and (b) equatorial cross section.
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Hartree formula [9]. Near the UHR region, we used
the dispersion relation with the “warm” correction
(see [3, 17]):

(5)

G n2 no
2–( ) n2 nx

2
–( ) βT

2
wn6D– 0,= =

D 3 ϑ 1 w–( )cos
4 6 3u– u2+

1 u–( )2
-------------------------- ϑ ϑsin

2
cos

2
+=

+
3

1 4u–
--------------- ϑ ,sin
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Fig. 2. Same as in Fig. 1, but for Ip = 250 kA.
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where ϑ  is the angle between the magnetic field line

and the wave vector k, w = /ω2, and no and nx are the
refractive indices for the ordinary and extraordinary
waves in the cold-plasma approximation. For the

parameter χ = /2u on the order of 0.1–0.2, the
Hamiltonian is determined from the conventional dis-
persion relation for Bernstein modes [3, 17].

When calculating the ray trajectories, the starting
point on the xz plane was taken to lie in the cut-off
region (ωp = ω). It was assumed that the ordinary wave
at this point had the wave vector k aligned with the
magnetic field. In this case, the radiation was com-
pletely converted and then propagated as an extraordi-
nary wave. The wave was reflected at a certain point,
passed through the UHR region, and was converted into
the Bernstein mode. The calculation of the ray trajec-
tory stopped when the optical depth attained unity: τ ≈
1. To determine the vacuum launching parameters, the
ray trajectory of the ordinary wave was calculated from
the conversion point backward to vacuum.

The relative ECCD efficiency η ~ (vres/vT)2 is esti-
mated for the conventional Fisch–Boozer mechanism
and is determined by the parameter of the energy shift
in the region where most of the power is absorbed: Z2 =

[(1 – )/n||βT]2 = (vres/vT)2 [4–6]. However, even with
these constraints, we can demonstrate the efficiency of
the O–X–B scheme for noninductive CD.

Estimates were performed for the plasma parame-
ters typical of devices such as W7-AS, where the
plasma frequency is higher than the gyrofrequency and
conditions for the O–X–B mode conversion are satis-
fied. The major plasma radius R is equal to 105 cm, and
the minor radius ‡ is equal to 10 cm. The magnetic field
B0 in the center of the chamber varies within the range
2.2–2.4 T. The radiation frequency f is equal to 70 GHz.
The maximum plasma density and temperature at the
plasma center are equal to N0 = 1.5 × 1020 m–3 and T0 =
500 eV, respectively. The radial dependences of the
density and temperature correspond to those in W7-AS
[8]:

(6)

Figures 1 and 2 illustrate the set of ray trajectories
that differ from each other by launching points and
angles. The magnetic field in the center of the chamber

is 2.4 T, which corresponds to u0 = /ω2 = 0.92. In the

figures, the circles of critical density w = /ω2 = 1 are
depicted by dotted lines and the gyro-resonance lines

u0 = /ω2 = 1 are shown by dashed-and-dotted lines.
In the ray trajectories, the dashed segments correspond
to the paths of the “cold” ordinary waves to the conver-

ωp
2

n⊥
2 βT

2

u

Te

T0

1 c2r a⁄( )
2c1( )

+( )
------------------------------------------, Ne

N0

1 c4r a⁄( )
2c3( )

+( )
------------------------------------------,= =
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2
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2
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2

sion points (which are marked by crosses), the solid
lines show the paths of the extraordinary waves and the
“warm” modes, and the heavy dots in the ray trajecto-
ries mark the points where the optical thickness τ
reaches unity. Figure 1 corresponds to a total plasma
current Ip of 100 kA. The longitudinal refractive index
in the absorption region varies monotonically from n|| =
0.44 for curve 5 to n|| = 1.4 for curve 1. In Fig. 2, corre-
sponding to Ip = 250 kA, n|| varies from 1.01 for curve
4 to 1.84 for curve 1.

In all of the runs, the parameter Z2 = [(1 –

)/n||βT]2 = (vres/vT)2 determining the relative energy
of resonant electrons was Z2 ≈ 6; hence, the resonant

electron velocity was ~ vT. When the ordinary wave
was absorbed in a plasma with similar parameters (e.g.,
with the same dimensions, temperature profile, and
magnetic field), but with a plasma density somewhat
below the critical density (i.e., when the conditions for
wave propagation held), the optical thickness did not
exceed unity. In this case, the resonant electron velocity
was vres = vT and the generation efficiency was approx-
imately six times lower even if the dependence of the
CD efficiency on n|| was neglected.

5. CONCLUSION
The above theoretical estimates and numerical sim-

ulations have shown that B-modes can be successfully
used to obtain highly efficient CD in toroidal devices,
at least in medium-sized ones, in which the O–X–B
mode conversion might be an efficient method for the
excitation of B-modes. The question of the methods for
the excitation of Bernstein modes in large devices
remains open. Another open question related to this
scheme is to what extent the resonances at higher har-
monics reduce the CD efficiency. These questions
require further investigation.
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Abstract—Results are presented from studies of the focusing of wide-aperture low-energy (100–400 eV) and
moderate-energy (5–25 keV) beams of heavy-metal ions by a high-current electrostatic plasma lens. It is found
experimentally that, because of the significant electron losses, the efficient focusing of such beams can be
achieved only if the external potentials at the plasma-lens electrodes are maintained constant. Static and
dynamic characteristics of the lens are studied under these conditions. It is shown that, as the beam current and
the electrode voltage increase, the maximum electrostatic field in the lens tends to a certain limiting value
because of the increase in the spatial potential near the lens axis. The role of spherical and moment aberrations
in the focusing of wide-aperture low-divergence ion beams is revealed. It is shown that, even when spherical
aberrations are minimized, unremovable moment aberrations decrease the maximum compression ratio of a
low-energy heavy-ion beam because of the charge separation of multiply charged ions in the focal region. At
the same time, as the ion energy increases, the role of the moment aberrations decreases and the focusing of
high-current heavy-ion beams by a plasma lens becomes more efficient than the focusing of light-ion (hydro-
gen) beams. This opens up the possibility of using electrostatic plasma lenses to control ion beams in high-dose
ion implanters and high-current accelerators of heavy ions. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Research on electrostatic plasma lenses (PLs) capa-
ble of focusing intense ion beams was initiated in [1, 2]
(see also [3]). Experiments with low-current steady-
state ion beams carried out in 1970s confirmed Moro-
zov’s concept of using the magnetic insulation of elec-
trons and the condition that the magnetic field lines are
equipotential in order to control intense plasma flows
and neutralized ion beams. At the same time, it turned
out that plasma-optic systems proposed for focusing
ion beams operate under conditions when the voltage ϕl

applied to the fixing electrodes of the lens is substan-
tially higher than the intrinsic potential of an unneutral-
ized ion beam (ϕb = Ib/Vb, where Ib is the beam current
and Vb is the beam velocity). By the late 1970s, it
became clear that, for ion beams with relatively low
currents of 10–100 mA and ion energies on the order of
10 keV, when the condition ϕl ≥ ϕb holds, the concep-
tual scheme of a PL proposed by Morozov operates not
under quasineutral plasma conditions (as was expected)
but under conditions of overneutralization of the beam
space charge, i.e., under conditions typical of a Gabor
lens.

By the early 1980s, plasma ion sources generating
quasi-steady repetitive pulsed beams with ion energies
of tens of kiloelectronvolts and currents in the ampere
range were created first for neutral injectors and later
for technological applications. The challenge then
arose to design plasma-optic facilities of a new genera-
tion that would be able to efficiently control the ion
beams for which the condition ϕl < Ib/Vb was satisfied.
At the same time, intrinsic magnetic fields of these
1063-780X/00/2609- $20.00 © 20786
beams were still significantly lower than the external
magnetic fields. It turned out that the conditions typical
of laboratory experiments with such beams satisfied the
theoretical principles of static plasma optics.

A new stage in experimental studies on electrostatic
PLs began with the use of wide-aperture repetitive
pulsed beams of light hydrogen ions with a current up
to 2 A, an energy up to 25 keV, and a duration up to
100 µs [4, 5], which made it possible to operate with
high-current quasineutral plasmas. Under these condi-
tions, static and dynamic characteristics were studied
for high-current PLs [5] in which a quasineutral
medium is formed by fast ions of a passing beam and
electrons from the secondary ion–electron emission. In
these experiments, it was found that the magnitude of
the current of the passing ion beam significantly affects
the character of the electrostatic potential distribution
in the PL volume and the value of the limiting electric
field achievable in the lens. Thus, by varying the beam
current, the configuration of magnetic field lines, the
number of fixing electrodes, and the distribution of
the external potential at them, it is possible to control
the radial profile of the electric potential in a PL in the
desired fashion and, in particular, eliminate spherical
aberrations. In [6], the focusing of wide-aperture low-
divergence beams of hydrogen ions was studied and a
strong influence of the spherical aberrations was dem-
onstrated. It was shown that the maximum compression
ratio of such beams in the focal region is not too high
(about 2–5) even with minimum spherical aberrations
in the PL and that this ratio decreases as the beam cur-
rent increases.
000 MAIK “Nauka/Interperiodica”
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It was shown in [7] experimentally and theoretically
that the presence of spherical aberrations may also play
a positive role. By varying them, it is possible to control
the radial profile of the beam at a target positioned in a
given cross section on the z-axis and, in particular, to
reach a uniform distribution.

In the absence of spherical aberrations, the maxi-
mum compression ratio of a low-divergence monoener-
getic beam in the focal region can be limited by the field
of an unneutralized space charge of the beam if jmax ≤
j0exp( MbVb/2eαIb), where Vr0 = R0Vb/F, F is the PL
focal length, and α is the experimentally measured
coefficient of neutralization of the beam charge in the
focal region. In experiments with hydrogen ions, the
measured neutralization coefficient was equal to α ≤
10–2 [6]. The limitation on the maximum compression
ratio of the beam is also governed by the unremovable
moment aberrations arising due to the finite value of the
azimuthal velocity of the fast particles of the focused
beam in a PL magnetic field. Estimates of this effect [8]
show that the minimum beam radius at the PL focus is
limited by the value

(1)

where R0 is the initial beam radius, ϕb is the accelerat-
ing potential, H0 is the magnetic field in a PL of length

L, Vb = , and n is the ion charge.

Now, it is clear that, under experimental conditions
characteristic of the focusing of moderate-energy
hydrogen-ion beams [6], a relatively low value of the
maximum compression ratio of the beam may be attrib-
uted to the effects of the field of an unneutralized beam
charge and moment aberrations. Estimates show that
these two factors produce nearly identical effects. The
aim of this paper is to study the focusing of wide-aper-
ture repetitive pulsed beams of low-energy (100–
400 eV) and moderate-energy (5–25 keV) heavy-metal
ions by an electrostatic PL and investigate the static and
dynamic characteristics of the PL operation under these
conditions.

