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Abstract—Mechanisms for the development of quasistatic MHD perturbations in a viscous rotating tokamak
plasma are considered. The influence of stray magnetic fields on the stability of MHD modes in the plasma of
the TFTR tokamak is analyzed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recently, the problem of quasistatic MHD perturba-
tionsin large tokamaks has attracted considerableinter-
est [1, 2]. An analysis shows that these perturbations
can arise either due to the rotation of magnetic islands
or due to the destabilization of static (locked) MHD
modes. The stopping of rotation is usually accompa-
nied by a rapid increase in the perturbation amplitude
and, sometimes, by discharge disruption (see [3]). One
of the factors favorable for the development of quasi-
static MHD perturbationsisthe breaking of the symme-
try of the tokamak equilibrium magnetic configuration
(the generation of stray magnetic fields). The threshold
amplitude of the stray magnetic field at which quasi-
static MHD perturbations develop decreases substan-
tialy asthe tokamak size increases, the plasmarotation
slows down, and the plasma pressure increases (see[1,
3]). For these reasons, this kind of instability may be
dangerous for future tokamak reactors with a slowly
rotating plasma under burning conditions [3]. The pri-
mary cause for the appearance of stray magnetic fields,
which is associated with the imperfect fabrication of
the tokamak magnetic system and the nonsymmetric
configuration of conductors, can be minimized by
improving the accuracy of the device assembly. How-
ever, there are a number of factors that are fundamen-
tally unavoidable. First of all, thereis the asymmetry of
the tokamak mechanical elements (such asthe divertor,
diagnostic ports, and neutral beam injectors), the inho-
mogeneity of internal plasma perturbations, and the
local character of the interaction of the plasmawith the
chamber wall during major disruptions (the excitation
of halo-currents and the injection of impurities [4]).
The diversity of sources exciting inhomogeneous mag-
netic fields makes it difficult to predict the onset of
instabilities and hampers the devel opment of stabiliza-
tion systems for future experiments.

At present, there are several methods for identifying
the structure of stray fields. A direct method is based on
the calculations of magnetic fields excited by currents
in the tokamak magnetic system. These calculations

involve the three-dimensional modeling of magnetic
fluxes (including the fluxes induced in the tokamak
conductors) at given positions of the controlling coils.
Unfortunately, such modeling does not provide the
required accuracy in determining the stray fields
because of the complicated spatial structure of the
induced fluxes and the mechanical deformation of the
tokamak construction during the experiment. Another
method is the direct measurement of helical perturba
tions of the magnetic field with the help of magnetic
probes and saddle loops. However, under the experi-
mental conditions, magnetic probes are situated outside
the plasma (outside the vacuum chamber of the toka-
mak), which hampers the determination of the local
field structure inside the plasma column. Magnetic
fields inside the vacuum chamber can be measured if
the tokamak is equipped with special movable probes
(e.g., in experimentsin the DII1-D tokamak [1]). How-
ever, such measurements cannot be carried out during
the discharge. The accuracy of the measurements of
stray magnetic fields can be substantialy improved if
the tokamak is equipped with additional coils for gen-
erating helical magnetic fields with given amplitudes
and spatial orientations[2]. In this case, the stray fields
can be deduced by anayzing the thresholds for the
destabilization of quasistatic MHD perturbations at dif-
ferent amplitudes and phases of the externa helical
magnetic fields.

Unfortunately, experiments with helical magnetic
fields produced by additional coils present serious
problems to large tokamaks because of the high equip-
ment cost and the rigorous schedule of the device oper-
ation. In such a situation, the stray fields can be
deduced by analyzing the dynamics of internal MHD
perturbations[5]. Inthis paper, we describe aprocedure
of determining the dominant harmonics of external
helical perturbations based on the numerical modeling
of tearing modes in a viscous rotating plasma. By ana-
lyzing internal perturbationsin the TFTR plasmaas an
example, we identify the m= 2, n = 1 harmonic (where
m and n are the transverse and longitudinal wavenum-
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bers, respectively), which plays a key role in the initi-
ation of the discharge disruption. In order to improve
the accuracy of the analysis, the parameters of the
numerical model are determined by comparing the
results of calculations with the results of previous
experiments in tokamaks equipped with external coils
(JET, DII1-D) at prescribed helical perturbations of the
magnetic field [5].

2. NUMERICAL MODEL OF MHD
PERTURBATIONS CONTROLLED
BY EXTERNAL MAGNETIC FIELDS

The evolution of MHD perturbations under the
action of external helical magnetic fields is analyzed
using a phenomenol ogical model of tearing modesin a
viscous rotating plasma[5]. The model is based on the

Fig. 1. Schematic illustration of the tearing mode model and
the profiles of the angular plasma rotation velocity (a) in a
quasi-stable configuration and (b) upon the onset of MHD
perturbations. Magnetic islands (/) are located in the vis-
cous plasma (2) confined in a chamber with conducting
walls (3). Here, wy, and wy, are the instantaneous angular
frequencies of the mode and the plasma, respectively; r, Mo
and r,, are the minor radii of the resonant magnetic surface,
the bulk plasma, and the conducting wall, respectively; and
Wy is the plasma rotation frequency in the absence of tear-
ing modes.
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one-fluid MHD theory [6], which describes the electro-
magnetic effects in a plasma with finite viscosity and
inertia. The geometry of the model is shown schemati-
calyinFig. 1.

External magnetic field perturbations and MHD
perturbations (modes) are represented in the form of
helical harmonics B, = Bgexp(jmx.) and B, =

B, exp(jmy,,). Here, mx,, = md — np + J’oomdt, MY =

md —nd + fw.dt (where X, and X, are the phases and

W, and w, are the angular frequencies of the modes and
external fields, respectively), and 6 and ¢ are the trans-
verse (poloidal) and longitudinal (toroidal) coordinates.
The amplitude B, and the instantaneous frequency wy,,=
dx,/dt are described by the equations

2 2_2
_CZBr(mew) /(l + mew) + CSBeCOS(Xe_Xm)f

JBdw,/dt = c,(w,—0oy)

2 2_2 . (2)
- CSBr mew/(l + mew) + CGBesn(Xe_Xm);

where A, is the stability parameter of the tearing

mode in a plasma with a free boundary, 1,, is the time
constant of the conducting tokamak chamber, w, isthe
instantaneous rotation frequency of the bulk plasma
surrounding the magnetic island, and ¢ (i = 1-6) are
numerical factors calculated using the measured
plasma parameters.

MHD perturbations were modeled and stray mag-
netic fields were then identified using the PLASCON
program [5] in the MATLAB programming environ-
ment [7]. The block diagram of the program is shown
in Fig. 2. The TEARING MODE block models the
growth and rotation of MHD perturbations by numeri-
cally solving Egs. (1) and (2) for given values of B, and

Xe- The stability parameter of the tearing mode A}, is

specified using the current density profile calculated
with the TRANSP code [4]. The transmission charac-
teristics of the set of magnetic probes (see below) are
modeled by the MAGNETIC block. The calculated val-
ues of By, wy, (denoted by BR and Qm), and the signals
from magnetic detectors (BR-LMD and BP-MM) are
compared with the measured values. The amplitude and
phase of external fields are determined by fitting the
calculated values to the experimental results.

The instantaneous angular frequency w, and the
perturbation amplitude B, depend on the mode phase
with respect to the external magnetic field [see Egs. (1),
(2)]. Depending on the phase shift (X, — X, the mode
periodically accel erates and decel erates during therota
tion period. At large amplitudes of the external field,
such nonuniform rotation produces characteristic saw-
tooth signals from magnetic detectors, which allows us
PLASMA PHYSICS REPORTS  Vol. 27
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to identify the phase of the stray field under given
experimental conditions.

3. EXPERIMENTAL RESULTS
AND COMPARISON WITH CALCULATIONS

The diagnostic complex of the TFTR tokamak [8]
makesit possibleto identify external and internal MHD
perturbations and, concurrently, to measure the plasma
parameters used in numerical calculations (see table
and Fig. 3). The gpatia structure of internal MHD
modes (wavenumbers m and n), the angular frequency,
and the magnetic island width are measured with the
help of two microwave polychromators situated in the
Cross sections separated by an angle of 126° in the tor-
oidal direction. The amplitudes and phases of the qua-
sistatic and rotating perturbations of the magnetic field
outside the plasma column were measured with the
help of saddle loops and sets of magnetic probes. The
plasma rotation velocity was determined from spectro-
scopic measurements (charge exchange of C°* ions).

Internal MHD perturbations and stray magnetic
fields were analyzed under conditions typical of the
experiments in the TFTR tokamak described in [9]: the
plasmacurrentisl,=2.0 MA, the magnetic fieldis B, =
5.0T, the minor and mgjor plasmaradii arer, = 0.87 m
and R, = 2.51 m, and the neutral beam injection (NBI)
power is Pyg ~ 24 MW. Figure 4 shows the time evolu-
tion of the plasma parametersin those experiments. The
m = 2, n =1 perturbations appear after an interna dis-
ruption at t = 3.35 s. The subsequent increase in the
mode amplitude is accompanied by a decrease in the
rotation frequency up to the full stopping (locking) of
MHD perturbationsat t =4.1-4.2 s. Spectroscopic mea-
surements of the velocity of C° ions show that the
mode grows simultaneously with the slowing-down of
the bulk plasmarotation over the entire cross section of
the plasma column. A rapid slowing-down of the mode
immediately before the rotation stops is explained by
the fact that one of the neutral injectors is switched off
at t =4.12 s. Switching-off is only accompanied by a
weak (about 10%) decrease in the total NBI power,
which, however, results in the complete disappearance
of the rotational moment Tyg,, determining the angular
plasma motion under these conditions (see Fig. 5,
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Experimental data

Magnetic
Plasma detectors
parameters Bivps B,
Ry, 1y 1y O,
'frb’ Bt’ Te’ ‘
ne, Ty,
MHD modes m/n,
re, w; B, 0,
Model l
TEARING MODE B, Xe
Stray
magnetic
MAGNETIC fields
BR, Qm
BR-LMD
BP-MM ‘ Comparison
l with experiment

Fig. 2. Block diagram of the PLASCON model used to
identify quasistatic MHD modes and stray magnetic fields.
The amplitude and phase of the external stray fields (B, and

Xe) are determined by fitting the calculated amplitude and

frequency of MHD perturbations (BR and Qm) and the sig-
nals from magnetic detectors (BR-LMD and BP-MM) to
the measured values By, wy, B yp, and By,

t =4.12 s). After severa short pulsesin thetimeinterval
t =4.18-4.24 s, the given injector is switched on again
and the rotational moment Tyg, reachesitsinitia value
at=4.27s(Fig. 4).

An anaysis of electron-cyclotron (EC) emission
with the help of polychromators shows that the growth
of them=2, n=1 perturbationsis accompanied by the
appearance of flattened regions in the radial profile of
the electron temperature, which is associated with the
formation of magnetic islands. An analysis of the EC
emission profile allows us to determine the width (w;)

Diagnostic systems for the identification of internal and external MHD perturbations

Plasma parameters Diagnostics Notationin Fig. 3
Helical structure of internal modes, the width m, N, W, &, | Microwave polychromators | GPC-1, GPC-2
and angular rotation velocity of magnetic islands
Amplitude of quasistatic MHD perturbations B, Detectors of locked modes | LMD-D, LMD-F
(saddle loops) LMD-N, LMD-P
Helical structure, the amplitude and rotation m, n, By, We | Magnetic probes Mirnov coils
frequency of external MHD perturbations
Plasma rotation wy(1) Spectroscopy of the charge-
exchange C®* ion lines
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Fig. 3. Arrangement of the TFTR diagnostic systems for
studying quasistatic MHD perturbations and stray magnetic
fields (see [9]). The amplitude of external MHD perturba-
tions is measured with locked-mode detectors (LMD-D,
LMD-P, LMD-N, and LMD-P saddle loops) and magnetic
pickup coils (Mirnov probes). The amplitude and frequency
of internal plasma perturbations is analyzed with two mul-
tichannel polychromators (GPC-1 and GPC-2). The spiral
line shows the location of the m= 2, n = 1 mode, and the
arrowsW, N, and E show the spatial orientation of the toka-
mak magnetic system.

and spatial location of magnetic islands. By analyzing
the width of a magnetic island together with the signals
from external magnetic probes, we can reconstruct the
time evolution of the MHD perturbation amplitude (B;)
on the resonant magnetic surfacer =r..

BLMDy
10°4T
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Figure 6 shows the results from the modeling of
tearing modesin the TFTR plasma. At the given exper-
imental plasma parameters, the modeling alows us to
describe the increase in MHD perturbations and the
slowing-down and full stopping of them=2, n=1
mode rotation. The modeling also alows us to repro-
duce sawtooth signals from magnetic probes, which
reflect the nonuniform rotation of magnetic perturba
tions during the rotation period, depending on the phase
of the stray fields. By comparing the calculated and
experimental signals under these conditions, we can
determine the spatial orientation (phase) of the m= 2
harmonic of the external magnetic field. An analysis
shows that the experimentally observed signals corre-
spond to the permanent orientation of the external field,
which does not change when the mode amplitude
grows nor when MHD perturbations slow down. This
indicates that the stray fields in the experiments under
study are governed, first of al, by quasistatic inhomo-
geneities of the tokamak magnetic system, rather than
by possible inhomogeneous interaction between the
plasma and the limiter (see [9]).

At aspecified (using experimental data) time evolu-
tion of the amplitude and frequency of MHD perturba-
tions, the calculated time during which the rotation of
the mode (t = t,,,) Stopsis determined by the amplitude
of external stray fields. An analysis shows that the best
agreement between the calculated and experimental
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Fig. 4. Time evolution of the plasma parametersin the TFTR experiments [9] with the injection of neutral beams (t = 2.65-4.75 s)
and alithium pellet (t = 3.15 s). MHD perturbations with m= 2 and n = 1 arise after internal disruption (t = 3.35 s). The subsequent
growth of the perturbation amplitude is accompanied by the slowing-down and full stopping of the mode at t = 4.1-4.2 s. Here,
BLmp and By, are the amplitudes of the radial and poloidal perturbations of the magnetic field, ng is the electron density, V- isthe

angular rotation velocity of C* ions, Png is the total power of neutral beams, and T, is the electron temperature near the g = 2

(R=3.1m) surface.
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Fig. 5. Time evolution of MHD perturbations in the TFTR
plasma By vp, and By, are the signals from a locked-mode
detector and magnetic probes, respectively; Tgcg is the
microwave emission intensity from the plasma near the
g=2 (R = 3.1 m) surface; and Typ, is the moment of
momentum of the injected neutrals.

values of t,,, isachieved at the q = 2 resonance surface
for the amplitude of them= 2, n =1 harmonic of exter-
nal fieldsequal toB,=7.5 x 10#T.

4. DISCUSSION OF EXPERIMENTAL RESULTS

An analysis of interna plasma perturbations
observed in the TFTR experiments and the numerical
modeling of tearing modesallow usto clarify the mech-
anisms for the growth of quasistatic MHD perturba-
tions in a viscous rotating plasma in the presence of
external stray magnetic fields. The developed proce-
dure of comparing the calcul ated time evolution of tear-
ing modes and the signals from the magnetic detectors
with the values measured in the experiment allows usto
determine the spatia orientation and amplitude of the
dominant m = 2 harmonic of external stray fields under
conditions typical for experiments in large tokamaks.

The numerical model used in this study was prima-
rily developed for the modeling of the simultaneous
development of several MHD harmonics (see [5, 10]).
Calculations show, in particular, that the coupled m= 2
and m = 3 modes stop rotating at a lower amplitude of
stray fields in comparison with the single m = 2 mode.
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Fig. 6. Results of the numerical modeling of tearing modes
inthe TFTR plasma. Asin the experiment (Fig. 5), after the
destabilization (at t ~ 3.5 s) and subseguent growth of mag-
netic perturbations, the rotation of tearing modes slows
down and they stop (t ~ 4.22 s). Here, BR and Qm are the
calculated amplitude and rotation frequency of the tearing
modes, BR-LMD and BP-MM are the calculated signals
from magnetic detectors, and ATyg, is the change in the

moment of momentum of neutrals injected into the plasma.
Circles and squares show the amplitude of radial magnetic
field perturbations at the q = 2 surface and the rotation fre-
quency of the m=2, n = 1 mode (both measured with the
help of microwave polychromators), respectively.

However, an analysis of signals from the magnetic
probes and polychromators showed that, in the TFTR
experiments under consideration, no substantial pertur-
bations with the wavenumber m = 3 develop. This
allows usto ignore the m= 3 harmonic when analyzing
stray fields in the TFTR. Experiments in the DIII-D,
however, demonstrate the significant role of them =3
harmonic in certain discharge modes [1]. This differ-
ence can be attributed to the el ongation of the cross sec-
tion of the plasma column or to the enhanced toroidal
effects when the DIII-D operates in modes with alow
aspect ratio. To determine the stray fields under these
conditions, it is necessary to model the simultaneous
time evolution of them =2 and m= 3 modes.
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The procedure described in this paper alows us to
determine the stray magnetic fields under actual toka-
mak experimental conditions. Unfortunately, the
results of such an analysis depend on the accuracy of
the measurements of the plasma discharge parameters
(the electron temperature and density, impurity compo-
sition, plasma rotation velocity, and current density).
For a higher reliability of the determination of stray
fields and for the possible compensation of MHD per-
turbationsin future experiments, the tokamak should be
equipped with additional externa coils.

5. CONCLUSION

An analysis of internal and external MHD perturba-
tions in the TFTR plasma and numerical modeling
make it possible to identify the parameters of the dom-
inant m= 2, n =1 mode and determine the spatial struc-
ture of the stray magnetic fields. In order to more reli-
ably identify the stray fields and to stabilize MHD per-
turbations, the tokamak should be equipped with
additional external coils.
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Abstract—The previously existing quasilinear theory of the generation of alarge-scale radial electric field by
small-scale drift turbulence in a plasma is generalized for the case of strong turbulence which is usually
observed in experiments. The geostrophic equation (i.e., the reduced Charney—Hasegawa—Mima equation) is
used to construct a systematic theory in the two-scale direct interaction approximation. It is shown that, asin
the quasilinear case, drift turbulence results in a turbulent viscosity effect and leads to the renormalization of
the Poisson bracket in the Charney—Hasegawa—Mima equation. It is found that, for strong drift turbulence, the
viscosity coefficient isrepresented as a sum of two parts, which are comparable in magnitude. Asin quasilinear
theory, thefirst part is determined by the second-order correlation functions of the turbulent field and is always
negative. The second part is proportional to the third-order correlation functions, and the sign of its contribution
to the turbulent viscosity coefficient depends strongly on the turbul ence spectrum. The turbulent viscosity coef-
ficient is calculated numerically for the Kolmogorov spectra, which characterize theinertial interval of the drift

turbulence. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The so-called Charney—Hasegawa—Mima (CHM)
model [1, 2] isasimple model for describing both drift
turbulence in a magnetized plasma and the turbulence
of Rossby wavesin the atmospheres of rotating planets.
Recently, this model has been used to investigate the
effect of small-scale turbulent pulsations on larger-
scale perturbations [ 3, 4]. The study by Gruzinov et al.
[3] was motivated by experimentson L—H transitionsin
tokamaks [5, 6]. The authors supposed that a turbulent
mechanism may be responsible for the generation of
radial electric fields and poloidal sheared flows, which
are both observed in the experiments cited. In order to
describe this phenomenon, they constructed a ssmple
analytic theory based on the reduced CHM equation—
the geostrophic equation. This equation neglects the
term that is proportional to the plasma density gradient
and accountsfor linear wavesin the CHM equation. As
was noted in [3], neglecting this term is justified only
for astrongly nonlinear turbulent regime dominated by
the nonlinear interaction of turbulent pulsations (rather
than by linear waves). Experimental investigations of
drift turbulence in tokamaks show that nonlinear fre-
guency shifts exceed the linear frequencies of the drift
waves [ 7], which provides evidence in support of such
asimplification. On the other hand, in [3], the equation
describing the evolution of large-scale perturbations
due to their interaction with small-scale turbulent pul-
sations was derived in the quasilinear approximation,
which is employed to construct standard turbulent
dynamo theories [8, 9]. However, in my opinion, the
guasilinear approximation can only be used when the
turbulence is governed by the driving force rather than

the nonlinear interaction of self-consistent turbulent
pulsations. In[3], it was found that small-scale drift tur-
bulence resultsin the negative turbulent viscosity in the
equations for the large-scale field. This effect isrelated
to the term describing the adiabatic response of the
electrons in the Hasegawa—Mima equation. This result
agrees well with the conclusion drawn by Montgomery
and Hatori [10]: in the two-dimensional incompressible
hydrodynamics based on the Euler equation (i.e., inthe
absence of the above-mentioned term), small-scale tur-
bulence does not giverise to turbulent viscosity. Aswas
mentioned in [3], the instability driven by turbulent vis-
cosity with a negative coefficient causes a spontaneous
growth of large-scale perturbations and can serve as a
mechanism for the generation of the radial electric
fields observed in experiments on L—H transitions.

A primary motivation for the study by Chechkin
et al. [4] isits application to the physics of the atmo-
sphere and ocean. The analysis carried out in that paper
was based on the CHM equation supplemented with the
terms describing molecular viscosity and the external
force. Therole of the latter was merely to maintain tur-
bulence at a steady level. The authors assumed that the
amplitude of the small-scale turbulent field is small
enough so that the Reynolds number for small-scale
perturbations is low and the terms proportional to the
squared amplitudes of the small-scale perturbations in
the equation for the turbulent field can be neglected.
Thus, asin [3], the analysis of [4] also used the quasi-
linear approximation and reveal ed the effect of negative
turbulent viscosity on large-scale perturbations: the
term that reflects this effect originates from the com-
pressibility of fluid and isresponsible for the sameterm

1063-780X/01/2709-0733$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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in the CHM equation as the adiabatic term in the equa-
tions for drift waves in a magnetized plasma. In [4], it
was also shown that small-scale turbulence leads to the
renormalization of the coefficient in front of the Pois-
son bracket, which, asiswell known, describes nonlin-
ear effectsin the CHM equation.

The purpose of this paper isto generalize the analy-
sis of [3, 4] for the case of strong turbulence, which is
more adequate for the experimental observations of
drift turbulence in tokamaks[7]. Since this case cannot
be described in the quasilinear approximation, we
apply the so-called two-scal e direct-interaction approx-
imation. The corresponding formalism was devel oped
by Yoshizawa [11] when constructing the theory of
hydrodynamic turbulence with sheared flows. As
implied by its name, the formalism is based on a com-
bination of the standard technique of multiscale expan-
sions (in the case at hand, a two-scale expansion) and
Kraichnan’s direct-interaction approximation [12],
which is used to calculate statistically averaged quanti-
ties. In Section 2, we present a detailed formulation of
the problem. We derive an equation for large-scale
motions from the geostrophic equation. In accordance
with the theory of multiscale expansions, we introduce
fast and slow variables. Then, we represent the electro-
static potential asthe sum of the mean (large-scale) and
random (small-scale) components and solve the equa
tion for the random (turbulent) component by applying
the method of expansion in the small parameter—the
ratio of the spatial scale of the turbulent motion to that
of the mean electrostatic field. Using the direct-interac-
tion approximation, we cal cul ate the mean values of the
turbulence-related quantities to arrive at an evolution-
ary eguation for the averaged electrostatic potential
expressed in terms of a second-order correlation func-
tion and a statistically averaged response function (a
Green's function) of the turbulent field. Details of the
calculations are given in Appendix A. In Section 3, we
obtain expressions for the second-order correlation
function and the averaged Green's function of the
small-scale drift turbulence. We assume that, in the
absence of the mean field, drift turbulence is homoge-
neous and isotropic. We aso assume that the drift tur-
bulenceisin ahighly nonlinear regime and is described
by the second-order correlation function and the aver-
aged Green's function characterizing the inertial inter-
val of the turbulence; i.e., they are independent of both
the dissipation and the source of turbulence and are
completely determined by the nonlinear interaction of
turbulent pulsations. To derive the correlation function
and Green's function, we turn to the method based on
the analysis of the invariant properties of the geo-
strophic equation with respect to the scale transforma-
tions. We consider two limiting casesin which the char-
acteristic spatial scale of the turbulent motion is either
much larger than or much smaller than the natural spa-
tial scale for the geostrophic equation—the ion Larmor
radius in terms of the electron temperature. In Section
4, we use the expressions for the second-order correla-
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tion function and the averaged Green’s function in the
inertial interval of turbulencein order to derive analytic
expressions for the turbulent coefficients in the evolu-
tionary equation for the large-scale field. Details of the
corresponding calculations are given in Appendix B. In
this section, we also describe the results of the numeri-
cal computation of the turbulent viscosity coefficients
with the help of the Mathematica-3 software package.
Finally, in Section 5, we discuss the results obtained.

2. EVOLUTIONARY EQUATION
FOR THE LARGE-SCALE FIELD

2.1. Basic Equations

We start with the geostrophic equation in dimen-
sionless variables,

0
a—t@cp—vzm)—w(vavch]z = 0. (1)

Here, V2 = 3/0X* + 0°/0y?; the time is in units of the
inverse ion gyrofrequency; the electrostatic potential @
isin units of T./e; and the spatial variables are normal-
ized to the ion Larmor radius in terms of the electron

temperature, p, = (To/mwg; )2 The Poisson bracket
[f x g], denotes the z-component of the vector product.
In the above dimensionless variables, the coefficient A
equals unity, A = 1. We keep this coefficient merely in
order to illustrate how different terms appear in expres-
sions describing the effect of turbulence on large-scale
plasma motions (recall that our primary goal hereisto
calculate these terms). In Eq. (1), the term with the
coefficient A describes the adiabatic perturbation of the
electron density. Formally, for A = 0, Eg. (1) is atwo-
dimensional Euler equation for the two-dimensional
motions of an incompressible fluid. By its very nature,
the geostrophic equation is a simplified version of the
Hasegawa—Mima equation, in which, according to the
arguments given in the Introduction, the term that stems
from the nonuniformity of the equilibrium plasma den-
sity and describes the drift waves is neglected.

We represent the el ectrostatic potential asthe sum of
the averaged (mean) and random (turbulent) compo-
nents,

0=0+ ¢ @= [ )

where the angular brackets [l1.00stand for ensemble
averaging. We average Eq. (1) in order to obtain thefol-
lowing evolutionary equation for the mean field:

0,y= 2= - 2=

5 A0V ~[Vox VL g, )
—VexVV’g = 0.
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If we subtract Eq. (3) from Eq. (1), we find that the tur-
bulent field is described by the equation

0. .~ ~ ~ _
5:(AP—V'Q) ~[Vox VI'ql. -

—[Vox VO’ + OVex VVig = 0.

[Vox VVig,

2.2. Introduction of Two Scales

Assuming that the spatial and temporal scales of the
mean and turbulent fields are essentialy different, we
introduce two spatiotemporal scales,

X, X(=ex), t,T(=€). 5)

In other words, the mean field depends only on the
slowly varying variables, while the turbulent field
depends on both the rapidly and slowly varying vari-
ables because of its interaction with the mean field:

= @X,T), @= @t X,T), 6)

Transforming the Poisson bracket in an appropriate
manner, it is expedient to rewrite Eq. (3) as

+09° _ 9’0/ 0939
Fr06-vio s - TR
0
P9 _ P9\ _[v o 2o _
aan<Ea>dJ QN]2> [Vspx VVsdl, = 0,
where V = /dx + 9/0X, Vo= 9/0X, and V; = #/0X> +

0%/0Y2. In terms of the variables introduced, Eq. (4) for
the turbulent field becomes

0 .,

2+ 2000~V 9 - [V.ox VT g,

[Vox V¥ g ®

~[VoxV.Viql,—
+IVexVV g 0= 0
For convenience of further analysis, we represent
the electrostatic potential of the turbulent field as the
Fourier integral over the rapidly varying spatial vari-
able:

ikx

ox, t; X, T) = J’dkfm(t; X, T)e
9)

ikx

= (@(t; X, T)e
I

Note that the Fourier coefficients of the electrostatic
potential of the turbulent field depend on the slowly
varying spatial variable X. According to Eq. (8), the
Fourier coefficients satisfy the equation

9 a(t)
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2 2

2% (0P, (D3(k —k; —k)

—-J’J’[k x kz]

kiky

ik? ~ . 2i(kV9)a-
= k xV

)\+k2mt)[ 0 N 5% (1) o
(e —ka) _kkzl)@l(t)[kl xV{ zzp«z(t)5(k —k;—ky)

_II A+

kik,

0, (1) (K V)9 (1)

‘IIA

x 8(k =Ky —K,) + ...,

where dots designate the terms of the second order and
higher in the expansion in powers of the small parame-
ter e. These terms can be neglected, because they are
unimportant when calculating the effect of turbulent
viscosity. Here and below, we do not indicate the
explicit dependence of the Fourier coefficients of the
turbulent field on the slowly varying variables.

2.3. Expansions of the Turbulent Field
in the Small Parameter

L et us expand the Fourier coefficients of the electro-
static potentia ¢ in powers of the small parameter e:

D) + e (T X, T) + €200 (t X, T) + ..

. (11)
Here, the first termisindependent of the slowly varying
variables and corresponds to a uniform isotropic turbu-
lent field, which is assumed to be generated and main-
tained at a steady level by small-scale drift instabilities.
The remaining terms describe the interaction between a
small-scale turbulent field and a large-scale electro-

static field with the averaged potential .

We substitute Eqg. (11) into Eq. (10) and collect
terms of different ordersin e. As aresult, we arrive at
the following zero-order equation for the Fourier coef-
ficients of the electrostatic potential of the homoge-
neous isotropic turbulent field:

0 ~(0)

a([k
—Ki~ (0 (12)
2<£>K1(t)<r>«2(t)5(l< k;—ky) =0.

_‘II[k1 X kz]

kK,
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To first order, we obtain

2~(1)
X
—”[klxkzlz ;cpi’(t)%(t)a(k Ky —k)

kik,

(13)

ik? ~0 _
k xV.q],.
" kz(Pk [ o)

In the second-order approximation, i.e., in the lowest
order approximation in which the effect of turbulence
on large-scale plasma motions can be described, the
equation for the turbulent field has the form

2 2i(k V)~ (1@

at T %O
k1 ©)
_J'J'[kl x kz] (t)(g<2 (1)3(k —k; —k,)
k1K,
| S My
- )\+k2(ﬂ< [k Vs(p]z
—K (14)
2 ”[klxkﬂ iwil)(t)% (03 —k, —k)
kyK,
J,Il(kz kl) ()(t)[kl dezﬂit)(t)a(k—kl_kz)
Kk,
_J’I [k1Xk2]z(pK (t)(szs)(wz(t)B(k kl_kz)
k kz

The function describing the response of turbulenceto a

perturbation (or, equivalently, the Green’sfunction) Gi
is introduced in a standard way as the solution to the
equation

gék(t,t')
(15)
-f J[klxmz ;mi’<t>ek<tt>6<k ki =k
klkZ
= 3(t—t").

Then, the solution to the first-order equation (13) is
expressed in terms of @, the Fourier amplitude c~p|£o) of
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the homogeneous isotropic field, and the Green's func-
tion:

.2 t

£ V., [ G, 1’0,

o) = (16)

The solution to the second-order equation (14) can be
found in an analogous manner: it is expressed in terms

of @, fp()
solution:

the Green's function, and the first-order

~(2) 2i ~ (1)
t) = ——(k Ve (t
o (1) “kz( ) (1)

t

. [ Gt t)@c (t)

2

ZIJ'Idt[k kles(k k,—k,)

kiky—oo

~ (1) 4y 7(1)

x Gie(t, 1)@, (1), () (17)

t

_I”dt-__gl__z_a(k “ky—k)Gi(t, t)
HIT a0+

X @ (1) 21 + kD) [Ky % Kol (K, V)@l (t')

+ (M + K (K=K [k, x VI, (1)}

Having derived (with the desired accuracy) the correc-
tions to the small-scale turbulent field that come from
the interaction with the large-scal e field, we can calcu-
late the statistical averagesin Eq. (7) and thus analyze
the effect of the small-scale drift turbulence on the aver-
aged field.

2.4. Calculation of the Satistical Mean Values

We start by rewriting the averaged quantitiesin Eq. (7)
interms of the Fourier transformed turbulent field. Tak-
ing into account Egs. (9) and (11) and keeping theterms
of the corresponding orders of smallness, we obtain

000Q, _
(553 - I

+ T @D -

|(k +k2)D(|:|

ks e (O e (B0

(klxk2y + klyk2x)

(18)
> (1) /1y ~(0) ~(2) 1y ~(0)
x (0,0 9 (O0+ Bic (D0 (D)
2 (1) 74y ~(0)
ik + Koy 2 0 (00 (t)DD
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~ 2 p i(ky+ky O
() g
ko Ky
x ( L () @k (0+ 2, (O @ (00

+ 20 M e OO+ BB e ®D

(19)

. d 0 [ (1) iy (0) 1o
* 2oy ~ kg B (O (00

We use the second-order correlation function and the
averaged Green's function as the fundamental statisti-
cal characteristics of the turbulent field in the absence
of alarge-scale perturbation. Under the assumption that
turbulence is homogeneous and isotropic, these func-
tions depend only on the magnitude k of the wave vec-
tor and are described by the expressions

e, (1) @ (1)0= 1Ky 1, 1)3(Ky + ko),

[Gi(t, 0= G(K; t, ).

