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Abstract—The formation of transport barriers under electron cyclotron resonance heating and current drive in
the T-10 tokamak is studied. In regimes with off-axis co-ECCD and qL < 4 at the limiter, a spontaneous transi-
tion to improved confinement accompanied by the formation of two electron transport barriers is observed. The
improvement resembles an L–H transition. It manifests itself as density growth, a decrease in the Dα emission
intensity, and an increase in the central electron and ion temperatures. Two deep wells on the potential profile
(the first one at r/aL ≈ 0.6, where aL is the limiter radius, and the second one near the edge) arise during the
transition. The internal barrier is formed when dq/dr ~ 0 with q ≈ 1 in the barrier region. © 2001 MAIK
“Nauka/Interperiodica”.
Previous T-10 experiments [1] showed that an elec-
tron internal transport barrier (EITB) can arise when a
q(r) profile with dq/dr ~ 0 is formed near a rational sur-
face. Such a profile was created by using the electron
cyclotron current drive (ECCD) in the co- or counter-
direction with respect to the main plasma current (co-
CD or counter-CD, respectively). The electron-cyclo-
tron (EC) current was generated with the help of a
gyrotron setup operating at a frequency of f = 140 GHz.
X-mode microwave radiation was launched at an angle
of 21° with respect to the major radius of the torus and
was absorbed at the second harmonic of the EC fre-
quency. The total absorbed power PEC was as high as
0.7–0.8 MW. The resonance region could be shifted
along the major radius by varying the toroidal magnetic
field Bt. In order to make the EC current comparable
with the plasma current Ip , the experiments were con-
ducted at moderate plasma currents (Ip ≤ 160 kA) and,
consequently, at high qL values at the limiter. In these
regimes, an EITB was formed at ρ ≡ r/aL ≤ 0.3. The
improvement of confinement was either steady-state or
periodical. In the regimes with an EITB at qL > 4, we
observed an increase in the electron temperature in the
plasma core (on the inside of the barrier); however,
there was no evidence of improved confinement at the
plasma edge.
1063-780X/01/2704- $21.00 © 20273
However, for qL < 4, the EITB formation in the
plasma core was accompanied by improved confine-
ment at the plasma edge, independently of the EITB
position. Figure 1 shows that, even during small period-
ical improvements of confinement (humpbacks), the
increase in the central electron temperature Te(0) is
accompanied by effects typical of an L–H transition at
the edge: the density near the limiter increases, the Dα
line emission intensity decreases, and βp increases in
phase with increasing Te(0).

Recent experiments in T-10 were performed at high
currents Ip (qL = 2.2–3) and with the EC resonance posi-
tion rEC shifted inward. An EITB formed with co-
ECCD was quasi-steady. The regime in which the bar-
rier was formed at ρ = 0.6 (Ip = 280 kA, Bt = 2.14 T, ne =
1.4 × 1019 m–3, PEC = 0.8 MW, rEC = –(16–17) cm, and
aL = 30 cm) was studied in more detail. Such a regime
could be realized at lower toroidal fields; this allowed
us to measure the plasma potential profile evolution in
different parts of the plasma column during the barrier
formation using heavy ion beam probing (HIBP) [2].
We also used a multichannel soft X-ray (SXR) camera
and ECE and Thomson scattering diagnostics to mea-
sure the electron temperature Te. The values of βp + li/2
and βp were determined from diamagnetic and loop
001 MAIK “Nauka/Interperiodica”
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measurements, ne was measured using radiointerferom-
etry, the ion temperature Ti(0) was measured using a
charge exchange analyzer, and the Dα emission was
recorded using a monochromator.

The waveforms of the plasma parameters in this
regime are shown in Fig. 2. After the EC pulse starts, a
spontaneous transition to improved confinement occurs
with some delay. We see that the increase in Te, ne, and
βp is accompanied by a decrease in the Dα emission
intensity. The simultaneous growth of Te and ne is
caused by the formation of two transport barriers. The
formation of an IETB at ρ = 0.6 results in the steep tem-
perature gradient —Te in the narrow barrier region
(Fig. 3a), while the density gradient in this region is
small, —ne ~ 0. Another barrier with the steep density
gradient —ne is formed at the edge, in the immediate
vicinity of the limiter (Fig. 4).

The spatiotemporal characteristics of the plasma
electric potential are shown in Figs. 3b and 4b. The
potential is measured with respect to its level before the
transition. We see that, during the EITB formation, the
potential rapidly decreases (∆φ . 1–1.2 kV) in the nar-
row (∆r = 1 cm) region near ρ = 0.6, which coincides
with the region with an increased —Te . The local poten-
tial well is conserved for the entire EITB formation
phase. As the plasma parameters approach their steady-
state values, the well becomes shallower; however, the
slope of the potential profile in the EITB region is still
positive.
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Fig. 1. Periodical increases in (a) the central electron tem-
perature, (b) the βp + li/2 value, and (c) line-averaged den-
sity at the outer chord r = 29 cm during humpbacks, accom-
panied by (d) drops in the Dα line emission intensity (shot

no. 20194, Bt = 2.44 T, Ip = 180 kA, and  = 1.7 × 1019 m–3;

on-axis counter-CD).
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Fig. 2. Time evolution of the plasma parameters in the
regime with simultaneous formation of an internal barrier at
r = 17 cm and L–H transition (shot no. 24273, Bt = 2.14 T,
and Ip = 280 kA; off-axis co-CD).

Fig. 3. (a) The electron temperature profile measured by
Thomson scattering (circles) and second-harmonic ECE
(squares) and (b) the relative plasma potential profile in two
similar shots with EITBs (1) before, (2) during, and (3) after
the barrier formation. The instants of the potential measure-
ments are shown by arrows in Fig. 2 (shot nos. 24264–
24273, Bt = 2.14 T, Ip = 280 kA, and EHIBP = 170 keV).
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Fig. 4. Profiles of (a) the electron density at t = 630 ms (dashed line) and t = 800 ms (solid line) and (b) relative plasma potential
and (c) the time evolution of the plasma parameters in shot no. 26176, where an edge potential well was measured. Arrows in plot
(c) show the instants of the potential measurements. A horizontal bar in plot (b) shows the radial uncertainty of the potential profile
measurements.
The EITB formation in these regimes is always
accompanied by the formation of an external barrier.
The edge well is not so deep, but its temporal evolution
is similar to that of the internal well. The steep ne gra-
dient and the decrease in the Dα emission intensity
resemble those accompanying the L–H transition.

Since the density was rather low, the energy
exchange between the ions and electrons was weak.
However, the central ion temperature increased during
the barrier formation (Fig. 5). Estimates show that the
ion confinement time in the core increased by a factor
of 1.5.
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
The improvement of confinement due to the barrier
formation is accompanied by a flattening of the q(r)
profile. Figure 6 shows the q(r) profiles for the same
shot as in Fig. 2. The profiles are calculated using the
experimental Te(r) and ne(r) profiles before and after
the transition. As in [1], the q(r) profile is flattened near
the EITB; in our case, the barrier lies in the region
where q(r) ≈ 1. Note that no negative shear is required
for the barrier formation.

An internal barrier could also be obtained at qL ≤ 4
and under on-axis EC power deposition [3]; however,
in this case, the central electron temperature increased
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Fig. 5. Temporal evolution of the central electron and ion
temperatures and the line-averaged density during the EITB
formation at t = 660 ms (shot no. 26353, Bt = 2.10 T, and
Ip = 270 kA).

Fig. 6. Calculated q(r) profile before (dashed curve) and
after (solid curve) the EITB formation for the plasma
parameters from Figs. 2–5 (shot no. 24264). Vertical bars
show an uncertainty in determining q related to the Te mea-
surement errors. Arrows show the radii of sawtooth inver-
sion before and after the barrier formation.
only slightly. Possibly, very strong heat losses during
sawtooth oscillations impede the increase in —Te near
q(r) = 1 (although there is some indirect evidence of the
formation of a small barrier in this region).

Apparently, sawtooth oscillations under power dep-
osition at ρ = 0.6 also restricted the increase in the cen-
tral electron temperature; nevertheless, a large temper-
ature gradient was formed.

In T-10 experiments, only ECR heating was used; in
this case, no angular momentum was introduced to the
plasma and all the power was deposited into the elec-
tron component. The change in the ion temperature is
the secondary effect as compared to electron processes.
Therefore, we may state that we observed electron
transport barriers.

We propose the following explanation of the phe-
nomena observed.

Usually, the interaction between magnetic islands
increases the heat fluxes and leads to the dependence of
the transport coefficients on the global plasma parame-
ters (the profile self-consistency [4]).

The zero shear S ≡ r/q dq/dr ≈ 0 for q values close to
a certain resonant value under electron heating may sta-
bilize some MHD perturbations related to the electron
transport. The transport reduces, but remains much
greater than the neoclassical one.

The electron flux reduces, while the ion flux remains
unchanged. This leads to the appearance of a potential
well in the region where the electron transport is
reduced; as a result, the fluxes equalize.

The arising electric field (~1 kV/cm) drives the
poloidal E × B plasma drift. The drift velocity varies
sharply along the radius and may even change its direc-
tion (the sheared E × B flow). This may stabilize the ion
temperature gradient mode [5] (and, probably, some
other modes) and, hence, improve ion confinement.

The simultaneous formation of two barriers appar-
ently indicates that the plasma edge and core are
strongly coupled (probably, via toroidal coupling).

CONCLUSIONS

(i) For first time, the plasma potential profile is mea-
sured in a wide radial region.

(ii) At low qL values at the plasma edge, two poten-
tial wells appear simultaneously.

(iii) The internal potential well is apparently related
to the formation of an internal transport barrier
because, in this region, improved electron confinement
is observed.

(iv) The external barrier exhibits the features of an
L–H transition.
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Abstract—A study is made of the nonadiabatic dynamics of photoelectrons produced during interaction of an
elliptically polarized, high-power laser pulse with a gas. Expressions for the so-called residual momentum and
energy of the electrons (i.e., the mean electron momentum and energy after the passage of the pulse through the
gas) are derived. The residual electron momentum and energy are investigated analytically as functions of the
gas and laser parameters. A relationship is established between the residual energy and the electron temperature
tensor. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, the problem of residual electron
energy (REE) (i.e., the problem of what fraction of the
energy acquired by an electron at the top of a laser pulse
remains in an electron after the passage of a laser pulse)
has been extensively discussed in the literature [1, 2].
For a laser pulse propagating through a preionized gas,
the REE is negligible. However, for a pulse propagating
in a gas and ionizing it, this energy may become sub-
stantial because of the nonadiabatic motion of an elec-
tron produced during a short-term ionization event in a
laser field. As a femtosecond laser pulse propagates in
a low-density plasma, the electron heating due to
inverse-bremsstrahlung absorption is insignificant;
consequently, after the passage of the pulse, the elec-
tron energy is mainly determined by the REE.

The study of REE is particularly important for devel-
oping X-ray lasers in which a multiply ionized plasma
that is strongly nonequilibrium with respect to ioniza-
tion and recombination serves as an active medium [2].
In such lasers, the degree to which the plasma is non-
equilibrium with respect to these processes should be
as high as possible; i.e., it is necessary to produce plas-
mas with the maximum possible ion charge number and
minimum possible REE. This problem can be resolved
by ionizing a gas with a short (about one hundred fem-
toseconds) intense (I0 > 1015 W cm–2) laser pulse.

Here, we apply the so-called “two-stage” ionization
model. According to this model, the transition of an
electron from the bound state to the state of free motion
is described in terms of quantum mechanics (by the the-
ory of tunneling ionization) and its subsequent motion
in the laser field is described by the classical equations
[3, 4]. However, in contrast to [1–3], we assume that
free electrons are produced with a nonzero initial
1063-780X/01/2704- $21.00 © 0278
momentum p* with the probability determined by the
corresponding quantum-mechanical distribution (cf.
[4]). The momentum and energy of an electron pro-
duced in such a manner are governed by its interaction
with the laser field and can be deduced from the classi-
cal relativistic equations of motion. Then, we can aver-
age the resulting electron momentum and energy over
the electron ensemble. The relationships between the
residual electron momentum (REM), REE, and elec-
tron temperature can be derived by comparing the
results obtained by one-particle and hydrodynamic
approaches.

In the particular case of a linearly polarized laser
pulse and under the assumption that the electrons are
born with a zero initial momentum, formulas (12) and
(13) for the longitudinal momentum and mean energy
of an electron (see below) yield formula (13) from [2].
Our purpose here is to generalize the theory of REE
developed by Pulsifer et al. [2] so as to take into
account the distribution of the produced free electrons
over their initial momenta and to consider relativistic
laser pulses with an arbitrary elliptic polarization. We
show that the ensemble-averaged energy and momen-
tum of a free electron in a laser field consist of two
parts: first, strongly oscillating components Qvan and
Pvan, which vanish after the pulse leaves the plasma,
and, second, weakly oscillating components Qfin and
Pfin, which are just the REE and REM after the passage
of the pulse. The formulas derived here for Qfin and Pfin
make it possible to clarify the dependence of the REE
and REM on the main gas and laser parameters: the ion-
ization potentials, the laser intensity, the degree of
elliptic polarization of the laser field, the laser wave-
length, and the pulse shape. We show that, when the
ionization front duration is as long as several laser field
periods, the REE Qfin is substantially higher than the
2001 MAIK “Nauka/Interperiodica”
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energy /(2m); consequently, Qfin can be regarded as
the energy of disordered electron motion. We find that
the REE is expressed in terms of the sum of the trans-
verse (with respect to the x-axis along which the pulse
propagates) pressure tensor elements Πyy and Πzz:
Qfin = (Πyy + Πzz)/(2ne) ≡ (Tyy + Tzz)/2, where ne is the
electron density and Tyy and Tzz are the electron temper-
ature tensor elements.1 

2. IONIZATION MODEL

We treat the problem in a one-dimensional approxi-
mation; i.e., we consider the electron motion in the
vicinity of the laser-pulse axis, assuming that the pulse
is wide enough to neglect both transverse electron drift2

and laser-light diffraction. We also consider a gas with
a sufficiently low density such that the nonlinear pro-
cesses distorting the pulse shape [8–10] occur on time
scales much longer than the pulse duration. In this case,
the laser field strength along the propagation direction
of the pulse depends on the x coordinate only through
the combination x/c–t, so that the shape of the propagat-
ing pulse can be assumed to be unchanged. Conse-
quently, for convenience, we can consider the electron
motion near the point x = 0, keeping in mind that the
results obtained will also pertain to the remaining elec-
trons, because they move in the same field that is only
shifted in phase with respect to the point x = 0.

At x = 0, the rapidly oscillating component (t) of
the electric field of the laser pulse can be represented as

(1)

where ey and ez are unit vectors in the y and z directions,
η ∈  [–1, 1] is the degree of elliptic polarization (η = 0
and |η| = 1 correspond to linear and circular polariza-
tions, respectively), E(t) is the laser field amplitude, E0
is the maximum laser field amplitude, I0 is the peak
intensity of the pulse, and τFWHM is the full width at
half-maximum (FWHM) of the pulse.

For the above laser pulse parameters, the gas is ion-
ized on a time scale much shorter than the pulse dura-
tion. The ionization can be assumed to proceed via the
tunneling mechanism when the Keldysh parameter [11]

1 In [5, 6], it was shown that, in this case, free electrons moving in
the y and z directions obey Maxwellian velocity distributions with
temperatures Tyy and Tzz.

2 Simple estimates made in [7] show that the transverse
electron   drift can be ignored under the condition σr/λ0 >

80(σt/1 ps) , where λ0 is the laser wavelength
and σr and σt are the characteristic width and duration of the
pulse, respectively.

Pfin
2

I0/10
17

 W cm
2–

Ẽ

Ẽ t( ) E t( ) ey ω0t( )cos ηez ω0t( )sin+[ ] ,=
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is much smaller than unity, γ = ω0 /eE(t*) ! 1,3

where m and e are the mass of an electron and the abso-
lute value of its charge, ω0 is the laser frequency, E(t*)
is the electric field amplitude of the laser wave at the
time t* of an ionization event, and Jk is the ionization
potential of an ion in the (k – 1)th ionization state. For
the short (τFWHM < 1 ps) laser pulses under consider-
ation, the electron–ion collision time in a low-density
(ne < 1019 cm–3) gas is longer than the pulse duration;
consequently, the processes of recombination and
impact ionization do not come into play throughout the
pulse.

Under the conditions of tunneling ionization, we
can assume that the electron shells are ionized succes-
sively (starting from the shell farthest from the
nucleus). In this case, the number N of electrons origi-
nating by the time t per unit volume in the vicinity of
the point x under consideration is determined by the
equations

(2)

where nk is the density of the ions in the kth ionization
state (k = 0 corresponds to a neutral atom), which are
heavy enough to be regarded as immobile; Wk + 1 is the

ionization rate of these ions; nat =  is the total
ion density (including neutrals); and zn is the nuclear
charge.

Under our conditions, the rate at which an electron
produced via tunneling ionization of an ion collides with
the potential barrier formed by both the electric field of
this ion and the laser field is much higher than the laser
frequency. Therefore, we can search for the tunneling
ionization rate in the adiabatic approximation [13], i.e.,
by substituting the absolute value of the instantaneous

laser field, | (t)| = E(t) , into
the formula for the ionization rate in a constant electric
field, which is equal to the tunneling ionization rate in
a circularly polarized field. For arbitrary atoms, the lat-
ter rate is described by the Ammosov–Delone–Kraœnov
(ADK) formula [14]. Consequently, in the adiabatic

3 More precise conditions for tunneling ionization are determined
by Ilkov et al. [12], who showed that the tunneling mechanism is
dominant when γ ≤ 0.5.
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Ẽ ω0t( )cos
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approximation, the total ionization rate in the field of an
arbitrarily polarized laser pulse has the form

(3)

where n* = k  is the principal quantum number
of an ion in the (k – 1)th ionization state with the ion-
ization potential Jk, JH is the ionization potential of a
hydrogen atom, ωa ≈ 4.1 × 1016 s–1 is the atomic fre-
quency, E‡ ≈ 5.1 × 109 V cm–1 is the atomic electric
field, and e1 = exp(1). In deriving formula (3), we
assumed that the orbital and magnetic quantum num-
bers are both zero; this assumption is justified, e.g., in
[15].

In order to take into account the distribution of the
produced electrons over the initial momenta, we need
to know not only the total ionization rate Wk but also the
differential ionization cross section Γk(p∗ ), i.e., the

probability Wk(t) = (t, p∗ )d3p∗  for an electron with

the initial momentum p∗  to originate in a unit momen-

tum interval per unit time. To determine Γk(p∗ ), we turn

to the results obtained by Goreslavsky and
Popruzhenko [4], who proposed a formula for the dis-
tribution of the ionization-produced electrons over their
initial velocities. Strictly speaking, this formula applies
to a zero-range atomic potential (i.e., to a potential in
the form of a δ function). However, the results obtained
by Delone and Kraœnov [15], who derived the Coulomb
correction to the ionization probability with allowance
for the long-term nature of the atomic potential, show
that the coefficient in front of the exponential function
in the expression for the differential ionization cross
section is independent of the initial momentum of an
ionization-produced electron. In view of this fact and
taking into account that the distribution derived in [4]
correctly reflects the exponential dependence of the dif-
ferential ionization cross section on the initial electron
velocity, we can extend this distribution to the case of a
complex atom. In this way, we choose the coefficient in
front of the exponential function so as to describe the
total ionization rate by the ADK formula (3). As a
result, we obtain

(4)
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where Wk(| (t)|) is defined by formula (3) and the δ
function reflects the fact that the electron momentum

 in the instantaneous direction of the laser field at

the time of an ionization event is equal to zero [4]. In
the plane perpendicular to this direction, the electrons
obey a two-dimensional isotropic distribution over the
initial momenta p∗ ⊥ .

It should be noted that formulas (3) and (4) are valid
under the condition αk ≡ (JH/Jk)3/2E/Ea ! 1, which may
fail to hold for strong laser fields. In sufficiently strong
fields, the ionization can exhibit the phenomenon of
stabilization. In other words, for αk > 1, the stronger the
laser field, the lower both the ionization probability per
unit time and the total ionization probability are (see,
e.g., [15–19]). In [16–19], the stabilization of ioniza-
tion was calculated for laser pulses with sharp fronts
(the rise time of the front being ten atomic times τa =
1/ωa or shorter). On the other hand, Kulander et al. [18]
noted that, for pulses with smoother fronts, the stabili-
zation effect is less pronounced because the rapid ion-
ization of atoms occurs at the pulse front, where αk !
1. Our simulations for light gases that are completely
ionized by laser pulses with nonrelativistic intensities
(except, possibly, for the 1S electron shell) showed that
a pulse with a duration longer than ten laser field peri-
ods will completely ionize ions in the (k – 1)th ioniza-
tion state by the time at which αk * 10–1; by this time,
the relative concentration of these ions, nk – 1/nat, will
become lower than 10–2 [20]. Consequently, for stron-
ger laser fields, the uncertainty in determining the prob-
ability Wk will affect the final results only slightly.
Thus, we can conclude that, in our analysis of pulses
with rise times longer than several laser field periods,
the stabilization effect is insignificant.

Another restriction on formulas (3) and (4) is that
they are written in the nonrelativistic limit and are inap-
plicable to ions with high ionization potentials (i.e.,
ions that are ionized by relativistic laser fields) [15].
Consequently, in applying our model to relativistic
laser pulses, we must assume that the gas atoms are
light enough for the plasma to be produced at the pulse
front; in other words, we must work under the condition
eE( )/(mω0) ! c, where  is the time at which the

ions with the charge number zmax – 1 are ionized at the
highest rate and zmax is the maximum charge of the ions
that can be produced during the ionization of a given
gas by a given laser pulse. Of course, this restriction
does not refer to nonrelativistic pulses. Under the con-
dition eE( )/(mω0) ! c, we can also assume that

|p∗ /(mc)| ! 1.

Ẽ

p
*Ẽ

tzmax
tzmax

tzmax
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3. ENERGY AND MOMENTUM 
OF THE IONIZATION-PRODUCED ELECTRONS

The ensemble-averaged momentum P(t) and energy
Q(t) transferred from the laser field to the electrons that
originate by the time t in the vicinity of the point x
under consideration, both divided by the number of
these electrons, are equal to

(5)

Here, P(t, t*, p∗ ) and Q(t, t*, p∗ ) are the instantaneous

(at the time t) momentum and energy of an electron that
originates with the momentum p∗  at the time t* and

Γ(t, p∗ ) = (t, p∗ )nk – 1(t) where Γk and nk – 1 are

determined by formulas (2)–(4).
Assuming that the laser field envelope changes

insignificantly over the laser field period4 and applying
the approach described in [21] (see also [22]), we can
write the instantaneous (at the time t) momentum and
energy of an electron in the field of a plane, elliptically
polarized laser wave (the wave parameters are assumed
to depend on the variables x and t only through the com-
bination x – ct) in terms of the longitudinal (along the
x-axis) displacement δ(t, t*) of the electron from the
point x at which it is born at the time t*. Note that, by
definition, we have δ(t*, t*) = 0.

The kinetic energy Q(t, t*, p∗ ) of an electron origi-

nating with the momentum p∗  at the time t* is related

to the projection of its momentum onto the propagation
direction of the pulse (the x-axis) by

(6)

where κ∗  = γ∗  – px∗ /(mc), γ∗  = , and

 =  +  + .

Now, the momentum of an electron can be written as

where the components Pvan and Pfin have the form

(7)

4 Goreslavsky et al. [7] showed that this assumption is valid even
for ultrashort laser pulses with a duration of about one laser field
period.
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(8)

(9)

Here, φ* = ω0t* is the field phase at which an electron
originates in the vicinity of the point x under consider-
ation, φ = ω0(t – δ(t, t*)/c) is the field phase at the point
at which the electron occurs at the time t, and Qp(φ) =
m(eE(φ)/2mω0)2 is the averaged oscillatory energy of
an electron at the time t. The longitudinal displacement
δ(t, t*) of an electron from the point at which it is born
at the time t* to the point at which it occurs at the time
t satisfies the transcendental algebraic equation pre-
sented in Appendix A.

In formulas (7)–(9), the strongly oscillating
momentum component Pvan depends on φ, while the
weakly oscillating component Pfin depends only on φ*
rather than φ. As t  ∞, we have Pvan  0, because
φ = t – δ(t, t*)/c  ∞ by virtue of both dδ(t, t*)/dt <
c and Q(φ  ∞)  0. Therefore, the component
Pvan makes no contribution to the REM. Consequently,
the REM is determined by the component Pfin, which is
nonzero in the limit t  ∞.

Using formulas (5) and taking into account expres-
sions (7)–(9), (3), (4), and (6), we can see that the
ensemble-averaged electron momentum and energy
satisfy the relationships

The strongly oscillating components Pvan(t) and
Qvan(t) = (t) vanish as t  ∞, while the weakly
oscillating components Pfin(t) and Qfin(t) (which oscil-
late only slightly about their values averaged over the
laser field period) remain nonzero after the passage of
the pulse. The weakly oscillating components deter-
mine the ensemble-averaged momentum and energy
that the laser field transfers irreversibly in the nonadia-
batic interaction to the electrons produced in the vicin-
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ity of the point x by the time t during gas ionization.
Hence, after the passage of the pulse (at t  ∞ for a
Gaussian pulse), the components Pfin and Qfin are just
the REM and REE.

Substituting expressions (7)–(9), (3), and (4) into
formula (5), we find that the momentum p∗  does not

contribute to the projections of the REM Pfin onto the y-
and z-axes and that the contribution of p∗  to the x-com-

ponent of Pfin is determined by the small parameter
|p∗ /(mc)|2 ! 1 and can always be neglected. For this rea-

son, the projections of Pfin onto the coordinate axes,

(10)

(11)

(12)

have the same form as for p∗  = 0.

Formula (5) with expressions (6), (3), and (4) yields
the following relationship for Qfin(t):

(13)

where

(14)

In formula (13), the term Q∗  accounts for the initial

velocity distribution of the ionization-produced elec-
trons; setting Γk(p∗ , t) ~ δ(p∗ ) in expression (4) gives

Q∗  = 0.

In order to investigate how the quantities Pfin and
Qfin depend on the parameters of the gas and the laser
pulse, it is convenient to eliminate oscillating terms in
the integrals in expressions (10)–(14) with the ioniza-
tion rate and electron density determined by formulas
(3) and (2), respectively. Below, the mean electron
energy, mean longitudinal (along the x-axis) electron
momentum, and the transverse REM will be analyzed
separately.
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3.1. Averaged Equations for  and Qfin

We start by investigating the mean electron energy
and mean longitudinal electron momentum. To do this,
we perform the time integration in formulas (12) and
(14) over subintervals [t '; t ' + π/(2ω0)], each is as long
as one-quarter of the laser field period. For a laser pulse
with arbitrary polarization, the integrals over the sub-
intervals are expressed in terms of Bessel functions. In
this case, the quantities under consideration cannot be
represented simply as power functions of the electric
field strength (see [13]). In order to avoid difficulties
(which are not, however, of fundamental importance),
we consider two opposite limiting cases in which the
integrals over the subintervals [t '; t ' + π/(2ω0)] can be
expanded in asymptotic or power series, because, on a

time scale of about , the field amplitude and elec-
tron density change only slightly, and, for a sufficiently
high ionization rate, the parameter αk ~ 10–1 is small.

(i) If the polarization of a laser pulse is far from
being circular, 3αk/(1 – η2) ! 1, formulas (12) and (14)
reduce to

(15)

(16)

where the coefficient Rk incorporates the first three
terms of the corresponding asymptotic series in αk (see
Appendix B). With good accuracy, we can assume for
estimates that this coefficient is equal to 0.8, because,
in a wide range of the pulse parameters, it lies between
0.7 and 1, provided that the relative densities nk – 1 of the
ions in different ionization states are nonzero. The ion-
ization rate (t ') averaged over the laser field period
[see expression (3)] has the form

(17)

where the density of the ions in the kth ionization state,
, averaged over the laser field period, is calculated

from formulas (2), in which Wk and Wk(E(t ')) are deter-
mined by expressions (17) and (3), respectively. We
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emphasize that, in contrast to formula (3), expression (17)
should be taken with the field amplitude E(t ') rather

than with the instantaneous value | (t ')| of the rapidly
oscillating field. Note also that, for linear polarization,
the averaged ADK formula taken with the instan-
taneous laser field (as is the case in [1, 2]) may lead
to an REE overestimated by a factor of approximately
1.5 [20].

For η = 0, the first term in formula (17) gives the
ADK formula for the rate of tunneling ionization by
a linearly polarized laser field [14].5 The remaining
terms in the asymptotic series are negligible for 1 –
η2 @ 3αk. Note that, at a fixed peak intensity I0, in
accordance with formulas (17), (3), and (1), the main
dependence of  on η in the limit 1 – η2 @ 3αk under

consideration is determined by the factor (1 –

η2)–1/2 ~ (1 + η2 (1 – η2)–1/2.
(ii) For a laser pulse with nearly circular polariza-

tion, 3αk/(1 – η2) @ 1, formulas (12) and (14) reduce to

(18)

(19)

Here, the averaged ionization rates  have the form

(20)

the densities  are calculated from formulas (2) and
(20), and W(t ') is determined by expression (3) with the
field amplitude E(t ') in place of the instantaneous field

| (t)|. The coefficient , which accounts for the
power series in 1 – η2, is presented in Appendix B.

5 In [14], the corresponding formula is misprinted: the numerical

factor  should be raised to a power of 3/2 rather than 1/2.
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According to formulas (16) and (19), the correction
Q∗  (caused by the nonzero initial electron momentum

p∗ ) to the REE Qfin depends weakly on the degree of

elliptical polarization of laser radiation; i.e., in both of
the above cases, the factors in square brackets are close
to unity. For a circularly polarized pulse, the ratio
Q∗ /( ) ≈ ("ω0/2Jk)γ ! 1 is negligibly small. For a

linearly polarized pulse, we have Q∗ /( ) ≈ 0.9γ2, so

that the correction Q∗  can be large in the regime close

to the regime of tunneling ionization (γ ~ 1).

Figure 1 illustrates the dependence of the REE
Qfin(t  ∞) on the degree η of elliptic polarization of
the pulse. The curves were obtained numerically from
formulas (3) and (12)–(14) for different gases (hydro-
gen, helium, and oxygen). The residual energies in
hydrogen, helium, and oxygen were normalized,
respectively, to their values Qfin = 23, 600, and 1810 eV
in the case of a circularly polarized (η = 1) laser pulse
with the parameters I0 = 5 × 1018 W cm–2, λ0 = 0.78 µm,
and τFWHM = 100 fs. The curves symbolized by open cir-
cles reflect the residual energies calculated from the
averaged formulas (15)–(17) (the lower curve) and for-
mulas (18)–(20) (the upper curve); we can see that

cPxfin

cPxfin

0.2

0.2 0.4 0.6 0.8 1.00

0.4

0.6

0.8

1.0

Qfin(η)/Qfin(η = 1)

η

Fig. 1. REE Qfin(t  ∞), normalized to its maximum (at
η = 1) value, versus the degree η of elliptic polarization of a
laser pulse with the parameters I0 = 5 × 1018 W cm–2, λ0 =
0.78 µm, and τFWHM = 100 fs for hydrogen (dashed-and-
dotted curve), oxygen (dashed curve), and helium (solid
curve and curves marked by circles). The solid curve illus-
trates the results obtained from formulas (2), (3), and (12)–
(14). The curves marked by circles show the residual ener-
gies calculated from formulas (2), (13), and (15)–(17) (the
lower curve) and formulas (2), (13), and (18)–(20) (the
upper curve). For hydrogen, helium, and oxygen, the maxi-
mum residual energies are equal to Qfin(η = 1) = 23, 600,
and 1810 eV, respectively.
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these formulas give quite reliable results for η < 0.8 and
η > 0.8, respectively.