2. EXPERIMENTAL SETUP
AND MEASUREMENT METHODS

In experiments, wide-aperture low-divergence
beams of heavy-metal ions were produced with the help
of a highly efficient two-chamber vacuum-arc MEVVA
ion source [9]. In this source, a vacuum arc with a cur-
rent up to 200 A was ignited in the cathode-material
vapors. The cathodes were made of Cu, Zn, Mo, and C.
Through a grid hole in the anode, the arc-discharge
plasma penetrated into the second chamber of the
source. A three-electrode accelerating/decelerating
multiaperture ion-optical system (IOS) was used to out-
put and form a repetitive pulsed ion beam with a pulse
duration of 100 µs and a peak current up to 800 mA in

Vr0
2

Rmin

R0VbH0L
ϕbcπ

-----------------------,=

neϕb/M
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the ion energy range 5–25 keV or 50 mA in the ion
energy range 100–400 eV. To form moderate-energy
ion beams, we used an optimized IOS with 84 individ-
ual profiled cells 4 mm in diameter; for low-energy
beams, we used an optimized IOS in which 325 cells
2 mm in diameter were positioned inside a circle
5.6 cm in diameter.

The ion source produced a low-noise ion beam at a
repetition rate of 1 Hz with a sufficiently uniform den-
sity profile. The experimental setup is shown in Fig. 1.
The ion source (1) with an IOS (2) was located 30 cm
from the midplane of the PL. We used a nine-electrode
PL (3) with a 70-mm-diameter entrance aperture with a
length of L = 120 mm; the pulsed (τ = 0.2 ms) insulat-
ing field Hl attained 0.1 T. The maximum dc voltage
applied to the central annular electrode of the PL was
ϕl ≤ +4 kV. All the other electrodes symmetrically
located around the central one were connected in pairs
(first, second, and third) to the corresponding points of
a voltage divider. The fourth pair of extreme electrodes
was grounded.

In the experiments, we used an optimum configura-
tion of the magnetic field lines as found experimentally
in [4]. According to the equipotentiality principle (Φ =
kψ, where k is the proportionality factor and ψ is the
magnetic flux function), such a configuration implies
the minimization of the axial magnetic tube inside
which the electric field does not depend on the distribu-
tion of the external potential over the fixing electrodes.

The two-component quasineutral plasma in the PL
volume consisted of fast beam ions and slow magne-
tized electrons and was produced due to the secondary
ion–electron emission from the electrode surface bom-
barded by the particles from the periphery of the beam.
As for the slow ions produced by the ion beam through
the impact ionization of the residual gas, the experi-
ments show that, because of the low ionization ability
of heavy ions, their influence can be neglected up to gas
pressures of ~2 × 10–4 torr. This pressure value is one
order of magnitude higher than that in the case of focus-
ing of hydrogen beams with the same energies. In all of
the experiments, the pressure was maintained at a level

1 2 3 4 5 6 7

Fig. 1. Schematic of the device: (1) vacuum chamber,
(2) ion source, (3) ion-optical system, (4) plasma lens, (5)
ion beam, (6) probes, and (7) collector.
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Fig. 2. Voltage applied to the lens electrodes as a function of
the supply voltage of the lens for the cases of rigid and non-
rigid fixation of the applied voltage for Hl = 0.1 T, Ib =
550 mA, and ϕb = 19 kV; RC-divider: (1) central electrode,
(2) first pair, and (3) second pair; R-divider: (1) central elec-
trode, (2) first pair, and (3) second pair.
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Fig. 3. Floating potential on the lens axis as a function of
(a) the beam current at ϕl = 2.6 kV and (b) the central-elec-
trode potential at Ib = 250 mA for Hl = 0.1 T and ϕb = 20 kV.
of 10–5 torr. The parameters of the beam and the plasma
in the PL volume and drift space were measured with
movable Langmuir and capacitive probes. The currents
and potential were measured with sensitive Rogowski
coils, sectioned collectors, and low-inductance voltage
dividers.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments show that, unlike the case of
hydrogen-ion beams, when the electron current to the
PL electrodes is nearly one order of magnitude lower
than the beam current, the passage of heavy-ion beams
through the lens is accompanied by a substantially
higher electron current to the electrodes (comparable
with the beam current). It is seen from Fig. 2 that, when
a resistance voltage divider (R-divider) is used, the
maximum electron currents flow to the lens electrodes
controlling the potential in the middle part of the beam.
This evidences that the beam produces much more
electrons than is needed for the rearrangement of the
vacuum electric field and neutralization of the space
charge of the beam. At high beam currents, it becomes
almost impossible or inefficient to fix the external
potentials at the PL electrodes with the help of a usual
R-divider because the electric field is forced out toward
the central PL electrodes (the first and second pairs).
Note that forcing the electric field out from the axial
region of the lens toward the periphery with increasing
the beam current was first observed in experiments on
the focusing of hydrogen ions [5]. It was shown in those
experiments that this effect can be used to minimize
spherical aberrations that naturally arise if the distribu-
tion of the external potential over the fixing electrodes
of the PL is not optimized. Note also that, under these
conditions, the floating potential on the axis remained
at a level of 10–15 V. Our experiments show that the use
of a simple RC-divider ensures that the external poten-
tials at the PL electrodes are rigidly fixed and are equal
to their vacuum values (Fig. 2). In this case, as the beam
current and the potential ϕl increase, the average elec-
tric field in a high-current PL increases more slowly,
because the potential on the beam axis increases due to
the more intense ejection of electrons from the axial
region. This gives rise to spherical aberrations
adversely affecting the particle focusing. The increase
in the potential on the axis occurs for different distribu-
tions of the external potential over the fixing electrodes
in a wide range of beam currents. As an illustration,
Fig. 3 shows the floating potential on the axis in the
midplane of the PL as a function of both the beam cur-
rent and the central-electrode potential for fixing-
potential distributions close to the optimum ones. It is
seen that there is a clear tendency toward an increase in
the potential as the beam current or lens voltage
increases.

It was established experimentally that, when the
external-potential distribution over the fixing elec-
trodes is close to the optimum 0-distribution found in
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
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Fig. 4. Radial profile of the potential at the midplane of the
lens for Ib = 250 mA, ϕb = 20 kV, and Hl = 0.1 T at ϕl =
(1) 500 and (2) 1000 V.
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Fig. 5. Gain factor of the current density jb on the beam axis
as a function of the potential at the central electrode of the
lens (z = 20 cm) for Hl = 0.1 T and different values of the
accelerating voltage: Ub = (1) 4, (2) 12, and (3) 20 kV; jb0 is
the current density with the lens switched off.
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[3] (in this case, according to the equipotentiality prin-
ciple, Φ(z, R) ~ H0z(z, 0)), it is possible to achieve a
nearly parabolic radial distribution of the potential in
the midplane of the lens (see Fig. 4; the solid lines are
parabolas).

Figure 5 shows the degree of compression of the
focusing beam of copper ions as a function of the cen-
tral-electrode potential ϕl for different values of ϕb.
Measurements were carried out at the same distance z
from the midplane of the PL, under conditions when
spherical aberrations were minimized (i.e., with the 0-
distribution). The focusing occurs at all of the beam
energies, and the degree of compression rapidly
increases with ϕb. Figure 6 shows the radial profiles of
the ion-beam current at the probe located near the col-
lector when the PL is switched on or off. The figure also
shows the radial profile of the floating potential in the
beam. It is seen that, in the region occupied by the
focusing beam (for the central-electrode potential ϕl =
1 kV), the potential increases (note that, under these
conditions, the central-electrode potential required for
focusing the beam onto the probe is ϕl = 3.5 kV). The
experiments show that the potential of an unneutralized
space charge at the beam focus attains a value on the
order of 120 V and increases with increasing the beam
current.
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Fig. 6. Radial profile of the floating potential ϕf and the
beam current to the probe for Ib = 380 mA and ϕb = 15 kV
(copper ions). Squares correspond to ϕl = 0, and circles cor-
respond to ϕl = 1 kV.
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Figure 7 shows the maximum beam-current density
at the focus as a function of the total current flowing
through the lens. The values of the compression ratio of
the beam are also shown.

It is seen that, for Ib ≥ 400 mA, there is a tendency
toward a decrease in the compression ratio even though
the beam-current density in the crossover continuously
increases and reaches the value ~170 mA/cm2 when the
total beam current is equal to 800 mA. Apparently, this
may be attributed to the observed decrease in the elec-
tric field throughout the lens with increasing both the
beam current and the potential of the focused beam. We
note that the role of the PL does not reduce only to
focusing the beam on the target. The presence of the PL
also assists the passage of the ion beam through the
transport channel. It is seen from Fig. 8 that, when the
PL is switched on, the total beam current at the collec-
tor increases appreciably. The measurements show that,
in this case, almost the entire beam current emerging
from the source is gathered by the collector. This indi-
cates that the ion beam is somewhat divergent. This is
consistent with the fact that the thin-lens formula must
be taken into account in determining the PL focal
length for the result to agree with the calculated value.

In our previous experiments with wide-aperture
hydrogen-ion beams formed with a similar IOS, this

0.5
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Fig. 9. Radial profiles of the beam current at the focus for
different distributions of the external potential over the lens
electrodes for ϕl = 200 V, ϕb = 400 V, Ib = 35 mA, and Hl =
0.1 T (Mo ions). Squares correspond to minimal spherical
aberrations, and circles correspond to the presence of spher-
ical aberrations.
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effect was less pronounced because of a lower value of
the initial beam divergence. Thus, these experiments
demonstrate another advantage of electrostatic PLs,
namely, the ability to correct imperfections of IOSs and
form almost divergenceless beams.

The experiments with wide-aperture low-energy
(100–400 eV) beams of heavy multiply charged ions
revealed how higher order aberrations of a high-current
PL (specifically, moment aberrations) affect the focus-
ing of such beams. Experiments with Mo, Cu, and Zn
ions showed that, when passing through a PL in which
spherical aberrations are minimized, the beam acquires
a stepped radial profile, which is especially pronounced
in the focused beam (Fig. 9). At the same time, under
these conditions, the profile of the focused beam of sin-
gly charged carbon ions remains monotonic. In accor-
dance with formula (1) and the data from [10], the pres-
ence of the steps and their number can be unambigu-
ously related to the charge composition of the ion beam
produced by a vacuum-arc source, because, under these
conditions, the PL makes a charge separation in the ion
beam.

