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Abstract—The ASTRA—ETL codeis used to simulate L—H transition scenarios and cal cul ate the energy con-
finement time and the threshold power of the L—H transition as functions of the averaged electron density L]
the averaged magnetic field B, the neutral density n,,, and the neutral temperature T,,, as well as the values of
Tse Tg, and ng at the separatrix. It is shown that the linear dependence of the threshold power of the L—H tran-
sition on the averaged electron density, Q, _; 0 [m[JJis associated with an increase in the viscosity of apoloidally
rotating plasma due to charge exchange and is governed exclusively by an increase in the neutral density n,,.
When the averaged el ectron density mislow, the threshold power rises because Tq and T, increase. The accu-
racy of predictions for the power threshold of the L—H transition can be improved if the scaling of Q, _ versus
MmCand B is derived by processing experimental data from discharges with close parameter values at the sepa-
ratrix. The hysteresis effect during an L-H-L transition triggered by varying the input power is modeled. The
global energy confinement time T is shown to increase linearly with MCin the range Mk 3.6 x 10 m~ and
to saturate at higher electron densities; this behavior is found to be characteristic of the Ohmic, L-, and
H-modes. The saturation is associated with the fact that losses via the ion channel (when the transport coeffi-
cients are density-independent) dominate over losses via the electron channel. The dependence of tg on the

input power is determined from the cal culated database and is found to be T = 0.12 Qi‘,‘f’ at afixed averaged

electron density [0 In the simulations of the L—H transition, the energy confinement time 1 increases by a
factor of 2 only if the thermal diffusivity inside the transport barrier islower than that in the central plasma by

afactor of morethan 6. © 2001 MAIK “ Nauka/Interperiodica’ .

1. INTRODUCTION

The problem of predicting the global energy con-
finement time 1¢ and the auxiliary heating power Q.
required to trigger the transition to an improved con-
finement mode (the H-mode) is one of the key prob-
lems in designing present-day tokamaks. Experiments
on the DIII-D [1, 2] and other tokamaks show that the
power threshold of L—H transitions during which the
energy confinement time 1z changes depends sensi-
tively on the plasma parameters at the separatrix and at
the pedestal: the electron and ion temperatures, T, and
T; the electron density n; and the density n,, and tem-
perature T, of neutrals arriving from the wall and
appearing due to recycling. These experiments spurred
the development of a numerica code capable of
describing the dynamics of plasma turbulence near the
separatrix during L—H transitions and the effects of the
edge turbulence on heat and particle transport in toka-
maks. In the simplest formulation, this problem was
solvedin[3]. The ASTRA code developed in that paper
was supplemented with the edge turbulent layer (ETL)
model, which served to impose boundary conditions of
the third kind. The combined ASTRA-ETL code made

it possible to describe the formation of a transport bar-
rier just inside the separatrix during the L—H transition
in atokamak. However, thetwo-field ETL model devel-
oped earlier turned out to be insufficiently adequate for
interpreting the experimental data quantitatively,
because it was constructed so that the mechanism for
the formation of a transport barrier was only included
in calculating theion temperature profile. The two-field
ETL model describes the formation of a transport bar-
rier asaresult of the suppression of convective cells by
a sheared flow when the ion temperature gradient in a
turbulent layer (TL) increases above acritical level, but
no account was taken of the fluctuations of the electron
density and temperature. The formation of a transport
barrier on the electron temperature profile was modeled
incorporating only the energy exchange between elec-
trons and ions, while the electron density profile was
taken from experiments. In our paper [4], the two-field
ETL model was extended to describe turbulent convec-
tion excited in the separatrix region of a tokamak
plasma by taking into account four types of interacting
fluctuations, specifically, fluctuations of the electron
and ion temperatures, plasma density, and electric
potential at the plasma edge. It was shown that these
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fluctuations can be described by the Braginskii four-
field hydrodynamic equations, which can be reduced to
three Lorentz-like sets of equations coupled through
the equation for the kinetic energy of the fluctuations,
i.e., toafour-field ETL model describing the nonlinear
dynamics of convective cells in the presence of a
sheared flow. The critical parameter for the onset of tur-
bulent convection was shown to be the total plasma
pressure gradient in the TL. For three coupled oscilla-
tors, the critical pressure gradient corresponding to
transitions to both L- and H-modes was found to be
much lower than that for an individual oscillator, which
describes turbulent convection driven by one type of
fluctuation. The four-field ETL model made it possible
to calculate the heat and particle fluxes via the ion and
electron channels; these fluxes were used as boundary
conditions of the third kind in the transport problem for
the main plasma. In this work, which is a continuation
of paper [4], we further develop the ASTRA—ETL code
in order to calculate the evolution of the profiles of the
temperature and density of electrons and ions with
allowance for turbulent convection. We can thus simu-
late L—H transition scenarios and evaluate the energy
confinement time and the threshold auxiliary heating
power required to trigger atransition to the H-mode as
functions of the edge plasma parameters.

2. TRANSPORT MODEL FOR THE CENTRAL
PLASMA

The profilesin the main plasma are calculated using
the ASTRA balance transport code [5], in which the
transport model is chosen to adequately describe the
temperature and density profiles in the L-mode. The
profiles of interest are calculated from the following
one-dimensional transport equations, derived by aver-
aging over the magnetic surfaces:

%%mivr =S, (1)
Zat(n Te) + divEQ, + T rg=pe )
zat(nT) duvB;) + TrD P, 3)

wherel = —D%3
or

netic surfacelabel, and n,= Zn, = n. Here and below, the
linear dimensions are expressed in m, thetimein s, the
field in T, the current in MA, the density in units of
10" m3, the temperature in keV, the particle mass in
units of the proton mass, the particle charge Z in units
of the electron charge, the power in MW, and the trans-

+ Vpn,, tisthe time, r is the mag-

port coefficients in m?/s. We use the standard notation
adopted in tokamak physics (see [4] for details):

D = DXe + DtXte + CreXre: 4)
where x. = 50(T./M))"%/(ngR) is the Ohkawa thermal

T p T
; i t_ in |Li P le
diffusivity [6], X, = 7.36¢ T.qLB is the thermal

diffusivity dueto trapped electrons[7] (pistheion Lar-
mor radius in terms of the electron temperature),

RVela . a
aQ. L, L;

is the thermal diffusivity due to resistive ballooning
modes [8],

Xre = 289°PpCs_ (&)

1on, 1 _

neor’ Ly

10T,
T, or’

1.
L
and Ve = x; /(n.L,) isthe coefficient describing the heat

pinch effect at the density gradient due to trapped elec-
trons[7] (for ssimplicity, we assume here that Vp = 0);

S = S+ S

where S, = [6 4 v, + [0, v isthe particle source
related to the ionization of edge neutrals by electron
and ion impacts and S, is the particle source associ-
ated with neutral beam injection (NBI);

s 0T
Q, = —1.602 x 10 3nexea—re;

(0)
Xe = CyXe + CXe * CreXre;

Pe = PJ - I:)ei - Pen + I:)eNBIv
where P; is the ohmic heating power,

3/2

sle
zn,’
is the power transferred from electrons to ions due to

Coulomb collisions, and P, = 2.08 x 10 vihn,

[MW/m?] is the power lost by the electronsin ionizing
cold neutrals;

3 m
Py = T--ne(Te—Ti)—M—e, T = 7.3%x10

ei i

Q, = —1.602 x 10_3nixi%-%,

Xi = CarXar + CreXre: (7
T
X = 025pCsg| £ + £,
where [7]
I:>i = I:)ei - ch + I:)in + PiNBIi

where P, = 3/2[6 v nn (T, — T,) is the power lost
by the ions in charge-exchange collisions,
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CALCULATION OF THE ENERGY CONFINEMENT TIME AND POWER THRESHOLD 3

Pi, = 3/2n, T (0 vin, + [0;vih) is the energy acquired
by the ions via the ionization of edge neutrals by elec-
tron and ion impacts, Pyg and Pyyg, arethe fractions of
NBI power distributed between electrons and ions
according to the formulas [9]

meb

= Swei—5—[1-¢&],

eNBI
()
meb

= SBi—5—-6,

m, is the mass of a beam ion (in units of the proton

INBI

mass), E, = m,VE /2 is the kinetic energy of the beam
ions,

_omf®_Te

T 020 mijamgs’

Q.u/En(1 —r/a)exp(-r?/(0.64a%) [s7'] isthe NBI-related
particle source normalized so that the integral of S
over the entire plasma volume is equal to 624Q,,/E;
(the beam power Q. and the beam kinetic energy E,
are expressed in MW and keV, respectively).

with V2 and Sy = 3.1 x 10?* x

3. MATCHING OF THE ASTRA CODE
WITH THE ETL MODEL

The temperature and density profiles are calculated
by using boundary conditions of the third kind, i.e., by
prescribing the fluxes at the inner boundary R = Ry of
the TL (transport barrier):

_DASTRAg_n _ rETL, FETL = rturb+rdif’
r
k i Ng—n
rturb — KVCSHSXYW rd|f - DpCs BL S,
B ASTRAnASTRAa_T_§DASTRATASTRA6n
Xi or 2 : or
_ng+tng_ert 3T +Tg _emL
S e R e
i k
QT = Q" +Q", Q" = JCeTeXY,,
9)
Q¥ = TBi_TSi
i | S L ’
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Here, the diffusion coefficient DASTRA and the ion and

electron thermal diffusivities, )(i R4 and x:STRA, are

defined in formulas (4)—(7); the electron density nASTRA
and the electron and ion temperatures, TASTRA and

TS, are calculated by the ASTRA code at the mag-

netic surface R= Rz — Ar/2; Ar isthe spatial step of the

grid in the ASTRA code; I, Q™ and Q™ arethe

turbulent fluxes driven by the convective cellsinaTL
of width L (see Egs. (29) and (35) in [4]); X is the
dimensionless amplitude of the turbulent fluctuations
of the electric potential; Y, is the dimensionless ampli-
tude of the electron density fluctuations; Y; and Y, are
the amplitudes of theion and electron temperature fluc-
tuations (see definition (8) in [4]); the diffusive fluxes
dif dif

intheTL, M4, Q;",and Q. , aredescribed by the seed
transport coefficients X; = Xe = D = CDg/pCs in
Egs. (2«4) [4]; Dg = pC4/16; and the numerical factor
C isdetermined from the calibration of the ETL model.
ASTRA

Note that, in the expressions for DASTRA x; , and
xﬁ STRA the functional dependences and numerical fac-

tors, which are chosen so asto adjust the profiles cal cu-
lated for the L-mode to the relevant experimental pro-
files, do not change during the L—H transition.

To include the boundary conditions (9) into the
combined ASTRA-ETL code requires an implicit
scheme. Since the profiles of T, T;, and n, are calcu-
lated with the help of similar algorithmsfor solving the
boundary problem, we explain this scheme using as an
example only the matching of the particle fluxes in the
ASTRA code and in the ETL model. For all of the
boundary conditions for matching fluxes (9), the trans-
port coefficients in the main plasmaand in the TL are
calculated at the kth time step and the temperature and
density gradients are calculated at the (k + 1)th time
step (here, k is the number of the time step in the
ASTRA code). Inthe TL, the effective transport coeffi-
cient isdefined as

k -1
et _ ~ErLile —Ng
D~ =T o1 0o
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Fig. 1. Steady-state profiles of the electron density, electron
temperature, and ion temperature in three confinement
modes: the ohmic mode (solid curves), the H-mode with the
NBI power Qux = 2.5 MW (dashed curves), and the
H-mode with the NBI power Qg4,, = 5 MW (dotted curves);
closed squares are the experimental points.

where ng = const, in which case the boundary condition
has the form

nk+1 nk+1 nk+1 n
ASTRAlIN_1 — 1IN ETLIIN T Iis
D e = D7 e 10

where DQSTRA and DE™ are calculated at the kth time

step. Consequently, relationship (10) serves asabound-
ary condition with which to solve the continuity equa-
tion by the sweep method. The ASTRA code was
designed on a spatial grid consisting of N points, the

grid sizebeing Ar. Theindex N correspondsto the inner
boundary R= Rg of the TL.

The implicit scheme makes the iterative procedure
stable at the inner boundary of the TL, at which the tur-
bulent fluxes are matched; consequently, we can adopt
atime step of 0.1 ysin the ETL model and atime step
of 20 psin the ASTRA code. In the ETL model, the
characteristic time scale on which the plasma turbu-
lence develops can be longer than the time step used in
the ASTRA code; consequently, in calling up the ETL
subroutine for the first time in each run of the ASTRA
code, we must choose the number of iterations so that
the plasma turbulence reaches saturation and ensures
consistency between the turbulent fluxes and gradients
in the TL. The amplitudes of the seed turbulent fluctu-
ations are chosen to be two orders of magnitude smaller
than the characteristic steady-state fluctuation ampli-
tudes, which are independent of the initial conditions.
At the first iteration step, the ETL subroutine adjusts
the turbulent transport coefficientsto the prescribed ini-
tial profiles. At subsequent iteration steps, it isrun with
the fluctuation amplitudes calculated at the preceding
iteration step. Since the temperature and density pro-
files usually change much slower than the plasma tur-
bulence, we may speak of the “evolution” of the ETL
model, because it passes through a sequence of qua
sisteady states. In modeling L—H transitions, which
occur on time scales of 5 to 20 ps, we must shorten the
time step in the ASTRA code down to 1-5 ps.

4. SSIMULATION OF THE L-H TRANSITION
SCENARIOS

The L—H transition scenarios were simulated taking
as an example DI1I-D shot no. 82830, because, for this
shot, the experimental data on the dynamics of turbu-
lent fluctuations of the potential and density near the
separatrix during the L—H transition were published in
[10]. This information is required to test and calibrate
the ETL model [4]. The auxiliary heating power input
into a deuterium plasmawith the effective charge num-
ber Z..s = 1.5 by injecting a neutral beam was Q,, =
2.5 MW. Astheinitia conditions, we adopted the fol-
lowing parameters of the L-mode in DIlI-D shot
no. 82830:

Ry=1.67m, a=0.63m, B=2.17T,
ly=1.37MA, q=4.55, ng= 1.5 x 10 m>3, (11)
Te=30eV, Tg=30¢eV,

the ellipticity and triangularity being 1.8 and 0.3,
respectively. The equilibrium configuration of the mag-
netic field was calculated initially and, in further simu-
lations, was assumed to be fixed.

The calibration constants for the ETL model were
calculated in accordance with [4] and were found to be
equal toV,=0.08,C=0.5,and d=8. Inthe ETL model,
the numerical factorsin the transport coefficientsin (4),
(6), and (7) were chosen so as to adjust the profiles cal-
PLASMA PHYSICS REPORTS  Vol. 27
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culated for a steady-state confinement mode to the rel-
evant experimental profiles. The numerical factorsD,, =
C,=0.5,D,;=3, Dgg=Cgrg=0.4,and C,=Cy =5were
calculated from the only available data on the steady-
state H-mode (Q,, = 2.5 MW). The profiles computed
with these factors are shown in Fig. 1 and are seen to
approximate the experimental points fairly well. The
resulting transport coefficients are presented in Fig. 2.

The centrally peaked Ohkawa thermal diffusivity X,

made it possible to qualitatively account for enhanced
transport in the central plasma due to sawtooth oscilla-
tions.

In the ASTRA-ETL code, either the experimental
or calculated temperature and density profiles in the
ohmic mode plasma (Q,,, = 0) can serve as the initial
conditions. Since, for the shot under consideration, the
data on the experimental profilesin the ohmic mode are
unavailable, we determine the desired initial conditions
by smulating an H-mode with subsequent switching-
off of the auxiliary heating. With these initial condi-
tions, the ASTRA—ETL code models the evolution of
the plasma parameters during the L—H transition, the
only control parameter being the input power. The
ohmic power calculated at theinitial instant is equal to
Qjoue = 1.5 MW. Below, the injected beam power will
be assumed to be redistributed between ions and elec-
trons according to formulas (8). The total input power
IS Qi = Qux + Qyoue- A Neutral beam with the power
Qux = 25 MW begins to be injected at the time
t=0ms. Figure 3 illustrates an L—H transition that
starts 25 ms after the auxiliary neutral beam injectionis
switched on and lasts ~10 ms (the duration of the tran-
sition is determined from the time scale on which a
poloidal sheared flow with a velocity V is generated).
Figure 3a shows the time evolution of the heat flux Qg
through the TL (and, accordingly, through the separa-
trix). The turbulent heat flux is calculated from the fol-
lowing formula, which can be derived from the convec-
tive term in the Braginskii equation (1.23) in [11]:

(3/2) (T, +T;)VO
= (32)(OQ"™ + Q™) + [T+ T))T ™),

where QT = TV =Y Dthe angular brackets
[J..Ostand for spatial averaging, T and h are tempera-

ture and density fluctuations, the velocity V should be
understood as the velocity field of the convective cells,
and = (ng + ne)/2 and Tk (T + Tg)/2 are the aver-
aged density and temperature inside the transport bar-
rier. The power Qgisexpressed in MW and hastheform

turb

Qs = Q" +Q", (12)
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Fig. 2. Profiles of the transport coefficients and neutral den-
sity in accordance with the profiles shown in Fig. 1. The
solid, dashed and dotted curves refer to the same confine-
ment modes asin Fig. 1.

where

Q™" = 16x10S (Mg + ng (Q1"+ QL")

iy

+(Toi+ Tg + Toet Teo) ]

odad

dif

Q™ = 16x 10‘ss;'r'j[(ns +ng)(Q% + Q%)

i U
+(Tgi+ T+ Tget TSe)rdlf] 0
O
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Fig. 3. Time evolutions of (&) the auxiliary heating power
Qaux. the power Qg of the heat flux through the separatrix,

and the pressure pg = (Tgj + Tge)Nge @t the pedestal; (b) the
velocity V of the poloidal sheared flow and the ion turbulent
thermal diffusivity xiwrb; (c) the dimensionless amplitudes
of potential and density fluctuations, X and Y,,, and the tur-

bulent particle flux "™ and (d) the averaged electron den-
sity [heCand the neutral density ny,.

Sisthe area of the last closed magnetic surface in n;
and Tg and ng are expressed in keV and in units of

10" m3, respectively.

The diffusive transport is assumed to be driven by
small-scale (A < L) plasma turbulence.

Figure 3b displays the time evolution of theion tur-

bulent thermal diffusivity x\"> = Q" L/ATy — Tg),
which reaches its maximum value just before the L-H
transition and then starts to decrease because the
plasma turbulence is suppressed by the developing
poloidal sheared flow. The power of the heat flux

through the separatrix at the time at which the turbulent
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Fig. 4. Power Qg of the heat flux through the separatrix asa
function of the pressure at the pedestal for the L—H transi-
tion scenario illustrated in Fig. 3.

transport coefficients reach their maxima can naturally
be regarded as athreshold power Q, , for the L—H tran-
sition.

For the averaged electron density M= 3.55 x
10" m3, the threshold power isQ, ; =2.07 MW. Since
the input power exceeds the threshold power only
dlightly, the experimentally observed L—H transition
occurs on a relatively long time scale (about 15 ms).
The calculated velocity of the sheared E x B flow is
equal to 3600 m/s (the measured poloidal flow velocity
being 5000 m/s), and the turbulent transport coeffi-
cients decrease (Fig. 3b). Although, during the L—H
transition, the temperature and density profiles in the
central plasma change insignificantly (the only pro-
nounced effect is the appearance of a pedestal), the
plasma confinement actually improves. The confine-
ment improvement is clearly seen in Fig. 4, which pre-
sents the heat power Qg flowing through the separatrix
as a function of the pressure pg = (Tge + Tg)Ng & the
pedestal (sincethe pressure at the separatrix is constant,
the pressure gradient inside the transport barrier is
governed by the pressure at the pedestal). Here, the val-
ues of Qg and pg are taken from the time evolutions
shown in Fig. 3a. The horizonta part of the profile (at
Qs = Q,_4) corresponds to the L-H transition. A
decrease in the slope angle of the profile at large pres-
sure gradients provides evidence that the plasma con-
finement does improve. It is interesting to note that an
increase in the input power of upto Q,, =5MW att =
150 ms after the L—H transition (Fig. 3a) does not fur-
ther improve the confinement (the slope angle of the
plotinFig. 4 doesnot change), although the pressure pg
at the pedestal increases from 717 to 973 Pa (ps =
192 Pa) and, accordingly, the profile shifts upward (see
the profilesin Fig. 1). For Qs = 2.5 MW in the steady
state (Fig. 3c), the fluctuation amplitudes in the
PLASMA PHYSICS REPORTS  Vol. 27
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Tablel

N, 10°m=3| L, m |M101°m=3 QEE QL MW | Ty, keV | Tge keV [ng, 10° m3| v/, 107 v /w,, 107°
0.0014 | 0.025 2.98 0.70 2.09 0.085 0.09 2.19 1.24 0.55
0.0029 | 0.024 3.82 0.67 2.56 0.082 0.085 2.34 1.15 1.14
0.0044 | 0.023 4.36 0.67 2.92 0.08 0.081 2.45 1.09 1.68
0.0059 | 0.023 475 0.68 3.24 0.077 0.078 2.56 1.02 2.26

H-mode are close to those measured experimentally
[10]: e, me/T = (L/MPX = 10X = 0.16 and n, /N =2Y, =
0.08.

Figure 3d shows the time evolution of the averaged
electron density. Inthe ASTRA code, the averaged den-
sity is made close to the experimental one by automat-
ically adjusting the neutral source power at the plasma
edge. This agorithm models controlled gas puffing
through avalvein real experiments. The neutral density
n, at the separatrix is computed from the preset initial
and final values of [MJand from the desired evolution
time. The neutral density, which is assumed, for sim-
plicity, to be constant inthe TL (n,g= N,z = N,), usually
variesin therange 10'¢ < n, < 10'7 m=. In order for the
L-H transition scenario to agree with the shot under
analysis, we calculated n, by setting MOt = 0) =
3.45 x 10" m~ and It = 150 ms) =4 x 10" m3, the
temperature of neutral particles at the separatrix being
constant, T,, = 0.003 keV.

5. DEPENDENCE OF THE THRESHOLD POWER
OF THE L-H TRANSITION ON THE AVERAGED
ELECTRON DENSITY

To illustrate the dependence of the threshold power
of the L-H transition on the averaged electron density,
we use existence diagrams, in which the experimental
points corresponding to the L- and H-modes are plotted
in the “ power flowing through the separatrix—averaged
density” coordinates. The dependence of the threshold
power on the averaged density is represented by the
curvethat separatesthe pointsreferring tothe L- and H-
modes. In simulations, the threshold power Q,  is
defined as the sum of the heat fluxes through the sepa-
ratrix viathe ion and electron channels just before the
L—H transition, when the turbulent transport coeffi-
cients are maximum. Since, in simulations of the tran-
sition scenarios, the averaged electron density depends
sensitively on the source of neutra particles, we first
consider how the edge density and temperature of the
neutral particles affect the parameters of the L—H tran-
sition.

In the combined ASTRA-ETL model, the neutrals,
on the one hand, act to slow down the poloidal plasma
rotation because of the momentum exchange with ions
via the charge exchange mechanism and, on the other

PLASMA PHYSICS REPORTS  Vol. 27
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hand, serve asaparticle source, which governsthe elec-
tron density profile. In turn, the transport coefficients
that depend on the density profile in the central plasma
affect the parameters of the L—H transition. In order to
determine the extent to which the power threshold and
energy confinement time are influenced by neutral par-
ticles, we carried out a series of simulations of L—H
transition scenarios at different neutral densities n,, the
other parametersin (11) being fixed [10]. The results of
calculations with different neutral densities n, are sum-
marized in Table 1 and are illustrated by circles in
Fig. 5.

In this series of simulations, the threshold power
Q. is alinear function of the averaged density ()
because the viscosity of a poloidally rotating plasma
increases due to charge exchange. In the ETL model,

01, MW
4 —

0 | | | | | | |
2.0 25 3.0 3.5 4.0 45 5.0

@) 10" m

Fig. 5. Threshold power Q, _y vs. the mean plasmadensity:
the circles and triangles illustrate how the electron density
changes at the expense of n, and T,, respectively, and

the squares refer to a discharge with cryopumping (shot
no. 89348).
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thetransition to the H-mode is associated with the onset
of the poloidal sheared flow, which suppresses plasma
turbulence. The sheared flow results from the interac-
tion between the convective cellsinthe TL. The plasma
starts to rotate in the poloidal direction only when the
rate of the nonlinear generation of the sheared flow by
the convective cells is higher than the rate of viscous
damping; in other words, the rotation velocity in con-
vective cells should exceed a critical value (see
Egs. (39) and (41) in[4]). The characteristic velocity of
the plasma convection near the separatrix is governed
by the pressure gradient. Asthe viscosity increases, the
velocity of the poloidal sheared flow decreases and,
consequently, the pressure gradient Cpg inthe TL (i.e.,
the input power) required for the transition to the H-
mode increases. According to Eq. (40) in [4], the crite-
rion for the L—H transition in terms of the pressure gra-
dientinthe TL hastheform

Opg>UpL_p, (13)
where
Upg = [nB(TBi + TBe) - nS(TSe + TSi)]/L’

UpL-n

- nSTSe|:

0.074(ck™ + 0.037k2)k2§%l 45 Ve }

oock2 ik

k= 2@ p1yL, p = C4w, is the ion Larmor radius in
terms of the electron temperature, L is the width of the
transport barrier, Cs is the speed of sound in terms of
the electron temperature, w;, istheion gyrofrequency, R
is the major radius of the plasma column, the quantity

o= /M/ mekﬁ pAcisproportional to the Spitzer plasma

V/ch BD 1019 m—3
1.5F
1.0
0.5F
! ! ! ! ! 0
0 1 2 3 4 5 6
n,, 10" m=

Fig. 6. Plots of v, /v and [MCvs. the neutral density ny,.

conductivity, k= 1/gR, and A, is the electron mean free
path.

From (13), we can see that the critical pressure
gradient Op, ,, depends linearly on the ion viscosity
(Vv + V), where

v = OrVy ,
(1+v,)(1+ v*sslz)

are the simplest representations of the neoclassical vis-
cosity and the friction coefficient due to the charge
exchange of neutralswith azero mean poloidal velocity
on the bulk ions. In (14), theion collisionality parame-
ter hasthe form v7=v,/(wr€e*?), wherev; istheion col-
lision frequency, wr = V4/(gR) isthe bounce frequency,
V5, istheion thermal velocity, q isthe safety factor, and
€ = a/Risthe inverse aspect ratio.

Inthefour-field ETL model, the generalized expres-

sion for the power carried away by the convective cells
during the L—H transition has the form (cf. Eq. (22) in

[3])

QU = 3.2L(V + V) [Ne(Te + Ted) —Ng(Ts + Too)]
= 32L°(v + Vo) 0P (4>

so that the total threshold power of the L—H transition
can be written as

Vex = Lvaolyn,  (14)

turb dif

Qun = Q_y+Q 4
= (3.2L%(v +v,) + CDg)Op, 4.

Estimate (15) was derived under the assumption that, in
the ETL model, the dissipation coefficientsin the equa-
tions for the temperature and density fluctuations are
the same. Without this assumption, we cannot express
Q" through Tp,_y,. In expression (16), Dg = pCs/16
isthe Bohm diffusion coefficient and the numerical fac-
tor C = 0.5 was determined from the calibration calcu-
lations. For smulationsillustrated in Figs. 3 and 4, esti-
mate (16) gives Q__y = 2.5 MW, which is close to the
computed level Q, _, =2.07 MW. We substitute the crit-
ical pressure gradient (13) into formula (16) to arrive at
the final expression for the threshold power:

(16)

(L°(V + Vo) + CDgA,

Qun=99 > sTse
qpR a7
- L*(v + v, )BT
q°R

Formula (17) implies that, for v < v, the threshold
power Q,  is proportiona to n, and, accordingly, to
mCJ The dependence of hon n, is presented in Fig. 6,
which also shows the ratio of the neaclassical viscosity
to the viscosity associated with charge exchange for
different neutral densities. One can see that, in the
PLASMA PHYSICS REPORTS  Vol. 27
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CALCULATION OF THE ENERGY CONFINEMENT TIME AND POWER THRESHOLD 9

rangesn, > 2.5 x 10'* m= and [M(3> 3.5 x 10" m3, the
charge exchange—related viscosity dominates over the
neoclassical one, v, > V. Intheseranges, anincreasein
the neutral density via neutra injection prevents the
onset of the poloidal sheared flow, so that the transition
to the H-mode requires high input powers.

The simulations under discussion were performed
for a mixture of cold and warm neutrals, n, = ng + Ny,
where the density ny,, of warm neutrals (with the tem-
perature T, = 20 eV) was equal to 0.3 of the density n¢
of cold neutrals (with the temperature T = 2 eV).

We aso carried out a series of simulations in the
range of low plasma densities for the discharge with
cryopumping (shot no. 89348 [12], see the squares in
Fig. 5). The input parameters were as follows:

R=1.67m, a=0.63m, B=2.17T,
ln=137MA,q=4.55, b/a=18, 6=03, (18)
Tg=190eV, Te.=55¢eV, ng=0.8 x 10" m=.

Since the plasma density in this discharge is low, the
electron and ion temperatures at the separatrix may be
different. A neutral beam with the power Q,,, = 2 MW
begins to be injected at thetimet = 0; at thetimet =
0.2ms, the neutral beam power is instantaneously
increased to Q,,x = 3 MW. In order to determine how
much the L-H transition is sensitive to the neutral den-
sity n,, and neutral temperature T,,, we simulated the fol-
lowing four L—H transition scenarios:

1. A scenario with n, = const and T,, = const. This
scenario refers to the point at which Q_, = 2.87 MW,
= 2.07 x 10" m=, and n, = 5.8 x 10'> m™3 (the first
square from theleft in Fig. 5). During the injection of a
neutral beam with the power Q. = 2 MW, the plasma
is in the L-mode. After the beam power is instanta
neously increased to Q,,, = 3 MW, the plasma evolves
into the H-mode: pedestalsform onthe electron andion
temperature profiles (Tg and Tge increase) and a
sheared E x B flow with arotation vel ocity of 8450 m/s
is generated. The simulated scenario differs from the
actual onein that the averaged electron density and the
energy confinement time 1z both decrease after the
L-H transition, because, in calculations, the source of
neutral particles was artificially fixed. The confinement
deteriorates because transport coefficients increase
with temperature.

2. The ASTRA code changes the averaged elec-
tron density by adjusting the neutral density profile
n, to the experimental one. This scenario refersto the
point at which Q_, = 2.85 MW, = 2.27 x 10 m™3,
and n,=9.5 x 10'> m3 (the second square from the | eft
inFig. 5). According to Fig. 10ain [12], thetime behav-
ior of the averaged electron density [mis prescribed as
follows: firgt, the density hdecreases from Mt = 0) =
2.37 x 10" m3 to MOt = 0.21 s) = 2.27 x 10" m3;
then, at fixed ] the plasma evolves from the L-mode

PLASMA PHYSICS REPORTS  Vol. 27
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to the H-mode; and, finally, starting from the time
t = 0.4 s, the averaged electron density increases to h(J
(t=0.625)=2.92 x 10" m=. The velocity of the poloi-
dal sheared flow is found to be about 3500 m/s, which
is much lower than that in the first scenario, and the
energy confinement time 1¢ increases insignificantly.
The confinement improves only dlightly, because the
appearance of a pedestal on the density profile leads to
the disappearance of pedestals from the temperature
profiles.

