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Abstract—The formation of transport barriers under electron cyclotron resonance heating and current drivein
the T-10 tokamak is studied. In regimes with off-axis co-ECCD and g, < 4 at the limiter, a spontaneous transi-
tion to improved confinement accompanied by the formation of two el ectron transport barriersis observed. The
improvement resembles an L—H transition. It manifestsitself as density growth, adecreasein the D, emission
intensity, and an increase in the central electron and ion temperatures. Two deep wells on the potential profile
(the first one at r/a, = 0.6, where g, is the limiter radius, and the second one near the edge) arise during the
transition. The internal barrier is formed when dg/dr ~ 0 with g = 1 in the barrier region. © 2001 MAIK

“ Nauka/Interperiodica” .

Previous T-10 experiments [1] showed that an elec-
tron internal transport barrier (EITB) can arise when a
q(r) profilewith dg/dr ~ 0 isformed near arational sur-
face. Such a profile was created by using the electron
cyclotron current drive (ECCD) in the co- or counter-
direction with respect to the main plasma current (co-
CD or counter-CD, respectively). The electron-cyclo-
tron (EC) current was generated with the help of a
gyrotron setup operating at afrequency of f = 140 GHz.
X-mode microwave radiation was launched at an angle
of 21° with respect to the major radius of the torus and
was absorbed at the second harmonic of the EC fre-
guency. The total absorbed power Pe: was as high as
0.7-0.8 MW. The resonance region could be shifted
along the major radius by varying the toroidal magnetic
field B;. In order to make the EC current comparable
with the plasma current I, the experiments were con-
ducted at moderate plasma currents (I, < 160 kA) and,
consequently, at high ¢, values at the limiter. In these
regimes, an EITB was formed at p =r/a. < 0.3. The
improvement of confinement was either steady-state or
periodical. In the regimes with an EITB at g, > 4, we
observed an increase in the electron temperature in the
plasma core (on the inside of the barrier); however,
there was no evidence of improved confinement at the
plasma edge.

However, for g, < 4, the EITB formation in the
plasma core was accompanied by improved confine-
ment at the plasma edge, independently of the EITB
position. Figure 1 showsthat, even during small period-
ica improvements of confinement (humpbacks), the
increase in the central electron temperature T,(0) is
accompanied by effectstypical of an L—H transition at
the edge: the density near the limiter increases, the D,
line emission intensity decreases, and B, increases in
phase with increasing T,(0).

Recent experiments in T-10 were performed at high
currents|, (g, =2.2-3) and with the EC resonance posi-
tion rgc shifted inward. An EITB formed with co-
ECCD was quasi-steady. The regime in which the bar-
rierwasformedat p=0.6 (I,=280kA, B;=2.14T,n, =
1.4 x 10" M3, Pgc = 0.8 MW, rec = <16-17) cm, and
a, = 30 cm) was studied in more detail. Such aregime
could be redlized at lower toroidal fields; this alowed
us to measure the plasma potential profile evolution in
different parts of the plasma column during the barrier
formation using heavy ion beam probing (HIBP) [2].
We also used a multichannel soft X-ray (SXR) camera
and ECE and Thomson scattering diagnostics to mea-
sure the €lectron temperature T,.. The values of B, + 1;/2
and (3, were determined from diamagnetic and loop
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Fig. 1. Periodical increasesin (@) the central electron tem-
perature, (b) the B, + 1;/2 value, and (c) line-averaged den-
Sity at the outer chord r = 29 cm during humpbacks, accom-
panied by (d) drops in the D line emission intensity (shot
no. 20194, B =2.44T,1,=180kA, and n, = 1.7 x 10" m~;
on-axis counter-CD).

measurements, n, was measured using radiointerferom-
etry, the ion temperature T;(0) was measured using a
charge exchange analyzer, and the D, emission was
recorded using a monochromator.

The waveforms of the plasma parameters in this
regime are shown in Fig. 2. After the EC pulse starts, a
spontaneous transition to improved confinement occurs
with some delay. We see that the increase in T, n,, and
B, is accompanied by a decrease in the D, emission
intensity. The simultaneous growth of T, and n. is
caused by the formation of two transport barriers. The
formation of an IETB at p = 0.6 resultsin the steep tem-
perature gradient VT, in the narrow barrier region
(Fig. 3a), while the density gradient in this region is
small, Vn, ~ 0. Another barrier with the steep density
gradient Vn, is formed at the edge, in the immediate
vicinity of the limiter (Fig. 4).

The spatiotemporal characteristics of the plasma
electric potential are shown in Figs. 3b and 4b. The
potential is measured with respect to itslevel before the
transition. We see that, during the EITB formation, the
potential rapidly decreases (A = 1-1.2 kV) in the nar-
row (Ar = 1 cm) region near p = 0.6, which coincides
with theregion with anincreased VT,. Thelocal poten-
tial well is conserved for the entire EITB formation
phase. As the plasma parameters approach their steady-
state values, the well becomes shallower; however, the
slope of the potential profile in the EITB region is still
positive.
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Fig. 2. Time evolution of the plasma parameters in the
regime with simultaneous formation of aninternal barrier at
r =17 cm and L—H transition (shot no. 24273, B, = 2.14 T,

and lp= 280 kA; off-axis co-CD).
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Fig. 3. (&) The electron temperature profile measured by
Thomson scattering (circles) and second-harmonic ECE
(squares) and (b) the relative plasma potential profilein two
similar shotswith EITBs (1) before, (2) during, and (3) after
the barrier formation. Theinstants of the potential measure-
ments are shown by arrows in Fig. 2 (shot nos. 24264—
24273, B;=2.14T,1,=280 kA, and Eyygp = 170 keV).
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Fig. 4. Profiles of (a) the electron density at t = 630 ms (dashed line) and t = 800 ms (solid line) and (b) relative plasma potential
and (c) the time evolution of the plasma parametersin shot no. 26176, where an edge potential well was measured. Arrows in plot
(c) show theinstants of the potential measurements. A horizontal bar in plot (b) shows the radial uncertainty of the potential profile

measurements.

The EITB formation in these regimes is aways
accompanied by the formation of an externa barrier.
The edge well isnot so deep, but itstemporal evolution
is similar to that of the internal well. The steep n, gra-
dient and the decrease in the D, emission intensity
resemble those accompanying the L—H transition.

Since the density was rather low, the energy
exchange between the ions and electrons was weak.
However, the central ion temperature increased during
the barrier formation (Fig. 5). Estimates show that the
ion confinement time in the core increased by a factor
of 1.5.
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The improvement of confinement due to the barrier
formation is accompanied by a flattening of the q(r)
profile. Figure 6 shows the q(r) profiles for the same
shot asin Fig. 2. The profiles are calculated using the
experimental T.(r) and ny(r) profiles before and after
thetransition. Asin[1], theq(r) profileisflattened near
the EITB; in our case, the barrier lies in the region
where q(r) = 1. Note that no negative shear is required
for the barrier formation.

An internal barrier could also be obtained at g, < 4
and under on-axis EC power deposition [3]; however,
in this case, the central electron temperature increased
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Fig. 5. Tempora evolution of the central electron and ion
temperatures and the line-averaged density during the EITB
formation at t = 660 ms (shot no. 26353, B; = 2.10 T, and

Ip= 270KA).
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Fig. 6. Calculated q(r) profile before (dashed curve) and
after (solid curve) the EITB formation for the plasma
parameters from Figs. 2-5 (shot no. 24264). Vertical bars
show an uncertainty in determining q related to the T, mea-
surement errors. Arrows show the radii of sawtooth inver-
sion before and after the barrier formation.

only dightly. Possibly, very strong heat losses during
sawtooth oscillations impede the increase in VT, near
q(r) =1 (although thereis someindirect evidence of the
formation of asmall barrier in thisregion).

Apparently, sawtooth oscillations under power dep-
osition at p = 0.6 aso restricted the increase in the cen-
tral electron temperature; nevertheless, alarge temper-
ature gradient was formed.

In T-10 experiments, only ECR heating was used; in
this case, no angular momentum was introduced to the
plasma and all the power was deposited into the elec-
tron component. The change in the ion temperature is
the secondary effect as compared to el ectron processes.
Therefore, we may state that we observed electron
transport barriers.

We propose the following explanation of the phe-
nomena observed.

Usualy, the interaction between magnetic islands
increases the heat fluxes and leads to the dependence of
the transport coefficients on the global plasma parame-
ters (the profile self-consistency [4]).

The zero shear S=r/qdg/dr =0 for q values closeto
acertain resonant value under electron heating may sta-
bilize some MHD perturbations related to the electron
transport. The transport reduces, but remains much
greater than the neoclassical one.

Theelectron flux reduces, whiletheion flux remains
unchanged. This leads to the appearance of a potential
well in the region where the electron transport is
reduced; as aresult, the fluxes equalize.

The arising electric field (~1 kV/cm) drives the
poloidal E x B plasma drift. The drift velocity varies
sharply along the radius and may even change its direc-
tion (the sheared E x B flow). Thismay stabilizetheion
temperature gradient mode [5] (and, probably, some
other modes) and, hence, improve ion confinement.

The simultaneous formation of two barriers appar-
ently indicates that the plasma edge and core are
strongly coupled (probably, viatoroidal coupling).

CONCLUSIONS
(i) For first time, the plasmapotential profileismea-
sured in awide radial region.
(ii) At low g, values at the plasma edge, two poten-
tial wells appear simultaneously.

(iii) Theinternal potential well is apparently related
to the formation of an internal transport barrier
because, in this region, improved electron confinement
is observed.

(iv) The externa barrier exhibits the features of an
L—H transition.
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Abstract—A study is made of the nonadiabatic dynamics of photoelectrons produced during interaction of an
elliptically polarized, high-power laser pulse with a gas. Expressions for the so-called residual momentum and
energy of the electrons (i.e., the mean electron momentum and energy after the passage of the pul se through the
gas) are derived. The residual electron momentum and energy are investigated analytically as functions of the
gasand laser parameters. A relationship is established between the residual energy and the electron temperature

tensor. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, the problem of residual electron
energy (REE) (i.e., the problem of what fraction of the
energy acquired by an electron at the top of alaser pulse
remainsin an electron after the passage of alaser pulse)
has been extensively discussed in the literature [1, 2].
For alaser pulse propagating through a preionized gas,
the REE isnegligible. However, for apul se propagating
in agas and ionizing it, this energy may become sub-
stantial because of the nonadiabatic motion of an elec-
tron produced during a short-term ionization event in a
laser field. As a femtosecond laser pulse propagates in
a low-density plasma, the electron heating due to
inverse-bremsstrahlung absorption is insignificant;
consequently, after the passage of the pulse, the elec-
tron energy is mainly determined by the REE.

The study of REE isparticularly important for devel-
oping X-ray lasers in which a multiply ionized plasma
that is strongly nonequilibrium with respect to ioniza
tion and recombination serves as an active medium [2].
In such lasers, the degree to which the plasma is non-
equilibrium with respect to these processes should be
ashigh aspossible; i.e, it is hecessary to produce plas-
mas with the maximum possibleion charge number and
minimum possible REE. This problem can be resolved
by ionizing a gas with a short (about one hundred fem-
toseconds) intense (I, > 10> W cm2) laser pulse.

Here, we apply the so-called “two-stage” ionization
model. According to this model, the transition of an
electron from the bound state to the state of free motion
isdescribed interms of quantum mechanics (by the the-
ory of tunneling ionization) and its subsequent motion
in the laser field is described by the classical equations
[3, 4]. However, in contrast to [1-3], we assume that
free electrons are produced with a nonzero initial

momentum p= with the probability determined by the

corresponding quantum-mechanical distribution (cf.
[4]). The momentum and energy of an electron pro-
duced in such amanner are governed by itsinteraction
with the laser field and can be deduced from the classi-
cal relativistic equations of motion. Then, we can aver-
age the resulting electron momentum and energy over
the electron ensemble. The relationships between the
residual electron momentum (REM), REE, and elec-
tron temperature can be derived by comparing the
results obtained by one-particle and hydrodynamic
approaches.

In the particular case of a linearly polarized laser
pulse and under the assumption that the electrons are
born with a zero initial momentum, formulas (12) and
(13) for the longitudinal momentum and mean energy
of an electron (see below) yield formula (13) from [2].
Our purpose here is to generalize the theory of REE
developed by Pulsifer et al. [2] so as to take into
account the distribution of the produced free electrons
over their initial momenta and to consider relativistic
laser pulses with an arbitrary elliptic polarization. We
show that the ensemble-averaged energy and momen-
tum of a free electron in a laser field consist of two
parts. first, strongly oscillating components Q,,, and
P,.., Which vanish after the pulse leaves the plasma,
and, second, weakly oscillating components Q;,, and
P;,, which are just the REE and REM @after the passage
of the pulse. The formulas derived here for Q;;,, and Pg;,,
make it possible to clarify the dependence of the REE
and REM on themain gasand laser parameters: theion-
ization potentials, the laser intensity, the degree of
elliptic polarization of the laser field, the laser wave-
length, and the pulse shape. We show that, when the
ionization front duration is aslong as several laser field
periods, the REE Qy, is substantialy higher than the
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energy szi » /(2m); consequently, Q;;,, can beregarded as
the energy of disordered electron motion. We find that
the REE is expressed in terms of the sum of the trans-
verse (with respect to the x-axis along which the pulse
propagates) pressure tensor elements Iy, and M,
Quin = (Nyy + M/(20y) = (T, + T,)/2, where n, is the
electron density and Tiy and T, are the el ectron temper-
ature tensor elements.

2. IONIZATION MODEL

We treat the problem in aone-dimensional approxi-
mation; i.e., we consider the electron motion in the
vicinity of the laser-pulse axis, assuming that the pulse
iswide enough to neglect both transverse electron drift?
and laser-light diffraction. We also consider a gas with
a sufficiently low density such that the nonlinear pro-
cesses distorting the pulse shape [8-10] occur on time
scales much longer than the pulse duration. In this case,
the laser field strength along the propagation direction
of the pulse depends on the x coordinate only through
the combination x/c-t, so that the shape of the propagat-
ing pulse can be assumed to be unchanged. Conse-
guently, for convenience, we can consider the electron
motion near the point x = 0, keeping in mind that the
results obtained will also pertain to the remaining elec-
trons, because they move in the same field that is only
shifted in phase with respect to the point x = 0.

At x = 0, the rapidly oscillating component E (t) of
the electric field of the laser pulse can be represented as

E(t) = E(t)[e,cos(wpt) + ne,sin(wgt)],
E(t) = Eoexp[~(t/0,)°], (1)

E, = J8TUO)I/(1+1D), O = Teuwm/ 2102,

where g, and e, are unit vectorsin they and zdirections,
n O [-1, 1] isthe degree of elliptic polarization (n =0
and |n| = 1 correspond to linear and circular polariza-
tions, respectively), E(t) isthe laser field amplitude, E,
is the maximum laser field amplitude, |, is the peak
intensity of the pulse, and Tgyy is the full width at
half-maximum (FWHM) of the pulse.

For the above laser pulse parameters, the gasision-
ized on atime scale much shorter than the pulse dura-
tion. The ionization can be assumed to proceed viathe
tunneling mechanism when the Keldysh parameter [11]

lin [5, 6], it was shown that, in this case, free electrons moving in
they and z directions obey Maxwellian velocity distributions with
temperatures Ty, and T,.

2gimple estimates made in [7] show that the transverse
electron drift can be ignored under the condition o./A; >

80(ay/1 ps) \/1of 10" w cm_z, where A is the laser wavelength
and o, and o are the characteristic width and duration of the
pulse, respectively.
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is much smaller than unity, y = ,,/2mJ, /eE(t*) < 1,3
where mand e are the mass of an electron and the abso-
lute value of its charge, w, isthe laser frequency, E(t*)
is the electric field amplitude of the laser wave at the
time t* of an ionization event, and J, is the ionization
potential of anion in the (k — 1)th ionization state. For
the short (Tepum < 1 ps) laser pulses under consider-
ation, the electron—on collision time in a low-density
(n. < 10" ecm) gas is longer than the pulse duration;
consequently, the processes of recombination and
impact ionization do not comeinto play throughout the
pulse.

Under the conditions of tunneling ionization, we
can assume that the electron shells are ionized succes-
sively (starting from the shell farthest from the
nucleus). In this case, the number N of electrons origi-
nating by the time t per unit volume in the vicinity of
the point x under consideration is determined by the
equations

Zy

oN
_t = S = kSK = ZWknk_l,
k=1 k=1
%‘—S( S = =W 10 +W,n
ot - ' - k+1'k k'k—1» (2)
k =

v Zp—l, 5 =W, n,
Zn
no = Ny 3 M
k=1

where n, is the density of the ionsin the kth ionization
state (k = O corresponds to a neutral atom), which are
heavy enough to be regarded as immobile; W, , isthe

ionization rate of theseions; n, = i": oNk isthetotal

ion density (including neutrals); and z, is the nuclear
charge.

Under our conditions, the rate at which an electron
produced viatunneling ionization of anion collideswith
the potential barrier formed by both the electric field of
thision and the laser field is much higher than the laser
frequency. Therefore, we can search for the tunneling
ionization rate in the adiabatic approximation [13], i.e.,
by substituting the absolute value of the instantaneous

laser field, |E (t)] = E(t) / cos?(wot) + n2sin®(wot) , into
the formulafor the ionization rate in a constant electric
field, which is equal to the tunneling ionization rate in
acircularly polarized field. For arbitrary atoms, the lat-
ter rate is described by the Ammosov—Delone—Krainov
(ADK) formula [14]. Consequently, in the adiabatic

3 More precise conditions for tunneling ionization are determined
by llkov et al. [12], who showed that the tunneling mechanismis
dominant wheny< 0.5.
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approximation, thetotal ionization ratein thefield of an
arbitrarily polarized laser pulse has the form

e e, 0
W (1) = (A)a‘———ZBT:——jD
21y, Chy |[E(1)|O

3)

where n, = k./Jy/Jy isthe principal quantum number
of anion in the (k — 1)th ionization state with the ion-
ization potential J,, Jy is the ionization potential of a
hydrogen atom, w, = 4.1 x 10'® s~! is the atomic fre-
quency, E, =5.1 x 10° V cm! is the atomic electric
field, and €' = exp(1). In deriving formula (3), we
assumed that the orbital and magnetic quantum num-
F%]S are both zero; this assumption is justified, e.g., in

In order to take into account the distribution of the
produced electrons over the initial momenta, we need
to know not only thetotal ionization rate W, but also the
differential ionization cross section Fk(p[}, i.e, the

probability W, (t) = J’ I (t, ppd’pfor an electron with
the initial momentum ppto originate in a unit momen-
tuminterval per unit time. To determinel" (p, weturn

to the results obtained by Goredavsky and
Popruzhenko [4], who proposed a formula for the dis-
tribution of theionization-produced electrons over their
initial velocities. Strictly speaking, thisformulaapplies
to a zero-range atomic potential (i.e., to a potential in
the form of ad function). However, the results obtained
by Delone and Krainov [15], who derived the Coulomb
correction to the ionization probability with allowance
for the long-term nature of the atomic potential, show
that the coefficient in front of the exponential function
in the expression for the differential ionization cross
section is independent of the initial momentum of an
ionization-produced electron. In view of this fact and
taking into account that the distribution derived in [4]
correctly reflectsthe exponential dependence of the dif-
ferential ionization cross section on the initial electron
velocity, we can extend this distribution to the case of a
complex atom. In thisway, we choose the coefficient in
front of the exponential function so as to describe the
total ionization rate by the ADK formula (3). As a
result, we obtain

3 _ 1 Ea J il
NPy, DA = Ze jJ::wkdE(t)l)
2 4

p*D Ea ‘]k * 0
exp|:_2mJH|é(t)| ‘]_H 6( p* é)dp*é 2mJH,

ANDREEYV et al.

where W(E (b)) is defined by formula (3) and the &
function reflects the fact that the electron momentum
Pz in the instantaneous direction of the laser field at

the time of an ionization event is equal to zero [4]. In
the plane perpendicular to this direction, the electrons
obey a two-dimensional isotropic distribution over the
initial momenta pry..

It should be noted that formulas (3) and (4) arevalid
under the condition a, = (J,/J)*?E/E, < 1, which may
fail to hold for strong laser fields. In sufficiently strong
fields, the ionization can exhibit the phenomenon of
stabilization. In other words, for a, > 1, the stronger the
laser field, the lower both the ionization probability per
unit time and the total ionization probability are (see,
e.g., [15-19]). In [16-19], the stabilization of ioniza-
tion was calculated for laser pulses with sharp fronts
(the rise time of the front being ten atomic times T, =
1/w, or shorter). On the other hand, Kulander et al. [18]
noted that, for pulses with smoother fronts, the stabili-
zation effect is less pronounced because the rapid ion-
ization of atoms occurs at the pulse front, where a, <
1. Our simulations for light gases that are completely
ionized by laser pulses with nonrelativistic intensities
(except, possibly, for the 1S electron shell) showed that
a pulse with a duration longer than ten laser field peri-
ods will completely ionize ionsin the (k — 1)th ioniza-
tion state by the time at which a, = 107'; by thistime,
the relative concentration of these ions, n_ /Ny, will
become lower than 10-2 [20]. Consequently, for stron-
ger laser fields, the uncertainty in determining the prob-
ability W, will affect the final results only dlightly.
Thus, we can conclude that, in our analysis of pulses
with rise times longer than severa laser field periods,
the stabilization effect isinsignificant.

Another restriction on formulas (3) and (4) is that
they arewritten in the nonrelativistic limit and areinap-
plicable to ions with high ionization potentials (i.e.,
ions that are ionized by relativistic laser fields) [15].
Consequently, in applying our model to relativistic
laser pulses, we must assume that the gas atoms are
light enough for the plasmato be produced at the pulse
front; in other words, we must work under the condition

eE(t, )/(muwy,) <c,wheret, isthetimeat whichthe

ions with the charge number z,,,. — 1 areionized at the
highest rate and z,,, is the maximum charge of theions
that can be produced during the ionization of a given
gas by a given laser pulse. Of course, this restriction
does not refer to nonrelativistic pulses. Under the con-
dition eE(t, )/(muy) < c, we can also assume that

IpA(Mmo)| < 1.

PLASMA PHYSICS REPORTS Vol. 27 No. 4 2001
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3. ENERGY AND MOMENTUM
OF THE IONIZATION-PRODUCED ELECTRONS

The ensembl e-averaged momentum P(t) and energy
Q(t) transferred from the laser field to the el ectrons that
originate by the time t in the vicinity of the point x
under consideration, both divided by the number of
these electrons, are equal to

P(t) = N7(t) I IP(t, t*, P )T (1%, Py ) A py dt*,
N (5)
Q(t) = N7\ (t) f IQ(t, t*, P )T (1%, Py )d Py dt*.

Here, P(t, t*, pp and Q(t, t*, pp ae the instantaneous

(at thetimet) momentum and energy of an electron that
originates with the momentum p at the time t* and

Ftpp= Zi: k(. ppnc_ () wherel andn,_, are
determined by formulas (2)—4).

Assuming that the laser field envel elope changes
insignificantly over the laser field period® and applying
the approach described in [21] (see also [22]), we can
write the instantaneous (at the time t) momentum and
energy of an electron in thefield of aplane, dliptically
polarized laser wave (the wave parameters are assumed
to depend on the variablesx and t only through the com-
bination x — ct) in terms of the longitudinal (along the
x-axis) displacement &(t, t*) of the electron from the
point x at which it is born at the time t*. Note that, by
definition, we have &(t*, t*) =0

The kinetic energy Q(t, t*, pp) of an electron origi-
nating with the momentum pat the time t* is related

to the projection of its momentum onto the propagation
direction of the pulse (the x-axis) by

Q(t, t*, px) = CP(L, t*, py) + mc’(Ky —1),  (6)

where K= Y- Pf(Me), Y= 1+ (p*/mc)z, and
2 2 2 2
p* = px-k + py* + pz*
Now, the momentum of an € ectron can bewritten as
P(t’ t*, p*) = Pvan(t, t*’ p*) + Pfin(t*’ p*)v

where the components P, and Py;,, have the form
Py, = P, (Kalya)”+ 2K, JmQ,(¢*)sin(¢*),
Py... = 2K« /MQ,(®)sin(9),

4 Goreslavsky et al. [7] showed that this assumption is valid even
for ultrashort laser pulses with a duration of about one laser field
period.

@)
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P, = D, (Kel¥x)" = 2Ky /MQy(@*) cos(g*),
(8)
P,. = 2nK, ymQ.(®)cos(9),

Py, = Z%Qp(cp*)[snz(cp*) +n°cos’(9)]

|:K* EPY*
2

y“ Dmc

/\/WK* [pY*SIn((p ) 2r] pz* COS((I) )]
mc” i )

Pe = 2°2Qu(@sN"(9) + n"cos’(9)]

van

-2—“5*—A/Qp(<p>Qp(cp*>[s:n(cp)s'n(cp*)

+n”cos(@) cos(¢*)].

Here, @* = wyt* isthe field phase at which an electron
originates in the vicinity of the point x under consider-
ation, @ = w,(t - &(t, t*)/c) isthe field phase at the point
at which the electron occurs at the time t, and Q,(@) =
m(eE(@p)/2mwy)? is the averaged oscillatory energy of
an electron at thetimet. The longitudinal displacement
o(t, t*) of an electron from the point at which it is born
at thetimet* to the point at which it occurs at the time
t satisfies the transcendental algebraic equation pre-
sented in Appendix A.

In formulas (7)—<9), the strongly oscillating
momentum component P,,, depends on @, while the
weakly oscillating component Py, depends only on ¢*
rather than @. Ast —» o, we have P, —» 0, because
@=t-9(t, t*¥)/c — oo by virtue of both dd(t, t*)/dt <
c and Q(¢p — o) — 0. Therefore, the component
P, makes no contribution to the REM. Conseguently,
the REM is determined by the component Py, whichis
nonzero in thelimitt — co.

Using formulas (5) and taking into account expres-
sions (7)—9), (3), (4), and (6), we can see that the
ensemble-averaged electron momentum and energy
satisfy the relationships

P(t) = Pvan(t) + Pfin(t)’ Q(t) = Qvan(t) +inn(t)-
The strongly oscillating components P, (t) and
Quan(®) = cP,_ () vanish ast — o, while the weakly

oscillating components P, (t) and Qg (t) (which oscil-
late only slightly about their values averaged over the
laser field period) remain nonzero after the passage of
the pulse. The weakly oscillating components deter-
mine the ensemble-averaged momentum and energy
that the laser field transfersirreversibly in the nonadia-
batic interaction to the electrons produced in the vicin-
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ity of the point x by the time t during gas ionization.
Hence, after the passage of the pulse (att —= o for a
Gaussian pulse), the components Py;,, and Qy;, are just
the REM and REE.

Substituting expressions (7)—9), (3), and (4) into
formula (5), we find that the momentum p does not

contribute to the projections of the REM P, onto they-
and z-axes and that the contribution of pto the x-com-

ponent of Py, is determined by the small parameter
|p[,f(mc:)|2 < 1 and can awaysbe neglected. For thisrea-

son, the projections of Py, onto the coordinate axes,
_ -1
P, (t) = 2/mN(t)

t z, o . (10)
[ > Qu(t*)sin(wot* )y () Wi(t*)dt,

—ok=1

P, (t) = -n2/mN(t)™

t o (11)

x I )3 Qp 2 (t*) cos(Wot* ) M1 (1 )W, (1% ) dit*,
—ok=1

Py, (1) = 2[eN(OT™ [ 5 Qp(t*)[sin(wot*) )

—ok=1
+1ncos”(ot*) IM_y (1) Wi (t* ) dit*
have the same form as for p;= 0.

Formula (5) with expressions (6), (3), and (4) yields
the following relationship for Q. (1):

Qiin(t) = Py, (1) + Qu (1), (13)

where

_ JuE(t) .
Qu(t) = N(t)IZJ:: [n*sin’(cot)

+ cos” (ot ) 12N L (% )W, (t* ) dit*.
In formula (13), the term Q accounts for the initial

velocity distribution of the ionization-produced elec-
trons; setting I'(p5 t) ~ &(pp) in expression (4) gives
QD: 0.

In order to investigate how the quantities Py, and
Qy;,, depend on the parameters of the gas and the laser
pulse, it is convenient to eliminate oscillating termsin
the integrals in expressions (10)—14) with the ioniza-
tion rate and electron density determined by formulas
(3) and (2), respectively. Below, the mean electron
energy, mean longitudinal (along the x-axis) electron
momentum, and the transverse REM will be analyzed
separately.

(14)

ANDREEYV et al.

3.1. Averaged Equationsfor P, and Qg

We start by investigating the mean electron energy
and mean longitudinal electron momentum. To do this,
we perform the time integration in formulas (12) and
(14) over subintervals[t'; t' + T¥(2wy,)], each isaslong
as one-quarter of thelaser field period. For alaser pulse
with arbitrary polarization, the integrals over the sub-
intervals are expressed in terms of Bessel functions. In
this case, the quantities under consideration cannot be
represented simply as power functions of the electric
field strength (see [13]). In order to avoid difficulties
(which are not, however, of fundamental importance),
we consider two opposite limiting cases in which the
integrals over the subintervals [t'; t' + T/(2w,)] can be
expanded in asymptotic or power series, because, on a
time scale of about u){,l, the field amplitude and elec-
tron density change only dlightly, and, for a sufficiently
high ionization rate, the parameter o, ~ 10! issmall.

(i) If the polarization of a laser pulse is far from
being circular, 30, /(1 —n? < 1, formulas (12) and (14)
reduce to

4N (t)

ISXfin(t) -
(ﬁmo)

Z JkIWk(t )N (T )O(k(t)
(15)

x[n? S, (1) Ry(t)

Qu(t) = N7(O) Y I [ Wa(t)Roa(t)ay(t)
k=1 o (16)

«[1- Sa(t) + Of ai(©)} e,

where the coefficient R, incorporates the first three
terms of the corresponding asymptotic seriesin a, (see
Appendix B). With good accuracy, we can assume for
estimates that this coefficient is equal to 0.8, because,
in awide range of the pulse parameters, it lies between
0.7 and 1, provided that therelative densitiesn, _, of the
ionsin different ionization states are nonzero. Theion-

ization rate W, (t") averaged over the laser field period
[see expression (3)] hasthe form

Wi(t) = W(E(t)) L(t')z
( -n ) (17)
<[1+ 3aue) e -3+ 25 Hr ofaivy .

where the density of the ionsin the kth ionization state,
n,, averaged over the laser field period, is calculated
from formulas (2), in which W, and Wi(E(t")) are deter-
mined by expressions (17) and (3), respectively. We
PLASMA PHYSICS REPORTS  Vol. 27
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emphasizethat, in contrast to formula(3), expression (17)
should be taken with the field amplitude E(t") rather
than with the instantaneous value |E (t')| of the rapidly
oscillating field. Note also that, for linear polarization,
the averaged ADK formula taken with the instan-
taneous laser field (as is the case in [1, 2]) may lead
to an REE overestimated by a factor of approximately
1.5[20].

For n = 0, the first term in formula (17) gives the
ADK formula for the rate of tunnellng ionization by
alinearly polarized laser field [14] The remaining
terms in the asymptotic series are negligible for 1 —
n?> 3a,. Note that, at a fixed peak intensity I, in
accordance with formulas (17), (3), and (1), the main

dependence of W on ) in the limit 1 —n? > 3a, under
consideration is determined by the factor E**72™ (1 -
r-]2)—1/2 ~(1+ r]Z)”* 3’4(1 _ nZ)—l/zl

(i) For alaser pulse with nearly circular polariza-
tion, 30,/(1 —n? > 1, formulas (12) and (14) reduceto

: 4N_l z, t _ N ' '
P (1) = (—h—w—% Z 3 jwk(t )1 (£)al(t)

(18)
[n A= nz)Rk(t)} ,
Qx(t) = N (t)k;Jk [0 Wie(t) Py 1 (T) 01y (1) (19)

x[1—(1-n?)/2+0{(1-n%)"}]dt.
Here, the averaged ionization rates W, have the form

2

RETORIN

3(1-n97 —L 15 n* 1

Wi(t) = wk(E<t'))§a—1

+o{(1-nd} g
]

the densities n,_, are calculated from formulas (2) and
(20), and W(t") is determined by expression (3) with the
field amplitude E(t") in place of the instantaneous field
|E (t)]. The coefficient Rk, which accounts for the
power seriesin 1 —n?, is presented in Appendix B.

