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Abstract—The joint influence of two current-induced effects, namely, longitudinal nonequilibrium spin injec-
tion and surface torque, on spin-valve-type ferromagnetic metallic junctions is considered theoretically. The
current flows normally to layer boundaries. The analysis is based on solving a system of coupled equations of
motion for mobile electron and lattice magnetizations. The boundary conditions for the equations of motion are
derived from the continuity condition for the total magnetization flux in these subsystems. A dispersion relation
is derived for spin wave fluctuations depending on the current through the junction. The fluctuations become
unstable at currents exceeding some threshold value (usually, 106–3 × 107 A/cm2). The joint action of longitu-
dinal spin injection and torque lowers the instability threshold. Current-induced spin injection decreases spin wave
frequencies near the threshold and can strengthen magnetization pinning at the injecting contact. © 2005 Pleiades
Publishing, Inc. 
1. INTRODUCTION

In recent years, considerable attention has been
given to the special features of current flowing through
so-called ferromagnetic junctions, that is, layered struc-
tures with contacting thin ferromagnetic layers. Exper-
iments showed that current can influence the magnetic
state of layers in these junctions substantially. This
leads to characteristic resistance jumps [1–3] and
microwave radiation emission [4–6].

The mechanism of the influence of current on the
junction magnetic state still remains incompletely
understood. The mechanism suggested in [7] explains
the effect of current on the ferromagnetic layer magne-
tization M by the injection of nonequilibrium longitu-
dinal (i.e., collinear with M) spins into the layer. The
corresponding theory was formulated in [8–10]. Injec-
tion creates nonequilibrium carrier spin polarization in
the layer. This polarization in turn contributes to the s–
d exchange energy Us–d(j) and the corresponding effec-
tive s–d exchange field Hs–d(j), which depend on the
electric current density j. Above some threshold current
density, a first-order reorientation phase transition in
the field Hs–d(j) occurs and the magnetization vector M
direction changes jumpwise. This current-induced
magnetization reversal (or current-induced magnetiza-
tion switching) leads to electrical resistance jumps, in
close agreement with the experimental data [1–3].

Another mechanism was suggested in [11, 12] to
describe current effects on the state of ferromagnetic
layers long before the experimental data [1–6]
appeared. According to this mechanism, the flux of
1063-7761/05/10005- $26.001005
transverse (with respect to M) electron spins must dis-
appear near the interface between two noncollinear fer-
romagnets. Because of the interaction of mobile elec-
trons with the magnetic lattice (s–d exchange interac-
tion), a torque appears at the interface. This torque acts
on the lattice and turns the disappearing spin current to
it. As a result, the total spin flux of mobile electrons and
the lattice remains continuous at the interface.

In addition to this torque proportional to the current,
a dissipation-induced moment acts on the M vector to
restore magnetic equilibrium. The dissipation effect
should eventually be outbalanced by the torque
moment as the current density j increases. Equilibrium
then becomes unstable, and the reorientation of the
magnetization vector occurs. Estimates show that such
a magnetization switching mechanism is also in agree-
ment with the experimental data [1–6].

It was assumed in original works [11, 12] that the
transverse electron spin flux disappeared under ballistic
transport conditions. The opposite limiting case, that of
the predominance of diffusion transport, was consid-
ered in [13, 14]. In this work, we, however, follow the
approach suggested in [11, 12] and assume that trans-
port in the immediate vicinity of the interface can be
considered ballistic. The quantitative criteria of the
validity of this assumption are presented in Section 2.

An important question arises concerning the situa-
tion with real experiments when both effects coexist,
namely, longitudinal spin injection and the correspond-
ing current-dependent effective field on the one hand
and current-dependent torque at the interface in a mag-
 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Scheme of the magnetic junction under consideration illustrating processes in layer 2. 1, 2, and 3 are the contacting layers.
The arrows show the directions of the vectors M1 and m1 (magnetizations in layer 1), M and m (magnetizations in layer 2), H (exter-
nal magnetic field in the x = 0 junction plane), and j/e (electron flux density). The vertical dashed lines are the boundaries of two
sublayers in layer 2. In the 0 ≤ x ≤ λF sublayer, there is precession conventionally shown by ovals. The m vector then has both the
longitudinal m|| and transverse m⊥  components. The precession angle decreases as x increases. In the x > λF sublayer, precession
stops and only one of the m vector components specified above (the longitudinal component) remains.
netic junction on the other. Previously, these effects
were always studied separately. They, however, not
only coexist but influence each other. Therefore, to
understand the experimental situation better, the two
effects must be taken into consideration simultaneously
within the scope of a unified theory. This is the
approach taken in the present paper.

Two points should be mentioned. First, a theoretical
description of the “anatomy” of the torque is a rather
difficult microscopic quantum problem, as follows from
original [11, 12] and other works, including paper [15],
specially concerned with such a description. Undoubt-
edly, a solution to this problem would be of great inter-
est in itself. In our view, applying this approach to con-
struct the desired unified theory would, however, be an
excessive complication. We think it more reasonable to
take advantage of the difference between the spatial
scales of the action of the two factors under consider-
ation (spin injection and torque). The torque is a purely
surface effect. According to [11, 12], it acts near the
interface at distances d from the interface between fer-
romagnetic layers. These distances are of the same
order of magnitude as the electron quantum wave
length on the Fermi surface, λF ~ 1 nm. On the other
hand, nonequilibrium longitudinal spins are injected
inside a film much more deeply, by the spin diffusion
length l (l ≈ 10–100 nm for ferromagnetic metals at
room temperature). It follows that spin injection is to a
much greater degree a volume effect than the torque.
Spin injection is therefore described below by solving a
system of coupled equations for mobile electrons and
the lattice magnetization vector M in the bulk of the fer-
romagnetic layer, while the torque is included as a
boundary condition for these equations. We show that
such a boundary condition can be obtained rather easily
from the condition of total spin flux conservation.

Next, some comments should be made concerning
the methodology of this work. Earlier (e.g., see [8–10]),
we used the variational principle of minimum magnetic
JOURNAL OF EXPERIMENTAL A
energy. In this work, the problem is solved purely
dynamically on the basis of the linearized Landau–Lif-
shitz–Gilbert equations. In [8–10], we described a spin
injection-induced reorientation phase transition which
corresponded to the energy minimum disappearance
without taking the surface torque into account. We
show below that torque-induced instability has no bear-
ing on phase transitions and energy minima. Rather, it
is caused by the energy generation mechanism that
exceeds dissipative loss. We must therefore use the
most general approach based on the equations of
motion to describe both types of instability simulta-
neously. The approaches mentioned above are equivalent
when applied to the purely injection mechanism [9].
This conclusion is substantiated by the calculations
performed in the present work.

2. A MAGNETIC JUNCTION MODEL

Let us consider a spin-valve-type magnetic junction
with current flowing normally to layer interfaces (see
Fig. 1). The junction contains ferromagnetic layer 1
with a fixed orientation of the lattice and free electron
spins. This orientation is attained most effectively if
there is fairly strong induced magnetic anisotropy in
layer 1 and layer 1 is made of a semimetal in which
only one of the two spin subbands participates in con-
duction [16]. Another ferromagnetic metal layer 2 with
magnetization M is assumed to contain free spins, and
the magnetization direction can change in it under the
action of external magnetic field H or spin-polarized
current j. There is a very thin nonmagnetic spacer
between layers 1 and 2 (shown by a thick line in Fig. 1).
The electric circuit is closed by nonmagnetic metal
layer 3.

The plane x = 0 is the interface between layers 1
and 2. Within layer 1, the lattice M1 and mobile elec-
tron m1 magnetization vectors are collinear, and it is
assumed that M1 is parallel to the x = 0 plane. The angle
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005



CURRENT-INDUCED SPIN INJECTION AND SURFACE TORQUE 1007
between the M1 and M vectors can be nonzero, χ ≠ 0.
The electrons transferred by the current into layer 2 are
therefore in a nonstationary quantum state near the
x = 0 boundary and “migrate” between the spin sub-
bands. This corresponds to precession of the mobile
electron m and lattice M magnetizations (Fig. 1).
According to [11, 12], the spin of every electron pre-
cesses with its own initial phase

(1)

which depends on the distance d between the electron
and the interface. In (1), the kx↑ and kx↓ values are the
electron wave vector k components in the spin-up
(along M) and spin-down subbands. Because of the sta-
tistical spread of electron velocities, the term in square
brackets in (1) changes in magnitude from 0 to 2π/λF ,
where λF is the wavelength on the Fermi surface.
Phase (1) is therefore distributed within the interval 0 ≤
ϕ ≤ 2π at d = λF . Since the transverse (with respect
to M) component m⊥  of the m vector is the sum of the
transverse components of individual electrons δm⊥ , the
terms of this sum almost exactly cancel each other, and
we have

(2)

We stress that l @ λF , and spin relaxation therefore
has no influence on the fulfillment of condition (2). In
addition, this condition was derived on the assumption
of ballistic electron motion conditions in the 0 ≤ x ≤ λF

layer. The k vector therefore does not change as a result
of collisions. This is valid if lp > λF , where lp is the
momentum mean free path. Typically, lp ~ 1–10 nm and
λF ~ 1 nm. The ballistic motion conditions can therefore
be well satisfied. Layer 2 is further assumed to be rather
extended and have thickness L @ λF, lp .

Corollaries to (2) are two conclusions important for
what follows.

(1) Precession in layer 2 stops at a small distance d ~
λF ~ 1 nm from the interface separating layers 1 and 2.
As a result, the transverse component of mobile elec-
tron magnetization and the related spin flux disappear.
According to [11, 12], this is the reason for the appear-
ance of a torque, which acts on the lattice and ensures
continuity of the flux of the transverse component of
the total magnetization (M⊥  + m⊥ ).

2) At x > d ~ λF , the mobile electrons adapt them-
selves to the new quantization axis direction (vector M
direction) and occupy spin subbands new for them. The
subband populations, however, depend on the current
and are far from equilibrium. They are determined by
the continuity condition for the longitudinal component
of the mobile electron magnetization flux (vector m||
flux) across the interface. The longitudinal flux compo-
nent does not change at distances x ! l from the inter-
face. This is the spin injection effect considered for the
first time, we believe, in [17]. In essence, it is similar to

ϕ d( ) kx↑ kx↓–[ ] d ,=

m⊥ δm⊥ 0.∑=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the well-known charge injection effect in semiconduc-
tors [18].1 According to typical parameter estimates,
l @ lp , and the motion of injected electrons deep in
layer 2 occurs under diffusion conditions.

3. BASIC EQUATIONS

Let us consider processes in layer 2. They are
described by a system of dynamical equations for the
magnetization vectors M and m. The lattice magnetiza-
tion2 M obeys the Landau–Lifshitz–Gilbert equation

(3)

where γ is the gyromagnetic ratio, κ is the dimension-
less damping constant (0 < κ ! 1), t is the time, and Heff
is the effective field

(4)

Here, β is the dimensionless anisotropy constant, n is
the unit vector along the anisotropy axis, A is the inho-
mogeneous exchange constant, Hd is the demagnetizing
field, and Hs–d is the effective s–d exchange field.
According to the definitions given in [20], Hs–d has the
form

(5)

where δ/δM(x, t) is the variational derivative. The s–d
exchange energy is given by

(6)

where α is the dimensionless s–d exchange interaction
constant (typically, α ~ 104–106 [8]). Term (5) in (4)
couples the oscillations of the M and m vectors.

The magnetization m of mobile electrons obeys the
general continuity equation [17, 21]

(7)

where τ is the time of relaxation to the locally equilib-

rium  =  ·  value,  ≡ M/M is the unit vector,

1 Spin injection can be induced not only by current, as in [17] or the
present work, but also by polarized light (e.g., see review [19]). It
appears that the spin injection concept can acquire great signifi-
cance in the future, comparable to that of charge injection in
semiconductor devices.

2 We mean the lattice of magnetic ions described in the continuous
medium approximation.

∂M
∂t

-------- γ M Heff×[ ]–
κ
M
----- M

∂M
∂t

--------× ,+=

Heff H β M n⋅( ) n A
∂2M

∂x2
----------- Hs–d Hd.+ + +⋅+=

Hs–d x t,( )
δUs–d

δM x t,( )
---------------------,–=

Us–d α x'm x' t,( )M x' t,( ),d

0

L

∫–=

∂m
∂t

-------- ∂J
∂x
------ γα m M×[ ] m m–

τ
---------------+ + + 0,=

m m M̂ M̂
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and J is the magnetization flux density. For subsequent
estimations, let us substitute ∂m/∂t = ω∆m, where
∆m ≡ m –  and ω is the effective frequency of vector
m oscillations in time, into (7).

According to Section 2, the vector m precesses at a
high rate in the s–d exchange field. Therefore, ω ~
γαM ≡ ωs–d . At the typical parameter values α ~ 2 × 104,
M ~ 103 G, and τ ~ 3 × 10–13 s, we have ωs–dτ ~ 102 @ 1.
The last relaxation term in (7) can therefore be ignored.
We can then calculate the products (∆m · M) and
[∆m × M] using (7). Solving (7) with respect to ∆m,
now explicitly present in it, yields

(8)

Here, we introduced the parameter ζ = ωs–dω–1 ~ 1. It
follows from (8) and an estimate for this parameter that
the longitudinal and transverse (with respect to M) ∆m
components can be comparable in magnitude, which is
in agreement with the picture of electronic spin preces-
sion in the boundary sublayer (see Section 2).

A detailed analysis of the motion of spins in this
sublayer is, however, impeded, because it involves cal-
culations of the flux J expressing it via the m vector. In
the sublayer 0 ≤ x < λF , this would require additionally
solving an equation for the spin density matrix, because
the electrons are in a quantum nonstationary and inho-
mogeneous state. We shall circumvent this difficulty
and show (see Section 4) that solving such a quantum
problem is not necessary for our purposes and can be
replaced by the introduction of some new boundary
condition.

We must perform a detailed analysis of motions for
the x > λF sublayer. The m and M vectors in this sub-
layer should be almost collinear. Accordingly, the
effective frequency ω should be determined by the pre-
cession of the M vector in comparatively low fields H,
βM, Hd ! αM. We suggest the fulfillment of the con-
dition

ωτ ! 1. (9)

This allows us to ignore the derivative with respect to
time compared with the relaxation term (Eq. (7)). The
representation of ∆m in form (8) then remains valid, but
we must replace ω–1 with τ and ζ with ωs–dτ @ 1. As a
result, the estimates of the terms in (8) change. The last
term in the numerator of (8) becomes predominant, and
we can write

(10)

This substantiates the validity of the suggestion that the
∆m (therefore, the whole m) and M vectors are col-
linear. The transverse m components nevertheless exist,

m

∆m ω 1––=

× ∂J/∂x ζ M̂ ∂J/∂x×[ ] ζ 2M̂ M̂ ∂J/∂x⋅( )+ +

1 ζ2+
-------------------------------------------------------------------------------------------------------.

∆m τM̂ M̂ π∂/∂x⋅( ).–=
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but they are small with respect to the (ωs–dτ)–1 ~ 10–2 ! 1
parameter and will be ignored below.

The mobile electrons occupy two spin subbands in
the x > λF sublayer, with spins up (parallel to M) and
down (antiparallel to M). The magnetization m con-
tains contributions from these two subbands and can be
represented as

(11)

where µB is the Bohr magneton and n↑ , ↓ are the partial
electron densities in the spin subbands. The total elec-
tron density n = n↑ + n↓ is independent of x and t by vir-
tue of the local metal neutrality condition. The magne-
tization flux J in (10) can also be related to the partial
electric current densities in the subbands, j↑ and j↓ .
Clearly, the corresponding equation has the form

(12)

The total current j = j↑ + j↓ is also independent of x and
t because of the one-dimensional character of our
model.

Let us consider a simple situation when the s–d
exchange gap in layer 2 is independent of x and t and,

therefore, the  vector direction. In addition, the
transport relaxation times in metals are rather short at
room temperatures, and the current can therefore be
represented by the drift and diffusion terms. Spin cur-
rent (12) calculations were performed in [9] on these
assumptions. Substituting the well-known equations
for the partial currents into (12) and following the pro-
cedure for calculations described in [9], we obtain

(13)

where Q = (σ↑ – σ↓)/(σ↑ + σ↓) is the current spin polar-

ization and  = (σ↑D↓ + σ↓D↑)/(σ↑ + σ↓) is the spin
diffusion coefficient. Here, σ↑, σ↓ and D↑, D↓ are the
specific partial conductivities and diffusion coeffi-
cients, respectively, for the electrons with spins up and
down. To obtain (13), we in addition assumed that

(14)

where jD ≡ enl/τ is the characteristic current density in
layer 2. Condition (14) means that the current disturbs
subband populations comparatively weakly, and the
level of spin injection is low. Substituting the typical
parameter values n ~ 1022 cm–3, l ~ 3 × 10–6 cm and τ ~
3 × 10–13 s into (14) yields jD ~ 1.6 × 1010 A/cm2. Below,
our concern will be much lower currents j ≤ 107–
108 A/cm2, because such is the order of magnitude of

m µB n↑ n↓–( )M̂ mM̂,≡=

J
µB

e
------ j↑ j↓–( )M̂.=

M̂

J
µB

e
------Qj D̃

∂m
∂x
-------– 

  M̂,=

D̃

j
jD

-----  ! 1,
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the instability thresholds obtained in this study. There-
fore, condition (14) is more than well satisfied in our
calculations.

It remains to substitute flux (13) into representa-
tion (10) of equation of motion (7). This yields

(15)

where the m(x, t) function is defined in (11) and its
locally equilibrium value  is defined in the comments
to (7). As the s–d exchange gap is fixed,  should be
considered independent of x and t. The spin diffusion

length is l = .

4. BOUNDARY CONDITIONS

We must now determine what solutions to basic
dynamic equations (3) and (15) should be sought. This
will be done by deriving boundary conditions for these
equations. The derivation will be based on the continu-
ity condition for the total magnetization flux (mobile
electron plus lattice magnetization fluxes) at interlayer
boundaries.

Since the lattice in layer 1 is pinned, the magnetiza-
tion flux J1 in this layer is only caused by the transfer of
mobile electron spins induced by the electric current j.
The magnetization flux is then given by an equation
similar to (13) but without the second term containing
the derivative with respect to the coordinate. Indeed, the
magnetization vector of mobile electrons is fixed in
layer 1 and cannot change depending on x. The flux J1
therefore takes the form

(16)

where  = M1/|M1| and Q1 is defined as Q in (13) but
with the partial conductivities and diffusion coefficients
for layer 1. Flux (16) has longitudinal and transverse

components with respect to the  vector; these are

(17)

(18)

Longitudinal spin relaxation is absent in the 0 ≤ x <
λF sublayer. The longitudinal flux (16) component
should therefore coincide with flux (13) close to the x =
0 interface. Let us write this equality of fluxes explicitly

and find the scalar products of its both sides by  tak-

ing into account that  = – sinχ + cosχ, where ,

∂2m

∂x2
--------- m m–

l2
--------------– 0,=

m
m

D̃τ

J1

µB

e
------Q1 jM̂1,=

M̂1

M̂

J1||
µB

e
------Q1 j M̂1 M̂⋅( )M̂,=

J1⊥
µB

e
------Q1 j M̂ M̂1 M̂×[ ]×[ ] .=

M̂

M̂1 ŷ ẑ x̂
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, and  are the unit vectors along the coordinate axes.
We then find that the equality

(19)

should be satisfied at x = 0. This is the first boundary
condition for our problem.

The second boundary condition is obtained taking
into account that the transverse component of the
mobile electron magnetization flux disappears in the
sublayer 0 ≤ x < λF (see (2) and comments to it). The
condition of the total (mobile electron and lattice) flux
continuity therefore requires that flux (18) continue in
layer 2 as a lattice magnetization flux. The equation for
this flux is derived in Appendix I (see (I.4)). Equating it
to (18) at x = 0 yields

(20)

where a = γMA according to Appendix I. Condition (19)
in a slightly different form was discussed and applied
earlier (e.g., see [9]). As concerns condition (20), it is
likely new. In the selected coordinate system (see
Fig. 1), condition (20) gives two independent equations
valid at x = 0,

(21)

where k = µBQ1j/eaM and the component  can be

found from the equality | | = 1.

Next, let us consider the interface between layers 2
and 3 at x = L. Layer 3 is nonmagnetic, and Q3 = 0. The
continuity condition for the longitudinal flux therefore
gives

(22)

at x = L. Since lattice magnetization is absent in layer 3,
the lattice magnetization flux should disappear at this

interface; that is, aM[  × (∂ /∂x)] = 0, or, in terms
of the vector components,

(23)

at x = L.

ŷ ẑ

µB

e
------Q1 j M̂y χsin– M̂z χcos+( )

=  
µB

e
------Qj D̃

∂m
∂x
-------–

µB

e
------Q1 j M̂ M̂1 M̂×[ ]×[ ] aM M̂

∂M̂
∂x
--------× ,=

∂M̂x

∂x
---------- kM̂y χ kM̂z χsin+cos+ 0,=

∂M̂y

∂x
---------- kM̂x χcos– 0,=

M̂z

M̂

µB

e
------Qj D̃

∂m
∂x
-------– D̃3

∂m3

∂x
---------–=

M̂ M̂

∂M̂x

∂x
---------- 0,

∂M̂y

∂x
---------- 0= =
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1010 GULYAEV et al.
Several other important conditions are related to the
exchange of mobile electrons through interlayer bound-
aries. This exchange should ensure continuity of the
differences in the chemical potentials of spin subbands
on the two sides of the interfaces. We ignore the thermal
spread of the Fermi distribution for electrons in both
subbands. Direct calculations then give the following
equation for the difference of the chemical potentials:

(24)

where g↑ , ↓ are the energy-dependent partial densities of

electron states in the subbands and  is the equilibrium
chemical potential value. The continuity condition
for (24) at the interface between layers 2 and 3 is

(25)

The chemical potential difference has a discontinuity at
the interface between layers 1 and 2. This discontinuity
appears because our model idealizes layer 1. Recall that
we assume all spins to be strictly fixed in this layer.

Let us find the solution to (15) that satisfies bound-
ary conditions (19), (22), and (25). This yields the fol-
lowing injected magnetization distribution ∆m(x) in
layer 2:

(26)

Equation (26) contains dimensionless lengths λ = L/l
and ξ = x/l. The parameter

(27)

describes the influence of layer 3.

5. THE STATIC STATE AND FLUCTUATIONS

Let an external field H be applied in the positive
direction of axis z and the anisotropy field be also par-
allel to this axis. Then clearly, magnetization in layer 2
is aligned with z in the absence of current, when the
layers in our model are not coupled.

With current switched on, spins flow through the
interfaces x = 0, L. This creates a connection between
layers 1, 2 and 3 and can change the magnetization
direction in layer 2. To describe this process, let us cal-

ζ↑ ζ↓–

=  2µB( ) 1– 1

g↑ ζ( )
------------- 1

g↓ ζ( )
-------------+ 

  ∆m N∆m,≡

ζ

∆mN ∆m3N3.=

∆m x( ) j
jD

----- 
  µBn

λsinh ν λcosh+
---------------------------------------=

× Q ξcosh Q1 M̂y χsin– M̂z χcos+( ) Q–[ ]+{

× λ ξ–( )cosh ν λ ξ–( )sinh+[ ] } .

ν nN
n3N3
------------

jD3

jD

-------=
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culate the Us–d energy by substituting (26) into (6). This
yields

(28)

Here, we ignore corrections on the order of the j/jD

ratio, which is small (see (14)), in the first term propor-
tional to M. Calculations of variational derivative (5)
require representing (28) as a functional of the M(x)
vector. We then obtain

(29)

as ε  +0. Equations (28) and (29) can be used to cal-
culate the s–d exchange field according to (5),

(30)

The first term in (30) is directed along M and therefore
drops out of equation of motion (3). The second term is
directed along M1. If the angle χ is arbitrary, this term
and, on the whole, the Hs–d and effective Heff (4) fields
can be not aligned with axis z. Clearly, the magnetiza-
tion  in the static state, which is found from the equa-

tion  × Heff = 0, can also deviate from z. In addition,
by virtue of boundary conditions (21), the magnetiza-
tion  is inhomogeneous within layer 2. Moreover,

the Landau–Lifshitz–Gilbert equation for  is nonlin-
ear, which creates serious difficulties.

However, fortunately, there are two definite angles χ
(χ = 0, π) for which the vector  can easily be found.
Indeed, at these angles, (21) and (23) are satisfied for
the x-independent vector , whose components are

 = 0 and  = 0. In addition, the vector M1 is par-
allel to the z axis, and equation of motion (3) is there-
fore also satisfied in the static state. At χ = 0, π, we
obtain

(31)

Us–d αmML– α M̂1 M +0( )⋅( )l–=

× µBnQ1
j

jD

----- 
  1 ν

λsinh ν λcosh+
---------------------------------------– 

  .

δ
δM x( )
----------------- ML( ) δ

δM x( )
----------------- M x'd

0

L

∫=

=  M ˆ x ' ( )δ x ' x – ( ) x ' d 

0

 

L

 ∫  M ˆ x ( ) ,=

δ
δM x( )
----------------- M̂1 M +0( )⋅( ) M̂1δ x ε–( )=

Hs–d x( ) αmM̂ x( ) αM̂1µBnQ1
j

jD

----- 
 +=

× 1 ν
λsinh ν λcosh+

---------------------------------------– 
  lδ x ε–( ).

M

M

M

M

M

M

Mx My

Mx My 0 and Mz M 0.>= = =
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Our further analysis will be limited to consideration of
the specified angles only; that is, we will study the sta-
bility of static state (31). In particular, we have M1 =
M1z at χ = π, where M1 = cosπ|M1| = –|M1| < 0.

For calculation purposes, the δ function in (30) can
conveniently be replaced by the finite function

(32)

bearing in mind the subsequent passage to the limit
r  +0. The right-hand side of (32) is then nonzero
only at x = 0. In addition, the integral of (32) in x over
the interval 0 ≤ x < ∞ is 1. Let us introduce fluctuations
∆M as

(33)

The linearization of Landau–Lifshitz–Gilbert equa-
tions (3) with respect to ∆M and the substitution of
exchange field (30) and the demagnetization field Hd =
–4π∆Mx ·  into these equations yields

(34)

Here, we use the notation

(35)

(36)

The coefficients of (34) contain x as an independent
variable. It can conveniently be replaced with the use of
the equalities

(37)

For the temporal Fourier components ∆Mx , ∆My ~

δ x ε–( ) 1
r
--- x

r
--– 

  ,exp

M M ẑ ∆M.+=

x̂

∂∆Mx

∂t
-------------- κ

∂∆My

∂t
--------------+ a

∂2∆My

∂x2
----------------=

– Ωy γB
l
r
-- x

r
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 exp– 
  ∆My,
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∂t
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--------------– a

∂2∆Mx

∂x2
----------------–=

+ Ωx γB
l
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 exp– 
  ∆Mx.
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Ωy γ H βM+( ),=
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---------------------------------------– 
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-----------.= =
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exp(–iωt), we obtain

(38)

Equations (38) are close in structure to the equations for
the Bessel function. The ∆Mx and ∆My components are,
however, coupled with each other in both equations (38).
To uncouple them, consider the system

(39)

The solvability condition for (39) yields the s2 parame-
ter in the form

(40)

It follows from (40) that there are two different s2 val-
ues. Each of them corresponds to a certain type of fluc-
tuation and should therefore be included in stability
analysis. Let us take some solution to (40), substitute it
into (39), and use these equations to exclude the ∆My

component from the first and ∆Mx from the second
equation in (38). As a result, both equations in (38)
transform into the standard equation for Bessel func-
tions with index s. The general solution to (38) can
therefore be written as

(41)

where Js and Ys are the Bessel functions of the first and
second kind, respectively [22], and Ax, y and Bx, y are con-
stants that must be found from boundary conditions (21)
and (23) at χ = π. The solvability condition for the
equations for the four constants Ax, y and Bx, y is given in
Appendix II. The passage to the limit r  +0 (its pos-
sibility is provided by substitution (32)) is also per-
formed in Appendix II. As a result, we obtain the fol-
lowing dispersion equation for fluctuations:

(42)
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where

(43)

and the q ≡ is/2r parameter determined by (40) further
plays the role of the wavenumber. Equation (42) coin-
cides in form with the well-known dispersion equation
for standing spin waves in layer 2 [20, 23]. The right-
hand side (Φ) has the meaning of the effective lattice
spin pinning parameter at the end layer surfaces (at the
x = 0 plane of our model). We stress that, in our model,
there is spin pinning at the boundaries in the absence
of a current, as directly follows from boundary condi-
tions (21) and (23). Effective pinning nevertheless
occurs under the action of the current j. According
to (43), the real part of Φ describes pinning caused by
the effective exchange field, and the imaginary part
describes effective pinning caused by the torque. Note
that experimental studies of spin wave resonance
absorption in magnetic junctions could give important
information about the character of surface spin pinning.

We will use dispersion equation (42) to calculate the
complex eigenfrequency ω of fluctuations under con-
sideration and determine instability conditions, that is,
the conditions under which Imω ≥ 0.

6. INSTABILITY OF FLUCTUATIONS

Let us analyze solutions to (42). The simplest situa-
tion corresponds to the absence of a current. By defini-
tion of B and k in (36) and (21), it follows from (43) that
the right-hand side Φ = 0 at j = 0. This corresponds to

Φ γBL2

aλ
------------– ikL,±=

0.3

0.2

0.1

θ

0 0.2 0.4 0.6 0.8 1.0
λ

λ[1 – (sinhλ + νcoshλ)–1]

1 2 3 4 5 6

Fig. 2. Diagram for determining junction parameters corre-
sponding to various values of the effective lattice spin pin-
ning parameter |Φ|. We have |Φ| = 1 at the θ(j) level, |Φ| <
1 below this level, and |Φ| > 1 above this level; ν parameter
values: (1) 0, (2) 0.5, (3) 1.0, (4) 3.0, (5) 10, and (6) ∞.
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spin wave resonance when spins at the end surfaces are
not pinned. The solutions to (42) are then

(44)

where n = 0, ±1, ±2, …. Expressions (44) are obtained
using the definition q ≡ is/2r and Eq. (40). Since Imω <
0 in (44), fluctuations are stable because of dissipation
in the absence of a current.

Next, let a current be turned on and j/e be larger than
0. According to (43), we then have

(45)

where

(46)

Parameter (46) can be smaller than, on the order of, or
larger than one. We show below that it is this parameter
that describes the relation between the torque and spin
injection contributions to the current-induced instabil-
ity threshold and increment. As dissipation is weak, that
is, κ ! 1, the strong inequality in (45) is, as a rule, ful-
filled.

Bearing in mind (45), let us estimate the right-hand
side of (42). We have

(47)

Here, the θ(j) ≡ eAM/aµBjτQ1l value is, in particular,
determined by the current. By way of example, let us
use the typical parameters α ~ 2 × 104, Q1 ~ 0.3, τ ~ 3 ×
10–13 s, l ~ 17 nm, A ~ 10–12 cm2, and M ~ 103 G. This
gives θ(j) ≈ 0.17 at the current j ~ 3.3 × 107 A/cm2,
which corresponds to the instability threshold (e.g.,
see [1–3]). Figure 2 allows us to determine those λ = λ'
values for which |Φ| = 1 at several ν parameter values.
We see that 0.4 < λ' < 0.7, which corresponds to 7 ≤ L ≤
12 nm. As far as we know, only thicknesses L of 2 to
10 nm have been studied thus far [1]. According to the
estimates above, the inequality |Φ| ! 1 or |Φ| ≤ 1
should then be satisfied. At somewhat larger thick-
nesses of L ≈ 20–80 nm (or λ ≈ 1–5), however, we may
have |Φ| @ 1. For this reason, we consider both large
and small |Φ| values (more exactly, the limiting cases
|Φ| ! 1 and |Φ| @ 1).

6.1. Let us consider instability at |Φ| ! 1. The solu-
tions to (42) are then close to spin wave resonance
modes (44). First, consider the solution that is close to
homogeneous resonance with the number n = 0. We

qL nπ and ω Ωx a
n2π2

L2
----------+ 

  Ωy a
n2π2

L2
----------+ 

 = =

–
iκ
2
----- Ωx Ωy 2a

n2π2

L2
----------+ + 

  ,

ImΦ/ReΦ κη  ! 1,=

η aγMτκ 1 ν
λsinh ν λcosh+

---------------------------------------– 
  1–

.≡

Φ ReΦ≈ λ 1 ν
λsinh ν λcosh+

---------------------------------------– 
  θ 1– j( ).=
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CURRENT-INDUCED SPIN INJECTION AND SURFACE TORQUE 1013
only retain the main term q2L2 ! 1 in the left-hand side
of (42) and use the definition q = is/2r and Eqs. (40)
and (43). The frequency ω is then given by the qua-
dratic equation

(48)

This equation has complex roots. Separate equations
for the real and imaginary parts of these roots will be
necessary. Direct calculations yield

(49)

(50)

In (49), we can use arbitrary sign combinations. In
addition,

(51)

In (50), we only retain the upper sign, which admits
instability. The instability condition then takes the form

(52)

Condition (52) clearly shows that there are two sources
of instability. One of these is the current-injected longi-
tudinal spin contribution to effective field (30). This
contribution is described by the terms proportional to
the B parameter (see (36)). The other source of instabil-
ity is the torque contribution at the x = 0 boundary.
This contribution appears because of boundary condi-
tions (21); it is described by the term proportional to k2.

According to (52), dissipation influences these two
contributions quite differently. Dissipation is inessen-
tial to the appearance of the injection-type instability
because it is then sufficient that γB/λ be larger than Ωy .
However, if the torque only remains (B  0), over-
coming some threshold caused by dissipation is neces-
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------± 

 –=
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L
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0.≤–
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sary. At the same time, the joint action of both mecha-
nisms always decreases the left-hand side of (52) and
therefore facilitates the appearance of instability.

Since B and k are proportional to j, we can obtain a
quadratic equation for the threshold current density jth
by setting the left-hand side of (52) equal to zero. Solv-
ing this equation yields

(53)

where

(54)

ω0 =  is the spin wave resonance frequency at

the number n = 0 (cf. (44)), and f = . The j⊥
value (54) is nothing but the threshold current density
under the torque action only (at B = 0). It follows from
general equation (53) for the threshold that jth  j⊥  if
η @ 1. However, if η ! 1, the spin-injection instability
mechanism predominates. The threshold is then given
by

(55)

This coincides with the equation obtained earlier [9] by
another method, namely, from the requirement of min-
imum magnetic energy (recall that the current jD is
defined in (14) and Ha = βM). As in [9], threshold (55)
is for homogeneous fluctuations because of the use of
the spin wave resonance mode with qL ! 1.

Note an important relation between threshold cur-
rents and spin wave resonance frequencies. It follows
from (49) and (50) that

(56)

Ratio (56) tends to zero as η  0 and to 1 as η 
∞, because the torque only influences spin wave reso-
nance damping and changes its sign at the instability
threshold. The resonance frequency remains constant.
Conversely, injection in addition influences the real part
of the frequency and makes it vanish at the threshold.
The eigenfrequency then softens; that is, it behaves as
under the conditions of a reorientation phase transition
in an external magnetic field. This opens up an interest-
ing possibility of experimentally identifying the injec-
tion mechanism by measuring the resonance frequency
at current densities close to the threshold value.

jth

j⊥
----- η f f 1–+( ) f f 1––( )2

4η2+–

2 1 η2–( )
-----------------------------------------------------------------------,=

j⊥
κeMω0L

µBQ1
----------------------,=

ΩxΩy

Ωy/Ωx

jth j⊥ fη

=  jD

H Ha+( )λ λsinh ν λcosh+( )
αµBnQ1 λsinh ν λcosh 1–( )+[ ]
------------------------------------------------------------------------------.

Reω( )th

ω0
-------------------

jth

j⊥
-----.=
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Ratio (56) as a function of the η parameter at various
f values is shown in Fig. 3. Interestingly, the instability
threshold is always lower than threshold (54). Let us
estimate threshold (54) using the set of typical parame-
ters specified for (47) with the dissipation parameter
κ = 3 × 10–2, frequency ω0 = 2.3 × 1010 s–1, and λ = 0.4
added to it. This yields j⊥  ≈ 2.7 × 107 A/cm2. Approxi-
mate equation (55) gives a similar estimate within the
range of its applicability. We find that, on the whole,
threshold current density estimates are in agreement
with the experimental data.

6.2. Let us consider instability of inhomogeneous
spin wave modes with n ≠ 0 at |Φ| ! 1. Solutions to (42)
are then close to the zeros of tanqL; that is,

(57)

Again applying (40) and using the definitions q = is/2r
and (43), we obtain a quadratic equation for the fre-
quency ω. Let us separate the real and imaginary parts
of the roots of this equation, as with (48) above. The
instability condition Imω > 0 then takes the form

(58)

Condition (58) has the structure of (52). The conclu-
sions about the effective field and torque contributions
therefore remain valid.

q
nπ
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nπL
----------.–≈
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2 2γB
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Fig. 3. Threshold current and spin wave eigenfrequency at
the threshold as functions of the η parameter characterizing
the relative torque and spin injection contributions. The

curves correspond to different f =  parameter val-

ues: f = (1) 0.1, (2) 0.2, and (3) 0.5.

Ωy/Ωx
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The threshold current density  for n ≠ 0 is calcu-
lated the same way as previously. We obtain

(59)

where we introduced the new parameter g = π2a/ω0L2.
It follows from (59) that the instability threshold
sharply increases as the number n grows.

6.3. Let us consider instability at |Φ| @ 1. Disper-
sion relation (42) is then substantially modified by cur-
rent. As strong inequality (45) is fulfilled in our model,
direct substitution shows that there is a solution in
which the imaginary part of q predominates. For this
solution,

(60)

The definitions q = is/2r and (43) allow (42) to be trans-
formed into the quadratic equation for the frequency

(61)

Equation (61) is qualitatively different from (48) in
two respects. First, the current-induced corrections to
the frequencies Ωx, y are quadratic rather than linear in
the current. Secondly, both factors, the injection field
(~B) and torque (~k2), contribute simultaneously to
both the real and imaginary parts of the multipliers on
the right-hand side of (61).

Equation (61) yields the instability condition Imω >
0 in the form

(62)

As distinct from condition (52), the appearance of
instability is now impossible in the absence of an effec-
tive injection field, that is, if B = 0. If there is no surface
torque (k2 = 0), instability nevertheless appears at
(γBl)2/a > Ωy .

Since B ~ j and k ~ j, setting the left-hand side
of (62) equal to zero yields a biquadratic equation for
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the threshold current density. The solution to this equa-
tion has the form

(63)

Equation (63) is valid if the condition |Φ| @ 1 is met.
The region in Fig. 2 that corresponds to this inequality
lies much higher than the θ level. All curves in this
region increase linearly as λ grows. According to (46),
the η parameter is then virtually independent of λ,
that is, layer thickness L. It is therefore clear that
threshold (63) is also independent of L. This property
sharply contrasts with a linear increase in the threshold
in (54) and (55) at |Φ| ! 1. This difference appears
because inhomogeneous fluctuations with |qL | @ 1
(see (60)) are most unstable in the case under consider-
ation. A still more interesting result is obtained when
we numerically estimate threshold (63). Substituting
the standard set of parameters into it, we find that the
condition |Φ| @ 1 can only be satisfied for layers of
thickness L ≥ 20 nm. The threshold current density then
equals jth ≈ 3 × 106 A/cm2 at the frequencies Ωx ≈ 2.3 ×
1011 s–1 and Ωy ≈ 1.8 × 109 s–1. This value is an order of
magnitude smaller than the estimates obtained by (54)
and (55).

7. THE ELECTRIC CURRENT EFFECT
ON THE SPECTRUM OF SPIN WAVES

Current through a junction influences not only the
spin wave decrement Imω but also the spin wave spec-
trum Reω. Let us discuss this influence in more detail
for the example of two effects: (1) spin mode eigenfre-
quency softening near the instability threshold, and
(2) the appearance of current-induced new spin modes.

7.1. The softening effect will be considered for the
n = 0 mode ignoring dissipation, that is, on the assump-
tion that κ ! 1. For definiteness, put |Φ| ! 1. Equa-
tion (48) directly yields

(64)

Let us substitute the equality j/j⊥  = (j/jth)(jth/j⊥ ) into (64)
and use (53). We eventually obtain

(65)
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Several curves constructed according to (65) are
shown in Fig. 4. For each of then, the threshold jth was
calculated with the corresponding η parameter value.
We see that Reω decreases as the current approaches
the instability threshold. The decrease becomes steeper
and steeper as η decreases, that is, as the system
approaches the conditions under which the effective
injection field plays a key role.

If |Φ| @ 1, we obtain curves similar to (65) but with
a steeper frequency drop as the threshold is approached.

7.2. The effect of current-induced new spin modes is
observed if |Φ| @ 1. In this limit, several solutions to
dispersion equation (42) additional to that considered
in Section 6.3 appear. The real part of q in these solutions
is much larger than imaginary. Since condition (45) is
always satisfied, (42) takes the form

(66)

and the solutions are close to

(67)

According to spin wave resonance theory [20, 23],
solutions (67) with half-integer “numbers” (in paren-
theses) correspond to natural oscillations of a layer with
tightly pinned surface magnetization. In the model
under consideration, magnetization pinning is caused
by large ReΦ values, that is, by a high effective injec-
tion field. It appears that, because current-injected spins
participate in s–d exchange, they create unidirectional
magnetic anisotropy near the x = 0 surface, and it is this
anisotropy that pins magnetization.
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Fig. 4. Spin wave eigenfrequency as a function of current
density. The frequency softens as the current approaches the
threshold value. The calculations were performed for the
n = 0 mode at |Φ| ! 1 and f = 0.1. The curves correspond to
different η parameter values: (1) 0.1, (2) 1.0, (3) 5, and
(4) 10.
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8. CONCLUSIONS

We for the first time considered the joint action of
two electric current-induced effects, namely, (1) non-
equilibrium spin injection and (2) surface torque. These
effects influence the state of ferromagnetic layers in
spin-valve-type metallic junctions.

At current densities exceeding a certain threshold
(usually 106–3 × 107 A/cm2), spin wave fluctuations in
junctions become unstable. The joint action of the
effects specified above lowers the instability threshold.

The surface torque determines the instability thresh-
old in junctions with a comparatively small free ferro-
magnetic layer thickness (L ~ 2–7 nm) and a small Lan-
dau–Lifshitz–Gilbert dissipation parameter (κ < 10–2).
The instability threshold linearly increases as L grows
and corresponds to virtually homogeneous ferromag-
netic layer excitation.

Current-induced nonequilibrium spin injection
determines the instability threshold at comparatively
large thicknesses and dissipation parameters of the free
ferromagnetic layer, for instance, at L > 20 nm and κ ~
3 × 10–2. As the thickness increases, the instability
threshold begins to correspond to essentially inhomoge-
neous layer excitation. The current density at the thresh-
old is then comparatively low, of about 106 A/cm2.

Current-induced injection of nonequilibrium spins
results in instability because of an orientation phase
transition in the effective exchange field created by
these spins. Injection therefore influences not only the
fluctuation decrement but also the spectrum of fluctua-
tions. The eigenfrequencies of spin fluctuations
decrease to zero (“soften”) as the current increases and
approaches the threshold value.

Conversely, surface torque only influences the dec-
rement and not the spin fluctuation spectrum. This cir-
cumstance allows the mechanism of instability to be
identified experimentally.

Strong current-induced spin injection into a ferro-
magnetic metallic layer causes effective pinning of
layer lattice magnetization near the surface of injection.
According to calculations, such pinning should result in
the appearance of new spin wave resonance lines as the
current increases.
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APPENDIX I

The Lattice Magnetization Flux Density

Let us explicitly separate the exchange terms
(intralattice exchange and s–d exchange) in Landau–
Lifshitz–Gilbert equation (3). We obtain

(I.1)

where H' ≡ H + β(M · n)n + Hd . Suppose that the esti-
mates κ ! 1 and |M × H'| ! |M × Hs–d| are valid within
the 0 ≤ x < λF sublayer. These estimates allow the last
two terms in the right-hand side of (I.1) to be elimi-
nated. Let us transform the vector product in (I.1) con-
taining the second derivative as follows:

(I.2)

The simplifications introduced and Eq. (I.2) allow (I.1)
to be written in the form

(I.3)

where a = γAM.

The first term in (I.3) describes time-dependent
magnetization changes, and the second term is propor-
tional to the moment of forces that appear because of
the action of mobile electrons on the lattice. The last
term is therefore the divergence of the lattice magneti-
zation flux. It follows that the value

(I.4)

has the meaning of the lattice magnetization flux, and
the a parameter is the magnetization diffusion constant.

APPENDIX II

The Derivation of the Dispersion Equation
for Fluctuations

The substitution of general solution (41) into bound-
ary conditions (21) and (23) yields the solvability con-
dition

(II.1)
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where

(II.2)

Here, primes denote differentiation with respect to the
argument. According to (32), we must take the limit as
r  +0. This, in particular, implies the transition to
the limiting case of small Bessel function indices and

arguments, because, according to (37) and (40), b ~ 
and s ~ r. We will use the following representations of
the Bessel functions of the first and second kind [22]:

(II.3)

(II.4)

Let us differentiate (II.3) and (II.4) with respect to
the argument and calculate these functions and their
derivatives at y = b and y = be–L/2r. Substituting the
results into (II.2) while retaining the main terms as
r  0 yields

(II.5)

Here, it is taken into account that Γ(s + 1) = sΓ(s) and
Γ(s)Γ(–s) = –π/ssinπs ≈ –1/s2.

Substituting (II.5) into (II.1) yields

(II.6)

The s/r and b2/s values tend to finite limits as r  0.
Using the denotation q = is/2r and the definition of b
(Eq. (37)), we obtain the dispersion equation in
form (42).
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Abstract—We present the results of our numerical simulations of mass-transport processes on short observa-
tion time scales for extended quasi-two-dimensional and three-dimensional nonideal dissipative systems of
macroparticles interacting through a screened Coulomb potential. The simulations were performed for the
parameters corresponding to the experimental conditions in laboratory dusty plasmas. The evolution of the rms
macroparticle displacement on short observation time scales in nonideal liquid systems is shown to be similar
to the evolution of the thermal particle oscillations at lattice sites. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Problems related to mass-transport processes in dis-
sipative systems of interacting particles are of consider-
able interest in various fields of science and technology
(hydrodynamics, plasma physics, medical industry,
polymer physics and chemistry, etc.) [1–9]. The main
problem in studying the physical properties of such sys-
tems is associated with the absence of an analytical the-
ory for a liquid that could explain its thermodynamic
properties, give an equation of state, describe the heat-
and mass-transport phenomena, etc. [7–10]. The devel-
opment of approximate models to describe the liquid
state of a substance is based on two main approaches.
The first approach is a semiempirical method for deter-
mining the relationship of the liquid parameters to one
another and to the properties of the original crystals that
relies on analogies between the crystalline and liquid
states of a substance [7–10]. The second approach is
based on a complete statistical calculation of the prop-
erties of nonideal media by means of molecular dyna-
mics using model data on the particle interaction
energy [11, 12]. Such simulations allow various physi-
cal phenomena (phase transitions, thermal macroparti-
cle diffusion, the dynamics of the approach of a system
to an equilibrium state, etc.) to be studied. Numerical
simulations of the dynamics of nonideal systems are of
great importance in the theory of a liquid, because there
is no small parameter in such systems that could be
used to analytically describe its state and thermody-
namic properties, as can be done for a gas, due to strong
interparticle interaction.

A laboratory dusty plasma, a weakly ionized gas
with disperse-phase micron-sized macroparticles (dust
particles), is a good experimental model for studying
1063-7761/05/10005- $26.001018
the properties of nonideal systems [13–17]. A dusty
plasma is a widespread natural object, and it is often
produced through various technological processes. The
micron-sized dust particles in plasma can acquire a sig-
nificant electric charge and form quasi-stationary dust
structures similar to liquids or solids. Depending on the
experimental conditions, such structures can be similar
to homogeneous three-dimensional systems or have a
highly anisotropic one-dimensional or quasi-two-
dimensional pattern, such as the chains of macropar-
ticles observed in a direct-current glow discharge
plasma [16, 17] or the separate dust layers (usually
from one to ten) in the near-electrode region of a high-
frequency discharge [13–15]. In contrast to real liquids,
the macroparticles in plasma can be recorded by a video
camera. This simplifies significantly the use of direct
nonintrusive diagnostic techniques and makes it possi-
ble to study the physical properties of nonideal systems
at the kinetic level. Such studies could play a significant
rule both in testing existing analytical models for the
structure of a liquid and in developing new ones.

Most of the numerical studies of dusty plasmas are
based on the model of a screened Coulomb potential:

(1)

where l is the interparticle distance, λ is the screening
length, and eZ is the macroparticle charge in elemen-
tary electron charges e. The properties of nonideal sys-
tems of macroparticles interacting with a screened
potential are also of considerable interest in analyzing
the various kinetic processes in molecular biology,
polymer chemistry, etc. [2, 5]. The two dimensionless
parameters responsible for the mass-transport pro-
cesses and the phase state in systems with a screened

U eZ( )2 l/λ–( )/l,exp=
 © 2005 Pleiades Publishing, Inc.
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Coulomb potential for screening parameters κ = lp/λ <
6–7 were determined in [18–20]. (Here, lp is the mean
interparticle distance, which is equal to the inverse
square root of the particle surface density for two-
dimensional systems and to the inverse cubic root of the
particle volume density for three-dimensional sys-
tems). The first is the effective coupling parameter
responsible for the phase state of a system of interacting
particles:

(2)

The second is the scale parameter responsible for the
scaling of the dynamical processes in dissipative sys-
tems and is the ratio of the characteristic energy scatter-
ing frequency ω* (as the charged macroparticles move
toward the displacement of the system’s center of mass)
to the effective frequency v fr of their collisions with
neutrals of the ambient gas (which characterizes the
rate of energy exchange between the neutrals and the
dust particle [2, 5, 21, 22]):

(3)

Here, M and T are the mass and temperature of the dust
particle, and the coefficients a and b depend on the
dimensionality of the problem: a ≡ b = 1 for a homoge-
neous three-dimensional system and a = 1.5, b = 2 for
the solution of the quasi-two-dimensional problem that
models an extended dust layer. These coefficients were
introduced for convenience to describe the transport
characteristics of liquid systems (such as the diffusion
coefficient D and the pair correlation functions g(l)),
which, given the proposed normalization, have similar
values at the same parameters Γ* and ξ. As Γ* increases
to  ≈ 106 (κ < 6), a body-centered crystal structure
is formed in a three-dimensional system, while a two-
dimensional system crystallizes into a hexagonal lattice
structure.

The diffusion of macroparticles is the main mass-
transport process that determines the energy losses (dis-
sipation) in plasma–dust systems and their dynamical
properties, such as the phase state and the conditions
for the propagation of waves and for the formation of
dust instabilities. The theory of diffusion in liquids has
been developed in two directions, one of which (more
fundamental) is based on the general principles of sta-
tistical physics. The other approach (the theory of
jumps) is based on analogies between liquids and sol-
ids. The essence of this theory is that the molecules of
such a liquid are in an equilibrium (settled) state for the
time it takes for an (activation) energy high enough for
the potential bonds to be broken between the neighbor-
ing molecules and for the transition into the surround-

Γ*
a Ze( )2

Tlp

---------------- 1 κ κ2

2
-----+ + 

  κ–( )exp
 
 
 

1/2

.=

ξ ω*
v fr

-------≡ eZ
v fr

------- b 1 κ κ2

2
-----+ + 

  κ–( )exp

lp
3πM

---------------------
 
 
 

1/2

.=

Γm*
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ings of other molecules to a new settled state to be
imparted to them. Thus, a diffusing (active) particle
may be assumed to be capable of occupying the ener-
getically equivalent locations at the sites of an imagi-
nary lattice and migrating by jumping to one of the
equivalent locations. The random motion of an active
particle over the lattice sites after a large number of
jumps is described by macroscopic diffusion equations
(with a constant time-independent coefficient D); i.e.,
Fick’s laws are applicable [2, 5]. However, the current
state of the art of experimental physics necessitates
going outside the scope of the diffusion approximation,
and the currently available simulation methods based
on the theory of stochastic processes make this possi-
ble. In particular, the description in terms of macro-
scopic (Fick) kinetics may prove to be inadequate for
analyzing the transport processes on physically short
time scales. Investigating the mass-transport processes
on short observation time scales is of particular impor-
tance in studying fast processes (such as the propaga-
tion of shock waves, impulsive actions, or the motion
of the front of chemical conversions in condensed
media [5, 23]) and in analyzing the transport properties
of weakly dispersive (ξ @ 1) nonideal media (such as
colloidal solutions, combustion-product plasmas,
atmospheric-pressure nuclear-induced dusty plasmas
[2, 24, 25]), where the proper measurement of the mac-
roparticle diffusion coefficients requires carrying out
prolonged experiments.

2. PARTICLE MASS-TRANSPORT PROCESSES
IN NONIDEAL MEDIA

Using the hydrodynamic approaches allows the
mass-transport processes to be successfully described
only in the case of short-range interactions. When the
forces of interparticle interaction are not as weak as
those in gases, the construction of a proper kinetic
equation fails. The fundamental theories of diffusion in
liquids are based on the fact that the particle number
density for each component of the system under consid-
eration is a hydrodynamic variable that slowly varies in
space and time. Such systems are in a statistical equi-
librium state, and they can be characterized by a certain
set of physical parameters, for example, the density,
kinetic temperature, and pressure, which can fluctuate
only slightly about their mean equilibrium values. In
statistical physics, such a state is described by using
various Gibbs distributions, depending on the type of
contact between the system and the ambient medium (a
thermostat) that forbids or permits the energy or parti-
cle exchange with it, and Nyquist’s formulas, Green’s
functions, and the fluctuational–dissipative theorem are
used to analyze the equilibrium fluctuations and the
transport coefficients [21, 26].

In the case of small deviations of the system under
study from a statistical equilibrium, the particle diffu-
SICS      Vol. 100      No. 5      2005
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sion coefficient D is described by a relation that is a
special case of the Green–Kubo formulas [2]:

(4)

where 〈V(0)V(t)〉  is the autocorrelation function of the
particle velocities V, t is the time, and m = 2 or m = 3 are
for two-dimensional or three-dimensional systems,
respectively. To investigate the evolution of the mass
transport with time, D(t), the autocorrelation function
of the particle velocities in Eq. (4) is integrated over a
finite time interval:

The diffusion coefficient for interacting particles can
also be determined by analyzing the particle heat trans-
port through a unit area in a homogeneous medium for
t  ∞:

(5)

where the evolution of the mass transport with time,
D(t), is defined by the relation [5]

(6)

Here, ∆l = ∆l(t) is the displacement of an individual
particle in time t, 〈 〉 N is the averaging over an ensemble
of N particles, and 〈 〉 t is the averaging over all time
intervals of duration t in the total measurement time.
The latter is necessitated by the requirement that the
mean characteristics be properly determined for liquid
systems in accordance with the theory of jumps. Thus,
for example, it was shown in [18] that the dynamical
behavior of strongly nonideal systems is not ergodic,
and the ensemble averaging

is only for Γ* < 40–50.
Since no assumptions about the pattern of thermal

motion are made when deriving relations (4)–(6), they
are valid both for gases and for liquids and solids. In
most cases, however, the calculation of the diffusion
coefficient using these relations admits no analytical
solutions. The simple solution D ≡ D0 = Tp/v frM, which
is known as Einstein’s relation, can be obtained only for
noninteracting (Brownian) particles. Here, it should be
noted that the quantity f = v frM (usually called the coef-
ficient of macroparticle friction) does not depend on the
density of the dust particle material, but is determined
by the particle size and relative velocity, the conditions

D V 0( )V t( )〈 〉 t/m,d

0

∞

∫=

D t( ) V 0( )V t( )〈 〉 t/m.d

0

t

∫=

D D t( ),
t ∞→
lim=

D t( ) ∆l( )2〈 〉 N〈 〉 t

2mt
----------------------------.=

∆l t( ){ } 2〈 〉 N ∆l t( ){ } 2〈 〉 N〈 〉 t≈
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for the accommodation of neutrals on the particle sur-
face, and the Knudsen number (Kn); for a spherical par-
ticle, the latter is equal to the ratio of the neutral mean
free path ln to its radius ap [2, 5, 21, 22]. In the hydro-
dynamic regime (Kn ! 1), f = 6πηap, where η is the
viscosity of the ambient gas.

In the semiempirical theory of jumps, the analytical
relation for the diffusion coefficient of molecules can
be represented as [1, 9]

(7)

where d is the mean distance between the molecules, τ0
is the characteristic time that determines the frequency
of their transitions from one settled state to another, and
W is the energy barrier overcome during these transi-
tions. The exponential dependence of D on the temper-
ature T of molecular liquids is confirmed experimen-
tally. A similar temperature dependence for the thermal
diffusion coefficient D of macroparticles was found for
dissipative systems with a screened potential in [18, 27].
In these papers, it was shown that the diffusion coeffi-
cient for strongly nonideal liquid structures could be
represented as

(8)

where  = 102 is the crystallization point. For Γ* in
the range from 50 to 102, the error with which the cal-
culated D is fitted by formula (8) does not exceed 5–
10% for both three- and two-dimensional systems.

As was said above, no exact analytical relation for
the function D(t) that would describe the evolution of
the mass-transport processes with time can be obtained
in the case of liquids. Disregarding the interparticle
interaction, the mean square of the displacement of the
jth particle per degree of freedom under the action of a
random force Frun can be determined from Langevin’s
equation, represented as [18]

(9)

In the absence of a correlation between the slow parti-
cle displacement and the fast stochastic action
(〈Frunxj 〉  = 0), the simultaneous solution of Eqs. (6)
and (9) for a homogeneous medium (M〈(dxi/dt)2〉  ≡ T,

〈(∆l)2〉  = m〈 〉 ) can then be written as [5]

(10)

Thus, the function D(t) = D0 for noninteracting parti-
cles on long time scales compared to the reciprocal of

D
d2

2mτ0
------------ W

T
-----– 

  ,exp=

D
TΓ*

12π ξ 1+( )v frM
---------------------------------------- 3

Γ*
Γ c*
-------– 

  ,exp≈

Γ c*

M
d2x j

2

dt2
---------- Mv fr

dx j
2

dt
--------– 2M

dx j

dt
-------- 

 
2

2x jFrun.+ +=

x j
2

D t( )
D0
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1 v fr t–( )exp–

v fr t
------------------------------------.–=
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the friction frequency (v frt @ 1), while the ballistic pat-
tern of particle motion manifests itself on short time

scales (v frt ! 1): 〈 〉  ≈ Tt2/M and D(t) = 〈 〉 /2t ∝  t.

Let us consider the motion of a macroparticle at a
site of an imaginary crystal lattice. If the restoring force

Fr = –M xj acting on the particle in this lattice can be
described by one characteristic frequency ωc , the equa-
tion of motion in the field of this force can be trans-
formed to

(11)

In the absence of a correlation between the displace-
ment xj and the random force (〈Frunxj 〉  = 0), the simulta-
neous solution of Eqs. (6) and (11) for a homogeneous

medium (M〈(dxi/dt)2〉  ≡ T, 〈(∆l)2〉  = m〈 〉 ) can be writ-
ten as

(12a)

(12b)

It is easy to see that the ballistic regime of motion

(〈 〉  ≈ Tt2/M, D(t) = 〈 〉 /2t ∝  t) is also characteristic
of the particle at a lattice site on short observation time
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2
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dt2
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scales (v frt ! 1 + ξ*), as in the case of noninteracting
particles. The mass-transport processes on short
observation time scales for various parameters ξ*
(solutions (10), (12a), and (12b)) are illustrated in
Fig. 1.

The function D(t) = 〈(∆l)2〉/2t  0 for a particle at
a lattice site as the observation time increases (v frt @ 1),
since the rms deviation 〈(∆l)2〉  of this particle from its
equilibrium position is constant and corresponds to the
deviation of a harmonic oscillator

(13)

Either the quasi-harmonic approximation or Ein-
stein’s approximation [28, 29] is used most commonly
to determine the frequency ωc , which characterizes the
deviation of a particle from its equilibrium position in
crystal lattices of various types. These approximations
are based on the calculations of the oscillation fre-
quency for an individual particle when the positions of
the remaining particles are fixed. The frequencies
obtained by these methods have no analytical depen-
dence on the parameters of the interparticle interaction
potential (Z and λ) and need additional fitting to
describe the results of the existing numerical calcula-
tions of phase diagrams for systems with a screened
pair interaction. For this purpose, the numerical data are
fitted by linear, quadratic, or cubic functions on different
(short) segments of the phase diagram [19, 28, 29]. A
simple relation for the characteristic particle oscillation
frequency ωc = ωbcc that defines the melting line of a
body-centered cubic lattice (according to Lindemann’s
criterion) and that requires no empirical fitting of the
numerical data was suggested in [19]:

(14)

The interparticle collision probability ~Ncn/4π, where
Ncn is the number of pairs of the closest neighbors of an
individual particle (located along with it on the same
straight line) that ensure its stable position at the lattice
site, was taken into account in this paper. (For a body-
centered cubic lattice, Ncn = 4.) It was also assumed in

∆l( )2〈 〉 mT /Mωc
2
.=

ωbcc
2 2eZ( )2 κ–( )exp

lp
3 Mπ

-------------------------------------- 1 κ κ2

2
-----+ + 

  .≈

L
Lcut

Fig. 1. Illustration of our numerical simulation using peri-
odic boundary conditions
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the above paper that the restoring force Fr acting on the
particle at the center of a cubic cell is proportional to
twice the second derivative of the interparticle interac-
tion potential at l = lp . No such relation has been sug-
gested previously for the characteristic macroparticle
oscillation frequency ωc = ωh in a quasi-two-dimen-
sional hexagonal lattice. If we followed the reasoning
of [19], then, given the interparticle collision probabil-
ity in a plane hexagonal cell ~3/2π, we could assume

that  ≈ 1.5 . This assumption agrees well with

the calculated value of 〈(∆l)2/ 〉  on the melting line of
two-dimensional structures [30]. In a quasi-two-dimen-
sional structure, however, the particles have an addi-
tional degree of freedom that allows them to be dis-
placed perpendicularly to the lattice plane. Such fluctu-
ations do not activate the restoring forces in the crystal
plane, but reduce the probability of effective collisions
by a value of ~3Nt/(2π)3, where Nt = 4 is the number of
possible combinations for the simultaneous displace-
ment of three particles (located on the same straight
line) orthogonally to the lattice plane. Thus, the follow-
ing fit may be suggested to estimate the characteristic
macroparticle oscillation frequency in a quasi-two-
dimensional hexagonal lattice:

(15)

3. USING THE METHOD 
OF MOLECULAR DYNAMICS TO MODEL

THE TRANSPORT PROCESSES
IN A DUSTY PLASMA

Two well-known numerical algorithms, the Monte
Carlo method and the method of molecular dynamics,
are commonly used to analyze the transport properties
of systems of interacting macroparticles. In contrast to
the Monte Carlo method, which was developed to cal-
culate equilibrium quantities, the method of molecular
dynamics allows the approach of the system under
study to an equilibrium state to be described. Therefore,
it is an irreplaceable tool for studying the heat- and
mass-transport processes, the propagation of waves,
and the formation dynamics of instabilities.

The method of molecular dynamics is based on the
solution of a system of ordinary differential equations,
the equations of particle motion in the field of various
forces. Within the framework of this approach, we can
separate the method of molecular dynamics that is
based on the integration of reversible equations of par-
ticle motion (MRD) and the method of Brownian (or
Langevin) dynamics that is based on the solution of
Langevin’s equations and that includes the irreversibil-

ωh
2 ωbcc

2
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ωh
2 6 1 π 2––( ) eZ( )2 κ–( )exp

lp
3 Mπ

---------------------------------- 1 κ κ2

2
-----+ + 

 ≈

≈ 5.4
eZ( )2 κ–( )exp
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3 Mπ
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2
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ity of the processes under study (MBD). In the first case
(MRD), only the elastic interactions between particles
are taken into consideration, while the dissipation (fric-
tion) and other processes of energy exchange between
the particles and the ambient medium (a thermostat) are
disregarded. The motion of particles in such a system is
unstable (in Lyapunov’s sense), and the computational
data are renormalized after a certain number of integra-
tion steps to maintain their equilibrium temperature.
This approach allows the processes in atomic systems
to be properly modeled and is unsuitable for analyzing
the motion of macroparticles in laboratory plasmas,
where the dissipation due to collisions with atoms or
molecules of the gas plays a significant role. In contrast
to the MRD, the method of Brownian dynamics incor-
porates the particle kinetic energy losses through fric-
tion, and the equilibrium state of a system with a con-
stant temperature is maintained through its energy
exchange with the thermostat. This exchange is speci-
fied by the random force Frun reconciled with the forces
of friction in the system under consideration by using
the fluctuational–dissipative theorem [26]. The particu-
lar significance of the MBD in modeling the dynamics
of macroparticles in dusty plasmas lies in the fact that
Langevin’s equations allow the interaction of dust par-
ticles with the thermostat particles that maintain a sta-
tistical equilibrium in the system under consideration to
be taken into account. Such an equilibrium is observed
in many experimental situations where the Maxwellian
dust particle velocity distributions are recorded. In this
case, the MBD allows one to take into account the
energy exchange between the macroparticles and the
ambient medium not only through their collisions with
molecules of the ambient gas, but also through other sto-
chastic processes, for example, through the macroparti-
cle charge fluctuations that cause their kinetic tempera-
ture T to rise relative to the gas temperature [31, 32].

To model the equilibrium microscopic processes in
extended homogeneous clouds of interacting macro-
particles, apart from the random forces Frun, which are
the source of thermal particle motion, the forces of pair
interparticle interaction Fint are included in the system
of Np equations of motion (Np is the number of parti-
cles):

(16)

Here, Fint(l) = ∂U/∂l, and l = |lk – lj| is the interparticle
distance. Under local thermodynamic equilibrium condi-
tions, the mean value of the random force is 〈Frun〉 = 0,
while the autocorrelation function

M
d2lk

dt2
--------- Fint l( ) l lk l j–=

lk l j–
lk l j–
---------------

j

∑=

– Mv fr

dlk

dt
------- Frun.+

Frun 0( )Frun t( )〈 〉 6TMv frδ t( )=
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describes a delta-correlated Gaussian process [2, 5].
Here, δ(t) is the delta-function. The random increments
in macroparticle momentum can be used to model such
stochastic processes,

where  is the momentum increment per degree of
freedom, ψ is a random variable with a normal distribu-
tion with an rms deviation of 1, and ∆t is the time inte-
gration step for the equations of motion (16). For the
random forces to be properly modeled, the integration
step ∆t must satisfy the condition ∆t ! max(v fr, ω*).

Periodic boundary conditions along the x, y, and z
axes are commonly used to study the equilibrium pro-
cesses in extended three-dimensional dust systems;
these conditions allow the number of particles and their
mean kinetic energy to be kept constant. Such boundary
conditions can be realized by modeling 27 identical
cubic cells the spatial arrangement of particles in which
is kept similar to their arrangement in the central cell at
each time of the computation (see Fig. 2). When cross-
ing any boundary of the central cell, a particle returns
with the velocity of its escape from the cell, but on the
diametrically opposite side. In this case, what should be
studied is the microscopic particle transport produced
by the random forces that are balanced by the dissipa-
tion processes and the forces of interparticle interac-
tion. To model the dynamics of macroparticles in
extended dust layers, which are formed, for example, in
the near-electrode plasma layer of a high-frequency
capacitive discharge, periodic boundary conditions only
in two selected directions (nine computational cells) are
used, while the action of the balanced external forces is
commonly considered along the remaining axis.

The numerical simulation procedure is as follows.
The particles are arranged randomly within the central
cell at the initial time of the computation, and a self-
organization then begins via the interaction between
them. Once an equilibrium configuration of the particle
system for the specified parameters of the problem has
been reached, data on the successive particle positions
are written to the computer memory for their subse-
quent analysis. The dynamical characteristics (particle
velocities and displacements) are analyzed only for the
central cell.

All the particles of the full system of 27 (or 9, for the
solution of the two-dimensional problem) cells that fall
within the range of action of the pair potential are taken
into account when calculating the forces of interparticle
interaction. In this case, the interparticle interaction is
often cut off at a certain distance l = Lcut determined by
the condition for weak disturbance of the system’s elec-
troneutrality. For systems with a screened Coulomb
potential, this condition can be represented as

prun
x 2Tv fr∆tM( )1/2ψ,=

prun
x

ZLcut

Z
---------

Lcut

lp

-------- 
 

3 Lcut

λ
--------– 

   ! 1,exp∼
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where  is the uncompensated charge in the mod-
eled system. Hence, the size L of the computational cell
for the proper modeling of the macroparticle dynamics
in systems with a screened potential is specified by the
condition L @ λ [33]. The parameters of the problem at
which the length Lcut does not exceed (4–8)lp , which
corresponds to the number of independent particles (in
the central cell) from 64 to 512, are used to perform
most of the computations. In this case, cutting off the
interaction potential does not lead to any significant
error for screening parameters κ = lp/λ > 1. When mod-
eling systems with κ < 1, the longer-range interactions
should also be taken into account. This can be done by
using an appropriate algorithm whose essence consists
in modeling an infinite system by constructing a large
number of translational cells [29]. This method was
developed to study the properties of crystals and is by
no means always suitable for modeling the dynamics of
liquid systems without any long-range order in the par-
ticle arrangement.

It should be emphasized that cutting off the potential
at Lcut is a necessary condition for a stable state of the
modeled system containing a large, but finite number of
particles. Otherwise, such a point that more particles on
one side than on the other side can always be found in
this system. Thus, the action of electric forces is
uncompensated at this point, and the system of particles
under consideration is unstable. Since the cutoff length
of the potential is finite, the modeled systems have an
excess positive energy (due to the uncompensated
charge) [33]. In this case, the problem under consider-
ation is equivalent to the problem of particle confine-
ment in the trap produced by external electric forces or

ZLcut
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Fig. 2. Illustration of the mass-transport processes on short
observation time scales. The function D(t)/D0 is plotted
against tv fr: 1—the ballistic regime (D(t) ∝  t), 2—noninter-
acting particles (10), and the solution of the problem for a har-
monic oscillator at various parameters ξ*: 3—0.033 (12a),
4—0.33 (12a), 5—0.38 (12b), and 6—2 (12b).
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other potential forces, which ensure that a constant
number of particles Np is within a vessel of volume V
and which maintain a pressure P in it.

4. NUMERICAL SIMULATIONS 
OF THE EVOLUTION OF MACROPARTICLE 

MASS-TRANSPORT PROCESSES
ON SHORT OBSERVATION TIME SCALES

IN TWO-DIMENSIONAL 
AND THREE-DIMENSIONAL SYSTEMS

We investigated the mass-transport processes for
two cases: a homogeneous three-dimensional system
and a quasi-two-dimensional system modeling an
extended dust layer. The scale parameter was varied
over the range ξ ≈ 0.04 to ξ ≈ 3.6, typical of the exper-
imental conditions in gas discharge plasmas. The effec-
tive coupling parameter Γ* was varied between 10
and 120.

For the three-dimensional problem, the main com-
putations were performed for 125 independent particles
in the central computational cell; the total number of
particles in the computation of the pair interaction
reached 3000. The screening parameter was set equal to
κ = 2.4 and 4.8. The choice of λ was dictated by the
condition for the proper modeling of the dynamics of
such systems (L @ λ). The interparticle interaction
potential was cut off at Lcut = 4lp . To check whether the
computational results were independent of the number
of particles and the cutoff length of the potential, we
performed additional test computations for 512 inde-
pendent particles at Lcut = 7lp in systems with Γ* = 1.5,
17.5, 25, 49, and 92. The discrepancy between the

0.9

0.7

0.5

0.3

0.1
0 25 50 75

v frt

D(t)/D0

1

2

3

4
5

Fig. 3. D(t)/D0 versus tv fr for noninteracting particles (1)
and for three-dimensional systems (κ = 4.8) at various val-
ues of ξ and Γ*: 2—ξ = 0.04, Γ* = 77; 3—ξ = 0.14, Γ* =
30; 4—ξ = 0.14, Γ* = 77; and 5—ξ = 0.41, Γ* = 77.
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results of these computations did not exceed the numer-
ical error and was within ±(1–3)%.

To model an extended homogeneous layer of mac-
roparticles, we specified periodic boundary conditions
in two selected directions (x and y) and took into
account the action of the gravity Mg compensated by
the linear electric field Ez = βz, where β is the electric
field gradient (eZpEz = Mg), along the z axis. We varied
the number Np of independent particles in the computa-
tional cell between 50 and 1000 and set the screening
parameter κ equal to 2 and 4. Depending on the number
of particles, the cutoff length of the potential Lcut varied
between 5lp and 25lp . The gradient β of the electric field
Ez , which bounds the dust layer along the z axis, was
varied between ~100 to 10–2 V cm–2. Our simulations
revealed no tangible dependence of the macroparticle
dynamics on the field gradient β and the number of
independent particles Np adopted for the computations.

The time dependences of D(t)/D0 (in reciprocal

braking times ) derived by numerical simulations
for three-dimensional and two-dimensional systems are
shown in Figs. 3 and 4 for various parameters ξ and Γ*.
Curve 1 in these figures represents the exact solution of
Langevin’s equation for noninteracting particles (10). It
is easy to see that the behavior of the function D(t) for
interacting particles on observation time scales tv fr ! 1
corresponds to the ballistic regime of particle motion.
Subsequently, D(t) reaches its maximum, whose value
can be used to analyze the mass-transport processes on
short observation time scales. In this case, neither the
ratio Dmax/D0 nor the position tmaxv fr of the D(t)/D0
maximum depend on the parameter Γ* and are deter-

v fr
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Fig. 4. D(t)/D0 versus tv fr for noninteracting particles (1)
and for quasi-two-dimensional systems (κ = 2) at various
values of ξ and Γ*: 2—ξ = 0.93, Γ* = 27; 3—ξ = 0.93, Γ* =
56; 4—ξ = 0.23, Γ* = 27; and 5—ξ = 0.23, Γ* = 56.
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mined by the parameter ξ for both the three-dimensional
problem and the modeled two-dimensional system. This
was pointed out previously in [18, 20]. As t  ∞, the
function D(t) tends to its constant value, D = ,

which corresponds to the standard definition of the par-
ticle diffusion coefficient as one of the main transport
coefficients.

D t( )
t ∞→
lim
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Fig. 5. D(t)/D0 versus tv fr for noninteracting particles (1),
for three-dimensional systems (κ = 4.8) at Γ* = 80, ξ =
0.04 (2), 0.41 (3), and for a harmonic oscillator with ξ* =
0.08 (4), 0.82 (5). Curves 6 and 7 represent the difference
between the numerical solution of the three-dimensional
problem (curves 2 and 3) and the solution for a harmonic
oscillator with the corresponding ξ* (curves 4 and 5,
respectively).
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The evolution of the mass-transport processes in the
analyzed liquid (Γ* < 102) three-dimensional and
quasi-two-dimensional extended systems is compared
with the behavior of the function D(t)/D0 for a har-
monic oscillator at lattice sites in Figs. 5–7. The ratio of
the scale parameter ξ = ω*/v fr to ξ* = ωc/v fr presented
in the captions to these figures is defined as ξ*/ξ = 2 for
three-dimensional problems and ξ*/ξ ≈ 1.63 for quasi-
two-dimensional systems. In analyzing the three-
dimensional problem, we used ωc = ωbcc (14), which
corresponds to the macroparticle oscillation frequency
in a body-centered cubic lattice, as the characteristic
particle oscillation frequency. The characteristic parti-
cle oscillation frequency in a two-dimensional hexago-
nal lattice, ωc = ωh ≈ 1.15ωbcc, was determined by fitting
the results of the numerical solution of the quasi-two-
dimensional problem and the analytical solutions (12a)
and (12b). This frequency closely corresponds to fit (15),
which yields ωh ≈ 1.16ωbcc .

We found that the functions D(t) computed for
extended systems closely corresponded to solutions (12a)
and (12b) for a harmonic oscillator in all the analyzed
systems on observation time scales tv fr ≤ 2/ξ*. Thus,
the jump activation time ta (the mean settled lifetime of
the particles between the jumps) in the modeled sys-
tems was virtually independent of the temperature and
was determined by the particle oscillation frequency in
the settled state: ta ≈ 2/ωc .

The differences between the harmonic solution
(curve 4) and the computational results for an extended
crystalline quasi-two-dimensional system (curve 2)
with ξ = 1.3 and Γ* = 115 are shown in Fig. 7. It is easy
to see that the numerical solution for an extended crys-
talline system approaches zero much more slowly than
0.3
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(b)

Fig. 6. D(t)/D0 versus tv fr for quasi-two-dimensional systems (κ = 4) at ξ = 0.93 (a) and 0.23 (b) for Γ* = 12 (2), 27 (3), and 56 (4).
Curves 5, 6, and 7 represent the difference between the numerical solution for the quasi-two-dimensional problem (curves 2, 3,
and 4) and the solution for a harmonic oscillator (curve 1). The ratio D(t)/D0 for noninteracting particles is indicated by the dotted
line.
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the analytical solution for an ideal harmonic oscillator.
This may be attributable to the excitation of lower lat-
tice vibration modes under the influence of far neigh-
bors in the extended system.

The maximum Dmax of the function D(t) and its posi-
tion tmaxv fr are plotted against ξ* in Fig. 8 for extended
systems of macroparticles and for a one-dimensional
oscillator. Since Eqs. (12a) and (12b) cannot be solved
analytically, we solved these equations by the method

0.2

0.1

0
10–1 1 10210

v frt

D(t)/D0

1

234

104103

Fig. 7. D(t)/D0 versus tv fr for quasi-two-dimensional sys-
tems (κ = 4) at ξ = 1.14, Γ* = 100 (1) and ξ = 1.3, Γ* =
115 (2). Curves 3 and 4 were obtained for a harmonic oscil-
lator with the corresponding ξ*. The ratio D(t)/D0 for non-
interacting particles is indicated by the dotted line.
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Fig. 8. Dmax/D0 (d, m) and tmaxv fr (s, n) versus ξ* for the
quasi-two-dimensional (n, m) and three-dimensional
(s, d) problems. The solid lines represent the solution of
the problem for a harmonic oscillator; the dotted lines rep-
resent fits (17) and (18) for Dmax/D0 and tmaxv fr, respec-
tively.
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of simple iterations. Empirical fitting of the numerical
data by convenient analytic functions yields

(17)

for the ξ* dependence of the maximum Dmax and

(18)

for the position tmax of this maximum. The suggested
relations describe the numerical data (see Fig. 7), with
an accuracy of 5%, for two-dimensional and three-
dimensional systems, as well as the numerical solution
for the problem of the motion of a one-dimensional
oscillator in the ξ* range 0.2 to 10. Thus, our numerical
studies have revealed that the mass-transport processes
on short observation time scales are determined by the
parameter ξ* = ωc/v fr (the value and position of the
maximum of the function D(t)/D0 depend only on ξ*
and are the same at equal ξ* for both two-dimensional
and three-dimensional systems). In contrast, the macro-
particle diffusion coefficient D =  depends on

ξ = ω*/v fr and Γ* (see (8)). Accordingly, as the time
increases, the dynamical characteristics of the system
(the function D(t)/D0  D/D0) cease to be determined
by the characteristic macroparticle oscillation fre-
quency ωc at the lattice sites of this system in its solid
state.

The evolution of the functions D(t) under study
illustrates the dynamics of the approach of the modeled
system to a statistical equilibrium state in the case of its
small deviations from this state. Our computations
show that, in contrast to a system of Brownian particles,

for which D(t)  D0 at t @ , a system of interact-
ing particles can be described by constant transport

coefficients only on time scales t @ 2 . An analysis
of the behavior of D(t) on short observation time scales
can be of use both in independently estimating ξ or ξ*,
which contain information about the interparticle inter-
action potential, and in restoring the macroparticle tem-
perature T if the resolution of the measuring instrument
is too low for their velocity spectrum to be properly
determined.

In conclusion, note that the difference in the ratios
ξ*/ξ found for two-dimensional and three-dimensional
systems allows us to explain the underestimated (by
about 40–50%) scale parameters ξ ~ 0.4–0.5 that were
obtained by comparing the simulations for the three-
dimensional problem and the experimental measure-
ments of the maximum Dmax of the function D(t) for the
only dust layer formed in the near-electrode region of a
high-frequency discharge in [34]. The parameter ξ
measured by two other methods (by analyzing the pair
correlation functions g(l) and the diffusion coefficients
D of macroparticles) corresponded to 0.66, to within

Dmax D0/ 1 2ξ*+( )≈

tmaxv fr
4 2

π 1 8 2ξ*+( )
----------------------------------≈

D t( )
t ∞→
lim

v fr
1–

ωc
1–
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5%. The error lay in the fact that, when reversing the
results of the measurements (Dmax and tmax), we
assumed that the ratio ξ*/ξ for a dust layer was equal to
2, as in the case of three-dimensional systems (accord-
ingly, the characteristic frequency ωh in a two-dimen-
sional hexagonal lattice was assumed to be approxi-

mately equal to ωbcc). Figure 9 illustrates the
D(t)/D0 measurements for the three-dimensional dust
structures in a direct-current glow discharge (curve 1)
and for the dust layer formed in the near-electrode
region of a high-frequency discharge (curve 2) pre-
sented in [34]. The values of ξ and Γ* restored in this
paper from the g(l) and D measurements for the exper-
imental conditions are given in the caption to the figure.
It is easy to see that the behavior of the experimental
D(t)/D0 curves on observation time scales tv fr ≤ 2/ξ* is
in good agreement with solutions (12a) for a harmonic
oscillator at ξ* = 2ξ (for a three-dimensional cloud of
macroparticles) and ξ* ≈ 1.63ξ (for a quasi-two-dimen-
sional dust layer). Figure 9 also shows the functions
D(t)/D0 obtained by numerically simulating a quasi-
two-dimensional structure (with ξ = 0.66, Γ* = 35) and
a three-dimensional liquid system (with ξ = 0.36, Γ* =
20). The differences on the initial segment of the curves
are attributable to the noise introduced by the measur-
ing procedure [34].
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Fig. 9. Measurements of the function D(t)/D0 for the three-
dimensional dust structures in a direct-current discharge,
ξ ≈ 0.36, Γ* ≈ 20 (1), and for the dust layer, ξ ≈ 0.66, Γ* ≈
35, in the near-electrode region of a high-frequency dis-
charge (2) [34]. The solution of the problem for a harmonic
oscillator at ξ* = 2ξ for a three-dimensional cloud of mac-
roparticles (3) and at ξ* ≈ 1.63ξ for a quasi-two-dimen-
sional dust layer (4). The results of our numerical simula-
tions of the function D(t)/D0 for two-dimensional (ξ = 0.66,
Γ* = 35) and three-dimensional (ξ = 0.36, Γ* = 20) liquid
systems are indicated by the heavy lines.
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5. CONCLUSIONS

We presented the results of our numerical simula-
tions of mass-transport processes on short observation
time scales for extended quasi-two-dimensional and
three-dimensional nonideal dissipative systems of mac-
roparticles interacting via a screened Coulomb poten-
tial. The simulations were performed for the parameters
corresponding to the experimental conditions in labora-
tory dusty plasmas. The evolution of the rms particle
displacement on short observation time scales was
found to correspond to lattice vibrations with a fre-
quency proportional to the second derivative of the pair
interparticle interaction potential. These results closely
agree with the theory of jumps constructed by using
analogies between the liquid and solid states of the
medium. We provided estimates for the characteristic
particle oscillation frequencies (ωc) in three-dimen-
sional face-centered cubic lattices and two-dimensional
hexagonal crystal structures. These frequencies were
shown to be responsible for the mean settled particle
lifetime (ta ≈ 2/ωc) in nonideal liquid systems and to
determine the pattern of mass-transport processes on
observation time scales t < ta .

The results can be used for passive diagnostics of
parameters of the interparticle interaction potential in
weakly dispersive plasma–dust structures and to nume-
rically analyze the pattern of fast processes on physi-
cally short time scales that are not large enough for
them to be described in terms of macroscopic kinetics.
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Abstract—Thermophoretic effects on dust structures under temperature gradients in glow and radio-frequency
discharge plasmas are studied experimentally. The geometry of dust structures consisting of micrometer-sized
polydisperse grains depends on heat release in the plasma. Thermophoretic forces associated with heat release
can control the formation of dust structures of different geometries. A theoretical model is proposed to describe
dust separation with respect to grain size caused by the effects of radial electrostatic and thermophoretic forces.
The glow discharge currents under critical conditions for grain separation predicted by the model agree with
those observed experimentally. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The geometry of plasma-dust structures consisting
of micrometer-sized grains depends on heat release in
the plasma [1, 2]. It was found that this geometry
depends on discharge current in glow discharges [3]. It
was shown in [2] that nonuniform distribution of dis-
charge current gives rise to temperature gradients and
thermophoretic forces acting on dust grains. The effect
of thermophoretic forces associated with heat release
on dust grains can lead to the formation of dust struc-
tures having various geometries, such as annular struc-
tures [3] or more complicated ones consisting of two
dust clouds [1]. The geometry of a dust cloud is deter-
mined by the parameters of the potential well resulting
from the balance of different forces. The existence of
various plasma-dust geometries and structures mainly
depends on the balance of forces in the radial direction,
because the radial well depth is much smaller than the
longitudinal well depth [2]. While the ambipolar radial
electric field acting on charged dust grains is directed
inwards, dust grains are pushed outwards by ion fric-
tion and thermophoretic force. The latter force is pro-
portional to the temperature gradient, and its direction
is parallel to the conductive heat flux in neutral gas. In
most experiments where dust grains are trapped in
charged layers, ion friction is much weaker than ther-
mophoretic forces. Thermophoretic force can be used
to change the position and geometry of a dust cloud,
remove dust grains from the discharge, and create ther-
mophoretic traps in plasmas, for example, at cryogenic
temperatures [1, 4]. In this study, we experimentally
examine thermophoretic effects on dust structures asso-
ciated with variations of heat release in glow and radio
frequency (RF) discharge plasmas caused by variations
1063-7761/05/10005- $26.001029
of current and power input and determine conditions
for formation of complex polydisperse dust structures.

2. EXPERIMENTAL

We studied plasma-dust structures that develop in
the first striation in a glow discharge sustained in a
2-cm diameter discharge tube and in the electrical dou-
ble layer in 13.56 MHz RF discharges sustained in 2-
and 5-cm diameter discharge tubes (see Fig. 1). The
anode was a grounded cylindrical electrode in the case
of glow discharge and a grid placed outside the dis-
charge tube in the case of RF discharge. The experi-
ments were conducted in air at pressures of 0.1 to
0.2 Torr. Plasma-dust structures were created by using
5- to 20-µm-diameter magnesium oxide particles and

1

2

3
4

5

6

7

89

10

V A

θ

Fig. 1. Experimental setup: (1) solid-state laser; (2) camera;
(3) annular anode; (4) grid electrode; (5) glass discharge
tube; (6) cathode; (7) RF generator; (8) dc voltage source;
(9) oscilloscope; (10) Peltier cooler; θ = shooting angle; A =
ammeter; V = voltmeter.
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Fig. 2. Longitudinal cross-sectional images of aluminum dust structures obtained at θ = 0: (a) I = 0.4 mA; (b) I = 0.8 mA. The lateral
dimensions of the images correspond to the outer diameter of the discharge tube.

(a) (b) (c) (d)

Fig. 3. Transverse cross-sectional images of aluminum dust structures obtained at θ = 45°: (a) I = 0.4 mA; (b) I = 1.2 mA; (c) I =
1.6 mA; (d) I = 3 mA. The lateral dimensions of the images correspond to the inner diameter of the discharge tube.
1- to 5-µm-diameter aluminum particles. The proper-
ties of the structures were examined by varying the
glow discharge current between 0.4 and 4 mA and the
RF discharge voltage between 100 and 150 V. We mea-
sured the glow discharge voltage and current and the
potential at the active electrode of the RF discharge by
means of a Tektronix TDS 3032 oscilloscope. The
plasma-dust structures were studied by using a Watec
LCL-187 CCD camera (at a shutter speed of 1/1000) set
at various angles θ to capture the light reflected from a
dust structure illuminated by mutually perpendicular
laser sheets with a waist diameter of 150 µm. The cam-
era had an imaging system with 22× optical zoom.
Transverse and longitudinal cross-sectional video
images were taken through a window in the end wall of
the tube, digitized, and computer-processed to enhance
contrast. An external gradient of the temperature field
in the 5-cm-diameter discharge tube was created by
using two 2.5-cm-long Peltier coolers mounted on the
side wall of the tube.

3. RESULTS

3.1. Glow Discharge 

In glow discharge plasmas, dust structures consist-
ing of microscopic grains form in striations. We exam-
ined the central part of the cross section of the first stri-
ation. The geometry of a dust structure depends on the
discharge current (see [2, 3]). When the discharge cur-
rent was I = 0.4–1 mA, we observed the formation of an
ellipsoidal structure having a diameter of about one-
third or one-fourth of the tube diameter (see Fig. 2). The
diameter of the structure increased with the current,
reaching the size of the bright part of the striation at a
current of 4 mA. The longitudinal size of the structure
JOURNAL OF EXPERIMENTAL A
decreased with increasing current (see Fig. 2). An annu-
lar structure developed at I > 1.6 mA, and its diameter
increased with the current while its width decreased
(see Fig. 3). No grains were observed near the axis, and
the longitudinal size of the annular structure varied
weakly with increasing current. The values of the cur-
rent corresponding to transitions between different
geometries of dust structures depend on the gas pres-
sure in the tube and the dust grain size. It was found
in [2] that the change from disk to annulus in the cross-
section of a dust structure with increasing discharge
current is controlled by the radial temperature gradient
associated with joule heating of the gas in the tube.

Figure 4 demonstrates that the presence of dust in a
glow discharge plasma changes ambient plasma prop-
erties, shifting the current–voltage characteristic of the
discharge. The discharge voltage corresponding to a
particular current can increase [5] or decrease (Fig. 4)
in the presence of a plasma-dust structure. The increase
in voltage depends on the additional loss of electrons
and ions on grain surface, grain charging, and the rela-
tive number of the electrons that are attached to the
grains and do not contribute to current and ionization in
the bulk plasma. The decrease in voltage can be
explained by the electron emission from the grain sur-
face induced by incident photons and ions accelerated
by the fields of charged grains to the energy corre-
sponding to the electron temperature Te .

At a high degree of dust polydispersity in a glow dis-
charge, a decrease in gas pressure leads to the formation
of a complex dust structure with geometry depending
on the discharge current, and radial separation of grains
is observed in the cross section of the structure. For
example, in the case of MgO particles characterized by
a size distribution with peaks at about 5 and 15–20 µm,
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005



        

FORMATION OF COMPLEX STRUCTURES IN DUSTY PLASMAS 1031

                                                                                     
an almost uniform dust structure is observed at the tube
axis at a discharge current of 0.4 mA. As the current
increases to 1.6 mA, a fraction of the dust remains at the
axis, while the rest moves to the wall, which leads to the
formation of two dust clouds (see Fig. 5). At a current
of 2.4 mA, all dust grains concentrate at the walls, mak-
ing up an annular structure. The formation of dust
clouds having this complex geometry takes place in
narrow ranges of discharge current, gas composition,
and pressure and depends on the grain size distribution.