It isassumed that the higher order correlation functions
can be expressed in terms of functions (20) by using
Kraichnan's direct-interaction approximation [12]. In
particular, from solution (16), we obtain

> (1)

(20)

~(0)

Cépx, (1) @k, (D)0
.kz t
| _ ~ ~ ~
= 5k X V@l [ o', (1, 1) (1) ()0
A+K; J
: 1)
ki K, x V@, [ dt' G (t, t)TD () o (1)
= X
)\+kf[ 1 SCP]ZJ; k(4 U)Wk, (1) @k, ()
ik ‘
= = 2[k1 x V.l zIdt'G(kli t, t)1(ky; U, )O(k, +kp)
A+kS J
and, analogously,
T (D@ ()0
K2k> _ _
= T [kles(p]z[kszs(p]z

A+ KA +K)

t t

x [ [ G (t, 1) Gi(t, tY Q) Po(t)D (22)

t t

4
K [k, X V@]fjdt'fdt"e(kl; t,t)

B (A +K)
X G(ky; t, t") x 1(Ky; t', t")0(ky + Ky).
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The last statistically averaged quantity that is required
to calculate the effect of turbulence on the large-scale
field in the desired order of smallness can be found by
substituting solution (16) into solution (17) and taking
into account relationship (21):

~(2),. 2k’ _
) (O @ ()0 = - L (ky DV [ky X V.0,

+Kk;)

t

X [dG(ks; £ )1 (ks €, )B3(Ky + ko)

t t'

ki _
L[k, x Vscp]fIdt'J‘dt"G(kl; t,t')

(A +K)

x Gk t, 1)1 (k: ", 1)8(K, +ky)

+§I”dth'£dt"[qlxq2]z

G102 -

2 2 2 2
y 0:9(9; —0;) 5(k
A +k)A+a) (A +3)

x [0y x V@l [0z % V@l ,G(Ky; t, T)G(ay; T, t)

1—0:1—0y) (23)

~(0) 1y ~(0)

x G(dy; T, t) Ly, () Gy (E) @l ()0

t It' ) q2
S kf)(zA A

0102~ -

x Glkyi 1, 1)G(Gpi 1) ) () (1)@ (00

x{2(A + q0)[ay X A2 (A, V)[a, x O],

+ (g —an) (A + g)[a; x O, [, x 041 ,} -

We see that relationship (23) contains athird-order cor-
relation function. In the direct-interaction approxima
tion, this third-order correlation function can be
expressed in terms of the second-order correlation
functions and the averaged Green’s function by using
the well-known procedure that was described in detail
in, e.g., [12, 13]:

2(0) 71y 7(0) iy 7(0) /.
(0, ()9, ()0 o

= [d1 % 92),9(ks Q1. G; 8,1, 17) (K, + Q1 + 0),

where

Cg(k21 q11 q2! tv tllt")
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q2
//\1"\
%
v
D
/\@\
7
k 1 < P 0\\
g o
X% \
%
0 ky q1

Fig. 1. Region of integration in the space of the absoluteval-
ues of the wave vectors.

2 2t
= qz_qudTG(kz; t, T)1(g. t, T)1(gy t", 1)

Ak

2 2t

% [ tG(gs 1, 1)1 (i £ D) (6 1 1)
A+q;d

(25)

+

2 2t
-k
ql—jJ’th(qz; 1)1 (ky: t, 7)1 (a; 1, 7).
A+
In expression (23), integration can be carried out over
the angles in the spaces of the vectors q, and q, using

the following formulas (the details of their derivation
are given in Appendix B):

+

[ flaux 02 2F (A, 92) (k1 — 0y — Q)

d:9;

X [ql x Vs(_p] z[q2 x Vs(_p]z

A k ’ ’
= IquldQ2Q1QZF(Q1v %)%
D

1

(26)

x { A(Ky, Gy, 0 [Ky % Vgl

—16A°(Ky, a1, 4)(K; V9)°},

”[qlx A2l ,F (a1, 92)0(K1 — 01— 1))

q:92

X [ql x VS] z[q2 X Vs(_p]z

4A(Ky, 05, 0)

(27)
= J’ j da; da,9,0,F (s, 0,) &
D

1
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x (ky DVo)[ky x V@,

[ flan 02 2F (0, 92) (K1 — Gy — Q)

9192

x (qz |Ws)[qz x Ds(_p] z

4N (ky, qy,
= J’J.dqlquqquF(ql’ Q2)_(—1—k71(11“(12—)
D

1

(28)

x [ki 0y — 8A%(Ky, Gy, A2)] (K1 IV [Ky X V@,

The region of integration, D, is shown in Fig. 1: it
restricts g, and g, so that the vectorsk,, q,, and g, form
atriangle whose areais equal to

A(klv q11 QZ)
4, 1/2

1 29)
= 7(2a10; + 207k; + 2k, —ki —g; —0p)

Also, in formula (26), we introduced the notation

2
A(ky, 01, 6) = Ky = (a3 —0) " (30)
After integration over the angles, Eg. (23) becomes

fpe (1) @ (1)

t

2
25k, V)T X Ve, [rati; 1)

2.2

(A +ki)

4
1 (kg 1) - — [k, % V)
(A +1d)

t t'

x [’ [ "Gk 1, 1)G(ky; 1, )1 Ky ', )

t T T 33,2 2
1 0:9(9> —0y)
—=((dg,dq, [ dt [ dt' [ dat"
ZJI ' I f £ Ki(A + KD (A + )

x A(k1! ql! QZ)

2

A+0;

(g(kZ! ql! q2! t, tlvt")G(kl; t, T)
€19

x G(0y; T, ') G(z; T, t"){ A(Ky, Gy, Gp) [y X V@l
—164°(Ky, Gr, G) (K1 (V40)°}

t t' 3
+ [[dauda [ dt' [ ot” fql%ﬂz(qulqzz 2
b e KAtk (A +a)

xG(ky, Oy, Op; t,t', 1) G(ky; t, t)G(qy; 1, 1)
2
x{(A+q2)(ds —a5) + 2(A + g;)[Kigs
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—8A%(ky, Gy, A2) 1} (Ky IV )[ky X V4] 2}5(k1 +ky).

2.5. Mean-Field Equation

We substitute Egs. (18) and (19) and relationships
(21), (22), and (31) into Eg. (7) and use the formulas

[

[akkkiF(k) = najIk3F(k)dk,
0

[akkkjkikaF (k) (32)

00

= E(éi@m +0,0jm+ 6im6jI)Ik5F(k)dk
0

in order to carry out integration over the angles in the
vector space k;. As aresult, we arrive at the final form
of the evolutionary equation for the large-scale field:

d,, - 2—
a—T(Mp—Vscp)

(33)
~(1-B)[Vsx VVaoql, + v Vo = O,
where
0 5 t
vy = ok S [0 411k 2.
A +K)*d
o0 t t' 3
~ [ak{ [k, [ ot J'dt"znkklsz(k' kl’zkj)
)4 I+ i+ G

xG(k, ki, ky; t,t,t")G(K; t, t')G(ky; t', 1)

x (A +K3) (ko —K2)“+ (A + KD)[KKS —8D°(K, Ky, ko)

is the turbulent viscosity coefficient and

00 t
ik’
B, = [dk—_ rat
' J; 2(}\+k2)2;£
t

x [J’dt"G(k; t, 1)G(k; t, t)1 (k; t', ")

t

~2[drG(k; £ t)G(k; 1, ) (Kk; t)}

[

~ [k fokudkol Ak Ky, ko) + 16A%(k, ki, k,)]  (35)
0 D
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TRk (ko = kp) Ak, ki, k)
200+ KA +KD) A +K

t T T

X IdTJ'dt'Idt"G(k; t, 1)G(ky; T, 1)

—00

x G(ky: T, t)G(K, Ky, ko £, 1", 1").

Expression (34) impliesthat, if the third-order correla
tions (the second term on the right-hand side) are neg-
ligible, then the coefficient v is determined by the first
term and is nonzero only when A £ 0, i.e., when the adi-
abatic response of the electronsisimportant. The third-
order correlation functions can be neglected only inthe
case of drift turbulence, which is dominated by the
source of turbulence rather than by the nonlinear inter-
action of turbulent pulsations. As was mentioned
above, this case can be described in the quasilinear
approximation. It is not surprising that the conclusion
that the el ectron adiabatic term is responsible for turbu-
lent viscosity agrees with the results obtained in [3, 4].
Since the Green’s function G and the spectral density |
of turbulent pulsations are both positive, the second-
order correlation functions always make a negative
contribution to the turbulent viscosity coefficient vy.
On the other hand, even in the limiting case described
by the two-dimensional Euler equation (A = 0), taking
into account third-order correlations in a strongly tur-
bulent regime leads to a nonzero turbulent viscosity
coefficient, whose sign is very sensitive to both the tur-
bul ence spectrum and the Green’s function of the turbu-
lent field. Below, we will be interested in turbulent pul-
sations whose energy is concentrated in the wavenum-
ber range corresponding to the inertial interval of
turbulence. In the next section, we will attempt to find
adequate expressions for the functions characterizing
drift turbulence in this case.

3. TURBULENCE SPECTRA
IN THE INERTIAL INTERVAL

In the inertial interval of turbulence, the turbulent
spectraare universal in the sense that they are governed
by the nonlinear interaction of turbulent pul sations and
are insensitive to dissipation and the sources of turbu-
lence. The shape of the turbulent spectrumin theinertial
interval can be determined using the method based on
the scaling symmetries of the geostrophic equation (1)
describing the drift turbulence. In the general case (A =
V?), this equation admits only one scaling symmetry,
which is characterized by the infinitesimal operator
X, = to/ot — @d/d@. This operator impliesthat Eq. (1) is
invariant under the following one-parameter scale
transformation with the parameter a:

t=at, X =x, ¢ =a ¢ (36)
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In the two limiting cases under anaysis, the geo-
strophic equation admits additional scaling symme-
tries. Specifically, when the adiabatic el ectron response
is negligible (A < V2, which corresponds to the two-
dimensional Euler equation), the additional scaling
symmetry is characterized by the infinitesimal operator
X, = x0/0x + 2@d/d¢, and the two-parameter group of
scale transformations is defined as

t'=at, X =Bx, ¢ =oa po. (37)
In the opposite limit (A > V?2), the geostrophic equation
admits the additional scaling symmetry X; = x0/0x +
4@d/dg and is thus invariant under the two-parameter
scale transformation

t'=at, X =Bx, @ = a_lB4(p. (38)

The geostrophic equation possesses two quadratic

integral invariants: the energy integral

W= fwax = %J'[)\cp2+(V(p)2] dx (39)
and the enstrophy integral
U = fudx = %J’[A(ch)%(vch)"'] dx.  (40)

If thereisasource of turbulence that injects energy and
enstrophy, then, as aresult of the nonlinear interaction
of turbulent pulsations (see, e.g., [14]), the energy cas-
cades toward large scales (an inverse cascade), while
the enstrophy cascades toward small scales (a direct
cascade). The correlators and spectra of turbulence that
correspond to a constant energy flux or to a constant
enstrophy flux can be found from the scaling properties
of the geostrophic equation by applying the P theorem,
which was proved as early as 1914 by Buckingham
[15]. Thus, for a constant rate € of the energy density
transfer along the spectrum, the second-order two-time
two-point correlation function of a steady uniform iso-
tropic turbulence in the inertial interval can depend
only on three quantities: T = |t, — t,|, r = [x; — x,|, and €.
Consequently, in the most general form, the second-
order correlation function can be written as

(s, )P0 1) = Cope™Tr', (@4)

a,b,c
where C,,. are arbitrary tensor coefficients. Taking into
account the relationship € O dw/dt, we find that the

scale transformation (36) converts the quantity €
according to the law

(42)
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so that the second-order correlation function (41) trans-
formsto

[p(X 4, 1) @(Xy, t)0

= Y Cand™ (€)' ()
ab,c
= 0™ " (x), 1) (x5 t)

On the other hand, the scale transformation (36)
implies that

(X4, 1) P(Xz, 1) = 0 2L (X1, ) @' (X, o)1 (44)

We equate the powers of a in relationships (43) and
(44) to obtain a = 2/3 + b/3. Inserting this equality into
formula (41), we see that the second-order correlation
function of turbulence is an arbitrary function of the
two parameters:

(43)

(X4, 1) O(X, t,)0 = € °F (%1, 1). (45)
Taking into account the relationship
I(K; ty, ;) = J.Bp(xlv t)@(x, +r, tz)Eb_ik Ddrv (46)

we can see that the spectral function of the drift turbu-
lence should have the general form

1(k; ty, t,) = €°F,(e"°1, k), (47)

where F, isan arbitrary function. The Green’s function
of turbulence can be found in an analogous way. It
should have the form

G(K; t,, t,) = R,(e”°1, k). (48)

For a constant density n of the enstrophy flux along the
spectrum, we can also apply the above procedure. Asa
result, we find that the turbulence is described by the
spectral function and Green’s function as follows:

1(k; t, 1) = n°Fo(n"°1, k),
G(K; ty, t;) = Ry(n'"1,K).

In the two limiting cases under analysis, additional
scaling symmetriesimply that the spectral function and
Green's function are both arbitrary functions of only
one parameter. In the limit A < V2, which is described
by the Euler equation, we arrive at the following spectra
corresponding to the constant energy and enstrophy
fluxes:

(49)

I(k: t,, t,) = s%k_M/BFl(eﬂBk%T),
1/3, 2/3 (50)
G(k; t;, t,) = Ri(e7k™1),
1(k; ty, t,) = n7°k°F,(n""1), s
G(K; ty, t,) = Ry(n""1).
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The Kolmogorov energy spectrathat correspond to the
spectral functions (50) and (51) havetheform (seg, e.q.,
[14])

—5/ 3

E(k) 0™k, E(K)DO n*°k (52)
Anaogoudly, in the oppositelimit ()\ > V?), we obtain
I k; t ,t — —14/3 8/3
(K; ty, o) F.(e"k™), (53)
G(k; t;, t,) = Rl(s ¥ T),
1(K; t, 1) = n°K°F,(n"°K’T),
(ki ty ) =n (N ) (54)

G(K; ty, t,) = Ry(n"°K’1).

The Kolmogorov energy spectrathat correspond to the
spectral functions (53) and (54) have the form

-11/3

E(k) 0k, E(D n?k (55)

In the next section, we follow [11, 14] and set the arbi-
trary functionsin formulas (50)—54) to be exponential,
so that

1(K; 1y, t5) = (k) exp(—w(k)[t; =t )H(k k),
G(k, tlv t2)
= exp(—w(k)(t; —t))H(t; — ) H(k - k),

(56)

where H(t) is the Heaviside step function and k. is the
length of the wave vector of the largest scale vorticesin
the inertial interval of turbulence. The one-moment
(t, —t, = 0) spectral function o(k) of turbulence and the
nonlinear frequency w(k) are determined by the corre-
sponding equations presented above and have the form

Eb £ 23143 for the spectrum with a constant
(k) = E ! energy flux (57)
o3, - for the spectrum with a constant
o P
0 ? enstrophy flux,
E PRI for the spectrum with a constant
w(k) = E ! energy flux (58)
u3, g for the spectrum with a constant
Df zrl k
0 enstrophy flux,

where the exponents a and 3 differ between the two
limiting cases of drift turbulence (in which the charac-
teristic spatial scales are much larger than or much
smaller than theion Larmor radiusin terms of the elec-
tron temperature):

/3 for A<k’
o =0 , (59)
(B/3 for A >k,
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for A<k’

X (60)
for A > k..

0
B=0O
B2

4. TURBULENT COEFFICIENTS IN THE CASE
OF STRONG DRIFT TURBULENCE

Here, we consider the turbulent coefficients vy and
[t in the particular case of strong turbulence such that
the spectral function and Green's function are indepen-
dent of both the source of turbulence and the dissipation
mechanism (theinertial interval). The calculation of the
turbulent coefficients is straightforward but rather
lengthy. Substituting relationships (56) into formula
(34) yields the following expression for the turbulent
viscosity coefficient (seeAppendix B for details):

dk—TAKo(K) K o(k)
I 2(A + K ) w(k)

o 3
B f " J, f e, dkznkklkzzA(k, kl,zkzz)
« D A +K)(A +k3)
9(Ka(k)a(k,)
(k) Q°
+2(A + KD [KK: —8A%(K, Ky, Ko)]}

{A+KD) (K -k’
(61)

K-k> 1

[k —k 1 %l
A +K; G(kl) 20)( kz)D

X
D)\ +k2o(ky)

k—k 1
)\+k 2a(k)

3+ kG,

where Q = w(k) + w(k;) + w(k,). On the other hand, by
inserting relationships (56) into formula (35), we can
see that the first two terms in the resulting expression
cancel each other by virtue of the equality

t t

[t [ Gk tt)G(k; £ 1)1 (K ' 1)

t t'

_ At SN (e 1 1 (L g gy (62)
2[d [dt"G(k; t,t)G(K; 1, )1 (k; ", 1)

- 0k
2w°(K)’
Hence, in our model, in which the spectral functions
and Green's functions depend exponentialy on t; —t,,

the turbulent coefficient 3;, which corresponds to the
turbulence-related renormalization of the Poisson
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bracket, is nonzero only at the expense of the third-
order correlation function:

B, = kIolk [ .[[dkldkz

| Tkkrko (ks — ko)A (K, Ky, ko) 3 (K) T (Ky) I (k,)
200 + KYA + K (A + K> wo(k) Q°

x [A(K, Ky, k) + 16A%(K, Ky, Ky)]

xEkD_____g_kf_.L QD 1 10 (63)
D)\+k20(k)[ 20(ky) (ko)
Q° kz—k§ 1 0
' 400(k1)00(kz)} * A+ ka(kl)[ * 400(k2)}
k K 1
7\+k20(k2)[1 4w (kl)}%—l(kl ke)H (k2 —ke)-

In both limitsA < kZ and A > Kk, the coefficient By for
a constant energy (enstrophy) flux along the spectrum
is independent of k. and the energy flux density € (the
enstrophy flux density n):

J’dXJ'J'ddeT[A(X Y, Z)(y —Z )

~3
a+2aa
zQ

2_2 2 2 2_2 4
X[2y°Z + Xy +XZ =X —24]

~2

x%zz—yz)xb[(yz) e (y +z)+—} (64)
O

VN LR Ve PRt e

xH(y—1)H(z-1).

Here, Q =Xx¢+ y°+ z% theregion of integration, D, is
analogous to D and restricts y and z in such away that
X, y, and z form atriangle; and the subscript i = (1, 2)
refers to the spectra with a constant energy flux and
constant enstrophy flux, respectively. For the spectra
with a constant energy flux, the exponents a, b, and ¢
areequal to

/3 for A<k’
a = 13/3, b_%B °2
M4/3 for A>k:, (65
c=ad,
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and, for the spectrawith a constant enstrophy flux, they
areequal to

M for A<k
(b for )\>kC2,

Asfor the turbulent viscosity coefficient, it depends on
both the quantity k. and the energy (enstrophy) flux
density. Let us determinethis coefficient in thetwo lim-
iting cases in question.

c=p. (66

4.1. TheLimit A < k2

Inthislimit, theterms A can be neglected in al com-
binations of theform A + k? in the integrands, so that the
turbulent viscosity coefficients for the spectra with a
constant energy and constant enstrophy flux density are
described by relatively simple expressions.

4.1.1. Spectrum with a constant energy flux. We
substitute the spectrum determined by relationships
(57)—«59) into formula (61) to obtain the following
expression for the turbulent viscosity coefficient:

vr = €K K AKE +Ky), (67)
where
K, = =31g,/20f,, (68)

and the coefficient K, is represented in integral form,

_ ”01 A(X, Y, 2) 1

dx [ (dydz :
I _[[ ( Z) 19/3y11]3 (Xys + y2/3 + Z23)2

><{y +22+x y —2x2y4—y4zz—x224}

(69)

O
y [(Xz—yz)zlols + %(Zz _ Xz)ysls(lea + yz/s + 322/3)
O

+ (P =X 4y 4 22 BH(y - H(z-1).
|

Expression (67) impliesthat the contribution of the sec-
ond-order correlations to the turbulent viscosity coeffi-

cient is formally as small as )\/kcz; however, with the
possible case K, <€ K, in mind, we retain this contribu-
tion in the expression for the viscosity coefficient.
Since the coefficient k, is impossible to determine
analytically because of the very complicated integrand,
it was calculated by the Monte Carlo method with the
help of the Mathematica-3 software package. By trun-
cating the turbulence spectrum at the upper limit (e.g.,
by taking into account collisiona dissipation), the
numerical scheme was made convergent, and it was

found that K, = —0.17n0f/ff for k,../K. = 10 and
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K,= —0.23n0f/ ff for k... /K. = 20. We thus seethat the

third-order correlations of the turbulent field, like the
second-order correlations, make a negative contribu-
tion to the turbulent viscosity coefficient. With an infi-
nite integration domain and different numbers of itera-
tions, the integral was always found to be finite and
negative. On the other hand, in the standard iteration
method, the step-by-step process of numerical integra-
tion converges very slowly because of the nontrivial
integrand, which makes it impossible to complete the
iteration procedure and thus necessitates the use of
another numerical scheme. Since the details of the tur-
bulence spectrum (i.e., the coefficients o, and f,) are
till unknown, the most important point hereisto deter-
mine the sign of the integral, so that we restrict our-
selves to the results presented above.

Hence, in the case at hand, the turbulent viscosity
coefficient is negative, so a spontaneous amplification
of the large-scale perturbations should take place. As
the amplitude of these perturbations increases due to
the instability, nonlinear effects comeinto play (i.e., the
nonlinear term in the evolutionary eguation for the
large-scale field becomes important). Presumably, it is
these effects that cause the instability to saturate at a
certain level and the system to relax to a certain steady
state. To answer this question, it is necessary to numer-
icaly solve Eq. (33) for the large-scale field.

4.1.2. Spectrum with a constant enstrophy flux.
For the turbulence spectrum with a constant enstrophy
flux, we obtain

1= NPK (KK + Ky), (70)

where

Ky = —T1G,/8f,, (71)

and the coefficient K, has the form

_ "02 A(X, Y,

J’de'Idydz Z){y +22+x* y
(x2)'y’
24 42 2 %2 24 5 2 2 24
—2xy—yz—x24} X —y)z +§(Z =Xy (72)
0

+4(y2—zz)x4§4(y—1)H(z—1).

Numerical integration shows that, for infinite integra-
tion limits, the quantity k, diverges, K, —= oo, so that
theintegral should betruncated at the upper limit. Asan
upper limit in the wavenumber, it is natural to choose
the reciprocal of the scale length of the collisiona vis-
cosity—related dissipation, which is neglected in our
analysis. With the integral truncated in such a way,
numerical calculations yielded the expressions K, =
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2.73T[0§/ fg fork,../K.=10andk, = 11.86nof/ ff for
K.../K: = 20. Consequently, in the case at hand, the
third-order correlations of the turbulent field make a
positive contribution to the turbulent viscosity coeffi-
cient, thereby canceling the negative contribution of the
second-order correlations. That is why, in order to
determinethe sign of the turbulent viscosity coefficient,
it is necessary to know the exact spectrum of the small-
scal e drift turbulence. However, because of the weight-

ing factor )\/kc2 , the contribution of the second-order

correlations is small; therefore, it is highly probable
that the total turbulent viscosity coefficient will be pos-
itive and the spontaneous perturbations of the averaged
field will be damped.

4.2. TheLimit A > K2

In this limit, the integrands can be simplified by
neglecting the terms k? in all combinations of the form
A + k2. The turbulent viscosity coefficients for the
spectrawith a constant energy and constant enstrophy
flux density can be calculated in the same way as in
Section 4.1.

4.2.1. Spectrum with a constant energy flux.
Using relationships (57)—«59) and formula (61), we
obtain the following expression for the turbulent vis-
cosity coefficient:

—4/3

Vr = g k (Y1+VY2), (73)

where

Y1 = _3T[ 01/8 f 1)\ ) (74)

and the coefficient v, is represented in integral form,

I dxﬂ dydz

T[01 A(X, Y, 2) 1

(A s 83, 2
(X +y* +2%)

22/3

(75)
2) 143

x{ 2y4 +27' +x - 2x2y2 —4y222} E(x2 - y2)z

14/3 , 8/3

+ 352 XY +y 327 + (-

” (X8/3 N ys/s N 228/3) %(y—l)H(z—l).
O

Numerical integration over an unbounded domain
showed that the coefficient v, isinfinite, so that a phys-
ically reasonableresult can only be obtained by truncat-
ing the turbulence spectrum at alarge value of k. Asan
upper limit in the wavenumber, it is natural to choose
the reciprocal of the ion Larmor radius, i.e., to set
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krznax = A, inwhich case numerical calculationsgivethe
following expressions. vy, = 9.10Tr0f N ff for

Koo /Ke = 10 and K, = 40.54107 /5 for k. /k. = 20.
Consequently, the third-order correlations of the turbu-
lent field make a positive contribution to the turbulent
viscosity coefficient, thereby canceling the negative
contribution of the second-order correlations. Hence, in
order to determine the sign of the turbulent viscosity
coefficient, it is necessary to know the exact spectrum
of the drift turbulence.

4.2.2. Spectrum with a constant enstrophy flux.
Weinsert relationships (57), (58), and (60) into formula
(61) to obtain

Vr =1 1/3k;2(y3 +Y,). (76)
Here, the coefficient y; is determined by the second-
order correlations,
y3 = _T[o-2/2)\f2, (77)
and the contribution y, of the third-order correlationsis
represented in integral form,

I dx J’ J'dydz

1T02 A(X, y, z) 1

XyZ (x +y +z)

x { 2y4 + 224 + X4_2X2y2 _4y222} %XZ _y2)28
. (78)
+SE =X 4y +37) + (=)

x (C+y*+ 272 FH(y—1)H(z-1).
[l

As in the case of the spectrum with a constant energy
flux for A < kc2 , the integral in expression (78) con-
verges even when the integration domain is unbounded.
With different numbers of iterations, the integral was
aways found to be negative. On the other hand,
because of the nontrivial integrand, attempts to make
the iteration process of numerical integration conver-
gent were unsuccessful. For thisreason, werestrict our-
selves to the results obtained for a bounded region of

integration, specificaly, y, = —0.47mo5/f3A° for

Kna/ke = 10 @nd y, = —0.86T105 / F3A° for k. /k, = 20.
We see that the third-order correlations of the turbulent
field, like the second-order correlations, make a nega-
tive contribution to the turbulent viscosity coefficient.
Hence, we can conclude that, in the case at hand, small-
scale drift turbulence on the whole gives rise to turbu-
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lent viscosity with a negative coefficient. In turn, the
instability driven by this turbulent viscosity causes the
spontaneous growth of large-scale perturbations.

5. DISCUSSION OF THE RESULTS

A systematic theory of the generation of large-scale
perturbations by the small-scale drift turbulence in a
plasma has been constructed by applying a geostrophic
equation (a simplified version of the Hasegawa—Mima
model) and the two-scale direct interaction approxima-
tion technique. Thus, the previously existing theory,
which is based on the quasilinear approximation and,
strictly speaking, is valid when the Reynolds number is
low (i.e., when the collisional dissipation dominates
over the nonlinear interaction of turbulent pulsations)
or when the turbulence spectrum is determined by the
source of turbulence, has been extended to the case of
strong drift turbulence, whose spectrum is governed by
the nonlinear interaction of turbulent pulsations and is
insensitive to dissipation and the source of turbulence.
It has been shown that, as in quasilinear theory,
accounting for small-scale drift turbulence givesrise to
aturbulent viscosity effect and leadsto renormalization
of the nonlinear term with the Poisson bracket in the
evolutionary equation for the large-scale (mean) field.
However, for the regime of strong drift turbulence
under consideration, the turbulent viscosity coefficient
and renormalization coefficient are both represented as
asum of two parts, which are comparable in magnitude.
As in the quasilinear approximation, the first part is
determined by the second-order correlations and is
nonzero merely because the geostrophic equation
incorporates the adiabatic electron response. The con-
tribution of the second-order correlations to the turbu-
lent viscosity coefficient is negative regardless of the
turbulence spectrum. In the limiting case corresponding
to the two-dimensional incompressible hydrodynamics
described by the Euler equation, the second-order cor-
relations do not contribute to the turbulent viscosity
coefficient. The sign of the second part, which is asso-
ciated with the third-order correlations of the turbulent
field, depends on the spectral properties of turbulence.

Explicit expressionsfor the turbulent viscosity coef-
ficient and renormalization coefficient have been
derived for the model Kolmogorov spectra of drift tur-
bulence, which are thought to be characteristic of the
inertial interval of turbulence. For the model used inthe
analysis, the renormalization of the Poisson bracket is
completely governed by the third-order correlations,
because the contribution of the second-order correla

tionsisidentically zero. For A < kf (the case of turbu-

lence described by the two-dimensional Euler equa
tion) and for the Kolmogorov spectrum with a constant
energy flux, the contribution of the third-order correla-
tions to the turbulent viscosity coefficient is negative.
Accordingly, the turbulent viscosity coefficient is also
negative, which indicates the growth of large-scale per-
2001
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turbations. For the Kolmogorov spectrum with a con-
stant enstrophy flux, the contribution of the third-order
correlationsis positive, so that the determination of the
sign of the turbulent viscosity coefficient requires a
knowledge of the exact turbulence spectrum. Moreover,

since the weighting factor A/ kc2 of the contribution of

the second-order correlations is small, it can be
expected that the resulting turbulent viscosity coeffi-
cient will be positive.

Theresultsobtained for A > kc2 differ radically from

those obtained in the opposite limit. For the spectrum
with a constant energy flux, the contribution of the
third-order correlations to the turbulent viscosity coef-
ficient ispositive, so that the sign of this coefficient can-
not be determined without knowing the details of the
turbulence spectrum. On the other hand, for the spec-
trum with a constant enstrophy flux, the contribution of
the third-order correlations to the turbulent viscosity
coefficient is negative, so that the coefficient itself is
also negative, which indicates the instability of large-
scal e perturbations.

The results obtained in this study may be of interest
in solving the problems of L—H transitions in tokamaks
and the generation of large-scale vortices in the ocean
and in the atmospheres of rotating planets.
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APPENDIX A
Derivation of Formulas (26)—(28)

Weillustrate the method for deriving formulas (26)—
(28) by calculating as an exampletheintegral in expres-
sion (28). In the geometry shown in Fig. 2, this expres-
sion can be rewritten in the form

I= ] j[qlxqzlfF(ql, 02) (k1 — Gy — )

q192

x (0, V[0, x V@l ,
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|

Fig. 2. Geometry of the fundamental triad of the wave vec-
tors.

o0 o0 2n 2m

= [onday [a,da; [ d6; jdezkiq;‘snzef(ql, 02)
0 0 0 0 (A.1)

2 .2 62(_p
| (cos'(8,-y) - (8, ~)) 5555

e _d'q
+ sin(8,—y)cos(8,—y) 22 _9°@ }
’ R Ve
x &(k, —Q,cosB, —Q,c0s6,)d(q,sin6, —q,sinod,).

Since, inthe presence of the second 6 function, theinte-
gral over the anglesis nonzero only when the functions
sin@, and sinB, have the same sign, the integral (A.1)
can be represented as

2m 2m

[ d8: [ dey(..)
0 0

T T 2n 2m

= {de{dez(...)+{d91{d92(...).

(A.2)

After the replacements 6] = 211— 6, and 6, =211—6,
in the second integral in (A.2), we obtain

00 00

J= JO’ da, JO’ dak; 0,05 F (s, 92)

x (d8, [dB,sin’8,| =tos[2(6, - )]
frof ot

2—

09 14 _

- P°Q azc‘m}
- 2(0 L G
Sn[2(8; + VD=3 v a3

x &(k, — 0,088, —,c0s8,)d(q, Sin6; —g,sind,)

+ cos[2(6, +y)])
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[ee) [eo) TU TT

= qu{[dqzqulti(ql,qzyfde{[dezsnzezcoszez
0 0 0 0

P L oo D0 0
XY ~ S'”ZVbez Tyl

x &(k, — g, cos6, —Q,c0s6,)d(q,sn6; —q,sinbd,).

x| 2cos2y

In (A.3), wecarry out integration over theangles6, and
0, and take into account the relationships cosy = k;,/k;
and siny = ki /k;. As a result, we arrive at expression
(28). Formulas (26) and (27) can be derived in asimilar
way.

APPENDIX B

Calculation of the Integrals over Time
in the Expressions for v+ and B

As an example, we turn to the second term in
expression (34) for vy. In the triple integral over time,
we calculate the part containing the first of the three
termsin formula (25) for 4:

t t' t

F= J‘dt'J’dt"J’dIG(k; t, t')G(k,; t', t")

x G(ky; t, T)1(ky; t, DI(Kky; t°, 1)

= o(ky)o(ky) [’ f” [drH(t )

—co —0o

(B.1)
XH(t'—t")H(t—1)
x exp[— w(k) (2t —t'— 1) — w(ky)[t"—T|
—w(k)(t'=t" +|t"=1])].

Theinterval of integration over time can be divided into
the following three subintervals:

t

[ dTHE=t)H(E ~t)H(t=T)

x exp[— o(K) (2t —t' = T) —w(ky)[t' 1]
— (k) (' = t" + [t" = 1[)]

"

= Idr exp[-w(k)(2t—-t'—1)

—(w(ky) + 0(ko)) (' —T)]
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t

+J’dr exp[—w(k)(2t—t'—1) —w(k,)(t'—T)

—w(k)(t"+1-2t")] +J’dr exp[-w(k)(2t—t'—T1)

(B.2)
— (k) (T-1") —w(k,) (' +T-2t")]

= g—lzexlo[—w(k)(2t — ' —t") —(co(ky) + w(ky))(t' 1))

1
* (R + o(ky) ok P

[—2w(k)(t-t)

—20(k,)(t'—t")] — exp[—w(K) (2t —t'—t")

1
(k) — o(ky) — w(ky)

x {exp[— (axk) + o(k))(t —t) — a(ky)(t + t' —2t")]
—exp[—2w(k) (t - t') — 2w(ky) (' —t")]} .