Since, for the chosen parameter values, the correc-
tion Q∗  to the main term  is small, we can assume

that the electrons are produced with a zero initial
momentum p∗ . From Fig. 1, we can also see that the

profiles Qfin(η)/Qfin (η = 1) are similar for different
gases.

Figure 2 shows the REE as a function of the peak
intensity of a laser pulse in nitrogen, calculated from
formulas (12)–(14) with and without allowance for the
initial velocity distribution of the ionization-produced
electrons (in the latter case, the correction Q∗  was set at

zero). The steps in the dependence of the REE on I0 cor-
respond to the successive ionization of different elec-
tron shells. We can see that the initial velocity distribu-
tion of the ionization-produced electrons makes the
largest contribution to the REE in the case of low-inten-
sity laser pulses, for which the Keldysh parameter is
relatively large. The higher the degree of elliptic polar-
ization, the smaller the contribution of the initial elec-
tron velocity distribution to the REE.

Pronounced peaks in the time evolution of the ion-
ization rate  ≡ S0 averaged over the laser field period
in helium correspond to the successive ionization of
different electron shells (Fig. 3). Replacing the peaks

cPxfin
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100

10

1

1014 1015 1016 1017 1018

I0, W cm–2

Residual energy, eV

Fig. 2. REE versus the peak intensity I0 for nitrogen ionized
by a laser pulse with the parameters λ0 = 0.62 µm and
τFWHM = 100 fs. The heavy curves refer to a linearly polar-
ized pulse (η = 0), and the light curves refer to an elliptically
polarized pulse (η = 0.4). The solid curves are calculated
with allowance for the initial velocity distribution of the ion-
ization-produced electrons, and the dashed curves are
obtained under the assumption that the electrons originate
with a zero initial velocity.
by δ-functions, we obtain from formulas (13), (15),
(16), and (18) the following estimates:

(21)

where tk is the time at which the ionization rate of the
ions in the kth ionization state is the highest, αk(tk) ~ 10–1

is the value of the parameter αk at the time tk, θ(t – tk) is
the Heaviside step function, and Zmax ≤ zn is the number
of completely ionized electron shells. The coefficients

Rk and  are set to be equal to 0.83 and 1 – 0.7(1 – η2),
respectively (see Appendix B). As was shown above,
the correction Jkαk, which comes from the initial
momentum distribution of the ionization-produced
electrons, should be taken into account only for laser
pulses with a nearly linear polarization.

Estimates (21) imply that, for laser pulses whose
polarization is far from being circular (η < 0.8), the
mean energy of the electrons produced from ionization
of the kth shell depends on the field amplitude as

 ∝  η2E2(tk) + (JH/Jk)3/2 E3(tk); for pulses with
nearly circular polarization (η > 0.8), this dependence
is  ∝  E2(tk). Also, the above formulas show that the
mean electron energy is proportional to the squared
laser wavelength.

As the peak intensity I0 of the pulse increases, the
point tk, corresponding to the time at which the ioniza-
tion rate of the ions in the kth ionization state is the
highest, is displaced toward the pulse front along the
temporal profile of the pulse. As a result, for peak inten-
sities I0 that exceed the ionization threshold Ith by a fac-
tor of two to three, the REE depends only weakly on I0.
(According to [1], the threshold intensity is the pulse
intensity at which the potential barrier for an electron in
a laser field becomes lower than the ionization poten-
tial; for an ion in the (k – 1)th ionization state, we have
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Ith ≈ 1.4 × 1014(Jk/JH)4k–2 W cm–2.) For multielectron
atoms, the REE changes in a jumplike fashion every
time the peak intensity of the pulse increases above the
threshold for the ionization of each next low-lying elec-
tron shell (Fig. 2).

As the laser pulse duration increases or the pulse
front becomes less steep [for example, when pulses
with a hyperbolic secant envelope are used in place of
Gaussian pulses (1)], the point tk, corresponding to the
time at which the ionization rate of the kth electron
shell is the highest, is displaced toward the pulse front
along the temporal profile of the pulse. As a result, the
REE decreases. However, for longer laser pulses such
that the ionization front is longer than ten laser field
periods, the REE changes insignificantly as the pulse
duration increases. Thus, for a laser pulse with the
wavelength λ0 = 0.78 µm and the intensity I0 = 5 ×
1018 W cm–2, the REE changes only slightly when
τFWHM > 100 fs.

Our calculations showed that, for laser pulses with a
peak intensity above the threshold and a duration
longer than a hundred picoseconds, the parameter αk(tk)
is essentially insensitive to the characteristics of laser
radiation. Thus, for helium, this parameter takes on the
values α1 ~ 0.1 and α2 ~ 0.07, and, for oxygen, we have
α1 ~ 0.08; α2 ~ 0.06; α3, α4, α5 ~ 0.05; and α6 ~ 0.04.
Having found αk from Eq. (2) with expression (3) or
from relationships (17) and (20), we can use formula
(21) to estimate the mean energy  of the electrons
produced during ionization of the gas atoms up to the
kth ionization state. For example, for a helium gas ion-
ized by a linearly polarized laser pulse with the same
parameters as in Fig. 1, we arrive at the estimates

 ≈ 30 eV,  ≈ 110 eV, and Qfin = (  +

)/2 ≈ 70 eV, which agree satisfactorily with the
results calculated from more exact formulas (12)–(14):

 ≈ 27 eV,  ≈ 122 eV, and Qfin ≈ 75 eV.

3.2. Equations for the Transverse REM

Before we proceed with the examination of the trans-
verse REM P⊥∞  ≡ ey (t  ∞) + ez (t  ∞) as
a function of the laser and gas parameters, note that the
integrals of rapidly oscillating functions in expressions
(10) and (11) differ substantially from zero only when
the width LS of the ionization curve S(t) is no longer
than several laser field periods. In fact, the ionization-
produced electrons move initially in different direc-
tions, depending on the laser field phases at which they
are ejected from the atomic shells. The total electron
momentum can substantially differ from zero only
when the number of electrons propagating in one direc-
tion is markedly larger than the number of electrons
propagating in the opposite direction. This situation is
possible only when laser pulses are sufficiently short
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Pzfin
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and/or sufficiently intense to produce the ionization
front with a small width LS. While the absolute value of
the transverse REM is a monotonically decreasing
function of the width of the ionization front, the direc-
tion of the REM is governed by the laser field phases at
the times tk at which the ions in the kth ionization state
are ionized with the highest rate: the vector of the resid-
ual transverse momentum of the electrons produced
from ionization of the kth shell will rotate6 about the

6 For a linearly polarized laser pulse, the transverse REM will
reverse direction, because it can be oriented either parallel or anti-
parallel to the electric field.
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Fig. 3. Dimensionless ionization rate S(t)/(natω0) (heavy
curves), mean ion charge Z = N/nat (dashed and dashed-and-
dotted curves), and dimensionless electric field strength

e| (t)|/(mω0c) (light curves) for helium ionized by (a) lin-
early and (b) circularly polarized laser pulses with the
parameters I0 = 5 × 1016 W cm–2, λ0 = 0.78 µm, and
τFWHM = 30 fs. In Fig. 3a, the dashed-and-dotted curve is

for the zeroth harmonic S0 =  of the ionization rate. In
Fig. 3b, the circles illustrate the results from the approxima-
tions of the first and second peaks in the ionization curve by
Gaussian functions.
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x-axis (along which the pulse propagates) as the field
phase at the time tk changes (as a result of changes in
laser pulse parameters).

In order to justify the above considerations and to
analytically investigate the dependence of the transverse
REM on the laser and gas parameters, we approximate
the term Sk, which incorporates the ionization of the kth
electron shell into the total ionization rate S in Eqs. (2),
by a smooth curve, e.g., a curve that is described by a

Gaussian function Sk = natexp{–[(t –tk)/τS, k]2}/[ ],
where τS, k = LS, k/c and LS, k is the characteristic width of
the kth ionization front (Fig. 3b). Since the direction of
the momentum P⊥∞  is sensitive to the field phase at the
ionization time tk , we must take into account the phase
shift of the oscillating component cos(ω0t) with respect
to the pulse center. For this reason, we specify the elec-

tric field of the pulse in the form (t) = E(t)[eycos(ω0t +
ϕ) + ηezsin(ω0t + ϕ)], in contrast to formulas (1), in
which we set ϕ = 0. As a result, with allowance for the
fact that, on scale lengths LS, k, the electric field changes
only slightly, we arrive at the expressions

(22)

(23)

πτS k,

Ẽ

Pyfin
t ∞( ) 2Zmax

1–
mQp tk( )

k 1=

Zmax

∑=

× ω0tk ϕ+( )e
ω0τS k, /2( )2

–
1 µk2

tk( )–[ ]sin[

+ 3ω0tk 3ϕ+( )e
3ω0τS k, /2( )2

–
µk2

tk( ) µk4
tk( )–[ ]sin …] ,+

Pzfin
t ∞( ) 2ηZmax

1–
mQp tk( )

k 1=

Zmax

∑–=

× ω0tk ϕ+( )e
ω0τS k, /2( )2

–
1 µk2

tk( )+[ ]cos[

+ 3ω0tk 3ϕ+( )e
3ω0τS k, /2( )2

–
µk2

tk( ) µk4
tk( )+[ ]cos …] ,+
where Zmax ≤ zn is the number of completely ionized

electron shells. The coefficients  ≡ /(2 ),

 ≡ /(2 ), etc., incorporate high-frequency

harmonics in the spectrum of the ionization source for
a laser pulse with a noncircular polarization (Fig. 3a).

Here,  =  (n = 1, 2…) denotes the

[2n]th high-frequency harmonic of the ionization rate

Wk,  =  is the ionization rate averaged over the

laser field period [which is calculated from formula
(17) when the pulse polarization is far from being cir-
cular and from formula (20) when the pulse polariza-
tion is nearly circular], and the superior bar stands for
averaging over the laser field period. The first of these
coefficients takes on the following values:  = 1 –

3αkRk/(1 – η2) when the pulse polarization is far from

being circular,  = 1 –  ≈ 0.7(1 – η2) ! 1 when the

pulse polarization is nearly circular,  ≈ 0.75 for a

linearly polarized pulse, and  = 0 for a circularly

polarized pulse. The coefficients  with n > 1 can be

expressed in terms of the analogous power series in αk

or 1 – η2; however, we do not require the exact values
of these coefficients, because the first term on the right-
hand side of expressions (22) and (23) is much larger
than the remaining terms (the exponential functions
contain the factor 2n + 1 and thus rapidly decrease with
increasing n).

Formulas (22) and (23) imply that, for singly
charged ions (including hydrogen ions) produced by a
laser pulse with almost circular polarization (  ! 1),

the absolute value of the transverse REM,

µk2
Wk2

Wk0

µk4
Wk4

Wk0

Wk2n
2Wk 2ω0t( )cos

Wk0
Wk

µk2

µk2
Rk
˘

µk2

µk2

µk2n

µ12
, (24)
P⊥ ∞ Pyfin

2
t ∞( ) Pzfin

2
t ∞( )+ 2 mQp tk( )e

ω0τS 1, /2( )2
–

≈=

× η2 1 µ2+( ) 1 µ2–( )+ η2 1 µ2+( ) 1 µ2–( )–[ ] 2ω0t1 2ϕ+( )cos+
depends weakly on the phase ω0t1 + ϕ and decreases
exponentially with increasing the ionization front width
τS, 1 and, accordingly, the pulse duration τFWHM. As the
field phase changes, the vector of the transverse REM
rotates about the x-axis such that the angle θ between
P⊥∞  and the y-axis changes according to the law

θ η 1– ω0t1 ϕ+( ) 1 µ12
/2+( )/ 1 µ12

/2–( )cot{ } ,arctan≈

η 0.≠
For a linearly polarized pulse, the transverse REM is
oriented parallel to E (to the y-axis) and, in
accordance with formula (22), changes from

about      ≈[−2  to about

2  as the field phase at the time t1

changes. In this case, the angle θ takes on two values:
−π/2 and π/2.

mQp t1( )e
ω0τS 1, /2( )2

–

mQp t1( )e
ω0τS 1, /2( )2

–
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Note that, according to formula (24), the maximum
(for a given width τS, 1 of the ionization front) absolute
value of the transverse REM, |P⊥∞ |, is proportional to
η(1 + ) for η > (1 – )/(1 + ) and to 1 –  for

η ≤ (1 – )/(1 + ). Consequently, from the asymp-

totic expressions for , we can see that |P⊥∞ |
increases as η increases from 0 (a linearly polarized
pulse) to 1 (a circularly polarized pulse).

The above analytic estimates are illustrated by
Fig. 4a, which shows the energy of the ordered trans-
verse electron motion, (2m)–1|P⊥∞ |2, calculated from
formulas (10) and (11) for hydrogen ionized by laser
pulses with the parameters I0 = 5 × 1017 W cm–2 and
λ0 = 0.78 µm and with different polarizations η = 0.1,
0.5, and 1. In accordance with our analytic estimates,
the envelopes of the curves (2m)–1|P⊥∞ |2(τFWHM) are
exponentially decreasing functions of τFWHM. The lower
the degree η of elliptic polarization of a laser pulse, the
more oscillatory the dependence (2m)–1|P⊥∞ |2(τFWHM) is;
recall that this effect stems from the fact that, as τFWHM

changes, the point t1 is displaced along the temporal pro-
file of the pulse. The dependence (2m)–1|P⊥∞ |2(τFWHM)
for helium is shown by the dashed curve in Fig. 4b. We
can see that, in contrast to hydrogen, the curve
(2m)−1|P⊥∞ |2(τFWHM) for helium decreases nonmonoton-
ically as τFWHM increases, because the expression for
the energy of the ordered transverse electron motion
contains the cross terms of the form sin(ω0tk +
ϕ)sin(ω0tl + ϕ) with k ≠ l and cos(ω0tn + ϕ)cos(ω0tm + ϕ)
with m ≠ n, which stem from the summation of the infi-
nite series in the squares of  and  [see expres-
sions (22) and (23)].

Unlike the transverse REM, the longitudinal REM
and, accordingly, the REE, which is related to the lon-
gitudinal REM by expression (13), experience less pro-
nounced variations as τFWHM changes. This can be illus-
trated, e.g., by the dashed-and-dotted and dotted curves
in Fig. 4b, which correspond, respectively, to the mean

energy /(2m)(t  ∞) of the ordered longitudinal
electron motion and the REE Qfin(t  ∞) for helium.
That is why, for ultrashort laser pulses, the transverse
REM can be much higher than the longitudinal REM.
In contrast, for longer pulses, the longitudinal REM
becomes higher than the transverse REM, because the
latter approaches zero as the pulse duration increases
(Fig. 4b).

Our analytic expressions [formulas (24), (21), and
(12)–(14)] and calculated results (Fig. 4) also imply
that, for the above laser and gas parameters, the mean

residual energy Qdir ≡ [ (t  ∞) + |P⊥∞ |2]/(2m) of
the directed electron motion is much lower than the
REE Qfin(t  ∞).
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4. ELECTRON PRESSURE TENSOR 
IN THE NONRELATIVISTIC 

COLLISIONLESS LIMIT

Here, we consider the relationship between the REE
Qfin(t  ∞) and the electron pressure tensor Πij or,
equivalently, the electron temperature tensor Tij ≡

. To do this, we use hydrodynamic equations for
a low-density gas ionized by the field of a nonrelativis-
ne

1– Π ij
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Fig. 4. (a) Dependence of the residual mean energy
|P⊥ fin |2/(2m)(t  ∞) of the ordered transverse electron
motion in hydrogen on the duration of laser pulses with I0 =

5 × 1017 W cm–2 and λ0 = 0.78 µm and different polariza-
tions: η = 0.1 (dashed-and-dotted curve), η = 0.5 (dashed
curve), and η = 1 (solid curve). (b) Dependence of the resid-
ual mean energies (|P⊥ fin |2/(2m)(t  ∞)) (dashed curve),

( /(2m)(t  ∞)) (dashed-and-dotted curve), and

Qfin(t  ∞) (dotted curve) in helium on the duration of a
circularly polarized laser pulse with the same parameters.

Pxfin
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tic laser pulse. The desired hydrodynamic equations
can be derived from the following collisionless kinetic
equation for the electron velocity distribution function
f(r, v, t):

(25)

where eijl is a completely antisymmetric unit tensor, the
subscript i stands for the ith vector component, and Ei

and Bl are the corresponding components of the electric

( ) and magnetic ( ) fields of the pulse. We will
derive the hydrodynamic equations for the pressure ten-
sor Πij in the weakly relativistic limit, because, as was
shown in the previous section, the REE is insensitive to
relativistic effects if a gas is ionized by a nonrelativistic
laser pulse.

Applying the standard method of moments to
Eq. (25) yields equations for the hydrodynamic quanti-

ties—the electron density ne = , electron

momentum P = , and electron pressure

tensor Πij =  (with  ≡ vi – Vi  and Vi ≈
Pi/m). The corresponding identity transformations put
these equations in the form7 

(26)

(27)

(28)

Here, qαβ = (m/2)  is the heat flux vec-

tor, the subscripts α and β are fixed, and summation
over the repeated Latin indices is used. Using for-

mula (4), we can reduce the quantity  =

7 Equations (26) and (27) are also valid in the relativistic limit.
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(29)

where ψ(t) =  is the angle between

the instantaneous electric field  and the y-axis.

At the initial time (before the pulse starts to ionize
the gas), we have Παβ(t = 0) = 0. For t > 0, the tensor
Παβ is determined by the source terms—the first and
second terms on the right-hand side of Eq. (28). In
order to calculate Παβ in the first approximation, we
can use the smallness of the parameters |V/c |,

|V/c |2[S/(neω0)]–1, [S/(neω0)]–1 and
|V/c |[S/(neω0)]–1(k0σr)–1 in the ionization region (recall
that τS, k is the characteristic width of the kth ionization
front and σr is the characteristic transverse size of the
pulse); in Eq. (28), we can also neglect the heat flux
vector qαβ and the terms containing the combinations of
Παβ and V. When the two subscripts {α, β} do not run
the coordinate pairs {α = x, β = y}, {α = y, β = x},
{α = x, β = z}, or {α = z, β = x}, the last term on the
right-hand side of Eq. (28) can also be omitted, because
it is proportional to eBl/(mc). As a result, Eq. (28)
becomes

(30)

For {α = x, β = y} or {α = y, β = x}, we must supple-
ment the right-hand side of Eq. (30) with the term

−(mc)–1 (t ')eEy(t ')dt ', and, for {α = x, β = z}

or {α = z, β = x}, we must add the term

−(mc)−1 (t')eEy(t')dt'. However, expressions (35)

(see below) imply that these terms both vanish as t  ∞.

In the first approximation, the transverse hydrody-
namic velocity components Vy and Vz can be calculated
by keeping only the first two terms on the right-hand
side of Eq. (27). We integrate this equation by part,
neglecting the difference ∂ne/∂t – S = div(neV) and

assuming that |∂ln| |/∂t| is much less than |∂lnne/∂t |.
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As a result, we obtain from (27) the desired transverse
velocity components

(31)

For our purposes, it is sufficient to calculate the lon-
gitudinal hydrodynamic velocity Vx to within terms of
the second order in the laser field. Under the condition
χ ≡ S0/(neω0) ! 1, we retain the leading-order terms in
the Maxwell equations and the equation of motion (27)
to arrive at the following expression for Vx:

(32)

Substituting expressions (31) into formula (30), tak-
ing into account expressions (10) and (11) for (t)

and (t), and performing identity transformations,
we obtain

(33)
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where Qαβ∗  ≡ (t*)dt*. The energy Qfin deter-

mined by formulas (13) and (14) is equal to  +

 = Qfin, and the REE is Qfin(t  ∞). The sum of
the transverse energies, which are associated with dis-
tribution (4) of the ionization-produced electrons over
their initial velocities, is equal to one-half of the energy
Q∗  in expression (14): Qyy∗  + Qzz∗  = Q∗ /2. The remain-

ing half is covered by the longitudinal energy, Qxx∗  =
Q∗ /2.

The last formulas, together with expressions (33)
and (34), determine the relationship between the tem-

perature in the (y, z) plane Tµν = Πµν (where µ, ν =
y, z), with the REE and REM.

Analogously, using relationships (32) and (31) and
taking into account the above additional terms with
{α = x, β = y} and {α = x, β = z}, we obtain from for-
mula (30) the following expressions:

(35)

Recall that, since Qp(t  ∞)  0, the additional
terms, which are proportional to Πyy or Πzz, vanish as
t  ∞.

Now, we consider the electron pressure tensor for
moderately short and/or moderately intense laser
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pulses such that the kth ionization front is no shorter
than several laser field periods, so that ω0  @ 1. For
such pulses, formulas (33) and (35) imply that the off-
diagonal elements of the pressure tensor as well as the
transverse components of the REM are all exponen-
tially small. For laser pulses with different polariza-
tions, the diagonal elements of the pressure tensor and

of the temperature tensor Tαα = Παα can be deduced
from formulas (33)–(35) to within unimportant small
terms.

(i) When the pulse polarization is far from being cir-
cular, 3αk/(1 – η2) ! 1, we obtain

(36)

where (t ') is determined by formula (17) and the
asymptotic series for Xk and Rk are presented in Appen-
dix B.

(ii) For a pulse with nearly circular polarization,
3αk /(1 – η2) @ 1, we have

(37)
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where (t ') is determined by formula (20) and the

asymptotic series for  is presented in Appendix B.

Using expressions (36) and (37), we can estimate Txx

as

For ions with low charge numbers and for laser pulses
with nearly circular polarization, this ratio is, as a rule,
smaller than unity; this indicates that the main contribu-
tion to the xx-element of the pressure tensor comes
from the distribution of the ionization-produced elec-
trons over their initial velocities. For highly ionized
atoms and for laser pulses whose polarization is far
from being circular, this ratio can be larger than unity,
because, in this case, the xx-element of the pressure ten-
sor is governed mainly by the interaction between the
laser field and the electrons as they are ejected from the
atoms. Formulas (36) and (37) also allow us to con-
clude that Txx ! Tyy and Txx ! Tzz (the latter is valid for
laser pulses whose polarization is sufficiently far from
being linear).

Note also that formulas (15), (18), (36), and (37)
give

5. CONCLUSION

We have investigated the REE and REM in gases
ionized by elliptically polarized, relativistic, short laser
pulses.

We have shown that, for laser pulses with polariza-
tion that is not too close to linear, the distribution of the
ionization-produced electrons over their initial veloci-
ties is unimportant for obtaining the REE and REM,
which thus can be determined under the assumption
that the electrons are produced with a zero initial veloc-
ity, as is usually done in calculations (see, e.g., [2]). For
γ ! 1, we can, as usual, assume that, during ionization
of a gas by a linearly polarized laser pulse, the electrons
originate with a zero initial velocity. However, at the
boundary of applicability range of the tunneling-ion-
ization model (γ ~ 1), the initial velocity distribution of
the ionization-produced electrons may become impor-
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tant for calculating the REE but again has an insignifi-
cant influence on the REM.

Analytic formulas (15)–(24) and (33)–(37) make it
possible to study how the main parameters of the gas
and the laser pulse affect the REE, the REM, and the
electron temperature. We have shown that the trans-
verse REM is essentially nonzero only for very short
laser pulses (no longer than one or two tens of laser
field periods) and decreases exponentially as the pulse
duration increases. The same conclusion is valid for the
off-diagonal elements of the electron pressure tensor.
For longer laser pulses, only the diagonal elements of
the pressure tensor are significantly different from zero.

The diagonal elements of the pressure tensor satisfy
the inequalities Πxx ! Πyy and Πxx ! Πzz, and the ratio
of Πyy to Πzz is determined by the degree of elliptic
polarization η (the pulse is assumed to propagate along
the x-axis). The REE is expressed in terms of the pres-
sure tensor elements and REM as Qfin = (2ne)–1(Πyy +

Πzz) – (2m)–1(  + ). If the laser pulse is not too

short, the final energy of the directed electron motion,
which is proportional to the squared REM, is much
lower than the REE.

We have found that the REE is related to the longi-
tudinal REM by the simple expression (13) and is pro-
portional to the third power of the electric field ampli-
tude (at the time of the most intense ionization) for laser
pulses with nearly linear polarization and to the second
power of the electric field amplitude for pulses with
nearly circular polarization. On the other hand, as the
peak pulse intensity I0 changes, the point corresponding
to the time at which the ionization rate is the highest is
displaced along the temporal profile of the laser pulse.
As a result, for the peak intensity I0 above the ionization
threshold for one-electron atoms, the REE depends
weakly on I0, regardless of the pulse shape. For a gas of
multielectron atoms, the dependence of the REE on I0

is jumplike in character, the number of “jumps” being
equal to the number of completely ionized electron
shells. We have found that the REE is proportional to
the squared laser wavelength. We have also shown that
the sharper the pulse front, the higher the REE; in par-
ticular, the REE is higher for pulses with the same peak
intensity I0 but with a shorter duration.
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APPENDIX A

The displacement δ of an electron from the point at
which it is born is described by the equation

In the case at hand, we have |p∗ /(mc)| ! 1. Conse-

quently, for the conditions of tunneling ionization (γ <
1), we can perform manipulations similar to those in
the body of this paper in order to show that |δ∗ | ! |δ –
δ∗ |. Accordingly, in writing Eqs. (7)–(9), we assumed
that the displacement δ depends only on t and t* and is
independent of p∗ .

APPENDIX B

The coefficient Rk in formulas (15) and (36), the

coefficient  in formulas (18) and (37), and the coef-
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ficient Xk in formula (37) for Txx have the form
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Abstract—Collisional heating of plasma electrons in the field of an ultraintense ultrashort laser pulse is stud-
ied. The numerical results obtained by the method of molecular dynamics are compared with the well-known
results from kinetic simulations. A model is proposed that provides a good agreement with the results of calcu-
lations for both linearly and circularly polarized high-intensity laser pulses. © 2001 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

An ultrashort laser pulse focused in a gas produces
a plasma with multicharged ions and a relatively low
electron temperature. This circumstance opens new
possibilities for creating recombination X-ray lasers
and X-ray radiation sources [1]. As the directed elec-
tron motion in the strong electric field of a laser pulse
relaxes toward thermal motion due to elastic collisions
of electrons with the ions, the plasma electron temper-
ature increases. The collisional electron heating rate in
a strong laser field was first determined by V.P. Silin [2]
by solving the Boltzmann–Landau equation under the
assumption that the corrections introduced by Coulomb
collisions are small.

In this paper, we consider strong high-frequency
laser fields such that the laser frequency is higher than
the plasma frequency and the electron velocity in a
laser field is much higher than the electron thermal
velocity. These conditions correspond to experiments
with plasmas generated by ultraintense ultrashort laser
pulses focused in a gas. The nature of electron–ion
(e−i) collisions can be affected by such factors as
extremely rapid photoionization of the gas, the period-
icity of electron motion in a strong laser field, and small
focal spot sizes. Our purpose here is to investigate how
these factors influence the collisional electron heating
rate.

We consider a fully ionized plasma with the ion den-
sity Ni and electron density Ne = zNi , where ze is the ion
charge and –e is the charge of an electron. We assume
that, at the initial time, the ion temperature is equal to
the temperature of the atoms and that the electrons obey
a Maxwellian initial energy distribution with a certain
temperature Te governed by the amount by which the
absorbed photon energy exceeds the ionization energy.

Let the plasma be affected by a linearly polarized
laser wave field E(t) = (Ex, 0, 0), where

(1)Ex t( ) E0 ωt.cos=
1063-780X/01/2704- $21.00 © 20293
In a collisionless plasma, the velocity of an electron and
its coordinates are equal to

where the vectors vE = –eE0/mω and rE = eE0/mω2

determine the oscillatory velocity of the electrons and
the amplitude of their oscillations, respectively, and
E0 = E(0). Due to the e–i collisions, the directed elec-
tron motion in the external electric field (1) becomes
stochastic. If the electron oscillatory velocity VE is
much higher than the electron thermal velocity VT =

, then the e–i collision frequency is equal to [2]

(2)

In this case, the collisional electron heating power is
equal to [2]

(3)

According to [2], the values kmin and kmax are deter-
mined by the reciprocal of the Debye radius and the
minimum impact parameter, which is found from the
condition under which an electron with the velocity VE

can be described either by classical mechanics or by
perturbation theory. The Coulomb logarithm satisfies
the equality

(4)

In expression (2), the logarithm of the ratio of the oscil-
latory velocity to the thermal velocity stems from the
fact that the collision frequency tends to infinity as the
directed electron velocity decreases. As a result, the
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integral over velocities should be truncated at veloci-
ties below the thermal velocity. For a circularly polar-
ized laser field, the absolute value of the electron
velocity is constant and the logarithm drops out of
expression (2) [2].

An analogous formula for the collisional electron
heating power in the strong linearly polarized laser
wave field was derived by Jones and Lee [3]:

(5)

where the value of kmax is determined from the applica-
bility condition of classical mechanics, kmax = mVT/".

In the approximate expression derived by
Shlessinger and Wright [4] for the collisional electron
heating power in a strong linearly polarized laser wave
field, the collision frequency is multiplied by the factor
that incorporates the difference between the oscillatory
and thermal velocities of the electrons:

(6‡)

(6b)

(6c)

where Λ is the conventional Coulomb logarithm.
In a collisionless plasma irradiated by a circularly

polarized laser pulse with the electric field E(t ) =
(Ex, Ey, 0), where

the electrons move at constant speed VE/  along cir-

cles of radii rE/ . In the approximation of instanta-
neous binary collisions, the interaction of electrons
with an immobile ion is taken into account, while the
electron–electron interaction is neglected [5], in which
case the mean “friction” force exerted by the ions with
an impact parameter smaller than ρmax on an electron
has the form [5]

where the Coulomb logarithm is equal to λ =

ln  ≈ ln  and ρ⊥  = ze2/mV2 is the impact
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parameter for which the ion deflects the electron
through a right angle. Note that the Coulomb logarithm
is not truncated at ρ⊥  because it takes into account all of
the e–i collisions with impact parameters ρ < ρmax. The
collisional electron heating power is a product of the

friction force with the velocity VE/  and electron
density:

(7)

Coulomb logarithm approximation. The Cou-
lomb logarithm Λ is defined in terms of the maximum
and minimum impact parameters incorporated into the
Landau collision integral [6]: Λ = lnρmax/ρmin. For all
possible values of the impact parameter (0 < ρ < +∞),
the Coulomb collision frequency diverges logarithmi-
cally for both short-range and long-range collisions.
For short-range collisions, the Coulomb logarithm
diverges because the linear expansion fails to apply to
the collision integral in this limit; this divergence can
be eliminated by choosing the impact parameter in a
special way,

(8)

which corresponds to an exact solution. In the limiting
case of high temperatures such that the impact parame-
ter ρ⊥  is smaller than the de Broglie wavelength λ =
h/mV, the quantum mechanics limit ρmin = λ/4π is used
(the most thorough treatment of this point is given in
[7]). For long-range collisions, the Coulomb logarithm
can also be made nondivergent by choosing a finite
value of ρmax , i.e., by eliminating (in a physically rea-
sonable manner) long-range collisions from consider-
ation. However, it is not a priori clear how to choose the
impact parameter ρmax. Initially, most authors (see [8]
for the history of this problem) used as the maximum
impact parameter the interparticle distance

which determines the upper boundary of the applicabil-
ity range of the binary-collision approximation. How-
ever, after Landau derived the kinetic equation for the
plasma, the lower limit of integration was routinely
replaced with the Debye radius,

which indicates that the electron scattering by
unscreened fluctuations of the charge density are taken
into account.