Analysis of results. Our experimental results can be
described by the following model of dust separation
with respect to grain size caused by the effects of radial
electrostatic and thermophoretic forces. At a low gas
pressure, the thermophoretic force is

where P is the neutral-gas pressure, T is the gas temper-
ature, L is the mean free path of molecules, and a is the

FT 4PLa2∇ T /T ,–=

1380
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1180
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I, mA

U, V
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3

Fig. 4. Effect of aluminum dust structures on discharge cur-
rent–voltage characteristics at several air pressures:
(1, 2) P = 0.1 Torr; (3, 4) P = 0.15 Torr; (5, 6) P = 0.2 Torr.
Closed symbols correspond to dusty plasmas.
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grain radius (L @ a). In a glow discharge plasma, the
ambipolar radial electrostatic field that sustains charged
dust grains is

where n is the electron density and eZ is the grain
charge. The balanced state of dust grains is determined
by their potential energy, which depends on grain size.
Since both forces exerted by an ambipolar radial elec-
trostatic field and thermophoretic forces are propor-
tional to the corresponding gradients, the potential
energy can be expressed as follows [2]:

where α = PLa2IE/(2λTw) β = ZTe , λ denotes the ther-
mal conductivity of the gas, E is the longitudinal elec-
tric field strength in the striation, and Tw is the wall tem-
perature. In the model of a discharge plasma controlled
by ionization and diffusion, the electron-density distri-
butions in the positive column and striation are
described by the Bessel function J0(2.4r/R), where R is
the tube radius. Therefore, the force FE scales with
radius near the axis and increases more rapidly toward
the tube wall. If the heat release in the plasma is axially
symmetric, then the thermophoretic force is also pro-
portional to radius near the axis. The formation of two
radially separated structures is explained by the differ-
ence in the electrostatic and thermophoretic forces act-
ing on grains of different size. Since the thermophoretic
force scales with grain cross section, whereas the elec-
trostatic force is proportional to grain charge or radius,
the potential-energy distribution may have a minimum.
The minimum is located closer to the tube wall for
larger grains. At particular gas pressure and discharge
current, dust grains larger than certain size make up an
annulus, while smaller grains are localized near the
tube axis. (Larger particles are pushed out of a finite-
depth potential well toward the wall by the thermo-
phoretic force.) The conditions under which the mini-
mum appears are the threshold conditions for transition
to annular structure of dust clouds in a glow-discharge

FE ZkTe∇ n/n,=

U r( ) α 1 J0 2.4r/R( )–[ ]– β J0 2.4r/R( ),ln–=
(a) (b) (c)

Fig. 5. Cross-sectional images of MgO dust structures in glow discharge plasmas obtained at θ = 90°: (a) I = 1 mA; (b) I = 1.4 mA;
(c) I = 1.8 mA.
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cross section. Figure 6 shows the transition current cal-
culated for glow discharge in air as a function of grain
size by using measured electric field strengths. Annular
structure is observed at currents lying above the curve.
Conditions below the curve correspond to dust grains
localized near the tube axis. This model describes dust
separation with respect to grain size in experiments on
polydisperse dust in glow discharge. The values of cur-
rent calculated by using the model agree with experi-
mental results. Note that larger (15–20 µm) grains are
additionally driven toward the wall by ion friction,
which is ignored here. Thermophoretic forces can be
used to change the position and geometry of a dust
cloud and remove dust grains from the discharge.

3.2. RF Discharge 

An analogous dependence of the geometry of a
plasma-dust structure on heat release is observed for
RF discharge. At relatively low voltages, the structure
is localized in the space-charge layer at the active elec-
trode surface. With increasing RF discharge voltage, a
dust-free zone develops in the central region of the
plasma-dust structure (see Figs. 7–9). This is explained
by an increase in the axially symmetric power input,

3

2

1

0 5 10 15 20

a, µm

I, mA

Fig. 6. Transition to annular structure in a glow-discharge
cross section.
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which manifests itself by higher emission from the
zone. We found that the average interparticle spacing
increases with RF discharge voltage when the spacing
is smaller than 0.2 mm. Analogous behavior was
observed in glow discharge as the discharge current was
increased [3]. Further increase in power input leads to
transition to annular structure (see Fig. 9). When the
initial average interparticle spacing is larger than
0.2 mm, it does not increase and annular structure
develops at lower rates of power input. The bright area
in Fig. 9 corresponds to a zone of higher power input
(higher total intensity of light emitted by the plasma).

When the temperature of the RF-discharge tube wall
is reduced by 20 K, the dust structure located between
the Peltier coolers is stretched in the radial direction by
thermophoretic forces (see Fig. 10). Its cross section
becomes an ellipse stretched toward the cooled walls.
Eventually, the dust cloud splits into two parts, which
are attracted to the cooled walls. (An analogous effect
was revealed in glow-discharge striations when the dis-
charge tube was cooled on opposite sides [1].) Dust
grains are trapped in a new balanced state sustained by
superposition of the longitudinal electric field and the
thermophoretic forces due to radial temperature gradi-
ents. The temperature field can be adjusted to create
dust clouds of different geometries. Experimental
results on splitting dust clouds can be used to estimate
the binding energy for grains in the structure. Consider
an initially spherical charged dust cloud that splits into
two equal spherical parts, which move apart in an ambi-
polar radial electrostatic field. The binding energy can
be estimated by using the difference between the poten-
tial energies of the charged clouds and the work done
by thermophoretic forces to displace the clouds in the
electric field. Suppose that the potentials of both frag-
ments are equal to the floating potential ϕ of the
plasma. The change in electrostatic energy is

where ∆C is the change in the capacitance of the
spheres and RC is the initial cloud radius. According to
experimental observations, the initial cloud diameter is
5 mm, the number of grains in the cloud is N ≈ 6000,
and the distance between the spheres is approximately

∆W 0.5∆Cϕ2 0.4RCϕ2,+=
(a) (b) (c)

Fig. 7. Images of dust structure in an RF-discharge cross section in a 2-cm diameter tube obtained at θ = 45° for voltage amplitudes
of (a) 100, (b) 110, and (c) 120 V.
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(a) (b)

Fig. 8. Images of dust structure with a dust-free central zone in RF discharge in a 5-cm diameter tube obtained at θ = 45° and a
voltage of 150 V: (a) transverse cross section; (b) longitudinal cross section. The lateral frame size corresponds to the discharge tube
diameter.

(a)

(b)

(c)

(a)

(b)

(c)

Fig. 9. Fragments of images of aluminum dust structures in RF discharge obtained at θ = 90° for (a) 100, (b) 105, and (c) 110 V.
The lateral frame size is approximately equal to the framed area in Fig. 8a. The right and left columns correspond to different dust
densities.

(a) (b)

Fig. 10. Splitting of a dust structure in RF discharge caused by cooling of the discharge tube on opposite sides: (a) before cooling;
(b) after cooling.
equal to their diameter d. The number of broken bonds,
∆N ≈ 400, is approximately equal to the number of
grains in the cross section of the splitting. The total
work is the sum of the work ∆Cϕ2 done by electrostatic
field to displace the excess charge on the two spheres
and the work A done by thermophoretic forces,

A
Nα∆Td2

4TwΛ2
---------------------,+
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where Λ = R/2.4. The total work produces a change ∆W
in electrostatic energy and a change ∆Nε in binding
energy:

The evaluated binding energy, ε ≈ 3 keV, is compa-
rable to the binding energy of a dust molecule calcu-
lated in [6].

∆Cϕ2 A+ ∆W ∆Nε.+=
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4. CONCLUSIONS

Thermophoretic forces associated with heat release
in electric discharge control the formation of complex
dust structures. Thermophoretic traps can be created to
produce plasma-dust clouds having various geometries.
The measured current–voltage characteristics demon-
strate that the properties of glow discharge change in
the presence of dust grains. Thermophoretic forces
induce separation with respect to grain size, which can
be used in practical applications.

REFERENCES

1. L. M. Vasilyak, S. P. Vetchinin, V. S. Zemnukhov, et al.,
Zh. Éksp. Teor. Fiz. 123, 493 (2003) [JETP 96, 436
(2003)].
JOURNAL OF EXPERIMENTAL A
2. V. V. Balabanov, L. M. Vasilyak, S. P. Vetchinin, et al.,
Zh. Éksp. Teor. Fiz. 119, 99 (2001) [JETP 92, 86
(2001)].

3. L. M. Vasilyak, S. P. Vetchinin, A. P. Nefedov, and
D. N. Polyakov, Teplofiz. Vys. Temp. 38, 701 (2000)
[High Temp. 38, 675 (2000)].

4. V. E. Fortov, L. M. Vasilyak, S. P. Vetchinin, et al., Dokl.
Akad. Nauk 382, 50 (2002) [Dokl. Phys. 47, 21 (2002)].

5. L. M. Vasilyak, S. P. Vetchinin, D. N. Polyakov, and
V. E. Fortov, Zh. Éksp. Teor. Fiz. 121, 609 (2002) [JETP
94, 521 (2002)].

6. G. E. Morfill, V. N. Tsytovich, and H. Thomas, Fiz.
Plazmy (Moscow) 29, 3 (2003) [Plasma Phys. Rep. 29,
1 (2003)].

Translated by A. Betev
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005



  

Journal of Experimental and Theoretical Physics, Vol. 100, No. 5, 2005, pp. 1035–1041.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 127, No. 5, 2005, pp. 1173–1180.
Original Russian Text Copyright © 2005 by Kuz’min.

                                         

STATISTICAL, NONLINEAR, 
AND SOFT MATTER PHYSICS
Contribution of Multiple Scattering
to the Dielectric Constant 

of a Randomly Inhomogeneous Medium
V. L. Kuz’min

St. Petersburg Institute of Trade and Economics, ul. Novorossiiskaya 50, St. Petersburg, 194021 Russia
e-mail: Vladimir.Kuzmin@paloma.spbu.ru

Received November 17, 2003; in final form, September 2, 2004

Abstract—Within the statistical theory of multiple scattering of light in random media, the dielectric constant
of a suspension is represented as a diagram series in scattering orders and concentration of particles. The con-
tributions of double and triple scattering events are determined. The extinction length and the transport mean
free path in highly concentrated suspensions calculated with the use of the optical theorem are in good agree-
ment with the available data. It is shown that the two-particle Born approximation, combined with the Mie form
factor and the Percus–Yevick structure factor, is not adequate for systems with a high concentration of scatter-
ers. A contribution to the optical parameters is found that is missing in the above approximation. © 2005 Ple-
iades Publishing, Inc. 
1. INTRODUCTION

The wide application [1] of coherent and correlation
effects of multiple scattering of light in strongly inho-
mogeneous opaque colloidal systems (suspensions,
emulsions, gels, foams, and biological tissues [2–10])
made the problem of calculating the optical parameters
of these systems topical.

The main parameters that characterize radiation
transfer in the multiple scattering regime are the photon
mean free path l (or the extinction length) and the trans-

port mean free path l* = l(1 – ), where  is the
average cosine of the scattering angle—the basic
parameter that characterizes the anisotropy of the scat-
tering cross section. The optical theorem in the Born
approximation relates the parameters l and l* to the
scattering cross section of electromagnetic radiation in
the second, the lowest nonvanishing, order with respect
to the difference ∆ε = εp – ε0 of the dielectric constants
of a particle εp and the medium ε0 in which the particles
are dispersed. In this case, the differential cross section,
or the scattering indicatrix, is represented as a product
of a form factor, which characterizes the scattering by
an individual particle, and a structure factor. To
describe the structure factor of a suspension, one
widely uses the Percus–Yevick approximation [11],
which proved to be quite successful for describing the
model of solid spheres. For most systems, the parame-
ter ∆ε is not small. Therefore, one replaces the Ray-
leigh–Gans form factor by the Mie form factor [2, 4–6],
while remaining within the Born approximation. How-
ever, for condensed suspensions, the application of the
Mie form factor is not consistent with the Percus–
Yevick structure factor because the latter factor takes

θcos θcos
1063-7761/05/10005- $26.001035
into account the correlation in the positions of particles
in all orders in concentration, whereas the Mie form
factor involves an expression for the field near an iso-
lated particle. The discrepancy between the measured
values of the parameters and those calculated according
to the above scheme amounts to 30% for condensed
suspensions [5, 6].

In the present paper, we apply the diagram tech-
nique developed earlier [12–14] in the theory of propa-
gation and scattering of light in random media to
describe the dielectric constant of a suspension as a
series in the parameter ∆ε and the concentration. This
allows us to calculate the optical parameters of a sus-
pension beyond the framework of Born approximation.
It is obvious that the standard approach does not take
into account multiparticle correlations of order greater
than 2. However, we show that the standard approach,
based on the multiplicative representation of the scat-
tering cross section as a product of the Mie form factor
and the structure factor [2, 4–6] when the latter factor
takes into account the terms of any order in the concen-
tration, completely ignores the processes of multiple
rescattering among a given number of particles; it does
not even completely take into account the second-order
terms in the concentration. We find an explicit expres-
sion for the correction to the dielectric constant that
comes from the rescattering between two particles.
This correction is of second order in the concentration
and of third order in the parameter ∆ε. This additional
term improves the agreement between theoretical and
the available experimental results [5] in the range of
high concentrations.

In this paper, we consider systems without intrinsic
absorption, i.e., absorption associated with inelastic
 © 2005 Pleiades Publishing, Inc.
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interaction between light and matter. Thus, the damping
in this case is attributed to the phase shifts of the field.
In systems of this type, the attenuation of light is asso-
ciated with the processes of multiple elastic scattering
by random configurations of dielectric scatterers with a
size on the order of the wavelength.

The paper is organized as follows. In the Section 2,
we present a general expression for the dielectric con-
stant of a suspension in the form of a diagram series in
powers of ∆ε and concentration. Section 3 is devoted to
the calculation of the optical parameters of a suspen-
sion in the Born approximation and to the comparison
of the results with the available experimental data. In
Section 4, we derive corrections to the Born approxi-
mation that are associated with the processes of multi-
ple rescattering between the particles of a suspension.
Conclusions are devoted to the discussion of the results.

2. DIAGRAM SERIES 
FOR THE DIELECTRIC CONSTANT

Consider the system as an ensemble of spherical
particles that are randomly distributed in a solvent. We
will neglect the intrinsic absorption associated with
inelastic scattering processes.

Let a plane monochromatic electromagnetic wave
of frequency ω be incident on the system. The Green
function of the electromagnetic field in a random
medium satisfies the Dyson equation (see, for exam-
ple, [13])

(2.1)

The tensor

(2.2)

represents the Green function of the wave equation in a
pure solvent with dielectric constant ε0, k0 is the

wavevector in this medium, k0 = 2πn0λ–1, n0 =  is
the real refractive index of the dispersion medium, and
λ = ω/c is the wavelength in vacuum. For short, we omit
the exponential factor exp(iωt) that describes the time
dependence of the monochromatic wave.

T̂ r1 r2–( ) T̂0 r1 r2–( )=

+ r' r''T̂0 r1 r'–( )Π̂ r' r''–( )T̂ r'' r2–( ).dd∫

T̂0 r( ) 4π k0
2 Î ∇ ∇×+( ) qd

2π( )3
------------- eiq r⋅

q2 k0 iη+( )2–
----------------------------------∫=

ε0

+
r1 r2 r1 r2

+ . . .+

G(2) G(3)

  (r1 – r2) =
4πε0

∆ε
δ(r1 – r2) 

Fig. 1. Contributions of the first-, second-, and third-order
terms in ∆ε in the diagram series to the dielectric constant.

Π̂

T T T
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The kernel of the Dyson equation, or a polarization

operator (r1 – r2), is represented as a series of irre-
ducible diagrams (Fig. 1). All segments in these dia-
grams represent dressed Green functions. Each vertex
is assigned a factor ∆ε/4πε0. A multitail vertex or a star
of n wavy lines denotes a crossed correlator

(2.3)

where D is the diameter of a particle; the Heaviside
function Θ(D/2 – |ri – Ri|) in this equation guarantees
that the scattering occurs inside a particle. The correla-
tion functions F(n)(R1, …, Rn) are defined as connected,
or cumulative, parts of n-particle distribution functions
in the system of solid spheres centered at R1, …, Rn .
The one-particle distribution function represents the
mean density of the number of particles,

where V is the volume of the system and  is the mean
particle number,

(2.4)

(2.5)

where g(n)(R1, …, Rn) are the well-known Ursell corre-
lation functions [11, 15]. The δ functions indicate that
a lesser number of particles take part in the scattering
process; thus, the terms with δ functions describe con-
tributions of lower order to the concentration than those
that do not contain δ functions.

In the general case, the terms of the diagram series
represent integral convolutions of the Green functions
and multiparticle correlation functions for a system of
solid spheres.

The Fourier image of the polarization operator,

defines the dielectric constant ε of the suspension,

(2.6)

Π̂

G n( ) r1 … rn, ,( ) RiΘ
D
2
---- ri Ri–– 

 d∫
i 1=

n

∏=

× F n( ) R1 … Rn, ,( ),

F 1( ) R( ) ρ N /V ,= =

N

F 2( ) R1 R2,( ) ρδ R1 R2–( ) g 2( ) R1 R2,( ),+=

F 3( ) R1 R2 R3, ,( ) ρδ R1 R2–( )δ R1 R3–( )=

+ δ R1 R2–( )g 2( ) R2 R3,( )

+ δ R2 R3–( )g 2( ) R3 R2,( )

+ δ R3 R1–( )g 2( ) R1 R2,( ) g 3( ) R1 R2 R3, ,( ),+

Π̂̃ k( ) rΠ̂ r( )e ik r⋅–d∫=

ε ε0–
4πε0
------------- Π̃ ⊥ k( ),=
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where k = k0 is the wavevector of a field in the
suspension, the index “⊥ ” denotes the transverse (with

respect to k) component of the tensor (k), and ε' =
Reε. The dependence of the dielectric constant on the
wavevector points out that the system of finite-size
scatterers is characterized by spatial dispersion.

The imaginary part of the polarization operator
defines the photon mean free path,

(2.7)

under the condition that Im  ! Re .

3. DIELECTRIC CONSTANT
IN THE BORN APPROXIMATION

The diagram series for the polarization operator is
ordered with respect to the number of vertices, i.e., with
respect to the parameter ∆ε (hats in the symbols denot-
ing operators are omitted in what follows). At the same
time, it contains another expansion parameter—the
concentration c = ρv, where v  = πD3/6 is the volume of
a particle in the suspension. Physically, the terms of
order cn describe the scattering by a system of n mutu-
ally impermeable particles.

In Fig. 2, the polarization operator is represented as
the series

(3.1)

which is ordered with respect to both the number of
scatterers and the parameter ∆ε.

The first sum of diagrams, ΠMie, represents the pro-
cesses of multiple scattering in the bulk of a single iso-
lated particle. The summation over all orders n gives
rise to a field that is described by the Mie formulas; the
integration of this expression over the volume of the
sphere yields the Mie form factor. This is a contribution
of maximally connected diagrams, in which all argu-
ments of the correlation functions are related by δ func-
tions,

The second sum of diagrams, ΠPY, describes successive
events of scattering by two particles; the wavy line rep-
resents the correlation function of the position of parti-
cles; as a rule, one uses the Percus–Yevick approxima-
tion for this function. It is these two terms, ΠMie and
ΠPY, owing to which the representation of the scatter-
ing cross section as a product of the Mie form factor by
the structure factor has found wide application.

The third group of the diagrams, ΠR, describes the
scattering by a single particle with regard to a single

ε'/ε0

Π̂̃

1
l
--- ε'

ε0
----4πk0ImΠ̃ ⊥ k( ),=

Π̃ ⊥ Π̃ ⊥

Π Π Mie ΠPY ΠR ΠM …,+ + + +=

F n( ) R1 … Rn, ,( ) ρδ R1 R2–( )…δ R1 Rn–( ).∼
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intermediate rescattering by another particle that corre-
lates with the first particle; this type of scattering is dis-
regarded in the standard approach. However, one can
see that the diagrams contained in ΠR are of the same
order of magnitude as the diagrams in ΠPY, which are
described as a convolution of the form factor and the
structure factor.

These diagrams do not exhaust the contribution of
two-particle correlations. The diagrams ΠM represent
the contributions of multiple rescattering processes
between a given pair of particles.

In the absence of the intrinsic absorption, formula (2.7)
with regard to the diagrams of the second order in ∆ε
leads to the well-known optical theorem that relates the
scattering cross section and the photon mean free path:

(3.2)

where

is the Fourier image of the Heaviside function and θ is
the angle between the vectors k and ks; the integration
is performed over the orientations of the wavevector ks
of the scattered wave.

Up to a factor, the integrand in (3.2) represents the

differential cross section (q) of single scattering in
the Born approximation:

(3.3)

where F(q) = (∆ε/ε0)2 (q) is the Rayleigh–Gans form
factor and S(q) = 1 + g(2)(q)/ρ is the structure factor.

1
l
---

πk0
4

4
-------- ∆ε

ε0
------ 

  2 Ωd

2π( )3
-------------Θ̃2

k ks–( ) 1 θcos
2

+( )∫=

× ρ g̃ 2( ) k ks–( )+[ ] ,

Θ̃ q( ) 4π
q3
------ qD

2
-------sin

qD
2

------- qD
2

-------cos– 
 =

G̃

G̃ q( ) ρF q( )S q( ),=

Θ̃2

∏ = Σ
n

n

1
+ Σ

n n 1
 

∏Mie ∏PY

+ Σ
n

n

1

∏R

∏M

+ Σ
n n 1

+ . . . 

Fig. 2. Diagrams of the first and second order in the concen-
tration of scatterers. The spheres bound the domain of inte-
gration over the coordinates of vertices.
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Table 1.  Comparison of the experimental values of the photon mean free path l (column 2) and the transport mean free path l*
calculated within the Percus–Yevick approximation: with the Mie form factor (column 4) and with the Rayleigh–Gans form

factor (columns 3 and 5); columns 6 and 7 present experimental and calculated values of , respectively, for suspensions
of particles of different diameters D. The concentration is c = 0.1, and ∆ε = 0.759 

D/λ
l/λ l*/λ

exp. PY + RG PY + Mie PY + RG exp. PY + RG 

0.14 197 [18] 280 210 [18] 284 0.01

0.21 64 [17] 87 90 0.04

0.47 14 [18] 17 41 [18] 35 0.51

0.68 9.7 [17] 10 39 0.74

0.73 7.6 [18] 9.1 36 [18] 38 0.57

0.89 5.4 [17] 6.9 37 [19] 39 0.85 [19] 0.83

0.95 5.7 [18] 6.5 39.5 [18] 42 0.86 0.85

1.55 3.9 [17] 3.6 50 0.93

1.72 4.1 [16] 3.2 59 [16] 55 0.93 [16] 0.94

θcos

θcos
Formula (3.2) represents the contribution of the sum
of the first two diagrams to ΠMie and ΠPY, a vertex in
each sphere in the diagrams. The replacement of the
Rayleigh–Gans form factor by the Mie form factor is
equivalent to taking into account all the diagrams in
ΠMie and ΠPY.

The transport mean free path l* in this approxima-
tion is defined as

(3.4)

In the case of a low concentration, the structure factor
becomes equal to unity, S(q)  1 as c  0. For
finite concentrations, one applies the Percus–Yevick
approximation for the two-particle function g(2)(k – ks).

In [4], it was pointed out that, for highly concen-
trated suspensions, the results of calculation of the scat-
tering cross sections with the use of the Rayleigh–Gans
form factor only slightly differ from a similar results
obtained with the use of the Mie form factor. To assess
the possibility of applying the expansion in the param-
eter ∆ε, we carried out calculations by formula (3.2)
with the use of the Rayleigh–Gans form factor and
compared the results with the available results, both
with the experimental data and the numerical results
obtained with the use of the Mie form factor.

Choosing the wavelength as a reasonable spatial
scale, we compared the values of the mean free path
and the transport mean free path obtained in [16–18] for
water suspensions of latex particles with different val-

1
l*
-----

πk0
4ρ

4
------------ Ωd

2π( )3
------------- 1 θcos

2
+( )∫=

× 1 θcos–( )F k ks–( )S k ks–( ).
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ues of the parameter D/λ and the same concentration
c = 0.1 with the results of our calculations performed
with the use of the Rayleigh–Gans form factor. For
given values of ∆ε and concentration, the dielectric
constant is a homogeneous function of the ratio D/λ;
this fact allows us to compare the results obtained for
different wavelengths of light.

In [18], the authors experimentally determined the
mean free path l with the use of a He–Ne laser with a
wavelength of λ = 0.633 µm and calculated the trans-
port mean free path l* with the use of the Mie form fac-
tor for particles of different diameters. In [16, 17],
experimental values of l for latex water solutions were
obtained with the use of light with wavelengths of λ =
0.633 µm [16] and λ = 0.515 µm [17]. In Table 1, the
results obtained in [16–18] are compared with the val-
ues of l and l* obtained in our calculations in the Per-
cus–Yevick approximation with the use of the Ray-
leigh–Gans form factor. One can see that the experi-
mental and numerical results for the mean free path of
photons agree to within 10–20% for different systems;
the same degree of agreement is observed for the trans-
port mean free path l* calculated with the Mie formula
and the Rayleigh–Gans formula. This means that the
parameter ∆ε(kD)2 can be assumed small for the major
part of investigated systems; therefore, one may calcu-
late only the main diagram in ΠR and neglect the dia-
grams ΠM that describe the contribution of multiple res-
cattering processes. The greatest discrepancy in the
results is observed for small particles; in this case,
when λ–1D @ 1, the main contribution is made by the
long-wavelength part of the structure factor S(q), which
significantly differs from unity even for concentrations
of c ~ 0.1.
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Note that calculations in the “gas” approximation
with the structure factor equal to unity give lower val-
ues of the spatial parameters l and l* compared with the
calculations using the Mie form factor, while the calcu-
lations with the Percus–Yevick structure factor give
higher values of these parameters.

The quantities  calculated by the formula l* =

l(1 – )–1 are in good agreement with the results
of [16, 19].

In [5], the authors determined the transport mean
free path experimentally, by measuring the attenuation
of light transmitted through a latex suspension in a wide
spectral range; they investigated three condensed and
three diluted latex suspensions consisting of particles
with the diameters D = 0.205, 0.299, and 0.460 µm.
Then, they compared the measured values of l* with the
values calculated with the use of the Mie form factor.
They point out that, for suspensions with concentra-
tions of c ≈ 0.3, the calculation yields underestimated
values for the transport mean free path l* compared
with the measured values; this is especially manifest for
a suspension with the size of particles D = 0.460 µm.
We calculated l* for the same values of parameters
using the Percus–Yevick structure factor (Table 2).
Note that, in this case of very high concentrations of
suspensions, calculations performed within the Born
approximation with the use of the Rayleigh–Gans form
factor (i.e., in the principal order in the parameter ∆ε)
and with the use of the Mie form factor (i.e., with regard
to all orders in ∆ε) agree to within a few percent.

4. CONTRIBUTION
OF MULTIPLE RESCATTERING 

BETWEEN SCATTERERS

Consider a contribution of order ∆ε3 to the diagram
term ΠR (see Fig. 2), which describes the scattering
from a single particle with regard to the field distortion
due to the presence of another particle:

(4.1)

For approximate numerical estimates, we use a lin-
ear approximation of the form

and a similar approximation for (q2 – q1), where the
weights λ1 > 0 and λ2 > 0 satisfy the condition λ1 +
λ2 = 1. This approximation is justified in the case of a
strongly anisotropic scattering cross section, when the

θcos

θcos

ΠR
3( ) ∆ε

4πε0
----------- 

  3 q1 q2dd

2π( )6
-----------------T̃ q1( )T̃ q2( )∫=

× Θ̃ k q1–( )Θ̃ q2 k–( )Θ̃ q2 q1–( )g̃ 2( ) q2 q1–( ).

g̃ 2( ) q2 q1–( ) λ1g̃ 2( ) k q2–( ) λ2g̃ 2( ) k q1–( ),+≈

Θ̃
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main contribution to the integrand is made by the
domain q1 ~ q2 ~ k. Numerical results for different
weight factors coincide to within a few percent.

We calculated the contribution of the correction

 for the mean free path of a photon using the
parameters of the three highly concentrated systems
investigated in [5]. The contributions of individual
terms of the polarization operator are additive with
respect to the inverse of the mean free path. Data for the
transport mean free path were obtained in [5] in an
approximation equivalent to taking into account all
terms of the form ΠMie and ΠPY (Fig. 2). This allows
one to determine a correction to the transport mean free

path by adding 4πk0(1 – )  to the values of the
inverse transport mean free path (l*)–1 calculated with

the use of the Mie form factor [5]; the parameter 
was calculated in the Born approximation,

The results of calculations are presented in Table 2 (col-
umn 5). One can see that the values of the transport
mean free path obtained with the use of the correction

 are greater than the values calculated in [5] with
the use of the Mie form factor by about 20% and are in
better agreement with the experimental results.

CONCLUSIONS

The dielectric constant of a suspension depends on
three parameters: the difference ∆ε between the dielec-
tric constants of the particles and the medium, the con-
centration c, and the ratio of the particle size to the
wavelength, k0D. The standard Born approximation is
formally applicable only in the range of ∆ε ! 1 and

ΠR
3( )

θcos ΠR
3( )

θcos

θcos
ΩG k ks–( ) θcosd∫

ΩG k ks–( )d∫
-----------------------------------------------.=

ΠR
3( )

Table 2.  The transport mean free path l* calculated by using
the Percus–Yevick structure factor and the Mie form factor
(column 3), the Rayleigh–Gans form factor (column 4), and

the Mie form factor allowing for the contribution of 
(column 5). λ = 0.5 µm

D, µm c

l*, µm

PY + Mie PY + RG
PY + Mie

+ 

0.205 0.349 9.8 [5] 8.5 12

0.299 0.354 9.2 [5] 10 13.5

0.460 0.299 9.2 [5] 8.1 11

ΠR
3( )

ΠR
3( )
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finite values of k0D for diluted solutions with a struc-
tural factor close to unity, S(q) ≈ 1. In order to describe
systems with finite values of (k0D)2∆ε, one applies the
Mie form factor instead of the Rayleigh–Gans form
factor. In the range of small concentrations, such a
replacement is justified and leads to excellent
agreement with experiment. We have shown that the
conventional representation of the scattering cross sec-
tion as a product of the Mie form factor and the Percus–
Yevick structure factor is not justified for highly con-
centrated suspensions because it does not take into
account multiparticle correlations. We have shown that
this multiplicative representation of the indicatrix is not
valid even when terms of order ∆ε3c2 are taken into
account. Our estimates of the contribution of order
∆ε3c2 improve the agreement with the available experi-
mental data. The approach developed in this paper can
be generalized to the case of polydisperse colloidal
systems.

The dielectric constant is usually defined as a coef-
ficient in the linear relation between the displacement
and field vectors. However, according to (2.1) and (2.6),
the same quantity normalizes the pole of the Fourier
image of the dressed Green function (for a given fre-
quency) and thus defines the damping law for the Green
function in the asymptotic domain of large distances
r @ λ. The intensity, i.e., a quantity quadratic in the
amplitude of the incident field is measured in the exper-
iment. Radiation transfer is described by the radiation
transfer equation, or the Bethe–Salpeter equation, in
which a complex-conjugate product of dressed Green
functions serves as a priming propagator. Thus, in a
domain where the contribution of the product of mean
fields to the intensity is negligible due to the exponen-
tial damping and there is only scattered diffuse radia-
tion with a different, power, damping law, the behavior
of this diffuse radiation is still determined by the pho-
ton mean free path l and the transport mean free path l*,
which, in turn, are determined by the imaginary part of
the dielectric constant.

The radiation transfer problem is usually considered
in the approximation of weak scattering λ/l ! 1.
According to the optical theorem, the corrections
obtained in this paper imply that the multiple scattering
cross section takes into account the next terms after the
weak scattering approximation. In the optics of
strongly inhomogeneous media, this is the first step
from weak localization to strong localization. Correc-
tions of the same order are taken into account when
passing from the Rayleigh–Gans form factor to the Mie
form factor; we point to some disregarded corrections
of the same order. The Mie form factor takes into
account the contribution of multiple rescattering
processes within a single particle; the diagrams consid-
ered here describe multiple rescattering between two
particles.
JOURNAL OF EXPERIMENTAL A
From the viewpoint of field theory, the optical theo-
rem plays the role of the Ward identity. The two-tail
diagrams shown in Fig. 2 turn into four-tail diagrams
that describe the multiple scattering cross section when
each element representing a dressed Green is broken in
succession, which corresponds to the calculation of the
imaginary part.

Corrections of the same order as those obtained in
the present paper also arise in the kernel of the Bethe–
Salpeter equation. In the present paper, we did not con-
sider these corrections. However, by virtue of the
above-mentioned Ward identity and the conservation of
the optical theorem, these corrections are equivalent to
the corrections to the polarization operator, at least in
the diffusion approximation within which the experi-
mental results of [5] are interpreted.

To calculate the optical parameters of colloidal sus-
pensions, it is desirable that one experimentally inves-
tigate extinction in highly concentrated suspension
with particles of different sizes and in a wide spectral
range. Both theoretical and experimental investigations
of hydrodynamic interaction in highly concentrated
colloidal suspensions are desirable. A system of solid
spheres is the simplest model of a strongly inhomoge-
neous system. Taking into account the nonsphericity,
inhomogeneity, hydrodynamic interaction between
particles and a medium, and nonadequate description of
the structure factor in the Percus–Yevick approxima-
tion may also prove very important in applications.
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Abstract—The evolution of multipole moments is analyzed for optically pumped cold ground-state atoms in
the limit of low saturation of a closed j0  j1 dipole transition. The longest multipole-moment relaxation
times are analyzed as functions of ellipticity and frequency detuning from resonance for transitions with j0 & 5.
The qualitative difference between the evolution toward steady-state Zeeman sublevel populations and dynamics
of transient spontaneous emission is demonstrated for transitions of the following types: j  j – 1, j  j with
integer j, j  j with half-integer j, and j  j + 1. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Evolution of Zeeman-sublevel populations ρµµ(t)
and coherences ρµµ'(t) (µ ≠ µ') for ground-state atoms
interacting with optical fields are of interest in various
branches of atomic physics and spectroscopy. In low-
density atomic ensembles, collisional relaxation is neg-
ligible and the evolution is controlled by stimulated
emission and absorption of photons and by spontane-
ous emission from excited states. In [1], a two-level
model of steady-state resonant interaction between
slowly moving atoms and a monochromatic field was
analyzed. In the case when both ground and excited
energy levels (E0 and E1) are degenerate with respect to
the respective projections j0 and j1 of total angular
momentum, the atomic density matrix (∞) was found
for an arbitrary closed j0  j1 dipole transition and an
arbitrary saturation parameter S. However, the evolu-
tion of systems with j0 > 1 toward this regime of inter-
action is slow when S ! 1. For example, the average
number of optical pumping cycles required for the
2  3 transition in a one-dimensional field configura-
tion to reach a steady-state regime was estimated at
about ten in [2] by using τ0 = (γS)–1 as an estimate for
cycle duration, where γ is the decay rate of the excited
state. Therefore, both the radiative force and momen-
tum diffusion tensor calculated in semiclassical
approximation by using (∞) [3] are generally overes-
timated as compared to experimental results [4]. On the
other hand, the time-dependent distribution ρµµ'(t) is of
special interest for studies of various transient regimes of
optical pumping employed in laser cooling schemes [5].

When recoil effects are neglected for an atom at rest,
the time-dependent ground-state density matrix (t)
obeys a system of ordinary differential equations

ρ̂

ρ̂

ρ̂

1063-7761/05/10005- $26.000821
(ODEs), which are a special case of the generalized
optical Bloch equations [1, 6] and can be written as

(1)

where  is a Liouville operator. However, their solu-
tions are extremely cumbersome even for j0 = 1 and 3/2,
because the dimension of (1) is (2j0 + 1)2 – 1 in the gen-
eral case of elliptically polarized field. In the limit of
j0 @ 1, the dynamics of atomic angular momentum can
be described by using the expansion of the Bloch equa-
tions in terms of the small parameter 1/j0 [7]. This semi-
classical approach was applied to analyze, up to contri-

butions of order 1/ , the evolution toward a steady-
state angular-momentum distribution for atoms with
j0 * 10 pumped by arbitrary elliptically polarized fields
[6]. A similar analysis of angular-momentum evolution
in a constant magnetic field was presented in [8]. Qual-
itatively different regimes of evolution toward a steady
state were identified for transitions of three types: j 
j – 1, j  j, and j  j + 1. As an alternative to sys-
tem (1), a time-dependent model describing the popu-
lations of certain Zeeman sublevels in some specific
field configurations can be developed in terms of the
matrix of ensemble-averaged relaxation times [9],

(2)

which satisfies simpler algebraic equations of the form

∂ρ̂
∂t
------ +̂ρ̂,=

+̂

j0
2

τ̂ stat ρ̂ t( ) ρ̂ 0( )–[ ] t,d

0

∞

∫=

+̂τ̂ stat ρ̂ ∞( ) ρ̂ 0( ).–=
 © 2005 Pleiades Publishing, Inc.
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In this paper, the evolution toward the steady-state
distribution (∞) is examined by analyzing system (1)
in the general case of arbitrary elliptically polarized
electromagnetic field. The starting point is an analysis
of the evolution of the multipole moments ρκ of cold
ground-state atoms (κ is the multipole rank), rather than
ρµµ(t) and ρµµ'(t) (whose interpretation depends on the
choice of a quantization axis). Intermediate values of
angular momentum are considered (1 ≤ j0 ≤ 5), for
which the semiclassical approximation employed in [7]
is not effective.1 The values of j0 in question include
those characteristic of alkali and rare-earth metals
widely used in atomic physics: j0 = 2 for 23Na, j0 = 5/2
for 173Yb, j0 = 3 for 85Rb, j0 = 4 for 133Cs, etc. The anal-
ysis is focused on the dependence of the longest relax-
ation time τmax on the degree ! of circular polarization
of a monochromatic field and on its detuning from
atomic resonance, δ = ω – ω0, in the limit of low satu-
ration of the dipole transition (S ! 1), when the rate of
evolution toward a steady state is particularly slow.

In Sections 2 and 3, the function τmax(!, δ) is shown
to exhibit certain unexpected trends for j0 between 1
and 10. Four qualitatively different types of τmax(!, δ)
are identified for j  j with integer j, j  j with half-
integer j, j  j + 1, and j  j – 1, respectively. A
rough estimate for 〈τ max〉  is found to agree in order of

magnitude (~ τ0) with an estimate for the relaxation
time obtained for ground-state atoms with j0 @ 1 [6].
However, the interval 0 ≤ |!| ≤ 1 corresponds to a wide
range of τmax for a dipole transition of any type. The
evolution of  corresponding to τmax toward a steady
state is described both for resonant and detuned ellipti-
cally polarized fields (with |δ| > 2γ).

In Section 4, the method of minimal bipolar har-
monics is used to show that even the evolution of a
dynamical system (1) with dimension as large as (2j0 +
1)2 – 1 can be described in terms of only four variables
if j0 & 5 and the first- and second-rank multipole
moments play a dominant role in the kinetics or spec-
troscopy problem under analysis. These variables are

the coefficients (t), (t), (t), and (t) in the
expansion in the minimal bipolar harmonics corre-
sponding to the directions parallel to the major axis of
the polarization ellipse and perpendicular to the polar-

ization-ellipse plane. The variable  is associated with

the rank one atomic moment; the remaining three ( ,

, ), with the rank two moment. The time scales of
their evolution are shown to be related to τmax(!, δ):
when the evolution starts from an equilibrium state

1 Note that a numerical analysis performed for higher j0 & 10
revealed similar qualitative trends in the evolution of the atomic
parameters considered here.

ρ̂

j0
2

ρ̂max

a1
1 a2

2
a2

0 b2
1

a1
1

a2
0

a2
2

b2
1
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ρµµ'(0), at least one of these variables is characterized
by a relaxation time comparable to τmax for a dipole
transition of any type.

Section 5 presents an analysis of dynamics of tran-
sient spontaneous emission: estimates are obtained for
the average number Nph of optical pumping cycles
required to reach a steady state and the average cycle
duration τopt ~ τmax/Nph. Transitions with j0 = 2 and
3/2  3/2 transitions are analyzed to show that τopt =

1/γ  ~ τ0 for j  j + 1 transitions. (Here, the effective

saturation parameter (l) introduced in [1] is a function
of the degree l of linear polarization of the field). How-
ever, this estimate is not valid for transitions of the
remaining three types, because τopt strongly depends on

(0) and is generally larger than a rough estimate
for τ0.

2. OPTICAL PUMPING 
OF A GROUND-STATE ATOM: EXPANSION

IN MINIMAL BIPOLAR HARMONICS

Consider interaction of an atomic ensemble charac-
terized by ground- and excited-state total angular
momenta j0 and j1 with resonant monochromatic field

, (3)

where %(r) = |%|eiφ(r) is the total complex amplitude
(including the spatial phase φ), and e(r) is a polarization
vector of unit magnitude (e · e* = 1).

In the limit of

(4)

a closed master equation for the density operator  for
an ensemble of slowly moving ground-state atoms can
be written in the zeroth-order approximation with
respect to recoil as follows (see [10]):

(5)

Here, ∆ = 1/2 – iδ/γ; Ω = –%d/" is the Rabi frequency;
d is the reduced dipole matrix element for the optical
transition in question; δ = ω – ω0 is the detuning from res-

onance; and  and  denote the projections of the low-
ering and raising operators for reduced dipole moment on
the polarization direction, respectively [1, 10]. The local
saturation parameter defined in (4) is 1/2 for δ = 0 and
light intensity I equal to the saturation intensity Isat =
2π2"γc/3λ3 [11]:

(4')

S̃

S̃

ρ̂

E r t,( ) e iωt– % r( )e r( ) c.c.+=

S  =  Ω
 

2

 
γ

 2 /4
 

δ
 2 

+
---------------------  !  1

ρ̂

∂t v∇+( )ρ̂ γ̂ SV̂ ρ̂V̂
†{ }=

– γS ∆*V̂
†
V̂ ρ̂ ∆ρ̂V̂

†
V̂+( ) +̂sρ̂ +̂cρ̂.+=

V̂ V̂
†

S  =  
I

 
/

 
I

 
sat 

2 8
 

δ
 

/
 

γ( )
 

2
 

+
---------------------------.
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005



EVOLUTION OF AN OPTICALLY PUMPED ENSEMBLE 823

                 
When represented in terms of the excited- and
ground-state angular-momentum eigenvectors (|j1, µ1〉
and |j0, µ0〉), the density matrix elements ρµµ' character-
ize the Zeeman sublevel populations (–j0 ≤ µ, µ' ≤ j0)

and the matrix elements of  are

(6)

where  denotes the Clebsch–Gordan coeffi-

cients [12] and eq are the components of the polariza-
tion vector in (3) in a cyclic basis.

Equation (5) describes the evolution of the ground
state of an atomic ensemble driven by optical pumping.
The first (repopulation) term on its right-hand side rep-
resents the increase in the ground-state population due
to spontaneous decay of the excited state, i.e., the inco-
herent contribution to the evolution of the ensemble.
The remaining terms (subsumed under the operator

) represent depopulation and light-induced shifts of
ground-state energy levels, i.e., the coherent contribu-
tion to evolution of the ensemble. The operator  on an
arbitrary excited-state Zeeman sublevel population

 is expressed as follows [10]:

(7)

To analyze the spectrum of relaxation times {τi},
consider the ground-state multipole moments and the
corresponding projections (–κ ≤ q ≤ κ):

(8)

For an ensemble of cold atoms driven by a mono-
chromatic field, the evolution of the multipole
moments is described by the following equations
derived from (5) [13]:

(9)

Here, the summation is performed over the possible
values of the multipole moments of the photon density
matrix (κ1 = (0, 1, 2}) and the atomic density matrix

(max(0, κ – κ1) ≤ κ2 ≤ min(2j0, κ + κ1)), and {  ⊗

}κ is the tensor product of the photon and atomic

V̂

Vµ1µ0
C j0µ01q
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multipole moments. The coefficients ^ are expressed
in terms of the 6j and 9j symbols as

(10)

where Π(x, y, …) = . The multi-
pole moments of the photon density matrix can be
defined in terms of unit vectors n and eeee directed, respec-
tively, along the normal to the polarization plane and
the major axis of the polarization ellipse associated
with the vector e [14]:

(11)

Here, , = e · e = cos2ε and ! = sin2ε for a field in the
pure state of polarization with ellipticity angle ε. These
coefficients are the degrees of linear and circular polar-
ization of the field, respectively.

In the method of minimal bipolar harmonics [15],
minimal harmonics are defined as tensor direct prod-
ucts of spherical harmonics:

where k = p, p + 1, …, κ (p = 0, 1). In particular,

 ~ eeee,  ~ n,  ~ n × eeee,  ~ {eeee ⊗  eeee}2,

 ~ {n ⊗  n}2,  ~ {n ⊗  {eeee ⊗  eeee}2}2, and so on.
The method relies on the applicability of bipolar har-
monics as basis functions in unique expansions of the
form

(12)

By using a procedure for reducing the tensor prod-
uct of bipolar harmonics of different ranks [15] and the
normalization condition ρ0 = 1/Π( j0), Eqs. (9) can
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readily be reduced to ODEs for  and  with 0 ≤ l ≤
κ, 1 ≤ m ≤ κ, and 0 ≤ κ ≤ 2j0. The utility of minimal
bipolar harmonics lies in the fact that two independent
systems of ODEs are naturally obtained:

(13a)

(13b)

For example, for the 1  2 transition,

(14)

aκ
l

bκ
m
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dX̂

1( )

dt
------------- L̂1 X̂

1( )
⋅ Ĉ,–=
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Fig. 1. Stimulated transitions between Zeeman sublevels of
ground-state and excited atoms when ν is the quantization
axis: solid and dashed lines represent transitions within
mutually incoherent families of sublevels.
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(15)

where  = δ/γ. Systems (13a) and (13b) describe the
evolution of the multipole moments containing even
and odd number of tensor direct products of eeee, respec-
tively. A comparison with the expression for ρµµ' (when
n is the quantization axis) shows that inhomogeneous
system (13a) describes the evolution of the Zeeman-
sublevel states with …, µ – 2, µ, µ + 2, … considered
in [16] toward the steady state represented by

(∞) =  · . In the general case, the sublevel
states are coupled via light-induced coherence (see
Fig. 1), making up two mutually incoherent families
(for example, with even and odd µ). Homogeneous sys-
tem (13b) describes the relaxation of the initial coher-

ence between these families of states (   0). No
coherence of this kind is induced by field (3) when an
atom is at rest. However, coherence arises in slowly
moving atoms in a two- or three-dimensional field con-
figuration with polarization gradients because of a
delay in optically driven Zeeman splitting [13].

3. THE LONGEST TIME
OF EVOLUTION TOWARD A STEADY STATE

The real parts  of the eigenvalues of the matri-

ces  determine the spectrum of relaxation times

 = –( γS)–1 for the states represented by

. Let us analyze the longest relaxation time τmax =

max  and the corresponding states . When j0

is small, ξ = τmax/τ0 is independent of ellipticity and

normalized detuning : its value is 9/2 for the 1/2 
1/2 and 1/2  3/2 transitions and 6 for the 1  0
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Fig. 2. Different behavior of (!) (1), (!) (2), and τmin(!) (3) for (a) 2  3, (b) 3/2  3/2, (c) 2  2, and

(d) 2  1 transitions. Solid and dashed curves correspond to resonance and | | = 10; τ0 = (γS)–1.

τmax
1( ) τmax

2( )

δ̃

transitions,2 and 4 for the 1  1 transitions. However,
ξ strongly depends on ellipticity even for the 1  2
and 3/2  3/2 transitions, and its values correspond-

ing to resonant (| | ! 1) and detuned (| | > 1) fields are
different in the general case. The transitions can be
grouped into the following types characterized by dif-
ferent form of this dependence: (I) j  j + 1, (II) j 
j with half-integer j, (III) j  j with integer j, and
(IV) j  j – 1. Figure 2 illustrates the behavior of τmax

as a function of the degree of circular polarization for
the 2  3, 3/2  3/2, 2  2, and 2  1 transi-

tions in regimes with | | ! 1 and | | = 10. The curves

representing (!) and (!) are identical for
type III and IV transitions. Note that the dependence

ξ( ) is very weak for type I, III, and IV transitions

when | | * 2 and substantial for type II transitions. The

2 This value is the highest of those for decaying states, whereas

the eigenvalues  = 0 and  = 0 correspond to the two

distinct coherent states not coupled to the field in j  j – 1
transitions [16].

λ1
1( ) λ1 2,

2( )

δ̃ δ̃

δ̃ δ̃
τmax

1( ) τmax
2( )

δ̃

δ̃
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curves of τmin corresponding to the states Xmin charac-
terized by the fastest relaxation are also shown for com-
parison. The results shown in Fig. 1 suggest that τmin ≈
(2–3)τ0 for each type of transition. For j0 > 2, this esti-
mate holds, while the dependence on ellipticity is neg-
ligible. The lower estimates for τ0 = (γS)–1 obtained for
several specific atoms are as follows:

(i) for j0 = 2 in 23Na atoms, λ = 589.0 nm, γ/2π =
10 MHz, Isat = 6.44 mW/cm2, and the value of τ0 at I =
Isat (S = 1/2) is τ0, min = 3.2 × 10–8 s;

(ii) for j0 = 5/2 in 173Yb atoms, λ = 555.8 nm, γ/2π =
0.187 MHz, Isat = 0.14 mW/cm2 [17], and τ0, min = 1.7 ×
10–6 s;

(iii) for j0 = 3 in 85Rb and 52Cr atoms, λ = 795.0 and
425.4 nm, γ/2π = 6.1 and 4.9 MHz, Isat = 1.6 and
8.4 mW/cm2, and τ0, min = 5.2 × 10–8 and 6.5 × 10−8 s,
respectively;

(iv) for j0 = 4 in 133Cs atoms, λ = 852.1 nm, γ/2π =
5.2 MHz, Isat = 1.1 mW/cm2, and τ0, min = 6.1 × 10−8 s.

For different values of light intensity and detuning,
the saturation parameter can be calculated by using
expression (4').
SICS      Vol. 100      No. 5      2005
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Even for the values of j0 specified above, the longest
relaxation time is greater than τ0 by an order of magni-
tude. Moreover, the value of ξ increases with j0,
because the 6j and 9j symbols in (10) are small at
j0 * 1, and so are the corresponding matrix elements in

. A rough estimate for the mean value 〈ξ〉  is

/[(2j1 + 1) ]. This quantity characterizes relax-
ation of the rank one multipole moments ρ1 when the
contributions of the multipole moments of rank κ2 > 1
and rank κ1 > 0 to the atomic and photon density matri-
ces, respectively, are neglected in (9). The correspond-
ing averages are

The estimate τ ∝  /γS is valid for large values
of j0 [6].3 

Normally, the time τmax corresponding to linearly
polarized field (! ≈ 0) is longer than that correspond-
ing to circular polarized field (|!| ≈ 1), except for the

type IV transitions and the type I transitions for | | > 1.

The function ξ( ) for cyclic (type I and II) transitions
is qualitatively different from that for the bleached
(type III and IV) ones (for which (∞) describes coher-
ent states not coupled to the light field [16]). In the lat-

ter case, ξ( ) is a slowly varying function, whereas

type I and II transitions corresponding to | | > 1 are
characterized by relaxation times much shorter and
longer (when |!| ≈ 0.5), respectively, than those under
resonance conditions. The analysis that follows is
focused on the states represented by the slowest varying

“eigenvectors” Xmax of the matrices .

3.1. Exact Resonance 

When δ= 0, the systems in (13) split into blocks of

equations describing the evolution of  and  sepa-
rately. To be specific, let us consider the inhomoge-
neous system of ODEs. To improve description of

, let us compare these vectors with the popula-
tions and coherences represented by ρµµ' (when n is the

3 The reduced dipole matrix element in the definition of the satura-
tion parameter also depends on j0 . Note that the quantity d con-
tained in (5) is defined in terms of the Clebsch–Gordan coeffi-

cients (see also [1, 3]), whereas a definition of  in terms of
Wigner 3jm symbols was used in [2, 6, 13]. These quantities sat-

isfy the relation  = Π( j1)d.

L̂1 2,

3 ^1
1 0,

ξ〈 〉 I 3 j0 1+( )2 2 j0 1+( )/ 2 j0 3+( ),≈

ξ〈 〉 II III, 3 j0 j0 1+( )/2,≈
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δ̃
δ̃
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δ̃

L̂1 2,
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l bκ

m
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1 2,( )
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quantization axis). According to (8) and (12), the equa-

tions for  determine the evolution of the populations
Nµ = ρµµ and the real (symmetric) parts Pµµ' = (ρµµ' +
ρµ'µ)/2 of coherences (with µ ≠ µ' and even |µ – µ'|). The

homogeneous equations for  describe the evolution
of the complex parts, Qµµ' = (ρµµ' – ρµ'µ)/2i  0. For a
cyclic transition, Qµµ' varies much faster than Nµ and
Pµµ': 2τQ ≈ τN or τP . Consider the case of a field that is
not linearly polarized. In type I transitions, the slowest
varying characteristics are Nµ , i.e., the multipole
moments having the form

The corresponding τmax is nondegenerate and is sepa-
rated from the remaining τi (τmax * 2τi). Therefore, the
function ξ(,) can be accurately determined by analyz-

ing only the reduced matrix  characterizing the evo-

lution of the transpose ( ; ; …)T. For example, a
good approximation of ξ(,) can be obtained for the
4  5 transition by retaining only the first four coef-
ficients. For the 1  2 transition, (14) yields

For type II transitions, the time  = τN ≈ τP is such
that τmax – τi ! τmax. Furthermore, type II transitions are
characterized by slower evolution of the coherence ρµµ'
between the families of states (with odd |µ – µ'|),
because  >  (see Fig. 2b). These include the
coherences that correspond to the highest rank multi-

pole moments proportional to  (m = 0, 1, …). In
type III transitions, the slowest varying characteristics
are the “highest rank” coherences (rather than popula-

tions), such as ρ8 ~  with m = 0, …, 4 for the 4 
4 transition. The corresponding τmax is doubly degener-
ate. In type IV transitions, the slowest varying charac-
teristics are the populations and coherences ρµµ' with
|µ – µ'| ≤ 4, and τmax is doubly degenerate.

3.2. Detuned Pumping with | | > 1

In this regime, the evolution of Nµ and Pµµ' is
strongly related to that of Qµµ', as can be shown by ana-
lyzing expressions (14) and (15) in the relatively simple
case of the 1  2 transition. Accordingly, very differ-

ent  and τmax(!) are obtained for transitions of
certain types. Analysis shows that the dependence of ξ
on detuning is negligible even for | | ≈ 2. Therefore, the

limit value of τmax corresponding to | | @ 1 is a good

aκ
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m
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approximation. It can be found by setting to zero the

coefficient of highest power of  in the characteristicδ̃
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polynomial of the matrix  or . For the 1  2

transition, the resulting approximation is

L̂1 L̂2
τmax

12 75 72,
2–( )τ0

175 162,
2– 2 625 450,

2 2799,
4– 728,

6+ +–
--------------------------------------------------------------------------------------------------------------------,≈
This detuned regime is also characterized by a negligi-
ble Qµµ' for Xmax corresponding to type I, II, and III
transitions, despite the coupling between the compo-
nents Nµ , Pµµ' , and Qµµ' in the dynamical system
describing their evolution. Thus, the structure of Xmax is
determined by Nµ and Pµµ' (mainly by those with |µ –
µ'| = 2), while the corresponding τmax is nondegenerate
and τmax * 1.5τi . For type IV transitions, both struc-
tures of Xmax and τmax(!) are similar to those in the
under resonant conditions.

3.3. Linearly Polarized Pumping 

The limit cases of circular and linear field polariza-
tion (when |!| = 1 and 0, respectively) are degenerate
in the sense that the aforementioned families of Zee-
man sublevels coupled via light-induced coherence
break down into separate sublevels. In the former case,
this is clear from Fig. 1. To analyze the latter case, the
quantization axis is taken parallel to eeee. Then, stimulated
transitions are depicted by vertical arrows; i.e., they do
not couple sublevels with different µ, while the sublevel
populations are characterized by multipole moments of
the form

Note that the structure of Xmax corresponding to ! ≈ 0
changes substantially even under weak variation of !.

The behavior of  at ! = 0 can be characterized as
follows. In type III transitions, the slowest varying
characteristics are the populations of (new) sublevels,
and ξ can easily be found by analyzing the reduced

ODEs for ( ; ; …)T. Analogous behavior is charac-

teristic of type IV transitions when | | > 1, but slow
evolution under resonant conditions is exhibited not
only by populations, but also by the coherences ρµ, µ ± 1 ,

i.e., the multipole moments proportional to . The
eigenvalues that determine the corresponding τmax are
nondegenerate for transitions of both types. The slow-
est varying characteristics in cyclic transitions under
resonant conditions are the coherences ρµ, µ ± 1 (i.e.,

), but not populations. The times  and 
can be found from the reduced equations for

,
2 1 !2

.–=

ρ̃̃
κ

=κ
0 p, … eeee eeee⊗{ } 2 eeee⊗{ } 3… eeee⊗{ } κ .∼ ∼

Xmax
1 2,( )

a2
0 a4

0

δ̃

=κ
1 p,

aκ
1=κ

1 0, τmax
1( ) τmax

2( )
( ; ; …)T and ( ; ; …)T, respectively. For
example, ξ = 12 for the 1  2 transition. Totally dif-
ferent behavior of type I transitions is obtained for

| | > 1. In transitions with j0 ≥ 5/2, the slowest varying

are the populations characterized by , and 
can be evaluated by analyzing the reduced system of

ODEs for ( ; ; …)T. The resulting ξ substantially
differs from that predicted resonant conditions. In tran-
sitions with lower j0, the time τmax can be associated
with several eigenvalues τi , which are equal or nearly
equal. In particular, there exist three such values for the
1  2 transition, one of which corresponds to evolu-

tion of population and coherence proportional to .
As a result, ξ = 4 is obtained for this transition. Note

that the corresponding ξ( ) is

i.e., the values of ξ rapidly varies in the neighborhood

of | | ≈ 1. A similar dependence holds for type I transi-

tions with j0 > 1, while the difference between ξ(| | >
1) and ξ(0) is even larger. For example, ξ(0) ≈ 145 and

ξ(| | ≥ 2) ≈ 7.36 for j = 4.

4. EVOLUTION OF MULTIPOLE MOMENTS 
UNDER DIFFERENT INITIAL CONDITIONS

The evolution of ground-state multipole moments is

determined not only by the spectrum of the operator ,
but also by (0). The dependence on the initial state is
analyzed here for two examples: ρµµ'(0) = δµµ'/(2j0 + 1)
(case A) and ρµµ'(0) =  (case B, pure state in
which only the Zeeman sublevel µ0 is populated). It
should be noted that both have been considered in anal-
yses of specific models of atom–field interaction. Case
A was examined in [9] to determine cooling dynamics
for a j  j transition in a three-beam optical lattice.
Case B was invoked in [2, 4] to calculate the cooling
force and diffusion tensor for 1  2 and 2  3 tran-
sitions in certain one-dimensional field configurations.
In case B, of particular interest is the initial state for
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which |µ0| = j0 and n is the quantization axis, obtained
when an atom is pumped by a circularly polarized field.

In these cases, (t) = 0.4 The evolution toward a

steady state is determined by (t) and (t) in (t);
i.e., the number of state variables is smaller by half than
that in the problem of dimension (2j0 + 1)2 – 1. Further-
more, knowledge of (t) is generally required to ana-
lyze kinetics or spectroscopy problems for systems of
the type considered here. For example, only the multi-
pole moments ρ1 and ρ2 are required to calculate cool-
ing forces [13], because ρ0 = 1/Π( j0) is determined by
a normalization condition. The multipole moments of
ranks κ ≤ 2 also play a key role in spectroscopy prob-
lems that do not involve higher rank multipole

moments [18]. Therefore, the variation of , , ,

and  is of primary interest in these problems, irre-
spective of the complexity of a dipole transition. Recall

that  and  characterize the Zeeman sublevel pop-

ulations (when n is the quantization axis), while  and

 characterize the real and imaginary components of
the coherence between adjacent sublevels with µ and
µ ± 2, respectively (see Fig. 1). In the degenerate case
of linearly polarized driving field, when eeee is the quanti-

zation axis,  characterizes the populations of new sub-

levels;  and  characterize, respectively, the real and
imaginary components of the coherence between a sub-

level µ and the adjacent sublevels with µ ± 1; and 
characterizes the population and coherence distributions
between the sublevel µ and the sublevels with µ ± 2.

A numerical analysis of several transitions with j0 up

to 5 shows that the evolution of 〈 〉  driven by fields
with arbitrary ! in cases A and B is described by a
monotonic function characterized by a relaxation time

(!):

(16)

where  corresponds to 〈 〉 (0), which differs from

(0) in the general case. The angle brackets denote
quantities obtained by averaging over oscillations (see

Fig. 3a) with frequencies proportional to , which are
due to the dynamic Stark shifts of Zeeman sublevels in
a detuned field. Even though the oscillations can have

4 Note that the coherences represented by  can be neglected
when the pumping field configuration is one-dimensional. How-
ever, they must be taken into consideration in higher dimensional
configurations with polarization gradients [13].
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considerable amplitudes, their characteristics are not
considered in this paper.

The evolution of 〈 〉 (t) and 〈 〉 (t) may not admit

approximation by (16) with relaxation times  and .
The cases when these variables exhibit nonmonotonic
behavior are of special interest (see Figs. 3b and 3c).

Figure 3b shows the evolution of (t) from an equilib-
rium state in a field with ! ≠ 0 predicted for δ = 0,
which is characteristic of type I transitions only. Here,
the coherence is obviously higher as compared to its
steady-state value, which should be mainly attributed to
higher intensities of stimulated emission and absorp-
tion of photons.5 Recall that the qualitative pattern is

different when | | ≠ 0 because of the contribution of the

imaginary coherence represented by . Figure 3c

shows the evolution of (t) from the state µ0 = –j0 in a
field with ! > 0 predicted for δ = 0. In this case, atoms
are transferred from states dominated by µ < 0 to those

populated levels with µ > 0, because (t) changes sign
(as in Fig. 3a, but without oscillation) in the neighbor-

hood of the minimum in (t). Note also that the sub-
levels tend to be uniformly populated during an inter-
mediate stage of the evolution, retaining a high degree

of mutual coherence (characterized by (t)), as in the
state that develops under linearly polarized pumping. In
type I transitions, the coherence reaches peak values, as

in Fig. 3b. In other regimes, 〈 〉  and 〈 〉  are accu-
rately approximated by functions similar to (16).

The typical examples of evolution of  presented

in Fig. 3d for  = 10 illustrate the transient dynamics of

stimulated emission and absorption, because (0) =

(∞) = 0. One of these demonstrates the oscillation of

 in case B from the state µ0 = –j0, which is character-

ized by amplitudes of  comparable to those consid-
ered above. The curve shown in the inset to Fig. 3d
illustrated evolution from an equilibrium state toward a

steady state. In this regime, the amplitude of (!) is
smaller than the remaining coefficients by an order of
magnitude.

A numerical analysis shows that the behavior of

(!) for transitions with j0 & 5 is qualitatively similar
to τmax(!) (Fig. 2) for various regimes of detuning. For
cyclic transitions from an equilibrium initial state,

5 The intensities of spontaneous transitions also increase, but
monotonically (see next section).
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quantitative agreement between  and τmax is

obtained. The dependence of  and  on ! is also
qualitatively similar to τmax(!) when the corresponding
averaged coefficients exhibit monotonic behavior:
these times are much larger for type I, II, and III transi-
tions under resonant pumping with small |!| as com-
pared to an almost circularly polarized field (|!| ≈ 1),
whereas the converse is true for type IV transitions.

When | | > 2, the behavior of τmax(!) for cyclic transi-
tions is consistent with Figs. 2a and 2b. The time
τmax(!) is quantitatively similar to at least one of the

times , , and  if the evolution starts from an
equilibrium state. Even though the evolution character-

ized by , , and  in case B with µ0 = –j0 differs in
certain aspects from that from an equilibrium state, the
following characteristics are in qualitative similar: the
relaxation times for j  j transitions (for any δ) and
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j  j + 1 transitions (under resonant pumping)
increase with decreasing !, whereas the converse is
true for j  j – 1 transitions (for any δ) and j  j +
1 (for |δ| > γ).

5. DYNAMICS OF SPONTANEOUS EMISSION

The coherent and incoherent contributions to the
evolution of optically pumped ground-state atoms are

represented in Eq. (5) by the components  and 
of the Liouville operator, respectively. Let us analyze
the evolution of the intensity of spontaneous emission
for transitions of different types in cases A and B. In a
statistical treatment of the number of photons emitted
by an atom [19], as well as in the description of atomic
dynamics based on the quantum-jump approach [20],
the quantity

(17)

+̂c +̂s

P t( ) Tr +̂sρ̂ t( ){ }=
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is the number of spontaneously emitted photons per
unit time at an instant t. It can also be interpreted as
the time distribution of quantum jumps that occur
after periods of coherent evolution described by the

operator .
Let us use (17) to estimate the number Nopt of spon-

taneously emitted photons (or optical pumping cycles)
required to reach a steady state (∞). In the general
case, it can be shown that the function P(t) calculated
by applying the method of minimal bipolar harmonics

is completely determined by , , and . In case A,

(0) = (0) = 0, and

for any transition [1]. In case B with µ0 = –j0 (when n is
the quantization axis),

(18)

According to a numerical analysis, the results presented
below for transitions with j0 = 2 and the 3/2  3/2
transition hold for more complicated transitions with
j0 & 5.

For the transitions in question, P(t) is expressed in
terms of ! and , as

(19)

(20)

(21)

(22)

In the general case, the coefficients (t) are oscillating
functions (see Fig. 3a). However, P(t) is a monotonic

function for arbitrary  and !.6 It can be approximated
by (16) with a relaxation time τspont similar to the time

6 As before, only pure polarization states (with ,2 + !2 = 1) are
considered here.
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τmax characteristic of type I and III transitions in evolu-
tion from an equilibrium state for different detunings.
In the remaining cases, τspont < τmax, and the behavior of

τspont(!) is analogous to that of (!). Moreover, the
variations of P corresponding to transitions of different
types are very informative. It is an increasing function
for type I transitions and a decreasing one for the
remaining ones. Bleaching corresponds to PIII(∞) =
PIV(∞) = 0, while PII(∞) corresponds to a very low
intensity of spontaneous emission, which decreases
with increasing j0 (see [1]). In the limit of j0 @ 1, this
intensity is negligible, and so is the difference between
j  j transitions with large integer and half-integer
j ~ 10 [6, 8]. Compare the expressions for P(∞) corre-
sponding to the 3/2  3/2 and 3/2  5/2 transi-
tions:

(23)

For the former transition, the highest intensity of spon-
taneous emission (in a linearly polarized field) is
3γS/25, and the lowest intensity corresponds to bleach-
ing in circularly polarized field. The converse is true for
the latter transition: the highest and lowest intensities,
γS and 14γS/25, correspond to circularly and linearly
polarized fields. An expression for P(∞) for arbitrary j0
can be obtained by using the results reported in [1].

Define

(24)

for the bleaching transitions and the nearly bleached
type II transitions and

(25)

for type I transitions. For example, Nph(!) & 5 for tran-
sitions with j0 = 2 and the 3/2  3/2 transition, except
for the case of resonantly excited 2  3 transition,
when Nopt ≈ 15.

An analysis of the functions Nopt(!) and τspont(!)
under the initial conditions considered above shows
that the estimated optical cycle duration, τopt =
τspont/Nopt(!), cannot be equal for transitions of all
types. The quantity τ0 = (γS)–1 used in [1, 3] and numer-
ous other studies may widely differ from τopt and, a for-
tiori, from the characteristic time required to reach a
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steady state. A numerical analysis shows that τopt is vir-
tually independent of δ.7 However, its dependence on

(0) and ellipticity is different for transitions of differ-
ent types.

For j  j + 1 transitions, the following estimate
provides a good approximation irrespective of the form
of (0):

where the effective saturation parameter  introduced
in [1] can be approximated by the expression

(26)

for j0 & 2, with maximum and minimum values (0) =

S and (1) = (2j + 1)S/(4j + 1) ≈ S/2, respectively (Pn(x)
denotes Legendre polynomials).

For transitions of other types, τopt ≈ (2j1 + 1)τ0 for
evolution from an equilibrium state. For evolution from
the state µ0 = –j0 (when n is the quantization axis),

where k3/2 → 3/2 = 5, k2 → 2 = 6, and k2 → 1 = 10/3 accord-
ing to (18)–(21). The longest time τopt corresponds to
! ≈ –1; i.e., the coherent stage of atom–field interac-
tion lasts for a very long time, while the field parame-
ters weakly deviate from the values corresponding to an
initially noninteracting atom. However, Nopt is obvi-
ously proportional to the deviation of the initial atom
from a steady state. For example, the maximum value

 ≈ 2j0 + 1 is characteristic of an atom driven by a
circularly polarized field (! = 1), which induces tran-
sitions from the sublevel µ0 = –2 to the most distant
sublevel µ = 2 (2  2 transitions) or to the coherent
superposition of states with µ = 1 and 2 (2  1 tran-
sitions). Spontaneous emission plays a much more sub-
stantial role in this case: an increase in the number of
spontaneously emitted photons sharply reduces the
cycle duration (τopt ≈ 2τ0).

6. CONCLUSIONS

Evolution of ground-state atoms with angular
momenta j0 & 5 driven by weak elliptically polarized
monochromatic light fields is a complicated phenome-
non in the general case. On the one hand, this is
explained by the large number, (2j0 + 1)2 – 1, of the
variables that characterize (depending on the represen-

7 Henceforth, it is assumed that the parameter S is held constant
when δ is varied by adjusting the Rabi frequency in expression (4).
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tation employed) the Zeeman sublevel populations or
the atomic multipole moments. On the other hand, the
semiclassical expansion in terms of 1/j0 employed
in [7] is not effective for j0 in this range. For example,
it cannot be used to describe the difference between the
unsteady and steady regimes for j  j transitions with
integer and half-integer j. The present analysis shows
that an effective description of evolution toward a
steady state can be developed for a wide variety of
problems in which states with j0 & 5 are of key impor-
tance by using a small number of characteristic times
and state variables. Problems of this kind include the
calculation of kinetics of an atomic ensemble in semi-
classical approximation for translational degrees of
freedom [3, 21], the calculation of the susceptibility of
an atomic ensemble, and the related problem of interac-
tion between a probe beam and a cold system of this
kind [22].

A characteristic of particular interest is the longest
time τmax of evolution toward a steady state for an
atomic ensemble pumped by a field with arbitrary ellip-
ticity. It is shown here that transitions can be grouped
into the four types characterized by qualitatively differ-
ent dependence of τmax on the degree ! of circular
polarization and detuning δ: (I) j  j + 1, (II) j  j
with half-integer j, (III) j  j with integer j, and
(IV) j  j – 1. For each transition type, the function
τmax(!) exhibits specific qualitative behavior under res-
onant pumping (|δ| ! γ), whereas the dependence of

τmax on detuning is negligible when | | > 2γ. First,
τmax(!) is generally larger for ! ≈ 0 as compared to
|!| ≈ 1, with the exception of j  j – 1 transitions at
any detuning and j  j + 1 transitions for |δ| > 2γ, for
which the converse is true. Second, the change in

τmax(δ) caused by detuning from resonance to | | > 2γ
is qualitatively different for cyclic (type I and II) and
bleaching (type III and IV) transitions. For the bleach
transitions, τmax weakly depends on δ, whereas the
relaxation time is sharply reduced by detuning from
resonance to |δ| > 2γ for type I transitions and consider-
ably increases for |!| ≈ 0.5 for type II transitions.

The importance of τmax lies in the fact that it charac-
terizes evolution toward a steady state from an initial
state of equilibrium with respect to internal degrees of
freedom. The transient process is also characterized by
the number Nopt of optical pumping cycles and the aver-
age cycle duration τopt . The present analysis shows that
the estimated τopt cannot be equal for transitions of all
types and the estimate τ0 = (γS)–1 may widely differ
from τopt . When S is held constant, τopt is virtually inde-
pendent of detuning, whereas its dependence on ellip-
ticity is different for transitions of different types. For

j  j + 1, it can be represented as τopt = 1/γ , where

(,) is an effective saturation parameter. For the three

δ̃

δ̃

S̃

S̃
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remaining transitions, this estimate is generally not
valid, and τopt strongly depends on (0) and is gener-
ally greater than τ0.

These characteristics of evolution toward a steady
state correspond to optical pumping regimes with neg-
ligible collisional relaxation. When collisions substan-
tially contribute to the evolution of multipole moments
of both ground-state and excited atoms, the overall sce-
nario of the evolution is different from that analyzed
above. Suppose that the rate of nonradiative decay of

multipole moments is  and  for the ground and
excited states. Since the optical pumping time τ for a
ground-state atom is greater than τ0 = 1/γS by an order

of magnitude if j0 > 1, the condition  < 1/τ implies

that the largest value of  for which this mechanism of
decay can be neglected must be corrected. An analysis

of specific models characterized by  shows that the
function τ(!, δ) is essentially different when relaxation
of the excited atom is important: the value of τ is
smaller, and there is no difference between pumping by

resonant and widely detuned fields (| | > 1).
Different transient behavior is also characteristic of

the cases when the light polarization cannot be repre-
sented as a pure state. An analysis performed for !2 +

,2 < 1 shows that τmax strongly depends on  when

| | > 1 for certain mixed states.
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Abstract—Chirped ultrashort light pulses offer new options for coherent nonlinear spectroscopy and micros-
copy. We show here that the temporal resolution of spectroscopy and microscopy based on coherent anti-Stokes
Raman scattering (CARS) can be smoothly tuned within a broad range, with upper and lower bounds of this
range controlled by the pump and probe pulse durations. The spectral resolution of CARS spectroscopy and
microscopy is analyzed as a function of the duration and chirp of the pump pulses. Pulses with a periodic phase
modulation can provide the limiting spectral resolution of the CARS technique, corresponding to the lower
bound of uncertainty in spectral measurements, dictated by the uncertainty principle. © 2005 Pleiades Publish-
ing, Inc. 
1. INTRODUCTION

Generation of ultrabroadband pulses of coherent
electromagnetic radiation is one of the most significant
recent achievements of optical science. Optical-harmonic
generation in high-intensity laser fields culminated in
the breakthrough to the domain of attosecond pulse dura-
tions [1–3]. Novel types of waveguides—microstructure
and photonic-crystal fibers (PCFs) [4–6]—can provide
maximum confinement of electromagnetic radiation in
guided modes of the light field [7, 8] and allow a nearly
arbitrary tailoring of dispersion profiles of guided
modes [9, 10]. Due to this unique combination of
properties, PCFs can efficiently generate emission
with a bandwidth exceeding an octave (supercontin-
uum) [11, 12] and offer ways of generating short light
pulses with a shifted carrier frequency and controlled
chirp [8, 13–15].

Attosecond pulses and supercontinuum sources
open new horizons in laser spectroscopy and optical
metrology, allowing measurements with an unprece-
dented time resolution [3, 16] and making it possible to
coherently excite and probe physical, chemical, and
biological objects within remarkably broad spectral
ranges. Attosecond tomography [17–19]—tracking the
dynamics of electrons in atoms and molecules from dif-
fraction patterns of electrons ejected under the action of
attosecond pulses—is one of the most impressive recent
achievements of attosecond science. Photonic-crystal-
fiber supercontinuum sources [11, 12] have led to revo-
lutionary breakthroughs in optical metrology [20–22]
and are widely employed in nonlinear laser spectro-
scopy [23, 24], optical coherence tomography [25],
1063-7761/05/10005- $26.000833
photochemistry [14], and ultrafast photonics [26].
Recent experiments have demonstrated that PCFs can
provide high efficiencies of nonlinear-optical frequency
conversion of ultrashort laser pulses, allowing generation
of frequency-shifted pulses with a controlled chirp ideally
suited for the spectroscopy [27, 28] and microscopy [29]
of coherent anti-Stokes Raman scattering (CARS).

In this paper, we show that ultrashort light pulses
with a controlled chirp offer new options for coherent
nonlinear spectroscopy and for the rapidly growing
field of CARS microscopy [30]. Linearly chirped
pulses can scan the instantaneous frequency difference
through Raman resonances in the CARS scheme. We
will find analytic solutions for the temporal envelope of
the CARS signal for different relations between the
laser pulse durations and characteristic nonlinear
response time. We will also explore the ways of using
chirped pulses in coherent four-wave mixing (FWM)
for high-resolution spectroscopy and microscopy, as
well as for studying ultrafast processes in gas- and con-
densed-phase media.

2. CHIRPED-PULSE CARS SPECTROSCOPY

Chirped ultrashort pulses are a convenient tool for
laser spectroscopy and quantum control [31–40]. In
this section, we dwell upon using chirped pulses for
measuring the nonlinear response of a Raman-active
medium. Physically, the possibility of applying chirped
pulses for spectral measurements using time-resolved
methods is based on a linear frequency–time mapping
defined by linearly chirped pulses (Fig. 1). The spec-
 © 2005 Pleiades Publishing, Inc.
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trum of the nonlinear susceptibility can be thus
recorded by measuring the nonlinear response signal as
a function of the delay time between the pump and
probe pulses [40, 41].

Consider a generic case when a nonlinear signal is
produced through the CARS process ω4 = ω1 – ω2 + ω3
(Fig. 2) involving light pulses propagating along the
z axis,

(1)Ei Ai t
z
v i

-----– z, 
  i kiz ωit–( )[ ] c.c.,+exp=

1

2

3 4

Ω ∆ω

τ

θ

Bj, ωj

–

–

Fig. 1. The instantaneous frequencies  = ωj – ∂ /∂θ
and the amplitudes Bj of the first (curves 1 and 3) and sec-
ond (curves 2 and 4) pump pulses as functions of
the retarded time in CARS spectroscopy using chirped
pulses (10)–(12). The difference of instantaneous frequen-
cies of the first and second pump pulses, ∆  =  – ,

is scanned through the frequency of the Raman resonance Ω
by varying the delay time τ between the pump pulses.

ωj A jarg

ω ω1 ω2

Fig. 2. Femtosecond CARS spectroscopy using chirped
pulses.
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2
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1
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where Ai , ωi , ki , and v i are the slowly varying envelope,
frequency, wavenumber, and the group velocity of the
ith pulse (i = 1, 2, 3, 4).

Slowly varying envelope and phase approximation
will be used to describe nonlinear-optical phenomena
throughout this paper. This approximation limits the
length of the nonlinear medium, which should not

exceed the dispersion length ld = /|k2| for the duration
τ0 of the shortest of the light pulses and given group-
velocity dispersion k2. Neglecting dispersion effects
beyond the first-order dispersion terms, we arrive at the
following expression for the slowly varying envelope of
the CARS signal [42]:

(2)

Here, the third-order nonlinear polarization of the
medium is given by

(3)

where χ(t1, t2, t3, z) is the time-domain CARS suscepti-
bility.

Provided that the frequency difference ω1 – ω2 is
tuned to a resonance with a Raman-active transition in
the medium under study, the CARS susceptibility can
be written as

(4)

In the spectral domain, the nonlinear susceptibility (4)
depends only on the frequency difference ω1 – ω2, thus
corresponding to the case of a Raman resonance in a
situation when the frequencies of the optical fields are
detuned far off the remaining resonances in the quan-
tum system (including resonances with one-photon and
non-Raman multiphoton transitions). Physically, the
approximation of Eq. (4) implies that the time of the
nonresonant optical response is much less than the
response time related to the resonant part of optical sus-
ceptibility. Such a relation between the resonant and
nonresonant response times is a direct consequence of
the uncertainty principle (see, e.g., [43]). More quanti-
tatively, the ratio of the resonant and nonresonant
response times is controlled by the detuning of optical
radiation frequencies from the frequencies of eigen-
modes in the quantum system. For most of the com-
monly used Raman-active media, this ratio may vary
from 2–3 up to 6–8 orders of magnitude. Time delay on
the order of ultrashort pulse duration, τd ~ 10 fs, would

τ0
2

∂
∂z
-----

1
v 4
------ ∂

∂t
-----– 

  A4 t
z

v 4
------ z,– 

 

=  
2πω4

2

ik4c2
-------------PNL i k4z ω4t–( )–[ ] .exp–

PNL t z,( ) χ t1 t2 t3 z, , ,( )E1 t t1– z,( )
0

∞

∫
0

∞

∫
0

∞

∫=

× E2 t t2 z,–( )E3 t t3– z,( ) t3 t2 t1,ddd

χ t1 t2 t3 z, , ,( ) χ t1 z,( )δ t1 t2–( )δ t3( ).=
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typically suppress the nonresonant component of
the coherent Raman signal by several orders of magni-
tude [37, 38].

Importantly, Eq. (4) implies no limitation on the
relaxation times of Raman modes or the line shapes of
Raman resonances in spectra of cubic susceptibilities.
To verify this, we use Eq. (4) to calculate the frequency-
domain nonlinear susceptibility corresponding to the
CARS process ωa = ω1 – ω2 + ω3:

The shape of the spectrum of the nonlinear susceptibil-
ity and its parameters (including the line width and the
response time) remain arbitrary as long as the function
χ(t1) is not specified. In particular, an exponential func-
tion χ(t1) would correspond to a Lorentzian shape of a
Raman resonance (see also Section 3).

Substituting Eq. (4) into Eq. (3) and performing
integration in t1 and t3, we derive the following expres-
sion for the nonlinear polarization:

(5)

Expression (5) describes, jointly with Eq. (2), the
CARS process in a plane-wave three-color pump field
neglecting dispersion pulse spreading. In a spatially
uniform medium, the energy of the CARS signal is
given by

(6)

where τ is the delay time of the third (probe) pulse,

(7)

and F(t) is the driving force, determined by the type of
interaction between the pump-field components.

For a methodologically important case of a bihar-
monic pump, the driving force is defined as F(t) =
F0exp(iωt), where ω = ω1 – ω2 is the difference of the
pump-field frequencies. Integration in Eq. (7) then
yields

(8)

χ ωa; ω1 ω2– ω3, ,( ) χ t1 z,( )δ t1 t2–( )δ t3( )
0

∞

∫
0

∞

∫
0

∞
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× iω1t1( ) iω2t2–( ) iω3t3( ) t1 t2 t3dddexpexpexp

=  χ t1 z,( ) i ω1 ω2–( )t1[ ] t1d χRaman ω1 ω2–( ).≡exp

0

∞

∫

PNL t z,( ) χ t1 z,( )E1 t t1 z,–( )
0

∞

∫=

× E2 t t1– z,( ) t1E3 t z,( ).d

W τ( ) E3 t τ–( )Q t( ) td

∞–

∞

∫
2

,∝

Q t( ) F t θ–( )χ θ( ) θ,d

0

∞

∫=

Q t( ) F0ϑ ω( ) iωt( ),exp=
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where

(9)

is the frequency-domain nonlinear-optical suscepti-
bility.

In the following sections, we will apply Eqs. (5)–(9)
to analyze the temporal and spectral resolution of
chirped-pulse CARS spectroscopy and microscopy.

3. COHERENT ANTI-STOKES RAMAN 
SCATTERING 

WITH TIME-ORDERED CHIRPED PULSES

In this section, we consider one of the possible
schemes of high-resolution coherent four-photon spec-
troscopy with chirped pulses used for the Raman exci-
tation of a nonlinear medium. In this scheme, the detun-
ing of the instantaneous frequency difference of
chirped pump pulses from the frequency of the Raman
resonance is a linear function of the delay time between
the pump pulses (Fig. 1). The spectrum of nonlinear
susceptibility is then accessed by measuring the inten-
sity of the CARS signal as a function of the delay time
between the pump pulses.

Suppose that pump pulses with frequencies ω1 and
ω2 are linearly chirped and have equal constant chirps
(Fig. 1), while the third (probe) pulse is transform-lim-
ited. Then, neglecting group-velocity dispersion, we
can represent the amplitudes of the pump pulses as

(10)

(11)

(12)

where θ = t – z/v j is the retarded time, Bj is the envelope
of the jth pulse (j = 1, 2, 3), α is the chirp, and τ is the
delay time between the first and second pulses.

We need to assume in our analysis that only the third
pulse [Eq. (12)] is short. The durations of the pulses
defined by Eqs. (10) and (11) are assumed to be large as
compared with the response time of the nonlinear
polarization of the medium. The spectra of these two
pulses, however, can (and must) be sufficiently broad
due to their chirp. In experiments, such pulses are rou-
tinely produced by chirping ultrashort laser pulses. The
pulses described by Eqs. (10) and (11) can be also com-
pressed to very short durations through the compensa-
tion of their chirp.

Since the instantaneous frequency difference of the
linearly chirped pulses (10) and (11) is a linear function
of τ,

,

ϑ ω( ) χ θ( ) iωθ–( ) θdexp

0

∞

∫=

A1 θ z,( ) B1 θ( ) iαθ2–( ),exp=

A2 θ z,( ) B2 θ τ–( ) iα θ τ–( )2–[ ] ,exp=

A3 θ z,( ) B3 θ( ),=

∆ω ω1 ω2– ω1 ω2 2ατ+–= =
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∆ω + 2α'τ
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ω2

Ω
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–

Fig. 3. Probing Raman modes with chirped pump pulses: (a) electric fields E1 and E2 of the first and second pulses and their product

E1E2 as functions of the retarded time θ and (b) spectra S1 =  and S2 =  of the first and second pulses

and the spectrum Ss =  of the product of the pulse fields. For linearly chirped pulses with equal chirp rates, the

product of the fields E1E2 involves a narrow spectral component with a frequency Ω depending on the delay time between the pulses
τ and the width controlled by the bandwidth of the product of the pump-pulse envelopes.

E1e
iωθ θd∫

2
E2e

iωθ θd∫
2

E1E2e
iωθ θd∫

2

it can be tuned around the Raman resonance under
study by varying the delay time between the pump
pulses (Fig. 1). In the frequency domain, this strategy of
high-resolution spectroscopy can be understood in the
following way. For linearly chirped pump pulses with
equal chirps, the product of the fields E1E2 features a
narrow spectral component (Fig. 3) whose frequency
depends on the delay time between the pump pulses and
whose bandwidth is controlled by the bandwidth of the
product B1  of pump pulse envelopes.

Using Eqs. (1), (2), (5), and (10)–(12) in the
retarded frame of reference θ, z, we derive the follow-
ing equation for the amplitude of the CARS signal:

(13)

where ∆k = k4 – k1 + k2 – k3 is the phase mismatch and
ω4 = ω1 – ω2 + ω3 + 2ατ  is the central frequency of the
signal.

B2*

∂A4 θ z,( )
∂z

----------------------
2iπω4

3

k4c2
---------------=

× χ t1 z,( )B1 θ t1–( )B2* θ t1 τ––( )
0

∞

∫

× i∆ωt1( ) t1B3 θ( ) iατ 2 i∆kz–( ),expdexp
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If the envelopes of the pump pulses do not vary sig-
nificantly within the characteristic decay time T of the
nonlinear polarization, we can set B1(θ – t1) ≈ B1(θ) and
B2(θ – τ – t1) ≈ B2(θ – τ) for t1 ≤ T. With these assump-
tions, Eq. (13) can be rewritten as

(14)

where

is the Fourier transform of the cubic susceptibility.

For a spatially uniform medium, where the nonlin-
ear susceptibility is independent of z, the integration of
Eq. (14) yields

(15)

∂A4 θ z,( )
∂z

----------------------
2iπω4

2

k4c2
---------------χ' ∆ω z,( )B1 θ( )B2* θ τ–( )B3 θ( )=

× iατ 2 i∆kz–( ),exp

χ' ω z,( ) χ t z,( ) iωt( ) tdexp

0

∞

∫=

A4 θ τ z, ,( )
2iπω4

2

k4c2
---------------χ' ∆ω( )B1 θ( )B2* θ τ–( )B3 θ( )=

× iατ 2( ) i∆kz–( )exp 1–
i∆k–

-------------------------------------.exp
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Thus, the amplitude of the CARS signal measured
as a function of the delay time between linearly chirped
pump pulses with equal chirps recovers the spectral
dependence of the nonlinear-optical cubic susceptibility.

In the regime of phase matching, ∆k = 0, Eq. (15)
can be reduced to

(16)

The power of the CARS signal is then given by

(17)

For pulses with Gaussian envelopes, Bj(θ) =

B0jexp(–θ2/ ), j = 1, 2, 3, integration in Eq. (17) for
the case of two-color CARS with ω1 = ω2 and τ1 = τ2
gives

(18)

Consider now in greater detail a methodologically
important case of a homogeneously broadened Raman
resonance:

(19)

where χ0 is a constant and Ω is the frequency of the
Raman resonance. The parameter T in this case is
understood as the transverse relaxation time, which
controls the spectral line width.

The Fourier transform of the nonlinear cubic sus-
ceptibility (19) yields a Lorentzian spectral contour:

(20)

Expression (18) can then be rewritten as

(21)

The considered technique thus allows the frequency
dependence of the nonlinear-optical susceptibility to be
measured with a high spectral resolution around a
homogeneously broadened Raman resonance.
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.exp∝
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4. SPECTRAL RESOLUTION
OF CHIRPED-PULSE FOUR-PHOTON 

TECHNIQUES

In this section, we focus on the spectral resolution of
chirped-pulse CARS spectroscopy and microscopy.
These techniques have been gaining powerful momen-
tum over the past few years due to the development of
novel light sources based on PCFs [4–6], providing
high efficiencies of nonlinear-optical frequency conver-
sion of ultrashort laser pulses and allowing the genera-
tion of field waveforms with a controlled chirp, ideally
suited for spectroscopic and microscopic applications
[6, 27, 28].

We start by using Eqs. (5)–(9) for calculating the
temporal envelope of the CARS signal generated by
light pulses (10)–(12) (Fig. 1). The driving force for the
considered regime of nonlinear-optical interaction can
be represented as

(22)

where f(t) is the temporal envelope of the driving force
(determined by the shortest among the pump pulses)
and τ is the delay time between the chirped pump
pulses.

We assume first that the variation of the temporal
envelope of the driving force can be neglected on the
time scale of the nonlinear response time T (regime of
long pulses). Then, substituting Eq. (22) into Eq. (7),
we find that

(23)

The temporal profile of the CARS signal measured
as a function of the delay time τ in this regime recovers
the spectrum of the nonlinear-optical susceptibility:

(24)

To analyze the influence of finite pump-pulse widths
on the spectral resolution of this CARS technique, we
assume that the laser pulse has a rectangular shape with
a duration τ1, while the nonlinear response has a stan-
dard form,

(25)

corresponding to a Lorentzian spectral profile with the
central frequency ω0 and the line width γ = 1/T.

F t θ–( ) F0 f t θ–( )=

× 2iατ t θ–( ) iατ 2–[ ] iω t θ–( )[ ] ,expexp
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∞–

∞

∫
2

.

χ θ( ) χ0
θ
T
---– 

  iω0θ( )exp ,exp=
SICS      Vol. 100      No. 5      2005



838 ZHELTIKOV
Integration in Eq. (7) yields

(26)

where δ = ω0 – ω – 2ατ .
The limiting transition τ1  ∞ recovers Eq. (23)

with a Lorentzian spectral profile:

(27)

In the general case, a finite pulse width limits the
spectral resolution. Figure 4 compares a Lorentzian
spectral profile with a width γ (solid line 1) with the
nonlinear response |Q|2 (curves 2–4) calculated with
the use of Eq. (26) as a function of the detuning δ = ω0 –
ω – 2ατ  of the instantaneous frequency difference of
the pump fields from the Raman resonance normalized
to the line width γ. As can be seen from this figure, the
spectral resolution of CARS lowers as the pump-pulse
duration τ1 becomes smaller.

In the limiting case of γ  0, we arrive at

(28)

Expression (28) gives the following estimate for the
spectral resolution of the considered method (see also
Fig. 4):

(29)

Q t τ1,( )
F0 iωt( ) iατ 2t τ–( )[ ]expexp

γ iδ–
-----------------------------------------------------------------------∝

× 1 γ– iδ+( )τ1[ ]exp–{ } ,

Q t τ1 ∞,( ) 2 1

γ2 ω0 ω– 2ατ–( )2+
--------------------------------------------------.∝

Q t τ1,( )
2 ω0 ω– 2ατ–( )

τ1

2
----sin

ω0 ω– 2ατ–
--------------------------------------------------------------.∝

δωCARS 1/τ1.≈

1.0

0.8
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0.4
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–15 –10 –5 0 5 10 15

δ/γ

|Q|2, arb. units

12
3

4

Fig. 4. Lorentzian spectral profile with a width γ (1) and the
nonlinear response |Q|2 (2–4) calculated with Eq. (26) as a
function of the detuning δ = ω0 – ω – 2ατ  of the instanta-
neous frequency difference of the pump fields from the fre-
quency of the Raman resonance normalized to the line
width γ; γτ1 = 2 (2), 1 (3), and 0.5 (4).
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To derive a more general expression for the spectral
resolution of chirped-pulse CARS, we use the fre-
quency-domain representation for the nonlinear polar-
ization P(ω4) induced in a medium with a cubic nonlin-
earity at the anti-Stokes frequency ω4 = ω1 – ω2 + ω3
(Fig. 2):

(30)

where Ei(ω) are the Fourier transforms of the laser
fields (i = 1, 2, 3) and g(ω – Ω) is the spectral line pro-
file corresponding to the probed Raman mode with the
frequency Ω (Fig. 2).