5In [14], the corresponding formula is misprinted: the numerical

1
factor %B%E should be raised to a power of 3/2 rather than 1/2.
PLASMA PHYSICS REPORTS Vol. 27 No.4 2001
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According to formulas (16) and (19), the correction
Qp(caused by the nonzero initial electron momentum

pp) to the REE Qy;, depends weakly on the degree of

eliptical polarization of laser radiation; i.e., in both of
the above cases, the factorsin square brackets are close
to unity. For a circularly polarized pulse, the ratio

Q{(cPy, ) = (hwy/2Jy < 1 is negligibly small. For a
linearly polarized pulse, we have Q(cP, )= 0.9y, so
that the correction Qcan be large in the regime close
to the regime of tunneling ionization (y ~ 1).

Figure 1 illustrates the dependence of the REE
Qgin(t — o0) on the degree n of dliptic polarization of
the pulse. The curves were obtained numerically from
formulas (3) and (12)—14) for different gases (hydro-
gen, helium, and oxygen). The residual energies in
hydrogen, helium, and oxygen were normalized,
respectively, to their values Q;;,, = 23, 600, and 1810 eV
in the case of acircularly polarized (n = 1) laser pulse
with the parametersl, =5 x 10'* W cm2, A, = 0.78 um,
and Tpyum = 100 fs. The curves symbolized by open cir-
cles reflect the residual energies calculated from the
averaged formulas (15)—(17) (the lower curve) and for-
mulas (18)—(20) (the upper curve); we can see that

Orin(N)/Qgin(n = 1)
1.0+

0.8

0.6

0.4

0.2

Fig. 1. REE Qg,(t — o), normalized to its maximum (at
n = 1) value, versusthe degreen of elliptic polarization of a
laser pulse with the parameters 1 = 5 x 10'8 W cm™, Ay =
0.78 um, and Tyym = 100 fs for hydrogen (dashed-and-
dotted curve), oxygen (dashed curve), and helium (solid
curve and curves marked by circles). The solid curve illus-
trates the results obtained from formulas (2), (3), and (12)—
(14). The curves marked by circles show the residual ener-
gies calculated from formulas (2), (13), and (15)—(17) (the
lower curve) and formulas (2), (13), and (18)—20) (the
upper curve). For hydrogen, helium, and oxygen, the maxi-
mum residual energies are equal to Qg,(nN = 1) = 23, 600,
and 1810 eV, respectively.
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Residual energy, eV

100}

10}

1§

1017 1018
Iy, W cm2

1016

1015

1014

Fig. 2. REE versusthe peak intensity I for nitrogen ionized
by a laser pulse with the parameters Ay = 0.62 um and
TrwHm = 100 fs. The heavy curvesrefer to alinearly polar-
ized pulse (n =0), and thelight curvesrefer toan elliptically
polarized pulse (n = 0.4). The solid curves are calculated
with allowancefor theinitial velocity distribution of theion-
ization-produced electrons, and the dashed curves are
obtained under the assumption that the electrons originate
with azero initial velocity.

theseformulas give quitereliableresultsfor n < 0.8 and
n > 0.8, respectively.

Since, for the chosen parameter values, the correc-
tion Qtothe mainterm cP, issmall, we can assume

that the electrons are produced with a zero initial
momentum P From Fig. 1, we can aso see that the

profiles Q;,(N)/Qy, (n = 1) are similar for different
gases.

Figure 2 shows the REE as a function of the peak
intensity of a laser pulse in nitrogen, calculated from
formulas (12)—14) with and without allowance for the
initial velocity distribution of the ionization-produced
electrons (inthe latter case, the correction Qjwas set at

zero). The stepsin the dependence of the REE on |, cor-
respond to the successive ionization of different elec-
tron shells. We can see that the initial velocity distribu-
tion of the ionization-produced electrons makes the
largest contribution to the REE in the case of low-inten-
sity laser pulses, for which the Keldysh parameter is
relatively large. The higher the degree of elliptic polar-
ization, the smaller the contribution of the initial elec-
tron velocity distribution to the REE.

Pronounced peaks in the time evolution of the ion-

ization rate S = §, averaged over the laser field period
in helium correspond to the successive ionization of
different electron shells (Fig. 3). Replacing the peaks

ANDREEYV et al.

by &-functions, we obtain from formulas (13), (15),
(16), and (18) the following estimates:

zZ -1z

_ max max Ji b 5
Qrin(t) = | ) 6(t-1y) AGUNC ()
f {Z k} k;{(fwm o

+505(t)] + Jkak(tk)}e(t ~t),

30(k
-n’

5 <1,
e
Qun(t) = {ze(t tk)} [1+0°-07(1-n%]

i (t)0(t—t),

k=1 Wy
30,

1-n
where t, is the time at which the ionization rate of the
ionsin the kth ionization state is the highest, o(t,) ~ 107!
isthe value of the parameter o, at thetimet,, 8(t—t,) is
the Heaviside step function, and Z,,, < z, isthe number
of completely ionized electron shells. The coefficients

R.and R, aresettobeequal to0.83and 1 —0.7(1 —n?),
respectively (see Appendix B). As was shown above,
the correction Jua,, which comes from the initial
momentum distribution of the ionization-produced
electrons, should be taken into account only for laser
pulses with anearly linear polarization.

Estimates (21) imply that, for laser pulses whose
polarization is far from being circular (n < 0.8), the
mean energy of the electrons produced from ionization
of the kth shell depends on the field amplitude as

Quin, 0 N2E2(L) + (Jn/3)** E; EX(ty); for pulses with
nearly circular polarization (n > 0.8), this dependence
is Qyin, 0 E*(t). Also, the above formulas show that the
mean electron energy is proportiona to the squared
laser wavelength.

As the peak intensity |, of the pulse increases, the
point t,, corresponding to the time at which the ioniza-
tion rate of the ions in the kth ionization state is the
highest, is displaced toward the pulse front along the
temporal profile of the pulse. Asaresult, for peak inten-
sities |, that exceed theionization threshold I, by afac-
tor of two to three, the REE depends only weakly on |,
(According to [1], the threshold intensity is the pulse
intensity at which the potential barrier for an electronin
a laser field becomes lower than the ionization poten-
tial; for anionin the (k— 1)th ionization state, we have

> 1,

PLASMA PHYSICS REPORTS Vol. 27 No. 4 2001
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Iy = 1.4 x 103 /Jy)*k? W cmr2.) For multielectron
atoms, the REE changes in a jumplike fashion every
time the peak intensity of the pulse increases above the
threshold for theionization of each next low-lying el ec-
tron shell (Fig. 2).

As the laser pulse duration increases or the pulse
front becomes less steep [for example, when pulses
with a hyperbolic secant envelope are used in place of
Gaussian pulses (1)], the point t,, corresponding to the
time at which the ionization rate of the kth electron
shell isthe highest, is displaced toward the pulse front
along the temporal profile of the pulse. As aresult, the
REE decreases. However, for longer laser pulses such
that the ionization front is longer than ten laser field
periods, the REE changes insignificantly as the pulse
duration increases. Thus, for a laser pulse with the
wavelength A, = 0.78 um and the intensity 1, = 5 %
10 W cm?, the REE changes only dlightly when
Trwnm > 100 fs.

Our calculations showed that, for laser pulseswith a
peak intensity above the threshold and a duration
longer than ahundred picoseconds, the parameter o (t,)
is essentially insensitive to the characteristics of laser
radiation. Thus, for helium, this parameter takes on the
valuesa, ~ 0.1 and a, ~ 0.07, and, for oxygen, we have
a, ~ 0.08; a, ~ 0.06; a;, a,, 05 ~ 0.05; and o, ~ 0.04.
Having found a, from Eq. (2) with expression (3) or
from relationships (17) and (20), we can use formula
(21) to estimate the mean energy Qy;, of the electrons

produced during ionization of the gas atoms up to the
kth ionization state. For example, for a helium gasion-
ized by alinearly polarized laser pulse with the same
parameters as in Fig. 1, we arrive at the estimates

Qrin, = 30 €V, Qfp, = 110 €V, and Qg = (Qjn, +
Qrin,)/2 = 70 €V, which agree satisfactorily with the

results calculated from more exact formulas (12)—(14):
Qiin, =27 €V, Qyip, =122 €V, and Qg, = 75 €V.

3.2. Equations for the Transverse REM

Before we proceed with the examination of thetrans-
verse REM Pg, =e,Py (1t —> ©) + ¢,P, (t — »)as

afunction of the laser and gas parameters, note that the
integrals of rapidly oscillating functionsin expressions
(10) and (11) differ substantially from zero only when
the width Lg of the ionization curve t) is no longer
than severa laser field periods. In fact, the ionization-
produced electrons move initialy in different direc-
tions, depending on the laser field phases at which they
are gjected from the atomic shells. The total electron
momentum can substantially differ from zero only
when the number of electrons propagating in one direc-
tion is markedly larger than the number of electrons
propagating in the opposite direction. This situation is
possible only when laser pulses are sufficiently short
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Fig. 3. Dimensionless ionization rate S(t)/(ng ) (heavy
curves), meanion charge Z = N/ny; (dashed and dashed-and-
dotted curves), and dimensionless electric field strength
e|I~E ®l/(muy,c) (light curves) for helium ionized by () lin-
early and (b) circularly polarized laser pulses with the
parameters I, = 5 x 10' W cm2, A, = 0.78 um, and
Tewhm = 30 fs. In Fig. 3a, the dashed-and-dotted curve is
for the zeroth harmonic S, = S of the ionization rate. In

Fig. 3b, the circlesillustrate the results from the approxima-
tions of thefirst and second peaksin theionization curve by
Gaussian functions.

and/or sufficiently intense to produce the ionization
front with asmall width Lg. While the absolute value of
the transverse REM is a monotonically decreasing
function of the width of the ionization front, the direc-
tion of the REM is governed by the laser field phases at
the timest, at which the ions in the kth ionization state
areionized with the highest rate: the vector of theresid-
ual transverse momentum of the electrons produced
from ionization of the kth shell will rotate® about the

6For a linearly polarized laser pulse, the transverse REM will
reverse direction, because it can be oriented either parallel or anti-
parallel to the electric field.
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x-axis (along which the pulse propagates) as the field
phase at the time t, changes (as a result of changesin
laser pulse parameters).

In order to justify the above considerations and to
analytically investigate the dependence of thetransverse
REM on the laser and gas parameters, we approximate
the term S,, which incorporates the ionization of the kth
electron shell into the total ionization rate Sin Egs. (2),
by a smooth curve, eg., a curve that is described by a

Gaussian function § = ngexp{—{(t—t/Ts W*}/[VTTs ],
where1g = Lg/cand Lg  isthe characteristic width of
the kth ionization front (Fig. 3b). Since the direction of
the momentum P, is sensitiveto the field phase at the
ionization time t,, we must take into account the phase
shift of the oscillating component cos(wyt) with respect
to the pulse center. For thisreason, we specify the elec-

tricfield of the pulseinthe form E (t) = E(t)[eycos(t +
$) + ne,sin(wyt + ¢)], in contrast to formulas (1), in
which we set ¢ = 0. As aresult, with allowance for the
fact that, on scalelengths L , the electric field changes
only slightly, we arrive at the expressions

Zmax
Py, (t—= @) = 2Zpn S JmQy(t)
k=1

(22)

2
—(0T /2)

x [sin(ootc + §)e [1 =k, (t)]

(], () — By (BT + ... 1,

. —3 12)°
+sin(3wygt, + 30)e s

Zmax
Py (= ®) = 2nZpe S JMQy(t)
k=1
(23)

~(0Tg 4/2)°

x [ cos(wty + ¢)e [1+ b, (t)]

—(3wyTg W2)°

+ cos(3wpt + 3p)e (R, (B + By, (6] +..- 1,
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where Z_,. < z, is the number of completely ionized
electron shells. The coefficients W, =W, /2W, ),

M, = W, /2W,), etc., incorporate high-frequency
harmonics in the spectrum of the ionization source for
a laser pulse with a noncircular polarization (Fig. 3a).
Here, W, = 2W,cos(2wot) (n =1, 2...) denotes the
[2n]th high-frequency harmonic of the ionization rate
W,, Wk0 = W isthe ionization rate averaged over the
laser field period [which is calculated from formula
(17) when the pulse polarization is far from being cir-
cular and from formula (20) when the pulse polariza-

tion is nearly circular], and the superior bar stands for
averaging over the laser field period. The first of these

coefficients takes on the following values: p, =1 -
30,R/(1 — n?) when the pulse polarization is far from
being circular, p,, =1- Iik =0.7(1 -n? < 1 whenthe
pulse polarization is nearly circular, y,, = 0.75 for a
linearly polarized pulse, and W, = 0 for a circularly

polarized pulse. The coefficients p,, withn> 1 can be

expressed in terms of the analogous power seriesin o
or 1 —n?; however, we do not require the exact values
of these coefficients, because thefirst term on theright-
hand side of expressions (22) and (23) is much larger
than the remaining terms (the exponential functions
contain the factor 2n + 1 and thus rapidly decrease with
increasing n).

Formulas (22) and (23) imply that, for singly
charged ions (including hydrogen ions) produced by a
laser pulse with almost circular polarization (p,, < 1),
the absolute value of the transverse REM,

~(wyoTg1/2)°
P = JP2 (t—=c0) + P (t—= w)=2,/mQ,(t)e "

(24)

x 021+ 18) + (1— 1) + %1+ 1) — (1 - 1%)] cos( 2wty + 26)

depends weakly on the phase wpt; + ¢ and decreases
exponentially with increasing the ionization front width
T5 ; and, accordingly, the pulse duration Tgyy. AS the
field phase changes, the vector of the transverse REM
rotates about the x-axis such that the angle 6 between
P, and the y-axis changes according to the law

6= arctan{n " cot(woty + ¢) (1 + py /2)/(1—py /2)},
n#o0.

For alinearly polarized pulse, the transverse REM is
oriented paralel to E (to the y-axis) and, in
accordance with formula (22), changes from

—~ 12)?
about  =[-2,/mQ,(t;)e (s 2/2 to

2./mQ (e " as the field phase at the time t,
changes. In this case, the angle 6 takes on two values:
-Ty2 and 172.

about
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Note that, according to formula (24), the maximum
(for a given width 15, of the ionization front) absolute
value of the transverse REM, |Pg, |, is proportional to

N(L+ py,) forn>(1—py, )/(1+ py,)andto 1 -y, for
N < (1-Hy, /(1 + Hy,). Consequently, from the asymp-
totic expressions for p, , we can see that |Pg |

increases as N increases from 0 (a linearly polarized
pulse) to 1 (acircularly polarized pulse).

The above analytic estimates are illustrated by
Fig. 4a, which shows the energy of the ordered trans-
verse electron motion, 2m)~!|Pg, [, calculated from
formulas (10) and (11) for hydrogen ionized by laser
pulses with the parameters |, = 5 x 107 W cm™ and
Ao = 0.78 um and with different polarizationsn = 0.1,
0.5, and 1. In accordance with our analytic estimates,
the envelopes of the curves 2m)'|Pg P(Tramm) are
exponentially decreasing functions of Tgym- The lower
the degree n of eliptic polarization of alaser pulse, the
more oscillatory the dependence 2m)~' P (Tewmw) iS;
recall that this effect stems from the fact that, as Tryum
changes, the point t, is displaced along the temporal pro-
file of the pulse. The dependence 2M)~!|Ps, P(Tramm)
for helium is shown by the dashed curvein Fig. 4b. We
can see that, in contrast to hydrogen, the curve
2m)'Pg P(Tewum) for helium decreases nonmonoton-
icaly as Ty increases, because the expression for
the energy of the ordered transverse electron motion
contains the cross terms of the form sin(wot, +
¢)sin(wyt; + ¢) with k# | and cos(wyt, + ¢)cos(pty, + ¢)
with m# n, which stem from the summation of the infi-
nite series in the squares of P, and P, [see expres-

sions (22) and (23)].

Unlike the transverse REM, the longitudina REM
and, accordingly, the REE, which is related to the lon-
gitudinal REM by expression (13), experience less pro-
nounced variations as Ty changes. Thiscan beillus-
trated, e.g., by the dashed-and-dotted and dotted curves
in Fig. 4b, which correspond, respectively, to the mean

energy Pfﬁn /(2mM)(t — o0) of the ordered longitudinal

electron motion and the REE Q;;,(t —= oo) for helium.
That is why, for ultrashort laser pulses, the transverse
REM can be much higher than the longitudinal REM.
In contrast, for longer pulses, the longitudinal REM
becomes higher than the transverse REM, because the
latter approaches zero as the pulse duration increases
(Fig. 4b).

Our analytic expressions [formulas (24), (21), and
(12)«14)] and calculated results (Fig. 4) also imply
that, for the above laser and gas parameters, the mean

residual energy Qu, = [P} (t — ) + [P [21/(2m) of

the directed electron motion is much lower than the
REE Qg (t —= ).
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Fig. 4. (a) Dependence of the residual mean energy
[P [2/(2m)(t — o0) of the ordered transverse electron
motion in hydrogen on the duration of laser pulseswith Iy =
5x 107 W cm™ and Ay = 0.78 um and different polariza-

tions: n = 0.1 (dashed-and-dotted curve), n = 0.5 (dashed
curve), and n =1 (solid curve). (b) Dependence of the resid-

ual mean energies (|Py;, [2/(2m)(t — o0)) (dashed curve),
(Piﬁn J@m)(t —= o)) (dashed-and-dotted curve), and

Qfi(t — o0) (dotted curve) in helium on the duration of a
circularly polarized laser pulse with the same parameters.

4. ELECTRON PRESSURE TENSOR
IN THE NONRELATIVISTIC
COLLISIONLESS LIMIT

Here, we consider the relationship between the REE
Qpin(t — o0) and the electron pressure tensor I1;; or,
equivaently, the electron temperature tensor T; =

ngll‘l ij - To do this, we use hydrodynamic equations for
alow-density gasionized by the field of a nonrelativis-
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tic laser pulse. The desired hydrodynamic equations
can be derived from the following collisionless kinetic
equation for the electron velocity distribution function
f(r, v, t):

of of e o O
3t " Vidr, ~mav, 0

z

e; VB 0
+—C DfD

O
(25)

n

= z F(r, v, tne_q (1),
k=1

where g, is acompletely antisymmetric unit tensor, the
subscript i stands for the ith vector component, and E;
and B, are the corresponding components of the electric

(E) and magnetic (B) fields of the pulse. We will
derive the hydrodynamic equationsfor the pressure ten-
sor IMj; in the weakly relativistic limit, because, as was
shown in the previous section, the REE isinsensitive to
relativistic effectsif agasisionized by anonrelativistic
laser pulse.

Applying the standard method of moments to
Eq. (25) yields equations for the hydrodynamic quanti-

ties—the electron density n, = J’ fd’v, eectron
momentum P = nglmJ' vf d3v, and electron pressure

tensor I-Ilj = mJ'Vi'V; fd3V (W|th Vil = Vi _Vi and Vi =

P;/m). The corresponding identity transformations put
these equations in the form’

onJot +div(nV) = S, (26)
P, ]
ﬁ‘*'vja—xjpl
10 @7
> € ve_=2n.
= —eEi——:— i1V B nearjn”’
aI-I . 1
o div(VTTap+20ag) = MVeVpS+2Qgq
(28)
oV oV eB
_naia_riﬁ_nﬁia_ria_(eailnﬁi+eBiInaJ)ﬁ:l'

Here, qqp = (m/2)fv('Jl vV fd’v isthe heat flux vec-

tor, the subscripts a and 3 are fixed, and summation
over the repeated Latin indices is used. Using for-

mula (4), we can reduce the quantity Q,; =

" Equations (26) and (27) are also valid in the relativistic limit.

ANDREEYV et al.

mZir; lnk_l rk(V9 r, t)VqVBd3V tO

01 0 0
4

. 10 .2 _1_ .
Qi = 490 SW) psn2w)

I o

Jo-3sn(w) coS'(y) § @

z

X z Ne—1Wiedy £H|E|
k=1

W E.

where Yi(t) = arctan{ ntan(w,t)} isthe angle between
the instantaneous electric field E and the y-axis.

At the initial time (before the pulse starts to ionize
the gas), we have Meg(t=0) =0. Fort >0, the tensor
Mgg is determined by the source terms—the first and
second terms on the right-hand side of Eq. (28). In
order to calculate Myg in the first approximation, we
can use the smalness of the parameters |V/c],

VRIS, & ™ [gnayl!  and
[V/c|[S(ngy)] ' (kyo,) ! intheionization region (recall
that T is the characteristic width of the kth ionization
front and g, is the characteristic transverse size of the
pulse); in Eg. (28), we can aso neglect the heat flux
vector g, and the terms containing the combinations of
Mg and V. When the two subscripts {a, B} do not run
the coordinate pairs{a = x, B =y}, {a =y, B =X},
{a=x,B=27,o0or{a=z B =x}, thelast term on the
right-hand side of Eq. (28) can also be omitted, because
it is proportional to eB/(mc). As a result, Eq. (28)
becomes

t

Map(t) = I[mVa(t')VB(t')S(t')+2Q&p(t')]dt'- (30)

For{a=x,B=y} or{a =y, p=x}, wemust supple-
ment the right-hand side of Eg. (30) with the term

—(mc)-lj‘_mI‘Iyy(t‘)eEy(t')dt', and, for {a =x, B =7}
or {a =2z B = x}, we must add the term
—(mey™ [ M, (theEy(t)dt'. However, expressions (35)
(seebelow) imply that these termsboth vanish ast — oo.

In the first approximation, the transverse hydrody-
namic velocity components V, and V, can be cal cul ated
by keeping only the first two terms on the right-hand
side of Eq. (27). We integrate this equation by part,
neglecting the difference on./0t — S = div(n.V) and

assuming that |8In|E J/dt| is much less than |d1nn,/at|.
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As aresult, we obtain from (27) the desired transverse

velocity components

V,(t) = e(mmo)_l{—E(t)sin(coot)

+ng'(t) i E(t')sin(wot')S(t')dt'},
” 31)
V(1) = ne(mwo)‘l{E(t)cos(wot)

—n.'(t) f E(t')cos(wot')S(t')dt'}.

For our purposes, it is sufficient to calculate the lon-
gitudinal hydrodynamic velocity V, to within terms of
the second order in the laser field. Under the condition
X = S/(ngwy) < 1, we retain the leading-order termsin
the Maxwell equations and the equation of motion (27)
to arrive at the following expression for V,:

V, = «(1-n%)(mc) " Q,(t)

(32)
x [ cos(2wyt) —x Sin(2w,t)].

Substituting expressions (31) into formula (30), tak-
ing into account expressions (10) and (11) for P, (t)
and P, (t), and performing identity transformations,
we obtain

30 = (0] Q, (0 -4 Pl L

2.0 = ne(t)[Qzﬂn(t)— P )}, (33)
Py.(D) zf.n(t)}

2m

314 = 570 = (0] Qe (D -

Here,

t z,

Qy,, (1) = 20 (1) [ Qu(t*)sin’(et*)

—ok=1

XMy ()Wi()dts +Q (1),

2 -1

t oz
Q,,,(1) = 20°n'(0) [ Y Qp(t*)cos’(oxt)

k=1 (34)
XN (P)Wi(t)dt +Q (1),
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t oz,

Qe (D) = NN () [ Qult*)sin(2et)

—ok=1

X Ny (T)Wi (1) dt* + Q. (1),

where Qup= ﬁm Qqp (t)dt*. The energy Qy, deter-
mined by formulas (13) and (14) is equal to Q, +
Qzﬂn = Qﬁn, and the REE IS Qfln(t — 00) The sum Of

the transverse energies, which are associated with dis-
tribution (4) of the ionization-produced electrons over
their initial velocities, is equal to one-half of the energy
Qpjin expression (14): Qi+ Q4= Qry2. Theremain-

ing half is covered by the longitudinal energy, Q.=
Q2.

The last formulas, together with expressions (33)
and (34), determine the relationship between the tem-

perature in the (y, 2) plane T, = n;' M, (Where i, v =
y, ), with the REE and REM.

Analogously, using relationships (32) and (31) and
taking into account the above additional terms with
{a=x,B=y} and{a =x, B =2, weobtain from for-
mula (30) the following expressions:

2 & t2 2 (t*
iﬂxx(t) = (1-n% kz _joo%ﬁ——)[cos(Zwot*)
+ X (1) SN(2uot*) I’y ()W, (t)dt* +Q (1),

My = (L—n?)(me®) " ZIQ “(t%)[sin(3wqt*)

—sin(ot*) + 2 (t*) cos(wot™ ) I (t* )W, (t* ) dt*

- yy(t) Qp(t)/(mcz) sin(wyt),

Me(t) = n(1—n*)(mc’) ™"

xS [ Q) [cos(3wst*) - cos(wst*)

k=1_c

(35)

Y

—2x(t*) sin(wot* ) Iy (T* )W (t* ) dt*

+Q,,, (0 +N_(1)Qy(t)/(mc”) cos(wot).

Recall that, since Q,(t —= «) — 0, the additional
terms, which are proportiona to I, or 1, vanish as

t— oo,

Now, we consider the electron pressure tensor for
moderately short and/or moderately intense laser
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pulses such that the kth ionization front is no shorter
than several |aser field periods, so that wy,ts > 1. For
such pulses, formulas (33) and (35) imply that the off-
diagonal elements of the pressure tensor as well as the
transverse components of the REM are all exponen-
tiadly small. For laser pulses with different polariza-
tions, the diagonal elements of the pressure tensor and
of the temperature tensor T, = ngl M,y can be deduced
from formulas (33)—(35) to within unimportant small
terms.

(i) When the pulse polarization isfar from being cir-
cular, 3a,/(1 —n? < 1, we obtain

T yy(t) = 2Q,, (1) = 12[n (t)(hwy)’]"

(t)dt + Q4 (1)/2,
-n’

TL(t) = 2Q, (1) = 8n°[na(t) (hwy)’]

z, t
X z JSJ'V_Vk(tI)ﬁk—l(t')af(t')

k=1

(36)

<[1-Fauce)? Rt )} £+ Q. (012
N

To(t) = 8(1—n°)[ne(t)(fiwxp) ‘mc’]

z,
X Y I [ W) Na (D)o (0) X D)l + Ox (1),
k=1

—00

where Wy (t') is determined by formula (17) and the
asymptotic seriesfor X, and R, are presented in Appen-
dix B.

(ii) For a pulse with nearly circular polarization,
30,/(1 —=n? > 1, we have

(D) = 2Q, (1) = 4V (hwe)]”
%Y I W2 () (R + Qu (B2,
k=1 _»

TA() = 2Q, (1) = 4n’[ne(t) (hw)’]
t (37)
zakjwk(t)nk ()AF(E)[2-R ()] dt + Q4 (t)/2,

k=1 _»

To() = 4(1-n%) [n(t) (hiwg) 'me] ™
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X Y [ W) Roa () (£t + Qu (1),
k=1

where Wy (t") is determined by formula (20) and the
asymptotic series for Iik is presented in Appendix B.

Using expressions (36) and (37), we can estimate T,
as

(Txx - Q* )/Q*
07 x 107(1-n%)"(3/3n)/[(4y) " (100,)].

For ions with low charge numbers and for laser pulses
with nearly circular polarization, thisratio is, asarule,
smaller than unity; thisindicatesthat the main contribu-
tion to the xx-element of the pressure tensor comes
from the distribution of the ionization-produced elec-
trons over their initial velocities. For highly ionized
atoms and for laser pulses whose polarization is far
from being circular, this ratio can be larger than unity,
because, in this case, the xx-element of the pressureten-
sor is governed mainly by the interaction between the
laser field and the el ectrons as they are gjected from the
atoms. Formulas (36) and (37) aso allow us to con-
cludethat T, < T,, and T, < T, (thelatter isvalid for
laser pulses whose polarization is sufficiently far from
being linear).

Note aso that formulas (15), (18), (36), and (37)
give

Tu=0Q,
[(1 n?)’/n%+30/2)=1, 1-n°> 3a,
EKl 9’2 <1, 1-n®<3aq,.

5. CONCLUSION

We have investigated the REE and REM in gases
ionized by dlliptically polarized, relativistic, short laser
pulses.

We have shown that, for laser pulses with polariza-
tion that is not too closeto linear, the distribution of the
ionization-produced electrons over their initial veloci-
ties is unimportant for obtaining the REE and REM,
which thus can be determined under the assumption
that the el ectrons are produced with azero initial veloc-
ity, asisusually donein calculations (see, e.g., [2]). For
y < 1, we can, as usual, assume that, during ionization
of agasby alinearly polarized laser pulse, the electrons
originate with a zero initia velocity. However, at the
boundary of applicability range of the tunneling-ion-
ization model (y~ 1), theinitial velocity distribution of
the ionization-produced electrons may become impor-
PLASMA PHYSICS REPORTS  Vol. 27
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tant for calculating the REE but again has an insignifi-
cant influence on the REM.

Analytic formulas (15)—(24) and (33)—«37) make it
possible to study how the main parameters of the gas
and the laser pulse affect the REE, the REM, and the
electron temperature. We have shown that the trans-
verse REM is essentially nonzero only for very short
laser pulses (no longer than one or two tens of laser
field periods) and decreases exponentially as the pulse
duration increases. The same conclusionisvalid for the
off-diagonal elements of the electron pressure tensor.
For longer laser pulses, only the diagonal elements of
the pressure tensor are significantly different from zero.

The diagonal elements of the pressure tensor satisfy
the inequalities I, < M, and M,, < I, and the ratio
of My, to I, is determined by the degree of elliptic
polarization n (the pulseis assumed to propagate along
the x-axis). The REE is expressed in terms of the pres-
sure tensor elements and REM as Q;, = 2ny'(MN,, +

n, - (2m)—1(P§fin + Pim ). If the laser pulse is not too

short, the final energy of the directed electron motion,
which is proportional to the squared REM, is much
lower than the REE.

We have found that the REE is related to the longi-
tudina REM by the simple expression (13) and is pro-
portional to the third power of the electric field ampli-
tude (at thetime of the most intenseionization) for laser
pulses with nearly linear polarization and to the second
power of the electric field amplitude for pulses with
nearly circular polarization. On the other hand, as the
peak pulseintensity |, changes, the point corresponding
to the time at which the ionization rate is the highest is
displaced along the temporal profile of the laser pulse.
Asaresult, for the peak intensity |, abovetheionization
threshold for one-electron atoms, the REE depends
weakly on |, regardless of the pulse shape. For agas of
multielectron atoms, the dependence of the REE on |,
is jumplike in character, the number of “jumps’ being
equal to the number of completely ionized electron
shells. We have found that the REE is proportional to
the squared laser wavelength. We have also shown that
the sharper the pulse front, the higher the REE; in par-
ticular, the REE is higher for pulses with the same peak
intensity |, but with a shorter duration.
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APPENDIX A

The displacement d of an electron from the point at
which it isbornis described by the equation

5= (mwoc)‘l[zmo(t—t*)—koalQp(t*)

X [sinz((oot*) + nzcosz(wot*)]
+4Q, (%) Q) (t - d/c) [ Sin(wet™) cos(wot — kyd)
—1°cos(wot*) sin(ogt —Kod) ]
—(1/2)(1-n%)Q,(t —d/c) sin(2upt — 2k,d)

~(3/2)(1-n*)Q,(t*) sin(2wpt*)
t—o/c

+(1+n%) I Qp(cp)dcp}é*(t.t*,p*;é),
6*(t1t*!p*; 6) = [C(t_t*)_a]

2Qp (t*) Pye e
[ )P an

2
fi02 gy K_*[EPV* Ez 4 Pz DZH

12
4 2Qp (1=0/0) [pﬂK—* cos(w(t —t*) —kyd)

Jmay, mc y 2
Pz Ky *
+nm—Can(wo(t—t )—koé)}
ZQW t* ) Pys Kx Pz Ky
_ p ( )[ﬁ_zcos(wot*) +r]%—ZSIn(OOQI*)i|.
Moy, Yx Vx

In the case at hand, we have |p{(mc)| < 1. Conse-

guently, for the conditions of tunneling ionization (y <
1), we can perform manipulations similar to those in
the body of this paper in order to show that |3 < [0

] Accordingly, in writing Egs. (7)—9), we assumed

that the displacement & depends only ont and t* and is
independent of p

APPENDIX B
The coefficient R, in formulas (15) and (36), the
coefficient Iik in formulas (18) and (37), and the coef-



292

ANDREEYV et al.

ficient X, in formula (37) for T,, have the form

+

-

Ry

2
3 1 110, 30,299
Rg= 1+ éak%n* + =+ —-5[-—-

1_n2_2D 218
4ni—25n*+4”*_321/2+ 422}+O{af},
1-n (1-n%)
= q14+3on _1-271_n2 —n%?
_1+8[2n* 1 30(J(l n’)+0{(1-n*,

X, = 1-6a,/(1-n°%)
+(3a,)[(11/2—2n,)/(1-1°) + 2/(1-1n)"]

+0{0}}.
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Abstract—Collisional heating of plasmaelectronsin the field of an ultraintense ultrashort laser pulseis stud-
ied. The numerical results obtained by the method of molecular dynamics are compared with the well-known
results from kinetic simulations. A model is proposed that provides a good agreement with the results of calcu-
lations for both linearly and circularly polarized high-intensity laser pulses. © 2001 MAIK “ Nauka/Interperi-

odica’

1. INTRODUCTION

An ultrashort laser pulse focused in a gas produces
a plasma with multicharged ions and a relatively low
electron temperature. This circumstance opens new
possibilities for creating recombination X-ray lasers
and X-ray radiation sources [1]. As the directed elec-
tron motion in the strong electric field of a laser pulse
relaxes toward thermal motion due to elastic collisions
of electrons with the ions, the plasma electron temper-
ature increases. The collisional electron heating rate in
astrong laser field wasfirst determined by V.P. Silin[2]
by solving the Boltzmann—Landau equation under the
assumption that the correctionsintroduced by Coulomb
collisions are small.