For a plasma, the Coulomb logarithm is also
approximated by the formula [9] that coincides with the
approximation proposed by L. Spitzer [10] for singly
charged ions. However, the dependence of the Cou-
lomb logarithm on the ion charge z may be neglected
only for a hot plasma with a low ion charge number. For

2

W
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a cold multicharged plasma with z @ 1, which is of
interest for X-ray lasers, taking into account the ions
that carry high charges may substantially lower the
Coulomb logarithm. Consequently, in describing e–i
collisions in a plasma with multicharged ions, we
approximate the Coulomb logarithm by

(9)

Sometimes, the Coulomb logarithm is approximated by
the formula Λ = (1/2)ln(1 + 9/4πδ), which is written in
terms of the Coulomb coupling parameter δ = (z +

1)z3e6Ne/  = 2e6Ne/  for z = 1); below, we will also
use a more familiar expression for the coupling param-
eter, Γ = ze2 (4πNi/3)1/3/Te . This approximation for the
Coulomb logarithm was obtained with allowance for
the screening of charge density fluctuations by both
negative and positive particles and is valid for plasmas
with nearly equal masses of positive and negative par-
ticles (such as electron–positron plasmas and ion–ion
plasmas). It is this approximation that was used by Yak-
ovlenko [11] in order to analyze the results obtained in
my paper [8] by numerically simulating Coulomb col-
lisions of electrons with infinitely heavy ions. As a
result, the discrepancy between the results of [8] and
the conventional theory was underestimated. Note that
the method used in [8] to simulate the straight-line
motion of particles yielded essentially the same results
as those obtained analytically in [7, 12]. Consequently,
the results obtained in [8] reflect the long-term and
multiparticle nature of Coulomb collisions rather than
the numerical technique (as was supposed in [11]).

2. STRAIGHT-LINE MOTION APPROXIMATION

The maximum scale of the charge density fluctua-
tions in a plasma is governed by the electron Debye
radius, because the large-scale fluctuations are
screened by plasma electrons. Since the electrons are
scattered by the charge density fluctuations, the Debye
radius can serve as one of the most natural maximum
impact parameters for Coulomb collisions in a plasma.
However, this is not the case for a plasma affected by an
external force that is strong enough to ensure the
straight-line motion of particles with an amplitude
larger than the Debye radius. The fluctuations of the ion
density and the large amplitude of the oscillatory
motion of the electron under the action of an external
force can strongly influence the nature of Coulomb col-
lisions.

We start by considering atomic density fluctuations
in a real gas. The collisional nature of a real gas makes
the atomic density fluctuations different from those in

Λz 23.4 1/2( ) Neln– 3/2( ) Teln zln–+=

for Te 50z2 eV,<
Λz 25.3 1/2( ) Neln– Teln zln–+=

for Te 50z2 eV.>

Te
3 Te

3
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an ideal gas. This difference becomes pronounced on
spatial scales on the order of the atom mean free path

and longer: λa = 1/σaNa, where σa = π  is the gas-
kinetic collision cross section, Na is the atom density,
and da is the diameter of an atom. In a gas with temper-
ature Ta and atomic mass M, the characteristic relax-
ation time τa of fluctuations is determined by the atom
thermal velocity (the speed of sound) cs = (γTa/ma)1/2,
where γ = 5/3 is the adiabatic index of an ideal gas:

After instantaneous gas ionization followed by
instantaneous production of a plasma with the electron
temperature Te and ion charge z, the characteristic
relaxation time τai of the fluctuations of size λa that
remained in the gas before ionization is governed by the
thermal energy per plasma ion and is equal in order of
magnitude to τai = λa/cpl = 1/σaNacpl , where the mass-
weighted average speed of sound in a plasma is cpl =
[γ(Ta + zTe)/(M + zm)]1/2. The duration τlas of an ultrain-
tense ultrashort laser pulse that ionizes the gas is so
short that neither the atomic thermal motion nor the
plasma oscillations can cause atomic density fluctua-
tions in the gas to relax, because the condition

is usually satisfied in experiments with ultrashort laser
pulses [1]. Hence, during ultrafast ionization, the
atomic density fluctuations in a gas evolve into ion den-
sity fluctuations. Since the electrons experience
straight-line motion under the action of an external
force (the electric field of laser radiation), they cannot
screen the ion density fluctuations. Consequently, dur-
ing ionization, the ion density fluctuations can increase
the e–i collision frequency, provided that they occur on
a spatial scale substantially longer than that of the
space-charge density fluctuations (the Debye radius).

2.1. Dynamic Friction Force and Collisional Heating 
in the Straight-Line Motion Approximation

There exist systems with the Coulomb potential of
interaction among the particles but without screening
(e.g., systems of gravitating bodies and systems of
immobile ions in semiconductors). For a system with-
out screening, the problem of determining the collision
frequency was studied by Kogan [12] in the straight-
line motion approximation. He found that the Coulomb
collision frequency for the particles moving along
straight trajectories should be determined by taking the
particle mean free path (the length of the straight por-
tions of particle trajectories) as the maximum impact
parameter. Accordingly, for a test particle moving at a
constant speed along a straight trajectory among immo-
bile charged particles, the dynamic friction force

da
2

τa λa/cs 1/σaNacs.= =

τ las ! τai ! τa
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depends logarithmically on the time ∆t that has passed
since the test particle started moving [7, 12]:

Here, the time τmin is, as usual, determined from the
applicability condition of the perturbation theory.
While the particle experiences straight-line motion
under the action of an external force, the collision fre-
quency is governed precisely by the straight portions of
the particle trajectory, in which case Debye screening
has no impact on the Coulomb forces, so that the Debye
radius cannot serve as the maximum impact parameter.
Consequently, with the particle motion in the strong
field (1) taken into account, we determine the range of
possible values of the impact parameter in terms of the
straight portion of a particle trajectory and the squared
electron oscillatory velocity averaged over the period
of electron oscillations:

(10)

In this case, the Coulomb logarithm ΛE depends only
on the frequency of field (1) and its strength:

(11)

The collisional electron heating power can be estimated
as a product of the dynamic friction force with the elec-
tron velocity and density:

(12)

Here, the friction force is calculated from the electron
oscillatory velocity averaged over the half-period of the

laser field: 〈V 〉  = VE/ .

2.2. Method of Molecular Dynamics [13]

The method of molecular dynamics (which will be
referred to as the MD method) implies a numerical
solution of the dynamic equations for a system of n(1 +
z) positively and negatively charged particles. In the
proposed model, the particles are assumed to be inside
a cube at the faces of which the periodic boundary con-
ditions are imposed. The trajectories of n ions and nz
electrons are calculated by solving Newton’s equations
of motion

Here, rk(t) is the position vector of the kth particle with
mass mk and charge qk . The Coulomb forces fkl of the
interaction between the particles that occur at distances
smaller than r0 from each other are assumed to corre-

F
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spond to those of the interaction between uniformly
charged, completely interpenetrating spheres of diame-
ter r0 (the “Coulomb spheres”). Modifying the short-
range Coulomb forces in such a manner removes the
singularity of the Coulomb potential at infinitely close
distances and reduces the equation stiffness caused by
the short-range collisions. For the problems at hand, the
MD method, which is often referred to as the “method
based on ab initio principles,” should incorporate addi-
tional parameters that affect the numerical results.
These are the number of particles, Np = n(z + 1); the
radius of Coulomb spheres, r0; and numerical errors.
Since the number of particles in the system to be simu-
lated is relatively small, the way in which the boundary
conditions are imposed is also of particular importance.
A detailed discussion of these problems goes beyond
the scope of our study, so we restrict ourselves to a brief
analysis of the most important related physical topics
(see also [14]).

Clearly, the applicability condition for the validity
of our mathematical model is the smallness of r0 in
comparison with the mean interparticle distance:

(13)

Condition (13) is sufficient for determining most
plasma parameters. In order to take into account the
contribution of short-range collisions between free par-
ticles in an ideal plasma, we must impose the condition

Collisions in a strong laser field should be modeled
under a far more stringent requirement:

(14)

The number of particles in the system to be simu-
lated should be such that the collision integral can be
approximated in the desired fashion and the surface
effects can be neglected. Imposing periodic boundary
conditions markedly reduces the influence of the sur-
face effect (or the effect of the finite volume of a calcu-
lation cell). The approximation of the collision integral
requires that short-range collisions occur on time scales
on which the electron temperature (and, accordingly,
the electron velocity distribution function) changes
insignificantly:

(15)

(16)

In numerical simulations, conditions (14)–(16) are
often difficult to satisfy, because the computations are
very involved. However, we may only impose condi-
tion (13) and, for a comparison between the numerical
and theoretical results, set ρmin = r0 in equality (4) and
kmax = 1/ρmin = 1/r0 in expression (5). Of course, the

r0 ! N
1– /3

.

r0 ! ρ⊥ VT( ) ze2/mVT
2 .=

r0 ! ρ⊥ VE( ) ze2/mVE
2 .=

znVE∆t
1

Niρ⊥
2 VE( )

-----------------------,≥

W∆t
3
2
---NeTe.≤
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numerical results from MD calculations can only be
compared with the results obtained by the kinetic mod-
els from which the quantum mechanics limit is elimi-
nated. Additional simulations were carried out in order
to determine how the parameters under investigation
depend on the values of the quantities r0 and Np and to
check both the calculation accuracy and the effect of
numerical errors on the final results.

At the initial time, all particles are distributed uni-
formly inside a cubic cell and the electrons and ions fit
the Maxwellian initial velocity distribution functions.
The size of the cube is chosen so as to ensure the
required plasma density. In a system without any corre-
lation between particles in the initial state (the particles
are randomly distributed in the cube), the internal
energy tends to relax to the Debye energy, so that, on a
time scale of about the time required for an electron to
pass the mean interparticle distance, the mean electron
kinetic energy (or, equivalently, the electron tempera-
ture) increases. In order to clarify how this effect influ-
ences the electron heating, both the temperature and the
internal energy of the system were calculated in the
absence of a laser pulse.

2.3. Results of MD Calculations

Simulations were performed for a helium plasma
with z = 2 and Ni = 3 × 1019 cm–3, the initial electron and
ion temperatures being the same, Te = Ti = 5 eV. For
such a plasma, the coupling parameter is equal to Γ =
0.3. The intensity and wavelength of laser radiation, I =
6 × 1016 W/cm2 and λ las = 0.248 µm, were chosen so as
to satisfy the conditions for the strong laser field
approximation: VE/VT = 7 and ω/ωpl = 12. Figures 1–4
illustrate the numerical and analytical time evolutions
of the electron temperature and internal energy. The
time is expressed in plasma periods, and the potential
energy of Coulomb interactions in the system is nor-
malized to the Debye interaction energy per unit vol-
ume [15], Ecor = (πδ)1/2(z + 1)NiTe . For the above
plasma parameters, the Debye energy per particle is
equal to UD = (πδ)1/2Te ≈ 1.2 eV.

First, we consider the numerical results for a system

containing Coulomb spheres of different radii: r0/  =
0.5, 0.05, 0.005, and 0.0005. The radius r0 = 0.005 ·

 is equal to the minimum impact parameter ρmin =

2ze2/m , which is determined by the electron oscilla-
tory velocity. These results are of interest not only from
a methodological point of view (the determination of
the optimum value of this important numerical param-
eter) but also from a physical standpoint, because they
demonstrate the effect of short-range and long-range
collisions on the electron heating rate. Figure 1 shows
(a) the electron temperature and (b) the internal energy
calculated for Coulomb spheres of different radii in the
system under consideration. In the initial stage, the

Ni
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VE
2
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electron temperature somewhat increases because the
initial coordinates of the electrons and ions are com-
pletely uncorrelated. The temperature acquired by the
electrons coincides in order of magnitude with the
Debye internal energy of 1.2 eV. For comparison, the
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Fig. 1. Time evolutions of (a) the electron temperature and
(b) the internal energy of the particles both computed using
the MD method for Coulomb spheres of different radii.
Curve 1 illustrates the relaxation of the initial state of a
helium plasma with z = 2 and Γ = 0.3 in the absence of a
laser pulse. Curves 2, 3, 4, and 5 give the results of MD sim-
ulations for a system of Coulomb spheres with different

radii (r0/  = 0.5, 0.05, 0.005, and 0.0005, respectively)

in a strong laser field. Curve 6 corresponds to the approxi-
mate formula (3) derived by Silin [2], and curve 7 is calcu-
lated by formula (12) proposed in this paper.
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dashed curve gives the results from simulations of the
relaxation of the same initial state of the system for r0 =

0.0005 ·  but in the absence of a laser pulse. We
can see that the stochastic electron heating differs only
slightly between the calculations with the smallest

radius of the Coulomb spheres, r0 = 0.0005 · , and

with r0 = 0.005 · . However, the computations with
the smallest radius reveal the effect of laser-driven
recombination: we can see that the potential energy of
the system increases significantly and the kinetic
energy profile is peaked. For the same reason, the
potential energy of the system also increases consider-
ably, but without having a substantial effect on stochas-
tic electron heating. The binding energy of an electron
that has experienced a recombination event is converted
into laser field energy.

Figure 2 illustrates the time evolution of the electron
temperature calculated for systems with different num-
bers of particles. The radius of Coulomb spheres was

set to be r0 = 0.005 · , which corresponds to r0 =

ρ⊥ (VE) = ze2/m  (see above) and, according to the
previous computations, is small enough for the stochas-
tic heating rate to be calculated correctly. The results
obtained show that several thousand particles in a sys-
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Fig. 2. Time evolutions of the electron temperature obtained
from MD simulations for systems with different numbers of
particles. Curves 1, 2, 3, 4, and 5 are for simulations with
Np = 3000, 3000, 300, 30, and 30, respectively. Curve 1
illustrates the relaxation of the initial state of a helium
plasma with z = 2 and Γ = 0.3 in the absence of a laser pulse,
curve 6 corresponds to the approximate formula (3) derived
by Silin [2], and curve 7 is calculated by formula (12) pro-
posed in this paper. Light curves 4 and 5 are computed for
different initial coordinates and different velocities of the
particles.
tem are quite sufficient to determine the parameters of
collisional heating: curve 2, calculated using the MD
model for a system consisting of Np = 3000 particles,
essentially coincides with curve 7, calculated from for-
mula (12) proposed in this paper.

Figure 3 presents the numerical results obtained for
a system consisting of Np = 3000 particles by integrat-
ing the equations of motion with different accuracies.
Curves 2, 3, and 4 are labeled in order of increasing
accuracy: the accuracy of curve 2 is significantly worse
than the accuracy inherent in conventional calculations,
the accuracy of curve 3 is consistent with the conven-
tional integration steps (as is the case in Figs. 1 and 2),
and curve 4 was calculated with increased accuracy. It
is of interest to note that the rough computations give a
larger absolute value of the potential energy of the sys-
tem but a lower level of collisional heating; in other
words, the stochastic recombination associated with
computational errors does not increase the temperature
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Fig. 3. Time evolutions of (a) the electron temperature and
(b) the internal energy of a system of Np = 3000 particles
both computed using the MD method with different accura-
cies. Curve 5 corresponds to the approximate formula
(3) derived by Silin [2], and curve 6 is calculated by formula
(12) proposed in this paper.
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to which the electrons are heated. A comparison
between curve 3 (obtained with ordinary accuracy) and
curve 4 (obtained with increased accuracy) also exhib-
its this tendency, which is, however, seen to be less pro-
nounced.

The functional dependence of the collisional heat-
ing rate on the laser parameters was studied by per-
forming simulations with different amplitudes rE of the
electron oscillations and with a fixed electron oscilla-
tory velocity VE. These simulations make it possible to
reveal the dependence of the final results on the new
parameter—the oscillation amplitude.

Figure 4 shows the representative time evolutions of
(a) the electron temperature and (b) the internal energy
of the particles calculated for the same oscillatory
velocity VE but for different laser frequencies ω (and,
accordingly, for different laser intensities and oscilla-
tion amplitudes rE). As in the previous figures, for com-
parison, we also plot curve 1, which was obtained using
the MD method and illustrates the relaxation of the ini-
tial state of the system with no laser pulse present. The
results from MD simulations for laser intensities and

wavelengths for which VE/VT = 7 and rE/  = 0.2, 1,
and 4 (and, accordingly, ω/ωpl = 3, 12, 60) are given by
curves 2, 3, and 4, respectively. Curve 3 corresponds to
the case when the Debye radius is approximately equal
to the oscillation amplitude, and the remaining two
curves reflect the limiting (computationally possible)
cases when the Debye radius is much larger (curve 2)
and much smaller (curve 4) than the oscillation ampli-
tude. Curve 5 corresponds to formula (3) derived by
Silin [2], and curves 6, 7, and 8 correspond to the
results obtained from formula (12). The results of MD
calculations show the dependence of the heating rate on
the oscillation amplitude for a fixed oscillatory veloc-
ity. Formulas (3) and (6) show no such behavior. The
dependence given by formula (5) differs radically from
that obtained using the MD method. The results from
MD calculations agree well with the approximate for-
mula (12) derived above under the assumption of
straight-line electron motion. The results obtained from
simulations with a very small oscillation amplitude
(curves 4, 8) differ from the theoretical predictions
most significantly; this circumstance can be attributed
to the correlation effects (see below).

The results from simulations with a circularly polar-
ized laser field (6) also agree well with the theoretical
predictions from dependence (7) in which the Coulomb
logarithm is taken in the form of (11) rather than (9).
Hence, approximation (12) proposed in this paper
applies to laser pulses with arbitrary polarization.

Under the conditions adopted in our simulations,
approximation (12) does not differ substantially from
the approximations derived previously, because the
Coulomb logarithm and the logarithm of the ratio of the
oscillatory velocity to the thermal velocity are both
close to unity. However, for conditions prevailing in
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real experiments on the interaction of ultraintense laser
pulses with gases, this difference can be far more pro-
nounced. The table summarizes the characteristic val-
ues of the plasma parameters in experiments aimed at
developing advanced recombination X-ray lasers and
X-ray radiation sources [1]. For such devices, the table
presents the conventional values of the Coulomb loga-
rithm (9) and the values of the Coulomb logarithm that
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Fig. 4. Time evolutions of (a) the electron temperature and
(b) the internal energy of a system. Curve 1 illustrates MD
simulations of the relaxation of the initial state of the system
in the absence of a laser pulse. Curves 2, 3, and 4 give the
results of MD simulations for a system in laser fields with
different frequencies ω/ωpl = 3, 12, and 60, respectively (the
laser intensity and wavelength are such that the ratio
VE/VT = 7 was the same for all series of simulations). Curve
5 corresponds to Silin’s approximate formula [2], which
includes only one parameter VE/VT and does not differ
between the three series of computations. Curves 6, 7, and 8
show the calculations by formula (12).
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Table

z Te, eV Ni , cm–3 I, W/cm2 λlas , µm Λz ΛE

2 20 3 × 1019 6 × 1018 1.05 4.9 14.6

2 50 3 × 1019 6 × 1018 1.05 5.4 14.6

2 100 3 × 1019 6 × 1018 1.05 6.4 14.6

2 7 1017 1018 0.248 5.8 9.3

2 10 1018 1018 0.248 5.2 9.3

2 30 1019 1018 0.248 5.7 9.3

3 100 1018 1017 0.5 7.6 9.1

10 200 3 × 1019 1018 0.248 5.5 9.3

10 400 3 × 1019 1018 0.248 6.5 9.3

10 800 3 × 1019 1018 0.248 7.6 9.3

Conventional values of the Coulomb logarithm Λz (9) and the values of the Coulomb logarithm ΛE that are calculated from formula (12)
proposed in this paper for fully ionized helium, lithium, and neon plasmas (the corresponding atomic numbers are given in the first column)
and for different temperatures, densities, laser intensities, and laser wavelengths.
are calculated from formula (12) in the straight-line
motion approximation.

3. CORRELATION EFFECTS

The trajectory of an electron oscillating in the laser
field is periodically perturbed by remote ions, whose
impact parameters change insignificantly due to their
thermal motion over the laser field: ρ @ VT/ωlas. In this
case, the absolute value of the sum of the transverse
perturbations of the electron momentum is equal to the
sum of the absolute values of the increments in the
momentum during one collision event, and, for these
long-range collisions, the fraction of the energy of
straight-line motion that is converted into thermal
energy is proportional to the square of time (or, equiv-
alently, to the number of oscillation periods of the elec-
tric field). For uncorrelated collisions, one must sum
the squares of the increments in the momentum, in
which case the fraction of kinetic energy that is dissi-
pated in the system is linearly proportional to the time.
It is of considerable interest to investigate the influence
of this effect on the electron heating rate, because the
nondiffusive nature of collisions can significantly
enhance electron heating.

Recently, when considering the effect of the focus-
ing of an oscillating electron by an immobile point
charge with the Coulomb potential, Fraœman et al. [16]
predicted that the correlated nature of e–i collisions in
a strong laser field should considerably increase the
collisional electron heating rate. However, the results
from the simulations described here do not confirm this
prediction. Presumably, this is because of the collective
nature of plasma oscillations (in [16], scattering by a
single ion was considered). Let us give a better insight
into the effect of the plasma microfields on the proba-
bility for an oscillating electron to be attracted by an ion
and to experience a strong collision event as a result of
which the electron oscillatory velocity becomes sto-
chastic.

3.1. Free Fall of an Electron toward a Point Ion

We consider the problem of the free fall of an ini-
tially immobile electron that starts moving at the point
x0 > 0 toward an infinitely heavy ion at the point x = 0.
The equation of electron motion has the form

Imposing the corresponding initial conditions on this
equation, we arrive at the following parametric solu-
tion:

Consequently, the time required for an initially
immobile electron that starts moving from the point at
a distance x0 from the ion to come into contact with this

ion is equal to t(0) = . In a system of uncor-

related particles, the distribution of the distances
between an electron and the nearest ions is governed by
the ion density and has the form

where r0 = (3/4πNi)1/3 is the radius of a spherical ion. If
we neglect the forces exerted by the remaining ions on
the electron, then the time required for the electron to
fall on the nearest ion from the most probable distance
r = (2/3)1/3r0 is exactly equal to one-quarter of the
plasma oscillation period.
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3.2. Applicability Condition
of the Single-Ion Approximation

We consider the conditions under which the free fall
of an electron on the nearest ion is perturbed by the
microfields of the remaining ions such that the electron

does not enter the sphere of radius ρmin = 2ze2/m ,
inside of which the electron oscillatory velocity
changes strongly. Assuming that the mean force exerted
by the remaining ions on the electron is about the Holts-

mark force FH = ze2  and estimating the time
required for the electron to fall on the nearest ion as
one-quarter of the plasma oscillation period τL , we

obtain FH /32m @ ρmin. Combining this inequality
with the above expression for the minimum impact
parameter yields the condition

(17)

This condition for the decorrelation of short-range col-
lisions by plasma microfields in a strong (VE @ VT =

) laser field is satisfied for an ideal plasma. In
fact, condition (17) coincides with the condition that
the laser field be strong and holds in all actual situa-
tions. Condition (17) also serves as an estimate for the
effect of plasma microfields and quite satisfactorily
explains why the MD simulations revealed no signifi-
cant increase in the electron heating rate due to the pro-
cesses considered in [16]. Note also that the single-ion
approximation was also used by Shvets and Fish [17],
who, however, took into account only weak collisions.
For a rarefied plasma, in which, according to [16], the
above effects are easier to observe, condition (17)
implies that, in a strong laser field, the plasma
microfields have a stronger impact on collisions. How-
ever, we emphasize that condition (17) merely indicates
that the decorrelation of collisions due to the ion
microfields should be taken into account and gives no
information about the influence of the microfields on
the collisional heating rate.

3.3. Truncation of Strong Collisions 
in a Small-Size Plasma

Usually, ultraintense laser pulses can be generated
not only by shortening the temporal profile of the laser
field but also by focusing laser radiation into a very
small spot (several microns in diameter). Such a small
focal spot of a strong laser field results in the following
interesting effect of truncation of strong collisions.

An electron that has experienced a short-range col-
lision with an ion and has acquired a sufficiently large
transverse (with respect to the laser field) velocity can
leave the small focal region, in which case a thermal
electron from the surrounding plasma should inevitably
enter this region. Consequently, in the small focal
region, the hot electrons (and, accordingly, their strong
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collisions with ions) do not affect the collisional plasma
heating rate. For this reason, the collisional heating
should be analyzed without allowance for the range of
impact parameters such that the distance on which the
hot electrons are decelerated by the thermal electrons
(recall that, in collisions with ions, the electron energy
changes only slightly) is larger than the diameter of the
spot into which laser radiation is focused.

4. CONCLUSION

We have shown that the gas density fluctuations and
the periodic (nondiffusive) nature of collisions of an
electron moving in a strong laser field with the ions
change the collision-related parameters of a plasma
created in the interaction of an ultraintense ultrashort
laser pulse with a gas.

The approximate formula derived for the collisional
electron heating rate agrees well with the results from
MD simulations. The new upper limit at which the
Coulomb logarithm is proposed to be truncated—the
amplitude of electron oscillations in a strong laser
field—leads to a new functional dependence of the col-
lisional heating rate on the laser field parameters. The
proposed approximate formula applies to laser pulses
with arbitrary polarization and does not contain the
double logarithm that enters the corresponding formula
derived by V.P. Silin [2] for a linearly polarized laser
pulse.

ACKNOWLEDGMENTS

I am grateful to V.I. Kogan for bringing paper [12]
to my attention. I would like to thank S.V. Bulanov,
A.A. Rukhadze, V.P. Silin, and V.T. Tikhonchuk for
stimulating discussions and to G.M. Fraœman for a
detailed discussion of the results obtained in papers
[16, 18].

REFERENCES

1. N. H. Burnet and G. D. Enright, IEEE J. Quantum Elec-
tron. 26, 1797 (1990); S. C. Rae and K. Burnett, Phys.
Rev. A 46, 2077 (1992); P. Pulsifer, J. P. Apruzese,
J. Davis, and P. Kepple, Phys. Rev. A 49, 2958 (1994);
D. Vick, C. E. Capjack, V. Tikhonchuk, and W. Rozmus,
Comments. Plasma Phys. Controll. Fusion 17, 99
(1996).

2. V. P. Silin, Zh. Éksp. Teor. Fiz. 47, 2254 (1964) [Sov.
Phys. JETP 20, 1510 (1964)].

3. R. D. Jones and K. Lee, Phys. Fluids 25, 2307 (1982).

4. L. Shlessinger and J. Wright, Phys. Rev. A 20 (5), 1934
(1979).

5. B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by
M. A. Leontovich (Gosatomizdat, Moscow, 1963; Con-
sultants Bureau, New York, 1963), Vol. 1.

6. E. M. Lifshitz and L. P. Pitaevskiœ, Physical Kinetics
(Nauka, Moscow, 1979; Pergamon, Oxford, 1981).



302 MAŒOROV
7. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by
M. A. Leontovich (Atomizdat, Moscow, 1964; Consult-
ants Bureau, New York, 1968), Vol. 4.

8. S. A. Maœorov, Kratk. Soobshch. Fiz., Nos. 9–10, 99
(1997).

9. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by
M. A. Leontovich (Gosatomizdat, Moscow, 1963; Con-
sultants Bureau, New York, 1963), Vol. 1.

10. L. Spitzer, Physics of Fully Ionized Gases (Interscience,
New York, 1956; Inostrannaya Literatura, Moscow,
1957).

11. S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 7, 30
(1998).

12. V. I. Kogan, Dokl. Akad. Nauk SSSR 135, 1374 (1960)
[Sov. Phys. Dokl. 5, 1316 (1961)].

13. R. Hockney and J. Eastwood, Computer Simulation
Using Particles (McGraw-Hill, New York, 1984; Mir,
Moscow, 1987); Ch. K. Birdsall and A. B. Langdon,
Plasma Physics Via Computer Simulations (McGraw-
Hill, New-York, 1985; Énergoatomizdat, Moscow,
1989); A. A. Valuev, G. É. Norman, and V. Yu. Podlip-
chuk, in Mathematical Simulation, Ed. by A. A. Samar-
skiœ and N. N. Kalitkin (Nauka, Moscow, 1989), p. 5.

14. S. A. Maœorov, Kratk. Soobshch. Fiz., No. 1, 33 (1999).

15. L. D. Landau and E. M. Lifshitz, Statistical Physics
(Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

16. G. M. Fraœman, A. A. Balakin, and V. A. Mironov, in Pro-
ceedings of the 26th Zvenigorod Conference on Plasma
Physics and Controlled Fusion, Zvenigorod, 1999,
p. 234; Zh. Éksp. Teor. Fiz. 115, 463 (1999) [JETP 88,
254 (1999)]; Phys. Rev. Lett. 82, 319 (1999).

17. G. Shvets and H. J. Fish, Phys. Plasmas 4, 428 (1997).

18. S. A. Maœorov, in Proceedings of the 26th Zvenigorod
Conference on Plasma Physics and Controlled Fusion,
Zvenigorod, 1999, p. 127; Kratk. Soobshch. Fiz., No. 7,
25 (1999).

Translated by G.V. Shepekina
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001



  

Plasma Physics Reports, Vol. 27, No. 4, 2001, pp. 303–314. From Fizika Plazmy, Vol. 27, No. 4, 2001, pp. 321–333.
Original English Text Copyright © 2001 by Zhang, Sokolov, Sakai.