For a Raman mode with an infinitely narrow spec-
tral line, g(ω – Ω) = g0δ(ω – Ω), we find

(31)

(32)

We search now for the spectral width of the nonlin-
ear polarization (31), which is the measure of the spec-
tral resolution of chirped-pulse CARS. To this end, we
assume that one of the pump pulses is transform-lim-
ited, while the phase modulation of the second pulse is
quadratic in time, corresponding to a linear chirp with
a chirp rate α (Fig. 2). For pump fields with Gaussian
spectra,

(33)

(34)

integration in Eq. (32) gives

(35)

Using Eq. (35), we can find the spectral resolution
of the method:

(36)
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As can be seen from Eq. (36), the spectral resolution
of chirped-pulse CARS spectroscopy and microscopy
is controlled by the durations and the chirp of the pump
pulses (Fig. 5). With τ1 ! τ2, Eq. (36) can be reduced to

(37)

In the case of  ! 4α2 , the spectral resolution
of the CARS technique,

(38)

is determined by the deviation of the instantaneous fre-
quency difference of the pump fields within the shortest
of the laser pulses (Fig. 2).

We now interpret Eqs. (36)–(38) in terms of the
Heisenberg uncertainty principle [44]. To this end, we
represent Eq. (36) as

(39)

where

(40)

is the effective time of measurement made on the sys-
tem. According to the Heisenberg uncertainty principle,
the lower bound for the uncertainty of energy measure-
ment, δEH , is related to the maximum time ∆t of mea-
surements performed on a system by the expression
δEH∆t = ", where " is the Planck constant. In view of
Eq. (39), we write

(41)

Setting ∆t = τeff , we arrive at

(42)

As can be seen from relations of Eq. (42), the uncer-
tainty of spectral measurements in CARS spectroscopy
and microscopy using linearly chirped laser pulses
(Fig. 5) always exceeds the lower bound dictated by the
uncertainty principle. In the considered regime, the
lower bound of uncertainty in spectral measurements is
achieved with α = 0 (the solid line in Fig. 5).

5. PULSES WITH A PERIODIC MODULATION
OF PHASE AND THE LIMITING SPECTRAL 

RESOLUTION OF CARS

In this section, we will show that the lower bound of
uncertainty in CARS spectral measurements dictated
by the uncertainty principle can be achieved by using
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pump pulses with a periodic modulation of phase. Con-
sider the pump field of the following form:

(43)

where Φ(t) is a periodic function. In view of the period-
icity of its argument, the phase factor exp[iΦ(t)] can be
expanded as a Fourier series:

(44)

where σ is the period of the function Φ(t) and qn are the
expansion coefficients in the Fourier series.

In the case of a Gaussian envelope in (43),

(45)

we arrive at the following expression for the spectrum
of the pump field:

(46)

We now assume that measurements are performed
with a single broadband pump pulse, which serves as a
source of photons for the resonant excitation of Raman-
active modes. Such a technique of femtosecond CARS
spectroscopy is widely used for the investigation of
ultrafast processes in molecular systems and dynamics
of vibrational wave packets [38, 45–48]. Special phase
profiles of ultrashort pulses, as shown in [49, 50], can

E t( ) B t( ) iΦ t( )[ ] iω0t( ),expexp=

iΦ t( )[ ]exp qn inσt( ),exp
n

∑=
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Fig. 5. Parameter δωCARSτ2 as a function of the ratio of

pump-pulse durations τ2/τ1 for α  = 0.3 (1), 1 (2), and

10 (3). The solid curve shows the product δωHτ2 corre-
sponding to the lower bound of spectral uncertainty dictated
by the uncertainty principle.

τ1
2
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suppress a coherent background in CARS spectra, thus
improving the selectivity of CARS spectroscopy.

Integration in Eq. (32) then leads to

(47)

Ultrashort pulses with a periodic modulation of
phase can be synthesized in experiments with the use of
spatial light modulators [51–53]. In particular, a har-
monic phase mask [54] gives laser pulses of the follow-
ing form:

(48)

where a and σ are the amplitude and the frequency of
phase modulation.

The spectrum of such pulses is given by

(49)

where Jn(x) is the nth-order Bessel function.
Performing integration in Eq. (32) for the spectrum

of the pump field (49), we derive

(50)

The spectrum of the pump pulse with a periodic
modulation of phase, as can be seen from Eqs. (46) and
(49), has the form of a frequency comb consisting of

Q σ( ) qnqm

n m–( )σ Ω–[ ] 2τ1
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--------------------------------------------–

 
 
 

.exp
n m,
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E t( ) B t( ) i a σt ω0t+sin( )[ ] ,exp=
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Fig. 6. The spectrum of a pulse with a harmonic modulation
of the phase (48) for (ω0τ1)2 = 1000, σ/ω0 = 0.2, and a =
1.3 (solid curve) and 3.3 (dashed curve).
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equidistant components separated by the spectral inter-
val σ (Fig. 6). The central frequency of the nth spectral
component is equal to ω0 + nσ. The bandwidth of each
spectral component in the frequency comb is controlled
by the pulse duration τ1. We assume that

(51)

When this inequality is satisfied, the spectral inter-
val between the components of the frequency comb is
larger than the bandwidth of each component (Fig. 6).
The frequency comb can be then employed as a ruler
for spectral measurements (see also [22]). In the limit-
ing case of τ1  ∞, the spectrum of the pump pulse
has the form of a frequency comb consisting of infi-
nitely narrow equidistant spectral components:

(52)

The equality

(53)

expresses the condition of a resonant excitation of
Raman modes with the frequency Ω . The spectral res-
olution of the CARS technique, as can be seen from
Eqs. (47) and (50), is then controlled by the inverse of
the pump pulse duration. Comparison of Eqs. (35)
and (47) shows that the spectral resolution of CARS
spectroscopy and microscopy based on the use of a sin-
gle pump pulse with a periodic modulation of phase
coincides with the lower-bound limiting spectral reso-
lution δEH"–1 for the standard CARS technique, which
involves two pump pulses with the difference of their
central frequencies equal to ω1 – ω2 ≈ Ω .

The condition of Eq. (53) also provides the maxi-
mum selectivity of Raman-mode excitation with a
broadband field of an ultrashort laser pulse. All the
energy of the pump field under conditions of Eqs. (52)
and (53) is concentrated (Fig. 6) in spectral components
of laser radiation resonant to Raman modes of the sys-
tem under study (see also [55]).

6. TEMPORAL RESOLUTION
OF CHIRPED-PULSE CARS

In this section, we examine the temporal resolution
of chirped-pulse CARS spectroscopy and microscopy.
Assuming that chirped pump pulses employed in the
CARS scheme have Gaussian envelopes, we represent
the driving force in Eq. (7) as

(54)

τ1 σ 1– .>

E ω( ) qnδ ω ω0 nσ––( ).
n

∑∝

n m–( )σ Ω=

F t θ–( ) F0
t θ–( )2

τ1
2

-----------------–exp=

× iα t θ–( )2[ ] iω t θ–( )[ ] ,expexp
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where τ1 is the characteristic duration of the pump
pulses (or the minimum among the pulse durations in
the case of pump pulses with radically different pulse
widths), and ω = ω1 – ω2 is the difference of the central
frequencies of the pump fields.

To determine the temporal resolution of the CARS
technique, we consider a medium with an instantaneous
nonlinear-optical response and set χ(θ) = h0δ(θ). Inte-
gration in Eqs. (6) and (7) then leads to the following
dependence of the CARS signal on the delay time η of
the probe laser pulse with a characteristic pulse dura-
tion τ3:

(55)

where

(56)

Figure 7 presents the ratio ξ2(α, τ1, τ3)/ , used as a
measure of the temporal resolution of the CARS tech-
nique, calculated with Eq. (56) as a function of the
chirp parameter of the pump pulse for τ3/τ1 = 0.3
(curve 1) and 0.1 (curve 2). In a particular case of trans-
form-limited pump pulses, α = 0, Eq. (56) yields the
following physically instructive relationship:

(57)

The temporal resolution of the CARS technique in
this regime (dashed lines 4 and 5 in Fig. 7) is given by
the intuitively clear expression

(58)

The case of large α corresponds to broadband
chirped pump pulses. The temporal resolution of CARS
in this situation is determined by the duration of the
probe pulse (dashed line 3 in Fig. 7):

(59)

Thus, the temporal and spectral resolution of CARS
measurements performed with an ultrashort probe
pulse (τ3 ! τ1) can be smoothly tuned by varying the
chirp parameter (Fig. 7). The temporal resolution can

range from δt ≈ (  + )1/2 ≈ τ1 in the regime of small
α to δt ≈ τ3 ! τ1 in the case of strongly chirped pump
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pulses. This property of chirped-pulse CARS makes
this technique an ideal tool for the spectroscopy and
microscopy of ultrafast processes and nonstationary
objects in the gas and condensed phases. Of special
interest is to extend the methodology of chirped-pulse
CARS spectroscopy and microscopy to attosecond
metrology and tomography. Analysis presented in this
section shows that, to provide a subfemtosecond time
resolution in CARS spectroscopy or microscopy, only
one of the pulses involved in the nonlinear-optical pro-
cess has to be attosecond.

7. CONCLUSIONS

We have shown that ultrashort light pulses with con-
trolled chirp offer new solutions for coherent nonlinear
spectroscopy and microscopy. Pulses with a quadratic
modulation of phase in time (corresponding to a linear
chirp) define a simple one-to-one mapping between the
delay time and the detuning of the frequency difference
of the pump fields from the frequency of the Raman
mode under study. We found analytical solutions for the
temporal envelope of the CARS signal produced by
chirped pulses and examined the ways of using chirped
pulses for high-resolution nonlinear spectroscopy and
microscopy, as well as for studying ultrafast processes
in the gas and condensed phases. Our analysis shows
that the temporal resolution of CARS measurements
performed with an ultrashort probe pulse can be
smoothly tuned by varying the chirp parameter. The
upper and lower boundaries of this resolution tunability
interval are controlled by the durations of the pump and
probe pulses. This property of chirped-pulse CARS

102
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ατ1
2

(ξ/τ3)2

1

2
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ξ2 = τ1
2 + τ3

2

5

102101

ξ2 = τ3
2

3

Fig. 7. The ratio ξ2(α, τ1, τ3)/ , used as a measure of the

temporal resolution of the CARS technique, as a function of
the chirp parameter of the pump pulse for τ3/τ1 = 0.3 (1) and
0.1 (2). The horizontal lines show the limiting temporal res-
olution of the CARS technique corresponding to

ξ2(α, τ1, τ3) =  (3) and ξ2(α, τ1, τ3) =  +  with

τ3/τ1 = 0.3 (4) and 0.1 (5).

τ3
2

τ3
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makes this technique an ideal tool for the spectroscopy
and microscopy of ultrafast processes and nonstation-
ary objects in the gas and condensed phases, including
measurements on the subfemtosecond time scale. The
spectral resolution of chirped-pulse CARS spectros-
copy and microscopy is determined by the durations of
the pump pulses and the chirp parameter. The uncer-
tainty of spectral measurements for CARS techniques
using linearly chirped laser pulses always exceeds the
lower bound dictated by the uncertainty principle. This
lower bound of uncertainty in CARS spectral measure-
ments can be achieved by using pulses with a periodic
phase modulation.
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Abstract—In several independent experiments investigating the interaction between the optical field of an
intense laser pulse and a xenon cluster beam, we recorded an anomalously high quantum yield of the plasma
radiation in the region 10–15 nm. In several cases, the conversion efficiency into the hemisphere reached 10%
of the pumping pulse energy. The nature of this phenomenon has not yet been adequately explained. A high
conversion efficiency is shown to be possible when producing a plasma with optimal parameters for the ampli-
fication of spontaneous radiation on Ni-like xenon transitions to be generated. In a collisional–radiative model,
we performed detailed atomic–kinetic calculations of the gains and radiation spectra on the transitions with
λ ≈ 4, 10, and 11.3 nm and in the region 13–13.9 nm. For each transition, we determined the time dependences
of the gains on plasma parameters. The theoretical and experimental values of the optimal plasma parameters
and energy yields of the radiation are in close agreement. Using a theoretical model, we propose possible
plasma pumping schemes to achieve the maximum yield of the intense, narrowly beamed soft X-ray radiation.
At a pumping pulse repetition rate of 104 Hz, the output power for various Ni-like xenon transitions ranges from
100 to 5 × 103 W. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The experiments [1–4] carried out in the mid-1990s
showed that the interaction of an intense ultrashort laser
pulse with a cluster target could give rise to a plasma
whose temperature is several orders of magnitude
higher than the temperature of the plasma produced
through the interaction of the same source with a gas-
eous or solid target. Highly charged ions of rare gases
with energies above 1 MeV and electrons with energies
of several keV were detected in [3, 4]. An almost 100%
absorption of the pulse energy is possible during the
interaction of a cluster beam with an optical laser field.
This is mainly attributable to two factors: the density of
the atoms in an individual cluster is comparable in
order of magnitude to the density of the solid; there is
virtually no reflection of the electromagnetic wave
from the surface.

At present, there exist several models that interpret
the ionization and decay of cluster targets [5–7]. Exter-
nal ionization, the escape of the produced photoelec-
trons from the cluster outward, takes place at the begin-
ning of laser-pulse action. During the interaction of the
laser pulse with the cluster, the ionized cluster expands
and the electrons heat up to a temperature of several keV;
the cluster is ionized and decays. As a result, immedi-
ately after the termination of an ultrashort laser pulse,
the material at the focus of the laser beam is a high-tem-
perature plasma composed of free electrons and multi-
ply charged atomic ions. The charge composition, tem-
1063-7761/05/10005- $26.000844
perature, density, and radiative properties of the pro-
duced plasma depend significantly on how the cluster
beam was formed as well as on the laser-pulse parame-
ters and interaction conditions. The results presented
in [1–7] can affect profoundly the trends in the physics
of intense X-ray and EUV radiation sources.

Reliable methods for producing cluster beams of
such rare gases as argon, krypton, and xenon have been
developed in the last decade. A conical valve is com-
monly used. The gas pressure in the valve can vary over
a wide range, up to 100 atm. Clusters are formed as a
liquefied gas expands from the valve through a
10−400 µm hole into a vacuum chamber. Subse-
quently, a cluster beam is formed at the exit from the
chamber hole, which is usually in the shape of a circle
up to several millimeters in diameter. Both the mean
size of the forming clusters and the pattern of spatial
distribution of their concentration in the interaction
region can be varied over a wide range by using various
pressures and nozzle designs. The pressure depen-
dences of the cluster sizes in the original chamber were
analyzed in [8–10]. Experimental data on the formation
of metal cluster beams are also available [5, 11].

At present, the energy distributions of the electrons
and ions escaping from plasma are experimentally stud-
ied by means of time-of-flight spectroscopy. In these
studies, the laser pulse is focused on a more rarefied
part of the cluster beam at a distance of several centime-
ters from the nozzle. Thus, for example, the depen-
dences of the energies of the escaping krypton and
 © 2005 Pleiades Publishing, Inc.
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xenon ions on the cluster size (102–105 at. per cluster)
as well as on the laser intensity (I = 1014–1016 W cm–2)
and wavelength (780 and 390 nm) were determined in
the experiment described in [12]. The mean and maxi-
mum ion energies were shown to increase with cluster
size up to a certain optimal size. A further increase in
the cluster size causes the ion energy to decrease. In this
paper, it was also established that the ion and electron
energies increase sharply at intensities from I ≈ 6 ×
1014 W cm–2 to I ≈ 1015 W cm–2; a further increase in the
intensity causes the temperature to rise only slightly.
The experimental dependences are in good agreement
with the numerical calculations of the nanoplasma
dynamics, whose model was suggested in [1].

Investigating the spectra and quantum yields of the
X-ray and EUV radiation from the plasma produced
through the interaction of a laser pulse with a cluster is
another direction of research. In these experiments, the
laser pulse is focused on the cluster beam in the imme-
diate vicinity of the chamber hole, at a distance of
0−2 mm where the beam density is at a maximum.
Intense radiation from the high-temperature plasma
produced through the interaction of a femtosecond
pulse (I ~ 1016–1017 W cm–2) with He, Ne, Ar, and Kr
clusters (the cluster size is ~100 Å) was detected in
[13]. It was established in [13] that the resonant absorp-
tion of the laser-pulse energy plays a crucial role in the
dynamics of the plasma formation and decay. It was
also found that the quantum yield of the cluster plasma
radiation is of the same order of magnitude as that for
the plasma of a solid target; in this paper, the quantum
yield depended significantly on the laser-pulse dura-
tion. The energy yield Eout of the X-ray radiation from
the plasma formed from krypton clusters under the
action of a femtosecond pulse (I ≈ 5 × 1017 W cm–2) was
studied in the experiment described in [10]. The
observed spectrum in [10] corresponded to the radia-
tion of krypton ions with a degree of ionization of
24−27. The plasma radiation was isotropic, and Eout
depended on the laser intensity and the mean cluster
size; Eout for photons with an energy of 55 keV did not
exceed 1.7 × 10–8 in 4π steradians, and Eout for photons
with an energy of 1.25 keV was an order of magnitude
higher.

The large number of parameters that characterize
the target + laser pulse system is a fundamental prob-
lem of the experimental studies. For a given beam
geometry, the main parameters include the mean cluster
density in the beam, the mean cluster size and the clus-
ter distribution in size (number of atoms in the cluster),
and the gas fraction in the beam; the spatial inhomoge-
neity of the cluster beam also plays an important role.
The characteristics of the emergent radiation are
strongly affected by the parameters of the control pulse:
its intensity, contrast, duration, wavelength, polariza-
tion, and focusing [14, 15]. A theory for the evolution
of large atomic clusters when irradiated by a femtosec-
ond laser pulse producing a superatomic field in the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cluster was developed in [16, 17]. It is based on the
above-barrier successive multiple internal ionization of
atomic ions inside the cluster accompanied by the field
ionization of external atoms. The ionization through
electron–ion collisions was also taken into account in
the calculations. As a result, the authors obtained the
time dependences of the cluster radius, the electron and
ion densities, and temperatures and described the
dynamics of the internal and external ionization of a
large (~106 atoms) xenon cluster irradiated by a laser
pulse with a peak intensity of 1018 W cm–2 and a dura-
tion of 50 fs. The electron–cluster or ion–cluster inter-
actions are also of great importance for a high-density
cluster beam. An important role of the collisional inter-
action between free electrons and a cluster was demon-
strated in [18]: free electrons are accelerated in the field
of positively charged clusters, which contributes to
faster cluster destruction.

The spectra and energy yields of the radiation from
the plasma produced through the interaction between
the optical field of various lasers and a xenon cluster
beam were studied in detail at the Tsukuba [19, 20] and
Max-Born [21, 22] Universities. In several cases, a 10%
conversion of the pumping pulse energy into the plasma
radiation in the spectral region 9–15 nm in 2π steradi-
ans was recorded. The time-integrated spectra corre-
sponding to the Xe9+–Xe29+ radiation were recorded
in [19–22]. The most intense lines were observed in the
regions λ = 10.3–10.7, 11.4, and 13–13.8 nm. A Ti-sap-
phire laser with an intensity of 1018 W cm–2 and a dura-
tion of 50 fs (0.2 J per pulse) was used in [21]; the radi-
ation with λ = 13.4 nm along the plasma axis was found
to be approximately threefold more intense than that
across the axis. In this case, the conversion efficiency of
the radiation with λ = 11.4 and 13.4 nm into the hemi-
sphere was 2 and 0.5%, respectively. The dependence
of the conversion efficiency on the polarization of the
Ti-sapphire laser beam and on the pressure in the valve
was also investigated in this paper. We have found no
adequate explanation of the anomalously high quantum
yield in the literature; the absence of time scans for the
radiation spectra makes it difficult to interpret the
results. In particular, there is no clear idea of precisely
which xenon ions provide the maximum yield of the
radiation in the spectral range under study. A theoretical
study of the physical nature of this phenomenon is of
current interest.

In our previous paper [23], based on atomic-kinetic
calculations, we predicted several efficient lasing tran-
sitions in the region 10–15 nm in Ni-like xenon. In [23],
a theoretical study was performed for the plasma of
fairly low temperature (Te = 500–1000 eV) produced by
a long (τpump @ 100 ps) pumping pulse. Under such
conditions, the amplification on several 3p53d104f–
3p53d104d transitions between highly excited levels in
the region of 13–14 nm and on the commonly studied
3d94d [J = 0]–3d94p [J = 1] transition with λ ≈ 10 nm
in Ni-like ions is of greatest interest. In recent years, we
SICS      Vol. 100      No. 5      2005
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Fig. 1. Level diagram for Xe XXVII showing the strongest lasing transitions.
have calculated the gains in various Ne- and Ni-like
ions by using our method [24, 25] for a detailed com-
parison with available experimental data. In [26], we
tested our atomic–kinetic calculations of the gains on
the Pd-like xenon (λ = 41.8 nm) transition in the plasma
produced through the interaction between the optical
field of a femtosecond pulse and gaseous xenon. Based
on our calculations, we determined optimal parameters
for the experiment to achieve the maximum yield of the
radiation with λ = 41.8 nm.

In this work, we performed atomic-kinetic calcula-
tions of the radiation spectra for Ni-like xenon; the the-
oretical and experimental radiation spectra in the region
of the resonance Xe XXVII transitions are compared in
Section 2. The time dependences of the gains in a high-
temperature plasma for the most promising lasing tran-
sitions of Ni-like xenon are considered in Section 3.
In Section 4, our atomic–kinetic calculations are used
to determine the plasma parameters in the experiments
[20–22] that recorded an anomalously high energy
yield of the plasma radiation in the region 10–15 nm. In
conclusion, based on our calculations and using the
experimental results from [20–22], we propose an
experimental pumping setup that provides the maxi-
mum energy yield of the narrowly beamed radiation
with λ = 4, 9.9, 11.4, and 13–14 nm.

2. SPECTRAL CHARACTERISTICS
OF Ni-LIKE XENON

Figure 1 shows the working levels and wavelengths
in Xe XXVII for the strongest lasing transitions. The
lasing transitions are indicated by the inclined dotted
lines; the radiative decays of the lower working levels
JOURNAL OF EXPERIMENTAL A
are indicated by the vertical dash–dotted lines, with
their rates being given near them. We calculated the
wavelengths, the rates of the radiative transitions, and
the rates of the transitions induced by collisions with
electrons using the relativistic perturbation theory with
the zeroth-approximation model potential [27, 28]. The
results of our calculations are presented in the table.
The error in the calculated wavelengths is within ±2 Å
for the transitions between the lower 3d94l configura-
tions. For the transitions between the high-lying
3p53d104l configurations, where the effect of the
ignored correlation corrections is stronger, the error can
be slightly larger.

The gains are usually measured experimentally for
the 3d4d–3d4p, 0–1 transition with λ = 10 nm, whose
empirical wavelengths for the Ni-like sequence of ions
with Z = 46–92 are presented in [29]. There are other,
two less intense lines near 10 nm that correspond to the
transitions from the same upper 3d4d [J = 0] level to the
other two states, 3d4p [J = 1]. There are five strong las-
ing transitions in the region 13–13.9 nm between the
highly excited 3p53d104f–3p53d104d configurations.
Four of them were considered in [23]. The level popu-
lation inversion for these four transitions, as for the
4d−4p, 0–1 transitions, is quasi-stationary; it is stable if
the plasma parameters are maintained. The inversion
mechanism on these transitions is attributable to ordi-
nary collisional–radiative processes; it is similar to the
inversion mechanism for the 3p–3s, 2–1 and 3p–3s, 0−1
transitions in Ne-like ions. For simplicity, Fig. 1 shows
only the two possible lasing transitions in the region
13–13.9 nm. Note that the lasing transition between the
analogous highly excited levels in Ne-like ions,
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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The transitions in Ni-like xenon on which the spontaneous radiation can be amplified

Upper 
level J Lower

level J

Tran-
sition
 level 
nos.

λ,
Å

Aul, s
–1 Rcol,

cm–3 s–1
Etr,
eV

∆ν,
s–1

Ňu,
3 × 1016

cm–3

Ňl,
3 × 1016

cm–3

I0,
1023 

eV s–1

,

cm–1
exp( L)

,

1015 
eV

3d3/24d3/2 0 35 9.5 4.5 × 1010 1.3 × 10–10 131 8.3 × 1012 6.0 1.8 25 33 0.03

3d3/24p1/2 1 –9 4.1 × 10–12 6.8

3d5/24p3/2 1 –12 10.0 1.0 × 1011 2.0 × 10–11 125 1.1 × 1013 5.9 3.8 45 544 1.0

3d3/24p3/2 1 –16 10.9 1.5 × 1010 2.8 × 10–12 113 8.1 × 1012 5.0 3.4 15 8 0.02

*3d3/24f5/2 1 57 10.3 1.5 × 1010 3.3 × 10–10 120 1.3 × 1013 10.0 0.9 10 3 0.002

3d5/24d5/2 1 –22 2.8 × 10–13 4.5

3d3/24d3/2 1 –28 11.3 4.4 × 1010 2.8 × 10–13 110 9.6 × 1012 4.8 2.4 65 8950 10

*3p1/24p1/2 0 67 3.9 8.9 × 1011 5.4 × 10–11 317 9.0 × 1012 7.0 100 50 1000 50

3d3/24p1/2 1 –9 4.1 × 10–12 6.7

3p1/24d5/2 2 80 13.8 1.1 × 1011 3.5 × 10–13 89 4.3 × 1012 3.0 1.5 26 37 0.03

3p1/24p3/2 1 –68 3.4 × 10–13 2.0

3p1/24d5/2 3 81 13.9 1.2 × 1011 1.2 × 10–12 89 4.6 × 1012 6.7 3.5 32 90 0.14

3p3/24p5/2 2 –69 1.8 × 10–12 4.4

3p3/24f7/2 2 89 13.2 9.6 × 1010 2.9 × 10–11 94 9.8 × 1012 5.9 2.7 37 180 0.2

3p3/24d5/2 1 –76 1.3 × 10–11 2.5

*3p1/24f7/2 4 92 13.6 1.2 × 1011 2.4 × 10–11 91 5.5 × 1012 4.5 2.5 50 1096 1.2

3p1/24d5/2 3 –81 1.2 × 10–12 2.2

3p1/24f5/2 2 93 13.0 1.1 × 1011 1.5 × 10–11 95 6.1 × 1012 4.5 2.3 57 2980 3.2

3p1/24d3/2 1 –79 4.2 × 10–12 2.7

Note: The table gives the transition wavelengths λ, radiative transition probabilities Aul, and transition energies Etr. The rates of level exci-

tation by an electron collision from the ground state per unit volume Rcol, the Voigt line width ∆ν, the time-averaged level popula-

tions Ňu and Ňl, and the gain  were calculated for ne = 8 × 1020 cm–3, Te = 1800 eV, and d = 12.5 µm. I0 is the transition emissive

power from a volume of 1.7 × 10–7 cm3, and  is the energy yield including the amplification for τlas = 4.6 ps. The transitions

with a short-lived inversion are denoted by an asterisk (*).

ĝ
ĝ

Elas
out

ĝ

Elas
out
2s2p63d [J = 2]–2s2p63p [J = 1], was observed experi-
mentally [30]. In Ni-like ions, the spectral density of
the above highly excited states is very high. In addition
to them, several more promising lasing transitions,
whose wavelengths may overlap, lie in the region
13−15 nm.

The inversion of the remaining strongest transitions,
denoted by an asterisk in the table, is possible only for
an ultrashort plasma production time, when the Ni-like

ions dominate at the initial time. The 3 4d104p1/2

[J = 0]–3p63 4p1/2 [J = 1] lasing transition with λ =
4 nm is of particular interest; unfortunately, this spec-
tral region has not been studied experimentally. This is
the so-called inner-shell transition between the 3p1/2–
3d3/2 vacancy states in the presence of a 4p1/2 “observer

p1/2
5

d3/2
9
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electron.” In [25], we predicted a similar amplification
mechanism on the short-wavelength inner-shell 2s–2p,
0–1 transition in Ne-like ions. This result was con-
firmed for Ne-like ions in the calculations performed by
other theoretical methods [31].

The reabsorption of photons to the upper working

3 4f5/2 [J = 1] level is responsible for the inversion
on the 4f–4d, 1–1 transition with λ = 11.3 nm. In
an optically thin plasma, the resonant decay of this
level to the ground state occurs with a probability of
6 × 1013 s–1. Because of the large oscillator strength,
this level is intensively populated by an electron colli-
sion from the ground state (see table). In an optically
thick plasma, including the reabsorption decreases the
radiative decay probability for this level by a factor of

d3/2
9
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10 to 100. Given the reabsorption, the radiative transi-

tion rate  is determined by the escape factor ε: in
our model, the photon reabsorption is taken into
account for all transitions in the approximation pre-

sented in [32, 33],  = εijAij , where ε =
1.22[ln(k0d)]1/2/(k0d) < 1 is the ratio of the radiative
transition probability of an ion in plasma to the proba-
bility in an isolated ion, and k0 is the photoabsorption
coefficient. An increase in the population of the

3 4f5/2 [J = 1] level through the reabsorption leads to
an inverted state relative to the lower levels. The term
“optical self-pumping” is used in the literature for this

Aij
eff

Aij
eff

d3/2
9
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Fig. 2. Model Xe XXVII radiation spectrum in arbitrary
units in the region 10–20 Å as a function of Te and ne =

1021 (a), 5 × 1020 (b), 1020 (c), and 5 × 1019 cm–3 (d).
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inversion mechanism. The amplification on this tran-
sition in Ni-like silver was first observed in [34]. Fig-
ure 1 shows the strongest possible lasing transition

from the 3 4f5/2 [J = 1] level with λ = 11.3 nm.

The model Xe XXVII radiation spectrum in the
region 10–20 Å, where the line intensities were calcu-
lated at four values of ne in the range 5 × 1019–1021 cm–3,
is shown as a function of ne and Te in Fig. 2. Te in the
range 0.5–2.5 keV lies along the second horizontal axis.
The relative line intensities are along the vertical axis
on a linear scale. The Xe XXVII resonance transitions
are located within the specified wavelength range; the
line intensities are shown without including the satellite
structure. The intensities of the strongest resonance
transitions in ions with the filled shell of the ground
state are known to be much higher than those of the
transitions between excited states. The number of reso-
nance lines in such ions is small; the most intense of
them are known even for the heavy ions of the nickel
isoelectronic sequence. The experimental wavelengths
λexp for the five resonance transitions in Xe XXVII can
be found in the review [35]. These lines can be seen in
Fig. 2: three lines belong to the 4p–3d transitions with
λ = 18.804 Å (λexp = 18.826 Å), λ = 18.641 Å (λexp =
18.667 Å), and λ = 18.301 Å (λexp = 18.326 Å); two
lines belong to the 4f–3d transitions with λ = 14.222 Å
(λexp = 14.247 Å) and λ = 14.602 Å (λexp = 14.618 Å).
A comparison indicates that the wavelengths of the res-
onance transitions were calculated with an accuracy of
about 0.1%. The presence of these resonance lines in
the xenon plasma spectra directly points to the exist-
ence of Ni-like ions. Figure 2 shows the five lines that
correspond to the transitions from the 3p53d104d [J = 1]
states with λ = 12.340, 12.270, 11.570 Å and the
3p53d104s states with λ = 14.585 and 13.575 Å. We con-
clude from Fig. 2 that the highly excited 3p53d104l
states are efficiently populated at ne ≥ 5 × 1020 cm–3. The
intensities of these transitions increase as the tempera-
ture changes from 500 to 2000 eV. One of the transi-
tions, 3p53d104d–3p63d10 (λexp = 11.57 Å), was identi-
fied by means of precision spectroscopy in [36]; this
result closely agrees with our values calculated for the

3 4d104d3/2 [J = 1]–3p63d10 [J = 0] transition. The
spectra of xenon ions at high ionization stages were not
studied by means of precision experimental spectros-
copy. Their shells are much more complex; in general,
there are no distinct resonances in the spectra of com-
plex shells.

The spectral characteristics of the radiation near the
Xe XXVII resonance transitions in the plasma pro-
duced through the interaction of an optical laser field
with a xenon cluster beam were studied in [19, 37, 38].
In actual spectra, many satellite lines that broaden the
resonances lie near the resonance transitions; as a
result, the experimental lines have smeared profiles.
Nevertheless, the spectral resolution in these experi-

d3/2
9

p1/2
5
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ments is high enough for the positions and intensities of
the resonances to be reliably judged. A laser with a pulse
duration of ~300 fs and an intensity of ~1019 W cm–2 was
used in [37]. The strong lines between 14 and 15 Å that
correspond to the transitions to the 3d shell from the 4f
state are clearly distinguishable in the radiation spec-
trum. In addition, there are intense lines in the region
10.5–12.5 Å, some of which are in satisfactory agree-
ment with the model spectrum shown in Fig. 2; these
lines correspond to the transitions to the 3p state from
the 4d and 4s states. The xenon plasma radiation spectra
in the region 12.5–15.5 Å were investigated in [38] by
using a neodymium glass laser pulse with a duration of
2 ps, an intensity of 1015–1017 W cm–2, and an energy of
0.5 J. Here, a resolution higher than that in [37] was
achieved. As a result, the two 4f–3d resonance transi-
tions with λ = 14.247 and 14.618 Å were clearly iden-
tified. The third, fairly intense line lies between these
two lines. According to our calculations, it corresponds

to the 3 3d104s1/2 [J = 1]–3d10 [J = 0] transition with
λ = 14.585 Å. Another transition from this configura-

tion, 3 3d104s1/2 [J = 1]–3d10 [J = 0] with λ =
13.575 Å, was observed in [38] in the form of a weaker
and smeared line.

An almost 100% absorption of the pumping pulse
energy at pulse intensities within the range 5 × 1015–5 ×
1017 W cm–2 was demonstrated in [37]. The energy
yield of the radiation near 1 keV (~12 Å) was measured
in this paper; at the peak intensity, it was 5–12 µJ
(~10−5), depending on the cluster size. The resonance
spectra of the xenon plasma radiation in the region
5−18 nm were also observed in [19] using a KrF laser,
where the previously known 3d94f–3d10 transitions
were identified. In addition, the ~13.5, ~12.2, and
~11.5 nm lines were clearly observed here.

The time dependences of the gains g(τ|ne, Te, d) on
Ni-like xenon transitions under long pumping pulse
conditions were theoretically analyzed in [23]. The Ni-
like state was assumed to be formed through one- or
two-stage plasma heating in a gas-puff facility. An opti-
mal density within the range 3 × 1020 ≤ ne ≤ 1021 cm–3

was found for each of the lasing transitions. In this
paper, it was shown how sensitive the time it takes to

reach the Ni-like stage ( ) and the ionization time

of a Ni-like ion ( ) into the next Co-like state are to

the plasma parameters. Thus, for example,  is sev-
eral dozen nanoseconds at Te ~ 150–200 eV and ne ~
1019 cm–3 and several picoseconds at Te ~ 450–500 eV
and ne ~ 1021 cm–3. The ionization balance, the ion frac-
tion in the Ni-like state, is determined by Te; the depen-
dence on ne is not so significant.

The plasma state at Te ~ 450–550 eV is a “thermal
trap” for Ni-like xenon, because the Xe26+ ionization
processes under these conditions are balanced by the

p3/2
5

p1/2
5

τ ioniz
Cu

τ ioniz
Ni

τ ioniz
Cu
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recombination processes to Xe26+. According to our
calculations [23], the fraction of Ni-like ions is ~0.4 at
such Te . This is confirmed by recent experiments [36],
where the Xe XXVI–Xe XXVIII radiation spectra as
well as the electron density, temperature, and ionization
balance in a xenon plasma were investigated with a
time resolution of 30 ps. The plasma was produced by
irradiating an atomic xenon beam by a neodymium
glass laser pulse with a duration of 650 ps. The time
dependences of the radiation spectra were indicative of
a steady state of the plasma ionization composition dur-
ing the pulse action. The pulse energy and duration
were chosen so as to compensate for the radiative
plasma cooling by maintaining a steady value of Te ,
which was estimated in [36] to be about 450 eV.

When ultrashort pumping pulses are used, the
highly efficient lasing transitions on picosecond and
subpicosecond time scales are of great interest. Such
short-lived lasing transitions are attributable to the high
population rate of some of the Ni-like xenon levels by
an electron collision: during a short time interval, the
populations of these levels exceed significantly those of
the remaining slowly populated levels. The inversion
duration depends on the level population rates, which
are sensitive to the plasma density and temperature.
This type of inversion is characterized by a very steep
rise in the gain on a subpicosecond time scale. Depend-
ing on the initial plasma parameters, two inversion dis-
appearance mechanisms are possible: ionization of the
working ion into the next stage and collisional level
mixing. For various lasing transitions in Xe XXVII, the
lifetime of the transition inversion can be 1−10 pc,
depending on plasma parameters.

3. TIME DEPENDENCES OF THE GAINS 
IN A HIGH-TEMPERATURE XENON PLASMA

In this section, we determine optimal conditions in
plasma for the maximum quantum yield of the radiation
on promising Xe XXVII lasing transitions to be
achieved. These results will be used to interpret the
experimental data presented in [19–22]. In our calcula-
tions, we made the following assumptions:

(1) Plasma is produced in the shape of a cylinder
with diameter d and length L via the propagation of a
laser pulse through a cluster beam with thickness L;

(2) The pumping pulse parameters are such that
plasma with an initial temperature Te (τ = 0), in which
the Xe26+ ions constitute 90% of the plasma and are in
the ground state, is produced immediately after the
interaction of the optical laser field with clusters;

(3) During approximately 10 ps, the plasma param-
eters (ne, Te(τ), d) are uniform along the propagation of
the pumping laser beam;

(4) The electron and ion energy distribution is
assumed to be Maxwellian, and the shape of the distri-
bution plays no significant role in calculating the rates
of the transitions induced by electron–ion collisions;
SICS      Vol. 100      No. 5      2005
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(5) The ion temperature Ti = Te .

In our calculations, we average the gain g(τ) over
the space and time coordinates. To this end, we break
down the cylinder target into segments smaller than the
pumping pulse scale length; the elementary processes
in each segment then proceed in an identical way, but
with a time delay. In this case, it will suffice to perform
only a time averaging for the function g(τ). We calcu-
late g(τ) at the line center from the commonly used for-
mula (see, e.g., [39])

where Aul is the radiative transition probability; λ is the
wavelength; Nu(τ) and Nl(τ) are the time-varying num-
ber densities of atoms in the upper and lower states; and
gu and gl are the statistical weights of the upper and
lower levels, respectively. The shape of the transition
line is determined by the convolution of the Doppler
and intrinsic profiles. The latter is attributable to the
radiative transitions and collisional processes that cou-
ple each level of the working ion with all the remaining
levels of this ion and with the ions of the adjacent ion-
ization stages. The line width (Voigt profile) ∆ν can be
determined by a simplified method suggested in [39].
We disregard the line broadening due to the Stark effect
produced by quasi-static microfields in the plasma. For
all the lasing transitions under consideration, ∆n = 0
(n is the principal quantum number). In [40], it was
shown for the 2p53p [J = 0, 2]–2p53s [J = 1] transitions
in Ne-like germanium that the line broadening due to
microfields is negligible. Similar calculations were per-
formed in [41] for the 4d95d [J = 0]–4d95p [J = 1] in
Pd-like xenon.

Once the pulse action has terminated, collisional–
radiative processes, which lead to the population of
excited Xe XXVII levels, take place in the plasma. Sev-
eral elementary processes involving electrons and ions
of the adjacent ionization stages also take place. All the
significant elementary processes between the Xe
XXVII states as well as between the Xe XXVII and Xe
XXVI states were taken into account in the kinetic cal-
culations. Our method for calculating the rate coeffi-
cients of the kinetic equations for the level populations
is presented in [42–44]. The method for calculating the
probabilities of radiative transitions between the levels
of the ions whose ground state is the filled shell is
described in [42, 44]. The method for calculating the
cross sections and strengths of the lines of the transi-
tions induced by collisions with electrons is described
in detail for such ions in [43]. Our method for solving
the kinetic equations to calculate the level populations
is presented in [45]. The gain g(τ|ne, Te, d) is calculated
for a set of parameters ne , Te , and d. The populations of
the lower 93 levels of Ni-like xenon are calculated by
using precise rate coefficients for the transitions
between the levels of this ion. The rate coefficients for

g τ( )
Aulλ

2

8π∆ν
-------------- Nu τ( )

gu

gl

-----Nl τ( )– ,=
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the transitions involving ions of the adjacent ionization
stages are calculated by quasi-classical methods [45].

The calculations of the level populations are based
on the solution of a system of differential equations
including a large number of rate coefficients. The rate
coefficients for different processes differ by several
orders of magnitude. In addition, the rate coefficients
and escape factors of photons vary with time due to the
variations in plasma parameters, level populations, and
radiation field. The proper populations on asymptoti-
cally long time scales are determined by solving the dif-
ferential equations in conjunction with the method of
iterations. To this end, the differential equations are
integrated on fairly short time intervals ∆τi , on which
the variations in rate coefficients, radiation field, and
escape factors may be ignored. The rate coefficients
and escape factors are calculated at the beginning of
each time interval. The stability of the final results for
the chosen time intervals ∆τi is tested numerically.

Figure 3 shows the time dependences of the gains
for the 4d–4p, 0–1 (λ = 10 nm) and 3p–3d, 0–1 (λ =
4 nm) transitions. The gains are given for three values
of Te and ne = 1021 cm–3; the optimal values of ne for these
transitions lie within the range 5 × 1020–1021 cm–3. The
plasma thickness was assumed to be d = 20 µm. Similar
plots are shown in Fig. 4 for the transitions in the region
13–13.9 nm: 4f–4d, 2–1 (λ = 13.0 nm) and 4f–4d, 4–3
(λ = 13.6 nm). The value of g(τ) for the transitions
shown in Figs. 3 and 4 varies only slightly when the
diameter varies within the range 10–100 µm. The decay
of the amplification on the transitions in the region
13−13.9 nm is attributable to the Xe XXVII ionization
into higher stages, except one transition with λ =
13.6 nm (Fig. 4a). The decay of the amplification on
this transition (just as on the transition with λ = 4 nm
(Fig. 3b)) is caused mainly by collisional level mixing;
as a result, the inversion disappears on a shorter time
interval than it does on the remaining transitions in the
region 13–13.9 nm (Figs. 4a and 4b). The temperature
saturation occurs at 1500 < Te < 2000 eV, except the
standard transition with λ = 10 nm. As was shown
in [23], the time dependence g(τ) for the commonly
studied 4d–4p, 0–1 transition with λ = 10 nm also has a
maximum near τ = 0, but here collisional mixing leads
only to a reduction in the inversion with increasing τ. At
ne ≈ 5 × 1020 cm–3, the lasing duration is τlas ≈ 8 ps. How-
ever, under these conditions, the values of g(τ) are much
lower for all transitions. At ne = 1021 cm–3, τlas ≤ 5 ps.

Figure 5 shows the time dependences g(τ) for the
4f–4d, 1–1 (λ = 11.3 nm) transition at an optimal value
of ne = 1021 cm–3 and three value of Te . For this transi-
tion, the temperature saturation occurs at Te ≥ 5 keV. It
is important to note that the maximum possible values
of g(τ) for this transition are much higher than those for
other transitions; the maximum values are reached at
τ = 0.3–0.4 ps. Figure 5 shows the dependences for two
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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Fig. 3. Time evolution of the gain g in Xe XXVII for two 0–1 transitions; Te = 1 (d), 2 (n), and 3 (s) keV; ne = 1021 cm–3, d =
20 µm, λ = 10 (a) and 4 nm (b).
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Fig. 4. Time evolution of the gain g for two transitions between highly excited levels in Xe XXVII: 3p53d104f–3p53d104d for λ =
136 (a) and 130 Å (b); Te = 1 (d), 2 (n), and 3 (s) keV, ne = 1021 cm–3, and d = 20 µm.
plasma diameters: d = 20 (a) and 60 µm (b). The gain
increases significantly with plasma diameter; the
amplification duration also increases.

The model spectra in the region 3.5–15.5 nm with
amplification are shown in Fig. 6. We used the time-
averaged values of g(τ) to compute the spectra. In
Fig. 6a, the calculation was performed for ne = 5 ×
1020 cm–3, Te = 2000 eV, and d = 20 µm at a plasma
length of L = 0.25 cm. The lines with λ = 4 and 10 nm
and several lines in the region 13–13.9 nm dominate
here. The three lines in the region 9.4–10.9 nm corre-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
spond to the transitions from the 3d3/24d3/2 [J = 0] state
to the three lower 3d4p [J = 1] states. Figure 6b shows
the model spectrum for an optically thick plasma with
a higher temperature: ne = 1021 cm–3, Te = 3000 eV, d =
150 µm, and L = 0.12 cm. In this case, the line that cor-
responds to the λ = 11.3 nm transition attributable to the
reabsorption of photons to the upper 3d3/24f5/2 [J = 1]
level has the highest intensity. At the plasma parameters
in Fig. 6b, this level is inverted relative to several lower-
lying states; another two intense transitions with λ =
10.3 and 15.3 nm can be seen in Fig. 6b. The width of
SICS      Vol. 100      No. 5      2005



852 IVANOVA, IVANOV
250

200

150

100

50

0
10–2 10–1 1 10

τ, ps

g, cm–1

(a)

400

300

250

200

150

50

0
10–2 10–1 1 10

τ, ps

g, cm–1

(b)350

100

Fig. 5. Time evolution of g on the 3d94f–3d94d, 1–1 transition with λ = 113.4 Å attributable to the reabsorption of photons in an
optically thick plasma at Te = 1 (d), 2 (n), and 3 keV (s), ne = 1021 cm–3; d = 20 (a) and 60 µm (b).
these lines is attributable to the large radiative width of
the upper level; the width of the remaining transitions
is determined mainly by collisional processes. In addi-
tion to the transitions listed in the table, there are many
slightly enhanced transitions in the region 11–15 nm
whose wavelengths overlap.

4. INTERPRETATION OF THE RESULTS
OF THE EXPERIMENTS THAT RECORDED 

ANOMALOUSLY HIGH CONVERSION 
EFFICIENCIES OF THE PUMPING PULSE 

ENERGY INTO THE PLASMA RADIATION

We use the results of the above calculations to esti-
mate the energy yield of the radiation of the strongest
lines in the experiment described in [21]. The radiation
spectra of the plasma with λ = 7–15 nm produced by
irradiating a beam of xenon clusters with a size of
105−106 at. per cluster by a Ti-sapphire laser pulse with
an intensity of ~2 × 1018 W cm–2, a duration of 50 fs, a
wavelength of 800 nm, and an energy of about 200 mJ
were recorded in this work. The pulse was focused to
the beam center in the immediate vicinity of the exit
from the chamber, h = 0. The diameter of the plasma
produced along the laser beam is d ≈ 10 µm; its length
is equal to the thickness of the cluster beam, L =
1.4 mm. The spectra were measured along the plasma
axis and at an angle of 45°. The time-integrated Xe9+–
Xe29+ spectra were recorded in [21]; the energy yield of
the radiation depended on the xenon pressure in the
valve, which was smoothly varied between 1 and
55 bar. The measurements along the plasma axis
showed that an extreme dependence of the quantum
yield on the xenon pressure in the chamber was
JOURNAL OF EXPERIMENTAL 
observed only for the lines with λ ≈ 11 and 13 nm. The
maximum yield for these lines was observed at a pres-
sure of 5–15 bar. Similar studies of the quantum yield
at an angle to the plasma axis showed, first, a much
lower quantum yield than that along the plasma axis
and, second, the absence of any extreme pressure
dependences. The anisotropy in the emergent radiation
was investigated in detail for λ = 13.5 ± 2% nm: the
intensity along the plasma axis was approximately
three times as high as that recorded at an angle to the
axis. The resulting radiation into the hemisphere was
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Fig. 6. Model Xe XXVII spectra computed with amplifica-
tion. The plasma parameters are: (a) ne = 5 × 1020 cm–3, Te =

2000 eV, d = 20 µm; (b) ne = 1021 cm–3, Te = 3000 eV, d =
150 µm.
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determined by interpolating the intensities recorded in
various directions away from the axis. The conversion
efficiency was 0.5% in 2π steradians at 13 nm and
reached 2% at 11 nm.

Using our model, we chose three plasma parame-
ters: ne = 8 × 1020 cm–3, Te= 1800 eV, and d = 12.5 µm,
which roughly explain both conversion efficiencies and
their ratio in the experiment [21]. Let us estimate the
emissive power, I0, from a volume of V = πr2L = 1.7 ×
10–7 cm3: I0 = EtrAul , where  is the time-averaged
number of ions in a given excited state in the volume V,
Etr is the transition energy, and Aul is the radiative tran-
sition probability from the upper to the lower working
level. These data are presented in the table; also given
here are the Voigt transitions widths ∆ν and the gains 
averaged over an interval τlas ~ L/c = 4.67 ps. The last
column gives the energy yield calculated with amplifi-

cation:  = I0exp(gL)τlas . For the five lines in the

region 13–13.9 nm, the mean total value is  ≈ 6 ×
1015 eV, which is approximately two times lower than
the experimental value from [21], where 6 × 1015 eV in
2π steradians was recorded. The total energy yield on
the λ = 11.3 nm transition was 1016 eV (<1% of the

pumping pulse energy); for the λ = 4 nm line,  = 5 ×
1016 eV > 4%. The energy yield on the λ = 11.3 nm tran-
sition increases sharply for a slight increase in parame-
ters: ne ≈ 9 × 1020, Te ≈ 2000 eV, and d ≈ 15 µm, while

 for the transitions near 13 nm increases more
slowly. At constant Te and d, the yield is at a maximum
for ne = 1021 cm–3 (the Xe26+ ion density ni = 3.6 ×
1019 cm–3). We believe that the intensity peak of the
emergent radiation observed in the experiment [21]
while varying the pressure in the valve can be explained
by a change in the cluster density in the beam until opti-
mal values of ne and ni are reached; once the optimal
pressure region has been passed, the intensity
decreases. If the temperature is stationary, the gain
increases with density due to an increase in the rates of
excitation by an electron collision, but the line width
leading to a decrease in the gain also increases. In addi-
tion, the lifetime of a Ni-like ion decreases with
increasing density. Therefore,  is at a maximum at a
certain value of ne . Characteristically, no extreme pres-
sure dependences are observed for nonlasing lines. The
optimal value of ne is theoretically substantiated in [24].

We obtained our estimate by assuming that the
plasma was spatially uniform in Te and ne . As was noted
in [21], a significant fraction of the pumping pulse
energy is absorbed in the adjacent cluster layers. We
believe that a steep density gradient is responsible for
the large divergence of the laser beam observed in the
experiments [21]; therefore, the intensity along the
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plasma axis is only a factor of about 3 higher than that
at an angle to the axis.

Similar studies were performed in [20], where lasers
with various wavelengths, pulse durations and energies,
and focal spot sizes were used. As the pressure in the
valve rose from 0.1 to 12 atm, the cluster size increased
from 102 to 5 × 106 at. per cluster. The studies were car-
ried out at a pressure of 10 atm. Three types of pumping
lasers were used to investigate the quantum yield of the
xenon plasma radiation: Ti:Sapphire (tp = 120 fs,
120 ps, and 8 ns, E = 3.5–49 mJ, λ = 745–800 nm), KrF
(tp = 500 fs, E = 24 mJ and tp = 10 ns, E = 670 mJ, λ =
248 nm), and Nd:YAG (tp = 9 ns, E = 450 mJ, λ =
1064 nm). The same experimental setup as that in [21]
was used here, but the only spectrometer was perpen-
dicular to the plasma axis. The density and radial distri-
bution of atomic xenon were measured in [20]: ni ≈ 3 ×
1019 cm–3 (ne = 8 × 1020 cm–3) in the immediate vicinity of
the nozzle and ni = 5 × 1018 cm–3 (ne = 1.4 × 1020 cm–3) at
a distance of 2 mm from the nozzle. The laser beam was
focused on the xenon cluster beam at a distance of
1−2 mm from the chamber hole. The highest conver-
sion efficiency into the radiation with λ = 5–18 nm was
achieved with the KrF laser (500 fs, 24 mJ, d = 10 µm,
L = 2 mm). The total yield was 10% in 4π steradians for
λ = 5–18 nm and 0.03% per steradian for λ = 13.4 ±
2% nm, which is approximately two times lower than
that in [21]. According to our calculations, such a yield
is possible at ne ≈ 3 × 1020 cm–3, Te ≈ 2500 eV, and d ~
10−12 µm. At such low densities, the series of transi-
tions near 4 and 10 nm dominate in the spectrum; some
of the transitions in the region 13–13.9 nm are also
fairly strong.

The radiation spectra for a plasma of a relatively
large volume (V ~ 10–5 cm3) were also investigated in
experiment [20]. They were obtained by using pumping
lasers with pulse energies of 5–6 mJ and focal spot
diameters of 30–100 µm. In this case, the mean electron
energy was several dozen eV, which is enough only for
low degrees of ionization, Xe7+–Xe12+, whose reso-
nance transition spectra also lie in the region 5−18 nm,
to be achieved. In this case, the maximum conversion
efficiency was several times lower than that for a high-
temperature plasma.

The studies [21] were continued in [22] using longer
pumping pulses: 30, 300, and 3000 ps with intensities
of 1015, 1014, and 1013 W cm–2, respectively. Here, a
train of 100 pulses with an energy of 0.024 J = 1.4 ×
1017 eV was formed in each pulse. The pulse was
focused on the cluster beam at a distance of 1 mm from
the nozzle. The minimum time interval between the
pulses in the train at which the state of the cluster beam
was completely renewed at a plasma diameter of 10 µm
and a pressure of 30–40 bar was determined in [22].
Under the given parameters of the facility, the maxi-
mum pulse repetition rate was 125000 s–1. It was also
established in [22] that a 100% absorption of the pulse
SICS      Vol. 100      No. 5      2005
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energy for these durations occurs at a liquid xenon pres-
sure in the valve of more than 30 bar. A high intensity
of the emergent radiation was observed in the region
10–10.7 nm. The energy yield was recorded only for
λ = 13.4 nm ± 2%. The highest conversion efficiency,
~0.2% in 2π steradians, was achieved by using a 30-ps
pulse. The conversion efficiency in this work was mea-
sured using a 10-ns laser pulse with an energy of
0.975 J ≈ 6 × 1018 eV and an intensity of 1014 W cm–2.
In this case, the conversion efficiency was 0.26% in 2π
steradians, which was quite an unexpected result.

Note that a Coulomb (slower) cluster decay mecha-
nism is realized when long pulses are used; the plasma
is heated through the absorption of the laser pulse
energy by free electrons. The ionization proceeds suc-
cessively; it follows from the time-integrated spectra
that very high ionization stages, including Xe XXVII,
are reached in the experiment [22]. When using long
pulses with a moderate intensity (Ipump ~ 1014 W cm–2),
the time it takes to reach the Ni-like stage from the
Cu-like stage is comparable to the level excitation time
for a Ni-like ion. The short-lived inversion mechanism
is not realized here due to collisional level mixing as the
Ni-like stage is reached. In this case, quasi-stationary
inversion, which is possible on the transitions in the
region 13–13.8 nm and near 10 nm, is realized.

When fairly high degrees of ionization are reached,
the plasma energy is spent mainly on recombination
radiation and bremsstrahlung. The radiative losses
through the radiation on the transitions between cou-
pled levels are only a few percent. Detailed formulas to
calculate the radiative losses in plasma are given
in [46]. In the case of a xenon plasma under conditions
of optimal ne and Te for the maximum values of gL to be
reached, the energy losses including all radiative pro-
cesses are approximately 0.5 keV ps–1. Therefore, for a
fairly long pumping pulse (τpump > 10 ps), the key factor
is the pulse energy that must be enough for the optimal
values of Te to be maintained over the lifetime of the
inverted state of the working Xe26+ ion.

5. CONCLUSIONS

The spectra in the region 0.8–1.9 nm, which corre-
spond to the resonance transitions of Ni-like xenon and
ions with higher degrees of ionization, were also dem-
onstrated in all the experiments that recorded an anom-
alously high conversion efficiency of the pumping laser
energy into the xenon plasma radiation energy in the
region 10–15 nm. The conversion efficiency for the res-
onance transitions to this region (~0.1%) [19, 38] is two
orders of magnitude lower than that for the transitions
between excited states (~10%) [20, 21]. In conventional
spectroscopic studies with a point source, the spectrum-
integrated intensities of the resonance lines are several
orders of magnitude higher than those of the transitions
between excited states.
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The lines of the transitions between excited states in
Xe26+ are in the same spectral region as the resonance
transitions in Xe10+–Xe12+. For this reason, the anoma-
lously high conversion efficiency was assumed in pre-
vious studies to correspond to the transitions in these
low-charge ions. These assumptions are actually
refuted in [20], where various pumping lasers were
used to produce a plasma with Te equal to several
dozen eV; in this case, the conversion efficiency into
radiation in the region 8–18 nm was found to be several
orders of magnitude lower than that in the experiments
with a high-temperature plasma [20, 21].

In this paper, we showed that a high conversion effi-
ciency is possible in a xenon plasma with optimal
parameters for the amplification of spontaneous radia-
tion on Xe XXVII transitions to be observed. This is
confirmed by the anisotropy in the emergent radiation
along and at an angle to the plasma axis, as well as by
the equality of the wavelengths and energy yields of the
most intense lines described in [21] to their theoretical
values obtained in this paper. Optimal plasma parame-
ters for the lasing effect to emerge were found in prin-
ciple by the fitting method in the experiments [20, 21]:
ne = (8–9) × 1020 cm–3 and Te = 1.8–2 keV. However, the
radial density distribution in the plasma filament had a
steep gradient, which led to a large spatial divergence
of the emergent radiation.

In our view, the spatial plasma homogeneity can be
improved by using a slit valve and a slit hole of the
chamber. In this case, the xenon pressure in the valve
should probably be higher than that for a circular hole.
The flow of clusters is a “ribbon” with thickness D and
length L. To achieve the maximum energy absorption,
the pumping pulse should be focused along the slit (the
focal spot diameter d ≈ D). The insignificant influence
of edge inhomogeneities still remains; it leads to a
divergence of the emergent beam into a plane angle θ.
In this experimental setup, the flow of large charged
particles destroying the optical instruments decreases
significantly.

Clearly, different pumping lasers and, accordingly,
different slit hole sizes are needed to achieve the maxi-
mum energy yield on each of the transitions. A short-
lived inversion on the transitions with λ = 4, 11.3, and
13.6 nm can be excited only by using ultrashort (30–
100 fs) pulses. In currently available femtosecond
lasers, the maximum energy of a single pulse is ~0.5–
0.8 J. On this basis and given that the amplification on
these transitions decays in 3–5 ps, we determine the
plasma sizes as 302 µm2 × 1 mm (V ~ 9 × 10–7 cm3). For
these transitions, the maximum value of gL ~ 9–10 at
Te ~ 2 keV and ne = (0.9–1) × 1021 cm–3, which provides
a yield of 1016–1017 eV in the plane angle θ.

For the transitions near 10 nm and in the region 13–
13.9 nm attributable to quasi-stationary inversion, we
choose the optimal parameters ne = 5 × 1020 cm–3 and
Te = 0.8–1 keV from the condition of the maximum
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gL = 6–8 at the maximum L/d ratio (see Fig. 2 in [23]).
Under these conditions, the Ni-like stage persists for
20–30 ps; a pulse energy of ~100 J at pulse duration and
intensity of 100–300 ps and 1014–5 × 1014 W cm–2,
respectively, is required to maintain Te for this period in
a 1002 µm2 × 0.5 cm plasma. The suggested plasma
geometry minimizes the effect of edge inhomogene-
ities; the emergent beam will be narrow with an energy
yield Eout ≥ 0.5 J for both values of λ. Thus, at a pump-
ing pulse repetition rate of 104 Hz, the output power on
the transitions with a short-lived inversion (λ = 4, 11.4,
and 13.6 nm) is W ~ 100 W; its maximum possible
value on the transitions with a quasi-stationary inver-
sion (λ = 10 and 13–13.9 nm) is W ≈ 5 × 103 W.

Interpreting the experimental results allows some of
the important aspects that were not touched on in [19–22]
to be pointed out. First, time-integrated radiation spec-
tra are provided; meanwhile, the time dependences of
the emission of the most intense lines can provide infor-
mation for diagnosing the plasma and testing the theo-
retical dependences g(τ). Second, the spatial intensity
distribution in a femtosecond laser beam is an impor-
tant pumping characteristic. Further studies aimed at
improving the spatial homogeneity of the pumping
pulse intensity are probably needed. Third, fairly
intense coherent radiation on the 3d94f [J = 1]–3d94d
[J = 1] transition with λ = 11.3 nm can be observed in
the transverse direction away from a cylindrical plasma
(in this case, the plasma length and width are d and L,
respectively). This is attributable to the strong depen-
dence of the gain for this transition on the plasma diam-
eter and to the subpicosecond time it takes for g(τ) to
reach its maximum, which can be as high as 300–
600 cm–1 at Te ≥ 3 keV and d ~ 30 µm. This transition
is promising for producing subpicosecond soft X-ray
pulses when using slit valves and a transverse pumping
scheme (focusing into a line). However, the 4-nm
region, where the strongest effect should be observed,
has never been investigated.

The lack of spectroscopic data for highly charged
ions, including the transitions between the states with
the excitation of the inner shell of the core, impedes fur-
ther progress in producing superpowerful sources of
monochromatic radiation. The wavelengths of the tran-
sitions between these states, 2s2p63s–2s2p63p and
2s2p63p–2s2p63d, in the highly charged Ne-like Sc
XII–Ni XIX ions were experimentally studied by
means of precision spectroscopy in [47], where good
agreement with the results of preliminary calculations
by the method of relativistic perturbation theory with
the zeroth-approximation model potential [48] was
demonstrated. The good agreement between the theo-
retical and experimental [36–38] data for the resonance
transitions to the ground state of Ni-like xenon from the
3p53d104s, 4d [J = 1] states (Section 2, Fig. 2) confirms
the reliability of this method.
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The results presented here show that the atomic–
kinetic calculation is a computer experiment that can be
used to interpret the radiation spectra of a nonequilib-
rium plasma to determine the optimal parameters and
gains on the transitions of a multiply charged ion. A
comparison of the results of the computer experiment
with the experimental results presented in [20–22]
allows us to determine the experimental plasma param-
eters and to propose optimal pumping schemes to
achieve the maximum possible energy yields for each
available plasma pumping source. To estimate the gain,
we use a time-averaged value of  that faithfully repro-
duces the experimental situation. Our theory is valid for
any short pumping pulses when the plasma expansion
is insignificant and the spontaneous radiation is ampli-
fied in the ionization regime of the working ion. The
spontaneous radiation in plasma is amplified until the
end of the pumping pulse passage through the target in
time τpump. Clearly, a nonlinear amplification of short-
wavelength radiation with duration τlas can be observed
if τlas > τpump ≈ L/c. This is a fundamental constraint on
the plasma length L.

The error in the calculated gains related to the uncer-
tainties in the electron and ion energy distribution func-
tions and to the uncertainty in the ionization balance is
10–20%. A satisfactory accuracy of the calculation was
proven by comparing our theoretical and experimental
gains for the transitions in various ions [23–26]. The
reliability of the results for g(τ) is attributable to the
high accuracy of calculating the atomic constants and
rate coefficients for both the low-lying and high-lying
states of the working ion by the method of the relativis-
tic perturbation theory with the zeroth-approximation
model potential [27, 28, 42–44, 48–51].

In conclusion, note that, at present, the methods for
producing a dusty plasma from clusters of various ele-
ments are being intensively developed (see, e.g., [3–6]),
and the cluster and plasma properties are being studied
[52, 53]. In prospect, superpowerful sources of nar-
rowly beamed radiation over a wide, soft X-ray wave-
length range can be produced by using clusters of other
elements in the scheme considered here.
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Abstract—We present a new scheme for rotations of a charge qubit associated with a singly ionized pair of donor
atoms in a semiconductor host. The logical states of such a qubit proposed recently by Hollenberg et al. [16] are
defined by the lowest two energy states of the remaining valence electron localized around one or another donor.
We show that an electron located initially at one donor site can be transferred to another donor site via an aux-
iliary molecular level formed upon the hybridization of the excited states of two donors. The electron transfer
is driven by a single resonant microwave pulse in the case where the energies of the lowest donor states coincide
or by two resonant pulses in the case where they differ from each other. Depending on the pulse parameters,
various one-qubit operations—including the phase gate, the NOT gate, and the Hadamard gate—can be realized
in short times. Decoherence of an electron due to the interaction with acoustic phonons is analyzed and shown
to be weak enough for coherent qubit manipulation to be possible, at least in proof-of-principle experiments on
one-qubit devices. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Solid-state systems are of great interest in search for
a scalable quantum computer technology. Several
schemes for solid-state quantum information process-
ing have been proposed [1–3]. For example, the coher-
ent control of superconducting qubits, [4] and their
coupling [5] have been demonstrated, the qubits being
encoded in the states of a Cooper-pair box. One prom-
ising area of current investigation is concerned with the
semiconductor-based devices. In Kane’s proposal [6],
the qubits are defined by long-lived nuclear spins of
phosphorous dopants in a silicon host. They are manip-
ulated by external surface gates and radio-frequency
magnetic fields. While long coherence times of nuclear
spins make the Kane scheme very promising, the single-
spin measurement remains a significant challenge [7].
This also concerns an alternative Si : P architecture that
uses electron spin states as qubits [8].

Along with spin-based qubits, the charged-based
qubits in semiconductors are currently discussed as
well. The logical states of a charge semiconductor qubit
may be formed by, e.g., the ground state and the excited
state of the electron in a single quantum dot [1] or the
spatially separated states of the electron in two different
quantum dots [9–13]. Although decoherence of the
charge-based qubits is rather strong [14, 15], the charge
qubits are nevertheless believed to be realizable at the
present technological level due to their short operation
times [16]. One of the obstacles to the practical realiza-
tion of scalable quantum computation in the system of
quantum dots is that it is extremely difficult, if at all

¶ This article was submitted by author in English.
1063-7761/05/10005- $26.000857
possible, to manufacture a set of quantum dots with
identical or at least predetermined characteristics each.
This complicates the issue, introducing errors into the
operations with qubits [17] and resulting in a need for
numerous ancillary corrective gates. In this respect, it
would be more reasonable to use natural atoms (instead
of “artificial” ones) as the localization centers for the
electrons carrying the quantum information. Recent
advances in manipulation with single atoms on the
solid surface [18] and atomically precise placement of
single dopants in semiconductors [19, 20] allow con-
struction of rather complex solid-state atomic architec-
tures.

Recently, Hollenberg et al. proposed a two-atom
charge-qubit scheme [16] and reported the first results
on its fabrication and characterization [20] in the case
of phosphorous dopants in silicon. In that scheme, the
buried donor charge qubit consists of two dopant atoms
about 50 nm apart in a semiconductor host. One of the
donors is singly ionized. The logical states are formed
by the lowest two energy states of the remaining
valence electron localized at the left or the right donor,
|0〉  = |L〉  and |1〉  = |R〉 , see Fig. 1. The qubit is controlled
by the surface electrodes through adiabatic variations
of the donor potentials. Initialization and readout of the
qubit are facilitated by a single-electron transistor. The
coupling of such qubits via the Coulomb interaction, in
principle, allows realizing the conditional two-qubit
gates [16].

It was shown in [16] that although the coherence
time τcoh ~ 1 ns for charge-based qubits is much shorter
than for their spin-based counterparts, the correspond-
ing gate operations times are also shorter, of the order
 © 2005 Pleiades Publishing, Inc.
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of τop ~ 50 ps. We note, however, that the ratio τop/τcoh ~
10–1 seems to be insufficiently small for the fault-toler-
ant scalable quantum computation being possible [21].
In this paper, we propose an alternative scheme for
operations with buried donor charge qubits, instead of
applying biases to the surface gates. Our scheme is
based on the effect of electron transfer between the low-
est states localized at different donors upon the influ-
ence of a resonant pulse [9] or two resonant pulses [22].
Such a transfer occurs via an excited molecular level of
the double-donor system and allows implementation of
different one-qubit rotations. The operation times can
be made orders of magnitude shorter than in the origi-
nal proposal [16].

The paper is organized as follows. In Section 2, we
describe a three-level model for the resonant electron
transfer between the donors and briefly discuss the rel-

evant one-electron states of a  molecular ion in Si.
We next present the analytical solution for the unitary
electron evolution under the influence of microwave

pulses. In Section 3, we show that in the  : Si system,
it is possible to realize various one-qubit operations,
including the NOT gate, the phase gate, and the Had-
amard transformation. Decoherence due to the electron
interaction with acoustic phonons is studied in Section 4.
Discussion of the results is given in Section 5.

2. MODEL 
FOR THE RESONANT ELECTRON TRANSFER

We consider a singly ionized pair of phosphorous
atoms embedded in silicon. The remaining valence
electron is described by the Hamiltonian

(1)

P2
+

P2
+

Ĥ0 En χn| 〉 χn〈 | ,
n

∑=

L R RL

Fig. 1. Logical states |0〉  = |L〉  and |1〉  = |R〉  of the buried
donor charge qubit.
JOURNAL OF EXPERIMENTAL A
where En and |χn〉  are the respective one-electron

eigenenergies and eigenstates of the molecular ion  :
Si. In general, to calculate the energy spectrum and the
wavefunctions 〈r|χn〉  of the single-electron/double-
donor system beneath the surface, one should account
for the conduction-band anisotropy, the intervalley
terms, the surface effects, the potentials induced in the
substrate by the gate voltages, etc. This necessarily
requires numerical calculations (see, e.g., [23]). We
note that although the edge of the conduction band of
bulk silicon has six degenerate minima, it has been
shown both experimentally [24] and theoretically [25]
that substitutional impurities break the translational
symmetry of the crystal lattice, thus lifting the degener-
acy. The spacing between energy levels in the ground-
state and excited-state multiplets may be further
increased by appropriately choosing the gate potentials.

Anyway, to quantify the structure of the  : Si energy
spectrum and wavefunctions, one should make sophis-
ticated numerical calculations for a specific donor con-
figuration. In this paper, however, we restrict ourselves
to a semiquantitative consideration based on an isotro-
pic effective mass approximation [26] that allows an
explicit analytical solution. The problem then reduces
to that for a hydrogen-like molecular ion with an effec-
tive Bohr radius of  ≈ 3 nm and an effective Hartree

unit of energy E* = e2/ε  ≈ 40 meV, where ε ≈ 11.7 is
the dielectric constant for silicon.1 The energy spec-

trum of the  ion for different atomic separations is
known with high accuracy [28].

We approximate the Hamiltonian  in Eq. (1) by
the reduced three-level Hamiltonian

(2)

where |χ1〉  and |χ2〉  are the lowest molecular states 1sσg

and 2pσu , whose respective wavefunctions are, respec-
tively, symmetric and antisymmetric about the mid-
point of the line joining the two donors (Fig. 2), and
|χTR〉  is one of the excited molecular states discussed
below. It is convenient to pass from the states |χ1〉  and

|χ2〉  delocalized over the  : Si ion to the states

localized at the left and the right donor, respectively.
For donor separations Rd @ , wavefunctions 〈r |L〉

1 We note that the isotropic effective mass approximation gives the
value E = –E*/2 ≈ –20 meV for the ground-state energy of a sin-
gle phosphorous donor in silicon, which is about half the experi-
mentally observed value E = –45.5 meV (see, e.g. [27]).

P2
+

P2
+

aB*

aB*

H2
+

Ĥ0

Ĥr E1 χ1| 〉 χ1〈 | E2 χ2| 〉 χ2〈 | ETR χTR| 〉 χTR〈 | ,+ +=

P2
+

L| 〉
χ1| 〉 χ2| 〉+

2
----------------------- and R| 〉

χ1| 〉 χ2| 〉–

2
-----------------------= =

aB*
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Fig. 2. One-electron wavefunctions of the lowest two states, 1sσg (a) and 2pσu (b), and the excited state 3dσg (c) of the molecular

ion  : Si in the isotropic effective mass approximation. The x coordinate is along the line joining the two donors. The donor sep-

aration is Rd = 20 . The symmetric and antisymmetric linear superpositions of the 1sσg and 2pσu states correspond to the respec-

tive 1s atomic states |L〉  and |R〉  localized at the left and the right donor. They form the qubit logical states |0〉  = |L〉  and |1〉  = |R〉 . The
excited state 3dσg is an auxiliary (“transport”) state needed to transfer an electron between |L〉  and |R〉  states under the influence of
external electromagnetic field.

P2
+

aB*
                   
and 〈r |R〉  are almost indistinguishable from the one-
electron 1s orbitals of the corresponding donor atoms.

The states |L〉  and |R〉  form the respective qubit log-
ical states |0〉  and |1〉 . These states are well defined if the
thermal energy kBT is much lower than the differences
∆E31 = E3 – E1 and ∆E32 = E3 – E2 between the energy
E3 of the excited molecular state |χ3〉  and the respective
energies E1 and E2. At Rd @ , we have E1 ≈ E2 ≈
−E*/2 and E3 ≈ –E*/8, and therefore ∆E31 ≈ ∆E32 ≈
3E*/8 ≈ 15 meV. Because the states |L〉  and |R〉  are not

the exact eigenstates of the Hamiltonian , the initial
qubit state |Ψ(0)〉  = α|L〉  + β|R〉  evolves with time in the
absence of external fields as

(3)

where ∆E21 = E2 – E1. We note that at t ! t0 = "/∆E21,
the initial qubit state remains almost unchanged (not
counting the common phase). Because the value of
∆E21 is exponentially small at x = Rd/  @ 1 [29, 30],

(4)

the period t0 ~ "/∆E21 that it takes for the qubit state to
change is rather long, t0 > 1 µs at Rd > 60 nm. In what

aB*

Ĥr

Ψ t( )| 〉 iĤrt
"

----------– 
  Ψ 0( )| 〉exp

iE1t
"

---------– 
 exp= =

× Ψ 0( )| 〉 i β α–( )
i∆E21t

2"
---------------– 

 exp+




×
∆E21t

2"
------------- 

  L| 〉 R| 〉–[ ]sin




,

aB*

∆E21

E*
----------- 4xe x– 1– 1 1

2x
------ O

1

x2
----- 

 + + ,=
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follows, we consider the processes occurring in time
intervals much shorter than t0 and hence ignore the off-

diagonal term [–(∆E21/2)|L〉〈 R| + H.c.] in  that gives
rise to the electron tunneling |L〉  〈R|. Then Hamil-
tonian (2) takes the form

(5)

where (E1 + E2)/2 ≈ E1 ≈ E2 at Rd @ . In the general
case where the qubit is biased by gate voltages, the
energies EL and ER of the respective lowest states local-
ized at the left and the right donor differ from each
other. In this case, the localized states are all better
approximations to the energy eigenstates, and the

Hamiltonian  becomes

(6)

We now let the buried donor charge qubit interact
with an external electromagnetic field E(t). Then the
Hamiltonian becomes

(7)

where the interaction term (t) is

(8)

with dL = 〈χTR| – er |L〉  and dR = 〈χTR| – er |R〉  being the
electric dipole moments for the transitions |L, R〉  
|χTR〉  between the respective localized states |L〉  and |R〉
and one of the excited molecular states |χTR〉  delocal-

Ĥr

     

Ĥr
E1 E2+

2
------------------ L| 〉 L〈 | R| 〉 R〈 |+[ ] ETR χTR| 〉 χTR〈 | ,+≈

aB*

Ĥr

Ĥr EL L| 〉 L〈 | ER R| 〉 R〈 | ETR χTR| 〉 χTR〈 | .+ +≈

Ĥ t( ) Ĥr V̂ t( ),+=

V̂

V̂ t( ) E t( ) dL χTR| 〉 L〈 | dR χTR| 〉 R〈 | H.c.+ +[ ] ,=
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ized over the double-donor system. For definiteness, we
choose this state to be the third one-electron state |χ3〉
of the molecular ion  : Si. At EL = ER and Rd/  > 6,
this is the 3dσg state whose wavefunction 〈r|χ3〉  is sym-
metric about the midpoint of the line joining the two
donors and has its maxima at the donor locations [31],
see Fig. 2. If the donors are arranged along the x axis,
the state |χ3〉  is formed upon the hybridization of |2S〉L, R
and |2Px〉L, R atomic states of the donors, and the wave
function 〈r|χ3〉  in the vicinity of the left/right donor is
equal to [〈r |2S〉L, R  〈r|2Px〉L, R]/2 at Rd @ . We note
that for such a choice of the state |χ3〉 , the electric field
should have a nonzero x component in order that
dL, R ≠ 0.

We consider two cases: (a) EL = ER ≈ E1 and (b) EL ≠
ER , the desired value of the difference ER – EL being
discussed below. In case (a), we suppose E(t) to oscil-
late at a frequency ω = (ETR – EL, R)/",

(9)

where E0(t) is the slowly varying envelope of the field.
Using of the resonant approximation,2 i.e., omitting the
rapidly oscillating terms with the frequencies ±(ω +
ETR/" – EL, R/") from the Hamiltonian, we have

(10)

where λL, R(t) = E0(t)dL, R . In case (b), the field E(t) has
two components oscillating at the frequencies ωL =
(ETR – EL)/" and ωR = (ETR – ER)/",

(11)

where φ is the phase shift between the two components.
In the resonant approximation,2 we have

(12)

where λL, R(t) = E01, 2(t) · dL, R . In this paper, we restrict
ourselves to the rectangular pulse shape, and therefore
E0(t) in Eq. (9) and both E01(t) and E02(t) in Eq. (11) are
constant at 0 < t < τop and zero elsewhere.

2 The resonant approximation is valid if the absolute value of the
detuning from resonance, "δ = "ω – (ETR – EL, R), is small com-
pared to the spacing between the energy ETR of the state |χTR〉  and
the energy E' of the state |χ'〉  nearest to |χTR〉 . In the case where
there are two components in E(t), the absolute values of both
"δL = "ωL – (ETR – EL) and "δR = "ωR – (ETR – ER) should be
small compared to |E' – ETR|.

P2
+ aB*

+− aB*
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E t( ) E01 t( ) ωLt( )cos E02 t( ) ωRt φ+( ),cos+=
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+
1
2
--- iωRt– iφ–( )λR t( ) χTR| 〉 R〈 |exp H.c.,+
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It is straightforward to solve the nonstationary
Schrödinger equation for the state vector |Ψ(t)〉 ,

(13)

with the Hamiltonian (t) in Eq. (7) given by Eqs. (5)
and (10) in case (a) or Eqs. (6) and (12) in case (b), and
to find the coefficients CL(t), CR(t), and CTR(t) in the
expansion of |Ψ(t)〉  in terms of the states |L〉 , |R〉 , and
|χTR〉 ,

(14)

provided that |Ψ(0)〉  = α|L〉  + β|R〉 , where |α|2 + |β|2 = 1.
In case (a), we have

(15)

where

(16)

In case (b), the coefficients CL(t), CR(t), and CTR(t) are
also given by Eqs. (15) and (16) with the only exception
that λR must be replaced by λRexp(–iφ). From Eqs. (15)
and (16), we can see that at t = τop = πk/2Ω (hereafter, k
is a positive integer), the coefficient CTR vanishes, and
hence the state vector |Ψ(t)〉  remains in the qubit sub-
space {|L〉 , |R〉} and |CL(τop)|2 + |CR(τop)|2 = 1. In partic-
ular, if CL(0) = 1 and CR(0) = 0, then CR(τop) = 0 and
CR(τop) = ±1 at λL =  and odd k, i.e., there is a com-
plete population transfer |L〉   |R〉 , see [9]. Thus, the
auxiliary excited state |χTR〉  plays the role of the “trans-
port” state, in that it assists the qubit evolution by
means of the electron transfer between the states |L〉  and
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|R〉  as the pulse is on but remains unpopulated after the
pulse is off.

3. QUBIT ROTATIONS

In this section, we show that the auxiliary-state-
assisted electron transfer between the two donors
allows various qubit rotations. In case (a), where the

two donors in the molecular ion  : Si are equivalent,
i.e., EL = ER and |λL| = |λR|, the qubit state |Ψ(t)〉  at the
operation time τop remains unchanged,

(17)

if τop = πk/Ω , or changes into

(18)

if τop = π(2k – 1)/2Ω and λL = , see Eqs. (14) and
(15). The latter corresponds to the quantum NOT oper-
ation.

Case (b) seems to be more realistic because of the
different local atomic surroundings of the donors in the
pair due to both the uncontrollable damage of the host
upon ion implantation and the probabilistic variations
in the path taken through the substrate by each
implanted ion [20]. In addition, the surface gates can be
used to intentionally tune EL and ER to the predeter-
mined values. Moreover, one can change the values of
λL and λR separately by changing the electric field
amplitudes E01 and E02. It follows from Eqs. (14) and
(15) that the relative phase shift operation is imple-
mented at τop = πk/Ω ,

(19)

while the value of τop = π(2k – 1)/2Ω corresponds to
realization of the quantum NOT operation,

(20)

if λL =  and φ = πn + (ER – EL)τop/2" (hereafter, n is
an integer), or to the Hadamard transformation,

(21)

if (ER – EL)τop/" = 2πm (where m is a positive integer).
Here, the plus sign corresponds to the values of φ = 2πn
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and λL = –λL(  – 1) or φ = π(2n + 1) and λL =

λR(  − 1), and the minus sign corresponds to the val-

ues of φ = 2πn and λL = λR(  + 1) or φ = π(2n + 1)

and λL = –λR(  + 1).

Therefore, various one-qubit operations can be
implemented on the buried donor charge qubit through
appropriate choices of the pulse frequency, phase,
amplitude, and duration. Let us estimate the value of
the operation time

see Section 2. For the field amplitude E0 ~ 1 V/cm, we
have τop ~ 1 ns. An increase in the pulse intensity causes
the value of τop to decrease to the picosecond time
scale, such that the value of τop can be made orders of
magnitude shorter than the period t0 that it takes for the
qubit state to change due to the direct electron tunneling
|L〉   |R〉 , see Section 2, as well as the operation
times in the case where the qubit is manipulated by
adiabatically varying the potentials of the surface gates
[16]. We note that in case (b), the energies EL and ER

should be sufficiently different from each other in order
that all these operations could be implemented in short
times to avoid decoherence, as discussed below. For
example, at τop ~ 1 ps, we should have ER – EL ~ 3 meV.

4. DECOHERENCE EFFECTS

An uncontrolled interaction of the quantum system
with its environment leads to entanglement between the
states of the system and the environmental degrees of
freedom. This disturbs the unitary evolution of the sys-
tem and results in the loss of coherence. There are var-
ious sources of decoherence in solids. For the charge
qubit considered in this paper, the decoherence due to
the phonon emission/absorption processes was studied
in [16, 26] and was found to be much weaker than the
decoherence due to both Nyquist–Johnson voltage fluc-
tuations in the surface electrodes and the 1/f noise from
the background charge fluctuations. We note, however,
that there are two mechanisms of the phonon-induced
decoherence, which are caused by either the energy
relaxation processes or the virtual-phonon dephasing
processes. Which one of those mechanisms is dominant
depends on the specific parameters of the quantum sys-
tem and its environment, as well as on the operation
times. Here, we show that the dephasing processes play
a decisive role in limiting the fault tolerance of the bur-
ied donor charge qubit. For simplicity, we consider the
qubit at zero temperature and assume isotropic acoustic
phonons with the linear dispersion law ωq = sq, where
s is the speed of sound.

We first recall some general concepts concerning the
transition probability for an electron moving in a time-
dependent potential. If the electron, being initially in a

2

2

2

2

τop 1/Ω "/ λL R, "/eaB*E0,∼ ∼ ∼
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state |i〉  of the discrete energy spectrum, interacts with
the harmonic field

(22)

then the probability amplitude of finding it in a state |f 〉
at a time t is given by the following expression that
results from first-order perturbation theory [32]:3 

(23)

where ωif = (Ei – Ef)/". The common approach is to
ignore the first term in Eq. (23) and use the expression

(24)

thus arriving at the so-called Fermi golden rule for the
transition probability,

(25)

where Γi → f (ω) is the time-independent transition rate.
The δ-function reflects the energy conservation, "ωif =
"ω, for such a transition.

The electron–phonon coupling in confined systems
is described by the Hamiltonian

(26)

where  and  are the respective operators of cre-
ation and annihilation of a phonon with the wave vector

q, (q) = exp(iq · r) (r) is the Fourier transform

of the electron density operator (r) =

|m〉〈 n|, and λ(q) is the microscopic
electron–phonon interaction matrix element, which can
be expressed in terms of the deformation potential D
and the density of the crystal ρ as

(27)

with v  being the normalizing volume. If harmonic
field (22) is associated with a deformation phonon hav-

3 We note that Eq. (23) is applicable as long as |ai → f (ω, t)| ! 1.
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ing the frequency ωq , then, taking into account that the
deformation fields produced by the phonons with dif-
ferent wave vectors are not correlated, we have the total
transition rate [33]4 

(28)

where

(29)

4.1. Decoherence during Adiabatic Variations
of the Surface Gate Potentials 

In the case where the buried donor charge qubit is
controlled by the surface gates [16], such that the state
vector |Ψ(t)〉  remains in the qubit subspace {|L〉 , |R〉}
during the operation and the overlap 〈L|R〉  is negligibly
small, Hamiltonian (26) can be written in the spin-
boson form [34]

(30)

where  = |L〉〈 L| – |R〉〈 R| and

(31)

Since 〈r |L, R〉  = (π )–1/2exp(–|r – rL, R|/ ) for
1s-orbitals, where rL, R are the donor coordinates, we
have [14]

(32)

where qx is the component of the phonon wavevector
along the line joining the two donors, and we chose the
origin of the coordinates in between the donors, such
that rL, R = ex .

Fedichkin and Fedorov [14] have shown that at T = 0,
decoherence upon implementing the phase operation
emerges as pure dephasing, the electron density matrix
being given by the general expression [35, 36]

4 We note that at T = 0, there are no phonons in the sample, and
hence only the second term in Eq. (22) is relevant for the elec-
tron–phonon interaction because the initial and final phonon
states, |iph〉  and | fph〉 , are the respective states |0q〉exp(–iE0t) and

|1q〉exp[–i(E0 + ωq)t], where E0 = , and hence

〈 fph| |iph〉  = exp(iωqt).

"ωq/2( )
q∑

b̂q
+

Γ i f→
2π
"

------ Fif q( ) 2δ "ωif "ωq–( ),
q

∑=

Fif q( ) λ q( ) i〈 |eiq r⋅ f| 〉 .=

Ĥel–ph σ̂z g q( ) b̂q
†

b̂ q–+[ ] ,
q

∑=

σ̂z

g q( ) λ q( )
2

----------- L〈 |eiqr L| 〉 R〈 |eiqr R| 〉–[ ] .=

aB*
3

aB*

g q( ) iλ q( )
qxRd/2( )sin

1 qaB*( )2
/4+[ ]

2
--------------------------------------,–=

Rd/2( )+−
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(33)
ρLL 0( ) ρLR 0( ) B2 t( )– i

ER EL–( )t
"

-------------------------+exp

ρRL 0( ) B2 t( )– i
ER EL–( )t

"
-------------------------–exp ρRR 0( )

 
 
 
 
 
 
 
with the spectral function

(34)

There is no relaxation in this case because for the phase
operation to be implemented, energies EL and ER must
be sufficiently different from each other [14], so that the
basis {|L〉 , |R〉} coincides with the energy basis of the
electron in the double donor system and electron
term (6) commutes with interaction term (30) in the
Hamiltonian. As a result, the diagonal elements of the
density matrix remain unchanged. On the other hand,
decoherence upon implementing the quantum NOT
operation (where EL = ER and the energy basis of the

electron is formed by states |χ1, 2〉  = [|L〉  ± |R〉]/ , see
Section 2) was suggested to be caused by relaxation
[14], such that both off-diagonal and diagonal elements
of the density matrix decrease exponentially with time,
the relaxation rate Γ2 → 1 (see Eq. (28)) being [14, 26]

(35)

where q21 = ∆E21/s", see Eq. (4).

We note, however, that approximation (25) for
Wi → f (ω, t) and, accordingly, Eq. (28) for Γi → f are valid
if the time t is sufficiently long, see Eq. (24). To quan-
tify the applicability of this approximation, we analyze
the more general expression for Wi → f (t) that follows
from Eq. (25),

(36)

We can roughly distinguish two phonon contributions
to Wi → f (t), one being from the “resonant component,”
i.e., from the δ-function-like peak of sin2[(ωif –
ωq)t/2]/(ωif – ωq)2 as a function of q at q = qif = ωif/s,
with a height of t2/4 and a width of ~1/st, and the other

B2 t( ) 8

"
2

----- g q( ) 2

ωq
2

----------------
q

∑ ωqt
2

--------.sin
2

=

2

Γ2 1→
D2

4πρ"s2
------------------

q21
3

1 q21aB*( )2
/4+[ ]

4
------------------------------------------=

× 1
q21Rd( )sin

q21Rd

--------------------------– 
  ,

Wi f→ t( ) 4

"
2

----- Fif q( ) 2 ωif ωq–( )t/2[ ]sin
2

ωif ωq–( )2
----------------------------------------------.

q

∑=
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from the remaining “nonresonant background” of the
phonon spectrum. The former can be estimated as

(37)

and the latter as

(38)

at qif ! qmax, and

(39)

at qif @ qmax, where qmax is the wave vector at which the
function |Fif(q)|2 has a maximum and ∆q is a character-
istic width of|Fif(q)|2 in the maximum. The specific val-
ues of ∆q, qmax, and Fif(qmax) depend on the specific
type of wavefunctions 〈r |i〉  and 〈r |f 〉  in the matrix ele-
ment 〈i |exp(iq · r)| f 〉 . Next, if, e.g., qif ! qmax and we
are interested in the transition probability Wi → f (t) at a

moment of time t such that |Fif (qif)|2t !

∆q|Fif(qmax)|2, then (t) ! (t), and hence the
Fermi golden rule appears to be broken [37, 38]. This is
due to the violation of the energy conservation at short
times [32].

Inspection of the phonon-induced transitions

between the states |χ1, 2〉  = [|L〉  ± |R〉]/  of the double-
donor system with EL = ER and the donor separation
Rd @  (these transitions are relevant for decoherence
during the implementation of the NOT operation [14])
provides an illustrative example of the departure from
the Fermi golden rule. In this case,

and hence F21(q) = g(q), see Eq. (32), and the resonant

component of the transition probability is (t) ~

D2t/ρ"s2, in accordance with the value of the relax-
ation rate Γ2 → 1 given by Eq. (35). Since the value of
q21 = ∆E21/"s decreases exponentially with Rd, see

Wi f→
1( ) t( )

v qif
2

"
2s

---------- Fif qif( ) 2t,∼

Wi f→
2( ) t( ) v ∆q

"
2s2

---------- Fif qmax( ) 2∼

Wi f→
2( ) t( ) v ∆q

"
2s2

----------
qmax

qif

--------- 
 

2

Fif qmax( ) 2∼

sqif
2

Wi f→
1( ) Wi f→

2( )

2

aB*

2〈 |eiq r⋅ 1| 〉 L〈 |eiq r⋅ L| 〉 R〈 |eiq r⋅ R| 〉–[ ] /2,=

W2 1→
1( )

q21
3
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Eq. (4), the value of Γ2 → 1 decreases exponentially as
well, going below 103 s–1 at Rd/  > 10 (see Fig. 5

in [26]). On the other hand, because q21 ! qmax ~ 1/ ,

we have (t) ~ D2/ρ"s3  from Eq. (38). More

accurate calculations result in (t) = B2(t)/2 see
Eq. (34). If the operation time τop is long compared to

the phonon transit time, /s (≈0.3 ps for  : Si), it
follows from Eq. (34) (see [14]) that

(40)

and therefore spectral function (34) appears to be a
material constant, being about 6 × 10–3 for the phospho-
rous donors in silicon [14], where D = 3.3 eV, s = 9 ×
105 cm/s, and ρ = 2.33 g/cm3. Hence, (t) @

(t) at Rd/  = 10 and t !  ≈ 3 × 10–6 s, the

time  being exponentially longer for larger values of

Rd/ , and in any case longer than the operation time
τop, see Section 3.