In this paper, we consider strong high-frequency
laser fields such that the laser frequency is higher than
the plasma frequency and the electron velocity in a
laser field is much higher than the electron thermal
velocity. These conditions correspond to experiments
with plasmas generated by ultraintense ultrashort laser
pulses focused in a gas. The nature of electron—on
(e-1) collisions can be affected by such factors as
extremely rapid photoionization of the gas, the period-
icity of electron motion in astrong laser field, and small
focal spot sizes. Our purpose here is to investigate how
these factors influence the collisional electron heating
rate.

We consider afully ionized plasmawith theion den-
sity N, and electron density N, = zN;, where zeistheion
charge and —e is the charge of an electron. We assume
that, at the initial time, the ion temperature is equal to
the temperature of the atoms and that the electrons obey
aMaxwellian initial energy distribution with a certain
temperature T, governed by the amount by which the
absorbed photon energy exceeds the ionization energy.

Let the plasma be affected by a linearly polarized
laser wave field E(t) = (E,, 0, 0), where

E,(t) = E,coswit. €))

Inacollisionless plasma, the velocity of an electron and
its coordinates are equal to

v(t) = v(0) + vesinwt,
r(t) = r(0) +v(0)t +rgcoswt,

where the vectors ve = —eE,/mw and rg = eE,/mw’
determine the oscillatory velocity of the electrons and
the amplitude of their oscillations, respectively, and
E, = E(0). Due to the e callisions, the directed elec-
tron motion in the external electric field (1) becomes
stochagtic. If the electron oscillatory velocity Vg is
much higher than the electron therma velocity V; =

A/ TIm, then the e-i collision frequency is equal to [2]
VED k
2V1J:| mm

Inthis case, the collisional electron heating power is
equal to [2]
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According to [2], the values k., and k., are deter-
mined by the reciprocal of the Debye radius and the
minimum impact parameter, which is found from the
condition under which an electron with the velocity Vg
can be described either by classical mechanics or by
perturbation theory. The Coulomb logarithm satisfies
the equality

W = 3

k r
M = |n—.

kmin pmin

A =1In 4)

In expression (2), thelogarithm of the ratio of the oscil-
latory velocity to the thermal velocity stems from the
fact that the collision frequency tends to infinity as the
directed electron velocity decreases. As a result, the
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integral over velocities should be truncated at veloci-
ties below the thermal velocity. For acircularly polar-
ized laser field, the absolute value of the electron
velocity is constant and the logarithm drops out of
expression (2) [2].

An analogous formula for the collisional electron
heating power in the strong linearly polarized laser
wave field was derived by Jonesand Lee [3]:

87°e*N.N, i Ve, KnacV
mVe V: '

where the value of k., is determined from the applica-

bility condition of classical mechanics, k., = mVy/A.

In the approximate expression derived by
Shlessinger and Wright [4] for the collisional electron
heating power in astrong linearly polarized laser wave
field, the collision frequency is multiplied by the factor
that incorporates the difference between the oscillatory
and thermal velocities of the electrons:

W = )

2 =2
eE
W = v, (6a)
2mw
3/2
O vid
v = vgd+—50 (6b)
O 3viOo
_ 4,/2mze'N,
Vei - 3ﬁT3/2 (6C)

where A is the conventional Coulomb logarithm.

In a collisionless plasma irradiated by a circularly
polarized laser pulse with the electric field E(t) =
(Ex, Ey, 0), where

E (1) = %oncosoot,

2. .
E, (1) = —%Eosnwt,

the electrons move at constant speed V¢/ /2 aong cir-

cles of radii rg//2. In the approximation of instanta-
neous binary collisions, the interaction of electrons
with an immobile ion is taken into account, while the
electron—electron interaction is neglected [5], in which
case the mean “friction” force exerted by the ions with
an impact parameter smaller than p,,,, on an electron
has the form [5]

_ 4217 NN,

I
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where the Coulomb logarithm is equal to A =

2 2
1 PoF Prmax _ | Prmac Py = z&/m\2 is the impact
Po Po
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parameter for which the ion deflects the electron
through aright angle. Note that the Coulomb logarithm
isnot truncated at p; becauseit takesinto account all of
the e collisions with impact parameters p < p,,..- The
collisional electron heating power is a product of the

friction force with the velocity Vg/./2 and electron
density:

4J§nzze4NeNiA

W= mVg

(7)

Coulomb logarithm approximation. The Cou-
lomb logarithm A is defined in terms of the maximum
and minimum impact parameters incorporated into the
Landau collision integral [6]: A = Inp,,,/Pmin- FOr al
possible values of the impact parameter (0 < p < +),
the Coulomb collision frequency diverges logarithmi-
cally for both short-range and long-range collisions.
For short-range collisions, the Coulomb logarithm
diverges because the linear expansion fails to apply to
the collision integral in this limit; this divergence can
be eliminated by choosing the impact parameter in a
special way,

pmin = 1/kmax = pD = Ze2/mv2’ (8)

which corresponds to an exact solution. In the limiting
case of high temperatures such that the impact parame-
ter py is smaller than the de Broglie wavelength A =
h/mV, the quantum mechanics limit p,;, = A/41tis used
(the most thorough treatment of this point is given in
[7]). For long-range collisions, the Coulomb logarithm
can aso be made nondivergent by choosing a finite
value of p,.., i.e., by eliminating (in a physicaly rea-
sonable manner) long-range collisions from consider-
ation. However, itisnot apriori clear how to choosethe
impact parameter p,,.,. Initially, most authors (see [8]
for the history of this problem) used as the maximum
impact parameter the interparticle distance

-1/3
pmax = Ni '

which determines the upper boundary of the applicabil-
ity range of the binary-collision approximation. How-
ever, after Landau derived the kinetic equation for the
plasma, the lower limit of integration was routinely
replaced with the Debye radius,

Prmax = Tp = (TJATE®N,)™",

which indicates that the electron scattering by
unscreened fluctuations of the charge density are taken
into account.

For a plasma, the Coulomb logarithm is aso
approximated by the formula[9] that coincideswith the
approximation proposed by L. Spitzer [10] for singly
charged ions. However, the dependence of the Cou-
lomb logarithm on the ion charge z may be neglected
only for ahot plasmawith alow ion charge number. For
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a cold multicharged plasma with z > 1, which is of
interest for X-ray lasers, taking into account the ions
that carry high charges may substantialy lower the
Coulomb logarithm. Consequently, in describing e
collisions in a plasma with multicharged ions, we
approximate the Coulomb logarithm by

N, = 234—-(1/2)InNg+ (3/2)InT,—Inz

for T,<50Z eV,
A, = 253—(1/2)InN, + InT.—Inz

)

for T.> 507 eV.

Sometimes, the Coulomb logarithm is approximated by
the formula /A = (1/2)In(1 + 9/411d, which iswrittenin
terms of the Coulomb coupling parameter & = (z +
DZEN,/ T = 268N,/ T2 for z= 1); below, we will also
use amore familiar expression for the coupling param-
eter, [ = ze? (41N, /3)!3/T,. This approximation for the
Coulomb logarithm was obtained with alowance for
the screening of charge density fluctuations by both
negative and positive particles and is valid for plasmas
with nearly equal masses of positive and negative par-
ticles (such as electron—positron plasmas and ion-ion
plasmas). It isthis approximation that was used by Yak-
ovlenko [11] in order to analyze the results obtained in
my paper [8] by numerically simulating Coulomb col-
lisons of electrons with infinitely heavy ions. As a
result, the discrepancy between the results of [8] and
the conventional theory was underestimated. Note that
the method used in [8] to simulate the straight-line
motion of particles yielded essentially the same results
as those obtained analytically in [7, 12]. Consequently,
the results obtained in [8] reflect the long-term and
multiparticle nature of Coulomb collisions rather than
the numerical technique (as was supposed in [11]).

2. STRAIGHT-LINE MOTION APPROXIMATION

The maximum scale of the charge density fluctua-
tions in a plasma is governed by the electron Debye
radius, because the large-scale fluctuations are
screened by plasma electrons. Since the electrons are
scattered by the charge density fluctuations, the Debye
radius can serve as one of the most natural maximum
impact parameters for Coulomb collisionsin a plasma.
However, thisisnot the case for aplasmaaffected by an
external force that is strong enough to ensure the
straight-line motion of particles with an amplitude
larger than the Debyeradius. Thefluctuations of theion
density and the large amplitude of the oscillatory
motion of the electron under the action of an externa
force can strongly influence the nature of Coulomb col-
lisons.

We start by considering atomic density fluctuations
inareal gas. The collisional nature of areal gas makes
the atomic density fluctuations different from those in
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an ideal gas. This difference becomes pronounced on
spatial scales on the order of the atom mean free path

and longer: A, = 1/o,N,, where g, = Tid> is the gas-
kinetic collision cross section, N, is the atom density,
and d, isthe diameter of an atom. In a gas with temper-
ature T, and atomic mass M, the characteristic relax-
ation time 1, of fluctuations is determined by the atom
thermal velocity (the speed of sound) ¢, = (yT,/m,)'?,
wherey = 5/3 isthe adiabatic index of an ideal gas:

T, = AJcg = 1o N cC,.

After instantaneous gas ionization followed by
instantaneous production of a plasma with the electron
temperature T, and ion charge z, the characteristic
relaxation time 1, of the fluctuations of size A, that
remained in the gas beforeionization isgoverned by the
thermal energy per plasmaion and is equal in order of
magnitude to T, = A,/Cy = 1/0,N,Cy, Where the mass-
weighted average speed of sound in a plasmaiis ¢, =
[V(T, + ZT)/(M + zm)]'/2. The duration 1,,, of an ultrain-
tense ultrashort laser pulse that ionizes the gas is so
short that neither the atomic thermal motion nor the
plasma oscillations can cause atomic density fluctua-
tionsin the gas to relax, because the condition

Tas Ty < T,

is usually satisfied in experiments with ultrashort laser
pulses [1]. Hence, during ultrafast ionization, the
atomic density fluctuationsin agasevolveinto ion den-
sity fluctuations. Since the electrons experience
straight-line motion under the action of an external
force (the electric field of laser radiation), they cannot
screen the ion density fluctuations. Conseguently, dur-
ing ionization, theion density fluctuations can increase
the e collision frequency, provided that they occur on
a gpatial scale substantially longer than that of the
space-charge density fluctuations (the Debye radius).

2.1. Dynamic Friction Force and Collisional Heating
in the Straight-Line Motion Approximation

There exist systems with the Coulomb potential of
interaction among the particles but without screening
(e.g., systems of gravitating bodies and systems of
immobile ions in semiconductors). For a system with-
out screening, the problem of determining the collision
frequency was studied by Kogan [12] in the straight-
line motion approximation. He found that the Coulomb
collison frequency for the particles moving aong
straight trajectories should be determined by taking the
particle mean free path (the length of the straight por-
tions of particle trajectories) as the maximum impact
parameter. Accordingly, for atest particle moving at a
constant speed along a straight trgjectory among immo-
bile charged particles, the dynamic friction force
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depends logarithmically on the time At that has passed
since the test particle started moving [7, 12]:

ane’N, . At
T e | )

F 2
mV Tiin

Here, the time 1, is, as usua, determined from the
applicability condition of the perturbation theory.
While the particle experiences straight-line motion
under the action of an external force, the collision fre-
guency isgoverned precisely by the straight portions of
the particle trgjectory, in which case Debye screening
has no impact on the Coulomb forces, so that the Debye
radius cannot serve as the maximum impact parameter.
Consequently, with the particle motion in the strong
field (1) taken into account, we determine the range of
possible values of the impact parameter in terms of the
straight portion of a particle trgjectory and the squared
electron oscillatory velocity averaged over the period
of electron oscillations:

Prax = 2rg = 26Ef/mw’, P = 2z€7/mVE. (10)

In this case, the Coulomb logarithm Ag depends only
on the frequency of field (1) and its strength:

Ag = INPo/Prin = IN(EEdzm’w’). (11)

Thecollisional electron heating power can be estimated
asaproduct of the dynamic friction force with the elec-
tron velocity and density:

W = 162°¢"N,N,

3
i eEO
In
mVe

zm’w’

(12)

Here, the friction force is calculated from the electron
oscillatory velocity averaged over the half-period of the

|laser field: (V= Vg/J/2.

2.2. Method of Molecular Dynamics[13]

The method of molecular dynamics (which will be
referred to as the MD method) implies a numerical
solution of the dynamic equationsfor asystem of n(1 +
2) positively and negatively charged particles. In the
proposed model, the particles are assumed to be inside
acube at the faces of which the periodic boundary con-
ditions are imposed. The trajectories of n ions and nz
electrons are calculated by solving Newton's equations
of motion

n(z+1)
1 £k
k=12 ..n(z+1).
Here, r, (1) isthe position vector of the kth particle with
mass m, and charge g,. The Coulomb forces f, of the

interaction between the particles that occur at distances
smaller than r, from each other are assumed to corre-

d’r,/dt?
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spond to those of the interaction between uniformly
charged, completely interpenetrating spheres of diame-
ter r, (the “Coulomb spheres’). Modifying the short-
range Coulomb forces in such a manner removes the
singularity of the Coulomb potential at infinitely close
distances and reduces the equation stiffness caused by
the short-range collisions. For the problems at hand, the
MD method, which is often referred to as the “method
based on ab initio principles,” should incorporate addi-
tiona parameters that affect the numerical results.
These are the number of particles, N, = n(z + 1); the
radius of Coulomb spheres, r,; and numerica errors.
Since the number of particlesin the system to be simu-
lated isrelatively small, the way in which the boundary
conditionsareimposed isalso of particular importance.
A detailed discussion of these problems goes beyond
the scope of our study, so werestrict ourselvesto abrief
analysis of the most important related physical topics
(see also [14]).

Clearly, the applicability condition for the validity
of our mathematica model is the smallness of r, in
comparison with the mean interparticle distance:

ro < N (13)

Condition (13) is sufficient for determining most
plasma parameters. In order to take into account the
contribution of short-range collisions between free par-
ticlesin an ideal plasma, we must impose the condition

ro << pp(Vy) = zezlmvi.

Collisions in a strong laser field should be modeled
under afar more stringent requirement:

ro < pp(Ve) = zezlmvé. (14)

The number of particles in the system to be simu-
lated should be such that the collision integral can be
approximated in the desired fashion and the surface
effects can be neglected. Imposing periodic boundary
conditions markedly reduces the influence of the sur-
face effect (or the effect of thefinite volume of acalcu-
lation cell). The approximation of the collision integral
requiresthat short-range collisions occur on time scales
on which the electron temperature (and, accordingly,
the electron velocity distribution function) changes
insignificantly:

1
Nip5(Ve)

WAL < gNeTe.
In numerical simulations, conditions (14)—<16) are
often difficult to satisfy, because the computations are
very involved. However, we may only impose condi-
tion (13) and, for a comparison between the numerical
and theoretical results, set p,,,;, = ro in equality (4) and
Knax = 1/Pmin = 1/ro in expression (5). Of course, the

ZnVeAt > (15)

(16)
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numerical results from MD calculations can only be
compared with the results obtained by the kinetic mod-
els from which the quantum mechanics limit is elimi-
nated. Additional simulations were carried out in order
to determine how the parameters under investigation
depend on the values of the quantitiesr, and N, and to
check both the calculation accuracy and the effect of
numerical errors on the final results.

At the initial time, all particles are distributed uni-
formly inside a cubic cell and the electrons and ions fit
the Maxwellian initial velocity distribution functions.
The size of the cube is chosen so as to ensure the
required plasmadensity. In asystem without any corre-
lation between particlesin theinitial state (the particles
are randomly distributed in the cube), the interna
energy tends to relax to the Debye energy, so that, on a
time scale of about the time required for an electron to
pass the mean interparticle distance, the mean electron
kinetic energy (or, equivalently, the electron tempera
ture) increases. In order to clarify how this effect influ-
encesthe electron heating, both the temperature and the
internal energy of the system were calculated in the
absence of alaser pulse.

2.3. Results of MD Calculations

Simulations were performed for a helium plasma
withz=2and N; =3 x 10" cm3, theinitial electron and
ion temperatures being the same, T, =T, = 5 eV. For
such a plasma, the coupling parameter is equal to ' =
0.3. Theintensity and wavel ength of laser radiation, | =
6 x 10" W/cm? and A, = 0.248 um, were chosen so as
to satisfy the conditions for the strong laser field
approximation: Ve/Vr = 7 and w/wy, = 12. Figures 1-4
illustrate the numerical and analytical time evolutions
of the electron temperature and internal energy. The
time is expressed in plasma periods, and the potential
energy of Coulomb interactions in the system is nor-
malized to the Debye interaction energy per unit vol-
ume [15], E.,, = (®"*(z + 1)N;T,. For the above
plasma parameters, the Debye energy per particle is
equal to Up = (1) *T,= 1.2 eV.

First, we consider the numerical results for a system

containing Coulomb spheres of different radii: r/N; ™ =

0.5, 0.05, 0.005, and 0.0005. The radius r, = 0.005 -
N; ' isequal to the minimum impact parameter p, ., =

Zzez/mvé , which is determined by the electron oscilla-

tory velocity. Theseresults are of interest not only from
a methodological point of view (the determination of
the optimum value of this important numerical param-
eter) but also from a physical standpoint, because they
demonstrate the effect of short-range and long-range
collisions on the electron heating rate. Figure 1 shows
(a) the electron temperature and (b) the internal energy
calculated for Coulomb spheres of different radii inthe
system under consideration. In the initia stage, the
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Fig. 1. Time evolutions of (&) the electron temperature and
(b) the internal energy of the particles both computed using
the MD method for Coulomb spheres of different radii.
Curve [ illustrates the relaxation of the initial state of a
helium plasma with z=2 and I = 0.3 in the absence of a
laser pulse. Curves?2, 3,4, and 5 givetheresultsof MD sim-
ulations for a system of Coulomb spheres with different

radiii (ro/ N/ = 0.5, 0,05, 0.005, and 0.0005, respectively)

in astrong laser field. Curve 6 corresponds to the approxi-
mate formula (3) derived by Silin [2], and curve 7 is calcu-
lated by formula (12) proposed in this paper.

electron temperature somewhat increases because the
initial coordinates of the electrons and ions are com-
pletely uncorrelated. The temperature acquired by the
electrons coincides in order of magnitude with the
Debye internal energy of 1.2 eV. For comparison, the
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Fig. 2. Time evolutions of the electron temperature obtained
from MD simulations for systemswith different numbers of
particles. Curves 1, 2, 3, 4, and 5 are for simulations with
Np = 3000, 3000, 300, 30, and 30, respectively. Curve /
illustrates the relaxation of the initial state of a helium
plasmawith z=2 and I' = 0.3 in the absence of alaser pulse,
curve 6 corresponds to the approximate formula (3) derived
by Silin [2], and curve 7 is calculated by formula (12) pro-
posed in this paper. Light curves 4 and 5 are computed for
different initial coordinates and different velocities of the
particles.

dashed curve gives the results from simulations of the
relaxation of the sameinitia state of the system for r,=

0.0005 - N7** but in the absence of a laser pulse. We

can see that the stochastic electron heating differs only
dightly between the calculations with the smallest

radius of the Coulomb spheres, r, = 0.0005 - N7, and

with r,=0.005 - N~® . However, the computationswith

the smallest radius revea the effect of laser-driven
recombination: we can see that the potential energy of
the system increases significantly and the kinetic
energy profile is peaked. For the same reason, the
potential energy of the system also increases consider-
ably, but without having asubstantial effect on stochas-
tic electron heating. The binding energy of an electron
that has experienced arecombination event is converted
into laser field energy.

Figure 2illustrates the time evolution of the electron
temperature calculated for systems with different num-
bers of particles. The radius of Coulomb spheres was

set to be r, = 0.005 - N;®, which corresponds to r, =

p(Ve) = zez/mVE (see above) and, according to the
previous computations, issmall enough for the stochas-
tic heating rate to be calculated correctly. The results
obtained show that several thousand particlesin a sys-
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Fig. 3. Time evolutions of (a) the electron temperature and
(b) the internal energy of a system of N,, = 3000 particles

both computed using the MD method with different accura-
cies. Curve 5 corresponds to the approximate formula
(3) derived by Silin[2], and curve6 iscalculated by formula
(12) proposed in this paper.

tem are quite sufficient to determine the parameters of
collisional heating: curve 2, calculated using the MD
model for a system consisting of N, = 3000 particles,
essentially coincides with curve 7, calculated from for-
mula (12) proposed in this paper.

Figure 3 presents the numerical results obtained for
a system consisting of N, = 3000 particles by integrat-
ing the equations of motion with different accuracies.
Curves 2, 3, and 4 are labeled in order of increasing
accuracy: the accuracy of curve 2 issignificantly worse
than the accuracy inherent in conventional calculations,
the accuracy of curve 3 is consistent with the conven-
tional integration steps (asisthe casein Figs. 1 and 2),
and curve 4 was calculated with increased accuracy. It
isof interest to note that the rough computations give a
larger absolute value of the potential energy of the sys-
tem but a lower level of collisional heating; in other
words, the stochastic recombination associated with
computational errors does not increase the temperature
PLASMA PHYSICS REPORTS  Vol. 27
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to which the electrons are heated. A comparison
between curve 3 (obtained with ordinary accuracy) and
curve 4 (obtained with increased accuracy) also exhib-
itsthistendency, which is, however, seento beless pro-
nounced.

The functional dependence of the collisional heat-
ing rate on the laser parameters was studied by per-
forming simulations with different amplitudes rg of the
electron oscillations and with a fixed electron oscilla-
tory velocity Ve. These simulations make it possible to
reveal the dependence of the fina results on the new
parameter—the oscillation amplitude.

Figure 4 shows the representative time evol utions of
(a) the electron temperature and (b) the internal energy
of the particles calculated for the same oscillatory
velocity Vg but for different laser frequencies w (and,
accordingly, for different laser intensities and oscilla-
tion amplitudesr). Asin the previousfigures, for com-
parison, we also plot curve I, which was obtained using
the MD method and illustrates the relaxation of the ini-
tial state of the system with no laser pulse present. The
results from MD simulations for laser intensities and

wavelengths for which Ve/V; =7 and re/ N ° = 0.2, 1,
and 4 (and, accordingly, w/wy, = 3, 12, 60) are given by
curves 2, 3, and 4, respectively. Curve 3 corresponds to
the case when the Debye radiusis approximately equal
to the oscillation amplitude, and the remaining two
curves reflect the limiting (computationally possible)
cases when the Debye radius is much larger (curve 2)
and much smaller (curve 4) than the oscillation ampli-
tude. Curve 5 corresponds to formula (3) derived by
Silin [2], and curves 6, 7, and 8 correspond to the
results obtained from formula (12). The results of MD
cal culations show the dependence of the heating rate on
the oscillation amplitude for a fixed oscillatory veloc-
ity. Formulas (3) and (6) show no such behavior. The
dependence given by formula (5) differs radically from
that obtained using the MD method. The results from
MD calculations agree well with the approximate for-
mula (12) derived above under the assumption of
straight-line el ectron motion. The results obtained from
simulations with a very small oscillation amplitude
(curves 4, 8) differ from the theoretical predictions
most significantly; this circumstance can be attributed
to the correlation effects (see below).

Theresults from simulations with acircularly polar-
ized laser field (6) also agree well with the theoretical
predictions from dependence (7) in which the Coulomb
logarithm is taken in the form of (11) rather than (9).
Hence, approximation (12) proposed in this paper
appliesto laser pulses with arbitrary polarization.

Under the conditions adopted in our simulations,
approximation (12) does not differ substantially from
the approximations derived previously, because the
Coulomb logarithm and the logarithm of theratio of the
oscillatory velocity to the thermal velocity are both
close to unity. However, for conditions prevailing in
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Fig. 4. Time evolutions of (a) the electron temperature and
(b) the internal energy of a system. Curve ! illustrates MD
simulations of therelaxation of theinitia state of the system
in the absence of a laser pulse. Curves 2, 3, and 4 give the
results of MD simulations for a system in laser fields with
different frequencies w/oyy =3, 12, and 60, respectively (the
laser intensity and wavelength are such that the ratio
Ve/V1 =7 wasthe samefor all series of simulations). Curve

5 corresponds to Silin's approximate formula [2], which
includes only one parameter Vg/Vr and does not differ

between the three series of computations. Curvesé, 7, and 8
show the calculations by formula (12).

real experiments on the interaction of ultraintense laser
pulses with gases, this difference can be far more pro-
nounced. The table summarizes the characteristic val-
ues of the plasma parameters in experiments aimed at
developing advanced recombination X-ray lasers and
X-ray radiation sources [1]. For such devices, thetable
presents the conventional values of the Coulomb loga-
rithm (9) and the values of the Coulomb logarithm that
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Table
z T, eV N;, cm3 I, W/iem? Nasy MM A, Ne
2 20 3x 1019 6 x 1018 1.05 49 14.6
2 50 3x 10% 6 x 1018 1.05 54 14.6
2 100 3x 10%° 6 x 10'8 1.05 6.4 14.6
2 7 10%7 108 0.248 5.8 9.3
2 10 1018 1018 0.248 5.2 9.3
2 30 1010 1018 0.248 5.7 9.3
3 100 1018 10%7 0.5 7.6 9.1
10 200 3x 10%° 1018 0.248 55 9.3
10 400 3x 10%° 1018 0.248 6.5 9.3
10 800 3x 10%° 1018 0.248 7.6 9.3

Conventional values of the Coulomb logarithm A, (9) and the values of the Coulomb logarithm Ag that are calculated from formula (12)
proposed in this paper for fully ionized helium, lithium, and neon plasmas (the corresponding atomic numbers are given in thefirst column)
and for different temperatures, densities, laser intensities, and laser wavelengths.

are caculated from formula (12) in the straight-line
motion approximation.

3. CORRELATION EFFECTS

The trgjectory of an electron oscillating in the laser
field is periodically perturbed by remote ions, whose
impact parameters change insignificantly due to their
thermal motion over the laser field: p > V;/w,,. In this
case, the absolute value of the sum of the transverse
perturbations of the electron momentum is equal to the
sum of the absolute values of the increments in the
momentum during one collision event, and, for these
long-range collisions, the fraction of the energy of
straight-line motion that is converted into thermal
energy is proportional to the square of time (or, equiv-
alently, to the number of oscillation periods of the elec-
tric field). For uncorrelated collisions, one must sum
the squares of the increments in the momentum, in
which case the fraction of kinetic energy that is dissi-
pated in the system islinearly proportional to the time.
Itis of considerable interest to investigate the influence
of this effect on the electron heating rate, because the
nondiffusive nature of collisions can significantly
enhance electron heating.

Recently, when considering the effect of the focus-
ing of an oscillating electron by an immobile point
charge with the Coulomb potential, Fraiman et al. [16]
predicted that the correlated nature of e—i collisionsin
a strong laser field should considerably increase the
collisional electron heating rate. However, the results
from the simulations described here do not confirm this
prediction. Presumably, thisis because of the collective
nature of plasma oscillations (in [16], scattering by a
single ion was considered). Let us give a better insight
into the effect of the plasma microfields on the proba-
bility for an oscillating el ectron to be attracted by anion
and to experience a strong collision event as a result of

which the electron oscillatory velocity becomes sto-
chastic.

3.1. Free Fall of an Electron toward a Point lon

We consider the problem of the free fall of an ini-
tially immobile electron that starts moving at the point
%, > 0 toward an infinitely heavy ion at the point x = 0.
The equation of electron motion has the form

ze’x

mix*

Imposing the corresponding initial conditions on this
equation, we arrive at the following parametric solu-
tion:

[hze2D Xg(' XoH

Consequently, the time required for an initialy
immobile electron that starts moving from the point at
adistance x, from theion to comeinto contact with this

3 1/2
ionisequal tot(0) = z3—0
2pze’0]
related particles, the distribution of the distances
between an electron and the nearest ionsis governed by
theion density and has the form

W(r) = 41wr’N;exp(—r’/r),

Xo
/2 ~1/2
t(x) = O Pl 10y

. In asystem of uncor-

wherer, = (3/4TN,)'” isthe radius of aspherical ion. If
we neglect the forces exerted by the remaining ions on
the electron, then the time required for the electron to
fall on the nearest ion from the most probable distance
r = (2/3)"r, is exactly equal to one-quarter of the
plasma oscillation period.
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3.2. Applicability Condition
of the Single-lon Approximation

We consider the conditions under which the freefall
of an electron on the nearest ion is perturbed by the
microfields of the remaining ions such that the electron

does not enter the sphere of radius p,,;, = 2ze2/mVE,

inside of which the electron oscillatory velocity
changes strongly. Assuming that the mean force exerted
by the remaining ions on the electron is about the Holts-

mark force Fy = z2*N”° and estimating the time

required for the electron to fall on the nearest ion as
one-quarter of the plasma oscillation period 1., we

obtain F,1°/32m > py;,. Combining this inequality
with the above expression for the minimum impact
parameter yields the condition
1 2 16_ 2 13
2mVE > T[ze N; .

This condition for the decorrelation of short-range col-
lisons by plasma microfields in a strong (Vg > V¢ =

JTIm) laser field is satisfied for an idea plasma. In
fact, condition (17) coincides with the condition that
the laser field be strong and holds in al actual situa-
tions. Condition (17) also serves as an estimate for the
effect of plasma microfields and quite satisfactorily
explains why the MD simulations revealed no signifi-
cant increase in the electron heating rate due to the pro-
cesses considered in [16]. Note also that the single-ion
approximation was also used by Shvets and Fish [17],
who, however, took into account only weak collisions.
For ararefied plasma, in which, according to [16], the
above effects are easier to observe, condition (17)
implies that, in a strong laser field, the plasma
microfields have a stronger impact on collisions. How-
ever, we emphasizethat condition (17) merely indicates
that the decorrelation of collisions due to the ion
microfields should be taken into account and gives no
information about the influence of the microfields on
the collisional heating rate.

(17)

3.3. Truncation of Srong Collisions
in a Small-Sze Plasma

Usually, ultraintense laser pulses can be generated
not only by shortening the temporal profile of the laser
field but also by focusing laser radiation into a very
small spot (several microns in diameter). Such a small
focal spot of astrong laser field resultsin the following
interesting effect of truncation of strong collisions.

An electron that has experienced a short-range col-
lision with an ion and has acquired a sufficiently large
transverse (with respect to the laser field) velocity can
leave the small focal region, in which case a thermal
electron from the surrounding plasma should inevitably
enter this region. Consequently, in the small foca
region, the hot electrons (and, accordingly, their strong
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collisionswithions) do not affect the collisional plasma
heating rate. For this reason, the collisiona heating
should be analyzed without allowance for the range of
impact parameters such that the distance on which the
hot electrons are decelerated by the thermal electrons
(recall that, in collisions with ions, the electron energy
changes only dlightly) islarger than the diameter of the
spot into which laser radiation is focused.

4. CONCLUSION

We have shown that the gas density fluctuations and
the periodic (nondiffusive) nature of collisions of an
electron moving in a strong laser field with the ions
change the collision-related parameters of a plasma
created in the interaction of an ultraintense ultrashort
laser pulse with agas.