+ (w(ky) — (ko)) — )]} +

Inserting integral (B.2) into expression (B.1) and inte-
grating over t' and t", we find

_ Cf(kl)ff(kz)[l+ 1 } (B.3)

20(K)Q [Q  w(ky)
Analogously, we can obtain

t t' t'

dt' [ dt” [drG(k; t, t)G(ky; ', 1)
[

xG(ky; t, DIk t, T)I(ky; t", T) (B.4)

_o(ko(k)ra, 1
T 2w(k)Q [Q Zoo(kz)}’
_Imdt'ldt"_J;er(k; t, 1) G(ky; t', t*) o

xG(ky; t, D) I(k; t, D) I(ky; t', 1) = Ml;).
20(k)Q

Integration over timein formula (35) gives

t T T
J’dTJ'dt'J’dt"G(k; t, 1)
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t Substituting relationships (B.6)—(B.8) into formula
% J'dT'G(k; t, 1)G(ky: T, ') G(ky: T, 1) (35), we arrive at expression (63).
4 (B.6)
xG(k; t, )1 (ky; t', T) 1 (Ky; t", T) REFERENCES
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Abstract—A new method for creating high-current plasma channels is devel oped. The method uses a narrow
gas column formed by the leading particles of a nonsteady gas jet outflowing into a vacuum. An electric dis-
charge device with asystem for the formation of anarrow gas column is experimentally studied. The parameters
of emission from the plasma channel are measured. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The development of the methods for generating cur-
rent pulses with an amplitude of 10 MA and arisetime
of ~100 ns [1] motivated considerable interest in the
problem of producing self-contracted plasma channels
(such as high-temperature Z-pinches) [2]. Among the
methods for solving this problem, we mention the fol-
lowing: (i) the use of multiwire metal arrays [3-5],
(i) pulsed gas puffing [6-8], and (iii) the el ectric explo-
sion of afrozen deuterium fiber [9] or deuterium-con-
taining fiber [10]. Thelatter method is of special impor-
tance in thermonuclear fusion research because it
enables one to obtain high energy densitiesin a stable
channel with an anomaloudly long lifetime [9]. Proba-
bly, this channel would be even more stable if there
were no instabilities leading to the formation of waists,
which, according to calculations [11], start to develop
well before the evaporation of the frozen deuterium is
completed. The studies of the electric explosion of a
hydrocarbon fiber with a preformed neck [12] provide
indirect evidence in favor of this assumption. Hence, it
is of interest to change the initial conditions so as to
achieve higher stability of the channel. An appropriate
method for solving this problem is to use a strongly
nonisothermal plasma (T, > T;) produced from the ini-
tial gas channel under conditions such that the ion heat-
ing is slower than the electron Joule heating.

Let us assume that, instead of a frozen deuterium
fiber, we have a narrow uniform gas column. In adis-
charge, the released Joule energy is spent mainly on
electron heating. Due to the high thermal conductivity,
the electron temperature rapidly equalizes throughout
the channel cross section. Hence, if the current
increases rapidly and theinitial diameter of the gas col-
umn is small enough, then the magnetic pressure can
only be balanced by the electron thermal pressure. The
ionsremain cold and immobile until they are heated via
either collisional or collisionless mechanisms. Colli-

sionless hesating requires high electron current velocity
(at least higher than the ion acoustic speed). However,
in aself-contracted channel with ahigh electron density
n,, the electron current velocity may remain lower than
the ion acoustic speed. Thus, in achannel whose radius
is comparable to the skin depth, the electron current
velocity will always be less than the ion acoustic speed
if the electron linear density N, exceeds a certain criti-
ca value, N, > N, = 2mc’e2. In particular, in a 1-mm-
diameter deuterium channel with the electron density
ne=10 cm (N,=8 x 10" cm!, N, = 2.6 x 10 cmt),
the el ectron current vel ocity isapproximately two times
lower than the ion acoustic speed. In this case, colli-
siona heating isthe only mechanism for ion heating; its
rate can be estimated by the time of heat exchange

between the plasma components, T = 17AT§’/ 2 [13].
In adeuterium channel (A= 2) at atemperature of T,=

107 K, we have T > 100 ns. Hence, if the current rise
timeisonthe order of 100 ns, we can expect that T, will
grow faster than the ion temperature, which results in
the higher stability of the channel. The necessary con-
dition for thisis arapid (in the limiting case, synchro-
nous with the magnetic pressure at the channel bound-
ary) increase in the electron thermal pressure at the
channel axis. Otherwise, the radial charge separation
field inevitably arises, in which the ions can be acceler-
ated toward the axis up to high energies. The only way
to exclude or diminish theradial plasmaimplosionisto
decrease the initial diameter of the gas column. The
guestion as to which parameters of the gas column are
achievable still remains open because nobody has yet
dealt with the problem of completely excluding radial
plasmaimplosion in gas puffs.

In this study, anew method for creating anarrow gas
column is developed. An electric discharge device in
which the plasma channel is produced using such acol-
umn is experimentally studied.
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2. FORMATION OF A NARROW GAS COLUMN

When agasthat wasinitially at rest expands through
along channel into a vacuum, the longitudinal velocity
of the leading portion of the gas flow is severa times
higher than the speed of sound in an unperturbed gas
and the gas temperature hereisnearly zero [14]. There-
fore, after escaping from the channd into free space,
the leading gas particles have high longitudinal and low
transverse velocities, thus forming a gas jet with an
extremely low divergence. If the channel is sufficiently
narrow, the jet has the shape of a column whose diam-
eter ismuch lessthanitslength. The schematic of agas-
dynamic gas puff experiment based on the above con-
siderationisshownin Fig. 1. The gasis separated from
the vacuum by an aluminum foil 15 pum thick. The foil
is broken by an electric discharge in atime At ~ 1 us,
which is much shorter than the time t it takes for the
leading particles to pass along the channel length |,
At < t.. By virtue of thisinequality, the gasflow isnon-
steady, which distinguishes our device from gas puff
systems used in high-current plasma facilities [6-8].
The maximum initial gas pressure is less than 1 atm,
which is determined by the foil breaking strength. The
instant at which the gas appears at the channel exit, t =
tsisindicated by the electric breakdown of an auxiliary
spark gap. Thetimet, depends on the gas species, initial
pressure, channel length, etc.; under our conditions, itis
on the order of 100 pus.

In experiments, we encountered the problem of the
visualization of the gas jet. Attempts to visualize the
gas et using laser techniques failed because of the low
gasdensity and the small radius of thejet. Visualization
with the help of a short low-current discharge along the
flow did not provide the required image contrast. It was
found that nitrogen, atmospheric air, and, particularly,
oxygen jets are sdf-luminous; this property was
employed for the jet visualization. The glow starts at
t=t, and lasts for severa tens of microseconds. The
high-speed photography reveals no appreciable radial
shift in the boundary of the glow region. The shape of
the glowing gas column is adequately displayed by the
time-integrated photographs. Figure 2 shows the time-
integrated photograph obtained with atmospheric air
puffing. It can be seen that the column diameter is
nearly constant and coincides with the channel diame-
ter, which is equal to 3 mm. The glow is the most
intense and contrasted at the channel outlet. Down-
stream from the outlet, the glow intensity decreases and
the radial boundary of the column becomes smeared.
Perhaps, this is related to the axial inhomogeneity of
the gas density in the column, which, in turn, is due to
the highly nonuniform distribution of the gas density in
the channel. It was found theoretically [14] that, in a
nonsteady gas flow escaping into a vacuum through a
long channel, the speed of sound isequal to c,= 0 at the
flow front and increases linearly along the channel asit
approaches the unperturbed gas. The gas density n also
No. 9
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Photographing

Pumping out

lo =150 mm

[y =35 mm

Fig. 1. Schematic of the narrow gas column formation:
(1) gas volume (V = 10 cm?), (2) 15-pm-thick Al foil,
(3) 0.5-mm-thick Ta disk 10 mm in diameter, (4) stainless
steel grid, (5) needle electrode, (6) insulator, (7) capacitor
(C=0.8puF, U=30kV), and (8) controlled discharge gap.

35 mm
I —— e —

Fig. 2. Photograph of the glowing atmospheric air column.

varies strongly along the channel. Thus, for adiatomic
gas, we have n ~ c;r,’ .

The detailed diagnostics of the column are still dif-
ficult to perform. Nevertheless, the results obtained
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enabled usto carry out plasma experiments with a nar-
row gas column and to plan subsequent steps in
improving the system for gas puffing. These future
improvements include (i) a decrease in the axial non-
uniformity of the column by increasing the ratio of the
channel length |, to the column length | ; (ii) the use of
much higher initial pressures and, consequently, gas
densitiesin the column; and (iii) adecreasein the diam-
eters of the channel and gas column to less than 1 mm.

3. EXPERIMENTAL SETUP

The plasma experiments were carried out in an
experimental stand (Fig. 3) with a capacitive energy
storage of 24 kJ at acharge voltage of 100 kV. The stor-
age bank consists of twelve IK-100-04 capacitors con-
nected in parallel; each of them istriggered by its own
gas-filled discharge gap. The capacitors and gaps are
placed in a metal tank filled with transformer oil. The
discharge chamber is mounted on the tank lid and is
connected to the energy storage bank via a low-induc-
tance cable line. In the chamber, there are two elec-
trodes: a high-voltage anode and a grounded cathode.
The distance between the electrodes along the chamber
axisisl, = 35 mm. The discharge chamber is preevacu-
ated to 10~ torr. The gas is injected into the chamber
through the anode along a central channel with adiam-
eter of 3 mm and length of |, = 15 cm. The foil separat-
ing the working gas from the vacuum chamber is bro-
ken by the electric discharge of two IK-100-04 capaci-
tors connected in parallel and charged to 30 kV. The
delay timet, of triggering the energy storage bank with
respect to triggering the controlled discharge gap in the
foil-break circuit (Fig. 1) isregulated with an accuracy
no worse than 0.1 ys. The working gas was aterna
tively deuterium, helium, nitrogen, oxygen, atmo-

Fig. 3. Schematic of the experimental facility: (1) capacitive
energy storage, (2) feed cable line, (3) anode, (4) cathode,
(5) insulator, (6) pulsed valve, and (7) current detector.

BASMANOV et al.

spheric air, neon, argon, or xenon. The initial gas pres-
sure was lessthan 1 atm.

X-ray emission was measured using spectrometers
with silicon semiconductor detectors equipped with
various absorbing filters. The signals from seven detec-
tors placed inside the discharge chamber near its axis at
a distance of ~60 cm from the anode were recorded
simultaneously. X radiation fell onto the detectors
through a central 8-mm-diameter hole in the cathode.
We alternatively used spectrometers designed for mea-
suring either soft (up to 10 keV) or hard (higher than
10 keV) X radiation. In each of these spectrometers,
one of the channels was the same to ensure the match-
ing of the measurements in the soft and hard X-ray
spectral ranges. Soft X radiation was measured with
SPPD-11 silicon detectors designed at the Research
Institute of Pulsed Technologies (Moscow). A charac-
teristic feature of these detectors is the small thickness
of both the entrance window (the total thickness of the
electrical contact and dead layer islessthan 1 um) and
the sensitive region (~50 pum). Hard X radiation was
measured with silicon detectors based on sensitive ele-
ments designed at the Research Institute of Pulsed
Technologies. The spectral sensitivity of the detectors
was calculated using the Monte Carlo method with
allowancefor the transport of y radiation, electrons, and
positrons[15]. To attenuate the recorded radiation, each
detector was equipped with its own aperture diaphragm
with diameters of 2 to 9 mm. The time resolution of the
different detectors varied from 1.5 to 20 ns. An assem-
bly of the thermoluminescent dosimeters made of 0.2-
and 1-mm-thick 1S-7 glass plates [16] were used to
measure the integral dose and to estimate the effective
energy of X-ray photons. A stack of five to ten glass
plates was placed in ahollow Al cylinder with a 5-mm-
thick wall and was oriented so as to ensure the nearly
normal incidence of radiation. From the source side, the
glass plates were covered with amylar film either with
or without aluminum deposition. The opposite end of
the cylinder was closed with a5-mm-thick Al cap. After
being irradiated, the glass plates were tested with a
standard IKS-A dosimeter. The location of the X-ray
source was determined from X-ray photos obtained
using several pinhole cameras with different absorbing
filters. The signals from several semiconductor detec-
tors that simultaneously recorded X-ray emission from
different regions of the interelectrode gap were also
used for this purpose. Both the hard X radiation with
the photon energy above 100 keV and the neutron flux
were recorded with an SSDI-8 detector [17] consisting
of a plastic scintillator block with a photomultiplier.
Thetimeresolution of the detector was~5 ns. To distin-
guish between the neutron and X-ray pulses, severa
detectors were set at different distances from the dis-
charge chamber. The integral neutron yield was deter-
mined by the activation of an Ag foil placed in a paraf-
fin moderator. In al discharges, the plasma channel
current was recorded with a time resolution no worse
than 10 ns.
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4. EXPERIMENTAL RESULTS

The electric breakdown of the gas column leads to
the formation of a plasma current channel with a cur-
rent rise time of several hundred nanoseconds. Due to
the plasma processes in the channel, its resistance
sharply increases. As a result, in the current oscillo-
gram, the increase in the current is finished with a sin-
gularity in the shape of a kink. The current singularity,
whichisobservedin all of the gases, isaccompanied by
an X-ray burst. For light gases, the burst duration is
~50 ns; for deuterium, neutron emission with an inte-
gral yield of 10% neutrons per pulse is also recorded.

Figure 4 shows the waveforms of the current and the
signalsfrom the SSDI-8 detector for helium at aninitial
pressure of 1 atm. The maximum current in the channel
depends on theinitial gas pressure and the delay timet,
of the triggering of the energy storage bank. Ast. and
the gas pressure increase, the time during which the
current grows also increases; as a result, the current
attains a higher value before the singularity occurs. It
can be seen in Fig. 4 that the increase in t, by 5 us
increases the discharge current by a factor larger than
1.5. The further increase in t; provides a severalfold
increase in the current by the instant of the kink; how-
ever, in this case, the reproducibility of the radiation
parameters substantially decreases.

Semiconductor detector measurements show that
the shortest X-ray pulses are generated when light
gases are used. A comparison of the detector signals
obtained in the different spectral ranges during one dis-
charge revealsthe following feature characteristic of al
the gases. Namely, the X-ray pulses show a double-
humped shape which is most pronounced in the hard
X-ray spectra range. The signals from the detectors
recording X-ray photonswith alower energy also dem-
onstrate the double-humped shape, but it is less pro-
nounced. As the photon energy decreases, the signal
maxima merge into one maximum. Such behavior was
observed throughout the entire spectral range that was
studied with semiconductor detectors, i.e., in the 1- to
100-keV spectral range.

Figure 5 shows the waveforms of double-humped
X-ray pulses recorded in air and helium plasma chan-
nels. We chose the most representative waveforms with
sufficiently long time intervals between the maximain
order to reliably resolve them in time. The semiconduc-
tor detectors were also used to locate the X-ray source;
for thispurpose, several identical detectorsrecorded the
emission from different regions of the plasma channel.
It is found that the main fraction of radiation with a
photon energy of ~10 keV and higher is generated near
the anode edge. When a cap was put on the anode, the
X-ray sourcewas |located at the cap edge, which wasin
contact with the plasma. This is aso confirmed by
X-ray photographs of the radiating region. In experi-
ments, we used thin lead caps with awall thickness of
~0.05 mm, which were evaporated during a single
pulse. Figure 6 shows the schematic of pinhole mea-
2001
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Fig. 4. Waveforms of the current and the signals from an
SSDI-8 detector for different delay timest, of triggering the
capacitive storage: (a) 90 and (b) 95 ps; the working gasis
helium at an initial pressure of 1 atm.

surements and pinhole images of the X-ray source
obtained in a helium plasma channel with the use of a
lead cap. In photo I (Fig. 6b), ametal grid welded into
the side window of the discharge chamber casts a
shadow on the image of the lead cap emitting X-rays.

Theefficiency of the electric discharge X-ray source
was estimated based on the dose measured by ther-
moluminescent dosimeters. The maximum dose
recorded behind a 20-um-thick mylar film with Al dep-
osition (~1 um) at a distance of 5.5 cm from the source
was 3 x 10° rad. The dose of radiation passed through
the central hole in the cathode along the chamber axis
and measured behind a 20-um-thick Al foil at a dis-
tance of 55 cm from the anode edge was 20 rad. The
spectral distribution of the radiant energy was esti-
mated based on the measurements of both the distribu-
tion of the absorbed dose in the stack of 1S-7 glasses
and the signals from semiconductor detectors. Nearly
one-half of the energy fallsin the photon energy range
of up to 10 keV, the spectral intensity being maximum
at 3keV. Almost al of the remaining energy fallsin the
range 10-60 keV.

When operating with light gases, a short (~20 ns)
pulse of extremely hard X-ray radiation is observed.
Since this pulse can be recorded (with the SSDI-8
detector) at a distance of up to 20 m from the source
behind a metal shield with a thickness of more than
5 mm, it should contain megael ectronvolt photons.

Finally, it should be noted that, in the plasma chan-
nel, a rather intense axial plasma flow is produced,
which extends beyond the interelectrode gap through
the central hole in the cathode. The presence of the
plasma flow isindicated by the destruction of the films
and foils placed on the axis behind the discharge gap.
The flow divergence, which was determined from the
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(a)
f\fu\/ (b)

~5 keV ~10 keV

J\\ ~8 keV ~20 keV
L 1 1 1 /\I/\V\ 1
~13 keV
M ~60 keV
! | ! I Sl
t, 100 ns t, 100 ns

Fig. 5. Double-humped X -ray pulsesrecorded in different photon energy rangesin (a) an air plasmachannel and (b) ahelium plasma
channel.

Fig. 6. (a) Schematic of pinhole measurements: (1) pinhole cameral, (2) pinhole camerall, and (3) lead cap. (b) Pinhole images of
the X-ray source.
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flow imprints, was about one degree for deuterium or
helium. The maximum flow velocity, which was esti-
mated by the instant of the flow appearance at a dis-
tance of ~50 cm behind the cathode flange, was equal
to ~10% cm/s.

5. CONCLUSION

A new method for creating a plasmacurrent channel
has been developed. For this purpose, a 35-mm-long
3-mm-diameter gas column formed by the leading par-
ticles of a nonsteady gas jet outflowing into a vacuum
is used. For al the gases under study (deuterium,
helium, nitrogen, oxygen, atmospheric air, neon, argon,
and xenon), the waveforms of the current in the channel
resemble those in Z-pinches [2]. The increase in the
current is finished with a singularity in the shape of a
kink. The stable operation of the plasma channel lasts
for several hundred nanoseconds until the singularity
occurs; thistime is longer than the duration of a stable
plasma channel in experiments with afrozen deuterium
fiber [9]. The current singularity is accompanied by an
X-ray burst; for deuterium, neutron emission with an
integral yield of 10® neutrons per pulseis also recorded.
Theinstant of the singularity can be controlled by either
changing theinitial pressure of theworking gasor vary-
ing the delay time of applying the high-voltage pulse to
the gas column. The highest yield of X radiation, which
lasts for ~50 ns, is attained with light gases. A signifi-
cant fraction of radiation falls into the 10-60 keV pho-
ton energy range. The X-ray source is located near the
anode edge. The maximum dose measured at adistance
of 5.5 cm from the anode is 3 krad. At theinstant of the
current singularity, the axial plasmaflow directed away
from the anode is generated in the channel; its velocity
attains 108 cm/s.

In order to further devel op the proposed method for
creating the current plasma channel and perform exper-
iments with currents as high as 1 MA, asystem for gas
puffing with a 2-3 orders of magnitude higher initial
gas pressure must be designed. These experiments will
make it possible to draw the final conclusion about the
influence of the initial discharge conditions on the sta-
bility of the plasma channel.
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Abstract—The influence of kinetic effects on the generation of line X radiation during the spherical implosion
of alaser corona plasma with two ion species is studied under the conditions prevailing in experiments with
thin-wall spherical targetsin thelskra-5 laser facility of the All-Russia Research Institute of Experimental Phys-
ics (Sarov, Russia). Kinetic processes occurring in a multicharged plasma are investigated using a specially
devised code for solving one-dimensional Landau equations for a nondegenerate multicomponent plasma by
the Monte Carlo method (the KIN-MC code). The code was devel oped using the quasineutral plasma approxi-
mation under the assumption that the electron distribution function islocally equilibrium. The model equations
are presented, the scheme of numerical solution is described, and the calculated results are discussed. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The development of the theory of nonequilibrium
processes in high-temperature multicharged plasmasis
motivated by diverse practical and theoretical applica
tions. Such plasmas are created by the interaction of
ultrashort laser pulses with solid bodies and other
objects in experiments aimed at investigating various
targets used in laser fusion, inertial confinement fusion
(ICF), and laboratory X-ray lasers[1-3].

In particular, in experiments on the laser irradiation
of targets, it is of considerable interest to study the
interaction of counterstreaming flows of alaser corona
plasma, because, in the interaction region, the tempera
ture and density of the plasma and its lifetime can
increase substantially. This makesit possible to signifi-
cantly extend laboratory experiments to such issues of
high-temperature plasma physics as (i) the emissivity
of amulticharged plasma, (ii) the capability of aplasma
to decelerate fast ion beams, and (iii) reaction ratesin a
plasma.

The interaction of counterstreaming flows of alaser
corona plasma can be studied in experiments with var-
ious types of one-dimensional and two-dimensional
laser targets irradiated by laser light in different ways
(see, eg., [4-11] and other related papers). Estimates
show that, in the region where the flows of a laser
corona plasma interact with each other, it is easy to
achieve conditions under which the mean free paths of
multicharged plasma ions are comparable to or even
larger than the characteristic dimensions of the flows.
Under these conditions, the gas-dynamic approxima:
tion, which is usually used to calculate the plasma
parameters and to analyze them theoretically, may turn
out to be inaccurate; consequently, the physical pro-

cesses in the region where the plasma flows interact
should be studied using numerical methods based on
kinetic plasma models [7-10].

Note that the plasma-related kinetic problems are
too complicated to be investigated numerically in full
formulation, i.e, to simultaneously solve nonlinear
Boltzmann equations for all subsystems of particlesin
the plasma (photons, el ectrons, and ions) even in aone-
dimensional approximation. For this reason, we will
apply an approach based on the solution of simplified
physical problems.

Here, we study the violation of the gas-dynamic
approximation in the model of a nondegenerate plasma
with constant ion charge. Theion plasmacomponent is
described by the kinetic equation with the Landau col-
lison integral. The electron plasma component is
assumed to be equilibrium and to obey alocally Max-
wellian velocity distribution function. We use the
quasineutral plasma approximation and neglect elec-
tron inertia. An analogous model of the nonequilibrium
plasma dynamics was applied in [7, 8] when studying
therole of kinetic effectsin the dynamics of laser fusion
targets. In our approach, the kinetic equations reduce to
a set of the modified nonlinear Landau kinetic equa-
tions for ion plasma components and the electron
energy balance eguation. In the combined method
developed for solving this set of equations numerically,
the kinetic equations are solved by the Monte Carlo
(MC) method and the energy balance equation is solved
in finite differences. The combined method was imple-
mented as the one-dimensional KIN-MC code.

When solving the nonlinear Boltzmann equationsin
finite differences, the plasma flows are especially diffi-
cult to calculate for ions with short mean free paths.
The method devel oped hereis based on the MC method
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for solving kinetic equations and requires approxi-
mately the same amounts of computational resources
for ions with short and long mean free paths. The pro-
posed approach can also be applied to solving more
complicated problems, including those in which
account should be taken of, e.g., the nonequilibrium
nature of plasma electrons, the kinetics of fusion reac-
tion, the non-Maxwellian character of ion distribution
functions, and ion diffusion in a multicomponent
plasma. For problemsin kinetic formulation, the results
of calculations of the dynamics of asimple plasmacan
be used to analyze the accuracy of some other approxi-
mations applied in the numerical modeling of the
plasma processes, e.g., the multistream gas-dynamic
plasma approximation [7, 12].

The physical formulation of the dynamic plasma
problems under consideration and the model equations
are presented in Section 2. The numerical method and
the potentialities of the KIN-MC code are described in
the Appendix, in which we also illustrate the results
from test simulations of plasmaflowsin planar geome-
try (the problem of the interaction of unloading waves).
In Section 3, we discuss numerical results obtained
with the KIN-MC code when simulating the implosion
of alaser corona plasmain experiments with thin-wall
spherical targets with an internal input of the laser
energy [11, 13]. We analyze how the collisional kinetics
of theions manifestsitself in the spherical implosion of
alaser corona. We numerically investigate theinfluence
of kinetic effects on the resonant X-ray emission of the
He,-line of Feions (the Fe He,-line) in a nonequilib-
rium high-temperature multicharged plasma under the
conditions prevailing in experiments with thin-wall
spherical targetsin the Iskra-5 laser facility of the All-
Russia Research Ingtitute of Experimental Physics
(Sarov, Russia).

2. PROBLEM FORMULATION
AND MODEL EQUATIONS

We consider an ideal two-component plasma in
which the ions of different species have a constant
charge. In planar geometry, the Landau—Vlasov kinetic
equations for the ion distribution function f;(t, X, v) in
the absence of amagnetic field have the form [14, 15]

eZE of;

6fi+ of;
m avl

3 Vg z g
where E(t, X) isthe electric field and the integral s J; and
J;e describe ion—ion and ion—electron Coulomb colli-

sions, respectively. The Landau collision integrals
accounting for ion—on collisions are represented as

L .mo A_E.[fj(cmfi(v)_fi(v)afj(chC o
Yomovd 2L m 0v, m, oy, '
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mm:
where m; = ——= is the reduced mass, Al =
m + m;
4ne'Z’ 73N
———— (g% - 9@)) is the diffusion tensor, g =
mug

v — c istherelative velocity, and /\;; are Coulomb loga-
rithms for ion—ion collisions.

Using the approximation of a small electron-to-ion
mass ratio m,/m and assuming that the electrons obey
aMaxwellian distribution function with a shifted argu-
ment, we can write the ion—electron collision integral
as[14]

Je=vdzate R Ew-wt] )

where u, = (U,, 0, 0) is the mean electron velocity vec-

4,\/_]'[8 Zi Lei Ne Hﬂd]glz
3 g O

collision frequency, and A, are Coulomb logarithms
for ion—electron collisions. Note that expression (3) can
easily be generalized to arbitrary electron distribution
functions, in particular, the bi-Maxwellian distribution
functions[16] used to describefast electronsin the two-
component diffusion approximation or even more gen-
eral nonequilibrium electron distribution functions
used in nonlocal extensions of plasmagas-dynamic the-
ories [17, 18]. In such generalizations, the coefficients
infront of the diffusion term and the term with a shifted
argument in the ion—€lectron collision integral in
expression (3) should be changed.

We assume that the electron distribution function is
locally equilibrium. This allows us to apply the kinetic
description solely to the ion plasma component. We
also assume that the electrons obey a Maxwellian func-
tion described by the number density n.(t, X), mean
velocity u(t, X), and temperature T.(t, X), which is
determined from the electron energy balance equation

tor, Ve = is the ion—electron

0 0
a—(neTe) + _(ueneTe)
“)
2 ou a 0T,
= _3n Teax aX eax 22 |eni(Ti_Te)+Q’
where A, is the electron thermal diffusivity, v, is the

ion—electron collison frequency, and the term Q
describes an additional electron energy source.

Below, we restrict ourselves to considering a cur-
rentless plasma, which corresponds to quasineutral
plasmamotions. The conditionsfor the two-component
plasma to be quasineutral and to carry no current have
the form

N = Zny +Z,ny, 5

Nele = ZyNqUg + Z5N,Uy; (6)
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where Z;, n;, and u; are the charges, densities, and mean
velocities of theions.

To describe the plasma flows compl etely, we are left
with the problem of determining the electric field
E(t, X). We consider the following electron momentum
transport equation with allowance for the ion plasma
component:

Ue ou 10P,
megat e axda n a + eE + me( Rel + ReZ) (7)
where P, = n.T, is the electron pressure and Ry =

Vg (U; — Up) isthe decel eration force exerted on the elec-
trons by the ions. The electron—on collision frequency
V4 Can be reduced to the form

vy = LML Lan g ®)
el 3 ms D-I-eD ’

inwhich wetook into account the smallness of the elec-

tron mass. We force m, in Eq. (7) to zero and retain the

terms proportional to ,/m, to arrive at the following
expression for the electric field:

E=——=-mM(R*+Re). )

Equations (1) and (4) and expression (9) provide a
complete mathematical description of the plasmaflows
under consideration. Notethat, in Egs. (1), the collision
integrals (3) are written in aframe of reference moving
with velocity u,. However, for the numerical solution of
the problem, it is convenient to transform them to a
frame moving with the mean ion velocity u;. In the lat-

af, m; 9

terframe,theexpronHEa—Vl— -me (v—up)f;
becomes
of; m; 9
Fia_Vl—Vieia—v(V—Ui)fn
where
eZ, 0P,
i mln X +V,(Uy—Uy),
Z, 0P 19)
- __T2 7 e_ _
F, = m,n. 0x Vou(Uy—Uy),
4«/_7Te4ZZZ§ Leony + LN, e|jneE|
iu 2 ni' (11)
3m Ne m, LT ]
e

Consequently, in the moving frame, the kinetic
equations for the ion distribution functions have the
form

af,  af,

E-'-Vlax (12)

z ‘JI] + ‘Jlei

'6v1
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where the collision integrals J; are given by relation-
m

Hea_v (V—Ui)fi} .

The electron thermal diffusivity in Egs. (4) is calcu-

lated from the interpolation formula[19, 20]
5/2

aT,
(Z+344)N\,

The Coulomb logarithms are calculated from the
expressions

T

ships (2) and J,, = Vie[ﬁe Af, +
e

A, =

A = max In%ﬁ LAFI
= ma s e

0 T
Ai. = max[L, | %\J [
e = M o : e ne(T+ZTe)%’

where a, g, and a, are constants.

The method for the numerical solution of the set of
kinetic equations (4) and (12) and the results of com-
parative test numerical calculations are presented in the
Appendix.

3. SIMULATIONS OF THE SPHERICAL
IMPLOSION OF A LASER CORONA PLASMA

In order to investigate nonequilibrium physical pro-
cesses that occur during the implosion of a multi-
charged plasma, Gasparyan et al. [11] considered a
thin-wall spherical target (TST), shown schematically
inFig. 1.

A two-layer TST is a substrate plastic thin-wall
spherical shell whoseinner surfaceis coated with athin
layer of the materia to be investigated. Laser light is
fed into the target at an angle to the normal to the target
surface through several entrance holesthat are, on aver-
age, distributed uniformly over the surface. Inside the
target, laser light is absorbed by the laser corona
plasma. The symmetry of the laser energy absorption
inside the target is ensured by such factors as the mini-
mum area of the holes, the focusing of laser light as it
passes through the holes, and multiple internal reflec-
tions of the light until it is completely absorbed. The
thickness of theinner coating was chosen in such away
that the coating material completely evaporates during
laser light absorption. The materia of the spherical
shell is chosen to be transparent to X radiation gener-
ated within aTST. When the laser pulseis short, thetar-
get goes through two stages: first; the formation of the
internal laser corona during laser light absorption and,
second, the implosion of alaser corona plasma toward
the target center followed by the formation of a shock
wave reflected from the center. Gas-dynamic simula-
tions show that it is the second stage in which the
plasmatemperature is maximum (several timestheini-
PLASMA PHYSICS REPORTS  Vol. 27
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tial temperature of the laser corona) and the density of
the hot plasmais highest (higher than the critical den-
sity of theinitial coronaby afactor of about 10 to 100).
Hard X radiation is generated throughout both of the
stages. Since the plasma inside the TST is relatively
transparent to X radiation, the overall picture of the
physical processes occurring during plasma implosion
can be reconstructed from the measurements of the spa-
tial and temporal evolutions of the X-ray spectra,
thereby providing an interesting diagnostic tool for
studying radiational and collisional kinetics of the
plasma.

The parameters of a TST and X-ray spectra were
calculated using the CC-9 code [21] based on a non-
equilibrium radiative gas-dynamic model in which the
radiative—collisional kinetics of the ion level popula
tions was described either by a chemical approach [21]
or by using the mean ion approximation [22, 23]. For
the conditions of experiments carried out in the Iskra-5
laser facility with Fe-coated TSTs[6], ideal spherically
symmetric simulations showed that the maximum
plasma density at the target center amounted to 0.1—
0.2 g/cm?, the plasma temperature being about 3 keV.

The related experiments with Fe-coated TSTsin the
Iskra-5 device were carried out in 1997 [13]. The TSTs
were made of substrate spherical CH shells with the
radius R-; = 1 mm and thickness Ay =5 um (PAqy; =
5 x 10~* g/cm?). The thickness of Fe coatings on the
inner surfaces of the TSTs was about Ap, ~ 0.26 um
(PAg. =2 x10~* g/cm?). The plasmainsidethe TSTswas
created by light pulseswith atotal energy of about 7 kJ
and duration 1, 5 ~ 0.3-0.4 nsfrom an iodine laser oper-
ating at the fundamental frequency (A = 1.315um). The
total area of six holes for launching laser light into a
TST was about 7% of thetotal areaof thetarget surface.
The results from measurements of the integral spectra
of X-ray photons in the energy rangev > 6 keV and of
the spatial region where X radiation was generated in
the experiments were found to differ strongly from the
related numerical results obtained with the CC-9 code.
Asan example, the calculated diameter of the region of
resonant X-ray emission of the Fe Hegy-line (v ~
6.8 keV) wasabout D, ~ 300 um, while the measured
diameter was substantialy larger, Dy, ~ 450-500 pm.
One possible reason for such a large discrepancy
between the theoretical and experimental resultsis that
the gas-dynamic approximation may fail to describethe
spherical implosion of the plasmain the TST [13]. In
fact, estimates show that, by virtue of the strong veloc-
ity dependence of theion mean free paths (o;; ~ 2*/v—*)
and the low density of a laser corona plasma, the ion
mean free paths in the interaction of the counterstream-
ing ion flowsin the central region are comparable with
the initial dimensions of the target, in which case the
gas-dynamic description of the implosion stage in a
TST may be inexact. In order to estimate the accuracy
of the gas-dynamic approximation and to analyze how
the kinetics of ion-on collisions affects the resonant
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Fig. 1. Schematic of a TST with internal input of the laser
energy.