Therefore, contrary to suggestions [14, 26] that the
phonon-induced decoherence in the case of the NOT
operation is determined by the value of the relaxation
rate Γ2 → 1 given by Eq. (35), we see that at sufficiently
short operation times, decoherence in the cases of both
phase and NOT operations is determined by the same
spectral function B2(t), see Eq. (34). The distinction
between the two cases is that the diagonal elements of
the density matrix remain unchanged in the case of the
phase operation because there is no relaxation, while
they decay exponentially (along with the off-diagonal
matrix elements) in the case of the NOT operation [14].

4.2. Decoherence
during the Auxiliary-State-Assisted Operations 

Because the excited “transport” level |TR〉  becomes
temporarily populated during the resonant-pulse opera-

tions on the  : Si qubit, the phonon-induced electron
transitions |TR〉  |L, R〉  and |TR〉  |χ1, 2〉  can have
a detrimental effect on the qubit evolution, along with
the transitions |L〉   |R〉  and |χ1〉   |χ2〉  studied
above. We now clarify which type of the phonon-
induced electron transitions (“resonant” or “nonreso-
nant”) is dominant in this case and estimate the transi-
tion probability. We follow the line of reasoning out-
lined above and start with calculations of the matrix
elements 〈TR|exp(iq · r)|L, R〉 . For our choices of the
“transport” state |TR〉  = |χ3〉  and the double donor orien-

aB*

aB*

W2 1→
2( ) aB*

2

W2 1→
2( )

aB* P2
+

B2 τop( ) D2

3π2ρ"s3aB*
2

-----------------------------,=

W2 1→
2( )

W2 1→
1( ) aB* t̃

t̃

aB*

P2
+
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tation (see Section 2) at Rd @ , we have |TR〉  ≈
[|2S〉L – |2Px〉L + |2
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〉
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 + 

 

|

 

2
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x

 

〉

 

R

 

]/2, where

Neglecting the exponentially small overlap between the
localized atomic-like orbitals centered at different
donors, we have

(41)
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), and therefore, in order
to find the probability 
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) of the electron escape
from the “transport” state at 
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 = 0, we must add the
respective probabilities of the 
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transitions. If the value of 

 

E
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 – 

 

E
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 is much less than the
difference between 

 

E

 

TR

 

 and 

 

E

 

L

 

, 

 

R

 

, then we have the
same result in both cases, and hence 

 

WTR(t) is given by
Eq. (36), where now ωif ≈ ∆E31/" ≈ 3E*/8" is indepen-
dent of Rd at Rd @ , and

(42)

Taking into account that

and using Eq. (36), it is straightforward to derive the
following expressions for the respective probabilities of
the “resonant” and “nonresonant” transitions:

(43)

and

(44)
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It follows from Eqs. (43) and (44) that (t) = ΓTRt,

where ΓTR ≈ 3 × 107 s–1, and (t) ≈ 10–5, and hence
the “resonant” transitions are dominant at t > 0.3 ps.

We now check what states among those involved in
the auxiliary-state-assisted qubit evolution are most
sensitive to phonon-induced decoherence. As we have
seen above, decoherence of the low-energy states |L〉
and |R〉  (or |χ1〉  and |χ2〉) is quantified by the error
rate [14], i.e., the error generated during the operation
time, D(t) = B2(t)/2 ≈ 3 × 10–3. This value is greater than

(t) but less than (t) at t > 10–10 s, where the
processes of the spontaneous phonon emission by an
electron temporarily occupying the “transport” level
begin to prevail. Hence at τop < 100 ps, the error rate
does not exceed a value of D(τop) ≈ 3 × 10–3.

5. DISCUSSION
Fast auxiliary-state-assisted evolution of the double-

donor charge qubit driven by the resonant electromag-
netic field allows implementation of various one-qubit
rotations in very short operation times τop < 100 ps, thus
minimizing the unwanted decoherence effects. At such
times, the error rate due to acoustic phonons is D(τop) ≈
3 × 10–3 at T = 0. At finite temperatures, such that kBT >
"ω0, where "ω0 = "s/  ≈ 2 meV for dephasing pro-
cesses and “nonresonant” emission/absorption transi-
tions, and "ω0 = |Ei – Ef | for the “resonant” |i〉   |f 〉
transitions, the error rate increases by a factor of
~kBT/"ω0.

The strongest increase in the error rate at T ≠ 0

occurs if the two donors in the molecular ion  : Si are
equivalent, because the energies EL and ER of the lowest
localized states |L〉  and |R〉  are then equal to each other,
and the difference E2 – E1 between the eigenenergies of
the two lowest delocalized molecular states |χ1〉  and |χ2〉
is exponentially small at large donor separations, e.g.,
E2 – E1 ≈ 10–6 meV at Rd = 60 nm, see Eq. (4). To
weaken the decoherence, it would be reasonable to use
the surface gates in order to increase the difference
ER − EL up to ER – EL ~ 1 meV such that the energy
basis of the electron be formed by the states |L〉  and |R〉
instead of the states |χ1〉  and |χ2〉 . In this case, the elec-
tromagnetic field should have two components driving
the electron transitions |L〉  |TR〉  and |R〉  |TR〉
between the states |L, R〉  and the auxiliary “transport”
state |TR〉 .

At T ≠ 0, the processes of the phonon absorption by
an electron temporarily occupying the “transport” state
also contribute to decoherence. For our choice of the
transport state, |TR〉  = |χ3〉 , the state nearest to it in
energy is the state |χ4〉 . In the case where the two donors
are equivalent and R/  > 15, this is the 4fσu state
|χ4〉  ≈ [|2S〉L – |2Px〉L – |2S〉R – |2Px〉R]/2, whose wave-

WTR
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WTR
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WTR
2( ) WTR
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P2
+

          

aB*
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function 〈r |χ4〉  is antisymmetric about the midpoint of
the line joining the two donors [31]. At x = Rd
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 1,
the energy separation [30]

is small but greatly exceeds the value of 
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, e.g.,
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 0.3 meV at 
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 = 60 nm. The donor asymmetry
in the presence of gate potentials results in a further
increase in 

 

E

 

4

 

 – 

 

E

 

3

 

, and therefore the phonon absorp-
tion processes does not contribute much to decoherence
at sufficiently low temperatures 

 

T

 

 < 10 K.

Thus, the error rate due to phonon-induced decoher-
ence is 

 

D

 

(

 

τ

 

op

 

) 

 

≈

 

 3 

 

×

 

 10

 

–3

 

 at 

 

τ

 

op

 

 < 100 ps and 

 

T

 

 < 10 K.
This value is to be compared to the error rates due to
other sources of decoherence. The lowest bounds for
the decoherence times associated with the Johnson
noise from the gates and the environmental charge fluc-
tuations are [16, 20, 26], respectively, 

 

τ

 

 ~ 1 

 

µ

 

s and

 

τ

 

 ~ 1 ns, and hence the corresponding error rates [14]

 

D

 

(

 

τ

 

op

 

) = 1 – exp(–

 

τ

 

op

 

/

 

τ

 

) do not exceed that due to
phonons at 

 

τ

 

op

 

 < (1–10) ps. Hence, the performance of
the buried donor charge qubit appears to be limited pri-
marily by the electron–phonon interaction. In this
paper, we concentrated on the phosphorous donors in
silicon. Since spectral function (34) that ultimately
determines the error rate for one-qubit operations is a
material constant, it would be worthwhile to search for
other materials and/or doping elements for the buried
donor charge qubit, in order to weaken the decoherence
effects.

Although we restricted ourselves to rectangular
shapes of the resonant pulses, our consideration can be
generalized to other pulse shapes [39]. The results
obtained can also be applied to quantum-dot structures
and Josephson three-level gates [39–42]. Finally, once
a fundamental possibility of the auxiliary-state-assisted
operations has been demonstrated, it is straightforward

task to organize the coupling of  : Si qubits for con-
ditional quantum operations [16, 20].

In summary, we have proposed a scheme for fast
rotations of the buried donor charge qubit through an
auxiliary-state-assisted electron evolution under the
influence of resonant microwave pulses. This scheme
allows implementing one-qubit operations in times as

short as 

 
τ

 

op

 

 ~ 1 ps. With the example of the  : Si
qubit, we have shown that dephasing and “nonreso-
nant” relaxation due to acoustic phonons are the main
sources of decoherence. The error rate at 

 

T

 

 < 10 K and
operation times 

 

τ

 

op

 

 = (1–10) ps is about 3 

 

×

 

 10

 

–3

 

, i.e.,
greater than the fault-tolerance threshold for quantum
computation but sufficiently low to investigate the
small-scale devices and thus to demonstrate the experi-
mental feasibility of the scheme.
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Abstract—An analysis of the results of previous studies of stimulated scattering of UV pulses in liquids has
shown that they disagree with the theory of stimulated scattering. To resolve the inconsistency, stimulated scat-
tering of XeCl excimer laser radiation (λ = 308 nm) with pulse duration τ ≈ 8 ns in liquid hexane is investigated
experimentally. A theoretical analysis of the results obtained revealed a new nonlinear optical phenomenon:
stimulated thermal scattering induced by the heating due to two-photon absorption, called two-photon stimu-
lated thermal scattering (two-photon STS-2). The stimulated backscatter spectrum contains a previously
unknown line corresponding to two-photon STS-2 and a newly discovered SBS line in the UV region. The line
is observed in experiment on liquid hexane and is characterized by the frequency shift ΩB = 0.33 cm–1 relative
to the pump wavelength λ = 308 nm, in complete agreement with the theory of stimulated Brillouin scattering
(SBS). The spectral line called the SBS line in previous studies has a frequency shift much smaller than that
predicted by the SBS theory and must be interpreted as an unshifted two-photon STS-2 line. When two-photon
STS-2 is used to obtain a phase-conjugate wave, the phase-conjugation fidelity is lower than that achieved by
using SBS because of thermal self-action and slow decay of the thermal grating. © 2005 Pleiades Publishing,
Inc. 
1. INTRODUCTION

Stimulated scattering (SS) is widely used in scien-
tific research and practical applications. This motivates
studies of the physical mechanisms responsible for
stimulated scattering in various spectral regions. The
most important applications of stimulated scattering lie
in phase conjugate optics. Phase conjugation via stimu-
lated backscattering was discovered in the Laboratory
of Quantum Radiophysics, of the Lebedev Physical
Institute by Zel’dovich, Popovichev, Ragulskii, and
Faizullov in 1971 (see [1]). However, stimulated Bril-
louin scattering (SBS), stimulated Raman scattering
(SRS), and other SS mechanisms have specific physical
characteristics (frequency shift, decay time, etc.) that
must manifest themselves in the properties of the
respective phase conjugate waves.

Detailed experimental studies of stimulated scatter-
ing in various media have been conducted only in the
near IR region for historical reasons: the pump beam
produced by the radiation source must have both high
power and narrow linewidth. The first sources of this
kind were Q-switched single-mode ruby and Nd:glass
lasers, which generated giant pulses with λ = 0.69 and
1.06 µm, respectively [2–4], and usually generated sin-
gle SBS lines in spectra of liquids (such as water or
1063-7761/05/10005- $26.000867
methanol) characterized by relatively weak linear light
absorption. When linear light absorption was stronger,
a line corresponding to stimulated thermal scattering
due to linear absorption (linear STS-2) was observed.
Multiphoton IR absorption could not be observed,
because the liquids used in the studies were transparent
in the IR and visible spectral regions, while five to ten
IR photons with energies between 1 and 2 eV were
required to obtain the nearest electron resonance at an
energy of about 10 eV.

Theoretical studies of stimulated scattering have
mostly relied on experimental results obtained for the
near IR region. Thus, the modern theory of stimulated
scattering applies only to linearly absorbing media,
while no complete and consistent theory has been
developed to this day. In particular, the theory of stim-
ulated thermal scattering proposed in [5] allows only
for linear light absorption (see [1]).

Experimental investigations of stimulated scattering
in the near UV region have never been conducted for
two reasons. First, reliable UV radiation sources (dis-
charge excimer lasers [6]) became available ten years
later than solid-state lasers. Second, the methods used
to narrow the bandwidths of solid-state lasers (charac-
terized by lasing times on the order of 1 µ) could not be
 © 2005 Pleiades Publishing, Inc.
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Table 1.  Results of experimental studies of stimulated backscattering in hexane at different pump wavelengths in the near
UV region corresponding to ArF (λ = 193 nm), KrF (λ = 248 nm), XeCl (λ = 308 nm), and XeF (λ = 351 nm) excimer lasers

Reference Pump wavelength,
nm

Pump intensity,
W/cm2

Measured frequency 
shift for stimulated 

backscattering
in hexane, cm–1

Physical mechanism
of stimulated scattering 
in hexane suggested by 

authors

[9] 193 ≈1010 ≈0.2 SBS

[8] 248 >2 × 1010 ≈0.1 SBS

[11] 248 >1010 ≈0.1 SBS

[10] 308 >1011 <0.15 SBS

[13] 308 >1012 0.24 SBS

[7] 351 >5 × 109 0.2 SBS

[14] 248 >1011 <0.02 linear STS-2
extended to excimer lasers, which had much shorter
lasing times (<100 ns). Thus, when experimentalists
had to deal with stimulated scattering in studies of
phase conjugation driven by excimer laser beams, the
theory developed for linear IR absorption was applied
to the UV spectral region.

2. PROBLEMS IN EXPERIMENTAL STUDIES
OF STIMULATED LIGHT SCATTERING 

AND PHASE CONJUGATION
IN THE NEAR ULTRAVIOLET REGION

Studies of phase conjugation via stimulated scatter-
ing in the UV region were motivated by the use of
excimer lasers as promising radiation sources in
fusion research, materials treatment, and photolithog-
raphy [6–9]. The first results concerning phase conju-
gation via stimulated backscattering were reported
in [7] (for XeF laser, λ = 351 nm), [10] (XeCl laser, λ =
308 nm), [8, 11] (KrF laser, λ = 248 nm), and [9]
(ArF laser, λ = 193 nm). In those and subsequent stud-
ies [12, 13], experimental SS spectra contained single
lines, which were attributed to stimulated Brillouin
scattering. Note that the “SBS” frequency shift relative
to the corresponding pump frequency could not be
measured in [9–11], because they were comparable to
the spectral resolution of the laser system. The reflec-
tion coefficient of the “SBS” mirror measured in [11]
gradually decreased with increasing pump intensity IL

from approximately 25% at the threshold (IL ≈
1010 W/cm2) to approximately 10% at IL ≈ 1011 W/cm2.
It should be noted that the decrease in reflection coeffi-
cient observed in that experiment was caused by a
decrease in phase-conjugation fidelity. In [7, 8, 10, 12],
the phase-conjugation fidelity achieved by reflection
from a “Brillouin” mirror was found to degrade with
increasing linear absorption coefficient of a nonlinear
medium. In [14], the stimulated backscatter spectrum
of hexane obtained by using a KrF laser (λ = 248 nm)
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also contained a single line, and phase conjugation was
attributed to “linear STS-2.”

The linear absorption coefficients α of nonlinear
liquids measured in the studies of the “SBS” mecha-
nism [7–13] varied from 0.02 to 0.1 cm–1 and amounted
to 0.22 cm–1 in the investigation of “linear STS-2”
reported in [14].

Studies of effects of resonance absorption on nano-
second nonlinear optical phenomena must take into
consideration both wave attenuation and the phase vari-
ation due to heating. In [7–14], the pump beams were
focused into nonlinear liquids by lenses with focal
lengths between 5 and 10 cm. The corresponding length
of the region of nonlinear interaction is L ≤ 0.1 cm.
Considerable attenuation over such distances can occur
when α > 2 cm–1, which substantially exceeds the val-
ues mentioned above.

Table 1 summarizes the experimental results
obtained in previous studies of stimulated backscatter-
ing in hexane [7–11, 13, 14]. The second and third col-
umns of the table present the pump wavelength λ and
intensity IL; the fourth one, the measured shift Ω of the
scattered wave relative to the pump frequency. The
physical mechanisms responsible for the observed SS
processes suggested by the respective authors are listed
in the last column.

The theoretically predicted SBS frequency shift ΩB
depends on the pump frequency ωL corresponding to λ
(see Eq. (8) below). Table 2 shows the values of ΩB
given by (8) for the pump wavelengths listed in Table 1.
It is clear that the predicted values of ΩB shown in
Table 2 are substantially larger than the corresponding
measured values of Ω listed in Table 1 and attributed to
“SBS” in [7–11, 13].

In summary, analysis of previous experimental
results concerning stimulated scattering and phase con-
jugation in the near UV region leads to the following
general conclusions.
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I. The Brillouin frequency shifts measured in [7–11,
13] disagree with predictions of the SBS theory. The
disagreement is too large to be entirely caused by
experimental errors.

II. Since the measured SBS frequency shifts are sub-
stantially smaller than those predicted by the theory for
the pump wavelengths ranging from λ = 193 to 351 nm
in [7–11, 13], these discrepancies must have a common
origin.

III. The decrease in phase-conjugation fidelity
observed in [11] when the pump intensity was slightly
above the threshold is not characteristic of SBS in
transparent media.

Thus, the complex problems yet to be solved in this
field of research concern both temporal and spatial
behavior of laser beams propagating through nonlinear
media as manifested by SBS frequency shift and phase-
conjugation fidelity, respectively. However, the “abnor-
mal” SBS was observed in a variety of studies con-
ducted in different countries for nearly a decade [7–11,
13], which rules out the possibility of accidental exper-
imental errors. These problems should be resolved by
analyzing not only experimental errors, but also basic
physical mechanisms responsible for stimulated light
scattering.

3. PRELIMINARY ANALYSIS 
OF FEASIBLE MECHANISMS

OF STIMULATED SCATTERING

Before proceeding to new experiments, one should
review the results of previous studies in order to
understand which physical mechanisms of stimulated
scattering may work under the experimental condi-
tions of [7–14].

The near-UV beams used as pumps in previous
experiments had the wavelengths and intensities listed
in Table 1, while the corresponding pulse durations var-
ied between 5 and 10 ns. The nonlinear liquids used in
those studies (hexane, heptane, and others) were trans-
parent in the UV region: their linear absorption coeffi-
cients varied between 0.02 and 0.22 cm–1.

3.1. Mechanisms of Stimulated Light Scattering 

Light scattering is a process in which an atom or a
medium absorbs an incident photon and emits a sec-
ondary photon. Depending on the mechanism responsi-
ble for the photon emission, scattering can be either
spontaneous or stimulated [15].

In classical theories, scattering by transparent, mac-
roscopically homogeneous, nonionized media is
explained by permittivity fluctuations due to fluctua-
tions of thermodynamic state variables (density or tem-
perature) and physicochemical properties of the
medium (such as concentration, anisotropy, or polariz-
ability).
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When the optical inhomogeneity of a medium is
entirely due to thermal fluctuations of its properties, the
scattering is called spontaneous or thermal [2, 16]. If
the pump electric field is sufficiently strong, then stim-
ulated light scattering is observed. At the initial stage, a
weak scattered wave is generated by spontaneous scat-
tering of the pump beam. Under certain conditions, the
modes responsible for the initial spontaneous scattering
are amplified as both pump and scattered waves reso-
nantly interact with internal motion in the medium.
This leads to an increase in scattering efficiency. In the
ensuing steady state, the scattered light intensity IS in
the absence of pump attenuation is expressed as the
nonlinear function [3]

(1)

where  is the intensity of the thermally scattered
wave, G is the gain factor for a particular SS process, IL

is the pump intensity, and L is the length of the region
of nonlinear interaction.

Stimulated scattering is a special case of three-wave
mixing between two light waves and a polarization
wave. They are effectively coupled if

(2)

(3)

where ωL , kL and ωS, kS denote, respectively, the fre-
quencies and wavevectors of the pump wave

and the scattered wave

Ω and q are the polarization-wave frequency and
wavevector, respectively.

In an SS process, the polarization wave propagates
in such a medium with cubic nonlinearity that phase
matching conditions (2) and (3) are satisfied automati-
cally [2, 17]. Since the pump beam is the only source of
energy, the time profile of the complex amplitude of the
pump determines the dynamics of nonlinear light–mat-
ter interaction. Therefore, the pump wave must be
highly coherent.

The physical mechanism of an SS process must
ensure that two conditions are satisfied:

(i) the cross term in the squared electric field
strength must resonantly amplify a mode of internal
motion;

(ii) the resonant mode must modulate the permittiv-
ity of the medium.

A mechanism of this kind underlies each known SS
process [17, 18]: SBS, SRS, stimulated Raleigh wing

IS L( ) IS
0 GILL( ),exp=

IS
0

ωL ωS– Ω,=

kL kS– q,=

EL i kL r⋅ ωLt–( )[ ]exp c.c.+

ES i kS r⋅ ωSt–( )[ ]exp c.c.,+
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scattering (SRWS), and stimulated thermal scattering
(STS-1 and linear STS-2).

Mathematical models of stimulated scattering are
based on systems of material and wave equations. Their
solutions are used to find the gain factor G in (1) and the
decay time for the resonant mode in each SS mecha-
nism.

In experiments with pump beams with τ ≥ 10 ns
(excimer and solid-state lasers), SBS and linear STS-2
are observed most frequently, because the correspond-
ing values of G for condensed matter and compressed
gas (most widespread nonlinear media) are higher than
those characteristic of other SS processes. Accordingly,
the threshold pump intensities for these processes are
lower. However, since the pump is depleted because of
saturation, only the SS process characterized by the
highest gain is normally observed.

Since SBS and linear STS-2 play a particularly
important role in stimulated scattering of nanosecond
pulses in liquids, we discuss their basic characteristics
to be used below in analyzing SS processes observed
under various conditions.

3.1.1. Basic SBS characteristics. Adiabatic pres-
sure fluctuations are waves propagating at the speed of
sound [19]. The hydrodynamic equations used in SBS
models include an electrostrictive force that drives the
fluid into regions of higher electric field strength. The
cross term in the expression for electrostrictive pressure
is responsible for resonant generation of a hypersonic
wave with wavevector q and frequency

(4)

where v  is the speed of sound. The SBS Stokes shift ΩB
satisfies condition (2). The acoustic wave amplitude is
determined by viscous dissipation, and the decay rate
ΓB is related to the SBS decay time:

(5)

For liquids, A = 2η/(3ρ), where ρ is density and η is
shear viscosity [17, 20].

The density modulation in the acoustic wave gives
rise to a dynamic grating (phase hologram). The scat-
tered wave is amplified via interaction between the
pump and the grating. According to [3, 17], the steady-
state gain factor under conditions near the Stokes reso-
nance peak is

(6)

The highest gain is achieved when ωL – ωS = ΩB.

ΩB q( ) q v ,=

ΓB q( ) A q 2, τB ΓB
1– .≈=

GB
ρ2 ∂ε/∂ρ( )2

1 ωL ωS– ΩB–( )2/ΓB
2+

---------------------------------------------------------
ωSq2

4ΩBΓBερc2
-----------------------------.=
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When the scattered wave propagates at an angle θ
relative to the pump beam, condition (3) yields

(7)

Accordingly, the SBS frequency shift given by (4) is
expressed as

(8)

3.1.2. Basic characteristics of linear STS-2.
Entropy fluctuations at constant pressure do not pro-
pagate through the medium and only dissipate into heat
[19, 21]. In the thermodynamic model of linear STS-2,
the dissipation is modulated by the cross term in the
expression for squared electric field strength. Since per-
mittivity depends on temperature, a dynamic grating
(phase hologram) is created in the medium. The scat-
tered wave is amplified via interaction between the
pump and the grating. According to [3, 17], the steady-
state gain factor under conditions near the Stokes reso-
nance peak is

(9)

where cp is specific heat, χ is thermal diffusivity, and n
is the unperturbed refractive index. The decay rate ΓT is
related to the decay time for linear STS-2:

(10)

Since ∂ε/∂T is negative for most substances, optical
gain corresponds to an anti-Stokes shift Ω < 0. The
highest gain is achieved when

3.1.3. Phase mismatch for SBS in linearly
absorbing media. An SS process can be substantially
changed even by a weak absorption that affects only the
phases of waves. Indeed, since stimulated scattering
can be implemented only if conditions (2) and (3) are
satisfied, the phase matching (between the reference
and acoustic waves in SBS) must hold over a time
period corresponding to the pump pulse duration. Then,
steady-state amplitudes of the acoustic wave and phase
hologram are reached within the decay time τB, and the
highest conversion efficiency is achieved.

When the permittivity of the medium varies with
time, the pump and scattered wavelengths vary, and
both acoustic wave and phase hologram vary accord-

q q kL kS– 2 kL θ/2( )sin≈= =

=  2 ωL ε/c( ) θ/2( ).sin

ΩB qv 2ωL ε v /c( ) θ/2( ).sin= =

GT

ωSα
cnρcp

--------------- ∂ε
∂T
------ Ω

ΓT
2 Ω2+

-------------------≈

≈
ωSα

cnρcpΓT
--------------------- ∂ε

∂T
------

Ω/ΓT

1 Ω2/ΓT
2+

------------------------,

ΓT χ q 2, τT ΓT
1– .≈=

ωL ωS– ΩT ΓT.–= =
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ingly. Since electromagnetic field is massless, while
acoustic waves have a finite response time, the phase
matching conditions are violated. As a result, a time-
dependent SS process characterized by a lower conver-
sion efficiency is observed. A substantial change in per-
mittivity over the pulse duration may lead to SBS
breakdown.

Now, consider the change in SBS due to the heating
caused by linear light absorption with absorption coef-
ficient α [3, 4]. Using a plane-wave approximation, we
assume that the pump beam enters the nonlinear
medium at z = L and propagates leftwards along the z
axis, while the Stokes wave propagates rightwards.

If the respective wave intensities at z = L by IL(L)
and IS(L), then

is the efficiency of conversion of pump energy into SBS
signal over the length L of the region of nonlinear inter-
action. Sometimes, η is called SBS mirror reflectivity
[17]. The dependence of η on IL(L) is given by the rela-
tion [3, 4]

(11)

where

is the peak value of the backward SBS gain factor given
by (6),

v  is the speed of sound, and ω = ωL .

Numerical calculations of η[IL(L)] given by (11) as
a function of α yield a threshold value αCR correspond-
ing to SBS breakdown [3, 4].

4. EXPERIMENTAL SETUP 
AND TECHNIQUE

4.1. General Requirements for Experimental Setup 

To investigate the physical mechanisms responsible
for stimulated scattering of nanosecond pulses in the
near UV region, we constructed an experimental setup
based on an industrial ELI-91 XeCl excimer laser (λ =
308 nm) [22–24]. Hexane was used as a nonlinear liq-

η
IS L( )
IL L( )
-------------=

h D ηln+( )
=  ΓBGB IL L( ) 1 η–( )Lh/ΓB{ } ,arctan

D 25–30,=

GB
ρ ∂ε/∂ρ( )2ω2

2c3v nΓB

--------------------------------=

h
αω ∂ε/∂T( )

2cnρcp

----------------------------,=
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uid. Our experimental setup was designed by relying on
the following considerations.

I. Since each SS mechanism is characterized by a
specific shift of the scattered wave relative to the pump
frequency, analysis of spectral characteristics is of spe-
cial interest.

The SBS frequency shift predicted by (8) for λ =
308 nm and θ = π is ΩB = 0.33 cm–1 (see Table 2). The
linear-STS-2 shift predicted by (7) for λ = 308 nm and
θ = π is ΩT ≈ –ΓT ≈ –0.01 cm–1. Reliable discrimination
between SBS and linear STS-2 requires a spectral res-
olution ≤10–1 cm–1.

II. Analysis of nonlinear light–matter interaction
requires the use of a narrow-divergence, narrow-band-
width laser beam. This requirement is met when the
laser operates in the single-mode regime, producing a
single longitudinal mode and the fundamental trans-
verse mode TEM00q.

III. Nonlinear optical phenomena occur when the
beam intensity is sufficiently high. Since the focused
beam has a finite diameter, this implies that a high-
power pump is required.

The required conditions can be implemented in a
setup designed as a master-oscillator–power-amplifier
(MOPA) system. The master oscillator (MO) generates
a weak narrow-divergence, narrow-bandwidth beam.
The beam is then amplified, and its spatial and temporal
coherence is maintained.

Figure 1 schematizes the experimental setup MOPA
system based on an XeCl excimer laser (λ = 308 nm).

4.2. Master Oscillator 

A detailed description of the master oscillator can be
found in [23–26].

The diffraction-limited divergence of the beam pro-
duced by the master oscillator was controlled by two
aperture stops of radius r0 = 0.8 mm mounted on both
sides of the active cell.

The spectrum of the pulse generated by the master
oscillator was narrowed by means of a frequency-selec-

Table 2.  Frequency shifts ΩB predicted for backward SBS
(θ = π) in hexane by expression (8) for pump wavelengths in
the near UV region corresponding to ArF (λ = 193 nm), KrF
(λ = 248 nm), XeCl (λ = 308 nm), and XeF (λ = 351 nm)
excimer lasers

Pump wavelength,
nm

Frequency shift predicted for 
backward SBS in hexane, cm–1

193 0.49

248 0.41

308 0.33

351 0.30
SICS      Vol. 100      No. 5      2005
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Fig. 1. Experimental setup for studying mechanisms of stimulated scattering of XeCl excimer laser beams (λ = 308 nm) in hexane:
(1, 2) MOPA system based on an ELI-91 XeCl laser; (3, 12, 18) beamsplitters; (4, 5) spectrum analyzer (Fabry–Perot etalon com-
bined with prism); (6) luminescent screen; (7, 20) cameras; (8) round-trip amplifier based on an ELI-91 XeCl laser; (9) lens;
(10) cell filled with hexane; (11) FEK-29KPU photodiode (time resolution about 200 ps); (13, 19) mirrors; (14, 15) neutral filters;
(16) S7-19 oscilloscope (bandwidth about 5 GHz); (17) long-focal-length lens of divergence analyzer (f1 = 3 m).

20
tive cavity with a nontransparent mirror at one end and
a mode selector at the other. The selector operates as an
interference filter with a frequency-dependent reflec-
tion coefficient. Originally, a selector of this kind was
used in [27] to narrow the bandwidth of an Nd laser
characterized by a long cavity photon lifetime (about
1 µs). For the XeCl laser, the photon lifetime is approx-
imately 20 ns. For a 1 m long cavity, the corresponding
number of round trips is approximately 6, which is not
sufficient to select a single longitudinal mode. There-
fore, the optical system proposed in [27] is useless as
applied to the ELI-91 XeCl excimer laser. However, a

Table 3.  Laser parameters

Parameter ElI-91 (indus-
trial) laser

Master
oscillator

Amplified
beam

Bandwidth 15 cm–1 5 × 10–3 cm–1 5 × 10–3 cm–1

Aperture 10 mm × 20 mm ∅ 1.6 mm 8 mm × 10 mm

Divergence 10–2 rad 6 × 10–4 rad 3 × 10–4 rad

FWHM 20 ns 8 ns 8 ns

Pulse energy 50 mJ 50 µJ 3 mJ

Wavelength 308 nm 308 nm 308 nm
JOURNAL OF EXPERIMENTAL A
single longitudinal mode was selected by using a
Fabry–Perot etalon placed inside the MO cavity.

The MO output characteristics are specified in the
third column of Table 3; the characteristics of the indus-
trial ELI-91 laser, in the second column.

4.3. Experimental Setup 

The MOPA system based on an ELI-91 XeCl laser
combined master oscillator 1 and preamplifier 2. The
beam generated by the master oscillator was expanded
by a telescope amplified in the same active cell to
approximately 1 mJ. After passing through the round-
trip amplifier 8 based on another ELI-91 XeCl laser, the
pulse had a Gaussian shape, an energy of about 3 mJ, a
duration of about 8 ns, and a bandwidth of about 5 ×
10−3 cm–1. The characteristics of the amplified beam are
specified in the last column of Table 3.

The amplified beam was focused by lens 9 with
focal length F into cell 10 filled with hexane. The non-
linear interaction between the pump and the liquid took
place in the waist of the beam focused by lens 9. The
SBS-backscattered wave was guided back through the
optical system and amplified by round-trip amplifier 8.

Beamsplitter 12 was used to guide both forward-
and backward-propagating beams into a time-domain
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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analyzer. The time profiles of both beams were mea-
sured by means of FEK-29KPU photodiode 11 (with
a time resolution of about 200 ps) and S7-19 oscillo-
scope 16 (with a bandwidth of about 5 GHz).

Beamsplitter 3 was used to guide both forward- and
backward-propagating beams into a spectrum analyzer
(Fabry–Perot etalon 4 combined with prism 5), which
simultaneously produced images of pump and signal
spectra on luminescent screen 6 or camera 7.

Beamsplitter 18 was used to guide both forward-
and backward-propagating beams into a divergence
analyzer. Beam divergence was evaluated by using the
focal spot diameter obtained by means of lens 17 with
a focal length of f1 = 3 m.

4.4. Nonlinear Liquids and Cells 

The liquids used as nonlinear media in previous
studies of stimulated scattering and phase conjugation
in the near UV region [7–14] were organic solvents uti-
lized in UV chromatography, such as hexane, heptane,
iso-octane, ethanol. Similar results were obtained for
different liquids. Since hexane was used in almost all of
these studies (see Table 1), we also used it in our exper-
iments.

We used HPLC (chromatography) grade hexane
produced by Oldrich Chemical Co., Milwaukee, WI,
and domestically produced “chemically pure” hexane.
Their linear absorption coefficients measured at λ =
308 nm were α = 0.01 ± 0.003 cm–1 and α = 0.046 ±
0.003 cm–1, respectively.

We added small amounts of acetone to hexane to
increase the linear absorption coefficient, so that the
cells used in our experiments were filled with liquids
characterized by α = 0.01, 0.046, 0.08, and 0.17 cm–1 at
λ = 308 nm.

The nonlinear liquid filled a cylindrical glass cell
with fused-silica windows sloped at an angle of 5° to
avoid spurious reflections. We used a 5 cm (“short”)
cell in combination with lens 9 having F = 11 cm and a
30 cm (“long”) cell in combination with lens 9 having
F = 50 or 100 cm. All cells had an internal diameter of
40 mm.

The refractive index of hexane at λ = 308 nm is n ≈
1.4, and its temperature derivative is [18]

The corresponding permittivity and its derivative are

∂n
∂T
------ 

 
p

–53 10 5–  K 1– .×=

ε n2 2,≈=

∂ε
∂T
------ 

 
p

∂ε
∂n
------ ∂n

∂T
------ 

 
p

2n
∂n
∂T
------ 

 
p

1.5 10 3–  K 1– .×–≈= =
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5. EXPERIMENTAL RESULTS

5.1. Experiment 1: Dependence 
of Temporal Stimulated Backscatter Spectrum 

on Pump Intensity 

When the pulse power is held constant, the intensity
of radiation in cell 10 (see Fig. 1) can be varied by
means of neutral filters or by changing the focal length
of lens 9.

The amplified-pulse energy was approximately 3 mJ
(see Table 3). In our experiments, the stimulated scat-
tering pumped by such a pulse was close to threshold
conditions for lens 9 of any type employed. Therefore,
we could not use neutral filters to reduce the beam
power. The pump intensity IL was varied only by chang-
ing the focal length F of lens 9.

The spectrum analyzer scheme described above was
used to obtain a single photographic image of both
pump and signal spectra simultaneously with each
lens 9 (with F = 11, 50, and 100 cm), which facilitated
measurement of frequency shift. Only the chromatog-
raphy grade hexane (with α = 0.01 cm–1) was used in
this experiment.

The three photographic images of temporal spectra
shown in Figs. 2a–2c were obtained for the three differ-
ent F and α = 0.01 cm–1 = const. The stimulated back-
scatter spectrum has a single unshifted component
when F = 11 cm (Fig. 2a), an unshifted component and
a Stokes one when F = 50 cm (Fig. 2b), and a single
Stokes component shifted by 0.33 cm–1 when F =
100 cm (Fig. 2c).

5.2. Experiment 2: Dependence 
of SS Temporal Spectrum on Pump Intensity 

and Linear Absorption Coefficient 

We used all cells with hexane mixtures having α =
0.01, 0.046, 0.08, and 0.17 cm–1 to examine the depen-
dence of the stimulated backscatter spectrum on pump
intensity, which was varied by changing the focal
length of lens 9. The dependence of the stimulated
backscatter spectrum on F for α = 0.046 and 0.08 cm–1

was similar to that illustrated by Figs. 2a–2c for α =
0.01 cm–1. Each spectrum obtained for α = 0.17 cm–1

with F = 11, 50, 100 cm contained a single unshifted
component (as in Fig. 2a).

5.3. Experiment 3: Dependence
of Phase-Conjugation Fidelity on Pump Intensity 

We measured both pump and backscattered beam
divergences at the location of beamsplitter 18 (see
Fig. 1) to determine the dependence of the latter on the
former. The pump intensity was varied by changing the
focal length of lens 9. After a beam passes through
amplifier 8, its divergence increases by three times. The
experiment provided information about the phase-con-
jugation fidelity: when the phase conjugation is “good,”
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the spatial spectrum of the backscattered wave must be
unaffected by amplifier 8. We used only the chromatog-
raphy grade hexane (with α = 0.01 cm–1) to avoid the
thermal self-action caused by linear absorption.

Fig. 2. Results of Experiments 1 and 2: Photographic
images of temporal spectra obtained with F = (a) 11, (b) 50,
and (c) 100 cm for hexane at constant linear absorption
coefficient. Each photograph contains two images: pump
spectrum (right) and stimulated backscatter spectrum (left).
The dispersion-free region of the Fabry–Perot etalon is
0.66 cm–1. The dependence of stimulated backscatter spec-
trum on F is similar for α = 0.01, 0.046, and 0.08 cm–1.

(a)

(b)

(c)
JOURNAL OF EXPERIMENTAL A
Figures 3a–3c show photographic images of the
focal spots obtained for the pump beam with lens 17,
for the backscattered beam with F = 100 cm, and for the
backscattered beam with F = 11 cm, respectively. Since
phase aberration transforms into amplitude aberration
in the far-field region, the beam divergences can be
obtained by using these images and the relation

(12)θ d/ f 1,≈

Fig. 3. Results of Experiment 3: Photographic images of the
focal spots obtained with lens 17 (f1 = 3 m): (a) forward-
propagating beam; (b) backward-propagating beam (F =
100 cm, “good” phase-conjugation fidelity); (c) backward-
propagating beam (F = 11 cm, “poor” phase-conjugation
fidelity); hexane with α = 0.01 cm–1.

(b)

(a)

(c)
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where θ is the required divergence, d is the focal spot
diameter, and f1 = 3 m is the focal length of lens 17. The
resulting divergences are θ ≈ 3 × 10–4 rad for the for-
ward-propagating beam (Fig. 3a), θ ≈ 3 × 10–4 rad for
the “good” backscattered beam obtained with F =
100 cm (Fig. 3b), and θ ≈ 2 × 10–3 rad for the “poor”
backscattered beam obtained with F = 11 cm (Fig. 3c).

5.4. Experiment 4: Time Profiles of Pulse Intensity 

Analysis of the time evolution of pulses is important
for studies of stimulated scattering, because nonlinear
effects may change their amplitudes, durations, and
shapes. We used the time-domain analyzer mentioned
above. The phase-conjugation mirror reflectivity was
determined as the ratio of the peak backscattered inten-
sity to the peak intensity of the amplified beam. We
used all cells with hexane mixtures having α = 0.01,
0.046, 0.08, and 0.17 cm–1.

The backscattered intensity profile was found to
have a nearly Gaussian shape and an FWHM of approx-
imately 7 ns. The slightly shorter duration of the back-
scattered pulse as compared to the pump can be attrib-
uted to the near-threshold scattering conditions.

The phase-conjugation mirror reflectivity was
almost 20% with both F = 11 cm and 100 cm for
α = 0.01 cm–1 and decreased with increasing α. Note
that the reflectivity increased as the beam waist was
moved toward the entrance window.

5.5. Experimental Results 
Requiring Theoretical Analysis 

The trends revealed in Experiments 1–4 on hexane
with λ = 308 nm that require further theoretical analysis
are summarized as follows.

1. The presence of two components in the backscat-
tered wave spectra obtained with F = 50 cm for α =
0.01–0.08 cm–1: an unshifted one (up to 0.02 cm–1) and
a Stokes one shifted by 0.33 cm–1 (Fig. 2b).

2. The dependence of the backscattered wave spec-
tra obtained for α = 0.01–0.08 cm–1 on the focal length
F of lens 9:

(2.1) the disappearance of the unshifted component
observed when F is increased from 50 to 100 cm
(Figs. 2b and 2c);

(2.2) the disappearance of the shifted component
observed when F is reduced from 50 to 11 cm (Figs. 2a
and 2b);

3. The dependence of the backscattered wave spec-
trum on the linear absorption coefficient α of hexane:

(3.1) the disappearance of the shifted component
observed when F = 50 or 100 cm and α is increased
from 0.08 to 0.17 cm–1;
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(3.2) the appearance of the unshifted component
observed when F = 100 cm and α is increased from
0.08 to 0.17 cm–1.

4. The substantial increase in the backscattered
beam divergence observed when F is reduced from 100
to 11 cm and α = 0.01 cm–1 is held constant (Figs. 3b
and 3c).

6. ANALYSIS AND INTERPRETATION
OF EXPERIMENTAL RESULTS

6.1. Characteristics of Stimulated Scattering 

According to (1) (see [3, 17]), the threshold condi-
tion for stimulated scattering is

(13)

If the total gain ILGL is below the threshold given
by (13) for some SS process, then the process does not
contribute to the overall SS wave pattern observed in
experiment.

The length of a light pulse of duration τ ≈ 8 ns is Lp ≈
2.4 m. The amplified laser pulse of duration about 8 ns
has an energy of approximately 3 mJ, a diameter of
approximately 1 cm, and a divergence of θ ≈ 3 ×
10−4 rad (Table 3). The pulse is focused by lens 9 with
focal length varying from 11 to 100 cm into a cell con-
taining a nonlinear liquid. The beam waist length varies
from L ≈ 0.6 mm for F = 11 cm to L ≈ 6 cm for F =
100 cm. For each F, the following “long-pulse” condi-
tion is satisfied: Lp @ L. At any instant, the field strength
can be treated as constant over the entire waist length L,
which is approximately equal to the length of the region
of nonlinear interaction.

To simplify analysis, we assume that pump intensity
IL is uniformly distributed over a beam waist of diame-
ter df and length L. It can be shown that the product ILL
is independent of the focal length F of the lens that
focuses a pump beam with power WL , radius RL , and
divergence θL . Indeed,

(14)

(15)

(16)

where WL , RL , and θL are independent of F; df ≈ FθL is
the diameter of the beam waist; Sf = π(df)2/4 is its cross-
sectional area; and θ0 ≈ 2RL/F is the convergence angle
of the beam focused by the lens. We obtain

(17)

ILGL( )thr 25–30.≈

IL

WL

Sf
-------,≈

Sf

π df( )2

4
---------------

π FθL( )2

4
--------------------,≈=

L
df

θ0/2
----------

2FθL

2RL/F
---------------≈ ≈

F2θL

RL

-----------,=

IL F( ) 2– , L F( )2 ILL const.≈∝ ∝
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It is essential that the values of ILL corresponding to
all values of the focal length F of lens 9 are equal:

(18)

Since we varied F and α in our experiments, the
only parameter that affects the scattering conditions as
determined by value of ILGL is α (when only linear
light absorption is taken into account). If the mecha-
nism of a stimulated scattering process does not involve
α, then G is independent of α and the SS conditions do
not change in our experiments.

The diameter of the amplified beam incident on
lens 9 is DL ≤ 1 cm (Table 3). The focal length of lens 9
was F > 10 cm. Therefore, DL/F < 0.1, and the beam
waist was not distorted by the spherical aberration of
lens 9 or the jump in refractive index across the air–cell
boundary.

6.2. Dynamics of SS Spectral Components
for a Linearly Absorbing Medium 

6.2.1. Total gain ILGL for linear STS-2 and SBS.
First, we estimate the decay times for linear STS-2 and
SBS.

The decay time of a thermal grating is determined
by expressions (7) and (10). For hexane (see [28]),

(19)

where λ is the wavelength measured in micrometers
and θ is the scattering angle. For λ = 0.308 µm and θ =
π, formula (19) yields τT ≈ 3 ns. Even though this time
is shorter than the pump duration (τ ≈ 8 ns) by almost a
factor of 3, we cannot reliably use a time-independent
model. Since we explore the possibility of experimental
implementation of linear STS-2 rather than maximiza-
tion of its efficiency, we use the steady-state gain factor
GT given by (9) to simplify further analysis.

ILL 1.4 103 MW/cm.×≈

τT ΓT
1–=

1.4 10 7– λ2×
2 θ/2( )sin[ ] 2

------------------------------- s,≈

Table 4.  Gain factors GT, GB and total gain ILGTL, ILGBL
for linear STS-2 and SBS in hexane calculated for different
α, but constant ILL ≈ 1.4 × 103 MW/cm, λ = 308 nm, and
θ = π (our experiments)

α,
cm–1

GT,
cm/MW

Total gain 
for linear 

STS-2
ILGTL

GB,
cm/MW

Total gain 
for SBS
ILGBL

0.01 0.0024 3.3 0.022 31

0.046 0.011 15 0.022 31

0.1 0.024 33 0.022 31
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For qT ≈ 2kL and n ≈ 1.4, the thermal-grating step ΛT
associated with SS backscattering is estimated as

(20)

Estimating the speed of sound as v  ≈ 103 m/s, we
find the time of pressure relaxation over ΛT:

(21)

Since τpr ! τ, the value of GT can be obtained by
using

For a hypersonic grating, the decay time τB ≈ (ΓB)–1

given by formula (5) (see also (7) and [16]) for hexane
in the case of λ = 0.308 µm and θ = π is τB ≈ 0.3 ns.
Since τB ! τ, we can apply a time-independent SBS
model. Then, GB is given by expression (6).

Both the STS-2 and SBS gain factors GT and GB
(optimized with respect to frequency) and the total
gains ILGTL and ILGBL calculated in hexane for λ =
308 nm, θ = π, and several values of α such that

ILL ≈ 1.4 × 103 MW/cm

as in our experiments, are listed in Table 4.
The theoretical estimates presented in Table 4 lead

to the following conclusions.
First, the total gain for linear STS-2 (which depends

on α through GT) is much lower than the threshold
value given by (13) both for the “chemically pure” hex-
ane (α = 0.046 cm–1) and a fortiori for the chromatog-
raphy grade hexane (α = 0.01 cm–1). The threshold
value of the linear-STS-2 total gain is reached when α ≈
0.1 cm–1.

Second, the total SBS gain ILGBL (independent of α)
is higher than threshold value (13) for any value of α.

According to the standard SS theory (which allows
only for linear light absorption), this implies that SBS
must be observed in all of our experiments, whereas lin-
ear STS-2 can never be observed in experiments on
chemical or chromatography grade hexane.

6.2.2. Analysis of the shifted component of SS
spectra. Since ILGBL exceeds the threshold (Table 4)
and the measured frequency shift 0.33 cm–1 (Figs. 2b
and 2c) agrees with theoretical formula (8) for SBS in
hexane at λ = 308 nm and θ = π (Table 2), it is obvious
that the shifted component in the stimulated backscatter
spectrum should be attributed to SBS.

To explain the absence of a shifted component in the
spectra obtained for both chromatography grade (α =

ΛT
2π
qT
------ 2π

2kL

--------≈ nλ
2

------ 2 10 7–  m.×≈= =

τpr

ΛT

v
------ 2 10 10–  s.×≈=

∂ε
∂T
------ 

 
p

1.5 10 3–  K 1– .×–≈
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0.01 cm–1) and “chemically pure” (α = 0.046 cm–1) hex-
ane (Fig. 2a), we explore the possibility of SBS break-
down.

The only mechanism that can suppress SBS under
these conditions is the phase mismatch for SBS in
absorbing media [3, 4]. Figure 4 shows the SBS conver-
sion efficiency

evaluated numerically by using relation (11) as a func-
tion of the gain normalized to its threshold value,

for several values of α at λ = 0.308 µm. It is clear that the
critical value corresponding to curve d is αCR ≈ 0.1 cm–1.

Since the values of α for both chemical and chroma-
tography grade hexane are lower than αCR ≈ 0.1 cm–1,
no SBS suppression due to breakdown of phase mis-
match should be observed in these cases (when only
linear light absorption is taken into account).

6.2.3. Analysis of the unshifted component of SS
spectra. It is well known that phase conjugation can be
caused by SS processes other than SBS [17, 29]. Since
the measured shift relative to the pump frequency does
not exceed 0.02 cm–1 (experimental error), we should
consider both stimulated thermal scattering (STS-1 and
linear STS-2) and stimulated Raleigh wing scattering
(SRWS).

Since the molecular anisotropy of liquid hexane is
weak [30], SRWS signal cannot be generated. Nor-
mally (see [29]), the SRWS gain factor does not exceed

(GRW)max ≈ 10–3 cm/MW.

Therefore, the total SRWS gain evaluated for our exper-
imental conditions (ILL ≈ 1.4 × 103 MW/cm) is
ILGRWL ≈ 1.4, which is much lower than the threshold
value given by (13).

First, we consider STS-1. According to [29], the
STS-1 to SBS gain factor ratio is

(22)

where ω2 is the backscattered-wave frequency,

and v  is the speed of sound.

η
IS L( )
IL L( )
-------------=

x
ILGBL

D
----------------=

GRL

GB
---------  =  

γ
 

R

 
Γ

 
B 

γ
 e  
Γ

 

RL

 -------------- 
δ

 
1–

 
( )

 
c

 
Γ

 
B 

4
 π 

v
 ω 

2
 --------------------------,=

γe ρ ∂ε
∂ρ
------ 

 
T

,=

γR δ 1–( )cγeΓRL

4πv ω2
----------------------------------,=

δ
Cp

Cv

------,=
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For hexane at λ = 308 nm, we obtain δ = 1.4, v  ≈
103 m/s, ΓB

 

 

 

≈

 

 3 

 

×

 

 10

 

9

 

 Hz, and 

 

ω

 

2

 

 

 

≈

 

 10

 

15

 

 Hz. Then,

A comparison with the values of 

 

G

 

B

 

 listed in Table 4
shows that threshold condition (13) cannot be satisfied
for SRWS in our experiments (

 

I

 

L

 

L

 

 

 

≈

 

 1.4 

 

×

 

 10

 

3

 

 MW/cm),
since 

 

I

 

L

 

G

 

RL

 

L

 

 

 

≈

 

 0.6.
Since the physical mechanisms of SRWS and STS-1

do not involve absorption of radiation, the correspond-
ing threshold conditions must be independent of 

 

α

 

(Table 4). Therefore, the SBS, SRWS, and STS-1
threshold conditions did not change in our experiments
(

 

I

 

L

 

L

 

 

 

≈

 

 const).
However, absorption is involved in linear STS-2

processes, and the corresponding threshold conditions
vary with 

 

α

 

 while 

 

I

 

L

 

L

 

 was constant. In particular, linear
STS-2 is possible under our experimental conditions
(Table 4) only when  α

 
 > 0.1 cm

 

–1
 

.
 

6.3. Analysis of Decrease 
in Phase-Conjugation Fidelity 

for a Linearly Absorbing Medium 

 

Consider the following cylindrically symmetric
problem, denoting the radial coordinate by 

 

R.

 

 A pump
with a plane wavefront, a spatially nonuniform inten-
sity 

 

I

 

L

 

(

 

R

 

, 

 

t

 

), and a duration of 

 

τ

 

 enters a nonlinear
medium at 

 

t 

 

= 0 across the boundary 

 

z 

 

=

 

 L

 

 and propa-
gates toward the boundary 

 

z 

 

= 0. The phase conjugate
wave with intensity 

 

I

 

S

 

 

 

!

 

 

 

I

 

L

 

 generated in the medium
propagates from 

 

z

 

 = 0 to 

 

z

 

 = 

 

L

 

. The linearly absorbing
medium is characterized by the coefficient 

 

α

 

. Suppose

GRL/GB 2 10 2– .×≈

20 4 6 8 10 12
x

0.2

0.4

0.6

0.8

1.0
IS(L)/IL(L)

a

b

c

d

Fig. 4. Predicted SBS conversion efficiency η = IS(L)/IL(L)
vs. threshold value of x = ILGBL/D for hexane at λ =
0.308 µm and α = (a) 0.0001, (b) 0.03, (c) 0.05, and
(d) 0.1 cm–1.
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that heat conduction does not contribute to the temper-
ature redistribution over the beam cross section. Then,
the temperature increment over a time t is

(23)

Since refractive index depends on temperature, its
initially uniform distribution will be perturbed:

where the nonlinear term is a function of R and t:

(24)

The perturbed wavenumber is

and the nonlinear phase incursion over the distance L is

(25)

According to (25), a radially nonuniform nonlinear
phase incursion will develop in a wave that has a plane
front at z = 0; i.e., the wave will have a distorted front
at z = L. The phase incursion is zero at t = 0 and highest
at the trailing edge of the pulse.

Thus, the phase conjugate backscattered wave will
be coupled to a dynamically distorted beam, rather than
a beam with diffraction-limited divergence; i.e., it will
also have a distorted front.

As shown above, the product ILL contained in
expression (25) for the nonlinear phase incursion
remains invariant when the focal length F is changed.
Therefore, linear absorption with α = 0.01 cm–1 cannot
explain not only the decrease in phase-conjugation
fidelity, but not even the substantial increase in the non-
linear phase self-modulation of the pump in hexane
observed when the focal length is reduced from F =
100 cm to F = 11 cm (Figs. 3b and 3c).

∆T R t,( ) 1
ρCp

---------- α IL R τ,( ) τd

0

t

∫=

=  
α

ρCp

---------- IL R τ,( ) τ .d

0

t

∫

n n0 δn T( ),+=

δn R t,( ) ∂n
∂T
------∆T R t,( )=

=  
∂n
∂T
------ α

ρCp

---------- IL R τ,( ) τ .d

0

t

∫

k k0 δk+
ω
c
---- n0 δn+( ),= =

∆Φ R t,( ) δkL
ωL
c

-------δn R t,( )= =

=  
ωL
c

------- ∂n
∂T
------ 

  α
ρCp

---------- IL R τ,( ) τ .d

0

t

∫
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6.4. Stimulated Scattering
Induced by Two-Photon Absorption 

In summary, the standard SBS theory developed for
linearly absorbing media cannot explain the totality of
our experimental results concerning the mechanisms of
stimulated scattering of XeCl excimer laser radiation
(λ = 308 nm) in hexane. First, since linear absorption
with α < 0.1 cm–1 is not sufficiently strong to give rise
to linear STS-2, the origin of the unshifted component
observed when α < 0.1 cm–1 (Figs. 2a and 2b) remains
unclear. Second, since linear absorption with α <
0.1 cm–1 is not strong enough to suppress the SBS sig-
nal via phase mismatch, the disappearance of the SBS
component observed when the focal length of lens 9 is
reduced from F = 50 cm to F = 11 cm for α < 0.1 cm–1

(Figs. 2a and 2b) is yet to be explained. Third, linear
absorption with α = 0.01 cm–1 = const cannot explain
the substantial decrease in phase-conjugation fidelity
caused by the mere decrease in the focal length of
lens 9 from F = 100 cm to F = 11 cm (Figs. 3b and 3c).

It is well known that two-photon absorption should
be expected to occur in hexane at λ < 400 nm [31]. Sup-
pose that our experimental results concerning the
mechanisms of stimulated scattering of XeCl excimer
laser radiation (λ = 308 nm) in hexane reflect a strong
effect of two-photon absorption. More specifically,
assume that the unshifted line in the measured back-
scattered wave spectrum (Figs. 2a and 2b) corresponds
to an STS-2 mechanism associated with the heating
caused by two-photon absorption. In what follows, we
call this new SS mechanism two-photon STS-2, as dis-
tinct from the previously known STS-2 induced by lin-
ear (single-photon) absorption, i.e., linear STS-2.

The variation of light intensity controlled by two-
photon absorption is described by the equation [29, 32]

(26)

where I is the intensity of radiation propagating along
the z axis and γ is the two-photon absorption coeffi-
cient. Its solution is

(27)

where I0 = I(0). In the case of weak absorption (I0γz ! 1),
this solution reduces to

(28)

In our experiments, ILL ≈ 1.4 × 103 MW/cm and γ ≈
10−4 cm/MW (see below), and we have ILγL < 0.2.
Thus, we can use expression (28).

dI
dz
----- γI2,–=

I z( )
I0

1 I0γz+
-------------------,=

I z( ) I0 1 I0γz–( ).=
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The variation of light intensity controlled by weak
linear absorption with coefficient α is described by the
equation

(29)

It follows from (28) and (29) that ILγ plays the role of α
in our experiments, and we can define the total absorp-
tion coefficient αΣ as

(30)

The quantity ILL can be treated as the two-photon con-
tribution to the total absorption coefficient αΣ.

Note that the equivalence should be understood only
in a quantitative sense. Linear (single-photon) and two-
photon absorption can be treated as similar processes
only with respect to the final result of resonant light–
matter interaction, i.e., irreversible dissipation of elec-
tromagnetic energy into heat. However, the resonant
interactions responsible for linear and two-photon
absorption are different in terms of both quantum
mechanical processes involved and dipole matrix ele-
ments contained in the expressions for the respective
scattering cross sections. In other words, linear STS-2
and two-photon STS-2 are essentially different, being
roughly similar only with respect to the final stage of
electromagnetic energy dissipation, i.e., transformation
of temperature fluctuations into permittivity fluctua-
tions.

6.5. Calculation of the Cross Section
of Two-Photon Absorption 

from the Threshold Pump Intensity
for Two-Photon STS-2 

As indicated above, when ILL = const, linear STS-2
is characterized by a threshold value of α: it can occur

only if α ≥ . By analogy with linear STS-2, two-
photon STS-2 must also exhibit threshold behavior, but
with respect to ILγ rather than α. Therefore, when ILL =
const and the material properties (α and γ) are held con-
stant, an increase in IL caused by a decrease in F must
lead to totally different changes in the linear and two-
photon STS-2 mechanisms. In particular, the total gain
(ILGTL) must remain invariant for linear STS-2 and
increase for two-photon STS-2 since GT ∝  α = const
and GT ∝  (ILγ) ∝  IL in the former and latter processes,
respectively.

Linear and two-photon STS-2 can be distinguished

experimentally: if a medium with a constant α ! 
is used and IL is gradually increased while ILL is held
constant, then a component corresponding to “pure”
two-photon STS-2 must appear in the stimulated back-

scatter spectrum when ILγ ≈ .

I z( ) I0 1 αz–( ).=

αΣ α ILγ.+=

α sts
thr

α sts
thr

α sts
thr
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Let us find ILγ using the threshold condition for two-
photon STS-2. According to Table 4, the gain for STS-2
reaches a threshold value when

It follows from our experimental results that an
unshifted STS-2 component appears in the stimulated
backscatter spectrum for α = 0.01 cm–1 (Fig. 2b) when

 ≈ 109 W/cm2 (F = 50 cm). Indeed, when IL ≈ 2.5 ×
108 W/cm2 (F = 100 cm), no unshifted component is
observed (Fig. 2c); i.e., the STS-2 threshold is not
reached. Since α is small,

it is obvious that the observed neutral STS-2 compo-
nent (Fig. 2b) can be attributed only to two-photon

STS-2. Therefore, the threshold pump intensity  ≈
109 W/cm2 can be used to obtain the estimate

The coefficient γ of two-photon absorption at a par-
ticular wavelength is a property of the medium (in our
case, chromatography grade hexane). If ILγ correspond-
ing to a particular value of IL is known, then it can
readily be calculated for other values of IL . The values
of ILγ calculated for the pump intensities IL correspond-
ing to the three focal lengths of lens 9 used in our exper-
iments are listed in Table 5.

Using a known value of ILγ, we can find γ for λ =
308 nm:

(31)

We can also calculate the cross section σ2 for two-
photon absorption in a nonlinear medium. Indeed,

(32)

αΣ
thr α sts

thr 0.1 cm 1– .≈ ≈

IL
thr

α 0.01 cm 1–
 ! α sts

thr 0.1 cm 1– ,≈=

IL
thr

αΣ
thr α IL

thrγ( )+ IL
thrγ( ) α thr

sts 0.1 cm 1– .≈ ≈ ≈=

γ
ILγ
IL

--------
0.1 cm 1–

109 W/cm2
--------------------------= =

=  10 10–  cm/W 10 4–  cm/MW.=

ILγ σ2ILN ,=

Table 5.  Two-photon contribution ILγ to the total coefficient
of absorption at λ = 308 nm in hexane for three values of the
focal length of lens 9 and the corresponding pump intensities

F, cm IL , W/cm2 ILγ, cm–1

11 ≥1010 ≥1.0

50 109 ≈0.1 (experiment)

100 2.5 × 108 ≈0.025
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Table 6.  Physical mechanisms of stimulated backscattering of beams with λ = 308 nm and τ ≈ 8 ns in liquid hexane for dif-
ferent values of linear absorption coefficient and pump intensity, but constant ILL ≈ 1.4 × 103 MW/cm (L is the length of the
region of nonlinear interaction)

F, cm IL , W/cm2
 Physical mechanisms of stimulated backscattering

α = 0.01–0.08 cm–1 α = 0.17 cm–1

100 2.5 × 108 SBS linear STS-2

50 109 SBS + two-photon STS-2 linear STS-2 + two-photon STS-2

11 ≥1010 two-photon STS-2
where IL is the pump intensity (photon cm–2 s–1), N =
ρ/M is the molecular density (ρ is density, M is molec-
ular mass). For hexane (C6H14), we have N ≈ 4 ×
1021 cm–3. The photon energy corresponding to λ =
308 nm (ω = 1015 Hz) is "ω ≈ 4 eV ≈ 6.4 × 10–19 J. Since
ILγ = 0.1 cm–1 and IL = 109 W/cm2 (Table 5), we obtain

(33)

The accuracy of the calculation of σ2 is estimated as
follows:

(34)

where αthr is the STS-2 threshold value of linear absorp-
tion coefficient.

For comparison, consider two-photon nonresonant
ionization of many-electron atoms at a moderate field
strength. The cross section for this process does not
involve any substantial contributions due to near-
threshold absorption, multiple ionization, and perturba-
tion of atomic spectrum [33, 34], and its typical value is

Normally,  is much smaller than the cross sec-
tions for bound–bound transitions in atoms or mole-
cules at the absorption-line center. The value of σ2
extracted from experimental data is smaller than the
two-photon ionization cross section. This substantiates
our assumption about a dominant contribution of two-
photon absorption to the STS-2 gain. The relatively
small value of σ2 may be explained by the fact that the
final excited level in the two-photon absorption scheme
(λ/2 = 154 nm for hexane) corresponds to the wing of
an absorption line.

6.6. Phase Mismatch for SBS 
Enhanced by Two-Photon Absorption 

The relationship between the two-photon contribu-
tion ILγ to total absorption coefficient (30) and the focal

σ2

"ωILγ
ILN

---------------- 2 1±( ) 10 50–  cm4 s.×≈=

δσ2

σ2
--------- δαthr

α thr
-----------

δIL

IL

--------+ 0.2 0.3+ 0.5,= = =

σ2
i 10 49– –10 48–  cm4 s.≈

σ2
i
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length F of lens 9 (see Table 5) explains the SBS com-
ponent is not observed in the stimulated backscatter
spectrum for chromatography grade hexane (α =
0.01 cm–1) when lens 9 with F = 11 cm is used (Fig. 2a).
Indeed, IL ≥ 1010 W/cm2 in this case, and the total
absorption coefficient (Table 5)

is much larger than its critical value αCR ≈ 0.1 cm–1 cor-
responding to SBS breakdown due to phase mismatch
(Fig. 4). The heating due to two-photon absorption is
then sufficiently large to cause SBS breakdown.

6.7. Analysis of Decrease in the Fidelity 
of Phase Conjugation

Induced by Two-Photon Absorption 

Assuming that two-photon absorption plays a
dominant role, we replace α with ILγ in (23), and
expression (25) for the nonlinear phase incursion over
the distance L becomes

(35)

The quantity  in (35) increases with the pump
intensity in the beam waist as F decreases. Thus, two-
photon absorption explains the increase in the nonlinear
phase self-modulation of the pump in hexane observed
when the focal length is reduced from F = 100 cm to
F = 11 cm.

In our experiments, the hypersonic-grating decay
time for hexane is τB ≈ 0.3 ns (see above), which is
smaller than the pump pulse duration, τ ≈ 8 ns, by a fac-
tor of almost 30. This means that SBS can be consid-
ered as a zero-inertia process: the written phase holo-
gram instantly adjusts to the varying pump field. There-
fore, even if we take into account the dynamic variation

αΣ α ILγ+ ILγ≈ 1.0 cm 1–≥=

∆Φ R t,( ) δkL
ωL
c

-------δn R t,( )= =

=  
ωL
c

------- ∂n
∂T
------ γ

ρCp

---------- IL
2 R τ,( ) τ .d

0

t

∫

LIL
2
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of the spatial pump profile associated with the self-
action due to the heating caused by two-photon absorp-
tion, then the complex conjugate SBS wave must
ensure a high fidelity of phase conjugation.

The thermal-grating decay time for hexane in our
experiments is τT ≈ 3 ns (see above), which is smaller
than the pump pulse duration, τ ≈ 8 ns, by only about
three times. Therefore, two-photon absorption cannot
be considered as an zero-inertia process. Dynamic vari-
ations of the induced grating cannot keep pace with the
variations of the pump field. Since an advanced field is
scattered by a retarded hologram, the fidelity of phase
conjugation is degraded.

6.8. Stimulated-Scattering Mechanisms Consistent 
with Our Experiments 

Table 6 summarizes the results of experimental and
theoretical studies of stimulated backscattering of
pulses with λ = 308 nm and τ ≈ 8 ns in liquid hexane.
The first column shows the values of the focal length of
lens 9 in our experiments. The second column shows
the values of pump intensity IL in the region of nonlin-
ear interaction of length L. Since this region corre-
sponds to the waist of the beam focused by lens 9, the
quantity ILL ≈ 1.4 × 103 MW/cm is the same for all val-
ues of F. The last two columns list the stimulated back-
scattering mechanisms revealed for two characteristic
values of the linear absorption coefficient of hexane:
α = 0.01–0.08 cm–1 and α = 0.17 cm–1.

Note that some cells in Table 6 contain unique
mechanisms (SBS, linear STS-2, or two-photon
STS-2); others, two mechanisms (SBS + two-photon
STS-2 or linear STS-2 + two-photon STS-2). An anal-
ysis of the case of IL ≈ 2.5 × 108 W/cm2 (F = 100 cm),
when the contribution of two-photon absorption to the
overall pattern of stimulated scattering is insignificant
(see Table 5), leads to the following conclusions.

1. “Linear STS-2” is present when α is greater than
0.08 cm–1, but smaller than 0.17 cm–1. This agrees with

the threshold value estimated for linear STS-2,  ≈
0.1 cm–1 (see Table 4).

2. The absence of “SBS” for α = 0.17 cm–1 and its
presence for α ≤ 0.08 cm–1 is consistent with our theo-
retical conclusion that phase mismatch is effective for
SBS when α ≥ αCR ≈ 0.1 cm–1 (see Fig. 4).

3. The absence of the “SBS + linear STS-2” combi-

nation is explained by the fact that  ≈ 0.1 cm–1 is
close to αCR ≈ 0.1 cm–1 for SBS phase mismatch, while
the steps of α variation from 0.08 cm–1 to 0.17 cm–1 in
our experiments is not sufficiently small to observe
both processes simultaneously.

The presence of the “SBS + two-photon STS-2”
combination in Table 6 indicates that the steps of varia-
tion of αΣ = α + ILγ in our experiments is sufficient for

α sts
thr

α sts
thr
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simultaneous observation of both processes. The pres-
ence of the “linear STS-2 + two-photon STS-2” combi-
nation in Table 6 is yet to be substantiated. In contrast
to the “SBS + STS-2” combination, these two pro-
cesses are virtually impossible to distinguish in experi-
mental stimulated backscatter spectra. Our theoretical
analysis shows that neither linear not two-photon
STS-2 can be singled out as the dominant one when
α > 0.1 cm–1 and IL > 109 W/cm2.

6.9. Experimental Observation 
of SBS in the UV Region 

According to the standard SBS theory, taking into
account only linear absorption (see Table 4 and Fig. 4),
the condition ILL ≈ const implies that the only mecha-
nism that can work in our experiments with α <
0.1 cm–1 is SBS, while only linear STS-2 can work
when with α > 0.1 cm–1 (in view of phase mismatch for
SBS). It is no surprise that these very mechanisms are
listed in the last column of Table 1 as those suggested
in previous experimental studies.

It can be shown that both “SBS” and “linear STS-2”
listed Table 1 are incorrect. Indeed, it follows from the
data in the third column of Table 1 that IL ≥ 1010 W/cm2

in all previous experimental studies. However, accord-
ing to Table 6, either “two-photon STS-2” or “linear
STS-2 + two-photon STS-2” should be observed in
hexane when α < 0.1 cm–1 and α > 0.1 cm–1, respec-
tively. Therefore, “SBS” should be replaced with “two-
photon STS-2” in all rows of Table 1 except for the last
one, while “linear STS-2” should be replaced with “lin-
ear STS-2 + two-photon STS-2” in the last row. These
considerations are corroborated by the fact that the
measured frequency Ω in the fourth column of Table 1
is much less than the Brillouin shift ΩB predicted theo-
retically for the same value of λ (Table 2). It can be con-
cluded that genuine SBS has never been observed in all
previous studies of stimulated scattering in the near UV
region.

In our experiments on stimulated scattering in hex-
ane at the pump frequency λ = 308 nm, we observed an
SBS line with a Brillouin shift ΩB = 0.33 cm–1 (see
Figs. 2b and 2c) that fully agreed with that predicted by
the SBS theory (see Table 2). Thus, we were the first to
observe a genuine SBS line in the near UV region.

To “grasp” the genuine SBS line in our experiments,
we had to reduce the pump intensity from IL ≥
1010 W/cm2 (Fig. 2a) used in previous studies (Table 1)
to IL ≤ 109 W/cm2 (Figs. 2b and 2c) while keeping the
conditions for SBS invariant (ILL ≈ const). This made it
possible to reduce the two-photon contribution to the
total absorption coefficient of hexane and thus weaken
the effect of SBS phase mismatch due to the heating
caused by two-photon absorption.
SICS      Vol. 100      No. 5      2005
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7. CONCLUSIONS

The present study focuses on the physical mecha-
nisms of stimulated light scattering in the near UV
region. The complex problems yet to be solved in this
field of research concern both temporal and spatial
behavior of laser beams in SS processes. With regard to
temporal behavior, the problem of frequency shift is of
primary importance. With regard to spatial behavior,
the principal problem is the decrease in phase-conjuga-
tion fidelity with increasing pump intensity.

To deal with these problems, we constructed an
experimental setup based on a XeCl excimer laser (λ =
308 nm), which generated a single-mode pulse with a
duration of τ ≈ 8 ns, an energy of about 3 mJ, and a
bandwidth of approximately 5 × 10–3 cm–1. We chose
liquid hexane (C6H14) as a nonlinear medium. The
setup was used to conduct experimental studies of both
temporal stimulated backscatter spectra and phase-con-
jugation fidelity. An analysis of the experimental results
shows that the standard theory of stimulated scattering,
which takes into account only linear absorption, cannot
explain these results. The problems are resolved only
by introducing a new physical mechanism: stimulated
thermal scattering induced by the heating caused by
two-photon absorption (two-photon STS-2).

First, the “abnormal” SBS lines observed in previ-
ous experiments, with frequency shifts much smaller
than expected, actually were unshifted two-photon
STS-2 lines.

Second, the decrease in SBS phase-conjugation
fidelity should be interpreted as decrease in two-photon
STS-2 phase-conjugation fidelity, because two-photon
STS-2, in contrast to SBS, involves thermal self-action
and is characterized by a relatively long decay time.

Third, we used measured threshold pump intensities
for two-photon STS-2 to evaluate the cross section for
two-photon absorption at λ = 308 nm in a nonlinear
medium (hexane). On the one hand, the obtained value
of the cross section substantiates the very existence of
two-photon STS-2. Oh the other hand, the two-photon
absorption characterized by this cross section explains
certain experimentally observed phenomena, such as
SBS breakdown due to phase mismatch caused by two-
photon absorption.

A comparison of characteristics of linear and two-
photon STS-2 shows that these are essentially different
mechanisms of stimulated scattering and the corre-
sponding lines can readily be distinguished in stimu-
lated backscatter spectra. The total inconsistency of the
experimentally observed behavior of the two-photon
STS-2 line with the well-known behavior of the linear
STS-2 line explains the fact that the two-photon STS-2
lines observed in the studies of stimulated scattering in
the near UV region were attributed to SBS for almost a
decade. The genuine SBS line was found in the UV
region in our experiments only by using a pump beam
JOURNAL OF EXPERIMENTAL A
of much lower intensity. The mechanism of two-photon
STS-2 is not specific to the near UV spectral region.
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Abstract—The amplification (attenuation) factor of an electromagnetic wave during the scattering of a relativ-
istic electron by a nucleus in a moderately strong field of a circularly polarized electromagnetic wave is studied
theoretically. The effect of amplification of an electromagnetic field is discovered in a certain interval of polar
angles of the incident electron; this interval of angles essentially depends on the electron energy and the field
intensity. It is shown that the amplification of a field attains its maximum for nonrelativistic electrons in the
range of medium fields. As the electron energy increases, the amplification decreases and vanishes for ultrarel-
ativistic electrons. An increase in the field intensity for a given electron energy also leads to a slow decrease in
the amplification of a field. At high intensities of the wave, the effect of amplification vanishes. It is shown that,
in the range of optical frequencies for medium fields (F ~ 106 V/cm), the amplification factor of laser light may
amount to about µ ~ 10–1 cm–1 for sufficiently high-power electron beams. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

A quantum-mechanical calculation of the attenua-
tion (amplification) factor of an electromagnetic wave
during the scattering of an electron by a nucleus in the
field of a linearly polarized electromagnetic wave has
been known for a rather long time (see the fundamental
paper by Marcuse [1], as well as papers [2–5] and
monographs [6–9]). It is characteristic that the amplifi-
cation of an electromagnetic field (the Marcuse effect)
was discovered in a weak field (in the first order of per-
turbation theory), whereas, in the limit of a strong field
(when the velocity of the quivery motion of an electron
is much greater than the velocity of its translational
motion), the effect of amplification of a light wave van-
ished and the wave was absorbed. However, the region
of intermediate intensities of the electromagnetic field
(between weak and strong fields) was not studied.
In [10], we investigated this effect in the nonrelativistic
limit of electron velocities (in the dipole approxima-
tion) for a circularly polarized wave in the intermediate
range of field intensities when the velocity of the quiv-
ery motion of an electron is on the same order as or less
than the velocity of its translational motion. We demon-
strated that the amplification of a wave occurs when the
momenta of the initial electron lie within a cone whose
axis lies in the polarization plane of the wave.

In the present study, we calculate the amplification
(attenuation) factor of an electromagnetic wave during
the scattering of an electron by a nucleus in the field of
a circularly polarized electromagnetic wave for weak,
1063-7761/05/10005- $26.000884
medium, and moderately strong fields. We find out the
effect of amplification of an electromagnetic wave that
essentially depends on the scattering kinematics of
electrons, their energy, and the field intensity. Through-
out this paper, we use the relativistic system of units:
" = c = 1.

2. TOTAL CROSS SECTION 
OF STIMULATED EMISSION AND ABSORPTION 

OF BREMSSTRAHLUNG

Let us choose a 4-potential of an external field in the
form of a circularly polarized electromagnetic wave
that propagates along the z axis:

(1)

Here, ex = (0, ex) and ey = (0, ey) are 4-vectors of
the  wave polarization, and F, ω, and δ = ±1 are the
intensity, frequency, and polarization of the wave,
respectively. There are two characteristic parameters in
this problem: the classical relativistically invariant
parameter

(2)

and the quantum multiphoton parameter [2, 4] (the

A ϕ( ) F
ω
---- ex ϕcos δey ϕsin+( ),=

ϕ ω t z–( ).=

η e A2–
m

---------------- eF
mω
--------= =
 © 2005 Pleiades Publishing, Inc.
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Bunkin–Fedorov parameter)

(3)

Here, e, m, and v i (see (12) below) are the charge, mass,
and initial velocity of the electron, respectively. Note
that, for relativistic electrons in the range of optical fre-
quencies (ω ~ 1015 s–1), the parameters η and γ0 are on
the order of unity in fields of F ~ 1010–1011 and F ~
105−106 V/cm, respectively.

We will study this problem in the Born approxima-
tion with respect to the interaction between electrons
and the field of a nucleus (Ze2/v i, f ! 1) for the intensity
of the external electromagnetic field (1) satisfying the
condition

η2 ! 1, (4)

we will assume that the photon energy of the wave is
small compared with the electron energy,

(5)

In the general relativistic case, the cross section of
stimulated emission and absorption of bremsstrahlung
(SEAB) in the field of a plane wave was obtained
in [11] (see also [12–14]); for a circularly polarized
external field (1) in the range of intensities (4), this
cross section is

(6)

where the partial differential cross section of the scat-
tering of a relativistic electron by a nucleus Ze accom-
panied by the emission (l > 0) and absorption (l < 0) of
|l | photons is given by

(7)

Here, pi, f = (Ei, f, pi, f) is the 4-momentum of the elec-
tron in the initial and final states and q = (q0, q) is the
transferred 4-momentum, which is determined by the

4-quasimomentum of the electron  = ( , )
and the 4-momentum of the photon of the external field
k = (ω, k):

(8)

γ0 η
mv i

ω
----------.=

2ω
mv i

2
---------- ! 1, if v i ! 1,

ω
Ei
-----  ! 1, if Ei * m.

dσ σl,d
l ∞–=

∞

∑=

dσl
2 Ze2( )2

pi Ef
------------------- m2 EiEf pi pf⋅+ +( )=

×
δ q0( )

q4
-------------Jl

2 γ( )dpf .

p̃i f, Ẽi f, p̃i f,

q p̃f p̃i– lk,+=

p̃i f, pi f, η2 m2

2k pi f,
--------------k.+=
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The argument of the Bessel function Jl(γ) in the partial
cross section (7) is given by

(9)

We emphasize that expression (9) for the quantum
parameter γ can be represented as

(10)

Formula (10) shows that the argument of the Bessel
function in the Bunkin–Fedorov kinematic domain (when
sinθ ≈ 1) satisfies the relation γ ~ γ0 (see also [12, 13]).
Outside the Bunkin–Fedorov domain, the polar angles
θ are close either to zero or π. Therefore, sinθ ≈ ∆θ ! 1
(vector Qfi lies in a narrow cone and is directed either
along the propagation vector of the wave or oppositely,
and ∆θ is a small opening angle of the cone), and the
quantum parameter γ becomes small.

For the wave intensities satisfying (4), the energy
conservation law (see the argument of Dirac’s δ func-
tion in (7)) can be represented as follows:

(11)

(12)

Note that the small corrections to the electron energy Ei
on the right-hand side of (11) are important for calcu-
lating the total cross section of SEAB (see (22)
and (23)). Integrating (7) with respect to the energy of
the final electron Ef (11), after straightforward calcula-
tions we obtain the following expression for the par-
tial differential cross section of SEAB during the scat-
tering of an electron by a nucleus into a solid-angle
element dΩ:

(13)

Here, re = e2/m is the classical radius of the electron,

(14)

γ ηm exQfi( )2 eyQfi( )2+ ηm Qfi
2– ,= =

Qfi
pf

k pf
--------

pi

k pi
-------.–=

γ γ0
ω
v i
----- Qfi θ, θsin ∠ k Qfi,( ).= =

Ef Ei η2 m2

2Ei
-------- 1

κ f
----- 1

κ i
----– 

 – lω,–≈

κ i f, 1 v i θi f, , θi f,cos– ∠ k pi f,,( ),= =

v i f, pi f, /Ei f, .=

dσl

dΩ
-------- 2Z2re

2 mEi

pi
2

--------- 
  2

ρl

Ψl

gl
2

------Jl
2 γ( ).=

Ψl 1 δl

pi
2

Ei
2

-----+ +=

× ρl θfcos θicos θf θi φcossinsin+( ) 1–[ ] ,
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(15)

(16)

(17)

(18)

Here,  is the projection of the momentum pi, f onto
the plane xy. The argument γ (9) of the Bessel function
in (13) can be represented as

(19)

(20)

Note that, under conditions (4) and (5), the Bunkin–
Fedorov quantum parameter γ0 is bounded from above
by

(21)

The amplification factor of the electromagnetic
wave is defined by the expression [8, 9]

(22)

where ne and na are the electron and ion densities,
respectively; Âc = 1/m is the Compton wavelength of the
electron; Â = 1/ω; and

(23)

gl 1 ρl
2 2ρl θf θicoscos θf θi φcossinsin+( )–+=

+ εl

pi

Ei
------- ρl θfcos θicos–( )

pi

2Ei
--------εl 

 
2

,+

ρl

pf

pi
------- 1 εl–

pi

2Ei
--------εl 

 
2

+ ,= =

δl

Ef

Ei
----- 1 εl

pi
2

2Ei
2
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εl lε1 ε0, ε1+
2ωEi

pi
2
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ε0 η2mEi

pi
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κ f
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κ i
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  ,=
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is the so-called total cross section of stimulated
bremsstrahlung. Here, the sum is taken over all possible
values of the integer-valued index l, and the partial
cross section of the multiphoton SEAB of an electron
by a nucleus is given by

(24)

It is obvious that the partial (24) and total (23) cross
sections are independent of the azimuth ϕi of the initial
electron. Indeed, passing to the partial cross section (24)
when integrating with respect to the azimuth from ϕf to
φ (18), after straightforward calculations we obtain

(25)

Formulas (22), (23), and (25) show that the amplifica-
tion (attenuation) of an electromagnetic wave will
occur if the total cross section σt is positive (negative).
Taking into account (22)–(25), we can represent the
total cross section of SEAB (23) and the amplification
factor (22) of the wave as

(26)

(27)

where

(28)

Below, we consider the amplification factor of a
wave (27), (28) for medium and moderately strong
intensities of the electromagnetic field.
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3. AMPLIFICATION FACTOR 
OF A WAVE FOR MEDIUM FIELDS

First, we will study the case of medium and weak
fields (γ0 & 1), where the intensity η satisfies the fol-
lowing condition:

(29)

Under condition (29), we can neglect the second term
(ε0) in (17) compared with the first term; then, the
expression for εl takes the form

(30)

Note that |εl | & γ0e1 ! 1 for any number of emitted and
absorbed photons of the wave that make a significant
contribution to the sum of the function Di (28). Taking
this fact into account, we expand the functions ρl, Ψl,

, (γ0fl) in (28) in the Taylor series up to the third-

order terms in εl (the terms proportional to  and 
are essential when integrating with respect to the angle
of the outgoing electron over a small neighborhood of
a singular point when scattering by zero angle). After
straightforward calculations, we obtain

(31)

(32)

(33)

(34)

(35)
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Here, the following notation is introduced:

(36)

(37)

(38)

(39)

(40)

The function f0 in (38) is determined by the expressions
for fl (19) with l = 0 (∆l = 0 = 1). Note that, in the terms

proportional to  and  in (32)–(40), we dropped the
terms that are small in the neighborhood of the singular
point (for scattering of the final electron by zero angle,
when f0  0, a+  0, and bfi  0). Taking into
account formulas (31)–(35), one can easily calculate Ml

in (28) up to the third-order terms in the small parame-
ter εl (in this case, only the terms proportional to odd
powers of εl are nonzero). As a result, the expression for
the function Di (28) is rewritten as

(41)
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(44)

In (43) and (44), (x) is the derivative of the Bessel
function Jl(x) with respect to the argument. When cal-
culating the sums (43) and (44), we will take into
account that, for medium fields (29), the arguments of
the Bessel functions are on the order of unity and that
the effective values of the integer parameter l are small;
moreover, in (37) and (38), the terms proportional to

, which are important in a small neighborhood of the
singular point, are small. Therefore, we will carry out
calculations in two steps: away from the singular point,
where we can set

, (45)

and in a small neighborhood of the singular point,
where

(46)

we then match these two solutions. For example, in the
domains (45) and (46), we obtain the following solu-
tions for the sums S1 and , respectively [15]:

(47)

and

(48)

Here, b1 and a1 are the values of the functions bl (37)
and al (38) for l = 1. Note that, in formulas (47), the
summation is extended to infinity owing to the rapid
convergence of the sums, whereas, in (48) one can
restrict the summation to a single term with l = 1
because of the small value of the argument of the Bessel
functions. Solutions (47) and (48) can easily be sewn
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together for the entire range of angles of the outgoing
electron. As a result, we obtain

(49)

By analogy, we calculate the following values for other
sums:

(50)

(51)

Substituting (49)–(51) into (42), we obtain the follow-
ing expression for the function Di (41):
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where
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We emphasize that, in the expression for Hmiddle (54),
the function Gfi (55), which is proportional to the small

quantity  ! 1, makes a substantial contribution to the
integral (53) only when integrating over the neighbor-
hood of the singular point (when an electron is scattered

by zero angle), where |Gfi | ~  and |Gfi | ~  @ 1.
Substituting expressions (52)–(55) into (26) and (27),
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we obtain the required expressions for the total cross
section of SEAB and for the amplification factor of a
wave for medium and weak fields (29) in the general
relativistic case:

(56)

(57)

Note that, in the case of weak fields (γ0 ! 1),

(58)

one can neglect the term proportional to (γ0a1)2 ! 1
in (55), and the function Gfi takes the form

(59)

Therefore, the function Bi defined by expressions (53),
(54), and (59) does not depend on the field intensity but
is determined only by the initial parameters of the elec-
tron (its energy and the polar angle of the incident elec-
tron) and the wave frequency.

For medium fields (γ0 ≈ 1), the function Bi (53)–(55)
weakly depends on the Bunkin–Fedorov quantum
parameter γ0, which enters only into the function Gfi.
The function Gfi makes a significant contribution to the
integral (53) only in a small neighborhood of angles
when the electron is scattered by zero angle; therefore,

|a1| ! 1. Hence, the product  takes significant val-
ues in a certain range of angles in a small neighborhood
of the singular point and may influence the function Bi
only on the upper boundary of the applicability domain

of the expressions obtained, where  @ 1 (but γ0 ≈ 1).
Therefore, in the general relativistic case, the total cross
section of SEAB (56) in the range of medium fields is
proportional to the square of the electric field strength
of the wave (σt ∝  F2), and the amplification (attenua-
tion) factor (57) of the wave is virtually independent of
the field strength (see Fig. 6 below). Formulas (53)–
(55) show that the function Bi weakly depends on the
energy of electrons (this result is confirmed by the
numerical calculations of Bi for various electron veloc-
ities; see Figs. 1–3 and 6 below). Therefore, the depen-
dence of the amplification factor of the wave on the
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electron energy is primarily determined by the coeffi-
cient of the function Bi (see (57)); i.e.,

(60)

Hence, the amplification factor of the wave attains its
maximum value for nonrelativistic electrons. It rapidly
decays as the electron energy increases.

For nonrelativistic electrons, the expressions for the
total cross section (56) and the amplification factor of
the wave (57) reduce to

(61)

(62)

One can easily show that, in the dipole approximation,
the function Bi (53) becomes symmetric with respect to

µ m
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Fig. 1. Amplification (attenuation) factor µ (62) as a func-
tion of the polar angle of an incident nonrelativistic electron
with energy Ei ≈ 2.5 keV in the range of medium fields of a

laser: ω = 2 eV and F = 1.04 × 106 V/cm. The dashed curve
corresponds to the dipole approximation (see (63)–(66)),
and the solid curve is obtained outside the applicability
domain of the dipole approximation (see (53)–(55)). The
range of polar angles in which µ > 0 (µ < 0) corresponds to
the amplification (attenuation) of light.
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the value θi = π/2 of the polar angle of the incident elec-
tron and takes the form

(63)

where

(64)

Bi θf θf H0 φ,d
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Fig. 2. Amplification (attenuation) factor µ ((57) and (53)–
(55)) as a function of the polar angle of an incident relativ-
istic electron in the range of medium fields of a laser: ω =
2 eV and F = 1.04 × 106 V/cm. The dashed curve corre-
sponds to electron energy of Ei ≈ 0.58 MeV, and the solid
curve, to Ei ≈ 0.70 MeV. The range of polar angles in which
µ > 0 (µ < 0) corresponds to the amplification (attenuation)
of light.
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(65)

(66)

The quantities a± in (65) are determined by equation (36).
Note that Eqs. (61)–(66) coincide with similar expres-
sions obtained in [10] in the dipole approximation in
the case of a weak field, when γ0 ! 1.

Figure 1 represents the amplification (attenuation)
factor of a wave as a function of the polar angle of inci-
dent nonrelativistic electrons (v i = 0.1) in the range of
medium fields (29) (η = 2 × 10–5 and γ0 = 0.5) outside
the applicability domain of the dipole approximation
(see (62) and (53)–(55)) and in the dipole approxima-
tion (see (62) and (63)–(66)). One can see that, due to
the nondipole character of the interaction between the
electron and the field of the wave, the amplification fac-
tor versus the polar angle of the incident electron
becomes nonsymmetric with respect to its maximum
value, and the maximum moves toward smaller angles
(90°  84°). It is noteworthy that the maximum of
the amplification factor of the wave is determined by
the angle of the incident electron, which satisfies the
relation

(67)

The range of angles of the incident electron in which
the amplification of electromagnetic radiation occurs is
given by 53° ≤ θi ≤ 115°. Outside this interval, the wave
is absorbed in medium fields.

Figure 2 represents the amplification factor of the
wave ((57) and (53)–(55)) as a function of the polar
angle of incident relativistic electrons (v i = 0.5, 0.7) for
a wave intensity of η = 2 × 10–5 (γ0 = 2.5, 3.5). One can
see that the maximum of the amplification factor rap-
idly decreases (see (60)) as the electron energy
increases. A comparison of µmax for electron velocities
of v i = 0.1 (see Fig. 1) and v i = 0.5 (Fig. 2) shows that
the amplification factor decreases nearly by two orders
of magnitude. In this case, the position of µmax shifts
toward smaller angles (see (67)), and the interval of
angles in which amplification of the wave occurs
becomes narrower. For example, for v i = 0.5, we have
θmax ≈ 55° and 38° ≤ θi ≤ 84°, whereas, for v i = 0.7, we
have θmax ≈ 46° and 30° ≤ θi ≤ 54°. As the electron
energy increase further, the position of µmax shifts to the
origin (see (67), the interval of angles in which ampli-
fication occurs becomes still narrower, and the absolute
value of µmax sharply decreases. Hence, the effect of
wave amplification manifests itself largely for nonrela-
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tivistic and relativistic electron energies (for ultrarela-
tivistic energies, it becomes small).

4. AMPLIFICATION FACTOR OF A WAVE 
FOR MODERATELY STRONG FIELDS

Now, consider the case of a moderately strong field

(1 ! γ0 ! ), when the wave intensity satisfies the
condition

(68)

Under condition (68), |εl | ! 1 for all possible values of
the number of emitted and absorbed photons that make
the main contribution to sum (28). Therefore, we can
restrict ourselves to the first-order terms in the Taylor

series expansion of the functions ρl, Ψl, , and fl
in (28) (see (31)–(34)) in the small parameter |εl |. In
this case, the expansion of the Bessel function (35) is
not valid. For moderately strong fields (68), the argu-
ment of the Bessel function is large compared with |l |
everywhere except for a small neighborhood of angles
of the outgoing electron, where

(69)

In the range of angles of the outgoing electron where

(70)

we can use the following asymptotic expression for large
values of the argument for the Bessel function (28):

(71)

Here, we averaged the squared cosine over fast oscilla-
tions in the integral in (28) and took into account expan-
sion (34) of the function fl .

For the range of small scattering angles of the final
electron, where f0 ! 1 (f0γ0 & 1), the asymptotic expres-
sion for the squared Bessel function (71) is not valid.
This situation occurs in a small neighborhood of the
scattering angle when an electron is scattered by zero
angle and outside the Bunkin–Fedorov kinematic
domain (see the text after formula (10)). This kinematic
domain was studied in detail in [12] (see also [13]) and
is determined by the scattering of an electron that
occurs practically in a single plane formed by the initial
momentum of the electron and the propagation vector
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of the wave. The appropriate azimuths are equal to
(with regard to small smearing of ∆ϕf)

(72)

and the polar angles are related by the following for-
mula:

(73)

Therefore, when integrating over the angles of the out-

going electron, where f0 &  ! 1, one should calcu-
late the amplification factor of the wave by the formula
for medium fields (57) and (53)–(55). Formula (73)
implies that each angle of the incident electron corre-
sponds to a certain angle of the outgoing electron, and
the equation θf = θi ± ∆θf (i.e., the angle of the outgoing
electron belongs to a certain neighborhood of the scat-
tering by zero angle) holds only under condition (67).