The approximate formula derived for the collisional
electron heating rate agrees well with the results from
MD simulations. The new upper limit at which the
Coulomb logarithm is proposed to be truncated—the
amplitude of electron oscillations in a strong laser
field—Ileads to a new functional dependence of the col-
lisona heating rate on the laser field parameters. The
proposed approximate formula applies to laser pulses
with arbitrary polarization and does not contain the
double logarithm that entersthe corresponding formula
derived by V.P. Silin [2] for a linearly polarized laser
pulse.
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Abstract—Two-dimensional numerical simulations of the magnetic reconnection of two parallel force-free
current loops are carried out using a high-resolution MHD code in which an artificial wind schemeisemployed.
Two typical cases (namely, co-helicity and counter-helicity reconnection) are investigated. The simulation
results show that co-helicity reconnection involves only the reconnection of the poloidal component of the mag-
netic field, while counter-helicity reconnection involves the reconnection of both the poloidal and axial compo-
nents of the magnetic field. Therefore, counter-helicity reconnection is much more complicated and violent as
compared to co-helicity reconnection. In both cases, jetlike flows are generated. Counter-helicity reconnection
is accompanied by oscillations of both the axial magnetic field and the axial component of the velocity. Due to
these oscillations, quasi-steady models of a current sheet appear to be inapplicable, because the current sheet
structure also changes. The complicated and unsteady structure of the current distribution shows that magnetic
reconnection occurs not only in the central sheet between two loopsin the earlier stage of the process, but also
inside each loop in later stages. Rather complicated flows and waves with fine structures are al so generated dur-

ing reconnection. Some of the waves appear to be shock waves. © 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Magnetic reconnection is the topological change of
a magnetic configuration involving the breaking and
rejoining of magnetic field lines [1-4]. A local recon-
nection process often causes macroscopic changes of
the magnetic structure [5]. Magnetic reconnection
plays an important role in the dynamics of both space
and laboratory plasmas. It can also result in releasing
the energy stored in the magnetic field and its transfor-
mation into kinetic and thermal energies of the plasma
in solar flares, auroras, and laboratory plasmas [6-9].

Depending on both the presence or absence of the
axial magnetic field and its symmetry or antisymmetry,
magnetic reconnection can be classified into three
types: null-helicity, co-hélicity, and counter-helicity
reconnection [10, 11]. Recent experimental studies
revealed that the three types of magnetic reconnection
differ significantly [12, 13].

To explain the mechanism for explosive solar flares,
aloop-oop coaescence model was proposed 40 years
ago by Gold and Hoyle [14]. Since their pioneering
work, loop coalescence has been thoroughly studied by
many authors [15-18]. It is generally believed that the
current loop reconnection provides keys for under-
standing many of the characteristic features of solar
flares, such as their short duration, fast plasma hesating,
high-energy particle acceleration, shock wave forma-
tion, variations in the intensity of electromagnetic
emissions, as well as the typical evolution of micro-
wave images obtained by satellite observations during
flares [19-22].

Computer simulations play an important role in
plasma physics and astrophysics. Two- and three-
dimensional MHD simulations of the reconnection of
two current loops were performed in [23-26]. The
results of these ssimulations alow an understanding of
the main physical processes accompanying the loop
coal escence. However, due to the low spatial resolution
and doubtful nonlinear stability of the codes, these sim-
ulations were not able to reveal as many useful results
as expected. In order to improve both the resol ution and
stability of the numerical scheme, a new way for con-
structing efficient nonoscillatory  shock-capturing
numerical schemes was recently proposed for hyper-
bolic systems of the conservation laws, namely, the
artificial wind (AW) scheme [27-29]. The basic idea of
the AW schemeisto solve the hydrodynamic (or MHD)
equations in different steadily moving frames of refer-
ence chosen in such a way that the flow is supersonic
there, thus resulting in simple upwind formulas for
fluxes across control volume faces. This scheme hasthe
main advantages of the total variation diminishing
(TVD) and Godunov-type schemes (such as high accu-
racy and quality of the results) and is free of the main
drawbacks of these schemes (such as high complexity
and high CPU consumption).

In this paper, a two-dimensional high-resolution
MHD code based on the AW schemeis applied to sim-
ulate the magnetic reconnection of two parallel force-
free loops. The term “loop” or “flux tube” implies a
cylindrical magnetic configuration that has typical fea-
tures of both the Z-pinch and ©-pinch, because both the

1063-780X/01/2704-0303$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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axial and poloidal components of the electric current
and magnetic field are not equal to zero. Asaresult, the
magnetic field lines and electric current lines have a
helical form and, for a force-free configuration, the
electric current flows exactly along the magnetic field
lines. The theory of such equilibrium configurations is
well known [30].

When two force-free configurations are placed not
far apart, they interact through the magnetic field, so
that this configuration is not in equilibrium. The super-
position of two helical magnetic field lines of the two
loopsgivesanull line at some place where all (or some)
of the components of the magnetic field vanish.
Depending on the signs of the helicities in the loops,
three types of current loop reconnection (null-helicity,
co-helicity, and counter-helicity) are possible; two of
them (namely, co-helicity and counter-helicity recon-
nections) are investigated in this paper. It should also be
mentioned that the local reconnection near null-lines
and null-points of the magnetic field involving all three
vector components is rather interesting in itself (see,
e.g., [31]); however, adetailed analysis of this phenom-
enon is beyond the scope of this paper.

Simulations demonstrate that counter-helicity
reconnection is much more complicated and violent
than co-helicity reconnection. This results from the
complicated dynamics of the axial-component recon-
nection. Some of the phenomenatypical of this dynam-
ics were considered earlier by different authors mostly
for application in toroidal plasma devices[32, 33].

The increased resolution of the present simulations
revealed some new effects that were previously con-
cealed or suppressed by numerical dissipation. The
axial components of both the magnetic field and veloc-
ity suffer weakly damping oscillations. These oscilla-
tions (whose frequency varies in space) result in the
oscillating structure of the magnetic field in the domain
where reconnection takes place. Waves are emitted
from this domain, some of which are shock waves. The
main purpose of this paper is to investigate these pro-
cesses in detail, because, for studying charged particle
acceleration, hard X-ray emission, and other effects
accompanying reconnection, the structure of the elec-
tromagnetic fields and the generation of shock waves
are of crucial importance.

The paper is organized as follows. In Section 2, the
simulation model and numerical scheme are described.
The numerical results are presented in Section 3. Sec-
tion 4 gives the discussion and summary.

2. SSMULATION MODEL
AND NUMERICAL SCHEME

In this section, the ssimulation model, the initial and
boundary conditions, and the numerical scheme are
described.

A 2D MHD code using the recently proposed AW
numerical scheme with splitting over the spatial coor-
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dinates (by the Strang scheme) is employed. The AW
scheme is based on the fact that the fundamental phys-
ical invariance (Galilean or, more generally, Lorentz
invariance) allows one to solve the governing equations
in different steadily moving frames. The principle of
the AW scheme is that the frame of reference may be
chosen in such a way that the flow under simulation is
supersonic there. The problem of upwinding becomes
trivial, and considerably facilitated versions of discon-
tinuity-capturing schemes may be employed. An extra
velocity (artificial wind) is added to the velocity of the
flow under simulation when the system of coordinates
is changed. The AW approach allows one to simplify
existing schemes and to obtain new modifications (see
[27] for details]). Test ideal MHD simulations show
that the AW schemes capture all the structures of MHD
waves correctly without producing noticeable oscilla-
tions[28, 29].

The following conservative MHD eguations are
numerically integrated:

90, 9 oy =
at +a_xl(pvl) - 0, (1)
opV, 9 2 —
W+a_xj[pvivj+(p+|3 )3;—-2B,B;] =0, (2)
9B, 9 19°B
5?4-6 ](VjBI_ViBj) Rmasz, (3)
2
iﬂ+L+BZD

“)

2
2 OVEY L VP L op0 opgy ag] =0
a_x,[ T2 Ty_1 [~ 4bibjVj Qi}— ,

wherep, V,, p, and B; are the density, velocity, pressure,
and magnetic field, respectively; y is the adiabatic con-
stant, which is taken to be y = 5/3; R, is the magnetic
Reynolds number; §; isaunity tensor; and g; isthe dis-
sipative energy flux. The density, pressure, velocity,

and magnetic field are normalized to py, Py, +/Po/Po s

and B, = ,/81tp,, respectively. The length is normal-
ized to the loop radius a.

For resistive magnetohydrodynamics with a large
but finite value of R,, the energy equation (4) should be
obtained as a sum of the equation for the plasmaenergy,
in which the Joule heating term is represented in the
form (c’[V x B]%*/(4m)%c), and the equation for the mag-
netic energy, whichisgiven by Eq. (3) multiplied by the
vector B;/(41) (here, all of the variables are not normal-
ized and o is the conductivity). The dissipation of the
magnetic field energy is determined by the term
(c*/(4*0)BAB;. Hence, in Eq. (4) for the total energy,
PLASMA PHYSICS REPORTS  Vol. 27
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Joule heating is balanced by the magnetic energy dissi-
pation:
2
c
(41'[)20
2

= —S_div[B X[V xB]].
(4mM°o

[B/AB; + [V x B]’]
)

Therefore, resistivedissipation in the energy equation (4)
is present only in the form of an additional dissipative
energy flux, which, in normalized variables, may be

written as ™ = R, 0/0x(2BB, — B3;). The dissipa-

tive energy flux due to heat transfer may also be taken

into account in the usual form: qi(h) = —\;;0/0%;(p/p).

For the sake of simplicity, here we fully neglect the
nondiagonal part of the dissipative energy transfer ten-
sor and substitute all the tensorsin g, for those propor-
tional to the unity tensor: B,B; = B*3,;/3 and A;; = A &;/3.
Numerical simulations show that the influence of the
dissipative energy flux is insignificant; hence, we do
not try to take it into account more carefully. Finaly,
we admit the dissipative hydrodynamic flux in the form

_ 90 B ., pO
q = G_XiD 3R )\pD (6)

The magnetic Reynolds number R,,= 1.3 x 10° and
two values of the heat transfer constant A = 0 and A =
2.5 x 10~* were used in simulations.

The motion was assumed to depend on two spatial
coordinates x and y. However, all three components of
the velocity and magnetic field were involved in the
simulation. A uniform 1000 x 1000 grid in the 2D com-
putation domain with aspatial size of 8a x 8a was used.
In al directions, nonreflective boundary conditions
were imposed.

These boundary conditionsimply that any perturba
tion arriving at the boundary from the simulation
domain passes freely through the boundary; i.e., they
imply that, outside of the computation domain, thereis
a plasma in which the magnetic field continuously
tendsto zero at large distances. A test computation car-
ried out with the boundaries being displaced outward
(on a 1400 x 1400 grid) showed that the boundaries do
not influence significantly the processes under consid-
eration for the chosen simulation time. On the other
hand, the boundary conditions undoubtedly affect
other, less significant details. For example, thelogarith-
mic divergence of the system energy at large distances
and the ability for the outer plasmato flow freely into
the computation domain result in the slow growth of the
total energy in the computation domain.

A single steady-state current loop satisfies the equi-
librium condition if the poloidal and axial magnetic
PLASMA PHYSICS REPORTS  Vol. 27
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fields are chosen in the form
B, or/a
By = —l2o, (7
1+(r/a)
B
B, = —102, (8)
1+(r/a)
p = const, p = const. )

An equilibrium current loop isforce-freeif By, = B, [13].

As the initial condition for the magnetic field, we
take the sum of two distributions (7) and (8) for two
current loops. The loop axes are parallel to the z-axis
and arelocated at x, = 4.0 and y, = 2.5 for thefirst loop
and at x, = 4.0 and y, = 5.5 for the second loop. Theini-
tial amplitudes of the magnetic field components are
By =B, =3.0. Theinitial pressure and density are p =
1.0 and p = 1.0 throughout the computation domain.

Two runs were carried out for co-helicity and
counter-helicity reconnection or, in other words, for
partial and complete (including the axial component)
reconnection [23], respectively. In the co-helicity B, =
[By| case (run A), the axial magnetic fields of both
loops are directed along the z-axis (B, = |B,|), while
in the counter-helicity case (run B), the axial magnetic
fields of the left and right loop are directed along and
opposite the z-axis, respectively (B,, = |By|). Here, the
results of run B are mainly described.

The maximum value of the Alfvén velocity in the
initial stateis V, = 4.24. The time is normalized to the
characteristic Alfvén time 1, = a/V,. The typical value
of plasmabeta (3 = pB?) isf3 ~ 0.1 and B ~ 2.0 for the
loop and ambient medium, respectively.

3. SSIMULATION RESULTS

Two paralel loops with antiparallel axia currents
repel each other and usually do not reconnect unless
they initially move toward each other with asufficiently
high relative velocity. Therefore, we will only consider
the case of parallel axial currents.

The main physical picture of the reconnection of
two parallel loops with parallel axial currentsis known
to be as follows. Each of the two current loops is in
equilibrium as long as the distance between them is
much greater than loop radius a. As the loops approach
each other, they are no longer in equilibrium and the
whole nonequilibrium system tends to a new equilib-
rium state. Due to attraction, the two current loops
begin to move and approach each other. Then, they
meet, merge, and form a new single loop. Simulations
were performed to investigate the phenomena accom-
panying this reconnection process.

First of al, the ssmulations confirm most of the
well-known results, such as the generation of areverse
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Fig. 1. (a, c) Reverse induced current and (b, d) jetlike flows at the time t = 2.53t, (only the central region 2.25a < x < 5.75a,

2.25a<y<35.75aisshown) for (g b) runA and (c, d) run B. The shade of gray showsthe value of the poloidal velocity (Vf +V§)1/2;

the vectors show the velocity vectors.

current sheet in the region between two loops and an
increase in pressure, density, and temperature in the
reconnection region. Here, we only focus on the simu-
lation results that appear to be new and interesting.

3.1. Reconnection of the Poloidal Magnetic Field

According to Egs. (7) and (8), the magnetic field of
the current loop has both poloidal and axial compo-
nents (B, and B,). For convenience of analysis and

description, we will discuss the poloidal component
reconnection and the axial component reconnection
separately. Generally, the simulation results can be
described as follows.

In the early stage, when the two loops start
approaching each other, the reconnection of the poloi-
dal magnetic field is important. After the loops have
met, the reconnection of the poloidal magnetic field
proceeds slowly with atypical time much greater than
the characteristic Alfvén time. This means that, in the
PLASMA PHYSICS REPORTS  Vol. 27
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co-helicity reconnection case, only the poloidal field of
the two loops undergoes slow reconnection. In contrast,
in the case of counter-helicity, the reconnection of the
axial magnetic field takes place, so that fast oscillations
arise. The oscillation period is governed by the MHD
processes and is comparable with the characteristic
Alfvén time.

Figure 1 shows the distributions of the induced cur-
rent j, and velocity V, , inthe central region of the com-
putation domain (2.25a< x<5.75a, 2.25a<y < 5.75a)
at the early time t = 2.53t, for the two runs. It is seen
that, for both cases, the reverse current isinduced in the
central region; however, the patterns are different
(Figs. 1a, 1c).

Counter-helicity reconnection induces athinner cur-
rent sheet. In Fig. 1c, two shock waves are also seen.
Figures 1b and 1d show that, in both cases, jetlike flows
areformed in the x and —x directions; however, the pat-
terns of these flowsin runsA and B are different. Sim-
ulations show that the jetlike flows do not propagate
very far from the regions where they are generated.

Thepoloidal field reconnectionisillustratedin Fig. 2.
Asthetwo current loops approach each other, the orig-
inal magnetic field lines break and then rejoin to form
new ones, the reconnected magnetic field lines being
strongly bent. Due to magnetic stress, the magnetic
field lines tend to shorten and drive the surrounding
plasma to move outward in the x and —x directions.
Thus, two jetlike flows are formed. After the magnetic
field lines have reached their balance point, the moving
plasma turns to drive and stretch the magnetic field
lines, which leads to plasma deceleration. Thus, the
stress of the frozen magnetic field causes the formation
of jetlike flows and, at the same time, prevents them
from propagating too far out. As aresult, the high pres-
sure and density regions are formed in the vicinity of
the stagnation points (see Fig. 8 below).

3.2. Counter-helicity Reconnection and Oscillations
of B,and V,

A remarkable phenomenon is the oscillations of the
axial component of the magnetic field B, and velocity
V, in the counter-helicity run B.

The evolution of the distributions of the axial mag-
netic field B, and the axia velocity V, in the central
region of the computation domain (2.25a < x < 5.75a,
2.25a <y < 5.75a) are shown in Figs. 3 and 4, respec-
tively. Asisseenin Fig. 3a, at the early timet = 2.531,,
two loops with antiparallel axial magnetic fields
approach each other and move toward the centra
region. The magnetic field B, of the left loop is till
directed along the z-axis, while in the right loop, it is
oppositely directed. At thetimet = 6.781, (Fig. 3b), the
magnetic field inside the loops does not change direc-
tion, while outside of the loops, regions with the
reversed magnetic field B, appear. Figure 3c shows the
distribution of the axia magnetic field at time t =
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Fig. 2. Schematic of the poloidal magnetic field reconnec-
tion and generation of jetlike flows.

11.021,. It is seen that the axial magnetic fields inside
the loops have changed signs as compared to Fig. 3a.
Then, at thetimet = 13.571, (Fig. 1d), the distribution
of the axial magnetic field becomessimilartothatatt =
6.781, (Fig. 1b), but the magnetic field direction both
inside and outside of the loops is reversed. Thus, the
oscillations of the axial magnetic field are generated
during the counter-helicity reconnection of two loops.

The evolution of the axial velocity V, is shown in
Fig. 4. It isseen that the evolution of V, issimilar to that
of B,. What is different isthat the regions with opposite
signs of V, occur above and below the center, whereas
the regions with opposite signs of B, occur to the left
and right of the center.

The oscillations of B, and V, are correlated to each
other. In these oscillations, the magnetic energy BZ2 is

converted into plasmakinetic energy (1/2)pVZ2 andvice
versa. The time variations in the energies Eg, =

i’J.BZZ and E; =(1/2) i‘ijZZ, where . is the

sum over al the cells within the computation domain,
are displayed in Fig. 5. The profiles in Fig. 5 clearly
show the interchange between Eg, and E,,. The oscilla-
tion period is about 6.5T,. In co-helicity reconnection
(run A), such oscillations are absent.

The mechanism for the excitation of oscillations
during reconnection can be explained as follows. As
two current loops approach each other, the B, reconnec-
tion occurs (see Fig. 6). After reconnection, the mag-
netic field lines appear to be strongly bent. Due to mag-
netic stress, the magnetic field lines tend to shorten and
drive the surrounding plasmato move along the z-axis.
After the magnetic field lines have reached their bal-
ance point, the moving plasmaturnsto drive and stretch
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Fig. 3. Time history of the axial magnetic field distribution for run B: (a) t = 2.5314, (b) t = 6.781T4, (C) t = 11.0214, and (d) t =

13.57T5.

the magnetic field lines, which leads to plasma decel er-
ation. Thus, the interaction between the magnetic field
and surrounding plasma leads to oscillations.

In a quite analogous manner, the mechanism for the
excitation of toroidal field oscillations accompanying
the counter-helicity reconnection of two spheromaksis
explained in [32, 33]. Here, we also demonstrate that,
inside and outside of the loops, the oscillation periods
differ strongly. The helical magnetic field linesfar from
the loop axis meet each other and reconnect earlier than
those closeto the axis (see Fig. 2). Itisseenfrom Fig. 3

that the oscillations outside of the loop arise earlier than
thoseinsideit.

The poloidal field reconnection leads to the forma-
tion of a current sheet. Simulations show that the axial
field reconnection can aso induce the poloidal current.
Figure 7 shows the distributions of the induced current
jxa thetimest=2.53t, and t = 13.571,4. It isworth not-
ing that, due to the dependence of the oscillation period
on the magnetic field strength and, hence, on the dis-
tance from the null-line (x = 4.0a, y = 4.0a), the pattern
of the axial magnetic field may split into several (more
than two) domains with different polarities (Fig. 3d). In
PLASMA PHYSICS REPORTS  Vol. 27

No. 4 2001
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Fig. 4. Time history of the axial velocity distribution for run B: (a) t = 2.5314, (b) t = 6.7814, (C) t = 11.02T,, and (d) t = 13.5714.

each pair of antiparallel magnetic field domains, mag-
netic reconnection can occur (Figs. 3d, 7b). Therefore,
the localization of the poloidal electric current does not
generaly coincide with the axial current sheet. This
question will be discussed in more detail in a subse-
quent publication.

3.3. Shock Waves and the Fine Sructure
of the Plasma Flow

Figures 8 and 9 compare runs A and B. Figure 8
shows the pressure and temperature (T O p/p) distribu-
tioninrunsA and B at thetimet = 6.781,. The maxi-
No. 4
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mum values of the pressure and temperature for
counter-helicity reconnection (run B) are as high as
26.8 and 10.1, respectively, while for co-helicity recon-
nection (run A), these values are 3.9 and 2.76, respec-
tively. On the other hand, the reconnection regioninrun
B is more compact than that in run A.

Figure 9 shows the fine structure of the plasma flow
and density in the central region at thetimet=12.211,.
The complicated pattern of the velocity field distribu-
tion, which involves symmetric vortical structures,
shows that fairly active processes occur in the recon-
nection region.
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Fig. 6. Schematic of the generation of oscillations of the
axial magnetic field and velocity.

An important problem is the mechanism for
charged-particle acceleration during magnetic recon-
nection. It is generally believed that one of the reasons
for the generation of fast particlesis their acceleration
by magnetosonic shock waves. The simulation results
show that current loop reconnection can lead to shock
wave formation.

First of al, the shock waves moving outward can be
clearly seen in Figs. 8 and 10. The shock waves are
caused by therelative inward motion of the plasmaand
high-pressure explosion waves generated in the diffu-

ZHANG et al.
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Fig. 7. Induced current j, arising during the axial magnetic
field reconnection for run B: (8) t = 1.53t5 and (b) t =
13.57TA.

sive reconnection region. In addition to the shock
waves, other waves with fine structures are seen in the
vicinity of the central diffusive reconnection region
(Fig. 11). These waves are caused by the strong inho-
mogeneity of the pressure and velocity in the diffusive
reconnection region. The fine structure of these waves
includes shocks, which seems to be interesting
because, near the shock front, the electric and mag-
netic fields change sharply, so that the charged parti-
cles are accelerated via the drift acceleration mecha-
nism [34, 35].
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4. SUMMARY

The coalescence of two parallel force-free current
loops is investigated using an MHD code in which the
recently proposed AW schemeis employed. Theresults
of simulations shows that co-helicity reconnection
involves only the reconnection of the poloidal compo-
nent of the magnetic field, while counter-helicity recon-
nection involves the reconnection of both the poloidal
and axial components of the magnetic field. In the latter
case, the axial magnetic field reconnection occursinthe
No. 4
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central diffusive region, in which a series of current
sheets (rather than one sheet as is the case of poloidal
field reconnection) are formed. Therefore, counter-
helicity reconnection is much more complicated and
violent as compared to co-helicity reconnection.

In both cases, jetlike flows are formed. However,
due to the stress of the frozen-in magnetic field, these
flows cannot propagate too far apart.

Counter-helicity reconnection is accompanied by
oscillations of the axial magnetic field and the axia
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Fig. 10. Distributions of the density (shade of gray) and collapse velocity (V, Vy) (vectors) at thetimet = 3.431,.
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Fig. 11. Current distributionsin the central region, demonstrating the presence of shock waves and fine structures, for runB: (a) t =

11,0215 and (b) t = 13.57T,.

component of the velocity. Due to these oscillations,
guasi-steady models of a current sheet can hardly be
applicable, because the structure of the current sheet
also changes. The complicated and nonsteady structure
of the poloidal current shows that magnetic reconnec-
tion occurs not only in the central sheet between two
loops in the early stage of the process but also inside
each loop in later stages. The plasma and energy of the
loops are concentrated in the central region. Compli-
cated flows and waves with fine structures are al so gen-
erated during reconnection. The fact that some of the
waves are shock waves may be used to explain fast par-
ticle generation in solar flares.
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Abstract—Results are presented from MHD simulations of three-dimensional flows of a high-conductivity
plasma in the vicinity of anull point of a magnetic field. The excitation of an electric current at the boundary
of the computation region results in self-consistent plasma flows and change in the structure of the magnetic
field. Generally, in the vicinity of anull point, an MHD singularity arises that manifestsitself in the formation
of locally plane current sheets. It is shown that the current sheet can be oriented either along the separatrix sur-
face of a magnetic configuration or perpendicular to it, except for axisymmetric configurations (or close to
them), when the excitation of an electric current in the direction orthogonal to the separatrix surface does not
lead to the formation of a current sheet. © 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

It is well known that investigations of the structure
of MHD singularities arising in the flows of a highly
conducting plasmain the vicinity of critical points of a
magnetic field is of great importance for the theory of
magnetic reconnection. Reconnection of magnetic field
lines plays akey role in various problems of physics of
space and laboratory plasmas, including the disruption
instability, the nonlinear evolution of magnetic islands
in tokamak plasmas, and solar flares and substormsin
the Earth’s magnetosphere (see [1-6] and the literature
cited therein). A rapid changein the topology of amag-
netic field during magnetic reconnection is accompa
nied by the conversion of the magnetic field energy into
the energy of the plasma, radiation, and fast electrons
and ions. Magnetic reconnection occurs in the vicinity
of critical points (or critical lines and surfaces) of a
magnetic field. During the self-consistent evolution of
the plasma and magnetic field in the vicinity of critical
points, highly nonlinear structures (including shock
waves and current sheets) are formed.

To analytically describe the local structure of singu-
larities arising near the critical points, self-similar solu-
tionsto the MHD equations are commonly used [ 7-10].
A description of the non-self-similar stage of the devel-
opment of a singularity requires computer simulations
[3, 10-14]. The fundamental result is that the typical
structure of an MHD singularity corresponds to a cur-
rent sheet in which magnetic field reconnection occurs
[15]. The overwhelming majority of theoretical studies,
numerical simulations, and laboratory experiments
concern investigations of two-dimensional (2D) config-
urations, including the case of three-component mag-
netic reconnection [10, 12, 16, 17]. At the same time,

increasing attention is being given to the 3D magnetic
reconnection [3, 6, 9, 10, 12-14, 18-23]. First of all,
this stems from the fact that 2D magnetic configura-
tions are structuraly unstable; i.e., the topology of a
magnetic field in the vicinity of null lines or surfaces
changes under the action of arbitrarily small perturba-
tions. This makes the existence of 2D structures in
space plasmas problematic. On the other hand, null
pointsin three-dimensional (3D) geometry are structur-
aly stable. An exception is 2D magnetic structures cre-
ated in laboratory devices, because, in this case, specia
efforts are taken to create and maintain the high sym-
metry of magnetic configurations. However, in labora-
tory plasmas, it is also necessary to take into account
the 3D inhomogeneity of a magnetic field, especially
when considering the change of the magnetic field
topology during the onset of instabilities. In this con-
text, investigations of 3D configurations are of special
interest for practical applications. Aswas shown in [9,
10, 12, 13, 24], 3D description alows one to obtain
qualitatively new results. In particular, the formation of
current sheets orthogonal to the null lines and parallel
to the separatrices of a magnetic field has been pre-
dicted.

Although the studies of magnetic reconnection in
3D magnetic configurations have led to a number of
important results, many questions related to the influ-
ence of the symmetry of the initial configuration and
boundary conditions on the formation and stability of
current sheets still remain unanswered. In this paper,
we present the results of 3D MHD simulations of
plasma flows in the vicinity of a null point of a mag-
netic field. The goal of the study is to investigate the
influence of the symmetry of the boundary conditions
on the formation of a current sheet.

1063-780X/01/2704-0315$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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The paper is organized as follows. In Section 2, we
present the basic MHD equations and discuss the struc-
ture of amagnetic configuration in the vicinity of anull
point. In Section 3, the results from MHD simulations
of the formation of a current sheet near anull point of a
magnetic field are presented. In the Conclusion, the
main results are summarized.

2. MATHEMATICAL MODEL
2.1. Basic MHD Equation

The problem is solved in the MHD approximation.
It is assumed that transport coefficients characterizing
the plasma (such as the magnetic viscosity v,,, electric
conductivity g, and thermal conductivity) are constant.
The magnetic field is described by the vector potential
B = rotA, divA = 0. For numerical simulations, it is
convenient to introduce the following dimensionless
variables:

~_ P x_B ~_ v = _t

P = 1 B—_, V__l t__1

e 90 BO Va ta (1)
~ T 7 4T[|J ~ _A
T_TO’ J = cB,’ A_BOI'

Here, p, and T, are the initial values of the density and
plasma temperature, respectively; B, is the maximum
value of the magnetic field; | is the characteristic scale
length; v, = By/(4TtQ,)) ' isthe Alfvén velocity; and t, =
I/v, is the Alfvén time. Further, only dimensionless
variables will be used and, therefore, the tilde symbol
will be omitted.

In the new variables, the system of one-fluid MHD
equations takes the form

%{9+ div(pv) = O, @)

9%% +(v [I])VD_ BDp+curIcurIA xcurlA, (3)

%—";‘ = vxcurlA+v, AA, 4)

e ot Oy ndi
v —10at +(v D])TD+ pdivv
&)
(AA)
B
p=pT. (6)
The adiabatic index is chosen to be y = c,/c, = 5/3.

The dimensionless parameter (3 (the ratio of the plasma
pressure to the magnetic pressure at the boundary) is

defined as B = 8T,/ B, where p, = 2p,T,/mis the gas-

kinetic pressure with m being the mass of the plasma
ions. The dimensionless magnetic viscosity (theinverse

= div(kdT) + 2v,,
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Lundquist number) v, = ¢*/(4mlov,) and dimension-
lessthermal conductivity K = k/(v,1 e,) (wherek isthe

dimensional thermal conductivity) are assumed to be
constant.

2.2. Sructure of a Magnetic Configuration
in the Vicinity of a Null Point

Here, we will reproduce the well-known description
of the structure of a magnetic field near a null point,
which will be used to formulate the problem.

Near an arbitrary point x,, the magnetic field can be
approximated by the first terms of the Tailor series.
Without loss of generality, we can set x, = 0. Asaresult,
we obtain

B(x,t) = B(0,t) + (x0)B(0, 1) + ... %)

Below, we will consider the case of a null point of a
magnetic field, when B(0, t) = 0. We define the matrix
of the magnetic field gradients as 0B,/0X |x-o = Aj.
Then, the magnetic field in the vicinity of a null point
can be written as

B, = AX,. (8)

We will assume that the matrix A;; is nonzero. Note that
the magnetic reconnection near the degenerate critical
points of amagnetic field was studied in [25-27].
Asis known, the equations for the field lines of the
magnetic field (8) are equivalent to the dynamic system

dx;
ds
The null point corresponds to an equilibrium point. The

behavior of trajectories (field lines) is determined by the
solutions of the eigenvalue problem for the matrix A;

det(A;—Ag;) = 0, (10)
i.e., the structure of the magnetic field is determined by

the eigenvalues A\, and eigenvectors R of the matrix
A; (a=1,2,3).By virtueof the condition divB =0, the
trace of the matrix A; is zero, Ay = 0. Depending on the
form of the matrix A;j, the equation A;;x; = 0 describes a
null plane, line, or point.

L et one of the eigenvalues be zero (e.g., A; = 0) and
the other two be real and oppositeinsign (A, , = +A’).
Then, expression (8) describesthe vicinity of an X-type
null line. The magnetic field has two separatrix sur-
faces, which intersect under a certain angle.

If one of the eigenvalues is zero (A; = 0) and the
other two are imaginary and complex conjugate (A; , =
+iA"), expression (8) describes an O-type null line.
When all the eigenvalues A, (a =1, 2, 3) are real and
nonzero, expression (8) describes the vicinity of a null
point that is analogous to a saddle point on a plane. In
this case, there is one direction along which the field

= AX;. ©)
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lines enter the vicinity of this point (or emerge from it)
and a separatrix plane aong which the field lines
emerge from the vicinity of the null point (or enter it).
The position of the separatrix plane is determined by
the direction of two eigenvectors corresponding to two
eigenvalues of the same sign.

If two eigenvalues are complex conjugate (A, , =
A"+ iA") and one eigenvalue is real (A; = —2A"), then
thereisalso aseparatrix surfacein the vicinity of anull
point. The magnetic field lines look like spirals (with
varying pitch and radius) approaching the separatrix
surface or moving away from it.

In this paper, we consider plasma flows near a mag-
netic null point that is characterized by real eigenval-
ues. Note that this case correspondsto aninitial config-
uration with a potential magnetic field.