3. T, increases at constant n,,. This scenario refers
to the point a which Q,_; =2.94 MW, = 3 x 10" nr?,
and n, =6 x 10'> m3 (the first square from theright in
Fig. 5). In the ohmic mode, we have T, =30 eV (asin
the first and second scenarios). After a neutral beam
with the power Q,,, = 2 MW begins to be injected at
t =0, the temperature T, is found to increase to 60 eV
(Tg =156 V). Because of theincreasein T, the spatial
scale L, (on which the radia profile of the neutral den-
sity decreases) increases from 12.5 to 20 cm. After the
timet = 0.2 s, a which the beam power is instanta-
neoudy raised to Q,, = 3 MW, the temperature T, is
found to increase to 100 eV (Tg = 175 eV) and L,
becomes as long as 26 cm. As aresult, a barrier forms
on the density profile, thereby naturally increasing both
the energy confinement time 1 and the el ectron density
(mCduring the L—H transition. The assumption that the
temperature of neutral particles increases proportion-
ally to the edge ion temperature is justified by the fact
that warm neutrals are produced from the recycling of
ions escaping from the plasma.

4. A scenariowithnc = 1.7 x 101 m=3, T. =2 eV,
nW = nnrn Wlth nn = 2.7 X 10_7, and TW = nTTBi Wlth
Nt = 0.3. In this scenario, the feedback condition is
introduced for the density and temperature of the warm
neutral s produced by recycling. Thetime evolution of a
discharge plasmawith these parametersisillustrated in
Fig. 7. The L—H transition corresponds to the point at
which Q_ = 3 MW, = 3.4 x 10" m3, and n,, =
2.33 x 10'¢ m=. Note that the experimentally observed
increase in the averaged electron density after the L-H
transition iswell reproduced in this scenario.

A comparison between these four scenarios shows
that, although the detail s of the L—H transitionsare sen-
sitive to the way in which the density evolves, the
threshold powers for these transitions differ at most by
5%.

Combining the points calculated for a low-density
plasma (the first and second scenarios) with the ssimula:
tion results summarized in Table 1, we arrive a a
U-shaped profile of the threshold power (Fig. 5):

Qun = L7000+ 15.4/I- 7.9, (19)

where Q__ isin MW and msin units of 10! m.

When approximating experimental data, Carreras
et al. [12] obtained asimilar dependence (seeFig. 19in
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Fig. 7. L—H transition scenario analogous to that illustrated
in Fig. 3, but when the density and temperature of warm
neutrals serve as adjustable parameters: ny = Ny, and

Tw=n71Tgi-

[12]). Our simulations show that such a specific
U-shape can be explained by the fact that the profileis
composed of two different parts: in the range 1> 3 x
10" m=3, inwhich v, > v, we have Q, ; O Ih[because
of the friction of ions on neutrals, and, in the range of
lower electron densities, in which v, < v, the profile
becomes nonlinear and the threshold power increases
because the electron and ion temperatures and electron
density at the separatrix increase (see below). The
points that do not lie on the U-shaped profile in Fig. 5
were calculated from the parameter values (18) at the
separatrix for a discharge with cryopumping (shot
no. 89348). However, because of the lack of experi-
mental data on n, and T,,, we had to vary these two
parameters. For this reason, the averaged electron den-
sity in this series of simulations was higher than the
measured one. We found that, for the same electron
density (= 3 x 10'° m~) and same magnetic config-
uration, the threshold power in shot no. 89348 (adis-
charge with cryopumping) was higher than that in shot
no. 82830. This result agrees with the experimental
observations.

In order to show that the dependence Q,_, O O
results exclusively from an increase in n,,, we carried
out a series of calculations in which [hchanged at the
expense of the neutral temperature T, the neutral den-
sity n,, being fixed. The calculated results are shown by
triangles in Fig. 5. The triangles refer to the tempera-
tures T, = 0.03, 0.06, 0.09, and 0.12 keV (from left to
right). Since the neutral temperature entersonly thefor-
mulafor the spatial scaleL,, on which theradia profile
of the neutral density decreases, varying T, makes it
possible to change solely the electron density ] the
remaining parameters being fixed. The threshold power
Q. _y calculated in such amanner was found to be inde-
pendent of (ML Thus, we can conclude that, in the
ASTRA-ETL model, the dependence Q, y O [Mlis
associated exclusively with an increase in the friction
of ions on neutrals.

6. THRESHOLD POWER AS A FUNCTION
OF THE PARAMETER VALUES
AT THE SEPARATRIX

Since experimental observations show that the
power threshold of the L—H transition depends on the
temperatures Tg, and Tq and density ng at the separatrix
(see Fig. 1ain[13]), we performed a series of calcula
tions for DIII-D shot no. 82830 in order to clarify this
dependence.

Figure 8 makes it possible to compare the power
thresholds calculated at different electron densities for
two different ion temperatures at the separatrix
(Fig. 8a): Tg = 0.055 keV (triangles with upward-ori-
ented vertices) and Tg = 0.03 keV (triangleswith down-
ward-oriented vertices). Both of these series of calcula-
tionswere carried out for Tg,=0.03 keV. Theremaining
parameter values were taken from (11). Anincrease in
the threshold power with increasing ion temperature at
the separatrix is attributed to the following two circum-
stances. First, to raise the ion temperature at the separa-
trix, higher input powers are required. Second, in the
Pfirsch—SchlUter regime, in which theion collisionality
parameter lies in the range vy> €32 (in calculations,

we used vj= 6 and £¥2 = 4.2), the neoclassical viscos-

ity increases with ion temperature, thereby slowing
down the poloidal sheared rotation. The dependence of
the neoclassical viscosity v = wr/(e¥>v) O T°2 on the
ion temperature at the separatrix manifests itself in the
fact that the threshold power Q, ,, becomes almost
independent of the averaged electron density m{trian-
gles with downward-oriented vertices), because, at
T4 = 0.055 keV, the charge exchange—related viscosity
is lower than the neoclassical viscosity, v, < V. In con-
trast, thevalue Tg = 0.03 keV refersto the case v, > v.

In Fig. 8b, the dependence of Q, _, on the parameter
Nns at fixed n, is illustrated by asterisks, which corre-
spond to ng=1.5 x 10", 2 x 10", and 2.5 x 10" m
PLASMA PHYSICS REPORTS  Vol. 27
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(from left to right). As ngincreases, the threshold power
decreases because of a decrease in the neoclassical vis-
cosity.

Figure 8c illustrates the threshold power as a func-
tion of the electron temperature (Tg, = Tg) at the sepa-
ratrix for a fixed averaged electron density (= 3 x
10" m3). The parameter Tg, is incorporated into the

ETL model through the dissipation coefficient, whichis

proportional to the Spitzer conductivity (o [ Tgf ), and

through the normalization condition for the electron
and ion temperatures. According to criterion (13), the
threshold for the onset of turbulent convection and the
threshold power (17) are both functions of 0. From
Fig. 8c, we can seethat the threshold power isvery sen-
sitive to T as the temperature Tg, = Tg increases by
20%, the threshold power increases by a factor of 2.5.
As Tg. = Tq further increases, the plasma conductivity
becomes higher, thereby completely stabilizing the
interchange instahility, in which casethe ASTRA—ETL
model implies that the plasma cannot evolve into the
L-mode. As the electron temperature (Tg, = Tg)
decreases, the threshold power decreases, so that the
Joule heating power becomes high enough for aplasma
to evolve into the ohmic L- and H-modes.

The sensitivity of the results obtained with the
ASTRA-ETL model to the parameter Tg, = Ty proba
bly stems from the assumption that Ts. and Tq are both
fixed at the separatrix. In the experiment, the tempera-
tures Tg, and T4 evolve in a self-consistent fashion, so
that the power fluxes through the TL and the scrape-off
layer (SOL) are the same. For example, if Tg. is low,
then an interchange instability develops and the turbu-
lent flux causes the temperature profile to flatten, which
leads to an increase in Tg. Another restriction on the
ASTRA-ETL mode is associated with the fact that the
seed dissipation coefficients, which stem from the trun-
cation of Fourier expansions of the fluctuating quanti-
ties, are assumed to be constant. However, the depen-

dencec [ Tgf implies that the seed dissipation coeffi-

cients should change as time elapses. To remove these
restrictions requires three-dimensional modeling of
the TL.

Our simulations show that higher power thresholds
of the L—H transition may |ead to better energy confine-
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O 1 1 1 1 1 1
20 25 3.0 35 40 45
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1
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Fig. 8. (a) Threshold power Q_ _y Vvs. the averaged electron
density at Tg,=0.03keV for Tg =0.055keV (triangleswith
upward-oriented vertices) and Tq = 0.03 keV (triangleswith
downward-oriented vertices). (b) Threshold power Q, _y Vs.
the averaged electron density for different electron densities
at the separatrix: ng = 1.5 x 10, 2 x 10, and 2.5 x
10! m=3 (from left to right). (c) Threshold power Q_ _ Vs.
the electron temperature at the separatrix (Tg = Tg) for

M= 3 x 109 m3.

ment. In order to illustrate this conclusion, we compare
the turbulent transport coefficients for two transition
scenarios corresponding to the points Tg, = Tg =
0.033keV and Tg, = Tq = 0.029 keV in Fig. 8c. In
Table 2, we summarize the parameters of the transport
barrier for the following cases:

(i) L—H transition at Q= 3.69 MW and Tg, = Tg =
0.033 keV.

Table 2
— b turb b
Tee=Tg,| Qs ML | Tg, | Tge, | Mas x| xe", | DY,
No.l "oy MW |10 -3 kv | kev 1019 -3 V, m/s '2 62 m/s €O ms! Tee|Nrms/ Ng T, S| Mode
m-/s | m</s
1| 0033 | 369 | 312 | 011 | 011 2.3 370 167 | 14 1.45 0.2 0.036 (0.07| H
0.033 | 1.50 | 3.23 | 0.08 | 0.08 25 024 | 035 | 031 | 032 0.1 0.034|0.12| L
0.029 | 1.53 | 3.12 | 0.07 | 0.07 24 | 1515 0.83 | 0.76 | 0.76 0.14 |0.042 (011 H
PLASMA PHYSICS REPORTS Vol. 27 No.1 2001
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Fig. 9. L-H-L transition scenario in which the plasma
evolves back into the L-mode after the neutral beam is
switched off: (a) time evolutions of the auxiliary heating
power Q. the heat flux Qg through the TL, and the pres-

sure pg at the pedestal; (b) time evolutions of the velocity V
of the poloidal sheared flow and the turbulent thermal diffu-

sivity x}”rb; (c) time evolutions of the fluctuation ampli-

tudes X and Y;, and the turbulent particle flux F"™®; (d) time
evolutions of the averaged electron density heBnd the neu-
tral density n,,; and (€) the hysteresis curve Qgpg).

(ii) The transient L-mode in the same discharge at
the time at which the power flux through the separatrix,
Qs=1.5MW, iscloseto the threshold power of the L—
H transition in case (iii).

(iii) L=H transition at Qg=1.53 MW and Tg,= Tg =
0.029 keV.

A comparison between the turbulent transport coef-
ficients and Tt in the second and third rows of Table 2
shows that, for essentially the same power Qg the
energy confinement in the L-mode with ahigher power
threshold is no worse than that in the H-mode with a
lower power threshold. Thus, we can conclude that, in
dischargesin which plasmaturbulenceis stabilized to a
greater extent, the transition to the L-mode requires
higher input powers.

7. MODELING OF THE H-L TRANSITION

In order to model the H-L transition scenarios, we
also carried out two series of simulations for a dis-
charge with the parameter values (11) and with T, =

0.003 keV and n, =3 x 10' m=3 (shot no. 82830). The
calculated scenarios are illustrated in Figs. 9 and 10.

In the first series of simulations, the averaged
plasma density was maintained at a constant level by
automatically adjusting the model neutral sourcein the
ASTRA code (Figs. 9d, 10d). The H-L transition illus-
trated in Fig. 9 was simulated by switching-off the neu-
tral beam power, the averaged plasma density being
constant (Fig. 9a). The plasma is seen to evolve in a
guasi-steady fashion back into the ohmic mode on a
time scale of about 80 ms, which is comparable with
the energy confinement time. The L-H-L transitions
show a pronounced hysteresis effect (Fig. 9e): at Qg =
1.5 MW, the plasma remains in the H-maode, although
the threshold power of the L—H transition is equal to
2MW.

In the second series of simulations (Fig. 10), the
H-L transition was driven by an increase in the plasma
density via gas puffing, the NBI power being constant.
The plasma eventually evolves into the L-mode, but,
because of an increase in the plasmadensity (Fig. 10d),
the turbulent fluxes are more intense than before the
L-H transition (Fig. 10c). The time scales on which the
plasma evolves into the H-mode and, then, back into
the L-mode are close to one another and are approxi-
mately equal to 50 ms. From Fig. 10e, we can see that,
after the transition back to the L-mode, the effective
thermal diffusivity, proportional to Q4pg, is much
higher than that before the transition to the H-mode.

8. PARAMETRIC DEPENDENCES
OF THE ENERGY CONFINEMENT TIME

We applied theASTRA—ETL codeto investigate the
global energy confinement time 1. as afunction of the
averaged plasmadensity. According to our simulations,
the behavior of the energy confinement time can be
described as follows (see Fig. 11a). In the range <
3.6 x 10" m3, 1¢ increases linearly with ] In the
ohmic mode, we have 1z = congt, and, in the L-mode,
PLASMA PHYSICS REPORTS  Vol. 27
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we have 1z 00n[%%, which is close to the dependence
Te (TIP3 (where P is the input power) measured
experimentally in DIII-D (see Eq. (4) in [14], p. 2-41).
That the confinement improves as [hllincreases is
explained by the dependence 1/mC0n the Ohkawa elec-
tron thermal diffusivity (4). The confinement saturation
is caused by the transport via the ion channel dominat-
ing over that via the electron channel (in the core
plasma, the ion transport coefficients are density-inde-
pendent). The dependence of the energy confinement
time on the threshold power (Fig. 11b) was evaluated
from the database used in simulations and, at fixed val-

ues of [mCJwas found to be 1z = 0.12 Q[‘iﬁ6 (the power-
law index in the measured dependence is—0.5).

Simulations with the ASTRA-ETL code showed
that, during the L—H transition, Tg increases insignifi-
cantly (Fig. 11a), although the turbulent transport coef-
ficientsdecrease by at least afactor of 2. Thisresult can
be explained by the fact that, for the experimentally
observed width of the transport barrier (L =2 cm), Tgis
only slightly sensitive to the evolution of the transport
coefficientsinside the barrier, provided that the thermal
diffusivity XF™ inside the barrier is close to the mean
thermal diffusivity xAS™R4 in the central plasma. In
order for 1 to increase by afactor of 2 during the L—H
transition, it is necessary that the thermal diffusivity
inside the barrier be lower than the mean thermal diffu-
sivity in the central plasmaby afactor of more than 6,
XETE/XASTRA < 1/6 (Fig. 11c).

The calculated results make it possible to establish
the temperature at the center of the plasma column asa
function of the temperature at the top of the pedestal for
different averaged plasma densities. In the steady-state
H-mode, the central temperature decreases only
dlightly in alinear fashion as the averaged plasma den-
sity increases. At the pedestal, the temperature
decreases according to the law 1/n, so that the effect of
the temperature-profile “stiffness’ (T,/Tg = const) is
not observed.

The dependence of 1z on the extent to which the
radial input power profile is peaked was determined
using as an examplethe profile P O exp(—(r/ry)?). Inthe
range r, > 1.5a, 1¢ is independent of r,. Making the
input power profile peaked (with r, = 0.1a) strongly
affects the temperature profile (the ratio T,(0)/Tg;
increases by afactor of 3), but T increases at most by
20%.

The energy confinement time computed as a func-
tion of the toroidal magnetic field B is illustrated in
Fig. 11d. In the ohmic mode, t¢ increases amost lin-
early with B. In the L-mode, we obtained the depen-
dence 1 O B%%°, which is steeper than the dependence
that followsfrom the ITER-89P statistical scaling: Tg U
B%2. We still lack the experimental data that would
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allow us to compare the calculated dependence 1(B)
with that measured in DI11-D, because the scaling of the
energy confinement time in terms of q for the L-mode
in DIII-D isunavailable (see [14], p. 2-41).
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the transport barrier to the thermal diffusivity xASTRA

9. CONCLUSIONS

We have described the ASTRA transport code sup-
plemented with the four-field ETL model, which serves
to impose the boundary conditions of the third kind for
the energy balance equations. We have applied the
combined ASTRA—ETL model to ssimulate L—H transi-
tion scenarios and to calculate the energy confinement
time and the threshold power of the L—H transition as
functions of the averaged electron density [t the aver-
aged toroidal magnetic field B; the Tg,, Tg, and ng sep-
aratrix parameters; and the neutral density and neutral
temperature at the separatrix.

According to the classification proposed by Connor
and Wilson in review [15], the ETL model belongs to
the class of L—H transition models in which the turbu-
lence is suppressed by either the shear of the radial
electric field or the shear of the plasmarotation velocity
and the L—H transition itself is described in terms of the
phase transition by a set of equations that includes the
nonlinearly coupled equations for turbulent fluc-
tuations and a poloidal sheared flow. The power flux
Q«(Upg) through the separatrix starts to bifurcate when
the input power is high enough to achieve the critical
pressure gradient at which the convective cells become
unstable against the generation of a poloidal sheared
flow. Previous models with bifurcated solutions failed
to establish the characteristics of the L—H transition as

in the main plasma; and (d) the toroidal magnetic field.

functions of the plasma parameters because the depen-
dence of the transport coefficients on the electric field
shear was introduced phenomenologically (seeformula
(2)in[16]). TheASTRA—ETL model makesit possible
to reveal the parametric dependences of the energy con-
finement time and the threshold power of the L—H tran-
sition through self-consistent simulations of the evolu-
tion of the averaged profiles; sheared velocity; turbu-
lent fluctuations, and the corresponding transport
coefficients, which describe transport processes caused
by the drift-resistive ballooning instability in the edge
plasma.

When comparing the computed results with the
experiment, we focused on the measured quantities.
Accordingly, we have presented the calculated values
of the sheared poloidal velocity (Figs. 3, 7, 9, 10),
which were obtained experimentally in DIII-D, rather
than the magnitude of the radial electric field, whichis
to be evaluated numerically from the measured rotation
velocity using the force balance equation (see Fig. 4 in
[16]). Since the computed poloidal velocity V and the
computed plasma pressure gradient are both close to
the experimental ones (seethetablein[4]), the depth of
the electrostatic well E; =14 kV/m) isaso closeto the
experimental depth (E, varied from about —11 to about
=15 kV/m).
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It is of interest to compare our results with the
results obtained in [18], in which the identical Bragin-
skii equations were solved, but the problem was treated
in a different formulation. Ronglien et al. [17] calcu-
lated the profiles of the temperature, density, velocity,
and radial electric field for prescribed transport coeffi-
cients, which were assumed to be constant in the radial
direction. Varying the particle diffusivity, they obtained
E, and T, profiles, which were found to be similar in
shape to the experimental profiles in the L- and H-
modes. They also concluded that the shear of E, is due
to the shear of the poloidal velacity (see[17, p. 1856]),
which agrees with our basic assumption (see (A.3) in
[4]), but differs from the accepted views regarding the
physics of L—H transitions [16], according to which
transport processes are suppressed by the shear of E,,
rather than the suppression of transport processes gives
rise to the shear of E, [17]. The ASTRA—ETL model is
aimed at aself-consistent calculation of turbulent trans-
port coefficients during the L—H transition, so that, in
the model (as in experiments), the only way to trigger
the L—H transition is to raise the input power.

In the four-field ASTRA-ETL model, the evolving
density profile plays an important role, in contrast to
the two-field ASTRA-ETL model [3], in which this
profile was taken from the experiment. Self-consistent
calculations of the density profile reveaed a significant
feedback effect: on the one hand, the threshold power
of the L—H transition, the energy confinement time, the
amplitude of turbulent fluctuations, and the velocity of
the poloidal sheared flow depend substantially on the
density, but, on the other hand, they affect the transport
coefficients, which, in turn, govern the density profile.

We have shown that the linear dependence of the
threshold power on the averaged electron density,
QL_n OOnC] results exclusively from an increase in n,,.
Intherangev,, > Vv, the linear dependence is related to
an increase in the viscosity of a poloidally rotating
plasma due to charge exchange. In the range of low
densities [MLJin which v, < v, the dependence becomes
nonlinear and the decrease in the density is accompa:
nied by the increase in the threshold power because
both the electron and ion temperatures at the separatrix
increase. Over the entire range of the averaged electron
densities under consideration, the dependence can be
approximated by a U-shaped profile:

Q .y = 170K 15.4/- 7.9.
The calculated dependence of Q,  on the parame-

ter values at the separatrix iswell approximated by the
analytic estimate (17) and can be described as follows.

(i) For v > v, Q__ increases with Ty by virtue of
v O T; for v < v, we have Q_, = const.

(if) Q__y increases sharply with Tg, by virtue of

o0 TY.
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(iii) With increasing electron density at the separa-
trix, Q,_y decreases as 1/ng by virtue of o 0 1/ng,

These results indicate that, in deriving a scaling of
the form Q__ O B for the threshold power of the
L-H transition in terms of the globa plasma parame-
ters, we must take into account the “hidden” parame-
ters: Tg, Tg, Ng, T,, @nd n,. If these hidden parameters
are neglected, then the uncertainties in the approxima-
tion of the experimental points by a statistical
approach, which is used, e.g., to make predictions for
ITER [18], are so large that the predicted threshold
power of the L—H transition liesin the range from 50 to
200 MW. Applying the statistical approach to the sam-
ples of datafrom experimentswith close parameter val-
ues at the separatrix (at least, with close electron tem-
peratures Tg) makes it possible to significantly reduce
the spread in experimental points around the approxi-
mated dependences and to increase the accuracy of pre-
dictions.

We have shown that the best way to model an
increase in the plasma density during the L-H transi-
tion is to take into account an increase in the tempera-
ture of the warm neutrals. When the temperature and
density of the neutral particles are fixed, increasing the
input power results in a decrease in the mean plasma
density. If the input power is high enough to trigger the
L—H transition, then the mean plasma density aso
decreases, but at a slower rate. In this situation, we
failed to observe an increase in the plasma density,
because, for the parameter values adopted in our simu-
lations, an improvement in the plasma confinement
inside the transport barrier is insufficient to improve
confinement of the central plasma by virtue of an
increasein the plasmatemperature. Taking into account
the fact that warm neutrals are produced from the recy-
cling of plasmaions, we assumed that the temperature
of neutral particles changes proportionaly to the ion
temperature at the pedestal, in which case an increase
in the ion temperature at the pedestal during the L-H
trangition leads to an increase in the temperature of
neutral particles. Asaresult, the neutrals penetrate far-
ther into the plasma and the averaged plasmadensity is
observed to increase.

We have modeled the hysteresis effect during an
L-H-L transition triggered by increasing the input
power.

We have determined the working ranges of the tem-
peratures and densities at the pedestal (0.05keV < Tg, <
0.15 keV and 0.8 x 10" M3 < ng, < 3 x 10" m) that
correspond to the onset of the L—H transitionin DI1I-D
plasmas. According to the approximate relationship
(Fig. 12a)

Tge— T =0.1/Ng, (20)

with Tg, = 0.03 keV, the critical parameter for the onset
of the L—H transition is the total plasma pressure gradi-
ent in the region just inside the separatrix, where a
transport barrier forms after the transition. For compar-
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Fig. 12. (a) Range of the parameters Tge and ng, corresponding to the cal cul ated scenarios of the L—H transition (circles); the approx-
imate dependence (20) is shown by the solid curve. (b) Working range of the parameters Tg, and nge measured in a plasma with at

the magnetic surface lying at a distance of 2 cm from the separatrix in various DI11-D operating modes (the points are for the ohmic
mode, the crosses are for the L-mode, the closed triangles are for the H-mode, and the open circles are for the L—H transition): curves 1
and 2, calculated with the ASTRA—ETL and ASDEX-Upgrade models, respectively, approximate the lower and upper boundaries

of the region in which the L—H transition can occur.

ison with the experimental data, Fig. 12b presents Tg,
and ng, measured at the magnetic surfacelying at adis-
tance of 2 cm from the separatrix in various modes of
DIlI-D operation (see Figs. 2.2.3-4 in [14, p. 2-46]).
Curves I and 2, which were calculated with the
ASTRA-ETL and ASDEX-Upgrade models, respec-
tively, approximate the lower and upper boundaries of
the parameter range in which the L-H transition can
occur.

In the range Mk 3.6 x 10! m~, the global energy
confinement time T increases linearly with Ml In the
range of higher electron densities, the energy confine-
ment time in the ohmic, L-, and H-modes obeys the
same power law 1 [IInM°. The confinement saturates
because transport via the ion channel dominates over
that via the electron channel, in which case transport
coefficients are density independent.

The dependence of the energy confinement time on
the threshold power was evaluated from the database
used in simulations. At fixed values of tm]it isfound to

be 1tz = O.lZQi‘,‘_"6 (the index of the power law in the

measured dependenceis-0.5).

For the experimentally observed width of the trans-
port barrier (L =2 cm), to achieve atwofold increasein
Te during the L—H transition requires that the thermal
diffusivity inside the barrier be lower than the mean
thermal diffusivity in the central plasma by at least a
factor of 6. Making the input power profile peaked

strongly affects the temperature profile (the ratio
Ti(0)/Tg; increases by afactor of 3), but T¢ increases at
most by 20%. It is found that the effect of the tempera-
ture-profile “ stiffness” (T,/Tg = const) is not observed.

Finally, we recall the following two restrictions of
the ASTRA-ETL model. First, the temperatures Tg,
and Ty at the separatrix are assumed to be fixed; to cal-
culate them requires asimulation of transport processes
in the SOL. Second, the seed dissipation coefficients,
which stem from the truncation of Fourier expansions
of the fluctuating quantities, are assumed to be con-
stant; however, they should depend on the plasma con-
ductivity, which governs the number of unstable modes
of turbulent fluctuations.
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Abstract—Hydrodynamic equations describing wall plasmaturbulence are analyzed numerically using atwo-
dimensiona four-field model. Turbulent transport coefficients are calculated with consideration of the radial
current. Numerical analysis revealed a possible scenario for L—H transitions that is associated with the radial
current driven by nonambipolar processes. It is shown that the transition of a plasmato an improved confine-
ment mode can also be triggered by other mechanisms. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It iswell known that the confinement of the central
plasma in tokamaks is significantly governed by the
edge localized electrostatic drift turbulence. Interest in
studying turbulent plasma dynamicsin the edge regions
stems primarily from the following two circumstances.
First, most experimental measurements are carried out
at the plasma periphery, so that our theoretical results
can be conveniently compared with experimental data.
Second, the most interesting physical phenomenon—
the L—H transition—al so occurs near the wall. Accord-
ingly, theoretical efforts have focused mainly on the
physical processes at the edge of a tokamak plasma.
Most of the theoretical papersin this area are devoted
to studying wall plasma turbulence using the Haseg-
awa-Wakatani (HW) model, which isbased on thetwo-
field set of reduced two-fluid hydrodynamic equations
for the plasma density n and electric potentia @ [1].
Numerical solutions of the HW equations [2-7] con-
firmed the theoretical results obtained in papers[8, 9],
which suggested that the most important factor govern-
ing the amplitude of turbulent fluctuations was the
poloidal sheared flow. The numerical results agree well
with the measured data, according to which the poloi-
dal rotation velocity increases during the transition to
an improved confinement mode (the L—H transition).
Note that, although thereis avariety of theoretical L-H
transition models (see review [10Q]), present-day two-
dimensional nonlinear codes are still not capable of
capturing this phenomenon.

Here, we calculate the parameters of the wall
plasma turbulence using, instead of the two-field HW
equations, a more complete set of the four-field two-
fluid nonlinear hydrodynamic equations, which take
into account not only fluctuations of the plasmadensity
and electric potential, n and @, but also fluctuations of
the ion and electron temperatures, T;, and T.. This
refined theoretical model clearly provides a more ade-

quate description of the physical processes in tokamak
wall plasma.

We investigate how the self-consistent radial cur-
rent J, affects turbulent transport. We show that the
radial current is induced as a result of the response of
the plasma to various nonambipolar losses at the
periphery of the plasma column in a tokamak. The
radial current—driven Lorentz force [j x B]y enhances
the poloidal sheared flow, thereby suppressing turbu-
lent fluctuations and giving rise to the L—H transition.
Our simulations show that the L—H transition occursin
a jumplike manner, regardless of the direction of the
radial current. We conclude that many scenarios for
triggering transitions to new confinement modes
known from experiments may be related to the radial
current. However, we present examples in which tran-
sitions to new modes of plasma confinement are gov-
erned by the changein tokamak plasma parameters that
are not associated with the magnitudes of theradial cur-
rent and poloidal flow velocity, so that there is no indi-
cation of a universal mechanism responsible for trig-
gering awide variety of experimentally observed L-H
transitions. Presumably, a unified theoretica model
should include all of the mechanisms responsible for
transitions to new confinement modes.

2. BASIC EQUATIONS

The general method of deriving the four-field set of
equations from the Braginskii reduced two-fluid hydro-
dynamic equations [11-13] for n, d, T;, and T, is pre-
sented in the Appendix. It is convenient to nondimen-
sionalize the four-field equations by passing over to the
new variables

t — t/t,, O — ed/T,,

(X, Y) — (% Y)/ %o,

U— UV, t5= 1/([3200ci), P = Poil %o,

1063-780X/01/2701-0018%$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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Po = VolWy, Vg = To/m;, Dg = piVo,
l..l —— u/DB’ D —— D/DB, (‘00 = 1/t0,
n—ning, T—T/Ty k,— KXo, gs=X/R,

where x, isthe width of aplane layer in which the four-
field equations are solved. The normalizing parameter
values are chosen to be n, = 103 cm~ and T, = 100 eV.
The nondimensionalization procedure sets Egs. (A.3),
(A.4), and (A.7) intheform

aw Uow, .00
®,W} = CIV:I—— U=
R B Y
on  O(T.+T,
_gB[(Teo+T'O)N6y ( 3y ):|+HOAEIW1
Uon 0P
——+ ®,n} = CVaI- +N'Z=
(o0 = CW=5ay NGy
PP ang
+gBDay TeoayD+ DoAnn,
W = p°A @
3 6T UaTeO
[ +{o, Te}} Co V-5 55
o°T,
_gBKe+XeO§1
oT, T W
7 ean od
Ke= T [Zay N N ay 6y]
370T, uaTIO
[ +{o, T}} C, IVET, - o
0°T,
+0sKi + Xio—
ax

_ 7aTi Tian L)
) T‘[Zay ' Nay_Eﬂ’

w W, w
C=—=—, C.=a;Te—, Ci =a,T—,
Vei e 1 eOVei i 2 |OVii
J=0o;Te+tkn-®, a; = 1.71,
0, = 3.9, K = Tg/N,

where N is the dimensionless background density and
the prime denotes the derivative with respect to the
minor radius x. Each of the quantitiesf= {n, ®, T;, T.}
is chosen to be a combination of helical waves with the
No. 1

PLASMA PHYSICS REPORTS  Vol. 27 2001

same helicity (k, = congt, k, = const):

f(xy,zt) = fo(x,t)+ Z f sm(X, t)sin(my)

2
+ fem(X, t) cos(my),

X = ky—k,z

Substituting the Fourier expansion (2) into Egs. (1), we
obtain equations for the Fourier coefficients fg,, and f,
of the modes of the four fluctuating quantities under
consideration. For the quantities f, = {N, U, Ty, T},
which will be referred to as the background quantities,
we arrive at the following equations, averaged over the
anglex:

ON  or . or™
ot 6x 0x G-
ON, 9’ N
W = -SN+D,— N 3.2)
ou +L FOU al'l
ot Nax I
3.3)
J o°U
= __Z_Vneo(U _Uneo) —VU + Moo
p 0X
ot N oOx 0x o0x 3.4
= G(TeO_TiO) _Va(TiO_Ta) + Pii
0Te, [T 0Qe
ot N ox 0x
> (3.5)
TeO
= Xooe—— — % (Teo—Tio) + Pe.
Here,
2 !
o= Ve o OVEaN,
m; Wy Wo
DJVQX
S

N, and T, are the neutral density and temperature; I' =
MV, L M= VL and Qg ; = T, ;VHare the particle,
momentum, and heat turbulent fluxes, respectively; and

cal;
Uneo - kneoeB ax
velocity. The expressionsfor k.., V.o, and T will be
presented in the next section. The ion heat flux is

is the neoclassical equilibrium
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described by the following simplified neoclassical rela
tionship, which isvalid in the plateau regime:

T, Sﬁr 200PiET,

neo _
QI - |OO aX Xneo - 2 |:|£ DeB
— Xneo —_
Xioo = —D‘B‘a Xeoo = 0-1Xioo-

The formulas for the ionization and charge exchange
cross sections, [0 VL], and [G VL], are taken from [14].