ϕ f ϕ i ∆ϕ f , ∆ϕ f  & 1/γ0 ! 1,±=

θf θi* ∆θf ,±=

θi* 2
Ei pi–( )
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3

Fig. 3. Amplification factor of a wave ((62) and (79)) as a
function of the polar angle of an incident nonrelativistic
electron with energy Ei ≈ 2.5 keV in a moderately strong
field of a laser (ω = 2 eV). The field strength is (1) F =
1.04 × 108, (2) 5.20 × 108, and (3) 2.60 × 109 V/cm; the
dashed curve corresponds to a medium field of F = 1.04 ×
106 V/cm (see (53)–(55)). The range of polar angles in
which µ > 0 (µ < 0) corresponds to the amplification (atten-
uation) of light.
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Taking into account expressions (31)–(33) for the

functions ρl, Ψl , and  and (71) for the squared
Bessel function, after straightforward calculations we
can rewrite expression (28) for Di (up to the first order
terms in εl) as

(74)

Here,

(75)

(76)

Formula (75) contains the Heaviside function ξ(x)
under the summation sign; it allows us to take into
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Fig. 4. Amplification factor µ of a wave ((57) and (79)) as a
function of the polar angle of an incident relativistic elec-
tron with energy Ei = 0.58 MeV in a moderately strong field
of a laser (ω = 2 eV). The dot-and-dash curve corresponds
to a field intensity of F = 5.20 × 108 V/cm, the solid curve,
to F = 2.60 × 109 V/cm, and the dashed curve, to a medium
field of F = 1.04 × 106 V/cm (see (53)–(55)). The range of
polar angles in which µ > 0 (µ < 0) corresponds to the
amplification (attenuation) of light.
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account conditions (69) and (70) when summing over l.
Let us choose the Heaviside function as

(77)

then, we can easily calculate the integral in (75):

(78)

Taking into account (74) and (78), we can reduce the
expressions for the total cross section and for the ampli-
fication (attenuation) factor to forms (56) and (57),
respectively, in which

(79)

Here, the expressions for the functions Hstrong and
Hmiddle are given by (76) and (54). Note that, for γ0 & 1,
the expression for the amplification factor obtained in
the range of moderately strong fields (see formulas (57)
and (79)) reduces to the formulas for medium
fields (57) and (53); i.e., it describes the amplification
factor of the wave in the entire range of field intensities
η ! v i .

Taking into account (67), we can write out an
approximate expression for the maximal amplification
factor of the wave as a function of the electron velocity:

(80)

Here, the formula for Bimax is determined by the func-
tion Bi (79) in which the angle of the incident electron
satisfies condition (67).

Figures 3 and 4 represent the amplification factor of
the wave (57), (79) as a function of the polar angles of
incident nonrelativistic (v i = 0.1) and relativistic (v i =
0.5) electrons, respectively, in the range of moderately
strong fields for various intensities of the wave (in
Fig. 3, curve 1 corresponds to η = 2 × 10–3 and γ0 = 50;
curve 2 corresponds to η = 10–2 and γ0= 250, and
curve 3 corresponds to η = 5 × 10–2 and γ0 = 1250; in
Fig. 4, the dot-and-dash curve corresponds to η = 10–2

and γ0 = 1250, and the solid curve corresponds to η =
5 × 10–2 and γ0 = 6250). One can see that the position of
the maximum of the amplification factor does not
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depend on the wave intensity and is determined by for-
mula (67). The interval of angles in which the amplifi-
cation of the wave occurs narrows, and the absolute
value of µ decreases rather slowly. For example, Fig. 3
shows that, as the field intensity increases from η = 2 ×
10–5 to η = 10–2, the interval of angles in which µ > 0
varies from 53° ≤ θi ≤ 115° to 63° ≤ θi ≤ 105°, and the
maximum of the amplification factor varies from
µmax/µ0 ≈ 41 × 103 to µmax/µ0 ≈ 17 × 103. Thus, as the
field intensity increases nearly by three orders of mag-
nitude, µmax decreases only by a factor of 2.4. In this
case, the total cross section grows quite rapidly, as η2

(see (61)). A further increase in the field intensity leads
to a further decrease in the range of fields in which
µ > 0, so that, for intensities of η @ v i , the amplifica-
tion factor becomes negative for all possible polar
angles of the incident electron; i.e., as expected, the
effect of wave amplification vanishes (the wave is only
absorbed). Figure 5 shows the maximum of the ampli-
fication factor of the wave, µmax (80), as a function of
the velocity of the initial electron for medium and mod-
erately strong fields. One can see that µmax attains its
maximal values for medium fields and nonrelativistic
electron energies and rapidly decreases as the electron
velocity increases (60). Figure 6 represents the function
Bimax (80) versus the wave intensity η for relativistic
and nonrelativistic energies of electrons. One can see
that, for a given energy of electrons, the amplification
factor of the wave attains its maximum in the range of
medium fields and remains virtually constant (µmax ≈

0.1 0.2 0.3 0.4 0.5 0.7 0.8
0

6

12

18

24

30

36

42
(µ/µ0) × 10–3

νi

0.6

Fig. 5. The maximal amplification factor µmax (80) as a
function of the velocity of the initial electron for a medium
and a moderately strong laser field (ω = 2 eV); the dashed
curve corresponds to the field intensity of F = 1.04 × 106,
and the solid curve, to F = 5.20 × 108 V/cm.
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const), whereas, in the range of moderately strong
fields, µmax monotonically decreases.

Let us estimate the amplification factor of the wave.
Unfortunately, in the range of optical frequencies and
for ordinary concentrations of electron beams, the
amplification factor is small. For example, for Z = 1,
ω = 2 eV, ne = 3 × 1011 cm–3, and ni = 1019 cm–3, for-
mula (27) yields µ0 ≈ 1.65 × 10–16 cm–1. Then, for polar
angles of incident nonrelativistic electrons near θi ≈
84°, µ ≈ 0.7 × 10–11 cm–1 in the range of medium fields
(see Fig. 3). Considerable values of the amplification
factor for laser light can be obtained with electron
beams with sufficiently high concentration of electrons.
For example, for an electron beam of I ≈ 10 kA [16]
with a kinetic energy of E = 2.5 keV and a beam diam-
eter λ ≈ 0.6 µm, the concentration of electrons is ne ≈
7.4 × 1021 cm–3. For this concentration of nonrelativistic
electrons, we obtain µ0 ≈ 4 × 10–6 cm–1, and the ampli-
fication factor of laser light near θi ≈ 84° is equal to
µ ≈ 0.16 cm–1.

Note that such high concentrations of electrons can
be achieved in a plasma in a very strong static electric
field. In such a plasma, strong collisionless instabilities
may occur that may mask the amplification of a wave
due to collisions. Therefore, in order to observe the
effect of amplification of laser light in such a plasma,
one has to create conditions under which collisionless
instabilities are suppressed.

–6 –5 –4 –3 –2 log η
10

20

30

40

50

60

70
Bi max

Fig. 6. The function Bimax (80) versus the intensity of a laser
field η (ω = 2 eV). The dashed curve corresponds to electron
energy of Ei ≈ 0.58 MeV, and the solid curve, to Ei ≈
2.5 keV.
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We emphasize that, in the case of a linearly polar-
ized electromagnetic wave, in addition to the quantum
multiphoton parameter γ0 (3), we have a quantum
parameter β0 = η2mv i/ω in this problem (for nonrelativ-
istic electron energies in the dipole approximation,
β0 = 0). Therefore, instead of the Bessel functions that
determine the probability of multiphoton processes, we
have so-called generalized Bessel functions (Jl(γ0) 
Jl(γ0, β0)), which were studied in detail by Reiss [17].
As a result, the calculation of the amplification (attenu-
ation) factor of a wave is significantly complicated
compared with then case of a circularly polarized wave.
Here, the qualitative behavior of the amplification fac-
tor of the wave as a function of the field strength for cir-
cular and linear polarizations remains the same.

5. CONCLUSIONS

Thus, we have studied the amplification of a wave
during the scattering of a relativistic electron by a
nucleus in the field of a circularly polarized light wave
of weak, medium, and moderately strong intensities.
The results obtained complement the available results
that were obtained by calculating the amplification
(attenuation) factor of a linearly polarized electromag-
netic wave in two limit cases: for weak and strong
fields.

The results of the study can be summarized as
follows.

1. The amplification of a circularly polarized elec-
tromagnetic wave occurs in a definite range of angles of
the incident electron with respect to the propagation
direction of the wave and essentially depends on the
electron energy and the field intensity.

2. The maximal amplification of laser light occurs in
the case of nonrelativistic electrons in the range of
medium fields (29). In this case, the diagram of the
amplification factor of the wave versus the polar angle
of the incident electron has a pronounced peak (whose
position is approximately defined by (67)) and is char-
acterized by the maximal interval of angles in which
µ > 0.

3. As the electron energy increases for a given field
intensity, the position of the peak µmax shifts toward
smaller angles (θmax ≈ 84° for nonrelativistic electrons
and θmax  0° for ultrarelativistic electrons; see
Figs. 1 and 2), while its magnitude decreases as
(m/|pi |)3.

4. As the field intensity increases for a given electron
energy, the position of the peak µmax remains virtually
unchanged with respect to the polar angles of the inci-
dent electron; however, its absolute value decreases,
and the interval of angles in which µ > 0 becomes nar-
rower. The latter processes are rather slow (when the
field intensity increases by several orders of magnitude,
µmax decreases only by several times; see Figs. 3 and 4).
JOURNAL OF EXPERIMENTAL A
5. In the range of medium fields, the maximal ampli-
fication factor is virtually constant (µmax ≈ const), and it
monotonically decreases only in moderately strong
fields (see Fig. 6).

6. For high intensities of the field, when η @ v i , the
effect of wave amplification vanishes, as should be
expected (the wave is only absorbed).

7. The amplification of laser light can be used in
practice only for sufficiently high power electron
beams.
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Abstract—The spectral composition of a relativistically strong uniform nonlinear electromagnetic wave in a
transparent collisionless plasma is analyzed. The vortex and potential components of the wave field are shown
to contain only odd and even harmonics, respectively; in a transparent plasma, the wave remains quasi-mono-
chromatic, since the intensities of the harmonics decrease exponentially with increasing harmonic number. An
equation that includes diffraction effects is derived to describe the propagation of wavepackets. The results
obtained are compared with experimental data. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

At present, with the development of femtosecond
lasers, it has become possible to produce laser pulses
with intensities reaching 1019–1021 W cm–2 and dura-
tions shorter than a picosecond. In the fields of such
pulses in a transparent plasma, the electron oscillation
velocity approaches the speed of light, and both the
motion of a single particle and the collective motions
become essentially nonlinear. The latter, in turn, makes
the propagation of a laser pulse in plasma a nonlinear
process.

The nonlinear interaction of intense laser radiation
with plasma has been the subject of many experimental
and theoretical studies in the past decade. These include
review [1] and papers [2–7]. One of the subjects consid-
ered in these papers is the excitation of plasma oscilla-
tions after the passage of an intense laser pulse through
plasma. For example, it was shown in [7] that only short
pulses (the pulse scale length must be much smaller
than the plasma wavelength) could effectively excite
plasma oscillations if the phasing is proper.

However, an analysis of the radiation at various har-
monics in the field of such an intense laser pulse is of
greatest interest and richest in possible applications.
The unexpectedly high harmonic radiation efficiency
detected experimentally [1] suggests that ultraviolet
and X-ray sources can be produced on the basis of this
phenomenon. Thus, for example, the incoherent radia-
tion of harmonics in the direction opposite to the pulse
propagation was theoretically analyzed in [2]. In partic-
ular, the results obtained are indicative of a high har-
monic generation efficiency. On this basis, the authors
proposed a design for a laser synchrotron source of
X-ray radiation that differs from known analogs by a
number of significant advantages.
1063-7761/05/10005- $26.000895
In particular, the radiation of harmonics in the direc-
tion of laser-pulse propagation was considered in sev-
eral papers [3–7]. Here, both the harmonic generation
efficiency as a function of the pulse duration and the
spectral composition of the plasma response and its
dependence on the longitudinal component were ana-
lyzed. However, for example, in [5], to determine the
plasma radiation spectrum, the motion of electrons is
considered only in the field of a strictly monochromatic
incident wave without including the radiation field of
the plasma itself. This approach yields the correct result
only for the harmonics no higher than the third har-
monic.

In this paper, we also analyze the spectral composi-
tion of an intense electromagnetic disturbance propa-
gating in plasma. We consider the problem of a uniform
traveling nonlinear wave in a transparent plasma (the
electron density ne is much lower than the critical den-
sity ncr). In studying the uniform wave, we derive a dis-
persion relation for it and calculate the approximate
amplitudes of its harmonics. Knowing the dispersion
relation, in turn, allows us to analyze the dynamics of
smoothly nonuniform wavepackets by deriving
abridged equations for the pulse envelope from it.

The idea of considering this problem is related to the
recently published experimental review [1], which is
devoted to studying the forward radiation of high har-
monics in a transparent plasma as a relativistically
strong laser pulse propagates in it. It was found, in par-
ticular, that high harmonics with frequencies that are a
significant number of times higher than the frequency
of the incident wave, feature prominently in the
induced forward radiation. In addition, even harmonics,
which are of the same order of magnitude as the odd
harmonics when the original wave is circularly polar-
ized, are also present there. The first simple explanation
of the results by the authors of this work involves com-
 © 2005 Pleiades Publishing, Inc.
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plex electron paths in the field of a relativistic wave. An
electron in the field of an intense monochromatic wave
is known to describe a complex path in the shape of a
figure eight with a rich spectrum, which must seem-
ingly produce a spectrally rich electromagnetic radia-
tion. However, when an ensemble of electrons is con-
sidered, their collective radiation in the field of a rela-
tivistic wave exhibits no such rich spectrum. The
sought-for nonlinear wave represents an intense mono-
chromatic wave along with many weak accompanying
transversally polarized harmonics and longitudinal
electromagnetic oscillations. The spectrum of such a
wave is extremely poor, since each harmonic is several
times weaker than a harmonic whose number is smaller
by two, which is equal in order of magnitude to ne/ncr .

One can easily explain why the plasma wave is
quasi-monochromatic. The complex figure-eight path
of an electron in the field of an intense quasi-monochro-
matic wave is characterized by the longitudinal motion
of charged particles. Given that this motion is relativis-
tic, it also leads to a significant electron density nonuni-
formity. As a result, although the transverse velocity of
electrons in relativistically strong fields has many har-
monics, the transverse component of the macroscopic
current, which is proportional to the product of the den-
sity by the transverse velocity of the electron, actually
contains only one harmonic [9]. It is for this reason that
a uniform nonlinear wave in a plasma is a monochro-
matic wave accompanied by harmonics, with each suc-
ceeding harmonic being much weaker than the preced-
ing one. Note that the polarization of the harmonics is
identical to that of the first harmonic.

To solve the formulated problem, we use the hydro-
dynamic description of a cold plasma by writing the
Maxwell vacuum equations for the field in it. The rela-
tionship of the macroscopic current and the space
charge density to the potentials of the electromagnetic
field can be found by considering the problem of the
motion of a single electron in the wave field. As a result,
we obtain a self-consistent system of equations con-
taining the vector and scalar potentials of the field. This
system is described by a Lagrangian that depends only
on one small parameter in new variables. The descrip-
tion of this problem by a Lagrangian was discussed
in [10]. However, in contrast to this paper, the
Lagrangian was obtained in [10] not for the potentials
of the electromagnetic field of a nonlinear wave, but for
the electron momentum components. In addition, the
authors of [10] restricted their analysis of the problem
to deriving the Lagrangian, without touching on the
determination of the radiation at various harmonics, as
in this paper. After analyzing the spectral composition
of the nonlinear wave, we consider the coherence of the
plasma radiation. Subsequently, we derive a dispersion
relation for the nonlinear wave from the system
obtained and then an abridged equation describing the
propagation of the envelope of a smoothly nonuniform
wavepacket.
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2. CONSTITUTIVE RELATIONS

Let us ascertain how the potentials of an electro-
magnetic field in plasma are related to the current of the
resultant motion of charged particles. To this end, con-
sider the problem of the motion of a relativistic electron
in the field of a superposition of plane uniform mono-
chromatic transverse waves with frequencies mω (m =
1, 2, …) and wave vectors

(n = ω/ck is the unknown refractive index of the
medium close to 1; thus, χ = 1 – n is a small parameter
of the problem) and longitudinal electromagnetic dis-
turbances at the same frequencies and with the same
wave vectors. Passing to a new “time” θ = ωt – kz (the
phase of the first harmonic is chosen as the latter) in the
Lagrangian of this problem, we can easily obtain the
Hamiltonian of the problem (the Hamiltonian without
the scalar potential was calculated in [9])

(1)

Here,

are the new momenta of the problem,

are the normalized vector and scalar potentials of the
field, and γ is the gamma-factor of the electron. Know-
ing the Hamiltonian, we can now derive expressions for
the electron velocity (in the new time), i.e., determine
its path.

Since the Hamiltonian does not depend explicitly on
the coordinates, the momenta u and w do not change
during the electron motion. Based on the properties of
the solution for the wave potentials described above, we
can easily obtain the relationship between these inte-
grals of motion and the electron drift momenta pdr

(2)

(3)
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In a frame of reference where the electron is, on
average, at rest, these expressions are simplified to (in
what follows, we set f0 = 0)

w = 0, (4)

(5)

In principle, relations (1)–(3) allow the path of an
individual electron in the wave field to be determined.
Let us now calculate the current in plasma. To find the
spatial distribution of the current, we integrate the
expression for the current of a single electron with a
drift momentum p (|p | ! mc) over the coordinate of the
drift center of its path r0 at the initial time (using this
approach requires making a transition from the sum
over the particles to an integral over the drift centers,
which is possible if the induced radiation is coherent).
We assume that the electron motion is described by the
expression

where δr(r0, t) is chosen in such a way that δr(r0, 0) =
0; i.e., r0 is the position of the electron at the initial
time, and this position characterizes the particle path at
later times. For the total current in plasma, we then have
the general expression

(6)

where D(…)/D(…) is the transition Jacobian, and  is
the initial position of the electron located at point r at a
given time; this position can be determined from the
equality

In the derived expression, eδv( , t) acts as the current
produced by a single electron, while the remaining part
ne|…|–1 has the meaning of the electron density at a
given point in space.

Using the fact that only the z0 dependence is present
in all expressions in the problem under consideration
and expressing the electron velocity and the partial
derivative of the particle deflection with respect to the
initial position in terms of dr/dθ, we obtain

(7)

u % 1 a2〈 〉+ .≈=

r t( ) r0 δr r0 t,( ),+=

jp r t,( ) eneδv' r0' t,( )=

× D x0' δx r0' t,( )+ y0', δy+ z0', δz+( )
D x0' y0' z0', ,( )

---------------------------------------------------------------------------------
1–
,

r0'

r0' δr r0' t,( )+ r.=

r0'

jp r t,( ) eneω
dr
dθ
------,=
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whence we have for the individual components

(8)

(9)

Let us now consider how these expressions will
change if we take into account the thermal motion by
assuming that it is essentially nonrelativistic, i.e., the
thermal energy of the electron is negligible compared to
its oscillatory energy in the wave field. Let the isotropic
electron drift velocity distribution function be known at
a given temperature, g0(p) = g(p). The complete expres-
sion for the spatial distribution of currents, to terms of
the order of ((pT/mca)2 ! 1 (pT is the characteristic ther-
mal spread in electron momenta), is then

(10)

(11)

where

and j0 is the current at zero temperature (it can be deter-
mined from Eqs. (8) and (9) by substituting in p = 0).
We see from the formulas for the components of the
vector j that the expressions for j⊥  and jz contain only
odd and even harmonics, respectively (if the particle
drift velocity distribution function were anisotropic,
then all harmonics would generally be present in the
expressions for the currents).

It should be noted, in particular, that the assumption
about the smallness of the succeeding harmonics am + 2
and ϕm + 2 compared to the preceding harmonics am and
ϕm suggests that the same characteristic feature of the
spectrum, i.e., the succeeding harmonics are weaker
than the preceding ones, will be observed in the formu-
las for the currents.

3. THE SELF-CONSISTENT PROBLEM
In the previous section, we derived an expression for

the density of the macroscopic current produced by a
laser beam. Let us now consider the problem of the
radiation of such a system of currents, and let us deter-
mine the form of the self-consistent electromagnetic
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disturbance and the relationship of the propagation
velocity of such disturbances in plasma to their ampli-
tude and the plasma density.

We consider a rarefied plasma in which the electron
density is much lower than its critical value, but

λ @ 1; i.e., the hydrodynamic approximation can
be used. Let us write the Maxwell equations in the
medium under consideration:

(12)

Passing to the new time of the problem θ = wt – kz
and substituting the derivatives of the potentials for the
fields yields

(13)

Reducing the field potentials A and ϕ to dimensionless
form, substituting the expressions for the current and
the charge density (8), and (9) using (4) and (5), we
obtain

(14)

where

(15)

We are interested only in the highest terms in the expan-
sion of the harmonic amplitudes in terms of the small
parameter χ. It is easy to verify that the factors µ/n and
µ/n2 on the left-hand sides of these equations can be
approximately substituted by µ, since n is close to
unity, and, hence, including it as a factor changes the
spectra of the sought-for functions by values of a higher
order of smallness in χ. In addition, note that several
approximations can be made in the expression % – nf.
Thus, we may disregard the constant n, whereas we
take into account the dependence of % on only the first
harmonic, rather than not on all the sought-for har-
monic amplitudes of the potentials and (assuming the
electromagnetic fields to be quasi-monochromatic) by
assuming that
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Let us introduce the small parameter

Given the aforesaid, the derived system (14) can then be
described in terms of the new variables

using the Lagrangian

(16)

The problem is now characterized by only one small
parameter ν, whose value completely determines the
form of the nonlinear solution.

The energy and angular momentum conservation
laws, i.e., the two integrals of the problem, can be easily
obtained from the Lagrangian:

(17)

(18)

The possibility of describing the self-consistent prob-
lem of uniform plasma waves by using the Lagrangian
and the easy separation of the two integrals of motion
were pointed out by Akhiezer et al. [10]. However, they
obtained this result for the normalized electron momen-
tum. In addition, the authors of [10] were not interested
in the high-harmonic amplitudes of the plasma
response, since this question was of no particular inter-
est when the paper was written.

The subsequent analysis shows that, even if we are
interested in the harmonic amplitudes up to the highest
term in small parameter ν, we cannot discard the terms
of the higher order of smallness in the expansion in the
derived Lagrangian. Thus, expanding the square root in
Lagrangian (16) into a Taylor series yields an equiva-
lent system for the self-consistent field:

(19)

where

One important property of the sought-for solution fol-
lows from the derived system: assuming that a∗  is an
odd function, i.e., it contains only odd harmonics, we
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can easily find that f∗  is an even function; i.e., it con-
tains only even harmonics. In addition, when a circu-
larly, rather linearly, polarized stationary wave is con-
sidered, the harmonics of neither the vector potential
nor the scalar potential will be excited, because the
motion of electrons in the field of a circularly polarized
wave is strictly transverse, and it cannot be accompa-
nied by the formation of a nonuniform electron density.

Since the derived system is still too complex to ana-
lyze, we use yet another simplification. After writing
the equations for the harmonics of the potentials, it
turns out that disregarding the term ν in the sum ν + a2

distorts the results for the harmonic amplitudes only by
values of higher orders of smallness in ν. This can be
elucidated by removing the parentheses in the expres-

sion (ν + )k. Indeed,

Assuming the potentials to be quasi-monochromatic
(a2k + 1 ~ νka1, f2k ~ νka1), we note that the harmonic with
the number 2m is of the order of νm in the first term of
the sum, νm + 1 in the second term, etc. This suggests
that, apart from a2k, no terms need to be included in the
above sum. Thus, the system under consideration
finally takes the form

(20)

This system of equations corresponds to the
Lagrangian

(21)

Considering the equations for the individual har-
monics of the potentials, we can now easily understand
that the simplified system (20) actually has a quasi-
monochromatic solution of the sought-for form, in
agreement with our assumption made above,

(22)

This important conclusion shows that the amplitude of
the harmonics in a rarefied plasma decreases exponen-
tially with increasing harmonic number. Therefore, the
observability of high harmonics of the coherent radia-
tion seems questionable.

Formally, to find the self-consistent field, we must
solve system of equations (20) with periodic boundary
conditions on some unknown (in advance) period of the
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variable η, which can be determined from the condition
for the existence of a nondegenerate solution. Since the
period of the sought-for disturbances in variable θ is
2π, we can easily derive an expression for ν and, hence,
determine the wave velocity. Given that the wave is
quasi-monochromatic, let us do this by considering the
second equation in system (20) for the first harmonic:

(23)

(24)

where % = . Writing out the equations for the
various harmonics of the scalar and vector potentials in
turn, we now find their amplitudes:

(25)

(26)

(27)

(28)

The expression for the third harmonic is identical to
that derived in [3], but it differs from the incorrect (in
our view) expression in [5]. Thus, we determined not
only the phase velocity of a nonlinear plane wave in
plasma, but also its spectral composition.

Since we used a number of approximations in our
analysis, we tested our results by means of a numerical
experiment. The original system of nonlinear differen-
tial equations was solved numerically, and the self-con-
sistent solution obtained was compared with the above
solution. The results proved to be identical with the
assumed degree of accuracy.

It should be noted, in particular, that the wave prop-
erties in a rarefied plasma are determined only by the
frequency, the plasma density, and the amplitude of the
first harmonic. Note also that expression (24) is nothing
but an approximate dispersion relation for the nonlinear
waves found:

(29)

It is important to note that the derived dispersion
relation can be used both for uniform waves in plasma
and for obtaining an abridged equation for smoothly
nonuniform nonlinear waves in a medium. For such a
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wave, we are interested in the change of its first har-
monic; all of the higher harmonics are locally coupled
with it in a known way. The abridged equation for the
envelope of a wavepacket derived from (29) is

(30)

4. CONCLUSIONS

Thus, when considering the problem of a uniform
traveling, relativistically strong nonlinear electromag-
netic wave in a transparent plasma, we derived a system
of equations for the scalar and vector potentials of its
self-consistent electromagnetic field. This system was
found to be described by a Lagrangian by simplifying
which sole parameter of the problem could be left. As a
result, we showed that the sought-for nonlinear wave is
quasi-monochromatic; i.e., the first harmonic predomi-
nates in it. For such a wave, we found a dispersion rela-
tion and established its spectral composition. The main
property of the spectrum obtained is that the intensity of
the harmonics decreases rapidly with increasing har-
monic number:

In conclusion, we will say a few words about the
validity conditions for the approach used. Let us ana-
lyze the conditions for making a transition from the
exact summation of the delta functions over the parti-
cles to integration of the particle density over a physi-
cally infinitesimal volume when calculating the macro-
scopic current. This transition is possible if the radia-
tion field of the current of individual electrons in the
wave zone fluctuates only slightly about its mean for a
small change in the particle position, i.e., if the radia-
tion is coherent.

We use the expression for the Fourier components of
the vector potential of the radiation field of a moving
charge in the wave zone [8] (since, in our case, the path
of the particle is periodic, AΩ is the sum of the delta
functions of the frequency difference Ω – nω, where ω
is the frequency of the incident wave):

(31)

where r(t) is the path of the particle (the coordinate ori-
gin is chosen inside the radiating volume), R0 = R0n is
the position of the point of observation, and k = nΩ/c.

Let the electrons be, on average, at rest. The path of
a single electron is then characterized solely by its ini-
tial position, and we can write for it

(32)

c
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where r0 is the position of the drift center of the electron
path. Substituting the expression following from this
for the dependence

(h = ω/c is the wavevector of the incident wave) in (31)
yields

(33)

whence we obtain for the system of charges with the
positions of the drift centers rm

(34)

where N is the total number of particles. In this expres-
sion, the integral represents the radiation field of a sin-
gle electron and the sum describes the collective
effects. Thus, the problem was reduced to analyzing the
possible deviations of this sum from its mean value for
various electron-density fluctuations.

Before we rigorously consider the formulated prob-
lem, let us qualitatively analyze the sum in Eq. (34).
This sum is nothing but the Fourier spectrum of the
density of the electron drift centers over the entire radi-
ation volume. Let us first consider the simplest situation
where the electrons are arranged regularly in the vol-
ume. In this case, the Fourier spectrum of the density of
the drift centers is clearly a series of peaks 2π/L in
thickness at the grid points with a period of 2π/l, where
l is the interparticle separation and L is the scale length
of the radiation volume. This implies that, since the
wavenumber of the incident radiation is small com-
pared to 2π/l, we can discard all the high harmonics of
the spectrum in (34), i.e., retaining only the zeroth har-
monic that corresponds to the average electron density.
However, it is clear that, if the angle of observation is
large, the sum in Eq. (34) is close to zero, because the
wavevectors of the harmonics of interest are much
smaller than 2π/l, but larger than 2π/L. In this case,
small fluctuations in the positions of the electron drift
centers can lead to pronounced fluctuations in the har-
monic amplitude against the background of its nearly
zero mean value, which corresponds to incoherent radi-
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ation. The situation where the wavevector kz0 – k is
close enough to zero for the mean amplitude of the
sought-for harmonic to appreciably exceed its fluctua-
tions, i.e., for the radiation to be coherent, is possible
only at small angles of observation and at moderately
large sizes of the radiating volume (which increases the
line width in the spectrum of the density of the drift
centers).

An accurate statistical analysis of the Fourier spec-
trum of the density of the electron drift centers requires
specifying a model of the medium and a configuration
of the electromagnetic pulse. For our estimates, we
consider the simplest model of a homogeneous cold
plasma with noninteracting electrons and assume the
pulse to be sharp, with a characteristic scale r. In this
case, the coherence condition takes the form [14]

(35)

where λ0 is the wavelength of the incident radiation, α
is the angle between the directions of propagation and
observation, and l is the number of the observed har-
monic.

The estimates obtained for the experimental work [1]
show that the characteristic angle at which the coherent
radiation of the harmonics up to ten can be observed is
several degrees.

Let us now discuss the relationship between the
results obtained and the experimental data from the
experimental review [1]. As was shown in this review,
high harmonics with frequencies that are a significant
number of times higher than the frequency of the inci-
dent wave feature prominently in the induced forward
radiation (the efficiency is ~10–7–10–6). In addition,
even harmonics, which are of the same order of magni-
tude as the odd harmonics for a circularly polarized
original wave, are also present in this radiation. It was
also shown that the intensity of all the observed odd
harmonics is proportional to the plasma density
squared, while the power for the even harmonics lies
within the range 1.2–1.4. In addition, it was found that,
for example, the eighth harmonic vanishes altogether
when the intensity of the beam incident on plasma falls
below 1017 W cm–2, with the position of this threshold
being independent of the plasma density. The authors
believed that these and other observed effects, which
significantly distinguish this situation from the classical
weak-field approximation, could be explained by the
complex (figure-eight) path of an electron moving in
the field of a relativistic monochromatic wave.

In this paper, however, we reached several conclu-
sions that are applicable to the conditions of the exper-
iment under discussion (the forward radiation in a
transparent plasma), but entirely inconsistent with the
observed effects: the absence of radiation at high har-
monics for a circularly polarized laser pulse, the
extremely low generation efficiency of even harmonics

λ0
3ne @ 100

r
λ0
-----l4α4,
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compared to odd (even harmonics are radiated only
near the pulse boundaries; no even harmonics are rep-
resented in the plasma radiation for a uniform wave),
and the rapid decrease in the harmonic amplitudes with
increasing harmonic number,

Thus, for the conditions discussed in [1], the generation
efficiency of the third harmonic must be ~10–12, which
is much lower than the experimentally observed values.
For higher harmonics, this difference must be even
larger in view of the exponential dependence (27), (28)
of the radiation harmonics on the plasma density. Even
if we assume that there is a mechanism destroying the
“phasing-in” of the electron radiation, as a result of
which the plasma forward radiation ceases to be coher-
ent and our approach based on calculating the radiation
of the currents becomes unjustified, the incoherent
plasma radiation at a small angle to the direction of
laser-pulse propagation can be easily estimated. For the
experimental conditions in [1], the generation effi-
ciency of the third and fifth harmonics does not exceed
10–12–10–11, which is much lower than the efficiencies
obtained during the experiment.

Thus, for the experimentally observed results to be
successfully described, we must find a different high
harmonic generation mechanism. A detailed discussion
of this question is beyond the scope of our paper. Note,
however, that the coherent bremsstrahlung of the elec-
trons photoionized in the field of a laser pulse, which
was considered in detail in [15] (the review [16] should
also be mentioned here), could be one of these mecha-
nisms. The authors of [15] discussed emission by the
electrons released from wave-ionized atoms when the
ionization potential is suppressed. The characteristic
intensities at which photoionization takes place and the
model [15] reaches an optimum are known to be no
higher than 1015–1016 W cm–2 in order of magnitude.
However, the intensities discussed both in our paper
and in the review [1] are within the range of relativistic
intensities, ~1018−1021 W cm–2.

Collisional plasma radiation, which was considered
in detail in [11, 12], could be another possible mecha-
nism behind the observed effects. In these papers, the
plasma is assumed to be completely ionized; i.e., the
intensity restriction is removed. For example, the fact
that a complex dependence of the intensity of the coher-
ent radiation of a collisional current on the plasma
density was found in [12], as in the experimental
review [1], argues that this explanation is plausible.
This radiation must be strongest at the boundary of a
certain small-angle cone whose axis coincides with the
direction of laser-pulse propagation. The dependence
of the harmonic intensity on the angle of observation
given in [1] has no local maximum in the direction of
pulse propagation, which, however, can be explained
by the low resolution of the recording instrument. The

a2m 1+ ne/ncrit( )m, f 2m ne/ncrit( )m.∼ ∼
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similarity between the generation efficiency of the third
harmonic obtained in this model and its experimentally
observed value is the main reason to believe that the
theory of collisional radiation can explain the observed
dependences. Further studies are required for a more
detailed elucidation of the detected relationships of this
theory.
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Abstract—The dynamics of cluster electrons in a laser field is considered in the framework of the nonlinear
oscillator model. The point map describing the motion of a cluster electron in the laser field is constructed. The
critical value of the laser field, at which a transition to stochastic motion takes place, is determined. As a result
of random walk in the energy space, an electron may accumulate an energy sufficient for overcoming the cluster
potential barrier and for passing to the continuum. In this case, outer ionization of the cluster takes place.
Estimates are obtained for the heating rate and the time of stochastic outer ionization of the cluster. © 2005
Pleiades Publishing, Inc. 
1. INTRODUCTION

Laser targets of atomic clusters have become impor-
tant objects of investigation in recent years. Although
the average density of such a target is close to the gas
density, the density of an individual cluster may attain
values characteristic of solids. As a result, atomic clus-
ters combine a number of advantages of solid targets
(absorb almost the entire laser energy [1]) and gaseous
targets (large radiation penetration depth and the
absence of surface effects). Among interesting phe-
nomena discovered as a result of interaction of laser radi-
ation with cluster targets, generation of ions with ener-
gies up to several megaelectronvolts [2], high-energy
electrons [3], higher harmonics [4], and X-rays [5] are
worth noting. Deuterium-based cluster targets can be
used as sources of neutrons [6].

The jelly model [7] or the cluster nanoplasma
model [8] is one of the models for describing the inter-
action of laser radiation with atomic clusters. In the
framework of this model, a cluster in a laser field is
treated as oscillations of an electron cloud about an
expanding ion core. Using such a model, we studied phe-
nomena like plasma resonance in an ionized cluster [9],
over-the-barrier ionization of a cluster [10], backward
bremsstrahlung absorption [11], absorption associated
with Landau damping [12], resonant and autoresonance
absorption of laser radiation in a cluster plasma [13],
etc.

If the laser field is not strong enough and the ampli-
tude of electron cloud oscillations is much smaller than
the cluster radius, the electron field induced as a result
of displacement of a homogeneous electron sphere rel-
ative to the ionic sphere is proportional to this displace-
ment. In this case, the electron cloud performs har-
monic oscillations under the action of the laser field rel-
ative to the ion core [13]. In the case of a strong laser
1063-7761/05/10005- $26.000903
field, the amplitude of oscillations becomes compara-
ble to or greater than the cluster radius. The oscillations
are nonlinear since the distribution of the electric field
of ions outside the core in the nanoplasma model is
described by the Coulomb law. If the laser field is
strong, oscillations can be chaotic. Chaos is responsible
for diffusion in the electron energy space, which may
result in electron heating [14]. Moreover, as a result of
random walk in the energy space, an electron may accu-
mulate energy sufficient for overcoming the cluster
potential barrier and to pass to the continuum. Such a
process corresponds to outer ionization of the cluster.

In the case of an excited hydrogen-like atom, in
which the electron is at high energy levels, stochastic
ionization was studied in detail in the framework of
classical mechanics (see, for example, 15, 16]). In these
publications, the critical value of the high-frequency
energy field causing ionization and the ionization rate
were determined. In the present study, we generalize
the results obtained for hydrogen-like atoms to the case
of cluster potential. Moreover, since the cluster size is
much larger than the size of an individual atom, a clus-
ter is an even more classical object than an atom. It
should be noted that the mechanism of vacuum heating
was used for describing stochastic heating of an ionized
cluster [17]. In this case, heating occurs when an elec-
tron oscillating in a laser field intersects the boundary
between the plasma and vacuum. In our model, we take
into account the cluster potential and energy transfer
between the electron, and the laser field occurs on all
segments of the trajectory. Using numerical simulation,
if has been proved recently that high-energy cluster
electrons intersecting the cluster play an important role
in its heating [18].

We assume that most electrons have left the cluster
and that the charge of the remaining electrons is much
 © 2005 Pleiades Publishing, Inc.
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smaller than the charge of the ion core. In the present
case, when the amplitude of electron oscillations is
much larger than the cluster size, the electron charge is
distributed over a much larger volume than the volume
of the ion core. In this case, the electric field of elec-
trons is weaker than the field of the ion core. Thus, we
study the motion of an electron in the laser field and in
the field of the ion core. This description can also be
used at the initial stage of heating, when the electron
cloud has not disintegrated. Ignoring the internal
dynamics of the cloud, the latter can be treated as a
point charge with a mass and charge equal to the mass
and charge of all electrons in the cloud, respectively. In
this case, the problem is reduced to analysis of the
motion of a point charge in a laser field and in the field
of cluster ions.

In Section 2, we present the Hamiltonian formula-
tion of the problem and determine the action–angle
variables. To describe the motion of an electron outside
the cluster, where the field of the ion core of the cluster
approaches the Coulomb field, we will use a new time
variable. The energy transfer between a laser field and
an electron in the field of the core will be calculated in
Section 3. We will construct a point map connecting the
electron energy and phase with their values after half
the period of electron oscillations in the field of the
core. To preserve the area of the map, it will be con-
structed using a generating function. The large-ampli-
tude limit of electron oscillations will be considered in
Section 4. We will determine the critical energy of the
laser field, for which a transition is made to the stochas-
tic dynamics of the electron. In Section 5, the estimates
for the heating rate and the outer ionization time of the
cluster will be obtained.

2. HAMILTONIAN FORMULATION 
AND ACTION–ANGLE VARIABLES

We assume that the core of the cluster is a uniformly
charged sphere of radius a with an ion number density ni;
then the cluster potential can be written in the form [7]

(1)

In this expression and below, dimensionless units are

used; the time is normalized to /ωp; the length is

normalized to a, the momentum, to maωp/ ; the

energy, to ma2 /3, where  = 4πZe2ni/m is the
square of the electron frequency of the plasma; Z is the
charge number of the ion; e is the electron charge; and
m is the electron mass. The motion of an electron in the
field of an ion core and in the laser field in the nonrela-
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tivistic and dipole approximations is described by the
Hamiltonian

(2)

where F = 3eE/ma , α = ω/ωp , and ω and E are
the frequency and amplitude of the laser field, respec-
tively. For simplicity, we consider only radial oscilla-
tions.

Let us first study unperturbed oscillations of elec-
trons in the cluster potential in zero laser field (F = 0).
For electrons with energy w = p2/2 + U(x), the ampli-
tude of unperturbed electron oscillations is x0 = 1/|w|.
Here, we consider the regime when the amplitude of
oscillations is larger than the cluster size (x0 > 1, –1 <
w < 0). In this regime, oscillations are nonlinear. Using
the canonical transformation, we pass from the momen-
tum and coordinate to the action–angle variables,

(3)

(4)

where

(5)

(6)

ΩC = |w |3/2 is the oscillation frequency of an elec-
tron in the Coulomb potential, which appears in the
problem on stochastic ionization of the atom [19].

Action I = (1/2π) dx is defined as the area bounded

by the electron trajectory in the phase space. Angular
variable θ is canonically conjugate to the action.

H p x t, ,( ) p2

2
----- U x( ) Fx α t( ),cos+ +=

ωp
2 3

I
2 2

π
---------- π

2 w
-------------- 1 w–

2
-------------------–

3 2 w–

2 2
-------------------+

=

× 1

3 2 w–
-----------------------arcsin

1

w
----------- warcsin 

 ,–

θ Ω x

3 2 w–
-----------------------, 0arcsin x 1,< <=

θ θ0
Ω
ΩC

------- x warcsin   –  x w 1 x w – ( ) ,+=

1

 

x

 

1

 

w

 

------,

 

< <

θ0 Ω 1

3 2 w–
-----------------------arcsin=

–
Ω
ΩC

------- warcsin w 1 w–( )–( ),

Ω ΩC
π
2
--- π

2
--- w 1 w–( )+

=

+ 2 w 3/2 1

3 2 w–
-----------------------arcsin warcsin– 

 1–
,

2

p∫
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The unperturbed part of the Hamiltonian in the
action–angle variables has a simple form

(7)

where the relation for w(I) can be derived from expres-
sion (3) for the action. The period of electron oscilla-
tions in the cluster potential can be written in the form

(8)

We introduce a new time variable ξ for describing the
motion of electrons in the Coulomb field outside the
cluster core [20]. Let an electron be at the maximal dis-
tance from the core (ξ = –π/2) at the initial instant t =
t0. Then the relation connecting the new time variable
and the old variable has the form

(9)

(10)

Outside the cluster, the electron is at instants

where

and ξ0 = arcsin ; here, variable ξ changes in the
limits

.

Within the cluster, the electron is at instants

where

It can easily be verified that T = 4(t1 + t2).

H0 I( ) w I( ),=

T 2π
dH0

dI
---------- 

 
1–

2πdI w( )
dw

-------------- 2π
Ω w( )
-------------.= = =

t t0 ψn ξ( ),+=

ψn ξ( ) nT
2

------
1

2ΩC

---------- 2ξ 2ξsin– π 2n 1–( )–[ ] .+=

t2–
nT
2

------ t t0 t2
nT
2

------, n+≤–<+ 0 1 …,, ,=

t2
π 2ξ0 2ξ0–sin+

2ΩC

----------------------------------------=

w

π n 1–( ) ξ0+ ξ πn ξ0, n–≤< 0 1 …, ,=

t2
nT
2

------ t t0 t2 2t1
nT
2

------, n+ +≤–<+ 0 1 …,, ,=

t1
1

3 2 w–
-----------------------.arcsin=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Using Eqs. (4)–(6), we can find the dependence
between variables ξ, t, and x:

(11)

where n = 0, 1, …. The expressions derived above
imply that the electron intersects the cluster boundary
(|x| = 1) at instants t = t0 ± t2 + nT/2 (ξ = ±ξ0 + πn, n =
0, 1, …). Using the Hamilton equations and Eqs. (9)–
(11), we obtain the equations of motion in the form

(12)

(13)

where n = 0, 1, …. In deriving these equations, we con-
sidered the action of the laser field as perturbation and
retained only the first-order terms in F.

3. POINT MAP FOR A CLUSTER

It is more convenient to analyze the dynamics of
cluster electrons using the point map instead of solving
equations of motion (12) and (13) directly. We con-
struct a point map, which provides the expression for a
change in the action–angle variables in terms of the
half-period between the instants at which an electron is

x 3 2 w– t t0–
T
4
--- 1 2n+( ) πn+–sin ,=

t2 nT /2+ t t0 t2 2t1 nT /2,+ +≤–<

x
1 2ξcos–

2 w
------------------------, t2– nT t t0 t2 nT ,+≤–<+–=

x
1 2ξcos–

2 w
------------------------,=

t2– T n
1
2
---+ 

 + t t0– t2 T n
1
2
---+ 

  ,+≤<

dw
dt
------- F 3 2 w– t t0–

T
4
--- 1 2n+( ) πn+–cos α t,cos=

t2– nT
2

------+ t t0 t2 2t1
nT
2

------,+ +≤–<

dw
dξ
-------

F 2ξ α tcossin
2 w

---------------------------------,=

ξ0 π 2n 1–( ) ξ 2nπ≤ ξ0,–<+

dw
dξ
-------

F 2ξ α tcossin
2 w

---------------------------------,–=

ξ0 2πn ξ π 2n 1+( )≤< ξ0,–+

dt
dξ
------

1 ξcos–
ΩC w( )

--------------------, π n 1–( ) ξ0+ ξ πn ξ0,–≤<=
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at the maximal distance from the core. Integrating the
equations of motion from t = t0 to t = t0 + T/2, we can
find the increment of action w beginning from the
instant when the distance between the electron and the
core is maximal (ξ = –π/2). This gives

(14)

(15)

(16)

(17)

(18)

where φ0 = αt0 is the laser field phase at the instant
when the electron is at the maximal distance from the
cluster core and the dependence ψn(ξ) follows from
expression (10). The first term in expression (14)
defines the increment of the electron energy outside the
cluster core, while the second term defines the energy
increment inside the core. Analogously, we can find the
change in angular variable αt over the time interval t0 <
t < t0 + T/2:

(19)

where χ = α/2ΩC .

In the case of a pointlike cluster (a  0), the
energy acquires an increment outside the cluster, where
the form of the potential is determined by the Coulomb
law. This limit describes the electron heating by a laser

∆w F A1 w( ) φcos A2 w( ) φsin–[ ]=

+ F B1 w( ) φcos B2 w( ) φsin–[ ] ,

A1 w( ) 1
2 w
---------- 2ξ( ) φ0 αψ1 ξ( )+( )cossin ξd

ξ0

π/2

∫=

+
1

2 w
---------- 2ξ( ) φ0 αψ0 ξ( )+( )cossin ξ ,d

π/2–

ξ0–

∫

A2 w( ) 1
2 w
---------- 2ξ( ) φ0 αψ1 ξ( )+( )sinsin ξd

ξ0

π/2

∫=

+
1

2 w
---------- 2ξ( ) φ0 αψ0 ξ( )+( )sinsin ξ ,d

π/2–

ξ0–

∫

B1 w( ) αT /4( )cos

1 α2–
--------------------------=

× αt1( )cos α 2 2 w– α t1( )sin–[ ] ,

B2 w( ) αT /4( )sin

1 α2–
-------------------------=

× αt1( )cos α 2 2 w– α t1( )sin–[ ] ,

∆ α t( ) g w( ) αT /2= =

=  2χ π 2ΩCt1 2ξ0– 2ξ0( )sin+ +( ),
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field in an excited hydrogen atom. Proceeding to the
limit a  0 for a constant charge Q = 4πenia3/3 =
const of the core, we obtain

(20)

where (χ) is the derivative of the Anger function [21].
This expression coincides with the relation derived
in [19] for the hydrogen atom.

Considering w and φ as a pair of canonically conju-
gate variables, we can obtain a canonical point map
connecting the values of w and φ at two consecutive
instants at which the electron was at the maximal dis-
tance from the core. For the sought map to preserve its
area, we will use the generating function

(21)

In this case, the “cluster” map is defined by the equa-
tions

(22)

To calculate the critical value of the electric field, at
which a transition to the stochastic motion takes place,
we linearize the generating function in the vicinity of
the initial energy w0:

(23)

∆w
F

4 w
---------- x χx χ xsin–( )sinsin xd

π–

π

∫=

=  
Fπ

2 w
----------Jχ' χ( ),

Jχ'

G w φ,( ) wφ F A1 w( ) B1 w( )+[ ] φsin+=

+ F A2 w( ) B2 w( )+[ ] φcos g w( ) w.d∫+

w
∂G
∂φ
------- w F A1 w( ) B1 w( )+[ ] φcos+= =

– F A2 w( ) B2 w( )+[ ] φ,sin

φ ∂G
∂w
------- φ g w( ) F φ A1' w( ) B1' w( )+[ ]sin+ += =

+ F φ A2' w( ) B2' w( )+[ ] .cos

G w φ,( ) wφ F A1 w0( ) B1 w0( )+[ ] φsin+=

+ F A2 w0( ) B2 w0( )+[ ] φcos w w0–( )g w0( )+

+
w w0–( )2g' w0( )

2
--------------------------------------.
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It is convenient to write this function in the form

(24)

where

(25)

(26)

(27)

As a result, we obtain the “standard” map [22]

(28)

where f = FR(w0), T = g'(w0), and an insignificant con-
stant in the second equation is omitted. The chaotic
regime of oscillations emerges when the stochasticity
parameter K = fT becomes greater than unity [22].
Using this condition, we can estimate the critical value
of the laser field as follows:

(29)

This expression implies that the critical value of the
laser field is inversely proportional to the energy
exchange between the electron and the field during the
half-period of oscillations. The stronger the energy
exchange, the smaller the laser field amplitudes at
which a transition to the stochastic regime of oscilla-
tions takes place. A typical form of the phase space in
the presence of regular and stochastic trajectories
obtained by solving the equations of motion, which are
defined by Hamiltonian (2), is shown in the figure.

4. CLUSTER MAP IN THE LIMIT
OF LARGE AMPLITUDES

OF ELECTRON OSCILLATIONS

In the general case, the expression for coefficient
R(w) is difficult to analyze. We will study this expres-
sion in the limit of a large amplitude of unperturbed

oscillations (|w | ! 1), assuming that χ = α|w |–3/2/  @

1 in this case. In this limit, t1 ≈ arcsin(1/ ), ξ0 ≈
 ! 1, and the main contribution to integrals (15)

G w ϕ,( ) wϕ FR w0( ) ϕsin w w0–( )g w0( )+ +=

+
w w0–( )2g' w0( )

2
--------------------------------------,
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ϕ φ δφ,+=

δφ( )arctan
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----------------------------------------.=

w w f ϕ , ϕsin+ ϕ Tw,+= =

Fc
1

R w0( ) g' w0( )
---------------------------------.≈

2

3

w
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and (16) comes from the neighborhood of ξ in the
vicinity of ±ξ0. This gives

(30)

(31)

where β– = πχ and β+ = αT/2 – πχ. Integrals (30) and (31)
can be expressed in terms of the integral exponential

(32)

(33)

A1 w( ) 1
2 w
---------- x β+
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6
--------+ 
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+
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 obtained by solving the equations of
motion for parameters 

 

α

 

 = 1 and 

 

F 

 

= 0.05. Five chaotic and
regular trajectories are shown.
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where ρ = 4χ /3, and

is the integral exponential [21]. The argument of the
integral exponential can be reduced to the form ρ ≈

α/3 and depends only on parameter α. For this rea-
son, we will consider a dense cluster with a supercriti-
cal value of density α ! 1 and the opposite case of a
low-density cluster with a subcritical value of density
α @ 1. The latter case can emerge due to expansion of
the cluster, as a result of which the cluster density may
become much lower than the critical value nc =
ω2m/4πZe2 [9]. Let us first consider a low-density clus-
ter (α @ 1). In this limit, expressions (32) and (33)
assume the form

(34)

(35)

The coefficients of the standard map can be written in
the form

(36)

As a result, we find that the critical value of the laser
field is given by

(37)

For most values of energy α, the critical value is close
to Fc ≈ 2|w0 |5/2/3π. However, values of α also exist,
which are close to resonant values defined by the equa-
tion

(38)

for which the energy transfer between an electron and
the field is insignificant (energy accumulation/loss out-
side the cluster are compensated by the loss/accumula-

ξ0
3

En x( ) t
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----------------------d
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∞
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2

A1 w( ) 2
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----------- πχ– 
  ,sincos≈
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α

------- α t1( ) 2α
3

----------- πχ– 
  ,coscos≈

B1 w( ) 2
α
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α

------- πχ( ) α t1( ).sinsin≈

R
2

α
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tion of energy inside the cluster), and a strong laser field
is required for a transition to the stochastic mode.

Let us now consider a high-density cluster (α ! 1).
In this limit, expressions (32) and (33) assume the form

(39)

(40)

and the standard map coefficients are given by

(41)

where Γ(x) is a gamma function [21]. Thus, the critical
value of the laser field in this limit is

(42)

The same expression can be obtained in the limit of a
pointlike cluster (a = 0) with a constant nuclear charge
Q = 4πenia3/3 = const. In atomic units, n0 = (–2w0)–1/2

corresponds to the number of the atomic level, ec =

Fc  and ω0 = ω ; consequently, the above expres-

sion can be written as follows: ec ≈ 1/49 . In this
form, it coincides with expression (18) derived in [19]
for the critical value of the high-frequency electric
field, for which the motion of an electron in an excited
hydrogen-like atom becomes chaotic.

5. STOCHASTIC HEATING 
AND OUTER IONIZATION

In the stochastic regime, the electron dynamics can
be described as diffusion in the energy space [14],
where the diffusion coefficient is defined as [19]

(43)

The heating rate can be determined using the relation
connecting the mobility and the diffusion coefficient in
the diffusion equation:

(44)

This relation can be written if the system under investi-
gation is a Hamiltonian system as in our case [14].
Expressions (36) and (41) for coefficient R imply that
the diffusion coefficient is independent of energy in the
approximation considered here. Thus, to estimate the
heating rate, we must find the next terms in the expan-
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sion in w. Let us confine our analysis to the case α ! 1.
In this limit, we can calculate coefficient R taking into
account the terms proportional to w0:

(45)

Using formula (44), we obtain

(46)

Thus, the heating rate increases with the density of the
cluster. 

Ionization occurs at the instant when the electron
crosses the boundary w = 0 and falls in the region of
positive energy values. The maximal increment of the
electron energy as a result of interaction with the laser
field during time period T/2 is FR. Consequently, if the
electron energy |w0 | < FR, the electron can leave the
cluster during one period of oscillations about the clus-
ter. The map constructed in this case is not valid for
positive energy values; consequently, to determine the
instant of ionization, we can use the procedure pro-
posed in [19]. The ionization time can be estimated as
the time required to attain, as a result of diffusion, the
region –FR < w < 0 from which the electron may pass
to the continuum over a period of oscillations. Thus, we
find that

(47)

Using expressions (36) and (41), we can estimate the
stochastic ionization time of the cluster as

(48)

(49)

It follows from these expressions that the outer ioniza-
tion time for a dense cluster is much shorter than the
outer ionization time for a rarefied cluster.

6. CONCLUSIONS

In this study, we analyzed the nonlinear dynamics of
electrons of a cluster in a laser field. It is convenient to
do this by using the point map connecting the electron
energy and phase in half the period of oscillations.
Using the Chirikov criterion [22], the critical value of
the laser field leading to a chaotic regime of oscillations
was calculated. In the framework of diffusion descrip-
tion, an estimate for the outer ionization time was
obtained.

R
Γ 2/3( )

3
---------------- 6

α
--- 

 
2/3

  + Γ
 

4/3 ( )
 
5 3

---------------- 6 α ---  
 

 

4/3

 w 0 O w 0
2 ( ) .+ ≈

γ 12
5
------F2Γ 2

3
--- 

  Γ 4
3
--- 

  1

α2
-----.≈

T1

w0
2

D w0( )
---------------.≈

TI

w0
2α4/3

F2Γ2 2/3( )61/3
---------------------------------, α  ! 1,≈

TI

w0
2α2

F2 1 2α t1( ) 2α /3( )sinsin+[ ]
--------------------------------------------------------------------------, α  @ 1.≈
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In the model considered here, the influence of the
remaining electrons was ignored. Obviously, such a
model is valid if the majority of electrons have left the
cluster as a result of outer ionization. Moreover, in the
case of a large amplitude of electron oscillations (the
amplitude of electron oscillations is much larger than
the ion core of a cluster), the electron charge is spatially
distributed over much larger volume than the ion
charge. In this case, the mean electric field of electrons
is much weaker than the electric field produced by the
ions and the action of the electron charge can be
ignored. This description is apparently also applicable
at the initial stage of interaction, when the electron
cloud can be treated as a point charge disregarding its
intrinsic dynamics. However, the effect of electrons
should be taken into account for analyzing electron
dynamics in more general situations.

It is well known that an ionized cluster expands and
its density strongly decreases in this process. In our
model, this leads to an increase in parameter 

 

α

 

 with
time. Since the cluster expansion time is much longer
than the period of oscillations as a rule, the effect of the
process of expansion on the dynamics of cluster elec-
trons in our model can be taken into account by using
the smooth time dependence of the “cluster” map
parameters.

Since the external stochastic ionization time is quite
long (tens of laser periods), this ionization mechanism
may be important for interaction with long laser pulses
(of hundreds of femtoseconds). In particular, numerical
simulation of the interaction of the atomic cluster with
laser radiation revealed that electrons performing large-
amplitude oscillations pay an important role in heating
of the cluster [18]. These electrons gain energy as a
result of interaction with the laser field and the electro-
static field of the cluster. On the other hand, outer ion-
ization of the cluster as a result of interaction with short
laser pulses is apparently determined by other mecha-
nisms (barrier “suppression” [23], thermal emission [7],
and so on).

It should be noted that stochastic heating of elec-
trons leaving the cluster is also possible when an elec-
tron moves in the field of laser waves incident on and
reflected from the cluster. Obviously, such a process is
realized for a dense (the cluster density must be higher
than the critical value) and large cluster (the laser field
penetration depth in the cluster must be much smaller
than the cluster size). Such a mechanism of electron
heating as applied to solid laser targets was considered
recently in [24–26]. The stronger the laser field
(namely, the larger the parameter 
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 = 

 

eE

 

/

 

mc

 

ω

 

 deter-
mining the ratio of the laser field 

 

E

 

 to the relativistic
field strength 

 

mc

 

ω

 

/

 

e

 

), the more effective the given pro-
cess. Especially strong heating occurs for relativistic
laser radiation intensities. In the limit of a weakly rela-
tivistic laser field (

 

µ

 

 

 

!

 

 1), the characteristic electron dif-

fusion time in the energy space is 

 

ω

 

t

 

D

 

 

 

≈

 

 (

 

π

 

/ )

 

µ

 

3

 

 [26].
Using expression (48), we can easily estimate that the

2
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electron heating mechanism, taking into account the
reflected laser wave, dominates over the mechanism
considered here only in the case of a strong laser field
µ > 0.3 for n/nc = 10, λ = 820 nm (λ is the laser radia-
tion wavelength), and a = 50 nm. Moreover, this thresh-
old in the field only increases with time due to a
decrease in the cluster density as a result of expansion.
Nevertheless, the mechanism of electron heating of a
cluster, which is associated with the dynamics of an
electron in the incident and reflected laser waves can be
substantial for relativistically strong laser fields.
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Abstract—The characteristics of a magneto-optical trap (MOT) using small-diameter cooling laser beams are
considered. Trapping and cooling of Rb atoms from the surrounding gas of warm atoms takes place in the trap.
A compact (140 µm) and stable atomic cloud is obtained with a density of 7 × 1010 cm–3, which is three orders
of magnitude higher than the density of the surrounding gas. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

It is well known that, during absorption and emis-
sion of light, energy exchange between radiation and a
particle is accompanied by momentum transfer leading
to the emergence of the effect of light pressure. Consid-
erable advances have been made in recent years in a
wide range of problems associated with this effect.
Many years of studies of light pressure in atomic beams
(see review [1]) culminated in the development of mag-
neto-optical traps (MOTs), in which the capture and
cooling of atoms to very low temperatures (10–4–10–6 K)
occurs under the action of light pressure [2–4]. The
design of a number of traps is described in the litera-
ture; however, MOTs remain complex and expensive
physical devices. On the other hand, many contempo-
rary studies of the light pressure effect and its applica-
tion are based on the use of MOTs. For this reason, fur-
ther investigation and modification of MOTs remain a
vital problem.

It is important and interesting to obtain a high den-
sity of trapped atoms. It was found that an increase in
the density is limited by mutual repulsion of atoms,
which is caused by the exchange of spontaneous radia-
tion emitted by these atoms [1, 5]. The magnitude of
this effect is determined by the optical density of atoms
in the trap, η = nσd, where n is the density of atoms, σ
is the photoabsorption cross section, and d is the diam-
eter of the cloud of trapped atoms. The effective
exchange of radiation between atoms and their mutual
repulsion take place when the optical density becomes
high (η ~ 1). Consequently, it can be intuitively con-
cluded that a high density of atoms can be attained for
small diameters of the cloud (i.e., in compact traps).
Another possible application of compact traps is the
creating of a cloud of cold atoms with well-defined and
stable coordinates. It should be noted that stable local-
ization of the atoms in a MOT was demonstrated earlier
using magnetic fields with high gradients (on the order
of 103 G/cm) [6].
1063-7761/05/10005- $26.000911
Here, we study a compact magneto-optical trap for
rubidium atoms. The MOT volume was reduced by
using small-diameter laser beams. It might be interest-
ing for some readers that the technical realization of a
compact MOT turned out to be simpler than an ordinary
MOT and that all main parts of the experimental setup
(lasers, systems for measuring and stabilizing the radi-
ation frequency, the vacuum system, and the system for
detecting trapped atoms) were designed specially for
the present project. These systems have good parame-
ters and at the same time are quite simple and can be
reproduced in many optical laboratories.

2. PHYSICAL FOUNDATIONS
OF MAGNETO-OPTICAL TRAPS

The operation of MOTs is based on the two main
processes: laser-induced capture and laser cooling of
atoms. Physical effects participating in these processes
are quite diverse. Some of these effects are well known
and used for developing MOTs, while others are being
discussed theoretically and have not been observed
experimentally (see, for example, [7]). Let us consider
two main effects of light pressure underlying the first
MOTs.

The first effect is laser cooling of atoms. We con-
sider the effect of light pressure in a system of two
counterpropagating light waves with a frequency ωL

smaller than the absorption frequency ω0 of a two-level
particle (Fig. 1). On account of the Doppler effect, a
moving particle predominantly absorbs radiation emit-
ted by the counterpropagating wave, which leads to
deceleration of the particle and, hence, its cooling [8, 9].
In such a system, atoms may be cooled to a temperature
equal to the Doppler limit TD = "γ/2kB , where γ is the
rate of spontaneous decay of the upper level [1]. The
minimal temperature of cooling is attained for an opti-
mal radiation frequency detuning of ωL – ω0 = –γ/2. The
Doppler limit for rubidium is TD ≈ 140 µK. The three-
dimensional version of cooling of an atom by counter-
 © 2005 Pleiades Publishing, Inc.
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propagating light beams is known as optical molasses,
in which atoms are effectively cooled due to viscous
friction in the medium of surrounding photons [10].

However, plane waves forming optical molasses do
not lead to a coordinate dependence of the light pres-

e

g

Fig. 1. Cooling of two-level atoms in the field of a standing
light wave. The radiation frequency is chosen smaller than
the g  e transition frequency.
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g

y
x

z
H
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M = 0
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Fig. 2. Formation of a potential well with the help of the
light pressure effect in a nonuniform magnetic field. The
atom has the angular momentum Jg = 0 in the ground state
and Je = 1 in the excited state.
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Fig. 3. Energy level diagram of 85Rb. The nuclear spin is I =
5/2. The fine interaction splits the upper state and leads to
the emergence of two absorption lines, D1 and D2. The
right-hand side of the diagram illustrates the hyperfine split-
ting of the ground state and excited states of 85Rb.
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sure force and, hence, do not produce a potential well.
Such a coordinate dependence can be created for parti-
cles with degenerate levels by placing them in a nonuni-
form magnetic field. The method is illustrated in Fig. 2
for a particle having the ground state with an angular
momentum of Jg = 0 and an excited state with an angu-
lar momentum of Je = 1. The magnetic field, which
increases linearly from the center of the trap, splits the
upper state into three Zeeman sublevels. The energies
of two of these levels depend on coordinate z chosen
along the direction of the magnetic field. Two counter-
propagating waves have opposite circular polarizations.
Since the absorption of the left and right waves is pos-
sible only during the transitions Mg = 0  Me = 1 and
Mg = 0  Me = –1, respectively, a coordinate depen-
dence of the absorption probability and, hence, of the
light pressure force, appears. The 3D version of such a
system is known as the magneto-optical trap (MOT) [11].
The depth of the potential well in the trap is large and
may attain ~1 K, which makes it possible to carry out
effective trapping of atoms directly from the gas of
“warm” atoms surrounding the center of the trap [12].

3. MODEL OF TRAP OPERATION

Our experiments were made with 85Rb atoms
excited on the D2 line (λ = 780.2 nm). Figure 3 shows
the level diagram of 85Rb [13]. The absorption of a pho-
ton leads to a change in the velocity of a Rb atom only
by 0.6 cm/s; consequently, absorption of many photons
is required for trapping and cooling of atoms from the
warm gas surrounding the trap. For this purpose, use is
made of a “cycling transition” Fg = 3  Fe = 4; the
atom cannot spontaneously decay from the upper level
of this transition to another hyperfine sublevel of the
ground state (transitions with |∆F| > 1 are forbidden in
the dipole approximation), and hence, it participates in
absorption repeatedly. Nevertheless, absorption of radi-
ation in the far wing of the line Fg = 3  Fe = 3 leads
to the atomic transition to a level of Fe = 3 followed by
spontaneous decay to the hyperfine sublevel of the
ground state Fg = 2 and, hence to the withdrawal of the
atom from the cooling process. To resume cooling, the
atom is returned to level Fg = 3 of the ground state by
radiation from a repumping laser, which is in resonance
with the transitions Fg = 2  Fe = 2, 3.

A simple model of MOT operation is based on the
concept of critical velocity v c [12]. Atoms possessing a
velocity v  < v c are decelerated during their passage
through the region of intersection of the beams to such
an extent that they are captured in the trap. The flux of
atoms with velocity v  < v c ! v 0 into a unit spherical
surface is

j
nv 0

4π1/2
------------

v c

v 0
------ 

 
4

,=
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where v 0 is the most probable velocity of the Maxwell
velocity distribution of atoms. The total rate of capture
of the atoms is R = jS, where S is the surface area of the
trap. The balance of the number N of particles in the
trap is described by the simple equation

(1)

where τ is the lifetime of an atom in the trap. Among
many processes determining the time τ, the most
important are collisions of cold atoms with surrounding
warm Rb atoms (in our case) and particles of residual
gases. In estimating the role of such collisions, it should
be borne in mind that the cross sections of collisions
knocking atoms from the trap turn out to be much larger
than the gas-kinetic cross sections since the velocity
sufficient to knock an atom from the trap must only be
higher than v c .

The mutual repulsion of atoms during exchange of
radiation prevents the attaining of high densities of
atoms in the traps (see, for example, [5]). This process
is very complicated in the quantum limit, when the
recoil energy of the atom, "ωr = "2k2/2m, becomes
comparable to the energy "ω of the vibrational quan-
tum of the atom in the trap. If ωr @ ω, exchange of pho-
tons can be estimated disregarding the quantization of
the spatial motion of the atom. In this case, the cross
section of resonant absorption of photons amounts
to ~λ2 [5].

4. LASERS

Lasers satisfying stringent requirements on the
power and stability of radiation frequency are impor-
tant elements of the setup. We used semiconductor laser
diodes (type ML6XX24 manufactured by Mitsubishi)
with an external resonator and a diffraction grating for
radiation wavelength selection. The schematic diagram
of the resonator is shown in Fig. 4 (the laser is described
in greater detail in [14]). A semitransparent output mir-
ror of the resonator ensures the optical coupling of the
laser diode with the diffraction grating. In contrast to
traditional Littrow and Littman semiconductor laser
resonators [15], this simple modification makes it pos-
sible to easily select the optimal Q factor of the resonator
by varying the transmission of the output mirror. (It
should be noted that a similar resonator scheme was used
earlier for frequency selection in a fiber laser [16].) We
used diffraction grating with 600 lines/mm and a reflec-
tion coefficient of R > 60% in the fourth order (the dif-
fraction angle θ = 69°).

The design of the laser ensures two beams (Fig. 4).
The low-intensity beam (4 mW) was used for measur-
ing and stabilization of laser radiation frequency, while
a high-intensity beam (14 mW) was directed to the
MOT. Laser power supply was a stable dc source. Tem-
perature stabilization of the laser diode was carried out

dN
dt
------- R

N
τ
----,–=
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by the active control system controlling the power sup-
plied to the Peltier element. Temperature fluctuations of
the diode casing did not exceed 0.1 mK. The tempera-
ture of the external resonator was stabilized due to good
thermal contact with the surface of a massive metallic
optical table.

The output laser beam has a linear polarization and
an elliptical transverse intensity distribution. The laser
was placed at a large distance (approximately 2 m)
from the trap, at which the beam acquired a more sym-
metric shape. The intensity distribution in the beam was
recorded with the help of a video camera. We used the
beam with transverse diameters at the MOT inlet of
approximately 2 mm (FWHM) and an intensity of
about 1 mW.

Rough measurement of the laser radiation frequency
required for tuning at the D2 Rb absorption line fre-
quency was performed by a home-made spectrograph
consisting of a 300 lines/mm diffraction grating, a
focusing spherical mirror with f = 500 cm, and a video
camera recording the laser radiation spectrum in the
focal plane of the mirror. To increase the dispersion of
the grating, we operated with large diffraction angles.
The precision measurement of the laser radiation fre-
quency, which is required for tuning to a certain hyper-
fine transition in 85Rb, was carried out using saturated
absorption resonances in counterpropagating waves.

Frequency stabilization of laser radiation required
for trapping and cooling of atoms in the MOT is com-
plicated by the fact that the standard locking of fre-
quency to the extrema of the saturation absorption
spectrum is not suitable for MOT functioning. Many
researchers (see, for example, [17]) solved this problem
by stabilizing the laser radiation frequency to one of the
extrema of the saturated absorption spectrum and shift-
ing the radiation frequency by using an acousto-optic
modulator. Apart from the obvious advantages of this
method, which gives the exact value of radiation fre-
quency, it has some drawbacks, such as the use of an
additional device (acousto-optic modulator) and radia-
tion power losses associated with it.

1
2

3

4

5

Fig. 4. Schematic of the external resonator of a semiconduc-
tor laser: 1—laser diode, 2—collimator, 3—semitranspar-
ent output mirror, 4—diffraction grating, 5—piezoceramic.
SICS      Vol. 100      No. 5      2005
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In our setup, the laser radiation frequency was stabi-
lized with the help of circular dichroism and Faraday
effects (dichroic atomic vapor laser lock (DAVLL)
method of frequency stabilization [18, 19]). This
method makes it possible to avoid laser radiation fre-
quency modulation and to stabilize the radiation fre-
quency at any point of the linear absorption profile. Fig-
ure 5 illustrates the operation of the stabilization sys-
tem. Linear polarized radiation is directed into a cell
containing Rb vapor in a longitudinal magnetic field.
Two circular polarizations of this radiation acquire a
relative phase difference in the cell due to the Faraday
effect and are absorbed in different ways due to circular
dichroism effect. The output, elliptically polarized radi-
ation is decomposed by a quarter-wave plate into two
mutually orthogonal linearly polarized components,
which are subsequently separated by a Glan polarizer
and directed to two photodiodes. The differential sig-
nals from these photodiodes are used for stabilizing the
laser radiation frequency. Depending on the orientation
of the optical axis of the quarter-wave plate and the
Glan polarizer, the magnitude of the differential signal
can be determined by the Faraday effect alone, the cir-
cular dichroism alone, or the combination of these two
effects [19]. In the experiment, the orientation of these
optical elements, the magnetic field strength, and the
temperature of the cell were adjusted experimentally so
that the frequency dependence of the differential signal
was maximal (attaining values of ~0.4 mV/MHz in our
experiments).

Fig. 5. DAVLL system of laser frequency stabilization:
1—cell. 2—Glan polarizer, λ/4 is a quarter-wave plate. The
photograph shows the design of the magnet.

21
H λ/4

Cell

Permanent
magnetJumper
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The magnetic field, which is optimal for the opera-
tion of the stabilization system, is a complex function
of many parameters and should be adjusted experimen-
tally. In our setup, the controllable magnetic field was
produced by a permanent samarium–cobalt magnet,
magnetic core, and a movable jumper to remove part of
the magnetic flux. The photograph in Fig. 5 illustrates
the design of the device. This system makes it possible
to control the magnetic field strength in the region of the
cell containing Rb vapor in an interval of 130–360 G.
The field optimal for operation was found to be 200 G.
The cell with Rb vapor had a diameter of 2 cm and its
temperature was maintained at 37°C.

The stabilization method we used proved to be quite
effective. It ensured reliable stabilization of the laser
radiation frequency in a frequency range of ±300 MHz
in the vicinity of the Fg = 3  Fe = 4 transition of the
85Rb isotope with a frequency locking region of about
800 MHz. Figure 6 shows the signals important for the
operation of the DAVLL system: the linear absorption
spectrum in Rb vapor of natural isotopic composition
(72% 85Rb and 28% 87Rb), the saturated absorption
spectrum in counterpropagating waves, and the differ-
ential signal used for laser radiation frequency stabili-
zation.

Meticulous suppression of feedback is a necessary
condition for the normal operation of a semiconductor
laser with an external resonator. For this purpose, Fara-
day isolators are often used, which are, however, expen-
sive devices. Owing to several fortunate design features
of our MOT, we managed to do without Faraday isola-
tors. First, the optical scheme of the laser (Fig. 4) was
such that the feedback due to scattering of the “weak”
beam used for radiation frequency stabilization is sup-
pressed since this radiation does not enter directly the
laser diode. Second, the optical scheme of the MOT
(see below) is based on six independently tuned beams
(without “retroreflection” of the beams, which is often
used), which were directed to the center of the trap so
that these beams did not return to the laser. Third, using
a small-diameter beam, we could manage without tele-
scopes, beam-profile correction systems and, hence,
avoid additional scattering of radiation.

5. VACUUM CHAMBER 
AND MAGNETIC FIELD

Various designs of vacuum chambers of MOTs,
ranging from complex and expensive stainless steel
chambers to relatively simple chambers made entirely
of quartz or glass, are described in the literature. Our
vacuum chamber of the MOT, which has the form of a
thin-walled glass sphere 6 cm in diameter, is apparently
the simplest. It was verified that such a chamber hardly
at all distorts the polarization of the beams and intro-
duces only small distortions into their spatial distri-
bution.
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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The requirements imposed on the vacuum system of
the MOT are quite stringent. This is due to the fact that,
as mentioned above, the atoms captured in the trap are
readily knocked out during collisions with warm atoms
of residual gas in the vacuum system. The vacuum in
the system required for MOT operation is characterized
by the fact that accumulation of atoms in the trap was
terminated when the pressure in the chamber increased
to 10–6 Torr. The vacuum chamber was permanently
connected to a small ion pump with a capacity of about
10 l/s. After prolonged outgassing and heating of the
entire system, a vacuum at a level of 10−8–10–9 Torr was
attained in the chamber and then maintained constantly.
The absence of detachable windows, valves, and
flanges in our vacuum system substantially simplified
and accelerated the obtaining of high vacuum.

The chamber was filled with Rb vapor from an
appendix containing metallic rubidium, which was per-
manently attached to the vacuum tract connecting the
MOT chamber and the ion pump. This appendix was
cooled by a Peltier element to 5°C to reduce the pres-
sure of Rb vapor in the chamber, which was required to
reduce the brightness of laser beam tracks in the MOT
chamber.

A spherical quadrupole magnetic field was pro-
duced in the chamber by two Helmholtz coils of 5 cm
in diameter, which were spaced at a distance of 5 cm
from each other. The coils have 100 turns each and were
cooled by air. When a current of 1.8 A was passed, the
coils produced a magnetic field at the center of the sys-
tem with a gradient of 20 G/cm along the symmetry
axis of the coils. The electric power supply system of
the coils made it possible to switch off the current in the
coils in 30 µs. Because of the presence of metallic parts
in the vicinity of the coils, the magnetic field decayed
over a significantly larger time (about 0.5 ms).

6. OPTICAL SCHEME

The general optical scheme of the MOT is shown in
Fig. 7. The splitting of the high-intensity beam pro-
duced by the trapping laser into six beams of approxi-
mately the same intensity was carried out with the help
of semitransparent mirrors. These beams were directed
to the center of the trap so that they did not return to the
laser. The beam of the repumping laser was added to the
main beam already at the first beam-splitting mirror
and, hence, was present in all six beams forming
the MOT.

The main laser was actively stabilized with the help
of the DAVLL system described above. The prelimi-
nary adjusting of radiation frequency was carried out
using the saturated absorption spectra. The final fre-
quency adjusting of this laser was carried out using the
fluorescence intensity of the cloud of trapped atoms.
The radiation frequency of the repumping laser was
also controlled using the saturated absorption spectra.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
This laser had a passively stabilized frequency suffi-
cient for stable operation of the MOT.

The alignment of all beams at the center of the trap
(at zero magnetic fields) must be performed in a MOT
to a high degree of accuracy. In our case, alignment is
substantially complicated because of the small diame-
ter of the beams. To simplify the alignment, the vacuum
system was designed so that the MOT vacuum chamber
together with the ion pump could be withdrawn from
the system without a deterioration of vacuum in the sys-
tem. After the withdrawal of the chamber, a small
sphere was installed at the point of desirable intersec-
tion of the beams (at zero magnetic field) and all the
beams were aligned to its center. After the return of the
chamber to its place and trapping of atoms, slight addi-
tional alignment of the directions of the beams was
required (it was controlled by the fluorescence intensity
of atoms in the trap). The circular polarizations of these
beams were chosen so that the direction of rotation was
matched with the direction of the local magnetic field.
For the Fg = 3  Fe = 4 transition in the 85Rb isotope,
the spin of photons must be antiparallel to the local

0.4

0.2

0

–0.2
–2000 0 2000 4000 6000

Frequency, MHz

D
A

V
L

L
 s

ig
na

ls
, r

el
. u

ni
ts

1

2

3

0.1

0

–0.1

–300 0 100 200

Frequency, MHz

D
A

V
L

L
 s

ig
na

ls
, r

el
. u

ni
ts

23

–200 –100

Fig. 6. Signals of the DAVLL frequency stabilization sys-
tem: 1—linear absorption spectrum, 2—saturated absorp-
tion spectrum in counterpropagating waves, 3—DAVLL
differential signal. The lower figure shows a small fragment
of signals 2 and 3. For better visualization, the signals are
made closer on the vertical axis.
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magnetic field vector so that a configuration of levels
and fields analogous to that shown in Fig. 2 was repro-
duced.

The images of atomic clouds were registered by a
black-and-white CCD camera with a recording rate of
25 frames/s. An analog video signal from this camera
was digitized and could be subsequently processed ana-
lytically. It should be noted that such cameras have a
high sensitivity in the near IR spectral region. The cost
of high sensitivity is a low time resolution of such cam-
eras (40 ms/frame). For fast quantitative recording of
fluorescence of the cloud, we used a calibrated photo-
diode supplied with an optical system collecting radia-
tion from the trapped atoms. The sensitivity of the sys-
tem was 2.8 × 104 atoms/mV and its time resolution
was about 0.1 ms.
JOURNAL OF EXPERIMENTAL A
7. RESULTS

After the alignment of the direction of the beam,
selection of their appropriate polarization, frequency,
and required direction of current in the Helmholtz coils,
a bright cloud of fluorescent Rb atoms was formed at
the center of the MOT. The CCD camera recording the
image of the cloud passed to the strong saturation
mode. Figure 8 shows the image of the cloud and its
evolution after the switching off the quadrupole mag-
netic field. In the steady-state mode, the fluorescence of
the cloud was quite stable and the entire system oper-
ated independently up to 1 h without laser radiation fre-
quency correction. After the removal of the field, the
cloud left the region illuminated by laser beams in
approximately 50 ms. This displacement of the cloud
was, in all probability, due to small magnetic fields
Fig. 7. Optical scheme of the setup. Numbers indicate the coefficients of beam intensity splitting by semitransparent mirrors; I, ν
indicate the block controlling the current and laser radiation frequency; T is the block stabilizing the laser diode temperature; λ/4
are quarter-wave plates; the spectrograph is the grating spectrograph for “rough” measurement of the laser radiation frequency.
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Fig. 8. (a) Fluorescence of the cloud of trapped atoms and its evolution after switching off the magnetic field. (b) Spatial modulation
of fluorescence of the cloud along the direction of its motion.
remaining in the MOT chamber after switching off the
current in the Helmholtz coils since residual magnetic
fields produce an uncompensated light pressure force
from each pair of counterpropagating laser beams. Dur-
ing the displacement of the cloud, two features could be
observed. First, the displacement of the cloud was not
accompanied by a noticeable increase in its size. Thus,
the size of the cloud increases at a much lower rate than
could be as a result of flying apart of atoms trapped in
the MOT with a characteristic velocity of about
10 cm/s. In all probability, this can be explained by the
fact that, after switching off a magnetic field, the MOT
is transformed into optical molasses [10], in which the
motion of atoms is not a gas-kinetic, but a diffusion pro-
cess in view of the small mean free path of atoms in the
medium of surrounding photons. Second, the fluores-
cence of the track of atoms during the motion of the
cloud after the removal of the magnetic field was not
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
continuous, but spatially modulated. The period of this
structure was about 0.2 mm (see Fig. 8). The explana-
tion of this effect requires additional investigations. We
can only note that such a spatial structure could not be
observed if atoms were trapped in out MOT by wide
(1.5 cm) light beams. This is apparently due to the fact
that such wide light beams produced a much larger
cloud of trapped atoms than the period of spatial mod-
ulation observed by us.

Accumulation of atoms in the trap after the applica-
tion of a magnetic field prior to saturation of the CCD
camera was recorded with attenuation of fluorescence
by a light filter by approximately two orders of magni-
tude. Figure 9a shows an example of such images. The
results of measurements of the steady-state distribution
of atomic fluorescence are shown in Fig. 9b (circles).
This distribution is successfully approximated by a
Gaussian curve of the type aexp(–(x – b)2/c2) with
SICS      Vol. 100      No. 5      2005
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Fig. 9. Accumulation of atoms in a trap after the application of a magnetic field. (a) Image of the cloud of trapped atoms. The frames
were shot with an interval of 80 ms. The fluorescence intensity is attenuated by two orders of magnitude. (b) Stationary spatial dis-
tribution of fluorescence of trapped rubidium atoms. The solid curve is the approximation of the distribution by the Gaussian curve.
parameters a, b, and c determined by comparison with
experimental data (solid curve in Fig. 9b). According to
these measurements, the cloud diameter was found to
be approximately 140 µm (FWHM) (taking into
account the spatial resolution of the optical system of
≤30 µm). The stability of the position of the center of
the cloud was better than 20 µm over a time interval
exceeding 1 s.

The dynamics and the number of trapped atoms
were measured by a sensitivity-calibrated photodiode,
whose signal is shown in Fig. 10. The accumulation of
atoms after the application of a quadrupole magnetic
field is correctly described by a function Rτ(1 –
exp(−t/τ)), which is a solution to Eq. (1) (bold curve in
Fig. 10). The results of approximation of experimental
data by a least square fit gives a steady-state number of
trapped atoms on the order of 105 and their lifetime in
the trap τ ≈ 0.4 s. Taking into account the cloud diame-
ter measured above, we obtain the following estimate
for the steady-state density of trapped atoms: 7 ×
1010 cm–3. The concentration of warm Rb atoms in the
chamber during the operation of the trap (the appendix
JOURNAL OF EXPERIMENTAL A
containing metallic rubidium has a temperature of 5°C)
was measured using the linear absorption of weak test
radiation and amounted to 2.3 × 107 cm–3. To avoid mis-
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Fig. 10. Dynamics of accumulation of atoms in a trap (signal
from the photodiode). The bold curve describes the dynamics
of accumulation of atoms in accordance with Eq. (1).
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understanding, we note that this concentration of Rb
vapor is much lower than the concentration of saturated
vapor at 5°C [20] due to permanent evacuation of the
system by a ion pump. Thus, the concentration of atoms
in the cloud exceeded the concentration of atoms in the
surrounding gas by more than three orders of mag-
nitude.

It would be interesting to estimate the critical veloc-
ity v c . This can be done knowing the capture rate R of
atoms in the trap, which can be determined most easily
by measuring the rate of accumulation of atoms at the
initial stage of trap filling. The accumulation rate was
found to be 2.5 × 105 atoms/s. Taking into account the
area of the trap surface, which was approximately
0.32 cm2, we find that the critical velocity can be esti-
mated as v c ≈ 14 m/s.

8. CONCLUSIONS

We have described the design and characteristics of
a compact magneto-optical trap, in which a small cloud
of trapped atoms (about 140 µm) with stable spatial
parameters was obtained. In particular, the position of
the center of the atomic cluster was stationary to within
less than 20 µm. The density of trapped atoms was high
(7 × 1010 cm–3). This value was attained without a loss
in the stability of spatial parameters, which is usually
unavoidable for large clouds (see, for example, [21]).
The atomic cluster formed in this way can be used in
other experiments as a point source of cold atoms.

All main elements of the MOT (semiconductor
lasers, the systems of frequency measurement and sta-
bilization, the vacuum chamber, systems forming the
magnetic field in the MOT, and the systems for visual-
ization of atoms in the trap) were specially designed
and constructed for this project. These systems are
quite simple and can be reproduced in many optical lab-
oratories. In this connection, we can mention two other
realizations of MOT in Russia [7, 22].
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Abstract—A 1D quantum pump based on a structure of two δ-functional harmonically oscillating potentials is
considered. Such a structure can pump electrons from one bank to the other. An ac perturbation induces a
steady-state current. The effect takes place in spatially asymmetric systems. Such an asymmetry is formed due
to a difference in the initial heights of the barriers or in the amplitudes or phases of ac signals. The pump can
operate in various modes depending on its parameters. It is shown that the current displays oscillations with a
period such that the wavelength of incident or excited electrons is multiple to the separation of the δ-functions.
Resonances at quasi-stationary states between the barriers, at zero energy, and with stationary states (in the case
of wells) are investigated. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

A quantum pump is a device generating direct cur-
rent under zero bias. The current in induced by an ac
external field, which allows a local variation of the
parameters of the system.

The quantum pump is essentially analogous to vari-
ous versions of the photovoltaic effect, studied in detail
mainly in Russia from the beginning of the 1980s [1–4].
The difference is that the photovoltaic effect is related
to the emergence of a direct current in a homogeneous
macroscopic medium (the only exception is the mesos-
copic photovoltaic effect), while a pump is a micro-
scopic object. From the phenomenological point of
view, the emergence of a direct current in the pump is
not surprising since any asymmetric microcontact can
rectify ac voltage. However, analysis of adiabatic trans-
port in a quantum-mechanical object leads to a new
phenomenon, viz., quantization of charge transport [5].

In recent years, an enormous increase has been
observed in the number of publications devoted to both
theoretical [6–16] and experimental [17–20] studies of
the physics of quantum pumps. Quantum pumps play
an important role in biology; for example, the Thouless
mechanism was employed for explaining the active
transport of ions through a cellular membrane [21].

Here, we will simulate pump operation by a 1D sys-
tem with the potential (Fig. 1)

(1)

where 2d is the distance between δ-shaped barriers
(wells); quantities u and v  are measured in units of

U x( ) u1 v 1 t( )+[ ]δ x d+( )=

+ u2 v 2 t( )+[ ]δ x d–( ),
1063-7761/05/10005- $26.000920
"2/md (m is the electron mass); momentum p is mea-
sured in units of "/d; energy E is measured in units of
"2/2md2; and frequency is measured in units of "/2md2.
In the absence of an ac signal, the system has two bar-
riers for positive values of u1 and u2 and two wells for
negative values of these parameters. We assume that the
electron gas is in equilibrium and the distribution func-
tions are identical in the regions x < –d and x > d. We
also assume that an ac signal is harmonic,

The problem is to determine the direct current
induced by the ac field. This model was used, in partic-
ular, in [22], but was not analyzed in detail. At the same
time, in spite of its simplicity, the potential in question
leads (in view of the presence of four independent
parameters in it) to a variety of possible behaviors of
the solution.

v 1 t( ) v 1 ωt, v 2 t( )sin v 2 ωt ϕ+( ).sin= =

Fig. 1. Quantum pump based on the symmetric structure
formed from two δ barriers, the first of which oscillates.
Parameters u1 = u2, v2 = 0.
 © 2005 Pleiades Publishing, Inc.
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This study is aimed at detailed analysis of various
operation modes of the electronic pump.

A direct current can be induced only in an asymmet-
ric system. In this case, at least one of the following con-
ditions must be satisfied: u1 ≠ u2 , v1 ≠ v2, and ϕ ≠ 0. The
macroscopic analogs of these cases are the linear pho-
tovoltaic effect in a polar medium (emerging due to the
existence of a polar vector in the medium and analo-
gous to a preferred direction from the first barrier to the
second one); the surface photovoltaic effect (emerging
due to nonuniformity of the electromagnetic field and
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
analogous to the difference of v 1 from v 2); and the cir-
cular photovoltaic effect (emerging due to the phase
shift between different Cartesian components of polar-
ization; in the present case, the phase shift between
v 1(t) and v 2(t)).

2. BASIC EQUATIONS

We will seek the solution to the Schrödinger equa-
tion with potential (1) in the form
(2)ϕ i E nω+( )t–[ ]

δn 0,
i pnx

d
---------- 

  rn

i pnx
d

----------– 
  , x d ,–<exp+exp

an

i pnx
d

---------- 
 exp bn

i pnx
d

----------– 
  , d x d ,< <–exp+

tn

i pnx
d

---------- 
  , x d .>exp













exp
n

∑=
Here, pn =  and p = . Wavefunction (2)
corresponds to a wave incident on the barrier from the
left. (In final formulas, we will mark solutions to prob-
lems with a wave incident from the left and from the
right by indices “ ” and “ ,” respectively) Quan-
tities tn and rn give the amplitudes of transmission
(reflection) with absorption (for n > 0) or emission (for
n < 0) of n ac field quanta, while quantity t0 determines
the amplitude of the elastic process. If the value of pn

becomes imaginary, the waves moving away from the
barriers should be treated as damped waves. This means
that Impn > 0.

The Schrödinger equation with potential (1) leads to
the boundary conditions for the wavefunction at x = ±d:

(3)

Substituting the wavefunction into the boundary condi-
tion leads to the following system of equations (inci-
dence from the left):

p2 nω+ E

ψ ±d 0, ψ' d+− 2m u1 2, v 1 2, t( )+[ ]ψ .= =

δn 0, i pn–( )exp rn i pn( )exp an i pn–( )exp–+

– bn i pn( )exp 0,=

δn 0, i pn–( )exp rn i pn( )exp– an i pn–( )exp–

+ bn i pn( )exp
2iu1

pn

----------=
(4)

Solving this system for tn = exp(–i(p + pn))Tn , we
obtain

(5)

× δn 0, i pn–( )exp rn i pn( )exp+[ ]

+
v 1

pn

------ δn 1+ 0, i pn 1+–( ) rn 1+ i pn 1+( )exp+exp[

– δn 1 0,– i pn 1––( )exp rn 1– i pn 1–( )exp– ] ,

an i pn( )exp bn i pn–( )exp tn i pn( )exp–+ 0,=

an i pn( )exp bn i pn–( )exp– tn i pn( )exp–

=  
2iu2

pn

----------tn i pn( )exp

+
v 2

pn

------ tn 1+ i pn 1+ iϕ+( )exp tn 1– i pn 1– iϕ–( )exp–[ ] .

v 1v 2gn 1– e iϕ– Tn 2–
→ i v 1Sn 1– v 2Vne iϕ–+( )Tn 1–

→–

– 2Wn v 1v 2 gn 1– eiϕ gn 1+ e iϕ–+( )+[ ] Tn
→

+ i v 1Sn 1+ v 2Vneiϕ+( )Tn 1+
→ v 1v 2gn 1+ eiϕTn 2+

→+

=  2ipδn 0, .
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Here, gn = sin2pn/pn ,

(6)

(7)

The equation for the transmission coefficient  for a
wave incident from the right has the form

(8)

Provided that electrons from the right and left of the
contact are in equilibrium and have identical chemical
potentials, we can express the direct current in terms of
the transmission coefficients,

(9)

where f(E) is the Fermi distribution function and θ(x) is
the Heaviside function.