X-ray emission of the Fe He,-line, we simulated the
implosion of alaser corona plasmain aTST using the
KIN-MC code.

Since ion kinetic effects play an insignificant rolein
the formation of alaser coronain the first stage of the
TST dynamics (seethe Appendix), we run the KIN-MC
code only to simulate the second stage. In the experi-
ments with TSTsin Iskra-5, the first stage comesto an
end when the laser pulse terminates, i.e., by the time
t, ~0.8 ns. By this time, about 4-5 kJ of the laser
energy is absorbed within a TST, the Fe coating of the
target is heated to a temperature of about 1-1.5 keV,
and the tail of the unloading wave of a laser corona
plasma approaches the radius R ~ 200-300 pm. The
profiles of the plasma velocity, plasma density, and
electron and ion temperatures obtained by thetimet, ~
0.8 ns through the gas-dynamic calculations with the
CC-9 code served as the initial conditions for kinetic
simulations with the KIN-MC code.

We used the KIN-MC code to simulate the dynam-
ics of only the Fe coating of a TST, assuming that the
plastic spherical shell isimmobile. The initial distribu-
tion of the ions was modeled by a locally Maxwellian
distribution. The ion composition of the plasma was
assumed to be constant, the ion charge number being
24, which corresponds to the results obtained with the
CC-9 code when calcul ating the degree of ionization of
Fe atoms in the tail of the unloading wave of a laser
coronaplasmainaTST by thetimet, ~ 0.8 nsandinthe
region where the counterstreaming ion flows interact.
The boundary conditions imposed at the left and right
boundaries of the computation region for the kinetic
equation assumed ideal ion reflection. The boundary
conditions imposed on the electron thermal diffusivity
assumed zero electron heat fluxes at the boundaries of
the Fe coating. Calculations with the CC-9 code
showed that, in the course of plasma implosion in a
TST, al these boundary conditions are approximately
satisfied over thetimeinterval 0.8 <t<3ns.
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As the integral characteristic for gas-dynamic and
kinetic simulations of plasmaimplosion in a Fe-coated
TST, we chose the emissivity of the Fe He,-line in a
plasma, because this line makes the main contribution
to hard (for v > 6 keV) X radiation. The choice of this
line was dictated by the ion composition of the com-
pressed plasma and the transparency of the target wall
to FeHe,-lineradiation [13]. In the KIN-MC code, cal-
culations are carried out on a mixed Eulerian—
Lagrangian spatial grid consisting of Ny = 80 mesh
pointsin space. The run time of the code was chosen to
be about 2 ns, which is close to the time at which the
pulse of resonant Fe He,-line radiation comes to an
end. During this time, the shock wave reflected from
the center travels a distance approximately equal to
one-half of theinitia target radius and the thermal and
gas-dynamic perturbations that propagate from the
inner surface of thetarget approach the shock front. The
computation time over which the laser corona plasma
arrives at the target center is about 1 ns, which coin-
cides with the beginning of the pulse of the resonant Fe
He,-line radiation. The resonant X radiation is most
intense at atime of about t,,, ~ 1.5-1.7 ns.

In the KIN-MC code, the effects of radiation from
the plasma are described by the model of internal radi-
ative losses. The power of the internal radiative losses
was calculated by the CC-9 code [21-23] in the corona
approximation from the formula Q(p, T,) = const X
p*F,(p, T), in which the function F, was interpolated
using tabulated values at the mesh points. The internal
radiative losses were incorporated into the KIN-MC
code as a negative source term in the electron energy
bal ance equation. The specific power of the resonant Fe
He,-line radiation was interpolated in a similar way:
Ju(p, To) = const x p?F,(p, T.). The integral power and
the energy of the resonant Fe He,-line radiation in the
stage of implosion of alaser corona plasmawere calcu-
lated from the electron density and temperature profiles
with the help of the above expression for the specific
power of the resonant X radiation:

R
J.(R 1) = 41TI 0°(r, )F,(p, Tr’dr x 107 [I/ns],
0

JT.(R 1)

t R

= 4nIdtIp2(r, t)F,(p, T)redr x 10" [J].
0.8 0

The distribution J,(R, t) makes it possible to esti-
mate the radius of the region where the resonant Fe
He,-line radiation is generated during the implosion of
alaser corona plasma and to analyze the relative influ-
ence of the kinetic effects of the delocalization of mass
and heat transfers on the shape of the pulse of the reso-
nant Fe He,-line radiation and the radiation energy.

GASPARYAN, IVANOV

We carried out the following three series of ssimula-
tionswith the KIN-MC code: in thefirst series, we used
the collisionless approximation, in which the ion-on
collision integral was artificially set to zero (the f ver-
sion); in the second series, we modeled ion—ion colli-
sions in full measure (the c version); and, in the third
series, we used the gas-dynamic approximation with a
Maxwellian ion distribution function (the m version).

Numerical results from these three versions are
illustrated in Figs. 2—6.

In Figs. 24, one can clearly see that the stage of
reflection of the shock wave from the center of aTST is
well described in al calculation versions. Among the
threeversions, the collisionlessf version givesthe max-
imum density (about 1 g/cm?) to which the Fe plasma
is compressed, while the gas-dynamic m version gives
the highest ion temperature. The ¢ version yields
parameter values intermediate between those obtained
inthefand mversions. In Fig. 3, we can seethat, inthe
stage of maximum compression, the kinetics of Feions
in the central region is essentially collisionless. This
conclusion is evidenced by the fact that the wide lead-
ing edge of the ion heat wave extends to a radius of
about 200 pm and significantly overtakes the jump in
density in the reflected shock wave. Inthef version, the
leading edge of the ion heat wave is double-humped,
which correspondsto the flows of high-energy ionsthat
are scattered and unscattered near the target center. An
analysis of theion density in phase space showsthat, in
thef and c versions, the ion distribution function within
the leading edge of the ion heat wave is far from being
locally Maxwellian. At the time at which the reflected
shock wave forms, theion distribution function over the
radial velocitiesis nonmonotonic; the beam component
of the function contains about 10-20% of theionsin the
region R< 130-200 pm. Such a significant beam com-
ponent of the distribution function facilitates the onset
of variousion instabilitiesin the plasmaand may hinder
the implosion of alaser corona plasma even when the
initial spherical plasmaflow isideally symmetric.

Although simulations with and without allowance
for collisions show distinctly different dynamics of the
plasma implosion, this difference has only a minor
effect on the calculated electron temperature and the
calculated integral energy yield in the Fe He,-line
(Figs. 5, 6) and, for the conditions under consideration,
results in discrepancies no higher than ~5%. The rea-
sonsfor such adlight effect liein the strong influence of
the shape of theion distribution function on the electron
temperature, strong coupling between the electron and
ion plasma densities, high electron thermal conducti-
vity, and the functional dependence of the intensity of
the resonant Fe He,-line emission in the coronaapprox-
imation.

Let usgiveaclearer insight into one of these factors.
The plasma differs radically from a system of individ-
ual particlesin that the electron and ion plasma compo-
nents are strongly coupled to one another. In our model,
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 2. Density profilesp(r, t;) computed at thetimest; = (1) 1.1, (2) 1.6, and (3) 2 nsusing the KIN-MC code. The solid curvesare

fromthe collisional c version, the dashed curves are from the collisionlessf version, and the dotted curves are from the gas-dynamic
mversion.
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curves are from the collisional ¢ version, the dashed curves are from the collisionless f version, and the dotted curves are from the
gas-dynamic mversion.
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Fig. 6. Shape of the pulse of theintegral energy flux J,(t) of
the resonant Fe He,-line radiation from a TST, computed

using the KIN-MC code. The solid curve is from the colli-
sional c version, the dashed curve isfrom the collisionless
version, and the dotted curve is from the gas-dynamic m
version. The dash-and-dotted curve is from the ff version
(or “fully free” version), in which theion—on and electron—
ion collisions are both switched off.

this coupling is accounted for by the quasineutrality
condition. Because of thiscoupling, evenin the absence
of ion—on and ion—electron coallisions, the plasmaelec-
trons are significantly heated adiabatically (provided
that the radiative cooling is neglected) during the
implosion of alaser corona. In simulationsin which al
collisions are artificialy “switched off,” the energy
yield in the Fe He,-lineislower by no more than afac-
tor of about 2.5 (Fig. 6). Therelatively weak sensitivity
of the electron temperature to the shape of theion dis-
tribution function is governed to a large extent by the
quasineutrality condition, which is responsible for the
strong coupling between the electron and ion plasma
components. Strong kinetic effects can a so be reduced
by the spherical geometry of the target: during the
spherical implosion of the plasmaflow, the plasma den-
sity increases substantially, thereby increasing the rate
of ion-ion collisions.

Before carrying out simulations with the KIN-MC
code, we expected that, during the implosion of alaser
corona plasma, the delocalization of the energy loss of
high-energy ions in the low-density tail of the unload-
ing wave of a laser corona in a large plasma volume
should significantly decrease the total energy yield in
the resonant Fe He,-line and increase the diameter of
the generation region. However, the above results of
kinetic and gas-dynamic simulations do not precisely
confirm this expectation in full measure (Fig. 6). In
Fig. 5, we can aso see that the calculated diameter of
the region where the resonant radiation is generated is
about D_,,. ~ 300 um, which differs markedly from the
experimentally measured diameter D, ~ 450-500 pm.
Hence, in the case of an ideal spherically symmetric
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implosion, the kinetic effects have no potential to
explain the experimental data. Presumably, the lower
hard X-ray yield and the larger generation region in
experiments with TSTs are associ ated with two-dimen-
siona and three-dimensional energy losses during the
implosion of alaser corona plasma. These losses may
come from the unstable character of plasmaimplosion
aswell as from non-one-dimensional implosion condi-
tionsin rea targets[13].

4. CONCLUSION

(i) We have formulated the equations describing the
ion kinetics in a simple multicomponent currentless
ideal quasineutral plasma under the assumption than
the electron distribution function is in local equilib-
rium. The ionHon and ion-electron collisions are
described by the Landau collision integrals. We have
developed the combined model and designed the
KIN-MC codefor numerically solving the kinetic prob-
lems of a smple plasma. In the combined model, the
kinetic equations are solved by the Monte Carlo
method and the energy balance equations are solved in
finite differences.

(if) We have presented the results from kinetic sm-
ulations of the spherically symmetric implosion of a
laser corona plasma under the conditions of experi-
ments that were carried out in the Iskra-5 facility with
thin-wall spherical targets with an interna input of
laser energy [11, 13]. We have investigated the charac-
teristic features of plasmaimplosion with allowancefor
ion—ion collisions. For a Fe-coated target with a diam-
eter of about 1 mm in which about 4-5 kJ of the input
energy of the pulsefrom aniodine laser is absorbed, we
have cal culated the effect of the nonequilibrium charac-
ter of theion velocity distribution function on the gen-
eration of the resonant Fe He,-line radiation during
plasma implosion. The radiative cooling of the plasma
was included in the model of internal radiative losses
from the corona plasma. Our simulations show that the
effect of the kinetics of ion—ion collisions on the gener-
ation of the resonant Fe He,-line radiation is relatively
weak. Such a weak effect is explained by the strong
integral influence of the shape of the ion distribution
function on the electron temperature, strong coupling
between the electron and ion plasma densities, the
quasineutrality condition, and the functional depen-
dence of theintensity of the resonant Fe He,-line emis-
sion in the corona approximation. Kinetic effects can
also be reduced by the spherical geometry of the target:
during spherical implosion, the plasma density in the
converging flow increases substantially, thereby
increasing the ion—-ion collision frequency. In the one-
dimensional approximation, kinetic effects fail to
explain the experimental datathat were obtainedin[13]
on X radiation spectraand on the diameter of theregion
where the resonant Fe He,-line radiation is generated.
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(iii) Nevertheless, taking into account the kinetic
effects of ion—on collisions may be important when
interpreting the detailed data from experiments with
laser targets. First of all, thisis true for the processes
that are directly associated with the formation of theion
distribution function, such as the kinetics of fusion
reactions and the formation of resonance lines in the
radiation spectra. Our one-dimensional computations
with the KIN-MC code show that the processes that
have an indirect impact on the ion plasma component
and are governed by, e.g., the electron temperature need
not be so precisely incorporated into the detailed calcu-
lation of the ion distribution functions. The radiative
characteristics of these processesin ahigh-temperature
multicharged plasma can be calculated with a reason-
able accuracy in the gas-dynamic approximation using
the methods of nonequilibrium radiative gas dynamics.
Hence, we can expect that using the gas-dynamic
approximation is sufficient to cal culate the influence of
two-dimensional and three-dimensional effects on the
plasmaimplosion and the generation of X radiation in
TST targets.
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APPENDIX
1. Numerical Model and the KIN-MC Code

The set of Egs. (4) and (12) issolved numerically by
a combination of particle-in-cell and difference meth-
ods. The ion distribution function is modeled by an
ensemble of particles whose evolution is traced by the
MC method. The electron temperature is found by a
finite-difference approximation to the electron energy
balance equation (4) on a grid whose spacing is appro-
priately adjusted at each time step. In turn, each time
step is divided into the following six substeps.

(i) At the first substep, the collisional ion motion and
the convective transport of the electron temperature are
calculated from the equations

af,  of,

Bt T Vigx T O

af,  of,

on.T, N ONU.Te
ot 0X
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(i) At the second substep, ion—on collisions are taken
into account by the MC method:

af,

Fr Ji1 + Ja,
of
6_t2 = JptJy.

(iii) At the third substep, the effect of the electron pres-
sure on the ions and on the electron temperature is cal-
culated from the equations

0f_ 2 0POf, _ ¢

ot mn,oxov,

0f;_ 2, 9P0f; _

ot myn,0xadv, ’

onT, 2 ou,

ot 3eTeox - O
Pe. = n.Te.

(iv) At the fourth substep, the changein theion velocity
dueto thefrictional forces associated with plasmaelec-
tronsis calculated from the equations

of, of, _
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(v) At the fifth substep, ion—electron collision fre-

guency and the related change in the el ectron tempera-
ture are calculated from the equations

of T m; 0
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(vi) At the sixth substep, the electron thermal diffusiv-
ity is calculated from the equations

5/2
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Now, we briefly describe how each of the substeps
isimplemented numerically.

At thefirst substep, the el ectron heat transport is cal-
culated by a special procedure. First, each ion is
assigned an additional variable equal to the electron
temperature in the cell where the ion occurs. After the
ionsaredisplaced, anew gridisconstructed so asto sat-
isfy the condition that the number of ions in a cell be
constant. Then, the new values of the density, mean
velocity, and temperature of the ions and the electron
temperature are calculated. In order to verify that the
convective transport of the electron temperature is
modeled correctly, it is sufficient to multiply the first
two equations of this substep by Z, T, and the Z,T,,
respectively, and to integrate the resulting equations
over ion velocities. Numerical experiments show that
adjusting the grid in such amanner appreciably reduces
statistical errors in calculating the ensemble-averaged
guantities.

The second substep is most difficult to implement
numerically. At this substep, Coulomb collisions are
modeled by a specially developed version of the MC
method [24]. Specifically, the Landau operator is
approximated by the Boltzmann collision integral, and,
then, the methods of the rarefied gas dynamics [25] are
applied. The approximation error is controlled by
appropriately choosing the dependence of the differen-
tial collision frequency on the time step. Fairly exact
results can be obtained only when the time between
model collisionsisshorter than thetime of relaxation to
alocally Maxwellian distribution. Since this condition
isdifficult to satisfy for cellsin which theion mean free
paths are short, the rate of model collisionsis chosen to
satisfy the condition for a particle to experience only
one collision event per time step. This condition guar-
anteesrelaxationto alocally Maxwellian distribution in
acell on each time step, so that the method used in the
second substep automatically starts to approximate the
corresponding gas-dynamic equations of motion of a
guasineutral two-component plasma.

At the third substep, the kinetic equations for the
distribution functions f; are replaced by the equivalent
equationsfor the moments of the distribution functions:

on, _

T T
6n1u1+ Z,n, 0P, -0,

ot mn, 0x
on,u, N Z;n,0P,

ot myn, 0x
These moment equations and the equations for n,T,
yield the equation
pzuz 3

d [plul 0, 9UePe
_ + =<4+ -n
otz "2 "2Mlat oy

=0, p=mn,
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which implies conservation of the total energy at this
substep. This equation and the set of moment equations
are solved numerically by the Godunov method [26], in
which the required new electron velocities and pres-
sures at the boundaries of the calculation cells are deter-
mined as follows. First, the following equations for u,
and P, are constructed:

u, /z\ 0P, _ Z\ 0P, 20U, _
3t < nox - O < R
where

Z\ _ ézlnl_'_éZZnZ
m, n m, ng’

e
2o 2(Z\Pe_ 2Te/7
3 N, 3 '

Then, the characteristic set of equations for these equa-
tions,

B)u

Ot © n_e<m>agt_eD Dax magx_% 0,
G- REe - - {38

Dot “Oox
is used to solve the problem of the decay of the discon-
tinuity at the boundaries of the calculation cells. The
new values of the electron velocities and pressures are
used to calculate the new ion velocities and the total
energy and, then, to find the new electron temperature.
The accuracy of the Godunov method is increased by
linearly interpolating the values of the quantities at the
boundaries of the calculation cells from their values at
the centers of the cells.

In order to implement the fourth substep numeri-
cally, itisalso convenient to switch to the equivalent set
of moment equations:

on, _, on,

r T T
on,u
“51{_1 = +vy, (U —ug)ny,
an,u

62'[ 2 = =V, (Uy —Ug)N,.

These moment equations imply that the total mass
velocity of theionsis conserved:

P1Us + PoU; = PU = P,
P =Pt P2
These relationships give

P1 vt
——(Uy,y—Uqg)€ ,
o (Uz—Uyp)
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_ P2 vt
u, = Uo*’B(Uzo—Ulo)e )

V =V, tVy,.

When implementing the fifth substep numerically,
thecollisionratev;,iscalculated from theinitial (at this
substep) value of the electron temperature, while the
electron temperature in front of the operator Af; is
assigned itsfinal (at this substep) value. Thisway guar-
antees that the energy is conserved. The final (at this
substep) electron temperature is determined as follows.
The moment equations that are constructed for the ion
temperatures in each cell yield the following set of
three ordinary differential equations for the ion and
electron temperatures T; and T

on,T
a_ltl = VN (Te=Ty),
on, T
%2 = VZSnZ(Te_TZ)a
on.T
aet £ = VM (T =Te) + Ve No(To = To),
4_2
oM m 4./21€ Z LNy
wherev,s_zmevie _2me 3 miz org

The electron temperature obtained by solving this
set of equations analyticaly is used for Monte Carlo
simulations of ion—electron collisions by a Green's
function approach [27].

At the sixth substep, the electron heat conduction
equation is approximated by an implicit difference
scheme, in which case the electron thermal diffusivity
is calculated from the temperature found at the fifth
substep. The resulting finite difference equations are
solved by the sweep method.

The above model for solving the kinetic equations
was implemented as the KIN-MC code. The code pro-
vides the possibility of switching off the ion—on colli-
sions; this version of simulations was referred to as a
collisionlessf version. Recall that, in the regions where
the ion mean free paths are short, our scheme with
model collisions results in the relaxation to a Max-
wellian ion velocity distribution; consequently, in such
regions, the scheme reduces to the solution of the cor-
responding gas-dynamic equations of motion of a
quasineutral two-component plasma. With this circum-
stance in mind, we arranged the KIN-MC code so asto
be able to perform cal culations with theion distribution
functionsthat are artificially forced to be Maxwellianin
all of the calculation cells at each time step and, accord-
ingly, to solve the problemsin the gas-dynamic approx-
imation. This version of calculations was referred to as
a“Maxwellian” mversion.

It is well known that statistical errors always occur
in Monte Carlo simulations. This is primarily true of

GASPARYAN, IVANOV

the nonlinear problems that are solved using a compar-
atively small number of particles. The KIN-MC code
provides the possibility of adiffusive smoothing of sta-
tistical errors; moreover, the parameters of the smooth-
ing procedure can be changed during arun of the code.

2. Comparative Calculations of Planar Flows

The accuracy of the calculations of the Landau col-
lisonintegral by Monte Carlo methods was checked by
Ivanov and Kochubei [24] for the problems of the ther-
malization of the nonequilibrium ion distribution func-
tions in a homogeneous multicomponent plasma. The
relevant Monte Carlo results were compared with the
results obtained with the LAND code, which is based
on a completely conservative difference scheme for
solving the Landau equations. Ivanov and Kochubei
[24] found that there is a good agreement between the
ion distribution function and its moments computed by
different methods. They concluded that their numerical
scheme constructed for modeling Coulomb collisions
can also be used to calculate the spatial flows of amul-
ticomponent plasma.

The scheme developed in [24] was tested in many
studies on the gas-dynamic flows of an ideal gas.
Numerical modeling of the gas-dynamic problems that
admit analytic solutions (such as the problems of the
planar and spherical reflections of shock waves and
unloading waves) showed that this scheme gives cor-
rect numerical results, provided that the problems are
solved numerically on spatial gridswith relatively large
spacings [28]. Moreover, the results of simulations in
which the ion distribution function was artificially
forced to be Maxwellian (see above) were found to
coincide with the results obtained by modeling colli-
sons in the gas-dynamic approximation. This is
because the methods implemented in the corresponding
numerical codes are, in fact, statistically analogous to
the Godunov method [26].

Let usdiscuss the results obtained by simulating the
interaction of plane unloading waves in a simple
plasma by the KIN-MC code and, in the two-tempera-
ture gas-dynamic approximation, by the CC-9 code
[21]. The calculations were carried out for the follow-
ing initial parameter values: the thickness of the plasma
coronais40 pum (0 < x < 0.004 cm), the plasma density
isp = 0.1 g/cm’, the electron and ion temperatures are
T.= T, = 1.5 keV, the plasmaflow velocity isu =0, the
atomic weight of the Feionsis A, = 56, and their ion
charge number is Z, = 26. The boundary conditions at
the left and right boundaries, x = 0 and x = 0.03 cm,
assume ideal particle reflections. The radiative losses
from the plasma are neglected. These parameters are
characteristic of the problems associated with laser tar-
gets in which laser light is converted into X radiation
(see Section 3). The simulations were carried out with-
out (version a) and with (version b) alowance for the
energy exchange between electrons and ions. The pro-
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 7. Spatial profiles of the mean ion temperature T;(r, t;) computed using the KIN-MC code (solid curves) and the CC-9 code
(dotted curves) at thetimest; = (1) 0.4, (2) 0.6, (3), 0.8, (4) 1.0, (5) 1.2, and (6) 1.4 nswithout allowance for the energy exchange
between the electron and ion subsystems.
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Fig. 8. Spatial profiles of the plasma density p(r, tj) computed using the KIN-MC code (solid curves) and the CC-9 code (dotted
curves) at thetimest; = (1) 0.3, (2) 0.4, (3) 0.5, (4) 0.6, (5) 0.7, and (6) 0.8 nswith allowance for the energy exchange between the
electron and ion subsystems.
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Fig. 9. Spatial profiles of the meanion temperature T; (1, t;) (solid curves) and the transverseion temperature T, (r, t; ) (dotted curves)
at thetimest; = (1) 0.2, (2) 0.3, and (3) 0.4 ns computed without allowance for the energy exchange between the electron and ion
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files of the gas-dynamic quantities calculated in version
aareshowninFigs. 7 and 8.

In a multicharged (quasineutral) plasma, the ion
velocity inthetail of the unloading waveis proportional

to ~./(Z+1)/A (at the expense of the electron pres-
sure). In simulations, this velocity was found to be
about 0.15 cm/ns, which corresponds to theion kinetic
energy E ~ 0.6 MeV/ion. Estimates of the mean free
path of theionswith such energieswith respect to Cou-
lomb collisions show that it is comparable with the
optical thickness of the expanding plasma, so that the
kinetic effects can be expected to come into play after
the plasmais reflected from the right boundary (i.e., in
the interaction of waves). Figures 7 and 8 show the pro-
files of the ion temperatures and plasma density calcu-
lated at the times close to the time at which the plasma
is reflected from the right boundary and the first shock
wave forms. The thermalization time for the ion distri-
bution function in the interaction region was deter-
mined from the relaxation time of the longitudinal and
transverse ion temperatures and was found to be about
0.4-0.6 ns. As compared to the gas-dynamic simula-
tions done with the help of the CC-9 code, which uses
the standard transport coefficients, the reflected shock
wave forms somewhat later and at a larger distance
from the boundary. Since, in the calculations of version a,
the ion—electron collisions are neglected, the ion tem-
perature remains high throughout the computation
time. It was found that, during the formation of a shock
wave, about 50% of the kinetic energy acquired by the
plasma during acceleration in the unloading wave is
converted into the internal ion energy.

The numerical results obtained in the cal cul ations of
version b areillustrated in Figs. 9 and 10.

A comparison of Figs. 9 and 10 with Figs. 7 and 8
shows that, in versions a and b, the shock waves form
in an essentially analogous fashion, thereby providing
evidencethat ion—on collisionsplay agoverning rolein
the problem under investigation. The profiles of the
mean and transverseion temperaturesin Fig. 9illustrate
the thermalization of theion distribution function in the
interaction between unloading waves. In version b,
the characteristic spatial scale on which the plasmais
nonequilibrium (or, in other words, the front width of
the shock wave) was found to be about 100 pm, the
time during which the plasmais essentially nonequilib-
rium (i.e., the longitudinal and transverse ion tempera-
tures are different) being about 0.2 ns. The devel op-
ment of gas-dynamic processes in later stagesis illus-
trated by Fig. 10.

In the problem under consideration, an important
roleisalso played by the energy exchange between ions
and electrons. As compared to version a, the electron
temperature in the region of interaction between
unloading waves behind the front of the shock wave is
higher by afactor of about three. The relaxation time of
T, and T, is about 0.4 ns, which agrees with the results
of gas-dynamic simulations with the CC-9 code. The
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most profound difference between simulations with the
CC-9 code and the KIN-MC code liesin the maximum
values of the ion temperature T; in the interaction
between the plasma flows as well asin the width of the
region where the ion temperature T, is high. The ion
temperature T, computed from simulations with the
standard transport coefficients using the CC-9 code is
higher by afactor of about 1.5 to 2 and the width of the
shock front isaccordingly smaller. In order to adjust the
results from gas-dynamic simulations to those from
kinetic simulations, we varied the ion viscosity and ion
thermal diffusivity in simulations with the CC-9 code.
The above results from calculations of version b were
obtained for the ion viscosity and ion thermal diffusiv-
ity that were increased by factors of 5 and 15, respec-
tively, in order to describe the high penetrability of an
anisotropic flow of fast ionsin the tail of an unloading
wave when the waves collide. Such a“fitting” provides
aqualitative modeling of the effects revealed in kinetic
simulations.
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Abstract—The motion of anonquasineutral plasmain a strong magnetic field such that B? > 4tmm,c? is ana-
lyzed. It is shown in ssimple examples that, when the plasma pressure and dissipation are neglected, the only
dynamic process in a magnetized plasma.is the evolution of the charge-separation electric field and the related
magnetic field flux. The equations derived to describe this evolution are essentially the wave Grad-Shafranov
equations. The solution to these equations impliesthat, in aturbulent Z-pinch, a steady state can exist in which
the current at asupercritical level J> mc’/Zeis concentrated near the pinch axis. © 2001 MAIK “ Nauka/Inter-

periodica” .

1. Many problems in plasma theory are treated
under the quasineutrality condition

ne = Zn;, ey

where n, and n; are the electron and ion densitiesand Z
istheion charge number.

It is thought that this condition may fail to hold in
the problems dealing with beams and diodes as well as
in the problems of the interaction of high-frequency
electromagnetic waves with plasmas [1, 2]. In recent
years, interest has grown in various plasma objects in
strong magnetic fields, in which case the quasineutral-
ity condition is aso violated; these are, e.g., ion diodes
filled with magnetized electrons, electron vortices, and
laser plasmas [3-8]. Gott and Yurchenko published a
series of papers [9] in which they used an approach
based on the dimensionality analysis of tokamak plas-
mas and showed that, under the quasineutrality condi-
tion, it isimpossible to give acorrect description of the
full variety of possible modes of tokamak operation; in
other words, the Debye radius should necessarily be
take into consideration.

In investigating systems with a strong magnetic
field, it is expedient to use, instead of the conventional

Debye radius rp = A/T/4ne2ne, the magnetic Debye
radius rg = B/41EEN,, Which is obtained from the Debye
radiusrp by replacing the temperature T with the quan-
tity B?/41n,. The magnetic Debye radius rg introduced
in such away describesthe screening of the electric and
magnetic fields in a plasma under the condition B? >
41, T. An increase in the magnetic field causes the
magnetization of the electrons and, then, of theions, in
which case the particle inertia can be neglected. There-
fore, the electromagnetic force acting on the particleis
equal to zero, so that the particles can be treated in the
drift approximation. However, thisapproach isvalid for

aplasmathat isin equilibrium; the deviation from equi-
librium isusually described with allowancefor theiner-
tiaof the heavier particles—theions. However, in asuf-
ficiently strong magnetic field, the inertial motion of
the ions can be neglected. If we also ignore thermal
effects and dissipation, we can describe the ions by the
hydrodynamic equation

m 3V

' dt

For strong magnetic fields, we can estimate the deriva
tive d/dt as the ratio of the speed of light c to the char-

acteristic scale length rg in order to see that ion inertia
can be neglected under the condition

= ZeE + Z—Ce[vi x B]. 2)

B® > 4Trnimic2. 3)
For a hydrogen plasma density of n = 10! cm, this
condition corresponds to the magnetic field B> 10 T.

Below, we will show that, in such magnetic fields,
the plasma in which the electrons and ions are both
magnetized can exhibit evolution only if the quasineu-
trality condition is violated.

2. The basic set of equations used here consists of
the drift equations for electrons and ions,
= —eE—g[vex B], 0= ZeE+ Z—Ce[vi xB], (4)

the electron and ion continuity equations,

on, _ on, _
E +0 E(neve) - O! at +0 [(nlvl) - 01 (5)
Maxwell’'s equations
41e 10E
OxB = T(Znivi - neve) + Ea, (6)
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OXE = —=° )

and Poisson’s equation
OLCE = 4me(Zn,—n,). 8)

Although Poisson’s equation (8) is a consequence of
Egs. (5) and (6), we also include it in the basic set of
equations because of its importance for further analy-
Sis.

Equation (4) impliesthat the electron and ion veloc-
ities are the same, v, = v; = v, s0 that we can introduce
the common total time derivative

d_oa
dt ot

First, we will consider a plasma system in which the
magnetic field is directed along the z-axis and the elec-
tric field has two components: E, and Eg. If the mag-
netic field in such a system is sufficiently strong, then
the most important dynamic processes occur in the
plane perpendicular to the magnetic field, in which
case, in describing the two-dimensional plasmadynam-
ics, we can heglect the dependence on the longitudinal
coordinate, d/0z= 0.

Taking a curl of each of Egs. (4) and using the cor-
responding continuity equations, we obtain

dle _dly_ o 2B | _B
d  dt 7 ° n’ ' n’

We see that the Lagrangian invariants |, and |; are con-
served along the trgjectories of a particle moving with
velocity v. Theinitial conditions are assumed to be such
that the quantities Zl, and I, differ from one another,
Zl. % |;; this assumption ensures that the quasineutrality
condition fails to hold for all subsequent time.

In the analysis to follow, it is convenient to intro-
duce the quantity R,
Z_10

1_
R AT T

which has the dimensionality of length and obviously
satisfies the equation
oR +vIVR = 0.
ot
Below, when deriving the main equations of the
approach presented here, we will restrict ourselves to
cylindrically symmetric plasma states, d/00 = 0, in
which case the basic equations describing the plasma
dynamics take the form

+v V. 9)

(10)

(1)

(12)

B
rar(rE) (13)
E9 1aE
R cat =0 (14

GORDEEV

0B, E, 10E

ar — R cot’ (15)
Hence, under the above assumptions, the plasma
dynamicsis completely described by Egs. (12)—15).

Note that, as was shown in [7], one of these equa-
tions, namely, Eq. (12), is equivalent to the induction
eguation.

3. Here, we derive the evol utionary equationsfor the
plasmain the problem asformulated. Expressing veloc-
ity v, from Eq. (4) in terms of Eg and using Egs. (13)
and (14), we can readily transform Eqg. (12) into the
equation

0R 0 0RO
S TE)— 55 (TE) = (16)
which gives
rg, = f(R)=f, (17)

where f(R) isan arbitrary function of R. Using formula
(17), we express Rin terms of f and introduce the func-
tion F(f) such that

F

R = R(f)= a (18)

We substitute Ey and B, from Eqs. (13) and (14) into
Eqg. (15) to obtain the following equation for E,:

00,10, -0 _E, 103:0En
or RrorE = =2 Zoden (19

Using the identities

(fE )= ar Ra—t(fEr) =30

we easily arrive at the final form of Eq. (19):

0 [10F 1aF _f
"arCrar0” o2 ot2 = G(F), G(F) = 575

This is a one-dimensional Grad—Shafranov equation
with an additional (second) term on the left-hand side.
With this term, the Grad—Shafranov equation takes the
form of an inhomogeneous wave equation.