3. RESULTS OF MHD SIMULATIONS
OF THE FORMATION OF CURRENT SHEETS
IN 3D MAGNETIC CONFIGURATIONS

3.1. Initial Magnetic Configurations

Simulations are performed in a cubic computation
region G={-1<x<1,-1<y<1,-1<z<1}, inwhich
the plasma and magnetic field evolve self-consistently.
At the initial instant, the magnetic field described by
the vector potential A(X, Y, 2) ispotentia; i.e., the elec-
tric current density is zero and the plasmain the equi-
librium state is characterized by a constant density
pO=1 and pressure p(0) = 1 and zero initia velocity

v(0) = 0. In this case, the magnetic field can be
described by expression (8) with a diagonal matrix of
the field gradients A; = diag{a, b, -(a+ b)}; i.e,

B = axe, + bye,—(a+b)ze,. (11)

The equilibrium is disrupted by inducing an electric
current along the z-axis at the boundary of the compu-
tation region.

Three cases corresponding to different initial con-
figurations of the magnetic field were considered. Inthe
first and second cases, the induced € ectric current was
paralel to the separatrix plane, and, in the third case,
the excited current was orthogonal to the separatrix
plane.

Inthefirst case, the components of the matrix A; are
chosentobea=1.65 and b =—1.35, so that the separa-
trix surface is parallel to the z-axisand liesinthex =0
plane. In the second case, a = 0.25 and b = -0.75 and
the separatrix surface is parallel the z-axis and lies in
they =0 plane. Inthethird case,a=1.3andb=0.7 and
the separatrix surface is perpendicular to the z-axis and
liesinthe z=0 plane.

3.2. Boundary Conditions

As was mentioned above, the equilibrium is dis-
rupted by inducing an electric current at the boundary
PLASMA PHYSICS REPORTS  Vol. 27
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of the computation region. In this case, the excited non-
linear MHD perturbations propagate in the computa:
tion region toward the z-axis. It iswell known that, in a
plane 2D magnetic field, linear MHD perturbationsin a
cold plasma are split into Alfvén and magnetosonic
modes. In a 3D magnetic configuration, the situation is
much more complicated because such splitting is
absent.

In simulations, the z-component of the vector poten-
tial at the boundary is set to be

A (XY, t) = A(xy t=0)+ f(t+In(r)),

2 2 2 (12)
r’-=x"+y,
where the coordinates x and y belong to the boundary
(x=%1 and y = +1). The function f(&), which has the
form

_O-E(E-1), £>1
f =
(€) %l <1,

describes the gradual switching-on of the electric cur-

rent. Here, E is the dimensionless electric field (see
also[11, 13]).

Thus, for amagnetic configuration given by expres-
sion (11), the electric current induced at the boundary
of the computation region may be either parallel or per-
pendicular to the separatrix surface of the magnetic
field.

At the boundary regions where the plasma flows
into the computation region, wesetp=1,p=1,T=1,
a the other boundary regions, the conditions for the
plasmato freely flow out from the computation region
are imposed.

Below, we present the results of simulations for the
dimensionless magnetic viscosity v,,, = 0.006, the elec-

tric field E = 0.06, the pressure corresponding to 3 =
0.012, and the dimensionless thermal conductivity
kK =0.01.

(13)

3.3. Smulation Results

The complete set of 3D MHD eguations (1)—(5) was
solved numerically.

The first series of calculations was carried out for a
magnetic field given by expression (11) with a = 1.65
and b = —1.35. The separatrix plane of the magnetic
field liesin the x = O plane. Since the z-component of
the magnetic field gradient isequal to—(a+ b) =0.3and

la+hb _

the ratio — 0.18 is much less than unity, the

magnetic configuration under study is weakly nonuni-
form along the z-axis. In other words, thisis a weakly
perturbed null line paralel to the zaxis. Figure la
showsthe structure of themagneticfield linesat theini-
tia instant.
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tt,

Fig. 1. The magnetic field structure and the distribution of the main plasma parametersfor a = 1.65 andb = -1.35 (B = 1.65xe, —
1.35ye,—0.3ze,, at theinitial instant, the separatrix surfaceisparallel to the z-axisand liesin the x = 0 plane and the induced electric
current is parallel to the separatrix plane). The magnetic field structure at (a) t = 0 and (b) t = 8; () isosurface of the electric current
density (J=72) att = 8; (d) distributions of the electric current density in different planes z = congt; (€) isosurface of the plasma
density (p = 0.51); (f) isosurface of the plasmapressure (p = 27); and (g) time evolution of the plasmaparameters: (1) plasmadensity
P, (2) plasma pressure p, and (3) electric current density J.
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(a) X
1

—

tt,

Fig. 2. The magnetic field structure and the distribution of the main plasma parameters for a=0.25 and b = -0.75 (B = 0.25xe, —
0.75ye,—0.52e,, at theinitial instant, the separatrix surfaceis parallel to the z-axisand liesin they = 0 plane and the induced electric

current is parallel to the separatrix plane). The magnetic field structure at (a) t = 0 and (b) t = 8; () isosurface of the electric current
density (J = 16) at t = 8; (d) distributions of the electric current density in different planes z = congt; (€) isosurface of the plasma
density (p = 0.44); (f) isosurface of the plasma pressure (p = 8.66); and (g) time evolution of the plasma parameters: (/) plasma
density p, (2) plasmapressure p, and (3) electric current density J.
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Fig. 3. The magnetic field structure and the distribution of the main plasmaparametersfor a=1.3and b=0.7 (B = 1.3xe, + 0.7 ye, —
27e,, at theinitial instant, the separatrix surface is parallel to the z-axis and liesin the z = 0 plane and the induced electric current is

orthogonal to the separatrix plane). The magnetic field structure at (a) t = 0 and (b) t = 8; (c) isosurface of the electric current density
(/=21.1) at ¢ = 8; (d) distributions of the electric current density in different planes z = const; (€) isosurface of the plasma density
(p =0.78); (f) isosurface of the plasma pressure (p = 52.34); and (g) time evolution of the plasma parameters: (/) plasmadensity p,

(2) plasma pressure p, and (3) electric current density J.
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A cylindrical MHD wave that is excited at t = 0 at
the boundary of the computation region starts propagat-
ing toward the null line. After the wave has reached the
center of the computation region, the structure of the
magnetic field changes (see Fig. 1b) and a current sheet
is formed. A quasi-steady configuration is formed at
t = 4. Figures 1c and 1d show an isosurface of the elec-
tric current density and the distributions of the electric
current density in different planesz = const a t = 8. It
is seen that a current sheet is formed in the vicinity of
the null point. The central part of the current sheet is
mainly stretched along the z-axis. The geometrical
characteristics (width and thickness) of the current
sheet are similar to those in a 2D magnetic confi-
guration.

The spatial distribution of the plasma density
(Fig. 1e) is characterized by the presence of two local
maxima. Aswas already shownin 2D ssimulations[12],
such a configuration takes place for small values of the
thermal conductivity. Figure 1f illustrates the distribu-
tion of the plasma pressure, and Fig. 1g showsthe time
evolution of the plasma parameters at the null point of
the magnetic field. The time during which the MHD
wave propagates from the boundary to the null point is
equal to two Alfvén times. It is seen that the electric
current increases up to t = 6 and, then, varies only
dightly. During this stage, the pressure continues to
grow dowly due to low thermal conductivity.

The second series of calculations was performed for
amagnetic field given by expression (11) witha = 0.25
and b =-0.75. In this case, the separatrix surface of the
magnetic field liesin the y = 0 plane. Since the z-com-
ponent of the magnetic field gradient is equal to —(a +

b) =0.5< 1landtheratio Ia_;b_l = 2islarger than unity,

the magnetic configuration under study is highly non-
uniform. In other words, this is a perturbed null line
directed aong the z-axis. Figure 2a shows the structure
of the magnetic field lines at the initial instant.

A cylindrical MHD wavethat isexcited at theinitial
instant at the boundary of the computation region starts
propagating toward the null line. After the wave has
reached the center of the computation region, a current
sheet is formed there. A quasi-steady configuration is
established at t = 4. Figure 2b shows the magnetic field
linesatt = 8. It is seen that the separatrix isbent and the
current sheet isformed along it. Figures 2c and 2d show
an isosurface of the electric current density and the dis-
tributions of the electric current density in different
planesz=const at t = 8. A current sheet is seen to form
in the vicinity of the null point. The central part of the
current sheet is mainly stretched along the z-axis. The
current sheet has a characteristic 3D shape. As in the
previous case, the spatia distribution of the plasma
density is characterized by the presence of two maxima
(Fig. 2e). Figure 2f illustrates the distribution of the
plasma pressure. Figure 2g shows the time evolution of
the plasma parameters at the null point of the magnetic
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field. As previoudly, the time during which the MHD
wave propagates from the boundary to the null point is
equal to two Alfvén times; however, there is no sharp
increase in the electric current density.

Thethird series of calculations was performed for a
magnetic field given by expression (11) with a = 1.3
and b = 0.7. The separatrix surface liesinthe z=0
plane, and the electric current induced at the boundary
of the computation region is orthogonal to this surface.
Since the z-component of the magnetic field gradient

is equal to —(a + b) = =2 and the ratio |_§_;_?_| = 1.5
is larger than unity, the magnetic configuration under
study is a highly nonuniform 3D configuration. Fig-
ure 3a shows the structure of thefield lines at theinitial
instant.

As previoudy, a quasi-cylindricd MHD wave
excited at the initial instant propagates toward the null
point. However, in contrast to the previous cases, where
the electric current was parallel to the separatrix sur-
face, no current sheet is formed in the vicinity of the
null point. Figure 3c shows an isosurface of the electric
current. It is seen that the current is concentrated in a
spatially nonuniform region. Due to the plasma rota-
tion, the magnetic field lines become twisted and the
plasma is expelled from the computation region.
Figure 3g shows the time evolution of the plasma
parameters at the null point of the magnetic field. The
time during which the MHD wave propagates to the
null point increases in comparison with the previous
cases. No substantial increase in the electric current
density in the null point is observed. The plasma pres-
sure increases due to Joule heating.

4. CONCLUSION

This paper presents the results of the first numerical
simulations of local configurations arising during mag-
netic field reconnection in 3D geometry.

In contrast to [14, 18], the structure of an MHD sin-
gularity is reveadled and investigated in detail. It is
shown that the structure of the singularity substantially
depends on how the induced electric current is directed
with respect to the magnetic field. Here, the decisive
factor is the mutual orientation of the electric current
and the separatrix surface of the magnetic field. Previ-
ously, based on an analysis of self-similar solutions to
MHD equations [9-11], it was predicted that the devel-
opment of a current sheet in the direction orthogonal to
the separatrix surface would be hampered. The results
obtained in this paper generally confirm this prediction
and demonstrate a complicated, non-self-similar struc-
ture of the electric current in aplasma.

A typical MHD singularity observed in our simula-
tions corresponds to a current sheet directed along the
separatrix surface. If the current is orthogonal to the
separatrix surface, then, in the problem as formulated,
the current sheet is not formed because of the forced
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plasma rotation and the action of the centrifugal forces,
which prevent the plasmafrom pinching. Nevertheless,
in this case, the current region has anontrivial topology
with a constriction near the null paint.
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Abstract—Results of active experiments on electron beam injection from the Intercosmos-25 satellite into the
ionospheric plasma are presented. A quasistatic magnetic field and the VLF-wave magnetic component are
excited when an unmodul ated el ectron beam with acurrent of 1, = 0.1 A and energy of €, = mv?/2 = 10 keV
isinjected into the ambient plasma. The magnetic field excitation is attributed to the onset of plasma gradient

instabilities. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Generaly, the injection of a low-energy electron
beam from a satellite into the ionospheric plasma pro-
duces only weak fluctuations in the geomagnetic field
B,. The excitation of VLF waves was observed in many
rocket experiments. The excitation of induction pro-
cesses by electron helicity in a weakly collisiona
plasma during injection is attributed to the presence of
eddy currents and various dynamo processes [1, 2].
These processes are usually responsible for the genera-
tion of aslowly growing magnetic field and the excita-
tion of Alfvén waves (AW). When the electron flow
velocity is close to the Alfvén velocity, [u]~ [va| =

B/ J4Tiny,M, (where n, and M, are the unperturbed

plasmadensity and the ion mass of species a), the exci-
tation of low-frequency waves may be related to either
the Alfvén resonance w = k - v, or the electron-cyclo-
tron resonance at w ~ wy [3, 4]. In this paper, we
present the results of one of the active experiments on
magnetic field excitation carried out onboard the Inter-
cosmos-25 satellite (APEX) [5] at turn no. 266. Partic-
ular attention is given to unmodulated (dc) electron
beam injection.

2. SCIENTIFIC EQUIPMENT

The results presented were obtained with the help of
a scientific equipment complex installed on the satel-
lite. The complex consisted of an electron accelerator
(Fig. 1, G1), ahigh-sensitivity magnetometer (the mea-
surement accuracy was ~1 nT), and a low-frequency
wave system for measuring wave amplitudes in the
range f = 8-969 Hz and at fixed frequencies of 9.6 and
15.0 kHz. The electron T, and ion T, temperatures, the
satellite body potential p,, the unperturbed plasma den-
sity n,, and the energy distributions of the thermal-

plasma ion flux densities j, (V) and ji(V) were mea
sured with an impedance probe and a retarding-poten-
tial analyzer (RPA). Here, j;, and j,, aretheion flux den-
sitiesin the x and z directions, respectively, and V isthe
sweep voltage at the RPA grid (0 s V< 12V).

The pitch angle of electron beam injection o, the
orientation angles of the satellite velocity vector v, and
the Earth’'s magnetic field B, the angle 3; = (B, 1 2),
the azimuthal angle A = A(B; 0Y), and the angle of
attack 8, (v¢ 0 X) were calculated using data from the

satellite-borne solar and magnetic detectors. Here, X, v,
and z are the coordinates in the satellite frame of refer-

Fig. 1. Injection directions, orientation angles of the mag-
netic field B, and velocity v in the satellite frame of refer-
ence xyz; the z-axisis directed from the Earth.

1063-780X/01/2704-0323$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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Fig. 2. Magnetic field fluctuations 8By, during two 23-s

cyclesof operation of an electron accelerator (without mod-
ulation at the first second; with amplitude—frequency modu-
lation at the third, fifth, seventh, etc., second; even-num-
bered seconds correspond to pauses); the accelerator oper-
ates simultaneously with aplasmainjector. The currents I,

and Iy,; are given in telemetry units (volts).

enceand Bf isthe projection of the vector B,, onto the

xy plane. The x-, y-, and z-axes correspond to the azi-
muthal (9), radial (r), and axial (2) directionsin cylin-
drical coordinates with the z-axis parallel to the mag-
netic field z|| B,.

3. EXPERIMENT

It isworth noting some characteristic features of the
experiment. The electron beam and a quasineutra
xenon plasma were simultaneously injected into the
ionosphere, but the el ectron-beam and plasmainjectors
operated asynchronously, which ensured awide choice
of experimental conditions. Here, “asynchronous’
operation means that different injectors were switched
on and off independently of each other and the spectral
measurements were not synchronized with the injector
operation. The orientation of the magnetic field B, was
such that the pitch angles of the electron injection lay
within the interval o, = 74°-87° (z= 0) and the pitch
angles of theion injection lay within the interval a; =
121°-132° (z< 0); i.e., the electron and ion beamswere
injected in opposite directions with respect to the z

ORAEVSKY et al.
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Fig. 3. Time evolution of the temperature components Ty
and T, density ni(V), and potential ps during the operation
of gun G1. The sweep duration of the RPA voltage is At =

4 s. Horizontal bars show the time intervals of electron
injection.

axis. All measurements were performed at the illumi-
nated part of the satellite trgjectory, where the electron
plasma frequency and gyrofrequency varied within the
intervals wye/21T = 4.84.9 MHz and w,/21 = 1.1-
1.2 MHz, respectively. Figure 2 shows the magnetic

field fluctuations 8B = B — B, induced during electron

beam injection, where B, is the empirical average
value. The magnetic field perturbations oB,,, were
observed during the first second in the case of continu-
ous (dc) injection and after the fifteenth second in the
case of modulated (ac) injection (f,,, = 15.625 kHz) with
a pulse duration of t, = 2 us. Injection was accompa-
nied by both intense transverse plasma heating (an
increase in Ty, and T,,) and density perturbations on; =
n;, — n;, which depended on the RPA grid potentia V.
Figure 3 shows the values of these parameters recorded
during the operation of gun GI1 (t = 350-380 S). In
Figs. 2 and 3, thetimeis counted from the beginning of
the active regime, t, = 13 h 36 min 58.496 s UT (the
dtitude is H = 450-470 km; turn no. 266; January 9,
1992).
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4. ELECTRON BEAM INJECTION AT LARGE
ANGLES TO THE MAGNETIC FIELD

Quasi-transverse (with respect to the magnetic fiel d)
el ectron injection exhibits anumber of specific features
and deserves specia consideration. When examining
the beam—plasma interaction, the decisive factors are
the shape, density, and temperature of the electron
beam. A certain fraction of the injected electrons
returns to the satellite or moves away in the opposite
direction with respect to the magnetic field, thereby
decreasing the effective injection current. Therefore,
we briefly consider the main features of thisinteraction.

4.1. Beam-Plasma Instability

In the absence of a beam—plasma discharge (BPD)
at high atitudes, the main mechanism for the energy
dissipation of the beam electrons is the beam—plasma
instability. The efficiency of wave excitation in the RF
(at tye Or W) and ELF-LF (w< wy, wy;) ranges and the
instability growth rate y depend strongly on the value of
the relative detuning from the cyclotron resonance nwe,
(a=e i) [4]:

_ WF N[0, —k,u
'\/ékzvbe

where the upper or lower signistaken for the normal or
anomalous Doppler effect, respectively; k, is the pro-
jection of the wave vector onto the z-axis; and v, isthe
thermal velocity of the beam electrons. The average
(over the parameter a) flow velocity was determined
from the expression u = [,[] = (1/Aa’) 2;’//5
o)da, where the effective pitch-angle width of injection
isAd' > Aa (=4° at z=0). The amplitude of the longi-
tudinal-velocity fluctuations at y — 0 was estimated
as 0v, = max{ Vv, — [V,[]}. When examining the beam—
plasmainteraction, we assumed the electron beam to be
hollow, which corresponds to a greater extent to the
shape of area electron beam not only at large z, but
alsointhe near injection region at distances z < u/y [6].
When cal cul ating the beam density at large pitch angles
Ope + Ad'/2 > 90°, we took into account the partial
charge loss; in this case, the average density [h,.[lwas
determined from the expression for the injection cur-
rent 1, into the Ilower hemisphere 1, =

2nﬁjev2(r)nm(r)rdr, wherer, and r, are the minimum

and maximum radii of electron gyration at the inner and
outer boundaries of the beam. For the actual beam and
plasma parameters (ny./n, ~ 103104, Av/v ~ 10—
102, and Aa' = 14°-16°), the growth rate of plasma
oscillationsis y/uye ~ 10-10~. When the electric field

amplitude reaches the saturation level 6Ef JATL =

NpeMV2(Y/ye), the beam—plasma system becomes
unstable [7]. Estimating the value nf = Win,T, =

V cos(Ope+
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(SEZ /8T, T,)? shows that, for the above spread in the
beam parameters, the turbulence level liesin the range
mM < nf < 1 and the energy transfer toward shorter
wavelengths (with a rate on the order of the modula-
tional instability growth rate y,/wye ~ 10->~10~*) comes
into play, which ultimately resultsin the suppression of
the beam—plasma instability due to the detuning of the
resonance.

4.2. Generation of Electromagnetic Fields
by the Electron Beam

During the first second of dc electron injection, the
excitation of magnetic fields in the immediate vicinity
of the satellite depends substantially on the develop-
ment of the Langmuir and ion-acoustic turbulence in
the plasma. The wave excitation in different frequency
ranges may exert a focusing effect on the electron
beam. When considering the wave excitation in the LF
and RF ranges (W ~ Wy, Wy OF ~We, W), We will
assume the following:

(i) Thelevel of ion-acoustic turbulence n®= Ws/n, T, =

(ESES2 /81, To)? becomes higher than that of Langmuir
turbulence, NS> n', in atime of ~1/y,. Further, thisine-
quality may be violated. At ns > nf, a slow growth of
perturbations dominates: W = dW' + dWS, where OV
and dWs are the very slowly varying (on the character-

istictimescaet ~ oo;1 or oo;l) and slowly varying (on

the characteristic time scale T ~ oo;il ) parts of perturba-

tions. Otherwise, at n° < nf, we should consider fast
growing perturbations; W = dWs + Y. Here, 3Wsand
dW' are the ion-acoustic and Langmuir perturbations

developing on the characteristictime scalest ~ w;il and
-1

T~ Wy, respectively.

(i) The source of density perturbations dn' (dny,)
may be a parametric instability in the course of which
the Alfvén pump wave decays into Alfvén and magne-
toacoustic waves a —= a + s; the latter causes density
perturbations [8]. The action of ponderomotive forces

caused by nonlinear Alfvén waves also produces a
strong density perturbation dn' ~ [8B'[* [9].

(iif) Magnetic field perturbations dB can be repre-
sented as a superposition of the envelope of an Alfvén

wave packet and slowly varying fields induced by non-
linear plasma currents. Without taking into account the

contribution from partial currents ~@n;,ov'0 and

~[8n;, dvs[) the magnetic perturbation amplitude does

not exceed the value 0B, , , ~ lpe/rce 10-20 NT, where
[J..Ostands for the mean value of the product of two
simultaneous fluctuations.
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(iv) The equilibrium values of the plasma parame-
ters are defined as W° = W, + W, where W, denotes the
unperturbed values and dW denotes the perturbations
introduced by a steady electron beam. At small devia
tions from equilibrium, the fluctuation spectrum has
maximums near the plasma eigenmodes. In this case,
the low-frequency range makes the main contribution
to suppressing instabilities.

(V) The unperturbed values of the beam density and
temperature are assumed to be the equilibrium values

Npey = nge and Ty = Tge in the absence of perturba-
tions (y — 0). Simultaneous fluctuations of the den-

sity and temperature in a spatially uniform plasma are
statistically independent; i.e., [BndTH = 0.

These assumptions on the interaction processes
allow us to focus attention on a more detailed analysis
of the data obtained and the mechanisms governing the
excitation of low-frequency waves at injection angles
of 0t = 74°-87°.

5. ANALY SIS OF EXPERIMENTAL RESULTS

To analyze the experimental results, the data
obtained during a series of 23-s measurement cycles
were treated using an algorithm based on small varia-
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tions of the parameters of an unperturbed plasma—a
procedure that was best suited to the |aboratory style of
the experiments.

The experimental data and the numerical character-
istics congtituted a set of parameters for a real event
Sy, hy, . hi, s, s, LS, L ), where hy and s
are the measured and cal cul ated val ues, respectively. In
order that the parameters h; and s corresponded to the
time t; £ &t (3t < At), the “current” numerical ampli-
tudes in the nodes of the time mesh t; were interpol ated
by weighting the “old” and “new” measured values of
these parameters; here, At is the period of telemetry
polling. The instants t; were not chosen arbitrarily, but
with regard to the most frequently measured parame-
ters. Theevents § and § , | were considered to besingle
eventsif therelaxation time of perturbed characteristics
of the ionospheric plasma satisfied the inequality 1, <
t. — 1. After selecting the set § of the data (records)
and completing the formation of the file, the data were
processed with the aim of examining certain effects
during dc injection. When plotting the dependence on a
certain parameter, the records § were arranged in
ascending order of this parameter.

Figure 4 shows the density n,, as a function of the
parameter V + p, and the azimuthal and radial compo-

T,.K

ex»

10°

10°

oV, m/s
) M’M‘\/"_
6 x 10() 1 1 |
5 10 15 20

Fig. 4. Measured ion density n;, asafunction of the parameter V + pg and the results of simultaneous measurements of the electron
temperatures T,, and T, and the cal culated val ues of the densities nye and ny,;, quantity ;, and vel ocity fluctuations dv, vs. the same

parameter: (a) the data obtained with the electron accelerator G1 independently of the plasmainjector operation (ny,; = 1 cm‘l), and

(b) the data obtained with simultaneousinjection of the electron beam and quasineutral plasma (n,; >1000 cm3). Horizontal dashed
lines show the unperturbed levels of Te, and T, and the RPA saturation level for ng,
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nents of the electron temperature (T, and T, respec-
tively) and the quantity Y, = cos’(Qp — AA'/2) —
cos’(0lpe + AQ'/2) versus the same parameter. Note that
the parameter V + pisthe true retarding potential at the
RPA grid with respect to the ambient plasma. Along
with the calculated value of the electron-beam density,
the estimated value of the density n, of the xenon
plasmajet in the stage of free gyration isalso presented,
which allows us to trace the effects from the simulta-
neous operation of both injectors. One can see a satis-
factory correlation between the increase in the xenon-
plasmatemperature T, and the function ), in regions /
and 2. Thisfact can be used to evaluate the increase in

the electron beam temperature 3T, ~ 8T, which is

quite reasonablein view of the boundary conditionsfor
thermal diffusion in the plasma. This problem requires
more detailed study; here, weonly formulateit: (i) elec-
tron injection at angles in the range 90° — a,. < Aa'/2
results in insignificant heating, and (ii) it causes sub-
stantial heating with respect to the transverse compo-
nent at smaller injection pitch angles. The interpreta
tion of the change in theion composition is ambiguous.
The decrease in the ion density in region / (or 2)
(Fig. 4Q), in which M (v,co0s6,)%/2 = &V + py) = 7-9 eV
(or 13-15 eV), where aisthe ion species, is due to the

depletion of the O* ions and the NO*/O, group. This
depletion may be attributed either to plasmochemical
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reactions of the form e + NO* — NO* + Av (the
Knudsen mechanism) or, most likely, to the fact that
these ions are entrained by ELF and VLF waves into
motion along the z-axis under conditions of the cyclo-
tron resonance w =K - vi, + n|uy|, wheren=0, £1. In
regions 1 and 2, one can also see strong perturbations
of al the plasma parameters, which are correlated with
the density of the injected electron beam (i.e., with the
growth rate of the high-frequency beam-plasma insta-
bility) in spite of the fact that the parameter V + psisan
internal RPA characteristic.

Figure 5a presents the results of the wave measure-
ments of the magnetic component of VLF and LF
waves OB' in a form similar to dependences shown in
Fig. 4. It should be noted that the representation of the
wave measurements versus V + p, makes sense only in
connection with the data in Fig. 4 and only serves to
provide additional information. The figure also shows
the growth ratey of the Alfvén waves excited dueto the
cyclotron interaction via the anomalous Doppler effect
(w < wy, n=1) for a hydrogen plasma at propagation
angles of 80° < 0 < 6,, where 8, ~ 87°-89° is the reso-
nance angle. When calculating the growth rate, wetried
to keep the detuning z, small (Y # 0); however, thiswas
possible only for hydrogen plasma, quasi-transverse
propagation angles, and frequencies w < w,. We note
certain characteristic features of VLF and LF fields for
the group of datain region 2. At frequenciesw < wy, the

y,s™! Yy
103 J—\W/(BV)MIM-/———/—\JI 103 \_‘i\’\
101 1 | 1 101 | | | 1
OB', nT HZz 12 OB' ]
107 - 32 10
102 -
107 I 2
—4 | | | 1072 =
10 - 3
x10—5 L
20 2 15.0 |
10~ 4
L5 JV i
l -
1.0 h I | 104 | | I
5 10 15 20 -14 -12 -10 -08 -0.6
V+p, V Z

Fig. 5. (a) VLF perturbations of the magnetic field 8B' at frequencies wy2m= 32 and 15.0 kHz as functions of the parameter V + pg;
(b) the perturbations dB' at frequencies of (1) 8, (2) 32, (3) 50, and (4) 149 Hz as functions of the parameter z, ~ —u/ve (N = 0). At
the top of the figure, the estimated growth rate of the wave at the frequency wg — w = 150 Hz (8 = 85°) and detuning dw~ 500 Hz

for M/m= 1841 and Av/v ~ 107! is shown. The data are obtained at ny; > 1.
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Fig. 6. Energy distributions of the ion flux densities j;, and
Jiz» magnetic field perturbations 8B,,, and the satellite
potential pg as functions of V + pg for n,; = 1. At the top of
the figure, the growth rate y/w_ is shown.

magnetic component amplitude correlateswell with the
growth rate y' ~ n.; however, at higher frequencies (in
the ion-acoustic range), we observed an appreciable
attenuation of the signal. This effect can be explained
based on assumption (iv) of Section 4.2 on the domi-
nant role of low-frequency instabilities. Figure 5b
shows the amplitude and growth rate of magnetic field
perturbations (the same quantities as in Fig. 5a) as
functions of the relative detuning z, ~ U/Vpe, Where vie ~

Av=(3V2 +8v2)"2. Wecaninfer that the excitation of

LF waves is less sensitive to the thermal spread of the
beam particles; this tendency is clearer at lower fre-
guencies. This result agrees with the accepted concept
of the effect, although it requires more detailed study.

The data presented in Fig. 6 demonstrate a number
of effects associated with the excitation of anomalous,
sowly varying magnetic fields that may be a macro-
scopic consequence of the development of small-scale
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wave processes. In the figure, we present the energy
distributions of theion flux densities j;, and j;,, the sat-
ellite body potentia p,, and the growth rate of potential
lower hybrid plasma oscillations with the frequency w .
Note that, for a plasma perturbed by an electron beam,
it ismore adequate to interpret the RPA datain terms of
theintegral ion flux density j; (the current density). The
remarkable feature is the unexpectedly strong excita-
tion of the magnetic field. By comparing the perturba-
tions dB with the data on the magnetic components of
VLF and LF waves and the growth rate y (at w < wy),
we may suppose that there is an interna coupling
among them, which can be explained based on assump-
tion (iii) of Section 4.2. When studying this problem,
attention is usualy focused on the behavior of the
large-scale field arising due to the interaction of kinetic
(the velocity field U) and magnetic (thefield B) modes.
This interaction is described by two similar equations
for the momentum and induction, the term curl(U x B)
being the main source of magnetic energy [1]. In
regards to microscale processes, they determine the
fluctuation spectrum and the energy transfer toward
short scalelengths. Based on assumptions (i) and (iv) of
Section 4.2, we can suggest that these hydrodynamic
processes at the equilibrium stage of interaction are
responsible for weaker perturbations of the magnetic
field component 8B, ~ 70-80 nT (group 2). To summa-
rize the results presented, we note that the gradient
character of the instability (Vn# 0and VT # Q) istypi-
cal of both groups 1 and 2 and may also be responsible
for the excitation of anomalously large magnetic fluc-
tuations.

6. CONCLUSION

The most remarkable experimental results obtained
in turn no. 266 during electron beam injection at pitch
angles ap,, = 74°-87° are the following:

(i) The beam—plasma instability results in the exci-
tation of wavesin different frequency ranges: (a) in the
frequency range w < wy, the growth of the magnetic
component of VLF waves is observed, and (b) the
increase in the thermal spread of the beam electrons
leads to the suppression (decay) of the excited VLF
waves.

(ii) The electron beam injection is accompanied by
strongly anisotropic plasma heating and the modul ation
of the plasma (ion) flowsin the vicinity of the satellite:
(@ for an unmodulated injection, the efficiency of
plasma (beam) heating with respect to the transverse
component decreases substantially at pitch angles o, +
Aa'/2 > 90°, where Ad' is the effective angular beam
width, and (b) the decreasein the integral ion flux den-
sities;, with energies of 7-9 and 13-15 eV is probably
aconsequence of the resonant coupling with the excited
VLF waves.

(iii) Among the remarkable results, we can also
mention (a) the anomalous resonant increase in the
PLASMA PHYSICS REPORTS  Vol. 27
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magnetic field 8B by two orders of magnitude
(JIOBy|nax ~ 500 NT) as compared to the nomina value
OB, ~ lpe/rf e = 10-20 nT and (b) magnetic field fluctua-
tions with an amplitude of &B, ~ 70 nT in the quasi-
equilibrium case.