For athin plane layer (x, <€ a), the same hdicity of
the waves allows us to utilize the following expansion
at aresonant point such that k(X.,) = O

— L ~ky(x_xres)
9 e T
, “4)
1_s ._q
L, R’ q’

With alowance for expression (4), the operator of dif-
ferentiation in the longitudinal direction, V”, in the
above equations for the four fluctuating quantities (for
the Fourier coefficients fg,, and f.,) can be replaced by

2 celj(ol:?f
Vei D‘SD

In thefour-field model based on Egs. (1), the parameter
0, describes the main dissipation channel associated
with the escape of electrons along the magnetic field
lines.

We solved the sets of nonlinear equations (1) and (3)
numerically with the help of an agorithm based on the
predictor—corrector method [15], which can be sche-
matically represented as

X

Vi = 04(x=%0)°, Oy = (MkyXo)

n+1/2 n

- X
T
«/égxnﬂjz _%é%(n} + N(Xn),

xn+1_xr1 _ L[%+%égxn+l

:L[

T
n+1/2

J3ounvrz L AonT, o X+ X
_ A= + = + = A S
=X ZX} N2l

where L and N are linear and nonlinear operators,
respectively. The time step was chosen to satisfy the
condition T < 0.3Ar/V,,. This algorithm was found to be
more stable than the numerical scheme used in [7].

The fluctuating quantities were assumed to satisfy
the boundary conditions

W(0) = ®(0) = n(0) = T¢(0) = T(0) = 0,
W(1) = (1) =n(1) =T(1) =T(1) =0

and the boundary conditions for the background quan-
tities were as follows:

N(0) = Np, N(1) = Ng, Nu(0) = Ny,
Na(l) = Nsav TOG(O) = Tbcxv TOa(l) = Tsav (6)
. du
=ei, U(0)=U(~(1), — = 0,
a=ei, UO0)=Uw(l), G|

where the subscripts b and srefer to the left (x = 0) and
right (x = 1) boundaries of the computation region. The
resonant point x.., = 0.5 was assumed to lie at the center
of the computation region 0 < x< 1. In solving the equa-
tions for fluctuations, the dimensionless dissipation
coefficients were chosen to lie in the range D, = Y4, =
Xeo = Xio = 0.0004-0.002, which is far below the Dy
value, and the quantity p,, was set to be 0.01. The max-
imum number of helical waveswas M =5, 7, and 9.
While the number of helical waves in simulations was
increased to M = 21, the qualitative behavior of the
solution was found to be essentially the same. How-
ever, we found that the larger the number M, the more
intense the turbulent fluxes (I',, ~ 2I';). Additionally,
with increasing the number of helical waves, we had to
use progressively shorter time steps in order to ensure
the desired accuracy of the solution.

Some characteristic features of the behavior of the
plasma system under discussion can be revealed by
analyzing the energy conservation law. We can readily

show that the fluctuation energy Wg = %MVCDV + n?0
satisfies the conservation law

T = 45,4548~ @)

where

D..Dzj’(...)dx, S = <r‘3’)\(‘> s, = <n‘3§>
0

Sis = [Do(X—X0) 370+ FOW2 + Do(V)?,
p

Sy = SNLN?,

8 = g FPR0-1]+Q+ Q)

, PTiordNdN |, drdup
N Cdx dx dxde

An analysis shows that the main contribution to the
right-hand side of Eq. (7) comes from the three terms

S, S, and Sy, ~ 0 ~ Tf{f /(NR*P). Across the layer,
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the time-averaged turbulent flux is positive, ' > 0O,
and the time-averaged density gradient is negative,
dN/dx < 0. Consequently, we have S- > 0, which indi-
cates that this quantity plays the role of the source of
fluctuations. The sign of the source term S, isa priori
unclear, because it is a product of two alternating-sign
quantities. However, numerical calculations show that,
on average, this sourcetermisnegative, S, <0. In other
words, the poloidal sheared flow acts to suppress fluc-
tuations. The influence of the poloidal flow on the
plasma turbulence is one of the most important effects
in the physics of tokamak wall plasmas. In the next sec-
tion, we will show that controlling the poloidal flow
velocity via the radia current—driven Lorentz force
makes it possible to achieve transitions to improved
confinement modes.

The evolution of the background quantities plays an
important role in the overall dynamics of the plasma.
Thegradientsof f,= {N, U, T, Ty} depend strongly on
the spatial coordinates and time and change substan-
tially under the action of turbulent fluxes, so that the
evolution of the background quantities described by
Egs. (3) has the reverse effect on the evolution of the
turbulent modes described by Egs. (1). As aresult, the
plasmaevolvesinto the self-oscillation regime. Thetur-
bulent dynamics of a plasma with spatially and tempo-
rally varying gradients of unperturbed quantitiesisvery
complicated and differs strongly from the turbulent
plasma dynamics simulated in [3-5] under the assump-
tion that the gradients arefixed. Note that, in the regime
inwhich both the background and fluctuating quantities
aretime-dependent, plasmaturbulenceis self-sustained
(i.e., turbulent fluctuations are sustained by the particle
and heat turbulent fluxes, I and Q, ;), so that the esti-
mates obtained in the traditional theory of plasma tur-
bulence, which dealswith the linear growth rate and the
width of the linear mode, become inapplicable.

3. RADIAL CURRENT IN A TOKAMAK

In my earlier paper [7], it was shown that the trans-
verse current—driven Lorentz force has a substantial
effect on turbulent transport in the wall plasma (near
the separatrix in the scrape-off layer). The calculations
performed in [7] showed that the radial current should
play akey roleintriggering L—H transitions, becauseit
can markedly change the velocity of the poloidal flow,
which suppresses turbulent fluctuations through the
familiar mechanism for the decorrelation of turbulent
modes[8, 9]. The effect of theradial current on the tur-
bulent processesin wall plasmas and its possiblerolein
triggering L—H transitions were studied in [16-19].

The mechanism for generating theradial current can
be understood using neoclassical theory. With theradial
electric field taken into account, the generalized neo-
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classical fluxes have the form [16]

N Te
rgeo = -nD |: +y(XT T G||Ei|
8)
i CEr :|D (
X eXpD |:BGVTU 0
a =ei.
Here, the quantity y, governsthe collisionality regime,
«/7_'[ 2pa —
2 Be € =r/R,

J2T Imy,

Uy is the mean velocity along the magnetic field, and
V7 isthe thermal velocity.

It is an easy matter to show [20] that, in the absence
of additional forces in the time-independent equation
for the toroidal angular momentum, the neoclassical
transport is automatically ambipolar; i.e.,

e = = e(F™-ri) = o,

and no radia current is excited. However, in real phys-
ical situations, the presence of neutral particles, turbu-
lent forces, and internal electrodes in the wall region
inevitably givesriseto losses of charged particles at the
plasma edge and, accordingly, to the radia current
associated with these losses. In this case, the neoclassi-

cal radial current J; - generated in the edge plasmadue
to violation of the ambipolarity constraint (I'; # ') acts
to prevent particle |osses.

Taking into account the fact that D, < D;, we obtain

from formula (8) the following expression for the neo-
classical radial ion flux:

pcx = VTG/(*)COH Vta =

neo neo
re 1 ‘]X

o KNT, ¢ 2 _cJmE”
JX r BeVTI (EX - Ea) f exp(_v )1 K - B )
_ CEX _ |[’\l ID BQUI||(9)
V = BGVTi’ Ea - + (1 + kneo) C

f=1+2V° +4V,

where the factor f isintroduced in order to fit the corre-
sponding formula deduced by Xiao et al. [21]. Note
that, with theradial electric field taken into account, the
most general expressions for the neoclassical ion cur-
rent in various collisionality regimes were derived by
Connor and Stringer [22, 23]. However, in our analysis,
it is sufficient to use the simplified expression (9),
whichisvalidin the plateau regime, wherewe havey, =
1 +Kk,... Thequantity k..., iscalculated from theformula

_ —117+035/v, +2.1v €’ _ ARy,
" (L+0.7.v, +vied * (VA
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Since we restrict ourselves to considering the colli-
siona plateau regime, where the neoclassical fluxes
depend weakly on the collision frequency, we can
apply formula (9) to a turbulent plasma, because, in
addition to Coulomb collisions, we only need to take
into account turbulence-induced wave—particle colli-
sional interaction. This can be done merely by renor-
malizing the collision frequency.

The equation for the radial component of the ion
momentum yields the following expression for the
radial electric field:

cE, € cP;
_— = + - -+ = —.
5 u, quz Vo Va = 5y

We neglect the longitudinal velocity, assuming that the
condition (¢/q)U, < U, holds for the layer in which we
solve the four-field equations. We also omit the sub-
script y, assuming that U, = U. In calculating the ion
current, we find the field component E, in Eqg. (9) from
Eg. (10), in which case the unknown velocity U can be
determined from the equation for the poloidal momen-
tum component:

(10)

neo

U, rou, ong 3B
mNDat Nox axU c

(11)
9°U
—MmMNV o, (U-U_,)—mN_,v, U + mNuOF,
X

where, for simplicity, theradial profilesof Nand T, are
assumed to be prescribed. The expression for the neo-
classical viscosity v, was taken to be [20]

_ Jmavy

2
2 q Vi
oo = T exp[ V7] + —I0

2(1+V?)
Hence, if we calculate the turbulent fluxes ™ and IT,

then we arrive at the self-consistent set of equations
(9)—(11). Solving this set, we determine the current

J7, thefield E,, and the velocity U. Notethat, for I' =

M =0 and for small values of the viscosity coefficient
Uy, EQ. (11) has the steady-state solution

(12)

cT

U= eBT,’

Uneo = —k

(13)
TN T!

E, = E'[NN“L(HK”B‘J)TI} e =,

Clearly, with a nonzero turbulent inertia term
(F/N)oU/0x, a nonzero turbulent force term o/ox, and
a nonzero friction force term associated with neutral
particles, Eq. (11) for U(x, t) hasadifferent equilibrium
solution, specifically, a solution with E,(x, t) # E, and

J7°(x, t) 0. Consequently, according to the equation

for the poloidal momentum component, additional
forces should give rise to the radial current.

Let usanayze Eq. (11) in order to predict the possi-
ble temporal behavior of U(t). Using Eqg. (10), we can
make the current J;° in expression (9) and the viscos-

ity Vpe, in formula (12) independent of the field E,, in
which case Eq. (11) becomes

2
mNa—U = G(U)+mNuoa—U,
at axz
_ 3 (U)B
G(U) = Fturb___é——— (14)
—MNV, o (U)(U -U,o) —mN_v, U,
- _[oU aMQg
wb = "INox  oxU

Equation (14) for the poloida velocity U is a time-
dependent diffusion equation with the nonlinear source
term G(U). Examining the characteristic functional

dependences of the current and viscosity, J;  (U) and
V,oeo(U), We can see that Eq. (14) can have both jump-
like and bifurcated solutions. This conclusion will be
validated below by numerical calculations. An analysis
of EQ. (14) using bifurcation theory goes beyond the
scope of this study and is postponed to afuture paper.

Let us consider other physical mechanisms that are
responsible for the generation of the radial current and
are not associated with additional forces. For simplic-
ity, we write the ion and electron continuity equations
in Cartesian coordinates:

O(NV,) , ANV, _

ox 0z S
(15)
O0(NeVye) | 0(NgVe,) _
X * iz S

We take the sum of these equations multiplied by the
charge to obtain the relationship

%Jr%fzz = e[S(x,t) = Sy(x t)],

which gives

3,060 = [LRIS(00-S00 0] - 570 (16

Obvioudly, the transverse nonambipolar current (9)
and, accordingly, the radial electric field can stem from
two causes: first, theion and el ectron sources described
by the terms § and S, may differ from one another for
some reason and, second, the longitudinal current may
be nonuniform. The space charge associated with both
the longitudinal current and the difference between the
PLASMA PHYSICS REPORTS  Vol. 27
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ion and electron sources is neutralized by the nonzero
radial current J,= J;°.

Hence, the above considerations show that the radial
current can be generated by external forces and nonam-
bipolar losses of charged particles. In afurther analysis,
we will take into account the following important cir-
cumstance: according to Eg. (11) for the poloidal
velocity, the radial current can either intensify or relax
the poloidal plasma flow via generation of the Lorentz
force.

4. SCENARIOS FOR L-H TRANSITIONS

Based on the above analysis, we can propose thefol-
lowing scenario for L—H transitions in tokamaks. We
assume that the turbulent plasmais confined in a toka-
mak operating in acertain mode. Theinevitably present
external forces (in the case at hand, these are a turbu-
lence-induced poloidal viscous force and a friction
force associated with neutral particles) give rise to a
low (but nonzero) radial current in the plasma. An
external action on the plasma (heating, beam, polariza-
tion, etc.) destroys the balance between oppositely
charged particles, thereby violating the ambipolarity
constraint for a short time and subsequently giving rise
to jumpsin the charge density, Ap (because S, # ), the
radial electric field, AE, and the radial current, AJ. The
neutralizing ion current AJ, in turn, gives rise to the
jump AJ - B/cin the Lorentz force. Recall that the equa-
tion for the poloidal velocity has bifurcated solutions.
This indicates that the plasma evolves into a qualita-
tively new equilibrium state in ajumplike manner (the
quantity [U | increases rapidly) only when thejump |AE|
in the radial electric field is above a certain critical
level, |AE| > |AE;|. If the radial electric field has
already undergone such a jump, the poloidal sheared
flow becomes more intense, thereby suppressing turbu-
lent fluctuations and triggering an L—H transition. In
simulating this process, we self-consistently adjusted

the parameters E,, U, V,, and J; in accordance with

Egs. (99—«(11), taking into account the turbulent fluxes
and background quantities N(x, t) and T;,(X, t) obtained
from the solutions to the sets of equations (1) and (3).
Note that all these quantities evolve in the unsteady
self-oscillation regime.

We checked the above theoretical predictions by
calculating the spatial and temporal characteristics of
turbulent fluctuations, taking into account the effects of
the radial current. In simulations, we used the parame-
tersof the DIII-D tokamak: R= 167 cm,a=63cm, B =
158 T, g = 3.5, Ny0) = 1.5, N(1) = 0.1, Tj,(0) =
Tep(0) = 1, Tig(1) = Te(1) = 0.3, My =2my, and Z; =
1.5. In order to model the external action on the plasma,
weinstantaneoudly violated the ambipolarity constraint
and, in the equation for the poloidal velocity, simulta-
neously switched on the radial electric field AE, the
additional current AJ, and the Lorentz force, al pro-
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duced by the neoclassical neutralizing current. The
jumpintheradia electric field was chosen to be

AE = AE,exp[-Z], z = (x—0.7)/0.2.

Figure 1 demonstrates that the L—H transition can be
bifurcated in character, depending on the value of the
jump AE,: we can clearly seethecritical values—35 and
+90 V/cm, beyond which the quantity [DOfalls off
sharply.

Figures 2 and 3 illustrate the evolution of the turbu-
lent diffusivity D= [TTJ(N, — Ny) and kinetic energy
W, Oof the poloidal flow, both averaged according to
the prescription

(F{t) = J’F(x, t)dx.
0

The jumps AE = -50 and +100 VV/cm were switched on
at the instant t = t, and lasted for a time interval of
100 ps. One can see that, after a short relaxation pro-
cess, the kinetic energy of the poloidal flow increases
and the turbulent diffusivity (and, accordingly, the ther-
mal conductivity) decreases. For AE > 0, the plasma
rotates in the direction of the diamagnetic drift vel ocity
of the ions (the solution with U < 0), and, for AE < O,
the plasma rotates in the direction of the diamagnetic
drift velocity of the electrons (the solution with U > 0).
After the plasma experiences a bifurcated transition, the
poloidal velocity increasesfromU ~ U,., ~ 5-6 km/sto
alevel of 20-30 km/s (i.e., by afactor of 4 to 5). Our
simulations show that L—H transitions can be triggered
in avery smple way, specificaly, by creating the con-
ditions for generating the radial electric field and main-
taining it at a certain level during a time interval of
about 100 ps at the periphery of atokamak plasma. The
technique for producing the radial electric field at the
plasma edge has been well developed in experiments
on plasma polarization [24, 25].

wy
0.03

0.02-

0.01

| |
-150 -100 -50 0 50

1 ]
100 150
AE, V/cm

Fig. 1. Turbulent diffusivity DOvs. the jump AE, in the
redial electric field under DIII-D conditions.
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Fig. 2. Evolution of (1) the turbulent diffusivity DL] (2) the kinetic energy (W,Cof the poloidal flow, and AE(t) for the jump
AEy =-50V/cmintheradial electric field under DIII-D conditions.
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Fig. 3. Thesame asin Fig. 2 but for the jump AE; = +100 V/cm in the radia electric field.

Hence, we have shown that the nonambipolar losses
of charged particles of any species (AE > 0 and AE < 0)
lead to the triggering of L—H transitions. Asarule, the
violation of the ambipolarity constraint at the plasma
edge is accompanied by particle losses. Consequently,
the L—H transition can be regarded as a self-organiza-
tion process: in trying to prevent particle losses, the
plasma “generates’ a neutralizing radial current and
poloidal sheared flow in anarrow layer, thereby evolv-
ing into a confinement mode with a lower level of tur-
bulent fluctuations.

Another possible scenario of L—H transitions is
associated with the fact that, according to expression

(9), theradial current J;- flowing in the layer depends
sensitively on the plasma parameters,

3 = F(N, T, q, N, T)).
An external action changes the plasma parameters and,

accordingly, theradial current J,° and poloidal veloc-

ity U, in which case the plasma also evolves into a new
confinement mode.

Figure 4 illustrates the time behavior of the aver-
aged turbulent diffusivity [IDCwhen the ion temperature
increases instantaneously. The calculations were car-
ried out for the following parameter values of the
No. 1
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Fig. 4. L—H transition when theion temperature Ty,; increasesinstantaneously from 0.4 to 0.8 and the time evol ution of the turbulent

diffusivity IDCunder CASTOR conditions.
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Fig. 5. H-L transition when the safety factor g increases from 3 to 6 and the time evolution of the turbulent diffusivity IDCunder

CASTOR conditions.

CASTOR device[26]: R=40cm,a=85cm,B=1T,
g=6,N,=0.6, Ng=0.1, Tpe = 0.7, Ty = 0.4, M; = my,
Z=1.5, and X, = 1.5 cm. At theinstant t = t,, the ion
temperature T, = 0.4 at the left boundary x = 0
increasesto T,; = 0.8. We can see that theradia current

J and the poloidal velocity both start toincrease and,
at the sametime, the turbulent flux beginsto damp. This
example can be interpreted as an L—H transition during
auxiliary plasma heating, when the heat wave propa
gating from the plasma center reaches the plasma
periphery.

The transition to a new confinement mode can aso

be achieved by keeping the radial current J;° essen-

tially unchanged while varying the other plasma
parameters. Figure 5 displays the time evolution of the
turbulent diffusivity when the safety factor is changed
2001
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instantaneously. Since the layer under analysis is nar-
row, we can assumethat g = g(a) = const. In Eq. (7) for
the fluctuation energy, the transition of a plasmato the
L-mode is associated with a sharp decrease in the term
Siiss ~ 1/ (anincreasein g from 3to 6). Thisresult cor-
relates well with the following well-known experimen-
tal fact: as the total current | decreases (or q ~ 1/
increases), the plasma confinement deteriorates. Note
that, in the experiments, the total current usually
decreases over a long time interval (of about 1 ms),
rather than instantaneously (as is assumed in our
model). Of course, a real plasma evolves into a new
confinement mode on the same time interval. Since
L-H transitions occur usually on time scales of about
30-100 ps, the above experimentally observed transi-
tion, which is associated with a decrease in the totda
current, only reflects how the confinement quality
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Fig. 6. L—H transition when the neutral density undergoesajump (Npq = 0.02 — 0.2) at the boundary x = 1 and thetime evolution

of the turbulent diffusivity IDCunder DIII-D conditions.

changes in the same confinement mode and cannot be
regarded as an actual L—H transition. In our model, the
L-H transition via an instantaneous decrease in the
total current stems merely from the assumptions under-
lying the numerical experiment. In real experiments,
thistransition is unlikely to be achieved.

Another example of the L—H transition isillustrated
in Fig. 6, which shows how the averaged turbulent dif-
fusivity [ID[evolveswhen the neutral density at the wall
increases instantaneoudly. In this example, the kinetic
energy of the poloidal plasma rotation remains con-
stant, but the density profile N(r) changes radically.
From Fig. 7, we can see that dN/dr > 0 holds over the
greater part of the layer, so that the flux I'(r) in this
region intrinsically decreases and can even change
sign.

Fig. 7. Radia profiles of theturbulent flux I" (r), plasmaden-
sity N(r), and neutral density N,(r) between radial positions
of 64 and 67 cm in the DIII-D tokamak (at the time t =
300 psin Fig. 6).

Another possibility of producing the radial current
in the tokamak scrape-off layer can be understood from
the experiments on plasma polarization, in which the
radial electric field is generated by the potential differ-
ence between the electrode and the chamber wall and

naturally gives rise to the radial current J; (E,). Note

that, by virtue of Eg. (14), the poloidal velocity should
satisfy the boundary condition U(0) = V4(0) — c(E4/B),
which stems from the boundary condition E(0) = E for
theradial electric field at the electrode surface x = 0.

For the CASTOR device, we calculated the turbu-
lent diffusion coefficients{ D, ¥;, Xo} asfunctionsof the
radial electric field E4 at the electrode surface. From
Fig. 8, we can see that, regardless of the polarity of the
radial field, the turbulent transport becomes|essintense
asEy increases. The profilesin Fig. 8 have animportant

0.06
0.05
0.04
0.03
0.02
0.01

0 |
—-1500-1000 -500 O

| | |
500 1000 1500
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Fig. 8. Turbulent diffusion coefficients {D, X;, X} asfunc-

tionsof theradial electricfield at the el ectrode surface under
CASTOR conditions.
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characteristic feature: they are asymmetric about the
vertical line E4 = 0. Thisindicatesthat, for aradial elec-
tric field of negative polarity at the electrode surface
(H_-mode), the plasma confinement is better than in the
case of positive polarity (H,-mode). Note that this result
agrees with the data from some experiments on plasma
polarization [24, 25]. Our calculations show that, for E
lying in the range from —400 to —-500 V/cm, the dimen-
sionless current is equal to J, =j,/j, ~ (0.5-1)p?, where
jo = enyVv,, so that, for p ~0.05, n, = 10"* cm~, and v,, =
107 cm/s, the dimensional (physical) current density is
jx ~ 80-160 A/m?.

5. CONCLUSION

We have investigated the behavior of turbulent
fluxesin atokamak wall plasmaby numerical methods.
The calculations were carried out with the help of the
four-field model constructed from the Braginskii
reduced two-fluid hydrodynamic equations [12, 13] by
taking into account not only the fluctuations of the
plasma density and electric potential but also the fluc-
tuations of the ion and electron temperatures.

In the model proposed here, the radial current plays
an important role in triggering transitions to new con-
finement modes. We have shown that this current,
which can be driven by turbulence-induced forces and
friction forces associated with neutral particles, is
always present in anarrow wall plasma layer in atoka-
mak. Another possible mechanism for exciting the
radial current is associated with the violation of the
ambipolarity constraint (or, in other words, the viola-
tion of the balance between the distributions of charged
particles of different species) for a short time dueto an
external action (such as microwave heating, neutral
beam heating, neutral injection, and plasma polariza-
tion). The jumplike violation of the ambipolarity con-
straint leads to a sequence of jumps:

AE — AJ— AJ - B/c — AU.

If thejump in the radial electric field is above a certain
critical level, |[AE| > |AE,;|, then the plasma can
undergo a jumplike transition to a new equilibrium
statein which the poloidal velocity is higher and turbu-
lent fluctuations are partially (or even completely) sup-
pressed. The existence of bifurcated solutions stems
from the fact that the equation for the poloidal velocity
has several equilibrium points, because it contains non-
linear source terms whose specific form is determined

by the profiles J;° (E,) and v,..(E,). We have shown

that even weak radia electric fields AE ~ £100 V/cm
can giveriseto L—H transitions.

We have examined examples in which the transition
to anew confinement mode is governed by achangein
tokamak parametersthat do not affect the poloidal flow
velocity. Thus, we can conclude that L—H transitions
can occur via different mechanisms. Although the pro-

PLASMA PHYSICS REPORTS  Vol. 27

No.1 2001

posed mechanism in which the radial current plays an
important role refers to alarge number of scenarios for
the transition to a new confinement mode, it does not
pretend to be universal.

We have also simulated L—H transitions when the
radial current at the plasma edge is generated by apply-
ing an external voltage to the internal electrode. The
calculated dependences of the turbulent diffusion coef-
ficients{D, X;, Xt ontheradial electric field E4 at the
electrode surface show that, regardless of the polarity
of thefield, turbulent transport becomes far lessintense
as Ey increases. In accordance with experimental
observations, the turbulent transport in the case of a
radial electric field of negative polarity (Ey4 < 0, which
corresponds to the H_-mode) is somewhat less intense
than in the case of a positive polarity (Eq > 0, which
corresponds to the H,-mode).
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APPENDIX

Our aim here is to derive nonlinear hydrodynamic
equationsthat describe the evolution of the quantitiesn,
@, T, and T; and are valid in a plane wall plasma layer
in atokamak. We assume that the longitudinal tokamak
magnetic field is strong enough in order to apply the
reduced hydrodynamic approach [11-13]. We consider
aplane plasmalayer in the tokamak magnetic field B =

X7 . (X=X0) : :
Bo%z[l— ﬁ} + TeyD' wherexistheradial coor-
dinate and y = r6 and z= R are analogues of the peri-

odic coordinates 6 and C.

The equation for the vorticity can be derived from
the current continuity equation

div(j) = Vo(io) + Vy(iy) = 0, (A.T)

¢
B

Vo =UBXVPl pb_pip, v, -
enB

wherejo=ne(Vg+ Vp + Vp), Ve = = [e,x VO] + e /U,

__C dvo
Bw, dt

, and

d_oa
dt ~ at

We subsdtitute the expressions for the transverse
velocity components into Eq. (A.1), take into account
the magnetic field nonuniformity B = B,(1 — X/R), and
define the dimensional vorticity as [cf. the dimension-
lessformin Egs. (1)]

+VE'V.

W = %ADQJ. (A.2)
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As aresult, we arrive at the following equation for the

. coP
= V- RBay + mnpuVyW,
where {A, B} = 0A/0x x 0B/dy — 0A/dy % 0B/oX.
Using the electron continuity equation
on
T +div[n(Veg + V)] = 0

and assuming that Vg = —j/en, Ve =
CT[B xVn]

VE + VDE’ and

Voe=-— , We obtain

10T, on
Ke [6y+TeH®}_5—§'
Thelongitudinal current can be deduced from the equa-

tion for the longitudinal electron velocity by neglecting
theinertial terms:

Te TVn
I = 0[0‘1Vu_ s qu’}
, (A.5)
o=—2 @, =171
MeVei

The Braginskii two-fluid hydrodynamic equations
for the electron and ion temperatures are written as[11]

dT,
3n N = P divV, —diva,+ Q,
andT (A.6)
ndfl; , ,
Ed_tl = —Pldlvvl—dlvql +Qi’
where the fluxes g, ; have the form
Qe = _Ke||V||Te_KeDVDTe
5CNT,[B x VT] Tej||
2 eB 5 >
_3.16nT, _ neo
e|l MgV, ' el e
5cnT;[B x VT|]
a = —KyVTi—- |DVDTi_§—g§——_—B——_1
3.9nT, T 20P.CT4
i = m.v..l’ Kin =K, Kot = é_ 2 rsu eB’

Substituting the electron and ion velocities

_ ] _
Ve=—l+Vet Vo, Vi=VetVy

into Egs. (A.6), we finaly arrive at the following non-
linear equations for T, ;:

3ndT, _ 2 J||
St - KeViTe—0:Vyg
ch (0]
RBe%y YeD+ Qe + KeDVéTea
(A7)

T
SndT, YiD+ Q +KiDVéTia

2 dt

cnT, P
RB Da

17707, on
Y, = |:2 3y +Ta@i|'

The set of equations (A.3), (A.4), and (A.7), supple-
mented with Eqg. (A.2) for the electric potential and
Eq. (A.5) for the longitudinal current, describes the
nonlinear evolution of the quantitiesn, ®, T,, and T, and
serves as the basis for the four-field two-fluid hydrody-
namic model.

_ 2
= KyVyTi+
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Numerical Analysis of the Near Fields of ICRH Antennas
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Abstract—Results are presented from numerical calculations of the near fields of ICRH antennasin the quasi-
steady current approximation in two-dimensional geometry. The distributions of the vacuum electric and mag-
netic fields as well as of the surface current density in the antenna elements and inside the tokamak chamber
are obtained. The electrotechnical characteristics of the antennas are analyzed numerically as functions of their
geometric parameters. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Since the 1970s, in connection to the problem of
auxiliary plasma heating in tokamaks, it has become
relevant to calculate ICRH antennas, which are aimed
at feeding the RF power from external sourcesinto the
plasma. Usualy, such calculations are based on a Fou-
rier analysis of the antenna spectra, because the plasma
dielectric tensor depends on the longitudina wavenum-
ber k. For this reason, the wave equation in both the
antenna and plasma should be solved by expanding the
antenna current in longitudinal harmonics. These cal-
culations are aimed at determining the antenna radia-
tion resistance, which is, asarule, much lower than the
antennawave resistance, because the wavel ength of the
emitted wave in vacuum is much longer than that in the
plasma. That is why the antenna reactance is affected
by the plasma only dightly. On the other hand, con-
structing antennas requires knowledge of their main
parameters in the absence of a plasma: the specific
inductance, specific capacitance, wave resistance, loss
resistance, etc., which should be calculated for specific
geometric configurations, e.g., for antennasin the diag-
nostic ports of a tokamak or in special cavities in the
chamber wall, as well as for antenna arrays in baffled
chambers.

Below, wewill report the results of numerical calcu-
lations aimed at revealing two-dimensional geometric
patterns of the near field of an antennaand the self-con-
sistent currents in the antenna conductor and tokamak
chamber. The calculations were carried out for an indi-
vidual antenna and for an antenna system consisting of
two radiating elements. The developed numerical code
can be generalized to phased-array antennas composed
of many individual radiating elements aimed at produc-
ing running fields.

2 SOLUTION METHOD

Itiswell known that the four Maxwell equations can
be reduced to two equations for the scalar and vector
potentias, ¢ and A. In order for the potentials to be
uniquely determined, they should satisfy the Lorentz
gauge. If the parameters of the problem change as har-
monic functions of timet according to the law exp(iwt),
then the potential s satisfy the d’ Alembert equations

Ad +K°p +qgle, = 0, (1)

DA + KA + o) = 0, 2)

where w isthe angular frequency, i = /-1 istheimag-

inary unit, k = wyc is the wavenumber, ¢ = 1/,/ggH, IS
the speed of light in vacuum, g, and ,, are the permit-
tivity and permeability of free space, q is the space
charge, and j is the current density. Using the Lorentz
gauge in the form of

divA = —ike, 3)

we can express the electric and magnetic fieldsin terms
of the potentials:

B = curl A, 4)
E=—-iwA—-gradd, 5)

where B is the magnetic induction and E isthe electric
field strength.