    

PLASMA 
DYNAMICS

         
Oscillations, Shocks, and Fine Wave Structures Arising 
during the Coalescence of Two Force-Free Current Loops

H.-M. Zhang*, I. V. Sokolov**, and J.-I. Sakai*
*Toyama University, 3190, Gofuku, Toyama, 930-8555 Japan

**Institute of General Physics, ul. Vavilova 38, Moscow, 117942 Russia
Received August 23, 2000; in final form, October 10, 2000

Abstract—Two-dimensional numerical simulations of the magnetic reconnection of two parallel force-free
current loops are carried out using a high-resolution MHD code in which an artificial wind scheme is employed.
Two typical cases (namely, co-helicity and counter-helicity reconnection) are investigated. The simulation
results show that co-helicity reconnection involves only the reconnection of the poloidal component of the mag-
netic field, while counter-helicity reconnection involves the reconnection of both the poloidal and axial compo-
nents of the magnetic field. Therefore, counter-helicity reconnection is much more complicated and violent as
compared to co-helicity reconnection. In both cases, jetlike flows are generated. Counter-helicity reconnection
is accompanied by oscillations of both the axial magnetic field and the axial component of the velocity. Due to
these oscillations, quasi-steady models of a current sheet appear to be inapplicable, because the current sheet
structure also changes. The complicated and unsteady structure of the current distribution shows that magnetic
reconnection occurs not only in the central sheet between two loops in the earlier stage of the process, but also
inside each loop in later stages. Rather complicated flows and waves with fine structures are also generated dur-
ing reconnection. Some of the waves appear to be shock waves. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Magnetic reconnection is the topological change of
a magnetic configuration involving the breaking and
rejoining of magnetic field lines [1–4]. A local recon-
nection process often causes macroscopic changes of
the magnetic structure [5]. Magnetic reconnection
plays an important role in the dynamics of both space
and laboratory plasmas. It can also result in releasing
the energy stored in the magnetic field and its transfor-
mation into kinetic and thermal energies of the plasma
in solar flares, auroras, and laboratory plasmas [6–9].

Depending on both the presence or absence of the
axial magnetic field and its symmetry or antisymmetry,
magnetic reconnection can be classified into three
types: null-helicity, co-helicity, and counter-helicity
reconnection [10, 11]. Recent experimental studies
revealed that the three types of magnetic reconnection
differ significantly [12, 13].

To explain the mechanism for explosive solar flares,
a loop–loop coalescence model was proposed 40 years
ago by Gold and Hoyle [14]. Since their pioneering
work, loop coalescence has been thoroughly studied by
many authors [15–18]. It is generally believed that the
current loop reconnection provides keys for under-
standing many of the characteristic features of solar
flares, such as their short duration, fast plasma heating,
high-energy particle acceleration, shock wave forma-
tion, variations in the intensity of electromagnetic
emissions, as well as the typical evolution of micro-
wave images obtained by satellite observations during
flares [19–22].
1063-780X/01/2704- $21.00 © 20303
Computer simulations play an important role in
plasma physics and astrophysics. Two- and three-
dimensional MHD simulations of the reconnection of
two current loops were performed in [23–26]. The
results of these simulations allow an understanding of
the main physical processes accompanying the loop
coalescence. However, due to the low spatial resolution
and doubtful nonlinear stability of the codes, these sim-
ulations were not able to reveal as many useful results
as expected. In order to improve both the resolution and
stability of the numerical scheme, a new way for con-
structing efficient nonoscillatory shock-capturing
numerical schemes was recently proposed for hyper-
bolic systems of the conservation laws, namely, the
artificial wind (AW) scheme [27–29]. The basic idea of
the AW scheme is to solve the hydrodynamic (or MHD)
equations in different steadily moving frames of refer-
ence chosen in such a way that the flow is supersonic
there, thus resulting in simple upwind formulas for
fluxes across control volume faces. This scheme has the
main advantages of the total variation diminishing
(TVD) and Godunov-type schemes (such as high accu-
racy and quality of the results) and is free of the main
drawbacks of these schemes (such as high complexity
and high CPU consumption).

In this paper, a two-dimensional high-resolution
MHD code based on the AW scheme is applied to sim-
ulate the magnetic reconnection of two parallel force-
free loops. The term “loop” or “flux tube” implies a
cylindrical magnetic configuration that has typical fea-
tures of both the Z-pinch and Θ-pinch, because both the
001 MAIK “Nauka/Interperiodica”
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axial and poloidal components of the electric current
and magnetic field are not equal to zero. As a result, the
magnetic field lines and electric current lines have a
helical form and, for a force-free configuration, the
electric current flows exactly along the magnetic field
lines. The theory of such equilibrium configurations is
well known [30].

When two force-free configurations are placed not
far apart, they interact through the magnetic field, so
that this configuration is not in equilibrium. The super-
position of two helical magnetic field lines of the two
loops gives a null line at some place where all (or some)
of the components of the magnetic field vanish.
Depending on the signs of the helicities in the loops,
three types of current loop reconnection (null-helicity,
co-helicity, and counter-helicity) are possible; two of
them (namely, co-helicity and counter-helicity recon-
nections) are investigated in this paper. It should also be
mentioned that the local reconnection near null-lines
and null-points of the magnetic field involving all three
vector components is rather interesting in itself (see,
e.g., [31]); however, a detailed analysis of this phenom-
enon is beyond the scope of this paper.

Simulations demonstrate that counter-helicity
reconnection is much more complicated and violent
than co-helicity reconnection. This results from the
complicated dynamics of the axial-component recon-
nection. Some of the phenomena typical of this dynam-
ics were considered earlier by different authors mostly
for application in toroidal plasma devices [32, 33].

The increased resolution of the present simulations
revealed some new effects that were previously con-
cealed or suppressed by numerical dissipation. The
axial components of both the magnetic field and veloc-
ity suffer weakly damping oscillations. These oscilla-
tions (whose frequency varies in space) result in the
oscillating structure of the magnetic field in the domain
where reconnection takes place. Waves are emitted
from this domain, some of which are shock waves. The
main purpose of this paper is to investigate these pro-
cesses in detail, because, for studying charged particle
acceleration, hard X-ray emission, and other effects
accompanying reconnection, the structure of the elec-
tromagnetic fields and the generation of shock waves
are of crucial importance.

The paper is organized as follows. In Section 2, the
simulation model and numerical scheme are described.
The numerical results are presented in Section 3. Sec-
tion 4 gives the discussion and summary.

2. SIMULATION MODEL 
AND NUMERICAL SCHEME

In this section, the simulation model, the initial and
boundary conditions, and the numerical scheme are
described.

A 2D MHD code using the recently proposed AW
numerical scheme with splitting over the spatial coor-
dinates (by the Strang scheme) is employed. The AW
scheme is based on the fact that the fundamental phys-
ical invariance (Galilean or, more generally, Lorentz
invariance) allows one to solve the governing equations
in different steadily moving frames. The principle of
the AW scheme is that the frame of reference may be
chosen in such a way that the flow under simulation is
supersonic there. The problem of upwinding becomes
trivial, and considerably facilitated versions of discon-
tinuity-capturing schemes may be employed. An extra
velocity (artificial wind) is added to the velocity of the
flow under simulation when the system of coordinates
is changed. The AW approach allows one to simplify
existing schemes and to obtain new modifications (see
[27] for details]). Test ideal MHD simulations show
that the AW schemes capture all the structures of MHD
waves correctly without producing noticeable oscilla-
tions [28, 29].

The following conservative MHD equations are
numerically integrated:

(1)

(2)

(3)

(4)

where ρ, Vi , p, and Bi are the density, velocity, pressure,
and magnetic field, respectively; γ is the adiabatic con-
stant, which is taken to be γ = 5/3; Rm is the magnetic
Reynolds number; δij is a unity tensor; and qi is the dis-
sipative energy flux. The density, pressure, velocity,

and magnetic field are normalized to ρ0, p0, ,

and B0 = , respectively. The length is normal-
ized to the loop radius a.

For resistive magnetohydrodynamics with a large
but finite value of Rm, the energy equation (4) should be
obtained as a sum of the equation for the plasma energy,
in which the Joule heating term is represented in the
form (c2[— × B]2/(4π)2σ), and the equation for the mag-
netic energy, which is given by Eq. (3) multiplied by the
vector Bi/(4π) (here, all of the variables are not normal-
ized and σ is the conductivity). The dissipation of the
magnetic field energy is determined by the term
(c2/(4π)2σ)Bi∆Bi . Hence, in Eq. (4) for the total energy,
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Joule heating is balanced by the magnetic energy dissi-
pation:

(5)

Therefore, resistive dissipation in the energy equation (4)
is present only in the form of an additional dissipative
energy flux, which, in normalized variables, may be

written as  = ∂/∂xj(2BiBj – B2δij). The dissipa-
tive energy flux due to heat transfer may also be taken

into account in the usual form:  = –λ ij∂/∂xj(p/ρ).
For the sake of simplicity, here we fully neglect the
nondiagonal part of the dissipative energy transfer ten-
sor and substitute all the tensors in qi for those propor-
tional to the unity tensor: BiBj = B2δij/3 and λij = λllδij/3.
Numerical simulations show that the influence of the
dissipative energy flux is insignificant; hence, we do
not try to take it into account more carefully. Finally,
we admit the dissipative hydrodynamic flux in the form

(6)

The magnetic Reynolds number Rm = 1.3 × 103 and
two values of the heat transfer constant λ = 0 and λ =
2.5 × 10–4 were used in simulations.

The motion was assumed to depend on two spatial
coordinates x and y. However, all three components of
the velocity and magnetic field were involved in the
simulation. A uniform 1000 × 1000 grid in the 2D com-
putation domain with a spatial size of 8a × 8a was used.
In all directions, nonreflective boundary conditions
were imposed.

These boundary conditions imply that any perturba-
tion arriving at the boundary from the simulation
domain passes freely through the boundary; i.e., they
imply that, outside of the computation domain, there is
a plasma in which the magnetic field continuously
tends to zero at large distances. A test computation car-
ried out with the boundaries being displaced outward
(on a 1400 × 1400 grid) showed that the boundaries do
not influence significantly the processes under consid-
eration for the chosen simulation time. On the other
hand, the boundary conditions undoubtedly affect
other, less significant details. For example, the logarith-
mic divergence of the system energy at large distances
and the ability for the outer plasma to flow freely into
the computation domain result in the slow growth of the
total energy in the computation domain.

A single steady-state current loop satisfies the equi-
librium condition if the poloidal and axial magnetic

c
2

4π( )2σ
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fields are chosen in the form

(7)

(8)

(9)

An equilibrium current loop is force-free if Bm0 = Bzm [13].
As the initial condition for the magnetic field, we

take the sum of two distributions (7) and (8) for two
current loops. The loop axes are parallel to the z-axis
and are located at x1 = 4.0 and y1 = 2.5 for the first loop
and at x2 = 4.0 and y2 = 5.5 for the second loop. The ini-
tial amplitudes of the magnetic field components are
Bm0 = Bzm = 3.0. The initial pressure and density are ρ =
1.0 and p = 1.0 throughout the computation domain.

Two runs were carried out for co-helicity and
counter-helicity reconnection or, in other words, for
partial and complete (including the axial component)
reconnection [23], respectively. In the co-helicity Bz0 =
|Bz0 | case (run A), the axial magnetic fields of both
loops are directed along the z-axis (Bz0 = ±|Bz0|), while
in the counter-helicity case (run B), the axial magnetic
fields of the left and right loop are directed along and
opposite the z-axis, respectively (Bz0 = |Bz0 |). Here, the
results of run B are mainly described.

The maximum value of the Alfvén velocity in the
initial state is VA = 4.24. The time is normalized to the
characteristic Alfvén time τA = a/VA . The typical value
of plasma beta (β = pB–2) is β ~ 0.1 and β ~ 2.0 for the
loop and ambient medium, respectively.

3. SIMULATION RESULTS

Two parallel loops with antiparallel axial currents
repel each other and usually do not reconnect unless
they initially move toward each other with a sufficiently
high relative velocity. Therefore, we will only consider
the case of parallel axial currents.

The main physical picture of the reconnection of
two parallel loops with parallel axial currents is known
to be as follows. Each of the two current loops is in
equilibrium as long as the distance between them is
much greater than loop radius a. As the loops approach
each other, they are no longer in equilibrium and the
whole nonequilibrium system tends to a new equilib-
rium state. Due to attraction, the two current loops
begin to move and approach each other. Then, they
meet, merge, and form a new single loop. Simulations
were performed to investigate the phenomena accom-
panying this reconnection process.

First of all, the simulations confirm most of the
well-known results, such as the generation of a reverse

Bθ
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current sheet in the region between two loops and an
increase in pressure, density, and temperature in the
reconnection region. Here, we only focus on the simu-
lation results that appear to be new and interesting.

3.1. Reconnection of the Poloidal Magnetic Field

According to Eqs. (7) and (8), the magnetic field of
the current loop has both poloidal and axial compo-
nents (Bθ and Bz). For convenience of analysis and
description, we will discuss the poloidal component
reconnection and the axial component reconnection
separately. Generally, the simulation results can be
described as follows.

In the early stage, when the two loops start
approaching each other, the reconnection of the poloi-
dal magnetic field is important. After the loops have
met, the reconnection of the poloidal magnetic field
proceeds slowly with a typical time much greater than
the characteristic Alfvén time. This means that, in the
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
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co-helicity reconnection case, only the poloidal field of
the two loops undergoes slow reconnection. In contrast,
in the case of counter-helicity, the reconnection of the
axial magnetic field takes place, so that fast oscillations
arise. The oscillation period is governed by the MHD
processes and is comparable with the characteristic
Alfvén time.

Figure 1 shows the distributions of the induced cur-
rent jz and velocity Vx, y in the central region of the com-
putation domain (2.25a ≤ x ≤ 5.75a, 2.25a ≤ y ≤ 5.75a)
at the early time t = 2.53τA for the two runs. It is seen
that, for both cases, the reverse current is induced in the
central region; however, the patterns are different
(Figs. 1a, 1c).

Counter-helicity reconnection induces a thinner cur-
rent sheet. In Fig. 1c, two shock waves are also seen.
Figures 1b and 1d show that, in both cases, jetlike flows
are formed in the x and –x directions; however, the pat-
terns of these flows in runs A and B are different. Sim-
ulations show that the jetlike flows do not propagate
very far from the regions where they are generated.

The poloidal field reconnection is illustrated in Fig. 2.
As the two current loops approach each other, the orig-
inal magnetic field lines break and then rejoin to form
new ones, the reconnected magnetic field lines being
strongly bent. Due to magnetic stress, the magnetic
field lines tend to shorten and drive the surrounding
plasma to move outward in the x and –x directions.
Thus, two jetlike flows are formed. After the magnetic
field lines have reached their balance point, the moving
plasma turns to drive and stretch the magnetic field
lines, which leads to plasma deceleration. Thus, the
stress of the frozen magnetic field causes the formation
of jetlike flows and, at the same time, prevents them
from propagating too far out. As a result, the high pres-
sure and density regions are formed in the vicinity of
the stagnation points (see Fig. 8 below).

3.2. Counter-helicity Reconnection and Oscillations 
of Bz and Vz 

A remarkable phenomenon is the oscillations of the
axial component of the magnetic field Bz and velocity
Vz in the counter-helicity run B.

The evolution of the distributions of the axial mag-
netic field Bz and the axial velocity Vz in the central
region of the computation domain (2.25a ≤ x ≤ 5.75a,
2.25a ≤ y ≤ 5.75a) are shown in Figs. 3 and 4, respec-
tively. As is seen in Fig. 3a, at the early time t = 2.53τA,
two loops with antiparallel axial magnetic fields
approach each other and move toward the central
region. The magnetic field Bz of the left loop is still
directed along the z-axis, while in the right loop, it is
oppositely directed. At the time t = 6.78τA (Fig. 3b), the
magnetic field inside the loops does not change direc-
tion, while outside of the loops, regions with the
reversed magnetic field Bz appear. Figure 3c shows the
distribution of the axial magnetic field at time t =
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
11.02τA . It is seen that the axial magnetic fields inside
the loops have changed signs as compared to Fig. 3a.
Then, at the time t = 13.57τA (Fig. 1d), the distribution
of the axial magnetic field becomes similar to that at t =
6.78τA (Fig. 1b), but the magnetic field direction both
inside and outside of the loops is reversed. Thus, the
oscillations of the axial magnetic field are generated
during the counter-helicity reconnection of two loops.

The evolution of the axial velocity Vz is shown in
Fig. 4. It is seen that the evolution of Vz is similar to that
of Bz. What is different is that the regions with opposite
signs of Vz occur above and below the center, whereas
the regions with opposite signs of Bz occur to the left
and right of the center.

The oscillations of Bz and Vz are correlated to each

other. In these oscillations, the magnetic energy  is

converted into plasma kinetic energy (1/2)ρ  and vice
versa. The time variations in the energies EBZ =

 and EVZ = (1/2) , where  is the
sum over all the cells within the computation domain,
are displayed in Fig. 5. The profiles in Fig. 5 clearly
show the interchange between EBZ and EVZ. The oscilla-
tion period is about 6.5τA. In co-helicity reconnection
(run A), such oscillations are absent.

The mechanism for the excitation of oscillations
during reconnection can be explained as follows. As
two current loops approach each other, the Bz reconnec-
tion occurs (see Fig. 6). After reconnection, the mag-
netic field lines appear to be strongly bent. Due to mag-
netic stress, the magnetic field lines tend to shorten and
drive the surrounding plasma to move along the z-axis.
After the magnetic field lines have reached their bal-
ance point, the moving plasma turns to drive and stretch

Bz
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Vz
2
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2

i j,∑ ρVz
2

i j,∑ i j,∑

1

2

3 4
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Fig. 2. Schematic of the poloidal magnetic field reconnec-
tion and generation of jetlike flows.



308 ZHANG et al.
5.5

5.0

4.5

4.0

3.5

3.0

2.5

–0.3

(‡)

x/
a

–0.2 –0.1 0 1.0 2.0 3.0

2.5

5.5

5.0

4.5

4.0

3.5

3.0

2.5

3.0 3.5 4.0 4.5 5.0 5.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5

(b)

(c) (d)

x/
a

y/a y/a

–2.50 –1.25 0 1.25 2.50 –2.50 –1.25 0 1.25 2.50

–0.3 –0.3 –0.3 –0.3 –0.3

Fig. 3. Time history of the axial magnetic field distribution for run B: (a) t = 2.53τA , (b) t = 6.78τA , (c) t = 11.02τA , and (d) t =
13.57τA .
the magnetic field lines, which leads to plasma deceler-
ation. Thus, the interaction between the magnetic field
and surrounding plasma leads to oscillations.

In a quite analogous manner, the mechanism for the
excitation of toroidal field oscillations accompanying
the counter-helicity reconnection of two spheromaks is
explained in [32, 33]. Here, we also demonstrate that,
inside and outside of the loops, the oscillation periods
differ strongly. The helical magnetic field lines far from
the loop axis meet each other and reconnect earlier than
those close to the axis (see Fig. 2). It is seen from Fig. 3
that the oscillations outside of the loop arise earlier than
those inside it.

The poloidal field reconnection leads to the forma-
tion of a current sheet. Simulations show that the axial
field reconnection can also induce the poloidal current.
Figure 7 shows the distributions of the induced current
jx at the times t = 2.53τA and t = 13.57τA . It is worth not-
ing that, due to the dependence of the oscillation period
on the magnetic field strength and, hence, on the dis-
tance from the null-line (x = 4.0a, y = 4.0a), the pattern
of the axial magnetic field may split into several (more
than two) domains with different polarities (Fig. 3d). In
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
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each pair of antiparallel magnetic field domains, mag-
netic reconnection can occur (Figs. 3d, 7b). Therefore,
the localization of the poloidal electric current does not
generally coincide with the axial current sheet. This
question will be discussed in more detail in a subse-
quent publication.

3.3. Shock Waves and the Fine Structure
of the Plasma Flow

Figures 8 and 9 compare runs A and B. Figure 8
shows the pressure and temperature (T ∝ p/ρ) distribu-
tion in runs A and B at the time t = 6.78τA . The maxi-
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
mum values of the pressure and temperature for
counter-helicity reconnection (run B) are as high as
26.8 and 10.1, respectively, while for co-helicity recon-
nection (run A), these values are 3.9 and 2.76, respec-
tively. On the other hand, the reconnection region in run
B is more compact than that in run A.

Figure 9 shows the fine structure of the plasma flow
and density in the central region at the time t = 12.21τA.
The complicated pattern of the velocity field distribu-
tion, which involves symmetric vortical structures,
shows that fairly active processes occur in the recon-
nection region.
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An important problem is the mechanism for
charged-particle acceleration during magnetic recon-
nection. It is generally believed that one of the reasons
for the generation of fast particles is their acceleration
by magnetosonic shock waves. The simulation results
show that current loop reconnection can lead to shock
wave formation.

First of all, the shock waves moving outward can be
clearly seen in Figs. 8 and 10. The shock waves are
caused by the relative inward motion of the plasma and
high-pressure explosion waves generated in the diffu-
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Fig. 6. Schematic of the generation of oscillations of the
axial magnetic field and velocity.
sive reconnection region. In addition to the shock
waves, other waves with fine structures are seen in the
vicinity of the central diffusive reconnection region
(Fig. 11). These waves are caused by the strong inho-
mogeneity of the pressure and velocity in the diffusive
reconnection region. The fine structure of these waves
includes shocks, which seems to be interesting
because, near the shock front, the electric and mag-
netic fields change sharply, so that the charged parti-
cles are accelerated via the drift acceleration mecha-
nism [34, 35].
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4. SUMMARY

The coalescence of two parallel force-free current
loops is investigated using an MHD code in which the
recently proposed AW scheme is employed. The results
of simulations shows that co-helicity reconnection
involves only the reconnection of the poloidal compo-
nent of the magnetic field, while counter-helicity recon-
nection involves the reconnection of both the poloidal
and axial components of the magnetic field. In the latter
case, the axial magnetic field reconnection occurs in the
SMA PHYSICS REPORTS      Vol. 27      No. 4      2001
central diffusive region, in which a series of current
sheets (rather than one sheet as is the case of poloidal
field reconnection) are formed. Therefore, counter-
helicity reconnection is much more complicated and
violent as compared to co-helicity reconnection.

In both cases, jetlike flows are formed. However,
due to the stress of the frozen-in magnetic field, these
flows cannot propagate too far apart.

Counter-helicity reconnection is accompanied by
oscillations of the axial magnetic field and the axial
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Fig. 11. Current distributions in the central region, demonstrating the presence of shock waves and fine structures, for run B: (a) t =
11.02τA and (b) t = 13.57τA .
component of the velocity. Due to these oscillations,
quasi-steady models of a current sheet can hardly be
applicable, because the structure of the current sheet
also changes. The complicated and nonsteady structure
of the poloidal current shows that magnetic reconnec-
tion occurs not only in the central sheet between two
loops in the early stage of the process but also inside
each loop in later stages. The plasma and energy of the
loops are concentrated in the central region. Compli-
cated flows and waves with fine structures are also gen-
erated during reconnection. The fact that some of the
waves are shock waves may be used to explain fast par-
ticle generation in solar flares.
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Abstract—Results are presented from MHD simulations of three-dimensional flows of a high-conductivity
plasma in the vicinity of a null point of a magnetic field. The excitation of an electric current at the boundary
of the computation region results in self-consistent plasma flows and change in the structure of the magnetic
field. Generally, in the vicinity of a null point, an MHD singularity arises that manifests itself in the formation
of locally plane current sheets. It is shown that the current sheet can be oriented either along the separatrix sur-
face of a magnetic configuration or perpendicular to it, except for axisymmetric configurations (or close to
them), when the excitation of an electric current in the direction orthogonal to the separatrix surface does not
lead to the formation of a current sheet. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that investigations of the structure
of MHD singularities arising in the flows of a highly
conducting plasma in the vicinity of critical points of a
magnetic field is of great importance for the theory of
magnetic reconnection. Reconnection of magnetic field
lines plays a key role in various problems of physics of
space and laboratory plasmas, including the disruption
instability, the nonlinear evolution of magnetic islands
in tokamak plasmas, and solar flares and substorms in
the Earth’s magnetosphere (see [1–6] and the literature
cited therein). A rapid change in the topology of a mag-
netic field during magnetic reconnection is accompa-
nied by the conversion of the magnetic field energy into
the energy of the plasma, radiation, and fast electrons
and ions. Magnetic reconnection occurs in the vicinity
of critical points (or critical lines and surfaces) of a
magnetic field. During the self-consistent evolution of
the plasma and magnetic field in the vicinity of critical
points, highly nonlinear structures (including shock
waves and current sheets) are formed.

To analytically describe the local structure of singu-
larities arising near the critical points, self-similar solu-
tions to the MHD equations are commonly used [7–10].
A description of the non-self-similar stage of the devel-
opment of a singularity requires computer simulations
[3, 10–14]. The fundamental result is that the typical
structure of an MHD singularity corresponds to a cur-
rent sheet in which magnetic field reconnection occurs
[15]. The overwhelming majority of theoretical studies,
numerical simulations, and laboratory experiments
concern investigations of two-dimensional (2D) config-
urations, including the case of three-component mag-
netic reconnection [10, 12, 16, 17]. At the same time,
1063-780X/01/2704- $21.00 © 20315
increasing attention is being given to the 3D magnetic
reconnection [3, 6, 9, 10, 12–14, 18–23]. First of all,
this stems from the fact that 2D magnetic configura-
tions are structurally unstable; i.e., the topology of a
magnetic field in the vicinity of null lines or surfaces
changes under the action of arbitrarily small perturba-
tions. This makes the existence of 2D structures in
space plasmas problematic. On the other hand, null
points in three-dimensional (3D) geometry are structur-
ally stable. An exception is 2D magnetic structures cre-
ated in laboratory devices, because, in this case, special
efforts are taken to create and maintain the high sym-
metry of magnetic configurations. However, in labora-
tory plasmas, it is also necessary to take into account
the 3D inhomogeneity of a magnetic field, especially
when considering the change of the magnetic field
topology during the onset of instabilities. In this con-
text, investigations of 3D configurations are of special
interest for practical applications. As was shown in [9,
10, 12, 13, 24], 3D description allows one to obtain
qualitatively new results. In particular, the formation of
current sheets orthogonal to the null lines and parallel
to the separatrices of a magnetic field has been pre-
dicted.

Although the studies of magnetic reconnection in
3D magnetic configurations have led to a number of
important results, many questions related to the influ-
ence of the symmetry of the initial configuration and
boundary conditions on the formation and stability of
current sheets still remain unanswered. In this paper,
we present the results of 3D MHD simulations of
plasma flows in the vicinity of a null point of a mag-
netic field. The goal of the study is to investigate the
influence of the symmetry of the boundary conditions
on the formation of a current sheet.
001 MAIK “Nauka/Interperiodica”
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The paper is organized as follows. In Section 2, we
present the basic MHD equations and discuss the struc-
ture of a magnetic configuration in the vicinity of a null
point. In Section 3, the results from MHD simulations
of the formation of a current sheet near a null point of a
magnetic field are presented. In the Conclusion, the
main results are summarized.

2. MATHEMATICAL MODEL

2.1. Basic MHD Equation

The problem is solved in the MHD approximation.
It is assumed that transport coefficients characterizing
the plasma (such as the magnetic viscosity νm , electric
conductivity σ, and thermal conductivity) are constant.
The magnetic field is described by the vector potential
B = rotA, divA = 0. For numerical simulations, it is
convenient to introduce the following dimensionless
variables:

(1)

Here, ρ0 and T0 are the initial values of the density and
plasma temperature, respectively; B0 is the maximum
value of the magnetic field; l is the characteristic scale
length; νa = B0/(4πρ0)1/2 is the Alfvén velocity; and ta =
l/νa is the Alfvén time. Further, only dimensionless
variables will be used and, therefore, the tilde symbol
will be omitted.

In the new variables, the system of one-fluid MHD
equations takes the form

(2)

(3)

(4)

(5)

(6)

The adiabatic index is chosen to be γ = cp/cv = 5/3.
The dimensionless parameter β (the ratio of the plasma
pressure to the magnetic pressure at the boundary) is

defined as β = 8πp0/ , where p0 = 2ρ0T0/m is the gas-
kinetic pressure with m being the mass of the plasma
ions. The dimensionless magnetic viscosity (the inverse
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Lundquist number) νm = c2/(4π1σva) and dimension-
less thermal conductivity κ = k/(va1 ) (where k is the

dimensional thermal conductivity) are assumed to be
constant.

2.2. Structure of a Magnetic Configuration
in the Vicinity of a Null Point

Here, we will reproduce the well-known description
of the structure of a magnetic field near a null point,
which will be used to formulate the problem.

Near an arbitrary point x0, the magnetic field can be
approximated by the first terms of the Tailor series.
Without loss of generality, we can set x0 = 0. As a result,
we obtain

(7)

Below, we will consider the case of a null point of a
magnetic field, when B(0, t) = 0. We define the matrix
of the magnetic field gradients as ∂Bi /∂xj |x = 0 = Aij.
Then, the magnetic field in the vicinity of a null point
can be written as

(8)

We will assume that the matrix Aij is nonzero. Note that
the magnetic reconnection near the degenerate critical
points of a magnetic field was studied in [25–27].

As is known, the equations for the field lines of the
magnetic field (8) are equivalent to the dynamic system

(9)

The null point corresponds to an equilibrium point. The
behavior of trajectories (field lines) is determined by the
solutions of the eigenvalue problem for the matrix Aij

(10)

i.e., the structure of the magnetic field is determined by

the eigenvalues λα and eigenvectors  of the matrix
Aij (α = 1, 2, 3). By virtue of the condition divB = 0, the
trace of the matrix Aij is zero, Akk = 0. Depending on the
form of the matrix Aij, the equation Aijxj = 0 describes a
null plane, line, or point.

Let one of the eigenvalues be zero (e.g., λ3 = 0) and
the other two be real and opposite in sign (λ1, 2 = ±λ').
Then, expression (8) describes the vicinity of an X-type
null line. The magnetic field has two separatrix sur-
faces, which intersect under a certain angle.

If one of the eigenvalues is zero (λ3 = 0) and the
other two are imaginary and complex conjugate (λ1, 2 =
±iλ'), expression (8) describes an O-type null line.
When all the eigenvalues λα (α = 1, 2, 3) are real and
nonzero, expression (8) describes the vicinity of a null
point that is analogous to a saddle point on a plane. In
this case, there is one direction along which the field

0ζρ

B x t,( ) B 0 t,( ) x∇( )B 0 t,( ) … .+ +=

Bi Aijx j.=

xid
sd

------- Aijx j.=

det Aij λδij–( ) 0,=
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α
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lines enter the vicinity of this point (or emerge from it)
and a separatrix plane along which the field lines
emerge from the vicinity of the null point (or enter it).
The position of the separatrix plane is determined by
the direction of two eigenvectors corresponding to two
eigenvalues of the same sign.

If two eigenvalues are complex conjugate (λ1, 2 =
λ' ± iλ'') and one eigenvalue is real (λ3 = –2λ'), then
there is also a separatrix surface in the vicinity of a null
point. The magnetic field lines look like spirals (with
varying pitch and radius) approaching the separatrix
surface or moving away from it.

In this paper, we consider plasma flows near a mag-
netic null point that is characterized by real eigenval-
ues. Note that this case corresponds to an initial config-
uration with a potential magnetic field.

3. RESULTS OF MHD SIMULATIONS 
OF THE FORMATION OF CURRENT SHEETS

IN 3D MAGNETIC CONFIGURATIONS

3.1. Initial Magnetic Configurations

Simulations are performed in a cubic computation
region G = {–1 ≤ x ≤ 1, –1 ≤ y ≤ 1, –1 ≤ z ≤ 1}, in which
the plasma and magnetic field evolve self-consistently.
At the initial instant, the magnetic field described by
the vector potential A(x, y, z) is potential; i.e., the elec-
tric current density is zero and the plasma in the equi-
librium state is characterized by a constant density

(0) = 1 and pressure p(0) = 1 and zero initial velocity

v(0) = 0. In this case, the magnetic field can be
described by expression (8) with a diagonal matrix of
the field gradients Aij = diag{a, b, –(a + b)}; i.e.,

(11)

The equilibrium is disrupted by inducing an electric
current along the z-axis at the boundary of the compu-
tation region.