At a low temperature, it is convenient to differenti-
ate the current with respect to chemical potential µ:

(10)

Here, G0 = 2e2/h is the conductance quantum, h being
the Planck constant, and pF is the Fermi momentum.
The resultant quantity & has the dimension of conduc-
tance. It can be treated as a two-terminal photoconduc-
tance (the conductance for simultaneous change in the
voltage across both junctions).

3. SYMMETRY IDENTITIES

Initial potential (1) exhibits symmetry to the coordi-
nate sign reversal with simultaneous substitution u1,
v 1  u2, v 2 and ϕ  –ϕ and with a time shift by
−ϕ/ω. Since the ac field amplitude does not change with
time, the transmission coefficients and the steady-state
response must possess the same symmetry; in other

words, the transmission coefficient | |2 from the right

and | |2 from the left must be transformed into each
other upon the simultaneous substitution u1, v 1  u2,

Sn 2u2gn 2i pn–( ),exp+=

Vn 2u1gn 2i pn–( ),exp+=

Wn 2u1u2gn u1 u2 i pn–+( ) 2i pn–( ).exp+=

Tn
←

v 1v 2gn 1– e iϕ– Tn 2–
← i v 1Sn v 2Vn 1– e iϕ–+( )Tn 1–

←–

– 2Wn v 1v 2 gn 1– e i– ϕ gn 1+ eiϕ+( )+[ ] Tn
←

+ i v 1Sn v 2Vn 1+ eiϕ+( )Tn 1+
← v 1v 2gn 1+ eiϕTn 2+

←+

=  2ipδn 0, .

J
e

π"
------ E Tn

→ 2
Tn

← 2
–( ) f E( )θ E nω+( ),

n

∑d∫=

& e
∂J
∂µ
------=

=  G0 θ µ nω+( ) Tn
→ 2

Tn
← 2

–( )p pF= .
n

∑

          

Tn
←

Tn
→
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v 2 and ϕ  –ϕ. Indeed, it follows from Eqs. (5) and

(8) that   exp(inϕ

 

).

Time reversibility dictates the symmetry of wave-
function 

 

ψ

 

p

 

(

 

x

 

, 

 

t

 

), which corresponds to the incident
(departing) wave with momentum 

 

p

 

:

This leads to the following relation between the matri-
ces of transmission from the right and left for a direct
and time-inverted ac signals:

In the absence of an ac signal, the quantity 

 

p 

 

is con-
served for a transmitted wave, and the probabilities of
transmission from the left and right coincide. Excita-
tion by a single 

 

δ

 

-function (

 

v

 

2

 

 = 0) with a harmonic sig-
nal is even in time and, hence, preserves this symmetry
property for the transition channel without a change in
energy, 

 

n

 

 = 0. The same is true for synchronous signals.
However, in the presence of a phase shift, the transition
channel without a change in energy is found to be
asymmetric. In the framework of perturbation theory in
the external signal, this means that the (asymmetric)
correction to the transmission probability with energy
conservation begins with the term proportional to 

 

v

 

1

 

v

 

2

 

.

4. PERTURBATION THEORY: 
WEAK AC SIGNAL MODE

Let us consider the limit 

 

v

 

1

 

, 

 

v

 

2

 

 

 

!

 

 

 

u

 

1

 

, 

 

u

 

2

 

. The steady-
state problem gives the transmission amplitude

(11)

The scattering amplitude vanishes for 

 

p

 

  0 and
experiences oscillations with a period 

 

δ

 

p

 

 = 

 

π

 

/2. For
large values of 

 

u

 

1, 2

 

, quantity 

 

T

 

0

 

 has poles in the vicinity
of points 

 

p

 

 = 

 

π

 

n

 

/2.

In the zeroth order of perturbation theory, the direct
and reverse transmission coefficients coincide; conse-
quently, the current vanishes. The current appears only
in the second order of perturbation theory. Second-
order corrections to the current come only from quanti-

     

Tn
→ Tn

←

ψp x t,( ) v 1 t( ) v 2 t( ), ψ p–* x t–,( ) v 1 t–( ) v 2 t–( ), .=

p p, T T*,–

v 1 t( ) v 1 t–( ), v 2 t( ) v 2 t–( ).

T0
ip
W0
-------–=

=  
i p2

2u1u2 2 p u1 u2 ip–+( )+ pe 2ip–sin
----------------------------------------------------------------------------------,–

Tn n 0≠ 0.=
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ties T0, T1, and T–1. Expanding in the ac signal, we
obtain

(12)

In the particular case when u1 = u2, functions Sn and Vn

coincide, and expression (12) assumes the form

(13)

The current is determined by corrections T±1 associated
with real emission (absorption) of a single photon. In
addition, a correction to T0 associated with the effect of
a virtual single-photon process on the nonradiative
channel also exists. Apart from the squares of ac signals
v 1 and v 2, the result for the regime u1 = u2 contains a
bilinear combination; consequently, it is insufficient to

& G0
p2

4 W0
2

--------------- v 1
2 S0

2 S 1–
2–

W 1–
2

----------------------------θ µ ω–( )




=

+
S0

2 S1
2–

W1
2

--------------------------




– v 2
2 V0

2 V 1–
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------------------------------θ µ ω–( )
V0

2 V1
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W1
2

----------------------------+
 
 
 

+ 2v 1v 2Re
S0V 1–* S 1– V0*–
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----------------------------------e iϕ– θ µ ω–( )
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S0V1* S1V0*–
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-------------------------------eiϕ



+ 4v 1v 2 ϕ Im
S0V0 S 1– V 1––

W0W 1–
---------------------------------
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-----------------------------–
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+ 2
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consider the response only at one of the signals. The lat-
ter contribution is sensitive to the relative phase of the
signals.

If u1 = u2 = 0, Eq. (13) yields

(14)

This expression turns to infinity for p–1 = 0 (at the single
photon emission threshold). This singularity can be
explained by the resonance with the state of an electron
with zero energy: such a “stationary” state can be inter-
preted as a bound state.

In addition to the above oscillations with period
δp = π/2, the transmission amplitude experiences oscil-
lations with periods δp±1 = π/2. It can be seen from
expression (12) that the extrema in the dependence of
the current on p are located in the vicinity of the points
corresponding to the minima of functions W0 and W±1
and are connected with the elastic process as well as
with the process involving the absorption or emission
of a field quantum. For v 2 = 0 (v 1 = 0), the expression
for the current contains only one term proportional to

( ).

For u1, u2

 

 

 

@

 

 

 

p

 

, the oscillations are transformed into
sharp peaks corresponding to transmission resonances.
For 

 

p

 

 ~ 1, the transmission amplitude has a characteris-
tic scale of 

 

p

 

 ~ 

 

u

 

1

 

, 

 

u

 

2

 

. The corresponding structure for
small values of 

 

u

 

1

 

 and 

 

u

 

2

 

 can be treated as a resonance
at zero energy. For negative values of 

 

u

 

1

 

 and 

 

u

 

2

 

, reso-
nance at bound states exist (at one or two such states
depending on the distance between the wells).

5. ANALYSIS OF THE BEHAVIOR
OF QUANTITY 

 
&

 
 IN THE VICINITY

OF SINGULARITIES

The singularities of quantity 

 

&

 

 can be classified
according to their origin from the electronic spectrum
as: (1) resonance associated with discrete states of the
system in the absence of ac field; (2) resonances asso-
ciated with quasi-stationary states; and (3) threshold
singularities associated with zero energy. The presence
of an rf field leads to photon recurrences with energies
separated from the initial energies by intervals multiple
to the ac field frequency. In a weak ac field, photon
recurrences are the weaker, the higher their multiplic-
ity. Stationary states lie in the range of negative ener-
gies and, hence, are manifested in the 

 

&

 

(

 

p

 

F

 

) depen-
dence only due to their photon recurrences. Quasi-sta-

& G0v 1v 2 ϕsin–=

×
2 p p 1––( )sin
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2
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2 p1 p–( )sin
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+
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tionary states are manifested for |ui| @ 1 or v i @ 1,
when the δ-functions can “lock” electrons. Electrons
are locked by barriers and wells as well as by the ac
potential.

In the framework of perturbation theory, singulari-
ties appear due to zeros of functions W0, W1, and W–1.
Exact vanishing is observed only for function W–1 for
an energy separated from the energy of the bound state
by ω. The functions can vanish approximately at quasi-
stationary states and their first photon recurrences. At
the threshold p  0, the numerator of expression (12)
vanishes, which leads to a weak singularity in &.

A special case is the limit u1 = u2 = 0, in which the
zero of function W0 for p  0 is compensated by the
numerator of formula (12); as a result, &  const.
However, vanishing of & is reconstructed by taking into
account the finiteness of a varying perturbation that is
beyond the scope of perturbation theory. In the vicinity

of momentum , quantity W–1 vanishes; unlike the
zero of function W0, this leads to a pole of &. Quantity
& cannot become infinite in view of the finiteness of the
amplitude of the varying perturbation.

For finite values of u1 and u2, singularity of quantity
& at point p–1 = 0, which is associated with the quantum
emission threshold is a discontinuity. If u1 = u2 = 0 and
v 1, v 2  0, the discontinuity is transformed into a
pole singularity. The value at the threshold is limited to
1/v 1v 2.

Let us consider the mechanism of the emergence
and limitation of single-photon recurrence of a reso-
nance. Let E0 be a certain energy level of a steady-state
system (probably, a complex quasi-stationary level).
Such an approach is applicable to a zero-energy reso-
nance (E0 = 0) or stationary-state resonance (E0 < 0).
Then, in the nth equation of system (12), the coefficient

of Tn vanishes at point  = E0. A finite but small ac
field shifts this zero in the complex plane by a value
proportional to the second power of perturbation. For a
small perturbation, under nonresonant conditions, the
value of T0 is the largest, while the remaining quantities
Tn decrease in powers of the perturbation. Let us sup-

pose that   E0. Since the coefficient of T–1 in
Eq. (5) with n = –1 is small, the quantity T–1 must be
large and the term with T–1 should be taken into account
in the equation with n = 0. At the same time, all remain-
ing quantities Tn can be regarded as small in the general
case. Using this circumstance, we can retain two equa-
tions from the entire system:

(15)

where coefficient α is independent of the varying per-
turbation, coefficient η is quadratic in this perturbation,

ω

pn
2

p 1–
2

T0 βT 1–+ α ,=

p 1– E0– η+( )T 1– γT0+ 0,=
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and coefficients γ and β are linear. Equations (15) lead
to the solution

(16)

These expressions contain a strong dependence in the
vicinity of the singularity. The ac field leads to addi-
tional broadening of the resonance quadratic in the per-
turbation. If no initial broadening took place, the ac
field leads to the emergence of this broadening. The sin-
gle-photon resonance with n = 1 emerges and broadens
according to the same mechanism.

If |n| > 1, a multiphoton resonance emerges on
account of linked equations with numbers between zero
and n. The resultant resonance contribution has a small-
ness of perturbation to the nth power.

The constants appearing in expression (16) are
determined by the amplitudes and phases of ac fields,
which affects the position and width of the resonance.
In the special case of a zero-energy resonance for
u1 = u2 = 0, we obtain the following equation from rela-
tions (16), which is valid in the vicinity of point p–1 = 0
above the threshold:

(17)

where

(18)

For p–1  ∞, expression (17) is inversely propor-

tional to . Below the threshold, a singularity does
not exist. It should be noted that this behavior leads to
a logarithmic singularity in the current J ∝  G0ln(µ –
ω)/∆, which is removed if we take into account the
finiteness of the ac field. The truncation ∆ of the loga-
rithm observed in this case substantially depends on the
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Fig. 2. Dependence of & on the Fermi momentum in a symmetric structure u1 = u2 in the limit of a weak ac signal: (a) v2 = 0,
v1 = 0.1; frequency ω = 0.5; (b) v1 = v2 = 0.1; phase ϕ = π/2. Figures on the curves are values of u1 = u2. The arrow marks the

resonance p–1 = 0, pF = .0.5
amplitude and phase of ac fields. In accordance with
formulas (17) and (18), broadening of the resonance is
proportional to the square of the ac field. However, for
ϕ = π/2, 3π/2, the resonance width ζ(ϕ) vanishes. In
fact, this is an indication that the width has a higher
order in v 1 and v 2, which exceeds the limits of the
approximation used here.

6. NUMERICAL RESULTS: 
WEAK AC FIELD

Figure 2 shows the dependences of quantity & on
the Fermi momentum for u1 = u2 in the presence of one,
v 2 = 0 (Fig. 2a), or two, v 1 = v 2, ϕ = π/2 (Fig. 2b), ac
signals. In the absence of an ac signal, such a system is
symmetric. Different curves correspond to different
values of coefficients of δ-functions. In the limit u1,
u2  ∞, the curves are transformed into a system of
antisymmetric Fano resonances at the momenta corre-
sponding to quasi-stationary levels (see the inset to
Fig. 2a). Asymmetry appears due to the fact that quasi-
stationary states play the role of intermediate states for
the compound transition amplitude.

The dependence of quantity & on the Fermi momen-
tum in the case when the current is excited by two
phased-in signals (Fig. 2b) differs from the dependence
corresponding to a single signal (Fig. 2a), indicating the
phase-sensitive interference nature of the effect. In par-
ticular, for large values of u1 and u2, the resonances at
quasi-stationary levels become symmetric.

The case of the absence of static barriers (u1 = u2 = 0)
should be considered separately. In this case, the cur-
rent appears only when signals v 1 and v 2 are present
simultaneously (Fig. 3). For small values of v 1 and v 2,
the behavior almost coincides with the result obtained
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
in perturbation theory. The zero-energy resonance
becomes narrow and deep. The nonlinear corrections
are manifested in the range of small momenta, where
these corrections lead to vanishing of & as well as to a
limitation imposed on the resonance minimum and to the
emergence of a two-photon resonance at point p–2 = 0. It
can be seen from Fig. 3 that the amplitude of the one-
photon resonance is large (proportional to 1/v 1v 2),
while the amplitude of the two-photon resonance is
finite in accordance with the subsequent analysis.

Figure 4 shows the results of calculation of the value
of & for a single quantum well (u1 = –1), near which an

1

0

–3
0 2 4

–90

& × 102

pF

–2

–1

–0.115

Fig. 3. The same as in Fig. 2b for u1 = u2 = 0. The solid
curve describes the numerical result and the dashed curve is
the result obtained in perturbation theory. Values of & at the
minima that could not be shown in the figure are shown on
the curves.
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exciting electrode is placed (v 1 = 0, v 2 = 1). In the
absence of an ac signal, such a system is symmetric;
only the second electrode breaks the symmetry. In con-
trast to the structure with barriers, one- and two-photon
resonances, E = ω + E0 and E = 2ω + E0, which are
associated with the localized state E0 = –1, emerge in

Fig. 4. Quantity & in the structure with a single quantum
well and with an oscillating barrier (well) shown in the
inset. The figure illustrates the formation of one-photon (a)
and two-photon (c) resonances at localized level E0. Param-
eters u1 = –1, v1 = 0, u2 = 0, v2 = 1, and ω = 2 are used. The
insets in the frames give details of neighborhoods of reso-
nances a and c. Letters b and d denote zero-energy one- and
two-photon resonances (E = ω, E = 2ω).

1
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0 2 4
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pF
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c
d

0
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0.4

0.2

0
1.7 1.8 pF

E

E0

ω
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this problem. In accordance with Eq. (16), the value of
& at resonances approaches zero (is equal to zero in the
one-photon case). The value at the two-photon mini-

mum is found to be proportional to . The small value
at the minimum in the case depicted in Fig. 4 is due to
slight overlapping of the potential and the wavefunction
of the bound state.

Let us analyze in greater detail the mechanism of the
emergence of zero-energy resonance (Fig. 4). An elec-
tron flying from the right passes through the static
δ-function and then interacts with the ac potential. If its
energy is ω, it will be at the bottom of the band after
emitting a photon. This process has a high probability
since the density of states at the bottom of the band
becomes infinite. After this, the electron cannot return
as a rule. However, the electron impinging from the
right will return to the right for the same reason. Thus,
the current flows from right to left, which is depicted in
Fig. 4.

Figure 5a demonstrates the variation of current for
u1 = u2, v 2 = 0 with the frequency 0.1 ≤ ω ≤ 10 of the
ac signal. The figure corresponds to a system with high
barriers. Sharp resonances correspond to points pF =
πn/2 (their position does not change with frequency)

and their photon recurrences for pF = 
(which are displaced to the right and to the left with the
frequency).

Figure 5b shows the variation of quantity & in an
asymmetric system (u1 = 3, v 1 = 0.1, u2 = 1, v 2 = 0). It

v 2
2

π2n2/4 ω±
0 4 8

(a)

&

pF

2 6 0 4 8

(b)

&

pF

2 6

Fig. 5. Variation of quantity & with the frequency of an ac signal 0.1 ≤ ω ≤ 10 for (a) u1 = u2 = 10, v1 = 0.1, v2 = 0 and (b) u1 = 3,
u2 = 1, v1 = 0.1, v2 = 0. The curves are displaced relative to one another by a constant distance along the vertical axis. The frequency
increases in the upward direction.
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can be seen that resonances acquire a symmetric or
asymmetric shape depending on the frequency.

7. NONLINEAR MODE 
OF QUANTUM PUMP OPERATION

Figure 6 shows the results of calculation of the value
of & in the absence of a static potential for large (iden-
tical) amplitudes of ac signals. With increasing ampli-
tude of the signal, the dependence of quantity & on the
Fermi momentum becomes more complicated. Higher-
order resonances corresponding to E = jω or E =
π2n2/4 ± jω ( j = 1, 2, …) appear.

In the limit of very strong signals, the dependence
becomes universal. This can be verified on the basis of
Eqs. (5): for large values, quantities v 1 and v 2 appear in
the transition amplitudes in the form of a product, Tn ∝
(v 1v 2)–1 in the region p2 ! v 1v 2; outside this region,
perturbation theory operates and Tn ∝  (v 1v 2)–n.

8. DISCUSSION

Let us consider the difference between the quantum
pump and the photovoltaic effect. The latter is usually
analyzed in the limit of a weak electromagnetic field
(except in publication [2] which is devoted to the purely
classical limit). For quantum-mechanical frequencies,
the mechanism of the photovoltaic effect involves the
absorption of light quanta with anisotropic excitation of
electrons. During relaxation, induced optical transi-
tions play a secondary role as compared to nonradiative
processes as well as with incoherent optical processes.
When the pump is in operation, the electromagnetic
field is treated as classical even in the limit of a weak
signal; consequently, the corrections to the transition
probability include not only absorption, but also
induced emission as well as the field correction to the
elastic component of the transition probability. More-
over, if the field is not weak, the transition probability
contains the contributions associated with the emission
(absorption) of any number of photons.

Another difference between the pump and the pho-
tovoltaic effect is the local nature of the applied ac sig-
nal. An important distinguishing feature of the photo-
voltaic effect is the uniformity of the ac field and the
homogeneity of the system. The current induced by a
nonuniform electromagnetic field is associated with the
transfer of the momentum of the wave to electrons, i.e.,
with the photon drag effect. In the initial inhomoge-
neous system, the current is generated by diffusion
between the regions with different electron concentra-
tions. In the pump, the action of an ac signal is mani-
fested at distances commensurate with the electron
wavelengths that are small in comparison to their mean
free paths and, the more so, with the diffusion length.
This makes it possible to manipulate them indepen-
dently with ac signals applied in different regions.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
In the problem of rectification in a microcontact, an
ac voltage is applied between the “seas.” At the same
time, in the problem formulated here, ac signals are
applied directly to the barriers. In such a problem, in the
zero-frequency limit, direct current J|ω → 0 cannot
emerge at all in view of the above-mentioned reversibil-
ity of the static transmission probability. This distin-
guishes the pump from rectification in a microcontact.
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Abstract—The energies of baryon states with positive strangeness, or anticharm (antibeauty), are estimated in
the chiral soliton approach, in the “rigid oscillator” version of the bound-state soliton model proposed by Kle-
banov and Westerberg. Positive strangeness states can appear as relatively narrow nuclear levels (Θ-hypernu-
clei), and the states with heavy antiflavors can be bound with respect to strong interactions in the original
Skyrme variant of the model (SK4 variant). The binding energies of antiflavored states are also estimated in the
variant of the model with a sixth-order term in chiral derivatives added to the Lagrangian to stabilize solitons
(SK6 variant). This variant is less attractive, and nuclear states with anticharm and antibeauty can be unstable
relative to strong interactions. The chances of obtaining bound hypernuclei with heavy antiflavors increase
within the “nuclear variant” of the model with a rescaled model parameter (the Skyrme constant e or e'
decreased by about 30%), which is expected to be valid for baryon numbers greater than B ~ 10. The rational
map approximation is used to describe multiskyrmions with a baryon number of up to about 30 and to calculate
the quantities necessary for their quantization (moments of inertia, sigma term, etc.). © 2005 Pleiades Publish-
ing, Inc. 
1. INTRODUCTION

The remarkable recent discovery of the positive-
strangeness pentaquark state [1] and its confirmation by
several experiments [2] has provided strong motivation
for searches of other exotic states and revision of the
existing ideas on the structure of hadrons and the role
of the valence-quark picture in their description [3–8].
Subsequently, the discovery of the strangeness S = –2
state with charge –2, also manifestly exotic [9] (see [10]
for a review of the previously existing data), and evi-
dence for a narrow anticharmed baryon state [11] have
been reported. Some experiments, however, did not
confirm these results (see, e.g., [12, 13]), where some
negative results were summarized and a pessimistic
point of view was formulated. The high-energy physics
community is now awaiting the results of high-statistics
experiments; some plans for future pentaquark searches
are presented, e.g., in [14].

The possible existence of such states had been fore-
seen theoretically within the quark models [15–17],1 as
well as in chiral soliton models. The prediction of exotic
states in chiral soliton models has a complex and instruc-
tive history—from the papers where the exotic antide-
cuplet and 27-plet of baryons were mentioned [18], a
resonant behavior of the kaon–nucleon phase shift in

¶ This article was submitted by authors in English.
1 The parity of lowest exotic states considered here is negative

(see [7], however), in contrast to the chiral soliton model predic-
tions, where it is positive. Spin and parity of exotic baryons have
not yet been measured.
1063-7761/05/10005- $26.000929
the Θ channel was obtained in some version of the
Skyrme model [19], first estimates of the antidecuplet
mass were made [20, 21], and the masses of exotic
baryon states were roughly estimated for arbitrary
baryon numbers B [22], to papers where more detailed
calculations of the antidecuplet spectrum were per-
formed [23–25] (see also [26] for a recent discussion).
The mass of the dibaryon with S = +1, I = 1/2 was deter-
mined to be only 590 MeV above the nucleon–
nucleon threshold within the soft rotator quantization
scheme [27]. We note that paper [24], which predicted
narrow width and low mass of the positive-strangeness
state called2 Θ+, stimulated experimental searches for
such states, in particular, experiments [1] have been
specially arranged to check the prediction of [24].

Theoretical ideas and methods that led to the predic-
tion of such states within the chiral soliton models [23–
25] have been criticized with quite sound reasoning in [4]
and, in the large-Nc limit, in [29, 30]. In the absence of
a complete theory of strong interactions, it was impos-
sible in principle to provide firm predictions for the
masses of states with the accuracy better than about
several tens of MeV, and similarly for the widths of
such states. One can agree with [29]: in some cases,
predictions that coincided with the observed mass of
the Θ+ hyperon can be considered “accidental” (see
also [28]).

2 As was admitted recently in [28], the prediction of the low value
of the mass MΘ ≈ 1530 MeV “was to some extent luck.”
 © 2005 Pleiades Publishing, Inc.
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On the other hand, from the practical standpoint, the
chiral soliton approach is useful and has a remarkable
predictive power when at least one of the exotic baryon
masses is fitted. The masses of exotic baryons with a
strangeness of S = –2 and isospin of I = 3/2 predicted in
this way [31], 1.79 GeV for the antidecuplet component
and 1.85 GeV for the 27-plet component, are close to
the value 1.86 GeV measured later [9]. Calculations of
the baryon spectra within the chiral soliton approach
were performed more recently in [32–36], not in con-
tradiction with [31]; recent paper [37], where the inter-
play of rotational and vibrational modes has been inves-
tigated, should be especially mentioned. Some reviews
and a comparison of the chiral soliton approach with
other models can be found, e.g., in [38].

The particular case of strangeness is in a certain
respect more complicated in comparison with the case
of other flavors: the rigid rotator quantization scheme is
not quite valid in this case [29], whereas the bound-
state approach is not really good either [30]. In the case
of heavy flavors, the rotator quantization is not valid at
all, but the bound-state approach becomes more ade-
quate compared to strangeness [30].

Baryons with heavy antiflavors are certainly not a
new issue: they have long been discussed in the litera-
ture, with various results obtained for the energies of
such states. The strange anticharmed pentaquark was
obtained bound [39] in a quark model with the (u, d, s)
SU(3) flavor symmetry and in the limit of a very heavy
c-quark. Long ago, there were already statements and
suggestions in the literature that anticharm or anti-
beauty can be bound by chiral solitons in the case of a
baryon number of B = 1 [40, 41] (so-called P-baryons).
In [42], the mass differences of exotic baryons (Θ+ and
its analogs for anticharm and antibeauty) and nucleons
were estimated in the flavor-symmetric limit for decay
constants, FD = Fπ, in the chiral quark meson model.
In [43], the antiflavor excitation energies were calcu-
lated in the rigid oscillator version [44] of the bound-
state soliton model [45], for baryon numbers between 1
and 8. The rational map ansatz for multiskyrmions [46]
was used as the starting configuration in the three-
dimensional minimization SU(3) program [47]. These
energies were found to be close to 0.59 GeV for anti-
strangeness, 1.75 GeV for anticharm, and 4.95 GeV for
antibeauty; in the last two cases, these energies are
smaller than the masses of D- and B-mesons entering
the Lagrangian [43]. The flavor symmetry-breaking in
flavor decay constants (FD/Fπ > 1) plays an important
role for these estimates. This was therefore a clear hint
that such baryonic systems can be bound relative to
strong interactions.

Similar results, in principle, follow from recent
analysis within the bound-state soliton model [30] and
within the diquark model [4]. The spectra of exotic states
with heavy flavors have been estimated in different mod-
els, already after the discovery of the positive-strange-
ness pentaquark [48] (any baryon number), [49–53], and
JOURNAL OF EXPERIMENTAL A
others. The possibility of the existence of nuclear mat-
ter fragments with positive strangeness was recently
discussed in [54].

In this paper, we estimate the energies of ground
states of multibaryons with baryon numbers up to
approximately 30 with different (anti)flavors using a
very transparent “rigid oscillator” model [44]. In the
next section, we consider the properties of multiskyr-
mions that are required in calculating the energies of
flavor excitations using the rational map approximation
for B > 1 [46]. It is shown that the Θ+ baryon is bound
by nuclear systems, providing positive-strangeness
multibaryons (Θ-hypernuclei), whose binding energy
can reach several tens of MeV. The multiskyrmion con-
figurations have some remarkable scaling properties,
and, as a result, the flavor and antiflavor excitation ener-
gies are close to those for B = 1. The quantization scheme
(a slightly modified rigid oscillator version [44]) is
described in Section 3, where the flavor and antiflavor
excitation energies are also calculated. The masses
(binding energies) of ground states of positive-strange-
ness states (Θ-hypernuclei) are presented in Section 4,
followed by those for anticharmed or antibeautiful
states. The last section contains some conclusions and
prospects.

2. PROPERTIES OF MULTISKYRMIONS

Here, we calculate the properties of multiskyrmion
configurations necessary for calculation of the flavor
excitation energies and hyperfine splitting constants
that govern the 1/Nc-corrections to the energies of the
quantized states. As already noted, the details of
baryon–baryon interactions do not enter the calcula-
tions explicitly, although their effect is implicit via the
integral characteristics of the bound states of skyrmions
shown in Tables 1 and 2.

The Lagrangian of the Skyrme model in its well-
known form depends on parameters Fπ, FD , and e and
can be written as [55, 56]

(1)

where U ∈  SU(3) is a unitary matrix incorporating
chiral (meson) fields and lµ = ∂µUU†. In this model, Fπ
is fixed at the physical value Fπ = 186 MeV and mD is
the mass of the K-, D-, or B-meson. The ratios FD/Fπ are

+
Fπ

2

16
------Tr lµlµ( )–

1

32e2
-----------Tr lµ lν,[ ] 2+=

+
Fπ

2mπ
2

16
-------------Tr U U† 2–+( )

+
FD

2 mD
2 Fπ

2mπ
2–

24
---------------------------------Tr 1 3λ8–( ) U U† 2–+( )

+
FD

2 Fπ
2–

48
------------------Tr 1 3λ8–( ) Ulµlµ lµlµU†+( ),
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Table 1.  Static characteristics of multiskyrmions: moments of inertia and the Σ-term Γ,  in the SK4 variant of the model
with e = 4.12 and for the SK6 variant of the model with e' = 4.11, in GeV–1

B ΓSK4 ΓSK6

1 5.56 2.05 4.80 14.9 5.13 2.28 6.08 15.8

2 11.5 4.18 9.35 22.0 9.26 4.94 14.0 24.7

3 14.4 6.34 14.0 27.0 12.7 7.35 20.7 30.4

4 16.8 8.27 18.0 31.0 15.2 8.93 24.5 33.7

5 23.5 10.8 23.8 35.0 18.7 11.8 32.8 38.3

6 25.4 13.1 29.0 38.0 21.7 14.1 39.3 41.6

7 28.9 14.7 32.3 44.0 23.9 15.4 42.5 43.4

8 33.4 17.4 38.9 47.0 27.2 18.5 51.6 46.9

9 37.8 20.6 46.3 47.5 30.2 21.1 59.1 49.7

10 41.4 23.0 52.0 50.0 32.9 23.5 65.8 51.9

11 45.2 25.6 58.5 52.4 35.8 26.1 73.6 54.3

12 48.5 28.0 64.1 54.6 38.4 28.3 79.9 56.2

13 52.1 30.5 70.2 56.8 41.2 30.8 87.1 58.1

14 56.1 33.6 78.2 58.9 44.3 34.0 96.9 60.5

15 59.8 36.3 85.1 60.9 47.1 36.7 105 62.4

16 63.2 38.9 91.5 62.8 49.7 39.3 112 64.1

17 66.2 41.2 96.8 64.6 52.1 41.3 118 65.4

18 70.3 44.5 106 66.4 55.2 44.8 129 67.5

19 73.9 47.4 113 68.2 58.0 47.8 138 69.2

20 77.5 50.4 121 69.9 60.8 50.8 147 70.8

21 80.9 53.2 128 71.5 63.5 53.6 156 72.4

22 84.3 56.0 136 73.1 66.1 56.4 164 73.8

23 88.0 59.2 144 74.7 69.0 59.7 174 75.4

24 91.3 62.0 151 76.2 71.6 62.5 183 76.7

25 94.7 64.9 159 77.6 74.2 65.4 192 78.0

26 98.2 68.1 168 79.1 77.0 68.7 202 79.4

27 102 71.1 176 80.5 79.7 71.7 211 80.8

28 105 74.3 185 81.9 82.5 75.1 222 82.2

32 118 86.4 217 87.2 93.0 87.4 260 86.9

Γ

ΘI
SK4 ΘF

0( )SK4
ΓSK4 ΘI

SK6 ΘF
0( )SK6

ΓSK6
known to be 1.22 and  for kaons and D-mesons,
respectively. The Skyrme parameter e is close to 4 in
numerical fits of the hyperons spectra (see the discus-
sion at the end of this section). In the variant of the
model with a sixth-order term added to stabilize soli-
tons, the contribution added to the Lagrangian density
is [57–59]

(2)

where we introduce the coefficient 1/48 in the defini-

2.28 1.1–
+1.4

L6

c6

48
------Tr lµ lν,[ ] lν lα,[ ] lα lµ,[ ]( ),–=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion of the constant c6 for further convenience. It is
known that this term can be considered as an approxi-
mation to the exchange of the ω-meson in the limit as
mω  ∞ [57].3 The flavor symmetry-breaking (FSB)
in the Lagrangian is of the usual form and is sufficient
to describe the mass splittings of the octet and decuplet

3 In (2), we use one of several possible forms of the sixth-order
term, all of which make the same contribution to the static mass
of the SU(2) solitons (see also the discussion in [57]). General
consideration of higher order terms and the discussion of their
role in establishing skyrmion properties can be found in [58].
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Table 2.  Static characteristics of multiskyrmions: moments of inertia and Σ-term, Γ,  for rescaled or nuclear variants of the
model: e = 3.00 in the SK4 and e' = 2.84 in the SK6 variants, in GeV–1

B ΓSK4* ΓSK6*

1 12.8 4.66 10.1 19.6 14.2 6.21 15.3 22.3

2 24.3 9.87 20.9 28.8 25.7 13.6 35.9 34.7

3 34.7 15.1 31.7 35.6 35.5 20.4 53.9 42.5

4 42.9 19.4 40.1 41.1 43.2 25.0 64.6 46.9

5 53.5 25.4 53.2 46.2 52.9 32.9 86.2 53.1

6 62.6 30.7 64.7 50.6 61.4 39.4 103 57.4

7 69.6 34.9 72.5 54.4 68.0 43.3 112 59.8

8 79.9 41.3 87.4 58.2 77.3 51.7 135 64.4

9 88.9 47.1 101 61.7 85.7 58.9 154 67.9

10 97.4 52.6 113 64.9 93.5 65.3 171 70.8

11 106 58.5 126 67.9 102 72.5 191 73.8

12 114 63.8 138 70.8 109 78.7 207 76.1

13 122 69.5 151 73.6 117 85.4 225 78.6

14 132 76.3 168 76.3 125 94.0 249 81.5

15 140 82.3 182 78.8 133 101 269 83.9

16 148 88.1 196 81.2 141 108 287 86.0

17 155 93.2 207 83.5 148 114 302 87.6

18 164 100 225 85.9 156 123 328 90.1

19 173 107 241 88.1 164 131 350 92.2

20 181 113 257 90.3 172 139 372 94.1

24 213 138 320 98.2 202 170 457 101

28 245 165 387 105 232 202 550 107

32 275 191 454 112 261 234 640 113

Γ

ΘI
SK4* ΘF

0( )SK4*
ΓSK4* ΘI

SK6* ΘF
0( )SK6*

ΓSK6*
of baryons within the collective coordinate quantiza-
tion approach [60]. A nice and useful feature of the
Lagrangian in (1) and (2) is that it contains only the sec-
ond power of the time derivative, which allows quanti-
zation to be performed without problems (see the next
section).

The Wess–Zumino term, which is to be added to the
action and which can be written as a five-dimensional
differential form [56], plays an important role in the
quantization procedure. It is given by

(3)

where Ω is a five-dimensional domain whose boundary
is the four-dimensional space–time. Action (3) deter-
mines important topological properties of skyrmions,
but it does not contribute to the static masses of classi-
cal configurations [21, 61]. Variation of this action can
be represented as a well-defined contribution to the

SWZ iNc–

240π2
-------------- d5xe

µνλρσTr lµlνlλ lρlσ( ),

Ω
∫=
JOURNAL OF EXPERIMENTAL A
Lagrangian (an integral over four-dimensional space-
time).

We begin our calculations with U ∈  SU(2). The clas-
sical mass of SU(2) solitons, in the most general case,
depends on three profile functions: f, α, and β and is
given by

(4)

where lk are the SU(2) chiral derivatives defined by

UU† = ilkτk , k = 1, 2, 3. The general parametrization
of U0 for an SU(2) soliton used here is given by

Mcl

Fπ
2

8
------ l1

2 l2
2 l3

2+ +[ ] 1

2e2
--------[ l1l2[ ] 2 l2l3[ ] 2+ +





∫=

+ l3l1[ ] 2 ] 1
4
---Fπ

2mπ
2 1 c f–( ) 2c6 l1l2l3( )2+ +





d3r,

∂

U0 c f s f t n⋅+=
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with

For the rational map ansatz, we here use the starting
configurations [46]

(5)

where R(ξ) is a ratio of polynomials of the maximal
power B in the variable

with θ and φ being polar and azimuthal angles defining
the direction of the radius vector r. An important
assumption is that the vector n depends on angular vari-
ables but is independent of r, whereas the profile f(r)
depends on the distance from the soliton center only.
The explicit form of R(ξ) is given in [46, 62] for differ-
ent values of B. Within the rational map approximation,
all characteristics of multiskyrmions that we need
(including the mass and moments of inertia) depend on
two quantities given by integrals over angular variables,

(6)

which satisfy the inequality ( ≥ 12 [46]. For the low-
est-energy configuration, 1 = B, f(0) – f(∞) = π, and the
value of ( should be found by minimization of the map
S2  S2 [46]. The classical mass of the multiskyrmion
then simplifies to

(7)

which should and can be easily minimized for definite
B and (. The mass term density is simple for the start-
ing SU(2) skyrmion,

The quantity λ can be introduced [59] that charac-

nz cα , nx sαcβ, ny sαsβ,= = =

s f f , c fsin f .cos= =

nx
2ReR ξ( )

1 R ξ( ) 2+
--------------------------, ny

2ImR ξ( )
1 R ξ( ) 2+
--------------------------,= =

nz
1 R ξ( ) 2–

1 R ξ( ) 2+
--------------------------,=

ξ θ/2( ) iφ( ),exptan=

1
1

8π
------ r2 ∂ink( )2 Ω,d∫=

(
1

8π
------ r4 ∂ni∂nk[ ]

2
Ω,d∫=

Mcl 4π
Fπ

2

8
------ f '2 2B

s f
2

r2
----+

 
 
  s f

2

2e2r2
------------+∫=

× 2 f '2B s f
2 (

r2
----+ 

  4c6( f '2
s f

4

r4
---- ρM.t.+ + r2dr,

ρM.t. Fπ
2mπ

2 1 c f–( )/4.=
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terizes the relative weight of the sixth-order term as

or

For the pure SK6 variant (λ = 1, e  ∞, and e' =

e  is fixed), there is the relation

The “flavor” moment of inertia plays a very impor-
tant role in the procedure of SU(3) quantization [23, 61]
(see formulas (16), (17), and (23) below). It defines the
SU(3) rotational energy

with Ωa, a = 4, …, 7, being the angular velocities of
rotation in the SU(3) configuration space. For SU(2)
skyrmions as starting configurations and the rational
map ansatz describing the classical field configurations,
ΘF is given by [63, 64]

(8)

It is simply related to  of the flavor symmetric case
(FD = Fπ):

(9)

with Γ defined in Eq. (11) below.
The isotopic momenta of inertia are the components

of the corresponding tensor of inertia presented and dis-
cussed in many papers (see, e.g., [23, 61, 63]). For the
majority of multiskyrmions that we discuss, this tensor
of inertia is close to the unit matrix multiplied by the
isotopic moment of inertia:

This is exactly the case for B = 1 and, to within a good
accuracy, for B = 3 and 7. Considerable deviations take
place for the torus with B = 2; smaller ones for B = 4, 5,
and 6; and, generally, deviations decrease with increas-
ing B-number. In our estimates, we use a very simple

λ
1 λ–( )2

------------------- c6Fπ
2e4,=

c6
λ

Fπ
2e'4

------------.=

1 λ–

c6
1

Fπ
2e'4

------------.=

Erot SU3( ) ΘF Ω4
2 Ω5

2 Ω6
2 Ω7

2+ + +( )/2=

ΘF
1
8
--- 1 c f–( ) FD

2 1

e2
---- f '2 2B

s f
2

r2
----+

 
 
 

+∫=

+ 2c6

s f
2

r2
---- 2B f '2 (

s f
2

r2
----+

 
 
 

r2dr.

ΘF
0( )

ΘF ΘF
0( ) FD

2 /Fπ
2 1–( )Γ /4,+=

Θab ΘIδab, ΘI≈ ΘI aa, /3.=
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expression obtained within the rational map approxi-
mation [63, 64]:

(10)

At large enough baryon numbers, isotopic inertia (10)
receives the leading contribution from the spherical
envelope of the multiskyrmion where its mass is con-
centrated. The dimensions of this spherical bubble

grow as RB ~  [63], and moments of inertia are
roughly proportional to the baryon number.

The quantity Γ (or the Σ-term) determines the con-
tribution of the mass term to the classical mass of soli-

tons, and  enters due to the presence of the FSB term

proportional to the difference  –  in (1), the last
term in (1). They define the potential in which the rigid
oscillator moves and are given by

(11)

The relation

can also be established, where  is the second-order
term contribution to the classical mass of the soliton

and  is the Skyrme term contribution to the flavor
moment of inertia. The calculated momenta of inertia

ΘF, ΘI, Γ (or Σ-term), and  for solitons with the
baryon numbers up to 32 are presented in Tables 1
and 2. The Σ-term Γ receives the contribution from the
bulk of the multiskyrmion, where cf ~ –1, and therefore
grows faster than the moment of inertia ΘI . The flavor
inertia ΘF receives the contribution from the surface
and the bulk of the multiskyrmion, and its behavior is
intermediate between that of Γ and ΘI .

For both variants of the model, SK4 and SK6, we
calculated the static characteristics of multiskyrmions
for two values of the only parameter of the model, the
constant e (or e') for the SK6 variant, related to c6 via

ΘI
4π
3

------ s f
2 Fπ

2

2
------

2

e2
---- f '2 B

s f
2

r2
----+

 
 
 

+∫=

∫ + 8c6Bs f
4 f '2

r2
------ r2dr.

B

Γ̃
FD

2 Fπ
2

Γ
Fπ

2

2
------ 1 c f–( )d3r,∫=

Γ̃ 1
4
--- c f ∂ f( )

2
s f

2 ∂ni( )
2

+[ ] .∫=

Γ̃ 2 Mcl
2( )/Fπ

2 e2ΘF
SK4–( )=

Mcl
2( )

ΘF
SK4

Γ̃

e'
1

Fπ
2c6( )1/4

---------------------.=
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For the SK4 variant of the model and e = 4.12, the num-
bers given in Table 1 for B = 1–8 are obtained as a result
of direct numerical energy minimization in three
dimensions performed using the calculation algorithm
developed in [47]. Therefore, they differ slightly from
those obtained in the pure rational-map approximation.
This difference is maximum for B = 2 and decreases
with increasing B. In all other cases, we used the ratio-
nal map approximation with values of the Morse func-
tion ( given in [46, 62].

The second value of the constants, e = 3.00 and e' =
2.84, leads to the “nuclear variant” of the model, which
allows a quite successful description of the mass split-
tings of nuclear isotopes for atomic (baryon) numbers
between approximately 10 and 30 [65]. The static char-
acteristics of multiskyrmions change considerably
when the constants e or e' change by about 30% (see
Table 2), because the dimensions of solitons scale as
1/Fπe and the isotopic mass splittings scale as Fπe3.
However, the flavor excitation energies change not cru-
cially, even slightly for charm and beauty, according to
the scale invariance of these quantities [63], as
described in the next section.

3. FLAVOR 
AND ANTIFLAVOR EXCITATION ENERGIES

The SU(3) effective action defined by (1), (3) leads
to the collective Lagrangian obtained in [61]. To quan-
tize the solitons in their SU(3) configuration space, in
the spirit of the bound-state approach to the description
of strangeness proposed in [44, 45] and used in [43, 63],
we consider the collective coordinate motion of the
meson fields incorporated into the matrix U:

(12)

where U0 is the SU(2) soliton embedded into SU(3) in
the usual way (into the upper-left corner); A(t) ∈  SU(2)
describes SU(2) rotations; S(t) ∈  SU(3) describes rota-
tions in the “strange,” “charm,” or “beauty” directions;
and O(t) describes rigid rotations in real space. In the
quantization procedure of the rotator with the help of
SU(3) collective coordinates, the following definition
of angular velocities in the SU(3) configuration space is
accepted [61]:

(13)

Here, λα, α = 1, …, 8 are the SU(3) Gell-Mann matri-
ces. For the quantization method proposed in [44] and
used here, parametrization (12) is more convenient and
the components Ωα can be expressed via collective
coordinates introduced in (12).

U r t,( ) R t( )U0 O t( )r( )R† t( ),=

R t( ) A t( )S t( ),=

R† t( )Ṙ t( ) i
2
---Ωαλα .–=
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For definiteness, we consider the extension of the
(u, d) SU(2) Skyrme model in the (u, d, s) direction,
with D being the field of K-mesons, but it is clear that
quite similar extensions can also be made in the direc-
tions of charm or bottom. Therefore,

(14)

where λa are the Gell-Mann matrices of the (u, d, s),
(u, d, c), or (u, d, b) SU(3) groups. The (u, d, c) and
(u, d, b) SU(3) groups are quite analogous to the
(u, d, s) one. For the (u, d, c) group, a simple redefini-
tion of hypercharge should be made. For the (u, d, s)
group,

For the (u, d, c) group,

The angular velocities of the isospin rotations w are
defined in the standard way [61]:

Here, we do not consider the usual space rotations in
detail, because the corresponding momenta of inertia
for baryonic systems are much greater than the isospin
momenta of inertia, and for the lowest possible values
of the angular momentum J, the corresponding quan-
tum correction is either exactly zero (for even B) or
small. The field D is small in magnitude. In fact, it is on

the order of 1/  at least, where Nc is the number of
colors in QCD (see Eq. (22)). Therefore, the expansion
of the matrix S in D can be safely made.

The mass term of Lagrangian (1) can be calculated
exactly, without expansion in powers of the field D,
because the matrix S is given by [44]

with

We find that

(15)

This term can easily be expanded up to any order in d.
The comparison of this expression with ∆LM , within the

S t( ) i$ t( )( ), $ t( )exp Da t( )λa,
a 4 … 7, ,=

∑= =

D4
K+ K–+

2
-------------------, D5

i K+ K––( )
2

-------------------------, etc.= =

D4
D0 D

0
+

2
-------------------, etc.=

A† Ȧ iw– t/2.⋅=

Nc

S 1 i$ d/dsin $2
1 dcos–( )/d2–+=

Tr$2
2d2.=

∆+M

FD
2 mD

2 Fπ
2mπ

2–
4

--------------------------------- 1 c f–( )sd
2.–=
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collective coordinate approach of the quantization of
SU(2) solitons in the SU(3) configuration space [23, 61],
allows us to establish the relation

sin2d = sin2ν,

where ν is the angle of the λ4 rotation or the rotation
into the strange (charm, beauty) direction. After some
calculations, we find that the Lagrangian of the model,
to the lowest order in the field D, can be written as

(16)

Here and below, D is the doublet K+, K0 (D0, D–, or
B+, B0):

We keep the standard notation for the moment of inertia
of the rotation in the flavor direction ΘF for Θc , Θb , or
Θs [60, 61]; different notation is used in [44] (the index
c denotes the charm quantum number, except in Nc).

The contribution proportional to  is suppressed by a

small factor proportional to (  – )/  in compar-
ison to the term on the order of Γ and is more important
for strangeness. The term proportional to NcB in (1)
arises from the Wess–Zumino term in the action and is
responsible for the difference in the excitation energies
of strangeness and antistrangeness (flavor and antifla-
vor in the general case) [44, 45].

Following the canonical quantization procedure, the
Hamiltonian of the system, including terms on the

order of , can be written as [44]

(17)

where

The momentum Π is canonically conjugate to variable
D (see Eq. (18) below). Equation (17) describes an

L Mcl B,– 4ΘF B, Ḋ
†
Ḋ+=

– Γ B

FD
2

Fπ
2

------mD
2 mπ

2–
 
 
 

Γ̃ B FD
2 Fπ

2–( )+ D†D

– i
NcB

2
---------- D†Ḋ Ḋ

†
D–( ).

d2 Tr$2
/2 2D†D.= =

Γ̃ B

FD
2

Fπ
2 mD

2

Nc
0

HB Mcl B,
1

4ΘF B,
--------------Π†Π+=

+ Γ BmD
2 Γ̃ B FD

2 Fπ
2–( )

Nc
2B2

16ΘF B,
-----------------+ + D†D

+ i
NcB

8ΘF B,
-------------- D†Π Π †D–( ),

mD
2 FD

2 /Fπ
2( )mD

2 mπ
2 .–=
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oscillator-type motion of the field D in the background
formed by the (u, d) SU(2) soliton. After diagonaliza-
tion, which can be done explicitly following [44], the
normal-ordered Hamiltonian can be written as

(18)

where a† and b† are the operators of creation of the
strangeness (i.e., antikaons) and antistrangeness (flavor
and antiflavor) quantum number, and ωF, B and  are
the frequencies of flavor (antiflavor) excitations. D and
Π are expressed in terms of a and b as [44]

(19)

where

(20)

is a slowly varying quantity. For a large mass mD , it
simplifies to

(21)

Obviously, at large Nc , µ ~  ~ 1, and the dependence
on the B-number is also weak, because both ΓB , ΘF, B ~
NcB.4 For the lowest states, the values of D are small,

(22)

and increase as (2|F | + 1)1/2 with increasing flavor num-
ber |F |. As follows from (22) [43, 44], deviations of the
field D from the vacuum decrease with increasing mass
mD , as well as with an increasing number of colors Nc;
this explains why the method works for any mD , includ-
ing charm and beauty quantum numbers.

The excitation frequencies ω and  are

(23)

4 Strictly, at large B, ΓB ~ B3/2, as explained above. But, numeri-
cally, at B < 30, ΓB ~ B, as can be seen in Tables 1 and 2.

HB Mcl B, ωF B, a†a ωF B, b†b O 1/Nc( ),+ + +=

ωF B,

Di 1

NcBµF B,

------------------------- bi a†i+( ),=

Π i NcBµF B,

2i
------------------------- bi a†i–( ),=

µF B, 1
16 mD

2 Γ B FD
2 Fπ

2–( )Γ̃ B+[ ]Θ F B,

NcB( )2
-------------------------------------------------------------------------+

1/2

=

µF B, 4mD

Γ BΘF B,

NcB
----------------------.

Nc
0

D 16Γ BΘF B, mD
2 Nc

2B2+[ ] 1/4–
,∼

ω

ωF B,
NcB

8ΘF B,
-------------- µF B, 1–( ),=

ωF B,
NcB

8ΘF B,
-------------- µF B, 1+( ).=
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The oscillation time can be estimated as

and, hence, it decreases with increasing mD . As was
observed in [43, 63], the difference

coincides, to the leading order in Nc, with the expression
obtained in the collective coordinate approach [60, 61]
(see the Appendix). At large mD , using (21) for the dif-
ference ωF, 1 – ωF, B , we obtain (Nc = 3)

(24)

Obviously, at large mD , the first term in (24) dominates
and is positive if

This is confirmed by the data in Table 1. We also note
that the bracket in the first term in (24) is independent
of the parameters of the model if the background SU(2)
soliton is calculated in the chirally symmetrical limit:
both Γ and Θ scale as 1/Fπe3. In a realistic case where
the physical pion mass is included in (1), there is some
weak dependence on the parameters of the model.

The FSB in the flavor decay constants, i.e., the fact

that FK/Fπ ≈ 1.22 and FD/Fπ = , should be taken
into account. In the Skyrme model, this fact leads to the
increase of the flavor excitation frequencies, which
changes the spectra of flavored (c, b) baryons and puts
them in a better agreement with the data [40]. It also
leads to some changes of the total binding energies of
baryonic system [43]. This is partly due to the large
contribution of the Skyrme term to the flavor moment
of inertia ΘF . We note that, in [44], the FSB in strange-
ness decay constant was not taken into account, and this
led to underestimation of the strangeness excitation
energies. Heavy flavors (c, b) have not been considered
in these papers.

The addition of the term L6 into starting Lagran-
gian (1) leads to modification of the flavored moment
of inertia, according to the simple relation

However, in order to adequately take the symmetry-
breaking terms into account, we have to express (in

τosc
π

ωF B,
-----------

2π ΘB/Γ B( )1/2

mD

--------------------------------,∼ ∼

ωF B, ωF B,–
NcB

4ΘF B,
--------------=

ωF 1, ωF B,–
mD

2
-------

Γ1

ΘF 1,
---------- 

 
1/2 Γ B

ΘF B,
----------- 

 
1/2

–≈

+
3
8
--- B

ΘF B,
----------- 1

ΘF 1,
----------– 

  .

Γ1

ΘF 1,
----------

Γ B

ΘF B,
-----------.≥

2.28 1.1–
+1.4

ΘF ΘF
kin ΘF

SK4 ΘF
SK6.+ +=
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some order of ) the first set of coordinates (13) in
terms of the collective coordinates A(t) and S(t) and
substitute the result into Lrot .

Terms on the order of  in the Hamiltonian,
which also depend on the angular velocities of rotations
in the isospin and the usual space, are not crucial but
important for numerical estimates of the spectra of
baryonic systems. To calculate them, we should first
obtain the Lagrangian of baryonic system including all
the terms up to O(1/Nc). The Lagrangian can be written
in a compact form, slightly different from that in [44],
as [42]

(25)

where

and

(26)

As we mentioned already, the role of the term L6
reduces to the modification of the flavored inertia ΘF

in (25). It is a remarkable property of the starting
Lagrangian including L6 that only quadratic terms in Ωa

enter (25). To obtain this expression, we used the con-

nection between components Ωa and D, , ωi ,

and the component Ω8 that determines the WZW term
contribution,

Taking the terms proportional to 1/Nc into account,

Nc
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†tD D†tḊ–( ).–=

Ḋ
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Ḋ 1 d2

3
-----– 

 =

–
16
3
------ D†ḊḊ

†
D D†Ḋ( )2
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we find that the canonical variable Π conjugate to D is

(27)

From (25), the body-fixed isospin operator is

(28)

which can also be written as

(29)

with the operator

(30)

Using the connection between Π, , and D given
by (27) in the leading order, we obtain

(31)

For states with a definite flavor quantum number, we
must make the substitution

for flavor or

for antiflavor; for matrix elements of states with a defi-
nite flavor, we can then write

(32)

with

(33)

Π ∂L

∂Ḋ
†

---------=

=  4ΘF B, Ḋ 1 d2

3
-----– 

  2
3
---D†ḊD–

4
3
---Ḋ

†
DD+

+ i ΘI B, 2ΘF B,–( )w tD⋅ iΘI B, b– tD⋅

+ i
NcB

2
---------- 1 d2

3
-----– 

  D.

Ibf ∂L
∂w
-------- ΘI B, w 2ΘF B, ΘI B,–( )b+= =

–
NcB

2
----------D†tD,

Ibf ΘIw 1
ΘI

2ΘF

----------– 
  IF

NcBΘI

4ΘF

----------------D†tD–+=

ÎF
i
2
--- D†tΠ Π †tD–( ) 1

2
--- b†tb aTta†T–( ).= =

Ḋ

b 1
2ΘF

---------- IF

NcB
2

----------D†tD+ 
  .≈

D†tD
2IF

NcBµF

----------------–

D†tD
2IF

NcBµF

----------------

Ibf ΘI B, w cF B, IF+=

cF B, 1
ΘI B,

2ΘF B, µF B,
------------------------- µF B, 1–( ).–=
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We also used, within our approximation,

(34)

A relation similar to (32) also holds for antiflavor with

(35)

and it therefore differs from (33) by the change µ 
–µ. Using the identities

(36)

and

(37)

we find that the zero mode quantum corrections to the
energies of skyrmions that scale with 1/Nc can be esti-
mated [44] as

(38)

where I = Ibf is the value of the isospin of the baryon or
baryon system, Ir is a quantity analogous to the “right”
isospin Ir  in the collective coordinate approach [61],
and

The hyperfine structure constants cF, B are given in (33),
and  are defined by the relations

(39)

For nucleons,

and

for the ∆-isobar,

ΘI B, b 1 cF B,–( )IF.≈

cF B, 1
ΘI B,

2ΘF B, µF B,
------------------------- µF B, 1+( ),–=

ib– tD⋅ 2D†DḊ Ḋ
†
D D†Ḋ+( )D–=

b2 4D†DḊ
†
Ḋ Ḋ

†
D D†Ḋ+( )

2
,–=

∆E1/Nc

=  
1

2ΘI B,
------------- cF B, Ir Ir 1+( ) 1 cF B,–( )I I 1+( )+[

+ cF B, cF B,–( )IF IF 1+( ) ] ,

Ir Ibf IF.–=

cF B,

1 cF B,–
ΘI B,

ΘF B, µF B,( )2
----------------------------- µF B, 1–( ),=

1 cF B,–
ΘI B,

ΘF B, µF B,( )2
----------------------------- µF B, 1+( ).–=

I Ir 1/2, IF 0= = =

∆E1/Nc
N( ) 3

8ΘI 1,
-------------,=

I Ir 3/2, IF 0,= = =
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and

as in the SU(2) quantization scheme. The ∆-N mass
splitting is described satisfactorily according to the val-
ues of ΘI presented in Table 1.

As can be seen from Table 3, the flavor excitation
energies somewhat decrease in the SK4 variant as the
B-number increases from 1 to 7, but, further, these ener-
gies increase again and exceed the B = 1 value for B ≥
20. The last property can be connected, however, with
specific character of the rational-map approximation (the
quantity Γ increases faster than the flavored inertia ΘF;
see (24)), which becomes less realistic for larger values
of B. Such behavior of the frequencies is important
for conclusions about the possible existence of hyper-
nuclei [66]. Table 3 is presented here for comparison
with antiflavor excitation energies presented in Table 4.
Generally, the rigid oscillator version of the bound-
state model that we use here overestimates the flavor
excitation energies. However, phenomenological con-
sequences derived in [63, 66] for the binding energies
of strange S = –1 hypernuclei are based mainly on the
differences of these energies. The qualitative and, in
some cases, quantitative agreement takes place
between the data for binding energies of ground states
of hypernuclei with atomic numbers between 5 and 20
and the results of calculations within the SK4 variant of
the chiral soliton model, with the collective motion of
solitons in the SU(3) configuration space taken into
account [66].

Another peculiarity of interest is that, for the
rescaled variant of the model, the charm and beauty
excitation energies are very close to those of the origi-
nal variant (scaling property) but differ more substan-
tially for strangeness, being greater by approximately
30–40 MeV. This somewhat unexpected behavior is
explained by the fact that flavor excitation energies
appear as a result of subtraction of two quantities that
behave differently under rescaling (see (23)).

Similar to flavor energies, there is remarkable uni-
versality of antiflavor excitation energies for different
baryon numbers, especially for anticharm and anti-
beauty: variations do not exceed a few percent. It fol-
lows from Table 4 that there is some decrease of the
antiflavor excitation energies as B increases from 1; this
effect is striking for the SK4 variant and especially for
strangeness. Within the SK6 variant, the B = 1 energies
for anticharm and antibeauty are slightly smaller than
for B ≥ 2.

For strangeness,  decreases with increasing
B-number in most cases, as can be seen from Table 4
(except in the rescaled SK6 variant, where the B = 1
energy is slightly smaller than the B = 2 one), but it is
always greater than the kaon mass, and, therefore, the

∆E1/Nc
∆( ) 15

8ΘI 1,
-------------,=

ωs
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Table 3.  Flavor excitation energies for strangeness, charm, and beauty, in GeV. e = 4.12 for the SK4 variant and e' = 4.11 for
the SK6 variant. For rescaled variants (the numbers marked with *), e = 3.00 and e' = 2.84 for SK4 and SK6 variants, respec-
tively. The ratio FD/Fπ = 1.5 for charm and FB/Fπ = 2 for beauty

B

1 0.307 1.54 4.80 0.336 1.61 4.93 0.345 1.55 4.77 0.375 1.62 4.89

2 0.298 1.52 4.77 0.346 1.64 4.98 0.339 1.54 4.75 0.386 1.66 4.95

3 0.293 1.51 4.76 0.342 1.64 4.98 0.336 1.54 4.74 0.385 1.66 4.95

4 0.285 1.50 4.74 0.328 1.62 4.95 0.330 1.52 4.72 0.377 1.64 4.93

5 0.290 1.51 4.75 0.334 1.63 4.96 0.334 1.53 4.74 0.380 1.65 4.94

6 0.290 1.51 4.76 0.332 1.63 4.96 0.334 1.54 4.74 0.379 1.65 4.94

7 0.285 1.50 4.74 0.324 1.62 4.95 0.331 1.53 4.73 0.374 1.64 4.93

8 0.290 1.51 4.76 0.329 1.63 4.96 0.335 1.54 4.75 0.377 1.65 4.94

9 0.292 1.52 4.77 0.331 1.63 4.97 0.336 1.54 4.76 0.378 1.65 4.94

10 0.293 1.52 4.78 0.331 1.63 4.97 0.337 1.55 4.76 0.378 1.65 4.94

11 0.295 1.53 4.79 0.332 1.63 4.97 0.338 1.55 4.77 0.378 1.65 4.95

12 0.295 1.53 4.79 0.331 1.63 4.97 0.338 1.55 4.77 0.378 1.65 4.95

13 0.296 1.53 4.79 0.332 1.63 4.98 0.339 1.55 4.77 0.378 1.65 4.95

14 0.300 1.54 4.80 0.335 1.64 4.98 0.342 1.56 4.79 0.379 1.65 4.95

15 0.301 1.54 4.81 0.336 1.64 4.99 0.343 1.56 4.79 0.380 1.66 4.95

16 0.302 1.54 4.81 0.336 1.64 4.99 0.343 1.56 4.79 0.380 1.66 4.96

17 0.302 1.54 4.81 0.335 1.64 4.99 0.343 1.56 4.79 0.379 1.66 4.95

20 0.308 1.56 4.84 0.340 1.65 5.00 0.347 1.58 4.81 0.382 1.66 4.96

24 0.312 1.57 4.85 0.343 1.66 5.01 0.351 1.58 4.83 0.384 1.66 4.97

28 0.316 1.58 4.87 0.347 1.66 5.02 0.354 1.59 4.85 0.385 1.67 4.98

32 0.319 1.59 4.88 0.349 1.67 5.02 0.356 1.60 4.86 0.386 1.67 4.98

ωs
SK4 ωc

SK4 ωb
SK4 ωs

SK6 ωc
SK6 ωb

SK6 ωs
SK4* ωc

SK4* ωb
SK4* ωs

SK6* ωc
SK6* ωb

SK6*
state with positive strangeness can decay strongly into
kaon and some final nucleus or nuclear fragments.

The heavy antiflavor excitation energies also reveal
a notable scale independence; i.e., the values obtained
with constant e = 4.12 and 3.00 (SK4 variant) shown in
Tables 3 and 4 are close to each other within several
percent, as well as the values for e' = 4.11 and 2.84 for
the SK6 variant. This was actually expected from
general arguments for large values of the FSB meson
mass [43]. The change of numerical values of these
energies is, however, important for conclusions con-
cerning the binding energies of nuclear states with anti-
flavors. All excitation energies of antiflavors are smaller
for rescaled variants, i.e., when the constants e or e' are
decreased by about 30%. This seems natural because
dimensions of multiskyrmions, which scale as 1/Fπe,
increase due to this change, and all energies become
“softer.” Such behavior occurs because antiflavor ener-
gies are the sum of two terms (see above (23)) that
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
behave (roughly!) similarly under rescaling. Remark-
ably, the decrease of energies due to the rescaling is on
the order of 100 MeV in all cases (e.g., for antistrange-
ness and B = 1, it is 119 MeV in the SK4 variant and
116 MeV in the SK6 variant) and slightly smaller for 

(decrease due to rescaling about 100 MeV) and 
(decrease by 110 MeV).

4. THE BINDING ENERGIES 
OF Θ+-HYPERNUCLEI AND ANTICHARMED 

(ANTIBEAUTIFUL) HYPERNUCLEI

In view of sufficiently large values of antistrange-
ness excitation energies, one cannot talk about positive-
strangeness hypernuclei that decay weakly, similarly to
ordinary S = –1 hypernuclei. However, one can talk
about Θ-hypernuclei where the Θ-hyperon is bound by
several nucleons. A puzzling property of pentaquarks is
their small width, ΓΘ < ~10 MeV according to experi-

c

b
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Table 4.  Antiflavor excitation energies for strangeness, charm, and beauty, as in Table 3. In the original variants of the model,
e = 4.12 for the SK4 variant and e' = 4.11 for the SK6 variant. The numbers with * are for the rescaled variants of the model,
e = 3.0 for the SK4 variant and e' = 2.84 for the SK6 variant. The ratio FD/Fπ = 1.5 for charm and FB/Fπ = 2 for beauty

B

1 0.591 1.75 4.94 0.584 1.79 5.04 0.472 1.65 4.83 0.468 1.69 4.93

2 0.571 1.72 4.90 0.571 1.80 5.08 0.459 1.63 4.81 0.470 1.72 4.99

3 0.564 1.71 4.89 0.569 1.80 5.07 0.455 1.63 4.80 0.468 1.72 4.99

4 0.567 1.71 4.87 0.580 1.80 5.06 0.454 1.62 4.78 0.468 1.71 4.97

5 0.558 1.71 4.88 0.571 1.80 5.07 0.452 1.62 4.80 0.466 1.71 4.98

6 0.555 1.71 4.88 0.571 1.80 5.07 0.451 1.62 4.80 0.465 1.71 4.98

7 0.559 1.71 4.88 0.578 1.80 5.06 0.451 1.62 4.79 0.466 1.71 4.97

8 0.553 1.71 4.89 0.571 1.80 5.07 0.450 1.63 4.80 0.465 1.71 4.98

9 0.550 1.71 4.90 0.569 1.80 5.07 0.450 1.63 4.81 0.465 1.71 4.98

10 0.549 1.71 4.90 0.569 1.80 5.07 0.450 1.63 4.82 0.465 1.71 4.98

11 0.547 1.71 4.90 0.567 1.80 5.08 0.450 1.63 4.82 0.464 1.71 4.98

12 0.547 1.72 4.91 0.568 1.80 5.08 0.450 1.63 4.82 0.464 1.71 4.98

13 0.546 1.72 4.91 0.567 1.80 5.08 0.450 1.64 4.83 0.464 1.71 4.99

14 0.543 1.72 4.92 0.564 1.80 5.08 0.450 1.64 4.84 0.464 1.72 4.99

15 0.542 1.72 4.92 0.563 1.80 5.08 0.450 1.64 4.84 0.464 1.72 4.99

16 0.541 1.72 4.93 0.562 1.80 5.08 0.450 1.64 4.85 0.464 1.72 4.99

17 0.542 1.72 4.93 0.564 1.80 5.09 0.450 1.64 4.85 0.464 1.72 4.99

18 0.540 1.72 4.93 0.561 1.81 5.09 0.451 1.65 4.85 0.464 1.72 5.00

19 0.539 1.73 4.94 0.559 1.81 5.09 0.451 1.65 4.86 0.464 1.72 5.00

20 0.538 1.73 4.94 0.558 1.81 5.09 0.451 1.65 4.86 0.464 1.72 5.00

24 0.536 1.73 4.96 0.555 1.81 5.10 0.452 1.66 4.88 0.463 1.72 5.00

28 0.533 1.74 4.97 0.552 1.81 5.10 0.453 1.67 4.89 0.463 1.72 5.01

32 0.532 1.74 4.98 0.550 1.81 5.11 0.453 1.67 4.90 0.463 1.73 5.01

ωs
SK4 ωc

SK4 ωb
SK4 ωs

SK6 ωc
SK6 ωb

SK6 ωs
SK4* ωc

SK4* ωb
SK4* ωs

SK6* ωc
SK6* ωb

SK6*
ments where Θ+ has been observed [1, 2], and probably
even smaller, according to analyses of kaon–nucleon
interaction data [67]. Possible explanations, from some
numerical cancellation [24] and cancellation in a large-
Nc expansion [68] to qualitative one in terms of the
quark-model wavefunction [3, 4] and calculation
using operator product expansion [69] have been
proposed.5 The width of nuclear bound states of Θ
should be of the same order of magnitude as the width
of Θ+ itself or smaller; in addition to the smaller energy
release, some suppression due to the Pauli blocking for
the final nucleon from Θ decay can occur for heavier
nuclei.

5 In most variants of the explanation, it is difficult to expect a width
of the Θ-hyperon on the order of 1 MeV, as obtained in [67].
Therefore, verification of the data analyzed in [67] seems to be of
first priority.
JOURNAL OF EXPERIMENTAL A
For anticharm and antibeauty, the excitation ener-
gies are smaller than the masses of the D- or B-meson,
and it makes sense to consider the possibility of the
existence of anticharmed or antibeauty hypernuclei that
have a lifetime characteristic of weak interactions.

In the bound-state soliton model, and in its rigid
oscillator version as well, the states predicted do not
correspond a priori to definite SU(3) or SU(4) represen-
tations. They can be ascribed to definite irreducible
SU(3) representations as was shown in [43, 44]. Due to
configuration mixing caused by flavor symmetry-
breaking, each state with a definite value of flavor, s, c,
or b, is some mixture of the components of several irre-
ducible SU(3) representations with a given value of F
and isospin I, which is strictly conserved in our
approach (unless manifestly isospin-violating terms are
included into the Lagrangian). In the case of strange-
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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ness, as calculations show (see, e.g., [27]), this mixture
is usually dominated by the lowest irreducible SU(3)
representation, and admixtures do not exceed several
percent. The situation changes for charm or beauty
quantum numbers, where admixtures can have a weight
comparable to the weight of the lowest configuration.
However, we consider here the simplest possibility of
one lowest irreducible representation, for rough esti-
mates.

Let (p, q) characterize the irreducible SU(3) repre-
sentation to which the baryon system belongs. The
quantization condition [61]

for arbitrary Nc then changes to

where m is related to the number of additional quark–
antiquark pairs  present in the quantized states,

 ≥ m [22, 70]. The nonexotic states with m = 0, or
minimal states, have

(Nc = 3 in what follows), and states with the lowest
“right” isospin Ir = p/2 have

for even B and

for odd B [22, 27]. For example, the state with B = 1,
|F | = 1, I = 0, and  = 0 should belong to the octet of
the (u, d, s) or (u, d, c) SU(3) group, if Nc = 3 (see also
[44]). For the first exotic states, the lowest possible irre-
ducible SU(3) representations (p, q) for each value of
the baryon number B are defined by the relations

for even B and

for odd B. For example, we have , , , and

-plets for B = 2, 4, 6, and 8, and , , and 
plets for B = 3, 5, and 7.

Because we are interested in the lowest-energy
states, we here discuss the baryonic systems with the
lowest allowed angular momentum, i.e., J = 0, for B =

p 2q+ NcB=

p 2q+ NcB 3m,+=

nqq

nqq

p 2q+ 3B=

p q,( ) 0,  3 B /2 ( ) =

p q,( ) 1 3B 1–( )/2,( )=

nqq

p 2q+ 3 B 1+( ),=

p 1, q 3B 2+( )/2= =

p 0, q 3B 3+( )/2= =

35 80 143

224 28 55 91
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4, 6, etc. and 

 

J 

 

= 1/2 for odd values of the 

 

B

 

-number.
There are some deviations from this simple law for the
ground states of real nuclei, but, anyway, the correction
to the energy of quantized states due to collective rota-
tion of solitons is small and decreases with increasing

 

B

 

 because the corresponding moment of inertia
increases proportionally to 

 

B

 

2

 

 [63, 64]. Moreover, the

 

J

 

-dependent correction to the energy may cancel in the
differences of energies of flavored and flavorless states,
and we therefore neglect these contributions in our
rough estimates.

For the nonexotic states, we previously considered
the energy difference between the state with flavor 

 

F

 

belonging to the (

 

p

 

,

 

 q

 

) irreducible representation and
the ground state with 

 

F

 

 = 0 and the same angular
momentum and (

 

p

 

, 

 

q

 

) [66]. The situation is different for
exotic states, because exotic and nonexotic states have
different values of (

 

p

 

, 

 

q

 

). The difference between 
and 

 

ω

 

,

,

takes this distinction into account in the values of (

 

p

 

, 

 

q

 

),
as shown explicitly in Appendix.

For 

 

B 

 

= 1, 3, 5, …, we have 

 

I

 

 = 

 

I

 

r

 

 = 1/2, 

 

I

 

F

 

 = 0 for the
ground state, and therefore the correction

For the exotic antiflavored state, we have

 

 I

 

 = 0, 

 

I

 

r

 

 = 

 

I

 

F

 

 =
1/2, and the corrections are equal to

For the difference of energies between exotic and non-
exotic ground states, we obtain

(40)

We note that the moment of inertia 

 

Θ

 

I

 

 does not enter the
difference of energies (40).

For 

 

B

 

 = 4, 6, …, the ground state has 

 

I

 

 = 

 

I

 

r

 

 = 

 

I

 

F

 

 = 0
(as for nucleus 

 

4

 

He) and

ω

ω   ω –  
N

 
c B

 
, 

4
 

Θ
 

F B

 
,

 --------------=

∆E1/Nc

I I 1+( )
2ΘI B,

-------------------
3

8ΘI B,
-------------.= =

∆E1/Nc

3cF B,

8ΘI B,
-------------.=

∆EB F, ωF B,
3 cF B, 1–( )

8ΘF B,
--------------------------+=

=  ωF B,
3 µF B, 1+( )
8µF B,

2 ΘF B,

---------------------------.+

∆E1/Nc
0.=
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For the first exotic states, I = IF = 1/2, and we have a
choice for Ir , Ir = 0 or 1. If

we have Ir = 0, and if  < 0, we should take Ir = 1. In
the first case, the correction to the energy of the state

For B = 1, the difference of the ΘF and nucleon
masses is

(41)

The difference in the masses of the Θ- and Λ-hyperons
is also of interest and can be represented in the simple
form

(42)

The binding energy differences ∆  are the
changes of binding energies of the lowest baryon sys-
tem with flavor , , or  and isospin I = 0 (for odd B)
and I = 1/2 (for even B) in comparison with the usual u,
d nuclei (when one nucleon is replaced by a
Θ-hyperon). The classical masses of skyrmions are
cancelled in such differences:

(43)

It follows from (40) that, for an odd B-number, this
change in the binding energy of the system is

(44)

Evidently, in the limit of very heavy flavor, µF  ∞,

(45)

cF B, 1
ΘI B, µF B, 1+( )

2ΘF B, µF B,
-----------------------------------– 0,>=

cF B,

∆E1/Nc

3 1 cF B, 2cF B,–+( )
8ΘI B,

---------------------------------------------
3 µF B, 1+( )2

8ΘF B, µF B,
2 )

------------------------------.= =

∆MΘF N ωF 1,
3 1 cF 1,–( )

8ΘI 1,
--------------------------–=

=  ωF 1,
3 µF1 1+( )
8µF 1,

2 ΘF 1,

-------------------------.+

∆MΘFΛF
ωF 1, ωF 1,–

3 cF 1, cF 1,–( )
8ΘI 1,

--------------------------------+=

=  
3 µF 1, 1+( )
4µF 1, ΘF 1,
---------------------------.

es c b, ,

s c b

∆eB F, ∆Egr.st B( ) ∆E B F,( )– ∆MΘF N .+=

∆eB F, ωF 1, ωF B,–
3 µF 1, 1+( )
8µF 1,

2 ΘF 1,

---------------------------+=

–
3 µF B, 1+( )
8µF B,

2 ΘF B,

---------------------------.

∆eB F, ωF 1, ωF B, .–
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For B-numbers 4, 6, …, we obtain

(46)

In the limit of very heavy flavor, it follows from (46)
that

(47)

and, hence, in comparison with the case of odd B-num-
bers, there is an additional contribution that decreases
with increasing B-number (because inertia increases
with B) from approximately 25 MeV for B = 3.

Formulas (44) and (46) allow us to perform numer-
ical estimates for the binding energies of antiflavored
states, using the results for frequencies and moments of
inertia presented in previous tables.

Tables 5–7 show the binding energies of favored
J = 0 states relative to the NN scattering state (I = 1,
J = 0) for B = 2, which differ from (46) by added
1/ΘI, B = 2 .

One should keep in mind that, for the SK4 model,
the value of the Θ+ mass is equal to 1588 MeV, which
is approximately 150 MeV above the kaon–nucleon
threshold. Therefore, the states with the largest binding
energy shown in Table 5 are unstable relative to strong
interactions. For the SK6 variant, MΘ = 1566 MeV and
the binding energies are considerably smaller, by
approximately 40–50 MeV in some cases (this is the
main feature of the SK6 variant). For the rescaled vari-
ants, the difference between both variants is reduced
considerably, but the binding energies are then underes-
timated.

From the phenomenological standpoint, we should
describe the B = 1 states with the original variants of
models, i.e., e = 4.12, e' = 4.11 and states with 10 < B =
A < 30, using rescaled variants, as is suggested by the
results of [65]. This procedure gives the most optimistic
values of ∆eS = +1, about 145 MeV for the SK4 variant
and approximately 140 MeV for the SK6 variant. How-
ever, the uncertainty of this prediction is a few tens of
MeV, at least.

For anticharm and antibeauty, there is considerable
difference between the SK4 and SK6 variants (Tables 6,
7). The mass of the Θc-hyperon in the SK4 model is
2700 MeV and the mass of Θb is 5880 MeV, both well
below the threshold for strong decay. For the SK6 vari-
ant, these masses are by 40 and 100 MeV greater, but
also below the threshold. The SK6 variant is less attrac-
tive than the SK4 variant, mainly because the antiflavor
excitation energies for B = 1 in the SK6 variant are
smaller than for B ≥ 2, which leads to repulsion for

∆eB F, ωF 1, ωF B,–
3 µF 1, 1+( )
8µF 1,

2 ΘF 1,

---------------------------+=

–
3 µF B, 1+( )2

8µF B,
2 ΘF B,

------------------------------.

∆eB F, ωF 1, ωF B,–
3

8ΘF B,
--------------,–=
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Table 5.  The binding energy differences and total binding energies of positive strangeness Θ+-hypernuclei (in MeV) for the
SK4 and SK6 variants of the model in rational-map approximation

B

2 47 47 75 75 25 25 17 17

3 67 76 45 53 26 34 4 12

4 20 49 –4 24 9 38 –8 20

5 81 108 47 74 30 57 6 33

6 56 88 24 56 20 52 –1 31

7 83 121 41 80 32 70 7 45

8 69 126 31 87 24 81 2 58

9 94 152 53 110 33 90 8 66

10 79 144 39 103 27 92 4 68

11 99 173 56 130 33 108 9 84

12 86 178 43 135 28 120 5 97

13 101 196 56 152 33 129 9 104

14 93 197 50 154 29 133 6 111

15 105 219 61 175 33 147 9 123

16 96 224 53 181 29 157 7 134

17 105 235 61 191 33 163 9 139

18 100 237 56 194 29 167 7 144

19 109 255 65 211 33 178 10 156

20 103 263 60 220 29 190 8 168

21 111 276 67 232 32 197 10 175

22 105 279 62 236 29 203 8 182

23 113 297 69 253 32 216 10 194

24 107 305 64 263 29 228 8 206

25 113 316 70 273 31 235 10 213

26 109 321 66 278 29 241 8 220

27 115 337 72 294 31 253 10 232

28 111 347 69 305 29 265 9 245

29 116 358 73 315 31 273 10 252

30 112 363 70 321 29 279 9 259

31 117 376 75 335 30 290 10 270

32 113 385 71 343 29 300 9 281

∆e
SK4

e
SK4 ∆e

SK4
e

SK6 ∆e
SK4*

e
SK4* ∆e

SK6*
e

SK6*
B > 1, in comparison with the more familiar SK4
model. Considerable decrease of binding energies for
large B, greater than B ~ 20, may be connected with fact
that the rational-map approximation becomes unrealis-
tic for such large baryon numbers. The beauty decay
constant Fb has not been measured yet, which intro-
duces additional uncertainty in our predictions. Proba-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
bly, the value Fb/Fπ = 1.8 is the best for describing the
Λb mass.

In Table 7, we present the binding energies of hyper-
nuclei with anticharm and antibeauty quantum numbers
for the rescaled SK4 and SK6 variants of the model.

Several specific features should be emphasized. The
binding energies for the rescaled variants are in general
SICS      Vol. 100      No. 5      2005



944 KOPELIOVICH, SHUNDERUK
Table 6.  The total binding energy differences and binding energies themselves (in MeV) for the antiflavored states, SK4 vari-
ant (first four columns), and SK6 variant (last four columns). FD/Fπ = 1.5, FB/Fπ = 2

B

2 61 61 90 90 56 56 44 44

3 38 46 49 57 –8 0 –36 –28

4 15 44 48 76 –29 –1 –36 –7

5 44 71 55 82 –5 22 –30 –3

6 27 59 43 75 –20 12 –39 –7

7 47 85 62 101 –5 34 –23 16

8 31 87 41 98 –17 40 –37 19

9 42 100 43 100 –6 51 –33 24

10 31 96 33 98 –15 50 –40 25

11 40 114 34 108 –7 68 –37 37

12 31 123 27 119 –15 78 –42 50

16 27 154 8 136 –15 113 –50 78

17 32 162 11 141 –10 120 –47 83

20 22 183 –7 154 –15 145 –57 104

24 19 217 –19 179 –16 182 –62 136

28 15 251 –31 205 –17 220 –68 169

32 12 283 –40 232 –18 254 –72 200

∆ec
SK4 ec ∆e

b

SK4 e
b ∆ec

SK6 ec ∆e
b

SK6 e
b

Table 7.  The same as in Table 6, for the rescaled SK4 and SK6 variants of the model

B

2 36 36 54 54 –5 –5 –30 –30

3 24 32 35 43 –27 –19 –59 –51

4 19 48 44 72 –26 2 –45 –16

5 27 54 39 66 –22 5 –50 –23

6 18 50 31 63 –27 5 –52 –20

7 30 69 46 84 –17 22 –38 1

8 19 75 27 84 –24 32 –49 7

9 21 78 23 80 –21 36 –49 8

10 15 80 17 82 –25 40 –52 13

11 17 91 13 88 –22 52 –52 23

12 12 104 9 101 –25 67 –53 39

16 3 131 –12 115 –28 100 –61 66

17 6 136 –10 120 –26 104 –60 70

20 –4 156 –30 131 –31 130 –68 93

24 –10 188 –43 155 –33 166 –73 125

28 –17 220 –57 179 –35 202 –78 158

32 –21 251 –67 205 –37 235 –82 190

∆ec
SK4* ec ∆e

b

SK4* e
b ∆ec

SK6* ec ∆e
b

SK6* e
b
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smaller than those for the original variants (Table 6),
mainly due to the decrease in excitation energies for the
B = 1 configuration (by approximately 100 MeV for the
anticharm and 110 MeV for antibeauty). For greater
B-numbers, this decrease is smaller. However, because
the rescaled or nuclear variant is valid for sufficiently
large baryon numbers, the binding energies can be
greater than the values given in Tables 6 and 7, at least
for B-numbers greater than approximately 10. This is
similar to the situation with the strangeness quantum
number (see Table 5 and its discussion).

5. CONCLUSIONS

The excitation energies of antiflavors are estimated
within the bound-state version of the chiral soliton
model in two different variants of the model, SK4 and
SK6, and for two values of the model parameter (e or e';
see Tables 3 and 4). The bounds for the expected bind-
ing energies of hypernuclei are obtained in this way.
These bounds are wide: variations of the total binding
energy for the SK4 and SK6 models can reach
40−50 MeV. The difference between the original
(baryon) variant and the rescaled (nuclear) variant is
greater for strangeness and smaller for anticharm and
antibeauty, where it is no greater than approximately
20–30 MeV for baryon numbers between 3 and approx-
imately 20. If the logic is correct that the rescaled or
nuclear variant of the model should be applied for suf-
ficiently large B-numbers, beginning with B ~ 10, then
we should expect the existence of weakly decaying
hypernuclei with anticharm and antibeauty.

The properties of multiskyrmion configurations
necessary for these numerical estimates have been cal-
culated within the rational-map approximation [46],
which provides remarkable scaling laws for the excita-
tion energies of heavy antiflavors. This scaling property
of heavy flavors (antiflavors) excitation energies, noted
previously [43, 63] and confirmed in the present paper
by numerical calculations, is fulfilled with good accu-
racy. The relative role of the quantum correction on the
order of 1/Nc (hyperfine splitting) decreases with
increasing baryon number as 1/B, and, therefore, in
addition to the 1/Nc-expansion widely used and dis-
cussed in the literature, the 1/B-expansion and argu-
ments can be used to justify the chiral soliton approach
at sufficiently large values of the baryon number.

Positive strangeness nuclear states are mostly bound
relative to the decay into Θ+ and nuclear fragments, and
one can therefore talk about Θ+ hypernuclei [54, 71].
The particular value of the binding energy depends on
the variant of the model and is greater for the original
SK4 variant (Table 5). The existence of deeply bound
states is not excluded by our treatment, although the
energy of the state is, in most cases, sufficient for the
strong decay into kaon and residual nucleus or nuclear
fragments.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The binding energies of the ground states of hypernu-
clei with heavy antiflavors (  or ) shown in Tables 6
and 7 are more stable relative to variations of the model
parameters (e or e'), but more sensitive to the model
itself. Similarly to the case of antistrangeness, the bind-
ing energies for the SK6 variant of the model are sys-
tematically smaller than for the SK4 variant.

Within our approach, it is possible to obtain the
spectra of excited states with greater values of isospin
and angular momentum. The energy scale in the first
case is given by 1/ΘI and in the second by 1/ΘJ , which
is much smaller for large baryon numbers. Because
1/ΘI = 1/ΘJ ≈ 180 MeV for B = 1 (see Table 1), it seems
difficult, within the chiral soliton approach, to obtain
such small spacing between the ground state and
excited levels as derived, e.g., in [53] within the quark
models.

Although we performed considerable numerical
work, we feel that further refinements, improvements,
and more precise calculations are necessary. For exam-
ple, possible contributions on the order of 1/Nc to the
flavor excitation energies mentioned, e.g., in [44],
might change our conclusions. When the calculations
for the present paper were finished, we became aware
of papers [71, 72], where the possibility of the existence
of antistrange Θ hypernuclei is discussed within more
conventional approaches. The results obtained in [71, 72]
qualitatively agree with ours.
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APPENDIX

Comparison of the Flavor 
and Antiflavor Excitation Energy Difference
in the Rigid Rotator and Bound-State Models 

Here, we show that the difference between flavor
and antiflavor excitation energies given by (23) coin-
cides with the difference of the SU(3) rotation energies
between exotic and nonexotic multiplets within the
rigid rotator approach, in the leading-Nc approxima-
tion. The method used here is similar to that in [22]
applied for arbitrary B-numbers and Nc = 3. The gener-
alization to arbitrary Nc and NF was recently made
in [70]. For nonexotic multiplets, we have the quantiza-
tion condition p + 2q = NcB [61]; we take p = 1 for odd
B-numbers and p = 0 for even B. The contribution to the

c b
SICS      Vol. 100      No. 5      2005



946 KOPELIOVICH, SHUNDERUK

                
SU(3) rotation energy depending on the flavor moment
of inertia, which is of interest here, is equal to [61]

(48)

with

The right isospin for the lowest nonexotic states is Ir =
p/2 = 0 for even B (as for the nuclei 4He, 12C, 16O, etc.)
and Ir = p/2 = 1/2 for odd B (as for the isodoublets 3H–
3He, 5He–5Li, etc.).

The lowest possible exotic irreducible SU(3) repre-
sentation (p, q) for each value of the baryon number B
is defined by the relations

m coincides with the number of additional quark–anti-
quark pairs for several lowest values of p'. The differ-
ence of the SU(3) rotation energies for exotic and non-
exotic multiplets is given by

(49)

After simple transformations, it can be written as

(50)

If m = 1, for the lowest irreducible SU(3) representa-
tions, we have

for even B and

for odd B. We should keep in mind that the right isospin
is given by

Erot SU3( ) 1
2ΘF

----------=

× C2 SU3( ) p q,( ) Ir Ir 1+( )– Nc
2B2/12–[ ]

C2 SU3( ) p2 q2 pq+ +
3

------------------------------ p q+ +=

=  
p 2q+( )2 3 p2+

12
-------------------------------------- p  +  2 q 

2
-----------------

 p 
2
---.+ +

p' 2q'+ NcB 3m;+=

∆Erot 1
2ΘF B,
-------------- C2 SU3( )' C2 SU3( )–[=

– Ir' Ir' 1+( ) Ir Ir 1+( ) ] .+

∆Erot 1
2ΘF B,
--------------

m 2NcB 3m+( ) p'2 p2 )–+
4

----------------------------------------------------------------=

+
3m
2

------- p' p–
2

------------- Ir Ir'–( ) Ir Ir' 1+ +( )+ + .

p' 1 and q' NcB 2+( )/2= =

p' 0 and q' NcB 3+( )/2= =

Ir'
p' 1+

2
------------- Ir 1+= =
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for 

 

B

 

 = 2, 4, … and

for 

 

B

 

 = 1, 3, 5, …. For charm or beauty, due to the large
configuration mixing caused by large values of 

 

D

 

- or 

 

B

 

-
meson masses present in the Lagrangian, such lowest
irreducible representations are often not the main com-
ponent of the mixed state ([51] may be of interest in this
connection), but for strangeness, they are.

For even 

 

B

 

 (

 

m

 

 = 1, 

 

p = 0, p' = 1), we have

(51)

For odd B (p = 1, p' = 0), we obtain

(52)

For Nc = 3 and B = 1, this coincides with well-known
expression for the mass difference between the antide-
cuplet and the octet of baryons.

The leading-Nc contribution is the same as given
by (23). For arbitrary m, the leading contribution is

for any multiplets with the final values of p' and Ir ,
including the values not considered here. It is worth
noting that the correction to the leading contribution
decreases not only with increasing Nc but also with
increasing B (we recall that ΘF, B ~ NcB). Therefore,
convergence of both methods is better for larger values
of B.
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Abstract—A field-theoretic approach is applied to describe behavior of weakly disordered, isotropic elastic
compressible systems with long-range interactions directly in the three-dimensional space for various values of
the long-range interaction parameter a. A renormalization-group procedure is applied separately for a > 2 and
a ≤ 2 directly in the three-dimensional space. Renormalization-group equations are analyzed in the two-loop
approximation, and critical and tricritical points are determined. It is shown that long-range effects are not
important when a ≤ 2, whereas they play a key role in the opposite case of a > 2. Critical exponents character-
izing the system are obtained for various values of the long-range interaction parameter. Behavior of homoge-
neous and disordered systems characterized by two fluctuating order parameters is also described. © 2005 Ple-
iades Publishing, Inc. 
1. INTRODUCTION

It is well known that critical behavior is determined
by several parameters, including dimension, symmetry
of the order parameter, and long-distance behavior of
interaction. Of particular interest are systems with com-
peting short- and long-range interactions. In conven-
tional Ising-like systems, the coupling between fluctua-
tions decays as exp(–r/r0). For this reason, only nearest-
neighbor interactions are taken into consideration, and
systems of this type can be classified as short-range
ones. When the coupling behaves as r–D – a, where D is
the space dimension, analysis cannot be restricted to
nearest-neighbor interactions, and long-range effects
must be taken into account.

It was shown in [1] that three types of critical behav-
ior can be obtained by using ε expansion (ε = 2a – D),
depending on the value of a. When a ≥ 2, critical behav-
ior is characterized by critical exponents similar to
those of short-range systems; i.e., long-range
order/effects are insignificant. When a ≤ D/2, a strong
effect of long-range interaction manifests itself in a
phase transition characterized by a “standard” Gaussian
fixed point with the critical exponents η = 2 – a, ν = 1/a,
and γ = 1. The correlation radius and susceptibility
behave as

(1)

where τ = |T – Tc |/Tc (Tc is the phase-transition temper-
ature) and n' = (n + 2)/(n + 8) (n is the order-parameter
dimension. When D/2 < a < 2, long-range effects are
weaker than in the “standard” regime. Therefore, the
system exhibits non-Gaussian behavior characterized

Rc τ 1/a– τ 1–ln( )n' /a
, χ τ 1– τ 1–ln( )n'

,∼ ∼
1063-7761/05/10005- $26.000949
by the critical exponents η = 2 – a + o(ε2), ν = 1/a(1 +
o(ε)), and γ = 1 + o(ε).

It was shown in [2] that long-range effects play an
essential role in the critical behavior of a short-range
system with a ≥ 2 if the corresponding Fisher exponent
ηSR is negative and a < 2 – ηSR .