First, we determine the antenna parameters in vac-
uum, in the absence of plasma. Under the operating
conditions prevailing in tokamaks, we can assume that
the wavelength A = 217k of radiation emitted by an
antennais much larger than the dimensions of the radi-
ating antenna element, or, in other words, the alternat-
ing antenna current is assumed to be quasi-steady [1].
For this reason, in Egs. (1)—(3), we can drive the wave-
number to zero, k — 0. We al so assume that the entire
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spatial region under analysisisfree of external currents
and charges. Under these assumptions, Egs. (1) and (2)
can be reduced to two Laplace equations for the scalar
and vector potentials.

An individual antenna and antenna system consist-
ing of two radiating elements are represented schemat-
icaly in Fig. 1, in which the heavy lines show the metal
walls of the chamber. The X- and Y-axes are perpendic-
ular to the minor axis of the torus; the X-axisis directed
toward the minor axis and the Y-axis is oriented in the
poloidal direction along the surface of the antenna con-
ductor. The Z-axisis aligned with the toroidal magnetic
field. In an individual antenna, the central conductor
(illustrated by the black rectanglein Fig. 1) isinstalled
in acavity inthe chamber wall between two conducting
surfaces at a distance d from the (y, 2) plane. In an
antenna system with two radiating elements (Fig. 1b),
thereisathin conducting baffle of height h between the
central conductors. In the figures, the dashed lines rep-
resent a continuous el ectrostatic screen, which istrans-
parent to an alternating magnetic field but is opague to
an electrostatic field. Unlike the Faraday screen, the
electrostatic screen is a thin conducting layer, thinner
than the skin depth but much thicker than the Debye
radius.

Asthe calculation region, we chose a part of the tor-
oidal chamber with identified ends. Since the antenna
conductor is much longer in the y-direction than in the
(%, 2) plane, we set

A = (0,A/(x 2),0),

oA,

094 0
) 1 aXD

B=nm 0z
in which case the magnetic field lines are described by
the equation A, = const. We thus have to solve a two-

dimensional problem in the (X, Z) plane.
The high-frequency current flows in a skin layer

with thickness &, = 1/./4,0w, where o is the conduc-
tivity of a metal conductor. Since the electromagnetic
field does not penetrate into the conductor, we can
impose the following boundary conditions on its sur-
face:

B[h =0, (6)

Uoj surf =nx B! (7)

where g, = Osj isthe surface current and n is the out-
ward-facing unit normal to the surface. Thefirst bound-
ary condition implies that A, = const at the conductor
surface and that the contour of the conductor coincides
with a magnetic field line.

For an individual antenna, the problem is formu-
lated as follows. In the entire cal culation region, which
is bounded by the chamber wall (except for the region
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X (a)

T X (b)

Fig. 1. Schematics of (a) an individual antenna and (b) an
antenna system of two radiating elements: | isthe size of the
calculation region in the z-direction, 2a is the size of the
tokamak chamber in the x-direction, L is the width of the
cavity where an antennaisplaced, H isthe height of the cav-
ity, wisthewidth of the antenna conductor, d isthe distance
between the surface of the antenna conductor and the (y, 2)
plane, and histhe height of the baffle between two radiating
elements of the antenna system.

occupied by the antenna conductor), we solved the
equation
2 2

a_Azy + a_pz\y =0 (8)

0x 0z
with the boundary conditions A, = A, at the contour of
the conductor surface and A, = A, at the contour of the
chamber wall. The constant A, was set equal to unity.
The unknown quantity was determined from the
condition that the current J, flowing in the antenna con-
ductor isequal to the current J, induced in the chamber

wall. Taking into account boundary conditions (6) and
(7) yields the following expressions for these currents:

Ji = I(szdX+jgdZ)v ©)

Lcl

Jp = I(jsde+ j5,d2),

LCZ

(10)

: dA . 0A
where jg = l/uoa—xy and jg = l/poa—zy arethe surface

current densities along the x- and z-axes, L, isthe con-
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tour of the central conductor, and L, is the contour of
the conducting part of the chamber. The convergence of
the iterative procedure for solving Eq. (8) was con-
trolled by means of the condition J, = J,. However, after
this condition held with the desired accuracy, we addi-
tionally checked the difference between the mesh val-
ues of the vector potential taken from two successive
iteration steps.

The scalar potential was calculated from the equa-
tion

P 9% _
ax 9z 0, (D

which was solved in the region bounded by the electro-
static screen, with the boundary conditions

b =¢,=1
at the surface of the central conductor and
¢ =0
at the metal side surfaces of the cavity.

The total electrostatic charge induced at the bound-
aries of the calculation region was obtained from the
formula

(12)

(13)

Q= (qdL, (14)
.

where

Equations (8) and (11) with the boundary conditions
(6), (7), (12), and (13) and the periodic boundary con-
ditions at the identified ends of the chamber were
solved numerically in finite differences [2] on a two-
dimensional uniform grid with a spatial step A. The
numbers of mesh pointsin the x- and z-directions were
chosen in accordance with the characteristic geometric
dimensions of the antenna. We stopped the iterative
procedure after the currents J, and J, became equal to
each other. From the calculated total currents and the
vector and scalar potentials, we obtained the near field
pattern of the antenna and eval uated the antenna param-
eters, e.g., the line inductance (in H/m)

_ P, A
DJl JZD

and the line capacitance C = (¢, — $)/Q [F/m].

For an antenna system consisting of two phased
radiating elements, the problem is formulated as fol-
lows. Equation (8) is solved over the entire calculation
region shown in Fig. 1b (except for the regions occu-
pied by the antenna conductors), and Eq. (11) is solved
in the region bounded by the electrostatic screen, the
boundary conditions being the same as in the problem
for an individual antenna. The characteristic feature of

the antenna system under consideration is that the radi-
ating elements are mutually coupled to one another: the
radiating elements were treated as two symmetric cou-
pled oscillatory circuits with the frequency

_ 1
J(Ly % Lip)ly +2L,) Cope

Here, L, istheline inductance of the central conductor,
L,, is the inductance of the supply line, and the capaci-
tance of acircuit has the form

Ceff = (GCIy + Cn + Cexl)lzi

We (15)

where the numerical coefficient a = 1/2 is determined
from the potential distribution at the surface of the
antenna conductor, C is the capacitance per unit length
of the central conductor with respect to the electrostatic
screen and the chamber wall, C, is the capacitance of
the supply line, C,,, is the external capacitance of the
supply line, L, isthe mutual inductance of the radiating
elements, and |, is the antenna conductor length. The
plus and minus signs refer to the cases when the cur-
rents flowing in radiating elements are inphase and
antiphase, respectively. Ensuring the electric strength
of an antennausually requiresthat the conditions2L,, <<
L,lyand C,, > Cl, be satisfied.

Depending on the value of the coupling coefficient
(see eq., [3])

A = kcQ,

where k; = L,/L, isthe inductive coupling coefficient,
Q = wLy/r isthe Q-factor of an oscillatory circuit, Ly =
(L £ Lpp)ly + 2Ly, and r is the active resistance of an
oscillatory circuit, we can distinguish the following two
regimes.

The range A < 1 corresponds to weakly coupled
oscillatory circuits, whose amplitude-frequency char-
acteristic has a single maximum. The range A = 1
corresponds to strongly coupled oscillatory circuits
(the amplitude—frequency characteristic is double-
humped), which are thus mismatched with one ancther.

3. NUMERICAL RESULTS

In calculations, we used the following geometric
parameters of the antennas shown in Fig. 1:

The length of the part of the chamber | =78cm

in the z-direction was

The distance between the side surfaces 2a=100cm
of the cavity along the x-axis was

The depth of the cavity for an antenna H=40cm
in the chamber wall was

The width of the cavity was L=28cm
The width of the antenna conductor was w=10cm
PLASMA PHYSICS REPORTS Vol. 27 No.1 2001
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X, m
0.6

0.4

02F

-0.2

-0.4

|
-0.15

Z,m

Fig. 2. Magnetic field distribution of an individual antennafor | = 78 cm, 2a= 100 cm, L = 28 cm, H = 40 cm, w = 10 cm, and

d=2cm.

X, m

0.2

-0.2

~0.4 L
~0.15

0 0.15 Z,m

Fig. 3. Equipotential surfaces of the electric field of an individual antennafor | = 78 cm, 2a = 100 cm, L = 28 cm, H = 40 cm,

w=10cm,andd =2 cm.

We varied the distance d from the antenna conductor
to the (y, 2) plane and the baffle height h. The thickness
of both the antenna conductor and the baffle was 1 cm,
and the conductor length in the y-direction was set to be
50 cm.

In Fig. 2, we display a portion of the pattern of the
magnetic field lines calculated for d = 2 cm. We can see
that the magnetic field is primarily concentrated near
the central conductor, the penetration depth of the mag-
No. 1

PLASMA PHYSICS REPORTS  Vol. 27 2001

netic field into the chamber being about one-third of the
chamber radius.

Figure 3 shows the equipotential surfaces of the
electric field for the same case asin Fig. 2. One can see
that the equipotentials are concentrated between the
central conductor and the screen, without penetrating
into the working volume.

The current calculated at the surface of the antenna
conductor was found to be rather high at the conductor
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-0.4 :
-0.6
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Fig. 4. Magnetic field lines of two radiating elements in which the currents are inphase for | = 156 cm, 2a = 100 cm, L = 28 cm,

H=40cm,w=10cm,d=2cm, and h=40cm.
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Fig. 5. Magnetic field lines of two radiating elements in which the currents are antiphase for the same parameters of the antenna

system asin Fig. 4.

edges (it is higher than the current at the side surfaces
of the conductor by afactor of more than 2). Over the
surface of the cavity, the current was found to be dis-
tributed in an analogous manner: it was concentrated at
the corners of the cavity near the (y, 2) plane.

We also present two electrotechnical parameters of
an individual antenna:

The specific inductanceisL, = 0.44 pH/m
The specific capacitanceis C = 68.0 pF/m

Figures 4 and 5 show the magnetic field lines for an
antenna system consisting of two radiating elementsin
which the currents are inphase (0°) and antiphase
(180°), respectively. The geometry of the antenna sys-
tem corresponds to that in Fig. 1b at d = 1 cm. We can
see a significant coupling between the magnetic fluxes
when the currentsin the radiating elements are inphase.

The calculated mutual inductance of the radiating
elements was found to depend strongly on the baffle
No. 1
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height h. Thus, for h = 40 cm, we have L,, =
0.048 uH/m, while, for h = 36 cm, we have L, =
0.101 pH/m. For L;,l, > 2L, the inductive coupling
coefficient is about 0.1-0.2, which corresponds to the
regime of strong coupling, resulting in afrequency mis-
match between the oscillatory circuits even when the
Q-factors of the loaded oscillatory circuits lie in the
range Q = 10.

3. CONCLUSION

We have developed an agorithm for calculating the
two-dimensional vacuum near field of an ICRH
antenna. We have computed the distributions of the
magnetic field lines, electrostatic fields, and current
densities at the surface of the current-carrying antenna
conductor and at the metal wall of the tokamak cham-
ber. We have used these distributions to evaluate the
main electrotechnical parameters of the antennas. We
have reveded that the effect of the baffles in antenna
systems on their frequency characteristic is strong. The
developed numerical code makes it possible to calcu-

PLASMA PHYSICS REPORTS Vol. 27 No.1 2001

late the pattern of the running field for an antenna sys-
tem composed of appropriately phased radiating ele-
ments.
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Abstract—Ordered dusty structures formed of spherical monodisperse and polydisperse grains are obtained
for thefirst timein anuclear-track plasma produced by a-particles and fission fragments of 232Cf nuclei passing
through neon or argon. A theoretical model of such a plasmais proposed. Monte Carlo computer simulations
based on this model are carried out to explain the formation of such structures. © 2001 MAIK “ Nauka/lnter-

periodica” .

1. INTRODUCTION

So far, dusty structureswith far and near orders have
been obtained in plasmas of a stratified gas discharge
[1, 2], thermal plasmas [3], and RF discharge plasmas
[4]. Ordered dusty structures have also been obtained in
anuclear-track plasma[5, 6] produced in air by a-par-
ticles and fission fragments of 252Cf. The levitation of
dust grainsis achieved by applying an electric field that
balancesthe gravity force. Because of the high percent-
age of oxygenin air, the mean lifetime of an electronin
a track at atmospheric pressure is equal to ~0.3 ps,
whereas the time of its drift to the electrodes separated
by a distance of several centimeters attains several
microsecondsfor typical values of thereduced field E/p
in the ionization chamber (here, E is the field strength
and pisthe gas pressure). Therefore, the electric charge
of dust grains is generated primarily due to the action
of negative and positive ions. Since the temperatures of
negative and positive ions differ slightly and are rather
low, this charge cannot be too high.

Of particular interest is the charging of dust grains
in nuclear-track plasmas of inert gases, in which the
electrons play a dominant role and can impart a sub-
stantial negative charge to the dust grainsif the electron
temperature is much higher than theion temperature. In
terms of physical characteristics, the nuclear-track
plasma of inert gases differs significantly from both
thermal and gas-discharge plasmas. Therefore, experi-
ments with a nuclear-track dusty plasma provide new
information on the ability of the dust component to
self-organize. At relatively low intensities of radioac-
tive sources typical of laboratory conditions, this
plasma has a distinct track structure [7], the lifetime of
the tracks produced by nuclear-reaction products being
much shorter than the timeinterval between the tracks.

In addition to sharp time variations, the nuclear-track
plasma has a strongly nonuniform spatial distribution
because the length of the track is much longer than its
diameter. The Debyelength in thetrack plasmais much
shorter than the track length; however, it is often com-
parable with the track cross size.

The aim of this study is to produce dusty ordered
structuresin anuclear-track plasma created by nuclear-
reaction products in inert gases and perform computer
simulations of the processes resulting in the formation
of such structures.

2. EXPERIMENTAL SETUP

The experimental setup consisted of a hermetically
sealed glass cell in which the physical processes under
study occurred, facilitiesfor evacuating the cell and fill-
ing it with agas, afacility for injecting dust grains into
anuclear-track plasma, a diagnostic system for observ-
ing the behavior of macroscopic objects in the experi-
mental cells, and acomputerized system for data acqui-
sition and processing. Inside the experimental cell
(Fig. 1), two electrodes were situated at a distance that
could be varied from 17 to 35 mm. The lower electrode
was grounded through a sensitive electrometer, and the
upper electrode was at a potential of 0 to 2500 V of
either positive or negative polarity. A planar 22Cf
source of ionizing particles with an intensity of 10° fis-
sion/swas placed at thelower electrode. Along with fis-
sion fragments, the source emitted a-particles. The
source diameter was 7 mm. The solid angle within
which the ionizing particles were emitted was close
to 21t

Dust grains were injected into the chamber through
ametal grid serving as the bottom of a container placed

1063-780X/01/2701-0036$21.00 © 2001 MAIK “Nauka/ Interperiodica’



ORDERED DUSTY STRUCTURES IN NUCLEAR-TRACK NEON AND ARGON PLASMAS 37

1 2 3
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< 1i=)
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=1
y

Fig. 1. Schematic of the experimental setup: (1, 3), power supply units, (2) high-voltage power supply, (4) V7-30 electrometer,
(5) Panasonic TV s&t, (6) Panasonic VCR, (7) computer with videocapture, and (8) printer.

behind the aperture in the upper electrode; they could
also be injected with a gas jet. The container was
shaken with the help of avibrator. For the visual obser-
vation of the grains, we used a diode laser with acylin-
drical lens producing a focused light beam with the
thickness and width of thewaist in the center of theion-
ization chamber equal to 150 um and 30 mm, respec-
tively. The light scattered by grains was recorded by a
CCD-camera; its output signal was shown on a TV
screen and could be recorded on videotape or on com-
puter in order to process individual frames. The elec-
tron and ion densities in the nuclear-track plasmawere
deduced from the value of the ionization current
between the electrodes.

3. EXPERIMENTAL RESULTS

We studied the behavior of spherical monodisperse
melamineformaldehyde grains 1.87 and 4.82 pm in
diameter and polydisperse CeO, grains with a mean
diameter of 1 um. Experiments were carried out in
neon and argon at pressures of 0.25 x 103, 0.5 x 10,
0.75 x 10°, and 1 x 10° Pa. When the upper electrode
was at a positive potential, we observed the formation
of conical structures of CeO, grains near the electrode
aperture (Fig. 2) after the grains were injected into the
chamber with agasjet. In some cases, we observed lin-
ear structures (Fig. 3). The conica structures were
observed both in neon and argon. The structures were
situated near the axis of the electrode system and their

PLASMA PHYSICS REPORTS  Vol. 27
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Cross size in the upper part was about 5 mm. As the
electric field levitating the dust grains decreased, the
dusty structure, gradually shifting toward the lower
electrode, took the shape of a drop (Fig. 4). Unfortu-
nately, the spread in the sizes of CeO, grains presents a
severe problem in processing the experimental results.
In experiments with melamineformaldehyde grains
with amass density of 1.5 g/cm? and diameter of 1.87 +
0.13 um, the grains were injected either from a con-
tainer or with a gas jet. Conical structures were also
observed (Fig. 5). Figure 6 shows the results of calcu-
lations of the pair distribution function [8] of
melamineformaldehyde grains. The pair distribution
function has a maximum when the distance between
grainsis 130 + 30 um. The charges of levitating grains
observed in the experiments were estimated as 300 elec-
tron charges. For T, = 300 K and an intergrain distance
of 130 um, the coupling parameter I" characterizing the
degree to which the plasma is nonideal is equal to 40,
which resultsin the ordering of dust grains.

As is known, the electron temperature depends
amost linearly on the reduced field E/p. In a quasineu-
tral plasma with the electron and ion diffusivities D_
and D, and electron and ion temperatures T_and T, the
mean equilibrium grain charge [QCs equal to [9]

R ks T DT
- p™B ' - -+
O= — S In%l+—D+_|__[r )
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Fig. 2. General view of the structure of polydisperse CeO,

grains. The Ne pressure is 0.25 x 10° Pa, the voltage
between the electrodes is 80 V, and the distance between the
electrodesis 17 mm. Theflares from the glasswalls and the
electrode are also seen. The actual dimensions of the frag-
ment are 3.5 x4 mm.

Fig. 3. Linear structure formed of CeO, grainsin neon at a

pressure of 0.5 x 10° Pa. The voltage between the el ectrodes
is 805 V, and the interelectrode distance is 17 mm. The
actual dimensions of the fragment are 7 x 8 mm.

where kg is the Boltzmann constant and R is the grain
radius. The charge [Q[depends strongly on R, and T_.

The equilibrium condition for spherical grains
reducesto

4
[QE = mg = énpR‘Z, )

where mis the grain mass and p is the grain material
mass density (7.3 g/cm?® for cerium oxide). For interme-
diate values of the electric field, the typical value of the
grain charge calculated from relation (2) lies in the

range from 200 to 400 electron charges. An additional
spread in the calculated charge values is caused by the
field inhomogeneity.

4. NUCLEAR-TRACK PLASMA
WITH DUST GRAINS

One fission fragment produces several millions of
electron—on pairs in the track, whereas one a-particle
produces up to several hundreds of thousands of pairs.
For several nanoseconds after the passage of an ioniz-
ing particle, the track strongly broadens, the electron
density decreases by one order of magnitude, and the
quasineutrality condition is violated. In an externa
electric field, in atime of several tens of nanoseconds,
the plasma bunch transforms into drift flows of elec-
trons and ions, which affect the grains that fall into the
nuclear-track plasma. Since the masses and character-
istic energies of electrons and ions differ substantially,
the electron flow arriving at the grain significantly
exceeds the ion flow and the grain is negatively
charged. In most cases, the energy of nuclear-reaction
particles is high enough so that they can penetrate
through a grain with radius of several microns. As a
result of secondary electron emission, the grain charge
can change sharply not only in magnitude, but also in
sign, because the secondary emission coefficient attains
several hundreds of electrons per fission fragment.
Hence, the grain charge is governed by complicated
physical processes with characteristic times of several
nanoseconds to several tens of nanoseconds, which
allows us to use constant values of the mean grain
charge for characteristic experimental times on the
order of severa tens to several hundreds of milli-
seconds.

In order to simplify the modeling, the dependence of
the energy of an ionizing particle on the distance that it
had covered was approximated by the following for-
mulas:

)
EFl-—=, r<R
E(r) = ot R;J f

3)
0, r=2R;
for fission fragments,
Elgll——r————r—z—gs, r<R,
E(r) =< 0 2R« 2RO 4)
0, r=R,
for a-particles,

where E, and E, aretheinitial particle energies, r isthe
distance from theionizing source, R; isthe full range of
the fission fragment in agas, R, is the full range of an
a-particlein agas, and A and & are the approximation
parameters. For neon at a pressure of 10° Pa, we have
PLASMA PHYSICS REPORTS  Vol. 27
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R=4cm,R,=8cm, A =1.7, and 6 = 1.1, for argon,
wehave R =3cm,R,=6cm, A =1.6,andd=1.2. The
full range was calculated by analytical formulas from
[10, 11].

The number of electron—ion pairs produced per sec-
ond in a unit volume of a charged-particle track at a
distance r from the point source can be written in the
form

W(r) = Z“’"‘Ii

21 %

(_j“E_i
: dr

where dE;/dr is the specific energy loss, €; isthe energy
cost of the production of one eectron-on pair (for
gases, € ~ 30 eV), and |; is the intensity of emission of
the ith nuclear-particle species. Note that the >2Cf
source emits a-particles and fission fragments in the
ratio 32 : 2 and only one-half of the total number of par-
ticles fall into the volume under study, while the other
particles are lost in the substrate.

In this paper, an attempt to describe the phenome-
non of dust-grain levitation in anuclear-track plasmais
made for the first time; thus, the theoretical approach
used does not claim to completely describe the behav-
ior of grains under our experimental conditions. The
prime objective of this paper isto choose an appropriate
model for describing the most typical features of the
behavior of dust grainsin aplasmaand reveal the phys-
ical factors forming the potential well in which dust
grains levitate. Therefore, for numerical modeling, we
should choose experimental conditions under which
stable steady-state structures were observed. From this
standpoint, the neon pressure range from 2.5 x 10* to
7.5 x 10* Pa and the structures shown in Figs. 2-5 are
the most appropriate. The levitation of monodisperse
grains was observed only in the central region of the
device. To investigate the levitation and the interaction
between dust grains, it is necessary to determine the
mechanism responsible for charging these grains and
clarify the character of the forces acting on them. In the
present-day literature, several physical processes have
been discussed that affect both the interaction between
the dust grains and the balance between the gravity and
electric forces acting on the levitating grains. To deter-
minethe electric forcesacting onagrain, it isnecessary
to solve Poisson’s equation taking into account the
intensity of the generation of electrons and ions by a
radioactive source; their diffusion; and the location of
dust grains whose charge, in turn, depends on the local
floating potential. It isunlikely that this problem can be
solved self-consistently; consequently, it is convenient
to separate out the force caused by the interaction
between grains and regard the plasma as a background.
Since the electron and ion plasma densities are severa
orders of magnitude higher than the grain number den-
sity, the interaction between the plasma and dust grains
can be modeled by introducing an effective potential
for the interaction between grains. This effective poten-

, &)
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Fig. 4. Structure formed of polydisperse CeO, grains with
amean diameter of 1 um in neon at a pressure of 0.825 x
10° Pa. The voltage between the el ectrodesis 195V, and the
interelectrode distanceis 17 mm. The actual dimensions of
the fragment are 7 x 8 mm.

Fig. 5. Structure formed of monodisperse melamineformal -
dehyde grainswith amean diameter of 1.87 uminneon at a

pressure of 0.5 x 10° Pa. The voltage between the el ectrodes
is 162 V, and the interelectrode distance is 30 mm. The
actual dimensions of the fragment are 9.5 x 10 mm.

tial can be calculated by averaging over the positions of
electronsandions[2]. Asaresult, the subsystem of dust
grains turns out to be unclosed and can exchange the
charge and energy with the plasma.

Along with the partial screening of the dust-grain
charge by plasma electrons and ions strongly interact-
ing with grains, of significant importanceisthefact that
regions with higher densities of free ions appear in the
plasma because of the focusing action of alarge nega-
tive grain charge on the drift ion current. It was shown
in [12] that the equivalent positive charge can reach



40 VLADIMIROV et al.

&(r)
1.75

1.501
1.25F
1.00

0.75

0.50

0.25

0 100 200 300 400 500
¥, Um

Fig. 6. Pair distribution function for the central region of the
structure shown in Fig. 4.
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Fig. 7. The measured profiles of the electric potential along
the cell axisin (1) the disk—ing and (2) disk—ring—disk con-
figurations; curve 3 shows the results of calculations.

one-third of the dust-grain charge and its distance from
the grain d is shorter than or on the order of the Debye
radius. This anisotropic polarization of the background
plasma can influence many processes. For example, the
polarization of aplasma containing dust grains can lead
to the trapping of other dust grainsif their mean kinetic
energy is not too high. It is the interaction anisotropy
that may be responsible for ordering the grains into
crystal-like three-dimensional and linear structures
[1,2].

The plasma screening of dust grains, the influence
of the electron and ion flows, and recombination on the
grain surface were considered, e.g., in [13], where it
was shown that, at short distances, the pair interaction

potential is negligibly small due to Debye screening
and, at distances on the order of severa radii,
approaches the asymptote inversely proportional to the
square of the distance between the grains.

The effective potential of the interaction between
two grains U(r,, r,) takes into account the spatial
dependence of the grain charge on the floating potential
and includes both the terms describing the screening of
dust grains by plasma electrons and ions and the terms
related to the contribution from the anisotropic interac-
tion between dust grains. The form of the potential
U(ry, r,) approximating the results of numerical simu-
lations [12-16] is given in [2] and, thus, is omitted in
this paper.

5. ELECTROSTATIC WELL

The levitation of dust grains trapped in an electro-
static well is possible if the grain weight is compen-
sated by the electrostatic force, which acts on both the
negatively charged grain and the equivalent positive
charge of an ion cloud accompanying this grain. The
electrostatic field is determined by both the volume
processes occurring in the plasma and the processes of
recombination and absorption of charged particles on
the wall. In this experiment, the electrostatic well was
produced by the electric field created by the negative
surface charge on the wall of the experimental device,
the electric field of the electrodes, and the steady-state
positive space charge arising in the plasma near the
radioactive source due to the higher mobility of elec-
trons compared to that of ions. For numerical simula
tions of charged-grain structures in an electrostatic
well, it is necessary to have convenient analytical
expressions for the well potential that will correctly
reflect its physical nature.

The electrostatic field produced by the wall charge
resulted in the grains being concentrated near the cell
axis. The electric field near the axis was modeled in an
electrolytic bath by a set of eectrodes including a
grounded disk, a hollow disk, and a second disk. The
second disk modeled the upper flange situated on the
end of aglass bulb (Fig. 1). Since, in experiments with
dust grains, the upper flange and the hollow electrode
were at the same potential, the corresponding model
electrodes were connected by a conductor. The mea
surements were also carried out in the absence of the
second disk. The results of modeling are shown in
Fig. 7. In the same figure, we present the results from
calculations of thefield potential ¢4(z) along the z-axis
by the formula

$a(2) = Ady(a, 2)
+B¢,(a,b—2) + Cdy(a, 2b—-2) + D,
where the indices d and r stand for the disk and ring
potentias; aisthedisk radius (equa to thering radius);

and b is the distance between the disk and the ring, the
second disk being situated at double the distance from

(6)
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the lower disk. The disk and ring potentials on the axis
are expressed by analytical formulas [17]. The factors
A, B, C, and D are chosen so as to abtain the voltage
applied to the electrodes in the experiment and repro-
duce the experimental data when varying the coordi-
nate z The sharp maximum (both in the experiment and
calculations) corresponds to the potential of the upper
disk (the data represented in Fig. 7 refer to a specific
experiment with dust grains in which the voltage was
equal to 162 V). Thelarger values of z correspond to the
points at the axis that lie beyond the upper disk. It is
seen from the figure that, for the set of electrodes con-
sisting of only adisk and aring, the electric field differs
strongly from the experimental one; hence, it is neces-
sary to take into account the field created by the upper
flange.

Figure 8 shows the axia electric field calculated
from the datain Fig. 7. It is seen that the field near the
axis decreases and almost vanishes above the ring. In
the region where the conical structure is observed
(between 2 and 3 cm from the lower disk), both thefield
and the ratio E/p affecting the value of the grain charge
decreases almost two times. Expression (6) was used in
numerical simulations of the levitation of dust grains
near the cell axis. Theradia dependence of the electric
field in this region was calculated by the formula [18]

d2
do(zr) = (I)el(z)_il_-1 q;;lz(Z)rz

wherer is the distance from the axis and ¢(2) is given
by expression (6). The electric field far from the axis
was calculated by formulas from [17, 19].

The region near the radioactive source where
plasma quasineutrality is violated can be modeled by a
positively charged object whose shape is similar to a
weakly elongated ellipsoid of revolution and whose
space charge is maximum near the source. The problem
of determining the three-dimensional potential field
created by the conducting charged ellipsoid of revolu-
tion can be solved in elementary functions [20].

Hence, the electric filed of the electrostatic well is
the sum of the electric field produced by the negative
surface charge on the wall of the experimental device,
the electric field of the electrodes, and the steady-state
positive space charge arising near the radioactive
source.

6. NUMERICAL SIMULATIONS

A plasma with a disperse phase was simulated
numerically by the standard Monte Carlo method [21].
When simulating by this method, an ensemble of a
finite number N of particlesinacell of sizeL isusualy
considered. It isconvenient to measurethecell sizeL in
units of the Debye radius rp, which was chosen to be
equal to 200 um in modeling the experiment. In our cal-
culations, taking into account the operating speed of
available computers and a reasonable computation
2001
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Fig. 8. The profile of the electric field along the cell axis:
(1) experiment and (2) calculation.
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time, we restricted ourselves to N = 1000-2000. The
size of the Monte Carlo cell containing the characteris-
tic grain structure was chosen to be equa to L =
150rp = 3 cm, which approximately corresponded to
the experimental conditions. Note, however, that the
decrease in the cell dimensions and the number of dust
grains in simulations as compared to the experiment
made it possible to substantially reduce the calculation
resources; in our case, the characteristic computation
time was about 10 h.

Figure 9 shows the horizontal and axia vertical
cross sections of the calculated dusty structure. The
horizontal cross section is given for a height of 0.45L.
The coordinate along the tube diameter is plotted on the
horizontal axis; the point 0.5L corresponds to the axis,
and an interval of 0.1 corresponds to ~15rp (or 3 mm).

Let us consider the results of Monte Carlo simula:
tions. It is important that the radial component of the
electric field inside the cell increases as the distance
from the radiation source decreases. Indeed, the stron-
ger radial field in the lower part of the cell leads to a
stronger compression of the cloud of grains that are
repul sed from each other due to the interaction between
them. In addition, as follows from the data obtained,
when the grains are displaced randomly toward or away
from the source, they return to the region where the lev-
itation conditions are satisfied, i.e., where the gravity
force is balanced by the electrostatic force. Therefore,
the equilibrium in the levitation region is stable. Simu-
lations show that the structure only slightly depends on
the pressure, which agrees with the experiment.

Aswas aready noted in [2], the physical reason for
the appearance of linear dusty structuresisthe focusing
action of negatively charged dust grains on the ion cur-
rent, which leads to the formation of clouds with a
higher ion density between the grains and givesrise to
the dipol e interaction between them. In a nuclear-track
plasma, the value of the dipole moment of the dust
grain-screening cloud system is substantialy lower
than that in a gas-discharge plasma; consequently, lin-
ear ordered structures do not form in a nuclear-track
plasma. However, the mean value of the repulsive force
between dust grainsis high enough for the near order to
occur.