Three cases corresponding to different initial con-
figurations of the magnetic field were considered. In the
first and second cases, the induced electric current was
parallel to the separatrix plane, and, in the third case,
the excited current was orthogonal to the separatrix
plane.

In the first case, the components of the matrix Aij are
chosen to be a = 1.65 and b = –1.35, so that the separa-
trix surface is parallel to the z-axis and lies in the x = 0
plane. In the second case, a = 0.25 and b = –0.75 and
the separatrix surface is parallel the z-axis and lies in
the y = 0 plane. In the third case, a = 1.3 and b = 0.7 and
the separatrix surface is perpendicular to the z-axis and
lies in the z = 0 plane.

3.2. Boundary Conditions

As was mentioned above, the equilibrium is dis-
rupted by inducing an electric current at the boundary

ζρ

B axex byey a b+( )zez.–+=
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of the computation region. In this case, the excited non-
linear MHD perturbations propagate in the computa-
tion region toward the z-axis. It is well known that, in a
plane 2D magnetic field, linear MHD perturbations in a
cold plasma are split into Alfvén and magnetosonic
modes. In a 3D magnetic configuration, the situation is
much more complicated because such splitting is
absent.

In simulations, the z-component of the vector poten-
tial at the boundary is set to be

(12)

where the coordinates x and y belong to the boundary
(x = ±1 and y = ±1). The function f(ξ), which has the
form

(13)

describes the gradual switching-on of the electric cur-

rent. Here,  is the dimensionless electric field (see
also [11, 13]).

Thus, for a magnetic configuration given by expres-
sion (11), the electric current induced at the boundary
of the computation region may be either parallel or per-
pendicular to the separatrix surface of the magnetic
field.

At the boundary regions where the plasma flows
into the computation region, we set ρ = 1, p = 1, T = 1;
at the other boundary regions, the conditions for the
plasma to freely flow out from the computation region
are imposed.

Below, we present the results of simulations for the
dimensionless magnetic viscosity νm = 0.006, the elec-

tric field  = 0.06, the pressure corresponding to β =
0.012, and the dimensionless thermal conductivity
κ = 0.01.

3.3. Simulation Results

The complete set of 3D MHD equations (1)–(5) was
solved numerically.

The first series of calculations was carried out for a
magnetic field given by expression (11) with a = 1.65
and b = –1.35. The separatrix plane of the magnetic
field lies in the x = 0 plane. Since the z-component of
the magnetic field gradient is equal to –(a + b) = 0.3 and

the ratio  = 0.18 is much less than unity, the

magnetic configuration under study is weakly nonuni-
form along the z-axis. In other words, this is a weakly
perturbed null line parallel to the z-axis. Figure 1a
shows the structure of the magnetic field lines at the ini-
tial instant.
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Ẽ

Ẽ
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Fig. 1. The magnetic field structure and the distribution of the main plasma parameters for a = 1.65 and b = –1.35 (B = 1.65xex –
1.35yey – 0.3zez; at the initial instant, the separatrix surface is parallel to the z-axis and lies in the x = 0 plane and the induced electric
current is parallel to the separatrix plane). The magnetic field structure at (a) t = 0 and (b) t = 8; (c) isosurface of the electric current
density (J = 72) at t = 8; (d) distributions of the electric current density in different planes z = const; (e) isosurface of the plasma
density (ρ = 0.51); (f) isosurface of the plasma pressure (p = 27); and (g) time evolution of the plasma parameters: (1) plasma density
ρ, (2) plasma pressure p, and (3) electric current density J.
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Fig. 2. The magnetic field structure and the distribution of the main plasma parameters for a = 0.25 and b = –0.75 (B = 0.25xex –
0.75yey – 0.5zez; at the initial instant, the separatrix surface is parallel to the z-axis and lies in the y = 0 plane and the induced electric
current is parallel to the separatrix plane). The magnetic field structure at (a) t = 0 and (b) t = 8; (c) isosurface of the electric current
density (J = 16) at t = 8; (d) distributions of the electric current density in different planes z = const; (e) isosurface of the plasma
density (ρ = 0.44); (f) isosurface of the plasma pressure (p = 8.66); and (g) time evolution of the plasma parameters: (1) plasma
density ρ, (2) plasma pressure p, and (3) electric current density J.
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Fig. 3. The magnetic field structure and the distribution of the main plasma parameters for a = 1.3 and b = 0.7 (B = 1.3xex + 0.7 yey –
2zez; at the initial instant, the separatrix surface is parallel to the z-axis and lies in the z = 0 plane and the induced electric current is
orthogonal to the separatrix plane). The magnetic field structure at (a) t = 0 and (b) t = 8; (c) isosurface of the electric current density
(J = 21.1) at t = 8; (d) distributions of the electric current density in different planes z = const; (e) isosurface of the plasma density
(ρ = 0.78); (f) isosurface of the plasma pressure (p = 52.34); and (g) time evolution of the plasma parameters: (1) plasma density ρ,
(2) plasma pressure p, and (3) electric current density J.
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A cylindrical MHD wave that is excited at t = 0 at
the boundary of the computation region starts propagat-
ing toward the null line. After the wave has reached the
center of the computation region, the structure of the
magnetic field changes (see Fig. 1b) and a current sheet
is formed. A quasi-steady configuration is formed at
t = 4. Figures 1c and 1d show an isosurface of the elec-
tric current density and the distributions of the electric
current density in different planes z = const at t = 8. It
is seen that a current sheet is formed in the vicinity of
the null point. The central part of the current sheet is
mainly stretched along the z-axis. The geometrical
characteristics (width and thickness) of the current
sheet are similar to those in a 2D magnetic confi-
guration.

The spatial distribution of the plasma density
(Fig. 1e) is characterized by the presence of two local
maxima. As was already shown in 2D simulations [12],
such a configuration takes place for small values of the
thermal conductivity. Figure 1f illustrates the distribu-
tion of the plasma pressure, and Fig. 1g shows the time
evolution of the plasma parameters at the null point of
the magnetic field. The time during which the MHD
wave propagates from the boundary to the null point is
equal to two Alfvén times. It is seen that the electric
current increases up to t = 6 and, then, varies only
slightly. During this stage, the pressure continues to
grow slowly due to low thermal conductivity.

The second series of calculations was performed for
a magnetic field given by expression (11) with a = 0.25
and b = –0.75. In this case, the separatrix surface of the
magnetic field lies in the y = 0 plane. Since the z-com-
ponent of the magnetic field gradient is equal to –(a +

b) = 0.5 < 1 and the ratio  = 2 is larger than unity,

the magnetic configuration under study is highly non-
uniform. In other words, this is a perturbed null line
directed along the z-axis. Figure 2a shows the structure
of the magnetic field lines at the initial instant.

A cylindrical MHD wave that is excited at the initial
instant at the boundary of the computation region starts
propagating toward the null line. After the wave has
reached the center of the computation region, a current
sheet is formed there. A quasi-steady configuration is
established at t = 4. Figure 2b shows the magnetic field
lines at t = 8. It is seen that the separatrix is bent and the
current sheet is formed along it. Figures 2c and 2d show
an isosurface of the electric current density and the dis-
tributions of the electric current density in different
planes z = const at t = 8. A current sheet is seen to form
in the vicinity of the null point. The central part of the
current sheet is mainly stretched along the z-axis. The
current sheet has a characteristic 3D shape. As in the
previous case, the spatial distribution of the plasma
density is characterized by the presence of two maxima
(Fig. 2e). Figure 2f illustrates the distribution of the
plasma pressure. Figure 2g shows the time evolution of
the plasma parameters at the null point of the magnetic

a b+
a

---------------
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field. As previously, the time during which the MHD
wave propagates from the boundary to the null point is
equal to two Alfvén times; however, there is no sharp
increase in the electric current density.

The third series of calculations was performed for a
magnetic field given by expression (11) with a = 1.3
and b = 0.7. The separatrix surface lies in the z = 0
plane, and the electric current induced at the boundary
of the computation region is orthogonal to this surface.
Since the z-component of the magnetic field gradient

is  equal to –(a + b) = –2 and the ratio  . 1.5

is  larger than unity, the magnetic configuration under
study is a highly nonuniform 3D configuration. Fig-
ure 3a shows the structure of the field lines at the initial
instant.

As previously, a quasi-cylindrical MHD wave
excited at the initial instant propagates toward the null
point. However, in contrast to the previous cases, where
the electric current was parallel to the separatrix sur-
face, no current sheet is formed in the vicinity of the
null point. Figure 3c shows an isosurface of the electric
current. It is seen that the current is concentrated in a
spatially nonuniform region. Due to the plasma rota-
tion, the magnetic field lines become twisted and the
plasma is expelled from the computation region.
Figure 3g shows the time evolution of the plasma
parameters at the null point of the magnetic field. The
time during which the MHD wave propagates to the
null point increases in comparison with the previous
cases. No substantial increase in the electric current
density in the null point is observed. The plasma pres-
sure increases due to Joule heating.

4. CONCLUSION

This paper presents the results of the first numerical
simulations of local configurations arising during mag-
netic field reconnection in 3D geometry.

In contrast to [14, 18], the structure of an MHD sin-
gularity is revealed and investigated in detail. It is
shown that the structure of the singularity substantially
depends on how the induced electric current is directed
with respect to the magnetic field. Here, the decisive
factor is the mutual orientation of the electric current
and the separatrix surface of the magnetic field. Previ-
ously, based on an analysis of self-similar solutions to
MHD equations [9–11], it was predicted that the devel-
opment of a current sheet in the direction orthogonal to
the separatrix surface would be hampered. The results
obtained in this paper generally confirm this prediction
and demonstrate a complicated, non-self-similar struc-
ture of the electric current in a plasma.

A typical MHD singularity observed in our simula-
tions corresponds to a current sheet directed along the
separatrix surface. If the current is orthogonal to the
separatrix surface, then, in the problem as formulated,
the current sheet is not formed because of the forced

a b+
a

---------------
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plasma rotation and the action of the centrifugal forces,
which prevent the plasma from pinching. Nevertheless,
in this case, the current region has a nontrivial topology
with a constriction near the null point.
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Abstract—Results of active experiments on electron beam injection from the Intercosmos-25 satellite into the
ionospheric plasma are presented. A quasistatic magnetic field and the VLF-wave magnetic component are
excited when an unmodulated electron beam with a current of Ibe . 0.1 A and energy of εbe = mv 2/2 . 10 keV
is injected into the ambient plasma. The magnetic field excitation is attributed to the onset of plasma gradient
instabilities. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Generally, the injection of a low-energy electron
beam from a satellite into the ionospheric plasma pro-
duces only weak fluctuations in the geomagnetic field
B0. The excitation of VLF waves was observed in many
rocket experiments. The excitation of induction pro-
cesses by electron helicity in a weakly collisional
plasma during injection is attributed to the presence of
eddy currents and various dynamo processes [1, 2].
These processes are usually responsible for the genera-
tion of a slowly growing magnetic field and the excita-
tion of Alfvén waves (AW). When the electron flow
velocity is close to the Alfvén velocity, |u| ~ |vA| =

B0/  (where n0 and Ma are the unperturbed
plasma density and the ion mass of species a), the exci-
tation of low-frequency waves may be related to either
the Alfvén resonance ω . k · vA or the electron-cyclo-
tron resonance at ω ~ ωci [3, 4]. In this paper, we
present the results of one of the active experiments on
magnetic field excitation carried out onboard the Inter-
cosmos-25 satellite (APEX) [5] at turn no. 266. Partic-
ular attention is given to unmodulated (dc) electron
beam injection.

2. SCIENTIFIC EQUIPMENT

The results presented were obtained with the help of
a scientific equipment complex installed on the satel-
lite. The complex consisted of an electron accelerator
(Fig. 1, G1), a high-sensitivity magnetometer (the mea-
surement accuracy was ~1 nT), and a low-frequency
wave system for measuring wave amplitudes in the
range f = 8–969 Hz and at fixed frequencies of 9.6 and
15.0 kHz. The electron Te and ion Ti temperatures, the
satellite body potential ps, the unperturbed plasma den-
sity n0, and the energy distributions of the thermal-

4πn0Ma
1063-780X/01/2704- $21.00 © 0323
plasma ion flux densities jix(V) and jiz(V) were mea-
sured with an impedance probe and a retarding-poten-
tial analyzer (RPA). Here, jix and jiz are the ion flux den-
sities in the x and z directions, respectively, and V is the
sweep voltage at the RPA grid (0 ≤ V ≤ 12 V).

The pitch angle of electron beam injection αpe, the
orientation angles of the satellite velocity vector vs and
the Earth’s magnetic field B0, the angle β3 ≡ β3(B0 ∧ Z),
the azimuthal angle A ≡ A(  ∧ Y), and the angle of
attack θv (vs ∧ X) were calculated using data from the
satellite-borne solar and magnetic detectors. Here, x, y,
and z are the coordinates in the satellite frame of refer-

B0*

Xe
z

y

x

A
β3

vs

B0

B0
*αpi

αpe θv

G1

e–

G2
e–

Fig. 1. Injection directions, orientation angles of the mag-
netic field B0 and velocity vs in the satellite frame of refer-
ence xyz; the z-axis is directed from the Earth.
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ence and  is the projection of the vector B0 onto the
xy plane. The x-, y-, and z-axes correspond to the azi-
muthal (ϑ), radial (r), and axial (z) directions in cylin-
drical coordinates with the z-axis parallel to the mag-
netic field z || B0.

3. EXPERIMENT

It is worth noting some characteristic features of the
experiment. The electron beam and a quasineutral
xenon plasma were simultaneously injected into the
ionosphere, but the electron-beam and plasma injectors
operated asynchronously, which ensured a wide choice
of experimental conditions. Here, “asynchronous”
operation means that different injectors were switched
on and off independently of each other and the spectral
measurements were not synchronized with the injector
operation. The orientation of the magnetic field B0 was
such that the pitch angles of the electron injection lay
within the interval αpe . 74°–87° (z ≥ 0) and the pitch
angles of the ion injection lay within the interval αpi .
121°–132° (z ≤ 0); i.e., the electron and ion beams were
injected in opposite directions with respect to the z-
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Fig. 2. Magnetic field fluctuations δBxyz during two 23-s
cycles of operation of an electron accelerator (without mod-
ulation at the first second; with amplitude–frequency modu-
lation at the third, fifth, seventh, etc., second; even-num-
bered seconds correspond to pauses); the accelerator oper-
ates simultaneously with a plasma injector. The currents Ibe
and Ibi are given in telemetry units (volts).
axis. All measurements were performed at the illumi-
nated part of the satellite trajectory, where the electron
plasma frequency and gyrofrequency varied within the
intervals ωpe/2π ≈ 4.8–4.9 MHz and ωce/2π ≈ 1.1–
1.2 MHz, respectively. Figure 2 shows the magnetic

field fluctuations δB = B –  induced during electron

beam injection, where  is the empirical average
value. The magnetic field perturbations δBxyz were
observed during the first second in the case of continu-
ous (dc) injection and after the fifteenth second in the
case of modulated (ac) injection (fm = 15.625 kHz) with
a pulse duration of τ0 . 2 µs. Injection was accompa-
nied by both intense transverse plasma heating (an
increase in Tex and Tey) and density perturbations δni ≡
ni – , which depended on the RPA grid potential V.
Figure 3 shows the values of these parameters recorded
during the operation of gun G1 (t . 350–380 s). In
Figs. 2 and 3, the time is counted from the beginning of
the active regime, t0 = 13 h 36 min 58.496 s UT (the
altitude is H . 450–470 km; turn no. 266; January 9,
1992).
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Fig. 3. Time evolution of the temperature components Tex
and Tey, density nix(V), and potential ps during the operation
of gun G1. The sweep duration of the RPA voltage is ∆t0 =
4 s. Horizontal bars show the time intervals of electron
injection.
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4. ELECTRON BEAM INJECTION AT LARGE 
ANGLES TO THE MAGNETIC FIELD

Quasi-transverse (with respect to the magnetic field)
electron injection exhibits a number of specific features
and deserves special consideration. When examining
the beam–plasma interaction, the decisive factors are
the shape, density, and temperature of the electron
beam. A certain fraction of the injected electrons
returns to the satellite or moves away in the opposite
direction with respect to the magnetic field, thereby
decreasing the effective injection current. Therefore,
we briefly consider the main features of this interaction.

4.1. Beam–Plasma Instability

In the absence of a beam–plasma discharge (BPD)
at high altitudes, the main mechanism for the energy
dissipation of the beam electrons is the beam–plasma
instability. The efficiency of wave excitation in the RF
(at ωce or ωpe) and ELF–LF (ω ≤ ωci, ωpi) ranges and the
instability growth rate γ depend strongly on the value of
the relative detuning from the cyclotron resonance nωca

(a = e, i) [4]:

where the upper or lower sign is taken for the normal or
anomalous Doppler effect, respectively; kz is the pro-
jection of the wave vector onto the z-axis; and vbe is the
thermal velocity of the beam electrons. The average
(over the parameter α) flow velocity was determined

from the expression u ≡ 〈vz〉α = (1/∆α') cos(αpe +

α)dα, where the effective pitch-angle width of injection
is ∆α' > ∆α (.4° at z = 0). The amplitude of the longi-
tudinal-velocity fluctuations at γ  0 was estimated
as δvz ≡ max{vz – 〈vz〉α}. When examining the beam–
plasma interaction, we assumed the electron beam to be
hollow, which corresponds to a greater extent to the
shape of a real electron beam not only at large z, but
also in the near injection region at distances z ! u/γ [6].
When calculating the beam density at large pitch angles
αpe + ∆α'/2 > 90°, we took into account the partial
charge loss; in this case, the average density 〈nbe〉  was
determined from the expression for the injection cur-
rent I1 into the lower hemisphere I1 .

2π (r)nbe(r)rdr, where r1 and r2 are the minimum

and maximum radii of electron gyration at the inner and
outer boundaries of the beam. For the actual beam and
plasma parameters (nbe/n0 ~ 10–3–10–4, ∆v/v ~ 10–1–
10–2, and ∆α' . 14°–16°), the growth rate of plasma
oscillations is γ/ωpe ~ 10–2–10–3. When the electric field

amplitude reaches the saturation level δ /4π .

nbemv2(γ/ωpe), the beam–plasma system becomes
unstable [7]. Estimating the value ηf = Wf/n0Te .

zn
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(δ /8πn0Te)2 shows that, for the above spread in the
beam parameters, the turbulence level lies in the range
m/å ! ηf ! 1 and the energy transfer toward shorter
wavelengths (with a rate on the order of the modula-
tional instability growth rate γ0/ωpe ~ 10–2–10–4) comes
into play, which ultimately results in the suppression of
the beam–plasma instability due to the detuning of the
resonance.

4.2. Generation of Electromagnetic Fields 
by the Electron Beam

During the first second of dc electron injection, the
excitation of magnetic fields in the immediate vicinity
of the satellite depends substantially on the develop-
ment of the Langmuir and ion-acoustic turbulence in
the plasma. The wave excitation in different frequency
ranges may exert a focusing effect on the electron
beam. When considering the wave excitation in the LF
and RF ranges (ω ~ ωA, ωci or ~ωce, ωpe), we will
assume the following:

(i) The level of ion-acoustic turbulence ηs = Ws/n0Te .

(δ /8πn0Te)2 becomes higher than that of Langmuir
turbulence, ηs > ηf, in a time of ~1/γ0. Further, this ine-
quality may be violated. At ηs > ηf, a slow growth of
perturbations dominates: δΨ = δΨ' + δΨs, where δΨ'
and δΨs are the very slowly varying (on the character-

istic time scale τ ~  or ) and slowly varying (on

the characteristic time scale τ ~ ) parts of perturba-
tions. Otherwise, at ηs < ηf, we should consider fast
growing perturbations: δΨ = δΨs + δΨf. Here, δΨs and
δΨf are the ion-acoustic and Langmuir perturbations

developing on the characteristic time scales τ ~  and

τ ~ , respectively.

(ii) The source of density perturbations δn' (δ )
may be a parametric instability in the course of which
the Alfvén pump wave decays into Alfvén and magne-
toacoustic waves a  a + s; the latter causes density
perturbations [8]. The action of ponderomotive forces
caused by nonlinear Alfvén waves also produces a
strong density perturbation δn' ~ |δB' |2 [9].

(iii) Magnetic field perturbations δB can be repre-
sented as a superposition of the envelope of an Alfvén
wave packet and slowly varying fields induced by non-
linear plasma currents. Without taking into account the

contribution from partial currents ~〈δ δv '〉  and

~〈δ δvs〉 , the magnetic perturbation amplitude does
not exceed the value δBx, y, z ~ Ibe/rce 10–20 nT, where
〈…〉  stands for the mean value of the product of two
simultaneous fluctuations.
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(iv) The equilibrium values of the plasma parame-
ters are defined as Ψ0 = Ψ0 + δΨ, where Ψ0 denotes the
unperturbed values and δΨ denotes the perturbations
introduced by a steady electron beam. At small devia-
tions from equilibrium, the fluctuation spectrum has
maximums near the plasma eigenmodes. In this case,
the low-frequency range makes the main contribution
to suppressing instabilities.

(v) The unperturbed values of the beam density and
temperature are assumed to be the equilibrium values

nbe0 ≡  and Tbe0 ≡  in the absence of perturba-
tions (γ  0). Simultaneous fluctuations of the den-
sity and temperature in a spatially uniform plasma are
statistically independent; i.e., 〈δnδT〉 τ = 0.

These assumptions on the interaction processes
allow us to focus attention on a more detailed analysis
of the data obtained and the mechanisms governing the
excitation of low-frequency waves at injection angles
of αpe . 74°–87°.

5. ANALYSIS OF EXPERIMENTAL RESULTS

To analyze the experimental results, the data
obtained during a series of 23-s measurement cycles
were treated using an algorithm based on small varia-

nbe
0

Tbe
0

tions of the parameters of an unperturbed plasma—a
procedure that was best suited to the laboratory style of
the experiments.

The experimental data and the numerical character-
istics constituted a set of parameters for a real event
Sj(h1, h2, …, hi , …; s1, s2, …, si , …; tj), where hi and si

are the measured and calculated values, respectively. In
order that the parameters hi and si corresponded to the
time tj ± δt (δt ! ∆t), the “current” numerical ampli-
tudes in the nodes of the time mesh tj were interpolated
by weighting the “old” and “new” measured values of
these parameters; here, ∆t is the period of telemetry
polling. The instants tj were not chosen arbitrarily, but
with regard to the most frequently measured parame-
ters. The events Sj and Sj + 1 were considered to be single
events if the relaxation time of perturbed characteristics
of the ionospheric plasma satisfied the inequality τr <
tj + 1 – tj . After selecting the set Sj of the data (records)
and completing the formation of the file, the data were
processed with the aim of examining certain effects
during dc injection. When plotting the dependence on a
certain parameter, the records Sj were arranged in
ascending order of this parameter.

Figure 4 shows the density nix as a function of the
parameter V + ps and the azimuthal and radial compo-
106
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10 15 205
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Fig. 4. Measured ion density nix as a function of the parameter V + ps and the results of simultaneous measurements of the electron
temperatures TÂx and Tey and the calculated values of the densities nbe and nbi , quantity ψ1, and velocity fluctuations δvz vs. the same

parameter: (a) the data obtained with the electron accelerator G1 independently of the plasma injector operation (nbi  ≥ 1 cm–1), and

(b) the data obtained with simultaneous injection of the electron beam and quasineutral plasma (nbi  >1000 cm–3). Horizontal dashed
lines show the unperturbed levels of Tex and Tey and the RPA saturation level for n0.
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nents of the electron temperature (Tex and Tey, respec-
tively) and the quantity ψ1 = cos3(αpe – ∆α'/2) –
cos3(αpe + ∆α'/2) versus the same parameter. Note that
the parameter V + ps is the true retarding potential at the
RPA grid with respect to the ambient plasma. Along
with the calculated value of the electron-beam density,
the estimated value of the density nbi of the xenon
plasma jet in the stage of free gyration is also presented,
which allows us to trace the effects from the simulta-
neous operation of both injectors. One can see a satis-
factory correlation between the increase in the xenon-
plasma temperature Tey and the function ψ1 in regions 1
and 2. This fact can be used to evaluate the increase in

the electron beam temperature δ  ~ δ , which is
quite reasonable in view of the boundary conditions for
thermal diffusion in the plasma. This problem requires
more detailed study; here, we only formulate it: (i) elec-
tron injection at angles in the range 90° – αpe < ∆α'/2
results in insignificant heating, and (ii) it causes sub-
stantial heating with respect to the transverse compo-
nent at smaller injection pitch angles. The interpreta-
tion of the change in the ion composition is ambiguous.
The decrease in the ion density in region 1 (or 2)
(Fig. 4a), in which Ma(vscosθv)2/2 ≥ e(V + ps) ≈ 7–9 eV
(or 13–15 eV), where a is the ion species, is due to the

depletion of the é+ ions and the NO+/  group. This
depletion may be attributed either to plasmochemical

Tbe' Te'

O2
+
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reactions of the form e + NO+  NO* + "ν (the
Knudsen mechanism) or, most likely, to the fact that
these ions are entrained by ELF and VLF waves into
motion along the z-axis under conditions of the cyclo-
tron resonance ω = k · via ± n|ωci|, where n = 0, ±1. In
regions 1 and 2, one can also see strong perturbations
of all the plasma parameters, which are correlated with
the density of the injected electron beam (i.e., with the
growth rate of the high-frequency beam–plasma insta-
bility) in spite of the fact that the parameter V + ps is an
internal RPA characteristic.

Figure 5a presents the results of the wave measure-
ments of the magnetic component of VLF and LF
waves δB' in a form similar to dependences shown in
Fig. 4. It should be noted that the representation of the
wave measurements versus V + ps makes sense only in
connection with the data in Fig. 4 and only serves to
provide additional information. The figure also shows
the growth rate γ' of the Alfvén waves excited due to the
cyclotron interaction via the anomalous Doppler effect
(ω < ωci, n = 1) for a hydrogen plasma at propagation
angles of 80° < θ < θr, where θr ~ 87°–89° is the reso-
nance angle. When calculating the growth rate, we tried
to keep the detuning z1 small (γ' ≠ 0); however, this was
possible only for hydrogen plasma, quasi-transverse
propagation angles, and frequencies ω ≤ ωci. We note
certain characteristic features of VLF and LF fields for
the group of data in region 2. At frequencies ω ≤ ωci, the
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the top of the figure, the estimated growth rate of the wave at the frequency ωci – ω = 150 Hz (θ = 85°) and detuning δω ~ 500 Hz

for M/m = 1841 and ∆v/v ~ 10–1 is shown. The data are obtained at nbi  ≥ 1.
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magnetic component amplitude correlates well with the
growth rate γ' ~ nbe; however, at higher frequencies (in
the ion-acoustic range), we observed an appreciable
attenuation of the signal. This effect can be explained
based on assumption (iv) of Section 4.2 on the domi-
nant role of low-frequency instabilities. Figure 5b
shows the amplitude and growth rate of magnetic field
perturbations (the same quantities as in Fig. 5a) as
functions of the relative detuning z0 ~ u/vbe, where vbe ~

∆v ≡ (  + )1/2. We can infer that the excitation of
LF waves is less sensitive to the thermal spread of the
beam particles; this tendency is clearer at lower fre-
quencies. This result agrees with the accepted concept
of the effect, although it requires more detailed study.

The data presented in Fig. 6 demonstrate a number
of effects associated with the excitation of anomalous,
slowly varying magnetic fields that may be a macro-
scopic consequence of the development of small-scale
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jiz , magnetic field perturbations δBxyz, and the satellite
potential ps as functions of V + ps for nbi ≥ 1. At the top of
the figure, the growth rate γ/ω– is shown.
wave processes. In the figure, we present the energy
distributions of the ion flux densities jix and jiz , the sat-
ellite body potential ps, and the growth rate of potential
lower hybrid plasma oscillations with the frequency ω–.
Note that, for a plasma perturbed by an electron beam,
it is more adequate to interpret the RPA data in terms of
the integral ion flux density ji (the current density). The
remarkable feature is the unexpectedly strong excita-
tion of the magnetic field. By comparing the perturba-
tions δB with the data on the magnetic components of
VLF and LF waves and the growth rate γ' (at ω ≤ ωci),
we may suppose that there is an internal coupling
among them, which can be explained based on assump-
tion (iii) of Section 4.2. When studying this problem,
attention is usually focused on the behavior of the
large-scale field arising due to the interaction of kinetic
(the velocity field U) and magnetic (the field B) modes.
This interaction is described by two similar equations
for the momentum and induction, the term curl(U × B)
being the main source of magnetic energy [1]. In
regards to microscale processes, they determine the
fluctuation spectrum and the energy transfer toward
short scale lengths. Based on assumptions (i) and (iv) of
Section 4.2, we can suggest that these hydrodynamic
processes at the equilibrium stage of interaction are
responsible for weaker perturbations of the magnetic
field component δBz ~ 70–80 nT (group 2). To summa-
rize the results presented, we note that the gradient
character of the instability (—n ≠ 0 and —T ≠ 0) is typi-
cal of both groups 1 and 2 and may also be responsible
for the excitation of anomalously large magnetic fluc-
tuations.

6. CONCLUSION

The most remarkable experimental results obtained
in turn no. 266 during electron beam injection at pitch
angles αpe . 74°–87° are the following:

(i) The beam–plasma instability results in the exci-
tation of waves in different frequency ranges: (a) in the
frequency range ω ≤ ωci, the growth of the magnetic
component of VLF waves is observed, and (b) the
increase in the thermal spread of the beam electrons
leads to the suppression (decay) of the excited VLF
waves.

(ii) The electron beam injection is accompanied by
strongly anisotropic plasma heating and the modulation
of the plasma (ion) flows in the vicinity of the satellite:
(a) for an unmodulated injection, the efficiency of
plasma (beam) heating with respect to the transverse
component decreases substantially at pitch angles αpe +
∆α'/2 > 90°, where ∆α' is the effective angular beam
width, and (b) the decrease in the integral ion flux den-
sities jix with energies of 7–9 and 13–15 eV is probably
a consequence of the resonant coupling with the excited
VLF waves.

(iii) Among the remarkable results, we can also
mention (a) the anomalous resonant increase in the
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
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magnetic field δB by two orders of magnitude
(||δBx|max ~ 500 nT) as compared to the nominal value
δBn ~ Ibe/rce . 10–20 nT and (b) magnetic field fluctua-
tions with an amplitude of δBz ~ 70 nT in the quasi-
equilibrium case.

Some of these results confirm the results obtained
previously in space experiments; however, for the most
part, they are new and require further investigations.

ACKNOWLEDGMENTS
We thank our colleagues for help and fruitful discus-

sions. We also thank V.I. Karas’ for his interest in this
work.

REFERENCES
1. L. D. Landau and E. M. Lifshitz, Electrodynamics of

Continuous Media (Gostekhizdat, Moscow, 1959; Per-
gamon, New York, 1984).
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
2. H. K. Moffatt, Magnetic Field Generation in Electri-
cally Conducting Fluids (Cambridge Univ. Press, Cam-
bridge, 1978; Mir, Moscow, 1980).