The renormalization-group study of the critical
behavior of one-dimensional systems developed in [3]
by using expansion in terms of 1 – a > 0 has shown that
1/ν = 2(1 – a)1/2 in the limit of a  1. The results of
Monte Carlo simulations of Ising-like systems with
long-range interactions reported in [4] for D = 1 and
D = 2 largely agree with predictions of the renormaliza-
tion-group analysis. However, certain details revealed
in the simulations disagree with theoretical predictions.
In particular, the value of ν obtained for one-dimen-
sional systems in the case of a = 1 is much greater than
that predicted by the renormalization-group analysis.
Moreover, crossover to critical behavior characteristic
of short-range systems is observed when a > 3 rather
than 2 (as predicted by the theory). Monte Carlo simu-
lations performed in [5] for D = 2 show that the cross-
over between long- and short-range critical behavior
corresponds to a = 1.75, which also disagrees with the
theory. The critical exponents obtained in that study are
in good agreement with the results of the ε expansion
for a < 1.6. The predictions obtained for larger values
of the long-range interaction parameter substantially
differ from those based on the renormalization-group
analysis.

The discussion above suggests that critical expo-
nents must be calculated directly in the three-dimen-
sional space (without using ε expansion) in the frame-
work of a field-theoretic approach, which is known to
 © 2005 Pleiades Publishing, Inc.
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yield results in better agreement with experiment. In
this paper, a field-theoretic analysis is performed to
describe critical and multicritical behavior of Ising-like
systems with long-range interactions. The effects of
quenched disorder and elastic deformation on critical
and multicritical behavior of long-range systems are
also examined. The present analysis is restricted to sys-
tems with scalar order parameters (Ising-like systems),
because the Harris criterion implies that effects of dis-
order are essential only for systems of this kind.

Elastic-strain–order-parameter coupling plays an
important role in the behavior of compressible systems.
It was shown in [6] that the critical behavior of an iso-
tropic elastic solid modeled by a compressible lattice
with quadratic striction is unstable with respect to the
phonon–order-parameter coupling, and the system
exhibits a weak first-order (nearly second-order) phase
transition. Analysis becomes more complicated when
elastic anisotropy is taken into account [7–10], but does
not lead to qualitatively different results. Whereas the
change in the type of phase transition induced by inho-
mogeneous deformation is a subtle effect due to fluctu-
ations, external pressure is a much stronger factor that
changes the sign of the effective constant of coupling
between order parameters and the order of phase tran-
sition.

In structural transitions that do not involve piezo-
electric effects in the paraphase, elastic strain plays the
role of a secondary order parameter, and its fluctuations
are not critical in most cases. In [11, 12], the general
idea of phase transition in a system with an order
parameter associated with nonfluctuating (additional)
variables was used as a basis for analyses of the effect
of quenched impurities on possible types of phase tran-
sitions using the lowest order ε expansion under various
macroscopic constraints. Under the condition of con-
stant stress, the phase trajectories leaving the neighbor-
hood of the tricritical point of a disordered system were
found to escape from the domain of stable second-order
phase transition, and the transition was smeared out. In
the absence of constant stress, the system did not
exhibit tricritical behavior, second-order phase transi-
tions were obtained, and the predicted crossover was
analogous to that obtained in the lowest order ε expan-
sion, i.e., the critical behavior was strongly changed by
disorder when n < 4 and remained unchanged when
n > 4. These results are quite obvious, because both
self-coupling of order-parameter fluctuations and their
coupling via the impurity field are described by closed
renormalization-group equations in the lowest order
perturbation theory. Vertices that represent coupling to
additional variables must appear only in the next-order
corrections to the theory and may drastically change the
results.

It was shown in [11, 12] that elastic-strain–order-
parameter coupling can lead to crossover in critical
behavior and appearance of tricritical and tetracritical
points in the phase diagram. Quenched disorder not
JOURNAL OF EXPERIMENTAL A
only changes critical behavior, but also eliminates mul-
ticritical points [13].

This study also deals with systems whose phase dia-
grams contain bicritical and tetracritical points, i.e.,
points of intersection of two second-order transition
lines with a first-order transition line and those where
four second-order transition lines intersect, respec-
tively. The behavior of a system in the neighborhood of
a multicritical point is characterized by competing
types of ordering. Whereas crossover from one order
parameter to the other occurs at a bicritical point, order-
ing types can coexist in a mixed phase at a tetracritical
point. Such systems can be described in terms of two
order parameters that are transformed under different
irreducible representations.

Quenched disorder changes the behavior of short-
range systems near both bicritical and tetracritical
points (see [14], where it was shown that order param-
eters are decoupled at a multicritical point in the case of
delta-correlated disorder). In [15], it was revealed that
elastic deformation induces change from bicritical to
tetracritical behavior in homogeneous systems. In dis-
ordered systems [16], effects due to strain degrees of
freedom lead to crossover in tetracritical behavior,
while the type of multicritical behavior remains
unchanged.

2. RENORMALIZATION-GROUP ANALYSIS

In a general model that takes into account both
short- and long-range interactions, the Fourier trans-
form v(q) of the coupling between critical fluctuations
can be written as the following function of |q |:

(2)

where w(q)/qmax(a, 2)  0 as q  0.
For an Ising-like system near the critical point, a

Hamiltonian including elastic strain can be written as

(3)

where Sq is a fluctuating order parameter, u0 is a posi-
tive constant, τ0 ~ |T – Tc |/Tc (Tc is the phase-transition

v q( ) v 0 j2 q 2 ja q a w q( ),+ + +=

H0
1
2
--- dDq τ0 jaqa j2q2+ +( )SqS q–∫=

+
1
2
--- dDq∆τqSqS q–∫

+ u0 dDq1dDq2dDq3Sq1Sq2Sq3S q1– q2– q3–∫
+ a3 dDq1dDq2yq1Sq2S q1– q2–∫

+
a3

0( )

Ω
--------y0 dDqSqS q–∫ 1

2
---a1 dDqyqy q–∫+

+
1
2
---

a1
0( )

Ω
--------y0

2 dDqhqyq

h0

Ω
-----y0,+∫+
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temperature), a is the long-range interaction parameter,
the parameter ja characterizes the relative strength of
long-range interactions, the parameter j2 characterizes
the relative strength of short-range interactions, ∆τq is a
random impurity field (e.g., random temperature), a1
and a2 are the elastic constants of a crystal, and a3 is the
quadratic striction constant. The coupling between the
impurity field and the nonfluctuating order parameter

where uαβ is the strain tensor, is described by introduc-
ing the random field hq thermodynamically conjugate
to uαα(x). In (3), integration is performed in the terms
depending on the nonfluctuating variables that are not
coupled to the order parameter Sq , and the y0 terms
(describing homogeneous deformation) are separated.
It was shown in [6] that this separation is necessary
because the inhomogeneous deformations represented
by yq are responsible for exchange of acoustic phonons
and for long-range effects that are absent under homo-
geneous deformation.

In the framework of the ε expansion with ε = 2a – D,
if a < 2, then the term jaqa transforms into jaq'a with q' =
qb under a renormalization group transformation with
scaling parameter b (see [1]). The coefficient of q2

decreases as ba – 2, while the coefficient of S4 scales with
b2a – D. Thus, long-range interaction changes the critical
dimension, and the Gaussian fixed point plays a domi-
nant role when D > 2a, because the S4 term vanishes as
b  ∞. Since the term j2q2 is negligible when a < 2,
the system exhibits Gaussian critical behavior when
a ≤ D/2. When D/2 < a < 2, non-Gaussian critical
behavior depending on the long-range interaction
parameter is observed.

When a ≥ 2, the term j2q2 transforms into j2q'2 with
q' = qb under a renormalization group transformation
with scaling parameter b. The coefficient of qa

decreases as b2 – a while the coefficient of S4 scales with
b4 – D; i.e., the critical dimension is 4, as in systems
without long-range interactions. The term jaqa is negli-
gible when a ≥ 2.

When the impurity concentration is low, the random
fields ∆τq , hq , and h0 can be modeled by using a Gaus-
sian distribution function:

(4)

y x( ) uαα x( ),
α 1=

3

∑=

P ∆τ h h0, ,[ ] A
1

8b1
-------- ∆τq

2dDq∫–exp=

–
1

8b2
-------- hq

2dDq∫ 1
8b3
-------- h0dDq∫–

–
1

4b4
-------- ∆τqhqdDq∫ 1

4b5
-------- ∆τqh0dDq∫ ,–
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where A is a normalization factor and bi denote a posi-
tive constant proportional to the concentration of
quenched impurities.

Using the standard replica trick to average over the
random impurity field, one obtains the effective Hamil-
tonian

(5)

where the positive constant parameters δ0, g0, , λ,
and λ0 can be expressed in terms of ai and bi . The char-
acteristics of the original system can be calculated by
analytic continuation as m  0.

Define an effective Hamiltonian depending only on
the strongly fluctuating order parameter S by the rela-
tion

(6)

If an experiment is carried out at constant volume, then
y0 is a constant and integration in (6) is performed over
inhomogeneous deformations, whereas homogeneous
deformations do not contribute to the effective Hamil-
tonian. At constant pressure, the Hamiltonian contains
the additional term PΩ , volume is represented in terms
of the strain tensor components as

, (7)

and integration over homogeneous deformations is also
performed in (6). It was noted in [8] that the quadratic
terms in (7) can be important at high pressures and for

HR
1
2
--- dDq τ0 jaqa j2q2+ +( ) Sq

aS q–
a

a 1=

m

∑∫=

–
δ0

2
----- dDq1dDq2dDq3Sq1

a Sq2
a Sq3

b S q1– q2– q3–
b∫

a b, 1=

m

∑

+ u0 dDq1dDq2dDq3Sq1
a Sq2

a Sq3
a S q1– q2– q3–

a∫
a 1=

m

∑

+ g0 dDq1dDq2yq1
a Sq2

a S q1– q2–
a∫

a 1=

m

∑

+
g0

0( )

Ω
-------- y0

a dDqSq
aS q–

a∫
a 1=

m

∑

+
1
2
---λ dDqyqy q–∫ 1

2
---

λ0

Ω
-----y0

2,+

g0
0( )

H S[ ]–{ }exp B HR S y,[ ]–{ } yq.d∏exp∫=

Ω Ω0 1 uαα

α 1=

∑ uαα uββ

α β≠
∑ O u3( )+ + +=
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crystals with significant striction effects. The resulting
Hamiltonian is

(8)

The effective coupling constant v 0 = u0 – z0/2, which
arises in the Hamiltonian owing to the striction effects
determined by g0, can have positive and negative val-
ues. Therefore, the Hamiltonian can be used to describe
both first- and second-order phase transitions. When
v 0 = 0, the system exhibits tricritical behavior. Further-
more, the effective interaction determined by the differ-
ence z0 – w0 in (8) can also lead to a change in phase-
transition order. This representation of the effective
Hamiltonian entails the existence of a higher order crit-
ical point where tricritical curves intersect when v 0 = 0
and z0 = w0 [17]. Note that Hamiltonian (8) is isomor-
phic to the Hamiltonian of the disordered Ising model
with long-range interactions under the tricritical condi-
tion z0 = w0.

The behavior of the system near critical and tricriti-
cal points is determined by the values of the effective
charges at the renormalization-group fixed point. When
a ≥ 2, the renormalization-group relations are

(9)

The scaling parameter b is introduced to change to
dimensionless quantities. It is obvious that the renor-
malization-group transformations of the effective
charges and the corresponding values of fixed points

H
1
2
--- dDq τ0 jaqa j2q2+ +( ) Sq

aS q–
a

a 1=

m

∑∫=

+ v 0 dDq1dDq2dDq3Sq1
a Sq2

a Sq3
a S q1– q2– q3–

a∫
a 1=

m

∑

–
δ
2
--- dDq1dDq2dDq3∫

a b, 1=

m

∑

× Sq1
a Sq2

a Sq3
b S q1– q2– q3–

b

+
1

2Ω
------- z0 w0–( ) dDq1dDq2Sq1

a S q1–
a Sq2

a S q2–
a ,∫

a 1=

m

∑

z0

g0
2

λ
-----, w0

g0
0( )2

λ0
----------, v 0 w0

z0

2
----.–= = =

yq
0( ) Z1yq, y0

0( ) Z0y0, Sq
0( ) Z1/2Sq,= = =

τ0 b3τZτ , w0 b4 D– uZu, δ0 b4 D– δZδ,= = =

g0 b2 D/2– gZg, g0
0( ) b2 D/2– g 0( )Zg

0( ),= =

j0
1( ) b2 a– j 1( )Z j1, j0

1( ) ja/ j2.= =
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are similar to those in the absence of long-range inter-
actions.

When a < 2, the renormalization-group procedure is
defined by the relations

(10)

Since the effective charges λ and λ0 are associated
with the nonfluctuating order parameter y, they remain
invariant under the renormalization-group transforma-
tions:

(11)

Then, the Feynman diagram technique with the
propagator G(q) = 1/(τ + |q |a) is used to calculate the

two-point vertices , , and ; the four-point

vertices  and ; and the nested two-point verti-

ces , , and .

The appropriate Z-factors are determined by regu-
larity conditions for the renormalized vertices written
as the normalization conditions

(12)

yq
0( ) Z1yq, y0

0( ) Z0y0, Sq
0( ) Z1/2Sq,= = =

τ0 baτZτ , u0 b2a D– uZu,= =

δ0 b2a D– δZδ, g0 ba D/2– gZg,= =

g0
0( ) ba D/2– g 0( )Zg

0( ),=

j0 ba 2– jZ j, j0 j2/ ja.= =

λR λ , λ0R λ0.= =

Γτ
2( ) Γλ

2( ) Γλ0
2( )

Γu
4( ) Γδ

4( )

Γg
2 1,( ) Γg0

2 1,( ) Γ t
2 1,( )

Z
∂

∂k2
--------Γ 2( ) k( )

k
2 0=

1,=

Z2Γu
4( )

k
2 0=

b2a D– u,=

Z2Γδ
4( )

k
2 0=

b4 D– δ,=

Z1ZΓg
2 1,( )

k
2 0=

b2 D/2– g,=

Z0ZΓg0
2 1,( )

k
2 0=

b2 D/2– g 0( ),=

Z1Γλ
2( )

k
2 0=

b D– λ ,=

Z0Γλ0
2( )

k
2 0=

b D– λ0,=

ZΓ t
2 1,( )

k
a 0=

b2 D/2– t,=

ZΓ j1
2 1,( )

k
2 0= b2 a– j=
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for a ≥ 2 and

(13)

for a < 2.
The renormalization-group equations are analyzed

in the two-loop approximation. The next step in the
field-theoretic approach is the calculation of the scaling

Z
∂

∂k2
--------Γ 2( ) k( )

k
2 0=

1,=

Z2Γu
4( )

k
2 0=

b2a D– u,=

Z2Γδ
4( )

k
2 0=

b2a D– δ,=

Z1ZΓg
2 1,( )

k
2 0=

ba D/2– g,=

Z0ZΓg0
2 1,( )

k
2 0=

ba D/2– g 0( ),=

Z1Γλ
2( )

k
2 0=

b D– λ ,=

Z0Γλ0
2( )

k
2 0=

b D– λ0,=

ZΓ t
2 1,( )

k
a 0=

ba D/2– t,=

ZΓ j
2 1,( )

k
2 0=

ba 2– j=
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functions β and γ in the renormalization-group differen-
tial equation

(14)

For the effective interaction vertices defined as

(15)

one has functions β and γ for a ≥ 2 that are similar to
those obtained for short-range systems in [13], and

(16)

For a < 2,

b
∂

∂b
------ βu

∂
∂u
------ βδ

∂
∂δ
------ β j

∂
∂j
-----+ + +

+ βg
∂

∂g
------ βg0

∂
∂g 0( )----------- γϕ

n
2
---b

∂ Zϕln
∂b

---------------– γττ
∂
∂τ
-----–+

× Γ m( ) q; τ u δ g g 0( ) b, , , , ,( ) 0.=

v 1 v J0, v 2 δJ0 v 3 zJ0, v 4 wJ0,= = = =

β j1 2 a–( ) j 1( ) 1 24v 1– 8v 2 4v 3– 2v 4+ +–=

+ 576 2 J̃1 a 2= 1–
2
3
---G̃ a 2=– 

  v 1
2

– 120 2 J̃1 a 2= 1–
8
5
---G̃ a 2=– 

  v 1v 2

+ 96 2 J̃1 a 2= 1–
2
3
---G̃ a 2=– 

  v 2
2 .
β1 2a D–( )v 1 1 36v 1– 24v 2 1728 2 J̃1 1–
2
9
---G̃– 

  v 1
2+ +–=

– 2304 2 J̃1 1–
1
6
---G̃– 

  v 1v 2 672 2 J̃1 1–
2
3
---G̃– 

  v 2
2 ,+

β2 2a D–( )v 2 1 24v 1– 8v 2 576 2 J̃1 1–
2
3
---G̃– 

  v 1
2+ +–=

– 1152 2 J̃1 1–
1
3
---G̃– 

  v 1v 2 352 2 J̃1 1–
1
22
------G̃– 

  v 2
2 ,+

β3 2a D–( )v 3 1 24v 1– 16v 2 2v 3– 576 2 J̃1 1–
2
3
---G̃– 

  v 1
2+ +–=

– 120 2 J̃1 1–
8
5
---G̃– 

  v 1v 2 96 2 J̃1 1–
2
3
---G̃– 

  v 2
2 ,+

β4 2a D–( )v 4 1 24v 1– 8v 2 4v 3– 2v 4 576 2 J̃1 1–
2
3
---G̃– 

  v 1
2+ + +–=

– 120 2 J̃1 1–
8
5
---G̃– 

  v 1v 2 96 2 J̃1 1–
2
3
---G̃– 

  v 2
2 ,+
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(17)

β j a 2–( ) j 1 24v 1– 8v 2 4v 3– 2v 4 576 2 J̃1 1–
2
3
---G̃– 

  v 1
2+ + +–=

– 120 2 J̃1 1–
8
5
---G̃– 

  v 1v 2 96 2 J̃1 1–
2
3
---G̃– 

  v 2
2 ,+

γt 2a D–( ) 12v 1– 4v 2 2v 3– 2v 4 288 2 J̃1 1–
1
3
---G̃– 

  v 1
2+ + +=

– 192 2 J̃1 1–
2
3
---G̃– 

  v 1v 2 32 2 J̃1 1–
1
2
---G̃– 

  v 2
2 ,+

γϕ 2a D–( )64G̃ 3v 1
2 3v 1v 2– v 2

2+( ),=

J1
dDqdD p

1 q a+( )2
1 p a+( ) 1 q2 p2 2 pq+ +

a/2
+( )

-------------------------------------------------------------------------------------------------------,∫=

J0
dDq

1 q a+( )2
------------------------,∫=

G
∂

∂ k a
----------- dDqdD p

1 q2 k2 2kq+ +
a

+( ) 1 p a+( ) 1 q2 p2 2 pq+ +
a/2

+( )
----------------------------------------------------------------------------------------------------------------------------------

k 0=

,∫–=

J̃1
J1

J0
2

-----, G̃
G

J0
2

-----.= =
When a ≤ D/2, the integrals J0, J1, and G are divergent.
Finite expressions are obtained by introducing a cutoff

parameter Λ and taking the limits of J1/  and G/  as
Λ  ∞. The integrals are performed numerically, and

a sequence of J1/  and G/  corresponding to various
values of Λ is calculated and extrapolated to infinity.

The required physical information was extracted
from the resulting expressions by applying the Padé–
Borel method extended to the four-parameter case. The
appropriate direct and inverse Borel transforms have
the form

(18)

(19)

To obtain an analytic continuation of the Borel trans-
form of a function, a series in an auxiliary variable θ is

J0
2 J0

2

J0
2 J0

2

f v 1 v 2 v 3 v 4, , ,( ) ci1 i2 i3 i4, , , v 1
i1v 2

i2v 3
i3v 4

i4

i1 i2 i3 i4, , ,
∑=

=  e t– F v 1t v 2t v 3t v 4t, , ,( ) t,d

0

∞

∫

F v 1 v 2 v 3 v 4, , ,( )

=  
ci1 i2 i3 i4, , ,

i1 i2 i3 i4+ + +( )!
----------------------------------------v 1

i1v 2
i2v 3

i3v 4
i4.

i1 i2 i3 i4, , ,
∑
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introduced:

(20)

The Padé approximant [L/M] is applied to this series at
θ = 1. The [2/1] approximant is used to calculate the β
functions in the two-loop approximation.

The critical behavior is completely determined by
the stable fixed points defined by the condition

(21)

The requirement of stability of a fixed point reduces to
the condition that the eigenvalues bi of the matrix

(22)

are positive.
When a ≥ 2, the stable fixed points coincide with

those of short-range systems [13], because j(1)*= 0 for
all of these fixed points. The zero value of the effective
charge characterizing the relative contribution of long-

F̃ v 1 v 2 v 3 v 4 θ, , , ,( ) θk

k 0=

∞

∑=

×
ci1 … i4, ,

k!
---------------v 1

i1v 2
i2v 3

i3v 4
i4δi1 i2 i3 i4 k,+ + + .

i1 i2 i3 i4, , ,
∑

βi v 1* v 2* v 3* v 4* j*, ,, ,( ) 0 i 1 2 3 4 j, , , ,=( ).=

Bi j,
∂βi v 1* v 2* v 3* v 4*, j*, , ,( )

∂v j

-----------------------------------------------------------=
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Table 1.  Fixed points and eigenvalues of the stability matrix for homogeneous systems

N j b1 b2 b3 b4 b5

a = 1.6

1.1 0.01597 0 0 0 0 0.32 –0.48 –0.62 –0.62 0.87

1.2 0.01597 0 0.30968 0 0 0.87 –0.48 0.62 0.62 0.16

1.3 0.01597 0 0.30968 0.30968 0 0.87 –0.48 0.62 –0.62 0.32

1.4 0 0 0.5 0 0 –1 –1 1 1 0.4

1.5 0 0 0.5 0.5 0 –1 –1 1 –1 0.4

1.6 –0.22762 0.59481 0 0 0 45.30 32.57 –0.12 –0.12 0.08

a = 1.7

2.1 0.02049 0 0 0 0 0.23 –0.34 –0.53 –0.53 0.70

2.2 0.02049 0 0.26650 0 0 0.70 –0.34 0.53 0.53 0.12

2.3 0.02049 0 0.26650 0.26650 0 0.70 –0.34 0.53 –0.53 0.23

2.4 0 0 0.5 0 0 –1 –1 1 1 0.3

2.5 0 0 0.5 0.5 0 –1 –1 1 –1 0.3

2.6 –0.04523 0.27489 0 0 0 13.24 3.92 –0.17 –0.17 0.08

a = 1.8

3.1 0.02323 0 0 0 0 0.15 –0.22 –0.49 –0.49 0.63

3.2 0.02323 0 0.24540 0 0 0.63 –0.22 0.49 0.49 0.08

3.3 0.02323 0 0.24540 0.24540 0 0.63 –0.22 0.49 –0.49 0.15

3.4 0 0 0.5 0 0 –1 –1 1 1 0.2

3.5 0 0 0.5 0.5 0 –1 –1 1 –1 0.2

3.6 0.06419 0.04688 0 0 0 0.63* 0.63* –0.12 –0.12 0.08

3.7 0.06419 0.04688 0.06610 0 0 0.63* 0.63* 0.12 0.12 0.09

3.8 0.06419 0.04688 0.06610 0.06610 0 0.63* 0.63* 0.12 –0.12 0.08

a = 1.9

4.1 0.04207 0 0 0 0 0.06 –0.18 –0.18 –0.18 0.68

4.2 0.04435 0 0.09519 0 0 0.68 –0.18 0.19 0.18 0.04

4.3 0.04435 0 0.09519 0.09519 0 0.68 –0.18 0.19 –0.19 0.06

4.4 0 0 0.5 0 0 –1 –1 1 1 0.1

4.5 0 0 0.5 0.5 0 –1 –1 1 –1 0.1

4.6 0.06656 0.04082 0 0 0 0.56* 0.56* –0.12 –0.12 0.04

4.7 0.06656 0.04082 0.06572 0 0 0.56* 0.56* 0.12 0.12 0.05

4.8 0.06656 0.04082 0.06572 0.06572 0 0.56* 0.56* 0.12 –0.12 0.04

v 1* v 2* v 3* v 4*
range interactions implies that the critical behavior of
the system is dominated by short-range interactions.

The stable fixed points of the RG transformation,
the eigenvalues of the fixed-point stability matrix, and
the critical exponents for 1.5 < a ≤ 1.9 are listed in
Table 1. When 0 < a < 1.5, the only fixed point is the
stable Gaussian one, v* = 0. When a = 1.5, the values
of the effective charges cannot be determined at the
fixed point, because β is zero for D = 3. However, these
values are not required since γt = γϕ = 0 in this case.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
An analysis of the fixed points and the eigenvalues
of the stability matrix shows that short-range effects are
not essential for systems with a < 2, whereas long-
range interactions play a dominant role, because the
relative strength of short-range interactions is j* = 0 and
the stability of the system with respect to j is deter-
mined by b5 > 0.

The critical behavior of homogeneous “rigid” sys-
tems (fixed points 1.1, 2.1, 3.1, and 4.1) becomes simi-
lar to Gaussian behavior as a approaches a = 1.5 from
SICS      Vol. 100      No. 5      2005
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Table 2.  Critical exponents

N ν α η γ z

a = 1.6

1.1 0.69736 –0.09208 0.40394 1.11303 2.00018

1.2 0.88948 –0.66844 0.40394 1.41966 2.00018

1.3 0.69736 –0.09208 0.40394 1.11303 2.00018

1.4 1.25 –1.75 0.4 2 2

1.5 0.625 0.125 0.4 1 2

a = 1.7

2.1 0.66745 –0.00235 0.30486 1.13142 2.00078

2.2 0.83065 –0.49195 0.30486 1.40807 2.00078

2.3 0.66745 –0.00235 0.30486 1.13142 2.00078

2.4 1.17647 –1.52941 0.3 2 2

2.5 0.58823 0.23531 0.3 1 2

a = 1.8

3.1 0.63634 0.09098 0.20746 1.14116 2.00153

3.2 0.78291 –0.34873 0.20746 1.40399 2.00153

3.3 0.63634 0.09098 0.20746 1.14116 2.00153

3.4 1.11111 –1.33333 0.2 2 2

3.5 0.55556 0.33333 0.2 1 2

3.6 0.73279 –0.19837 0.25098 1.28540 2.11225

3.7 0.75776 –0.27328 0.25098 1.32919 2.11225

3.8 0.73279 –0.19837 0.25098 1.28540 2.11225

a = 1.9

4.1 0.65268 0.04196 0.11342 1.23179 2.00663

4.2 0.75143 –0.25429 0.11342 1.41814 2.00663

4.3 0.65268 0.04196 0.11342 1.23179 2.00663

4.4 1.05263 –1.15789 0.1 2 2

4.5 0.52632 0.42104 0.1 1 2

4.6 0.70679 –0.12037 0.13441 1.31979 2.12385

4.7 0.72133 –0.72133 0.13441 1.34695 2.12385

4.8 0.70679 –0.12037 0.13441 1.31979 2.12385
above. Since the eigenvalues b2, b3, and b4 of the stabil-
ity matrix are negative, the critical behavior of homoge-
neous “rigid” systems is unstable with respect to both
dilution with quenched impurities and elastic deforma-
tion.

Homogeneous compressible systems with 1.5 < a <
2.0 exhibit qualitatively similar critical behavior. The
fixed points corresponding to constant deformation
(1.2, 2.2, 3.2, and 4.2) are stable. For compressible sys-
tems at constant pressure and volume, the tricritical
fixed points are 1.3, 2.3, 3.3, 4.3 and 1.4, 2.4, 3.4, 4.4,
respectively. Points 1.5, 2.5, 3.5, and 4.5 are fourth-
order ones (intersections of two tricritical lines), which
JOURNAL OF EXPERIMENTAL A
are unstable with respect to dilution with quenched
impurities.

Disordered “rigid” systems (fixed points 1.6, 2.6,
3.6, and 4.6) have stable fixed points in the physical
region ( ,  > 0) only if a ≥ 1.8. Calculations show
that the stable fixed points of three-dimensional sys-
tems are characterized by negative values of  if
1.6 ≤ a < 1.8, which points to a change from second- to
first-order phase transition [18]. These fixed points are
unstable with respect to elastic deformation.

Disordered compressible systems with 1.8 ≤ a < 2.0
exhibit specific critical behavior (fixed points 3.7 and

v 1* v 2*

v 1*
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4.7). Fixed points 3.8 and 4.8 are the tricritical ones
corresponding to  = . Tricritical behavior corre-

sponding to  = 0 cannot be observed since there
does not exist any fixed point corresponding to physical
values of the effective charges. Therefore, the phase
diagram does not contain fourth-order critical points.

The exponent ν characterizing the growth of the cor-
relation radius near the critical point (Rc ~ |T – Tc |–ν) is
determined by the relation

The Fisher exponent η describing the behavior of the
correlation function near the critical point in the wave-
vector space (G ~ k2 + η) is determined by the scaling
function γϕ:

The remaining critical exponents can be found from the
scaling relations.

The values of the critical exponents for the fixed
points listed in Table 1 are presented in Table 2.

3. CRITICAL DYNAMICS

Relaxational dynamics of spin systems near the crit-
ical temperature can be described by a Langevin-type
equation for the order parameter:

(23)

v 3* v 4*

v 1*

ν 1/a 1 γt v 1* v 2* v 3* v 4*,, ,( )+( ) 1–
.=

η 2 a– γϕ v 1* v 2* v 3* v 4*,, ,( ).+=

∂S
∂t
------ λ0

δH
δS
-------– η λ 0h,+ +=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where λ0 is a kinetic coefficient, η(x, t) is a Gaussian
random force (representing the effect of a heat reser-
voir) defined by the probability distribution

(24)

with a normalization factor Aη , and h is an external field
thermodynamically conjugate to the order parameter.
The temporal correlation function G(x, t) of the order-
parameter field can be found by solving Eq. (23) with
H[S, ∆τ] given by Hamiltonian (3) for S[η, h, ∆τ], aver-
aging the result over Pη and P[∆τ, h, h0], and retaining
the component linear in h(0):

(25)

where

(26)

(27)

Instead of dealing with the correlation function, it is
reasonable to invoke the Feynman diagram technique
and represent the corresponding vertex Γ(2)(k, ω) in the
two-loop approximation.

The dynamic critical exponent z characterizing crit-
ical slowing-down of relaxation is determined by sub-
stituting the dynamic scaling function γλ(v 1, v 2, v 3, v 4):

Pη Aη 4λ0( ) 1– ddx tη2 x t,( )d∫–[ ]exp=

G x t,( ) δ
δh 0( )
-------------- S x t,( )〈 〉[ ] imp h 0= ,=

S x t,( )〈 〉[ ] imp

=  B 1– D η{ } ∆τ qS x t,( )PηP∆τ ,d∏∫
B D η{ } ∆τ qPηP∆τ .d∏∫=
(28)

z 2 γλ v 1* v 2* v 3* v 4*,, ,( ),+=

γλ 2a D–( ) 4D1'– 532 D2'
4
9
---G̃– 

  v 1
2– 288 D3'

1
3
---D1'

1
3
---G̃–+ 

  v 1v 2 16 D4' D5' 4D1' G̃–+ +( )v 2
2–+ ,=

D1'
1
J0
----- ∂D1

∂ iω/λ–( )
-----------------------

k 0= ω, 0=

,=

D1
dDq

1 q a iω/λ–+
-----------------------------------,∫=

Di'
1

J0
2

----- ∂Di

∂ iω/λ–( )
-----------------------

k 0 ω, 0= =

i 2 … 5, ,=( ),=

D2
3
4
--- dDqdD p

1 q a+( ) 1 p a+( ) 3 q a p a p q+ a iω/λ–+ + +( )
----------------------------------------------------------------------------------------------------------------------------,∫=

D3
3
4
--- dDqdD p

2 1 q a iω/λ–+( ) 1 p a+( ) 2 q a p q+ a+ +( )
----------------------------------------------------------------------------------------------------------------,∫=

D4
dDqdD p

1 q a iω/λ–+( ) 1 p a iω/λ–+( ) 1 p q+ a iω/λ–+( )
----------------------------------------------------------------------------------------------------------------------------------,∫=
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D5 dDqdD p
1

1 q a iω/λ–+( )2
1 p q+ a iω/λ–+( )

------------------------------------------------------------------------------------------- 1

1 q a iω/λ–+( )2
1 p a iω/λ–+( )

----------------------------------------------------------------------------------– .∫=
The summation of the asymptotic power series expan-
sion of γλ(v 1, v 2, v 3, v 4) is performed by using the
Padé–Borel technique. The dynamic and static scaling
exponents are shown in Table 2.

4. MULTICRITICAL BEHAVIOR

By applying the replica trick, the Hamiltonian of a
disordered compressible system with long-range inter-
actions characterized by two order parameters is repre-
sented as

(29)

H0
1
2
--- dDq τ1 qa+( ) Φq

aΦ q–
a

a 1=

m

∑∫=

+
1
2
--- dDq τ2 qa+( ) Ψq

aΨ q–
a

a 1=

m

∑∫

+ u01 dDq1dDq2dDq3 Φq1
a Φq2

a( ) Φq3
b Φ q1– q2– q3–

b( )
a b, 1=

m

∑∫

+ u02 dDq1dDq2dDq3 Ψq1
a Ψq2

a( ) Ψq3
b Ψ q– q2– q3–

b( )
a b, 1=

m

∑∫

+ 2u03 dDq1dDq2dDq3 Φq1
a Φq2

a( ) Ψq3
b Ψ q1– q2– q3–

b( )
a b, 1=

m

∑∫

–
δ01

2
------- dDq1dDq2dDq3 Φq1

a Φq2
a( ) Φq3

a Φ q– q2– q3–
a( )

a 1=

m

∑∫

–
δ02

2
------- dDq1dDq2dDq3 Ψq1

a Ψq2
a( ) Ψq3

a Ψ q1– q2– q3–
a( )

a 1=

m

∑∫

– δ03 dDq1dDq2dDq3 Φq1
a Φq2

a( ) Ψq3
a Ψ q1– q2– q3–

a( )
a 1=

m

∑∫

+ g1 dDq1dDq2yq1 Φq2
a Φ q1– q2–

a

a 1=

m

∑∫

+ g2 dDq1dDq2yq1 Ψq2
a Ψ q1– q2–

a

a 1=

m

∑∫

+
g1

0

Ω
-----y0 dDq Φq

aΦ q–
a g2

0

Ω
-----y0 dDq Ψq

aΨ q–
a

a 1=

m

∑∫+
a 1=

m

∑∫
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where Φ and Ψ are m-dimensional fluctuating order
parameters, u01 and u02 are positive constants, τ1 ~ |T –
Tc1|/Tc1, τ2 ~ |T – Tc2 |/Tc2 (Tc1 and Tc2 are the phase-tran-
sition temperatures corresponding to the first and sec-
ond order parameters, respectively),

(uαβ is the strain tensor), g1 and g2 are the quadratic
striction constants, β is an elastic constant of a crystal,
and D is the space dimension. The characteristics of the
original system can be calculated by analytic continua-
tion as m  0. The nonnegative constants δ01, δ02, and
δ03 characterize the coupling between critical fluctua-
tions via the impurity field. Since the coupling between
the impurity field and elastic strain is linear, averaging
over the impurity field leads to overdetermination of
δ01, δ02, and δ03. In this expression for the Hamiltonian,
integration is performed in the terms depending on the
nonfluctuating variables that are not coupled to the
order parameter. As in the case of a single order param-
eter, the y0 terms (describing homogeneous deforma-
tion) are separated in (29).

Define an effective Hamiltonian depending only on
the strongly fluctuating order parameters Φ and Ψ by
the relation

(30)

Then,

+ 2β dDqyqy q–∫ 2
β0

Ω
-----y0

2,+

y x( ) uαα x( )
α 1=

3

∑=

H Φ Ψ,[ ]–{ }exp

=  B H0 Φ Ψ y, ,[ ]–{ } yq.d∏exp∫

H
1
2
--- dDq τ1 q2+( ) Φq

aΦ q–
a

a 1=

m

∑∫=

+
1
2
--- dDq τ2 q2+( ) Ψq

aΨ q–
a

a 1=

m

∑∫

+ v 01 dDq1dDq2dDq3 Φq1
a Φq2

a( ) Φq3
b Φ q1– q2– q3–

b( )
a b, 1=

m

∑∫

+ v 02 dDq1dDq2dDq3 Ψq1
a Ψq2

a( ) Ψq3
b Ψ q1– q2– q3–

b( )
a b, 1=

m

∑∫

+ 2v 03 dDq1dDq2dDq3 Φq1
a Φq2

a( ) Ψq3
b Ψ q1– q2– q3–

b( )
a b, 1=

m

∑∫
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(31)

This Hamiltonian admits a wide diversity of multi-
critical points. The conditions for bicritical and tetra-
critical behavior are

and

,

–
δ01

2
------- dDq1dDq2dDq3 Φq1

a Φq2
a( ) Φq3

a Φ q1– q2– q3–
a( )

a 1=

m

∑∫

–
δ02

2
------- dDq1dDq2dDq3 Ψq1

a Ψq2
a( ) Ψq3

a Ψ q1– q2– q3–
a( )

a 1=

m

∑∫

– δ03 dDq1dDq2dDq3 Φq1
a Φq2

a( ) Ψq3
a Ψ q1– q2– q3–

a( )
a 1=

m

∑∫

+
z1

2 w1
2–

2
---------------- dDq1dDq2 Φq1

a Φ q1–
a( ) Φq2

b Φ q2–
b( )

a b, 1=

m

∑∫

+
z2

2 w2
2–

2
---------------- dDq1dDq2 Ψq1

a Ψ q1–
a( ) Ψq2

a Ψ q2–
a( )

a 1=

m

∑∫

+ z1z2 w1w2–( ) dDq1dDq2∫

× Φq1
a Φ q1–

a( ) Ψq2
b Ψ q2–

b( ),
a b, 1=

m

∑

v 01 u01

z1
2

2
----, v 02– u02

z2
2

2
----, v 03– u03

z1z2

2
---------,–= = =

z1

g1

β
-------, z2

g2

β
-------, w1

g1
0

β0

---------, w2

g2
0

β0

---------.= = = =

v 3
1
2
--- z1z2 w1w2– δ3–( )+ 

 
2

> v 1
1
2
--- z1

2 w1
2– δ1–( )+ 

 

× v 2
1
2
--- z2

2 w2
2– δ2–( )+ 

  ,

v 3
1
2
--- z1z2 w1w2– δ3–( )+ 

 
2

< v 1
1
2
--- z1

2 w1
2– δ1–( )+ 

 

× v 2
1
2
--- z2

2 w2
2– δ2–( )+ 
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respectively. Moreover, even higher order multicritical
points can exist, owing to striction effects.

The functions β and γ in the renormalization-group
equation for the renormalized vertices u1, u2, u3, δ1, δ2,

δ3, g1, g2, , and  (or for the complex-valued ver-
tices z1, z2, w1, w2, v 1, v 2, v 3, δ1, δ2, and δ3, which are
better suited for analyzing multicritical behavior) are
calculated by a standard method based on the Feynman
diagram technique and a renormalization procedure. As
a result, the following expressions for β functions are
obtained in the two-loop approximation:

g1
0( ) g2

0( )

βv 1 v 1– 36v 1
2 4v 3

2 24v 1δ1–+ +=

– 1728 2 J̃ 1–
2
9
---G̃– 

  v 1
3

– 192 2 J̃ 1–
2
9
---G̃– 

  v 1v 3
2 64 2 J̃ 1–( )v 3

3–

+ 96 2 J̃ 1–
2
3
---G̃– 

  v 1v 3δ3

+ 32 2 J̃ 1–( )v 3
2δ3 2304 2 J̃ 1–

1
6
---G̃– 

  v 1
2δ1+

– 672 2 J̃ 1–
2
3
---G̃– 

  v 1δ1
2 16 2 J̃ 1–( )v 3

2δ1,+

βv 2 v 2– 36v 2
2 4v 3

2 24v 2δ2–+ +=

– 1728 2 J̃ 1–
2
9
---G̃– 

  v 2
3

– 192 2 J̃ 1–
2
9
---G̃– 

  v 2v 3
2 64 2 J̃ 1–( )v 3

3–

+ 96 2 J̃ 1–
2
3
---G̃– 

  v 2v 3δ3 32 2 J̃ 1–( )v 3
2δ3+

+ 2304 2 J̃ 1–
1
6
---G̃– 

  v 2
2δ2

– 672 2 J̃ 1–
2
3
---G̃– 

  v 2δ2
2 16 2 J̃ 1–( )v 3

2δ2,+

βv 3 v 3– 16v 3
2 12v 1v 3 12v 2v 3 4v 3δ1–+ + +=

– 4v 3δ2 16v 3δ3– 320 2 J̃ 1–
2
5
---G̃– 

  v 3
3–
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– 288 2 J̃ 1–
2
3
---G̃– 

  v 1
2v 3

– 288 2 J̃ 1–
2
3
---G̃– 

  v 2
2v 3

– 576 2 J̃ 1–( )v 1v 3
2 576 2 J̃ 1–( )v 2v 3

2–

+ 448 2 J̃ 1–
2
7
---G̃– 

  v 3
2δ3

+ 192 2 J̃ 1–( )v 3
2δ1 192 2 J̃ 1–( )v 3

2δ2+

– 48 2 J̃ 1–
2
3
---G̃– 

  v 3δ1
2

– 48 2 J̃ 1–
2
3
---G̃– 

  v 3δ2
2

+ 432 2 J̃ 1–
2
3
---G̃– 

  v 1v 3δ1

+ 432 2 J̃ 1–
2
3
---G̃– 

  v 2v 3δ2

+ 576 2 J̃ 1–( )v 1v 3δ3 576 2 J̃ 1–( )v 2v 3δ3+

– 192 2 J̃ 1–( )v 3δ3
2

– 192 2 J̃ 1–( )v 3δ1δ3 192 2 J̃ 1–( )v 3δ2δ3,–

βδ1 δ1– 16δ1
2 24v 1δ1– 8v 3δ3–+=

– 352 2 J̃ 1–
1
22
------G̃– 

  δ1
3 128 2 J̃ 1–( )v 3

2δ3+

– 192 2 J̃ 1–( )v 3δ3
2 1152 2 J̃ 1–

1
3
---G̃– 

  v 1δ1
2–

+ 576 2 J̃ 1–
2
3
---G̃– 

  v 1
2δ1

+ 64 2 J̃ 1– 2G̃–( )v 3
2δ1

– 192 2 J̃ 1–
2
3
---G̃– 

  v 3δ1δ3,

βδ2 δ2– 16δ2
2 24v 2δ2– 8v 3δ3–+=

– 352 2 J̃ 1–
1
22
------G̃– 

  δ2
3 128 2 J̃ 1–( )v 3

2δ3+
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(32)

– 192 2 J̃ 1–( )v 3δ3
2 1152 2 J̃ 1–

1
3
---G̃– 

  v 2δ2
2–

+ 576 2 J̃ 1–
2
3
---G̃– 

  v 2
2δ2

+ 64 2 J̃ 1– 2G̃–( )v 3
2δ2

– 192 2 J̃ 1–
2
3
---G̃– 

  v 3δ2δ3,

βδ3 δ3– 8δ3
2 12v 1δ3 12v 2δ3 4v 3δ1+ + + +=

+ 4v 3δ2 4δ1δ3 4δ2δ3+ +

– 64 2 J̃ 1–( )δ3
3 288 2 J̃ 1–( )v 1δ3

2+

+ 288 2 J̃ 1–( )v 2δ3
2 288 2 J̃ 1–( )v 1

2δ3+

+ 288 2 J̃ 1–( )v 2
2δ3 48 2 J̃ 1–

2
3
---G̃– 

  δ1
2δ3+

+ 48 2 J̃ 1–
2
3
---G̃– 

  δ2
2δ3

+ 96 2 J̃ 1–( )δ1δ3
2 96 2 J̃ 1–( )δ2δ3

2+

+ 64 2 J̃ 1–( )v 3
2δ1 64 2 J̃ 1–( )v 3

2δ2+

– 32 2 J̃ 1–( )v 3δ1
2 32 2 J̃ 1–( )v 3δ2

2–

+ 64 2 J̃ 1– 2G̃–( )v 3
2δ3 192 2 J̃ 1– 2G̃–( )v 3δ3

2–

– 288 2 J̃ 1–
2
3
---G̃– 

  v 1δ1δ3

– 288 2 J̃ 1–
2
3
---G̃– 

  v 2δ2δ3

– 128 2 J̃ 1–( )v 3δ1δ3 128 2 J̃ 1–( )v 3δ2δ3,–

βz1 z1– 24v 1z1 2z1
3 16δ1z1– 4δ3z2–+ +=

+ 2z1z2
2 4v 3z2 576 2 J̃ 1–

2
3
---G̃– 

  v 1
2z1–+

– 32 2 J̃ 1–( )v 3
2z1 16 2 J̃ 1– G̃–( )v 3

2z2–

+ 120 2 J̃ 1–
8
5
---G̃– 

  v 1z1δ1
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– 32 2 J̃ 1–
2
3
---G̃– 

  z1δ1
2 16 2 J̃ 1–( )z1δ3

2–

– 32 2 J̃ 1–( )z2δ3
2

+ 128 2 J̃ 1– 5G̃–( )v 3z1δ3 128 2 J̃ 1– 5G̃–( )v 3z2δ3,+

βz2 z2– 24v 2z2 2z2
3 16δ2z2– 4δ3z1–++=

+ 2z2z1
2 4v 3z1 576 2 J̃ 1–

2
3
---G̃– 

  v 2
2z2–+

– 32 2 J̃ 1–( )v 3
2z2 16 2 J̃ 1– G̃–( )v 3

2z1–

+ 120 2 J̃ 1–
8
5
---G̃– 

  v 2z2δ2

– 32 2 J̃ 1–
2
3
---G̃– 

  z2δ2
2 16 2 J̃ 1–( )z2δ3

2–

– 32 2 J̃ 1–( )z1δ3
2 128 2 J̃ 1– 5G̃–( )v 3z2δ3+

+ 128 2 J̃ 1– 5G̃–( )v 3z1δ3,

βw1 w1– 24v 1w1 2z1
2w1 2w1

3– 16δ1w1–+ +=

– 4δ3w2 2w1z2
2+

+ 4v 3w2 576 2 J̃ 1–
2
3
---G̃– 

  v 1
2w1–

– 32 2 J̃ 1–( )v 3
2w1 16 2 J̃ 1– G̃–( )v 3

2w2–

+ 120 2 J̃ 1–
8
5
---G̃– 

  v 1w1δ1

– 32 2 J̃ 1–
2
3
---G̃– 

  w1δ1
2 16 2 J̃ 1–( )w1δ3

2–

– 32 2 J̃ 1–( )w2δ3
2

+ 128 2 J̃ 1– 5G̃–( )v 3w1δ3

+ 128 2 J̃ 1– 5G̃–( )v 3w2δ3,

βw2 w2– 24v 2w2 2z2
2w2 2w2

3– 16δ2w2–+ +=

– 4δ3w1 2w2z1
2+

+ 4v 3w1 576 2 J̃ 1–
2
3
---G̃– 

  v 2
2w2–
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The summation of these asymptotic expressions was
performed by applying the Padé–Borel method
extended to the case of many parameters.

The resulting system of summed β functions has a
wide diversity of fixed points lying in the physical
region of vertices v i ≥ 0, δi ≥ 0 (i = 1, 2, 3). A complete
analysis of the fixed points corresponding to the critical
behavior of a system characterized by a single order
parameter is presented above. Tables 3 and 4 show the
fixed points associated with multicritical behavior of
homogeneous and disordered compressible systems,
respectively. Table 3 also shows the values of the
parameter

which is defined so that p > 0 and p ≤ 0 correspond to
bicritical and tetracritical behavior, respectively.

An analysis of the fixed points of homogeneous
compressible systems with long-range interactions and
their stability leads to certain conclusions. When 1.5 <
a ≤ 2.0, tetracritical behavior is observed (p < 0) if the
striction constants characterizing the coupling between
the fluctuating order parameters and strain degrees of
freedom have opposite signs. Systems with striction
constants having like signs do not have stable fixed
points, i.e., exhibit first-order phase transitions. The
stable tetracritical fixed points corresponding to 1.6 <
a < 2.0 (2.1, 3.1, 4.1) are characterized by zero effec-
tive charges  and , which implies that these tet-
racritical points are observed at constant volume. For
a = 1.6, the effective charges have finite values (fixed
point 1.1). This may be explained by the fact that the
“rigid” system exhibits tetracritical and bicritical
behavior when a = 1.6 and 1.6 < a < 2.0, respectively.
The phase diagram of an elastic substance may contain

– 32 2 J̃ 1–( )v 3
2w2 16 2 J̃ 1– G̃–( )v 3

2w1–

+ 120 2 J̃ 1–
8
5
---G̃– 

  v 1w2δ1

– 32 2 J̃ 1–
2
3
---G̃– 

  w2δ1
2 16 2 J̃ 1–( )w2δ3

2–

– 32 2 J̃ 1–( )w1δ3
2 128 2 J̃ 1– 5G̃–( )v 3w2δ3+

+ 128 2 J̃ 1– 5G̃–( )v 3w1δ3.

p v 3
1
2
--- z1z2 w1w2– δ3–( )+ 

 
2

=

– v 1
1
2
--- z1

2 w1
2– δ1–( )+ 

 

× v 2
1
2
--- z2

2 w2
2– δ2–( )+ 

  ,

w1* w2*
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Table 3.  Fixed points and eigenvalues of the stability matrix for homogeneous systems

N , , , , b1, b2, b3 b4, b5 b6, b7 p

a = 1.6

1.1 0.027427 0.224319 0.111301 0.157 1.118 1.798 –0.002092

0.027427 –0.224319 –0.111301 0.738 0.138 0.256

0.026699 0.919

1.2 0.027427 0.224319 0.224319 0.157 1.118 –1.050 –0.000039

0.027427 –0.224319 –0.224319 0.738 0.138 –1.188

0.026699 0.919

a = 1.7

2.1 0.031287 0.248013 0 0.113 1.675 2.546 –0.003849

0.031287 –0.248013 0 0.629 0.095 0.041

0.031334 0.809

2.2 0.031287 0.248013 0.248013 0.113 1.675 –1.580 0.000039

0.031287 –0.248013 –0.248013 0.629 0.095 –1.675

0.031334 0.809

a = 1.8

3.1 0.033682 0.266919 0 0.090 1.831 2.980 –0.004802

0.033682 –0.266919 0 0.571 0.104 0.115

0.034575 0.753

3.2 0.033682 0.266919 0.266919 0.090 1.831 –1.954 0.000061

0.033682 –0.266919 –0.266919 0.571 0.104 –2.079

0.034575 0.753

a = 1.9

4.1 0.035842 0.297071 0 0.069 2.079 3.765 –0.079943

0.035842 –0.297071 0 0.505 0.125 0.049

0.039202 0.702

4.2 0.035842 0.297071 0.297071 0.069 2.079 –1.954 0.000252

0.035842 –0.297071 –0.297071 0.505 0.125 –2.079

0.039202 0.702

v 1* v 2* v 3* z1* z2* w1* w2*
critical points of even higher orders. In particular, fixed
points 1.2, 2.2, 3.2, and 4.2 correspond to z1 = w1 and
z2 = w2, i.e., are the intersections of two tricritical lines
associated with fourth-order critical points. These fixed
points are not stable in the framework of the approxi-
mation adopted here. However, a complete analysis of
their stability can be performed by retaining the cubic
functions of strain degrees of freedom in the original
Hamiltonian.
JOURNAL OF EXPERIMENTAL A
Table 4 demonstrates that the fixed points of a disor-
dered “rigid” system lie in an unphysical region (δ1,
δ2 < 0). Furthermore, the stable fixed points have large
values for which the theory employed here is inapplica-
ble. This suggests that all fixed points lying in the phys-
ical region of effective-charge values are unstable; i.e.,
the phase diagram does not contain multicritical points.
Therefore, calculation of fixed points for compressible
disordered system is pointless, because the correspond-
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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Table 4.  Fixed points and eigenvalues of the stability matrix for disordered systems

N , , , , b1, b2, b3 b4, b5, b6

a = 1.6

1.3 0 –0.630515 11.225 22.854

–0.630515 15.069 22.854

–3.713534 15.069 17.439

a = 1.7

2.3 0 –0.320512 2.239 11.106

–0.320512 2.239 11.116

–1.932190 5.197 9.250

a = 1.8

3.3 0 –0.256437 2.068 8.642

–0.256437 2.068 8.642

–1.545749 3.890 7.441

a = 1.9

4.3 0 –0.223270 1.224 3.149

–0.223270 1.338 7.349

–0.790114 1.338 7.349

v 1* v 2* v 3* δ1* δ2* δ3*
ing effective charges v i and δi have similar values; i.e.,
they also lie in an unphysical region. Thus, multicritical
points are smeared out by quenched disorder.

5. CONCLUSIONS

Calculations performed directly in the three-dimen-
sional space show that long-range effects are insignifi-
cant when a ≥ 2. Homogeneous compressible and rigid
systems with 1.5 < a < 2.0 exhibit non-Gaussian critical
behavior, which strongly depends on the value of a.
Non-Gaussian critical behavior is also characteristic of
disordered compressible and “rigid” systems with 1.8 ≤
a < 2. Disordered systems with 1.5 < a < 1.8 exhibit
first-order phase transitions. When a < 1.5, all systems
considered here have Gaussian fixed points with corre-
sponding critical exponents.

For homogeneous systems characterized by two
fluctuating order parameters, long-range effects induce
crossover in multicritical behavior. However, multicrit-
ical behavior is eliminated by introducing quenched
disorder.
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Abstract—The temperature dependence of the residual polarization of the nonergodic relaxation state (NERS)
obtained from the measurements of pyroelectric current during zero-field heating (ZFH) in the temperature
interval from 10 to 295 K is investigated for the Cd2Nb2O7 relaxation system in two cases: (1) after sample cool-
ing in a constant electric field E (FC) from T = 295 K to a preset temperature, which is much lower than the
“freezing” temperature of the relaxation state (Tf ≈ 182 K), field removal, and subsequent cooling in zero field
(ZFC) to T = 10 K and (2) after ZFC from T = 295 K to the same temperature below Tf, application of the same

field, and FC to T = 10 K. The behavior of the (T) and (T) dependences is analyzed. In the field

E < 2 kV/cm, the  curves as functions of 1/T have a broad low-intensity peak in the region T ≈ Tf , which

vanishes in stronger fields, when the (1/T) curves intersect at T ≈ Tf and have no anomalies. The difference

in the behavior of (T) and (T) indicates the difference in the nature of NERS formed during ZFC and
FC of the system upon a transition through Tf . In the ZFC mode, NERS exhibits glasslike behavior; in the FC

regime, features of the ferroelectric behavior even in the weak field. Analogous variations of (T) and

(T) in a classical ferroelectric KDP are also given for comparison. © 2005 Pleiades Publishing, Inc. 
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1. INTRODUCTION

The nature of the nonergodic relaxation state
(NERS) emerging below the freezing point Tf of the
ergodic relaxation state (ERS) in relaxation ferroelec-
trics, has become the object of intense experimental and
theoretical investigations [1–11]. The following two
main concepts are proposed: (1) a state of the dipole-
glass type, which is formed as a result of random inter-
actions between polar nanoclusters in the presence of
random fields [1–7], or (2) a frustrated ferroelectric
divided into nanodomains under the action of random
electric fields [8–11]. At the same time, it was shown
that the dielectric response of a relaxation ferroelectric
in a strong constant and strong varying electric fields is
controlled by the motion of ferroelectric domain walls
both in NERS and in ERS [10, 11]. On the other hand,
in the vicinity of the temperature Tm (Tm > Tf) corre-
sponding to the peak of the dielectric response of the
relaxation system, the coexistence of polar phases of
different origin is detected (reorientable polar clusters
with glasslike “freezing” of polarization and nan-
odomains with a temperature-independent behavior of
polarization, which are fixed as a result of the pinning
effect [12]). The contradictory interpretation of the ori-
1063-7761/05/10005- $26.000964
gin of NERS and ERS in the region T   may be
due to the fact that the dielectric response of relaxation
ferroelectrics was studied by different researchers
under different conditions. The main drawbacks of
these studies, which complicate the interpretation of the
results on the basis of a unified approach, include the
measurement of static or dynamic permittivity, temper-
ature scanning for a fixed or scanned constant electric
field, arbitrariness in the choice of weak and strong dc
and ac electric fields in the measurements, and arbi-
trariness in the choice of cooling or heating conditions
in zero field or in a constant field (ZFC or ZFH and FC
or FH, respectively), etc. [1–5, 8–11]. Although each of
these factors makes it possible to reveal peculiarities in
the behavior of a nonergodic system, neither of these
factors clarifies the reason for different manifestation of
NERS properties under different measuring conditions.
Consequently, to answer the basic question about the
origin of NERS in a relaxation ferroelectric, new exper-
iments are required to study the properties of such sys-
tems. In this study, we consider for the first time the
temperature dependence of residual polarization Pr

obtained from measurements of pyroelectric current
upon zero-field heating (ZFH) in a temperature range
from 10 to 295 K for the Cd2Nb2O7 relaxation system

T f
+

 © 2005 Pleiades Publishing, Inc.
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as an example in two cases: (i) after FC from room tem-
perature to a preset temperature below Tf , removal of
the constant field, and subsequent ZFC to T = 10 K; and
(ii) after ZFC from room temperature to the same tem-
perature below Tf , application of the same field, and FC

to 10 K ( (T) and (T), respectively). Such a
sequence of field application and removal during cool-
ing was not used earlier for studying either spin or
dipole glasses, or relaxation ferroelectrics. Usually, to
investigate the glasslike nature of NERS in relaxation
systems, one needs to analyze the dielectric and polar-
ization responses in the FC or ZFC regime to a preset
temperature, which is much lower than Tf , followed by
FH or ZFH from this temperature to room temperature
[3, 5, 9]. Here, the measurements are made under the
same condition, i.e., in the ZFH regime from T = 10 K
to room temperature (T @ Tf). The static polarization
determined from the pyroelectric current may serve as
a universal characteristic of the metastable NERS of a
relaxation ferroelectric in an external electric field since
the temperature dependences of the polarization of a
cluster system and a system with a long-range ferro-
electric order are different [7, 13]. In spite of the obvi-
ousness of this fact, systematic studies of the Pr(T)
dependence in relaxation systems under different ther-
mal and electrical measuring conditions have not been
carried out so far [2, 3, 5, 14]. New experiments pro-
posed in this study for analyzing Pr(T) show that the
formation of glass and ferroelectric properties of the
NERS is predetermined in the course of ZFC or FC
(even in a weak field) of a nonequilibrium system upon
a transition via Tf .

Our experiments were made with pyrochlorine

Cd2Nb2O7 (CN) (Fd3m – ), which is a unique exam-
ple of an undiluted system with relaxation behavior [15,
16] (in contrast to mixed perovskites of the PMN–
PbMg1/3Nb2/3O3 and PLZT–Pb1 – xLax(ZryTi1 – y)O3

(Pm3m – ) type. The relaxation properties of CN are
determined by orientation disordering of O–Cd–O
dipoles in the (CdO8)n– sublattice, which exhibits a

rhombohedral local symmetry D3d –  [15]. The high
cubic symmetry of the system on the whole and the
rhombohedral local symmetry of the (CdO8)n– sublat-
tice make it possible to carry out analysis of the dielec-
tric behavior of this relaxation ferroelectric using the
well-known models of spin and dipole glasses [17] and
relaxation systems [4, 6, 7, 18]. However, the behavior
of CN is much more complicated as compared to per-
ovskites of the PMN type. In the temperature range
from 300 to 4 K, the following states develop in this
material successively: the relaxation state covering the
para- and ferroelectric phases, ferroelastic state (below
Ts = 205 K), the ferroelectric state (below TC = 196 K),
the state with an incommensurate–modulated structure
(Tinc = 85 K, Tcom = 46 K), and a state of the dipole glass

Pr
FC Pr

ZFC

Oh
7

Oh
1

3m
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
type (below Tg ≈ 18 K) [19]. The reasons for the forma-
tion of disordered states of various origins and their
interrelation with the ferroelectric state in this com-
pound have been studied insufficiently. The relaxation
state in pyrochlorine, as well as relaxation ferroelec-
trics with the perovskite structure), is characterized by
dielectric dispersion in a wide frequency range in the
temperature region corresponding to the permittivity
peak, Tm ≈ 190 K (Tm < TC < Ts), and subsequent freez-
ing of the ERS at Tf ≈ 183 K [15, 16].

2. EXPERIMENTAL TECHNIQUE

The experiments were performed on a monocrystal-
line plate of the (111)cub type, which was preliminarily
annealed at T = 353 K for 4 h to reduce internal stresses.
The powder X-ray diffraction method revealed that it
has the pyrochlorine structure; no admixtures of other
phases were detected. Silver-paste electrodes were
deposited on the parallel surfaces of the plate. After the
removal of a constant field E, the sample was first short-
circuited for removing the residual surface charge.
Sample cooling (FC and ZFC) always began from T =
295 K (i.e., from the temperature high enough for
“erasing” the effects of previous measurements). Pyro-
electric current was measured during ZFH from 10 to
295 K using a programmed Keithley-6514 high-sensi-
tivity electrometer under slow heating at a rate of
1.5 K/min. The Pr(T) curves for the value of the con-
stant field were obtained by integrating the temperature
dependence of the pyroelectric current. The error in the
measurements of pyroelectric current (and, hence,
polarization) did not exceed 0.05%. This enabled us to
detect weak changes in the polarization of the relax-
ation system both in the region of Tf and in the
paraelectric phase (T > Tf). Temperature was stabilized
within ±0.05 K.

3. RESULTS AND DISCUSSION

Figures 1 and 2 show the typical (T) and

(T) curves for pyrochlorine CN after cooling to T =
120 K and T = 145 K (T ! Tf), respectively. The

(T) and (T) curves for a normal classical fer-
roelectric KDP cooled to a temperature much lower
than TC are also shown for comparison (Fig. 2d). The
polarization had not been studied previously under con-
ditions of our experiments not only for relaxation sys-
tems, but neither for normal ferroelectrics. For this rea-
son, we will first illustrate peculiarities in the behavior
of polarization using KDP as an example, which show
that the proposed method makes it possible to study dis-
ordered and nonequilibrium states of polar systems
(polarization processes in polydomain ferroelectrics,
relaxation oscillators with a nanodomain structure, and
spin and dipole glasses).

Pr
ZFC

Pr
FC

Pr
ZFC Pr

FC
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Fig. 1. Temperature dependence of the residual polarization in a pyrochlorine Cd2Nb2O7 (CN) single crystal obtained from the ZFH
measurements of pyroelectric current after cooling in the FC (s) and ZFC (d) modes from T = 295 K to T = 120 K, followed by
further cooling under the same conditions to T = 10 K for several values of the constant electric field. The heating rate is 1.5 K/min.
The dashed line indicates the freezing temperature Tf corresponding to the transition from the ERS to the NERS.
In the FC mode (2 kV/cm), the KDP sample cooled
from room temperature to T = 75 K exhibits below TC a
monodomain ferroelectric state with the polarization
oriented along the applied field (TC ≈ 123 K and Ecoer ≈
200 V/cm in KDP [13]). After the removal of the con-
stant field and subsequent cooling in the ZFC mode to
T = 10 K, the ferroelectric remains in the “frozen” mon-
odomain state. In the ZFC from room temperature to
the same temperature below TC , the ferroelectric is in a
polydomain state. After application of the same field at
75 K and subsequent cooling in the FC regime to T =
10 K, the ferroelectric passes to a monodomain state
with the polarization oriented along the field. When the
sample is heated in zero field from 10 to 295 K, the

variation of (T) corresponds to the monodomain

state of the ferroelectric. The behavior of the (T)
curve is different. At low temperatures, the variation of

(T) corresponds to the monodomain state, while
the polarization being measured is determined by the
contribution of the polarization of the monodomain and
polydomain states as we approach T− ≈ 75 K and above
this temperature. The latter is a disordered state as
regards the orientation of polarization in individual
domains relative to the direction of the polarization of
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Pr
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Pr
ZFC
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the monodomain state. As a result, the total value of

(T) in the normal ferroelectric is smaller than

(T).

In cooling of pyrochlorine CN in the ZFC and FC
modes (E < 3 kV/cm) from room temperature to T =
120 K or T = 145 K, the frozen state of the relaxation
system below Tf is a polydomain state. As other relax-
ation ferroelectrics, polar nanoregions “nucleate” in
pyrochlorine long before Tf (approximately, in the
region of T ≈ 270 K) [20]. In the FC mode, the polariza-
tion of nanodomains acquires a component in the direc-
tion of the applied field. After the removal of the field
at T ! Tf and subsequent cooling of the system in the
ZFC mode to T = 10 K, this state is preserved. In the
case of ZFC of the system to the same temperature
below Tf , application of the same field, and subsequent
FC to T = 10 K, the polarization of frozen nanodomains
also acquires a component in the direction of the
applied field, but this component is weaker. This is due
to the fact that the NERS is characterized by a very
wide spectrum of the relaxation time distribution from
10–12 s to macroscopic values [3, 5, 8]. In view of this
feature of the nonergodic state, as well as the contribu-
tion of nonpolarized frozen nanodomains in the region
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Pr
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Fig. 2. (a, b, c) Temperature dependence P(T) obtained from the ZFH measurements in pyrochlorine CN after cooling in the FC (s)
and ZFC (d) modes from T = 295 K to T = 145 K, followed by further cooling under the same conditions to T = 10 K for several
values of the constant electric field, and (d) the same for a KDP single crystal after cooling under the same conditions from T =
295 K to T = 75 K followed by cooling to T = 10 K. Gold electrodes are deposited on the KDP sample.
of T– ≈ 120 K (or 145 K) and above this temperature,

polarization (T) differs substantially from (T)
both in magnitude and in the temperature variation
upon sample heating from T = 10 K to T = 295 K in zero
field (see Figs. 1 and 2).

In contrast to KDP, pyrochlorine CN exhibits strong
splitting between the ZFH static polarization after FC
(ZFH/FC) and after ZFC (ZFH/ZFC) of the system

(∆Pr =  – ). In fields up to 2 kV/cm, the split-
ting remains virtually unchanged in the entire tempera-
ture range from 10 K to Tf (Tf ≈ 182 K for the sample
under investigation). This means that the state of the
system below Tf is completely frozen and nonergodic.
Equally strong splitting between the FC and FH/ZFC
static permittivities (∆ε) as well as between the FC and
FH/ZFC polarizations (∆P) was observed earlier in orien-
tation glasses [17] and relaxation ferroelectrics [3, 5, 8].
The observed splitting is a fundamental property of
glass systems and, hence, a reliable argument in favor
of the glasslike nature of the NERS in CN (at least in a
field of E < 2 kV/cm).

In stronger fields (E > 2 kV/cm), the splitting

between (T) and (T) becomes smaller as we
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approach  (see Figs. 1a, 2a, and 2b). As the temper-

ature increases further, the values of , , and
∆Pr decrease rapidly as T– approaches 200 K and not

. It should be noted that, with the generally accepted
sequence of application and removal of the field in
glasses and relaxation systems, the values of ∆P and ∆ε
rapidly decrease as we approach  and vanish above
this temperature [3, 5, 8]. Above T = 200 K, the polar-
ization in pyrochlorine CN becomes low and slowly

approaches zero at T ~ 270 K; here, the value of  is

always greater than  and increases with the field.
The “protracted tail” of the polarization implies the
presence in the ERS of polar clusters that remain non-
ergodic up to high temperatures [3]. Another feature of

our results is that the behavior of (T) and (T)
in the region of 200 K and above matches the behavior
of the local order parameter q in pyrochlorine CN [20]
as well as in the PMN and PLZT compounds [12]. At
the same time, the behavior of the FC and FH/ZFC
static permittivity and polarization obtained for the
PMN and PLZT compounds in the generally accepted
sequence of field application and removal does not

T f
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FC Pr

ZFC

T f
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T f
–
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FC
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Pr
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match the behavior of the local order parameter q [2, 5,

12, 14]. Identical behavior of (T) and (T) after
cooling to T = 120 K and 145 K indicates the thermal
stability of the frozen state and the dependence of the
properties of this state only on its polarization (either
E ≠ 0 as we pass through Tf , or field E is applied at
T ! Tf).

Since the normal ferroelectric and relaxation ferro-
electric states develop in pyrochlorine simultaneously
below TC (198 K for the sample studied here [21]) [15,
16, 19], it should be borne in mind that both states may
contribute to the polarization being measured. Analysis
of the dielectric data obtained by different methods
shows that the relaxation contribution dominates (at
least in fields E < 4 kV/cm). This follows above all from

the large difference between the values of  and

, which is typical of the NERS of a relaxation sys-

tem (see Figs. 1 and 2). Small values of  ≈

1.54 µC/cm2 and  ≈ 0.45 µC/cm2 (at 20 K) for E =

1 kV/cm and  ≈ 0.61 µC/cm2 and  ≈
0.22 µC/cm2 (at 20 K) for E = 0.6 kV/cm in a weak field
are rather typical of relaxation systems [5, 14]. It can be

observed for comparison that  =  ≈ 5 µC/cm2

in KDP at T = 20 K in a field of 2 kV/cm (see Fig. 2d).

Pr
FC Pr

ZFC

Pr
FC

Pr
ZFC

Pr
FC

Pr
ZFC

Pr
FC Pr

ZFC

Pr
FC Pr

ZFC

0.50

0.25

0

0 100 200 300

T, K

P, µC/cm2

Fig. 3. Temperature dependence P(T) obtained from the
ZFH measurements in pyrochlorine CN after cooling in the
ZFC mode to T = 120 K, followed by further cooling in the
FC mode to T = 10 K in a field of 1 kV/cm for several values
of heating rate: 1.5 (upper curve), 0.5, and 0.2 K/min (lower
curve). The low-intensity broad peak in the region of Tf is
due to the contribution from the polarization of nano-
domains with long relaxation times corresponding to the
laboratory scale.
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In pyrochlorine CN in a field of 3 kV/cm, the value of

 ≈ 4.24 µC/cm2 and  ≈ 2.7 µC/cm2 are com-
parable to the polarization in a normal ferroelectric, but
the splitting between them (∆Pr ≈ 1.54 µC/cm2) is still
significant (see Fig. 2a). Since the dielectric hysteresis
loops in pyrochlorine CN as well as in other relaxation
systems are strongly extended, a large difference
appears between the coercive field and the saturated
polarization field (Ecoer ≈ 2.5 kV/cm and Es ≈ 10 kV/cm
for the sample at T = 120 K). It is also known that a field
exceeding 4 kV/cm is required for switching ferroelec-
tric domains in pyrochlorine CN [22].

The modes of cooling a relaxation system in a con-
stant electric field used in this study have made it pos-
sible for the first time to discover a broad low-intensity

peak on the temperature dependence of  (∆T ≈
40 K) in the vicinity of Tf (see Figs. 1b, 1c, 1d, 2c,
and 3). The height of the ∆Pmax peak exceeds the polar-
ization value on the gently sloping part of the curve
only by 3–5% (in the interval from 120 to 150 K), but
is two orders of magnitude higher than the accuracy in
polarization measurements. For this reason, the exist-
ence of a peak in the vicinity of Tf cannot be ignored.

The slow decrease in the total polarization  at

T   is direct evidence of the presence of frozen
nanodomains with various macroscopic relaxation
times.

The height and position of the ∆Pmax peak do not
change upon an increase in the field to 2 kV/cm (see
Figs. 1 and 2) as well as upon an order-of-magnitude
decrease in the heating rate (Fig. 3). In fields higher

than 2 kV/cm, the temperature dependence of 
becomes monotonic; instead of the peak in the region of
Tf , a kink is observed, which vanishes with a further
increase in the field (see Figs. 2a and 2b). These facts

also indicate that the origin of the peak on the (T)
curves is associated with intrinsic properties of a non-
ergodic relaxation state with a glasslike behavior, for
which the characteristic relaxation times are compara-
ble with the time of the experiment (7600 s, which cor-
responds to a frequency of 0.13 mHz). Glass properties
of the NERS are manifested until a stronger field
(E > 2 kV/cm) induces a change in this state.

Anomalies at Tinc ≈ 85 K and Tcom ≈ 50 K correspond
to a phase transition in pyrochlorine [19]. It should be

noted that the behavior of (T), (T), and ∆P in
the vicinity of Tcom does not exhibit any noticeable pin-
ning effects typical of incommensurate modulated
structures [23]. Probably, the nonergodicity of the fro-
zen state plays a decisive role in the behavior of the sys-
tem down to low temperatures (i.e., below the phase-
transition temperature at Tcom < Tinc).
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For a system with cubic symmetry and rhombohedral
distortions (e.g., CN), total static polarization along vec-
tor E due to reorientable clusters has the form [7]

(1)

where Pcl is the effective polarization of the cluster, L is
the cluster size, kT is the thermal energy, k is the Boltz-
mann constant, and A = PclL3/3k. Since the polarization
in measured in the ZFH mode after the removal of the
field (E  0), which corresponds to the condition
EA/T ! 1, relation (1) can be written in the form

(2)

which can be directly used for (T) and (T).
The corresponding curves display basically different
behavior of polarization after ZFC and FC of the sys-
tem passing through Tf even in a weak field (Fig. 4). In

the region of T = 200 K, the (1/T) curves coincide,

but these curves diverge as we approach  and have a
broad peak in a weak field or a kink in a field E ≥
2 kV/cm for T ~ Tf (Fig. 4a). The curves (1/T)
diverge weakly in a field E < 2 kV/cm in the entire tem-
perature range; the curves intersect at T ~ Tf and dis-
play no anomalies (Fig. 4b). In a field E ≥ 2 kV/cm, the
curves are noticeably displaced to a lower temperature,
indicating that the behavior of the polarization no
longer corresponds to a cluster system (in contrast to

 in the same fields). Moreover, this result implies
that a relatively weak field creates premises for the for-
mation of long-range ferroelectric order and, hence, the
formation of a nonhomogeneous glasslike NERS in the
course of FC of the system to a temperature below Tf .
In this connection, to characterize NERS, we analyzed

the behavior of (T) using the well-known relation for
spontaneous polarization in a normal ferroelectric [13]:

Below Tf , a linear variation of ( )2 with temperature
is observed for E ≥ 2 kV/cm (see the inset to Fig. 4); in
other words, if the system is cooled in the FC mode, the
ergodic relaxation state passes to the ferroelectric state.
If E < 1.5 kV/cm, the temperature dependence of

( )2 becomes nonlinear, the departure from linearity
being the smaller, the stronger the field. The latter state-
ment means that, in the course of system cooling in the
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FC mode in a weak field, regions with long-range fer-
roelectric ordering are formed in a glasslike NERS.

4. CONCLUSIONS

To determine the nature of NERS in relaxation fer-
roelectrics, the residual polarization Pr(T) of a undi-
luted high-symmetry relaxation pyrochlorine
(Cd2Nb2O7) system is analyzed for the first time during
heating in the ZFH mode from T = 10 K to T = 295 K
after two different modes of cooling in the FC mode
from T @ Tf to 10 K. Analysis of the temperature and

field dependences (T), (T), and ∆P is carried
out taking into account the ideas concerning the fea-
tures of orientation glasses and relaxation ferroelectrics
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Fig. 4. Reduced polarization P/Pmax obtained from (a) ZFC
and (b) FC measurements in pyrochlorine CN versus the
reciprocal temperature for several values of the constant
field; Pmax corresponds to polarization at 10 K for each field
value.
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with glasslike behavior. It is shown that the factor of the
external constant electric field plays the key role in the
formation of the properties of the nonergodic state
when the system passes through the freezing tempera-
ture Tf (i.e., E = 0 or E ≠ 0). This result is of fundamen-
tal importance for the physics of relaxation ferroelec-
tricity since it clarifies the reason and conditions for
ambiguous manifestations of (glass or ferroelectric)
properties of NERS in relaxation systems. The differ-

ence in the behavior of polarizations (T, E) and

(T, E) can also be used for revealing the glass or
ferroelectric nature of NERS in relaxation systems of
any type, including the model relaxation ferroelectric
PMN.
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Abstract—The kinetics of room-temperature phase transition in fluorite (CaF2) single crystals under hydro-
static pressure up to 9 GPa was studied in situ by means of strain gauge compressibility measurements. Initial
stages of the pressure-induced first-order phase transition kinetics (corresponding to less than 1% content of the
new phase) were studied for the first time. In a broad range of concentrations of the new phase (5–20%), the
transformation kinetics is well described within the framework of the classical Kolmogorov–Avrami–Mehl–
Johnson model. The laws governing the initial and late stages of the transformation are more complicated and
do not conform to the classical model. The initial stages involve avalanche growth in the nucleation rate corre-
sponding to giant values of the Avrami exponent (n ≈ 20). At large concentrations of the new phase (above
30%), the transformation rate significantly decreases (saturation) as a result of the formation of a rigid cellular
structure of the new phase. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Phase transformations in solids can be conditionally
subdivided into two types with respect to the transition
kinetics. Transformations of the diffusion type involve
nucleation as a result of fluctuations and the subsequent
growth of nuclei by means of diffusion, while marten-
site transformations imply a coherent conversion of one
lattice into another by means of shear distortions [1].
This simplified classification is by no means exhaus-
tive, since many of the polymorphous phase transfor-
mations caused by compression can hardly be classified
into one of the two types. This is especially difficult in
the case of pressure-induced phase transformations
involving large relative volume changes, which take
place at temperatures significantly below the melting
point, in particular, at room temperature. Under such
conditions, the diffusion mobility of atoms at low tem-
peratures is “frozen” to a considerable degree, while a
coherent martensite transformation in most cases is
impossible. As a result, phase transformations proceed
according to a mixed type of kinetics, the laws of which
have almost not been investigated [2]. Since the over-
whelming majority of polymorphous phase transforma-
tions take place under conditions of strong compres-
sion, the study of mechanisms and kinetics of such tran-
sitions is among basic problems of the physics of
condensed media.

Previous investigations of the kinetics of pressure-
induced phase transformations were carried out in most
cases using X-ray diffraction measurements at elevated
temperatures. The experimental data were obtained
either by ex situ measurements on quenched samples [3]
1063-7761/05/10005- $26.00 0971
or from in situ experiments using high-brightness X-ray
(predominantly synchrotron) radiation [4–7]. As a rule,
the transition kinetics was studied for phase transfor-
mations of the diffusion type involving large volume
changes, such as α-GeO2  β-GeO2 [3], graphite 
diamond [4, 5], hexagonal BN  cubic BN [6], and
some others [7]. Theoretical analysis of the kinetic
curves was usually performed in terms of the Kolmog-
orov–Avrami–Mehl–Johnson (KAMJ) model [8–10].
Strictly speaking, this approach was developed for the
description of transformations with small volume
changes between isotropic phases with zero shear mod-
uli, so that applicability of the KAMJ model to descrip-
tion of the pressure-induced polymorphous phase trans-
formations with large volume changes is rather ques-
tionable. The main parameter in this model—the
Avrami exponent n—is determined by the conditions of
nucleation and growth and may vary, depending on the
particular mechanism, from 0.3 to 4 [1]. The values of
n formally calculated for most of the phase transitions
studied fall within n ≈ 1–2 [3–7], which corresponds to
one- or two-dimensional growth of preexisting nuclei.

It should be noted that X-ray diffraction (XRD) is
characterized by a relatively high threshold (i.e., low
sensitivity) for the detection of a newly formed struc-
tural modification, and this method provides insuffi-
cient accuracy from the standpoint of kinetic investiga-
tions. A minimum content of the new phase detectable
by XRD is on the level of several percent, which limits
the possibility of using this method for the investigation
of early stages of crystal nucleation and growth. How-
ever, these initial stages of phase transformations are
© 2005 Pleiades Publishing, Inc.
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usually most important for assessing the applicability
of various theoretical models.

In this study, the phase transition kinetics was stud-
ied using a strain gauge technique developed for mea-
suring the compressibility of solids under a hydrostatic
pressure of up to 9 GPa [11]. This technique allows the
compressibility to be determined under conditions of
large volume variations (up to 30%). The strain gauge
method was successfully used for the investigation of
compressibility of crystalline and amorphous solids
and compacted powders [11–14]. Being comparable to
XRD in absolute accuracy of volume measurements (in
crystals), the strain gauge technique has a relative sen-
sitivity several orders of magnitude higher than that of
XRD. Using the proposed method, it is possible to
monitor the fraction of a new phase in the sample in the
course of transformation and to study the phase transi-
tion kinetics in situ at high pressures. The new phase
can be detected at a threshold content of 0.03%. The
strain gage technique offers high temporal resolution
and ensures high-precision monitoring of the pressure
in a broad temperature range (from 300 to 700 K [15]).

The aim of this study was to measure the kinetics of
a pressure-induced first-order phase transition by
means of the strain gauge technique in an ideal hydro-

(a)

1

2

3

4

5

6

7

8

(b)

Fig. 1. Schematic diagram of (a) the high-pressure cell and
(b) a sample with strain gauge: (1) gasket (pipestone);
(2) lid (brass); (3) ampule case (Teflon); (4) pressure sensor
(manganine); (5) output signal leads; (6) sample with
bonded strain gauge; (7) current and potential leads (con-
stantan wire 20 µm in diameter); (8) strain gauge base
(paper of glass composite).
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static medium at room temperature. The compressibil-
ity measurements were performed in a broad range of
concentrations of the new phase, including initial
stages of the transformation.

The experiments were performed on fluorite (CaF2)
single crystals. According to published data, fluorite
exhibits a room-temperature phase transition at 8 GPa
with a significant (8.3%) relative volume change,
whereby the low-pressure α-CaF2 phase with an intrinsic
cubic structure converts into a high-pressure γ phase
with an orthorhombic structure of the α-PbCl2 type [16].

2. EXPERIMENTAL
Singe crystal CaF2 samples had the shape of paral-

lelepipeds with dimensions of 2 × 2.5 × 3.5 mm, with a
strain gage bonded to one (preliminarily polished) face.
The strain gauge technology and the method of com-
pressibility measurement in solids under pressure are
described elsewhere [11, 15].

Since fluorite crystals are characterized by perfect
octahedral cleavage, the samples were cut so that their
faces corresponded to cubic crystallographic planes.
This orientation decreases the probability of strain
gauge detachment and sample fracture as a result of the
phase transformation.

High pressures were produced using an apparatus of
the “toroid” type, comprising an ampule with a working
volume of about 0.3 cm3 filled with a hydrostatic
medium, in which a pressure of up to 9 GPa could be
created [17]. The high-pressure cell design is schemat-
ically depicted in Fig. 1.

The medium transmitting pressure to the sample
was a mixture of methyl and ethyl alcohol (4 : 1), which
is known to retain hydrostatic properties at pressures up
to 10 GPa. The pressure was measured with the aid of a
manganine-based sensor calibrated with respect to
phase transitions in various reference substances. The
reproducibility of pressure measurements in various
experiments was on the order of 0.01 GPa. The measur-
ing scheme ensured a pressure sensitivity of 0.001 GPa.
In the course of loading the high-pressure cell, the rate
of pressure variation in the ampule was 0.18 GPa/min.

The optimum experimental procedure was estab-
lished during preliminary measurements of the fluorite
crystal volume V as a function of the pressure p and
time t (Fig. 2). The results of these measurements agree
well with the published XRD data (Fig. 2a) [18].

Let us consider the results of preliminary measure-
ments in more detail. In the first experiment (Fig. 2,
curve 1), the pressure was continuously increased at a
rate of 0.18 GPa/min. The sample volume V(p) began to
drop sharply at 8.01 ± 0.01 GPa. This pressure corre-
sponds to the onset of the α–γ phase transformation in
fluorite, in agreement with published data [19]. At this
time, the loading was interrupted and the pressure
exhibited only a slight increase due to relaxation. After
keeping the sample for 3 min in this state, whereby the
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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Fig. 2. (a) Plots of the relative volume change versus pressure in fluorite crystals under isothermal compression at T = 290 K:
(1) pressure increased at a constant rate of 0.18 GPa/min; (2, 3) pressure kept constant at 7.87 and 7.76 GPa, respectively. Open
circles reproduce XRD data from [18]. The inset shows the relative volume variation with time in the vicinity of the phase transition.
(b) The region of phase transition on a greater scale (with characteristics transition times for kinetic curves 1 and 2).
phase transition proceeded at a very slow rate, the load-
ing was continued (Fig. 2b).

The second experiment showed that the phase trans-
formation might start at a pressure below 8.01 GPa,
which required a definite exposure at a fixed pressure
(Fig. 2, curve 2). In this experiment, the pressure was
also increased at a rate of 0.18 GPa/min, but the loading
was terminated on reaching a pressure of 7.82 GPa,
after which the growth of pressure continued due to
relaxation processes. Within approximately 200 s, the
pressure in the ampule stabilized at a level of 7.87 GPa.
Then, the pressure was maintained at this level to
within ±0.001–0.002 GPa for 2 h, and the time variation
of the volume was monitored. When the rate of the vol-
ume change significantly decreased, the pressure was
given a stepwise increment, but this only slightly accel-
erated the transformation. Curve 3 in Fig. 2 was
obtained at a fixed pressure of 7.76 GPa. As can be
seen, curves 2 and 3 are significantly different, although
the difference between pressures at which these mea-
surements were performed is only slightly above
0.1 GPa. Thus, a relatively small change in the pressure
at which the sample was kept leads to a significant mod-
ification of the phase transition kinetics.

Taking into account the results of preliminary exper-
iments, we adopted the following scheme of measure-
ments. In each experimental run, the pressure was
increased at a preset rate and the sample volume was
monitored. When the desired pressure level was
reached, the load was rapidly controlled so as to com-
pensate the relaxation processes in the high-pressure
cell and maintain the pressure at a constant level, with
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
an insignificant spike (below 0.005 GPa) within the first
several seconds. Then, the pressure was fixed and the
sample volume variation with time was monitored. This
very procedure was used to obtain curve 3 in Fig. 2.

3. RESULTS AND DISCUSSION

The main series of experiments was carried out
using the procedure described above. The phase transi-
tion in fluorite was studied at several fixed pressures in
the interval 7.76 GPa ≤ p ≤ 8.01 GPa. The characteristic
shape of the curves of sample volume versus time (on a
logarithmic scale) is presented in the inset to Fig. 2a.

The kinetic data were analyzed in terms of the
Avrami coordinates (ln[–ln(1 – x)] versus lnt), where
x(t) is the fraction of a new phase formed for the time t
as a result of the phase transformation at a constant
pressure p. The new phase fraction was defined as

where  = ∆V/V0 is the relative volume change upon
compression; V0 is the sample volume at atmospheric

pressure;  is the volume before the transition onset

( (0) = , because the sample immediately before
the transition consists entirely of the old phase); and

∆  = 8.3% is the total change in the volume as a
result of the transition [19]. The Avrami coordinates
make the kinetic curves highly illustrative, since the

x t( ) Ṽ p t( ) Ṽ p–[ ] /∆Ṽ trans,=

Ṽ

Ṽ p

Ṽ p Ṽ p

Ṽ trans
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slope of the curve plotted in these coordinates is equal
to the Avrami exponent n.

In representing data using the Avrami coordinates, a
certain difficulty is encountered in selecting the point
t = 0, which significantly influences the position and
shape of the kinetic curves. We measured the time start-
ing at the moment (t0) when the pressure was fixed. This
choice would certainly be optimum if it were possible
to bring the system instantaneously to any point on the
phase plane (without prehistory). Actually, the pressure
could be varied only at a finite rate on the order of
0.18 GPa/min. Approaching a given point of measure-
ment at a finite rate implies a prehistory (∆t ≠ 0) with
respect to a selected moment (t0) of termination of the
pressure growth. Therefore, it is necessary to fit the
time t0 in the adopted model to a certain time t0 in a real
experiment. In plotting the curves in Figs. 2 and 3, we
used the assumption that t0 = 0, which can be justified
by the following estimates.

Consider a time interval between the moment when
the pressure was fixed and the moment when a detect-
able fraction of the new phase (0.03%) was observed in
the two extreme cases (i.e., in the experiments with
minimum and maximum fixed pressures). For the phase
transformation monitored at the minimum fixed pres-
sure (7.76 GPa), this interval was about 2500 s, while at
the maximum fixed pressure (8.01 GPa) it was about
20 s. The time of pressure increase from minimum to
maximum at a constant rate of 0.18 GPa/min is 50 s.
Taking this into account, we may ascertain that the tran-
sition kinetics in our experiments is determined prima-
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Fig. 3. Phase transformation kinetics in fluorite crystals at
T = 290 K plotted in the Avrami coordinates at various pres-
sure parameters ∆p = 8.01 – p [GPa]: (1) 0.09; (2) 0.14;
(3) 0.17; (4, 5) 0.25 GPa.
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rily by the pressure and is weakly influenced by the pre-
history, except for the curve obtained at a maximum
pressure of 7.92 GPa.

Since the phase transformation onset under a contin-
uous increase in pressure was observed at 8.01 GPa,
whereas the kinetics was studied at fixed pressures p <
8.01 GPa, it is convenient to introduce the pressure dif-
ference ∆p = 8.01 – p [GPa]. The kinetic curves of the
α–γ phase transformation in CaF2 at various ∆p were
plotted in the Avrami coordinates as depicted in Fig. 3.
As can be seen from these data, all curves exhibit sim-
ilar behavior. The only essential difference is the time
shift, which significantly depends on ∆p. Indeed, by
varying this parameter, it was possible to obtain kinetic
curves with phase transformation rates differing by sev-
eral orders of magnitude.

It should be noted that all kinetic curves show anom-
alies in the region of x = 5% and exhibit bending in the
region of x = 20–30%. These points separate the kinetic
curves into three parts with different average slopes.

According to classical KAMJ theory, kinetic curves
in the Avrami coordinates must appear as straight lines
with a constant slope (Avrami exponent n ≤ 4) without
bending points. The limiting case n = 4 corresponds to
three-dimensional growth of nuclei at a constant nucle-
ation rate. Linear plots with n ≤ 4 are usually observed
for the kinetics of crystallization in metallic glasses at
atmospheric pressure, which is accompanied by a negli-
gibly small change in volume [20–22]. Lu and Wang [23]
observed nonlinear behavior of the transition kinetics
whereby the slope reached a maximum level of n = 5.
This maximum value (n = 5) was explained by the fact
that the phase transformation proceeded with increas-
ing nucleation rate.

A significant difference of our investigation from
those mentioned above consists in that the phase trans-
formation in CaF2 is accompanied by a large relative
change in volume (∆V = 8.3%) and takes place suffi-
ciently far from the state of phase equilibrium. This
implies that, at the onset of phase transition, a consid-
erable amount of elastic energy is accumulated in the
crystal.

Let us consider separately the different parts of the
kinetic curves (Fig. 3). The initial parts have average
slopes significantly dependent on ∆p. The smaller this
pressure difference, the greater the average slope. At a
minimum value of ∆p = 0.09 GPa, the initial part of the
kinetic curve has a maximum slope with an Avrami
exponent of n ≈ 20. On the contrary, the curve for a
maximum value of ∆p = 0.25 GPa has a minimum slope
of the initial part: n ≈ 4. The value of n ≈ 20 is signifi-
cantly greater than the limiting Avrami exponent (n = 4)
possible according to the classical theory. This discrep-
ancy can be explained only by assuming that the phase
transformation in the initial stage proceeds with ava-
lanche growth in the nucleation rate. Note also that the
curves in Fig. 3 corresponding to ∆p = 0.08 GPa and (to
a certain extent) ∆p = 0.14 GPa exhibit uncertainties
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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related to the aforementioned selection of the starting
point t0. However, allowance for a certain prehistory in
compression with realistic times of t0 ~ 10–102 s does
not change the conclusion concerning giant values of
the Avrami exponent n in the initial part of the kinetic
curve.

In the middle parts of the kinetic curves (5% ≤ x ≤
20–30%), the difference in n values for the kinetic
curves obtained under various conditions is not as large
(n ≈ 3–5). Here, the trend in the average slope is oppo-
site of that in the first part of the kinetic curves: the
average n value increases with the parameter ∆p. It
should be noted that the Avrami exponents determined
for the middle parts of the kinetic curves show the best
agreement with the classical theory.

In the third part (beginning with x = 20–30%), all
curves exhibit a smooth decrease in the differential
slope (down to n ≈ 0.1) with time. It should be noted
that all curves approach the same envelope and the
transformation slows down so that the final content of
the high-pressure phase never exceeded 63%.