Thus, a high-current PL can be used to separate
high-current wide-aperture ion beams by the charge-to-
mass ratio. As the energy increases, the influence of the
moment aberrations weakens appreciably, and, even for
heavy-ion beams with energies of tens of kiloelectron-
volts, their role becomes negligible. The experimental
results show that the focusing of well-neutralized
heavy-ions beams turns out to be significantly more
efficient than the focusing of light hydrogen ions.
Therefore, the maximum compression ratio in the focal
region can be limited by incomplete neutralization of
the beam charge because of an increase in the potential
inside the beam, a possible nonmonotonic shape of the
fine structure of the radial profile of the potential
because of the finite width of the fixing electrodes, and
collective effects in a PL.

4. CONCLUSION
The results of experimental studies of the focusing

of high-current wide-aperture heavy-ion beams show
that the use of electrostatic PLs for focusing and con-
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
trolling such beams is much more efficient than for
hydrogen-ion beams.

This shows promise for designing plasma-optic
facilities intended to control the parameters of ion
beams in high-dose implanters and high-current accel-
erators of heavy ions.

The principal results of this research were reported
at the Fourth International Seminar on Plasma Elec-
tronics and New Acceleration Techniques (Kharkov,
1998), organized by Ya. B. Faœnberg.
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Abstract—Results are presented from experimental and theoretical studies of the sterilization of medical prod-
ucts by the plasmas of dc glow discharges in different gas media. The sterilization efficiency is obtained as a
function of discharge parameters. The plasma composition in discharges in N2 and O2 is investigated under the
operating conditions of a plasma sterilizer. It is shown that free surfaces of medical products are sterilized pri-
marily by UV radiation from the discharge plasma, while an important role in sterilization of products with
complicated shapes is played by such chemically active particles as oxygen atoms and electronically excited O2
molecules. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In present-day medical practice, there is a need for
cold sterilization of many thermolabile instruments and
materials. Up to now, these medical products have been
surface-sterilized by toxic gases such as ethylene oxide
and its mixtures with chlorofluorocarbons. However,
the products sterilized in this way should be aerated
over a long period (up to 24 hours); moreover, they are
very dangerous for the health of the involved staff and
are environmentally unfriendly. In this connection, it
becomes highly relevant to develop new methods for
cold sterilization. One of the most important present-
day alternatives to gaseous sterilization is sterilization
by gas-discharge plasmas. The main advantage of the
plasma sterilization technique is that the plasma, being
a chemically active medium, is created during the pro-
cesses of excitation, dissociation, and ionization of any
gas or vapor plasma-producing media (including non-
toxic media and even inert gases). Chemically active
particles exist only in the course of the discharge and
disappear practically instantaneously after the dis-
charge is switched off. These two circumstances make
it possible to completely solve the safety and ecological
problems.

Although the idea of sterilizing medical products by
gas-discharge plasmas was originated as early as the
1960s [1, 2], the efficiency of this method and the
boundaries of its applicability have not been examined
in detail up to now. Some aspects of this complicated
problem were discussed in [3–7].

Here, we report on experimental and theoretical
investigations of the physical processes that govern the
efficiency of sterilization by a low-pressure gas-dis-
charge plasma. We also describe relevant medical and
biological tests. The results obtained answer the ques-
1063-780X/00/2609- $20.00 © 20792
tions regarding the effectiveness of the plasma steriliza-
tion method and the boundaries of its applicability
when gases that are the most interesting from a practi-
cal standpoint (air, oxygen, hydrogen, carbon dioxide,
nitrogen, and argon) are used.

2. EXPERIMENTAL LAYOUT 
AND STERILIZATION TECHNIQUES

In our experiments, the plasma was created by dc
glow discharges. The discharge current and voltage
were varied over the ranges 0.05–0.7 A and 400–600 V;
the working volume of the sterilization chamber ranged
between 20 to 40 l. The working gases (the gases men-
tioned above or their mixtures) were admitted into the
chamber preevacuated by a fore pump to a residual
pressure of 3 × 10–3 torr. The working gas pressure was
varied over the range from 5 × 10–2 to 25 × 10–2 torr. The
plasma density and electron energy distribution func-
tion (EEDF) were measured by single and double
Langmuir probes made of tungsten wires 50, 105, and
240 µm in diameter, the receiving sections being from
5 to 10 mm in length. The design of the probes allowed
measurements over the entire chamber volume. In mea-
suring the current–voltage (I–V) characteristics of the
probes, the effects of discharge current pulsations were
eliminated and the measurement accuracy was
increased using the modified method described in [8].
The I–V characteristics of the probes were monitored
with a specially devised programmable diagnostic sys-
tem controlled by a personal computer. A complete
cycle of measurements included 2048 steps synchro-
nized with the change in the supply voltage. Our
method differed from the method of [8] in that, at each
step of a measurement cycle, the controlling computer
000 MAIK “Nauka/Interperiodica”
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code specified the probe current with an accuracy of
0.1 µA and provided simultaneous measurements of
the probe voltage relative to the anode, the anode volt-
age, and the discharge current. The results of measure-
ments in the prescribed ranges of the discharge current
and probe voltage were recorded as the dependence of
the probe current on the probe voltage at a given dis-
charge current and discharge voltage. The plasma den-
sity was computed from the electron saturation current,
and the EEDF was evaluated by using special subrou-
tines through differentiating the I–V characteristics
twice [9] and preinterpolating (if necessary) the mea-
sured data. In the above pressure range, the plasma den-
sity was found to be essentially pressure-independent
and was governed exclusively by the input power. With
increasing the input power density Wd from 3 × 10–3 to
30 × 10−3 W/cm3, the plasma density increased almost
linearly from 7 × 108 to 6 × 109 cm–3 (Fig. 1, curve 1),
in which case the degree of plasma inhomogeneity in
the working volume of the sterilization chamber was at
most 25–30%. The EEDF was measured in discharges
in air, oxygen, and nitrogen. In oxygen and air, the
EEDF was found to be monotonic. In some regimes of
a discharge in nitrogen, the EEDF was observed to be
inverted in the energy range 2–4 eV because of the
vibrational excitation of N2 molecules (Fig. 2, curve 3).

The electric field in the plasma volume is an impor-
tant parameter of a gas discharge. We found that, under
typical discharge conditions (ê = (4–20) × 10–2 torr and
Wd = (3–25) × 10–3 W/cm3), the electric field strength
varied in a range from about 0.1 to about 1.0 V/cm. The
related results of measurements in a nitrogen plasma
are illustrated in Fig. 3.

The UV radiation power was monitored in the fol-
lowing two ways. In the wavelength band 220–320 nm,
the UV power was measured by a DAU-81 apparatus.
In the vacuum UV and soft UV spectral bands (120 ≤ λ <
220 nm), the radiation power was measured by a spe-
cially developed photoresist-based technique, which
consisted of the following: the exposure time of a pho-
toresist (i.e., the time over which the exposed photore-
sist disappeared entirely from the substrate surface in a
specially prepared solution) was uniquely determined
by the fraction of UV radiation absorbed by the photo-
resist. The substrates with a photoresist were exposed
to UV radiation from a plasma over different times and
were developed. Then, we plotted the so-called charac-
teristic curves, showing the rate at which a photoresist
disappeared versus the exposure time. A comparison
between these characteristic curves and those obtained
from experiments carried out with sources with known
powers and UV radiation spectra allowed us to deter-
mine the power of UV radiation from the discharge
plasma with a sufficiently high degree of confidence.
We found that the radiation intensity increased with
increasing the input power density Wd (Fig. 1, curve 2)
and that the bulk of the UV power, approximately WS =
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
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Fig. 1. (1) UV radiation flux density and (2) UV radiation
power vs. the specific power input into a discharge in air at
the pressure P = 20 × 10–2 torr.

Fig. 2. Representative profiles of the EEDF calculated theo-
retically for (1) nitrogen and (2) oxygen and (3) the EEDF
measured experimentally in a discharge plasma in nitrogen.

Fig. 3. Steady-state electric field in a plasma vs. the specific
power input into discharges in nitrogen at different pres-
sures P = (1) 2 × 10–1, (2) 1 × 10–1, and (3) 4 × 10–2 torr.
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50–100 µW/cm2 at Wd = (3–7) × 10–3 W/cm3, was emit-
ted from the plasma at the wavelengths λ ≤ 220 nm.

The temperature of the sterilized products (test
objects) was measured with a chromel–alumel thermo-
couple. The discharge regimes were chosen so that the
temperature of the sterilized test objects was at most
60°ë, in accordance with the requirements for steriliz-
ing thermolabile materials.

As test objects, we used metal and glass Petri dishes
with an inner surface area of about 10 cm2. Medical and
biological investigations were carried out with spores
and with vegetative and viral microorganisms. The
results reported below were obtained in experiments
with the spores of Bacillus subtilis, which turned out to
be the most resistant to sterilization by discharge plas-
mas. The inner surfaces of the Petri dishes were
infected uniformly with spore-containing water sus-
pensions. Initially, the number of spores on test objects
varied between 105 to 108 (i.e., the mean surface den-
sity of the spores was 104–107 spore/cm2). Note that the
real density of microorganisms on the presterilized
products is much lower (102–103 cm–2); moreover,
these are mostly vegetative microorganisms, which are
substantially less resistant to sterilization in compari-
son with spores. In other words, the conditions under
which we investigated sterilization by plasma were
much more stringent than those prevailing in medical
practice. After incubation of the spores on the test
objects sterilized by plasma, we controlled the extent to
which the objects were sterilized by immediately
counting the number of colonies of the spores (i.e., the
number of spores that survived the sterilization). Then,
we plotted the survivability profiles, which reflected the
number of microorganisms that remained alive versus
the sterilization time. The sterilization efficiency was
characterized by the time during which a guaranteed
sterilization level (GSL) of 10–6 was achieved, i.e., the
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Fig. 4. Sterilization time TGSL vs. the specific power input
into discharges in air at two different pressures P = (1) 8 ×
10–2 and (2) 20 × 10–2 torr, the initial number of the spores
being 107.
time TGSL during which one of every 106 spores initially
infected on the test objects survived the sterilization.

3. EXPERIMENTAL RESULTS

In our previous papers [6, 7] aimed at revealing the
main features of sterilization by a low-pressure glow
discharge plasma, we established the following:

(i) The sterilization time in discharges in all gases
used in experiments is essentially independent of the
gas pressure over the entire pressure range under inves-
tigation, (8–25) × 10–2 torr, and decreases with increas-
ing the specific power input into the discharge (Fig. 4).
Consequently, the efficiency of sterilization in dis-
charges in each of the gases is determined by the
plasma density.

(ii) The most efficient working gas is oxygen; less
efficient gases in decreasing order are air, carbon diox-
ide, hydrogen, argon, and nitrogen.

(iii) The efficiency of sterilization by plasma
decreases as the initial density of spores on the test
objects is increased from 106 to 107 spore/cm2. The rea-
son is that, at densities of about 107 spore/cm2, the
spores stick together, forming lumps inside of which
the spores are more resistant to plasma sterilization and
thereby increase the sterilization time. Clearly, this fea-
ture of sterilization by plasma is characteristic of any
plasma sterilizer.