Some of these results confirm the results obtained
previously in space experiments; however, for the most
part, they are new and require further investigations.
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Abstract—Results are presented from three-dimensional particle-in-cell simulations of relaxation of an elec-
tron beam in aplasma. When penetrating into the plasma, the electron beam generates the return current carried
by the plasma electrons. In a collisionless plasma, the relaxation mechanism is related to the onset of an elec-
tromagnetic filamentation instability. The instability leads to the generation of a quasistatic magnetic field,
which decays due to the magnetic field reconnection in the final stage of the system evolution. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Investigations of the collective phenomena in inter-
penetrating collisionless plasma flows have been moti-
vated by the important role of these phenomena in the
dynamics of dense charged-particlebeams|[1, 2] andin
the processes occurring in astrophysical [3, 4] and laser
[5-9] plasmas. The interaction of plasma flows is
accompanied by the generation of strong electric and
magnetic fields. Even if both the plasma charge and the
net plasma current vanish amost completely in theini-
tial state, strong electric and magnetic fields arise due
to the onset of electromagnetic instabilities. These
instabilities are similar in character to the well-known
Weibel instability [10, 11] and are caused by the anisot-
ropy of the particle distribution function in velocity
space [10-12]. This instability was incorporated in
developing the theory of the generation of quasistatic
magnetic fields in laser and space plasmas, whose
anisotropy is related to the presence of high-energy
electron flows. In laser plasmas, spontaneous magnetic
fields generated by relativistically strong electromag-
netic radiation result in the magnetic interaction of self-
focusing channels [13, 14]. In space plasmas, an effi-
cient mechanism for the generation of quasi static mag-
netic fieldsis required to explain cosmological gamma-
ray bursts [15]. It is supposed that cosmological
gammarray bursts are generated in explosions with an
energy release of E = 10°'-10°* erg over severa sec-
ondsinarelatively small spatial region. Afterglow radi-
ation of gamma-ray bursts are caused by the synchro-
tron radiation of electrons and positrons in a strong
magnetic field, which, in turn, arises during the devel-
opment of an electromagnetic filamentation instability
[16, 17]. An analytical description of ahighly nonlinear
stage of the filamentation instability with allowance for
kinetic effects presents significant difficulties. Hence,
the necessity of numerical simulationsis obvious.

The investigation described in this brief communi-
cation isrelated, first of all, to the problem of the non-
linear evolution of electron beams accelerated during
the interaction of laser radiation with a plasma. At
present, due to the advanced level of laser technology
[18], experiments on the interaction of multiterawatt
(or even petawatt) laser radiation with matter are being
carried out in many laboratories [5-8]. One of the
important directions of these studies is related to the
concept of fast ignition in laser fusion research [19].
The concept of fast ignition implies that a strongly
focused ultrashort laser pulse ignites a thermonuclear
reaction in a precompressed target. In thiscase, ignition
occurs in the isochoric mode (at a constant density). In
contrast to the more devel oped concept of isobaric igni-
tion, which occurs at a constant pressure, the fast igni-
tion concept implies that thermonuclear burning is ini-
tiated at a much smaller energy of the laser pulse. In
this model, the study of collective mechanisms for the
relaxation of electron beamsin a plasmais of primary
importance, because, in the vicinity of the critica
plasma density, the energy of laser radiation is trans-
formed into the energy of fast electrons. Then, the
energy is transferred by fast electrons deep into the
plasma, where it is absorbed.

This paper presents the results from particle-in-cell
(PIC) simulations of the relaxation of a fast electron
beam. We used a modified version of the 3D3V-
TRISTAN electromagnetic code [20], which alowed
us to simulate particle distributions that depend on
three spatial coordinates and three velocity compo-
nents. Two configurations are investigated. In the first
configuration, interpenetrating plasma flows are homo-
geneous at the initia instant, whereas in the second
configuration, the flows are localized in a cylindrical
region, outside of which the plasmais at rest. In both
cases, the plasma configurations are unstable against

1063-780X/01/2704-0330$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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the electromagnetic instability, the filamentation of the
electric current density, and the merging of current fil-
aments. The instability is accompanied by the genera-
tion and subsequent decay of a quasistatic magnetic
field.

2. FORMULATION OF THE PROBLEM

We used the 3D3V-TRISTAN electromagnetic PIC
code[20]. Intheinitial state, the electric charge density
and electric current in a plasma are equal to zero and
the electron component is represented as a sum of two
interpenetrating flowswith different vel ocities and den-
sities. We performed numerical simulationsfor two dif-
ferent initial configurations.

In velocity space, the flows obeyed the Maxwell dis-
tribution

n .
fu(v) = ——
? (2TV g 1, j)a/z
x exph Vit Vit (Vo= Ve )’ M
O 2V th, | 0
=12

where v, v, is the thermal velocity of the electrons, v,
isthe directed electron velocity, n, ; isthe electron den-
sity inthejth flow. The directed electron velocitieswere
equal to Vg =3V i and Ve , = 6V, . The electron den-
sities in the flows moving in the positive and negative
directions along the z-axiswere equal to n.; = 2n,/3 and
N, = Ny/3, respectively. Here, ny istheion density in the
initial state. At the initid instant, the conditions

zi Ng Vg =0and y , ng = n, were satisfied, the ion

temperature was egual to the electron temperature, and
the directed ion velocity was equal to zero. The ion-to-
electron mass ratio was equal to m /m, = 1836.

In the second configuration, the electron beams
were located in a cylindrical region whose diameter
was smaller than the size of the computation region; the
remaining part of the computation region was occupied
by a uniform plasma with the same density.

In simulations, the size of the spatial cell was set to
be AX = Vg /3ty The time step was equa to At =

0.05Wp. Here, wy, = (4TMye/my)"2 is the electron
Langmuir frequency. In the first case (homogeneous
interpenetrating electron flows), the dimensions of the
computation region were L, = 40Ax aong the x-axis,
L, = 40Ax aong the y-axis, and L, = 200Ax along the
z-axis. In the second case, the €lectron beams were
inside a cylinder of radius L, = 20Ax. In this case, the
dimensions of the computation region were 80 x 80 x
100(Ax)3. In both cases, the periodic boundary condi-
tions for an electromagnetic field and particles were
imposed at the boundaries of the computation region.
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The number of particles in a cell was approximately
equal to 30.

3. SAIMULATION RESULTS
3.1. Homogeneous Electron Beams

Intheinitial state, the plasmais neutral and the net
plasma current is zero, so that both the electric and
magnetic fields are absent. The electric and magnetic
fields arise due to the onset of instability. The trans-
verse (with respect to the electron beam propagation
direction) component of the magnetic field is mainly
generated. Thisisseenin Fig. 1, which shows the time

2 2 2 2 2
BD7ED’EH’VD"/H

16 -

12+

Fig. 1. Time dependences of (1) the square of the magnetic
field strength Bé, squares of the (2) transverse Eé and

(3) longitudinal Eﬁ components of the electric field, and
averaged squares of the (4) transverse Vé and (5) longitu-
dinal Vﬁ components of the electron velocity. The squares

of the electric and magnetic fields are normalized to

81y, vtzhy o+ and the squares of the velocity components are

normalizedto vtzh o+ Thetimeisin units of oo;. Intheini-

tial state, the electron beams are homogeneous.
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Fig. 2. (a—d) Distributions of the z-component of the electric
field and the magnetic field in the plane z = 44 and (e-h) the
surfaces of a constant value of the z-component of the elec-
tric current density j, for different instants fromt = 25 to 40

with atime step of &t = 5. In the initia state, the electron
beams are homogeneous.

dependences of the sguares of the magnetic field
strength, the squares of the transverse and longitudinal
components of the electric field, and the averaged
squares of the transverse and longitudinal components
of the electron velocity. The squares of the electric and

magnetic fields are normalized to 8, vfhve, and the
squares of the velocity components are normalized to

Vi e- Thetimeisin units of oo
It is seen that all of the quantities vary most rapidly

within the time interval 15 <t < 25, during which the
isotropization of the electron velocity occurs:. the longi-
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Fig. 3. Sameasin Fig. 1, but for finite-size electron beams.

tudinal kinetic energy decreases, while the transverse
energy increases. Thisprocessisaccompanied by apar-
tial transformation of the electron kinetic energy into
the energy of electric and magnetic fields. Since both
the transverse and longitudinal field components are
generated, we may conclude that the perturbations with
the wave vector directed at an angle of about 30° with
respect to the electron beam propagation direction are
the most unstable. This agrees with analytical results
[21]. By the time t = 20, when the magnetic field
reaches its maximum, the efficiency of transformation
of the electron kinetic energy into magnetic field
energy is about 20%. Then, the magnetic field decays.
In this stage, the longitudinal component of the electric
field appreciably increases. This fact, together with the
change in the topology of the magnetic field (see
Fig. 2), alows us to suppose that the magnetic field
decays due to collisionless reconnection of magnetic
field lines.

Figure 2 shows (a—d) the distribution of the z-com-
ponent of the electric field (shades of gray) and the
structure of the magnetic field (arrows) in the (X, y)
plane at z = 44 and (e-h) the surfaces of a constant
value of the z-component of the electric current density
J,for different instantsfromt = 25 to 40 with atime step
of ot = 5. One can see the formation of helical current
filaments and the corresponding structure of the mag-
2001
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netic field with X- and O-type null points in the plane
z= 44. The magnetic field is nonsteady, and, in the
vicinities of X points, current sheets arise and disap-
pear. These current sheets are clearly seenin plot (b) at
8<x<22andy=35,inplot (c)atx=35and5<y<
15, and in plot (d) at x =17.5 and 20 <y < 30. During
the evolution of the system, the longitudinal electric
field is generated, which can lead to the accel eration of
asmall fraction of particles.

3.2. Finite-Sze Electron Beams

In this case, the electron beams are initially located
inacylindrical region of radius R=20Ax. Asinthe pre-
vious casg, in theinitial state, the plasmais neutral and
the net plasma current is zero, so that both the electric
and magnetic fields are absent. The fields arise due to
the onset of instability. As previoudly, the transverse
(with respect to the electron beam propagation direc-
tion) component of the magnetic field is mainly gener-
ated. This is seen in Fig. 3, in which the same time
dependences asin Fig. 1 are shown.

It is seen that all of the quantities vary most rapidly
withinthetimeinterval 12.5 <t < 17.5. Asin the previ-
ous case, both the transverse and longitudinal field
components are generated. Hence, we may conclude
that the perturbations with the wave vector directed at
an angle of about 30° with respect to the electron beam
propagation direction are the most unstable. By the
timet = 16, when the magnetic field reaches its maxi-
mum, the efficiency of transformation of the electron
kinetic energy into magnetic field energy is about 13%.
The decay of the magnetic field is accompanied by an
appreciable increase in the longitudinal component of
the electric field.

Figure 4 shows (a—d) the structure of the magnetic
field in the (x, y) plane at z= 50 and (e-f) the surfaces
of a constant value of the zcomponent of the electric
current density j, for different instants: t = (a, €) 5, (b, f)
10, (c, g) 15, and (d, h) 25. In the initial stage of insta-
bility (Figs. 4a, 4e), severa relatively small-scale fila-
ments with a transverse size of about the collisionless
skin depth areformed. Notethat similar structureswere
observed in 2D (with three velocity components and
three electric and magnetic field components) numeri-
cal simulations of a similar problem [22]. Then, the
magnetic field and electric current decay. A significant
difference of 3D relaxation from 2D relaxation (which
was investigated in detail in [22, 23] using numerical
simulationsfor almost the same parameters of the prob-
lem) is that the electric current rapidly decays during
3D relaxation. In the 2D case, fairly long-lived ring
structureswere observed in [22, 23]. Inside these struc-
tures, the current flows in one direction, while outside
of them, a neutralizing current flows in the opposite
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Fig. 4. (a—d) Distributions of the z-component of the electric
field and the magnetic field in the plane z= 50 and (e-h) the
surfaces of a constant value of the z-component of the elec-
tric current density j, for different instants in the case of

finite-size electron beams.

direction. In the 3D case, for the chosen parameters of
the problem, such structures were not observed.

4. CONCLUSION

The collective evolution of electron beams in a
plasmaisinvestigated using 3D PIC simulations. In the
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initial stage, the filamentation instability develops.
Then, the filaments merge. A significant difference of
3D relaxation from the previously investigated 2D
relaxation is that 3D relaxation proceeds more rapidly,
which is related to magnetic reconnection in a colli-
sionless plasma. One of the possible reasons for faster
reconnection may bethe onset of instabilitiesthat result
in the excitation of small-scale (along the z-axis) per-
turbations and the anomalous plasma resistivity (as is
known, thisisimpossible in the 2D case). Another rea-
son may be related to the difference in the magnetic
field topology in 2D and 3D geometries. A more
detailed study of both the anomalous resistivity and 3D
magnetic reconnection in a collisionless plasma goes
beyond the scope of thisbrief communication and isthe
subject of our further study.
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Abstract—A space charge lensis proposed to focus intense beams of negative hydrogen ions. Thefocal length
of the lens is determined as a function of the parameters of the beam and the gas medium. It is demonstrated
experimentally that the lens efficiently focuses H™ ion beams with currents of up to ~30 mA and energies of
~10 keV. The measured focal lengths are in good agreement with the calculated ones. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Theideaof using space chargefieldsto focus beams
of positive ions was first proposed by Gabor [1] and
later developed by Morozov [2]. That such a lens is
highly efficient was confirmed in a number of experi-
ments (see, e.g., [3]). The main advantages are its high
lens power at arelatively low energy cost and the pos-
sibility of focusing high-current beams and controlling
spherical aberrations. The negative space charge of the
lens is produced by electrons that either escape from
the lens electrodes due to ion—electron emission or are
brought to the lensfrom an external thermoemitter. The
electrons are confined by the magnetic field, whose
field lines are also the electric field equipotential lines;
this fact is used to control the radial distribution of the
eectric field. In such a system, ionization of the resid-
ual gas by an ion beam is a parasitic process, which
substantialy limits the applicability of the lensin the
steady-state case. At high gas pressures, this can lead to
breakdowns, which destroy the structure of the focus-
ing electric field, whereas, at low pressures, the ions
accumulating on the axis can cause both high lens aber-
rations and specific electrostatic instabilities.

It should be noted that space charge lenses designed
to focus positive-ion beams cannot be applied to nega-
tive-ion beams because, in the latter case, positive ions
must be used. The idea of using a space charge lensto
focus negative-ion beams is based on the employment
of positive ions created during gas ionization by the
beam, which is a parasitic process when focusing posi-
tive-ion beams. Since electrons are also produced dur-
ing ionization, the required positive space charge can
only be created if the el ectrons are extracted by an elec-
tric field. In this case, the positive ions stay in the sys-
tem for a sufficiently long time due to their inertia. The
simplest focusing system can be a metal cylinder coax-
ial with the beam and two electrodes at the cylinder
ends. The electrodes must be transparent for the beam;
i.e., they should be either gridlike or ringlike. Applying
a positive (with respect to the central electrode) poten-
tial to the peripheral electrodes should result in the

extraction of electrons and the formation of the
required positive space charge inside the cylinder. Note
that, to extract the electrons efficiently, it is necessary
to apply asufficiently high potential at which the length
of the space charge sheath is comparable with the sys-
tem length. Due to the relatively low density of the
beam plasma (~10® cm™), thiscan be achieved at avolt-
age of 100-1000V between the lens electrodes.

By supplying a gas directly to the cylinder, the
required ionization can be achieved without a substan-
tial increase in the pressure beyond the lens.

2. ESTIMATES OF THE POWER
OF A SPACE CHARGE LENS

Obviously, the proposed focusing can be attained
only if the space charge of the positiveionsthat are pro-
duced due to gas ionization exceeds that of the beam
ions. This sets a lower limit on the gas pressure. The
required gas density, which can be determined based on
the balance equation for positiveions, is

2v,
Tv_agiry

N, (D
where n, is the gas density; g; is the cross section for
gas ionization by the beam ions; v, and v_ are the
velocities of the escaping positive ions and beam ions,
respectively; and r, is the beam radius [4]. If the beam
propagates freely and condition (1) is satisfied, then the
potential of the beam is positive with respect to the
periphery and its value is determined by the mean ther-
mal energy of plasmaelectrons, which, inturn, is deter-
mined by Coulomb collisions with the beam ions. In
this case, the focusing fields that arise in the beam with
a density of ~10% cm attain only several V/cm and,
thus, can only be used for better transportation of
weakly divergent beams.

Generdly, in order to focus a beam extracted from a
single hole, alenswith afocal length of about 10-20 cm
isrequired, which cals for radial fields of ~100 V/cm.
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In the system in question, such fields can only be
attained if ailmost al of the electrons are removed from
the focusing region. If this condition is satisfied, then
the electron space charge can be neglected and the
focusing capabilities of the lens can be relatively easily
estimated.

To calculate the focusing field, we use the disconti-
nuity equation for positive ions, Poisson’s equation for
the potential, and the equation of motion of positive
ionsintheradia electric field:

190 . J-

ol = ennoV_ = i 2

10 0

Tar ar® = —4me(n,—n), )
Vo(r,r) = A/Ze[q)(r;z‘—d)(r)]. @)

Here, A; is the mean free path of the beam ions with
respect to gasionization and V. (r;, r) is the velocity of
apositiveion that is produced at the point r; and reaches
the point r.

Using Egs. (2) and (4), we abtain the expression for
the density of positive ions in a uniform negative-ion
beam:

il
eM[IJq»(s) o(r)

(&)

n.(r) =

If the positive ion density is uniform along the radius,
then the potential distribution is

0(r) = 00— 4,0, ©

where ¢, isthe radial potential drop in the beam. Then,
the positive ion density is

_ It | )
e)\i Zeq)a

Nom,
From Egs. (3) and (7), we derive the equation for the
radial potentia drop in the beam:

= ¢_0,, @®)

n,(r) =

32

da + 002

where ¢_ = | -

2eU| 9T
m_

the nonneutralized negative-ion

U is the potential drop in

beam, N
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I—— is the reduced beam perveance, and ¢,, =

1 |2e
9m/;_U

2
rom,

I NIw

)\izm_
It is seen from Eq. (8) that, at
b_< ¢, )

(i.e., under conditions of strong overneutralization of
the beam space charge) the solutionto Eq. (1) is
|ty

Bl) ¢ [}\ /2e/m, 0

Inthe opposite case (¢_> ¢,), which correspondsto the
quasineutral mode and can be attained by increasing
the beam current, we have

2

(10)

2
rom

~ — 0
¢a"'¢'n - )\lz_mu—

(11)

It follows from Egs. (9) and (10) that, as the beam cur-
rent increases, the radial potential drop ¢, first
increases and then reaches a maximum value, which
does not depend on the beam current.

It should be noted that the relation between ¢, and
¢_, which is necessary for determining the operating
mode of the lens, is not convenient in practice because
¢, is unknown. However, it is easy to show that this
relation is analogous to that between the known quanti-
ties¢,, and ¢_; i.e., the quasineutral mode occurs at

¢_> ¢, (12)

whereas the strong overneutralization mode takes place
at

b_< ¢, (13)
It follows from the above relations that radia fields
higher than 100 VV/cm can be attained for the beam of
negative hydrogen ions with an energy of ~10keV ina
lens with a length of ~10 cm at a gas (argon, krypton,
or xenon) pressure of ~1073 torr.

Using the procedure from [5], we obtain the expres-
sion for the lens power:

00z 9.l
Ju-(O){réJu_(z) Urg
Substituting expressions (10) and (11) for ¢, into

Eq. (14), for high beam currents (the quasineutral
mode), we obtain

(14)

1 1
f

1_ Lm
T ; (15)

B )\izm:
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whereas, for low currents, we have

2 1 ) 2
1‘ = Dﬂ[?m[‘g L =4 T [?_I:_ (16)
f  LOndUm U , du_
(Airo)

It follows from Eqg. (15) that the required foca length
of ~10 cm is attainable for the above lens parameters.

In summary, we note that the main process that lim-
its the applicability of the lensin question is the |oss of
negative ions due to charge exchange in collisions with
gas atoms. To minimize the ion loss, the lens length L
should be shorter than the charge-exchange mean free
path —A_,. According to Eqg. (16), this requires that the
condition

2
M M. IgA;
o F—" 5 (17)

"(Aof)?

be satisfied, which, in turn, limitsthe beam current den-
sity at agivenion energy by the value

3
51 2e \U2
N !

(Aof)?

(18)

It follows from inequality (17) that, for argon at a pres-
sure of P = 1073 torr and beam-ion energy U_ = 10 keV,
thelensfocal length f= 10 cm can be attained at the cur-
rent density of anegative-ion beamj_> 4.5 mA/cm?.

3. EXPERIMENTS ON FOCUSING AN H- BEAM
WITH A SPACE CHARGE LENS

A schematic of the experimental deviceisshownin
Fig. 1. An H- beam with a current of ~10-30 mA and
ion energy of ~10 keV was extracted from a surface
plasma source /; the beam was formed and deflected
with the help of an ~2-kG magnetic field created by
magnets 2. Collectors 7 (~10 cm in diameter) and 6
(2 cmin diameter) were used to measure the beam cur-
rent and the current density, respectively. A space
charge lens was placed =20 cm away from the source
emission dlit. The distance from the outlet plane of the
lens to the collector was =30 cm. For such a system
configuration, the beam radius should be minimum at a
focal length of 12 cm. The lens design was as follows.
Inside agrounded cylindrical stainless steel case 3 with
an external diameter of 10 cm, length of 13 cm, and
diameters of the inlet and outlet diaphragms of 5 cm,
there was a 10-cm-long and 7-cm-diameter metal cyl-
inder 5. This cylinder ensured a uniform gas pressure
distribution inside the lens. The cylinder was either
grounded or under the potential of electrode 4 (this did
not significantly affect the lens focusing properties). A
cylindrical 5-cm-diameter and 10-cm-long electrode 4
No. 4
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made of stainless steel mesh was mounted inside elec-
trode 5 at its ends with the help of dielectric rings. The
potential of electrode 4 could be varied within a range
from 0 to —1500 V. There were two pipes on the case
outer wall, one of which served as a gas inlet and the
other one was used to measure the pressure in the lens.
This pressure differed by more than one order of mag-
nitude from that in the beam drift chamber.

Either argon, krypton, or xenon was used as the
working gas. Such a choice was dictated by both their
relatively high ionization cross sections and relatively
high inertia of positive ions created due to ionization.
Both these factors promoted efficient focusing of the
negative-ion beam.

Before considering the experimental results, wefirst
estimate the critical pressure above which the space
charge of the positive ions created due to gasionization
is greater than the space charge of the negative-ion
beam. Let us assume that the mean energy of the ions
created due to gas ionization is ~1 €V. Then, based on
formula (1) and the cross sections taken from [6], for a
beam with the above parameters, we have P, ~ 1.5 x
104, 4 x 1073, and 6 x 10~ torr for argon, krypton, and
xenon, respectively. At pressures higher than P,, the
production rate of positive ions is proportional to the
pressure; however, their charge density increases more
slowly because the rate with which the ions escape in
the radial direction also grows dueto anincreasein the
radial potential drop.

The experiments showed that, at pressures higher
than the critical one, the negative-ion beam is focused
in accordance with the above estimates. The lens focus-

1 Working gas To vacuum gauge

Fig. 1. Schematic of the device: (1) source of H™ ions,
(2) deflecting magnets, (3) grounded case, (4) 5-cm-diame-
ter gridlike cylindrical electrode, (5) 7-cm-diameter metal
cylinder, (6) 2-cm-diameter collector for measuring current
density, and (7) 10-cm-diameter current collector.
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Fig. 2. Compression ratioj_/j_q of an H™ beam vs. the neg-
ative potential at the decelerating cylinder for different pres-
sures of argon in the lens: (1) 3 x 1074, (2) 7.6 x 1074,
(3)1.5% 1073, (4) 2.2 x 1073, (5) 3.6 x 1073, and (6) 6.4 x
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ing capabilities are clearly demonstrated in Fig. 2,
which presents the compression ratio of an H~ beam at
different pressures of argon as afunction of the voltage
between the lens el ectrodes, namely, the grounded case 3
and gridlike electrode 4. We define the compression
ratio as the ratio of the maximum current density with
applying the optimum potentials to the electrodes to
that without applying any potential. The curves agree
with the above qualitative considerations. As the volt-
ageincreases, the beam first contracts but, starting from
V ~ 200V, al the curves saturate. This can be explained
by the fact that, at V> 200V, the electron density in the
beam becomes so low that the radial potential drop is
determined mainly by the positive and beam ions. The
higher the pressure, the stronger the dependence of the
compression ratio on the voltage, whichis caused by an
increase in the positive space charge. The maximum
compression ratio first increases (curves /-3) and then
falls (curves 4-6), which can be explained by the beam
overfocusing. This assumption was confirmed by spe-
cial experiments in which ametal plate with two holes
and a fluorescent screen, which served for viewing the
hole images, were placed 4 and 22 cm away from the
outlet diaphragm, respectively. At the optimum poten-
tials applied to the lens electrodes, the increase in the
xenon pressure resulted in the images first approaching
each other until they merged together at fairly high
pressures and, then, moving apart in the direction oppo-
site to their initial positions with respect to the center,
which unambiguously evidences the beam overfo-
cusing.

The above considerations al so agree with the depen-
dences of the beam compression ratio on the pressure
for al three gases (Fig. 3). It is seen that al of the
curves are similar in character; first, the compression
ratio increases, and, then, it falls.

The optimum compression ratio is approximately
the samefor all three gases (~4). Based on this, we may
arguethat thefall of the curvesthat occurs at high pres-
sures in argon and krypton is related to the beam over-
focusing, asis the case for xenon. The decrease in the
optimum pressure upon increasing the mass of positive
ions can also be easily understood. Finally, the corre-
spondence of the maximum compression ratio to a
focal length of ~12 cm at the given system configura-
tion can be used to compare the experimental data with
the calculated ones. Let us consider the case of argon,
whose optimum pressureis~3 x 1073 torr. According to
Eq. (16), for a beam current of 15 mA, the calculated
focal length is ~20 cm. Thisvalue isfairly close to the
measured one (f ~ 12 cm).

In summary, in this study, the focusing of a nega-
tive-ion beam with a space charge lens has been pro-
posed and implemented. Such focusing is of practical
importance for beams with relatively high current den-
sities, in which a sufficient positive space charge can be
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Abstract—Equations for the motion of an individual dust grain in the double layer of a negatively charged
cylindrical probein aglow discharge plasmaare derived and solved numerically. The distribution of the electric
potential near the probe is determined, and the grain charge is calculated as a function of the distance from the
probefor different probe potentials. The trgjectories of grainswith different initial energiesaretraced. An anal-
ysis of the grain tragjectories shows that, at a certain distance from the probe, high-energy grains may be
recharged; i.e., the grain charge may change sign. The grains are found to have no direct effect on the probe
current in adusty plasma of a glow discharge. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Probe diagnostics are of considerable interest for
experimental investigations of dusty plasmas [1, 2]
because they provide local measurements of the main
plasma parameters (the electron and ion densities, the
plasma temperature, and the electron energy distribu-
tion function). In dusty plasmas, the current—voltage
characteristics of the probe are far more difficult to
interpret because they are strongly affected by the third
charged component—dust grains. Also, dusty plasmas
are characterized by a new parameter, dust grain
charge, which depends on both the grain size and the
local parameters of the surrounding plasma.

An analysis of the probe measurementsin agas-dis-
charge dusty plasma requires a knowledge of the
behavior of dust grains in a perturbed plasma near the
probe. In order to investigate this problem in more
detail, it is of interest to model the behavior of an indi-
vidual dust grain. The distinctive feature of the grain
behavior isthat the grain charge Z, changes asthe grain
moves in an inhomogeneous plasma. The grain charge
is governed by the potential difference between the
grain surface and the surrounding plasma and thus can
be affected by the local densities and temperatures of
the electronsand ions.

Here, we consider an individual spherical grain
moving in the field of an infinitely long, vertically ori-
ented cylindrical probe, in which case the gravitational
force can be neglected because it affects only the grain
motion aong the probe. We aso ignore the drag and
deceleration forces that are exerted on the grain by the
ions and neutrals, respectively, although these forces
may beimportant in theimmediate vicinity of the probe
in a high-density plasma. We assume that the dusty
plasma is tenuous and nonisothermal (T, > T,) such
that the mean free path A of charged particles is much

longer than the characteristic dimensions of the prob-
lem (this assumption corresponds to the so-called
molecular regime). In the absence of emission pro-
cesses, dust grains in such a plasma absorb highly
mobile electrons and acquire anegative charge [3]. The
dust grain is assumed to be small (R; < D < A, where
Ry is the grain radius and D is the Debye radius), and
the probe is assumed to be large enough to satisfy the
condition R, > D, where R; is the probe radius. The
probe potential relative to the plasma is assumed to be
negative, which is peculiar to probe measurements in
experiments with gas-discharges [4-7]. For these con-
ditions, the theory of probe measurementsis developed
fairly well; in particular, the problem of determining
the potential distribution and electron and ion densities
in the perturbed region near the probe in a nonisother-
mal plasma has been solved quite thoroughly [6].
Hence, it is expedient to treat our problem using the
results obtained in [6].

2. BASIC EQUATIONS

In order to systematically describe the motion of a
dust grain in the perturbed region near the probe, it is
necessary to solve the set of equations consisting of the
equation of grain motion, the equation describing the
kinetics of grain charging, and the equation for the
potential distribution in the perturbed plasma (the so-
called plasma—sheath equation).

Under the above assumptions, the grain experiences
only an electrostatic force. Since the grain motion
along the probe is unimportant, the problem as formu-
lated reducesto atwo-dimensional problem of thegrain
motion in the horizontal plane. Specifically, in the per-
turbed plasma near the probe, the dust grain movesin a
centrosymmetric electric field, in which case we can
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use the well-known equations of motion of classical
mechanicsfor apoint particleinthefield of centrosym-
metric forces. In the plane of the grain trajectory, we
introduce a polar coordinate system (r, 8) with the ori-
gin at the center of the probe and write the equations of
grain motion in the form

d’r du(r) . L
Mddt2 T Mgr®
(D
g _ L
dt Mdrz’

where U(r) isthe prabe potential at the point r, L isthe
momentum of the grain, and M, isthe grain mass. Since
the grain charge Z, is a variable quantity, it, together
with the potential U(r), governs the law according to
which the force changes. The constants of grain motion
are determined by the energy of thegrain and itskinetic
momentum. Thelatter can be conveniently expressedin
terms of the kinetic energy K, and the impact parameter
p, which is equal to the distance from the center of
forcesto the straight line along which the grain startsto
move. In this case, the equations of grain motion (1)
become

o’ _ _eZydu(r) | 2Kep’
dtz Md dt M r3 ’
¢ 2)
d8 _ prKeg”

dt — 2Um 0 -

We will trace the trajectory of adust grain through-
out the entire perturbed region near the probe, includ-
ing the space-charge layer (or the double layer), in
which the potential changes abruptly, and the quasineu-
tral (plasma) region. In contrast to [7, 9, 10], in which
the plasma region and double layer were treated sepa-
rately under the assumption that the potential at the
plasma-layer boundary vanishes, we will solve a com-
plete plasma—sheath equation in order to obtain a con-
tinuous distribution of the potential over the entire per-
turbed region. In this approach, the potential U, at the
point r, from which the grain starts moving is nonzero
(althoughit can bevery low for larger,). We assumethe
initial grain charge Zy, to be equilibrium, i.e., to corre-
spond to the potential U, at the starting point.