Combining Egs. (13) and (18) yields F =rA,, where
A is the azimuthal component of the vector potential.
Of course, EQ. (20) can aso be derived in a traditional
way, by inserting the vector potential component Aqg
into Maxwell’s equations and using Eq. (12) to estab-
lish a relationship between the quantities rE, and rA;.
For a plasmawith drifting electrons and ions, thisrela-
tionship indicates the simultaneous wave dynamics of
the magnetic flux, described by A, and charge-separa-
tion electric field E, .

Interesti ngly, the approach used here implies that
rg/C > w,; ; in other words, the evolution of a non-

(20)

plv
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guasineutral plasmais much slower in comparison with
the ion plasma oscillations. For the above parameter
values, condition (3) yields rg > 10 cm; consequently,
the nonquasineutral plasma under consideration exhib-
itsan evolution in the form of fairly large-scale oscilla-
tions of the electric fields on a characteristic time scale
longer than 1 ns. Inthis case, fast plasmawaves are sup-
pressed, because the magnetic fieldisfrozenintheions.

4. Now, we derive an equation that is analogous to
Eqg. (20) and describes a plasma configuration with the
magnetic field By. This equation, which can be used for
investigating plasma currents far above the Alfvén ion
current, J > J, = mc’/Ze, will be derived using a dif-
ferent method, specifically, the method that was men-
tioned at the end of the previous section and in which
all the quantities are regarded as functions of both the
coordinate r and timet.

We turn to the z-component of Eqg. (6):

41 16E
rar( Be) c (Zniviz n Vez) + - at ’ (21)
where
® ar’ %7 ¢ at

With the electron and ion velocities deduced from
Eqg. (4) and with their z-components expressed as func-
tions of the electric field, Eq. (21) becomes

0Af 1aA E,
o0 252 ~ rRE

10
ror

(22)

In terms of the new Lagrangian invariants 15 and 1",

the quantity R* on the left-hand side of Eq. (22) takesa
form similar to definition (11),

By ., By dlf¥ di*

Ie:ﬁ' Ii :r_ni’ E=E=O (23)
and satisfies Eq. (12),
1 _ nZ _1g dR* _
= = 4Te qi* el 0. (24)

Note that the quantity R* is a dimensionless one, while
the quantity R has the dimensionality of length.

Ther-component of Eq. (6) and Eq. (8) givethefol-
lowing two equations for A, and rE;:

0A,  _, 0A,
I Z+ R ( rg,) = ar

Using Eq. (24), we can establish a relationship
between R* and rE,. We substitute v, found from
Eq. (4) into Eq. (24), express E, and By in terms of A,
and use Eq. (25) to ascertain that R* satisfies an equa-
tion that exactly coincideswith Eg. (16). Consequently,
we have R* = R*(rE,).

R*—(rE) = 0. (25)
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Inserting this functional expression into Egs. (25)
yieldstherelationship rE, = ®(A,), which puts Eq. (22)
in the final form

10
ror

aAﬂ 10 A
or0™ C2 6'[2

This equation describes the dynamics of the mag-
netic and electric fieldsin aplasmawith a current flow-
ing along the z-axis. The characteristic currents whose
dynamics is described by Eq. (26) can be estimated
from condition (3) in which B isreplaced by the expres-
sion By = 2J/rc, relating the magnetic field to the cur-
rent:

qJ(AZ) (26)

3
m;c
Ze

It is well known that, in turbulent regimes, plasma
turbulence tends to equalize some of the Lagrangian
invariants [4, 10]. If the current flowing in a plasma
gives rise to turbulence, then, as aresult of such turbu-
lent equaization, we have R* = const = 1/v and ®(A) =
V2A,, in which case Eq. (26) can be solved by separat-
ing the variables. Among the numerous possible solu-
tions, we choose the solution

J> = 27)

[

A, DINV(rs)sin(cts)ds, (28)

where N,(X) is the Neumann function. For an arbitrary
value of v, this solution is asymptotically (at ct > r)
unsteady. However, in theimportant particular casev =1,
the chosen solution A, has the form

AZDC—t t>[,
C

rA/(ct)z—rZ’

which impliesthat, for ct > r, the magnetic flux density
near the plasma axis relaxes to a steady state such that
A, ~ 1/r. This particular case, in which we have R* = 1,
correspondsto a plasma configuration whose character-
istic scale length is on the order of the magnetic Debye
radius rg. Let us estimate the magnetic Debye radius
rg ~ Bg/(41EN,) fOr the current J = 100 MA and the
electron density n, = 10%° cm3. Using the expression
that relates the magnetic field By to the current, we can
estimate rg asrg ~ ./J/21en.c, which givesrg ~ 0.5 x
102 cm.

It should be kept in mind that the drift approxima-
tion, in which expression (29) was obtained, becomes
invalid near the axis and the solution has no singularity
asr — 0. The characteristic radius of thisaxial region
ison the order of theion Larmor radiusr; ~ mc?/(eBg) ~

A,=0, t<£, (29)

rgdTn,mc?/ Bg <Tg.
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An analysis of the stability of the supercritical cur-
rents flowing in a plasmayields the following equation
for the perturbed radial electric field oE;:

1d _p d

—3E,
pdp1+ p2dp
(30)
2
N 2922+ Q 2—3565:0,
1+p7) 1+p p

where p = kr, Q = wkc, w is the perturbation fre-
guency, and k, is the wave vector in the propagation
direction of the current.

Inturn, an anaysis of Eq. (30) shows that the inevi-
table localization of the perturbing currents near the
axis results in steady-state electric-field oscillations
with Q =—1. This correspondsto nonzero perturbations
of the quantity R*.

5. The unsteady dynamics of a magnetized plasma
has been investigated under the assumption that the
plasmaisinertialess. It is shown that, in a strong mag-
netic field such that B> > 4mmymc?, the only dynamic
processin the plasmaisthe evol ution of the charge-sep-
aration electric field and the related magnetic field flux.

The results obtained make it possible to qualitatively
explain the results from simulations of laser plasmasin
which very intense laser radiation (~10?> W/cm?) gives
rise to strong magnetic fields (B ~ 10° T) and the ions
are accelerated to nearly the speed of light [11]. For
electron densities of about n, ~ 10?! cm~3, the magnetic
Debye radius in such plasmas is estimated to be rg ~
1 um, which corresponds to characteristic time scales
of about T ~ 104 s. An important role of the localiza-
tion of the plasma current in the axial region was
revealed in simulations carried by Bulanov et al. [11].
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Abstract—The efficiency of the wave energy loss from a nonuniform MHD waveguide due to the conversion
of the trapped magnetosonic waveguide modes into runaway Alfvén waves is estimated theoretically. It is
shown that, if the waveguide parameters experience ajumplike change along the waveguide axis, theinteraction
between the waveguide modes and Alfvén waves occurs precisely at this “jump.” This effect is incorporated
into the boundary conditions. A set of coupled integral equations with a singular kernel is derived in order to
determine the transmission and reflection coefficients for the waveguide modes. The polesin the kernels of the
integral operators correspond to the surface waves. When the jump in the waveguide parametersis small, ana-
lytic expressionsfor the frequency dependence of the transformation coefficients are obtained by using amodel
profile of the Alfvén velocity along the magnetic field. For the jump characterized by the small parameter value
€ = 0.3, the wave-amplitude transformation coefficient can amount to 5-10%. Under the phase synchronization
condition (when the phase vel ocities of the waveguide modes on both sides of the jump are the same), the wave-
energy transformation coefficient is much higher: it increases from a fraction of one percent to tens of percent.
The transformation of fast magnetosonic waves into Alfvén waves is resonant in character, which ensures the
frequency and wavel ength filtering of the emitted Alfvén perturbations. © 2001 MAIK “ Nauka/I nterperiodica” .

1. INTRODUCTION

In research on controlled nuclear fusion in toka-
maks, auxiliary heating by RF fields at Alfvén frequen-
cies [1-3] is successfully applied in addition to ohmic
heating. The maximum auxiliary heating power is
achieved when the Alfvén mode is strongly absorbed
during the resonant excitation of a surface wave at a
steep gradient of the plasma parameters [4, 5]. The
highly nonuniform Alfvén velocity distribution and the
related surface waves also occur at the interfaces
between the plasma media in astrophysical plasmas.
The excitation and dissipation of surface waves may
play arolein the heating of the solar chromosphere[6].
In the Earth’'s magnetosphere, surface waves at the
plasmapause are observed as a sort of pulsations of the
geomagnetic field [7].

The mathematical formalism for describing the con-
version of fast magnetosonic (FMS) modesinto Alfvén
waves is essentialy identical to that for describing the
conversion of electromagnetic waves into plasma oscil-
lations[8, 9]. The excited surface wave plays an impor-
tant rolein thetemporal evolution of the process of con-
version of the electromagnetic wave into plasma oscil-
lations at a steep plasma density gradient [10].

All of the above wave processes in laboratory and
space plasmas were studied using one-dimensional
models, which significantly simplify theoretical analy-
sis. On the other hand, it isworth noting that the regions
with an increased plasma density often form MHD
waveguides, which are frequently encountered in space

plasmas. Such waveguides are able to absorb and accu-
mulate the energy of hydrodynamic perturbations.
Dense plasma sheets exist in the equatorial planes of
the magnetospheres of the giant planets, such as Jupiter
and Saturn [11, 12]. Near the Earth, the plasma density
is increased in the equatorial plane of the magneto-
sphere [13] and in high-altitude cusps [14]. One of the
characteristic plasma configurations in which hydrody-
namic waveguide modes can propagate is the plasma
sheet in the Earth’s magnetotail [15, 16].

Information on the processes by which the wave
energy isaccumulated in the MHD waveguides near the
Earth can be obtained by ground-based observations or
by satellite observations. This is possible because the
modes trapped in a waveguide are converted into
Alfvén waves capable of propagating over large dis-
tances along the magnetic field lines without being
scattered in space. In attempting to interpret the data
from actual observations in terms of the conversion
mechanism, it is necessary to estimate the wave energy
loss from an MHD waveguide due to the conversion of
the trapped magnetosonic waves into Alfvén waves.
Fedorov et al. [17] considered awaveguide where FM S
waves are converted into Alfvén waves at smooth
plasma inhomogeneities to which the Wentzel-Kram-
ers—Brillouin (WKB) approximation can be applied.
Here, we analyze the conversion of FMS waves into
Alfvén wavesin awaveguide whose parameters change
along the axisin a stepwise manner.

1063-780X/01/2709-0773%$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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2. HYDROMAGNETIC WAVEGUIDE
FOR FMS WAVES

We consider an inhomogeneous plasma in a con-
stant magnetic field B,. We assume that, in a certain
plasmalayer, the plasmadensity isincreased at the cen-
ter and decreased monotonically away from the center,
so that the Alfvén velocity V,(2) at the center is mini-
mum. Sincethereisa“well” inthe Alfvén velocity dis-
tribution, the layer serves as awaveguide for FMS per-
turbations. We choose a Cartesian coordinate system (X,
y, 2) with the z- and x-axes directed along the magnetic
field B, and the waveguide axis, respectively, and
assume that the plasma is homogeneous along the
y-axis (Fig. 1).

We neglect thermal and Kinetic effects in order to
describe the plasma perturbations by the ideal MHD
equations. According to [17, 18], it is convenient to
introduce the potentials ¢ and ¢ for FMS and Alfvén
perturbations, respectively, in which case the electric
and magnetic fields, E and B, can berepresented asE =
EA+ EM andB = BA+ BM1 Whefe

Er=-Vo0, Ey =[e,xV]y, W
0Ba = [€,xV]0,0, 9By = Voo,u—(Vaw)e,

Here, we use the notation V= e, + e,0,. Substituting
expressions (1) into Maxwell’'s equations gives the
equations for the potentials.

We start by considering a simple case in which the
Alfvén velocity V, isuniform along the waveguide axis
and depends only on z V, = Va(2. For such a
waveguide, the potential s satisfy the equations[17]

(0,— Vi = 0,

2)
(VE+0,,-Vid )y = 0.

SW

SW

Fig. 1. Geometry of amodel MHD waveguide. The arrows
show the propagation directions of the waveguide mode
(WG) and surface wave (SW).

MAZUR et al.

If the potentials obey the dependence Oexp(—iwt),
Egs. (2) reduceto

Lad =0, (VA+L)W =0, 3)

where L, = 9, + ki is the Alfvén operator and k, =
w/V, is the Alfvén wavenumber. If the Alfvén velocity
is independent of the transverse coordinates x and v,
then Egs. (3) for the potentials of FMS and Alfvén
waves are decoupled, so that the waves do not interact.

Let us describe the structure of the modes that can
propagate in the waveguide under consideration. To
simplify the model, we assume that ka(z) — k, >0 as
z — oo, We introduce the function U(z) = kfo -
ki (2), which is negative and obeys the relationships
U(—o0) = U(0) = 0. Since the plasma is homogeneous
in the y direction, different harmonics of the perturbed
potentials, Clexp(ikyy), can be treated separately. The
equation for , the second one in Egs. (3), takes the
form

[05— Ky + Ko +0,—U(@]W (% 2) = 0.

Since this equation is uniform in x, it has the solutions
Y(x, 2) = exp(ikxX)e(2), in which the profile e(z) along
the z-axis is described by the following spectral prob-
lem with the parameter v:

[-0..+U(2)]e,(2) = ve,(2). @)
The wavenumber k; = (k2 + kf )12 isrelated to the spec-
tral parameter v by ki = k> — v2, which yields k? =
k2 — kg — V2,

Equation (4) is a one-dimensiona Schrodinger
equation with the potential U(z), which has one mini-
mum, e.g., U(z= 0) = U,,. If the function U(2) decreases
sufficiently sharply at infinity, then the spectrum of
problem (4) consists of a finite number of discrete

eigenvalues vﬁ within the interval U, < v,f <0Oanda
continuum of eigenvalues v? in the positive z-axis (O,
+00). The properties of the continuous spectrum in the
spectral problem (4) that are required for further analy-
sisaredescribed in Appendix A. Here, we areinterested
intheeigenfunctionse,(z) (n=1, ..., N) corresponding
to the eigenvalues vf < 0, because these eigenfunctions
describe the waveguide modes with the potentials
Wn(X, 2) = exp(iK,X)e,(2) (K,f = kf, - kj - v,f), which
are trapped in the layer with a depressed Alfvén veloc-
ity. The eigenfunctions e,(2) decrease exponentially
with distance from the waveguide layer: e,(2 O
exp(—|v,z|) for |z| — 0. We assume that these eigen-
functions satisfy the conventional normalization condi-

tion ﬁ: €,8,0z = 81,
PLASMA PHYSICS REPORTS  Vol. 27
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3. GENERAL THEORY OF THE EMISSION
OF SURFACE WAVES FROM AN MHD
WAVEGUIDE WITH A SHARP PLASMA
INHOMOGENEITY

In alongitudinally nonuniform waveguide such that
V, = Va(X, 2), the FMS waveguide modes propagating
along the waveguide axis can generate Alfvén waves. In
this case, instead of the decoupled equations (2) for the
potentias, we are faced with afar more complicated set
of coupled equations[17, 18]:

V(0. +ka) Vb = (Voka (e, x VIw),

Vo(VE+k)Vow = ~«(Voka (e, x V]o).

From these equations, we see that FM S waves (with the
potential (i ) can generate Alfvén perturbations (with
the potential [@ ) if the Alfvén velocity V, changes
along the waveguide axis. Here, we areinterested in the
situation when the Alfvén velocity changes sharply
over the wavelength of FM S waves, in which case the
emitted Alfvén waves are similar in structure to the sur-
face waves. Let the Alfvén velocity change in a step-

wise manner from V;, (2) to Vx (2) at x = 0:

(2 fi
Vanz) = g AR T
VA(2) for x>0.

In each of the half-spaces x < 0 and x > 0, the Alfvén
velocity is uniform in x. Consequently, the electromag-
netic field on both sides of the boundary x = 0 can be
described by simple equations (3). Since FMS waves
interact with Alfvén perturbations only at the boundary
between the half-spaces, the coupling between Egs. (3)
can be incorporated into the boundary conditions.
Hence, the potential Y satisfies the conditions

q_j =
W=y,
where L; = -0, + U; (2, U; (2 = ki — (kp ) and

Ka (=00) = K (+00) = Ky .

The electromagnetic field components tangential to
the boundary between the half-spaces, namely, the
components E, and B, are related by the conditions

ET|X:+O_ET|x:_O = Oa
BT|X:+O_BT|X:—O = Hol x ey,

wherel is the surface current flowing along the bound-
ary. In what follows, we need only two of the four con-
ditions (6) imposed on the field components. In fact,
one of the conditions, specifically, the condition that the
longitudinal component of the electric field be continu-
ous, holds automatically, because, in ideal magnetohy-
drodynamics, we have E, = E; = 0. The relationship

x<0

W, (VE+K—L)w =0 for x<O0,

&)
(VE+IC-L)P" =0 for x>0,

(6)
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B,k-+0 — Byk=_0 = Hyl, serves to determine the field-
aligned surface current at the boundary. The remaining
two conditions have the form

Eyli=40Bylx=0 =0,

(7

B,|x-40—By|x-o = O.
In order to transform these rel ationshipsinto the bound-
ary conditions for the potentia , we turn to Egs. (1),
which yield the following expressions for the compo-
nents E, and B, of the electromagnetic field of FMS

waves. E, = o and iwB, = Vé . We substitute these
expressions into conditions (7) and take into account
Egs. (5) to obtain

axllJ_|x:—0 = axllJJr|><:+0’
(L—_kE)LIJ_|x:—O (L+_kf)l-|*'+|x:+0-

Now, we should specify the wave processthat serves
as an energy source for an Alfvén wave generated at the
boundary between the semi-infinite homogeneous
plasma media. As was shown in Section 2, the equa-
tions for a medium that is homogeneous in the x direc-
tion have solutions describing the waveguide modes.
An FM S perturbation propagating along the waveguide
is generally a superposition of al possible waveguide
modes; for our purposes here, it is sufficient to consider
only one of them, specifically, the mode that isincident
on the boundary, e.g., from the left (Fig. 1). At the
boundary, this mode is partly reflected back into the
original medium and partly transmitted into the second
medium. Also, this mode may excite other waveguide
modes, which propagate away from the boundary in
both media. However, since we are interested in wave
generation along the boundary between two homoge-
neous plasma media (in the direction of B)), we restrict
ourselves, for simplicity, to analyzing the situation in
which only one waveguide mode exists on both sides of
the boundary.

®)

In order to describe the wave processin question, we
solve the boundary-value problem (5) with the bound-
ary conditions (8). According to the method for separat-
ing the Fourier variables, we expand the desired solu-

tion in the spectra of the operators L; :

W (x,2) = [exp(ik;X) + Riexp(-ik;Xx)] € (2)

+o00

+ I Ry exp(-ik,x)e, (2)av,

+ .+ + (9)
P (% 2) = Dyexp(ik;x)e;(2)

+o00

+ J’ D, exp(ik,x)e, (z)dv.
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Here, (K7)?= ki =k, — (V)% (Ky )P = kg — kg —V3;
R, and D, are the reflection and transmission coeffi-
cients for the waveguide mode, respectively; and the
analogous coefficients R, and D, refer to the contin-
uum. The functions e,(2) of the discontinuous spectrum
of the operator L were described in Section 2, and the
continuum is discussed in detail in Appendix A.

We substitute expressions (9) for the potential Y into
conditions (8) at the boundary x = O to obtain the rela-
tionships

K[(l—Rl)eI(z)—IK;Rue;(z)du

= Kk;D,e;(2) + J’K;Due;(z)du,
- (10)

+o00

M(A+R)e(2) + IA;Rpe;(z)du

+o00

= \;D,e;(2) + J’)\;D“e:(z)du,

where A] = k2 — (v )2and A} = kX —v2. To simplify
the formulas, we use the notation ké = A\ with the cor-
responding indices.

Taking the scalar product of relationships (10) with

e, and e, and carrying out simple but rather laborious

manipulations, which are presented in Appendix B, we
arrive at thefinal set of equationsfor the coefficientsR,,
D,,R,, and D,:

+o00

R, = R”+ [ Fa(v)Dudv, (11)
D, = D§°’+}°FD(v)Dvdv, (12)
R, = R+ }KR(v,u)Dudu, (13)
D, = 0 (14)

D"+ [Ko(v, H)D, .

The free terms and the kernels of these equations are
represented by formulas (B.2), (B.3), (B.8), and (B.9)
inAppendix B. We direct attention to the general struc-
ture of the equations derived: Eq. (14) is an integral
equation of the second kind for the function D,,. Having

MAZUR et al.

found a solution to this equation, we can determine the
remaining coefficients R,, D,, and R,, because
Egs. (11)13) relatethem to D,,.

It is important to note that the quantities D\(,O), Kb,

Rﬁo) , and K contain the resonant denominator

A(V) = Nk, + K,

= (K =)=k =v7 + (K =v2) K =K =V,

which is the dispersion function of the surface wave
generated at the boundary x= 0. Therootsv = +v, of the
equation A(v) = 0 are the wavenumbers of thiswave, in
which case the values of |v4| lie between k_and k,. The
representation of the wave field in the form of Eq. (12)
was obtained by expanding the solution in the discrete
and continuous spectra of the transverse operators L; .

The surface perturbations are described in terms of the
potentials Y_ and |, of the wave fields that are similar
in structure to FMS perturbations in each half-space.
However, since these potentials obey different condi-
tions at the boundary x = 0, it isimpossible to introduce
a unified potential ), which would be continuous over
the entire space. This indicates that the potentials J_
and Y, describe the coupled FM S and Alfvén perturba-
tions. The discontinuity (y, — )|~ corresponds to
the field-aligned surface current |, of a surface wave
propagating along the jump in the Alfvén velocity, i.e.,
along the boundary x = 0. The field of the surface wave
will be explicitly calculated below by closing the inte-
gration contour in Eq. (12) in the plane of the complex
variable v. As aresult, the field will be represented as
the sum of the residues at the poles of the integrands
(i.e., at the points +v,) and the integrals along contours
along both sides of the cuts drawn from the branch
points. The integrals along both sides of the cuts
describe FMS waves propagating away from the
boundary in both media, while the residues describe the
surface waves that are localized in x and represent the
coupled FM S and Alfvén perturbations. We emphasize
that the surface waves experience no reflection and
propagate away from the boundary in both directions
along the z-axis.

The kernels Ky and Kg possess an important prop-
erty: each of them can be represented as a sum of the
degenerate component (the product of the functions of
v and 4) and the nondegenerate component, which
determines the singular operator with a Hilbert kernel:

Co(Vv,
Ko(v, ) = ~3D () + 2
15
1 Cr(v, 1) )

Kr(v, ) = —5RP®(p) + 5=,
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Fig. 2. Phase diagrams and synchronization conditions of the waveguide modes.

where

+ +|:| .
o) = 0+ Kie &), (16)
A 1

1 K{

and the quantities Déo) , Rﬁo) , Cp, and Cy are described
by fairly involved explicit expressions (B.9) and (B.8)
given in Appendix B.

The efficiency for conversion of the waveguide

mode into a surface wave can be characterized by the
guantities

K = I[siw(x, +00) — S (x, —00)]
- (17)

00 -1

x dx[ J' Sf(WG)(z)dz}

and

b, = max|B>|(max[B)y (18)

which will be referred to as the wave-energy and wave-
magnetic-field conversion coefficients, respectively.
Here, SY© and B are, respectively, the averaged
Poynting vector S = (24,)'Re[E x B] and the mag-
netic induction vector of the incident waveguide mode
and S and BSY are the same vectors of the surface
wave far from the waveguide axis.

It is important to note that the very formulation of
the problem implies the existence of the waveguide
mode with the potential Y& = e, (2)exp(ik,X), which
propagates in the medium to the left from the jump in
the Alfvén velocity. In other words, the parameters w
and K, should belong to the transmission band of the
entrance channel of the waveguide. In a uniform
waveguide, the wavenumber is afunction of frequency,
ko = ky(w). Here, we speak of a particular waveguide
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mode, e.g., the modewith ké = kf, - vf. Inthe x direc-
tion, the waveguide can transmit modes with k; < k(w).
Recall that the waveguide under investigation consists
of two homogeneous plasma media, each with its own
dependence of k; on w. Depending on the relative
shapes of the longitudinal profiles of V,(z) on both
sides of the boundary between the media, the bound-

aries of the transmission bands, k, = k5 (w) and k, =

k(, (w), either do not intersect (Fig. 2a) or intersect at a
certain point (w5 k) (Fig. 2b). Thelatter caseisof par-
ticular interest because, at the frequency w = wr the

wavenumbers of the waveguide mode in both media
coincide, which indicates synchronization of the
entrance and exit channels of the waveguide. This situ-
ation can take place only under the following condition:
the difference of the background Alfvén velocities far

from the waveguide, V,: (0) -V, (£), and that at the

waveguide center, Vx (0) — V (0), should have oppo-
site signs (Fig. 3). If these differences have the same

signs, then synchronization of the entrance and exit
channels of the waveguide is impossible.

4. PERTURBATION THEORY FOR A WEAKLY
NONUNIFORM WAVEGUIDE

In a general formulation, the problem is very diffi-
cult to solve mathematically. In order to give insight
into the characteristic features of the wave process, we
consider the limiting case of asmall jump inthe Alfvén
velocity at the boundary between two homogeneous
plasma media:

Inthis case, we can derive explicit expressionsfor all of
the quantities of interest to us. We set U,(2) - U_(2) =
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Z/L

Fig. 3. Modéel profile of the Alfvén velocity along the mag-
netic field.

eh(z) and kf K= ed, where € is a small parameter.
The function eh(z) can be regarded as a perturbation of
the operator L_ across the boundary x = 0; i.e., we can
set L, = L_+ €h(2). The corrections to the eigenvalues
and eigenfunctions of the discrete spectra can be found
using the standard Schrodinger perturbation theory
[19]; the corresponding estimates for the continuum are
presented in Appendix A.

The potential PSYV(x, 2) of the surface wavefar from
the waveguide axis can be calculated from the coeffi-
cients D, and R,, which should be found in advance by
solving Egs. (14) and (13), and from the asymptotic
estimates (for z— ) of the integrals over the con-
tinuum in expansion (9). In this case, the perturbation
of the original waveguide mode is determined by the
coefficients D, and R,.

It follows from further analysis that the efficiency
with which the waveguide modeis converted into asur-
face wave is the highest near the boundary of the trans-
mission band of the entrance channel of the waveguide,

i.e., for K, (w, k) — 0. Consequently, it is necessary
to obtain uniform asymptotic estimates for D, and R,

that are valid for e — 0 up to the boundary of the
transmission band. In order to simplify matters, we

denote k; by K.

For e — 0 at fixed K, the freeterms D\(,O) and R\(,O)
in Egs. (14) and (13) arefirst-order quantities. The non-
degenerate components of the kernels Ky and Ky, i.e.,
the second terms on the right-hand sides of representa-
tions (15), are also proportional to €; moreover, the cor-
responding proportionality coefficients are uniform in
the parameter K. On the other hand, the estimate ®(u) =
O(e), which follows from expression (16) at fixed k and

MAZUR et al.

the relationship (e, €;) = O(€), is nonuniform as
K — 0, because the function ®(u) contains the term
proportional to [k .

Hence, although the degenerate components of the
kernels K and K are on the order of €2, they should be
taken into account in obtaining uniform asymptotic
estimates, whereas the nondegenerate components can
be neglected. The leading-order terms of the uniform
asymptotic estimates can be found from the following
set of equations with nondegenerate kernels:

+o00

© 1.0
D, = D, ZIDV ®(u)D,dy,

(19)

+o0o

©_ 1.0
R, = R, ZIR" ®(u)D,dy.

These equations have the solution

D, = AD”, R, = AR?,
+00 —1

0 1 0.0 (20)
A = DL+—ICD(V)DV o .
0 2% 0

By exploiting the smallness of €, we can significantly
simplify expressions (B.8), (B.9), and (16) for D”,

Réo) , and ®(v). When analyzing the situation near the
boundary of the transmission band, we can also replace
the quantitiesthat remain finiteask — 0 by their val-
uesat Kk = 0. Asaresult, we obtain

© _ O _ eCok3hy
D, =R~ = 2, 2,2 2
2(v +a)(vi—vy)
= (21)
D(V) =

kiral
where we introduced the notation

h, = (e, hep), a*=—(v))°>0, kK3=A; =K’ +a’,
Co=2(1+ . J1+K2eP) (A =A]=¢P, +O()).

Using expressions (21), we find the coefficient A in
solution (20):

] ik ;| v E_l o)
g 4 / W2+ad) Vo (k_+i0Y0

—00

+o00

A=

Now, we estimate the integrals over the continuum
in expressions (9), restricting the analysis to the wave
PLASMA PHYSICS REPORTS  Vol. 27
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field far from the waveguide axis. For example, we con-
sider

00

Weorn(x.2) = [Roexp(-iK,X)&,(Z)dv.  (23)

To be specific, we analyze thelimit z— +co, inwhich
we take into account expressions (A.5) and (A.6) to
obtain

0

Wan(X2) = [OREXP(=iK X +ivZ)dv

(24)

+ J’BJRVexp(—iK;x—ivz)dv.

—00

In order to take the integrals on the right-hand side of
expression (24), we close the integration contours for
the first and second integrals through the upper and
lower half-planes of the plane of the complex variablev,
respectively. The integrands have poles at the points
v = (Vs +i0) (we displace the poles from the real axis
by infinitely small distances in order to take into
account an arbitrarily small dissipation and thus to
obtain a physicaly correct result). The calculation of
the integrals in expression (24) reduces to the calcula
tion of the residues at the indicated poles and integra-
tion along contours along both sides of the cuts, which
are necessary in order to deal with the single-valued
branch of the integrand. For thefirst integral in expres-
sion (24), the cut is drawn from the branch point v =

i /k; —k® upward along the imaginary axis around the
polev =ia, in which case, when considering the region

adjacent to the boundary of the transmission band, we
can restrict ourselves to the inequality k, > k; i.e., we

can assume that the branch point of thefunction k,, lies

on the imaginary axis. For the second integra in
expression (24), the cut is drawn in a similar way—

from the branch point v = —i A/kj —k? downward along
the imaginary axis.

For z — +oo, the integrals along contours along
both sides of the cuts are negligibly small. Hence, we
are left with the problem of calculating the residues at

the points v = *(v + i0). The integral Yoy, (X, 2) =
" Dyexp(ik,X)&, (2)dv can be treated in a similar
way. As aresult, we obtain

kS ET - - - -
= +— +
Weont (X 2) 5 k_ACo(O( i +Bch) 25)
x exp(—ky|x| +ik_z).
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Here, we take into account the fact that vS2 K s
€ — 0; recall that the value of v§ is intermediate

between the values of k® and kf , and that kf K =

ed — 0. Inthelimit z— —o, we arrive at analogous
formulas:

¥ - 4L ol Tl
Weont (X, 2) = iZil(_'a\(-\'o(\/k,hk,"'5k,|"k,) 26)

x exp(—k,|x —ik_z).
Using expressions (25) and (26) for the potential s of

the surface wave, we can cal cul ate the conversion coef-
ficients (17) and (18):

k
K = £°C2|A°

ykz(q+ +0q.),

2
ky

kg max w(z) -

27)
b; = £°CglA®

where

2
™l - - —
q. = E‘ak,hk,"'ﬁk,hk,

‘ 2

‘2

2
™ -, - E—
q- = E‘yk_hk_'i'ak_hk_ ,

w(z) = k3'(0,61)° +ka'(en)”.

The coefficients a,, B,, Y,, and &, are given by formulas
(A.6) in Appendix A; the minus superscript indicates
that these coefficients are calculated from the “unper-
turbed” potential U_(z). Note that, for a symmetric lon-
gitudinal profile V,(2), we obviously haveq, = q_.

5. COEFFICIENTS FOR CONVERSION
OF THE WAVEGUIDE MODE INTO A SURFACE
ALFVEN WAVE

Let usconsider in moredetail the structure of expres-
sions (27) for the conversion coefficients K(w, K, €)
and b(w, K, €). The factors g, depend only on the fre-
guency w; consequently, when studying the behavior of
K and b near the cutoff frequency, they can be regarded
as being constant. The calculations carried out in Sec-
tion 6 for a particular example show that each of the
functions g.(w) vanishes in both limits w — 0 and
w — coand has one or several maxima.

When estimating different factors in expressions
(27), we normalize them to the characteristic transverse
scale length L of the waveguide layer. In order of mag-
nitude, the factor q,L? is fairly small: it is about 0.1 or
even smaller. Because of the smallness of the quantity
€2, the coefficient K, which contains the small denomi-
nator KL, is essentially nonzero only near the boundary
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of the transmission band. As for the coefficient b, it

obeys the relationship b [k A/qiLS, so that the region
where it is not too small iswider.

Unlike the factor qg,L3, the factors kyk:1k52 L and

kj kgSL_3 /maxw(2) in expressions (27) are easy to esti-
mate analytically. They remain finiteask — 0 (k, =

A/ké —Kk’ ). For moderate frequencies, w ~ VL', they
are typically on the order of unity. Finally, we turn to
the factor F = €2C. |A? in expressions (27). This factor
depends in a fairly complicated fashion on the three
parameters w, K, and € and plays an important role
(especidly in combination with thefactor k in the denom-
inator of K) in determining the behavior of K and b near
the boundary of the transmission band (as Kk —= 0).
An analysis of the dependence of F on k shows that the
functions Cy(k)> and |A(K)]? increase monotonically
from zero at k = 0 to unity for K —» oo0. The transition
occurs near the boundary of the transmission band, in a
narrow region whose width depends on the value of the
small parameter €. The quantity C, is afunction of the
dimensionless combination & = k(eP,)""?: C, = 2&(¢ +

A/EZ + 1), We can see that, for K — 0, the function

C§ isproportional to k? and thus cancelsthe factor K in
the denominator in K(k), even without recourse to the
function |AP. As a result, the conversion coefficient
K(K) decreasesto zero ask — 0, and, near the bound-
ary of the transmission band, it has a maximum on the

order of e¥2P;*L-1 at K ~ ,[eP; .