Our main purpose here is to investigate the main
sterilizing factors of low-temperature plasmas of low-
pressure glow discharges: the charged plasma particles,
UV radiation from the plasma, and chemically active
neutral plasma particles (such as radicals and excited
atoms and molecules).

To determine the relative efficiency of sterilization
by charged plasma particles, we carried out experi-
ments on the sterilization of metal test objects. Varying
the potential applied to a test object, we were able to
change the energy and intensity of the electron and ion
fluxes onto the object, without changing the fluxes of
chemically active neutral plasma particles or UV radia-
tion from the plasma. If the charged particles play an
important role in sterilization, then the sterilization effi-
ciency should be very sensitive to the potential applied
to test objects. We found that the survivability profiles
obtained in experiments with metal test objects held at
the anode, cathode, or floating potentials were essen-
tially identical, thereby providing clear evidence that
charged plasma particles did not affect the sterilization
process.

To analyze the relative role of UV radiation from the
discharge plasma, we carried out experiments with test
objects that were sterilized either directly or through
filters made of lithium fluoride (LiF) and a KU-1 quartz
glass 3 mm thick. In the absence of filters, the objects
were sterilized by the combined action of UV radiation
and chemically active neutral particles, while filter-pro-
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
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tected objects were sterilized only by UV radiation of
wavelengths λ ≥ 120 nm (in the case of LiF filters) and
λ ≥ 160 nm (in the case of quartz filters). Figure 5
shows the survivability profiles for spores during steril-
ization by the combined action of UV radiation and
active neutral particles and exclusively by UV radiation
in discharge plasmas in oxygen, air, and nitrogen. We
can see that, for these gases, the profiles characterizing
sterilization with and without filters are practically
identical. Similar results were obtained from experi-
ments with filters made of a KU-1 quartz glass and LiF
over the entire ranges of working pressures and specific
input powers Wd in discharges in all working gases. We
thus conclude that the most important sterilizing factor
of a discharge plasma is UV radiation. Experiments
with a photoresist showed that UV radiation was emit-
ted from plasmas at wavelengths no longer than
~220 nm. On the other hand, the fact that the experi-
mental results obtained with the use of filters with lim-
iting wavelengths of 160 and 120 nm are essentially the
same leads to the conclusion that the lower limit on the
radiation wavelength is 160 nm; in other words, steril-
ization by UV radiation with wavelengths in the range
160 ≤ λ ≤ 220 nm is the most efficient.

Note that the efficiency of sterilization by UV radi-
ation from discharge plasmas is significantly higher
than that by UV radiation from mercury lamps, which
are routinely used in medical practice. For example, the
duration of sterilization by UV radiation with the power
WS ≈ 100 µW/cm2 in a plasma sterilizer is five times
shorter than that by UV radiation from a BUV-30 lamp
with a much higher power (WS = 1500 µW/cm2). This
mainly stems from the fact that the lamp emits UV radi-
ation at significantly longer wavelengths (about
253 nm).

We point out here another important advantage of
sterilization by UV radiation of plasma: since the ster-
ilized products are immersed in the radiating plasma,
the “shadowing” effect is essentially absent. Of course,
this is primarily true of medical products free of holes
narrower than the Debye radius of the plasma electrons
(below, for brevity, the surfaces of such products will
be referred to as free surfaces). The main sterilizing
factor for products with complicated shapes (i.e., those
with slits and holes narrower than the electron Debye
radius) is chemically active neutral plasma particles
rather than a more efficient UV radiation. Accordingly,
it is very important to investigate the efficiency of ster-
ilization by these particles. To do this, we developed a
method aimed at studying sterilization by neutral
plasma particles against the background of UV radia-
tion, which is a more pronounced sterilizing factor. The
essence of the method consists in protecting the steril-
ized objects by a fine metal grid, which reflected
charged plasma particles because the grid cells were
chosen to be narrower than their Debye radii, and by a
screen, which was positioned behind the grid and was
aimed at absorbing and reflecting UV radiation of the
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
plasma. As a result, the test objects protected by both
the grid and screen could be affected only by active
neutral particles. We used grids with 0.01 × 0.01 cm
cells and with a total area S0 from 0.05 to 0.6 cm2, the
grid transmissivity being 80%. Geometrically, this sys-
tem was arranged so that, over the entire range of the
total grid area S0, the particle density in the middle of a
Petri dish was governed only by the balance between
the particle influx through a hole of area S0, the absorp-
tion of particles by the surface of the Petri dish, and by
the particle outflux from the dish back to the discharge
plasma. Consequently, as S0 increases, the density of
active neutral particles in the Petri dish should increase
up to the plasma density in a certain critical area S0. As
a result, the sterilization time, which depends on the
density of active particles, should decrease with
increasing S0 and should remain essentially unchanged
above the critical value of S0. Our experiments showed
that the sterilization time actually decreased with
increasing the hole area S0 and became the shortest at
S0 ≥ 0.2 cm2. This shortest time is the time required to
sterilize free surfaces by chemically active neutral
plasma particles. In experiments with discharges in
oxygen, nitrogen, and argon, the sterilization time was
observed to depend on the hole area S0 in an analogous
manner. As in the case of discharges in air, the steriliza-
tion time was found to be the shortest at S0 ≥ 0.2 cm2.

To compare the efficiency of sterilization by UV
radiation from the plasma with that by chemically
active neutral plasma particles, Fig. 6 shows the surviv-
ability profiles representative for discharges in oxygen
and air. We can see that, in the case of discharges in air,
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Fig. 5. Survivability profiles for the spores of Bacillus sub-
tilis, which were obtained by counting the number of colo-
nies during sterilization by the combined action of all of the
sterilizing factors of the plasma (circles) and only by UV
radiation from the plasma (squares) in discharges in (1) oxy-
gen, (2) air, and (3) nitrogen at the pressure P = 2 × 10–1 torr
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the duration of sterilization by UV radiation from the
plasma is five to six times shorter than that by active
neutral particles.

4. NUMERICAL MODELING

According to the experiments described above, the
main role in sterilization of free surfaces is played by
UV radiation, while charged plasma particles do not
participate in the sterilization process (below, we will
show that the plasma fluxes onto the sterilized surface
are much less intense than the fluxes of UV photons and
biologically active neutral particles).

The products with complicated shapes are sterilized
mainly by the active neutral particles. In the case of dis-
charges in oxygen, they are atoms, ozone molecules,
and excited atoms and molecules. In the case of dis-
charges in nitrogen, they are excited atoms and mole-
cules.

In order to understand better what active particles
are and to find the contents of the plasma, neutral
plasma component, and radiation, we modeled glow
discharges in nitrogen and oxygen under the operating
conditions of a plasma sterilizer.

Our numerical model is based on the following
kinetic equations for neutral and charged plasma com-
ponents:

, (1)

where the first term on the right-hand side describes
plasma processes in the approximation linear in the

dNi

dt
--------- kiNi

i

∑ kijNiN j ….+
i j i j≤( ),
∑+=

1

2101
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Fig. 6. Survivability profiles for the spores of Bacillus sub-
tilis, which were obtained by counting the number of colo-
nies during sterilization of free surfaces by active neutral
plasma particles (closed symbols) and by UV radiation from
the plasma (open symbols) in discharges in (1) oxygen and
(2) air at the pressure P = 10–1 torr and input power density
Wd = 3 × 10–3 W/cm3, the initial number of the spores

being 107.
densities Ni of the plasma components, the second term
accounts for binary collisions, and so on. The rate con-
stants kej for binary collisions involving plasma elec-
trons were determined from the expression

(2)

where ε is the electron energy (in units of eV), e =
1.602 × 10−12 erg/eV, m is the mass of an electron
(in g), and Qej(ε) is the cross section of the related
collision process (in cm2). The symmetric part of the
EEDF, f0(ε), was found from the Boltzmann equation
[10]

(3)

which was solved together with the kinetic Eqs. (1). In
Eq. (3), í is the gas temperature (in units of eV); ne is
the electron density; Ni is the density of gas molecules
and QiT is the relevant transport cross section; SeN and
See are the integral of electron–neutral inelastic colli-
sions and electron–electron scattering, respectively;
A(ε) is the ionization term describing, in particular, the
source of primary electrons; the term L(ε) accounts for
the electrons that escape to the anode; E is the electric
field strength (in V/cm); and N is the net gas density.

The integral SeN of electron–molecule inelastic col-
lisions was chosen in the form [11, 12]

(4)

for discharges in nitrogen and in the form

(5)

for discharges in oxygen. In (4) and (5), Qej is the cross
section for excitation and dissociation of molecules by
UV photons with energies εj and Qd is the cross section
for dissociative attachment of electrons to é2 mole-
cules.

The expressions for the integral See of electron–elec-
tron scattering and for the ionization term A(ε) are pre-
sented in [11]. In our model, we adopted analogous
expressions, but for the gases and energies of fast elec-
tron beams used in our experiments.

Since our measurements of the potential in glow dis-
charges showed that the applied voltage of about

kej
2e
m
------ εQej f 0 ε( ) ε,d

0

∞

∫=

1
neN
--------- m

2e
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 
2
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450 eV dropped preferentially across the cathode
sheath with a thickness of about 1 cm, we assumed that
the gas in a sterilizer was ionized by a beam of fast elec-
trons with an energy of about 450 eV. In the main dis-
charge plasma, the electric field was almost uniform
and was approximately equal to 0.1 V/cm at a pressure
of ~0.1 torr. Consequently, the electrons escaping from
the plasma to the anode can be described in the drift
approximation. In the electron balance, we can neglect
the electron losses due to electron recombination
because the plasma density is low. These consider-
ations allowed us to choose the following form of the
term L(ε), which describes the electrons escaping from
the discharge chamber:

(6)

where Sa is the area of the anode surface and V is the
volume of the discharge chamber.

The EEDF f0(ε) was normalized to satisfy the condi-
tion

(7)

We solved equations (1) and (2) numerically by the
methods that were used and approved in [12, 13]. We
assumed that the densities of all plasma components
are uniform and applied the extended scheme of the
kinetic processes listed in Tables 1 and 2 for nitrogen
and oxygen, respectively. The UV radiation was
assumed to be emitted only in transitions from the low-
est resonant state to the vibrationally excited levels of
the ground state. In the case of nitrogen, these transi-
tions correspond to the Lyman–Berge–Goldfield bands.
The cross sections for elastic scattering of electrons by
N2 and é2 molecules were taken from [14–16], and the
cross sections for inelastic processes were taken from
[16–22]. Some of the scattering cross sections and rate
constants were taken from [23, 24].