3. C. Uberoi, Phys. Fluids 15, 1673 (1972).

4. K. N. Stepanov and A. B. Kitsenko, Zh. Tekh. Fiz. 31,
167 (1961) [Sov. Phys. Tech. Phys. 6, 120 (1961)].

5. V. N. Oraevsky and P. Triska, Adv. Space Res. 13, 10103
(1993).

6. R. M. Winglee and P. L. Pritchett, J. Geophys. Res. 93,
5823 (1988).

7. N. G. Matsiborko, I. N. Onishchenko, Ya. B. Faœnberg,
et al., Zh. Éksp. Teor. Fiz. 63, 874 (1972) [Sov. Phys.
JETP 36, 460 (1973)].

8. A. A. Galeev and V. N. Oraevsky, Dokl. Akad. Nauk
SSSR 147, 71 (1962) [Sov. Phys. Dokl. 7, 988 (1963)].

9. S. R. Spangler, Phys. Fluids B 1, 1738 (1989).

Translated by N.F. Larionova



  

Plasma Physics Reports, Vol. 27, No. 4, 2001, pp. 330–334. Translated from Fizika Plazmy, Vol. 27, No. 4, 2001, pp. 350–355.
Original Russian Text Copyright © 2001 by Kazimura, Sakai, Bulanov.

          

BEAMS
IN PLASMA

       
Relaxation of an Electron Beam during the Onset 
of the Electromagnetic Filamentation Instability

Y. Kazimura*, J.-I. Sakai*, and S. V. Bulanov**
*Toyama University, Gofuku 3190, Toyama 930-8555, Japan

**Institute of General Physics, Russian Academy of Sciences, ul. Vavilova 38, Moscow, 117942 Russia
Received September 12, 2000

Abstract—Results are presented from three-dimensional particle-in-cell simulations of relaxation of an elec-
tron beam in a plasma. When penetrating into the plasma, the electron beam generates the return current carried
by the plasma electrons. In a collisionless plasma, the relaxation mechanism is related to the onset of an elec-
tromagnetic filamentation instability. The instability leads to the generation of a quasistatic magnetic field,
which decays due to the magnetic field reconnection in the final stage of the system evolution. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Investigations of the collective phenomena in inter-
penetrating collisionless plasma flows have been moti-
vated by the important role of these phenomena in the
dynamics of dense charged-particle beams [1, 2] and in
the processes occurring in astrophysical [3, 4] and laser
[5–9] plasmas. The interaction of plasma flows is
accompanied by the generation of strong electric and
magnetic fields. Even if both the plasma charge and the
net plasma current vanish almost completely in the ini-
tial state, strong electric and magnetic fields arise due
to the onset of electromagnetic instabilities. These
instabilities are similar in character to the well-known
Weibel instability [10, 11] and are caused by the anisot-
ropy of the particle distribution function in velocity
space [10–12]. This instability was incorporated in
developing the theory of the generation of quasistatic
magnetic fields in laser and space plasmas, whose
anisotropy is related to the presence of high-energy
electron flows. In laser plasmas, spontaneous magnetic
fields generated by relativistically strong electromag-
netic radiation result in the magnetic interaction of self-
focusing channels [13, 14]. In space plasmas, an effi-
cient mechanism for the generation of quasistatic mag-
netic fields is required to explain cosmological gamma-
ray bursts [15]. It is supposed that cosmological
gamma-ray bursts are generated in explosions with an
energy release of E ≈ 1051–1054 erg over several sec-
onds in a relatively small spatial region. Afterglow radi-
ation of gamma-ray bursts are caused by the synchro-
tron radiation of electrons and positrons in a strong
magnetic field, which, in turn, arises during the devel-
opment of an electromagnetic filamentation instability
[16, 17]. An analytical description of a highly nonlinear
stage of the filamentation instability with allowance for
kinetic effects presents significant difficulties. Hence,
the necessity of numerical simulations is obvious.
1063-780X/01/2704- $21.00 © 20330
The investigation described in this brief communi-
cation is related, first of all, to the problem of the non-
linear evolution of electron beams accelerated during
the interaction of laser radiation with a plasma. At
present, due to the advanced level of laser technology
[18], experiments on the interaction of multiterawatt
(or even petawatt) laser radiation with matter are being
carried out in many laboratories [5–8]. One of the
important directions of these studies is related to the
concept of fast ignition in laser fusion research [19].
The concept of fast ignition implies that a strongly
focused ultrashort laser pulse ignites a thermonuclear
reaction in a precompressed target. In this case, ignition
occurs in the isochoric mode (at a constant density). In
contrast to the more developed concept of isobaric igni-
tion, which occurs at a constant pressure, the fast igni-
tion concept implies that thermonuclear burning is ini-
tiated at a much smaller energy of the laser pulse. In
this model, the study of collective mechanisms for the
relaxation of electron beams in a plasma is of primary
importance, because, in the vicinity of the critical
plasma density, the energy of laser radiation is trans-
formed into the energy of fast electrons. Then, the
energy is transferred by fast electrons deep into the
plasma, where it is absorbed.

This paper presents the results from particle-in-cell
(PIC) simulations of the relaxation of a fast electron
beam. We used a modified version of the 3D3V-
TRISTAN electromagnetic code [20], which allowed
us to simulate particle distributions that depend on
three spatial coordinates and three velocity compo-
nents. Two configurations are investigated. In the first
configuration, interpenetrating plasma flows are homo-
geneous at the initial instant, whereas in the second
configuration, the flows are localized in a cylindrical
region, outside of which the plasma is at rest. In both
cases, the plasma configurations are unstable against
001 MAIK “Nauka/Interperiodica”
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the electromagnetic instability, the filamentation of the
electric current density, and the merging of current fil-
aments. The instability is accompanied by the genera-
tion and subsequent decay of a quasistatic magnetic
field.

2. FORMULATION OF THE PROBLEM

We used the 3D3V-TRISTAN electromagnetic PIC
code [20]. In the initial state, the electric charge density
and electric current in a plasma are equal to zero and
the electron component is represented as a sum of two
interpenetrating flows with different velocities and den-
sities. We performed numerical simulations for two dif-
ferent initial configurations.

In velocity space, the flows obeyed the Maxwell dis-
tribution

(1)

where ve, th is the thermal velocity of the electrons, ve, j
is the directed electron velocity, ne, j is the electron den-
sity in the jth flow. The directed electron velocities were
equal to ve1 = 3ve, th and ve, 2 = 6ve, th. The electron den-
sities in the flows moving in the positive and negative
directions along the z-axis were equal to ne1 = 2n0/3 and
ne2 = n0/3, respectively. Here, n0 is the ion density in the
initial state. At the initial instant, the conditions

vej = 0 and  = n0 were satisfied, the ion
temperature was equal to the electron temperature, and
the directed ion velocity was equal to zero. The ion-to-
electron mass ratio was equal to mi /me = 1836.

In the second configuration, the electron beams
were located in a cylindrical region whose diameter
was smaller than the size of the computation region; the
remaining part of the computation region was occupied
by a uniform plasma with the same density.

In simulations, the size of the spatial cell was set to
be ∆x = ve1/3ωpe. The time step was equal to ∆t =

0.05 . Here, ωpe = (4πn0e2/me)1/2 is the electron
Langmuir frequency. In the first case (homogeneous
interpenetrating electron flows), the dimensions of the
computation region were Lx = 40∆x along the x-axis,
Ly = 40∆x along the y-axis, and Lz = 200∆x along the
z-axis. In the second case, the electron beams were
inside a cylinder of radius Lz = 20∆x. In this case, the
dimensions of the computation region were 80 × 80 ×
100(∆x)3. In both cases, the periodic boundary condi-
tions for an electromagnetic field and particles were
imposed at the boundaries of the computation region.

f ej v( )
ne j,

2πv e, th j,( )3/2
--------------------------------=

×
v x

2 v y
2 v z v e j,–( )2+ +
2v e, th j,

-----------------------------------------------------– 
  ,exp

j 1 2;,=

nejj∑ nejj∑

ωpe
1–
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The number of particles in a cell was approximately
equal to 30.

3. SIMULATION RESULTS

3.1. Homogeneous Electron Beams

In the initial state, the plasma is neutral and the net
plasma current is zero, so that both the electric and
magnetic fields are absent. The electric and magnetic
fields arise due to the onset of instability. The trans-
verse (with respect to the electron beam propagation
direction) component of the magnetic field is mainly
generated. This is seen in Fig. 1, which shows the time
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dependences of the squares of the magnetic field
strength, the squares of the transverse and longitudinal
components of the electric field, and the averaged
squares of the transverse and longitudinal components
of the electron velocity. The squares of the electric and

magnetic fields are normalized to 8πn0 , and the
squares of the velocity components are normalized to

. The time is in units of .

It is seen that all of the quantities vary most rapidly
within the time interval 15 < t < 25, during which the
isotropization of the electron velocity occurs: the longi-
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Fig. 2. (a–d) Distributions of the z-component of the electric
field and the magnetic field in the plane z = 44 and (e–h) the
surfaces of a constant value of the z-component of the elec-
tric current density jz for different instants from t = 25 to 40
with a time step of δt = 5. In the initial state, the electron
beams are homogeneous.
tudinal kinetic energy decreases, while the transverse
energy increases. This process is accompanied by a par-
tial transformation of the electron kinetic energy into
the energy of electric and magnetic fields. Since both
the transverse and longitudinal field components are
generated, we may conclude that the perturbations with
the wave vector directed at an angle of about 30° with
respect to the electron beam propagation direction are
the most unstable. This agrees with analytical results
[21]. By the time t = 20, when the magnetic field
reaches its maximum, the efficiency of transformation
of the electron kinetic energy into magnetic field
energy is about 20%. Then, the magnetic field decays.
In this stage, the longitudinal component of the electric
field appreciably increases. This fact, together with the
change in the topology of the magnetic field (see
Fig. 2), allows us to suppose that the magnetic field
decays due to collisionless reconnection of magnetic
field lines.

Figure 2 shows (a–d) the distribution of the z-com-
ponent of the electric field (shades of gray) and the
structure of the magnetic field (arrows) in the (x, y)
plane at z = 44 and (e–h) the surfaces of a constant
value of the z-component of the electric current density
jz for different instants from t = 25 to 40 with a time step
of δt = 5. One can see the formation of helical current
filaments and the corresponding structure of the mag-
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Fig. 3. Same as in Fig. 1, but for finite-size electron beams.
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netic field with X- and O-type null points in the plane
z = 44. The magnetic field is nonsteady, and, in the
vicinities of X points, current sheets arise and disap-
pear. These current sheets are clearly seen in plot (b) at
8 < x < 22 and y = 35, in plot (c) at x = 35 and 5 < y <
15, and in plot (d) at x = 17.5 and 20 < y < 30. During
the evolution of the system, the longitudinal electric
field is generated, which can lead to the acceleration of
a small fraction of particles.

3.2. Finite-Size Electron Beams

In this case, the electron beams are initially located
in a cylindrical region of radius R = 20∆x. As in the pre-
vious case, in the initial state, the plasma is neutral and
the net plasma current is zero, so that both the electric
and magnetic fields are absent. The fields arise due to
the onset of instability. As previously, the transverse
(with respect to the electron beam propagation direc-
tion) component of the magnetic field is mainly gener-
ated. This is seen in Fig. 3, in which the same time
dependences as in Fig. 1 are shown.

It is seen that all of the quantities vary most rapidly
within the time interval 12.5 < t < 17.5. As in the previ-
ous case, both the transverse and longitudinal field
components are generated. Hence, we may conclude
that the perturbations with the wave vector directed at
an angle of about 30° with respect to the electron beam
propagation direction are the most unstable. By the
time t = 16, when the magnetic field reaches its maxi-
mum, the efficiency of transformation of the electron
kinetic energy into magnetic field energy is about 13%.
The decay of the magnetic field is accompanied by an
appreciable increase in the longitudinal component of
the electric field.

Figure 4 shows (a–d) the structure of the magnetic
field in the (x, y) plane at z = 50 and (e–f) the surfaces
of a constant value of the z-component of the electric
current density jz for different instants: t = (a, e) 5, (b, f)
10, (c, g) 15, and (d, h) 25. In the initial stage of insta-
bility (Figs. 4a, 4e), several relatively small-scale fila-
ments with a transverse size of about the collisionless
skin depth are formed. Note that similar structures were
observed in 2D (with three velocity components and
three electric and magnetic field components) numeri-
cal simulations of a similar problem [22]. Then, the
magnetic field and electric current decay. A significant
difference of 3D relaxation from 2D relaxation (which
was investigated in detail in [22, 23] using numerical
simulations for almost the same parameters of the prob-
lem) is that the electric current rapidly decays during
3D relaxation. In the 2D case, fairly long-lived ring
structures were observed in [22, 23]. Inside these struc-
tures, the current flows in one direction, while outside
of them, a neutralizing current flows in the opposite
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
direction. In the 3D case, for the chosen parameters of
the problem, such structures were not observed.

4. CONCLUSION

The collective evolution of electron beams in a
plasma is investigated using 3D PIC simulations. In the
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Fig. 4. (a–d) Distributions of the z-component of the electric
field and the magnetic field in the plane z = 50 and (e–h) the
surfaces of a constant value of the z-component of the elec-
tric current density jz for different instants in the case of
finite-size electron beams.
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initial stage, the filamentation instability develops.
Then, the filaments merge. A significant difference of
3D relaxation from the previously investigated 2D
relaxation is that 3D relaxation proceeds more rapidly,
which is related to magnetic reconnection in a colli-
sionless plasma. One of the possible reasons for faster
reconnection may be the onset of instabilities that result
in the excitation of small-scale (along the z-axis) per-
turbations and the anomalous plasma resistivity (as is
known, this is impossible in the 2D case). Another rea-
son may be related to the difference in the magnetic
field topology in 2D and 3D geometries. A more
detailed study of both the anomalous resistivity and 3D
magnetic reconnection in a collisionless plasma goes
beyond the scope of this brief communication and is the
subject of our further study.
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Abstract—A space charge lens is proposed to focus intense beams of negative hydrogen ions. The focal length
of the lens is determined as a function of the parameters of the beam and the gas medium. It is demonstrated
experimentally that the lens efficiently focuses H– ion beams with currents of up to ~30 mA and energies of
~10 keV. The measured focal lengths are in good agreement with the calculated ones. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The idea of using space charge fields to focus beams
of positive ions was first proposed by Gabor [1] and
later developed by Morozov [2]. That such a lens is
highly efficient was confirmed in a number of experi-
ments (see, e.g., [3]). The main advantages are its high
lens power at a relatively low energy cost and the pos-
sibility of focusing high-current beams and controlling
spherical aberrations. The negative space charge of the
lens is produced by electrons that either escape from
the lens electrodes due to ion–electron emission or are
brought to the lens from an external thermoemitter. The
electrons are confined by the magnetic field, whose
field lines are also the electric field equipotential lines;
this fact is used to control the radial distribution of the
electric field. In such a system, ionization of the resid-
ual gas by an ion beam is a parasitic process, which
substantially limits the applicability of the lens in the
steady-state case. At high gas pressures, this can lead to
breakdowns, which destroy the structure of the focus-
ing electric field, whereas, at low pressures, the ions
accumulating on the axis can cause both high lens aber-
rations and specific electrostatic instabilities.

It should be noted that space charge lenses designed
to focus positive-ion beams cannot be applied to nega-
tive-ion beams because, in the latter case, positive ions
must be used. The idea of using a space charge lens to
focus negative-ion beams is based on the employment
of positive ions created during gas ionization by the
beam, which is a parasitic process when focusing posi-
tive-ion beams. Since electrons are also produced dur-
ing ionization, the required positive space charge can
only be created if the electrons are extracted by an elec-
tric field. In this case, the positive ions stay in the sys-
tem for a sufficiently long time due to their inertia. The
simplest focusing system can be a metal cylinder coax-
ial with the beam and two electrodes at the cylinder
ends. The electrodes must be transparent for the beam;
i.e., they should be either gridlike or ringlike. Applying
a positive (with respect to the central electrode) poten-
tial to the peripheral electrodes should result in the
1063-780X/01/2704- $21.00 © 20335
extraction of electrons and the formation of the
required positive space charge inside the cylinder. Note
that, to extract the electrons efficiently, it is necessary
to apply a sufficiently high potential at which the length
of the space charge sheath is comparable with the sys-
tem length. Due to the relatively low density of the
beam plasma (~108 cm–3), this can be achieved at a volt-
age of 100–1000 V between the lens electrodes.

By supplying a gas directly to the cylinder, the
required ionization can be achieved without a substan-
tial increase in the pressure beyond the lens.

2. ESTIMATES OF THE POWER 
OF A SPACE CHARGE LENS

Obviously, the proposed focusing can be attained
only if the space charge of the positive ions that are pro-
duced due to gas ionization exceeds that of the beam
ions. This sets a lower limit on the gas pressure. The
required gas density, which can be determined based on
the balance equation for positive ions, is

(1)

where na is the gas density; σi is the cross section for
gas ionization by the beam ions; v+ and v– are the
velocities of the escaping positive ions and beam ions,
respectively; and r0 is the beam radius [4]. If the beam
propagates freely and condition (1) is satisfied, then the
potential of the beam is positive with respect to the
periphery and its value is determined by the mean ther-
mal energy of plasma electrons, which, in turn, is deter-
mined by Coulomb collisions with the beam ions. In
this case, the focusing fields that arise in the beam with
a density of ~108 cm–3 attain only several V/cm and,
thus, can only be used for better transportation of
weakly divergent beams.

Generally, in order to focus a beam extracted from a
single hole, a lens with a focal length of about 10–20 cm
is required, which calls for radial fields of ~100 V/cm.
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In the system in question, such fields can only be
attained if almost all of the electrons are removed from
the focusing region. If this condition is satisfied, then
the electron space charge can be neglected and the
focusing capabilities of the lens can be relatively easily
estimated.

To calculate the focusing field, we use the disconti-
nuity equation for positive ions, Poisson’s equation for
the potential, and the equation of motion of positive
ions in the radial electric field:

(2)

(3)

(4)

Here, λi is the mean free path of the beam ions with
respect to gas ionization and V+(ri , r) is the velocity of
a positive ion that is produced at the point ri and reaches
the point r.

Using Eqs. (2) and (4), we obtain the expression for
the density of positive ions in a uniform negative-ion
beam:

(5)

If the positive ion density is uniform along the radius,
then the potential distribution is

(6)

where ϕa is the radial potential drop in the beam. Then,
the positive ion density is

(7)

From Eqs. (3) and (7), we derive the equation for the
radial potential drop in the beam:

(8)

where ϕ– =  = U– is the potential drop in
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It is seen from Eq. (8) that, at

(9)

(i.e., under conditions of strong overneutralization of
the beam space charge), the solution to Eq. (1) is

(10)

In the opposite case (ϕ– @ ϕa), which corresponds to the
quasineutral mode and can be attained by increasing
the beam current, we have

(11)

It follows from Eqs. (9) and (10) that, as the beam cur-
rent increases, the radial potential drop ϕa first
increases and then reaches a maximum value, which
does not depend on the beam current.

It should be noted that the relation between ϕa and
ϕ– , which is necessary for determining the operating
mode of the lens, is not convenient in practice because
ϕa is unknown. However, it is easy to show that this
relation is analogous to that between the known quanti-
ties ϕn and ϕ–; i.e., the quasineutral mode occurs at

(12)

whereas the strong overneutralization mode takes place
at

(13)

It follows from the above relations that radial fields
higher than 100 V/cm can be attained for the beam of
negative hydrogen ions with an energy of ~10 keV in a
lens with a length of ~10 cm at a gas (argon, krypton,
or xenon) pressure of ~10–3 torr.

Using the procedure from [5], we obtain the expres-
sion for the lens power:

(14)

Substituting expressions (10) and (11) for ϕa into
Eq. (14), for high beam currents (the quasineutral
mode), we obtain

(15)
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whereas, for low currents, we have

(16)

It follows from Eq. (15) that the required focal length
of ~10 cm is attainable for the above lens parameters.

In summary, we note that the main process that lim-
its the applicability of the lens in question is the loss of
negative ions due to charge exchange in collisions with
gas atoms. To minimize the ion loss, the lens length L
should be shorter than the charge-exchange mean free
path –λ–0. According to Eq. (16), this requires that the
condition

(17)

be satisfied, which, in turn, limits the beam current den-
sity at a given ion energy by the value

(18)

It follows from inequality (17) that, for argon at a pres-
sure of P ≈ 10–3 torr and beam-ion energy U– ≈ 10 keV,
the lens focal length f ≈ 10 cm can be attained at the cur-
rent density of a negative-ion beam j– > 4.5 mA/cm2.

3. EXPERIMENTS ON FOCUSING AN ç– BEAM 
WITH A SPACE CHARGE LENS

A schematic of the experimental device is shown in
Fig. 1. An H– beam with a current of ~10–30 mA and
ion energy of ~10 keV was extracted from a surface
plasma source 1; the beam was formed and deflected
with the help of an ~2-kG magnetic field created by
magnets 2. Collectors 7 (~10 cm in diameter) and 6
(2 cm in diameter) were used to measure the beam cur-
rent and the current density, respectively. A space
charge lens was placed ≈20 cm away from the source
emission slit. The distance from the outlet plane of the
lens to the collector was ≈30 cm. For such a system
configuration, the beam radius should be minimum at a
focal length of 12 cm. The lens design was as follows.
Inside a grounded cylindrical stainless steel case 3 with
an external diameter of 10 cm, length of 13 cm, and
diameters of the inlet and outlet diaphragms of 5 cm,
there was a 10-cm-long and 7-cm-diameter metal cyl-
inder 5. This cylinder ensured a uniform gas pressure
distribution inside the lens. The cylinder was either
grounded or under the potential of electrode 4 (this did
not significantly affect the lens focusing properties). A
cylindrical 5-cm-diameter and 10-cm-long electrode 4
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made of stainless steel mesh was mounted inside elec-
trode 5 at its ends with the help of dielectric rings. The
potential of electrode 4 could be varied within a range
from 0 to –1500 V. There were two pipes on the case
outer wall, one of which served as a gas inlet and the
other one was used to measure the pressure in the lens.
This pressure differed by more than one order of mag-
nitude from that in the beam drift chamber.

Either argon, krypton, or xenon was used as the
working gas. Such a choice was dictated by both their
relatively high ionization cross sections and relatively
high inertia of positive ions created due to ionization.
Both these factors promoted efficient focusing of the
negative-ion beam.

Before considering the experimental results, we first
estimate the critical pressure above which the space
charge of the positive ions created due to gas ionization
is greater than the space charge of the negative-ion
beam. Let us assume that the mean energy of the ions
created due to gas ionization is ~1 eV. Then, based on
formula (1) and the cross sections taken from [6], for a
beam with the above parameters, we have P0 ~ 1.5 ×
10–4, 4 × 10–5, and 6 × 10–5 torr for argon, krypton, and
xenon, respectively. At pressures higher than P0, the
production rate of positive ions is proportional to the
pressure; however, their charge density increases more
slowly because the rate with which the ions escape in
the radial direction also grows due to an increase in the
radial potential drop.

The experiments showed that, at pressures higher
than the critical one, the negative-ion beam is focused
in accordance with the above estimates. The lens focus-

........................................................

........................................................

1

2
3

4 5

6
7

Working gas To vacuum gauge

H–

–U

Fig. 1. Schematic of the device: (1) source of H– ions,
(2) deflecting magnets, (3) grounded case, (4) 5-cm-diame-
ter gridlike cylindrical electrode, (5) 7-cm-diameter metal
cylinder, (6) 2-cm-diameter collector for measuring current
density, and (7) 10-cm-diameter current collector.
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Fig. 2. Compression ratio j– /j–0 of an H– beam vs. the neg-
ative potential at the decelerating cylinder for different pres-
sures of argon in the lens: (1) 3 × 10–4, (2) 7.6 × 10–4,
(3) 1.5 × 10–3, (4) 2.2 × 10–3, (5) 3.6 × 10–3, and (6) 6.4 ×
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Fig. 3. Compression ratio j/j0 of an H– beam vs. pressure in
the space charge lens for (a) argon, (b) krypton, and
(c) xenon (1) in the case when electrode 5 is under the
potential of electrode 4 and (2) for the grounded electrode 5;
the beam current is 15 mA, and the beam-ion energy is
10 keV.
ing capabilities are clearly demonstrated in Fig. 2,
which presents the compression ratio of an H– beam at
different pressures of argon as a function of the voltage
between the lens electrodes, namely, the grounded case 3
and gridlike electrode 4. We define the compression
ratio as the ratio of the maximum current density with
applying the optimum potentials to the electrodes to
that without applying any potential. The curves agree
with the above qualitative considerations. As the volt-
age increases, the beam first contracts but, starting from
V ~ 200 V, all the curves saturate. This can be explained
by the fact that, at V > 200 V, the electron density in the
beam becomes so low that the radial potential drop is
determined mainly by the positive and beam ions. The
higher the pressure, the stronger the dependence of the
compression ratio on the voltage, which is caused by an
increase in the positive space charge. The maximum
compression ratio first increases (curves 1–3) and then
falls (curves 4–6), which can be explained by the beam
overfocusing. This assumption was confirmed by spe-
cial experiments in which a metal plate with two holes
and a fluorescent screen, which served for viewing the
hole images, were placed 4 and 22 cm away from the
outlet diaphragm, respectively. At the optimum poten-
tials applied to the lens electrodes, the increase in the
xenon pressure resulted in the images first approaching
each other until they merged together at fairly high
pressures and, then, moving apart in the direction oppo-
site to their initial positions with respect to the center,
which unambiguously evidences the beam overfo-
cusing.

The above considerations also agree with the depen-
dences of the beam compression ratio on the pressure
for all three gases (Fig. 3). It is seen that all of the
curves are similar in character; first, the compression
ratio increases, and, then, it falls.

The optimum compression ratio is approximately
the same for all three gases (~4). Based on this, we may
argue that the fall of the curves that occurs at high pres-
sures in argon and krypton is related to the beam over-
focusing, as is the case for xenon. The decrease in the
optimum pressure upon increasing the mass of positive
ions can also be easily understood. Finally, the corre-
spondence of the maximum compression ratio to a
focal length of ~12 cm at the given system configura-
tion can be used to compare the experimental data with
the calculated ones. Let us consider the case of argon,
whose optimum pressure is ~3 × 10–3 torr. According to
Eq. (16), for a beam current of 15 mA, the calculated
focal length is ~20 cm. This value is fairly close to the
measured one (f ~ 12 cm).

In summary, in this study, the focusing of a nega-
tive-ion beam with a space charge lens has been pro-
posed and implemented. Such focusing is of practical
importance for beams with relatively high current den-
sities, in which a sufficient positive space charge can be
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
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accumulated without significant loss of the beam ions
due to charge exchange.
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Abstract—Equations for the motion of an individual dust grain in the double layer of a negatively charged
cylindrical probe in a glow discharge plasma are derived and solved numerically. The distribution of the electric
potential near the probe is determined, and the grain charge is calculated as a function of the distance from the
probe for different probe potentials. The trajectories of grains with different initial energies are traced. An anal-
ysis of the grain trajectories shows that, at a certain distance from the probe, high-energy grains may be
recharged; i.e., the grain charge may change sign. The grains are found to have no direct effect on the probe
current in a dusty plasma of a glow discharge. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Probe diagnostics are of considerable interest for
experimental investigations of dusty plasmas [1, 2]
because they provide local measurements of the main
plasma parameters (the electron and ion densities, the
plasma temperature, and the electron energy distribu-
tion function). In dusty plasmas, the current–voltage
characteristics of the probe are far more difficult to
interpret because they are strongly affected by the third
charged component—dust grains. Also, dusty plasmas
are characterized by a new parameter, dust grain
charge, which depends on both the grain size and the
local parameters of the surrounding plasma.

An analysis of the probe measurements in a gas-dis-
charge dusty plasma requires a knowledge of the
behavior of dust grains in a perturbed plasma near the
probe. In order to investigate this problem in more
detail, it is of interest to model the behavior of an indi-
vidual dust grain. The distinctive feature of the grain
behavior is that the grain charge Zd changes as the grain
moves in an inhomogeneous plasma. The grain charge
is governed by the potential difference between the
grain surface and the surrounding plasma and thus can
be affected by the local densities and temperatures of
the electrons and ions.

Here, we consider an individual spherical grain
moving in the field of an infinitely long, vertically ori-
ented cylindrical probe, in which case the gravitational
force can be neglected because it affects only the grain
motion along the probe. We also ignore the drag and
deceleration forces that are exerted on the grain by the
ions and neutrals, respectively, although these forces
may be important in the immediate vicinity of the probe
in a high-density plasma. We assume that the dusty
plasma is tenuous and nonisothermal (Te @ Ti) such
that the mean free path λ of charged particles is much
1063-780X/01/2704- $21.00 © 0340
longer than the characteristic dimensions of the prob-
lem (this assumption corresponds to the so-called
molecular regime). In the absence of emission pro-
cesses, dust grains in such a plasma absorb highly
mobile electrons and acquire a negative charge [3]. The
dust grain is assumed to be small (Rd ! D ! λ, where
Rd is the grain radius and D is the Debye radius), and
the probe is assumed to be large enough to satisfy the
condition Rp @ D, where Rp is the probe radius. The
probe potential relative to the plasma is assumed to be
negative, which is peculiar to probe measurements in
experiments with gas-discharges [4–7]. For these con-
ditions, the theory of probe measurements is developed
fairly well; in particular, the problem of determining
the potential distribution and electron and ion densities
in the perturbed region near the probe in a nonisother-
mal plasma has been solved quite thoroughly [6].
Hence, it is expedient to treat our problem using the
results obtained in [6].

2. BASIC EQUATIONS

In order to systematically describe the motion of a
dust grain in the perturbed region near the probe, it is
necessary to solve the set of equations consisting of the
equation of grain motion, the equation describing the
kinetics of grain charging, and the equation for the
potential distribution in the perturbed plasma (the so-
called plasma–sheath equation).

Under the above assumptions, the grain experiences
only an electrostatic force. Since the grain motion
along the probe is unimportant, the problem as formu-
lated reduces to a two-dimensional problem of the grain
motion in the horizontal plane. Specifically, in the per-
turbed plasma near the probe, the dust grain moves in a
centrosymmetric electric field, in which case we can
2001 MAIK “Nauka/Interperiodica”
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use the well-known equations of motion of classical
mechanics for a point particle in the field of centrosym-
metric forces. In the plane of the grain trajectory, we
introduce a polar coordinate system (r, θ) with the ori-
gin at the center of the probe and write the equations of
grain motion in the form

(1)

where U(r) is the probe potential at the point r, L is the
momentum of the grain, and Md is the grain mass. Since
the grain charge Zd is a variable quantity, it, together
with the potential U(r), governs the law according to
which the force changes. The constants of grain motion
are determined by the energy of the grain and its kinetic
momentum. The latter can be conveniently expressed in
terms of the kinetic energy K0 and the impact parameter
p, which is equal to the distance from the center of
forces to the straight line along which the grain starts to
move. In this case, the equations of grain motion (1)
become

(2)

We will trace the trajectory of a dust grain through-
out the entire perturbed region near the probe, includ-
ing the space-charge layer (or the double layer), in
which the potential changes abruptly, and the quasineu-
tral (plasma) region. In contrast to [7, 9, 10], in which
the plasma region and double layer were treated sepa-
rately under the assumption that the potential at the
plasma–layer boundary vanishes, we will solve a com-
plete plasma–sheath equation in order to obtain a con-
tinuous distribution of the potential over the entire per-
turbed region. In this approach, the potential U0 at the
point r0 from which the grain starts moving is nonzero
(although it can be very low for large r0). We assume the
initial grain charge Zd0 to be equilibrium, i.e., to corre-
spond to the potential U0 at the starting point.