Note that, at the zero argument, the slope of the
function Cy(K) increases without bound as P, —~ 0.
For P, =0, the function Cy(k) isidentically unity. Con-
sequently, if the function P,(w) vanishes at a certain
value w = wp(in Section 3, this situation was called the

synchronization of the entrance and exit channels of the
waveguide), then an increase in K(k) ask — 0 isnow
restricted by the factor |A(k)|>. For C, = 1, thisfactor is
afunction of the combination n = kL/g:

2

AP sl
(n+a)’+p°

Here, the meaning of the quantities a(w) and B(w) can
be understood by reference to expression (22). Conse-
quently, for w = wq the conversion coefficient K(k)

reaches its maximum at KL ~ €2, the maximum value
being independent of €!. As w approaches wq the

above case with max K ~ €3/ PI]JZ L-! transforms grad-

ualy (for L?P,(w) ~ €%) to the case with max K ~ 1.

_ o+ifTt
A=H+ = |
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6. NUMERICAL ESTIMATES
FOR A MODEL WAVEGUIDE

Let the longitudinal profile V5(2) intheregionx <0
of the incident waveguide mode be specified as

V2(2) = V1 +y*cosh(Z/L)]

where L is the characteristic thickness of the plasma
layer. This shape of the profile V,(2) (see Fig. 2) ischo-
sen in such a way that the potentia U(z) in the
Schrédinger equation (4) admits an explicit solution of
the eigenvalue problem [19]. The parameter y charac-
terizesthe relative depth of the well of the profile V,(2):
1 —min(V,/V_)? = y*/(1 + y?). In calculations, we nor-
malize the frequency w to the background Alfvén fre-
guency, thus introducing the dimensionless parameter
Q = wL/V_. After renormalization of the linear scale
length, { = Z/L, the Schrodinger equation (4) becomes

[0 +v°Q"(cosh) ™ + (VL) Equiy(Q) = O,
where the eigenfunctions are related to the original
eigenfunctions e, by E,, ({) = &, (L{) for the contin-

uum and by E; () = J/Le; (L) for the discrete spec-
trum. In this waveguide model, the eigenvalue of the
main state (the main waveguide mode) and the corre-

sponding eigenfunction are represented as (v, L)? = -T2,

and E; (0)=N(cosh? ), whereT = %(A/l +4y°Q% — 1)
and the normalizing coefficient N is defined according
to the condition J';|E1|2d( =1 and is expressed in

terms of the I function as N2 = T2 (T + 1/2)/T (7).

For numerical calculations, we normalize expres-
sions (27) to thelinear scale length L in such away that
they represent the dependence of K and b on the dimen-
sionless parameters Q, y, and kyL.

Figure 4 shows the conversion coefficients K and b
calculated as functions of the frequency Q for different
values of the parameter kL in the casewhen itisimpos-
sible to synchronize the wave parameters of the
entrance and exit channels of the waveguide. This cal-
culation was carried out for the model parameter values

y.=1,y2/y® =1.383,and V>/VZ =0.940, which cor-
respond to € = 0.3. The conversion coefficients are seen
to be very sensitive functions of the frequency. As k;
decreases, the peaks in the profiles K(w) and b(w)
become lower. As k, increases, the peaks are displaced
to the right. The maximum values of the magnetic-field
conversion coefficient are about b(w) = 2-4%, and the
maximum values of the energy conversion coefficient
amount to at most fractions of one percent.

When synchronization of the wave parameters of
the entrance and exit channels of the waveguideis pos-
sible (Fig. 5), the conversion efficiency is significantly
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 4. Dependence of the (a) wave-energy and (b) wave-
magnetic-field conversion coefficients on the dimensionless
frequency in a model waveguide without phase synchroni-
zation. Numerals above the curves denote different values
of the parameter kL.

higher. The maximum values of K(w) amount to several
tens of percent; however, this is true of k, valuesin a
narrow region near the value k= ky(wp). In this case,

the coefficient b is also somewhat higher and the
decrease in the maxima of b(w) as k, decreases is far
more gradual.

The case k, < kjcan be described as follows. Asthe

frequency decreases, the exit channel of the waveguide
stops transmitting waves before the cutoff of the
entrance channel. The peak in the profile b(w) is
approximately two times higher than that in the case
k, > k-and isfar more pronounced. The peak in the pro-

file K(w) also becomes markedly higher. These effects
are associated with the total reflection of the waveguide
mode; as a result, the amplitudes of the waves in the
conversion region double. The profiles in Fig. 5 were
obtained for the model parameter values y. = 1,

v2/y? =0.438, and V2/V2 = 1.600, which also corre-
spond to € = 0.3. The conversion process acts as akind
of band-pass filter that permits only narrow-band
Alfvén oscillations to reach the waveguide output.
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 5. Profiles of the (a) wave-energy and (b) wave-mag-
netic-field conversion coefficients in a model waveguide
with phase synchronization for kL values close to k.

7. SUMMARY AND CONCLUSIONS

We have shown that the plasma layer can serve as a
waveguide for FMS waves, which are insignificantly
damped when propagating along the layer. The FMS
waves are converted into localized Alfvén waves at
small but sharp plasma inhomogeneities along the
waveguide axis. The conversion efficiency increases
with the parameter kL and becomes maximum when
the parameter reaches values corresponding approxi-
mately to the cutoff frequency of the waveguide mode,
w = K \V,. Note that, in the one-dimensional case, the
absorption of the energy of the incident wave at a steep
plasma density gradient (p, > p_) is enhanced near the

frequency ws = /2k,V, of the standing surface wave

[7]. Onthewhole, in aplasmathat isinhomogeneousin
two directions and in which surface waves can escape
along the boundary between two different plasma
media, the efficienciesfor conversion and absorption of
the energy of the incident waveguide mode are lower
than those in a plasma that is inhomogeneous in one
direction and where there are regimesin which theinci-
dent wave can be absorbed essentially completely.

The resonant character of the conversion of FMS
waves into surface Alfvén waves is responsible for fre-
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guency and wavelength filtering of the emitted Alfvén
perturbations. The phase synchronization condition can
take place only for non-self-similar jumpsin the profile
V,(2). Phase synchronism takes placein the situation in
which the phase vel ocities of the waveguide mode with
frequency wralong the waveguide axis are the same on

both sides of the jump in the Alfvén velocity. Under the
phase synchronization condition, the conversion effi-
ciency is high: even in the case of a dight jump, it
amounts to about ten percent.
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APPENDIX A

Eigenfunctions of the Continuous Spectrum
of the Schrddinger Equation

We represent the electromagnetic fields in a
waveguide as a superposition of the fields of normal
waves propagating along the waveguide axis. To do
this, we solve the equation for { in set (3) by the
method of expansion in the spectrum of the Alfvén

operator L, = 0, + ki (2). In Section 2, we somewhat
maodified the problem at hand; specifically, we switched

from the operator L, to the operator L = —L, + K2 =
-0, + U(2) in order to deal with the standard one-
dimensional Schrodinger equation (4). In Section 2, we
also discussed the properties of the eigenfunctions of
the discrete spectrum of the operator L in connection
with the waveguide modes. Here, we analyze in detail
the eigenfunctions of the continuum.

The continuous spectrum of Eq. (4) is doubly
degenerate. Accordingly, we choose two linearly inde-
pendent solutionsto Eq. (4) in the following way. Asv?
runs the positive axis v2 > 0, each of the two values of
v runs the entire real axis (except for the point v = 0).
At agiven value of v, we single out the solution u,(2) to
Eq. (4) by imposing the conditions

u, =d,exp(ivz) (z— +w),

: , (A.1)
u, = exp(ivz) +ryexp(-ivz) (z— —»).

If v > 0, then the quantities r, and d, in conditions
(A.1) have the meaning of the reflection and transmis-
sion coefficients of the potential well U(2) for a plane
wave. We can assume that the coefficientsr, and d, for
aparticular potential are known functions, because they
can be obtained by integrating Eq. (4) numerically.
Note that the functions u,(2) and u_,(2) are solutions to
thedifferential equation (4) with the same parameter v2.
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Consequently, since the coefficients of thisequation are
real, conditions (A.1) yield

u,(2) = u,(2), (A.2)

where the overbar denotes the complex conjugate.

The corresponding manipulations (which are omit-
ted here for brevity) show that

00

J’UH(Z)lFZ)dZ = 21 & p— V) + 1, 0(p+ V)]

We see that the functions u,(2) are not orthonormal.
Consequently, in place of these functions, it is expedi-
ent to use the functions e,(2) satisfying the conditions

00

Ieu(z)eTz)dz = 3(n—v), (A.3a)

e (?) = e,(2). (A3b)
Here, the latter condition is analogous to condition
(A.2) and makes it possible to unambiguously deter-
mine the functions e,(2). Each of the functions g,(2),
being a solution to Eq. (4), can be represented asalin-
ear combination of the functions u,(z) and u_,(2) with
the coefficients determined from conditions (A.3a) and
(A.3b):

1 12 -2
= 1+|d,) "u,—r,(1+|d, u,].(A.4)
& 2ﬁ[dv[( |d[) (1+]dy) "u]
The coefficients in the asymptotic expressions

e,(2)
o, exp(ivz) + B,exp(-ivz) for z —+o0 (A.5)
 Iyvexp(ivz) + 8, exp(—ivz) for z —=—oo

are found by comparing expressions (A.1) and (A.4):

1 2
o, = —(1+]|d, ,
1 = -1 —1/2
v — __rvdv dv 1+ dv )
B > I (d,) " (1+1dy))
1 1 12 (A.6)
y = —=|d,|(d,) (1+|d,])"",
y 2ﬁr| |(dy,) " (1+]d,|)
8, = —==r,|d,|(d,) (1 +|d,) 2

21

Now, we consider two operators, L, =-0,u+ U,(2)

and L_=-d,u + U_(2). We denote by e, (2) and e, (2)
the solutions to the differential equation (4) with the
PLASMA PHYSICS REPORTS  Vol. 27
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potentials U,(z) and U_(2), respectively. We have to
determine the Fourier coefficients

(e &) = jeJ(Z)ev_(Z)dZ-
Omitting the intermediate manipulations, we write out

the final expression

(& &) == 1(V)3(1—V)
+ 92(\})5(“ + V) + ypv-

(A7)

Here, Y = - (2 = V)1, hy, = (U, - U)ey , &),
and the integrals resulting from the integration of (e: ,

e, ) over the spectral parameter p and containingy,, are
understood in terms of the Cauchy principal value. The
coefficients in front of the & functions depend on the
coefficients d, and r, in the asymptotic expressions
(A.1) inafairly complicated fashion:

_ , lofai0
p(v) = 4ﬁ{ djd D(rv S+2)
_ (A.8)
=0 d JD}
_rvrvEﬂ-___D )
O djaH
1 + _ 42 —
& 2(V) = —__+[(rv—rv)(6+|rv| —ryr,
4,/Zd,d;
2 — —
+ldy = dydy) (1 +]dy) -1y 8

(A9)

a1,

whereZ = (1 + |d}])(1 + |d{| ) and &= [d]] - |d}] .
For a small jump in the Alfvén velocity, the differ-

encesr, —r, and d, — d, and the quantity 3 areall on

the order of €. From dependence (A.9), weimmediately
seethat P, (v) = O(e?). Using dependence (A.8) and the

., _ T
+rv6(rvr\j_|rv| "'dvd\:r

relationship |r;]” =1 - |d;| and taking thelimite — 0,
we arrive at the asymptotic expression

10, [alD
4(1+|d] |)D d; ﬁ%

P 1(Vv)
x[1-fd] + @+ [a] ) = 1
which gives p; (v) = 1 + O(¢).
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Derivation of the Set of Equations for the Coefficients
R, D, R,,andD,

Taking the scalar product of relationships (10) with
e, and e, and using expression (A.7), we obtain the set
of equations

+o00

KiRy + Ky pyuDy = Ky — I K;pprde

+o00

)\IRl_)\IpllDl = =N + J')\;pqudU:

K;Rv + K:[@l(V)Dv + QZ(V)D—V]

+o00

. . (B.1)
= _Klqul_J-Kuyvauduv
AR, =A;[@1(V)D, + p5(v)D_]
= A;q,D; + IAJVWDpdu,
where we introduced the notation
(e, €) = pu, (ey,6)=p, (e,8) =q,.

Resolving the first two equations from set (B.1) in
R, and D, and the last two equationsin R, and the com-

bination p, (v)D, + P, (v)D_,, we transform Egs. (B.1)
to

+ - -+ -1
Ry = (A1Ky—A1K1)Ay

+ o+ + 4y -1 (B2)
+ J.()\VKl _)\lKv)All vavdV1

Ay - -1
D; = 2py A KAy

e . (B.3)
—I P A (A Ky +A1K,)p,D,dv,
R, = (Ajky —A;K1)A(V)"q,D,

+00

+ o+ + o+ -1 (B4)
+ J'()\pKv _)‘va)A(V) vaDde,
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MK, + ALK, 2AIKI(ATKy + K1) F(V)
V)D, + P,(V)D_, + ——4—¥ 14 D D, =
@l( ) \ 92( ) -V A(V) q\) 1 (B 5) pllAllA(V)AD(V)
ARG ALK ' TOTKS +AKD F(V)A KT +ATKD) p
+ pv v vD dH — 0, + 1Ry ving 1 1™ U
_JO; A(V) HYTH J.[ P11 AV)A(V) (B.9)

where A, = A K; + AjK; and A(V) = ALK, + AJK, .
Equation (B.5) contains both of the coefficients D, and
D_,. In order to eliminate the coefficient D_,, in (B.5)
and to keep D,,, wereplacev by —v. Taking into account

therelationshipsq., = q,, A%, = A, and k=, = K, , we
find

MKy +A K, —
P1(-Vv)D_, + p(-v)D, + qu 1

+o00

P (B.6)
A Ky +AK,

[ Taw

—00

Yy, Dydu = 0.

We subtract Eqg. (B.6) multiplied by p,(-v) from
Eq. (B.5) multiplied by p, (v) to obtain therelationship
ArKy +AK;

ORI

A (V)Dy +
(B.7)

+°°)\JK;+)\;K: _
+ J.Wg(u, V)Dudu = 0,

—00

where

B(v) = P1(V)Po(—V) —P2(V) P2(-V),
f(v) = aypa(-v) = P2(V),

g(“i V) = ypv@l(_v) _y—u|v92(v)'

Finaly, inserting Eq. (B.3) into Egs. (B.4) and
(B.7), we arrive at the formula

_ 2 KK~ Ak DGy
P11 A(V)

(A1Ky =AvK1) Gy (A K7 +ATK,) Py

P11 A(V)

R,

+o00

Ji

(B.8)
_(}\UKV —)\2\,Ku)2huv D,di,
A(V)(U"=V7)

which relates R, to D,, and at the following integral
equation of the second kind for the function D,

—00

+ ()‘qu‘*')\vKg)hu\; D, dy,
A(V)A,(V)(H™=VY)

where hy = hyPi (V) —h, P, (V). Hence, we mudt,

first, solve Eqg. (B.9) to obtain the coefficient D,, and,
then, from Egs. (B.2), (B.3), and (B.8), we can deter-
mine the remaining coefficients R, D, and R,.
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Abstract—Electromagnetic radiation effects are calculated for the case of the solar radiation spectrum in the
vicinity of the Earth. The influence of the photoel ectric effect on the propagation of nonlinear wavesin complex
plasmas is studied when the dust grains acquire large positive charges. Exact solutions to nonlinear equations
in the form of steady-state shocks that do not involve electron—on collisions are found, and the conditions for
their existence are obtained. In contrast to the classical collisionless shock waves, the dissi pation dueto the dust
charging involves theinteraction of the electrons and ions with the dust grainsin the form of microscopic grain
currents and the photoel ectric current. The nonsteady problem of the evolution of a perturbation and its trans-
formation into anonlinear wave structureis considered. The evolution of an intense, initially nonmoving region
with aconstant increased ion density isinvestigated. It is shown that the evol ution of arather intense nonmoving
region with a constant increased ion density can result in the formation of ashock wave. In addition to the com-
pressional wave, ararefaction region (dilatation wave) appears. The presence of a dilatation wave finally leads
to the destruction of the shock structure. The possibility is discussed of the observation of shock waves related
to dust charging in the presence of electromagnetic radiation in active rocket experiments, which involve the
release of a gaseous substance in the Earth’s ionosphere in the form of a high-speed plasma jet at altitudes of
500-600 km. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

At present, alarge number of plasmainvestigations
are devoted to multicomponent plasmas containing
electrons, ions, charged microspheres (dust grains), and
neutrals. Such plasmas are usually referred to as“com-
plex plasmas.” Complex (dusty) plasma cannot usually
survivein the absence of either external sourcesof elec-
trons and ions (e.g., due to ionization) or plasma parti-
cle fluxes from dust-free regions. The fluxes of elec-
trons and ions are absorbed by dust grains, which
results in variations in their charges. Variations in the
dust grain charge can aso be caused by an external
electromagnetic radiation via the photoelectric effect.
The strong dissipativity of the complex plasma due to
dust grain charging [1] points to the exceptional role of
dissipative structures (such as shock waves) in complex
plasmas.

Shock waves often arise in nature because of the
bal ance between the wave breaking nonlinear force and
the wave damping dissipative force. Callisional and
collisionless shock waves can appear due to friction
between the particles[2] and the wave—particle interac-
tion [3], respectively. In complex plasmas, an anoma-
lousdissipation dueto dust charging resultsin the exist-
ence of anew kind of shock wave related to this dissi-
pation. These waves are collisionless in the sense that
they do not involve electron—on collisions. However, in
contrast to classical collisionless shock waves, the dis-
sipation due to dust charging involves the interaction of

the plasma electrons and ions with dust grains in the
form of microscopic grain currents. The case in which
the shock waves related to dust grain charging are
rather intense corresponds to the ion acoustic wave
propagation. The main results concerning this new kind
of ion acoustic shocks are presented in [4—6]. Recently,
the first results of laboratory experiments confirming
the effect of negatively charged dust on the formation
of ion acoustic shocks were obtained [7, 8].

Theimportance of shock wavesin complex plasmas
is associated with different astrophysical applications
[5]. For example, according to modern concepts[9], the
formation of stars occurs mainly in interstellar dust—
molecular clouds after compressional shock waves
have propagated through them, thus creating an initial
density condensation for further gravitational contrac-
tion. The presence of dust ininterstellar clouds can sig-
nificantly influence the sound velocity, not to mention
the shock wave propagation. The investigation of shock
waves related to the dissipation caused by dust grain
charging can also be important [5, 10] for the descrip-
tion of shocks in supernova explosions, particle accel-
eration in shocks, the explanation of the effectsin active
geophysical and space experiments involving the
release of agaseous substance in the Earth’ sionosphere
and magnetosphere, etc.

In astrophysical applications, the effect of electro-
magnetic radiation (as well as the influence of the pho-
toelectric effect on the dust grain charge) cannot often
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be ignored. This effect can lead to new qualitative
results in comparison with the situation in which this
effect isneglected. In particul ar, the photoel ectric effect
can result in the positive charge of dust grains, whilein
the case where the dust grain charge is varied only due
to microscopic electron and ion currents, the dust grain
charge is negative (see, e.g., [11]).

This paper deals with the case where the photoel ec-
tric effect strongly influencesthe dust grain charge. The
electromagnetic radiation effects are calculated for the
solar radiation spectrum in the vicinity of the Earth. We
investigate solutions in the form of dust ion acoustic
shock waves. In particular, we consider the nonsteady
problem of the evolution of a perturbation and itstrans-
formation into anonlinear wave structure. In Section 2,
we describe the basic assumptions and equations and
present steady-state shock wave solutions. In Section 3,
we consider the evolution of an intense, initially non-
moving region with a constant, increased ion density
using a numerical method analogous to that developed
in [12]. In Section 4, we discuss the possibility of
observing the shock waves under consideration in
active space rocket experiments that involve the release
of a gaseous substance in the Earth’'s ionosphere. A
summary of our findings and conclusions are given in
Section 5.

2. STEADY-STATE SHOCK WAVE SOLUTIONS

The average radius a of grainsin atypical complex
plasmais much smaller than the electron Debye length
Ap, the spatial scale of perturbations, and the distance
between the plasma particles. Since the dust grains are
massive (mZy < my, where m and my are the ion and
grain masses, respectively), they can be considered
immobile and their density ny can be assumed to be
constant on the ion acoustic time scale [13]. Further-
more, in the absence of perturbations, the quasineutral -
ity condition n, = ny, + Zyy holds. Here, gy = -Z,eis
the mean dust grain charge; —eisthe electron charge; n;
and n, are the ion and electron densities, respectively;
and the subscript O denotes unperturbed quantities.

We will assume that the grain charge varies due to
both the photoelectric electron current and the micro-
scopic electron and ion grain currents (originating from
the potential difference between the plasma and the
grain surface). The photoel ectric electron current is due
to the photoelectric effect, which results in the separa-
tion (and removal) of the electrons from the dust grain
surface. When electromagnetic radiation is sufficiently
intense, the photoelectric effect leads to the positive
charge of dust grains. In this paper, we restrict our-
selvesto the casein which the dust grain charge is pos-
itive. This case differs qualitatively from the case in
which the photoelectric current is absent [4, 5, 12]; its
consideration alows us to distinguish the effects
caused by theinfluence of electromagnetic radiation on
the shock wave propagation.

POPEL et al.

According to the orbit-limited probe model [14, 15],
for equilibrium electrons and ions, we have the follow-
ing expressions for the microscopic currents to the
grain surface (cf. [11, 16-18]):

_ 2 (BTay”? edq
l,=—Ta eEhmeD ne%HaTeD’ (1)

TM_2
I, = J;a vien,

0 OvZ+vZ (gD Vo
x[QeXpD Vi lezn'l(qd)DCOShg/l mlnz,l(qd)g
o o0 2vi O v?
(2
vyd v? 2eq, O
e e
2vid vy amvyQ
- + VvV, - — Vi [
x [erf%ymm, |(qd) H_erf%ymm, |(qd) Hi| 0
J2vy, J2vy, O

where m, isthe electron mass, T; and vy; = (T;/m) " are
the temperature and thermal velocity of particles of
speciesj (j =i, €), v; istheion fluid velocity, V. ; (Qy) =
(2eqy/am)2, and erf(x) is the error function. Here, we
takeinto account that, when g4 is positive (in contrast to
the situation with gy < 0), only the ions with velocities
V| > Viuin i (Og) Ccan reach the grain surface, while there
is no limitation on the absolute value of the electron
vel ocity. We emphasize that thisfact resultsin different
(from the case of gy < 0 considered, e.g., in[4]) expres-
sionsfor the electron (I.) and ion (I;) currents.

The photoel ectric current produced by the electrons
emitted from the dust grain surface in the presence of
external electromagnetic radiation with spectrum ®(w),

where @ = J’(D(w)doo is the luminous flux, is given by
the formula

00

_ mpea’ P(w)
| Z J’ o dw. 3)

ph —
2
wr—€"Zy/ah

Here, B isthe probability of the emission of an electron
under the action of one photon on the dust particle sur-
face, # is Planck’s constant, and 7wy is the photoel ec-
tric work function. The limits of integration are deter-
mined by the fact that photons with frequencies w >
Wy — (€2Zy/ah) can only produce the photoel ectric cur-
rent. As was mentioned above, in this paper, electro-
magnetic radiation effects are calculated for the solar
radiation spectrum in the vicinity of the Earth. For sim-
plicity, the spectrum is approximated by the black body
spectrum ®(w) = P,w’/[exp(hyTy) — 1] with an effec-
tive temperature of T,=6000K and ®,=5.5x10°°gs
PLASMA PHYSICS REPORTS  Vol. 27
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(in this case, ® = J’(D (wdw= 1.4 x 10° erg/(cm? ) is
the solar constant).

The mean charge of immobile dust grains is gov-
erned by the charge conservation equation

0dg = le(gg) +1i(dg) + 1 on(da)- “4)

The unperturbed mean charge g, satisfies the equation
le(dao) + 1i(Ggo) + 1 pn(Gao) = 0. The typical parameters of
the Earth’s ionosphere at altitudes of 500-600 km (see,
eg., [19]) are ny, = 10° cm™>, njy = 8 x 10> cm3, T, =
2eV, and T; = 0.5 eV. Then, for the dust parameters
(see, e.g., [20]) a= 10 cm, Ag = 2T/ =2 % 107 cm
(which is typical for most materials), and 3 = 0.1, the
unperturbed grain charge is equal to Zy, = -1.92 x 107,
which confirms the above assumption g4 = —Z4e > 0.

The electron density is assumed to obey a Boltz-
mann distribution n, = nyexp(ed/T,) with a constant
electron temperature T.. We note that, in the vicinity of
adust grain, the Boltzmann distribution for the electron
density can fail to hold because of the attraction
between the electrons and the dust grain. However, for
T, < T, (which is satisfied in the above example, in
which T,=2 eV and T, = 0.5 eV), the electron density
distribution can be considered to be Boltzmann at dis-
tances longer than or on the order of the ion Debye
length. In all subsequent considerations, the minimum
characteristic parameter of the problem is the electron
Debye length, which is larger than the ion Debye
length.

In the situation under consideration, in which the
photoelectric effect results in a positive grain charge
(cf. [11]), theion current |, is several orders of magni-
tude lower than I, and | ;,. Thus, on atime scale charac-
teristic of ion acoustic waves, we can neglect the
change in the number of ions and the loss of the ion
momentum due to dust charging and can use the ion
continuity equation and the ion momentum eguation.
Furthermore, we use Poisson’s equation for the electro-
static potential

afq) = 4me(ng + Zyng—n;). ®)

In this paper, the problem is solved in one-dimen-
siona plane geometry, which is applicable when the
width of the shock front isfar less than the characteris-
tic transverse scale on which the parameters of the
problem vary. All of the parameters are assumed to
depend only on the time variable t and the spatia vari-
able x.

We consider a quasi-steady structure propagating
with velocity V in the x direction and assume that the
condition vy < V < vy is satisfied, which is character-
istic of theion acoustic wave propagation. Thus, all the
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parameters depend only on thevariable & = x— Vit. From
the ion conservation equations, we obtain

n; Mnio(Mz—zq’)_m’ (0)

Vi = c(M = M*=2¢), (7

whereweusethe normalization ep/T, — ¢, V/c,— M,
and &/A\p — &. Here, c,= (T,/m)"? istheion acoustic
speed in the absence of dust.

From Poisson’s equation, we obtain
M(1+ Z,,d)
JMZ =20

where d = ny /Ny and z, = Zy,e*/aT,. The normalized
perturbed charge 0z = —edqy/aT,, where dgy = gy — Jgo
is governed by the equation

de6z = j(9) = je(@) +Ji() +jpn(®), 9

dio = exp(9) + B+ S0 - ®)

with

A 8m,T,
M(1 + Zgod) A TIM,T;

. A 02 2 2
i\ = ——————%[—exp[—(a +yA)] cosh(2ay)
JMZ =2 N T

1 2 T
+——|1+2y"+2 +6z—e}
2[2[ v +2Az+ o)y

Je = exp(9)(1-2z,—-932), (10)

(11)

L[ef(a+y) ef(a-y)d
R

j = EED W2
ph M

| spmawmya™ 02

W > Wg(82)
Here, A = al(l + Zyod/4hpl(T/T)'2 Jy =
T m o\p/a)ht, vy = M - (M* -

20)"P1T2T'2, o = [HZ + 82)](T/T)'2, We(d2) =
Wi — (Z, + 02), and Wgy = fitog/T.. We also used rela
tionships (6) and (7). Note that j is the normalized per-
turbed total current density. Clearly, all of the solutions
must satisfy the inequality ¢ < M?/2. Equations (8) and
(9) can be numerically integrated provided that the
existence conditions for nonlinear wave solutions are
known. The solutions to equations (8) and (9) cannot
simultaneously satisfy the conditionthat ¢ — 0 as ¢
tends to +o or —co. This means that, in the problem as
formulated, there are no nonlinear solitary waves. For a
shock wave solution to exist, there must be two differ-
ent asymptotic ¢ valuesat § — + oo and the derivatives
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of the perturbed quantities must vanish there. In this
case, from (8) and (9) we obtain the relationship for the
perturbed grain charge

Z [M(l + Z40d)

0z = —z,+
ZO ZdOd M2—2¢

—exp(¢)|,  (13)

and the current balance condition j = 0. The qualita-
tive behavior of the solution to the equation j = 0 is

POPEL et al.

the same asthat of the functionf, (¢) in[4] (seeFig. 2
in[4]).

The set of equations (13) and j = 0 has two different
solutions$ =0 and ¢ = ¢, only if the following condi-
tion is satisfied:

2 2_ 1+Z4,d DZOG L
M*> M=+ 5= G g + By (14

where

G =

eXp(Zo T/ T)(TS/T)(2+ 25T /T;) + (1 + Zdod)_l«/ mTJ/m.T; +F,,

exXp(zoTe/Ti) (1 + 2T /T)
£ = (1+Zgod) " /mTIm.T (1-2)

exp(zTJ/T)(1+2TJT)
Fon = ~TUB(Jon/ A) (Weo —20) /{ €Xp[ Te(Wro —20)/Td — 1 .

Figure 1 presents the current density j [obtained
with allowancefor relationship (13)] for M = 0.894 (we
emphasize that M is normalized to the ion acoustic
speed ¢, without dust) and the typical parameter values
N = 10 ecm™3, njy =8 x 10> ecm™3, T,=2¢€V, T, =
05eV,a=10*cm,A\g=2x%x10"cm,B=0.1,and ® =
®, = 1.4 x 10% erg/(cn?® s). For these parameters, we
have z, = —1.41 and ¢, = 0.024. We note that, in this
case, o < M?/2. The calculations carried out with
luminous fluxes two orders of magnitude higher and

J
1.5%10°°

1.0 x 1076

5.0x 1077

-5.0x 1077

-1.0x107° ' '
0 0.01

|
0.03
¢

|
0.02

Fig. 1. Current density j vs. ¢ for M = 0.894 and the param-
eter valuesng = 10> cm™, ny=8 x 10> cm >, T,=2eV, T, =
0.5eV,a=10"*cm,Ag=2x 107 cm,=0.1,and ® = O =

1.4 x 10° erg/(cm? s). The solutions to the equation j = 0 are
¢ =0and d = 0.024.

two orders of magnitude lessthan that of solar radiation
in the vicinity of the Earth show that the inequality
o, < M?/2 also remains valid in these cases. When this
inequality is valid, we can neglect j; as compared to |,
and j,, within the entire range of the potential ¢ corre-
sponding to the nonlinear wave solution (i.e., for
0< ¢ <¢,). Inthiscase, inequality (14) issimplified to

(H + J,,Wa) (1 + Zgod) 2

M*> M = - . (15)
JonWrZo— H[(Zgod — 1) 25 — Zyod]
where
_ 8miTe DTeWFD
H=A /T[meTi[eXpD = 1}.

Inequality (14) is necessary for the existence of two
asymptotic solutions, namely,  =0and ¢ = d, (e.g., at
& — +00 and —oo, respectively).

The requirement that the set of equations (13) and
j = 0 have a solution with the asymptotic values ¢ = 0
and ¢ = ¢, at & — *oo resultsin theinequality

M < M2 =1+ 2Z,d. (16)

Condition (16) can be obtained in a way analogous
to that in the case where the dust grain charge varies
only due to the microscopic electron and ion currents
and the photoelectric effect isignored [4]. When deriv-
ing this condition, it is taken into account that the ine-
quality j <O remainsvalid for 0 < ¢ < ¢, (see Fig. 1).

We notethat ¢ =0 and ¢ = ¢, are aso exact solu-
tions to Egs. (8) and (9), because these differential
equations are homogeneous. Furthermore, both solu-
tions correspond to E=-[¢ =-d:¢ = 0. Now, we can
find a solution bridging these two asymptotic solutions.
Figures 2aand 2b show the profiles of the potential (&)
and the electric field E = —d;¢, respectively. A similar
PLASMA PHYSICS REPORTS  Vol. 27
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profile for the normalized perturbed charge &z can be
deduced from Eqg. (9) taking into account that j is
always negative in the region of interest (see Fig. 2c).
Figure 2d showsthe profile of theion density n; normal-
ized to the unperturbed electron density ny,.

In Figs. 2a and 2b, oscillation regions that corre-
spond to the separation of the electron and ion charges
cannot be distinguished (see, e.g., [12]). However, this
effect actually takes place. Figure 3 presents a portion
of the profile of the electric field E on an enlarged scale.
The effect of charge separation increases when the
luminous flux decreases and/or M increases.

The solution presented in Figs. 2a and 2b corre-
sponds to the balance between the wave breaking non-
linear force and the wave damping dissipative force in
a uniform complex plasma with Boltzmann electrons,
inertial ions, and immobile but variable-charge dust
grains. This solution can be treated as a steady-state
shock wave solution. The dissipativity in this wave is
related to variations in dust grain charges due to the
microscopic electron and ion grain currents and the
photoelectric electron current. The width of the shock
front can be expressed in terms of the charging rate v,
and the ion acoustic speed as AEAp ~ C5/Vg, Where

=_a(|e+|i+|ph)

a aqd Oy = —Zgo€
wya Zolq] ZoT g7 Whed
= —E—exp + Ly 17
T2, POT, Wi N v, 1
+ n|3ae2CDOT§ (Wgo— 20)2

nt exp[Te(Wro—2)/TJ -1

For example, for ng, = 10° cm3, nyy = 8 x 10?2 cm3,
T.=2eV, T;=05¢€eV,a=10*cm, A\ =2 x 10 cm,
B=0.1,and ® = d = 1.4 x 10° erg/(cm’ s), the width
of the shock front is A& ~ 10*A; = 3 x 10° cm, while
Cs/Vq~ 10° cm. We emphasize that, for the above plasma
parameters, the charging rate in the presence of electro-
magnetic radiation (v, =20 s™') is much higher than the
charging rate in the absence of radiation (v, = 0.3 s™).