5. NUMERICAL RESULTS AND COMPARISON 
WITH THE EXPERIMENT

Figure 2 shows representative profiles of the EEDF
for discharges in nitrogen and oxygen (curves 1, 2). In
the case of nitrogen, the EEDF is seen to be inverted
(df0/dε > 0) in the energy range 2–4 eV because of the
vibrational excitation of N2 molecules; this result is con-
firmed by our experimental measurements (curve 3). In
the case of oxygen, the EEDF is monotonic because,
first, the vibrational excitation cross section for é2 mol-
ecules is much smaller than that for N2 molecules and,
second, in accordance with the experimental condi-
tions, the EEDF was truncated at a low threshold

L ε( ) 1
3
--- E

N
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V
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energy corresponding to the electronic excitation of the
molecular state é2(1∆g). Note that, to a considerable
extent, the inversion of the EEDF in the case of nitro-
gen is also attributed to the weak electric field, which is
characteristic of glow discharges at low pressures (p ≤
0.1 torr). In this situation, the EEDF is analogous to that
observed at a certain time in a decaying plasma after
switching off the electric field [8]. In the experiments
with discharges in nitrogen [8], the EEDF was also
observed to be inverted, which is explained by a sharp
peak in the vibrational excitation cross section for N2
molecules (v = 1–9) in the energy range 2–3.7 eV. At
high pressures, the energy of fast electrons is too low
for them to uniformly ionize the gas over the entire
working volume; as a result, the electric field in the
main discharge plasma increases. In this case, the
EEDF becomes nearly Maxwellian and is similar in
shape to that in [8, 23, 24] at the time t = 0 after switch-
ing-off of the electric field, because, according to (3),
the electric field gives rise to diffusion in energy space.

Figures 7 and 8 depict the densities of the main
plasma components versus pressure in the case of dis-
charges in nitrogen and oxygen. It is seen from Fig. 7
that the densities of the primary products from elec-
tron–molecule reactions (i.e., plasma, atomic nitrogen

Table 1

1 N2 + e   + e + e

2 N2 + e  N2(α1Π) + e

3 N2 + e  N + N + e

4  + e  N + N

5 N2(α1Π) + e   + e

6 N2(α1Π)  N2 + "ω2

7 N + N + N  N2 + N

8 N + N + N2  N2 + N2

9 N + wall  1/2N2

10 N + e  N+ + e + e

11 N + e  N(3σ4P) + e

12 N+ + N + N   + N

13 N+ + N + N2   + N2

14 N(3σ4P) + e  N+ + e + e

15 N(3σ4P)  N + "ω1

16 N2 + "ω1  N2(α1Π)

17 N + "ω1  N(3σ4P)

18  + e(cathode)  N2

19 N+ + e(cathode)  1/2N2

20 e  anode

21 e–e scattering

22 Elastic scattering

N2
+

N2
+

N2
+

N2
+

N2
+

N2
+



798 SOLOSHENKO et al.
and oxygen, and excited N2 and é2 molecules) are
essentially pressure-independent. The reason for this is
that, the higher the pressure of the discharge plasma,
the higher the dissociation, excitation, and ionization
energies at which the EEDF is truncated. Since the dis-
sociation, excitation, and ionization rate constants kej

defined in (2) are inversely proportional to the gas den-
sity, the total rate constants, which characterize the pro-
duction of the corresponding components of the gas

Table 2

1 O2 + e   + e + e

2 O2(1∆g) + e   + e + e

3 O2(b ) + e   + e + e

4 O2(*) + e   + e + e

5 O2(*)  O2 + "ω3

6 O2 + "ω3  O2(*)

7 O + e  O+ + e + e

8 O2 + e  O2(1∆g) + e

9 O2 + e  O2(b ) + e

10 O2 + e  O2(*) + e

11 O2 + e  O + O + e

12  + e  O + O

13 O2 + e  O– + O

14 O– +   O + O2 + e

15 O– + O+  O + O + e

16 O– + e  O + e + e

17 O– + O2  O + O2 + e

18 O– + O  O + O + e

19 O + wall  1/2O2

20 O+ + O + O   + O

21 O+ + O + O2   + O2

22 O– + O2(1∆g)  O3 + e

23 O3 + O2(b )  O2 + O2 + O

24 O3 + e  O2 + O + e

25 O2(1∆g) + e  O + O + e

26 O2(b ) + e  O + O + e

27  + e(cathode)  O2

28 O+ + e(cathode)  1/2O2

29 e  anode

30 e–e scattering

31 Elastic scattering

O2
+

O2
+

Σg
+1

O2
+

O2
+

Σg
+1

O2
+

O2
+

O2
+

O2
+

Σg
+1

Σg
+1

O2
+

plasma and are defined as kej , remain essentially
unchanged.

Note that the densities of such biologically active
components as atomic oxygen and excited oxygen mol-
ecules é2(1∆g) can be fairly high (about 1012 cm–3). The
density of the excited molecules é2(1∆g) is significantly

higher than that of the excited  molecules (by three
orders of magnitude) because of the low excitation
energy (ε = 0.95 eV) of the 1∆g level of oxygen mole-
cules. The densities of the secondary products from
electron–molecule reactions, in particular, the number
densities  and  of UV photons (about 103 cm–3),
are all low (Fig. 8). However, we must keep in mind
that the densities do not affect the sterilization time,
which is governed by the fluxes of the corresponding
biologically active particles onto the substrate surface
as well as by their penetrability and their sterilizing
effect on the spores. The intensity c  of the UV

photon fluxes (3 × 1013 cm–2 s–1) is more than one order
of magnitude higher than the plasma flux intensity
(about 1012 cm–2 s–1), because the ambipolar diffusion
rate in the plasma is low. The computed intensity of the
UV photon flux and the computed plasma density both
agree with those measured experimentally. Among the
fluxes of active neutral particles, the most intense are
those of oxygen atoms and excited molecules é2(1∆g)

and O2(b ) (~1015–1016 cm–2 s–1), because the densi-
ties of these molecules are high. It is also seen from Fig.
8 that the densities of the excited nitrogen molecules
increase with pressure (in contrast to the densities of
the remaining neutral components). Since the steriliza-
tion efficiency is pressure-independent, we can con-
clude with a high degree of confidence that nitrogen
plays an unimportant role in sterilization of the free sur-
faces of medical products. Presumably, this is attrib-
uted to the low nitrogen density (about 107 cm–3) and
low intensity (about 1011 cm–2 s–1) of nitrogen fluxes.

The distributions of N2 and é2 molecules over
vibrationally excited states are analogous to those in
[23, 24]. Here, we do not focus on the vibrationally
excited molecules N2(v) and é2(v), because they have
the same valence as the N2 and é2 molecules in the
ground state, which, however, do not affect the steril-
ization process, no matter how high their densities.

The densities of the plasma components that affect
sterilization (UV photons, O atoms, and the excited

molecules é2(1∆g) and O2(b )) increase linearly as
the discharge current increases. This result agrees with
the measurements of the sterilization time, which was
found to decrease in inverse proportion to the input
power as the latter was increased. In other words, the
sterilization efficiency increases linearly with increas-
ing the discharge current. Note that the computed

NN2 O2,

N2*

N"ω2
N"ω3

N"ω2 "ω3,

Σ1 +
g

Σ1 +
g
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dependence of the plasma density on the discharge cur-
rent agrees with that measured experimentally.

To conclude this section, note that, according to the
results obtained, the main active particles that govern
the efficiency of sterilization by discharge plasmas in
oxygen and air are oxygen atoms and the excited mol-

ecules é2(1∆g) and O2(b ), although there are manyΣ1 +
g
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other biologically active neutral particles in low-pres-
sure glow discharges. This conclusion is supported pri-
marily by a comparison between such parameters as the
densities of different plasma components and the inten-
sities of their fluxes, as well as between the depen-
dences of these parameters on the pressure and dis-
charge current. Since the density of biologically active
particles in discharges in N2 is much lower than that in
discharges in é2, sterilization in nitrogen requires
longer time intervals in comparison with sterilization in
oxygen.

6. CONCLUSIONS

The data obtained in our experiments allow us to
draw the following conclusions:

(i) In the sterilization of free surfaces by discharge
plasmas, the main role is played by UV radiation emit-
ted from the plasma in the wavelength range from about
160 to about 220 nm.

(ii) The efficiency of sterilization by UV radiation
from the plasma is significantly higher than that by UV
radiation from sources that are routinely used in medi-
cal practice.

(iii) Medical products with complicated shapes are
primarily sterilized by chemically active neutral plasma
particles.

(iv) The duration of sterilization of free surfaces by
active neutral particles in discharge plasmas in oxygen
and air is two to six times longer than that of steriliza-
tion by UV radiation.

Our numerical modeling showed that, among the
active neutral components in a discharge plasma in
oxygen, the densities of oxygen atoms and oxygen mol-
ecules excited to the 0.98- and 1.64-eV energy levels
are the highest. These are the particles that govern the
efficiency of sterilization of medical products with
complicated shapes.

The computed plasma density, EEDF, and UV radi-
ation flux density agree well with the experimental
data. This is also true for the dependences of the steril-
izing factors of a discharge plasma on the discharge
parameters.
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Abstract—Symmetric (planar, cylindrical, and spherical) models of microwave discharges in air are consid-
ered assuming that the deposited energy is removed via heat conduction. The characteristic features of spherical
discharges are analyzed in detail, and the conditions for discharge stability are examined. It is shown that dis-
charges in the low-temperature (unstable) state can be stabilized by varying the power of a feedback-controlled
microwave source. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Gas discharges are a typical example of open sys-
tems through which energy is pumped continuously.
The power is fed into microwave discharges by electro-
magnetic waves. In discharges at high (on the order of
atmospheric) pressures, energy is lost primarily due to
heat conduction and convection. The assumption that
heat conduction dominates over convection has made it
possible to develop a comparatively simple one-dimen-
sional model of a high-pressure microwave discharge
[1–3]. An analysis revealed two possible steady states
of discharges at the same level of the input power: high-
temperature and low-temperature states; the discharge
plasma in the high-temperature state was found to
occupy a much larger volume.

The question naturally arises of which of the steady
states occurs in experiments. This question may be
answered by means of simple qualitative consider-
ations. At a fixed amplitude of the electromagnetic
field, the energy release σ|E |2 from a microwave dis-
charge plasma increases with temperature according to
the exponential law exp(–I/2T) (where I is the ioniza-
tion potential and T is the temperature), because it is
this law that describes an increase in the electron den-
sity and, accordingly, the thermal conductivity. On the
other hand, the amount of energy removed from the dis-
charge is merely a power function of temperature. We
thus arrive at the conclusion that, although the energy
released from the plasma can be balanced by the energy
removed from it, small temperature fluctuations at a
fixed electric field should grow [4]. As a result, if the
temperature fluctuations grow above an equilibrium
level, the discharge evolves from the low-temperature
state into a high-temperature state; otherwise (if the
fluctuations are negative), the discharge terminates
(Fig. 1).