The shape of a cloud of levitating dust grains
depends on the field of the electrostatic well, the elec-
tric field of the electrodes, and the gravity force. How-
ever, the physical situation is significantly complicated
by the dependence of the grain charge on spatial coor-
dinates and, as a consequence, by the appearance of a
non-Coulomb addition to the Coulomb force, as was
discussed in [2]. The non-Coulomb addition is opposite
in direction to the gradient of the grain-charge magni-
tude and displaces the dust-grain cloud into the region
of the electrostatic well where the grain charges and,
consequently, the repulsion energy are minimum. In
our experimental device, the cloud of levitating dust
grains resembles a“jigger.”

7. CONCLUSION

Stable dusty structures in a nuclear-track plasmain
neon and argon in an external electric field have been
obtained experimentally, and atheoretical model of this
plasma has been developed. With a great number of
injected grains, we observed stable liquidlike struc-
tures, whereas with a smaller number of grains, we
observed linear structures of different configurations.
The physical mechanisms governing the levitation of
1.87-um melamineformal dehyde grains and the forma-
tion of their ordered structures in a nuclear-track neon
plasma at a pressure of 2.5 x 10* Pa are investigated
both experimentally and theoretically. The ordered
structures arising in a dusty plasma are studied numer-
icaly by the Monte Carlo method. The calculations
give a deeper insight into the formation of dusty struc-
tures under the experimental conditions. The results of
calculations agree qualitatively with experimental data.
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Abstract—A general set of self-consistent field equations that describes the state of the whole ensemble of
atomsand ionsin ahot dense plasmais derived using the density functional theory. The set of equationsis used
to obtain equations of the Thomas—Fermi model, the Hartree—Fock—Slater model, the detail configuration
account method, and the ion model. This approach makes it possible to identify the physical approximations
underlying the theoretical models and to analyze their applicability ranges. Some of the results obtained from
the Hartree—Fock—Slater model, the detail configuration account method, and the ion model are compared with
the experimental data. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In order to solve important scientific and technol og-
ica problems in controlled thermonuclear fusion
research, it is necessary to know the physical parame-
ters of plasmas at ultrahigh temperatures and at densi-
tiescloseto the density of solids. Experiments aimed at
achieving such extremely high plasma temperatures
and densities are very expensive. The important plasma
parameters include thermal conductivity, light-absorp-
tion spectral coefficients, and Planck or Rosseland
mean free paths. These characteristics can be calcul ated
using the following theoretica models of a hot dense
plasma, which have been developed over the last fifty
years: the Thomas—Fermi (TF) model [1], the Hartree—
Fock—Slater (HFS) moddl [2, 3], the detail configura
tion account (DCA) method [4], and theion model [5].
The calculation accuracy is governed by the physical
approximations that underlie a particular model.
Clearly, a theoretical model ensures reliable results
only in the temperature and density rangesin which the
physical assumptions made in deriving the relevant
model equations are valid.

The model equations are usually derived by con-
structing approximate analytic approachesthat increas-
ingly satisfy more exact formulations based on fairly
general physical principles. However, to derive equa
tionsfor problemsthat are very difficult to analyze the-
oretically (such asthe problem of describing the optical
properties of a plasma) requires physical assumptions
that do not follow directly from the basic physical prin-
ciples described by exact formulas. Of course, the
physical assumptions involved can be validated indi-
rectly by comparing the theoretical results with the
experimental data, but doing so is fairly complicated
because of the large number of assumptions that are to
be verified simultaneously. A discussion of the underly-

ing physical assumptions seemsto be of no lessimpor-
tance than performing formal manipulationswith equa-
tions.

Hence, in order to determine the applicability
ranges of different theoretical models, it is necessary to
examine each step in the derivation of the correspond-
ing basic equations, formulate the problem in the most
precise way, and analyze the underlying physical
assumptions and the eguations themselves. It is aso
necessary to compare the theoretical results with the
experimental data.

The applicability ranges are difficult to establish,
because the above four models were formulated based
on different initial assumptions and the basic sets of
equations were derived in different ways. To some
extent, this circumstance complicates a comparison
between the physical approximations and, accordingly,
between the corresponding applicability ranges. In this
paper, we apply one of the most recent methods—the
density functional theory—in order to develop aunified
approach to analyzing both the basic equations used in
particular theoretical models and the underlying physi-
cal assumptions. We also compare some of the theoret-
ical results obtained from the HFS model, the DCA
method, and the ion model with the experimental data.

2. SET OF SELF-CONSISTENT FIELD
EQUATIONS FOR A STATISTICAL ENSEMBLE
OF PLASMA ATOMS AND IONS

In the density functional theory [6, 7], it is shown

that the grand thermodynamic potentia Q, which is
defined as

Q = Sp{W(H -—pN +OInW)} , (1)
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and is regarded as a functional of the electron density,
reaches a maximum in a state of thermodynamic equi-

librium. Here, H isthe Hamiltonian of the system, @ is
the temperature of matter, W is the chemical potential,

N isthe particle number operator, and W isthe density
matrix. In equilibrium, the density matrix has the form

A _A-pN _A-pN

i = el el B8]
We consider a system of interacting atoms and ionsin
the ground and excited states and adopt spherical
atomic cells of radius r,, (with a nucleus of charge Z at

the center) as subsystems. The radius of the cell can be
defined as
1/3

RN e

where A[g] isthe atomic weight, p [g/cn?’] isthe plasma
density, a, = 5.292 x 10 cm, and N, = 6.02 x 10% is
Avogadro’s number. Here and below, we use atomic
units. The subsystems differ from each other by the sets
of occupation numbers of the bound (discrete) elec-
tronic states. Each subsystem also contains unbound
(continuum) electrons. The states of subsystems are
regarded as the states of plasma atoms and ions. It is
assumed that each subsystem, defined by specifying the
set of occupation numbers of the bound and unbound
electronic states, can be described by a wave function
in terms of the occupation numbers [8]:

|0,0= no s, ....ng, .0 @)

where n,f\ isthe number of electronsin the kth quantum
state in subsystem A. We also assume that the interac-
tion of subsystem A with other plasma subsystems can
be approximately taken into account by introducing the

effective potential VeA;t (r). This approach is referred to

as the local density approximation [6]. In [6, 7], it was
proved that, in a multicomponent plasma, the set of the
effective potentialsis uniquely determined by the set of
exact electron densities, in which case we have

H = ;ﬂA, (5)

~ 1 Z

Ha = Z[_éAi T +Vg\xt(r)i| + ZV(ri, ry, (6)
i i<j

where the terms v(r;, rj) describe the interaction

between the electrons of subsystem A. It is convenient

to represent the Hamiltonian Ha as
Ha = Z'ﬁ + Zv(ri, ry, (7)
i i<j
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where

2 1 yA
Ti= =30 =5+ Veu(r). ®)

In the second quantization description [8], the operator
Ha hasthe form

Ha = § T, a,
9)

+

NI

+ +
Z (K KolV Ko ks(y &y ay ay,.

Ky, Ko, K3, K,

Here, we use Dirac’s notation

0T|j0= Iwi*(r)?wj(r)dr, (10)

v [IkO

= 95 ()W (v (1) Wilr o),

where W, (r) is the wave function of an electron in the
ath quantum state. Under the assumption that the occu-

pation numbers niA in expression (4) refer to the bound

statesat i < K and to the unbound states at i > K, formula
(1) takes the form

11)

Q = ZWAEA—p;wAN“eZWAInWA, (12)

where
Ea = [@4Hal®A0 (13)
Expression (13) can be represented as
[DAFAIPAO= Tg+ 1+ 1y, (14)

where
lo = [, T|P A0
. R A . (15)
= Z | T|m&,a,, + Z (| T &, ay,

m<K m>K

Theterms|, and |, can befound by substituting the sec-
ond term in operator (9) into expression (13). Theterm
I, corresponds to the case with k; = k; and k, = k,, and
theterm |, correspondsto the case with k, = k, and k, =
ks;. Then, we have

1 + +
l, = 52 (D alay, &y, ay 3y [P aTK; Kol [K; Kol |
Ky, Ky

=yl tlgtly,
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1
|21 = é Z Z nklnkzmlkleIklkzm (17)

Kk =Kky<K

1
I = > Z Z N, Ny, (K3 Ko|v [k Ko

k; <Kk, >K

(18)

1
lo3 = > Z z N, Ny, (K3 Ko|V [k Ko

k; > Kk, <K

(19)

1
PYR > Z z N, Ny, (K1 Ko|V [k Ko (20
k; > Kk, >K
and, analogously,
1 + +
I = =5 ) @ala aay, a,|P Ak ky|v Kok, O
2% @)
=l tlptlgtiy,
1
Iy = > z N Ny (& K|V KoK, (22)
K =Kky=K
1
I = > z z Ny, Ny, Ty Ko|V KoKy (23)
k= Kky>K
1
I3 = > z Z Ny, Ny, T K|V KoK, (24)
k, > Kk, < K
1
l1s = > z Z Ny, Ny, T Ko|V [k K, (25)

ki > Kk, >K

Here, theterm |, refersto the so-called “direct” interac-
tion and I, refers to the “exchange” interaction. The
term |,, corresponds to the exchange interaction
between the bound electrons, the terms |, and 15
describe the exchange interaction between the bound
and unbound el ectrons, and theterm I, accounts exclu-
sively for the unbound states. Since the exchange inter-
action between the bound and unbound electronsis, as
a rule, very wesak, the terms 1,, and |,; are usualy
neglected. If the unbound states are described in the
quasiclassical approximation, thentheterm 1, isset to
zero.

L et us determine additional conditions under which
the functional in formula (12) should be minimized.
First, we rewrite formula (12) as

Q= XZ{WA(n;, NA)En—HWa(n3, NN,

A

(26)

+OW,(n%, NA) INWA(NG, NA),

with summations over the states of the “core’ of sub-
system AC and over the unbound states. The “core’

states are defined by the sets{ nj } of occupation num-
bers of the bound states, in which case the number of
electrons in the kth bound state of subsystem A is

denoted by nj, . The bound states are characterized by

specifying the electron density n ,'; (r, p) in phase space
(wherer and p are the coordinate and momentum of an

electron). Additionally, the wave functions of the bound
electrons should be orthonormal:

(27)

ij»

J’qu*(r)qu(r)dr =

wherethe superscript A inthe wavefunctionsisomitted
for brevity. In order to use the method of Lagrange mul-
tipliers, we must supplement expression (26) with the
term

Q=YY Y Aidlo (28)

A I<KjsK

Since the system as awhole is electrically neutral,

ZWANA = Z, (29)
A

we must supplement expression (26) with the term

2

To take into account thisterm, we can simply replace u
by u — B, because the variation of Z vanishes. And
finally, we use the normalization condition

(30)

ZWA =1, (31)
A
which givesrise to the additional term
Qg = R[ WA—l}. (32)
2

Hence, we must search for the extremum of the func-
tiona
Q = Q+Q,+Qg. (33)

In the expression

Q+Qr = § Y [Wa(ni ) (Ex+ R)
A f

(34)
f f f

—UW, (N4, Na) N+ OW,(Ng, Na) INW4 (NG, NA)]
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summation is implied over al sets n,i (r, p). Since the

system contains a macroscopicaly large number of
particles (in the case at hand, these are unbound elec-
trons) and the number of their quantum states is also

macroscopicaly large, the probability Wy(ns, ns) is

nearly zero except when n,i (r, p) isequa to its mean
(equilibrium) value [9], in which case we obtain

i i
Q+Qp = z [Wa(NA, NA)Ea—HW,(NR, NA) N4
. (35)
A
c _f

+ OW,(Nng, nA)InWA(nAv nA)]ArA,

where AT ,i is the total number of unbound electronic
states in subsystem A. This enables us to represent W,
as[10]

c _f

Wa(na, Na) = WA(nA)WA(nA) (36)
The normalization condition gives [11]
WA(NA)AT 5 = 1 (37)
so that we have
Q+Qp = z[W,(’-:\EA_HWZNA
e (38)
c c f, o f c
+ OW,LINW, W, (N,y) + RW,].
Hence, the final expression for Q, has the form
= 3 OWAEs-uWiN,
: (39)

.
+ OWS INWSWA(NL) + RWS] + 3 ALGOg
i 4 O
i,j<K
The set of self-consistent field equations describing the
state of the statistical ensemble of interacting plasma
atoms and ions can be derived from expression (39).
Thus, varying Q, with respect to 8W, and taking into

account normalization condition (31) yields the Gibbs
distribution

U Ex—MN O
W, = Cgaexpo—20—2 (40)
U U

where g, is the statistical weight, i is the chemical
potential, E, isthetotal energy, and N, isthetotal num-
ber of particlesin subsystem A. Varying Q, with respect

to OW* " leads to the Hartree—Fock equation for all

PLASMA PHYSICS REPORTS Vol. 27 No.1 2001

unbound states of subsystem A:
TaWi(ry) + Va(r)Wi(ry)

z nA]J"P (r2)| |LIJ i(rp)dr,W(ry)

j<K

(41)

= S AW(ry).

The set of one-electron wave functions W,(r) can be
chosen so as to diagonalize the Hamiltonian operator
[8], in which case EqQ. (41) can be written as

TAW,(r1) + Va(r)Wi(ry)

ZKHA,IW (rz) |‘P(rz)drzLP i(r) @2

| = ei?wi(rl),

where

Vara) = [ |pfgled 2 (43)
PA(r) = PA(r) +Pa(r), (44)
PA() = 3 n W[, (45)
pA(r) = jﬁi\(r,p)é‘i‘;s, (46)

and the diagonal Lagrange multipliers si’? are the one-

electron energy levels. For brevity, we omit the super-
script A in the wave functions W, (r).

Finally, we can vary Q, with respect to 6ﬁ,i, using

formulas (17)—(25) and treating A" ,'; in the quasiclas-
sical approximation,

InAl'I\zf[ln L _nlin ﬁ‘f\_f}Zdrdﬁ,’ 47)
1-n, 1-n,|(2m)
to arrive at
Na(r, p)
2 5 O 8)

O
= Cep[ g - £+ VD) + Vaun -1
O O

L et us summarize the physical assumptions madeto
derive the above set of equations.

(i) The exchange interaction between the bound and
unbound electronsis neglected.
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TF, HFS, IM

T

Fig. 1. Applicability ranges of different theoretical models
in the variables T (plasma temperature) and p (plasma den-

sity).

(ii) The unbound states are described in the quasi-
classical approximation.

(iii) The externa interaction istaken into account in
thelocal density approximation.

The basic equations of the TF, HFS, and ion models
as well as the DCA method can be derived from the
above set of equations by making additional physical
assumptions. Figure 1 schematically showsthe applica
bility ranges of different theoretical models in the
“plasma temperature-plasma density” coordinates.
Since the boundaries of the applicability ranges differ
between different chemical elements, Fig. Lismerely a
qualitativeillustration of the applicability of the physi-
cal models. If the plasma temperature and/or density
extends out of the applicability range of the TF model
in Fig. 1, then one must use the model of a homoge-
neous el ectron gas. However, the analysis of this model
goes beyond the scope of our study.

3. THOMAS-FERMI MODEL

The TF model can be applied when the plasmatem-
peratureisvery high, so that the plasmais amost com-
pletely ionized. The basic equations for the TF model
can be derived from the set of equations presented in
the previous section by assuming that the occupation
numbers of the bound electronic states equal zero.
Under this additional assumption, all subsystems A
have the same structure: each subsystem contains a
central core with charge Z and the unbound €electrons,
which move in the field of the core and interact with
each other. Each of the plasma subsystems is affected
by the remaining subsystems. The electron densities
inside each spherica atomic cell of radius r, is
described by formulas (46) and (48). If we assume that
the electron density inside the cell depends only on r
and is independent of the angular variables and if we

neglect Vﬁxt (r) in comparison with V,(r), then we can
expand the integrand in expression (43) in spherica

functions[12] to obtain
ry o
_ 4T, 2
Va(ry) = r_Irsz(rz)drz"'4"Irsz(r2)dr2-
1
0 r

We can readily show that the function U,(r) = Zfr —
V,\(r) satisfies the equation

2
T lrUAN] = 4o, (0).

We use expression (48), omit the index A in formulas,
and introduce the notation

3/2
o) = C2-1,, G
yk
)= [T epy—™

to arrive at the TF equation

2, [U() +up
e o W

1d’ _2
FC?[fU(f)] = ~(20) " 1y

supplemented with the boundary conditions

ru(r) =2 for r =0,
du
a 0 for r =r,, (50)
U(rg) =0
and with the electroneutrality condition
To
(5D

4nJ’p(r)r2dr = Z.
0

Conditions (50) and (51) were discussed in detail by
Nikiforov [13].

The TF equation was derived using the assumptions
made in Section 2 and the following two additional
assumptions:

(i) The occupation numbers of the bound electronic
states equal zero.

(i) The external interaction potential VeAXt (r)islow
in comparison with V,(r).

4. HARTREE-FOCK-SLATER MODEL

The HFS modd [2, 3] is based on the so-called
“average-atom” (or “average-ion”) approximation, in
which an enormous number of plasma atoms and ions
in the ground and excited states are modeled by aficti-
tious el ectron configuration where the occupation num-
bers of the bound electronic states are calculated from
the Fermi—Dirac formula. In this approach, the occupa-
tion numbers may turn out to be noninteger. Another
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important characteristic feature of the HFS model is
that it approximately takes into account the exchange
interaction through the introduction of an approximate
formula for the effective exchange interaction poten-
tial.

Let us derive the HFS equations from the general
equations given in Section 2. First, we derive a set of
equations in the Hartree approximation. We ignore the

exchange interaction in Eq. (42) and neglect fot (r)in
comparison with V,(r) to apply the centra-field

approximation [13], which impliesthe use of the spher-
icaly symmetric potential U,(r) in place of Va(r):

UA(r) = Gm[Va(n)dQ.

In the central-field approximation, the one-electron
wave function for the bound states can be written as

Won(r) = TRy (1) Yiu(6, 9),

in which case, instead of the Hartree—Fock equation
(42), we arrive at the Schrodinger equation

SR+ [~Ua0) + Ry 0) = €lRu(0). 62

Wo(r) =

where we introduced the notation sﬁ = si’? . The so-
called multipole expansion [12] puts the above expres-
sion for U,(r) intheform

o
Z 4T[

Ua(r) = ___Irlp (ry)dry— 4”Irlp (ry). (53)

The electron density is described by the formulas
p(r) = pr(r) +p2(r),

o) = = (54)
4T

c 2
rZZnAnI Rnl(r)i

ﬁeslz

pz(r) =

ffyml+exp[ A() %Eldy,

where the domain of integration P is determined by the
condition y > U,(r)/©. Here, in place of ny, , weintro-

duce the notation ny,, , because, in the case at hand, the
bound states are specified by the principal (n) and
orbital (1) quantum numbers.

Formally, the average-atom approximation implies

that the sum ZAC in expression (38) should be calcu-
No. 1
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lated in the same way as the sum ;f in formula (34).
To dorthis, in place of relationship (36), we must usethe
expression

Wa(N3, Na) = Wa(MR)Wa(np).

In other words, we pass over from an enormous number
of different subsystems labeled by the index Ato asin-
gle subsystem, which is characterized by the “mean”
occupation numbers f, of the bound states k. If we

omit the index A in (52)—(55) and use the expression
[11, 13]

_C

INAT® = Z{In L noin—% } (56)
_C _C
1-n, 1-n,

k<K

(55)

for the total number Al¢ of bound electronic states,
then we can vary dn, to obtain

-1

c 0 _ g
nh = 22+ DL+ e[ SE-W D 67
g g

The superscript ¢ can aso be omitted, because the
guantum numbers (n, 1) refer to the bound states. Then,
the HFS equations reduce to

=50+ [0 + ERIR,0) = Ry

u(r) = z—“—”jrlp(rl)drl 4njrlp(r1)

p(r) = pa(r) +po(r),

py(r) = ﬁz;ﬁmRﬁ.(r), (58)
—1
pa(r) = [29 Eﬂ+exp[ ug) %} dy,
py> 90

-1

Ay = 2(2 +1)ca+exp[ (én.—u)}ﬁ ,

and the electroneutrality condition (29) can be written as

To

4T[J’p(r)r2dr = Z. (39)
0
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Table 1. Beryllium plasma at atemperature of 100 eV

Density, g/cm?® M S
185 3 34
0.9 3 34
0.185 4 69

Table 2. Aluminum plasma at atemperature of 100 eV

Density, g/lcm? M S
2.7 6 27131
0.27 12 5200299
0.1 17 1.19 x 108
0.027 28 1.76 x 100

To arrive at the final set of equations used in the HFS
model, we must replace the potential U(r) in formulas

(58) by U (r) defined as
U(r) = U(r) + Ug(r),

where the potential U,,(r) is introduced artificidly in
order to approximately take into account the exchange
interaction. Note that neither the introduction of U,,.(r)
nor its specific form stem from the general set of equa
tions derived in Section 2. Different approximate for-
mulas for U,,.(r) were proposed in [2, 3]. For example,
Nikiforov and Uvarov [3] used the approximate expres-
sion

exc(r) = T[p(r)|:1+6p(r) I Bpg(;/g%ﬂ . (60)

The wave functions satisfy the normalization condition

To

IRﬁ,(r)dr =1 (61)
0

The boundary conditions required to determine the
eigenfunctions R, (r) and the eigenvalues ¢, of the
energy can be imposed as follows:

Rnl(o) = 0! I:\’nl(ro) =0.

Other ways to impose the boundary conditions were
proposed in [2, 13]. However, adiscussion of thistopic
is beyond the scope of our paper.

The HFS model equations were derived using the

physical assumptions presented in Section 2 and the
following additional assumptions:

(i) The average-atom (or average-ion) approxima-
tion is adopted.

(62)

(i) The external interaction potential Ve/;t (r)islow
in comparison with V,(r).

We emphasize that we can pass over to the mean
occupation numbers only when the number of bound
electronic states is very large [9]. For a strongly non-
ideal plasma, thisrequirement failsto hold. Let N bethe
number of different states 1sof atomsand ionswith dif-
ferent electron configurations. The upper bound S on
this number (N < S) can be found from the simple for-
mula

zZ
S=Y Cusn_1,
nZl M 1

(M+n-1)!
n'(M-1)!
ent arrangements of n identical objects in M different
cells. Theletter M denotes the maximum possible num-
ber of shells(n, I) of plasmaatoms and ionsfor agiven
plasma temperature and density. This number was cal-
culated using the ion model, which will be described in
Section 6. Since we do not take into account the Pauli
principle, the number S represents an upper bound on
the actual number of different electron configurations.
Clearly, each electron configuration is characterized by
itsown energy level 1s. Theresultscalculated for beryl-
lium and aluminum plasmas are presented in Tables 1

and 2, respectively.

From these tabl es, we can see that the number of dif-
ferent energy levels 1s is insufficiently large to intro-
duce the mean occupation numbers, at least at normal
densities of beryllium and auminum plasmas.

An attempt to calcul ate the optical parameters of the
plasma using only the average-atom approximation is
known to be unsuccessful: the results obtained in this
way disagree with the experimental data [14]. Agree-
ment can be established perturbatively, with the wave
functions R, (r) in formulas (58) being the basic wave
functions and the eigenvalues €, of the energy being
the unperturbed energy levels [15]. The applicability
conditions for perturbation theory restrict the applica-
bility range of the HFS model [5, 15]: the results
obtained at too low temperatures turn out to be incor-
rect.

where Cyy,p_q = isthe number of differ-

5. DETAIL CONFIGURATION
ACCOUNT METHOD

The DCA method [4] makes it possible to calculate
the quantum states of both the bound and unbound el ec-
trons for atoms and ions at plasma temperatures and
densitiesfor which the HFS model is already inapplica-
ble. This method deals with the actual (rather than fic-
titious) plasmaatoms and ions, in which the occupation
numbers of the electronic states (i.e., the number of
electrons at any bound state) are integer (unlike in the
HFS model). The DCA method implies that the quan-
PLASMA PHYSICS REPORTS  Vol. 27
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tum states should be calculated from the Hartree—Fock
equations and that the densities of plasma atoms and
ions should be evaluated in the Saha approximation.
The basic equations of the DCA method can be
derived from the general set of equations presented in
Section 2. If, in formula (48), we neglect the quantity

\7A(r) = —Z/r +V,(r) + fot (r) in comparison with

p?/2, then we can seethat n ,'; (r, p) isindependent of r.
This approach is known as the approximation of a con-
stant density of unbound electrons. The density n, of
these electronsisrelated to the chemical potential p by

exp 3B = EDQD‘W if exp 3ED > 1.
POeD™ nord " P00
Let j be the ion charge number, s be the number of
the energy state of anion at afixed |, E; s bethe energy
of thision, and X ¢ be the density of the ions with the
charge number j at the energy state s. Without consid-
eration of the interaction between the unbound elec-

tronsand anion, the Gibbs distribution yieldsthe Saha—
Boltzmann formula

nex>j(+1,p
j,s
(63)
_ Y+1p DQDsl2 1 —E
- gj,s ZEQT[D exp[ e(E]+1,p EJ'S)i|,

where g ; is the statistical weight of anion. Equations
(29) are solved under the additional conditions

Zikxj*k = 1 (the normalization condition) and

n j,ijj,k = n, (the electroneutrality condition),

where n is the density of atomic nuclei expressed in
cm3. Notethat, in the DCA method, the set of self-con-
sistent field equations can be solved separately for each
atom and ion in both the ground and excited states. This
circumstance greatly simplifies the calculations. The
structure of the basic equations for the DCA method
was analyzed in [15].

Along with the physical approximations presented
in Section 2, thefollowing additional assumptionswere
made to derive equations of the DCA method:

(i) The density of the unbound electronsis assumed
to be constant. This approximation is constructed by
neglecting the quantity \7A(r) ==2Z/r + Vi(r) + V:Xt (r)
in comparison with p?/2 in formula (48).

(i) The energy of the interaction between the

unbound electrons and an ion is negligible in compari-
son with the energy of theion.

(iii) The external interaction potential Vﬁxt (r)islow
in comparison with V(r).

Thefirst and second assumptions, which lead to the
Saha approximation (63), substantially simplify the
general set of equations, which describes the state of an

PLASMA PHYSICS REPORTS  Vol. 27

No.1 2001

ensemble of plasmaatomsand ions. It turns out that the
Hartree—Fock equations for subsystems with electron
configurations A = a and A= 3 are independent of each
other, so that the Hartree—Fock equations can be solved
separately for each electron configuration. On the other
hand, the same two assumptions make the DCA
method inapplicable to strongly nonideal plasmas.

As for the third assumption, we note that the DCA
method makesit possible to approximately describe the

effect of VeAXt (r) by introducing the required correc-
tions.

6. ION MODEL

Theion model was developed in order to providethe
possibility of calculating the optical parameters of the
plasma over wider temperature and density ranges in
comparison with the models described above. For this
purpose, it is necessary to solve the set of self-consis-
tent field equations (40)—(48) for an ensemble of
plasma atoms and ions (this set cannot be divided into
subsystems, each describing the state of only one atom
or ion). Mathematically, this problem seems to be
extremely difficult. It is well known that solving self-
consistent field equations even for an individual atomis
a very complicated task. In the ion model as formu-
lated, the mathematical difficulties are even more seri-
ous, because of the much greater number of integrodif-
ferential equations to be solved. The solution method
was originally developed for monatomic substances
and then for plasmas with acomplicated chemical com-
position [16]. However, the ion model was devel oped
successfully only after studies in which the role of rel-
ativistic effects was investigated [17], the proposed
approach was justified based on the density functional
theory [18], and the analytic results were systemati-
cally compared with the experimental data [5]. At the
initial development stage, the ion model was based on
the set of Schrodinger equations in which the exchange
interaction was taken into account only approximately.
The next stage resulted in the solution of the Hartree—
Fock equations [19]. Here, we analyze a version of the
ion model that is based on the Schrodinger equation.

We consider subsystemj withthe set { Nrﬂl } of occu-

pation numbers of the bound el ectronic states (here, the
index j playsthe samerole astheindex A in Section 2).
If we incorporate the exchange interaction into the
equations derived in Section 2 in the same way as was
donein Section 4, then we arrive at the following equa-
tion for the bound electrons:

_ %( Rrj1I )"+ [— Vi) + I(Iztzl)

:|Rrj1l(r) = Erjﬂ Rrjﬂ(r)- (64)

The boundary conditions and the normalization condi-
tion for the wave functions arethe same asin Section 4.
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The potential V;(r) iswritten as

Vi(r) = Vi(r) +Vi(r), (65)
where
Vi(r) = Z_4T[J'r1p (rydr,— 4nj'r1p (r), (66)
. . -1/3
Va(r) = npé)(r)[l F29(3/2) g%)é)(slrz)g} . (67)

The electron density has the form

pi(r) = pi(r) +p3(r). (68)
Here, the density of the bound electronsis equal to

pa(r) = R%Nﬂn(%(r)) , (69)

and the density of the unbound electronsisdescribed in
the quasiclassical approximation:
pa(r)

- v() %]gdy’ (70)

fze

wherethe domal n of integration A is determined by the
Vi(r)
Q]

condition y >
deduced from the electroneutrality condition,
WiN; =Z whereNj =} Ny +47t[°pz ()r2dr

isthetotal number of electronsin the subsystem carry-
ing aj subscript and W, is the Gibbs distribution,

. The chemica potential . can be

—uN; U
10 (71)
© 0

j = ngeXpD_

with E; being the total energy and g; = |_|nI CQ‘&'HD
being the statistical weight.

The set of equations (64)—71) describes the state of
the statistical ensemble of plasmaions. Obvioudly, the
groups of equations describing the states of subsystems
denoted by subscriptsj = 1, 2, etc. are coupled through
the electroneutrality condition. Such equations are
impossible to solve for all plasma ions even with the
most advanced computers. However, these equations
can be solved for the subsystem of main (or “refer-
ence”) ions, which obey the Gibbs distribution W, and
have the highest density. Having solved Egs. (64)—71)
for this ion subsystem, we can apply the perturbation
theory to determine the quantum parameters of the
remaining plasmaions with lower densities.

7. PERTURBATION THEORY
IN THE ION MODEL

Solving Egs. (64)—71) leads to several sets of wave
functionsand electron energy levels (the number of sets
is equal to the number of referenceions), in contrast to
the DCA method, which assumes only one set (see Sec-
tion 4). Conseguently, in the ion model, we can con-
struct several versions of the perturbation theory. For
instance, if we need to calculate the parameters of an

ion with the set { Nn|} of occupation numbers (assum-
ing that the density W of suchionsis low), we can find
a reference ion whose electron configuration { N,'; }is
the closest to { Nn }. Let W, be the density of such ref-
erenceionsand { Er'§| } bethe set of electron energy lev-

€ls. Then, the density W can be obtained from the for-
mulas

W = W,P[Ni,,]/P[NK, 1,
an an I~ Nnl
P[an] = CgI pnl (:I-_pnl)g ’

EEK —u -1
Pai = [1+e><pD”'TE} 9 = 2(21+1),
ml

Cn = n(m-n)!’
which are written for a simple case in which the elec-

tron configuration { N,‘;} differs from { Nn|} by only
the occupation numbers n, and |, of one electron shell.

These formulas can be generalized to more compli-
cated cases.