Probe measurements are usualy performed in
guasi-steady €electric fields, which can be regarded as
being potential and in which the displacement currents
can be neglected. Under such conditions, the electric
field distribution near the probe satisfies Poisson’s
equation, which can be written as (¢ = 1)

1d
rdr

dup _

gro = —4meln(r) =ne(r)]. €)
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We can aso neglect the absorption of electrons by the
probe and describe the electron density by the Boltz-
mann distribution

Ne = Ny exp[%{)] 4)

In contrast, the absorption of ions by the probe can-
not be neglected, so that the ion density is essentially
nonequilibrium and cannot be described by the Boltz-
mann distribution. In order to calculate the ion density
distribution, we turn to an approach that assumes the
existence of an absorbing surface other than the probe
surface [5—7]. We will use the terminology introduced
by Kozlov [6], who called the radius of the absorbing
surface the “limiting radius’ and the ion mation the
“limiting motion.” He showed that, for T, > T, and
R, > D, theionsin thefield of anegative probe experi-
ence precisely the limiting motion, in which case the
radius of the limiting surface is larger than the maxi-
mum radius of the space-charge layer. The limiting
radius is determined by the loca maximum of the
effective ion potential energy

2
Uulr) = ——+eu(n), 5)
2mr

where| isthe angular momentum of anion and m isits
mass. The plot of this function is presented in Fig. 1.
The reflection point (the minimum distance from the
probe) can be defined as the point at which the horizon-
tal line corresponding to the total ion energy intersects
the related curve U As the impact parameter (and,
accordingly, the angular momentum 1) decreases, the
reflection point is monotonically displaced toward the
probe up to the point r , at which the maximum (for the
given |,) value of the function U, is equal to the total

Ueff

L U —

Fig. 1. Plot of the effective ion potential energy U,(r) for
I = lL'
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ion energy. As| becomeslessthan |, the minimum dis-
tance decreases fromr; tor, in ajumplike manner. The
radius r, can be determined from the maximum of the
effective potential energy function plotted for | =1, :

3dU _ |E

erigr () = - (©)

For acylindrical probe, the key roleis played by the

projection v,, of theion velocity on the plane perpendic-

ular to the probe axis. To simplify the calculations for

the case of alimiting motion, we employ the monoen-

ergetic ion model (MIM); i.e., we switch from the real

ion velocity distribution to the monoenergetic distribu-
tion [6-8]

2
m, MV,
528 52 ~Eon . %)

where v, is the initial ion velocity in an unperturbed
plasma, &(x) isthe deltafunction, and E, isequal to the
plasma ion temperature to within a factor on the order
of unity (although exact calculations give E,,, = TKT, /4,
we will not distinguish between E, and KkT;). We are
justified in using a monoenergetic (rather than real) ion
distribution function, because, near the probe, low-
energy (T, > T) ions are affected by an accelerating
electric field and thereby acquire velocities much
higher than the initial ones, so that the current carried
by the ions is essentially unaffected by their distribu-
tion. Hence, the velocities of the ions in the plasma
coincide in absolute value and are randomly oriented in
space, inwhich caser; isthelimiting radiusin terms of
theion energy E,.

fi(von) =

Probe

Fig. 2. Collection of the ions by a negatively charged dust
grain. Shown are the grain tragjectory and the cross section
for collisions between the ions and the dust grain.
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In accordance with the above analysis, we can spec-
ify the radial profile of the ion density as follows [6]:

Dfor r>rp,

1 .1 Eo, + eU(r )20
e | - N

n, = no[j.——arcs E,.+eU(r)

Ny . 1 rEgq+eU(r; )2
[ — —_— — < .
n; arcsin [E0n+eU(r)} for r<r_

Here and below, U(r) stands for the absolute value of
the potential.

In the perturbed region near the probe, the charge of
the grain is determined by the electron and ion currents
onto its surface and by itsradia velocity u, = dr/dt:

ue%—lﬂ 9
rdr_e i ()

where |, and |; are the electron and ion currents toward
the grain surface at adistancer from the probe.

In the orbital motion limit (OML) [3, 5, 7, 9], the
electron current is described by the equations [10]

2
le = —T[RgenGD DU p[deD for Uy<0,
BKT U (10)
lo = —aneneD DU %]_ deE for Uy>0,
e

where n, is the local electron density (4) and U, is the
floating potential of the grain with respect to the poten-
tial U(r) of the surrounding plasma. For a spherical
grain with Ry < D, the floating potential U, and charge
Z,arerelated by Zje= UyRy.

Let us find the ion current onto the grain surface,
neglecting the distortion of the probe field and assum-
ing that the potential of the layer changes only dlightly
across the grain field region (i.e., in the vicinity of the
grain, the layer parametersn,, n;, f,, f; are constant). We
again assume (aswedid in deriving theradial profile of
the ion density) that the ion energiesin an unperturbed
plasmaare the same, E, = KT;; i.e., we again employ the
MIM. With the absorbing surface in the perturbed
region, no grains whose trajectories are screened by the
probe can occur at the point r. The ion current onto the
grain surfaceisequal to theion flux through the surface

element of area np,iax, where p,.« iS the maximum

impact parameter at which the ions can reach the grain
surface (Fig. 2). Since, in the OML, the role of the
absorbing surface is played by the grain surface, we
have

a 2z.e 0
Pra = Rall———0 (11)
0 Rymyv;O
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2

a2
vi = 0=[E+eu(n]d (12)
e 0

in which case theion current is equal to

I, = TIPaaEN; Vi, (13)

where theion density n; is defined by formulas (8).

3. NUMERICAL SOLUTION
AND DISCUSSION OF THE RESULTS

Let usformulate theinitial and boundary conditions
for our problem. The first boundary condition deter-
mines the value of the potential at the probe surface:

U(Ry) = U,. (14)

At the limiting surface, we have

U(ry) = U,

du 2 (15)
ar ry) = _E(EOn"'eUL)-

Here, the condition on the radial derivative of the
potential is derived from expression (6) and the energy
conservation law. Now, the plasma—sheath equation (3)
can be solved by the shooting method: we must find the
value of U, at which the solution to the equation in the
region r < r; satisfies condition (14). The resulting
value of U; givesthe explicit boundary conditions (15),
with which the plasma—sheath equation (3) can be
readily solved for theregionr >r; by using, astheini-
tia conditions, the polar radius, radia velocity, and
polar angle of thegrain at t = O:

m-=
Mag 20

2K, pzmr
(16)

r(t=0) =ry u(t=0) = —[

B(t=0) = arcsian.

0

Then, using Egs. (2)—4) and (8)—«13) with the
boundary and initial conditions (14)—(16), we can
describe the grain motion in the perturbed region near
the probe. To ssimplify the solution of the problem, we
convert the equations to the dimensionless form. We
adopt the limiting radius r;, and Debye radius D =
(KT,/4Tn,€?)'? as scale lengths and also the electron
temperature KT, and potential kT./e as energy and
potential scales, respectively. The dimensionless vari-
ablesintroduced in such away are as follows:

_r ,_T _ Koo 4 _eu(n)
X= 0 Y350 YaSjgs 6= 55 (47)
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Note that numerical calculations were carried out with
the equations normalized to the (most suitable) limiting
radius r;, whereas, in plotting the diagrams, we
expressed the length scales of the problem in units of
the Debye radius.

We numerically traced the trgjectories of a dust
grain with aradiusof 1 umand amassof 4.2 x 10-'2 g
inan argon plasma(m = 6.63 x 10723 g) with 1-eV elec-
trons, the ion temperature being equal to the room tem-
perature (y=T,/T.=0.026). Inthis case, thevalue of the
variable y;, is the grain energy in electronvolts and the
value of the variable ¢ isthe absolute value of the space
potential involts. In caculations, we also put R,/D = 10
and Ry/D = 0.01. For the above values of Ry and kT, the
latter relationship al so determinesthe Debye radius and
plasmadensity: D =0.01 cmand n, = 5.5 x 10° cm™.

The calculated radia profiles of the electric field
near the probe areillustrated in Fig. 3. From Fig. 3a, we
can seethat, for asufficiently high probe potential (¢, =
eu,/kT, > 1), thelimiting radiusislarger than the max-
imum radius of the space-charge layer. Thisresult con-
firms the estimates made in [6].

Let us consider the grain motion in the probe field
with the potentia ¢, = 10. Let the grains start moving
at the point x, = 4, at which ¢, = 0.02 and Z,, = —2117.
The trgjectories of grains with different initial energies
areshown in Fig. 4. That the shape of trajectories / and
2 is characteristic of grains scattered by a centrosym-
metric repulsive force is explained as being due to the
negative initial grain charge. Trajectories 5-8 demon-
strate that the probe can attract grains with sufficiently
high initial energies. This possibility is illustrated by
the plotsin Figs. 5 and 6.

Figure 5 demonstrates how the charge of the grain
changes as it moves near the probe and also presents
radial profiles of the electron and ion densities, n, and
n;, as well as the steady-state grain charge calculated
from the equation I, + I; = 0 as a function of distance
from the probe. In the range Z, < O, the grain charge is
seen to have a minimum; this indicates that the charge
of the grain that starts moving in the quasineutral region
decreases (i.e., increases in absolute value). This result
was obtained by exact calculation of the electron and
ion charging currents along the entire grain tragjectories
by using formulas (10) and (13). We can see that, in the
perturbed region far from the probe, (r — R,)/D > 10 for
¢, = 10, the ion current (13) onto the grain surface
decreases at a faster rate than the electron current. As
the grain approaches the so-called ion sheath, in which
the electron density is negligibly low and the electron
current sharply decreases, the grain charge begins to
increase (i.e., to decrease in absolute value). Note that,
at a certain distance from the probe, the charge of the
moving grain changes sign: a negatively charged grain
becomes positively charged. We will call this distance
the “recharging distance.” The grain isrecharged in the
region where the ion current dominates over the elec-



(b)

20 (r-R)/D

Fig. 3. Distribution of the electric potentia near a cylindri-
cal probe for different probe potentials ¢, = eUp/KTe =

(1) 10, (2) 30, and (3) 50.

tron current. A comparison between the steady-state
grain charge and the charge obtained in solving Eq. (9)
allows us to determine the applicability range of the
steady-state approximation for calculating the dust
grain charge. We can clearly see that the steady-state
approximation is valid at distances longer than the
recharging distance. At shorter distances, the grain
charge differs from that obtained in the steady-state
approximation because of the delay in the charging pro-
cess. The delayed charging can be explained by the fact
that, within theion sheath, the grain chargeis governed
not by the electrons (as is the case in an unperturbed
plasma) but by far less mobileions. Asaresult, thereis
not enough time for a sufficiently fast dust grain to
acquire a steady-state charge corresponding to the
given spatia point.
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r/Q (a)

30

[\«

30 r/D

1 1 1 J

-20 -10 0 10 r/D

Fig. 4. Trajectories of a dust grain in the perturbed region
near the probe with the potential ¢, = 10 for p= R, and dif-

ferent initial kinetic energies of the grain: yq = Ko/KTg =
(1) 500, (2) 5000, (3) 12600, (4) 12685, (5) 12690, (6) 12692,
(7) 12800, and (8) 15000.

However, according to Fig. 4, the energies of the
grains that can reach the probe surface (and generally
can move in adouble layer) should be very high, much
higher than those observed in real experiments. The
grains with energies corresponding to the experimen-
tally observed ones (usually up to 20 eV [11-13]) can-
not reach the probe nor can they enter the double layer,
which thus restricts the region where the dust grains
tend to distribute themselves around the probe. The
same result can also be obtained by estimating the
height of the potential barrier that the grain with energy
K, and charge Z, can overcome. In fact, for K, ~ 1 eV

and Z, ~ —10°, therelationship U[B] ~ K,[eV]/Z, gives
arather insignificant potential difference, U ~—-1073 V.
Anaogoudly, the energy required for a grain to
PLASMA PHYSICS REPORTS  Vol. 27
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0
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Fig. 5. Radia profiles of (1) the steady-state grain charge
and (2) the grain charge calculated for yy = 15000 with

alowance for adelay in the charging process. The profiles
were obtained for the probe potentias ¢, = (a) 10 and
(b) 30.

approach a probe with a potential of —10V is estimated
as Kj[eV] ~ ZJU[V] ~ 10* eV. Hence, we can conclude
that, for negative probe potentials, dust grains do not
directly affect probe measurements in gas-discharge
dusty plasmas, because they do not contribute to the
total probe current.

The dust grain that manages to acquire enough
energy (e.g., under the action of an external force) to
enter the double layer moves along a trgjectory similar
to those shown in Fig. 4. Hence, we can determine the
charge of a dust grain (the ratio T;/T, is to be deter-
mined in advance) by analyzing itstrajectory in the fol-
lowing way. First, the experimentally recorded grain
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-50 -40 -30 -20 -10 0 10 20 30 40 r/D

Fig. 6. Trgjectories of a dust grain near the probe for U, =
10V, p= Rp and K, = 15 keV and for different electron tem-
peratures KTg: (1) 1, (2) 1.1, (3) 1.2, (4) 2, (5) 3, (6) 5, and
(7) 10 eV.

trajectory should be compared with the calculated tra-
jectoriesin order to find theratio T;/T,. Then, thegrain
charge Z, at an arbitrary point of the tragjectory can be
determined in the OML. According to Fig. 6, in plas-
mas with different values of T;/T,, the trgjectories of a
grain capable of approaching the “recharging” surface
can be markedly different. This circumstance allows us
to achieve the desired accuracy in comparing the cal cu-
lated and experimental tragjectories and, accordingly, in
determining the dust grain charge.

4. CONCLUSION

We have derived a set of equations for the motion of
a dust grain in the perturbed plasma region near the
probe. Solving these equations numerically, we have
determined the potential distribution around the probe
and the radial profiles of the dust grain charge for dif-
ferent probe potentials. We have traced the trgjectories
of dust grains having different initial kinetic energies
and moving in the perturbed region. Dust grainswith a
negative charge of about 10 electron charges are
strongly repulsed by the probe electric field, so that
grainswith low kinetic energies have no direct effect on
the probe current. An analysis of the grain tragjectories
shows that high-energy grains may experience recharg-
ing; i.e., at acertain distance from the probe, the grain
charge may change sign. We have shown that the
steady-state approximation for calculating the dust
grain charge is valid on the outside of the recharging
surface, where the grain charge is negative. Also, an
analysis of the grain trajectories calculated for different
values of the ratio T;/T, enabled us to propose a new
method for determining the grain charge in a dusty
plasma.

In deriving the equation for the grain charge, we
assumed that the ions and electrons move in the cen-
trosymmetric electric field of the grain and neglected
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the effects of the probe electric field and collective pro-
cesses associated with the asymmetry of the grain field
[14]. Thisapproachisvalid under the condition Ry < D,
in which case the grain electric field at small distance
from the grain is described by Coulomb’s law, U ~
UgyRy/r, because the space charge comes into play at
distances of about the Debye radius D from the grain
and farther out. The potential of the grain electric field
decreases to nearly zero over a very short distance
(smaller than the Debye radius) from the grain; the
change in the potential of the layer over thisdistanceis
insignificant and can be neglected. For the same reason,
we can also ignore the distortion of the probe field by a
dust grain.

In addition, we neglected the drag and deceleration
forcesthat are exerted on the grain by the ions and neu-
trals, respectively, athough these forces may beimpor-
tant in certain situations. Theion drag force acting upon
adust grain isimportant in examining the grain motion
in alayer around a probe with a high negative potential
such that the ions move preferentialy in the radial
direction and the grain velocity ishigh. In thissituation,
theion drag force may act to push the grainsin the layer
toward the probe and to partially counterbalance the
repulsive force exerted by the probe on the grainsin the
region where the grain charge is negative (Z4 < 0). In
turn, the neutrals act to decel erate the grains, especially
at high gas pressures. In order to further improve the
model proposed here, it is necessary to correctly
account for the effect of theion drag force and thegrain
deceleration by neutrals on the motion of dust grainsin
systems with different parameters.
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Abstract—Chemical models of an atomic plasma based on exact asymptotic expansions are considered. It is
shown that, when developing the chemical models of a weakly nonideal plasma, taking into account highly
excited atoms results in corrections to the thermodynamic functions and a decrease in the ionization potential
that are quite different from those predicted by the Debye theory. © 2001 MAIK “ Nauka/l nterperiodica” .

1. INTRODUCTION

Let us consider a weakly nonideal (with respect to
the Coulomb interaction) partially ionized plasma con-
sisting of electrons, ions, and atoms. In [1-4], an
expansion of thermodynamic functions in power series
in the activity (z, of electrons and z of ions) up to the
terms zflz and zflzlnzk (wherez = gk}\ljseﬁuk, k=gi;B=
1/T is the inverse temperature; and A, = 2TtA>/my)'72,
0o and p, are the thermal wavelength, statistica
weight, and chemical potential of the particles of kth
species, respectively) was obtained for such a plasma.
The expansion is based on the physical model [1, 3, 4]
in which the atomic plasma s assumed to be a mixture
of positively and negatively charged particles, namely,
nuclei and electrons interacting with each other viathe
Coulomb potential. A grand canonical ensembleiscon-
sidered. No assumptions about the initial atomic com-
ponent are made; it arises as a result of the pair quan-
tum mechanical interaction between the oppositely
charged particles. The final result is obtained by sum-
ming the convergent sequences of the ring and ladder
diagrams in perturbation theory. For the thermody-
namic potential Q (Q = —PV, where P is the pressure
and V is the system volume) and the total charge den-
sity n, one can obtain

_BQIV = BP
Z 3 (D
_ a L ar )\e
= (Ze+zi)%l+§+§|:|+zezi_2 Zp,

2 3
a.a A
N =zl + 5+ S0+ 225 2. @)

Here, a = Be’)x is the plasma parameter; X =

A/4Tt[3e2(ze +z) istheinverse Debyeradiusin termsof

the electron and ion activities; and %, is the convergent
Planck—Larkin partition function,

o= Y gu(e —1-BEy), 3)
n=1

where g, and E,, are the statistical weight and the energy
of the bound atomic state with the principal quantum
number n. Relations (1) and (2) are written correct to
the terms 2 without taking into account quantum cor-
rections on the order of Agx. This significantly simpli-
fies subsequent calculations with no loss of generality.
At high temperatures, the equations of state (1) and (2)
describe a fully ionized plasma (BP = 2n), whereas at
lower temperatures, they describe an atomic gas (BP =
n). Relations (1) and (2) arerarely used in calculations
because they require the determination of an intermedi-
ate quantity (the activity z) and cannot be generalized
to aplasmawith a more complex composition.

In practice, in order to calculate the thermodynamic
functions and composition of a partialy ionized
plasma, a chemical model in which the plasma is
assumed to be amixture of weakly interacting electrons
(No), ions (N;), and atoms (N,) contained in avolume V
at atemperature T is most widely used [5]. For such a
mixture, it is possible to write the free energy F with a
correction AF, which accounts for the interaction
between free charges (in this paper, we do not consider
interatomic interactions or interactions between atoms
and charged particles). We know more than 20 versions
of the plasma chemical model. They differ in both the
method for calculating the contribution from the Cou-
lomb interaction to thermodynamic quantities and the
form of the atomic partition function. Twelve versions
were used in [6] to calculate the thermodynamic func-
tions and the composition of an atomic cesium plasma
and to analyze the scatter in the results obtained using
these models. Later on, a series of other plasma chem-
icd models [7-12] were developed. In most of the
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models, either the classical Debye theory [13] or its
modification for the grand canonical ensemble [2, 14]
was used to take into account the interaction between
free charged particles. Various methods for calculating
the atomic partition function may be conventionally
divided into three groups: (i) calculations according to
formula(3), (ii) the use of the so-called “nearest neigh-
bor” approximation (NNA) or the Fermi method [15]
(the models of the critical microfield [16] and conflu-
ence of lines may also be included in this group), and
(iii) calculations of the atomic partition function with
allowance for al the bound electronic states whose
energies exceed in absolute value the decrease in the
atomic ionization potential obtained with one of the
modifications of Debye theory [6]. Obviously, each of
the existing versions of the chemical model dependson
the way the electronic states in an atomic plasma are
separated into free and bound states. Nevertheless, the
existence of exact asymptotic expansions (1) and (2)
requires that the final result be independent of the cho-
sen way of separating the electronic states into free and
bound states, because all of the versions of the chemical
model of an atomic plasma under conditions when the
plasmaisweakly nonideal with respect to the Coulomb
interaction describe the same plasma states as relations
(1) and (2) do. Theway of choosing the atomic partition
function is studied in most detail in [16]. It is shown
that the partition function (3) significantly underesti-
mates the number of observed states, whereas the cal-
culations according to the third version greatly overes-
timate it.

In our opinion, thereis aparadoxical situation in the
theory of a nonideal atomic plasma: despite the exist-
ence of exact asymptotic expansions (1) and (2), tens of
different modifications of the plasma chemical model
are employed in calculations. Naturaly, the question
arises as to what version is the most accurate conse-
guence of the exact physical model based on the expan-
sion in power seriesin the activity in the grand canoni-
cal ensemble.

In this paper, we derive several nonideal plasma
chemical models based on the exact asymptotic expan-
sions (1) and (2) of thermodynamic quantities in power
series in the activity in the grand canonical ensemble.
We deduce expressions for the free energy F and relate
the profile of the atomic partition function to the correc-
tion for the Coulomb interaction between free charged
particles. It is shown that the Debye asymptotics for
both the decrease in the ionization potential and correc-
tions to thermodynamic functions is only valid if the
atomic partition function is determined by Eqg. (3); for
any other version, such an asymptotics is absent. The
relative contribution of both corrections for the Cou-
lomb interaction in the equation of state and the
decrease in the atomic ionization potential is shown to
be much less than the corrections predicted by the
Debye theory.

KHOMKIN et al.

2. RING DEBYE APPROXIMATION
IN THE GRAND CANONICAL ENSEMBLE

This approximation was first proposed in [2] and
thenin [4, 8]. Let us determine the free energy for this
model in terms of the densities of free electrons (ions)
Ng; and atoms n,. This is convenient for subsequent
analysis because most of the chemical models of anon-
ideal plasmaare formulated in terms of the free energy.
Here and below, the basic point is the separation of the
total density of the plasma charged particles, defined by
Eq. (2), into two components, namely, the densities of
free charged particles and atoms. Following [4, 8], we
define the densities of free charged particles and atoms
asfollows:

- a,an
Nei = Ze,i%-+§+—4—[r 4)

N, = 225 %p. 5)

Let us consider therelation that links the grand ther-
modynamic potential Q to the free energy F:

B = B (nrn)Bu+ (0Bl ©

Eliminating the activities z, ; and using the above
relations for the chemical potentials i ;, we obtain

O 2
BF _ —malne—p3 + nilni3 + nelnz—e3
v O  nA; N A, NA.

(N

2
F(n+ ne)[ln(l + a2+ a’l4) —M} 3

!
1+a/2+a’/4 O

The parameter a in Eq. (7) isrelated to the densities
of free charged particles n, ; by the expression that fol-
lows from Eq. (4):

r* = a’(1+a/2+a%4), 8)

where [ = (Be?)*?2,/41(n, + n;) isthe coupling param-
eter characterizing the degree to which the plasma is
nonideal.

Using the conventional thermodynamic relations,
from Eq. (7), we abtain the equations of state and ion-
ization equilibrium:

2
BP:(ne"’ni)%l— a/6+a°/8

+ N, ©))
1+a2+a448 °

3
e

A —2In(1+a/2+a’/4
n, = nn—=3e ntrakre

(10)

In the limit in which the plasmais weakly nonideal
with respect to the Coulomb interaction (a — 0) rela-
tions (7)—(10) have the Debye asymptotics. Indeed, the
PLASMA PHYSICS REPORTS  Vol. 27
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solution to Eq. (8) isT = a; then, for the correction to
the free energy and for the equations of state and ion-
ization equilibrium, we obtain

r
Y; = _(ne+ni)§v an

BP = (n.+n)FA -+, (12)

3

N, = NN—=3p6 . (13)

Here, the most important result isthat the ionization
equilibrium equation (13) contains the Planck—Larkin
partition function (3). As was mentioned above, this
sum incorrectly describes the contribution from highly
excited atomic states [16]; for this reason, some ver-
sions of the chemical model use the correctionsto ther-
modynamic functions and the decreasein theionization
potential described by expressions (9) and (10),
whereas the partition function is calculated according
to the second or third version (see Introduction) [6].
Such amaodification of the ring Debye approximationis
not valid because it would lead to a discrepancy with
Egs. (1) and (2) when cal culating thermodynamic func-
tions.

3. DERIVATION OF THE CHEMICAL MODEL

BASED ON THE EXPANSION IN THE GRAND

CANONICAL ENSEMBLE WITH ALLOWANCE
FOR HIGHLY EXCITED ATOMIC STATES

L et us consider another version of the plasmachem-
ical model that is based on the NNA for the atomic
component. In [17], using as an example the electron
state density determined for an atomic plasma in the
same approximations as for Egs. (1) and (2), it was
shown that the sum ; in the expansions of thermody-
namic functions appears as a result of an integrable
state-density singularity that stems from the divergent
contributions from both the highly excited atomic
states and free charged particles.

In[18], this state-density singularity was eliminated
by substituting the pair approximation with the NNA
and taking into account the Debye correlations. It was
rigorously shown that the integration of the finite state
density does not influence the expansion thermody-
namic functionsin power seriesin the activity up to the
terms Z2. It was revealed that the highly excited atomic
states are naturally present in the plasma, but their
influenceis neutralized if both the bound and free elec-
tronic states are taken into account. The Planck—Larkin
partition function appears as a result of such neutrali-
zation.

Let us derive the chemica model of an atomic
plasmafrom expansions (1) and (2) (which are accurate
up to the terms 2%), using a definition for the atom den-
sity n, based on the NNA, which is different from defi-
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nition (5). From a physical standpoint, thisway of trun-
cating the atomic partition function is the most ade-
guate because it determines the characteristic atom size
using asimple physical rule formulated by Fermi [15]:
there are no charged particlesinside an atom or, in other
words, an electron can form abound state only with the
nearest ion[19]. Thisdefinition might be refined but the
main results obtained below will be the same. The state
density obtained in the NNA [18] corresponds to the
following atomic partition function:

Z g
Sy = z g.e W, (14)
n=1

w, = eXpE—g"(Ze"'Zi)r:% (15)

wherer,, = a,n? istheradius of an electron orbit with the
principal quantum number n and a, = #%/me’ isthe Bohr
radius. The quantity w, is the Poisson probability that
there are no charges inside a sphere of radiusr,,

Before deriving the chemical model, we make some
transformations of the partition function = that will be
called for later. We rewrite sum (14) in the form of a
sum of the two summands

00 B ) (o))
Iv=Y e —1-BE)w, + T gy(1+BENw,.(16)
n=1 n=1

The main contribution to the first summand in
expression (16) is provided by the termswith the bound
state energies E, = T and, accordingly, orbit sizes less
than the Landau length e*. For these states, provided
that Be> < r,, (wherer,, is the mean interparticle dis-

tance defined by the relation 3/41(z, + z) ri =1), we
may assume that w, = 1; hence, the first summand is
close to the Planck—Larkin partition function (3). Tak-
ing into account that w, differsfrom 1 when calculating
this summand would lead to an excessive accuracy
because the correction is proportional to z3. Conversely,
in the second summand, the states with large principal
guantum numbers n play amagjor role, because the state
statistical weight increases proportionally to n?. If the
number of the excited states taken into account by par-

tition function (14) islarge enough (N, ~ /@ = 1),
we may pass over to integration in the second summand
in Eq. (16) instead of summation over n:

[

T 01+ BEJwy = [on(1+BEJw,cn. (17
n=1 0
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Substituting expression (15) into Eq. (17), we obtain

3 o(1+BE)w,
) n=1 (18)
_ 2 2 4 3.6
= IZn (1+BRy/n )exp[—é(ze+ z)agh }dn.
0

Taking theintegral in Eq. (18), we have for 2y
4

ZN = ZP+ - 4
(Ze+Z)Ae

fa(a), (19)

where

f.(a) = [ ﬁxi]:r(l/e) %

In expression (19), the function f,(a) describes the
contribution from highly excited atomic states to the
partition function. For brevity, we will omit the argu-
ment of the function f,(a).

To derive a chemical model, we again define the
densities of atoms and free charged particles using the
NNA partition function for the atoms:

n, = Zez')\ o

(20)

21)

ne:n—nazze%H +%—f (22)

It isimportant to note that the sum of these expres-
sions coincides with expression (2). In other words,
when defining the atom density n,, any modification of
the partition function certainly changes the expression
for the density of free charged particles n,. Next,
repeating the same calculations as for Eq. (6), we
obtain for the free energy

0
[l ex
BF _ ~nIn= +nIn—= +n,In 283
v 0 na a ni)\i ne)\e
L (23)
a +-9f__I} E
+(n+n)| InFL+ 5 —fD b 8 2 Iy
a,a [l

Using conventional thermodynamic relations, we
obtain the equations of state and ionization equilib-
rium:

0 _
BP = (n,+n)0l— al6 +a’/8 f, /20 G+,
O 1+a/2+a/4—f O

(24)
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)\ =2In(1+ +
n, = |2 ZN 2In(1+a/2+a - fl) (25)
Unlike Eq. (8), here, the parameter a isrelated to the
parameter I" by arelation that follows from Eq. (22):
r* = oa®(1+a2+a’/4—f,(a)). (26)
The expressions for the internal energy E and
enthalpy H are asfollows:

D
El
E = TVE'[—Z(n +n+ne)—TZN
0
Iy (27)
o, 3423910
2 8 4”7 9a U
_(ni+ne) q (]2 E
1+§+Z_f15
D
H=TV (n +0+N) — = aEa
- % ? T3,
(28)
2a 0" fi_3,0%:
3 2 2 4 0ol
_(ni+ne) o O(Z %
1+§+Z—f1 |:|

Since f,(a) = 0.32a at small values of a, it follows
from Egs. (23)—(28) that taking into account excited
atoms radically changes the corrections for the Cou-
lomb interaction to al the thermodynamic functions
and decreases the atom ionization potential. Below, we
will consider this problem in more detail.

The partition function X entering expression (23)
for the free energy depends on the volume V and densi-
tiesn, ;. Some versions of the chemical model also use
partition functions similar to X. Deriving the equa-
tions of state and ionization equilibrium from the free
energy equation brings up the question of differentiat-
ing Z over the volume and particle densities. Usually,
it is not recommended to carry out this differentiation.
However, in the version of the chemical model in ques-
tion, this differentiation is required to obtain the equa-
tions of state and i onization equilibrium consistent with
relations (1) and (2), the more so as formulas (24) and
(25) can be derived directly from relations (1) and (2).
When deriving Egs. (24)—(28), the derivative of any
function ¢(a) with respect to the variables V, n, ;, and
T can be represented as

ad(a)/ax = (39/da)(da/ar)(dr/ax).  (29)
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4. INFINITE-COMPONENT CHEMICAL MODEL
OF AN ATOMIC PLASMA

In [12], a chemical model was developed in which
the atomic component was considered as a mixture of
an infinite number of components corresponding to
atoms in certain excited states. The atomic component
in the expression for the free energy is taken into
account as follows [12]:

nJnw,,
k=1

BF, RO k|ne‘9’k (30)

nk)\k

where n, Ay, gy, and E, are the density, thermal wave-
length, statistical weight, and energy of an atom in the
bound state k, respectively, and w is a Poisson proba-
bility [analogous to probability (15)] that there are no
particles inside the atomic orbit with the principal
guantum number k. After minimizing the free energy
over the densities, n, becomes proportional to w,
which ensures the convergence of the partition func-
tion, which is nearly the same as 2, defined by expres-
sion (14).

In [12], the last term on the right-hand side of
Eq. (30) isreferred to as an “entropy” term. Note that
such a term was first introduced in the Fermi mode!;
however, including it in the expression for the free
energy in[12] looks somewhat artificial because all the
additions to F are determined only by the viria coeffi-
cients.

Let us derive the so-caled infinite-component
model from relations (1) and (2). The densities of free
charged particles and atomsin the state with the princi-
pal quantum number k are

n = 20w, (31)
Ne -ze%L+—+%—f 32)

In Eg. (31), w, coincides with that defined by
expression (15); hence, the sum of all n, coincides with
n, defined by expression (21) and the overall particle
density coincides with that defined by expression (2).

Let us consider in more detail the origin of the
atomic constituent of free energy in formula (6):

an +In—+|n 13%
Ae  ZA
@ BE,
2ege W
anln = anlng"—ak (33)
k=1 Ze)\ Z)\ k=1 nk)\k
= anln—"3+ anook,
k=1 r]k}\k k=1
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where 3, = gkeBEk . For the free energy, we obtain
F 2e e
— = 1 JIn—=-n/In—
™V Tl
—anln——anlnwk (34)
A

n+min +g+a__fD O(/6+(1/8—f1/2
e 1 2

4 Y qrap+ada-t)|

It is seen from Eq. (34) that the entropy term origi-
nates naturally and the correction for the Coulomb
interaction coincides with the above correction (23),
which differs from the Debye correction. In [12], the
Debye correction was used to take into account the
Coulomb interaction, which would lead to a result dif-
ferent from relations (1) and (2). Expressing the free
energy inform (34) ismore preferablethan in form (23)
because, in the former case, the atomic statistical
weights areindependent of the density and it is possible
to take into account the interaction of the excited atoms
with aplasma[12].

In our opinion, the entropy term has a more obvious
physical meaning. Let us present the Poisson probabil-
ity (15) intheform

—(Ze+27) vy

W =e , (35)

where v, is a volume occupied by an atom in the kth
guantum state. Substituting w, into the entropy term
and taking into account expression (32), we obtain

z nJdnw, = —(z+ Zi)znka
K K

(36)
N+ N,

nvy.
1+a/2+a2/4—f1§ o

Since summation over al the quantum states pro-
vides the total atom density in a plasma

an = n,, (37)
k
the quantity

znka = NV (38)

can be regarded as a fraction of the plasma volume
occupied by atomsin al of the states and the parameter

Vg = z nka/Z Nk
k k

(39)
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can be regarded as an averaged (effective) volume of an

atom. Using Egs. (36) and (38), the sum —nIn— 2e -

ne e
nilni)\3 - ankln(q(in (34) can berepresented in the
MA;
linear approximationin a as

—nelnze(l_rlav")—nilne(l_ng‘VO). (40)
NAe A

Representation (40) has a clear physical meaning:
free electrons and ions in an atomic plasma move in a
volume reduced by the volume occupied by atoms. This
statement agrees completely with the NNA; i.e.,, there
cannot be free charged particlesinside an excited atom.
Although the fraction of the volume occupied by the
atoms is relatively small, it is the terms related to this
volume that ensure convergence of the partition func-
tion in the model of [12]. We will refer to the correc-
tions for the volume occupied by atoms as configura-
tion corrections in contrast to correlation corrections
related to the particle interaction.