In experiments, the stability of a high-temperature
discharge is ensured by the inverse action of the plasma
1063-780X/00/2609- $20.00 © 20801
on the microwave field that maintains the discharge. In
plasmas with a sufficiently high temperature and den-
sity, external electromagnetic fields are screened due to
the skin effect, which thus makes it possible to control
the power input into the plasma during temperature
fluctuations, provided of course that the skin depth is
less than or comparable to the plasma dimensions.
Since this condition is satisfied in high-temperature
states of large-size discharge plasmas and fails to hold
in low-temperature states, the only stable states are
those with high temperatures.

To achieve low-temperature states requires consid-
erable effort. We can imagine a feedback system for
tuning the amplitude of incident microwaves synchro-
nously with the temperature fluctuations. Such an
external control can play the role of the natural skin
effect, which ensures the stability of discharges in high-
temperature states.

Here, we analyze the stability of the low-tempera-
ture states of a high-pressure microwave discharge in
air and determine the negative feedback factor required
for feedback stabilization of the discharge. Such dis-

T

P

Fig. 1. Evolution of the discharge in the presence of temper-
ature fluctuations. The arrows show how the discharge
evolves, and the solid curve corresponds to the steady state
of the discharge.
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charges could produce weakly ionized plasmas with a
temperature of about 3–3.5 kK, which is lower than the
discharge plasma temperature in high-temperature
states by 1–2 kK. We may also expect that such dis-
charges will find application in plasma chemistry.

2. STEADY STATE

The state of a weakly ionized gas in a microwave
discharge at high pressures differs only slightly from a
thermally equilibrium state and is characterized by a
single parameter—the plasma temperature. In a dis-
charge model in which heat conduction is assumed to
dominate over convection, the spatial temperature dis-
tribution is described by the heat-conduction equation
with a source term arising from microwave heating and
the electromagnetic field distribution is described by
the Maxwell equations with a temperature-dependent
dielectric function. In the symmetric model under dis-
cussion, a planar discharge is maintained by two plane
waves that are incident on the discharge from opposite
sides, a cylindrical discharge is maintained by a single
cylindrical wave, and a spherical discharge is irradiated
uniformly in all directions with an infinite number of
spherical waves.

In the steady-state case, we can switch from the
heat-conduction equation to the condition for the heat
flux and electromagnetic energy flux to remain in bal-
ance. The latter flux is described by the Poynting vector

(1)

where r is the radial coordinate for cylindrical and
spherical discharges; for a planar discharge, this is the
coordinate orthogonal to the discharge plane (r  x).
In the case of a spherical discharge, the energy flux Sr

should be understood as the flux averaged over all par-
tial waves. The thermal conductivity λ is represented as
a sum of the conventional (λ1) and reactive (λ2) thermal
conductivities, λ = λ1 + λ2. The latter accounts for the
dissociation of molecules into atoms and the associa-
tion of atoms into molecules in air. The coefficient λ1
was calculated from the formula λ1(T) = 7kvT/6σ =

1.4 × 104  erg/(kK s cm), where k is Boltzmann’s
constant, vT is the thermal velocity of molecules, and σ
is the scattering cross section. Here and below, the tem-
perature T is expressed in kK. The coefficient λ2 was
evaluated from the dependence obtained numerically
by Raizer [4] for nitrogen. In the range T < 7.5 kK, this
dependence has the form λ2(T) = ∆0ln(1 + exp(–Λ1 +
Λ2T)), where Λ0 = 0.7 × 104 erg/(kK s cm), Λ1 = 78,
and Λ2 = 18.6 × 10–3 ä–1.

The propagation of the microwave field can be
described by the wave equation

(2)

λ∇ rT– Sr+ 0,=

T

rd
d µ1 rd

dE ω
c
---- 

 
2

µ2F+ 0,=
where the coordinate r has the same meaning as in the
heat-conduction equation. In planar geometry, we have
F = Ez, µ1 = 1, and µ2 = ε; in cylindrical geometry, we
have F = Ez, µ1 = r, and µ2 = rε; and, in spherical geom-
etry, we have F = rEθ, µ1 = ε(rω/c)2/[ε(rω/c)2 – 2], and
µ2 = ε (where θ is the polar angle). The plasma dielec-

tric function has the form ε(T) = (T)/ω(ω + iν(T)),
where ω is the frequency of the incident microwaves,
the frequency of collisions ν between electrons and
neutrals is equal to ν(T) = N(T)ve(T)σe, N(T) =
N0T0/T, N0 is the Loschmidt number, T0 = 0.3 kK is

room temperature, ve(T) = , σe = 1015 cm2,

and  = 4πe2ne(T)/me. In the case of discharges in air,
the electron density calculated by Protasov and Chu-
vashov [5] for the temperature range 4 ≤ T ≤ 5 kK and
by Aleksandrov et al. [6] for lower temperatures is sat-
isfactorily described by the formula

The procedure for analyzing the steady state is out-
lined in Appendix 1. The results obtained in this appen-
dix for planar, cylindrical, and spherical discharges are
illustrated, respectively, in Figs. 2–4, which show the
plasma temperature at the discharge center, the reflec-
tion coefficient, and the discharge dimension as func-
tions of the microwave power fed into the discharge.
The discharge dimension rd is defined to satisfy the

relationship ran(r) = n(0) /(a + 1) with a = 0, 1,

and 2 for planar, cylindrical, and spherical discharges,
respectively.

The calculations showed that the discharge is initi-
ated when the microwave input power is above a criti-
cal level and evolves into one of the two steady states,
which differ in temperature and, accordingly, in den-
sity. In the high-temperature state, the microwave field
penetrates into the plasma to the skin depth, while the
discharge plasma in the low-temperature state is almost
transparent to microwaves.

In a planar discharge, the plasma temperature in the
low-temperature state is the lowest: at a microwave
input power far above the critical level, it is at most
≈2.5 kK. Although the temperature profile is fairly
smooth in the low-temperature state, the plasma density
profile is sharply peaked near the symmetry plane,
because the plasma density is an exponential function
of temperature. In this case, the discharge dimension
turns out to be smaller than the skin depth.

In a cylindrical discharge, the plasma temperature is
higher by approximately 1 kK, in which case the dis-
charge dimension is smaller, so that the plasma also
remains transparent to microwaves.

ωpe
2

3kT /me

ωpe
2

ne T( )
5.91 1015× 14.42

T 1.74–
-------------------- 

  , T 1.74 kK≥exp

0, T 1.74 kK.<
=

rd∫ rd
a 1+
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In a spherical discharge, the plasma temperature in
the low-temperature state is the highest and is essen-
tially independent of both the microwave input power
and the radius of the discharge chamber. The reason for
this is explained in Appendix 2.

Our numerical results agree well with the results
that were obtained in [1–3] by other methods of calcu-
lation. The steady spatial profiles of the temperature
and electromagnetic field calculated for an unperturbed
state of the discharge are used to solve the problem of
the discharge stability.

3. EQUATION FOR TEMPERATURE 
FLUCTUATIONS

Since, in the low-temperature state, the discharge
plasma does not affect the electromagnetic field distri-
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Fig. 2. (a) Central plasma temperature, (b) reflection coeffi-
cient, and (c) discharge dimension vs. the microwave power
fed into a planar discharge for different sizes of the dis-
charge chamber: rw = (1) 10.7, (2) 21.4, and (3) 50 cm.
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
bution, the discharge dynamics is described only by the
heat-conduction equation

(3)

Here, the temperature dependence of the heat capacity
was approximated by the formula

which is fairly close to the numerical results obtained by
Dresvin [7]. The density of a weakly ionized gas was cal-
culated from the expression ρ(T) = 3.53 × 10–4 T–1 g/cm3,
and the thermal conductivity was expressed in terms of
the dielectric function through the relationship σ(T) =
−ω/4πImε(T).

cpρ t∂
∂T

div λ∇ T( ) σ E 2.+=

cp T( ) 1 2T 8–( ) 1 2T 8–( )tanh+[ ]+tanh–{=

× 6.75 10 3–× e1.22T } 0.5 1010×  erg/ g kK( ),
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Fig. 3. The same as in Fig. 2, but for a cylindrical discharge.
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Of course, Eq. (3) applies to sufficiently slow per-
turbations that, however, occur on time scales shorter
than the time required for the local thermodynamic
equilibrium to establish.

The external parameters of the problem were chosen
in accordance with the experiments performed by
Zhil’tsov et al. [8]: we put ω/2π = 2.45 GHz and mod-
eled a discharge at atmospheric pressure on a spatial
interval equal to the size of the discharge chamber,
which was set to be 10 cm.

The discharge stability should be analyzed by lin-
earizing the heat-conduction equation in temperature
perturbations:

(4)
cp T0( )ρ T0( )γT1 div λ T0( )∇ T1( )=

+ div
T0∂

∂λ
T1∇ T0 

  ∂σ
∂T0
---------+ T1 E0

2 σ T0( ) E0
2 f T1 0( ),+
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Fig. 4. The same as in Fig. 2, but for a spherical discharge.
where γ is the perturbation growth rate, which is in gen-
eral a complex quantity. The last term, in which the
quantity T1(0) is the perturbed temperature at the dis-
charge center and f is the feedback factor, accounts for
the possibility of controlling the electromagnetic field
amplitude by means of feedback. Note that we neglect
the delay time, which inevitably appears when the feed-
back system is turned on. We can do this if the time
delay is insignificant in comparison with the growth
time of the instability to be suppressed.

Since our model assumes only one adjustable
parameter, namely, the microwave field amplitude (the
field phase is unimportant), the discharge state should
also be characterized by a single parameter. It is natural
to take the plasma temperature at the discharge center
as such a parameter. Below, we will show that, in the
low-temperature state of the discharge plasma, the only
growing mode is the largest scale mode, which has no
node points within the spatial interval under consider-
ation and whose amplitude is maximum near the center
of the discharge or just at the center. Temperature fluc-
tuations can in principle be measured by monitoring
emission from the plasma. These considerations
allowed us to assume that, in Eq. (4), the response of
the feedback system (the change in the electromagnetic
field amplitude) to the change in the discharge state is
proportional to the plasma temperature at the discharge
center. We also supplemented Eq. (4) with the follow-
ing boundary conditions: ∇ T1 = 0 at the discharge cen-
ter and T1 = 0 at the outer boundary of the discharge
plasma.

The method for solving Eq. (4) is described in
Appendix 3.