The electron energy levels for an ion with the occu-

pation numbers { Nn|} can be evaluated from the fol-
lowing formula of the perturbation theory:

~ K -~ k
En = E, + Z (Nn,1, — anll)RnInllli

ny, 1y

where
1
Rn|ﬂ1|1 = IIRI?“ (r)r_Rsﬂl(rl)drdrl,

r. =max(r, r,), and R, (r) are the wave functions calcu-

lated for the electron configuration { N,'§| }. Inthiscase,

the change in the potential caused by a change in the
occupation numbers is described by the formula

BVi(r) = Va(r) -Vi() = 5 SNyRA (r2)ars,
nl

PLASMA PHYSICS REPORTS Vol. 27 No.1 2001



COMPARATIVE ANALY SIS OF THE THEORETICAL MODELS OF A HOT DENSE PLASMA

53

Table 3. Occupation numbers of the electronic states and the densities of aluminumionsat T =10 eV and p = 102 g/lcm?

Quantum state 1s 2s 2p 3s 3p 3d
. Density W, g/cm?
mean occupation number N[ 2.00 1.99 595 |57x107?|85x%x1072|59x%107?

=1 2 2 6 0 0 0 7.8x10%
j=2 2 2 6 0 1 0 6.7x 107

=3 2 2 6 0 0 1 4.7x107
j=4 2 2 6 1 0 0 46x 1072
j=5 2 2 5 0 0 0 35x107?
j=6 2 2 6 0 1 1 40x 10
i=7 2 2 6 1 1 0 39x1073
j=8 2 2 5 0 1 0 3.0x10°
i=9 2 2 6 1 0 1 2.7x1073
j=10 2 2 5 0 0 1 21x10°°
j=11 2 2 5 1 0 0 20x1073
j=12 2 2 6 1 1 1 24x10%
j=13 2 2 5 0 1 1 1.8 x 107
j=14 2 2 5 1 1 0 1.7 x 10

where dN,, = Nn — N,'j, . Obvioudly, this change is the
smallest if the configuration {N,f,} is the closest to

{Nn}. Consequently, the perturbation theory con-
structed in the ion model yields more exact results in
comparison with the perturbation theory used in the
HFS model [5].

Note that the total number of spectral lines can
sometimes exceed 108, in which caseit isimpossible to
perform the corresponding cal culations even with mod-
ern computers [20]. Such a large number of spectra
lines is related to ions with very low densities and,
accordingly, with an extremely large number of elec-
tron configurations. It is practically impossible to sys-
tematically take into account the actual shape of each
spectral line emitted by such ions. One way of solving
this problem is to introduce a so-called “additional”
spectral line broadening. The whole ion ensemble is
divided into three groups. The first group consists of
ions with densities above 1073, i.e., the reference ions
for which Egs. (64)—71) should be solved. The second
group consists of ions with densities from 10 to 10~3;
the parameters of these ions are evaluated perturba-
tively in theion model. Thethird group consists of ions
with densities below 10-°. The absorption coefficients
are calculated from the detailed shapes of the spectral
lines from the ions of the first two groups. The spectral
linesfromtheions of thethird group are, asarule, close
to the corresponding lines from the ions of the first two
groups; therefore, they can be taken into account by
introducing additional broadening of the spectral lines
from the ions of the first two groups. This approach
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substantialy improves the efficiency of computations
and yields results that agree well with the experimental
data[21].

Recall that the set of equations of theion model can
be solved for a group of the main (reference) ions,
whose densities are the highest for agiven plasmatem-
perature and density. The question naturally arises of
how to single out the group of referenceions. This can
be done in the following way. First, the problem can be
solved in the average-atom approximation in order to
determine the mean occupation numbers N, of the
electronic states. The ions whose e ectron configura-
tions are closest to the configuration of an average atom
(with the occupation numbers N,,) have the highest
density. The densities of theionswith the same electron
configurations as those of the highest density ions but
with a single excited electron are somewhat lower. In
other words, the larger the number of excited electrons
in the ions, the lower the density of these ions. The
results of the corresponding calculations for an alumi-
num plasma are presented in Table 3.

In this table, the electron configuration of the ion
marked with the index j = 1 is the closest to that of an
average atom (the density of such ions is the highest);
theionsdenoted by theindicesj =2, 3, 4, and 5 aresim-
ilar in configuration to the highest density ionswith one
excited electron; theionslabeled by theindicesj =6, 7,
8,9, 10, and 11 are similar in configuration to the high-
est density ions with two excited electrons; and so on.
This approach makes it possible to select the group of
main (reference) ions.
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Fig. 4. Comparison between the spectral absorption coeffi-
cients measured experimentally (solid curve) [22] and cal-
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an aluminum plasmaat T = 18 eV and p = 0.05 g/cm?’.

The equations of the ion model were derived using
the assumptions made in Section 2 and the following
two additional assumptions:

(i) The exchange interaction is taken into account
approximately.

(i) The external interaction potential VeA;t (r)islow
in comparison with V(r).

A refined version of theion model was devel oped by
Denisov and Orlov [19] on the basis of the relativistic
Hartree—Fock equations without the first additional
assumption. As for the second additional assumption,
the external interaction can be described perturbatively
in the conventional ion model.

Let usagain turn to Fig. 1. Note that the ion model
is valid over the entire applicability range of the TF
model; i.e., it appliesto plasmaswith such high temper-
atures and/or densities that there are essentially no
bound electrons. This circumstance is very important
for solving the problems of radiative gas dynamics.
Recall that the boundaries of applicability of the HFS
model and DCA method differ between different chem-
ical elementsand have not yet been determined exactly.
For this reason, even monatomic substances are diffi-
cult to analyze numerically, to say nothing about plas-
mas with a complicated chemical composition.

8. RESULTS OF CALCULATIONS

It is of interest to compare the spectral absorption
coefficients calculated from different theoretical mod-
elswith the experimental data. For theion model, DCA
method, and HFS model, a comparison with the data
from experiments reported by Davidson [22] is illus-
trated in Figs. 2, 3, and 4, respectively. In those experi-
ments, the spectral absorption coefficient was deter-
mined under conditions typical of a nonidea plasma,
the nonideality parameter I = Z,/(r,©) (where Z, isthe
mean ion charge number) being approximately equal to
0.45. We can seethat theion model better fitsthe exper-
iments than the DCA method and HFS model. Thiscan
be explained by the fact that the ion model equations
were derived under more general physical assumptions
than the equations of the DCA method and HFS model.
Accordingly, theion model can have wider application
than the other models under discussion.

In Fig. 5, we compare the experimental and theoret-
ical profiles of the function

T(E) = exp[-K(E)pd],

where K(E) isthe spectral absorption coefficient, which
depends on the photon energy. The theoretical profile
was obtained from theion model by taking into account
additional broadening of the spectral lines. The experi-
mental profile was measured by Springer et al. [23] in
a mixture consisting of 65% niobium atoms and 35%
aluminum atoms. We can see that the introduction of

PLASMA PHYSICS REPORTS Vol. 27 No.1 2001
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Fig. 5. Comparison between the functions T(E) measured
experimentally (heavy curve) [23] and calculated theoreti-
cally from the ion model (light curve) for a plasma with a
complicated chemical composition at T = 47 eV, p =

0.0257 g/em?, and pd = 2.57 x 10~* g/em?.

additional broadening of the spectral lines ensuresgood
agreement between the theory and experiment.

9. CONCLUSION

An analysis based on the density functional theory
shows that the physical assumptions used in deriving
equations of a particular theoretical model restrict its
applicability range (Fig. 1). Thus, the applicability
range of the ion model is wider than those of the HFS
model and DCA method, because the latter were con-
structed using additional physical assumptions.

We restricted our analysisto hot dense plasmas. The
methods for calculating the optical parameters of a
plasma with a lower density and temperature are pre-
sented in [24, 25].
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Abstract—It is shown experimentally that the characteristics of structural ion-acoustic turbulencein aplasma
aregoverned primarily by the devel opment of density gradient—driven drift oscillations. The cyclicity of appear-
ance and disappearance of drift wave packets and ensembles of ion-acoustic solitons in a steady-state turbulent
plasma, as well as the correlation between them, is determined. © 2001 MAIK “ Nauka/Interperiodica” .

One of the interesting, but poorly studied, problems
of nonlinear plasma physics is the combined effect of
different instabilities simultaneously existing in a
plasma on the formation of steady-state plasma turbu-
lence. The TAU-1 device was designed for studying
nonlinear plasma processes. In this device, the fre-
guency spectrum of low-frequency plasma turbulence
is closely related to two instabilities, namely, the drift
dissipative instability and ion-acoustic current-driven
instability. Experiments carried out in the TAU-1
device demonstrated the nonlinear interaction between
the drift (driven by the former instability) oscillations
and ion-acoustic (driven by the latter instability) oscil-
lations in steady-state |ow-frequency turbulence.

The TAU-1 device is described in detail in [1]. A
cylindrical argon plasma column, 4 cm in diameter and
100 cm in length, was produced in a uniform magnetic
field of <800 Oe by a steady low-energy (E, = 60—
150 eV) electron beam. The argon pressure was p =
(2—4) x 10~* torr. The plasmadensity was maintained at
alevel of n=(0.9-1.2) x 10! cm™3. The electron tem-
perature was T, = 57 €V, and the ion temperature was
T, = 0.1T,. The characteristic plasma frequencies
ranged asfollows: v < Q; < Wy < W< Wy < Q. W,
where Q; and Q. are the electron and ion gyrofrequen-
cies, respectively; wy; and w, . are the ion and electron
plasma frequencies; and wy and w) are the drift and
ion-acoustic frequencies. All data presented in this
paper were obtained for steady-state values of the mac-
roscopic parameters of the TAU-1 plasma. The steady-
state plasma conditions could be maintained for 3-5 h
without any change in the magnetic field, argon pres-
sure, beam current, mean plasma density, electron tem-
perature, etc.

Fluctuations of the plasma floating potential were
measured by a Langmuir probe. The probe was a rod
0.3 mmin diameter and 3 mm in length. The signal was
divided into two channels; after necessary amplifica-

tion and filtering in both channels, the drift signal was
discriminated in the first channel and the ion-acoustic
signal was discriminated in the second channel. Since
the amplitude of the ion-acoustic signal was one order
of magnitude lower than that of the drift signal, a high-
pass filter and an amplifier were used in the second
channel to match the signal amplitude to the operating
range of an analog-to-digital converter (ADC). Thefil-
ter had a cutoff at 300 kHz and an attenuation of 20 dB.
Both channels were connected to the inputs of an OS-2
ADC card (therecord lengthwasup to 2 x 128 kB, and
the sampling frequency was 10 MHz). Then, the digi-
tized signals were analyzed by various numerical meth-
ods of spectral analysis. In studying the signals, we
used the spectral methods of Fourier analysis, wavelet
analysis, and correlation analysis; a detailed descrip-
tion of these methods is presented in [2, 3]. Note that,
in contrast to Fourier analysis, in wavelet analysis, the
signals are expanded in series using the so-called wave-
lets as the basis functions. The functions describing the
wavelets have the shapes of wave packets: they oscil-
lateintime and decrease at infinity. Using wavelet anal-
ysis, it is possible to detect the appearance and disap-
pearance of local coherent structuresin thetime signals
under study. In our study, we used wavelets similar to
those used in our previous studies of ion-acoustic tur-
bulence [2]: W4(t) = a'” x exp[i2mt/a— (t/a)*/2]. Such a
wavelet is the convolution of a Gaussian function and
harmonic oscillations; itsha f-widthisAt = a. The char-
acteristic time scale of the wavelet can beinterpreted as
areciprocal of the corresponding frequency w=217a
Awy2. In the figures presented below, we use this fre-
guency, rather than the wavelet time scale.

Drift oscillations in a plasma arise due to drift dissi-
pative instability caused by the plasma-density gradi-
ent. The frequency Fourier spectrum of drift oscilla-
tions lies in the range below 100 kHz and consists of
quasi-harmonics (Awy, < Wy). A typical drift spectrum

1063-780X/01/2701-0056$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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Fig. 1. Fourier spectra of (a) drift and (b) ion-acoustic signals measured at the plasmaaxis. The timewindow is26 ms, H =500 G,

p=3x10"*torr, I,= 250 mA, and U, = 120 V.

isshownin Fig. 1a. The aperiodic buildup of drift oscil-
lations was studied in [4]. A continuous spectrum
between the drift and ion plasma frequencies corre-
sponds to structural ion-acoustic turbulence. The
source of this turbulence is associated with the ion-

PLASMA PHYSICS REPORTS Vol. 27  No.1 2001

acoustic current-driven instability. The structura ion-
acoustic turbulence may be regarded as a strong turbu-
lence that is in dynamic equilibrium with ion-acoustic
solitons [2, 5]. This kind of turbulence exists over a
wide range of macroscopic plasma parameters; a struc-
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Fig. 2. Wavelet time spectra of (a) drift and (b) ion-acoustic signals measured at the plasma axis. The time window is 26 ms, H=

500G, p=3 x 10~ torr, I, = 250 mA, and U, = 120 V.

tural nature of the turbulent state persists both near and
far from theinstability threshold. The solitons comprise
up to 20-30% of the total energy of turbulence. The
solitons can nonlinearly interact with each other
according to “decay” and “coupling” scenariosto form
astable steady state. In [6], it was shown that the struc-
tural ion-acoustic plasma turbulence is a self-similar
probability process rather than a Gaussian (normal)

process. Figure 1b shows a typical broadband Fourier
spectrum of structural ion-acoustic turbulence mea-
sured with along time window (the frequencies below
500 kHz are cut off here).

Figure 2 shows how two wavel et spectra of potential
fluctuations vary with time in (a) the drift and (b) ion-
acoustic frequency ranges. These spectra were mea-
2001
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sured at a beam current of 1, = 250 mA corresponding
to the maximum turbulent and drift levels. The spectra
were obtained by interpolating through 75 individual
spectra calculated for successive 0.35-ms time inter-
vals. The amplitude of spectral components (in arbi-
trary units) is shown in the plot by gray shading. The
running time (the initial time is chosen arbitrarily) is
plotted on the abscissa, and the frequency is plotted on
the ordinate. The spectra of both the drift fluctuations
and structural ion-acoustic turbulence vary markedly
with time at the constant values of the macroscopic
plasma parameters. Within this time window, we can
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see the appearance and disappearance of quasi-har-
monics in the drift frequency range and time structures
in the acoustic frequency range. It is seen (Fig. 2a) that
two quasi-harmonics with definite frequencies (~14
and 22 kHz, indicated by the arrows on the ordinate)
appear in the drift spectrum in successive time inter-
vals. The spectra with quasi-harmonics are separated
by a noise spectrum; i.e., there is no gradual transfor-
mation of one quasi-harmonic into another. The same
two quasi-harmonics are seen in the Fourier spectrum
of the drift signal in Fig. 1la. In the given time realiza-
tion, two drift quasi-harmonics exist in the form of
finite-duration wave packets. Such behavior, when one
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Fig. 4. The cross-correlation coefficient of the dispersion of
the drift and ion-acoustic signals measured at the middle of
the plasmaradius as a function of the electron beam current

for H=500G, p=3 x 107 torr, and Uy, = 120 V.

to three quasi-harmonics appear successively, was
observed in al of the realizations. However, we cannot
say what is the nature of the recorded drift wave pack-
ets. In the same figure, one can see the spectrum of the
structural ion-acoustic turbulence for the same realiza-
tion. In [2], such a shape of the spectrum of the struc-
tural ion-acoustic turbulence was attributed to the
appearance and disappearance of an ensemble of soli-
tons of different dimensions and durations. We recall
that the Fourier spectrum of this state is broadband
(Fig. 1b). The duration of quasi-harmonics in the drift
spectrum is determined by the drift-oscillation wave
packet and attains several milliseconds; such a wave
packet includes from several tens of oscillations to one
hundred oscillations; the pauses between the wave
packets last several hundreds of microseconds. The
duration of the time structure in the acoustic spectrum
also reaches several milliseconds and is determined by
the lifetime of the soliton ensemble. The duration of
pauses between wave packets attains one millisecond
(at high beam currents, e.g., at |, = 250 mA). The ques-
tion arises as to whether the appearance of intense drift
wave packetsis related to the appearance of an ensem-
ble of ion-acoustic solitons.

To answer this question, it is necessary to compare
the two time realizations with the characteristic times
that differ by more than two orders of magnitude,
because the characteristic drift frequencies are lower
than the acoustic frequencies by a factor of 10>-10°
(see Fig. 1). In order to apply the correlation analysis,
it is desirable to bring these time realizations to a com-
parable time (or frequency) scale. Such atime scale is
presented in Fig. 2; this is a fraction of the pauses
between the instants of the appearance of wave packets
or ensembles of ion-acoustic solitons. This time scale

ranges from several tens of microseconds to one hun-
dred microseconds. Formally, this time scale can be
found by calculating time variationsin the dispersion of
temporal signals. Figures 3b and 3c show the mean-
square deviations (dispersion) of drift and ion-acoustic
signals for the chosen time realizations. The dispersion
of the time signals characterizes the energy of signa
fluctuations. Each point in these curves is calculated
using 250 points of the original signal or over atime
interval of 50 ps. Figure 3a shows the cross-correlation
function between the variations in the dispersion of the
drift and acoustic signals. The cross-correlation coeffi-
cient between the time realizations of the dispersion of
the drift and acoustic signals attains 30-40% for the
same measurement conditions in the plasma center as
for Fig. 2 (at abeam current of 1,= 250 mA). The cross-
correlation time between these realizations is about
several milliseconds. Hence, the appearance of drift
wave packets is correlated with the appearance of
ensembles of acoustic solitons. The correlation
between these plasma phenomena exists during the
total lifetime of a drift wave packet or an ensemble of
solitons (both times are about several milliseconds).
For thisreason, when weincrease thetimeinterval used
in calculations of the dispersion of drift and acoustic
signals to 250-500 s, so that the pauses between the
wave packets (ensembles of solitons) or even several
wave packets (ensembles of solitons) fall within this
time interval, the cross-correlation coefficient
decreases.

The correlation coefficient between drift wave pack-
ets and ensembles of ion-acoustic solitons increases
when the probes are displaced into the region where the
drift velocity is maximum. Under our experimental
conditions, this region lies at the middle of the plasma
radius. In contrast to the data presented in Fig. 3a, the
correlation coefficient in this region can attain 60%
under the same conditions (at a beam current of I, =
250 mA). Figure 4 shows the cross-correlation coeffi-
cient of the dispersion of drift and ion-acoustic signals
versus the current at the middle of the plasma radius
(the time interval used in calculating the dispersion is
the same for all values of the current and is equal to
50 us). It is seen that, as the current decreases from
250 to 50 mA, the correlation coefficient falls by afac-
tor of 3. It was shown previously that an increasein the
beam current results in an increase in the intensity of
both the drift signal [7] and ion-acoustic signal [2].
Moreover, it was shown that, as the beam current
increases, the frequency of the appearance of ensem-
bles of solitons decreases, whereas the intervals
between these events increase, which is confirmed by
recent measurements. As the beam current decreases,
the cross-correlation coefficient between drift wave
packets and ensembles of solitons decreases signifi-
cantly.

Therefore, the measured high values of the correla-
tion coefficient indicate that the appearance of a drift
PLASMA PHYSICS REPORTS  Vol. 27
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wave packet is related to the formation of an ensemble
of ion-acoustic solitons. Before discussing the mecha
nismfor thisrelation, it isnecessary to explain why drift
oscillationsin our experiment exist inthe form of finite-
duration wave packets. Previously, it was shown [8] that
the onset of the drift-dissipative instability is accompa-
nied by a buildup of drift oscillations of ion-acoustic
nature in the frequency range below 100 kHz. The non-
linear saturation of such drift oscillations was
explained by the diffusion loss of oscillations, because
the transverse diffusion of ions increases as their
energy increasesin thefield of drift waves. It wastaken
into account that the ions acquire energy due to their
stochastic acceleration in the field of waves that have a
finite-width spectrum. Apparently, the broadband struc-
tural ion-acoustic turbulence can also contribute to
such ion heating. Theincreasein theion energy and the
transport of oscillations into low-density plasmalayers
with subsequent ion cooling can result in the disruption
of the drift-dissipative instability and the disappearance
of drift wave packets. This, in turn, is accompanied by
fast ion cooling, so that the initial conditions (or condi-
tions close to them) are restored for the onset of the
drift-dissipative instability, and the next drift wave
packet appears. Then, the whole cycle of the evolution,
saturation, and disappearance of drift wave packets and
the associated ensemble of ion-acoustic solitons
repeats. A question also arises conceming the mecha
nism responsible for the observed relation between
drift wave packets and ion-acoustic solitons. Thefactis
that, under our conditions, the drift oscillations are
mainly azimuthal with awavenumber of k, ~ 1-2 cm!
[9]. It isknown [10] that, in this case, drift oscillations
can give rise to an ion-acoustic instability. Therefore,
the evolution of the structural ion-acoustic turbulence
can simultaneously be governed by two processes—the
longitudinal current and drift oscillations with a large
azimuthal wavenumber. Aswas shown above, the latter
process is intermittent in time; consequently, the exist-

PLASMA PHYSICS REPORTS Vol. 27 No.1 2001

ence of ensembles of solitons and structural ion-acous-
tic turbulence will also be intermittent.
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Abstract—At the RRC Kurchatov Institute, high-impedance plasma opening switches have recently been
developed that enable efficient pulse sharpening and are capable of operating in a repetitive mode. This paper
presents the results of studying the conduction phase preceding the current break. In this stage, the magnetic-
field and current waves propagate in the plasma from the switch to the load. The magnetic-field and current
detectors placed along the plasma axis are used to measure the velocity and acceleration of the current front
near the cathode and anode. At the end of the conduction phase, the characteristic velocities near the cathode
and anode attain 100 and 50 cm/pss, respectively. During the current front propagation, the width of the front
nearly triples. The acceleration and widening of the front are reasonably explained within electron magnetohy-
drodynamics. It is shown that the voltage during the current break depends on the length of the coaxial cathode
of the switch. When the cathode length is shorter than the distance covered by the current front, the generated
voltage decreases substantially. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The penetration of a nonlinear magnetic-field wave
into the plasma bridge of a plasma opening switch
(POS) isawell-known effect that has been studied both
theoretically [1, 2] and experimentally [3-8].

The effect wasfirst observed in [3]. The penetration
velocity of (2-3) x 10% cm/s was first measured in the
so-called “nanosecond switches” with aduration of the
conduction phase of less than 100 ns (the conduction
time was 2040 ns, and the amplitude of the current of
the inductive energy storage was 500-850 kA) [4]. In
the experiments carried out in the DUBL generator
with amicrosecond conduction time (0.9 ps, 300 kA),
the penetration of the current into the plasma bridge
was studied [5]. It wasfound that the penetration veloc-
ity in the cathode region was equal to 2 x 107 cm/s; dur-
ing the last 50 ns before the current break, the current
channel quickly accelerated up to 10® cm/s. In the
experiments of [6], in which the conduction time was
1 psand the current amplitude was 500 kA, the current
distribution at different times and, correspondingly, the
current penetration velocity ((2-3) x 107 cm/s) were
measured with loops placed in the anode—cathode gap.
In nanosecond switches (100 ns, 135 kA), the Zeeman
effect was used to estimate the penetration velocity of
the magnetic field. Spectroscopic measurements of the
Zeeman broadening of the Ball line indicated the onset
of the magnetic field in the plasma at a distance of
5 mm from the anode 30 ns after the start of the gener-
ator current, which corresponded to a penetration
velocity of 108 cm/s[7]. For microsecond POSs with a
planar configuration of the plasma-filled diode (a con-
duction time of ~1.6 pusand current of 80 kA), the mea-

surements of the delay between the signal from an ion
detector and the start of the generator current yielded a
penetration velocity of the current front of 2108 cm/s
[8]. All of the above measurements show the impor-
tance of nonlinear processes determining the high pen-
etration velocity of the magnetic field (from 2 x 107 to
more than 10% cm/s).

This paper is devoted to studying the dynamics of
the magnetic-field penetration and its influence on the
parameters of a POS. We studied relatively low-current
(100-200 kA) high-impedance switches with a micro-
second conduction phase. Such switches enable effi-
cient pulse sharpening (in particular, in the repetitive
mode [9-11]) and are characterized by arelatively high
impedance (10-30 Q) in the breaking stage. In the con-
duction phase, which lasts for 1-1.5 s, the impedance
can reach several ohms. In a coaxia configuration, the
large distance covered by the plasma during the current
pulse (several tens of cm) allows several magnetic field
detectors to be set at the cathode and anode and more
accurate measurements of the parameters of the current
front.

2. PARAMETERS OF THE POS

For experiments, we chose a typical generator with
a high-impedance POS [12] operating in the single-
pulse mode. Originally, the accelerator was intended to
generate repetitive electron-beam pulses (500 kV,
100 ns, 10 kA) emerging into atmospheric air. The
parameters of the device were as follows: the capaci-
tance of a Marx generator, which served as an energy
storage bank, was 0.4 pF; the output voltage was
170 kV; the free oscillation period of the Marx—POS
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Fig. 1. Arrangement of the detectorsin the region between the POS (on the left) and the load (on the right): (a—d) dB/dt loops placed
at the central and outer electrodes, 15 and 30 cm away from plasma guns, and (e-g) central-electrode shunts placed at a distances
of 15, 30, and 45 cm, respectively, from the plane in which the plasma guns are positioned.

circuit was 4 s, and the current amplitude was 120 kA.
The diameters of the POS electrodes were 14 and
160 mm. To fill the interelectrode gap with a plasma,
we used 24 plasma guns placed at the outer electrode.
The schematic of the region between the POS and |oad
isshownin Fig. 1.

When operating with a high-impedance load, the
voltage multiplication factor was equal to 3-5, which
allowed us to obtain an electric pulse with a voltage of
500-600 kV, current of 10 kA, and duration of 100 ns
in the electron diode load. Figure 2 presents the typical
waveforms demonstrating the parameters of the device
loaded with a high-resistance diode (Fig. 2a) or a 0.4-
to 0.7-uH inductance coil (Fig. 2b). In the latter case,
the voltage multiplication factor was equal to 1.5-2;
thus, the voltage at the POS did not exceed 350 kV.

3. DIAGNOSTICS

The current and voltage were measured with stan-
dard electric diagnostics. A loop placed in the vacuum
chamber in front of the plasma guns was used to mea-
sure the voltage. In the conduction phase, asignal from
the loop U = —Ldl/dt represents the voltage from the
Marx generator, which decreases as cos(wt) (Fig. 2).
The amplitude of the signal gives the characteristic

PLASMA PHYSICS REPORTS  Vol. 27
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scale of the voltage. The break of current occurs when
the Marx generator is nearly discharged and Ldl/dt = 0.
In the phase of the current break, the signal from the
loop reverses its sign and represents the voltage at the
POS accurate to the voltage remaining at the Marx gen-
erator. Both the total current in the Marx—POS circuit
and the current in the load were measured with ohmic
coaxial 0.03-Q shunts placed in the breaks of the outer
electrode of the vacuum coaxial line. To measure the
parameters of the current front in the POS conduction
phase, we used loops measuring the dB/dt signal that
were placed on the cathode and anode surfaces at dif-
ferent distances from the POS: 15 cm for loopsa and ¢
and 30 cm for loops b and d (see Fig. 1). We also used
current shunts embedded into the cathode that were
placed at a distances (e) 15, (f) 30, and (g) 45 cm from
the right edges of the plasma guns. The shunts were
made of thin-walled (0.1 mm) 20-mm-long stainless
steel tubes with a diameter of 14 mm (the same as the
cathode diameter). Thus, the presence of shuntsdid not
affect the electrode configuration. The measurements
carried out with the detectors of the electric and mag-
netic fields were performed in the regime in which an
inductance coil was used as a load. All of the experi-
ments (unless otherwise stated) were carried out at the
negative polarity of the central electrode.
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Fig. 2. Typical waveforms of (a) the voltage U = Ldl/dt at the inductance coil of the Marx—POS circuit, the diode current |, and the
generator current I for a POS loaded with adiode and (b) the generator current |; the currents |, I¢, and Ig from shuntse, f, and g,
respectively; the loop voltage U; and the load current |} for a POS loaded with an inductance coil.

4. EXPERIMENTAL RESULTS

The velocity of the current channel was determined
from theinstants at which the shunt signalsreached 0.5
of their amplitude values (see Fig. 2b). As the current
channel passed near shunts g, f, and g, its velocity was
measured to be ~3 x 107, 108, and 5 x 10® cm/s, respec-
tively. By the instant of the current break, this velocity
exceeded 5 x 10® cm/s. Note that the current recorded
with these shunts is about 80% of the total current. The
remaining 20% of the current flowsthrough the plasma.
Comparing the shapes of the shunt signals with each
other, we can see that, when passing from shunt e to
shunt g, the steepness of the current front increases
dlightly, whereas its velocity increases from 30 to
500 cm/us. Thisfact evidences that the spatial width of
the front increases; by the end of the conduction phase,
it increases nearly threefold.

Figure 3 presents the waveforms of the generator
current and the signals from four dB/dt detectors
(denoted asa—d in Fig.1), one pair of whichisplaced at
the cathode (central electrode) and the other one is
placed at the anode. The propagation velocity of the
magnetic field along the cathode, which was estimated
from the instants corresponding to the maximums of
the signalsfrom detectorsa and b, is nearly the same as
the current-channel velocity measured with shunts. The
propagation velocity along the anode, which was deter-
mined with the help of detectors ¢ and d, is somewhat
less. Thefact that these velocities are different indicates
that the current front is tilted, assuming that the current
flows aong straight lines between the corresponding
points at the cathode and anode. Thus, the current front
looks like a fragment of a cone; by the instant of the
current break, the cone angleis about ~100°.

It is worth noting that the signals from the anode
loops start nearly simultaneously with the generator
current 1, and, when the main dB/dt signals appear,
these fast signals have reached 20-30% of the ampli-
tude value. The origin of the fast signals may be attrib-
uted to one or both of two effects: (i) the penetration of
the magnetic field into the gaps among the plasma
flows near the anode surface, where the plasma guns
are placed [9], and (ii) fast penetration into the anode
region [13]. At the reversed polarity, when the central
electrode is an anode, the effect of fast penetration into
the anode region is also observed, although to a lesser
extent. This is illustrated in Fig. 4, where the signals
from shunt f (Fig. 1) are presented for both the negative
and positive polarities of the central electrode. The
operating regimes were chosen such that, in both cases,
the current breaks occurred at the same instants
(500 ns). The shapes of the signals are quite different;
when the central electrode is positive, a prepulse with a
duration of about 50 ns appears before the onset of the
main current. The prepulse current amplitude is about
10% of the main current. The propagation velocity of
the main current along the central electrode does not
depend on the electrode polarity.

5. INFLUENCE OF THE POS CATHODE LENGTH

The position of the detector (the signal from which
isdetected just before the break) determinesthe farthest
point reached by the current wave during the conduc-
tion phase and, therefore, the effective POS length,
which, in our case, does not exceed 45 cm.

Thiseffectivelength is nearly the same asthe length
of the cathode fragment exposed to ion bombardment.
The bombardment results in the appearance of a dis-
tinct polished area on the cathode with a 10-cm-wide
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Fig. 3. Waveforms of the dB/dt signals from detectors a—d (see Fig. 1) and the generator current |,
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Fig. 4. Waveforms of the generator current I and shunt current I; at negative and positive polarities of the central electrode and the

loop voltage U.

blurred border on the load side. The length of the pol-
ished areais 35-45 cm and is almost independent of the
type of load (high-impedance diode or inductance coil).

Does the POS effective length in question have a
real physical meaning? To answer this question, we

PLASMA PHYSICS REPORTS Vol. 27 No.1 2001

have studied the influence of the cathode length on the
POS operation. The dependence of the voltage at the
POS on the cathode (central electrode) length is shown
in Fig. 5. It is seen that the fastest current break and the
highest voltage amplitude occur at cathode lengths not
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Fig. 5. Amplitude of the POS voltage vs. the length of the
central electrode (cathode).

shorter than 40 cm, e.g., at lengthslonger than the POS
effectivelength. As soon asthe cathode length becomes
less than the effective length of the region exposed to
theion flux, the voltage at the POS decreases. Unfortu-
nately, the experimental data obtained do not provide
an unambiguous explanation of this fact, which is of
gresat practical importance.