The above features of the phase transformation
kinetics can be explained assuming that there exists a
certain geometric factor influencing the course of the
phase transition. This hypothesis is confirmed by the
fact that all the kinetic curves exhibit anomalies corre-
sponding to the same fractions of the new phase (x ≈
5% and 20–30%).

The nature of this geometric factor can be rational-
ized as follows. Fluorite crystals have easy slip panes
corresponding to the cleavage planes. The nuclei of the
new phase formed at some structural defects induce the
slip along these planes. During growth, the nuclei cause
the formation of new defects and, hence, further nucle-
ation predominantly along such planes, which results in
increasing nucleation rate. Thus, the new phase initially
forms layers along the easy slip planes. These layers
intersect with one another to form a three-dimensional
fractal cellular structure in space. We believe that, in the
initial stage of the phase transformation, nucleation
proceeds primarily according to the shear mechanism.
In the vicinity of pressures at which the crystal lattice is
close to instability, the nucleation process acquires an
avalanche character, which is manifested by the giant
slopes of the initial parts of the kinetic curves.

The appearance of a considerable amount of the new
phase in the form of a cellular framework may change
the “local pressure” at which the old phase occurs, thus
slowing down the transformation. The walls of the cells
composed of the new phase bound the regions contain-
ing the old phase and grow at the expense of matter sup-
plied from these regions. Since the phase transforma-
tion is accompanied by a significant (>8%) change in
volume, the regions of the old phase bounded by shells
of the new phase are characterized by a local decrease
in pressure. The external pressure produced by the
ambient medium is not transferred via the cellular
framework to the old phase.
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The hypothesis concerning the cellular structure is
also confirmed by the fact that the phase transformation
rate is subject to a decrease at approximately the same
content of the new phase (x ≈ 20–30%) at various val-
ues of ∆p. As ∆p increases, the cells grow in size and
acquire thicker walls and vice versa. Indirect evidence
for this hypothesis is provided by the results of visual
examination of the samples with an optical microscope
after termination of the kinetic measurements.
Although fluorite samples exhibit reverse transforma-
tion upon unloading, the traces of cellular structure
formed in the course of the pressure-induced phase
transformation were observed both in the bulk and on
the surface of crystals. The samples initially appeared
as transparent single crystals; after experiments in a
high-pressure cell, they displayed regions capable of
refracting and scattering light. The higher the pressure
at which the phase transition took place, the lower the
sample transparency after such experiments. Indeed,
the sample subjected to phase transformation at the
minimum pressure (∆p = 0.25 GPa) was most transpar-
ent and displayed clearly distinguishable cluster bound-
aries in the volume of the crystal.

4. CONCLUSIONS

Investigation of the pressure-induced polymorphous
phase transformation in CaF2 single crystals by means
of the strain gauge technique revealed three sequential
stages, which can be distinguished in the curves of
phase transition kinetics.

The first stage (corresponding to a new phase con-
tent x < 5%) is probably related to the formation of
nuclei via the shear mechanism and is accompanied by
avalanche growth in the nucleation rate. The average
slopes of the corresponding parts of the kinetic curves
are strongly dependent on the pressure and may reach
giant values corresponding to the Avrami exponents n ≈
10–20.

The parts of the curves corresponding to the second
stage of the phase transformation (5% < x < 20–30%)
exhibit approximately equal slopes (n ≈ 3–5) weakly
dependent on the pressure. This stage of the phase tran-
sition kinetics is most adequately described by the clas-
sical Kolmogorov–Avrami–Mehl–Johnson theory.

The third part of the phase transition kinetics (x >
20–30%) exhibits a slow “saturation” character, with
the kinetic curves attaining the same envelope. This
stage of the transformation is probably related to the
formation of a cellular framework of the new phase,
with a local decrease in the pressure.

These features are related to a large change in vol-
ume accompanying the given phase transformation and
to the fact that the transformation proceeds far from a
state of phase equilibrium. The data obtained in this
study refer to the phase transformation only at one tem-
perature (T ≈ 290 K). At higher temperatures, addi-
tional channels of the elastic energy relaxation may
SICS      Vol. 100      No. 5      2005
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appear and significantly influence the course of the
phase transformation (especially in the first and third
stages), which requires its own experimental investi-
gation.
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Abstract—All possible types of spin ordering manifested in spin–spin correlation functions are determined.
Some general characteristics of arbitrary spin structures predicted by macroscopic theory are examined, includ-
ing energy associated with inhomogeneity, anisotropy, and energy in external fields. © 2005 Pleiades Publish-
ing, Inc. 
1. INTRODUCTION

Andreev and Grishchuk showed in [1] that spin
ordering of special type can arise in condensed matter
when exchange coupling is much stronger than relativ-
istic effects. In this case, the average microscopic spin
density

(1)

vanishes, and spontaneous breaking of spin rotation
symmetry of the exchange Hamiltonian manifests itself
by anisotropy of the spin–spin correlation function

(2)

This state is not magnetic, because invariance under
time reversal is preserved. However, many characteris-
tics of the spin ordering are similar to those of normal
exchange magnets [2] (low-frequency spin waves,
magnetic resonance, susceptibility, etc.).

In principle, more complicated states may exist in
which spontaneous breaking of spin exchange symme-
try and invariance under time reversal is manifested
only in multiple-spin correlation functions. The non-
magnetic phases for which only even correlation func-
tions do not vanish are called spin nematics [1]. In the
case a nonzero odd correlation function, such as the tri-
ple-spin correlation function

(3)

the state is magnetic, because it is not invariant under
time reversal. Phases characterized by odd spin correla-
tion functions are called tensor magnets [3, 4]. They
substantially differ from both normal magnets and spin
nematics. These phases always have a low spin density
due to relativistic effects. Recently, several materials
were found in which extremely weak spontaneous
sublattice magnetization is observed. Barzykin and
Gorkov [5] suggested to detect tensor magnetic order-
ing in these materials by measuring elastic neutron
scattering in an external magnetic field.

S r( ) Ŝ r( )〈 〉=

Sαβ r1 r2,( ) Ŝα r1( )Ŝβ r2( )〈 〉 .=

Sαβγ r1 r2 r3, ,( ) Ŝα r1( )Ŝβ r2( )Ŝγ r3( )〈 〉 ,=
1063-7761/05/10005- $26.000977
In [1, 3, 4], examples of tensor ordering were dis-
cussed, but the properties of the spin order parameter
under crystallographic group transformations were not
analyzed. In [6], the Landau theory of second-order
phase transitions was applied to analyze spin nematic
phases characterized by spin–spin correlation functions
resulting from second-order phase transitions in crys-
tals with tetragonal symmetry.

In this study, we determine all possible types of ten-
sor spin ordering, relying on the general ideas of the
theory of spin exchange symmetry [2]. As in the case of
a normal magnet, this can be done without analyzing
phase transitions. We also discuss some special proper-
ties of tensor spin ordering predicted by macroscopic
theory.

2. EXCHANGE SYMMETRY

The symmetry of a spin exchange state is deter-
mined its symmetry under classical crystallographic
transformations, their combinations with spin-space
rotations and time reversal (interpreted as spin-space
inversion), and spin rotations. Both spin density (1) and
all spin correlation functions must be invariant under
these operations. 

Pure spin transformations of the last type obviously
constitute a symmetry group equivalent to a point
group [7]. We denote these spin symmetry groups by
adding the superscript s to the symbols representing the

corresponding space point groups. For example, ,

, and Es correspond to collinear, coplanar, and non-
collinear noncoplanar magnets, respectively.

The construction of exchange symmetry groups
for normal magnets is based on the following obser-
vation [2]. In the general case, microscopic spin den-
sity can be expressed as

(4)

C∞v
s

Cs
s

S r( ) f a
1( )a f b

1( )b f c
1( )c,+ +=
 © 2005 Pleiades Publishing, Inc.
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where the mutually orthogonal unit vectors a, b, and c
make up a basis in the spin space, i.e., change sign
under time reversal. The parenthesized superscript of a
real function f is the rank of the spin tensor under con-
sideration. The spin density squared,

(5)

is invariant under both spin-space rotations and time
reversal. As a state variable, it must be invariant under
all transformations in the crystal symmetry group G.

In the case of a collinear magnet, the functions f are
linearly dependent. For example, a basis can be selected

in the spin space so that  =  = 0, and the corre-

sponding  transforms under a one-dimensional rep-

resentation. For a coplanar magnet,  can be set to

zero, and the corresponding linearly independent 

and  transform under similar one-dimensional rep-
resentations, or under different one-dimensional repre-
sentations, or under a two-dimensional representation.
The three linearly independent functions corresponding
to a general noncollinear magnet transform under sim-
ilar or different one-dimensional representations, or
under a one-dimensional representation for one of them
and a two-dimensional representation for the remaining
two, or under a three-dimensional representation.

For these magnets with , , and Es symme-
tries, a prescribed spin density determines the symme-
try of a state, and no analysis of correlation functions is
required.

However, in the case of minimal breaking of the
symmetry of the exchange Hamiltonian, when invari-
ance under spin-space rotations is preserved and only
invariance under time reversal is lost, the order param-
eter is the three-point correlation function

(6)

The minus in the superscript of f refers to the antisym-
metric part of the spin tensor, and the isotropic tensor
Eαβγ is

It differs from the Levi-Civita symbol eαβγ by the factor

(7)

which changes sign under time reversal. The invariance
of convolutions SαβγSαβγ under the group G implies that
f (3–) transforms only under a one-dimensional repre-
sentation. The corresponding material is a scalar mag-

S2 f a
1( )( )2

f b
1( )( )

2
f c

1( )( )2
+ +=

f α
1( )

f b
1( )

f c
1( )

f c
1( )

f a
1( )

f b
1( )

C∞v
s Cs

s

Sαβγ r1 r2 r3, ,( ) f 3–( ) r1 r2 r3, ,( )Eαβγ.=

Eαβγ aαbβcγ bαcβaγ cαaβbγ+ +=

– bαaβcγ aαcβbγ– cαbβaγ.–

ν a b c×[ ] ,⋅=
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net [3]. Both exchange and magnetic symmetries of this
state are determined by the symmetry of νf (3–). The cor-
responding magnetic crystal symmetry obviously coin-
cides with the crystal group G.

Isotropic quantity (7) is also nonzero for noncol-
linear noncoplanar magnets, for which all functions f in
spin density (1) are linearly independent. We naturally
call this quantity magnetic chirality. Dzyaloshinskiœ [8]
noted that domain walls of special kind can exist in
such phases. States that differ by the sign of (7) cannot
be transformed into one another by any spin-space rota-
tion. Thus, the boundary between them has its structure
determined by exchange interactions and therefore has
an atomic thickness, in contrast to the domain-wall
thickness in normal magnets determined by competing
exchange and relativistic effects.

The phase with the highest chiral spin symmetry

 is called axial spin nematic [1] and is character-
ized by the anisotropic part of the spin–spin correlation
function,

(8)

where  is a function of r1 and r2. By virtue of the
invariance of the convolutions SαβSαβ and SαβSβγSαβ

under the group G, the function  is totally invariant
(identity representation).

Tensor magnets with symmetry  are character-
ized by magnetic chirality (6) and spin–spin correla-

tions (8) with f (3–) and  that transform under the
same or different one-dimensional representations.

The spin–spin correlation function for group 
magnets contains both (8) and

(9)

which is antisymmetric with respect to spin indices [1].
An analysis of the invariance of nonmagnetic spin con-

volutions shows that  is again totally invariant,

while  transforms under a one-dimensional repre-
sentation. In this case, the role of order parameter is
played by the pseudovector P, which is dual to the anti-
symmetric part of the spin–spin correlation function in
the spin space,

(10)

In addition to the spin–spin correlation function

characterizing the case of  (with similar selection

D∞h
s

Sαβ
f 1

2( )

6
-------- 3cαcβ δαβ–( ),=

f 1
2( )

f 1
2( )

D∞
s

f 1
2( )

C∞h
s

f c
2–( ) aαbβ bαaβ–( ),

f 1
2( )

f c
2–( )

P f c
2–( ) a b×[ ] .=

C∞h
s
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rules for f), the group  admits the vector

(11)

where f transforms under a one-dimensional represen-
tation. This phase obviously has a magnetic chirality.

Under the finite groups, let us define the orientation
of the basis vectors in the spin space as follows. Under

the Ts, , , Ys, and  groups, the vectors a, b, and
c are aligned with the three mutually orthogonal sec-

ond-order axes; under the Os and  groups, they are
aligned with the fourth-order axes. Under the axial spin
groups, the vector c is aligned with the principal axis.

Under the , , and  groups, the vector a is

aligned with one of the  axes. Under the  group,

the vector a lies in the symmetry plane . Under the

, , and  groups, the vector a is arbitrarily ori-

ented. Under the  group, the entire basis is arbitrarily
oriented.

Under the  group, when exchange symmetry is
lost completely while invariance under time reversal
holds, it is reasonable to consider the antisymmetric
part of the spin–spin correlation function, whose gen-
eral form is

(12)

Note that  does not admit linear dependence
between the functions f. Invariance of the convolution

 implies that the sum

is invariant under group G transformations. Thus, the
functions f transform under the representations selected
by rules similar to those for magnets. However, the

additional requirement of invariance of 

implies invariance of the product , which
substantially reduces the number of possible types of
ordering.

The groups  and  with n > 1 admit collinear

magnetism (11). Under the  groups, spin ordering is
characterized by magnetic chirality. Therefore, the
spin–spin correlation function contains antisymmetric

C∞
s

S f c
1( )c,=

Td
s Th

s Yh
s

Oh
s

Dn
s Dnh

s Dnd
s

U2
s Cnv

s

σv
s

Cn
s Cnh

s S2n
s

Ci
s

Ci
s

Sαβ
–( ) f a

2–( )aγ f b
2–( )bγ f c

2–( )cγ+ +( )Eαβγ.=

Ci
s

Sαβ
–( )

Sαβ
–( )

f a
2–( )( )2

f b
2–( )( )

2
f c

2–( )( )2
+ +

Sαβ
–( )

Sβγ
–( )Sαγ

–( )

f a
2–( ) f b

2–( ) f c
2–( )

Cn
s Cnv

s

Cn
s
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part (9). Under , the correlation function Sαβ con-
tains the additional terms

. (13)

An analysis of spin–spin convolutions shows that 

and  transform either under identical or different
one-dimensional representations or under a single two-

dimensional one. Under , (13) contains only the
first term, which transforms under the identity repre-
sentation.

Representations under the  and  groups with
n > 2 are selected by rules similar to those for n = 2,
except that n-spin correlators are anisotropic. Instead of
the pair of tensors in (13), rank n spin tensors must be
used. They can be represented as

Hereinafter, expressions in curly brackets imply obvi-
ous combinations of spin indices.

The  structures differ from  structures only
by the absence of magnetic vector (11).

Under the  groups, the magnetic vector is also
forbidden, but the spin–spin correlation function con-
tains antisymmetric part (9). Axial anisotropy is associ-
ated with a correlation function of order n + 3. There
exist the tensors Eαβγ * {(a + ib)n + (a – ib)n} and iEαβγ *
{(a + ib)n – (a – ib)n}, where the asterisk denotes a ten-
sor product. The corresponding amplitudes also admit
one- and two-dimensional representations.

Under the  groups, the loss of invariance under
time reversal implies the existence of nonzero triple-
spin correlations (6).

Under , anisotropy in the spin space is described
by the spin–spin correlation function

(14)

The invariance of all possible spin convolutions implies

that the functions ( )2 + ( )2 and ( )3 –

3 ( )2 must be invariant. Under any space group

G,  transforms under the identity representation

and  transforms under a one-dimensional represen-
tation. However, two-dimensional representations may
also be admissible in certain cases. In particular, crys-

C2
s

f 2
2( )

2
-------- aαaβ bαbβ–( )

f 3
2( )

2
-------- aαbβ bαaβ+( )+

f 2
2( )

f 3
2( )

C2v
s

Cn
s Cnv

s

a ib+( )n a ib–( )n+{ } , i a ib+( )n a ib–( )n–{ } .

Cnh
s Cn

s

S2n
s

Dn
s

D2
s

Sαβ
f 1

2( )

6
-------- 3cαcβ δαβ–( )

f 2
2( )

2
-------- aαaβ bαbβ–( ).+=

f 1
2( ) f 2

2( ) f 1
2( )

f 1
2( ) f 2

2( )

f 1
2( )

f 2
2( )
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tals of the rhombohedral and hexagonal systems admit
representations with k = 0, which keep invariant the
polynomial

An example of such representation in any space group
of crystal class C3 is the representation under which the
x and y vector components transform.

A simple analysis shows that the groups with higher
order principal axes, as well as tetrahedral groups,
admit spin correlation functions defined by a single ten-
sor or two tensors of different rank whose amplitudes
transform only under one-dimensional representations
of G. The corresponding tensor order parameters are

 : Eαβγ, {(a + ib)n + (a – ib)n};

 : {(a + ib)n + (a – ib)n};

 : Eαβγ * {(a + ib)n + (a – ib)n};

Ts : Eαβγ, Tαβγ;

 : Tαβγ;

 : Eαβγ * Tδηµ.

Here, Tαβγ is the tetrahedral tensor

The octahedral group Os of spin symmetry admits
triple spin correlations (6). The amplitude f (3–) trans-
forms under a one-dimensional representation. Anisot-
ropy in the spin space corresponds to a four-spin corre-
lation function of the form f (4)Oαβγδ, where Oαβγδ is the
totally symmetric traceless tensor

with cubic symmetry. Here, I(4) is the spherically sym-
metric rank four tensor

The amplitude f (4) must be invariant under G, because
the convolution OαβγδOαβµνOγδµν does not vanish.

Under the cubic  group, the order parameter is
Oαβγδ.

The icosahedral group Ys admits triple-spin correla-
tions (6), and spin-space anisotropy is associated with a
six-spin correlation function of the form f (6)Yαβγδηµ,
where the tensor Y has the icosahedral symmetry. The

tensor Y is the only order parameter under . The

f 1
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symmetric traceless rank six tensor with icosahedral
symmetry has the form 

where c + φa, c – φa, a + φb, a – φb, b + φc, and b – φc
are the position vectors of the six vertices of an icosa-
hedron none of which is diametrically opposite to
another. The icosahedron is inserted in the standard
manner in a cube with edges of length 2 aligned with

the basis vectors a, b, and c. The number φ is (  –
1)/2. The symmetric rank six tensor

is spherically symmetric.
Under both icosahedral spin groups, the function f (6)

is invariant under G, because the convolution
YαβγδηµYαβγεζξYδηµεζξ does not vanish.

Note that the tetrahedral, cubic, and icosahedral ten-
sors are presented in different form in the theory of non-
uniaxial nematic liquid crystals (e.g., see [9]).

3. LIFSHITZ INVARIANTS

A homogeneous state of spin ordering is unstable if
its symmetry admits Lifshitz invariants, which have the
form of convolutions of polynomials of aα , bβ, and cγ
with the spatial derivatives ∂iaα , ∂ibβ, and ∂icγ. Since
the convolution of two basis vectors is either 0 or 1,
these invariants reduce to sums of terms of the form

, where  and  are basis vectors.

Under an infinitesimal spin-space rotation to an
angle δq, an arbitrary vector  changes by

(15)

Therefore, the part of energy that is linear in gradients
reduces to Liαθiα , where the matrix Liα is a vector in the
orbital space and a pseudovector in the spin space, and

(16)

By analogy with elasticity theory, θiα should be called
angular distortion (or orientational strain). The distor-
tion θiα is a pseudovector in the spin space, because it is
obvious from (15) that δq is a spin pseudovector
(invariant under time reversal).

Y c φa+( )6 c φa–( )6 a φb+( )6 a φb–( )6+ + +




=

+ b φc+( )6 b φc–( )6 2 1 φ2+( )3

35
------------------------I 6( )–+





,

5

Iαβγδηµ
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+ δαδIβγµν
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The matrix Liα is a characteristic of a spin system.
Since it is independent of spatial gradients, it must have
the symmetry of a homogeneous spin state. It is obvi-
ous that Liα does not vanish only under finite spin sym-
metry groups and only in the cases when the antisym-
metric part of the spin–spin correlation function does
not vanish. Note also that the functions f (2–) must trans-
form under the vector representation of G.

4. ENERGY OF ORIENTATIONAL STRAIN

In any axial spin phase with weakly nonuniform ori-
entation of order parameter, the exchange energy has
the standard form

(17)

where the tensor Λ is invariant under G.

In the general case, the exchange energy is a qua-
dratic function of the gradients of the angles of spin
rotation of the form

(18)

where the tensor Λ is symmetric in the orbital space and
symmetric in the spin space. It is obvious that Λ is
invariant under the exchange symmetry group of the
state in question.

Under the tetrahedral, cubic, and icosahedral spin
symmetry groups, Λijαβ reduces to the simple form

(19)

where the spatial tensor  is invariant under G. The
corresponding contribution is obviously contained in
the energy associated with inhomogeneity of any spin
ordering.

The groups , , and  with n > 2 admit an
additional term

(20)

where the tensor  is also invariant under G. This is

also true for , , , and  with n > 2 when
the n- or (n + 3)-spin correlation function is determined
by a single function of coordinates that transforms
under a one-dimensional representation of G.

In the remaining nonaxial spin orderings, as well as
in noncollinear magnets [2], a special analysis is
required to determine Λ in each particular case.
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5. RELATIVISTIC ANISOTROPY EFFECTS

Relativistic spin-orbit and magnetic dipole–dipole
effects result in dependence of the energy of a crystal
on the orientation of spin structures relative to the crys-
tallographic axes.

By analogy with the theory of second-order phase
transitions, the laws of transformation of the functions
f n under elements of G should be extended to the spin
vector and tensors. Then the role of order parameter in
antiferromagnets will be played by antiferromagnetic
unit vectors li [2]. Only when magnetization M does not
vanish, it should be treated as an order parameter
instead of the unit vector M/|M|, because magnetization
is contained in Maxwell’s equations. In phases with
tensor spin structures, the role of order parameters is
played by tensors with amplitudes constant in space
(see above). In particular, when correlation function (6)
does not vanish, the order parameter can be defined as
the unit chirality ν, which changes sign both under time
reversal and under certain crystal transformations (in
accordance with the law of transformation of
f (3−)(r1, r2, r3)).

In normal magnets, the energy associated with
anisotropy can be expanded in terms of magnetic-vec-
tor components, with the fine structure constant α as an
expansion parameter. In collinear magnets, the first
term in the expansion, e.g., for a uniaxial crystal, can be

written as β[2] . The anisotropic coefficient β[2] scales
with α2 times the volume density of exchange energy.
Hereinafter, the superscript in brackets is the exponent
of a power of the fine structure constant. The next term

in the expansion for a uniaxial crystal is β[4] , where
the coefficient β[4] has the order of α4. Generally, the
expansion of the energy of a collinear magnet contains
only even powers n of components of the magnetic vec-
tor, and the corresponding coefficients scale with αn.
The energy of anisotropy of noncollinear coplanar
magnets (spin structures with two vectors) has an anal-
ogous form. For noncollinear noncoplanar magnets, the
energy may contain spin-orbit terms of special form. In
particular, for the so-called disordered antiferromagnet,
the role of the order parameter is played by three spin

vectors , , and , where the subscripts indicate
that they transform under a vector representation in the
orbital space. In addition to the standard relativistic
terms

(21)

(see [2]), we should also include the additional term

(22)

On a microscopic level, this term is due to exchange
and spin-orbit interactions and scales with α2, as do the

lz
2

lz
4
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α Sy

β Sz
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terms in (21). Note that this anomalous term is obvi-
ously small as compared to the standard ones (21) near
the point of second-order transition to the paramagnetic
state, when all components of the order parameter
vanish.

These considerations suggest a general rule for the
relativistic terms in the expansion in terms of an arbi-
trary spin order parameter: relativistic invariants with
even and odd number n of spin indices scale with αn

and αn + 1, respectively.
Since all spin order parameters enumerated above

are such that spin convolutions of their powers cannot
yield anisotropic or nonaxial tensors of lower rank,
anisotropy effects, as well as the orientational effects of
magnetic and electric fields and uniform deformations
of the crystal, are fully manifested only in relatively
high order terms in the expansions in terms of the fine
structure constant and external perturbation amplitudes.

Consider two examples: a  tetrahedral tensor

magnet and an  cubic spin nematic in the exchange
crystal class D2h.

In both cases, the first terms of the expansion of the
anisotropy energy have the form β1Szzzz + β2Sxxxx +
β3Syyyy + β4Sxxyy + β5Syyzz + β6Szzxx, where the cubically
symmetric tensor S is Oαβγδ in the latter case and Sαβγδ =
TαβµTµγδ in the former. Note that the anisotropy arises in
fourth-order terms in the fine structure constant (rather
than in second-order terms, as in crystal class D2h mag-
nets).

In external magnetic field, the anisotropy of spin
ordering corresponds to exchange-coupling terms pro-
portional to SαβγδHαHβHγHδ and in mixed exchange–
relativistic terms

In the tetrahedral case, when f 3 transforms under the
identity representation, energy contains anomalous

Td
s

Oh
s

η1SαβxxHα Hβ η2SαβyyHα Hβ η3SαβzzHα Hβ.+ +
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terms: an exchange one proportional to TαβγHαHβHγ
and exchange–relativistic one of the form

As shown by Dzyaloshinskiœ and Man’ko [10], terms of
this type can arise for noncollinear noncoplanar
magnets.
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Abstract—The optical properties (the real ε1 and imaginary ε2 permittivity parts, optical conductivity σ, and
reflectivity R) of the new ferromagnetic compound CaCo2 in the Laves cubic phase (C15) synthesized at a pres-
sure of 8.0 GPa were studied over the spectral range "ω = 0.2–9 eV. The field and spectral ("ω = 0.5–4.2 eV)
dependences of the equatorial Kerr effect were determined. The electronic structure and optical characteristics
of CaCo2 were calculated using the electron density functional theory by the linearized augmented-plane-wave
method. The main band structure parameters of the compound were determined. The experimental and theoret-
ical σ(ω) and R(ω) dependences were in satisfactory agreement with each other. The formation of the main
absorption bands was found to be caused by the (p,d  d,p)-type electronic transitions related to the cobalt
and calcium atoms. The exchange splitting of the 3d band of CaCo2 was estimated, 2∆exc ~ (1–1.3) eV. © 2005
Pleiades Publishing, Inc. 
1. INTRODUCTION

Synthesis under high-pressure conditions is exten-
sively used to prepare new materials with unusual prop-
erties. For instance, experiments on synthesis of inter-
metallic compounds combining alkali and alkaline-
earth metals on the one hand and magnetic 3d metals on
the other have successfully been performed in recent
years [1–3]. Interest in these compounds stems from
the observation that Group I and II elements manifest
the properties of transition d metals in them. They are
also of interest in relation to geophysical problems,
namely, for checking the hypothesis of the composition
of the Earth’s core, which supposedly contains, along
with iron family metals, light elements, in particular,
potassium and calcium.

Recently, the new compounds CaCo2 and
Ca(Fe1 − xNix)2 have for the first time been obtained at a
pressure of 8 GPa [2, 3]. The compounds crystallize in
the cubic Laves phase C15 (MgCu2 lattice). These sub-
stances broaden the current concepts of the class of
magnetic alkaline-earth metal compounds, very few
representatives of which are known. Importantly, these
metastable high-pressure phases remain intact under
normal conditions for a long time (the stablest of them,
1063-7761/05/10005- $26.000983
CaCo2, can be kept for several months). According to
the experimental data [2–4], CaCo2 is a ferromagnet
with a magnetic moment of 3.5µB at T = 4.2 K per for-
mula unit (the magnetic moment of CaCo2 samples
studied in [4] was 3.1µB/formula unit). The compound
has a high Curie temperature (TC = 528 K), which
slightly decreases as the pressure grows (dTC/dP =
−14.5 K/GPa; TC = 430 K at 7.5 GPa). Hyperfine mag-
netic field was measured in [4] by the NMR method to
obtain Hhf = 15.7 T. The compound has a high com-
pressibility and a low calculated density n0 =
5.21 g/cm3. First-principle calculations of the elec-
tronic structure of CaCo2 were reported in [2, 3].

It follows from the data obtained earlier [2–4] that
the electronic and magnetic properties of CaCo2 are
fairly unusual (see Section 2). We therefore continued
studies of the electronic structure of this compound by
metal optics methods. We deemed it interesting to com-
pare information about the electronic structure obtained
by optical measurements with the experimental and
theoretical data reported earlier. Although certain spe-
cial features of the substance (its metastable character
and the high content of calcium susceptible to oxida-
tion) might impede the preparation of high-quality sur-
 © 2005 Pleiades Publishing, Inc.
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faces, we made an attempt to measure the following
optical characteristics: reflectivity R, Kerr effect, and
diagonal σxx and off-diagonal σxy components of the
optical conductivity tensor . The purpose of this work
was also to theoretically calculate the energy band
structure of CaCo2 and the frequency dependence of its
interband optical conductivity to relate the special fea-
tures of absorption to the electronic states of the sub-
stance and estimate the exchange splitting of the d
band.

2. SAMPLES AND PROCEDURE 
FOR MEASUREMENTS

The CaCo2 compound was synthesized from the ini-
tial mixture of components in a high-pressure chamber
of the Toroid type at a 8.0 GPa pressure and under heat-
ing to the melting point. Heating was effected by cur-
rent passage through the sample placed within a tube
made of a potassium chloride single crystal. A descrip-
tion of the synthesis and the X-ray structure data on the
high-pressure phase can be found in [2]. At normal
pressure, CaCo2 is not a stable phase. For this reason,
we repeatedly performed phase analyses of the samples
directly prior to optical measurements. A study of the
crystal structure of CaCo2 (five samples from different
series) performed by X-ray diffraction on a DRON-ZM
unit using Co Kα radiation showed that the Laves cubic
phase C15 was retained in them.

Mirror sample surfaces for optical and magnetoop-
tical measurements were prepared with a diamond
paste, grain size smaller than 1 µm; toluene was used as
a wetting liquid. After polishing, the surface was puri-
fied in an ultrasonic bath filled with toluene. Typical
sample sizes were (4–7) × (3–5) × (2–3) mm3.

The refractive n(ω) and absorption k(ω) indexes (ω
is the cyclic light wave frequency) were measured by
the Bitti ellipsometry method over the wavelength
range λ = (0.25–6.0) µm on an automated spectrometer
with a single reflection from the sample and light inci-
dence angles ϕ = 67°–75°. The error in the optical con-
stants did not exceed 3%.

The reflectivity R at a ϕ = 12° light incidence angle
was measured on a VYF-2 vacuum spectrometer over
the spectrum range "ω = (4.5–9) eV. The optical con-
stants n and k and the real ε1,xx and imaginary ε2,xx parts
of the diagonal permittivity tensor components in this
region were obtained from the reflectivity R(ω) values
over the whole spectral range studied using the Kram-
ers–Kronig equations as described in [5]. The R(ω) val-
ues in the high-energy region (E > 9 eV) were approxi-
mated by the ω–4 dependence.

The equatorial Kerr effect (δp) odd with respect to
magnetization describes relative changes in reflected
light intensity ∆I/I0 at equatorial (perpendicular to the
plane of light incidence) sample magnetization and the
p-polarization of the incident light wave. This effect

σ̂
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was measured at λ = (0.3–2.4) µm using the modulation
technique on a magnetooptical spectrometer. The field
dependence of the equatorial Kerr effect was studied in
fields H ≤ 9 kOe.

The depth of light penetration into the substance
under study δ0 = c/ωk increases from 26.5 nm in the
near ultraviolet range to 200 nm in the middle IR range,
which corresponds to 36 to 270 atomic layers, respec-
tively. This allows the optical and magnetooptical char-
acteristics obtained to be treated as the volume proper-
ties of the substance.

We considered optical and magnetooptical proper-
ties measured at room temperature and atmospheric
pressure for one of the five samples synthesized
(No. 2109; further referred to as sample 1) with single-
phase crystalline structure C15. This sample was also
used to study the temperature dependence of electrical
resistance ρ(T) (T = 78–290 K). The optical constant n,
k, and δp-effect values for single-phase samples from
other synthesis series were close to those obtained for
sample 1 and are not discussed below.

3. CALCULATIONS OF THE ELECTRONIC
AND OPTICAL PROPERTIES OF CaCo2

3.1. Computational Procedure

The electronic structure and optical properties of
CaCo2 were calculated using electron density func-
tional theory [6] and the WIEN2k package [7]. In this
package, the linear augmented-plane-wave method
with a crystalline potential having the full lattice sym-
metry (FP-LAPW) is implemented. The calculations
were performed for the paramagnetic and ferromag-
netic states. The generalized gradient approximation to
the exchange-correlation potential was used; the 3s and
3p Ca and Co states were included into the basis set as
local orbitals. The optical spectra were calculated for
the theoretical lattice parameter 7.261 Å (the experi-
mental value is a = 7.412 Å) on a set of 1140 k points
in the 1/48 irreducible Brillouin zone part. Estimates of
some electronic structure characteristics (partial
charges, magnetic moments, band widths, etc.) were
obtained in the geometry of a quasi-atomic sphere by
the generalized ASA-LMTO method [8].

Let us briefly describe the procedure for calculating
optical properties. The imaginary permittivity part
ε2(ω) can be represented as the sum of the interband

and intraband contributions, ε2(ω) = (ω) +

(ω). The Drude contribution determined by the
intraband motion of electrons is written as

(1)

The plasma frequency in (1) was determined by sum-
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ming over the Fermi surface,

(2)

Here, e is the charge of the electron, Vcell is the unit cell

volume, and  = d /dk is the velocity of the electron
in the state |n, k〉 . The relaxation frequency γ = 1/τ
related to scattering by phonons can be approximately
estimated from the equation

(3)

where ρ0 is the specific electrical resistance at a temper-
ature above the Debye temperature.

The contribution (ω) determined by interband
electronic transitions is calculated by the equation

(4)

where θ is a step function and  denotes the matrix
elements of interband optical transitions which can, in
the dipole approximation, be written via the momentum
operator p,

(5)

(e is the polarization vector of the electromagnetic
wave). Equations (1)–(5) were used to calculate the
optical conductivity Reσ(ω) = ωε2(ω)/4π.

The real part ε1(ω) was calculated from ε2(ω) using
the Kramers–Kronig equation

(6)

After this, the reflectivity can be determined as

(7)

3.2. The Electronic Structure of CaCo2

Our calculations showed, in complete agreement
with LMTO calculations [2, 3], that CaCo2 is a ferri-
magnet with the cobalt sublattice moment µCo = 1.55µB
and the oppositely directed induced moment on cal-
cium µCa = –0.38µB. Such a ferrimagnetic ordering is
typical of Laves cubic phases AB2 and is observed in
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neutron diffraction experiments. The calculated mag-
netic moment per CaCo2 formula unit is 2.72µB, which
is slightly smaller than the experimental moment. The
value obtained is closer to the magnetic moment of pure
cobalt (µCo = 1.71µB) than the values for the other
cobalt compounds with nonmagnetic elements (where,
as a rule, µCo ≤ 1µB).

The electronic configuration of the calcium atom in
CaCo2 at normal pressure P ≈ 0, when the compound is
metastable, is 4sp1.13d0.9 . The Ca atom has z = 12 near-
est neighbors (Co atoms) at distances dNN ≈ 3.07 Å. The
pure FCC calcium metal is also characterized by z = 12,
but the interatomic distance in it is 3.94 Å. The dNN dis-
tance in pure calcium becomes equal to 3.07 Å under
approximately twofold uniform mechanical compres-
sion attained at P ~ 30 GPa. The number of d electrons
nd per atom in FCC calcium then increases from 0.5 to
0.9, that is, equal to that in CaCo2. The specified pres-
sure value and the corresponding occupation number
nd ≈ 1 correspond to the final stage of “continuous s–d
transition” in calcium. This term usually denotes grad-
ual electron transfer from the s to d band caused by
compression. In terms of the s–d transition concept, nd

is treated as a universal parameter, which, within cer-
tain limits, allows the chemical bond, crystal structure,
and other properties of alkali and alkaline-earth metals
to be predicted.

According to this picture, the chemical compression
of the electron shell in CaCo2 results in electron transfer
into the empty d band of calcium instead of filling the d
subband of cobalt with “spin down.” As a result, the
numbers of d electrons on cobalt with spin up and spin
down are 4.6 and 3.0, respectively, which is close to
those for pure HCP cobalt (4.7 and 2.9). This explains
the high value of the observed magnetic moment of
CaCo2. Also note that the very possibility of preparing
the compound under consideration by applying high
pressure has a simple explanation within the framework
of the Midema model of alloy formation (see references
in [3]), according to which an increase in the number of
d electrons in a simple metal is a factor that favors the
formation of its compounds with transition metals.

The energy bands En(k) and density-of-state curves
N(E) for electrons with spins directed along (↑ ) and
oppositely to (↓ ) the spontaneous magnetization direc-
tion are shown in Fig. 1. The partial densities of the s,
p, and d states of the cobalt and calcium atoms in the
C15 lattice are given in Figs. 2a and 2b. Distinguishing
the bands originating from different atoms and different
angular momenta l shows that the 3d cobalt states pre-
dominate in the density of states N(E) below and
directly above the Fermi level EF, whereas the main
contribution above 2 eV is made by the 3d states of cal-
cium. The total density of states N(E) (Fig. 1c) exhibits
two peaks of free d bands of Ca, N1 and N2. The contri-
bution of the d electrons of Ca to the total density of
states at the Fermi level N(EF) is comparable to the con-
SICS      Vol. 100      No. 5      2005
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Fig. 1. Energy bands of ferromagnetic CaCo2 with spin directions (a) along and (b) opposite to spontaneous magnetization and
(c) density of states N(E) for subbands with spins up (solid line) and down (dashed line).
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tribution of the s and p states of atoms of both types; the
contribution of the d states of Co is larger by more than
an order of magnitude (see Fig. 2).

It follows from our calculations that the 3d band of
calcium in CaCo2 is very broad (estimates in the ASA
approximation give 11.2 eV for spin-up electrons and
11.4 eV for spins-down electrons). For cobalt, the
width of the 3d↓ subband is 3.8 eV and that of the 3d↑
subband, only 3.2 eV. As a result, the total width of the
JOURNAL OF EXPERIMENTAL A
d band in CaCo2 covers the interval of 15.8 eV, whereas
the width of its occupied part does not exceed 3.8 eV.
The large width of the d band of CaCo2 is related to
hybridization between the s, p, and d states of the Ca
and Co atoms, as follows from the shape of the Nj(E)
partial curves in Fig. 2. Hybridization also determines
the form of the d band of Ca in CaCo2: neither in width
nor in shape does it resemble the d band of pure calcium
subjected to twofold compression.
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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Fig. 2. Partial electronic state densities Nn(E) for the s, p, and d bands in CaCo2 on (a) cobalt and (b) calcium atoms. Arrows denote
the directions of spins.

(a)

s0.1

–0.1

0

p0.1

–0.1

0

d

2

–2

0

4

–6 –4 –2 0 2 4 6 8 10 12
E, eV

(b)

0.1

–0.1

0

p0.1

–0.1

0

s

–1

0

1

–6 –4 –2 0 2 4 6 8 10 12
E, eV

s

d

N
/a

t./
sp

in
, e

V
–

1

N
/a

t./
sp

in
, e

V
–

1

EFEF
The calculations show that the exchange splitting of
the 3d band of Co is 2∆exc ~ 1.36 eV. The magnetic
moment of Co atoms determines the spin separation of
the whole 3d band in CaCo2. The shift of the spin-
polarized bands in the spectrum of Ca is an order of
magnitude smaller and directed oppositely (that is, the
magnetic moment of the Ca atom is negative).

4. RESULTS AND DISCUSSION

4.1. A Comparison of the Experimental 
and Theoretical Reσxx(ω) and R(ω) Dependences

Let us consider the optical properties of CaCo2. The
form of the frequency dispersion of optical conductiv-
ity is evidence that the mechanism of interband light
absorption plays a determining role over the spectral
range studied ("ω = 0.2–9 eV).

It is known that the overall picture of interband
absorption in a ferromagnet is created by the superpo-
sition of electron transitions in both spin subsystems,
Reσxx(ω) = Reσxx↑ + Reσxx↓ . Fundamentally new spe-
cial features of optical conductivity are only expected at
the frequencies "ω ~ 2|ξ| as a result of spin–orbit cou-
pling of bands with oppositely directed spins (ξ is the
spin–orbit band splitting parameter) [9]. Our experi-
ments, however, did not cover the low-frequency IR
spectral range, where these effects could be observed.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The experimental optical conductivity Reσxx(ω)
curve for CaCo2 is shown in Fig. 3. Note the wide
band a with a maximum at 1.1 eV and the peculiar dou-

Fig. 3. Dissipative part of the diagonal component of the
conductivity tensor Reσxx(ω) for CaCo2. Experiment: s,
ellipsometry, and dashed curve, calculations from R(ω) by
the Kramers–Kronig equations. Calculated Reσxx(ω)
curves for the paramagnetic (dot-and-dash line) and ferro-
magnetic (solid line) states. The real permittivity part
ε1, xx(ω) is shown in the inset: d, ellipsometry, and solid
line, calculations from R(ω) by the Kramers–Kronig equa-
tions.
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ble structure b1–b2 with maxima at photon energies
of 5 and 6 eV, respectively. An analysis of the partial
contributions to interband conductivity allows the
nature of these bands to be explained by direct electron
transitions between particular energy band pairs. For
instance, for the states with spins up, the major contri-
bution to the formation of band a is made by transitions
between the bands 23  24, which intersect EF in the
W–L Brillouin zone direction (Van Hove singularity of
the ∇ En(k) = ∇ En'(k) type). Electron transitions
between the other pairs of bands (20, 21  23,
22  24) are less intense. In the system of bands with
spins down, ten energy bands intersect the Fermi level.

50

40

30

20

10

0 2 4 6 8 10 12
E, eV

Reσxx(ω), 1014 s–1

Fig. 4. Calculated partial contributions to optical conductiv-
ity of spins: Reσxx↑  (dashed line) and Reσxx↓  (solid line).

1.0

0.8

0.6

0.4

0.2

0 2 4 6 8 10 12
E, eV

R

Fig. 5. Experimental reflectivity versus theoretical R(ω)
curve (solid line) obtained for the ferromagnetic state.
Experiment: d, ellipsometry, and s, measurements of R(ω)
at ϕ = 12°.
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A series of electron transitions between the planar d↓
bands situated in the vicinity of the Fermi level
(the (11–21)  (19–25) transitions) make the most
substantial overall contribution to the formation of the
specified optical absorption band (Fig. 4). It follows
that the amplitude and spectral profile of band a are
determined by (p,d  d,p)-type interband transitions,
that is, transitions between bands originating from the
atomic d states of Co and Ca and, as a result of hybrid-
ization (see Fig. 2), containing substantial admixtures
of p states. Optical conductivity calculations (Fig. 4)
show that the contributions σ↓ and σ↑ of spin-polarized
bands are comparable in magnitude at photon energies
E = (1.4–2.5) eV and E = (4.3–6) eV. In the other spec-
tral regions, electron transitions in the system with
spins down predominate.

Next, let us consider the double structure observed
in the ultraviolet spectral range with maxima at "ω1 =
5 eV and "ω2 = 6 eV (Fig. 3). It is noteworthy that the
theoretical optical conductivity curve of ferromagnetic
CaCo2 contains similar peaks B1 and B2, whereas only
the intermediate peak B is clearly seen for the paramag-
netic compound phase. An analysis of the partial con-
tributions to interband conductivity leads us to con-
clude that the predominant contribution to the forma-
tion of the B1 (b1) and B2 (b2) structures is made by
transitions between planar d-type bands 4  28 in
subsystems with spins up and down. These transitions
are marked by vertical arrows in Figs. 1a and 1b. It fol-
lows that the splitting of peak B into two structures is
caused by the mutual separation of the cobalt 3d band
in the ferromagnetic phase caused by exchange interac-
tion. The final states of the specified electron transitions
are the calcium d bands (hybridized with the p states of
Ca and Co). These bands form a narrow intense peak N1
of the density of states N(E) (Fig. 1c). Ignoring the
exchange splitting of the free 3d band of Ca, we can
estimate the exchange splitting of the 3d band in CaCo2

from the experimental optical data, 2  ~ 1 eV. Inter-
estingly, the exchange splitting of the 3d band in pure

cobalt metal has a similar value, 2  ~ 1.5 eV [10, 11].

The conclusion can be drawn that, on the whole, the
total Reσxx(ω)theor curve for the ferromagnetic state of
CaCo2 well reproduces the energy positions of both the
first absorption band at 1.1 eV and the double structure
in the ultraviolet spectral range (5 and 6 eV). In the
intermediate optical spectrum region, the experimental
Reσxx curve has a smoother frequency dependence
compared with the calculated curve. Possibly, the
superposition of the partial contributions to optical con-
ductivity of a large number of electron transitions with
different excited state lifetimes causes spectral
“smoothing.” Smoothing of the Reσxx spectrum can
also be caused by an experimental factor (the presence
of small roughness that remains on mirror sample sur-
faces after polishing).

∆exc
3d

∆exc
3d
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005



THE ELECTRONIC STRUCTURE AND OPTICAL AND MAGNETOOPTICAL PROPERTIES 989
A comparison of the theoretical and experimental
reflectivity curves R(ω) over the spectral range "ω =
0.2–9 eV (Fig. 5) shows satisfactory agreement in the
dispersion of the functions, which, however, have dif-
ferent values, especially at low frequencies. The calcu-
lations of R(ω) were performed with the inclusion of
the intraband (Drude) contribution, which was deter-
mined from the calculated plasma frequency of conduc-
tion electrons "ωp = 3.82 eV and relaxation frequency
"γ = 2 eV. The Drude rise in optical conductivity as the
photon energy decreased down to "ω ~ 0.2 eV was not,
however, observed experimentally for CaCo2. In addi-
tion, positive real permittivities ε1, xx (see inset to Fig. 3)
were observed at IR frequencies. It follows that the
Drude contribution to the optical characteristics in the
near IR spectral range is small and masked by a more
substantial contribution of low-energy interband
absorption. The available optical data are insufficient
for estimating the plasma ωp and relaxation γ frequen-
cies of free carriers in CaCo2. Measurements of the
temperature dependence of electrical resistance ρ(T)
are evidence of the metallic conductivity type of
CaCo2. The specific resistance is high, ρ290 K =
264 µΩ cm and ρ78 K = 149 µΩ cm. The special features
of the optical and electric properties of CaCo2
described above are, in our view, caused by both the
special features of the electronic structure of the com-
pound and strong scattering of electrons by structural
defects present in the strained metastable compound. In
addition, the presence of a certain amount of micro-
voids at the skin-layer depth in the sample retained after
the removal of pressure-transferring medium residuals
can favor an increase in electrical resistance and a
decrease in intraband conduction.

4.2. Magnetooptical Characteristics

Let us turn to the magnetooptical characteristics of
CaCo2. The response of a magnetized medium to the
action of the electric field of a light wave results in the
appearance of off-diagonal components in the optical
conductivity tensor . The source of gyrotropy, which
manifests itself in the form of magnetooptical effects, is
spin–orbit coupling, which removes the degeneracy of
bands and modifies the wave functions of electrons. If
p-polarized light falls on an optically isotropic magne-
tized medium (the z axis direction is z || M, where M is
the magnetization vector), the equatorial Kerr effect is
described by the equation [12, 13]

(8)

where ϕ is the light incidence angle. It follows that the
effect value is determined by both the diagonal σxx and
off-diagonal σxy optical conductivity tensor compo-

σ̂

δp 4Im
iσxy ϕtan

σxx 1 4πiσxx/ω– ϕtan
2

–( )
----------------------------------------------------------------,–=
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nents. The field dependence of the equatorial Kerr
effect δp(H) is shown in Fig. 6a. This dependence char-
acterizes sample magnetization in magnetic field H
parallel to the plane of the sample. Measurements were
taken at wavelength λ = 1.1 µm and ϕ = 70°. Sample
saturation was observed at H ~ 6 kOe. The spectral
dependence of the δp effect in CaCo2 is shown in
Fig. 6b. The equatorial Kerr effect curve (ϕ = 50°)
passes through zero at E = 1.15 eV. The effect value
then increases as the photon energy grows. At a ϕ = 70°
light incidence angle, the dispersion of the equatorial
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Fig. 6. (a) Field dependence of the δp effect in CaCo2 and
(b) spectral dependences of the δp effect for CaCo2 at two
light incidence angles (ϕ = 50° and 70°) and for HCP cobalt
(ϕ = 70°).
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Kerr effect is quite different: a maximum is observed in
the spectral range "ω = 0.8–1.6 eV and in the region of
3 eV. Close to 1 eV, the δp value in CaCo2 is more than
twice as large as the absolute equatorial Kerr effect
value in pure cobalt. The effect, however, weakens
fourfold at 3 eV. Also note that the sign of the equatorial
Kerr effect in CaCo2 in the visible and UV spectral
ranges is opposite to that observed in HCP cobalt.

We used the equatorial Kerr effect values obtained at
two light incidence angles and our optical data to calcu-
late the real and imaginary parts of the off-diagonal
component of the tensor of optical conductivity of
CaCo2 σxy = σ1, xy – iσ2, xy . The calculations were per-
formed with (8). The imaginary off-diagonal conduc-
tivity part ωImσxy is shown in Fig. 7. We see that the
magnetooptical activity of the compound tends to
increase as the photon energy increases in the spectral
region "ω = (1–4) eV. In the optical range studied, the
magnitude and sign of this function are directly related
to the character of the spin polarization of electrons par-
ticipating in interband excitation processes. In a crude
approximation at "ω ! 2|ξ|, the ωImσxy(ω) value,
which characterizes the magnetoabsorption of the sub-
stance, is proportional to the difference Reσxx↑ –
Reσxx↓ [10]. This function should be calculated theoret-
ically to gain understanding of the microscopic nature
of magnetoabsorption in compounds comprising transi-
tion and alkaline-earth metals.
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E, eV
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Fig. 7. Dissipative part of the off-diagonal conductivity ten-
sor component ωImσxy(ω) for the CaCo2 compound.
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5. CONCLUSIONS

For the first time, we studied the optical and magne-
tooptical properties of the intermetallic ferromagnetic
compound CaCo2, which is formed only at a high pres-
sure of about 8 GPa and remains metastable after pres-
sure is removed. So far as we know, high-pressure inter-
metallic phases have not been studied by metal optics
methods thus far. The compound has the metallic con-
duction type, which is substantiated by first-principles
electronic structure calculations.

According to our calculations, the d band in CaCo2
is very broad (Wd = 15.8 eV) because it is formed from
the almost occupied 3d band of Co and the almost
unoccupied 3d band of Ca. The large width of the d
band and substantial s, p, d hybridization of the elec-
tronic states of Ca and Co in the MgCu2 lattice cause
intense electron transitions of the (p,d  d,p) type
over a wide photon energy range, including the near
vacuum ultraviolet spectral range. This is substantiated
by the form of optical spectra. The calculated optical
conductivity Reσxx(ω) and reflectivity R(ω) functions
satisfactorily reproduce the main spectral features of
the experimental curves.

The compound is characterized by a high magnetic
moment value close to that for pure Co metal. The
exchange splitting of the 3d band of CaCo2 obtained
from the calculated and experimental optical data is
2∆exc ~ (1–1.3) eV, which is also close to the exchange
splitting of the 3d band of pure Co (2∆exc ~ 1.5 eV). On
the whole, the conclusion can be drawn that the data of
optical measurements and first-principle calculation
results give a mutually consistent description of the
electronic structure of CaCo2.
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Abstract—The method of projection operators is applied to the two-dimensional model of strongly correlated
charge carriers to explain the magnetic properties of weakly doped layered cuprates in the paramagnetic state.
The theory explains the observed special features of the behavior of the imaginary part of the dynamic spin sus-
ceptibility averaged over the Brillouin zone over wide temperature and frequency ranges. © 2005 Pleiades Pub-
lishing, Inc. 
The magnetic properties of layered high-TC cuprate
superconductors remain to be the focus of attention of
experimental and theoretical researchers [1]. Among
the unusual properties revealed by inelastic neutron
scattering, the behavior of the imaginary part of the
dynamic spin susceptibility χ''(ω, T) averaged over the
Brillouin zone can be mentioned. This property exhib-
its universal behavior in wide temperature and fre-
quency ranges ω ~ 10 meV (the so-called ω/T scaling)
and approximately follows the law

(1)

where

(2)

Such behavior was observed for a wide class of weakly
doped layered high-TC cuprates, including
La1.95Ba0.05CuO4 [2], La1.98Sr0.02CuO4 [3],
La1.96Sr0.04CuO4 [4, 5], YBa2Cu2.9Zn0.1O6.6 [6], and
even in the normal phase of YBa2Cu3O6 + x supercon-
ducting samples with TC = 53 K [7]. Similar behavior
was also observed in nuclear magnetic/quadrupole res-
onance (NMR/NQR) measurements [8] at substantially
lower frequencies ω ≈ 2π × 34 MHz (= 1.4 × 10–4 meV).
Aeppli et al. [9] also observed universal behavior in the
almost optimally doped La1.86Sr0.14CuO4 compound
(TC = 35 K).

In this work, we show that the χ''(ω, T) dependences
observed in the paramagnetic phase can be explained
by applying the Zwanzig–Mori method of projection
operators [10, 11] to the t–J model, which, according to
Anderson [12], is most promising for describing the

χ'' ω T,( ) χ'' q ω T, ,( )d2q∫ I ω 0,( ) f ω/T( ),≈=

I ω 0,( ) χ'' ω T 0,( ).=
1063-7761/05/10005- $26.000992
electronic properties of high-TC cuprates [13]. The
relaxation function method is used widely to describe
the properties of spin nonequilibrium systems [14, 15].
It is, in particular, applied to analyze neutron scattering
[16, 17] and magnetic relaxation [18] data.

We will concentrate on one compound, the most
completely studied, La1.96Sr0.04CuO4. It has the sim-
plest structure among high-TC cuprates (one current-
carrying CuO2 plane). Other weakly doped high-TC

compounds with a more complex chemical composi-
tion should exhibit similar behavior. Their analysis,
however, requires more detailed knowledge of their
electronic properties. Also note that an attempt to
explain ω/T scaling was made recently [19], but the
approximation used in [19] had a free parameter
adjusted by comparing with the experimental χ''(ω, T)
values. Another more serious shortcoming of this the-
ory was the use of a temperature-independent correla-
tion length parameter, which only corresponded to
experimental data at T & 400 K. At the same time, the
method of exact diagonalization for small clusters of
size of about 20 atoms that was employed in [19] only
gives correct results at temperatures above 500 K. In
this work, we show that the experimental χ''(ω, T)
dependences can be explained by determining static
characteristics and obtaining dynamic values without
adjustment parameters.

The Hamiltonian of the t–J model has the form

(3)

Here, Si is the operator of spin 1/2 on site i,  ( )
is the Hubbard operator of creation (annihilation) or

Ht–J tij Xi
σ0X j

0σ J+ Si S j
1
4
---nin j–⋅ 

  .
i j>
∑

i j σ, ,
∑=

Xi
σ0 Xi

0σ
 © 2005 Pleiades Publishing, Inc.
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particles with spin σ, the tij hopping integrals between
the nearest neighbors describe the motion of particles in
the two-dimensional lattice, and J is the superexchange
antiferromagnetic coupling constant. In terms of Hub-
bard operators, the spin and density (ni) operators have
the form

(4)

(5)

with the standard normalization

(6)

The theory will be formulated following Mori [11].
The evolution of a dynamic variable, for instance,

(τ), obeys the equation

(7)

Generally, L is the Liouville operator, and, in the lan-

guage of quantum mechanics, iL (τ) corresponds to

the commutator with Hamiltonian (3). The (τ) oper-
ators can be decomposed into components with respect

to  ≡ (τ = 0),

(8)

where

(9)

30 is the linear Hermitian projection operator,

(10)

is the relaxation function, and

(11)

The angle brackets denote thermodynamic averaging.
The ω and J values will be given in either energy (eV),
or temperature (K), or frequency (Hz) units. The Planck
constant " will therefore be omitted in equations.

Further, a set of f0(τ), f1(τ), …, fj(τ), … values deter-
mined by the equations

(12)

Si
σ Xi

σσ, Si
z 1

2
--- σXi

σσ,
σ
∑= =

ni Xi
σσ σ σ–=( )

σ
∑=

Xi
00 Xi

++ Xi
––+ + 1.=

Sk
z

Ṡk
z τ( )

dSk
z τ( )
dτ

----------------≡ iLSk
z τ( ).=

Sk
z

Sk
z

Sk
z Sk

z

Sk
z τ( ) R k τ,( )Sk

z 1 30–( )Sk
z τ( ),+=

R k τ,( )Sk
z 30Sk

z τ( ),=

R k τ,( ) Sk
z τ( ) S k–

z( )*,( ) Sk
z S k–

z( )*,( ) 1–≡

Sk
z τ( ) S k–

z( )*,( ) kBT d
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1/kBT

∫≡

× e HSk
z τ( )e– H S k–

z( )*〈 〉 .

ζρ

ζρ ζρ

f j τ( ) iL jτ( ) f j iL jτ( )iL j f j 1–exp≡exp≡
j 1≥( ),
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can conveniently be introduced. Here,

(13)

and {fj} is a set of orthogonal values. The use of a larger
number of fj gives a more accurate description of the

(τ) operator. Applying the evolution operator
exp(iLnτ) to the last set value, fn , we obtain the fn(τ)
function called nth-order random force [11], which acts

on the (τ) variable and is responsible for its fluctua-
tions.

Applying the Laplace transform to the relaxation
function

(14)

we can construct the representation for RL(k, s) in
the form of an infinite fraction [11]. Lovesey and
Meserve [20] truncated this fraction at the third step,

(15)

They introduced the characteristic time

(16)

Their approximation was based on the weak sensitivity

of the (τ) operator to the character of random forces
of higher orders. They demonstrated close agreement
with the calculations performed by other authors and
experimental data on neutron scattering in the paramag-
netic phase of systems of arbitrary dimensions
described by the Heisenberg Hamiltonian at both high
temperatures and temperatures slightly higher than the
Neél temperature TN (T * TN).

The  values are related to the moments  of
the relaxation function

(17)

as follows:

(18)

The odd moments are equal to zero,  = 0.

The cross section of the magnetic scattering of neu-
trons gives information about the dynamic structure

f 0 τ( ) Sk
z τ( ),≡

L j 1 3 j 1––( )L j 1– L0 L=( ),≡
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factor S(k, ω), which is the Fourier transform of the
spin–spin correlation function over the spatial and time
variables. The structure factor is related to the imagi-
nary part of the dynamic spin susceptibility χ''(k, ω) as

. (19)

In the approximation that we use, it has the form [20]

(20)

The procedure for deriving analytic equations for the
second and fourth relaxation function moments,

(21)

and

(22)

was described in [21]. Here, [… , …] is the commuta-

tor. The final equation for  was obtained using the
procedure for the decoupling of thermodynamic aver-
ages of four operators into pair correlation functions
(mode–mode decoupling). The explicit form of the

 values is not given here because the correspond-
ing equations are too cumbersome. We can only note

that  ~ k2 and  ~ k2 at small k.

The analytic equation for the static spin susceptibil-
ity χ(k) in (20) will be taken from [22],

(23)

where

(24)

and z = 4 is the number of nearest neighbors in a square
lattice. The g+ parameter is related to the antiferromag-
netic correlation length ξ as

(25)

where ρS is the spin stiffness and a = 3.79 Å is the lat-
tice constant. Following [23, 24], the correlation length
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in weakly doped samples and at low temperatures will
be described using the equation

(26)

for the effective correlation length. Here, the ξ value,
unlike that used in [4, 5], depends on the concentration
of charge carriers (holes) [22], and ξ0 is determined
from the best fit to the experimental data [5]. We
assume that

(27)

which corresponds to the picture of dynamic domain
walls (stripes), where the n ≈ 2 value best fits the mean
distance between holes along domain walls. In (21)
and (23),

(28)

is the spin–spin correlation function.
The amplitude of hopping (the “fermionic” correla-

tion function) between the nearest neighbors is given by
the equation

(29)

where

(30)

is the Fermi distribution function,

(31)

is the factor of band narrowing because of electron cor-
relations, and the mean number δ of doped holes per
copper site, which can be identified with the nominal
content x of strontium atoms, and the chemical poten-
tial µ are related by the equation

(32)

The dielectric–metal transition will be described using
the following equation for the effective hopping inte-
gral:

(33)

which is renormalized by electronic and antiferromag-
netic correlations (see [12, 21, 23–25]). The spectrum
of elementary excitations has the form

(34)

All calculations were performed for J = 0.12 eV =
1393 K, δ ≡ x = 0.04, c1 = 0.11057, g– = 4.037, and
2πρS/J = 0.345.

It follows that the determination of static character-
istics, primarily the correlation length, whose concen-
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Fig. 1. Calculated imaginary part of the dynamic spin susceptibility χ''(k, ω) as a function of the wavevector at (a) T = 100 K and
ω = 2 meV and (b) T = 150 K and ω = 45 meV for La1.96Sr0.04CuO4. The cross on the vertical axis corresponds to χ''(k, ω) at the
local maximum at small q ~ 0.

×

tration and temperature dependences in the region of
weakly doped high-TC cuprate compositions is still not
completely understood (it is unclear whether one-
dimensional walls (stripes) or other more exotic phases
are formed) allows us to obtain dynamic values without
adjustment parameters.

The calculated imaginary part of the dynamic spin
susceptibility χ''(k, ω) is shown in Fig. 1 as a function
of the wavevector. We see that, over wide temperature
and frequency ranges, the major contribution to the
value

(35)

is made by the q ~ Q = (π, π) values, whereas the con-
tribution of q ~ 0 only amounts to less than 1%; that is,
it is negligibly small.

The normalized and averaged imaginary suscepti-
bility part as a function of the ratio between frequency
and temperature is shown in Fig. 2.

Systematic deviations of the calculated curves at
high temperatures and low frequencies ω & 10 meV
from the experimental data and the observed deviations
from universal behavior at ω & 3 meV already men-
tioned in experimental works [3, 5] can be caused by
both intensity loss in neutron scattering experiments
and possible theory shortcomings originating from the
approximations made. To check the theory, let us con-
sider the NQR data and calculated spin-lattice relax-
ation rates for copper nuclei at ω ≈ 2π × 34 MHz =
1.6 mK = 1.4 × 10–4 meV.

Note from the outset that we cannot exclude the pos-
sibility that the kinetic relaxation stage begins soon
(high frequencies) after the system is disturbed from

χ'' q ω T, ,( )d2q∫
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equilibrium, and its complete description requires
knowledge of the one-particle distribution function. In
our case, we used the three-pole (Markovian) approxi-
mation to relaxation function (15). This can be the rea-
son for theoretical curve deviations from the experi-
mental neutron scattering data at temperatures T > ω.
The discrepancies between theory and experiment
would then increase as ω grows, whereas Fig. 2 shows
that the discrepancies increase as ω decreases.
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Fig. 2. Averaged imaginary part of the dynamic spin suscep-
tibility as a function of the ratio between frequency and
temperature for La1.96Sr0.04CuO4 normalized by its value at
large ω/T. Symbols are the experimental data from [4, 5] at
various ω values specified in meV at the corresponding
symbols. The dotted, dashed, and solid lines are the calcu-
lation results at ω = 4.5, 12, and 45 meV, respectively. The
scale of the experimental data in the inset (open circles) is
adjusted to obtain the best fit to the theoretical curve.
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The rate of spin-lattice relaxation in NMR/NQR
experiments (ω ! T, J) is the dynamic structure factor
S(k, ω) averaged over the Brillouin zone with weight
factor αF(k) [26], which depends on the wavevector,

(36)

The magnetic form factor of interest to us, αF(k) for
copper 63Cu nuclei, has the form

(37)

where Aab and B are the constants of the intrinsic and
transferred hyperfine interaction, respectively. The
quantization axis of the electric field gradient coincides
with crystallographic axis c perpendicular to the CuO2
plane. The CuO2 plane is in turn determined by axes a
and b. Following [27], we use the values Aab = 1.7 ×
10−7 eV and B = 4 × 10–7 eV.

The temperature dependences of the inverse correla-
tion length and spin-lattice relaxation rate on 63Cu
nuclei lying in the CuO2 plane are shown in Fig. 3.
According to Fig. 3 and Eqs. (20) and (36), the spin-lat-
tice relaxation rate and its temperature dependence are
determined by the temperature dependence of the corre-
lation length and the kBT value, in agreement with [27].
At low temperatures at which ξeff ≈ const, the spin-lat-
tice relaxation rate is, as it must be, proportional to the
temperature, 1/T1 ∝  T. At high temperatures, the corre-
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π
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Fig. 3. Temperature dependences of (a) inverse correlation
length (the solid line corresponds to the best fit to the exper-
imental data for x = 0.04 (triangles); open circles, stars, and
solid circles correspond to the experimental data on
La2CuO4 [4, 5]) and (b) rate 2W = 63(1/T1) of spin-lattice

relaxation on 63Cu nuclei lying in the CuO2 plane (open cir-
cles are from [8]). The solid line corresponds to calculations
without adjustment parameters, the dotted line is the contri-
bution of spin diffusion.
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lation length in the sample with x = 0.04 behaves as in
the undoped La2CuO4 compound (see Fig. 3) and the
63(1/T1) value is independent of the concentration of
charge carriers [8]. It follows that our result is in agree-
ment with the concept of an almost antiferromagnetic
Fermi liquid (e.g., see [27]), a determining role played
by the correlation length in the temperature and con-
centration dependences of the spin-lattice relaxation
rate 1/T1, and the major contribution of wavevectors
q ≈ Q = (π, π) to the 63(1/T1) value.

The contribution of spin diffusion to the 63(1/T1)
value is shown by a dotted line in Fig. 3. We see that this
contribution is small. At long times (low frequencies),
it is sufficient to know several first moments of the dis-
tribution function to describe the system. This stage is
known as the hydrodynamic relaxation stage. It follows
from the theory of linear response and hydrodynamic
approach that the dynamic structure factor at small q
and ω has the form [16]

(38)

where χS ≡ χ(k = 0) and

(39)

is the spin diffusion coefficient. The result obtained by
the method that we use (Eq. (20) in the limit k  0) is
in agreement with (38). At low temperatures (T < J) and
a very low frequency ω, the contribution of spin diffu-
sion

(40)

is almost unnoticeable in NMR experiments as the fre-
quency is varied because of the giant superexchange
antiferromagnetic coupling value, J ≈ 1.8 × 108 MHz.

The deviations of the theoretical curve from the
experimental 63(1/T1) values at low temperatures can be
caused by inaccurate determination of the concentra-
tion of strontium atoms. Indeed, it is known that the
spin-lattice relaxation rate 63(1/T1) and correlation
length ξ are very sensitive to the concentration of stron-
tium in the region of weakly doped compositions.

To summarize, the use of the method of projection
operators and the two-dimensional t–J model allow us
to explain the magnetic properties of weakly doped lay-
ered cuprates in the paramagnetic state. The theory
explains the observed special features of the behavior
of the imaginary part of the dynamic spin susceptibility
averaged over the Brillouin zone over wide temperature
and frequency ranges from ω ≈ 10–4 meV (NMR) to

S q 0∼ ω, 0∼( )

≈
2χS

1 ω/kBT–( )exp–
------------------------------------------ ωDq2

ω2 Dq2( )2
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-----------------------------,
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ω ≈ 50 meV (inelastic neutron scattering). At the same
time, some deviation of the calculation results from the
experimental data shows that the problem requires
more detailed theoretical and experimental studies.
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Abstract—The impact of excited cesium atoms on sapphire and glass surfaces have been experimentally stud-
ied. It is established that the probability of electron excitation quenching upon impact of an atom on the dielec-
tric surface is close to unity. The velocity distribution of unexcited atoms upon scattering from the surface has
been determined using the time-of-flight technique. The kinetic energies of most of these atoms are several tens
of times greater than the energy of thermal motion of the excited atoms impinging on the surface. Conversion
of the internal energy of atoms into their kinetic energy is explained in terms of nonradiative electron transitions
with simultaneous excitation of lattice vibrations in the dielectric crystal. This mechanism of atomic excitation
quenching near the dielectric surface explains the significant difference between the energies of atoms upon
superelastic scattering and upon photodesorption from an adsorbed state. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

The conversion of the energy of electron excitations
in atoms and molecules into other forms plays a key
role in the kinetics of gas discharge, laser plasma, het-
erogeneous catalysis, and some other phenomena.
Owing to considerable effort devoted to investigations
into these phenomena, extensive information has been
gained concerning the energy conversion processes
occurring in the gas phase, and models have been devel-
oped for their interpretation [1–5]. An example is
offered by the process of resonance excitation quench-
ing (3P1/2, 3/2) in sodium atoms occurring in the atmo-
sphere of molecular gases (NO, C2H4, etc.). This pro-
cess is exhaustively characterized with respect to both
the total excitation quenching cross sections and the
distribution of energy over translational, vibrational,
and rotational degrees of freedom [3–5]. Modern theo-
retical methods provide a qualitative explanation of the
experimental results.

The impact of excited atoms on solid surfaces are
still insufficiently studied because of considerable
experimental difficulties encountered in such investiga-
tions. Experimental data are available only for the prob-
abilities of quenching of metastable states in atoms and
molecules upon impact on the surface of some dielec-
trics and metals [5]. At the same time, neither has a the-
ory been developed for the description of processes
involved in the impact of an excited atom on the dielec-
tric surface, nor mechanisms suggested explaining
relaxation of the electron excitation energy between the
1063-7761/05/10005- $26.000998
degrees of freedom of the systems involved in this
interaction.

We have studied the process of conversion of the
electron excitation energy of incident cesium atoms
into the kinetic energy of unexcited scattered atoms
upon impact of the excited atoms on the surface of glass
or sapphire. The kinetic energies of part of the scattered
atoms exceed the initial values, which implies that
superelastic scattering takes place. Possible approaches
to theoretical description of this phenomenon are dis-
cussed.

2. EXPERIMENTAL METHODS AND RESULTS

Below we report on the results of direct experimen-
tal observation of the process of the energy of electron
excitation being converted into kinetic energy upon
impact of excited atoms on the surface of a solid.
Cesium atoms were excited using intense resonance
radiation immediately before impact on the dielectric
surface. The excess kinetic energy of scattered atoms,
acquired as a result of quenching of the electron excita-
tion, was measured using the time-of-flight (TOF) tech-
nique.

The experiments were carried out at room tempera-
ture in a 60-mm-long glass cylindrical cell with flat
windows made of glass or sapphire, filled with satu-
rated cesium vapor. Since the room-temperature satu-
rated cesium vapor pressure (1.6 × 10–6 Torr) is suffi-
ciently low, interatomic collisions in the gas phase can
be ignored.
 © 2005 Pleiades Publishing, Inc.
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The cell with cesium vapor (Fig. 1) was exposed to
radiation of a cw distributed-feedback semiconductor
laser (SDL-5712) with an output power of 40–60 mW,
tuned to the central frequency of the atomic line of
cesium (λ = 852.1 nm). The probing laser beam was
incident perpendicular to the cell axis (i.e., parallel to
the windows), passed through the cell at a fixed dis-
tance (7–10 mm) from one of the windows, and was
detected by a photodiode with a broadband amplifier.
Variations in the laser beam intensity related to changes
in the light absorption by vapor in the cell were
recorded by a storage oscillograph (S8-17). These
changes were induced by pulsed radiation of a tunable
dye solution laser generating in the wavelength range
820–860 nm, at an output power of 104–105 W/cm2 and
a spectral linewidth on the order of 10 cm–1. The dye
laser beam was directed at a sliding angle relative to the
inner surface of one of the cell windows and produced
excitation of cesium atoms immediately before their
impact on the window surface. The laser pulses were
synchronized with the oscillograph sweep. The sensi-
tivity in this scheme was limited by the frequency noise
of the probing semiconductor laser and amounted (in
terms of the minimum detectable change in the number
of absorbing atoms in the laser beam path) to approxi-
mately 105 atoms. In these estimations, we assumed the
resonance absorption cross section to be σ = 3 ×
10−12 cm2, which corresponds to the Doppler broaden-
ing of the atomic line near room temperature. The sig-
nal-to-noise ratio in these experiments was about 5–6.
The data presented below were obtained by averaging
over oscillograms accumulated in the course of experi-
ments.

Figure 2 (curve 1) shows a typical oscillogram of
pulses reflecting a change in the optical absorption in
the cell for the pulsed laser radiation tuned in the region
of 830–840 nm without exciting cesium vapor in the
cell. A change in the intensity of laser radiation trans-
mitted through the cell had a sign corresponding to an
increase in the coefficient of absorption. It is natural to
attribute this change to an increase in the number of
absorbing species as a result of the action of pulsed dye
laser radiation upon atoms desorbed from the cell win-
dow (this photodesorption signal is analogous to that
described in [6]). Once we know the time of appearance
of the response signal measured relative to the dye laser
pulse (sweep start) and the distance from the cell win-
dow to the probing beam, the average velocity and
energy of the photodesorbed atoms can be evaluated.
This energy was about 0.03–0.04 eV, in good agree-
ment with the data obtained previously for the photode-
sorption of sodium [6] and cesium [7] atoms from a
sapphire surface.

An analogous oscillogram (Fig. 2, curve 2) was
obtained for the dye laser radiation tuned in resonance
with an electron transition in cesium atom (λ =
852.1 nm). As can be seen, the photodesorption signal
changed only in amplitude (because of a decrease in the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
output power upon tuning to a longer wavelength) and
a new signal of the same sign (corresponding to an
increase in the absorption) appeared closer to the sweep
start. We thoroughly checked that both signals were
observed only for the probing laser frequency tuned
exactly to the atomic transition frequency, thus provid-
ing unambiguous evidence for an increase in the con-
centration of cesium atoms in the observation region.
The two signals exhibited characteristic dependences
on the exciting laser power. The photodesorption signal
was proportional to this power [6, 7] and completely
disappeared when the dye laser intensity decreased by
a factor of 5–10 (the signal amplitude fell below the
noise of the detection scheme). In contrast, the first (in
time of appearance) signal almost did not decrease in
amplitude but somewhat changed in shape (Fig. 2,

1
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3
v

z
y

x

Fig. 1. Schematic diagram of the geometry of excitation of
atoms approaching the surface and registration of atoms
upon scattering: (1) exciting laser beam; (2) probing laser
beam; (3) scattered atom moving away from the surface.
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Fig. 2. Typical TOF spectra of atoms scattered from the sur-
face of a sapphire window: (1) photodesorption induced by
the dye laser detuned relative to the atomic line (λ = 840 nm),
(2) superelastic scattering and photodesorption observed for
the dye laser tuned in resonance with the free atoms (λ =
852.1 nm); (3) superelastic scattering observed when the
excitation intensity was decreased to one-tenth of the level
corresponding to curve 2.
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curve 3). The independence of the first signal amplitude
of the dye laser power (within a certain interval) is nat-
urally explained by saturation of the atomic line (in the
range of the probing laser power intensities) and is evi-
dence for this signal being related to the excitation of
atoms in the cell volume.

The shape of the signal represented by curve 3 in
Fig. 2 corresponds to what was expected. Indeed, being
excited by the resonance laser radiation, a certain part
of the atoms from the immediate vicinity of the window
reaches the surface in the excited state. Upon impact on
the surface and quenching of the electron excitation,
such atoms are reflected from the surface with veloci-
ties exceeding the equilibrium values and overtake pre-
viously scattered unexcited atoms, thus increasing the
density of particles in the observation region. Naturally,
the absence of the contribution of these atoms to the
equilibrium scattered fraction is manifested by a
decrease in the corresponding density of atoms in the
registration region below the equilibrium level. Thus,
the action of the exciting laser radiation is equivalent to
the simultaneous appearance of a source of high-energy
atoms and an equal (in the number of emitted particles)
negative source of atoms with equilibrium thermal dis-
tribution of velocities. Both these sources can be con-
sidered instantaneous, since the lifetime of the excited
atomic state is on the same order of magnitude as the
excitation pulse duration. For this reason, impacts of
the excited atoms on the surface take place only within
a period of time on the order of the duration of the exci-
tation pulse. The latter value is about 25 ns, which is
much shorter than the characteristic times of flight from
the surface to the region of observation.

0.20 0.4 0.6

Ekin, eV

0.2

0.6

1.0
tS, rel. units

1

2

3

4

Fig. 3. Distribution of emitted atoms with respect to kinetic
energies Ekin in the case of photodesorption (1, 2) and
(3, 4) superelastic scattering from (1, 4) glass and (2, 3) sap-
phire.
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Using the results of measurements of the relative
number of superelastically scattered atoms, it is possi-
ble to judge the probability of quenching of excited
atoms on the surface. Indeed, the maximum flux of
excited atoms to the surface amounts to half of the equi-
librium flux (1/4)Nv, where N is the concentration of
atoms in the cell volume and v  is the average velocity
of thermal atoms in the cell. The saturated cesium vapor
pressure at room temperature is 1.6 × 10–6 Torr, which
corresponds to N = 5 × 1010 cm–3. Then, the average
velocity is estimated at v  = 2.2 × 104 cm/s. Thus, at a
probability of quenching equal to unity, the maximum
flux of scattered atoms is 2.8 × 1014 cm–2 s–1 (under con-
ditions of saturated atomic transition). Once the prob-
ing and exciting laser beam diameters and the distance
between these beams are known, it is possible to evalu-
ate the number of atoms reaching the observation
region after the action of the excitation laser pulse. This
value is 4 × 106, in good agreement with the results of
observations. This agreement confirms the above
assumption that the probability of quenching of the
electron excitation upon impact of an excited atom on
the surface is close to unity.

The angular distribution of scattered atoms was
determined from the decrease in amplitude of the signal
of superelastically scattered atoms observed when the
window was scanned with the exciting laser beam from
the center to the periphery. These angular characteris-
tics agree well (within the experimental accuracy) with
the cosine distribution of the scattering angle according
to the Lambert law. However, subsequent investigation
of the surface of glass and sapphire windows using a
high-precision profilometer showed that these materials
even after deep grinding and fine polishing retain sur-
face roughnesses with average heights of 1.8–2.4 nm
for glass and 4–6 nm for sapphire. The lateral rough-
ness size was 0.2–0.5 µm, and the proportion of flat ter-
races parallel to the window plane was negligibly
small. In this context, the results of measurements of
the angular characteristics of superelastic scattering are
probably related to the surface roughness profile, rather
than reflect the true angular profile of the atomic scat-
tering process.

Figure 3 shows the TOF spectra reconstructed so as
to demonstrate the distribution of scattered atoms with
respect to their energies. For this purpose, the atomic
velocities and the corresponding kinetic energies were
determined using the times of flight to the observation
region, and the signal intensity was multiplied by the
flight time t in order to take into account nonuniform
distortion of the scale on the passage from TOF to
energy distribution. The negative parts of distributions
corresponding to the lack of atoms with kinetic ener-
gies on the order of 10–2 eV are not depicted in Fig. 3.
We also do not present the high-energy part of the spec-
trum, since the leading front of the experimental pulses
reflecting a change in absorption of the probing laser
beam is significantly distorted by a background signal
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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related to the action of exciting laser radiation on the
photodetector. Nevertheless, the reconstructed spectra
show that the characteristic kinetic energy of scattered
atoms accounts for a considerable part of the electron
excitation energy (1.45 eV) and is several tens of times
greater than the average thermal energy of atoms. The
average kinetic energy of the scattered atoms is also
much greater than the average kinetic energy of photo-
desorbed atoms. At the same time, a difference between
the energy distributions of atoms scattered from glass
and sapphire is rather small.

3. MECHANISM OF ENERGY CONVERSION 
NEAR THE SURFACE

In order to explain the phenomenon of superelastic
scattering, it is necessary first to establish the mecha-
nism responsible for almost complete quenching of the
electron excitation of atoms during their interaction
with the surface. The excitation energy (1.45 eV) is too
small to be transferred to electrons of wide-bandgap
dielectrics such as sapphire and glass. On the other
hand, this energy is large compared to the energies of
optical phonons in these materials. Therefore, pro-
cesses of single-quantum excitation of dielectrics by
incident atoms cannot be effective.

The electron excitation can be transferred to a
dielectric by means of multiphonon processes. How-
ever, sequential excitation of a large number of
phonons during the impact of an atom on a wall is low
probable. Transformation of the nuclear vibrations of a
dielectric from lower to highly excited energy states in
a single event is possible under certain special condi-
tions. Below we demonstrate the possibility of an effec-
tive multiphonon process by which the energy of elec-
tron excitation of an atom is converted into its kinetic
energy and into the energy of vibrations of the dielec-
tric crystal lattice.

Correct description of the interaction of excited
atoms with the near-surface region of dielectrics is still
an extremely complicated problem even for numerical
model simulations. Let us assume that only a very near
region of the dielectric is involved into the process of
energy transfer from the incident atom to substrate.
Nuclei occupying the crystal lattice sites in this region
form, together with the incident atom, a quasi-closed
dynamical system (collision complex) in which the
energy conversion takes place. Upon transfer of the
atomic excitation energy from the atom to this com-
plex, the energy of lattice vibrations can be further
transferred to the bulk of dielectric, but this will not
influence the emission of the scattered atom.

This concept of such complexes was used previ-
ously [6] for explaining some features of the photodes-
orption of alkali metal atoms adsorbed on the surface of
transparent dielectrics. According to estimates [6] a
complex may involve several dozen (about forty)
nuclei. It should be noted that the diameter of cesium
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atom is several times (approximately threefold) greater
than the distance between adjacent lattice sites in the
dielectric.

Thus, we have reduced the initial, insufficiently
studied problem to a situation quite well studied in
molecular physics—the problem of luminescence
quenching during collisions of atoms with molecules
and the photodetachment of atoms from molecules. As
is known, the atomic luminescence quenching in colli-
sions of atoms with small molecules is related to a non-
adiabatic transition in the region of intersection (cross-
over) of their terms. This transition may lead to the exci-
tation of strong nuclear vibrations in the molecule and to
the conversion of a considerable part of its internal
energy into the kinetic energy of the atom [3–5]. As will
be shown below, the presence of a large number of
nuclei in the complex makes the nonadiabatic process
in the case under consideration somewhat different
from that involved in collisions of atoms with small
molecules. This difference requires special consider-
ation.

The mechanism of conversion of the energy of
atomic electron excitation into the motion of nuclei in
the complex is as follows. A potential energy of the
complex is the sum of the energy of deformation of the
electron orbitals of the atom near the surface, the
energy of interaction between the atomic nucleus and
the dielectric, and the energy of displacements of the
equilibrium lattice site positions caused by the atom.
Naturally, the potential energy of the complex as a
function of the distance z from the atom to the surface
is different for various electron states. The total energy
of the complex is given by the sum of the above poten-
tial energy and the energy of nuclear motions in the
complex. In what follows, by terms is meant the differ-
ences of the total energy of the complex and the kinetic
energies of atoms as functions of z.

As was noted above, a necessary condition for the
effective energy transfer from electron excitations to
nuclear motions is the intersection of terms. We have no
grounds to assume that intersections are possible
between terms corresponding to equal energies of the
lattice vibrations. However, such intersections are pos-
sible if the energies of vibrations in the states corre-
sponding to various terms are significantly different. In
particular, a term corresponding to the state of excited
atom and small lattice vibrations may intersect with a
term corresponding to the state of unexcited atom and
strong lattice vibrations. In this case, effective transi-
tions from the first to the second state become possible.

The condition of intersecting terms is necessary but
not sufficient for providing the effective energy transfer
from electron excitations to the nuclear motions in the
complex. The efficiency of the process involving strong
changes in the nuclear motions is determined by the
transition matrix element dependent on the overlap of
the wavefunctions of nuclear motions in the initial and
final states. Generally speaking, this overlap is expo-
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nentially small if the initial and final states of nuclear
vibrations are significantly different (as in the case
mentioned above). However, significant overlap is also
possible between the wavefunctions of weak and strong
nuclear vibrations. This is illustrated by the following
considerations.

An atom adiabatically slowly approaching the sur-
face does not excite vibrations of the nuclei, but induces
their displacements dependent on the electron state of
the atom. The nuclear motions in the complex are con-
veniently described using the normal mode representa-
tion. Ignoring the Dushinski effect [8], we assume that
the normal modes of the complex are independent of the
atomic electron state. Then, each normal coordinate q of
the complex corresponds to two potential energies:

|0〉 |m〉

U2(q) U1(q)

(b)

U

q

Fig. 4. Schematic diagram of potential energies for one of
the normal modes: U1(q) corresponds to the ground state,
and U2(q), to the excited state of an atom: (a) the potentials
of inactive modes exhibit only a vertical shift upon a change
of the electron state; (b) the overlap of vibrational wave-
functions of the active modes is most significant for the
intersection of terms in the region of the bottom of the
excited state.
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U1(q) for the ground state and U2(q) for the excited state
(Fig. 4). The overlap of the wavefunctions of vibrations
in the upper and lower electron states determines the
efficiency of the transition between these states. When
the atom is far from the surface (z  ∞), the U2(q)
potential appears exactly as U1(q) displaced along the
vertical axis. The transitions between such states are
generally impossible. As the atom approaches the sur-
face to a finite distance z, the U1(q) and U2(q) potentials
are displaced and deformed differently, so that the over-
lap integral becomes nonzero. In the case of superelas-
tic scattering of an excited atom, the initial oscillator
state of the normal mode q is the ground state of vibra-
tions in the U2(q) potential. According to the Franck–
Condon principle, the most effective transition to the
excited vibrational state in the U1(q) potential takes
place when the U1(q) curve intersects with U2(q) in the
vicinity of its minimum. A quantitative estimate of the
overlap integral can be obtained by assuming that both
potentials are described by identical quadratic func-
tions. Then, the degree of overlap, as a function of the
point of intersection, exhibits a sharp maximum [8] and
reaches a value of (2πm)–1/2, where m is the number of
the final vibrational state of transition in the U1(q)
potential. Assuming that the characteristic frequencies
of normal modes in the complex fall within the IR
absorption range of dielectrics and taking the electron
transition energy to be about 1 eV, we obtain m ~ 10
and, hence, the degree of overlap can be sufficiently
large.

It is necessary to pay attention to two circumstances.
First, the amplitudes of nuclear vibrations in the com-
plex in the case of strong excitation of normal modes
are small because the excitation energy in most part of
these modes is distributed more or less uniformly
between lattice sites. This fact justifies the assumption
of small displacements in our analysis. Second, it is
possible that not all normal modes will provide for the
required intersection of parabolas when the atom
moves along the z axis. We believe that this intersection
for a certain part of modes is observed at various posi-
tions of the atom relative to the surface. The modes for
which the intersection takes place will be referred to as
active.

The efficiency of the nonadiabatic transition is
determined by the factors considered above and by the
operator of transition between electron states. In the
formalism of adiabatic states [8], this operator is related
to the motion of atoms and is determined by the atomic
momentum and by the dependence of the electron
wavefunction on z. An equivalent but clear description
of the nonadiabatic coupling can be obtained in a dia-
batic basis taking into account some approximate sym-
metry. In our case, the neglect of the dependence of the
surface potential on the lateral coordinates leads to
approximate axial symmetry and possible classification
of electron states with respect to the normal projection
of the orbital momentum. Then, the transition between
ND THEORETICAL PHYSICS      Vol. 100      No. 5      2005
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intersecting terms Σ and Π is naturally related to the
electric fields (not necessarily stationary, if the lattice
vibrations are taken into account), which are tangent to
the surface and can be significant at the dielectric sur-
face. Quantitative evaluation of the probability of
quenching requires detailed information (not available
at present) about the potential of interaction between
the atom and the surface. However, taking into account
the fact that the excitation quenching cross sections for
some atoms in collisions with molecules reach gaski-
netic values [1], we may conclude that the above mech-
anism of nonadiabatic transitions can provide for the
experimentally observed unit probability of the elec-
tron excitation quenching upon impact of an excited
atom on the surface.

The above analysis shows that the quenching of
atomic electron excitation at a dielectric surface may
effectively proceed via the transfer of a part of internal
atomic energy to the motion of nuclei in the dielectric
lattice so that the atom retains its kinetic energy
(according to the Franck–Condon principle) acquired
on approach to the surface.

4. DISCUSSION OF RESULTS

Based on the proposed mechanism of nonradiative
quenching of the electron excitation of an atom at a
dielectric wall, the process of superelastic impact of the
atom on the dielectric surface can be described as
follows.

Excited atoms moving to the surface via an excited
term can be deactivated in the events of internal energy
transfer to the active modes. The probability of a single
deactivation event is rather small, but each excited atom
approaching the surface repeatedly encounters the pos-
sibility of such deactivation. For this reason, atoms
exhibit complete deactivation despite the small proba-
bility of single event. Since various energies are trans-
ferred in different events, scattered atoms possess vari-
ous kinetic energies (see Fig. 3).

Owing to the action of the attractive surface poten-
tial, the impinging atom acquires a significant kinetic
energy. During a nonadiabatic transition, only the elec-
tron excitation energy is transferred to a collision com-
plex comprising atom and substrate, while the kinetic
energy of the impinging atom is not involved in the
interaction. As a result, the atom (occurring in the
ground state upon excitation quenching) is reflected
upon the elastic impact on the wall. The reflected atom
moves with a kinetic energy equal to that at the point of
nonadiabatic transition minus the energy of binding in
the ground state potential. If the depth of the excited
potential at the point of nonadiabatic transition is sig-
nificantly greater than the depth of the ground-state
potential, the reflected atom may acquire a significant
kinetic energy.

The mechanism of photodesorption of adatoms
from a dielectric surface is essentially the same as the
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mechanism of superelastic scattering, but the course of
the former process is different because of dissimilar ini-
tial conditions. Indeed, the adsorbed atom occurs ini-
tially in the ground electron state, the vibrations of
nuclei at the lattice sites are not excited, and the equi-
librium positions of these sites are displaced relative to
those in the absence of adatoms. Upon absorption of a
photon by the adatom, the system passes to another
term on which the nuclei at the lattice sites initially
occur in the same positions (according to the Franck–
Condon principle) and then begin to move because the
excited term has a different configuration of lattice
sites. Similar to the case of superelastic scattering, most
effectively excited are the normal modes for which the
equilibrium positions are significantly displaced. The
excited adatom also starts moving at the bottom of the
upper term, but it is most probably involved in a nona-
diabatic transition to the ground state of the unexcited
term and in most cases remains bound to the surface
(the quantum yield of photodesorption is small). The
energy of the absorbed photon uniformly distributes
over all degrees of freedom of the adsorption complex.
For this reason, desorption events take place only in rel-
atively rare cases determined by the statistics of distri-
bution of the total energy of this complex over the
nuclei, whereby a considerable part of the electron
excitation energy is transferred to the energy of motion
of the adatom, rather than to energy of nuclear vibra-
tions at the lattice sites. This leads to the well-known
features of photodesorption such as the Maxwell distri-
bution of velocities of the desorbed atoms (see Figs. 2
and 3) and the dependence of the effective “tempera-
ture” of the adsorption complex on the photon energy.
The most probable event is deactivation with the transi-
tion of the adatom to the ground state [6]. This is
accompanied by the photoinduced diffusion of adatoms
observed previously [9].

Thus, the main factor responsible for the difference
in the kinetic energies of atoms upon photodesorption
and second-order impact is related to a significant
kinetic energy possessed by atoms in the latter case at
the moment of nonadiabatic transition. This difference
is also manifested in the energy distribution of scattered
atoms. In the case of photodesorption, the width of the
Maxwell distribution is determined by a fraction of the
photon energy per oscillator in the adsorption complex
and is on the order of 0.05 eV. For the second-order
impact, the width of the energy distribution is deter-
mined by variation of the difference between the kinetic
energies of atoms in the excited and ground state at the
point of nonadiabatic transition, which is significantly
greater than the former value.

We will not dwell here on the dependence of the
velocity of scattered atoms on the energy losses during
the impact of unexcited atoms on a dielectric. Although
these losses can be relatively large (according to [10],
the energy accommodation coefficient may exceed
0.75) and noticeably influence the velocity spectrum,
this factor cannot substantially change the significant
SICS      Vol. 100      No. 5      2005
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difference in the energies of photodesorbed atoms and
those upon superelastic scattering.

The proposed description of the second-order
impact of atoms on a dielectric surface can readily be
presented in a theoretical form. However, presentation
of such a theory is hardly expedient, since the descrip-
tion of experimental energy spectra of scattered atoms
would require detailed information about the interac-
tions of particles in the collision complex. Unfortu-
nately, not much data are available even on the interac-
tions of atoms with dielectrics.
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