4. CALCULATED RESULTS AND CONCLUSIONS

The instability of the low-temperature state of the
discharge is governed by an extremely strong depen-
dence of the heat release in the discharge plasma on the
plasma temperature (see the Introduction). Since, in the
low-temperature state, the plasma density is peaked
about the discharge center, the spatial profile of the
amplitude of unstable temperature fluctuations should
also be peaked centrally. In fact, our calculations show
that unstable temperature perturbations are localized
predominantly in the region occupied by the discharge
plasma (Fig. 5). Consequently, the spatial scale on
which the perturbations develop becomes shorter as the
microwave input power maintaining the discharge
increases; in the case of a cylindrical discharge, it turns
out to be the shortest. Since the perturbation growth
rate is high, the heat conduction does not have enough
time to smooth out the growing temperature fluctua-
tions. We emphasize that the above analysis applies
only to the largest scale perturbation mode, which has
no node points within the spatial interval under consid-
eration; the other modes are suppressed by heat con-
duction.
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The unstable mode can be stabilized by a negative
feedback control system. Our model assumes that, at
the center of the discharge, the microwave input power
fluctuates in the same manner as the plasma tempera-
ture. The feedback system makes it possible to suppress
fluctuations in heat release. At a critical feedback factor
corresponding to the boundary of the instability
domain, a slightly excessive heat release is neutralized
by heat conduction, which acts to remove excessive
heat toward the chamber wall. As a result, at γ = 0, feed-
back-stabilized temperature perturbations turn out to be
smoothed out to a greater extent in comparison with
unstable temperature fluctuations (Fig. 5).
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Fig. 5. Unstable temperature perturbations (solid curve) and
feedback-stabilized temperature perturbations (dashed
curve) in (a) planar, (b) cylindrical, and (c) spherical dis-
charges.
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Our calculations revealed that, in all types of sym-
metric discharges, the higher the microwave input
power, the higher the instability growth rate. At the
same power input, the growth rate is the highest in a
cylindrical discharge, which is the smallest in dimen-
sion (Fig. 6). On the other hand, the dependence of the
feedback factor required for stabilization on the input
power differs strongly between different types of dis-
charges. In the case of planar and cylindrical dis-
charges, this dependence roughly follows the power
dependence of the growth rate, while in the case of a
spherical discharge the critical feedback factor reaches
a saturation level at sufficiently high input powers.
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Hence, we have shown that the low-temperature
states of high-pressure microwave discharges can be in
principle feedback-stabilized. Cylindrically symmetric
discharges are likely to be most simply initiated in
experiments. In cylindrical discharges, the peak in the
radial temperature profile at the symmetry axis can be
lowered to about 3 kK.
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APPENDIX 1

Transformation of the Equations for a Steady 
Discharge to a Form Suitable for Numerical 

Integration

We consider the equations describing a spherical
discharge (the equations for planar and cylindrical dis-
charges can be transformed in a similar way). The
model of a spherically symmetric microwave discharge
was described by Timofeev [3]. The discharge is
assumed to be irradiated uniformly with waves whose
electromagnetic field is described in terms of the spher-
ical harmonic E = (Ercosθ, Eθsinθ, 0) and B = (0, 0,
Bϕ sinθ), in which case the Maxwell equations have the
form

where the dimensionless parameter ρ is equal to ρ =
ωr/c.

Direct numerical integration of the Maxwell equa-
tions from the discharge center to the chamber wall is
inconvenient because, in a discharge with a skinned
layer, the field is an increasing exponential function of
the radius. It is more expedient to introduce other, more
gradual variables, e.g., the logarithm of the wave ampli-
tude and the ratio of the field components. The vari-
ables that are most suitable for our purposes are the
wave amplitude A and the wave phase Φ, which can be

defined through the relationships Er = AcosΦ and

Eθ = AsinΦ. The factor 2/ε is introduced in order not to
integrate over ε, in which case we have Bϕ = –iρAcosΦ.
For ρ = 0, the field components should satisfy the con-
dition Er = –Eθ, under which the initial value Φ0 is

defined by the equation cosΦ0 + sinΦ0 = 0. In the

new variables, the Maxwell equations take the form

2Bϕ

ρ
--------- iεEr,–=

1
ρ
---

ρd
d ρBϕ( ) iεEθ,=

1
ρ
---

ρd
d ρEθ( ) Er+ 

  iBϕ ,=

2
ε
---

ε
2
---
The uncertainties in the right-hand sides at ρ = 0 are
eliminated by expanding the functions Φ, ε, and T in
powers of ρ. This procedure leads to vanishing deriva-
tives at the discharge center: (ln A)' = Φ' = 0.

Equation (1), which implies that the total energy
flux (i.e., the sum of the thermal energy flux and the
wave energy flux) is constant, yields the following
equation for the plasma temperature:

Since A and Φ are complex variables, we arrive at
five real equations. It is easy to see that the plasma tem-
perature can be evaluated without regard to the quantity
Im(lnA). Therefore, we need to solve only four equa-
tions. We specified the values of Re(lnA) and T at the
discharge center and integrated these equations by the
Runge–Kutta method until the condition T = 0.3 kK
was satisfied. Then, we varied the initial value of T or
Re(lnA) so as to satisfy this condition at the chamber
wall. As a result, we arrived at a solution to our prob-
lem.

We also present the formulas that were used to sin-
gle out the parts describing the incident and reflected
waves in the solution obtained. In the representation
Eθ = A+a+eiρ + A–a–e–iρ with a± = 1/ρ – 1/ρ3 ± i/ρ2, which
is valid for a vacuum field [3], the first term describes
the reflected wave and the second term refers to the inci-
dent wave. The amplitudes of these waves were calcu-

lated from the formula A± = [(sinΦ – cosΦ)(ρ 

i)  iρ2cosΦ].

APPENDIX 2

Analytic Treatment of a Low-Temperature Spherical 
Microwave Discharge

In our calculations, a discharge in the low-tempera-
ture state is naturally characterized by high transpar-
ency and a small dimension, because, for typical dis-
charge temperatures, we have |ε| @ 1 and Reε ~ Imε, so
that the discharge plasma is transparent to the incident
microwave radiation if the plasma dimension is smaller
than the radiation wavelength in the discharge. We
assume that the discharge dimension ρd satisfies the

condition ε ! 1 and is much smaller than the dis-
charge chamber size ρw (ρd/ρw ! 1). These conditions

Aln( )' ρ Φ Φcossin=

– 2 Φ 1
ε
--- Φsin+cos 

  Φcos ε/2 Φsin+
ρ

----------------------------------------,

Φ' ρ Φcos
2

2
1
ε
--- Φcos Φsin– 

  Φcos ε/2 Φsin+
ρ

----------------------------------------.–=

T '
c2

24πωλ
-----------------ρ A 2 2 Im Φ( ).sinh–=

A
2
---e iρ+− +−

+−

ρd
2
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make it possible to simplify the field equations and the
heat-conduction equation, respectively.

First, we consider the heat-conduction equation.
Since, in vacuum, the heat flux remains unchanged, we

have ρ2λ  = –C1. The constant can be found by inte-

grating the heat-conduction equation from the chamber
wall to the boundary of the discharge plasma,

(T)dT = C1  –  ≈ , where the discharge

radius ρd is assumed to be small and the temperature Td

at the plasma boundary is determined only by the
dependence ε(T) and is equal to the temperature at
which the imaginary part of the dielectric function van-
ishes. Now, we can write the boundary conditions
required for treating the heat-conduction equation

inside the discharge plasma: T = Td and λ  =

− dT at the boundary ρ = ρd and  = 0 at the

center ρ = 0. We impose three (rather than two) bound-
ary conditions because the discharge radius ρd should
also be found in solving the problem. Inside the dis-
charge plasma, the heat-conduction equation has the
form

where Imε(T) is the imaginary part of the dielectric
function. Here, we used the smallness of the parameter
ρ2ε to express Er in terms of Eθ.

In the limit ρ2ε ! 1, the wave equation for Eθ
reduces to

with the boundary condition  = 0 at the discharge

center. The field magnitude is governed by the micro-
wave power fed into the discharge. We decompose the
field into parts describing the incident and reflected
waves (see Appendix 1) to obtain the condition Pinc =

ρ3Eθ  (where Pinc is the microwave input

power) at the plasma boundary ρ = ρd. Since the field
component Eθ is a complex quantity, to make the prob-
lem well-posed requires that another, quite obvious
boundary condition be imposed: we can specify an
arbitrary value of the wave phase at the boundary of the
discharge plasma.

ρd
dT

λ
Tw

Td∫ 1
ρd

-----
 1

ρw

------
 C1

ρd

------

ρd
dT

1
ρd

----- λ
Tw

Td∫ ρd
dT

1

ρ2
-----

ρd
d ρ2λ ρd

dT c2 Im ε T( )
24πω

------------------------
ρd

d ρEθ

2
2 Eθ

2+ 
 + 0,=

ρd
d ρ2ε ρd

d ρEθ 2ερEθ– 0,=

dEθ

dρ
---------

c3

12ω2
------------ 1

ρ2
-----

ρd
d

 
2

PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
In the above equations and boundary conditions, we
switch to the dimensionless variables x = ρ/ρd and E =

Eθ/ . As a result, we arrive at the equa-
tions

with the following boundary conditions:

at x = 0 and

at x = 1.
Since the temperatures Tw and Td are known and

λ(T) and ε(T) are prescribed functions, our problem

involves a single parameter, namely, Pinc ; moreover,
the number of imposed boundary conditions implies
that our problem has a solution at a certain value of this
parameter. Strictly speaking, since the equations are
nonlinear, there may be several such values of the
parameter and, thus, the problem may have different
solutions corresponding to these parameter values. If
we assume that the problem possesses a unique solu-
tion, then we arrive at the following conclusions: under
the above assumption that the discharge is small in
dimension, the central temperature is independent of
the input power and remains constant and the discharge
radius is inversely proportional to the square root of the

input power, ρd ~ 1/ , regardless of the size of the
discharge chamber. These results are confirmed by
numerical calculations (Fig. 4). Although, in simula-
tions and in this appendix, the discharge dimension was
determined in different ways, we obtained the same
dependence of the discharge dimension on the input
power because the profiles of the dimensionless tem-
perature (and, accordingly, the dimensionless density)
were the same.

APPENDIX 3

Method for Solving Eq. (4)

The nonlocal homogeneous equation (4) can for-
mally be written as

(A3.1)

where X is the coordinate along which the discharge
parameters vary; in the case of a planar discharge, it is

12Pincω
2c 3–

1

x2
-----

xd
d

x2λ
xd

dT Imε''
2πc
------------Pincρd

2

xd
d

xE
2

2 E 2+ 
 + 0,=

xd
d

x2ε
xd

d
xE 2εxE– 0=

xd
dT 0,

xd
dE

0= =

T Td, λ
xd

dT λ T ,
1

x2
-----

xd
d

x2E
2

d

Tw

Td

∫– 1= = =

ρd
2

Pinc

L̂γT1 X( ) 0,=
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the coordinate orthogonal to the symmetry plane
(X = x), and, in the case of cylindrical and spherical dis-
charges, it is the radial coordinate (X = r).