6. DISCUSSION OF THE RESULTS

Undoubtedly, the propagation of the magnetic field
(or current) from the diode toward the load in the form
of awave with afairly steep front is worthy of discus-
sion. The front accelerates during the propagation and
has the highest velocity just before the break. Simulta:
neously, the front width also increases, however, not in
proportion to the acceleration, but to a lesser extent.
Certainly, no diffusion mechanisms can be responsible
for such penetration of the field into a conducting
medium.

Therefore, in contrast to common opinion, switch-
ing the current to theload cannot only be reduced to the
dynamics of the plasmafilled diode. The processes in
the rarefied plasma that expands from the diode
towards the load seem to be important for the POS
operation. This conclusion is in good agreement with
the recent work covered in [14]. The existence of the
optimum length of a coaxial POS found by us is aso
evidence in favor of this conclusion. We will give a
detailed explanation of this effect in a subsequent
paper.

The effect of the field penetration into a conducting
(even a perfectly conducting) medium via a strongly
nonlinear wave is well known and can be explained
within electron magnetohydrodynamics (EMHD) [1,
2]. This effect was first observed in the POS experi-
ments [3]. The POS parametersin the conduction phase
always lie within the EMHD applicability range:

Vie Vae = j/n€ > Cg, V),
C/Wpe < @ < C/WYy.

Here, a and T are the characteristic space and time
scales of the problem, respectively, other notations

being standard. It follows from the last inequality that,
if the plasmaparametersin theinterelectrode gap of the
diode are within the EMHD applicability range, then
the same is certainly true for the parameters of a rar-
efied plasma outside the diode. The nonlinear wave
responsiblefor the convective transport of the magnetic
field [1], often referred to as a Kingsep—Mokhov—
Chukbar (KMC) wave, can be derived from one of the
basic EMHD equations,

2
9B/t = ——Vinnx VB2+ -S—v2B.
81te 4110

Thiswave is caused by the transverse density gradient.
In the case of axia symmetry, the quantity [l(nr?)
serves as such agradient; hence, the characteristic spa-
tial scale 8 ~ |OIn(nr?)|! enters all the basic relations.
The characteristic solution is

B = 2 — tanhZ——KMC =
20 A §
C nedc’
Whel’e VKMC = VAQ)_a > VA and A= .

pi

Thus, according to this approach, the front of the
magnetic-field wave propagates with a velocity much
higher than the velocity of the preceding expansion of
the substance (the front velocity greatly exceeds the
Alfvén velocity); therefore, the profile of the plasma
density can be considered time-independent. Since the
density certainly decreases along the direction of
expansion and Vi O n, one of the effects in ques-
tion, namely, the front acceleration, can be explained
quite reasonably.

Thereisnot such aclear explanation for the effect of
the front widening. In the case of Coulomb conductiv-
ity, which depends only on the temperature, the shrink-
ing of the front should occur because A (O n. A self-con-
sistent account of plasma heating at the front of the
KM C wave can only enhance the effect.

However, it should be noted that the first row of the
inequalities that determine the EMHD applicability
range also determines the range of plasma parameters
in which the effects of anomal ous resistance and turbu-
lent plasma heating are of importance (see, e.g., [15]).
Moreover, it is this regime in which our POS operated,
which was confirmed experimentally in [16] (see aso
[17]). A peculiarity of the regime of anomalous resis-
tance is that the momentum exchange between elec-
trons and ions, which are accelerated by the electric
field in opposite directions, occurs via emission and
absorption of one or another type of plasma waves,
rather than via Coulomb collisions. When the plasmais
incompletely magnetized,

B? < 41Tnmc?,
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which is certainly true in our case, ion-acoustic fluctu-
ations act as momentum carriers. If the current in asys-
tem is determined by an external electric circuit, then
only the strongly nonlinear regime of the ion-acoustic
instability ispossible[15]; in this case, the conductivity
is determined by the Sagdeev formula

neVq,

e

or, analogously,
j = meT AT 2E,

Let us substitute this dependence into the expression
for A, taking into account that the current density at the
wave front is inversely proportional to the front width,
j O1/A, wherel isthe total current in the plasma. Then,
we have

2
:neéc 0 nl 0 ADn‘”“,

A o n3/2A

which means that the acceleration of the front of the
KM C wave should be accompanied by the front widen-
ing, which, however, should be less pronounced than
the acceleration. In our opinion, such an explanation
seems to be reasonable and self-consistent.

7. CONCLUSION

Based on the above measurements, we can draw the
following preliminary conclusions about the plasma
dynamics in the conduction phase of a high-impedance
POS. A specific feature of the magnetic-field propaga:
tion along the anode surface is the existence of a fast
prepulse; the propagation velocity of the main mag-
netic-field wave at the anodeislessthan that at the cath-
ode. Both the current channel and the front of the mag-
netic-field wave accelerate along the POS axis; their
propagation velocity increases from 0.3 x 10® to
5 x 108 cm/s. This acceleration is fairly well described
by the EMHD formula for the penetration velocity of
the magnetic-field wave (KM C wave). The widening of
the current front during the accel eration toward the load
can be estimated as A [ /4,

The propagation of the current channel toward the
load determines the minimum length of the cathode
(40 cm for our POS) that serves as an ion current col-
lector; at shorter lengths, the voltage induced at the
POS during the current break significantly decreases.
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Abstract—The resonant excitation of plasma (Langmuir) oscillations during the microwave breakdown of a
low-pressure gas is studied both analytically and numerically using the simplest uniform model. It is shown
that, because of a significant delay in electron heating and cooling, this effect ensures that the plasma density
increases at a high (resonant) rate, even after exceeding acritical value, and can reach avery high (overcritical)

level. © 2001 MAIK “ Nauka/lInterperiodica” .

In the dynamics of a low-pressure microwave dis-
charge, an important role is played by the plasma reso-
nance phenomenon, which implies that the electric
field amplitude becomes very large as the plasma den-
sity approaches a critical value. In particular, this phe-
nomenon significantly increases the propagation veloc-
ity of theionization fronts[1, 2] and givesriseto the so-
called plasma-resonance ionization instability in both
microwave and optical discharges[3, 4].

Previously, the dynamics of ionization processes
under plasma resonance conditions was studied theo-
retically by taking into account the fact that the ampli-
tude of the forced oscillations increases resonantly at
the frequency of the external source, but without con-
sideration of the accompanying “transient” excitation
of natural plasma oscillations at the plasma (Langmuir)
frequency at the instant when it passes through the crit-
ical value equal to the frequency of the external field.
The time scales on which the natural plasma oscilla-
tions are damped (in a collisional or collisionless
regime) after their excitation in low-pressure dis-
charges may befairly long. For this reason, the electric
field in the excitation region remains at a high (reso-
nant) level over much longer time scalesthan the forced
oscillations, which are rapidly damped after the plasma
density exceeds a certain critical value. As aresult, the
overall dynamic picture of the discharge changes mark-
edly: in particular, after exceeding the critical (reso-
nant) value, the plasma density continues to grow at a
high rate to a level well above the critical level, in
which case the spectrum of the excited Langmuir fields
significantly changes in an adiabatic fashion as time
elapses.

Our purpose here is to qualitatively analyze and
numerically model the generation of Langmuir fields
and their effect on the discharge dynamics using the
simplest uniform model, which takes into account the
delays of both the polarization response and the Joule
heating of electrons under the plasma resonance condi-

tions but neglectsthe spatially nonlocal character of the
latter two processes. Thismodel actually describes how
the electric field and the plasma evolve in athin (com-
pared to the wavelength of the electromagnetic wave)
isolated layer oriented perpendicular to the external
electric field. Such layers appear during gas breakdown
in an electromagnetic field in the nonlinear stage of ion-
ization instability. It is in these layers that the plasma
density increases above the critical level. At this stage
of investigation, we disregard the following circum-
stance, which complicates a theoretical analysis. in
these layers, the profiles of the field amplitude and
plasmadensity may become strongly peaked during the
breakdown [4-6], so that the nonlocal effects, which
we neglect here, will become important. Qualitative
estimates and preliminary results from simulations of
the dynamics of a nonuniform breakdown [7] (with
consideration of nonlocal effects due to spatial disper-
sion, diffusion, and heat conduction) show that, in the
range of discharge parameters under consideration (see
below), the uniform model provides a fairly good
description of the discharge dynamicsin regions where
the plasma density is the highest.

The main physical factors governing the evolution
of the electromagnetic field and plasma are assumed to
be the electron-impact ionization of gas molecules,
electron attachment to neutral molecules, electron—
molecule collisions, and the effect of the produced
plasma on the microwave field. The basic set of equa-
tions consists of the equations for the longitudinal elec-
tric field E = x,E(t) and longitudinal electron current
density j = x,j(1),

J EaszJocosoot, )
dj _ eNp_ .
= T E-Vi @
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and the balance equations for the electron density
(plasma density) N(t) and electron temperature (mean
energy) Te(t),

aN _

N = VN, )
aTe _ 2 Hen 5u(T.—T 4
dt - 3ND TV( e g)' ( )

Here, v is the effective collision frequency, v; is the
electron-impact ionization rate, v, is the electron
attachment rate, e and m are the charge and mass of an
electron, &; is the mean fraction of energy lost by an
electron in (mainly, inelastic) collisionswith an atom or
amolecule, Ty is the gas temperature, and the angular
brackets stand for averaging over the period of the
alternating electric field.

In the uniform quasistatic model (the model of a
“plane capacitor”), Eq. (1) determines the total current
density J, which is regarded as a prescribed harmonic
function of timet with a constant amplitude J, and con-
stant frequency w. Thelocal constitutive equation (2) is
valid for any arbitrary time function N(t) changes, pro-
vided that the electrons originate at a zero velocity or
obey an isotropic distribution over initial velocities. In
the balance equations (3) and (4), the difference
between the electron-impact ionization rate and the
electron lossrate, v, — v, and the factor &; are regarded
as prescribed functions of temperature and are approx-
imated by the expressions

0 (TJTe)" 0
Vi—Va = VaD B_ll:lv
1+ [(Te_Tcr)/Ts] U (5)

— B
Ts - Tcr(V/Va) '

e cr
= + T.>T
Or = 09 T.4T, for T.>T,, ©
Or = Org for T,<T,.

The parametersv,, &;, T, and 3 and the electron—mol-
ecule collision frequency v are assumed to be constant.
Since the electron velocity distribution function in a
discharge plasmaisusually far from being Maxwellian,
the notion of “temperature’ is here rather conditional.
Equation (4) should in fact be treated as the simplest
phenomenol ogical equation for afunctional of the elec-
tron energy distribution T,, which determines the rates
of the main processes in the baance equation (3).
The approximate expressions (5) and (6) correctly
describe the most important issues in our problem: the
existence of athreshold temperature for the breakdown,
To (Vi(Ty) = V,); asharp increase in v; (determined by
the power-law index B) as T, increases to T, ~ T, with
the related saturation level v, = v intherange T, > T
and anincreasein theinelastic losses & with therelated
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saturation level &; = 1 intherange T, > T,. We dso
assume that the following conditions are satisfied: v >
V, (and, accordingly, T¢> T,), Ty > Ty, andv < @

Eliminating the current density j in Egs. (1) and (2),
we can see that the electric field E satisfies the follow-
ing oscillator equation with a friction coefficient v,

time-dependent frequency w, = A/4ne2N(t)/m of the
natural plasmaoscillations, and prescribed time-depen-
dent harmonic function F = 4mdJ/ot + VvJ) =
411, (—wsinwt + vcos wt) = Fycos(wt + ¢,) on theright-
hand side:

2
d—E + vd—E + oo,f(t)E = Fycos(wt + ). @)
dt dt

Equation (7) describes the well-known phenomenon of
the resonant excitation of natural oscillations. This phe-
nomenon was previously analyzed in the context of var-
ious physical oscillators under the assumption that the
natural frequency changes according to a prescribed
(linear) law [8, 9]. Here, we areinterested in solving the
differential equations (1)—4) [or, equivalently, Egs. (3),
(4), and (7)] in the case where the plasma frequency

changes sufficiently slowly (de, /dt < &) and the ini-
tial conditions correspond to the initial stage of break-
down. We assume that, at the initial instant t = 0, the
electron density is far below the critical level, N(0) =
Ny < Ny =m(w?® + v?)/4Te?, the plasma frequency
being w,(0) < w; the electron current j(0) is low in
comparison with the displacement current dE/4Twlt; the
electron temperature is equal to the equilibrium tem-
perature Te,, Which satisfies Eq. (4) with dT./dt = 0
(provided that the field and current are harmonic func-
tions of time); and the electric field amplitude E(0) and
related electron temperature Ty(0) = T(0) slightly
exceed the threshold for breskdown, E., T, =

ES /[387,m(G? + V2.

The above eguations enable us to analyze how the
field and plasma will evolve. The entire evolution pro-
cess can be divided into three main stages, which cor-
respond to different ranges of the plasma density N(t).

(i) The preresonance stage (N, < N < Ng — AN), in
which the solution to Eq. (7) describes forced oscilla
tions at the frequency w of the externa source; the
oscillation amplitude gradually increases as the plasma
density approaches a resonant value.

(i) The stage of generation of natural plasma oscil-
lations when the plasma density increases from just
below to just above the critical value (N, — AN < N <
Ng + AN). We will show that, under conditions corre-
sponding to the breakdown of a low-pressure gas,
AN < N, holds; i.e., the natural plasmaoscillations are
excited in a narrow density range in the vicinity of the
critical density.
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(iii) The stage of adiabatic evolution of the ampli-
tude and frequency of the excited plasma oscillations
accompanied by their collisional damping (in the den-
sity range N > N, + AN). This stage is characterized by
a fast explosive ionization process, which, however,
occurs on atime interval long enough for the plasma
density to increase far abovethecritical level (N> N,).
After the ionization process, the plasma density N
slowly decreases to approximately the critical steady-
state value, Ng ~ N, .

In thefirst two stages, the electric field in the plasma
can be assumed to be quasi-harmonic, E =
Re(E (t)exp(-iwt)). Under this assumption, we can
switch to a description of the evolution of the complex
amplitude E (a “dowly varying envelope’) by using
the following first-order reduced eguation, which is a
consequence of Eq. (7):

2, vdE, =
o " o0at T

D, ®)

wheree = 1 — (N/Ng)(1 + iv/w)~" isthe time-dependent

complex plasmadielectric function and D =4ri Jy/wis
a given amplitude of the electric induction D =

Re(D exp(-iwt)), which is related to the total current
density J by dD/dt =47d. In the range of validity of
Eq. (8), the mean power of the field energy losses [the
power of the external source in the energy balance
equation (4)] isequal to

OEO= (esz/me2)|I~E|2. 9

We introduce the dimensionless variables T = v,t,
E = E/E,,n=N/N,, and T = T./T, and the parameters

Dy = D/Eg, 0,=V,/w, & =V/w, and Y = v,/v in order
to rewrite the density and temperature balance equa-
tions, the reduced equation for the electric field ampli-
tude, and the initial conditions as

2i6a%$+eE =Dy, €=1-n(1-19), (10)
dn TP
& = (fM-1n, #(T) = ———, (D
t 1+p(T-1)
dT 1
ar = a(GnlE =8,
T-1 (12)
6-'— = 6T0+T+_u—1/[3’

n0) = ng<<1, E(0) = E, = Dy/e(0),

) (13)
T(0) = To=|El" >1.

For estimates and calculations, we adopt the reference
parameter values

-5

n=25/8=10",
15, &, = 0.05.

5= 15%x107
D, =

B =27 1

According to the reference data presented, e.g., in [10,
11], these values correspond to air breakdown at apres-
sure of p=0.4 torr in an electric field with a frequency
of w =19 x 10! s7! (the wavelength being A = 1 cm)
and an initial amplitude of 1.5, (with E, =
1.8 kV/cm, which corresponds to T, = 1 €V). These
parameter values allow the basic equations to be some-
what ssimplified (see below). In particular, in the first
two stages of the process under discussion, we can
assume that the dielectric function in the field equation
ispurely real, setting € = 1 —n. Also, in these stages, the
dimensionless electron temperature T remains at least
two times lower than the value Ty/T, = u '/ = 72, at
which the dependences v, (T) and &.(T) start to saturate.
In this case, the parameter uT® in the expression for v,
is much smaler than unity and the density balance
equation becomes

dn _ po_
dT_(T n.

(15)
L et us describe the entire evolution process at differ-

ent stages and estimate the characteristic values of €

related to the transitions from one stage to another.

1. Preresonance Stage

In the reduced field equation (10), we can also omit
the term with the first time derivative and describe the
adiabatic evolution of the field amplitude by the simple
relationship

E = Dyle. (16)

This stage is characterized by three successive elec-
tron heating regimes in which the plasma density and
field amplitude change according to different laws.

When n < 1, the field amplitude and electron tem-
perature are constant and are close to their prescribed
initial values. The gasisionized in an avalanche fash-
ion: the plasmadensity increases according to the expo-

nential law n= nyexp(y,t) a arate equal to y, = Tg -1.

Then, because of a decrease in € = 1 — n, the field
amplitude and plasma temperature and density all
increase at aprogressively higher rate. However, during
a certain time interval, the temperature at each instant
remains close to its equilibrium level T, = T /T,
which follows from the equation T8:(Ty) = [Efy. In

the temperature range T > &;,/U'® = 3.14, the functions
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3r(T) and Ty([E|) are amost linear, d;(T) =u'PT and

Ty = E|/31o/u"® = 1.9]E|, and the discharge evolution
is described by the equation

de q

B2, 12

q=0rH

-, Do.
dt (P 0

(17)

This equilibrium heating regime occurs under the con-
dition
qu 61—0 2
— < —|E|".
e |El
According to Egs. (15) and (16), condition (18) holds
until the dielectric function € remains sufficiently large
in comparison with a certain characteristic value €;

(18)

e’ > e = (Dodro™ ), q = (B-1)2. (19

Finally, in the range € < g, the electron heating
becomes nonequilibrium and the temperature increases
at amuch slower rate than the field amplitude and sat-
isfies the following approximate equation in the range
of validity of relationship (16):

dT _ 810D

av Hig®
This equation and the equation

(20)

_ B
dt dE
which follows from Eqg. (15) in the range |g| < 1, con-
stitute the full set of equations describing the discharge
dynamics at the end of the preresonance stage. Let e = ¢,
be the conventional boundary between the ranges cor-
responding to the equilibrium and nonequilibrium elec-
tron heating regimes (for the parameter values at hand,
we have g, = 0.15). Then, it is asimple matter to quali-
tatively describe the behavior of the functions g(t) and
T(t) in each of these ranges. In particular, over acertain
finite time interval (T < 1, = const) in the nonequilib-
rium heating regime, the solution to Egs. (20) and (21)
in the range Ree > & can be represented as

21)

( 0) ( )
p —_—, A e ———

Hence, within the above approximation, in which the
electric field is described by the simplest expression
(16) and the didlectric function € is assumed to be
purely real (in other words, the collisional losses and
the generation of Langmuir waves are both neglected),
the electron heating, even when delayed, isexplosivein
character: at a certain time 1,, the dielectric function €

PLASMA PHYSICS REPORTS Vol. 27 No.1 2001

vanishes and the field amplitude and el ectron tempera-
ture become infinite.

2. Sage of the Generation of Langmuir Oscillations

In the preresonance stage, we omitted the first term
2i0,dE/dt in Eg. (10). We can estimate this term using
relationships (16) and (22) and find that it can be
neglected under the condition

e’ > e = [2(1+ B)d;,D2(25,) 5" * Y,
p=(3B+2)/(B+1).

Knowing the parameter €, (which in the numerica
example at hand is equal to 5 x 1072), we can estimate
the maximum field amplitude |E,| and maximum elec-
tron temperature T, in the resonant range Ree€ < g,.
From (20)—(23), we obtain

Do

|Er| = S_r = 30,

(23)

2 U(E+1) (24)

T = [(B + t)frToDo}

Note that, when the collisionality parameter 6 = v/w
is larger than ¢, inequality (23) holds for any plasma
density by virtue of the obvious relationship |g| > 9, in
which case the simplest expression (16) for the steady-
state amplitude of the forced oscillations of the electric
field remains valid during the discharge evolution and
the excitation of natural plasma oscillations can be
ignored. Taking into account the fact that, in our model
of gas breakdown, the quantity 8,/86 = =10 isapres-
sure-independent constant, weturn to inequality (23) to
find the quantity €, as a function of the parameter d.
From the condition & > €,(d), we determine the range
of & valuesin which essentially no plasma oscillations
are excited:

= 33

8> 85 = 2u[2(B +1)8,,D3]°, s = 2B +1.(25)

For the parameter values (14), we obtain d,,,, = 0.17,
which correspondsto an air pressure of about P =7 torr
at the wavelength A =1 cm.

Now, we examine the field evolution in the density
range from just below to just above the critical value. In
thisrange, inequality (23) failsto hold (i.e., the quantity
IN. — N| is comparable with or smaller than AN = g N,),
and both terms should be kept on the left-hand side of
thefield equation (10), whichisvalidinthelimit || < 1.
The general solution to Eq. (10) for the complex ampli-
tude of the electric field has the form

E = exp(—f(r))[—%}exp(f(r'))dr'+cl}, 6)
0
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wheref(t) = %ﬁ)(n —1-idn)dt, C, = E(0) isacom-

plex constant equal to the field amplitude at the reso-
nant point, and the initial time is chosen to satisfy the
condition n(T = 0) = 1. In the immediate vicinity of the
resonant point n = 1, we can approximate the function
n(T) by the linear dependence

n(t) = 1+n(0)1, 27)
where n (0) = dn/dt(0). We a so introduce the new vari-

ablet' = ,/n(0)/(4d,) T and the notation
W(r) = exp[—i(T)* =yt

y = 8/./3,n(0),

in order to write solution (26) as

(28)

iD,
/5.17(0)

which can be expressed in terms of Fresnel integrals.
For |T'| > 1 withT' <0 (n< 1), solution (29) obeys the
asymptotic expression

E(T) = w(T')[— J’% +C| 9

i, s = DO
B> 1) /45,7(0)T' —i8 0
r —iDy a2
+D—ml+c1%exp[ ()" -y,

where

| = Iexp(ix2+yx)dx
0 (31)

= Jgap(iy2/4) 5—17” + S(y/J2m) +iC(y/J2m)5

and Sand C are Fresnel integrals.

The constant C, can be found by matching the
asymptotic expression (30) with the solution E = Dy/g,
which refers to the preresonance stage and coincides
with thefirst term in (30) in the region where the linear
dependence (27) isvalid:

C, = E(0) = iD,l/./5,n(0).

Substituting the derivative n(0) = Tf into expression
(32), we find the field amplitude at the instant when the
plasma density passes through the critica value:
[E(0)| = 38, which is comparable in magnitude to the
amplitude of the resonant field estimated in expression
(24).

In the range of large positive T' values (n > 1), the
asymptotic form of solution (29) differs from (30) in
that it contains the nonzero factor 2C, in front of the

(32)

exponential function in the second term (in the range
T' <0, thisfactor vanishes):

Do
/45.7(0)T' -1

+2C,exp(=i(T')* = yT).

E(U>1) = .

This expression implies that, for Ree < 0 with g <
[Reg| < 1, the electric field can be represented as a
superposition of the field of forced oscillations with
amplitude Dy/e at the frequency w of the externa
source [the first term in (30)] and the field of natural
plasma oscillations with the maximum amplitude 2C,
and adiabatically varying frequency [the second termin
(30)].

Hence, intherangeof T'valuesfromt' ~-1toT' ~ +1
(inwhich caseRee =1 —nliesbetween €, and —¢,), nat-
ural plasma oscillations with the maximum amplitude

[Epo| =2C, = 2[E(0)| = D, /T (8,n(0)) =76 are gener-
ated. According to the reduced equation (10), the
amplitude of the natural plasma oscillations decreases
only because of the wave damping due to electron col-
lisons. In the numerical example at hand, the damping
rateisfairly low (y=0.27) and, intheranget' ~ 1, itis
still insignificant. As a result, the field amplitude
remains at a high (resonant) level over a substantially
longer time interval; this is aso true for the rate at
which the electron temperature and density increase.

3. Discharge Dynamics in the Range of Overcritical
Plasma Densities

Intherangen> 1, in which |g| ~ 1, the field evolu-
tion should be described by the complete (rather than
reduced) equation (7). Even for plasma densities
dlightly above the critical level (-Ree > ¢, or T' > 1),
the complete equation admits a solution in the adiabatic
(Wentzel-Kramers—Brillouin) approximation; under
the above condition 6 = v/w < 1, the dimensional solu-
tion has the form

_ D -
E = Re[%exp(—lwt)

+A [ _ex Ek't (t)dt /20
ifw -V ,
exONEl 0

where the initial time corresponds to the time at which
the plasma density equals the critical value (as is the
case in the previous stage). The constant A is found by
matching the asymptotic solutions (33) and (34) in
therange €, < [Reg| < 1, in which they are both valid:
A=2C|E,.

In the range where the difference between the fre-
quencies w and wy, is not small, the mean power of the

(34)
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external source of electron heating in the energy bal-
ance equation (4) can be calculated approximately as
the sum of the partial power losses associated with the
fields of oscillations at these frequencies in expression
(34). This can be done by averaging over the periods of
both of these fields and over the frequency difference

W, — W
[EO= (e’Nv/2mw’)|E,|?

D; . 4|C/ w’ 0 (35)
X O— + ———exp(-vt)O
Oel w, 0

An analysis of the approximate expression (33) for
the field amplitude and the bal ance equation (12) shows
that, for |€| of about €, and higher, the amplitude of the
total electric field and the temperature initialy increase
by afactor of about 2. Intherange¢ ~ (3-5)¢, ~—0.15—
0.3), they reach their maximum (throughout the dis-
charge) values: [E|,,.x = [Ey| =76 and T, = 80. Inthis
range, the mechanism for electron heating changes
markedly. First, since T, iSsapproximately equal to T,
it is necessary to take into account the saturation of the
functions v;(T) and &.(T). Second, the field amplitude
and, accordingly, the equilibrium temperature T, ini-
tially increase at a progressively lower rate and then
begin to decrease (because of collisional absorption
and anincreasein |€[). Dueto this circumstance and the
delayed heat exchange, the electron temperature
becomes larger than the equilibrium one and, then,
decreases at a comparatively low rate. In dimensional
units, the time scale on which the electron temperature
decreases is estimated as At, ~ (5-10)v~!, which is
about one order of magnitude longer than thetime scale
v! on which the natura plasma oscillations are
damped. As a result, the plasma density continues to
increase at afairly high rate even after it exceeds a crit-
ical value. In this case, the ionization process is explo-
sive in character: on the time scale At;, which is very
short in comparison with the duration of the other
breakdown stages, the plasma density N increases from
the critical density to the value N,,,,, which is several
times larger than the critical density.

Hence, we can conclude that both of the inertial
effects under consideration—the delayed polarization
response, described by the inertial term (2i/w)dE/dt in
the field equation, and the delayed heating and cooling
of the electrons—ensure the explosive character of the
ionization process on atime scale long enough for the
formation of avery dense (overdense) plasma.

By the time when the plasma density reaches its
maximum value, the natural plasma oscillations in the
discharge are essentially completely damped and the
electric field is again described by the smplest expres-
sion E=D,/e. Also, the field amplitude and the temper-
ature both drop below the critical level ([E|< 1, T<1).
As a result, in the final stage of the discharge, the
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Fig. 1. Time evolution of Reg(t) for different values of the
parameter & = v/w. Curves 1a, 2, and 3 are calculated for
0=0.01, 0.1, and 0.3, respectively. Curve 1b is obtained for
o = 0.01 without allowance for the excitation of plasma
oscillations (under the assumption E = Dy/e).

plasma density slowly decreases (on a characteristic

time scale of about At, ~ v;l) and approaches the
steady-state density Ny = N.(1 + D), which is deter-
mined by the condition |[E| = 1.

In order to quantitatively illustrate the breakdown
scenario and the role of plasma oscillations at different
gas pressures, we solved Egs. (10)—13) numerically
for the following three values of the parameter & = v/w:
0=10206=10",and5=3 x 10". Thefirstisthevaue
used to obtain the above estimates. The remaining two
values refer to higher air pressures of 4 and 12 torr (at
the same frequency w =1.9 x 10" s!). The initial
plasmadensity was set to be n(0) = N(0)/N,, = 10-2. The
remaining input parameters for simulations were taken
from (14). Inthedensity rangen = 1.3, in which the adi-
abatic solution (34) to Eq. (4) is undoubtedly valid,
instead of solving the field equation (10), we used this
solution because it is better suited for a description of
the two-frequency regime. For this reason, in place of
expression (9) for the Joule power loss, we used expres-
sion (35) with an appropriately transformed heating
source term on the right-hand side of the temperature
balance equation (13).

The calculated results are illustrated in Figs. 1-3.
For the above three values of &, Fig. 1 shows the plots
of the function Re&(t) = 1 — N(T)/N, which describe
the evolution of the plasmadensity N(T) (interms of the
dimensionlesstime T = v,t) during the discharge: from
the onset of breakdown to the final steady state. The
value T = 0.6 corresponds roughly to the instant at
which the plasma density reaches its resonant value.
For & = 102 (which is small in comparison with the
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Fig. 2. Time evolution of Reg(B) for 6=0.01; 8 = (T — 1) %
107. The critical density is reached at the time T, = 0.6.
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Fig. 3. Time evolutions of (/) theimaginary part ImE of the
complex field amplitude; (2) the absolute value |E| of the
complex field amplitude; (3) the electron temperature T; and
(4) the equilibrium temperature Tg for 8= 0.01; 8= (T - Tp) X

107 and 15 = 0.6.

above estimate €, = 0.15 for the characteristic width of
the transient range), intense excitation of plasma oscil-
lations in the vicinity of the resonant point givesriseto
an explosive increase in the plasma density (from N =
Ng to N = N, = 5N,). On the time scale adopted in
Fig. 1, the plasmadensity is seen to undergo the largest
jump (curve /a) when passing through the resonant
point. For the remaining two & values, which are com-
parable to €,, the plasma oscillations are generated at
lower rates and the jumps at the resonant point are far
less pronounced (curves 2, 3). In Fig. 1, the role of
plasma oscillations in the breakdown process is aso
illustrated by curve 1b, which shows the time evolution

of Reg(T) calculated from the steady-state electric field
E=Dy/eat d=107 (i.e., without allowance for the exci-
tation of plasma oscillations). In this case, the maxi-
mum plasma density is seen to be lower by a factor of
about 2.

For & = 102, the evolution of the field and plasma
under the conditions of intense generation of plasma
oscillations in the second stage and at the beginning of
the third stage is illustrated in Figs. 2 and 3 on shorter
time scales. From a more detailed plot of Reg(T) in
Fig. 2, we can see that the jump in the plasma density
occurs on atime scale of about At = 10 or, in dimen-
sional units, At = 10/v =5 x 10 s. In Fig. 3, the time
evolutions of ImE(T) (curve 1), |E|(T) (curve2), and the
electron temperature T(1) (curve 3) are displayed in the
immediate vicinity of the plasma resonance, where the
plasma oscillations are generated most intensively and
the delay of electron heating is most significant. In
order to illustrate the delayed heating, Fig. 3 also pre-
sents the time evolution of the equilibrium temperature
Ty(T) (curve4). The numerical results justify the valid-
ity of aqualitative analysis of the main stages of the dis-
charge. The field amplitude and electron temperature
calculated at the resonant point n=1 (|E;|=35and T, =
40) agree well with the qualitative predictions (38 and
33, respectively).