The shock speed M must simultaneously satisfy ine-
gualities (14) and (16). For the majority of complex
plasmas in which ng ~ nyy, thisspeed isclose to theion
acoustic speed (T,/m)'2. The range of M in which
shock solutions exist is fairly narrow. For the above
parameters, we have M, = 0.879 and M, = 0.8944.

In the above considerations, we neglected the effect
of Landau damping on the shock wave formation. This
is valid when dissipation due to dust charging is stron-
ger than that due to Landau damping. On time scales
characteristic of ion acoustic wave propagation in the
presence of electromagnetic radiation, the condition for
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Fig. 2. Profiles of (a) the potential ¢(), (b) electricfieldE =
—dg9, (c) perturbation of the normalized charge 6z, and (d)
ion density n; normalized to the unperturbed electron den-
Sity ngy in a shock wave structure for the parameters of
Fig. 1.
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Fig. 3. A portion of the profile of the electric field E on an
enlarged scale. Therange of € corresponds to the wave front
region.

dissipative effects due to dust charging to dominate
over those due to Landau damping is
(a°/A5)ApNeg > (M/my) (ve/ey), (18)

where wy,; = (41m,,e*/m)!? is the ion plasma frequency.
Forng, =103cm=3, ni,=8 x 102cm>3, T,=2¢eV, T, =
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05eV,a=10*cm,A\g=2x%x10"cm,B=0.1,and ® =
®, = 1.4 x 10° erg/(cm? ), inequality (18) is easily sat-
isfied (the left-hand side is three orders of magnitude
larger than the right-hand side).

The shock waves discussed here are collisionlessin
the sense that they do not involve electron—on colli-
sions (the source of dissipation for ordinary collisional
ion acoustic shock waves). However, in contrast to clas-
sical collisionless shock waves[3], inwhich dissipation
is only related to the turbulent wave—particle interac-
tion, dissipation due to dust charging involvesthe inter-
action of electrons and ionswith dust grainsin theform
of microscopic grain currents and the photoel ectric cur-
rent. A similar situation takes place in the absence of
electromagnetic radiation [4]. This is because, for the
majority of complex plasmas, the charging rate v, is
much higher than the ion—on collision frequency and
the electron collision frequency. We emphasize that
dust shocks have unique conditions of existence. Thus,
they can be useful in studying astrophysical complex
plasmas.

3. EVOLUTION OF AN INITIALLY NONMOVING
REGION WITH A CONSTANT INCREASED ION
DENSITY

The above investigation concerned the problem of
the existence of steady-state shock wave solutions.
However, in order to understand whether shock wave
structures are significant nonlinear wave structures in
dusty plasmas in the presence of electromagnetic radi-
ation, it is necessary to answer the question of whether
the evolution of a perturbation leads to the formation of
shocks in a dusty plasma with a variable grain charge.
Furthermore, the solution of the problem of the evolu-
tion of a perturbation and the possibility of itstransfor-
mation into a shock wave is important from the stand-
point of the description of real phenomena like super-
nova explosions, aswell as laboratory experiments and
active space and geophysical experiments.

In order to investigate the problem of the evolution
of aperturbation and its transformation into a nonlinear
wave structure in a dusty plasma with a variable grain
chargein the presence of el ectromagnetic radiation, we
used a computational method analogous to that devel-
opedin[12].

To solve the ion continuity equation and the ion
momentum eguation, we use the LCPFCT modification
of the flux-corrected transport (FCT) agorithm with
fourth-order phase accuracy, second-order time accu-
racy, and minimum residual diffusion [21]. The FCT
algorithm is monotonic, conservative, and positivity-
preserving. This means that the algorithm is accurate
and resolves steep gradients (including scales on the
order of the grid size). When a convected quantity (such
asthe ion density) isinitially positive, it remains posi-
tive and no new maxima or minimaare introduced due
to numerical errors during convection.

POPEL et al.

The LCPFCT transport algorithm consists of the
following four sequential steps:

(i) the computation of the transported and diffused
values and the choice of the diffusion coefficients to
satisfy monotonicity,

(ii) the computation of the raw antidiffusive fluxes,

(iii) the correction or limitation of these fluxes to
assure monotonicity, and

(iv) the performance of the antidiffusive correction.

To solve Eq. (4) for dust grain charging, we use the
fourth-order Runge—Kutta method [22]. Poisson’s
equation is solved numerically using the sweep method
[21].

Thetotal set of equationsis solved using the follow-
ing sequence of operations (at each time step):

(i) the integration of conservation equations,

(ii) the integration of the equation for dust grain
charging, and

(iii) the integration of Poisson’s equation.

These three stages are related to each other by an

iteration process that is verified by the charge density
convergence.

Now, we consider the situation in which the evolu-
tion of aninitia perturbation can result in the formation
of a shock wave structure that is close to the exact
steady-state shock wave solution. For simplicity, we
consider anonmoving region with a constant increased
ion density as an initia perturbation. The amplitude of
the initial perturbation ¢, should be larger than that of
the steady-state shock ¢,. Otherwise, a quasi-steady
shock does not form; the amplitude of the evolving per-
turbation progressively decreases; and, finaly, the per-
turbation disappears.

The results of calculations describing the evolution
of an initially nonmoving region with a constant
increased ion density that corresponds to the initial
amplitude ¢, = 0.048 for the plasma parameters ny, =
103cm3, n,=8x%x10>cm>3,T,=2¢€eV, T,=05¢eV,a=
104 ecm, Ag=2x10"cm,B=0.1,and =P = 1.4 x
10% erg/(cm? s) are presented in Figs. 4 and 5. It is
assumed that theinitial charge of dust grainsisequal to
its equilibrium value in the absence of wave perturba-
tions (z, = —1.41). We use the normalization XA, — X
for the spatial variable and tc/A; — t for time. The
evolution of the perturbation resultsin the formation of
a quasi-steady structure propagating at t > 100 with a
constant speed corresponding to the Mach number M =
0.894. Figure 4 shows the profiles of the potential ¢(x),
the normalized charge perturbation dz, the ion speed v;
normalized to c,, and the ion density n, normalized to
the unperturbed electron density ny, at the instants t =
100, 10000 and 20000. The initial profiles (at t = 0) of
the potential ¢ and the normalized ion density n;/ng, are
shown by the light curves on the left of the correspond-
ing panels. The light curves on the right of the panels
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 4. Profiles of (a) the potential ¢(x), (b) normalized
charge perturbation &z, (c) ion speed v; normalized to ¢,
and (d) ion density n; normalized to the unperturbed elec-

tron density ng, at theinstantst = 100, 10000 and 20000 for

the following parameters: ¢, = 0.048, ngy = 10° cm™>, ny =

8x10>cm>, T,=2eV,Tj=05eV,a= 10" cm, A\g =2 x
107 cm, B = 0.1, and ® = O = 1.4 x 10° erg/(cm’ ). The
initial charge of dust grainsis equal to the equilibrium grain
charge in the absence of wave perturbations (7, = —1.41).

Theinitial profiles (at t = 0) of the potential ¢ and the nor-
malized ion density n;/ng are shown by the light curveson

the left of the corresponding panels. The light curves on
the right of the panels (a)—(d) show the profiles corre-
sponding to the exact steady-state shock wave solution
with M = 0.894.

show the corresponding profiles of the exact steady-
state shock wave solution with M = 0.894.

In Fig. 4, we can see that the evolution of an intense,
initially nonmoving region with a constant increased
ion density results in the formation of a shock wave
similar to the exact steady-state shock wave solution
with the Mach number M = 0.894. The difference
between these two solutions is the presence in the
former of ararefaction region (dilatation wave) in addi-
tion to acompression region. In the course of the shock
wave evolution, the distance between the rarefaction
and compression regions decreases. Finaly, the pres-
ence of the dilatation wave leads to the destruction of
the shock structure.

Figure5illustratesthe spatial evolution of theinitial
perturbation of the ion density at real spatial and time
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 5. Evolution of the initial perturbation of the ion den-
sity on the real spatial and time scales. The parameters are
thesameasin Fig. 4.

scales. In this figure, the regions corresponding to the
compression and dilatation waves are clearly seen.

We have also studied the influence of the initial dust
grain charge on the evolution of an initially nonmoving
region with a constant increased ion density. Analo-
gously to [12], the evolution of an initia perturbation
for different initial grain charges is amost the same at
t > 100. Thisisrelated to the fact that the characteristic
charging time of dust grains is far less than the time
during which a structure similar to the exact steady-
state shock wave solution is formed.

4. ACTIVE EXPERIMENTS
AND THE POSSIBILITY OF SHOCK WAVE
OBSERVATION

Let us discuss the possibility of the observation of
shock waves related to dust charging in the presence of
electromagnetic radiation. As was shown above, the
width of the front of a shock wave related to dust charg-
ing for ionospheric plasma parameters at altitudes of
500600 km and dust grain sizes on the order of
10 cm can attain severa kilometers. Thus, it is of
interest to investigate the possibility of both the appear-
ance of charged dust grains in active rocket experi-
ments that involve the rel ease of a gaseous substancein
the Earth’'s ionosphere and the formation of shock
wavesrelated to dust charging in such experiments. The
idea of shock wave observations was forwarded in con-
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nection with active space experiments carried out by
the Active Magnetospheric Particle Tracer Explorers
(AMPTE). One of the main purposes of the AMPTE
experiment (see, e.g., [23]) was to study collisionless
shock waves with very wide fronts. We pay main atten-
tion to experiments conducted in the daytime (when
el ectromagnetic radiation makes an important contribu-
tion). We assume that the experiments are carried out at
atitudes of 500600 km and the scheme of experiments
isanalogousto that of the Fluxus-1 and Fluxus-2 exper-
iments, which were carried out at an atitude of 140 km
[24, 25]. In those experiments, the source of charged
particles was the generator of high-speed plasma jets.
The shock wave front is associated with the fore part of
thejet, i.e., the boundary between the jet plasmaand the
ionospheric plasma. The possibility of observing shocks
related to the dissipation caused by dust charging in the
absence of electromagnetic radiation (when experi-
ments are carried out at night) was discussed in [10].

In experiments conducted at altitudes of 500-600 km,
aerosols (dust grains) appear asaresult of condensation
[26]. The period of the formation of the centers of con-
densation is very short, and all the drops have approxi-
mately the same size a. The size a was estimated for
two situations [10]. In the first case, calculations were
performed by N.A. Artem’evafor an air jet. The char-
acteristic expansion velocity of molecular nitrogen is
U = 0.3-0.5 km/s. Condensation starts when the jet
passes a distance on the order of 10 cm. The degree of
condensation is equal approximately to 0.72, and the
grain sizeisa= 1.5 x 10 cm. In the second case, the
gaseous substance was iron. The estimates were
obtained with the use of datafrom [26]. In this case, the
degree of condensation isx = 0.44. Theimportant result
here is that the size a decreases significantly as the jet
velocity increases (a= 6 x 10 cm for U = 9.2 km/s;
a=33x10%cmforU=155km/s;a=6 x 107 cm
for U =21.4km/s; anda= 10" cmfor U = 27.2 km/s).
We see that, for the U values exceeding 25 km/s, the
sizeaison the order of the characteristic size of amol-
ecule. This means that, at sufficiently high jet veloci-
ties, condensation does not lead to the formation of
grains.

The charge acquired by dust grains can be estimated
as an unperturbed dust grain charge from the balance
condition for the microscopic electron and ion grain
currents and the photoel ectric electron current. For ion-
ospheric parameters at altitudes of 500-600 km (ng, =
10°cm=, nj,=8x102cm>3, T,=2eV, T,=0.5eV, and
® =P, = 1.4 x 10° erg/(cm? 9)), the parameters Ag =
21c/Wr =2 x 10~ cmand 3 = 0.1, and the above values
of the jet velocity U, we found the values of the charge
number Zy,, the charging rate v,,, and the characteristic
distance L ~ U/v, over whichthe dust grain acquiresthe
charges gy ~ —Zy.e.

~ Themain results of thisinvestigation are the follow-
ing:
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(a) For velocities U lower than 10 km/s, the effect of
dust charging is significant and the characteristic dis-
tance L over which the grain acquires a significant
charge does not exceed the width of the shock front
(which, in our case, ison the order of 1 km). For exam-
ple, for a molecular nitrogen jet propagating with a
velocity of U =0.5km/s, wehave Zy, =-2.98 x 10° and
L ~ 10° cm; for aniiron jet and U = 9.2 km/s, we obtain
Zyp=-1.19%x10°and L ~ 10> cm.

(b) The increase in the velocity U results in the
weakening of the effect of dust charging and an
increase in the distance L. For an iron jet velocity of
U = 15.5 km/s, we obtain Zy, = —-6.55 % 10?and L ~ 3 x
10° cm (which is on the order of the shock front width).
For U = 21.4 km/s, we have Zy, = -12 and L ~ 107 cm.

For the above parameters, the ion acoustic speed,
which determines the speed of the shock front, is ¢, ~
10 km/s. Thus, the optimum velocities U for manifest-
ing the dust charging effect and observing the related
shock waves do not exceed 10 km/s. The distances L
corresponding to these velocities are reasonable from
the standpoint of active experiments. By analogy to the
AMPTE experiment [23], we can expect that the active
experiments will make it possible to study the structure
of the shock wave front and the physical processes
occurring at the front. Furthermore, the active experi-
ments described here and in [10] can help to model dif-
ferent physical phenomena occurring in nature, e.g.,
during a large meteoroid impact with the Moon'’s sur-
face [27]. The evolution of the impact plume can lead
to the formation of a shock wave structure associated
with the appearance of charged grains produced due to
the condensation of both the plume substance and the
vapor thrown from the crater and the surrounding
regolith layer.

5. SUMMARY

We have studied the influence of the photoelectric
effect on the propagation of nonlinear waves in com-
plex plasmas. The photoelectric effect results in the
appearance of electrons emitted from the surface of
dust grains, which, in turn, leadsto the generation of the
photoel ectric electron current in addition to the usualy
considered microscopic electron and ion currents. We
have calculated the electromagnetic radiation effects
for the solar radiation spectrum in the vicinity of the
Earth. In complex plasmas, an important role is played
by nonlinear shock wave structures. The physical rea
son for their existence is an anomal ous dissipation orig-
inating from the dust charging. In contrast to the casein
which radiation is absent, the dust grains acquire large
positive charges. We have found exact solutionsto non-
linear equations in the form of steady-state shocks and
have obtained the conditions for their existence. These
shock waves are callisionless in the sense that they do
not involve electron—on collisions. However, in con-
trast to classical collisionless shock waves, in which
PLASMA PHYSICS REPORTS  Vol. 27
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dissipation is only due to the turbulent wave—particle
interaction, the dissipation due to dust charging
involves the interaction of electrons and ions with dust
grainsin the form of the microscopic grain current and
the photoelectric current. In the case under consider-
ation, ion acoustic shocks can exist within arather nar-
row range of the shock wave velocities determined by
inequalities (14) and (16). For the mgjority of complex
plasmas, the shock wave velocity is close to the ion
acoustic speed (T./m)"2. We have considered the non-
steady problem of the evolution of a perturbation and
its transformation into a nonlinear wave structure. We
have investigated the evolution of an intense, initialy
nonmoving region with a constant increased ion den-
sity. The evolution of such aregion can result inthefor-
mation of a shock wave solution that is similar to the
exact steady-state solution. The difference between
these two solutions is that, in the former, thereis arar-
efaction region (dilatation wave) in addition to a com-
pression region. Finally, the presence of the dilatation
wave |eads to the destruction of the shock structure. We
have discussed the possibility of observing shock
waves related to dust charging in the presence of elec-
tromagnetic radiation in active rocket experiments that
are based on the scheme of the Fluxus-1 and Fluxus-2
experiments [24, 25] and involve the release of a gas-
eous substance in Earth’'s ionosphere in the form of a
high-speed plasma jet at atitudes of 500-600 km. For
the shock waves related to dust charging to be
observed, the jet velocity should not exceed 10 km/s.
Because of the unique conditions of the existence of
dust shock waves in the presence of electromagnetic
radiation, they can be useful in studying astrophysical
complex plasmas.
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Abstract—Results are presented from the measurements of the ion saturation current, the floating potential,
and their fluctuations in the edge plasma of the L-2M stellarator. Distinguishing features in the distribution of
theion saturation current and the floating potential near the separatrix are reveal ed and examined. Based on the
cross correlation measurements with probes positioned at different toroidal angles, it is concluded that fluctua-
tionsintheion saturation current are related to fast vertical displacements of the plasma column, whereas fluc-
tuations in the floating potential have the form of waves propagating in the radial direction. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

In order to better understand transport mechanisms
in tokamaks and stellarators, it is necessary to study the
edge plasma processes in these devices. Here, edge
plasmameans a plasmaregion near the separatrix. Out-
side the separatrix, the magnetic field lines terminate at
the limiter, divertor plates, or vacuum chamber wall.
Near the chamber wall, all of the edge plasma parame-
ters are strongly inhomogeneous. In the presence of a
limiter, the direction of the poloida rotation near the
chamber wall changes from the electron to ion diamag-
netic drift direction [1]. The strong plasma inhomoge-
neity is the main reason for the increased level of fluc-
tuations in the plasma parameters.

The edge plasma is usudly investigated with Lang-
muir probes. The validity of the probe measurementsis
confirmed by reflectometry, electron-cyclotron emission
measurements, and other diagnostics. At present, studies
of the edge plasma turbulence are in progress. Thus, a
new line of investigation—the study of the statistical
properties of turbulence in toroidal devices—has been
developed. Neverthel ess, anumber of problemsthat have
been attacked for the last twenty years still remain unre-
solved. First of dl, this concerns the theoretica descrip-
tion of the edge plasma turbulence.

In anumber of studies on fluctuationsin the floating
potential and ion saturation current in the edge plasma
of toroidal devices (see, e.g., [2-4]), it was found that,
if the temperature fluctuations are ignored, then the
behavior of fluctuations in the plasma density and
plasma potential cannot be adequately described by the

Boltzmann formula n ~ % In[5], it was shown that
e

only 45% of the density fluctuations correlated with the
Boltzmann distribution.

In this paper, we present results from the studies of
the radia distributions of the floating potential and ion
saturation current, fluctuations in these parameters, and
the cross correlation functions for probes positioned at
different toroidal and poloidal anglesin the L-2M stel-
larator.

2. EXPERIMENTAL SETUP

The main parameters of the L-2M stellarator are the
following: the major radius is R = 100 cm, the mean
plasma radius (the mean radius of the vacuum separa-
trix) isrg = 11.5 cm, and the toroidal magnetic field is
Br=12-14T[6].

Therotational transform of the L-2M magnetic con-
figuration can be written in the form

1* = 0,175+ 0.26(r/r)* +0.27(r/r)", 1* = 1/q,

wherer isthe mean radius of a magnetic surface and q
is the safety factor. The plasma was created and heated
with a gyrotron operating at a frequency of 75 GHz. A
microwave beam (180-250 kW) was launched at the
toroidal angle ¢ = 0°. The maximum electron tempe-
rature was T, ~ 1 keV, the average plasma density was

Ne~ 1.5 x 103 cm?3.

The parameters of the edge plasmainthe L-2M stel-
larator were measured with several probe sets posi-
tioned at different toroidal angles: inthetop portat ¢ =
347° and in the bottom portsat ¢ = 0°, ¢ = 231° and
¢ =90° (in Fig. 1, the corresponding probe sets are
denoted as a, b, ¢, and d, respectively). Note that the
microwave power was launched in the cross section in
which probe set ¢ was installed; however, we did not
observe that this had any influence on the results of
probe measurements.

1063-780X/01/2709-0794$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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Each probe set consisted of several individual
probes; with these probes, we measured the poloidal
and radial correlations. The probes had 2-mm-long
molybdenum electrodes 0.5 mm in diameter. The probe
wires were isolated with quartz pipes. The ion satura-
tion current was measured using load resistances of 3 or
10 Q. The recording system allowed us to analyze sig-
nals with frequencies up to 1 MHz.

Therotational transform at the last magnetic surface
was equal to ~0.7 x 21t Thus, probes a and ¢ separated
by an interval equal to ~0.7 of the major circumference
were located on nearly the same magnetic field line.
The distance between probes b and ¢ along the mag-
netic field linewaslonger than the major circumference
by afactor of 1.5. The position of the last magnetic sur-
face r = 113 mm in the cross section of probes b was
determined previously with magnetic measurements.
Calculations show that, in the regions under study, the
outward shift of the separatrix due to the plasma pres-
sure is relatively small (~5 mm). Note that, a similar
outward shift may be produced by an external vertical
magnetic field of B, = 40 G. Unfortunately, the data
from magnetic measurements for the other angles
under study are lacking.

In[7], the parameters of the edge plasmawere mea-
sured with a probe positioned in the inner port in the
cross section ¢ = 90°. It was shown that the edge
plasma consists of three characteristic regions: a wall
region, a region with a high gradient of the electron
density, and the edge of the plasma column. The plasma
density in the wall region was on the order of n, =
10° cm, the electron temperaturewas T, ~ 2—4 €V, and
thefloating potential V; was closeto zero. Near the sep-
aratrix, the plasma density increased by three orders of
magnitude. At the edge of the plasma column, the
plasma density increased only slightly, but the temper-
ature increased substantially.

3. MEASUREMENTS OF THE ION SATURATION
CURRENT AND FLOATING POTENTIAL

Figure 2 shows typical distributions of the ion satu-

ration current Js, fluctuations Js/J,, and the floating
potential V; near the last magnetic surface in the cross
sections corresponding to probes a, b, and c. It can be
seen in these figures that the profiles measured in these
Cross sections are somewhat different, but their behav-
ior is similar: the ion saturation current arises at a cer-
tain distance from the chamber wall and increases as
the probe is displaced into a plasma, whereas the cur-
rent fluctuations increase toward the plasma edge, as
was also observed in other devices. The floating poten-
tial at the edge is positive (below 10V) and varies only
dlightly with radius; deeper in the plasma, it becomes
negative and increases in magnitude.

The vertical arrow in Fig. 2b shows the position of
the separatrix for probe b. The position of the separatrix
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 1. Arrangement of the probesin the cross section of the
vacuum chamber of the L-2M stellarator. Probe a is posi-
tioned at the toroidal angle ¢ = 347°, probebisat ¢ =231°,
probecisat ¢ =0°, and probedisat ¢ =90°. Thelast closed
magnetic surface is schematically shown inside the vacuum
chamber.

VpV (a) Jx 102, A T
0 S ]
sl ./-1/' 5 0.5 j
~10 L . L 0
10- (b) 1.0
- 1 : 3 ﬁ
O
-10 : : =0
©)
5 s 1.01
1 2 05
5+ ././ %Oj
1 1
80 90 100 110 120
r, mm

Fig. 2. Distributions of (1) the ion saturation current J,

2 33/.]5 fluctuations, and (3) floating potential V; at the

plasma edge. The measurements were carried out (a) in the
top port by probe a, (b) in the bottom port by probe b, and
(c) in the bottom port by probe c. The load in Jg measure-

mentsis10 Q.

can be seen to almost coincide with the region in which
the potential changesitssign. Thiswasalso observedin
previous experiments in which the last closed magnetic
surface was measured with probes in different cross
sections.

The difference between the edge plasma profiles at
different toroidal angles seemsto berelated, first of all,
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Fig. 3. Cross correlation functions between fluctuations in the ion saturation current at probes b and ¢ (solid line) and probes a and
¢ (dashed line) under different experimental conditions: (a) the heating power is P = 200 kW and the vertical magnetic field is
By =40G, (b) P =200 kW and B, =0, and (c) P = 250 kW and B, = 0.

to an error in determining the coordinate with respect to
the chamber wall. Second, the difference may be dueto
the presence of the resonant magnetic surface with
m/n=2/1. The vacuum magnetic measurements
showed that this resonance takes place at a distance of
~2 cm from the last magnetic surface; however, in the
presence of the plasma, the magnetic structure some-
what changes because of the plasma pressure.

4. FLUCTUATIONS IN THE ION SATURATION
CURRENT

The aim of the fluctuation measurements was to
determine the structure of fluctuationsin the plasma of
the L-2M stellarator. To do this, we measured the cor-
relation between the probe signals.

Figure 3 shows the cross correlation functions mea-
sured under different experimental conditions (for dif-
ferent heating powers with and without applying an
external vertical magnetic field, which leadsto the shift
of the plasma edge by several millimeters). The figure
demonstrates a rather good correlation of fluctuations
in the ion saturation current measured with probes b
and c, both located in the bottom ports. For probes a
(located in the top port) and c, the correlation level is
substantialy lower; nevertheless, the results of three
different experiments show that, in this case, anticorre-
lation is observed. The correlation function C;; was cal-
culated by superimposing the functions measured in

several shots, which allowed usto enhance the contrast.
However, even this procedure did not reveal any corre-
lation between probes a and b, although the distance
between them along the magnetic field line was shorter.

Figure 4 shows the results of measurementsin which
probe b was shifted radialy with respect to probe c.
We can see that the correlation function varies slightly;
i.e., thesize of theregion in which fluctuations arelocal -
ized is at least ~1 cm. As can be seen in Figs. 3 and 4,
the time delay in the cross correlation function is
absent, which indicates that the oscillation phase of the
fluctuation signal does not change.

The coefficient of correlation between the fluctua-
tions measured by the bottom probes b and c is higher
than that for probes a and b, although the distance
between the latter probes along the magnetic field line
is shorter. This indicates that long-wavelength fluctua-
tions along the magnetic field lines are absent. As is
seen from Figs. 3 and 4, the maximum value of the cor-
relation coefficient usualy varies in the range 0.2-0.4
and, in some cases, attains 0.6. However, in some shots,
the correlation between the bottom probes was signifi-
cantly lower, which indicated to the absence of a corre-
lation between these probes. In this case, the relative

fluctuation Js/Js increased from 10-15 to 3040%. It
may be supposed that, when the correlation between
the signals from the probes separated by a large dis-
tance along the torus was high, the oscillation modes
PLASMA PHYSICS REPORTS  Vol. 27
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with small k; were excited. When no correlation was
observed, this mode, probably, was suppressed.

5. FLUCTUATIONS IN THE FLOATING
POTENTIAL

The behavior of fluctuationsin the floating potential
differs substantially from that in the ion saturation cur-
rent. We recall that no correlation was observed for the
ion saturation currents of probes a and b. At the same
time, the cross correl ation function between the floating
potentials measured with these probes C,, was rather
high, as is seen from Fig. 5. Figure 5a shows how the
cross correlation function C,,, varies as the top probe
shiftsby ~3 cm. Theresults correspond to two positions
of probe b. We note that C,, varies with radius by a
sinusoidal law. A similar situation is observed in
Fig. 5b, which shows a fragment of such sinusoidal
oscillations as the bottom probe ¢ shifts relative to
probe b, and in Fig. 5¢, which represents another series
of experiments in which the bottom probe d positioned
at ¢ = 90° shifts relative to probe b. It should be noted
that the same distribution was observed independent of
whether the measurements of the ion saturation current
were carried out; i.e., this effect cannot be attributed to
plasma perturbation caused by the measurements of the
ion saturation current.

Variationsin the cross correlation function C,,, with
radius can be interpreted as variationsin the oscillation
phase, i.e., as the radial propagation of a wave. As fol-
lows from Fig. 5a, the characteristic wavelength of the
wave propagating in the transverse direction is ~3 cm
and the characteristic period, which is determined by
the correlation time, is ~100—150 pis.

To understand the character of the radial wave prop-
agation (i.e., to determine whether the wave is standing
or running), we measured the correlation functions for
two probes of set b that were spaced by 4 mm in the
radial direction. Figure 6 shows the correlation func-
tions calculated using the results of four series of exper-
iments. In al four series, the delay timesin the correla-
tion functions point to the radial propagation of fluctu-
ations. The sign of the delay time corresponds to the
outward propagation, and the velocity estimated from
the delay time of the correlation function (3-5 us) is
~10° cm/s.

6. DISCUSSION OF THE RESULTS

The measurements of the distributions of the aver-
age values of the ion saturation current and the floating
potential showed that the last magnetic surface calcu-
lated with account for the plasma pressure nearly coin-
cides with the boundary of the region in which we
observe the increase in the ion saturation current. The
floating potential in this region remains positive and
varies dightly in magnitude. Deeper in the plasma, the
potential drops sharply. In[8], it was shown that, asthe
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Fig. 4. (@) Cross correlation function C;;(t) between fluctu-
ations in the ion saturation current measured with probes b
and c positioned in bottom ports (r, = 110 mm, r. = 95 mm)
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Fig. 5. Cross correlation function C,,,(0) between the float-
ing potential signalsfrom (a) probesa and b vs. the position
of probe a for two positions of probe b, r;,; = 110 mm (left
curve) and rp, = 108 mm (right curve); (b) probes b and ¢
vs. the position of probe c for the fixed probe b (r, =

110 mm); and (c) probes b and d vs. the position of probed
for the fixed probe b (r, = 100 mm).

neutral gas flux from the wall increases, the point at
which V; changes its sign shifts toward the plasma
center. This allows us to suppose that the region in
which the potential is positive and varies only dightly
with radius is associated with ionization processes in
the plasma. Previous measurements of the electron
temperature showed that the increase in T, correlates
with the decrease in V;.

Thereis another plausible explanation of the differ-
ence between the observed J, and V; distributions. The
stable last closed magnetic surface is produced by the
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Fig. 6. Crosscorrelation functions C,,, (1) between thefloat-

ing potential signalsfrom two probesin set b that are spaced
by 4 mm intheradial direction for different positions of the
first probe: (a) r; = 106 mm, (b) r, = 104 mm, (c) r3 =
102 mm, and (d) r4 = 110 mm.

external magnetic field, and the behavior of V; outside
this surface depends on the high plasma conductivity
along the magnetic field lines. As for the electron den-
sity, the diffusion density distribution at these radii may
be related to the particle loss across (rather than along)
magnetic field lines.

Fluctuation measurements confirmed that the spatial
distributions of fluctuationsin theion saturation current
and fluctuationsin the floating potential are different, as
was observed in many devices. The correlation between
J; fluctuations measured by the bottom probes, the
weak dependence of this correlation on the radius, and
the anticorrelation between the signals from the top and
bottom probes allow us to suggest that the effects
observed can be attributed to the displacement of the
plasma column. The characteristic time of correlation
between the signals from the top and bottom probes
decreases during discharge (~10 ms) from 60-100 to
15-30 ps and increases after the heating pulse ends.
Hence, we may suppose that the fluctuations are fast
vertical displacements of the plasma column.

As was shown above, V; fluctuations have the form
of waves propagating in theradial direction. The possi-
bility of the radia propagation of fluctuations is con-
firmed by the results of [9], in which it was shown that
the coupling between modes can provide a mechanism
for such propagation. Unfortunately, we cannot cer-
tainly state whether these waves are running or stand-
ing, because the shifted correlation functionsin Fig. 6
may correspond to other oscillation modes that are not

KHOLNOV

related to the effects observed with the probes posi-
tioned at different toroidal angles.

7. CONCLUSION

(i) It is shown that, at any toroidal angle, the distri-
bution of the floating potentia V; in the edge plasmais
the same. Two radial regions may be distinguished: the
region in which the potentia is positive and varies only
slightly and theregion in which the potential is negative
and its magnitude increases toward the plasma center.
The plasma density becomes measurable in the region
where the potential is positive.

(i) It is shown that, in the edge plasma of the L-2M
stellarator, the distributions of n/n (which corresponds

to J, fluctuations) and @/kT, (which corresponds to V;
fluctuations) are different. This indicates that fluctua-
tions are not electrostatic drift fluctuations. The corre-
lation between J; fluctuations at different radii evi-
dences the fast vertical displacements of the plasma
column as awhole.
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Abstract—A mechanism for the formation of the structure of an optical discharge in Besselian laser beamsis
proposed on the basis of analyzing numerous experiments. The discharge structure is determined by the peri-
odicity of thefield of aBesselian beam in the radial and longitudinal directions and also depends on the power
and duration of the heating pulse. In theinitia stage of the plasma channel formation, the configuration of the
channel inhomogeneities follows the discharge structure. If the spatial scale of the discharge structureis small,
then the developing channel evolves into a homogeneous state. The time required for the structural inhomoge-
neities of the plasma channel to be smoothed out is estimated as afunction of their scale length. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The problems related to laser spark plasmas have
been widely discussed in theliterature (see, e.g., [1, 2]).
Laser sparks are usually produced by a spherical lens,
which focuses laser light into a small-diameter Gauss-
ian beam. However, the distance L over which the
intensity of such abeam can be assumed to be constant
is restricted by the phenomenon of diffractive spread-
ing. The divergence angley of the beam depends on the
ratio of the laser wavelength A to the beam radius a,,
Y ~ A/a,, so that, over distancesL > a,, the beam radius
can be represented asa = yL.

The diffractive spreading, which is in principle
unavoidable, can, nonetheless, be compensated by
forming a laser beam with a conical wave front con-
verging toward the beam symmetry axis at an angley.
A conical wave front is produced by a conical lens, or
an axicon (see, e.g., [3]). Over the focal distance L =
R/tany behind an axicon with an aperture R, the beam
radius a, isindependent of the wavelength and remains
essentially constant. The radia distribution of the laser
field is described by the Bessel function Jy(x) [4],
where x = krsiny, k = 217\, and r isthe distance from
an arbitrary spatial point to the beam axis.