Note that the thermodynamic models obtained in
Sections 3 and 4 are completely equivaent. It can be
shown that expressions (24)—(28) follow from expres-
sion (34) for the free energy in the infinite-component
model without any additional assumptions. However,
their derivation is rather lengthy and we do not present
it here.

5. DISCUSSION OF THE RESULTS

Let us consider the version of the chemical model
from Section 3 and limit ourselvesto thetermslinear in
the coupling parameter. It follows from Eq. (26) that, in

thiscase, a = I"; in addition, according to Eqg. (20), we
have
/6 of, _ N
fi=—— >4 a = aa, aaa = ao, a=032. 41)

The expressions for the plasma thermodynamic
functions and the equation of ionization equilibrium
take the form

0
= —TV[naIn— +nln——;

O na)\a ni)\i
+n In—%§—+(n n)[ —g’aEE;
ne)\e 3 2 |:|
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H= TVS—Z(n +n,+n) - (42)

TZN

15 DD

—(ng+n))z FEL
D

_ Ceq
p = T%na+(ne+ni)[l—6(l 3a)]

Oodad

—F 1-2a
n, = 2 Delhy 3 3y e,

The corrections for “nonideality” to the thermody-
namic functions differ from the Debye corrections by
the value of the numerical factor at the parameter I.
Thus, the correction to the pressure is reduced by afac-
tor of nearly 25 compared to the Debye correction, and
the decrease in theionization potential isreduced three-
fold. This result qualitatively explains the fact that, in
experiments [13], a nonideal plasma behaved as an
ideal gas.

The corrections for nonideality in Egs. (42) are not
related to each other by the main thermodynamic rela-
tions [20]; for example, AP # —0(AF)/0V because the
numerical factorsat I' in Egs. (42) are different. Thisis
caused by the fact that the corrections consist of com-
ponents of different natures, namely, configuration and
correlation components. If we separate them, then the
main thermodynamic relations will hold for all of the
thermodynamic quantities and the factor (1—3a/2) at I
will appear in al of the expressions. The configuration
correction (38), whichisequal to thefraction of the vol-
ume occupied by atoms, can be calculated analyticaly;
in the linear approximation in I, it isequal to

anvk = n,v, = al /4. (43)

Separating the configuration and correlation correc-
tionsin Egs. (42) and restricting ourselves to the terms
linear in ", we obtain

H ex
F = —TV[naIn—N3+niIni3
O naAg A
3.
+n In—+(n +n)3%L——aD[;
e)\e
d n.+n r 3_d
P = E — —(ng+n)==l-%=
o Ty, (et Mg 3%
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E=TVEB(na+ne+ni)— =
=2 To
(44)
—(ng +n)F%L——a
H=TV (n +ne+n)+ 7 Mot 1
B %_2 -n,V,
3 [l
+n)3 F%L DD
NN ASEy 8-
N, = 5-———e :
(1_naV0)

It is seen from Egs. (44) that the factor (1 — 3a/2)
appearsin al of the correlation corrections. Equations
(42) and (44) can be regarded as a chemical model of a
weakly ionized plasma, which is fully consistent with
the exact asymptotic expansions (1) and (2). None of
the chemical models mentioned in the Introduction cor-
responds to the obtained resullts.

Thus, the contribution from highly excited atomic
states to the plasmathermodynamic functionsis shared
between the configuration and correlation terms. The
correlation term differs from the Debye term even in
thelimit ' — 0. The configuration term does not con-
tribute to the plasma internal energy and can be
regarded as a contribution from a certain volume occu-
pied by atoms; however, this contribution differs from
the Van der Waals contribution because it does not fol-
low from interatomic (or atom—ion) repulsion.

Now, let us discuss how the transition to the Debye
asymptotics occurs. We consider a high-temperature
(BRy < 1) weakly ionized plasma. Inthis case, partition
function (19) contains only the second summand and
the equation of ionization equilibrium takes the form

2ngn;

r.]a = (ne+ ni)fl(r)'

(45)

Using the electroneutrality condition, we express
the densities n,; , through the total density of nuclei
n=n, + n, in the linear approximation in the para-
meter I":

Ne; = n(l-al),

46

n, = nal . (46)

When deriving (46), we used linear approximation (41)
for the function f,(I").
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N,y 108 cm™3

(a)

2

T,10° K

Electron density vs. temperature at pressures P = (a) 5,
(b) 50, and (c) 150 atm for different thermodynamic mod-
els: (1) ideal gas model, (2) ring Debye approximation,
(3) Debye theory, and (4) present paper [cal culation by for-
mulas (24)—(29)]; curves 1-3 correspond to the Plank—Lar-
kin partition function and curve (4) correspond to the NNA
partition function calculated by formula (15).

Substituting expressions (46) into Egs. (42), in the
linear approximation in I, we obtain for the pressure

BP=n,+(n.+ ni)%L—%(l—3a)D= Zn%—[Er 47)

which corresponds to the classical Debye result. It fol-
lows from Egs. (46) that a nonideal plasma is always
partially ionized. Even at high temperatures, anonideal
plasma contains excited atoms, which contribute to the
classical Debye correction. Applying the Debye theory
directly to the chemical model of an atomic plasmais
incorrect because the excited atomswould be taken into
account twice. It can only be applied to an atomic
plasmain the version of the chemical model considered
in Section 2 and can only be used to calculate the ther-
modynamic functions of an atomic plasma. In this
model, the density of free charged particlesis overesti-
mated; hence, applying the model to multicomponent
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plasmas (in which the corrections for interatomic inter-
action, as well as the interaction between atoms and
free charged particles, should be taken into account) is
also incorrect.

The figure presents isobaric dependences of n, on
the temperature T in a cesium plasma, calculated using
the models with different equations of state. It is seen
that the NNA and taking into account the highly excited
atomic states substantially decrease the influence of the
Coulomb interaction on the plasma composition. The
electron density is close to that in an ideal gas (curves
1 and 4) within alarge region of the phase diagram.

6. CONCLUSION

Several versions of the chemical model of aweakly
nonideal atomic plasmaare accurately derived based on
the exact asymptotic expansions of thermodynamic
guantitiesin the grand canonica ensemble. The contri-
bution of the Coulomb interaction between free
charged particlesto the thermodynamic quantities of an
atomic plasmais found in the NNA for the atomic par-
tition function. Actualy, this result corresponds to
applying the Hill theory [21] of virial coefficients for
systems with chemical reactions to the Coulomb inter-
action. Therevealed strong decreasein the contribution
of the Coulomb interaction to the equations of state and
ionization equilibrium stems from the existence of
highly excited atomic states. It is shown that none of the
existing versions of the chemical model of an atomic
plasma, except that considered in Section 2, correspond
to asymptotic expansions (1) and (2). Chemical models
of an atomic plasma (see Sections 3 and 4) correspond-
ing to asymptotic expansions (1) and (2) are proposed.
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LOW-TEMPERATURE

PLASMA

Kinetics of Heat Release during the Interaction
of a Low-Temperature Oxygen Plasma
with a Catalytically Active Surface
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Abstract—The method of differential scanning calorimetry is applied to determine the temperature depen-
dence of the power transferred to a solid surface during the deactivation of excited molecular states and atomic
recombination on the surface of a platinum film in a low-pressure (40 Pa) capacitive RF discharge in oxygen.
Temperature scanning within the range 300600 K is performed under the action of the heat flux from the dis-
charge. Thetotal heat flux is separated into the components associated with different heat transfer mechanisms.
The effective activation energy for the heat release related to the relaxation of the excited states of particles on
the platinum surface is about 75 meV. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Catalytic processes occurring in the interaction of a
weakly ionized plasmawith asurface and accompanied
by heat release are usualy studied with the aim of
devel oping discharge diagnostic techniques [1-3]. Tra-
ditionally, the object under investigation is the gas
phase of adischarge and the aim of the study isto deter-
mine the densities of the excited particles, radicals, etc.
from thermal effects on catalytically active surfaces[4,
5]. However, since the thermal methods are nonselec-
tive with respect to different particles or excited states
and the information provided by the conventional ther-
mal diagnostics is insufficient, these methods fail to
resolve the problem of separating the contributions
from different particlesto the heat transfer onto the sur-
face or to determine the density of the excited particles
in the discharge volume. Spectral methods of diagnos-
tics of the gas phase of a discharge are more informa-
tive.

Thermal effects occurring in theinteraction of agas-
discharge plasmawith catalytically active materials are
of interest for aircraft engineering [6] and microtech-
nology because the catalytic energy release may result
in undesired heating of a solid body (for instance, an
aircraft body or a substrate on which the surface micro-
structures are etched) due to deactivation of the excited
particles. The relaxation rate of the metastable excited
levels of particles colliding with a surface increases as
the surface temperature increases, which leads to both
a positive feedback in the “temperature-heat release
rate” chain and an avalanche-like growth of the temper-
ature [7, 8]. To forecast the temperature regime of the
surface, one needs information on the catalytic heat
release rate. This and other problems on the heat
exchange between a plasma and a surface can be
resolved only with the help of thermal measurements.

The problem of studying thermal catalytic processes
consists in distinguishing the heat power related to
deactivation of the excited states against the back-
ground of several mechanisms for heat exchange
between a plasma and a surface. When applying sta-
tionary diagnostic methods [4], one has no information
about the main characteristic of the heat transfer mech-
anism under study—the temperature dependence of the
temperature growth rate of a solid body in a discharge
(or the power transferred from a discharge to the sur-
face). For thisreason, attemptsto determine the charac-
teristic features of different heat transfer mechanisms
and experimentally identify the presence of individual
mechanisms have been unsuccessful.

In this paper, it is shown that the nonstationary diag-
nostic method allows one to distinguish between the
contributions from different mechanisms for heating a
solid body in a discharge and to determine the heat
power related to the activation of the excited stateson a
catayticaly active surface over a wide temperature
range.

2. EXPERIMENT

The experiment was carried out with a cylindrical
guartz reactor 19 cm in diameter and 45 cm in length.
An oxygen discharge at pressures of 0.1-1 torr was
excited in a continuous gas flow (with a flow rate of
~100 sccm) by external RF electrodes at afrequency of
13.56 MHz. The input power was equal to P, = 100—
300 W. Under these conditions, the discharge occursin
the low-current (or a) form [9]; a characteristic feature
of such adischargeisthat the power is dissipated in the
discharge volume (rather than in the el ectrode sheaths)
and the gas temperature is rather high. The degree of
dissociation of oxygen moleculeswas<10-?; the degree
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of gas ionization was no more than 1076. The gas tem-
perature at the axis was 500-800 K. The discharge
emission spectrum in the range 300900 nm was mea-
sured with the help of a KSVU-23 computerized spec-
tral complex. The design of the plasmochemical reactor
was described in detail in [10].

Scanning calorimetry in adischarge implies contin-
uous measurements of the heat power transferred to the
calorimeter under conditions when its temperature var-
ies in time in a given fashion under the action of the
heat flux from the discharge. The temperature measure-
ments are based on recording the time-dependent tem-
perature T(t) from the start of the discharge up to the
stage in which the calorimeter temperature reaches a
steady-state value. After differentiating the dependence
T(t), we obtain the calorimeter heating power P ~ dT/dt
as afunction of time. Since the heating processis qua-
sisteady, the time can be excluded from consideration
and the data can be represented in the “temperature—
power” coordinates (in this case, the power transferred
from the discharge to the surface depends explicitly on
the surface temperature rather than on time). The qua-
sisteady character of the process is determined by the
relation between two characteristic times: the short
relaxation time of the temperature and particle density
distributions in a boundary sheath around the calorim-
eter (1, ~ 1 msand thelong time of calorimeter heating
(T, ~ 100 ) in the discharge.

Thedifferential version of scanning calorimetry was
used to determine the difference power [11]. To find the
contribution from the energy release due to the relax-
ation of excited states on a catalytically active surface,
we compared the dependences P(T) for two calorime-
tersidentical in shape, but with different surface prop-
erties. As calorimeters, we used 0.8- to 0.9-mm-thick
polished silicon singlecrystals2.5 x 2.5 cminsize. The
catalyticaly active surface of one calorimeter was pro-
duced by depositing a thin (0.2 pum) platinum film by
magnetron sputtering. The surface of the second (refer-
ence), catalytically inert calorimeter was covered by a
natural oxide film approximately 5-10 nm thick. The
formation of the oxide film on the cold surface occurs
according to the Cabrera—Mott mechanism and ends
when the film becomes thick enough to prevent the tun-
neling of an electron from the crystal to oxygen
adsorbed on the film surface [12]. Thefurther growth of
the oxide film occurs only due to diffusion of oxygen
through thefilm. This processis characterized by ahigh
activation energy (AE = 1.5 €V) and takes place at high
temperatures (21300 K) [13]. For this reason, the prop-
erties of asilicon single crystal in alow-pressure oxy-
gen plasma change only dlightly. The constancy of the
silicon properties was tested experimentally by expos-
ing the crystal to the action of an oxygen discharge for
several tens of minutes. The oxide film thickness was
measured by an IFS-88 Bruker Fourier-spectrometer
and an LEF-3M laser dlipsometer at a wavelength of
633 nm. In an oxygen plasma, platinum also oxidizesto
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form volatile compounds [14]. However, under our
experimental conditions, the oxidation rate of the plat-
inum film was negligibly small, which was ascertained
by weighing the sample accurateto 0.1 mg with an ana-
lytical balance. Hence, we believe that chemical reac-
tions on the silicon and platinum surfaces do not occur
and, consequently, the heat release related to these reac-
tionsis absent.

Thetime-dependent temperature of the calorimeters
was measured using laser interference thermometry
[15] at awavelength of 1.15 pm (the He-Ne laser line,
lying in the transparency band of the silicon crystal). In
the case of the calorimeter with a metal film on one of
its surfaces, the laser beam fell on the opposite crystal
surface. The calorimeterswere placed inside the reactor
in turn; in both cases, the discharge was initiated at the
samewall temperature and at the same gas pressure and
was maintained by the same input power. The depen-
dence T(t) was also measured during the calorimeter
cooling after the discharge was switched off. The kinet-
ics of cooling alowed us to determine the radiative
power loss for each calorimeter. This is necessary
because one of the calorimeters was covered with a
metal film, so that the emitting properties of the calo-
rimeters were different. In addition, the temperature
dependences of the emissivities of optically thin semi-
conductors differed substantially from the dependences
characteristic of blackbody and graybody radiation.
Note that the power (rather than the exponential) tem-
perature dependence of the emitted power is character-
istic of 1-mm-thick weakly doped semiconductor crys-
tals in the range of low temperatures T < 0.05(Ey/K),
where E, is the band gap energy of the crystal and k is
the Boltzmann constant [16].

3. RESULTS AND DISCUSSION

Figure 1 shows the dependences T(t) during heating
of the inert and active calorimeters in the discharge for
two levels of the input power. It is seen that, in both
cases, the heating rate of the calorimeter with a plati-
num filmis higher, although its massis greater by 12%
(the thickness of the active calorimeter is 0.9 mm,
whereas that of the inert calorimeter is 0.8 mm). We
carried out atest experiment on the heating a calorime-
ter whose surface was covered by athin (0.2 um) alu-
minum film. The dependences T(t) for the calorimeter
with an aluminum film and reference cal orimeter coin-
cided. Hence, the additional heat release on the plati-
num surface is related to its catalytic properties, i.e., to
the capability of substantially increasing the rates of
some elementary processes. This heat release may be
attributed to the recombination of oxygen atomsaswell

as deactivation of the blz; (the excitation energy is€ =

1.6 eV and theradiation lifetimeist=7s) anda'A, (e =
1 eV andt =3 x10°s) excited singlet levels of molec-
ular oxygen on the active surface. The emission spectra
of both atomic and singlet oxygen in the dischargewere
PLASMA PHYSICS REPORTS  Vol. 27
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recorded. The fraction of energy transferred from the
excited particles to the solid body is usually unknown;
it is believed that, in the interaction of singlet oxygen
with platinum, this fraction is close to unity [17].

Figure 2 showsthe kinetics of cooling the calorime-
tersin a cold gas (the cooling time of the reactor gas
after switching off the dischargeis equa t0 0.1 s). The
temperature dependences of the calorimeter heating
power in the discharge and the cooling power after
switching off the discharge were calculated by numeri-
cally differentiating the curves T(t) (Fig. 3). The tem-
perature—power dependence is analogous to a phase
trajectory on the coordinate—-momentum plane used in
mechanics.

When calculating the derivative dT/dt, it is necessary
to eliminate the noise associated with both fluctuations
in the power input in the discharge and errors in deter-
mining the instants corresponding to interference extre-
mums in thermometry measurements. For this reason,
when processing the experimental data, the depen-
dences T(t) were approximated by polynomialsin order
to smooth fluctuations in the heating and cooling rates.

The equations of energy conservation for the active
and inert calorimeters have the form

D, =cph(dT/dt), = 20((Tg—T)+ D,—(D,),, (1)
D, =cph(dT/dt), = 20(Ty—T) —(D,),, (2)

wherec, p, and h arethe specific heat, mass density, and
thickness of the crystal, respectively; a is the heat
transfer coefficient; T, is the gas temperature outside
the thermal boundary layer; and thetermsD,,and D, are
related to the heat release via deactivation of excited
states and radiative heat loss, respectively.

The first terms on the right-hand sides of Egs. (1)
and (2) describe the heat flux caused by both heat con-
duction in gas and relaxation of the trandational and
rotational degrees of freedom of the particlesimpacting
the surface. The power transferred to the surface lin-
early decreases with calorimeter temperature. If the
inequality NuKn < yis satisfied, this heat flux isinde-
pendent of the surface material (here, Nu = aL/A isthe
Nusselt number, Kn = Ly/L isthe Knudsen number, yis
the heat accommodation coefficient of the energy of the
tranglational degrees of freedom of a particle impacting
the surface, L is the characteristic size of the calorime-
ter, A isthethermal conductivity of thegas, and L isthe
mean free path of neutrals). The heat-exchange rate is
limited by the energy transfer through the thermal
boundary layer [18]. The largest temperature drop
(AT), occurs in the boundary layer, whose thicknessis
comparable with the characteristic size of the calorim-
eter. The temperature drop across the Knudsen layer
(AT),, which depends on the heat accommodation coef-
ficient and, consequently, on the surface properties, is
negligibly small as compared to (AT),. The Knudsen
layer thickness is comparable with the mean free path
of the gas particles.
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Fig. 1 Time dependences of the cal orimeter temperatures after
the initiation of an RF discharge at a pressure of 50 Pa. The
power input in the dischargeis (/, 2) 140 and (3, 4) 280 W.
The inert calorimeter is made of a silicon single crystal
2.8 x 1.5cminsizeand 0.8 mm thick (Z, 3). The active cal-
orimeter has an area of 2.8 x 1.5 cm and a thickness of
0.9 mm; one of itssurfacesiscovered by aplatinumfilm (2, 4).
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Fig. 2. Cooling kinetics of (/, 3) theinert and (2, 4) active
calorimeters after switching off an RF discharge. The input
power is(7,2) 280 and (3, 4) 140 W.

We assume that the temperature profiles in the
boundary layers and, consequently, the heat transfer
coefficients a are the same for inert and active calorim-
eters. However, if the excited particles partially transfer
their energy to the gas after the interaction with the
active surface, the temperature profile can be distorted
because of an additional heating of the gas near the cal-
orimeter. In this case, the heat transfer coefficients of
the two calorimeters may be different. This question is
still unclear.

The gastemperature in the discharge, the heat trans-
fer coefficient, and the heating rate are determined from
the heating kinetics of the inert calorimeter [19]. The
gas temperature equals 310°C at P, = 140 W and
470°C at P, = 280 W. The heat transfer coefficient a at
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Fig. 3. Temperature dependence of the power density D dur-
ing heating the calorimeter by the discharge (D > 0) and
coolingit (D <0) after switching off the dischargefor (1) the
inert and (2) active calorimeters. Theinput power is 280 W.
Arrows show the evolution in time: after theinitiation of the
discharge, D abruptly increasesfrom zero; then, it decreases
as the calorimeter heats up; after switching off the dis-
charge, it jJumps to a lower half-plane; and, finally, due to
heat |oss, returns to the temperature of the reactor wall (T =
40-50°C).

P, =140 W isequd to 6.4 x 10* W/(cm? K); at P, =
280 W, this coefficient is equa to a = 6.5 x
10~ W/(cm? K). The characteristic heating time of the
inert calorimeter is T = cph/2a; for heating in the dis-
charge, wehavet=110sat Py=140W and 1= 105 s
at P, =280 W.

The cooling kinetics of the calorimeters gives the
values of the gas temperature in the reactor and the heat
transfer coefficients after switching off the discharge.
The gastemperatureis equal to 42-44°C and coincides
with the wall temperature. The heat transfer coeffi-
cients of the inert and active samples are the same and
equal to o = 6.2 x 10* W/(cm? K). The cooling time
constant at low temperatures (at which the thermal
emission of the sample plays alesser role as compared
to molecular heat conduction) after switching off the
dischargeisegual to T = 120 sfor any sample.

The contribution from charged particles to heat
transfer is three orders of magnitude smaller than the
contribution from neutral particles because of the low
degree of gas ionization and the low floating potential
of the surface (nearly 10 V). The effect of discharge
emission was tested by depositing antireflecting films
on the crystal surface. SiO, and Si;N, films with thick-
nesses in the range from 0.2 to 0.5 pum decrease the
coefficient of light reflection from the surface in the
200- to 1000-nm range by afactor of 1.5-2. Inthiscase,
the heating rate of the crystal does not increase, which
indicates the negligible role of optical radiation in the
calorimeter heat balance. The absence of RF heating of
ametal film was proved experimentally in [20].
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Since the first terms on the right-hand sides of
Egs. (1) and (2) are the same, we abtain

Dh = Dl_D2+(Dr)1_(Dr)2- (3)

The values of (D,), and (D,), are determined from the
cooling kinetics of the calorimeters after switching off
the discharge:

(Dc)l
(Dc)z za(Tg_T)_(Dr)z' (5)

When the condition Nu - Kn < yis satisfied, the term
2a(Ty — T) is the same for both calorimeters and is
determined from the low-temperature part of the curve
D(T) because the contribution of radiation to the cool-
ing rate is negligibly small in this temperature range.
Theradiation power of an optically thin, weakly doped
silicon single crystal in the range T < 800 K increases
with temperature more rapidly than by the Stefan—Bolt-
zmann law, D, ~ T* (apparently, the thermal emission
power of the crystal is lower than the blackbody radia-
tion power in this case). The reason for thisis that the
main mechanism for heat transfer in the intermediate
and far infrared regionsisrelated to free charge carriers
(electrons in the conduction zone and holes in the
valence zone), whose density is related to the tempera-
ture by the expression n, = n, ~ exp(-AE/KT), wherethe
activation energy is close to the half of the band gap
energy of the crystal, AE = Ey/2.

Approximating the experimental temperature
dependence of radiative heat |oss of the silicon calorim-
eter without afilm in the range T = 170-300°C by the
Arrhenius dependence, we obtain (D), = 3.7 x
10%*exp(=7070/T); in this case, the activation energy is
equal to AE = 0.6 eV, which is very close to the half of
the band gap energy. In fact, the obtained dependence
is determined by the difference between two energy
fluxes, one of which is emitted and the other (emitted
by the wall and other reactor components) is absorbed
by the sample.

The therma emission of the calorimeter with a
metal film on one of the calorimeter surfaces consists of
three summands:; on the side of the uncovered surface,
both the film and the single crystal emit (the former
emits through the optically thin crystal), whereas only
the film emits on the opposite calorimeter surface. The
power of radiative heat loss of the calorimeter with a
platinum film is higher than that of the crystal without
afilm and differs substantially from the Arrhenius tem-
perature dependence (Fig. 4).

The temperature dependences of the power trans-
ferred from the discharge to the surface of the inert and
active calorimeters are shown in Fig. 5. With radiative
heat loss taken into consideration, both of the depen-
dences D(T) are almost linear. The difference between
them is described by expression (3). The temperature
dependences D,(T) plotted in Arrhenius coordinates fit

20(Ty—T) = (Dy)y, “)
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adtraight line (Fig. 6). The power transferred to the cal-
orimeter due to the relaxation of excited states on the
surface increases as the input power in the discharge
increases. The mean sguare method was used to deter-
mine the parameters of the Arrhenius temperature
dependence D,, = (Dy),exp(-AE,/KT) characterizing
the kinetics of catalytic heat release on the surface:

Dy, (W/cm?) = 1.5exp(—888/T) for P, = 280 W,
Dy, (W/cm?) = 0.5exp(—845/T) for P, = 140 W.

The activation energies in these expressions are
amost the same: AE,, = 0.076 €V for P, = 280 W and
AE, =0.073 eV for P, = 140 W. The error is+0.01 eV.
Such low values of the activation energy mean that the
relaxation of excited states does not require ahigh tem-
perature of the active surface; the efficiency of the pro-
cess can be high even at low temperatures. It is this
effect in which the catalytic properties of platinum
manifest themselves: platinum substantially decreases
the activation energy and increases the probability of
elementary processes. The same processes occur at a
low rate on the SiO, surface and, for this rate to
increase, it is necessary to heat the surface to very high
temperatures [21]. The apparent small increase in the
activation energy, which is observed when increasing
the input power, may be the consequence of both the
additional gas heating in the boundary layer and the
increase in the hesat transfer coefficient.

Plotting the temperature dependence in Arrhenius
coordinates makes sense only when the catalytic heat
releaseis limited by the rate of relaxation processes on
the surface (the kinetic limitation of heat transfer). In
this case, the density of particles with excited internal
degrees of freedom near the surface differs only
dlightly from their density in the discharge volume. The
slowest stage of heat transfer is associated with one of
the elementary surface processes (adsorption, reaction,
or desorption), which is of activation character (i.e., it
is accompanied by overcoming the energy barrier AE;)
and is characterized by alow probability.

There may be one moretype of limitation associated
with the finite rate of particle diffusion from the unper-
turbed discharge to the surface. If the probability of
energy relaxation in each collision event is high, then
amost every particle colliding with a surface transfers
the energy of the excited state to this surface. In this
case, the density of particles with excited interna
degrees of freedom near the surface is low (compared
to their density in the discharge volume). The heat
power D, depends on the rate at which the loss of
excited particles near the surface is balanced by the dif-
fusion flux from the discharge. The diffusion in low-
pressure gases is not of activation nature (i.e., AE = 0).
However, even in the absence of kinetic limitations, the
temperature dependence of the power D, isrelated to an

increase in the mean gas temperature Ty = (Tg+ T2
in the thermal boundary layer, whose thicknessis com-
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Fig. 4. Temperature dependence of the radiative power l0ss
of (1) theinert and (2) active calorimetersin Arrhenius coor-
dinates.
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Fig. 5. Temperature dependence of the power density trans-
ferred to (1) theinert and (2) active calorimetersin the dis-
charge at a power of 280 W. The lines deflecting down at
high temperatures are obtained by smoothing the experi-
mental data. The straight lines are obtained by taking into
account the radiative heat loss of each calorimeter. Extrapo-
lating the straight lines until they intersect the abscissagives
T = 470°C for the inert calorimeter (thisisthe gastempera-
ture Ty in the discharge) and T = 1540°C for the active cal-
orimeter (this is a fictitious temperature that can take any
valueT 2 Tg, including infinity, and even anegative valuein
the case of instability).

parable with the characteristic size of the calorimeter,
and the increase in the particle diffusion coefficient,

which is proportional to 'Ts/ 2 (here, T, is the gas tem-
perature outside the thermal boundary layer and T, is
the temperature of the calorimeter surface). If the tem-
perature dependence measured in a relatively narrow
range of temperatures and related to the diffusion limi-
tations is plotted in Arrhenius coordinates, then we can
formally determine the parameters (Dy), and AE,,
although such arepresentation makes no definite phys-
ical sense.
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Fig. 6. Temperature dependence of the power of catalytic
heat release on the platinum surface in an oxygen discharge.
The input power is (1) 280 and (2) 140 W. The slope of the
straight lines in Arrhenius coordinates corresponds to an
activation energy of (1) 0.076 and (2) 0.073 eV.

Let us consider the facts that confirm the kinetic
character of the limitations and the activation character
of thetemperature dependence Dy(T). Immediately after
igniting the discharge (for example, in 0.1 s), the mean

gas temperature in the boundary layer is T4 = 520 K;
when the calorimeter temperature increases to T, =

590 K, we have 'T'g = 670 K. Hence, during cal orimeter
heating, the particle diffusion coefficient in the bound-
ary layer increases by afactor of no more than =1.5. If
heat transfer islimited to the diffusion stage, the power
transferred to the calorimeter by excited particles
should increase by the same factor. At P, = 280 W and
a calorimeter temperature in the range 290-590 K, the
heat flux Dy, increases by a factor of more than 5. Con-
sequently, in this case, the rate of energy relaxation of
excited states on the platinum surface is limited by the
surface processes, rather than by the particle transport
in the gas.

For heat explosion (i.e., the avalanche deactivation
of excited states on the active surface) to occur, it is
necessary to satisfy two inequalities: 2a(Ty—T) + Dy, —
(D)), > 0and (dD,/dT) - 2a — (dD, /dT) > 0. Anincrease
intheinput power resultsin an increase in both the den-
sity of excited particles in the discharge and the gas
temperature. In this case, D,, grows rapidly, whereas o
growsonly slightly. Therefore, astheinput power inthe
discharge increases, surface heating inevitably will
pass over to the self-acceleration regime.

Thereason why it is difficult to determine the fluxes
of excited particles from the measured heat flux related
to catalytic heat releaseisthe reversible character of the
catalyst action. On the platinum surface, not only does
the exothermic atomic recombination reaction O +
O — O, accelerate, but the reverse endothermic dis-
sociation reaction O, —»= O + O (which, however, has
a higher activation energy) also accelerates. For this
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reason, the measured heat power characterizes the rate
difference of the direct and reverse reactions.

4. CONCLUSION

The purpose of thermal measurements is to deter-
mine both the contributions from different heat transfer
mechanisms to the integral heat flux onto the surface
and the characteristic features of each mechanism. In
particular, such features include the temperature depen-
dence of the power transferred to the surface and the
character of the limiting heat-exchange stage. For the
two mechanisms governing the interaction between an
oxygen discharge and a catalytically active surface
(namely, heat conduction of the neutral gas and relax-
ation of internal degrees of freedom), these features dif-
fer substantially: as the surface temperature increases,
the power related to the former mechanism linearly
decreases, while the power related to the latter mecha-
nism exponentially increases. For the former mecha-
nism, the diffusion heat-exchange stage is limiting; for
the latter mechanism, the kinetic stage is limiting. For
both inert and active calorimeters, the power of radia-
tive heat loss was determined experimentaly, which
was impossible when using stationary therma mea-
surements in discharges (e.g., with the help of thermo-
couples). To increase the reliability of the results
obtained with differential scanning calorimetry, it is
necessary to investigate both the effect of incomplete
accommodation of the energy of the excited states on
gas heating in the boundary layer and the dependence
of the heat transfer coefficient on the temperature pro-
file in the boundary layer.

Standard thermal measurements do not allow oneto
determine the particles and excited states responsible
for heat release on a catalytically active surface. These
particles and states can be identified by using scanning
calorimetry and optical spectrometry. Near the active
calorimeter, variationsin its temperature should lead to
variationsin the density n of the particleswhose energy
isreleased on the surface, in which case D,(t) and dn/dt
are proportional to each other.

To evaluate the efficiency with which the energy of
the excited particles is transferred to the surface due to
collisions, it is expedient to use a reference catalytic
surface capable of completely absorbing the energy of
the internal degrees of freedom of the particles. The
kinetic energy of a particle leaving such a “black” sur-
face after colliding with it corresponds to the surface
temperature. Probably, a porous silicon structure can be
used as such a*“black” surface, because 70% of itsvol-
ume is occupied by nanometer-sized pores in which a
particle may remain during a time sufficient for the
energies of all the degrees of freedom to relax.
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