Probe measurements are usually performed in
quasi-steady electric fields, which can be regarded as
being potential and in which the displacement currents
can be neglected. Under such conditions, the electric
field distribution near the probe satisfies Poisson’s
equation, which can be written as (ε = 1)
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We can also neglect the absorption of electrons by the
probe and describe the electron density by the Boltz-
mann distribution

(4)

In contrast, the absorption of ions by the probe can-
not be neglected, so that the ion density is essentially
nonequilibrium and cannot be described by the Boltz-
mann distribution. In order to calculate the ion density
distribution, we turn to an approach that assumes the
existence of an absorbing surface other than the probe
surface [5–7]. We will use the terminology introduced
by Kozlov [6], who called the radius of the absorbing
surface the “limiting radius” and the ion motion the
“limiting motion.” He showed that, for Te @ Ti and
Rp @ D, the ions in the field of a negative probe experi-
ence precisely the limiting motion, in which case the
radius of the limiting surface is larger than the maxi-
mum radius of the space-charge layer. The limiting
radius is determined by the local maximum of the
effective ion potential energy

(5)

where l is the angular momentum of an ion and mi is its
mass. The plot of this function is presented in Fig. 1.
The reflection point (the minimum distance from the
probe) can be defined as the point at which the horizon-
tal line corresponding to the total ion energy intersects
the related curve Ueff. As the impact parameter (and,
accordingly, the angular momentum l) decreases, the
reflection point is monotonically displaced toward the
probe up to the point rL, at which the maximum (for the
given lL) value of the function Ueff is equal to the total
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Fig. 1. Plot of the effective ion potential energy Ueff(r) for
l = lL.
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ion energy. As l becomes less than lL, the minimum dis-
tance decreases from rL to r1 in a jumplike manner. The
radius rL can be determined from the maximum of the
effective potential energy function plotted for l = lL:

(6)

For a cylindrical probe, the key role is played by the
projection vn of the ion velocity on the plane perpendic-
ular to the probe axis. To simplify the calculations for
the case of a limiting motion, we employ the monoen-
ergetic ion model (MIM); i.e., we switch from the real
ion velocity distribution to the monoenergetic distribu-
tion [6–8]

(7)

where v0n is the initial ion velocity in an unperturbed
plasma, δ(x) is the delta function, and E0n is equal to the
plasma ion temperature to within a factor on the order
of unity (although exact calculations give E0n = πkTi/4,
we will not distinguish between E0n and kTi). We are
justified in using a monoenergetic (rather than real) ion
distribution function, because, near the probe, low-
energy (Te @ Ti) ions are affected by an accelerating
electric field and thereby acquire velocities much
higher than the initial ones, so that the current carried
by the ions is essentially unaffected by their distribu-
tion. Hence, the velocities of the ions in the plasma
coincide in absolute value and are randomly oriented in
space, in which case rL is the limiting radius in terms of
the ion energy E0n.

erL
3 dU
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Fig. 2. Collection of the ions by a negatively charged dust
grain. Shown are the grain trajectory and the cross section
for collisions between the ions and the dust grain.
In accordance with the above analysis, we can spec-
ify the radial profile of the ion density as follows [6]:

(8)

Here and below, U(r) stands for the absolute value of
the potential.

In the perturbed region near the probe, the charge of
the grain is determined by the electron and ion currents
onto its surface and by its radial velocity ur = dr/dt:

(9)

where Ie and Ii are the electron and ion currents toward
the grain surface at a distance r from the probe.

In the orbital motion limit (OML) [3, 5, 7, 9], the
electron current is described by the equations [10]

(10)

where ne is the local electron density (4) and Ud is the
floating potential of the grain with respect to the poten-
tial U(r) of the surrounding plasma. For a spherical
grain with Rd ! D, the floating potential Ud and charge
Zd are related by Zde = UdRd .

Let us find the ion current onto the grain surface,
neglecting the distortion of the probe field and assum-
ing that the potential of the layer changes only slightly
across the grain field region (i.e., in the vicinity of the
grain, the layer parameters ne , ni , fe , fi are constant). We
again assume (as we did in deriving the radial profile of
the ion density) that the ion energies in an unperturbed
plasma are the same, E0 ≈ kTi; i.e., we again employ the
MIM. With the absorbing surface in the perturbed
region, no grains whose trajectories are screened by the
probe can occur at the point r. The ion current onto the
grain surface is equal to the ion flux through the surface

element of area π , where pmax is the maximum
impact parameter at which the ions can reach the grain
surface (Fig. 2). Since, in the OML, the role of the
absorbing surface is played by the grain surface, we
have

(11)
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(12)

in which case the ion current is equal to

(13)

where the ion density ni is defined by formulas (8).

3. NUMERICAL SOLUTION 
AND DISCUSSION OF THE RESULTS

Let us formulate the initial and boundary conditions
for our problem. The first boundary condition deter-
mines the value of the potential at the probe surface:

(14)

At the limiting surface, we have

(15)

Here, the condition on the radial derivative of the
potential is derived from expression (6) and the energy
conservation law. Now, the plasma–sheath equation (3)
can be solved by the shooting method: we must find the
value of UL at which the solution to the equation in the
region r < rL satisfies condition (14). The resulting
value of UL gives the explicit boundary conditions (15),
with which the plasma–sheath equation (3) can be
readily solved for the region r > rL  by using, as the ini-
tial conditions, the polar radius, radial velocity, and
polar angle of the grain at t = 0:

(16)

Then, using Eqs. (2)–(4) and (8)–(13) with the
boundary and initial conditions (14)–(16), we can
describe the grain motion in the perturbed region near
the probe. To simplify the solution of the problem, we
convert the equations to the dimensionless form. We
adopt the limiting radius rL and Debye radius D =
(kTe/4πn0e2)1/2 as scale lengths and also the electron
temperature kTe and potential kTe/e as energy and
potential scales, respectively. The dimensionless vari-
ables introduced in such a way are as follows:

(17)

v i
2
mi

----- E0 eU r( )+[ ]
 
 
 

1/2

,=

Ii πpmax
2

eniv i,=

U Rp( ) U p.=

U rL( ) UL,=

dU
dr
------- rL( ) 2

erL
------- E0n eUL+( ).–=

r t 0=( ) r0, ur t 0=( )
2K0

Md

--------- 1 p
2

r0
2

-----–
 
 
  1/2

,–= =

θ t 0=( ) p
r0
----.arcsin=

x
r
rL
----, γ

Ti

Te

-----, γd

K0

kTe

--------, ϕ eU r( )
kTe

---------------.= = = =
PLASMA PHYSICS REPORTS      Vol. 27      No. 4      2001
Note that numerical calculations were carried out with
the equations normalized to the (most suitable) limiting
radius rL, whereas, in plotting the diagrams, we
expressed the length scales of the problem in units of
the Debye radius.

We numerically traced the trajectories of a dust
grain with a radius of 1 µm and a mass of 4.2 × 10–12 g
in an argon plasma (mi = 6.63 × 10–23 g) with 1-eV elec-
trons, the ion temperature being equal to the room tem-
perature (γ = Ti/Te = 0.026). In this case, the value of the
variable γd is the grain energy in electronvolts and the
value of the variable ϕ is the absolute value of the space
potential in volts. In calculations, we also put Rp/D = 10
and Rd/D = 0.01. For the above values of Rd and kTe, the
latter relationship also determines the Debye radius and
plasma density: D = 0.01 cm and n0 = 5.5 × 109 cm–3.

The calculated radial profiles of the electric field
near the probe are illustrated in Fig. 3. From Fig. 3a, we
can see that, for a sufficiently high probe potential (ϕp =
eUp /kTe @ 1), the limiting radius is larger than the max-
imum radius of the space-charge layer. This result con-
firms the estimates made in [6].

Let us consider the grain motion in the probe field
with the potential ϕp = 10. Let the grains start moving
at the point x0 = 4, at which ϕ0 = 0.02 and Zd0 = –2117.
The trajectories of grains with different initial energies
are shown in Fig. 4. That the shape of trajectories 1 and
2 is characteristic of grains scattered by a centrosym-
metric repulsive force is explained as being due to the
negative initial grain charge. Trajectories 5–8 demon-
strate that the probe can attract grains with sufficiently
high initial energies. This possibility is illustrated by
the plots in Figs. 5 and 6.

Figure 5 demonstrates how the charge of the grain
changes as it moves near the probe and also presents
radial profiles of the electron and ion densities, ne and
ni , as well as the steady-state grain charge calculated
from the equation Ie + Ii = 0 as a function of distance
from the probe. In the range Zd < 0, the grain charge is
seen to have a minimum; this indicates that the charge
of the grain that starts moving in the quasineutral region
decreases (i.e., increases in absolute value). This result
was obtained by exact calculation of the electron and
ion charging currents along the entire grain trajectories
by using formulas (10) and (13). We can see that, in the
perturbed region far from the probe, (r – Rp)/D > 10 for
ϕp = 10, the ion current (13) onto the grain surface
decreases at a faster rate than the electron current. As
the grain approaches the so-called ion sheath, in which
the electron density is negligibly low and the electron
current sharply decreases, the grain charge begins to
increase (i.e., to decrease in absolute value). Note that,
at a certain distance from the probe, the charge of the
moving grain changes sign: a negatively charged grain
becomes positively charged. We will call this distance
the “recharging distance.” The grain is recharged in the
region where the ion current dominates over the elec-
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tron current. A comparison between the steady-state
grain charge and the charge obtained in solving Eq. (9)
allows us to determine the applicability range of the
steady-state approximation for calculating the dust
grain charge. We can clearly see that the steady-state
approximation is valid at distances longer than the
recharging distance. At shorter distances, the grain
charge differs from that obtained in the steady-state
approximation because of the delay in the charging pro-
cess. The delayed charging can be explained by the fact
that, within the ion sheath, the grain charge is governed
not by the electrons (as is the case in an unperturbed
plasma) but by far less mobile ions. As a result, there is
not enough time for a sufficiently fast dust grain to
acquire a steady-state charge corresponding to the
given spatial point.
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Fig. 3. Distribution of the electric potential near a cylindri-
cal probe for different probe potentials ϕp = eUp/kTe =
(1) 10, (2) 30, and (3) 50.
However, according to Fig. 4, the energies of the
grains that can reach the probe surface (and generally
can move in a double layer) should be very high, much
higher than those observed in real experiments. The
grains with energies corresponding to the experimen-
tally observed ones (usually up to 20 eV [11–13]) can-
not reach the probe nor can they enter the double layer,
which thus restricts the region where the dust grains
tend to distribute themselves around the probe. The
same result can also be obtained by estimating the
height of the potential barrier that the grain with energy
K0 and charge Zd can overcome. In fact, for K0 ~ 1 eV
and Zd ~ –103, the relationship U[Ç] ~ K0[eV]/Zd gives
a rather insignificant potential difference, U ~ –10–3 V.
Analogously, the energy required for a grain to
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Fig. 4. Trajectories of a dust grain in the perturbed region
near the probe with the potential ϕp = 10 for p = Rp and dif-
ferent initial kinetic energies of the grain: γd = K0/kTe =
(1) 500, (2) 5000, (3) 12600, (4) 12685, (5) 12690, (6) 12692,
(7) 12800, and (8) 15000.
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approach a probe with a potential of –10 V is estimated
as K0[eV] ~ ZdU[V] ~ 104 eV. Hence, we can conclude
that, for negative probe potentials, dust grains do not
directly affect probe measurements in gas-discharge
dusty plasmas, because they do not contribute to the
total probe current.

The dust grain that manages to acquire enough
energy (e.g., under the action of an external force) to
enter the double layer moves along a trajectory similar
to those shown in Fig. 4. Hence, we can determine the
charge of a dust grain (the ratio Ti/Te is to be deter-
mined in advance) by analyzing its trajectory in the fol-
lowing way. First, the experimentally recorded grain
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Fig. 5. Radial profiles of (1) the steady-state grain charge
and (2) the grain charge calculated for γd = 15000 with
allowance for a delay in the charging process. The profiles
were obtained for the probe potentials ϕp = (a) 10 and
(b) 30.
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trajectory should be compared with the calculated tra-
jectories in order to find the ratio Ti/Te . Then, the grain
charge Zd at an arbitrary point of the trajectory can be
determined in the OML. According to Fig. 6, in plas-
mas with different values of Ti/Te, the trajectories of a
grain capable of approaching the “recharging” surface
can be markedly different. This circumstance allows us
to achieve the desired accuracy in comparing the calcu-
lated and experimental trajectories and, accordingly, in
determining the dust grain charge.

4. CONCLUSION

We have derived a set of equations for the motion of
a dust grain in the perturbed plasma region near the
probe. Solving these equations numerically, we have
determined the potential distribution around the probe
and the radial profiles of the dust grain charge for dif-
ferent probe potentials. We have traced the trajectories
of dust grains having different initial kinetic energies
and moving in the perturbed region. Dust grains with a
negative charge of about 103 electron charges are
strongly repulsed by the probe electric field, so that
grains with low kinetic energies have no direct effect on
the probe current. An analysis of the grain trajectories
shows that high-energy grains may experience recharg-
ing; i.e., at a certain distance from the probe, the grain
charge may change sign. We have shown that the
steady-state approximation for calculating the dust
grain charge is valid on the outside of the recharging
surface, where the grain charge is negative. Also, an
analysis of the grain trajectories calculated for different
values of the ratio Ti/Te enabled us to propose a new
method for determining the grain charge in a dusty
plasma.

In deriving the equation for the grain charge, we
assumed that the ions and electrons move in the cen-
trosymmetric electric field of the grain and neglected
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Fig. 6. Trajectories of a dust grain near the probe for Up =
10 V, p = Rp, and K0 = 15 keV and for different electron tem-
peratures kTe: (1) 1, (2) 1.1, (3) 1.2, (4) 2, (5) 3, (6) 5, and
(7) 10 eV.
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the effects of the probe electric field and collective pro-
cesses associated with the asymmetry of the grain field
[14]. This approach is valid under the condition Rd ! D,
in which case the grain electric field at small distance
from the grain is described by Coulomb’s law, U ~
UdRd/r, because the space charge comes into play at
distances of about the Debye radius D from the grain
and farther out. The potential of the grain electric field
decreases to nearly zero over a very short distance
(smaller than the Debye radius) from the grain; the
change in the potential of the layer over this distance is
insignificant and can be neglected. For the same reason,
we can also ignore the distortion of the probe field by a
dust grain.

In addition, we neglected the drag and deceleration
forces that are exerted on the grain by the ions and neu-
trals, respectively, although these forces may be impor-
tant in certain situations. The ion drag force acting upon
a dust grain is important in examining the grain motion
in a layer around a probe with a high negative potential
such that the ions move preferentially in the radial
direction and the grain velocity is high. In this situation,
the ion drag force may act to push the grains in the layer
toward the probe and to partially counterbalance the
repulsive force exerted by the probe on the grains in the
region where the grain charge is negative (Zd < 0). In
turn, the neutrals act to decelerate the grains, especially
at high gas pressures. In order to further improve the
model proposed here, it is necessary to correctly
account for the effect of the ion drag force and the grain
deceleration by neutrals on the motion of dust grains in
systems with different parameters.
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Abstract—Chemical models of an atomic plasma based on exact asymptotic expansions are considered. It is
shown that, when developing the chemical models of a weakly nonideal plasma, taking into account highly
excited atoms results in corrections to the thermodynamic functions and a decrease in the ionization potential
that are quite different from those predicted by the Debye theory. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Let us consider a weakly nonideal (with respect to
the Coulomb interaction) partially ionized plasma con-
sisting of electrons, ions, and atoms. In [1–4], an
expansion of thermodynamic functions in power series
in the activity (ze of electrons and zi of ions) up to the

terms  and lnzk (where zk = gk , k = e, i; β =
1/T is the inverse temperature; and λk = (2πβ"2/mk)1/2,
gk, and µk are the thermal wavelength, statistical
weight, and chemical potential of the particles of kth
species, respectively) was obtained for such a plasma.
The expansion is based on the physical model [1, 3, 4]
in which the atomic plasma is assumed to be a mixture
of positively and negatively charged particles, namely,
nuclei and electrons interacting with each other via the
Coulomb potential. A grand canonical ensemble is con-
sidered. No assumptions about the initial atomic com-
ponent are made; it arises as a result of the pair quan-
tum mechanical interaction between the oppositely
charged particles. The final result is obtained by sum-
ming the convergent sequences of the ring and ladder
diagrams in perturbation theory. For the thermody-
namic potential Ω (Ω = –PV, where P is the pressure
and V is the system volume) and the total charge den-
sity n, one can obtain

(1)

(2)

Here, α = βe2χ is the plasma parameter; χ =
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zk
5/2

zk
5/2 λ k

3–
e

βµk

βΩ/V– βP=

=  ze zi+( ) 1 α
3
--- α 2

8
-----+ + 

  zezi

λ e
3

2
-----ΣP,+

n ze 1 α
2
--- α 2

4
-----+ + 

  zezi

λ e
3

2
-----ΣP.+=

4πβe
2

ze zi+( )
1063-780X/01/2704- $21.00 © 20347
the electron and ion activities; and ΣP is the convergent
Planck–Larkin partition function,

(3)

where gn and En are the statistical weight and the energy
of the bound atomic state with the principal quantum
number n. Relations (1) and (2) are written correct to
the terms z2 without taking into account quantum cor-
rections on the order of λeχ. This significantly simpli-
fies subsequent calculations with no loss of generality.
At high temperatures, the equations of state (1) and (2)
describe a fully ionized plasma (βP = 2n), whereas at
lower temperatures, they describe an atomic gas (βP =
n). Relations (1) and (2) are rarely used in calculations
because they require the determination of an intermedi-
ate quantity (the activity zk) and cannot be generalized
to a plasma with a more complex composition.

In practice, in order to calculate the thermodynamic
functions and composition of a partially ionized
plasma, a chemical model in which the plasma is
assumed to be a mixture of weakly interacting electrons
(Ne), ions (Ni), and atoms (Na) contained in a volume V
at a temperature T is most widely used [5]. For such a
mixture, it is possible to write the free energy F with a
correction ∆F, which accounts for the interaction
between free charges (in this paper, we do not consider
interatomic interactions or interactions between atoms
and charged particles). We know more than 20 versions
of the plasma chemical model. They differ in both the
method for calculating the contribution from the Cou-
lomb interaction to thermodynamic quantities and the
form of the atomic partition function. Twelve versions
were used in [6] to calculate the thermodynamic func-
tions and the composition of an atomic cesium plasma
and to analyze the scatter in the results obtained using
these models. Later on, a series of other plasma chem-
ical models [7–12] were developed. In most of the
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models, either the classical Debye theory [13] or its
modification for the grand canonical ensemble [2, 14]
was used to take into account the interaction between
free charged particles. Various methods for calculating
the atomic partition function may be conventionally
divided into three groups: (i) calculations according to
formula (3), (ii) the use of the so-called “nearest neigh-
bor” approximation (NNA) or the Fermi method [15]
(the models of the critical microfield [16] and conflu-
ence of lines may also be included in this group), and
(iii) calculations of the atomic partition function with
allowance for all the bound electronic states whose
energies exceed in absolute value the decrease in the
atomic ionization potential obtained with one of the
modifications of Debye theory [6]. Obviously, each of
the existing versions of the chemical model depends on
the way the electronic states in an atomic plasma are
separated into free and bound states. Nevertheless, the
existence of exact asymptotic expansions (1) and (2)
requires that the final result be independent of the cho-
sen way of separating the electronic states into free and
bound states, because all of the versions of the chemical
model of an atomic plasma under conditions when the
plasma is weakly nonideal with respect to the Coulomb
interaction describe the same plasma states as relations
(1) and (2) do. The way of choosing the atomic partition
function is studied in most detail in [16]. It is shown
that the partition function (3) significantly underesti-
mates the number of observed states, whereas the cal-
culations according to the third version greatly overes-
timate it.

In our opinion, there is a paradoxical situation in the
theory of a nonideal atomic plasma: despite the exist-
ence of exact asymptotic expansions (1) and (2), tens of
different modifications of the plasma chemical model
are employed in calculations. Naturally, the question
arises as to what version is the most accurate conse-
quence of the exact physical model based on the expan-
sion in power series in the activity in the grand canoni-
cal ensemble.

In this paper, we derive several nonideal plasma
chemical models based on the exact asymptotic expan-
sions (1) and (2) of thermodynamic quantities in power
series in the activity in the grand canonical ensemble.
We deduce expressions for the free energy F and relate
the profile of the atomic partition function to the correc-
tion for the Coulomb interaction between free charged
particles. It is shown that the Debye asymptotics for
both the decrease in the ionization potential and correc-
tions to thermodynamic functions is only valid if the
atomic partition function is determined by Eq. (3); for
any other version, such an asymptotics is absent. The
relative contribution of both corrections for the Cou-
lomb interaction in the equation of state and the
decrease in the atomic ionization potential is shown to
be much less than the corrections predicted by the
Debye theory.
2. RING DEBYE APPROXIMATION
IN THE GRAND CANONICAL ENSEMBLE

This approximation was first proposed in [2] and
then in [4, 8]. Let us determine the free energy for this
model in terms of the densities of free electrons (ions)
ne, i and atoms na. This is convenient for subsequent
analysis because most of the chemical models of a non-
ideal plasma are formulated in terms of the free energy.
Here and below, the basic point is the separation of the
total density of the plasma charged particles, defined by
Eq. (2), into two components, namely, the densities of
free charged particles and atoms. Following [4, 8], we
define the densities of free charged particles and atoms
as follows:

(4)

(5)

Let us consider the relation that links the grand ther-
modynamic potential Ω to the free energy F:

(6)

Eliminating the activities ze, i and using the above
relations for the chemical potentials µe, i , we obtain

(7)

The parameter α in Eq. (7) is related to the densities
of free charged particles ne, i by the expression that fol-
lows from Eq. (4):

(8)

where Γ = (βe2)3/2  is the coupling param-
eter characterizing the degree to which the plasma is
nonideal.

Using the conventional thermodynamic relations,
from Eq. (7), we obtain the equations of state and ion-
ization equilibrium:

(9)

(10)

In the limit in which the plasma is weakly nonideal
with respect to the Coulomb interaction (α  0) rela-
tions (7)–(10) have the Debye asymptotics. Indeed, the
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solution to Eq. (8) is Γ ≈ α; then, for the correction to
the free energy and for the equations of state and ion-
ization equilibrium, we obtain

(11)

(12)

(13)

Here, the most important result is that the ionization
equilibrium equation (13) contains the Planck–Larkin
partition function (3). As was mentioned above, this
sum incorrectly describes the contribution from highly
excited atomic states [16]; for this reason, some ver-
sions of the chemical model use the corrections to ther-
modynamic functions and the decrease in the ionization
potential described by expressions (9) and (10),
whereas the partition function is calculated according
to the second or third version (see Introduction) [6].
Such a modification of the ring Debye approximation is
not valid because it would lead to a discrepancy with
Eqs. (1) and (2) when calculating thermodynamic func-
tions.

3. DERIVATION OF THE CHEMICAL MODEL 
BASED ON THE EXPANSION IN THE GRAND 
CANONICAL ENSEMBLE WITH ALLOWANCE 

FOR HIGHLY EXCITED ATOMIC STATES

Let us consider another version of the plasma chem-
ical model that is based on the NNA for the atomic
component. In [17], using as an example the electron
state density determined for an atomic plasma in the
same approximations as for Eqs. (1) and (2), it was
shown that the sum ΣP in the expansions of thermody-
namic functions appears as a result of an integrable
state-density singularity that stems from the divergent
contributions from both the highly excited atomic
states and free charged particles.

In [18], this state-density singularity was eliminated
by substituting the pair approximation with the NNA
and taking into account the Debye correlations. It was
rigorously shown that the integration of the finite state
density does not influence the expansion thermody-
namic functions in power series in the activity up to the
terms z2. It was revealed that the highly excited atomic
states are naturally present in the plasma, but their
influence is neutralized if both the bound and free elec-
tronic states are taken into account. The Planck–Larkin
partition function appears as a result of such neutrali-
zation.

Let us derive the chemical model of an atomic
plasma from expansions (1) and (2) (which are accurate
up to the terms z2), using a definition for the atom den-
sity na based on the NNA, which is different from defi-
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nition (5). From a physical standpoint, this way of trun-
cating the atomic partition function is the most ade-
quate because it determines the characteristic atom size
using a simple physical rule formulated by Fermi [15]:
there are no charged particles inside an atom or, in other
words, an electron can form a bound state only with the
nearest ion [19]. This definition might be refined but the
main results obtained below will be the same. The state
density obtained in the NNA [18] corresponds to the
following atomic partition function:

(14)

(15)

where rn = a0n2 is the radius of an electron orbit with the
principal quantum number n and a0 = "2/me2 is the Bohr
radius. The quantity ωn is the Poisson probability that
there are no charges inside a sphere of radius rn.

Before deriving the chemical model, we make some
transformations of the partition function ΣN that will be
called for later. We rewrite sum (14) in the form of a
sum of the two summands

(16)

The main contribution to the first summand in
expression (16) is provided by the terms with the bound
state energies En ≥ T and, accordingly, orbit sizes less
than the Landau length βe2. For these states, provided
that βe2 ! rm (where rm is the mean interparticle dis-

tance defined by the relation 3/4π(ze + zi)  = 1), we
may assume that ωn ≈ 1; hence, the first summand is
close to the Planck–Larkin partition function (3). Tak-
ing into account that ωn differs from 1 when calculating
this summand would lead to an excessive accuracy
because the correction is proportional to z3. Conversely,
in the second summand, the states with large principal
quantum numbers n play a major role, because the state
statistical weight increases proportionally to n2. If the
number of the excited states taken into account by par-

tition function (14) is large enough (nmax ~  @ 1),
we may pass over to integration in the second summand
in Eq. (16) instead of summation over n:

(17)
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Substituting expression (15) into Eq. (17), we obtain

(18)

Taking the integral in Eq. (18), we have for ΣN

(19)

where

(20)

In expression (19), the function f1(α) describes the
contribution from highly excited atomic states to the
partition function. For brevity, we will omit the argu-
ment of the function f1(α).

To derive a chemical model, we again define the
densities of atoms and free charged particles using the
NNA partition function for the atoms:

(21)

(22)

It is important to note that the sum of these expres-
sions coincides with expression (2). In other words,
when defining the atom density na, any modification of
the partition function certainly changes the expression
for the density of free charged particles ne . Next,
repeating the same calculations as for Eq. (6), we
obtain for the free energy

(23)

Using conventional thermodynamic relations, we
obtain the equations of state and ionization equilib-
rium:

(24)
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(25)

Unlike Eq. (8), here, the parameter α is related to the
parameter Γ by a relation that follows from Eq. (22):

(26)

The expressions for the internal energy E and
enthalpy H are as follows:

(27)

(28)

Since f1(α) ≈ 0.32α at small values of α, it follows
from Eqs. (23)–(28) that taking into account excited
atoms radically changes the corrections for the Cou-
lomb interaction to all the thermodynamic functions
and decreases the atom ionization potential. Below, we
will consider this problem in more detail.

The partition function ΣN entering expression (23)
for the free energy depends on the volume V and densi-
ties ne, i . Some versions of the chemical model also use
partition functions similar to ΣN . Deriving the equa-
tions of state and ionization equilibrium from the free
energy equation brings up the question of differentiat-
ing ΣN over the volume and particle densities. Usually,
it is not recommended to carry out this differentiation.
However, in the version of the chemical model in ques-
tion, this differentiation is required to obtain the equa-
tions of state and ionization equilibrium consistent with
relations (1) and (2), the more so as formulas (24) and
(25) can be derived directly from relations (1) and (2).
When deriving Eqs. (24)–(28), the derivative of any
function ϕ(α) with respect to the variables V, ne, i , and
T can be represented as

(29)
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4. INFINITE-COMPONENT CHEMICAL MODEL 
OF AN ATOMIC PLASMA

In [12], a chemical model was developed in which
the atomic component was considered as a mixture of
an infinite number of components corresponding to
atoms in certain excited states. The atomic component
in the expression for the free energy is taken into
account as follows [12]:

(30)

where nk , λk , gk , and Ek are the density, thermal wave-
length, statistical weight, and energy of an atom in the
bound state k, respectively, and ωk is a Poisson proba-
bility [analogous to probability (15)] that there are no
particles inside the atomic orbit with the principal
quantum number k. After minimizing the free energy
over the densities, nk becomes proportional to ωk ,
which ensures the convergence of the partition func-
tion, which is nearly the same as ΣN defined by expres-
sion (14).

In [12], the last term on the right-hand side of
Eq. (30) is referred to as an “entropy” term. Note that
such a term was first introduced in the Fermi model;
however, including it in the expression for the free
energy in [12] looks somewhat artificial because all the
additions to F are determined only by the virial coeffi-
cients.

Let us derive the so-called infinite-component
model from relations (1) and (2). The densities of free
charged particles and atoms in the state with the princi-
pal quantum number k are

(31)

(32)

In Eq. (31), ωk coincides with that defined by
expression (15); hence, the sum of all nk coincides with
na defined by expression (21) and the overall particle
density coincides with that defined by expression (2).

Let us consider in more detail the origin of the
atomic constituent of free energy in formula (6):

(33)
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where Σk = gk . For the free energy, we obtain

(34)

It is seen from Eq. (34) that the entropy term origi-
nates naturally and the correction for the Coulomb
interaction coincides with the above correction (23),
which differs from the Debye correction. In [12], the
Debye correction was used to take into account the
Coulomb interaction, which would lead to a result dif-
ferent from relations (1) and (2). Expressing the free
energy in form (34) is more preferable than in form (23)
because, in the former case, the atomic statistical
weights are independent of the density and it is possible
to take into account the interaction of the excited atoms
with a plasma [12].

In our opinion, the entropy term has a more obvious
physical meaning. Let us present the Poisson probabil-
ity (15) in the form

(35)

where vk is a volume occupied by an atom in the kth
quantum state. Substituting ωk into the entropy term
and taking into account expression (32), we obtain

(36)

Since summation over all the quantum states pro-
vides the total atom density in a plasma

(37)

the quantity

(38)

can be regarded as a fraction of the plasma volume
occupied by atoms in all of the states and the parameter
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can be regarded as an averaged (effective) volume of an

atom. Using Eqs. (36) and (38), the sum –neln  –

niln  – lnωk in (34) can be represented in the

linear approximation in α as

(40)

Representation (40) has a clear physical meaning:
free electrons and ions in an atomic plasma move in a
volume reduced by the volume occupied by atoms. This
statement agrees completely with the NNA; i.e., there
cannot be free charged particles inside an excited atom.
Although the fraction of the volume occupied by the
atoms is relatively small, it is the terms related to this
volume that ensure convergence of the partition func-
tion in the model of [12]. We will refer to the correc-
tions for the volume occupied by atoms as configura-
tion corrections in contrast to correlation corrections
related to the particle interaction.