In order to find the desired eigenvalue γ, we analyze
how the system will respond to some external action,
which can be incorporated into Eq. (A3.1) by introduc-
ing the term C(X) into its right-hand side:

(A3.2)

For a fairly large class of perturbations, the response
becomes infinite at γ = γn, where γn is one of the eigen-
values. We assume that the eigenvalues are nondegen-
erate and that, at γ ≈ γn, the response can be written as

(A3.3)

where T1n(X) is an eigenfunction normalized in the
proper manner and the amplitude factor An is governed
by the external action. Expression (A3.3) can be readily

derived if  is a Sturm–Liouville operator. It is natural
to assume that this expression remains valid for any
general operator.

The numerical procedure used to search for the
eigenfunctions and related eigenvalues can be
described as follows. In the plane of the complex vari-
able γ, we chose some initial point and determined the
signs of ReT1(X0, γ) and ImT1(X0, γ) for four displace-

ments δγ = (σ1 + iσ2) from the initial point. Here,

σ1, 2 = ±1 and X0 is an arbitrary point in the spatial inter-
val under consideration except for the boundary point,
at which T1 = 0. If, for some of these displacements, the
real and imaginary parts of T1(X0, γ) calculated from
(A3.3) changed sign simultaneously, then the corre-
sponding value of γ was taken to be an approximate

T1 X( ) L̂γ
1–
C X( ).=

T1 X γ,( ) AnT1n X( ) 1
γ γn–
------------- …,+≈

L̂

∆
2

-------
eigenvalue . Otherwise, the point was displaced in
the plane of the complex variable γ over the distance ∆
down the gradient of |T1(X0, γ)|; after that, the signs of
ReT1(X0, γ) and ImT1(X0, γ) were calculated again.
Then, we repeated this algorithm. The eigenvalue
obtained in such a manner can differ from the true
eigenvalue by an amount δγ ≤ ∆. In order to refine the
numerical eigenvalue , we took it as an initial eigen-
value and repeated the above procedure with a smaller
displacement ∆. For each value of γ, the nonlocal inho-
mogeneous differential equation (A3.2) was solved
using one of the versions of the sweep method [9].
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Abstract—Mass, charge, and energy spectra of multiply charged ions in a plasma formed by laser heating of
Ho2O3 and Y2O3 targets of various densities are investigated. The features of the formation of multiply charged
oxygen and holmium (yttrium) ions at fairly low ion energies (≤50 eV) are examined. It is found that, for oxy-
gen ions, Zmax is achieved at low target densities, whereas, for holmium (yttrium) ions, it is achieved at high
target densities. It is suggested that these features are related mainly to nonequilibrium ionization processes in
the plasma. © 2000 MAIK “Nauka/Interperiodica”.
Interest in the interaction of laser radiation with
low-density (porous) targets [1–4] stems from the pos-
sibility of applying porous media to laser heating of a
plasma, the formation of intense beams of nuclei and
multiply charged ions, and creating plasma lasers and
media for nonlinear optics. Mass-spectrometric studies
of the charge and energy spectra of multiply charged
ions in a plasma formed by the laser heating of targets
of various densities revealed the optimum target den-
sity for which a reduction in the recombination rate in
a laser plasma ensured the maximum beam intensity,
charge, and energy of the ions [1, 2]. Absorption of
neodymium laser radiation at a power density of
1014 W cm–2 and the energy transfer processes in
porous agar-agar (C14H18O7) targets with an average
density of 1–4 mg cm–3 were studied experimentally by
optical and X-ray techniques [3, 4]. A region with a
dense high-temperature plasma efficiently absorbing
laser radiation was proved to form inside a porous target.

This paper is a continuation of the previous study [1,
2] and deals with the features of the formation of low-
energy multiply charged ions in the interaction of laser
radiation with targets of various densities. Mass,
charge, and energy characteristics of the plasma ions
were determined by a mass-spectrometric method [5].
The ions emitted from the plasma in the direction θ =
20° with respect to the normal to the target surface were
recorded by a spectrometer located at a distance of
100 cm from the target. The spectrometer slit width
was 0.4 mm, which corresponded to a solid angle of
~10–4 sr. In the experiments, we used an ILTI-207 laser
(λ = 1.06 µm, E = 0.8–1.0 J, and τ = 15 ns) with a bell-
shaped spatial intensity distribution and an average
focal spot area of 10–4 cm2, which made it possible to
attain the power density q up to 1011 W cm–2 on the tar-
get surface. We investigated 5-mm-thick and 10-mm-
diameter Y2O3 and Ho2é3 targets compacted from a
powder with the initial mass density n0 = 1.2 g cm–3.
1063-780X/00/2609- $20.00 © 0809
Targets with mass densities of n1 = 1.4 g cm–3, n2 =
2.8 g cm–3, n3 = 3.2 g cm–3, n4 = 3.5 g cm–3, and n5 =
3.7 g cm–3 were used. A well-known technique [6, 7]
was used to prepare the targets: a block of Y2O3 or
Ho2é3 was crushed into ≤30-µm pieces and then com-
pacted at a pressure of 1–5 t/cm2. The targets produced
in such a way consisted of grains with dimensions less
than 30 µm. The laser beam was incident normally to
the target surface. Each experimental point was the
average of the measured values obtained from five laser
pulses.

Investigations of the mass spectra of the ions from a
Ho2O3 target carried out in wide ranges of the target
density (n = n1 – n5) and ion energy (E = 20–1000 eV)
at q = 1011 W cm–2 showed that the laser plasma con-
sisted of holmium and oxygen ions; as n and E
increased (at q = const), the mass composition and
intensity of the ion flux changed significantly. The
changes were most pronounced in the range of fairly
low ion energies (E ≤ 50 eV). An increase in n at con-
stant values of E and q resulted in a change of the mass
spectra towards an increase in the content of holmium
ions and a decrease in the content of oxygen ions. The
charge composition within the packets of holmium and
oxygen ions depended on the laser power, target den-
sity, and ion energy. The maximum charge number of
oxygen ions (Z = 4) and the minimum charge number
of holmium ions (Z = 1) were detected at n = n1, E =
50 eV, and q = 1011 W cm–2 (Fig. 1). An increase in n
from n1 to n3 at the above values of q and E resulted in
a decrease in the charge number of oxygen ions (from
Z = 4 to Z = 2), whereas, for holmium ions, the charge
number increased from Z = 1 to Z =3. Such behavior of
the charge spectra is most pronounced at n < n3 and
fairly low ion energies (E ≤ 50 eV) and is less pro-
nounced at n > n3 and E > 150 eV. The dependences of
the Zmax of holmium ions on the target mass density n
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. Mass and charge spectra of multiply charged ions
in the laser plasma obtained with a Ho2O3 target for q =

1011 W cm–2 and an energy of 50 eV per unit charge at
n = (a) n1, (b) n2, and (c) n3.

Fig. 2. Dependence of the Zmax of holmium ions on n for q =

1011 W cm–2 at E = (1) 50, (2) 100, and (3) 150 eV.
are presented in Fig. 2 for E = 50, 100, and 150 eV. Note
that, in the range n < n3, where significant changes of
the charge spectra take place, the laser pulse energy is
spent mainly on heating, volume destruction, and non-
equilibrium ionization of the individual target compo-
nents. This is a consequence of the volume generation
of a nonequilibrium plasma, which affects the ioniza-
tion and recombination processes. At n ≥ n3, the laser
energy is spent on heating, destruction of the target sur-
face, and fairly uniform ionization of both holmium
and oxygen atoms. Presumably, this is the reason why
the charge spectra do not change in the range n ≥ n3.

The measured mass and charge spectra were used
to plot the energy spectra of holmium and oxygen ions
for different target densities. Typical ion energy spec-
tra are presented in Fig. 3 for n = n1 and n = n3 at q =
1011 W cm–2. It is seen that, for each value of n, the
energy spectra of holmium ions are five times as intense
and wide as those of oxygen ions.

Thus, we have found that

(i) two ion packets in different energy ranges are
clearly pronounced for all of the n values investigated;
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Fig. 3. Typical energy spectra of holmium and oxygen ions
for q = 1011 W cm–2 at (a) n = n1 [(1) Ho+, (2) Ho2+,

(3) Ho3+, (4) O+, (5) O2+, (6) O3+, and (7) O4+] and (b) n = n3

[(1) Ho+, (2) Ho2+, (3) Ho3+, (4) Ho4+, (5) O+, and (6) O2+].
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(ii) at n = n1, the packet of oxygen ions with Z = 1–
4 is located within the range E = 20–400 eV; the
increase in n from n1 to n3 leads to a substantial shrink-
ing of the range because, in this case, the ions with Z =
3 and 4 are absent;

(iii) at n = n1, holmium ions with Z = 1 occupy a
fairly wide energy range (E = 20–450 eV); the increase
in n from n1 to n3 results in expansion of the ion energy
range toward higher energies due to the generation of
holmium ions with Z = 2, 3, and 4; and

(iv) the nature of the energy spectra of holmium and
oxygen ions for n > n3 remains the same as for n = n3.

Note that similar results were obtained for an Y2O3
target.

The results obtained can be summarized as follows:
(i) The features of the formation of mass, charge,

and energy spectra of multiply charged holmium and
oxygen ions are revealed. The two packets of holmium
and oxygen ions are formed at a laser radiation inten-
sity of q = 1011 W cm–2. At n < n3, the mass, charge, and
energy characteristics depend substantially on the tar-
get mass density; at n ≥ n3, such a dependence is less
pronounced.

(ii) It is revealed that the ion charge number is dis-
tributed nonuniformly within both holmium and oxygen
packets, especially at low target densities. Special
exploration of the morphology of targets of different
densities exposed to laser radiation shows that, at n < n3,
the target undergoes volume destruction. As the target
density decreases from n3 to n1, the character of
destruction changes (surface destruction transforms
into volume destruction) and the volume of a destroyed
PLASMA PHYSICS REPORTS      Vol. 26      No. 9      2000
region and the mass of the target material evaporated
during the laser pulse increase. These factors influence
the laser plasma formation, as well as ionization and
recombination processes in the plasma. As the target
density increases, the recombination rate for oxygen
ions rises (the ion charge number drops from Z = 1–4 at
n = n1 to Z = 1–2 at n = n3), whereas, for holmium
(yttrium) ions, it falls (the ion charge number increases
from Z = 1 at n = n1 to Z = 1–4 at n = n3). Note that hol-
mium ions with Z = 4 are generated at n > n3 with E >
500 eV.
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