CONCLUSIONS

The numerical results as well as the results of a
qualitative analysis, which are shown to be in satisfac-
tory agreement, provide evidence that inertial effects
play an important role during the stage in which the
plasma density passes through the critical value in a
low-pressure discharge. We have considered two types
of inertial effects: the delay of the polarization response
(this effect is described by the inertial term (2i/w)dE/dt
in the field equation and is responsible for the genera-
tion of natural plasma oscillations) and the delay of
heat exchange between electrons, on the one hand, and
an alternating electric field and neutral gas molecules,
on the other hand. Due to both of these effects, the
plasma density continues to increase at a fairly high
(resonant) rate even after it exceeds a critical value and
the ionization process acquires an explosive character.

The effects considered result in the jumplike
increase in the plasma density, which grows from the
critical value to highly overcritical values in severa
nanoseconds. This phenomenon is of interest duetoits
possible applications in solving technological prob-
lems associated with the conversion and transmission
of high-power microwave radiation; in particular, it can
be used to create fast shutters and switches for antenna
transmission lines and storage devices for high-power
radar systems.
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Abstract—The model proposed by Ichimaru for calculating transport coefficients is generalized to describe a
plasma containing neutral atoms and ions with different charges. Ichimaru’'s model was developed for afully
lonized two-component (el ectrons and asingleion species) plasmawith atemperature above 10° K. Taking into
account several species of positive ions and neutral atoms makes it possible to extend Ichimaru’s model to a
partially ionized plasma. Transport coefficients calculated from different models are compared with the exper-

imental data. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Information on plasma transport coefficients
(among which we will consider only electric and ther-
mal conductivities) is needed to solve both fundamen-
tal and applied problems. Although many papers have
been devoted to the cal culation of transport coefficients
(see, e.g., [1-6]), at present, reliable results have been
obtained only for a classical two-component (electron—
ion) plasma with a reatively high temperature (T >
100 eV) and an electron density n, < 10%° cm3 [1-4].
For lower temperature higher density plasmas, the
transport coefficients are more difficult to calculate,
because it is necessary to take into account quantum-
mechanical corrections and the more complex charge
composition of the ions. For T > 10 eV, the quantum-
mechanical corrections were included in the calcula-
tions that were carried out in [1, 2, 4] in the effective
mean ion charge approximation. The presence of ions
of different charges and neutral atomsin a plasmawith
T < 10 eV and a moderate density was incorporated by
Pavlov [5], who treated noble gases and alkali metalsin
the classical approximation.

Lee and More [6] attempted to take into account the
effect of both the charge composition of the plasma
ions and the degeneration of the electron plasma com-
ponent on the kinetic coefficients in xenon and alumi-
num plasmas in the temperature range T < 10 eV, but
their calculations differed from those carried out by
Pavliov only in that they modeled the degenerate elec-
tron component by replacing the classical Boltzmann
distribution function with the Fermi—Dirac function.

Note that, in [3, 5, 6], the nonideal nature of the
plasmawas taken into account only viathe screening of
the two-body interaction potential in the Debye approx-
imation. Thisapproach isonly valid for weakly ionized

rarefied plasmas and does not apply to higher density
plasmas. In [1, 2, 4], the nonideal nature of a plasma
was taken into account more accurately; moreover,
Ichimaru et al. [1] aso considered how to pass over
from anonideal plasmato the limiting case of an ideal
plasma as the plasma temperature and density change
(this passage to the limit will be discussed below).

For alow-temperature high-density plasma of met-
als such as aluminum and copper (which are very
important for practical applications), thetransport coef-
ficients are even more difficult to calcul ate, because the
experimental data on these metals (in contrast to the
data on noble gases and alkali metals) have been
obtained only recently and are not as complete as could
be desired [7, 8]. Aswas hoted in [7], the first theoreti-
cal results obtained for aluminum and copper plasmas
from some of the cited models[1, 3, 4, 6] disagree with
these experimental data. This disagreement is not sur-
prising in view of the above drawbacks of the models.

Hence, the question of how to correctly incorporate
the effect of both the degeneration of the electron
plasma component and the charge composition of the
plasmaions on transport coefficient remains open. Our
purpose hereisto generalize the physically correct and
relatively simple model developed by Ichimaru et al.
[1] for atwo-component nonideal plasmawith adegen-
erate electron component to a partially ionized plasma
with a complex charge composition of the ions.

2. DESCRIPTION OF THE MODEL

It iswell known that the electron component makes
amajor contribution to the electric and thermal conduc-
tion processes[5]. The fluxes of the electronsthat carry
the heat and electric current can be expressed as func-
tionals of the electron distribution function. Accord-
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ingly, in order to calculate the thermal and electric con-
ductivities, we need to determine the electron distribu-
tion function. Since the macroscopic electron fluxes
can be represented, on the one hand, as linear function-
als of the eectron distribution function and, on the
other hand, as linear functions of the external field and
plasma temperature gradient, we can immediately lin-
earize the electron distribution function in the latter two
parameters.

In [1], the electron distribution function in a high-
density plasmais determined based on the Wigner dis-
tribution function, which is an analogue of the classical
distribution function in a quantum-mechanical descrip-
tion of the system.

Following [1], we consider the Heisenberg equation
0. .~
haa - [H!E]l (1)
where

E(p,K) = 28,8, 11 )

and the Hamiltonian has the form

—IGIZI 2ok, 0)E(p, K)exp(-iwt),  (3)

@(r,t) = ZI 2 (k, w)exp[i(kr —at)].

Here, &, and a; are, respectively, the creation and
annihilation operators of the electrons. In expression
(2), the doubled product of these operators is the num-
ber of electrons in state p at k = O (the factor 2 corre-
sponds to degeneration in the spin quantum number).
The first term in Hamiltonian (3) corresponds to the
operator of the electron kinetic energy, and the second
term describes the electron potential energy in thefield
with the potentia ¢ produced by the remaining plasma
particles.

We represent the potential ¢ as the sum of two com-
ponents referring to the external field E and the self-
field of the plasma:

ok, w) = Lo+ ¢ (k, w)

Edy 00(w) + ¢ (k, w). @

= 2nik52

Using expressions (3) and (4), we average Eq. (1)
over an ensemble of particles. The resulting Fourier
transformed equation is the desired kinetic equation for
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the Wigner distribution function,

oF
ﬁ = ——VF(p r)+|e|E p
&)

_iggjgwAk[ﬁ(p, Kb (K, )™,
where

1
By F(p) = FLf(p+Ak)— ()],
the Wigner distribution function F is defined as

F(p.r) = 3 CE(p. k)™
‘ (6)

ikr

= 3 TrBE(p, K)E",
k

the angular brackets denote averaging over the statisti-
cal ensemble, and p isthe density matrix. Thelast term
in Eq. (5) playstheroleof the collisionintegral, thereby
determining all transport properties of the plasma.

We introduce the electron density fluctuations in
phase space,

00

ON(k, w, p) = Ith(p,k)exp(ioot), @)

in which case distribution function (6) reduces to

aF P oF
i mVF(p,r)+|e|Eap

)]
—|ZZIdekE6N¢ (K, @, p)J

where the correlator in the integrand has the form [7]

(21)° BN * (K, 0, p)IB(w + ')

= BN(k, w, p)d(—k, w)O
According to [1], we must express the electron den-
sity fluctuations &N in terms of the equilibrium distribu-
tion function F(p). The general description of this proce-

dure, which was developed by Klimontovich for the clas-
sical case, can befoundin, eg., [9, 10]. Then, we have

ASF(P)
mﬁq)(k, w),

F(p) = &(p,0)
2
- pk P
pk ~ Ap2_me'
Hence, theintegral termin Eq. (8) isexpressed interms
of the correlator of the squared absolute value of the

€))

ON =
(10)

W,
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potential, so that the final kinetic equation takes the
form

oF . p _gefF
5tV P T) IeIEaIO

(11)
}Eﬂ«b(w, K)|20

o, dk « AyF(p)
=1le dwA p—
I(zn 3.[ p[w—wpkﬂo

In this equation, we replace the sum over the wave
vector k by a corresponding integral. Further, in order
to determine the transport coefficients, we represent the
distribution function as a sum of the equilibrium and
nonequilibrium functions and adopt the Fermi—Dirac
distribution Fy(p) asthe equilibrium function. With this
representation of the distribution function, we linearize
Eq. (11) about the steady state in a standard way. As a
result, the equilibrium distribution function enters only
the left-hand side of the final kinetic equation and the
collision integral is a functional of the nonequilibrium
distribution function.

In order to derive the transport coefficients, we first
evaluate the static electric conductivity. To do this, we
retain only the term with the electrostatic field on the
right-hand side of Eq. (11). In [1], the nonequilibrium
distribution in the collision integral was described by
the Fermi—Dirac function with a shifted argument, F =
Fo(Jp — mau|), where u is the mean electron flow veloc-
ity. In this case, the electric current density is equal to
J =—n¢le|u, so that we can eval uate the el ectric conduc-
tivity as the limit of the ratio of the current density to
the electric field strength, asu — 0 (we assume that
the plasma s isotropic, in which case the electric con-
ductivity tensor is a scalar). Integrating Eq. (10) over
momentum p Yyields the following expression for the
reciprocal of the desired electric conductivity:

 [doku 0 (k, w)Omx,(k, @), (12)

® = w-ku,

_ By Fo(P)
Xo(k, ) = —J’dpm-

In calculating static transport coefficients, the
expression for x, can only be treated in the low-fre-
guency limit, in which the integral over momentum in
(12) is taken by expanding in powers of a small fre-

quency:

2 200F0[|jik[12] (13)

Imy,——=21mm Kol 020

In [1], the correlator [ POin Eq. (12) was deter-
mined under the assumptions that an electron is much

lighter than an ion and a completely ionized plasma
consists exclusively of electrons (€) and ions (i):

4Tz, e’
2

2
o (k, w)q0=n, Si(K)3(w).  (14)

g(k)k

Here, the numerator isthe Fourier-transformed el ec-
tron—on interaction energy, the denominator contains
thedielectric function, S; istheion structure factor (see
below for details), d(w) is the Dirac delta-function of
frequency, n; istheion density, and Z; istheion charge
number. Note that this representation of the correlator
corresponds to the first Born approximation in scatter-
ing theory. It iswell known that this approximation lim-
its the magnitude of the two-body interaction potential.
However, expression (14) contains the cross section for
the screened (rather than unscreened) Coulomb scatter-
ing; consequently, with the dielectric function evalu-
ated correctly, this expression yields fairly reliable
results[2]. We will use this representation of the corre-
lator in further analysis.

Now, we consider a plasma with several ion species
and neutral atoms. This situation is typical of a low-
temperature plasma whose temperature is close to or
lower than the ionization potential. Such a plasma can-
not be described in the Ichimaru approximation, which
assumes a single heavy ion species. Expression (14)
generalized to the case of amultispecies plasmahasthe
form

2 (K[
0o (k, w)0= iznié(w)za,rws(_k)‘ .9

Here, the subscripts i and r denote atoms and all ion
species, and w, is the Fourier transformed potential
energy of the interaction of electrons with ions of spe-
ciesr or atoms. For the terms from expression (15) that
describe the electron-ion interaction, this energy has
the form w,, = 41Z €?/k? and refers exclusively to the
unscreened Coulomb interaction, while the dielectric
function € allows for screening. The potential of the
interaction of electrons with ions and atoms will be
analyzed below.

Substituting formulas (13) and (15) into Eq. (11)
yields the following expression for the electric conduc-
tivity o:

[

2

1 m 3
== — 1 rdkk’fo(k/2)
o 121°K°%n °
0 (16)
o NE
XY S, (AN, Vi‘ ,
Z £(K)
where
ﬁ2k2 |:| -1
fo(k) = [ex O - +1} ,
ol = [ ®P T %0
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and a = p/(kgT), with p being the chemical potential of
the electrons. Electron—€electron collisions are incorpo-
rated into expression (16) viathe coefficients A%, which
were obtained by Spitzer [3] and, more recently, were
refined by Van Odenhoven and Schram [11]. These
coefficients depend on the ion charge number and
approach unity as Z; —» co.

Generalizing the results obtained by Ichimaru et al.
[1] to the case of a multispecies plasma, we can evalu-
ate the thermal conductivity in asimilar way:

1_ (U1 Jm
K 16./215 K (ks T) N,

2

(S AP S (k) Wer(K)
{dkk iZrA. NS, (k) 500 (17)
x I dxx(xz—Az)w,

ki2ke

where f, is defined in the same way as in formula (16)

and the coefficient A¥, whichisanalogousto A° in (16),
was calculated in [11].

For a two-component plasma, formula (16) passes
over to the corresponding formulaobtained in [1, 2]:

1 = 4D2_T[DUZI__312L
o 030 w, ®

where I is the coupling parameter, characterizing the
degree to which the plasma is nonideal; w, is the
plasma frequency; and L is the I'-dependent general-
ized Coulomb logarithm. A similar formula was also
derivedin[3, 6], but with aCoulomb logarithm in adif-
ferent form. However, in accordance with [1, 2], the
Coulomb logarithm derived from formula (16) is better
suited for describing a nonideal plasma than the loga-
rithms obtained in [3, 6] using the Debye approxima:
tion.

Hence, in order to calculate the desired transport
coefficients for a nonideal plasma, we have to deter-
mine the electron—-atom interaction potential, the ion
structure factors, the dielectric function, the chemical
composition of the plasma, and the electron chemical
potential u. The chemical composition and chemical
potential at a given plasma temperature and density
were calculated by solving the equations of the gener-
alized chemica model (specifically, the Saha equations
for a multispecies plasma consisting of electrons, neu-
tral atoms, and amixture of ion species) with allowance
for corrections introduced by the interaction between
plasma particles [12].
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3. CALCULATION OF THE STRUCTURE
FACTORS, DIELECTRIC FUNCTION,
AND ELECTRON-ATOM INTERACTION
POTENTIAL

In formulas (14) and (15), the ion structure factor is
the Fourier transformed two-body correlation function

Opq(P):
Spq(K) = 3pq+ ./npan’gpq(r)e‘k'dr.

The structure factor S,(r) and dielectric function
can be deduced from the so-called hypernetted chain
equations. This method is equivalent to avirial expan-
sion of free energy and was described in detail by
Balescu [10], who showed that the hypernetted chain
equations correspond to a four-term virial expansion.
We used the classical method of hypernetted equations,
because Ichimaru et al. [2] showed that, when the tem-
peratures under consideration are still sufficiently high
(T =1 eV), the correation functions obtained by the
classical method and its quantum analogue are close to
each other.

Thefirst of the hypernetted equationsis that for the
ion—on correlation function g(r) [10]:

9ie(r) = exp{—@;(r)/ (kg T) + gir(r) —1—ci(r)}, (19)

where c(r) is the so-called direct correlation function

and @ (r) is the energy of interaction between two par-
ticles of the indicated species. We introduce the new
function

(18)

hi(r) = gi(r)-1

and close the chain by the Ornstein-Zernike relation-
ship

hie(r) = c(r) + znAICm(r —ry)h,(ry)dry. (20)
y

From Egs. (19) and (20), we can find the functions h(r)
and g(r). In our study, we solved Egs. (19) and (20)
numerically for a multispecies plasma.

Having found the structure factor, we can calculate
the dielectric function by applying the linear response
theory [1, 10]. Let the plasma be affected by an external
field, and let the plasma-field system be described by
the Hamiltonian

H = %Ipp(r)V(r, t)dr, (21)

where the subscript p stands for the particle species, V
isthe external field, and p isthe electric charge density.
Taking the Fourier transformation of the charge density
perturbed by the external field gives

Spp(k, @) = Xpalk, w)Vy(k, @), (22)
d
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Fig. 1. Specific resistance of aluminum vs. the plasma den-
sity. The upper horizontal axis represents the temperature,
which corresponds to the density plotted on the lower hori-
zontal axis and was calculated in [8] from the equation of
state. The experimental results of [8] and [7] are shown by
asterisks and triangles, respectively. The calculated results
of [3], [6], and [1] are depicted as curves P, 1, and 2,
respectively. The dashed curve illustrates the results of our
calculations.
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Fig. 2. Thermal conductivity of auminum vs. the plasma
density at different temperatures. Curves 1 and 2 correspond
to the calculated results of [6] and [1], respectively. The
solid curve illustrates the results of our calculations.

where X isthe response function.

The Fourier transformed reciprocal of the dielectric
function is determined as

1

sko) Lt %Wpd(k)xpd(k,w), (23)

where, asinformula(15), w4 isagain the Fourier trans-
formed potential energy of the interaction between two
particles.

According to the fluctuation dissipation theorem,
we have

h
2n

hw
coth[2k T}Imxpd

Hence, knowing the structure factors, we can find the
Fourier transformed reciprocal of the dielectric func-
tion from expressions (23) and (24).

Now, we solve for the electron—atom interaction
potential, which depends on the sort of atom under con-
sideration. Thus, Pavlov [5] calculated the cross sec-
tions for electron—atom collisions using the Moliére-
Glauber approximation and assuming that the atoms of
noble gases are hydrogen-like. However, we are deal-
ing with aluminum atoms, which do not possess the
properties of hydrogen-like atoms. For this reason, we
employ a combination of the variational and Hartree—
Fock methods, which are described in [13, 14]. First,
we assume that all of the atoms are in the ground state,
in which case, according to [14], the electron wave
function can be represented as a sum of the coordinate-
dependent and spin-dependent functions, the latter
being an eigenfunction of the total spin angular
momentum operator for the electron system of an atom.
(Since an aluminum atom contains thirteen electrons,
thetotal spin of the aluminum atomsin the ground state
is equa to S= 1/2.) In accordance with the Hartree—
Fock method, the coordinate-dependent wave function
can be chosen to be a combination of one-particle wave
functions that is symmetrized in a proper manner (see
[13]) and depends on one or several parameters a;. We
determine these parameters variationaly, i.e., by mini-
mizing the averaged Hamiltonian for an atom. For an
N-particle electron wave function Wy = W\(r,...ry,
a,...0y) (with N =13 for aluminum), the minimization
procedure yields

Spa = (24)

0E
WyHWO 3 0,

We average the electron—atom interaction energy over
the resulting wave function to obtain the desired poten-
tial d(r):

E= i=1...,N. (25

N 2
- Z|e|
Vea = Z|R—rk|

P(R) = [W|Ug WO

Note that, in deriving the electron—atom interaction
potential (26), we again used the Born approximation.
Although doing so is not quite correct, in the situation
under discussion, the positive-ion density iscloseto the
neutral-atom density or even higher [12] and the cross
section for electron scattering by ions is known to be

(26)
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much larger than that for electron scattering by atoms
[14], so that we can neglect corrections to the Born
approximation without any serious loss of accuracy.
The electron—atom interaction potential (26) was used
to calculate the kinetic coefficients.

4. RESULTS OF CALCULATIONS
OF THE ELECTRIC AND THERMAL
CONDUCTIVITIES

The transport coefficients calculated from formulas
(16) and (17) are shown in Figs. 1 and 2, respectively.
InFig. 1, we also depict the experimental data obtained
in [7, 8] when measuring the electric conductivity of
auminum and illustrate the results calculated by
Benage et al. [8] from other models. Figure 1 presents
the specific resistance as afunction of the density, plot-
ted on the lower horizontal axis. The upper horizontal
axis represents the temperature, which corresponds to
the density plotted on the lower horizontal axisand was
calculated by Benage et al. [8] from the equation of
state.

According to [8], Ichimaru’s model [1] applies to
plasmas with high temperatures and low densities,
whereas Lee and More's model [6] gives better results
for plasmas with low temperatures and high densities.
Recall that the latter model iswell suited for aclassical
high-temperature plasma. That this model is in better
agreement with the experimental data stems from the
fact that, although Lee and More did not systematically
incorporate quantum-mechanical effects in a low-tem-
perature high-density plasma, they included electron—
atom interaction in addition to electron—on interaction.
In contrast, Ichimaru et al. [1] treated the plasma as a
two-component medium with the effective ion charge.
In [8], theion charge number was calculated in the so-
called average-ion approximation, which is based on
the Thomas—Fermi model. However, the results
obtained in this approximation differ from the experi-
mental data both quantitatively and qualitatively. Con-
sequently, in calculating the transport coefficients, it is
of fundamental importance to take into account the
charge composition of a low-temperature high-density
plasma. This conclusion is confirmed by our calcula-
tions of the electric conductivity of aluminum for
0.01<p<1.2g/cm®and 10000 < T < 100000 K, asis

PLASMA PHYSICS REPORTS Vol. 27 No.1 2001

evident from Fig. 1. In Fig. 2, we compare the thermal
conductivities obtained from our model and the models
developedin[1, 6].
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Abstract—Results are presented from studies of the emission from an erosion gallium laser plasma at a mod-
erate intensity (W = (1-5) x 10% W/cm?) of a 1.06-pum laser radiation. It is shown that, under these conditions,
the lower excited states of gallium atoms are popul ated most efficiently. Among the ions, only the most intense
Gall lines are observed in the emission spectrum. The populations of Gal and Gall excited states are not related
to direct electron excitation, but are determined by the recombination of gallium ions with slow electrons. The
recombination times of Galll and Gall ionsin the core of the plasma et are determined from the waveforms of
emission in the Gall and Gal spectral lines and are equal to 10 and 140 ns, respectively. The results obtained
are of interest for spectroscopic diagnostics of an erosion plasma produced from gallium-containing layered
crystals during the laser deposition of thin films. © 2001 MAIK * Nauka/Interperiodica” .

Emission from an erosion plasma produced on the
surface of metas, aloys, and crystals under laser irra-
diation at an intensity of 108-10'> W/cm? at the focus
was studied for the purpose of obtaining a stimulated
emission of radiation via ion transitions [1], direct
spectral analysis [2], development of ion sources, and
diagnostics of laser deposition of thin films [3]. Along
with laser mass spectrometry, spectral methods for
diagnosing a laser plasma provide important informa-
tion about the plasma parameters. Carbon [4], alumi-
num [5, 6], and magnesium [ 7] plasmaswere studied in
detail using emission spectroscopy in the UV and visi-
ble spectral regions. In order to optimize the process of
laser deposition of thin films produced, e.g., from
PbGa,S, or CdGa,Se, layered crystals at a moderate
intensity of a neodymium laser, it is necessary to have
information about the spectral and temporal emission
characteristics of individual constituents of such crys-
talsin alaser plasma. For a gallium laser plasma, this
information is not available. The emission-intensity
distribution over the Gal and Gall levels and mecha-
nisms for populating the excited states in a gallium
laser plasma at a moderate laser intensity have been
poorly studied.

In this paper, we present the results of studying the
time-averaged spectra and time behavior of the emis-
sion from excited atomsand ions of galliumin different
spatial regions of a plasma jet produced under irradia-
tion by aYAG:Nd** laser at a moderate pulse energy.

Experiments were carried out with a repetitive
neodymium Q-switched laser. The pulse duration was
20 ns and the repetition rate was 12 Hz. The laser beam
wasfocused by alens (F =50 cm) to aspot 0.4-0.5mm
in diameter, which allowed us to obtain an intensity of
(3-5) x 10 W/cm? on the gallium surface. A plate of
especialy pure gallium was positioned inside avacuum
chamber with a residual gas pressure of 3-12 Pa. The

emission in the 210- to 600-nm spectral region was
analyzed with the help of an MDR-2 monochromator
with a 1200 line/mm grating. Radiation emitted from
different spatial regions of the plasma jet was collected
by a lens. Most attention was given to the emission
from the core of the plasma jet, whose center was
located 1 mm from the metal surface, and from the jet
region located 7 mm from the surface. Time-averaged
spectra were detected by an FEU-106 photomultiplier
and recorded by a KSP-4 recorder. The FEU-106 +
MDR-2 system was calibrated with hydrogen and tung-
sten band lamps, which allowed usto measure the rela-
tive intensities of emission lines (1/k,, where k, is the
relative spectral response of the recording system). The
measurements of pulsed radiation with a time resolu-
tion of 2—3 nsand duration shorter than 1 pus were con-
ducted with an ELU-14FS €electron linear multiplier
and a 6LOR-04 oscillograph. Longer radiation pulses
were recorded with a FOTON pulsed photomultiplier
connected to a C1-99 oscillograph. The best time reso-
[ution in this case was 20 ns. The system for recording
plasma emission is described in more detail in [8, 9].
Emission spectra were identified using the tables in
[10] and paper [11].

Figure 1 shows the time-averaged emission spec-
trum from the core of the erosion gallium plasma jet,
without taking kj into account. The emission spectrum
consists of Gal and Gall spectral lines against the con-
tinuum background extended over the entire wave-
length range under investigation. The emission from
higher ionization states of gallium ions was not
detected. The identified emission lines, relative intensi-
tiesof Gal and Gall lines, and the distribution of radia-
tion fluxes Al/k, over Gal and Gall transitions in the
210- to 600-nm spectral range are given in the table.
Thevalue Al/k, is expressed in percent and presentsthe
ratio of the intensity of each line to the total emission
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intensity of all of the lines (without the continuum
intensity) over the entire wavelength range under inves-
tigation. As is seen from the table, the most efficiently
populated levels are the lower states of Gal, namely, the
5’S, (Eyp = 3.07 eV) and 4°Dsp, 5, (B, = 4.31 V)
states. The four most intense lines of gallium atoms
comprise 90% of thetotal line-emission intensity of the
plasma jet in the 210- to 600-nm wavelength range. A
comparison of the distribution of the emission intensity
from the plasma produced at adistance of 1-7 mm from
the metal surface with the excitation cross sections of
Gal and Gall lines show that they, as a whole, are not
correlated. Hence, evenin the core of the plasmajet, the
maximum electron temperature is much lower than the
excitation energy of the lowest Gal states (E,, =
3.07 eV). Asin aluminum laser plasmas [2], the main
mechanism for populating the Gal and Gall excited
states is associated with the recombination of slow
electrons with gallium ions. In this case, electrons are
more efficiently captured into the upper Gal** states.
Further, due to collisions between Gal** atoms and
thermal electrons, the energy of the populated levels of
Gal atoms decreases to a certain excited state corre-
sponding to the bottleneck of the recombination flux;
then, the emission of spectral lines occurs from this
state. In our case, the bottleneck of the recombination
flux is the Gal 5°Ds), 3, States with an energy of
5.01 eV. For the Gall ions, the bottleneck is the 4'D;
level with the energy E,, = 23 V.

To study the mechanism for populating the excited
states of gallium atomsin more detail, we investigated
the time behavior of the radiation emitted via Gal and
Gall transitions. The waveforms of the intensity of the
most intense Gal and Gall lines from the core of the
plasmajet are shown in Fig. 2. The starting time in al
of thewaveforms correspondsto the leading edge of the
neodymium laser pulse. The duration of the continuum
was 20 ns, which coincided with the duration of the
laser pulse. The emission from Gall ions and the Gal

417.3 nm Gal

294.4 nm Gal

287.4 nm Gal 403.3 nm Gal

425.6 nm Gall
I

A, nm

337.5 nm Gall

L 1 1 1
250 300 350 400
Fig. 1. Emission spectrum from the core of an erosion gal-
lium laser plasma.

287.4-nm resonance line was the shortest (t < 50 ns).
The duration of emission viathe other intense Gal tran-
sitions attained 300400 ns. A longer duration istypical
for the emission from lower Gal levels (except for the
resonance line, which may be attributed to a substantial
self-absorption). The radiation lifetimes of Gal excited
states were less than 6.6-6.8 ns [12]. Therefore, the
duration of emission viaan individual Gal transitionis
determined by the recombination time of Gall ions and
the duration of line emission of excited singly charged
ions is determined by the recombination time of Galll
ions.

In [2], the expresson In[I(t)/1(0)] = -t/t, was
deduced for the decay of the intensity of spectral lines
I(t) for ionswith charge z as afunction of timet, which
allows oneto determine the recombination time (t,,) for
ions with the charge z + 1 (for atoms, we have z = 0).
Such logarithmic dependences for the Gal and Gall
spectral lines are shown in Fig. 3. From the tangent of
the slope of lines / and 2 (Fig. 3), we determined the

Intensity distribution in the emission spectrum of the gallium plasma jet

A, hm Atom (ion) Transition Ep: &V I/ky, rel. units | Al/ky, % |Qm, X108 cm?[11]
403.3 Gal 4Py ,-5°S,), 3.07 0.45 15 712
294.4 Gal 42P 4Dy 310 431 1.00 30 72.7
417.3 Gal 4Py ,-5°S,), 3.07 0.95 30 134.00
287.5 Gal 42P,,-5°Dy, 431 0.45 15 55.2
278.1 Gall 4'p,-5's, 19.21 0.05 <5 34
272.0 Gal 4Py ,6°S)), 4.66 0.10 <5 18.1
266.5 Gal 2Py AsAp? 4Py, 4.75 0.05 <5 13.0
250.1 Gal 42P5,-52Dg), 5.01 0.20 5 20.2
245.0 Gal 42P,;,52Dy), 5.01 0.05 <5 10.8
PLASMA PHYSICS REPORTS Vol. 27 No.1 2001
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I, arb. units

| | |
0 100 200 300 t, ns

Fig. 2. Waveforms of the intensity of radiation emitted from
the core of the laser plasma via the transitions of gallium
atomsandions: (1) Gall 278.0-nm, (2) Gal 417.3-nm, (3) Gal
403.3-nm, (4) Gall 337.5-nm, and (5) Gal 287.4-nm lines.

In(I/1,))
0 -
—1F 1
2k
3L
2
4}
| | |
0 50 100 150
t, s

Fig. 3. Logarithmic time dependences of the normalized
emission intensity of (1) Gal 403.3-nm and (2) Gall
278.0-nm lines.

SHUAIBOV et al.

recombination times of Galll and Gall ions. The
recombination of these ions results in populating the
upper excited states from which Gal 403.3-nm and
Gall 278.1-nm lines are emitted. In the core of the laser
plasma (d = 1 mm), the value of T, for Galll ions is
10nsanditist, = 140 nsfor Gall ions. The 1, values
obtained for Galll and Gall ions (at aresidual pressure
of 10 Pa) are much shorter than the recombination
times for AllV, Allll, and Alll ions (350, 500, and
1000 ns, respectively) obtained in [2]. This difference
is explained by a higher residual air pressure and a
larger distance of the observation point from the alumi-
num surface (d = 5 mm) in experiment [2]. Neverthe-
less, the hierarchy of the recombination times for dif-
ferent ionization states is qualitatively the same in this
case.

When measuring the emission from apoint lying on
the axis of the plasmajet at adistance of 7 mm fromthe
surface, the full duration of the Gal and Gall line emis-
sion increased to 2—4 ps (Fig. 4). The time behavior of
emission via the transitions of Ga atoms and ions
agrees qualitatively with the analogous data for the All
and Alll lines [2]. The average propagation velocity of
the gallium plasmajet (for d = 1-7 mm) estimated from
the waveforms of the Gal emission line (Fig. 4) is
12.6 km/s.

In summary, it is shown that, if agallium surfaceis
irradiated by a 1.06-um laser at an intensity of (3-5) x
10® W/cm?, the main contribution to the laser plasma
emission comes from four lines of gallium atoms with
the upper levels 5°S,,, and 4°Ds), 3. The Gal 5°Ds), 3
Gal (E,, = 5.01 eV) levels are the bottleneck in the
recombination population of Gal excited states; for

1, arb. units

0 2 4 t,US

Fig. 4. Waveforms of the intensity of emission in (1) Gal
417.3-nmand (2) Gall 425.6-nm linesfrom the laser plasma
jet.
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Gall ions, such a bottleneck is the Gall 4D° (E,, =
23 eV) level. The recombination times of Galll and
Gall in the core of the plasma jet are equal to 10 and
140 ns, respectively. The Gal 417.3- and 403.3-nm
spectral lines can be used as diagnostic lines during
laser deposition of thin films produced from gallium-
containing compounds.
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