Note that the thermodynamic models obtained in
Sections 3 and 4 are completely equivalent. It can be
shown that expressions (24)–(28) follow from expres-
sion (34) for the free energy in the infinite-component
model without any additional assumptions. However,
their derivation is rather lengthy and we do not present
it here.

5. DISCUSSION OF THE RESULTS

Let us consider the version of the chemical model
from Section 3 and limit ourselves to the terms linear in
the coupling parameter. It follows from Eq. (26) that, in
this case, α . Γ; in addition, according to Eq. (20), we
have

(41)

The expressions for the plasma thermodynamic
functions and the equation of ionization equilibrium
take the form
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(42)

The corrections for “nonideality” to the thermody-
namic functions differ from the Debye corrections by
the value of the numerical factor at the parameter Γ.
Thus, the correction to the pressure is reduced by a fac-
tor of nearly 25 compared to the Debye correction, and
the decrease in the ionization potential is reduced three-
fold. This result qualitatively explains the fact that, in
experiments [13], a nonideal plasma behaved as an
ideal gas.

The corrections for nonideality in Eqs. (42) are not
related to each other by the main thermodynamic rela-
tions [20]; for example, ∆P ≠ –∂(∆F)/∂V because the
numerical factors at Γ in Eqs. (42) are different. This is
caused by the fact that the corrections consist of com-
ponents of different natures, namely, configuration and
correlation components. If we separate them, then the
main thermodynamic relations will hold for all of the
thermodynamic quantities and the factor (1 – 3a/2) at Γ
will appear in all of the expressions. The configuration
correction (38), which is equal to the fraction of the vol-
ume occupied by atoms, can be calculated analytically;
in the linear approximation in Γ, it is equal to

(43)

Separating the configuration and correlation correc-
tions in Eqs. (42) and restricting ourselves to the terms
linear in Γ, we obtain
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(44)

It is seen from Eqs. (44) that the factor (1 – 3a/2)
appears in all of the correlation corrections. Equations
(42) and (44) can be regarded as a chemical model of a
weakly ionized plasma, which is fully consistent with
the exact asymptotic expansions (1) and (2). None of
the chemical models mentioned in the Introduction cor-
responds to the obtained results.

Thus, the contribution from highly excited atomic
states to the plasma thermodynamic functions is shared
between the configuration and correlation terms. The
correlation term differs from the Debye term even in
the limit Γ  0. The configuration term does not con-
tribute to the plasma internal energy and can be
regarded as a contribution from a certain volume occu-
pied by atoms; however, this contribution differs from
the Van der Waals contribution because it does not fol-
low from interatomic (or atom–ion) repulsion.

Now, let us discuss how the transition to the Debye
asymptotics occurs. We consider a high-temperature
(βRy ! 1) weakly ionized plasma. In this case, partition
function (19) contains only the second summand and
the equation of ionization equilibrium takes the form

(45)

Using the electroneutrality condition, we express
the densities ne, i, a through the total density of nuclei
n = ni + na in the linear approximation in the para-
meter Γ:

(46)

When deriving (46), we used linear approximation (41)
for the function f1(Γ).
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Substituting expressions (46) into Eqs. (42), in the
linear approximation in Γ, we obtain for the pressure

(47)

which corresponds to the classical Debye result. It fol-
lows from Eqs. (46) that a nonideal plasma is always
partially ionized. Even at high temperatures, a nonideal
plasma contains excited atoms, which contribute to the
classical Debye correction. Applying the Debye theory
directly to the chemical model of an atomic plasma is
incorrect because the excited atoms would be taken into
account twice. It can only be applied to an atomic
plasma in the version of the chemical model considered
in Section 2 and can only be used to calculate the ther-
modynamic functions of an atomic plasma. In this
model, the density of free charged particles is overesti-
mated; hence, applying the model to multicomponent
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(b) 50, and (c) 150 atm for different thermodynamic mod-
els: (1) ideal gas model, (2) ring Debye approximation,
(3) Debye theory, and (4) present paper [calculation by for-
mulas (24)–(29)]; curves 1–3 correspond to the Plank–Lar-
kin partition function and curve (4) correspond to the NNA
partition function calculated by formula (15).
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plasmas (in which the corrections for interatomic inter-
action, as well as the interaction between atoms and
free charged particles, should be taken into account) is
also incorrect.

The figure presents isobaric dependences of ne on
the temperature T in a cesium plasma, calculated using
the models with different equations of state. It is seen
that the NNA and taking into account the highly excited
atomic states substantially decrease the influence of the
Coulomb interaction on the plasma composition. The
electron density is close to that in an ideal gas (curves
1 and 4) within a large region of the phase diagram.

6. CONCLUSION

Several versions of the chemical model of a weakly
nonideal atomic plasma are accurately derived based on
the exact asymptotic expansions of thermodynamic
quantities in the grand canonical ensemble. The contri-
bution of the Coulomb interaction between free
charged particles to the thermodynamic quantities of an
atomic plasma is found in the NNA for the atomic par-
tition function. Actually, this result corresponds to
applying the Hill theory [21] of virial coefficients for
systems with chemical reactions to the Coulomb inter-
action. The revealed strong decrease in the contribution
of the Coulomb interaction to the equations of state and
ionization equilibrium stems from the existence of
highly excited atomic states. It is shown that none of the
existing versions of the chemical model of an atomic
plasma, except that considered in Section 2, correspond
to asymptotic expansions (1) and (2). Chemical models
of an atomic plasma (see Sections 3 and 4) correspond-
ing to asymptotic expansions (1) and (2) are proposed.
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Abstract—The method of differential scanning calorimetry is applied to determine the temperature depen-
dence of the power transferred to a solid surface during the deactivation of excited molecular states and atomic
recombination on the surface of a platinum film in a low-pressure (40 Pa) capacitive RF discharge in oxygen.
Temperature scanning within the range 300–600 K is performed under the action of the heat flux from the dis-
charge. The total heat flux is separated into the components associated with different heat transfer mechanisms.
The effective activation energy for the heat release related to the relaxation of the excited states of particles on
the platinum surface is about 75 meV. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Catalytic processes occurring in the interaction of a

weakly ionized plasma with a surface and accompanied
by heat release are usually studied with the aim of
developing discharge diagnostic techniques [1–3]. Tra-
ditionally, the object under investigation is the gas
phase of a discharge and the aim of the study is to deter-
mine the densities of the excited particles, radicals, etc.
from thermal effects on catalytically active surfaces [4,
5]. However, since the thermal methods are nonselec-
tive with respect to different particles or excited states
and the information provided by the conventional ther-
mal diagnostics is insufficient, these methods fail to
resolve the problem of separating the contributions
from different particles to the heat transfer onto the sur-
face or to determine the density of the excited particles
in the discharge volume. Spectral methods of diagnos-
tics of the gas phase of a discharge are more informa-
tive.

Thermal effects occurring in the interaction of a gas-
discharge plasma with catalytically active materials are
of interest for aircraft engineering [6] and microtech-
nology because the catalytic energy release may result
in undesired heating of a solid body (for instance, an
aircraft body or a substrate on which the surface micro-
structures are etched) due to deactivation of the excited
particles. The relaxation rate of the metastable excited
levels of particles colliding with a surface increases as
the surface temperature increases, which leads to both
a positive feedback in the “temperature–heat release
rate” chain and an avalanche-like growth of the temper-
ature [7, 8]. To forecast the temperature regime of the
surface, one needs information on the catalytic heat
release rate. This and other problems on the heat
exchange between a plasma and a surface can be
resolved only with the help of thermal measurements.
1063-780X/01/2704- $21.00 © 0355
The problem of studying thermal catalytic processes
consists in distinguishing the heat power related to
deactivation of the excited states against the back-
ground of several mechanisms for heat exchange
between a plasma and a surface. When applying sta-
tionary diagnostic methods [4], one has no information
about the main characteristic of the heat transfer mech-
anism under study—the temperature dependence of the
temperature growth rate of a solid body in a discharge
(or the power transferred from a discharge to the sur-
face). For this reason, attempts to determine the charac-
teristic features of different heat transfer mechanisms
and experimentally identify the presence of individual
mechanisms have been unsuccessful.

In this paper, it is shown that the nonstationary diag-
nostic method allows one to distinguish between the
contributions from different mechanisms for heating a
solid body in a discharge and to determine the heat
power related to the activation of the excited states on a
catalytically active surface over a wide temperature
range.

2. EXPERIMENT

The experiment was carried out with a cylindrical
quartz reactor 19 cm in diameter and 45 cm in length.
An oxygen discharge at pressures of 0.1–1 torr was
excited in a continuous gas flow (with a flow rate of
~100 sccm) by external RF electrodes at a frequency of
13.56 MHz. The input power was equal to P0 = 100–
300 W. Under these conditions, the discharge occurs in
the low-current (or α) form [9]; a characteristic feature
of such a discharge is that the power is dissipated in the
discharge volume (rather than in the electrode sheaths)
and the gas temperature is rather high. The degree of
dissociation of oxygen molecules was ≤10–2; the degree
2001 MAIK “Nauka/Interperiodica”
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of gas ionization was no more than 10–6. The gas tem-
perature at the axis was 500–800 K. The discharge
emission spectrum in the range 300–900 nm was mea-
sured with the help of a KSVU-23 computerized spec-
tral complex. The design of the plasmochemical reactor
was described in detail in [10].

Scanning calorimetry in a discharge implies contin-
uous measurements of the heat power transferred to the
calorimeter under conditions when its temperature var-
ies in time in a given fashion under the action of the
heat flux from the discharge. The temperature measure-
ments are based on recording the time-dependent tem-
perature T(t) from the start of the discharge up to the
stage in which the calorimeter temperature reaches a
steady-state value. After differentiating the dependence
T(t), we obtain the calorimeter heating power P ~ dT/dt
as a function of time. Since the heating process is qua-
sisteady, the time can be excluded from consideration
and the data can be represented in the “temperature–
power” coordinates (in this case, the power transferred
from the discharge to the surface depends explicitly on
the surface temperature rather than on time). The qua-
sisteady character of the process is determined by the
relation between two characteristic times: the short
relaxation time of the temperature and particle density
distributions in a boundary sheath around the calorim-
eter (τ1 ~ 1 ms and the long time of calorimeter heating
(τ2 ~ 100 s) in the discharge.

The differential version of scanning calorimetry was
used to determine the difference power [11]. To find the
contribution from the energy release due to the relax-
ation of excited states on a catalytically active surface,
we compared the dependences P(T) for two calorime-
ters identical in shape, but with different surface prop-
erties. As calorimeters, we used 0.8- to 0.9-mm-thick
polished silicon single crystals 2.5 × 2.5 cm in size. The
catalytically active surface of one calorimeter was pro-
duced by depositing a thin (0.2 µm) platinum film by
magnetron sputtering. The surface of the second (refer-
ence), catalytically inert calorimeter was covered by a
natural oxide film approximately 5–10 nm thick. The
formation of the oxide film on the cold surface occurs
according to the Cabrera–Mott mechanism and ends
when the film becomes thick enough to prevent the tun-
neling of an electron from the crystal to oxygen
adsorbed on the film surface [12]. The further growth of
the oxide film occurs only due to diffusion of oxygen
through the film. This process is characterized by a high
activation energy (∆E ≥ 1.5 eV) and takes place at high
temperatures (≥1300 K) [13]. For this reason, the prop-
erties of a silicon single crystal in a low-pressure oxy-
gen plasma change only slightly. The constancy of the
silicon properties was tested experimentally by expos-
ing the crystal to the action of an oxygen discharge for
several tens of minutes. The oxide film thickness was
measured by an IFS-88 Bruker Fourier-spectrometer
and an LEF-3M laser ellipsometer at a wavelength of
633 nm. In an oxygen plasma, platinum also oxidizes to
form volatile compounds [14]. However, under our
experimental conditions, the oxidation rate of the plat-
inum film was negligibly small, which was ascertained
by weighing the sample accurate to 0.1 mg with an ana-
lytical balance. Hence, we believe that chemical reac-
tions on the silicon and platinum surfaces do not occur
and, consequently, the heat release related to these reac-
tions is absent.

The time-dependent temperature of the calorimeters
was measured using laser interference thermometry
[15] at a wavelength of 1.15 µm (the He–Ne laser line,
lying in the transparency band of the silicon crystal). In
the case of the calorimeter with a metal film on one of
its surfaces, the laser beam fell on the opposite crystal
surface. The calorimeters were placed inside the reactor
in turn; in both cases, the discharge was initiated at the
same wall temperature and at the same gas pressure and
was maintained by the same input power. The depen-
dence T(t) was also measured during the calorimeter
cooling after the discharge was switched off. The kinet-
ics of cooling allowed us to determine the radiative
power loss for each calorimeter. This is necessary
because one of the calorimeters was covered with a
metal film, so that the emitting properties of the calo-
rimeters were different. In addition, the temperature
dependences of the emissivities of optically thin semi-
conductors differed substantially from the dependences
characteristic of blackbody and graybody radiation.
Note that the power (rather than the exponential) tem-
perature dependence of the emitted power is character-
istic of 1-mm-thick weakly doped semiconductor crys-
tals in the range of low temperatures T ≤ 0.05(Eg/k),
where Eg is the band gap energy of the crystal and k is
the Boltzmann constant [16].

3. RESULTS AND DISCUSSION

Figure 1 shows the dependences T(t) during heating
of the inert and active calorimeters in the discharge for
two levels of the input power. It is seen that, in both
cases, the heating rate of the calorimeter with a plati-
num film is higher, although its mass is greater by 12%
(the thickness of the active calorimeter is 0.9 mm,
whereas that of the inert calorimeter is 0.8 mm). We
carried out a test experiment on the heating a calorime-
ter whose surface was covered by a thin (0.2 µm) alu-
minum film. The dependences T(t) for the calorimeter
with an aluminum film and reference calorimeter coin-
cided. Hence, the additional heat release on the plati-
num surface is related to its catalytic properties, i.e., to
the capability of substantially increasing the rates of
some elementary processes. This heat release may be
attributed to the recombination of oxygen atoms as well

as deactivation of the b  (the excitation energy is ε ≈
1.6 eV and the radiation lifetime is τ ≈ 7 s) and a1∆g (ε ≈
1 eV and τ ≈ 3 × 103 s) excited singlet levels of molec-
ular oxygen on the active surface. The emission spectra
of both atomic and singlet oxygen in the discharge were

Σ1 +
g
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recorded. The fraction of energy transferred from the
excited particles to the solid body is usually unknown;
it is believed that, in the interaction of singlet oxygen
with platinum, this fraction is close to unity [17].

Figure 2 shows the kinetics of cooling the calorime-
ters in a cold gas (the cooling time of the reactor gas
after switching off the discharge is equal to 0.1 s). The
temperature dependences of the calorimeter heating
power in the discharge and the cooling power after
switching off the discharge were calculated by numeri-
cally differentiating the curves T(t) (Fig. 3). The tem-
perature–power dependence is analogous to a phase
trajectory on the coordinate–momentum plane used in
mechanics.

When calculating the derivative dT/dt, it is necessary
to eliminate the noise associated with both fluctuations
in the power input in the discharge and errors in deter-
mining the instants corresponding to interference extre-
mums in thermometry measurements. For this reason,
when processing the experimental data, the depen-
dences T(t) were approximated by polynomials in order
to smooth fluctuations in the heating and cooling rates.

The equations of energy conservation for the active
and inert calorimeters have the form

(1)

(2)

where c, ρ, and h are the specific heat, mass density, and
thickness of the crystal, respectively; α is the heat
transfer coefficient; Tg is the gas temperature outside
the thermal boundary layer; and the terms Dh and Dr are
related to the heat release via deactivation of excited
states and radiative heat loss, respectively.

The first terms on the right-hand sides of Eqs. (1)
and (2) describe the heat flux caused by both heat con-
duction in gas and relaxation of the translational and
rotational degrees of freedom of the particles impacting
the surface. The power transferred to the surface lin-
early decreases with calorimeter temperature. If the
inequality NuKn ! γ is satisfied, this heat flux is inde-
pendent of the surface material (here, Nu = αL/λ is the
Nusselt number, Kn = L0/L is the Knudsen number, γ is
the heat accommodation coefficient of the energy of the
translational degrees of freedom of a particle impacting
the surface, L is the characteristic size of the calorime-
ter, λ is the thermal conductivity of the gas, and L0 is the
mean free path of neutrals). The heat-exchange rate is
limited by the energy transfer through the thermal
boundary layer [18]. The largest temperature drop
(∆T)b occurs in the boundary layer, whose thickness is
comparable with the characteristic size of the calorim-
eter. The temperature drop across the Knudsen layer
(∆T)k , which depends on the heat accommodation coef-
ficient and, consequently, on the surface properties, is
negligibly small as compared to (∆T)b . The Knudsen
layer thickness is comparable with the mean free path
of the gas particles.

D1 cρh dT /dt( )1≡ 2α Tg T–( ) Dh Dr( )1,–+=

D2 cρh dT /dt( )2≡ 2α Tg T–( ) Dr( )2,–=
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We assume that the temperature profiles in the
boundary layers and, consequently, the heat transfer
coefficients α are the same for inert and active calorim-
eters. However, if the excited particles partially transfer
their energy to the gas after the interaction with the
active surface, the temperature profile can be distorted
because of an additional heating of the gas near the cal-
orimeter. In this case, the heat transfer coefficients of
the two calorimeters may be different. This question is
still unclear.

The gas temperature in the discharge, the heat trans-
fer coefficient, and the heating rate are determined from
the heating kinetics of the inert calorimeter [19]. The
gas temperature equals 310°ë at P0 = 140 W and
470°ë at P0 = 280 W. The heat transfer coefficient α at
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Fig. 1 Time dependences of the calorimeter temperatures after
the initiation of an RF discharge at a pressure of 50 Pa. The
power input in the discharge is (1, 2) 140 and (3, 4) 280 W.
The inert calorimeter is made of a silicon single crystal
2.8 × 1.5 cm in size and 0.8 mm thick (1, 3). The active cal-
orimeter has an area of 2.8 × 1.5 cm and a thickness of
0.9 mm; one of its surfaces is covered by a platinum film (2, 4).

Fig. 2. Cooling kinetics of (1, 3) the inert and (2, 4) active
calorimeters after switching off an RF discharge. The input
power is (1, 2) 280 and (3, 4) 140 W.
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P0 = 140 W is equal to 6.4 × 10–4 W/(cm2 K); at P0 =
280 W, this coefficient is equal to α ≈ 6.5 ×
10−4 W/(cm2 K). The characteristic heating time of the
inert calorimeter is τ = cρh/2α; for heating in the dis-
charge, we have τ ≈ 110 s at P0 = 140 W and τ ≈ 105 s
at P0 = 280 W.

The cooling kinetics of the calorimeters gives the
values of the gas temperature in the reactor and the heat
transfer coefficients after switching off the discharge.
The gas temperature is equal to 42–44°ë and coincides
with the wall temperature. The heat transfer coeffi-
cients of the inert and active samples are the same and
equal to α ≈ 6.2 × 10–4 W/(cm2 K). The cooling time
constant at low temperatures (at which the thermal
emission of the sample plays a lesser role as compared
to molecular heat conduction) after switching off the
discharge is equal to τ ≈ 120 s for any sample.

The contribution from charged particles to heat
transfer is three orders of magnitude smaller than the
contribution from neutral particles because of the low
degree of gas ionization and the low floating potential
of the surface (nearly 10 V). The effect of discharge
emission was tested by depositing antireflecting films
on the crystal surface. SiO2 and Si3N4 films with thick-
nesses in the range from 0.2 to 0.5 µm decrease the
coefficient of light reflection from the surface in the
200- to 1000-nm range by a factor of 1.5–2. In this case,
the heating rate of the crystal does not increase, which
indicates the negligible role of optical radiation in the
calorimeter heat balance. The absence of RF heating of
a metal film was proved experimentally in [20].

50
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0.6
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0.4
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Fig. 3. Temperature dependence of the power density D dur-
ing heating the calorimeter by the discharge (D > 0) and
cooling it (D < 0) after switching off the discharge for (1) the
inert and (2) active calorimeters. The input power is 280 W.
Arrows show the evolution in time: after the initiation of the
discharge, D abruptly increases from zero; then, it decreases
as the calorimeter heats up; after switching off the dis-
charge, it jumps to a lower half-plane; and, finally, due to
heat loss, returns to the temperature of the reactor wall (T ≈
40–50°ë).
Since the first terms on the right-hand sides of
Eqs. (1) and (2) are the same, we obtain

(3)

The values of (Dr)1 and (Dr)2 are determined from the
cooling kinetics of the calorimeters after switching off
the discharge:

(4)

(5)

When the condition Nu · Kn ! γ is satisfied, the term
2α(Tg – T) is the same for both calorimeters and is
determined from the low-temperature part of the curve
D(T) because the contribution of radiation to the cool-
ing rate is negligibly small in this temperature range.
The radiation power of an optically thin, weakly doped
silicon single crystal in the range T ≤ 800 K increases
with temperature more rapidly than by the Stefan–Bolt-
zmann law, Dr ~ T4 (apparently, the thermal emission
power of the crystal is lower than the blackbody radia-
tion power in this case). The reason for this is that the
main mechanism for heat transfer in the intermediate
and far infrared regions is related to free charge carriers
(electrons in the conduction zone and holes in the
valence zone), whose density is related to the tempera-
ture by the expression nn ≈ np ~ exp(–∆E/kT), where the
activation energy is close to the half of the band gap
energy of the crystal, ∆E ≈ Eg/2.

Approximating the experimental temperature
dependence of radiative heat loss of the silicon calorim-
eter without a film in the range T ≈ 170–300°ë by the
Arrhenius dependence, we obtain (Dr)1 ≈ 3.7 ×
104exp(–7070/T); in this case, the activation energy is
equal to ∆E ≈ 0.6 eV, which is very close to the half of
the band gap energy. In fact, the obtained dependence
is determined by the difference between two energy
fluxes, one of which is emitted and the other (emitted
by the wall and other reactor components) is absorbed
by the sample.

The thermal emission of the calorimeter with a
metal film on one of the calorimeter surfaces consists of
three summands: on the side of the uncovered surface,
both the film and the single crystal emit (the former
emits through the optically thin crystal), whereas only
the film emits on the opposite calorimeter surface. The
power of radiative heat loss of the calorimeter with a
platinum film is higher than that of the crystal without
a film and differs substantially from the Arrhenius tem-
perature dependence (Fig. 4).

The temperature dependences of the power trans-
ferred from the discharge to the surface of the inert and
active calorimeters are shown in Fig. 5. With radiative
heat loss taken into consideration, both of the depen-
dences D(T) are almost linear. The difference between
them is described by expression (3). The temperature
dependences Dh(T) plotted in Arrhenius coordinates fit

Dh D1 D2– Dr( )1 Dr( )2.–+=

Dc( )1 2α Tg T–( ) Dr( )1,–=

Dc( )2 2α Tg T–( ) Dr( )2.–=
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a straight line (Fig. 6). The power transferred to the cal-
orimeter due to the relaxation of excited states on the
surface increases as the input power in the discharge
increases. The mean square method was used to deter-
mine the parameters of the Arrhenius temperature
dependence Dh = (Dh)0exp(–∆Eh/kT) characterizing
the kinetics of catalytic heat release on the surface:

Dh (W/cm2) ≈ 1.5exp(–888/T) for P0 = 280 W,

Dh (W/cm2) ≈ 0.5exp(–845/T) for P0 = 140 W.

The activation energies in these expressions are
almost the same: ∆Eh ≈ 0.076 eV for P0 = 280 W and
∆Eh ≈ 0.073 eV for P0 = 140 W. The error is ±0.01 eV.
Such low values of the activation energy mean that the
relaxation of excited states does not require a high tem-
perature of the active surface; the efficiency of the pro-
cess can be high even at low temperatures. It is this
effect in which the catalytic properties of platinum
manifest themselves: platinum substantially decreases
the activation energy and increases the probability of
elementary processes. The same processes occur at a
low rate on the SiO2 surface and, for this rate to
increase, it is necessary to heat the surface to very high
temperatures [21]. The apparent small increase in the
activation energy, which is observed when increasing
the input power, may be the consequence of both the
additional gas heating in the boundary layer and the
increase in the heat transfer coefficient.

Plotting the temperature dependence in Arrhenius
coordinates makes sense only when the catalytic heat
release is limited by the rate of relaxation processes on
the surface (the kinetic limitation of heat transfer). In
this case, the density of particles with excited internal
degrees of freedom near the surface differs only
slightly from their density in the discharge volume. The
slowest stage of heat transfer is associated with one of
the elementary surface processes (adsorption, reaction,
or desorption), which is of activation character (i.e., it
is accompanied by overcoming the energy barrier ∆Eh)
and is characterized by a low probability.

There may be one more type of limitation associated
with the finite rate of particle diffusion from the unper-
turbed discharge to the surface. If the probability of
energy relaxation in each collision event is high, then
almost every particle colliding with a surface transfers
the energy of the excited state to this surface. In this
case, the density of particles with excited internal
degrees of freedom near the surface is low (compared
to their density in the discharge volume). The heat
power Dh depends on the rate at which the loss of
excited particles near the surface is balanced by the dif-
fusion flux from the discharge. The diffusion in low-
pressure gases is not of activation nature (i.e., ∆E = 0).
However, even in the absence of kinetic limitations, the
temperature dependence of the power Dh is related to an

increase in the mean gas temperature  ≈ (Tg + Ts)/2
in the thermal boundary layer, whose thickness is com-

Tg
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parable with the characteristic size of the calorimeter,
and the increase in the particle diffusion coefficient,

which is proportional to  (here, Tg is the gas tem-
perature outside the thermal boundary layer and Ts is
the temperature of the calorimeter surface). If the tem-
perature dependence measured in a relatively narrow
range of temperatures and related to the diffusion limi-
tations is plotted in Arrhenius coordinates, then we can
formally determine the parameters (Dh)0 and ∆Eh,
although such a representation makes no definite phys-
ical sense.
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Fig. 4. Temperature dependence of the radiative power loss
of (1) the inert and (2) active calorimeters in Arrhenius coor-
dinates.

Fig. 5. Temperature dependence of the power density trans-
ferred to (1) the inert and (2) active calorimeters in the dis-
charge at a power of 280 W. The lines deflecting down at
high temperatures are obtained by smoothing the experi-
mental data. The straight lines are obtained by taking into
account the radiative heat loss of each calorimeter. Extrapo-
lating the straight lines until they intersect the abscissa gives
T ≈ 470°ë for the inert calorimeter (this is the gas tempera-
ture Tg in the discharge) and T ≈ 1540°ë for the active cal-
orimeter (this is a fictitious temperature that can take any
value T ≥ Tg, including infinity, and even a negative value in
the case of instability).
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Let us consider the facts that confirm the kinetic
character of the limitations and the activation character
of the temperature dependence Dh(T). Immediately after
igniting the discharge (for example, in 0.1 s), the mean
gas temperature in the boundary layer is  ≈ 520 K;
when the calorimeter temperature increases to Ts =

590 K, we have  ≈ 670 K. Hence, during calorimeter
heating, the particle diffusion coefficient in the bound-
ary layer increases by a factor of no more than ≈1.5. If
heat transfer is limited to the diffusion stage, the power
transferred to the calorimeter by excited particles
should increase by the same factor. At P0 = 280 W and
a calorimeter temperature in the range 290–590 K, the
heat flux Dh increases by a factor of more than 5. Con-
sequently, in this case, the rate of energy relaxation of
excited states on the platinum surface is limited by the
surface processes, rather than by the particle transport
in the gas.

For heat explosion (i.e., the avalanche deactivation
of excited states on the active surface) to occur, it is
necessary to satisfy two inequalities: 2α(Tg – T) + Dh –
(Dr)1 > 0 and (dDh/dT) – 2α – (dDr/dT) > 0. An increase
in the input power results in an increase in both the den-
sity of excited particles in the discharge and the gas
temperature. In this case, Dh grows rapidly, whereas α
grows only slightly. Therefore, as the input power in the
discharge increases, surface heating inevitably will
pass over to the self-acceleration regime.

The reason why it is difficult to determine the fluxes
of excited particles from the measured heat flux related
to catalytic heat release is the reversible character of the
catalyst action. On the platinum surface, not only does
the exothermic atomic recombination reaction O +
O  é2 accelerate, but the reverse endothermic dis-
sociation reaction é2  O + O (which, however, has
a higher activation energy) also accelerates. For this

Tg
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1.6 2.42.0 2.8
1000/T, 1/K

0.1

Power density, W/cm2

1

2

0.01

Fig. 6. Temperature dependence of the power of catalytic
heat release on the platinum surface in an oxygen discharge.
The input power is (1) 280 and (2) 140 W. The slope of the
straight lines in Arrhenius coordinates corresponds to an
activation energy of (1) 0.076 and (2) 0.073 eV.
reason, the measured heat power characterizes the rate
difference of the direct and reverse reactions.

4. CONCLUSION

The purpose of thermal measurements is to deter-
mine both the contributions from different heat transfer
mechanisms to the integral heat flux onto the surface
and the characteristic features of each mechanism. In
particular, such features include the temperature depen-
dence of the power transferred to the surface and the
character of the limiting heat-exchange stage. For the
two mechanisms governing the interaction between an
oxygen discharge and a catalytically active surface
(namely, heat conduction of the neutral gas and relax-
ation of internal degrees of freedom), these features dif-
fer substantially: as the surface temperature increases,
the power related to the former mechanism linearly
decreases, while the power related to the latter mecha-
nism exponentially increases. For the former mecha-
nism, the diffusion heat-exchange stage is limiting; for
the latter mechanism, the kinetic stage is limiting. For
both inert and active calorimeters, the power of radia-
tive heat loss was determined experimentally, which
was impossible when using stationary thermal mea-
surements in discharges (e.g., with the help of thermo-
couples). To increase the reliability of the results
obtained with differential scanning calorimetry, it is
necessary to investigate both the effect of incomplete
accommodation of the energy of the excited states on
gas heating in the boundary layer and the dependence
of the heat transfer coefficient on the temperature pro-
file in the boundary layer.

Standard thermal measurements do not allow one to
determine the particles and excited states responsible
for heat release on a catalytically active surface. These
particles and states can be identified by using scanning
calorimetry and optical spectrometry. Near the active
calorimeter, variations in its temperature should lead to
variations in the density n of the particles whose energy
is released on the surface, in which case Dh(t) and dn/dt
are proportional to each other.

To evaluate the efficiency with which the energy of
the excited particles is transferred to the surface due to
collisions, it is expedient to use a reference catalytic
surface capable of completely absorbing the energy of
the internal degrees of freedom of the particles. The
kinetic energy of a particle leaving such a “black” sur-
face after colliding with it corresponds to the surface
temperature. Probably, a porous silicon structure can be
used as such a “black” surface, because 70% of its vol-
ume is occupied by nanometer-sized pores in which a
particle may remain during a time sufficient for the
energies of all the degrees of freedom to relax.
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