The field of such a Besselian beam has maximums
in the cylindrical regions whose boundaries x,, are the

zeros of the Bessel function, Jy(X,) = 0. The radius of
the central region is equal to X, = 2.40, which givesy =
0.4M/a,. Thus, for A = 1 pm, 2a, = 50 um, and 2R =
4.5 cm, we have y = 1°. A comparison between these
two beams for 2a, = 50 pum shows that the cross-sec-
tional area of a Gaussian beam increases tenfold over a
distance of L ~ 2 mm, while the cross section of a
Besselian beam remains constant over the entire focal
distance L = 130 cm. A photograph of alaser spark in a
Besselian beam with the above parametersis shown in
Fig. 1[5].

The very high axial symmetry of Besselian beams
makes it possible to overcome several challenging
problems in developing new plasma-based technolo-
gies [5-9], such as super-high-speed commutation, the
generation of short-wavel ength laser pulses, the plasma
acceleration of charged particles, and inertial confine-
ment fusion. In thelatter case, the use of Besselian laser
beams should automatically provide a uniform irradia-
tion of laser targets (recall that, in spherical geometry,
the degree of nonuniformity should be no higher than
1-2% in order for instabilities not to develop [10]).

However, the matter is not so simple asit was origi-
nally thought to be. The photograph shown in Fig. 1
was taken with a long exposure time (the camera shut-
ter was held open) in the intrinsic light from a plasma

Fig. 1. Laser spark produced by a Besselian beam with the parametersy = 1°, A = 1.06 um, and R = 2.25 cm.

1063-780X/01/2709-0799$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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heated by a 200-J, 50-ns laser pulse. Further investiga-
tions revealed several different regimes of breakdown
of a gas by a Besselian beam (including the running-
focus regime [6]) and the formation of structures with
unusual configurations in the developing plasma chan-
nel. The formation and evolution of such structures
indicate the onset and development of instabilities. In
order to gain insight into the nature of this phenome-
non, the structures of plasma channels at different
stages were investigated in a number of gases at pres-
suresfrom 0.05to 10 atm (see, e.g., [7, 9]). It was estab-
lished that the structures observed depend on the prop-
erties of Besselian beams [4]. The objective of this
study is to clarify the mechanism for the formation of
structures with different configurations.

2. STRUCTURES OF THE PLASMA CHANNELS

The structures of plasma channels were investigated
using laser plasmadiagnostics. The distribution of opti-
cal inhomogeneitiesin aplasmachannel wasvisualized
by shadowgraphy, schlieren photography, and interfer-
ometry. The optical inhomogeneities were recorded by
image converter cameras and charge-coupled device
(CCD) cameras. Intheinitial stage of the process, when
the elements of the structure were still small-scale and
the breakdown centers were opague to probing radia-
tion, the structure of the plasma channels was deter-
mined from the scattering of heating or probing radia-
tion.

When comparing the plasma channels formed in
Besselian beamswith different parameters, it should be
kept in mind that the longitudinal profile I(2) of the
beam intensity depends on the form of the axicon gen-
eratrix and theradial profile of the intensity of the inci-
dent radiation. For a straight-line generatrix and a rect-
angular (or Gaussian) profile, the longitudina profile
I(2) is peaked at z= L (or, respectively, at z=L/2). An
exact expression for the beam intensity will be ana-
lyzed bel ow. To compare the results obtained under dif-
ferent conditions, we can use the approximate formulas
for the radiation intensity w ~ (E/1)y* and the specific
energy € ~ Ey?, where Eisthelaser pulse energy, Tisthe
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full width at half-maximum (FWHM) of the laser
pulse, and a’L ~ y-.

Figure 2 shows two instantaneous shadowgraphs of
parts of the plasma channels produced by alaser pulse
with the energy E = 70 J and duration t =40 nsin a
Bessdlian beam with the convergence angle y = 7.5°
(L = 17 cm). The shadowgraph of a channel in Fig. 2a
was recorded 10 ns after the breakdown of air at atmo-
spheric pressure, and the shadowgraph in Fig. 2b shows
an analogous channel at the same pressure but in argon
20 ns after the breakdown. It can be seen that the
plasmachannel that formsin air (Fig. 2a) is continuous
and uniform; it aso remains uniform throughout all
subsequent stages of the discharge. In contrast, the
channel in argon (Fig. 2b) has a beaded structure even
20 ns after the breakdown; to a greater or lesser extent,
the channel remains beaded throughout its lifetime.

This structural difference can only be explained by
thefact that the intensity of the Besselian beamin argon
isfar abovethethreshold level, because, under the same
conditions, the threshold for breakdown in argon is
lower in comparison with that in air. If this explanation
istrue (i.e., if the structure of the forming plasma chan-
nel is actually affected by the intensity of the Besselian
beam), this characteristic feature should aso persist in
other gases. Thisimportant conclusion was verifiedina
specia series of experiments with a step profile of the
specific power along the beam.

These experiments were carried out with a profiled
axicon capable of producing beamswith aconical wave
front whose convergence angle y varied in the range
13° <y < 20°. Over afocal distance of L = 10 cm, the
axicon focused approximately one-quarter of the laser
energy onto a1-cm-long interval, thereby providing the
conditions under which the heating radiation intensities
at the neighboring sites of the focal region differed by
several timesin the course of adischarge. Also, inthese
experiments, the laser pulse energy was increased to
E = 150 J (which corresponded to T = 40 ns). In Fig. 3,
which shows a schlieren photograph of part of the
plasma channel in air at atmospheric pressure, the zone
of elevated pulse intensity is indicated by two small
strips, installed in advance under the Besselian beam.

Fig. 2. Plasma channels (a) 10 ns after the breakdown in air at a pressure of 1 atm and (b) 20 ns after the breakdown in argon at the

same pressurefor E=70J, 1 =40ns, andy=7.5°.

PLASMA PHYSICS REPORTS Vol. 27 No. 9 2001
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Fig. 4. Interferograms of a channel produced in N,O at pressures of (&) 0.27 and (b) 0.67 atm for E= 0.6 J, 1= 100 ps, and y = 18°.

The schlieren photograph was taken 180 ns after the
beginning of the heating pulse. On the |eft side of the
photograph, one can distinctly see atransparent homo-
geneous channel with a sharp boundary. Approaching
the indicated region, the increase in the specific input
energy is accompanied by a gradua increase in the
plasma channel diameter. However, in the indicated
region, where the pulse intensity is elevated, this ten-
dency isfar more pronounced: the diameter of the chan-
nel increases abruptly and the channel itself becomes
opaque to probing radiation, thereby indicating the
change in the structure. We can thus conclude that the
channel structure may actually change when the laser
intensity becomes significantly higher than the thresh-
old intensity.

In Fig. 3, we can aso see a perturbation that
emerges from the region of elevated pulseintensity and
propagates to the left along the channel. Judging from
the image of the projection of the perturbation onto the
plane of observation, the perturbation is spherical in
shape and develops near the boundary of the indicated
region. The distance the perturbation passed over atime
of about 160 nsis estimated to be about 0.3 cm, which
indicates that the perturbation propagated at a mean
velocity of v ~2 x 10% cm/s. These results make it pos-
sible to identify the perturbation asawave driven in the
No. 9
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zone where the intensity of the heating radiation
changesin ajumplike manner. In what follows, we will
assume that the perturbation waves may also be driven
in local zones of elevated radiation intensity.

In a relatively late stage of the channel evolution
(about 160 ns after the beginning of breakdown and
later), it is impossible to recognize the origina seed
small-scale perturbations, which, presumably, had
enough time to damp. On the other hand, they may
influence the channel structure, in which case, however,
the heating pulse should be long enough so that, over
the time of its action, the perturbation wave can travel a
distance comparablewith the characteristic scale length
of the Besselian beam. Thus, for a pulse duration of T =
40 ns and velocity v ~ 2 x 10° cm/s, this distance is
about r = 1 mm,; thisindicates that, for the primary per-
turbations to be observable in a beam of radius a =
10 pm, the pulse should be made shorter by at most two
and a half orders of magnitude.

Plasma channels created by short laser pulses were
investigated in a device [11] operating at the laboratory
headed by Prof. H.M. Milchberg (University of Mary-
land, USA) in joint experiments with the participation
of L.Ya Margolin and the author of this paper. The
channels shown in Fig. 4 were produced in nitrous
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oxide, which was chosen as the working medium
because of the low threshold for optical breakdown and
thus provided the possibility of investigating the forma-
tion of the channels in a broad pressure range. The
parameters of the Besselian beamswere asfollows: A =
1.06 um, E=0.6 J, T = 100 ps, and y=18°. The diameter
of the central part of such beamswas2a, = 2.6 pm, and
the beam length was L = 1.5 cm. The state of the chan-
nels illuminated with 70-ps, 0.53-um laser pulses was
monitored by a Mach-Zehnder interferometer. The
magnified interferogram images were recorded by a
512-uym-long CCD camera. In Fig. 4, the numeras
denote the numbers of the pixels of the CCD camera,
each of the pixelsbeing 1.6 umin size.

The interferograms shown in Figs. 4a and 4b were
taken at pressures of 0.27 and 0.67 atm, respectively.
The contours of the plasma channels are seen against
the background of the interference fringes of equal
inclination. The amount by which the fringes are dis-
placed reflects the value of the plasma density. The
channels were created by identical Besselian beams
and were recorded 250 ps after the beginning of the
heating pulse. Nevertheless, the channdl in Fig. 4a
appears to be completely uniform, while the interfero-
gram of the channel in Fig. 4b provides evidence for
highly developed perturbations. The threshold for
breakdown at a pressure of 0.67 atm (Fig. 4b) should be
lower than that at a pressure of 0.27 atm (Fig. 4a). Thus,
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we again arrive at the conclusion that, for short heating
pulses, the channel structure should change when the
beam intensity becomes higher than the threshold
intensity.

Note that the pattern of the displaced fringes in
Fig. 4b provides evidence for numerous discrete pri-
mary breakdown centers. Therefore, we can assume
that, on the whole, the channdl is formed against the
background of the perturbation waves driven by the pri-
mary breakdown centers and that the onset and the con-
figuration of these centers play a dominant role in the
formation of the channel structure.

3. CONFIGURATIONS OF THE OBSERVED
BREAKDOWN CENTERS

It was most expedient to display the configuration of
the primary breakdown centers in the scattered laser
light. Thismade it possibleto visualize, first of all, per-
turbations in which the electron density is the highest
and to automatically satisfy the synchronization condi-
tions. The representative images of the distribution of
the primary breakdown centersin Besselian beamswith
different parameters during breakdown in air and argon
are shown in Fig. 5, in which the wave front propagates
from left to right.

Figure 5a illustrates the breakdown in argon at a
pressure of 0.2 atm in a Besselian beam with the param-

D B R i G

Fig. 5. Primary breakdown centersin (a) argon at a pressure of 0.2 atm (E=10J, 1 = 0.8 ns, y = 1°), (b) air at a pressure of 1 atm
(E=17J,1=0.8ns,y=2.5°),(d) ar at apressureof 1atm (E=20J,1=20ns,y=5°), (e) air at apressureof Latm (E=70J, 1=
40 ns, y=7.5°), and (f) argon at apressure of 1 atm (E=70J, T =40 ns, y=7.5°). Frame (c) is amagnified fragment of image (b).
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eterse=10J, 1 =0.8ns, and y= 1°. The images cover
a beam portion of length 50 cm, the total length of the
beam being about L = 130 cm. Closer to the axicon (on
the left side of thefigure), the beam intensity isslightly
above the threshold and is about one-quarter of the
beam intensity averaged over the beam length. In this
region, the breakdown centers occur at the beam axis
and form a periodic sequence of points with a spatial
separation of about | = 7 mm. Farther away from the
axicon, the beam intensity increases and the individual
breakdown centers start to merge, tending to form a
continuous breakdown channel.

Figure 5b illustrates an optical discharge in air at
atmospheric pressure in a beam with the parameters
E=17J,1=0.8ns andy=2.5° (L =52 cm), the beam
intensity being two orders of magnitude higher than
that for adischargein argon. Judging from theimagein
Fig. 5b, we may speak of the structural blocks rather
than of the breakdown centers. The spatial separation
between the blocks along the beam axis is about | =
1.1 mm. In turn, each block consists of smaller cells
with asize of 0.02—0.05 mm. Figure 5c is a magnified
fragment of the image shown in Fig. 5b. We can dis-
tinctly see the individual cells and the lines formed by
them. The angle 3 at which the lines are inclined to the
beam axisis significantly larger than y. For this reason,
the appearance of the lines of cells cannot be explained
as being due to the propagation of the breakdown front
upward laser radiation, asis usually done when investi-
gating optical discharges at the focus of a spherical
lens.

The images shown in Figs. 5a-5c were obtained
with relatively short heating pulses in Besselian beams
with small convergence angles y. Next, Figs. 5d-5f
illustrate the action of beams with modified parameters
and longer pulses. Thus, Fig. 5d shows the image of the
structure of a plasma channel created in air at atmo-
spheric pressure by a Besselian beam with the parame-
tersE=20J,1=20ns,and y=5° (L =26 cm). Ascom-
pared to the experiment illustrated in Fig. 5b, the beam
intensity islower by afactor of about three, but the spe-
cific energy of radiation is one order of magnitude
higher. The structure of the breakdown discharge is
again periodic in the axial direction, but the spatial
period isshorter (I =0.28 mm) and the structural blocks,
which again occurred in the axial region, are now con-
tinuous plasma formations.

For a higher specific energy of radiation and longer
laser pulses, the configuration of a breakdown dis-
chargein air at atmospheric pressure becomesradically
different. Figure 5e shows the image of an optical dis-
charge driven in a Besselian beam with the parameters
E=70J,1=40ns,andy=7.5° (L =17 cm). Ascom-
pared to Fig. 5d, the beam intensity in thisdischargeis
higher by afactor of 6 and the specific energy is higher
by afactor of 12. The channel structureis characterized
by the appearance of extensions, which are inclined to
the symmetry axis at an angle of 3 > vy, asaresult, the
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channel structure is herringbone-shaped. The spatial
period of the extensions in the axial direction is about
[ = 0.12 mm, and the extensions themselves are sepa-
rated from the discrete breakdown centers.

The structure of the plasma channels is most pecu-
liar in optical discharges in argon. Figure 5f illustrates
an optical discharge driven in argon by a Bessdlian
beam with the same parameters asin Fig. 5e (E= 70 J,
T =40 ns, y = 7.5°). The most pronounced structural
inhomogeneities of the channel are funnel-shaped or
beaded, the spatial separation between them being larger
than 1 mm. Itiswell known [1] that, in argon, the thresh-
old intensity for breakdown (I, = 1.5 x 10!° W/cm?) is
lower than that in air (I, = 8 x 10'° W/cm?) by afactor
of 5.3. That is why, for the same beam parameters, the
excess of the beam intensity above the threshold in
argon plays a greater role and the structure of the
plasma channels in argon (Fig. 5f) differs radicaly
fromthat inair (Fig. 5e). However, from Fig. 5f, we can
see that, in argon, the breakdown centers also form a
periodic structure whose period in the axia direction
(I = 0.12 mm) coincides with the period of the channel
structurein air (Fig. 5€).

According to the above experimental data, the struc-
ture of the plasma channels was always observed to be
periodic in the longitudinal direction. The spatial scale
of the structureisindependent of the sort of gas, the gas
pressure, and the energy and duration of the heating
pulse and is determined exclusively by the convergence
angle y of the conical wave front of a Besselian beam.
Other types of structures, with larger and smaller char-
acteristic scale lengths, were also observed. It was
established that the properties of alarger scale structure
depend not only on the parameters of the Besselian
beam but also on the sort of gas. For a smaller scale
structure, this dependenceisfar |ess obvious. However,
adetailed analysis of the experimental data shows that,
to agreater or lesser extent, the smaller scale structure
always manifestsitself in plasma channels produced by
Besselian beams. For thisreason, we briefly addressthe
structure of the Besselian beam itself.

4. STRUCTURE OF THE BESSELIAN BEAM

The formation of a periodic sequence of breakdown
centers along the symmetry axis was observed when
thefirst attempt was made to create a plasmachannel in
the field of a Besselian beam [3]. Originaly, the point
breakdown centers were explained as a result of mis-
alignment. Only after the analysis of the streak images
of breakdown propagation [12], was the appearance of
the breakdown centers attributed to the laser field distri-
bution formed behind the axicon in a nonlinear
medium.

The properties of the medium are determined by its
dielectric function

g = go+ie” +ey (IE), (1)
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Fig. 6. Field structure of aBesselian beam with y=5°: (a) the measured radial field distribution and (b) the longitudinal field profiles

calculated for a cubic nonlinearity of the gas.

where the imaginary part €" describes the wave damp-
ing and the nonlinear functional &, is determined by
the equation of state of the matter and describes the
characteristic features of the interaction.

By analogy with the focusing of a Gaussian beam
[13], we describe the field distribution behind the axi-
con in a medium with the nonlinear dielectric function
(1) by the following equation for the complex field
amplitude E(r, t) = Re{eE(r, 2)exp[-i (wt — k2)]} [4]:

2|ka—E 1%%% gc*g[ls"+sNL(|E|2)]E =0, (2

where k? = (w/c)%¢,. We supplement this equation with
the following boundary condition for the focusing of
laser radiation by an axicon with aperture R:

E(r,z=0) = E;,(r)exp(-ikrsiny). 3)

Here, E,(r > R) =0 and E,,(r < R) = 1'(r), where I(r)
istheradial profile of theintensity of theincident beam.

In the axia (r < zsiny, kr? < 2) zone of the focal
region of the axicon (A/sin’y < z< L), the linear (&" =
en. = 0) solution E© to Eq. (2) with the boundary con-
dition (3) hasthe form

EQr, z) = E,f(k 1,4, 2)
+ Eo(2) exp(~i (kz/2) sin’y) “)
x [Jo(krsiny) —irJ;(krsiny)/2zsiny].

Here, the first term E, f, which accounts for the diffrac-

tion at the edge of the axicon, isassmall as(A\/2)'/> com-
pared to the second term, which describes, to within a
small term on the order of r/(2zsiny), the beam field
behind the axicon. The transverse (with respect to the
beam axis) component of the wave vector of the beam
field is equal to ky = ksiny (and, accordingly, ok =
1/2ksin%y), and the amplitude Ey(2) of the field varies

gradually in the axial direction,
Eo(2) = 21(z/A)sinyE, (zsiny) exp(—itvd). (5)

Consequently, behind the axicon, the field distribution
can be described with good accuracy by the Bessel
function Jy(kr siny):

[E(r, 2)| = [Eo(2)] Jo(krsiny), ©)
in which case the beam intensity can be represented as

| ~ Eg (z)J§ (kr siny). The photograph of the beam field
distribution in the experiment with a Besselian beam
(y=5°) isshownin Fig. 6a, wherethe calculated values
of the zeros of the Bessel function r,,, (where mis the
number of the ring) are indicated at the scale on the
right.

The properties of a Besselian beam in a nonlinear
interaction with the medium are determined by the non-
linear component &y, (|E|?) of the dielectric function of
the medium. The particular form of the expression for
ey, depends on the degree of ionization, the electron
temperature, the relationship between the electron
mean free path and the scale on which the beam field
varies, etc. In the strong field of a Besselian beam, the
dielectric function of the gas with excited atoms can be
considered to be a locally nonlinear power function
because of the multiphoton transitions from the meta-
stable statein gasatoms. According to[14], for thenon-
linear effectsto comeinto play when the beam intensity
at the axis is about 10" W/cm?, it is sufficient that the
fraction of the atoms in the excited metastable state be
103 of the total number of gas atoms.

During the avalanche ionization of the gas, the non-
linear effects depend on the properties of the produced
plasma. In aweakly ionized plasma, the electron tem-
perature changes as aresult of the electron heating due
to inverse-bremsstrahlung absorption and the energy
loss associated mainly with electron—neutral collisions.
If, in this case, the electron mean free path A, is small
PLASMA PHYSICS REPORTS  Vol. 27
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compared to the scale length Lz on which the electro-

magnetic field varies, A/Lg < 62’ 2 (where &, isthe frac-
tion of the energy of an electron that istransferred to a
neutral atom in a collision event), then the nonlinear
part of the dielectric function € depends on the extent to
which the electron density n, deviates from its initial
guasisteady value n,, on = h,— n,, so that the nonlinear
part £, = —on/n, of the dielectric function can be writ-
ten as

n 2
en = € ™
C

Here, € = E/E;, where E; = (1211&n,T)? isthe plasma
field characteristic of thermal nonlinearity, n, =
muw’/4Te?, and n, and T are the quasisteady €electron

density and temperature. For 62’ ? < Ao/Le < 1, the non-
linear effects become nonlocal, in which case the
dependence of the nonlinear functional €, on ‘€ can be
determined from the electron heat-conduction equa-
tion. Expression (7) is aso valid for a relatively hot
plasma such that A, > Lg (|&n/ny| < 1), in which case,
however, the field amplitude € should be normalized to
the plasma field E; = (16T, T)? characteristic of the
instability related to ponderomotive effects.

For different power-law local nonlinearities (aswell
as for anonlocal response function of the medium), an
analysis of the solution to Eq. (2) [4] showsthat, in the
longitudinal profile Ey(2) of the field amplitude, thereis
a longitudinal structure with the characteristic scale
length

| = 2108k, = 2\/sin’y. ®)

This structure forms when the radiation power in the
central region and, accordingly, in each ring region of
the radia distribution (6) corresponds to the value of
|€| that is close to the critical value €, for self-focus-
ing. Thus, for the dielectric function with the nonlinear
part (7), thisvalue liesin the parameter range

2
N, 1 |E(0)|
Ne=Nosin®y Eg

02 = <1, 9)

where E© is the value of the linear solution to Eqg. (2)
at theaxisand E, = E;.

For the experimental conditions of Fig. 5d, the
numerical solution to Eq. (2) with the boundary condi-
tion (3) and the dielectric function with the nonlinear
part (7) isillustrated in Fig. 6b, which shows the longi-
tudinal profiles of the dimensionless field |E|/E, calcu-
lated as afunction of the dimensionlesslength z/| at the
symmetry axis for four values of the parameter
[E@|/E,,. We can seethat, in the parameter range (9), the
electric field in the plasma channel produced by a
Besselian beam actually possesses a longitudinal peri-
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odic structure whose period | = 0.28 mm coincideswith
the period | obtained from the experimental dataillus-
trated in Fig. 5d.

For a particular nonlinear dielectric function, the
field of a Besselian beam may be either below or far
above the critical field. The weaker the beam field, the
smaller the modulation depth of the structureis. In con-
trast, asthe beam field increases above the critical level,
alarge-scale structurewith aperiod of |, ~ 101 [4] forms
simultaneously with the main structure with period (8).
The configuration of a breakdown discharge in Fig. 5f
corresponds precisely to this doubly periodic structure
with the periods| = 0.13 mmand |, = 1.4 mm (on aver-
age), which are close to the calculated periods | =
0.124 mm and |, = 1.24 mm. According to Fig. 5f and
theoretical predictions, the large-scale modulation
manifestsitself not only in the axial focal region of the
beam but also in the ring regions of the radial distribu-
tion of the beam field intensity. For this reason, the
diameter of the doubly periodic structure is larger than
that in the absence of the large-scale modulation; this
conclusion is confirmed by a comparison of the break-
down structuresillustrated in Figs. 5e and 5f.

5. MECHANISM FOR THE FORMATION
OF THE STRUCTURE OF AN OPTICAL
DISCHARGE

We begin our analysis of the structure of an optical
discharge by considering aplasmachannel produced by
a0.6-Jlaser pulse with T = 100 ps. The structure of this
plasma channel is shown in Fig. 4b. Because of the
small dimensions of the primary perturbations and very
short times during which they developed, we failed to
record their positions and measure their parameters.
Hence, let usturn to theinterferogram shown in Fig. 4b
and try to reconstruct the discharge structure by calcu-
lations.

In the interferogram, the amount by which the
fringes of equal inclination are displaced reflects the
structure of the perturbations. The interferogram
obtained with the CCD camera contains 56 fringes
along the z-axis, so that, for a given radius r, we can
construct the displacement of the interference fringes
o(N) as a function of N = z/h (the z-coordinate normal-
ized to the fringe spacing h). This dependence reflects
the distribution of the density perturbations along the
channel. Figure 7 displays the dependence &(N) calcu-
lated for different values of the ratio r/R, where 2R =
41.0 um is the mean diameter of the plasma channel
shownin Fig. 4b. In Fig. 7, the upper plot characterizes
the displacement of the fringes far from the channel (at
r/R = 5) and demonstrates that the fringes are in fact
spaced periodicaly. The middle plots (from top to bot-
tom) show the displacement of the fringes at the chan-
nel axis (r/R = 0) and at the relative radii r/R = 0.25,
0.50, and 0.75. The lower plot (at r/R = 1) characterizes
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Fig. 7. Longitudinal profiles of the amplitude of pulsations
of the plasmadensity in the channel shownin Fig. 4b at dif-
ferent dimensionless radii r/R.

theradia displacements of the upper and lower bound-
aries of the channel.

This distribution of the density perturbations con-
firms the discrete nature of gas breakdown. Every
breakdown center gives rise to a region in which the
plasma temperature and density are both elevated and
which starts expanding as a spherical ionization wave.
In turn, every spherical waveis an expanding spherical
layer with pulsating hydrodynamic parameters [15].
The superposition of these waves gives rise to the
observed pulsations of the plasmadensity. It seemsrea-
sonable to suppose that the breakdown centers form at
the points at which the beam intensity is maximum.

According to Section 4, the symmetry properties of
the problem enable us to describe the structure of a
Bessdlian beam by two coordinates, specifically, the
longitudinal and radial coordinates, zand r. The longi-
tudinal structure of the beam is characterized by a
sequence of points at which the beam intensity is max-
imum and which are separated by the distance | =
2MN/sin?y (or | =21 pmfor the case of Fig. 4b). Theradia
structure of the beam is characterized by a sequence of
rings whose dimensionless (normalized to the channel
radius R=20.5 um) radii (a= 0.063, 0.145, 0.227, ....)
correspond to the zeros of the Bessel function. The
guestion then arises: what are the rings at which the
breakdown occurs? This question can be answered by
reference to numerical modeling [16].

We assume that the breakdown centers appear either
in the central focal region of the beam or at a structural
ring with the corresponding diameter 2a,. We aso
assume that, in the longitudinal direction, the break-
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down centers are dispersed among the beam intensity
maxima (there are 24 points over a distance equal to
512 pm). For convenience, when comparing the calcu-
lated results with the measured data, we normalize the
z coordinate and the amplitude of pulsations of the
plasma density to the fringe spacing h in the z direction
and investigate the channel structure over the same
interval {z,z} ={0, 55} that was observed experimen-
taly. We aso take into account the fact that the dis-
placement of theinterference fringes correspondsto the
total phase increment along a chord of the cylindrical
channel. We specify the chord by the coordinates z =
(z,—z))/2 and r, = R/2, in which case, along half of the
chord, the y coordinate changes from 0 to rytand,
where ¢ is the azimuthal angle. The summation along
the entire chord should include all perturbationsthat are
driven at the points pzwithin the interval { z,, z,} on the
axis. Over atime interval t, less than the duration T of
the heating pulse, the points pz may obey a random
temporal distribution pt. We normalize the quantitiespt,
t,, and 1 to the time of observation of the channel,
250 ps, so the dimensionless duration of the pulse is
equal toT =0.4.

L et uswrite out the complete set of initial parameter
values for our problem:

a = {0.063,0.145,0.227} , k =25, 1 = 04,
to = 0.4, {Zl, ZJ = {_1, 56} y

{ynysd ={0rotean(m3)}, f(r) =1,
m=11, Q=1 g=0.

Along with the val ues specified above, this set includes
the following parameters: the number k of perturbations
and the length of the interval of the channel under con-
sideration, {z,, z,} (with allowance for the processes at
the ends); the profiles f(r) (r < a) of the parameters of
the primary perturbations; the number m of termsin the
summation along the chord; the displacement Q of the
entire uniform sequence of the points pz of primary per-
turbations (Q < h); and the range g of random devia-
tions of the coordinates pz of the pointsin a partialy
destroyed periodic sequence of primary perturbations.
Since the time required for the wave front of a Besse-
lian beam to crosstheinterval {z,, z,} isequal t0 1.6 ps
(t = 0.01), we neglect the delay between the heating
pulse and the breakdown discharge driven by it and
assume that the energy release in the breakdown is
instantaneous.

(10)

Let usconsider aninitial (t = 0) breakdown center in
theform of aball of radiusa. Let the ball be centered at
the origin of the coordinates. Inside the ball (r < a), the
perturbed density is described by an arbitrary function
f(r). Outside the ball (r > a), the unperturbed density is
P, = 1 and the excess density is p = 0. According to
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 8. Longitudinal (at ry = 0.5) structure of pulsations of the plasma density in a plasma channel according to the experimental
data (curves E) and the calculational resultsfor a = (1) 0.063, (2) 0.145, and (3) 0.227.

[15], for a perturbation propagating at the speed of
sound ¢, we have

[r—ct|>a for p =0,

c) (D

[r—ct<a for pOf(r— ctl)(r

At r > a, a perturbation of an arbitrary initial shape
becomes a spherical layer of thickness 2a, in which the
density pulsations are described by the function f(|r —
ct]). Consequently, formula (11) determinesthe config-
uration and the internal structure of a propagating per-
turbation wave. The problem of the superposition of
perturbation waves with theinitial conditions (10) was
solved by means of the Mathematica-4 software pack-
age.

Figure 8 illustrates the results calculated for the ini-
tial perturbations with the radii a = 0.063, 0.145, and
0.227, which correspond to the first three roots of the
Bessel function (i.e., to the axial region and thefirst and
second rings); the related profiles are denoted by 1, 2,
and 3, respectively. The figure also shows the experi-
mentally obtained dependences of E corresponding to
the perturbations illustrated in Fig. 7 for the relative
radius r/R = 0.5, which corresponds to the r, value
adopted for simulations. The experimental profilesof E
and the profiles computed for a = 0.145 are displayed
by the heavy curves. Shown on the left and on the right
of Fig. 8 are the longitudinal density profiles and their
spatial spectra, respectively.

A comparison of numerical results with the experi-
mental data shows that the profiles calculated for a =
0.063 and 0.227 contradict the measured dependence.
For a = 0.063, the scale of the structure is too small,
and, for a = 0.227, the scale is too large. In the latter

PLASMA PHYSICS REPORTS  Vol. 27

No. 9 2001

case, the resonance phenomena begin to manifest them-
selves. Agreement between the results obtained for the
first ring (a = 0.145) and the experimental datais much
better. For this reason, the characteristics of the struc-
ture of the plasma channels were refined and the initial
parameters were adjusted precisely for a = 0.145. The
adjustable parameters were as follows: the number k of
the initial perturbations, the distribution pz (including
the displacement Q of the entire sequence of theinitial
perturbations and the range q of random deviations),
thetimeinterval t, during which the breakdown centers
originate, and the shape of the function f(r).

It was found that the structure of perturbationsin a
plasma channel was described most exactly for the fol-
lowing values of the adjustable parameters: k = 25, t, =
0.2, Q=0.17,g=0, and f(r) = 1. It is these parameter
values for which profiles 2 in Fig. 8 were calculated.
Hence, during the time interval t, = 0.2 (about 50 ps),
the perturbations originate at each longitudinal maxi-
mum in the intensity of a Besselian beam and the spac-
ing between the perturbations coincideswith | = 21 um
to within several percent. For a heating pulse with the
duration T = 100 ps and energy E = 0.6 J, the zone of
perturbations extends to the second ring (of radius
2.9 um) of the distribution of the Besselian beam inten-
sity. At rings with larger radii, the beam intensity is
insufficient to produce the breakdown centers. Note
that the value t, = 0.2 indicates a breakdown at a level
of 0.8 of the maximum beam intensity.

Having checked the assumption of the localization
of the breakdown centers at the points of the maximum
intensities of a Besselian beam, we turn to the analysis
of the structure of an optica discharge, which can be
affected by the breakdown propagation. A rich store of
data on particul ar breakdown processeswas acquiredin
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Fig. 9. Schematic structure of a Besselian beam.

experiments aimed at investigating laser sparks in the
focal region of a spherical lens [1, 2]. According to
these data, the threshold intensity for breakdown is pro-
portional to the ionization potential and decreases with
increasing pressure, diameter of the focal region, and
laser pulse duration. The breakdown front can propa-
gate at avelocity of 10-108 cm/supward laser radiation
asanionization wave, abreakdown wave, or alight det-
onation wave. The optical discharge develops nonuni-
formly, because the velocity with which it expands in
the radial direction is close to the speed of sound in the
plasma produced and isthus appreciably lower than the
propagation velocity upward laser radiation.

Anaogous phenomena can aso take place in an
optical discharge that is driven by alaser pulse focused
by an axicon. In this case, the formation of the structure
of thedischargeis, asbefore, affected by the energy and
duration of the pulse. However, it is also necessary to
take into account the field structure of a Besselian
beam. To make the interpretation of the experimental
data more illustrative, we show in Fig. 9 a fragment of
the beam structure. In the figure, the beam radius is
characterized by the argument x = kr siny of the Bessel
function and the beam length z is specified as the num-
ber of the peak in the longitudina profile of the beam
intensity. In order to make the effect of interest to us
more pronounced, the figure shows the varying compo-
nent of the beam intensity | rather than the total inten-
sity. The value x = 0 corresponds to the symmetry axis
of the beam. The spacings between the neighboring

peaks in the radial and longitudinal directions can be
estimated as da= A/2sinyand | = 2\/sin?y, respectively.

When the beam intensity is only slightly above the
threshold, the breakdown occurs exclusively in the
focal region of the beam (x = 0). Under condition (9) (or
a similar condition), the intensity profile of the beam
becomes modulated with period | aong the z-axis and
the beam evolves to the structure shown in Fig. 9. In
contrast, a beam with an intensity below the threshold
either remains unmodulated or becomes modulated
very dightly (Fig. 6b). However, even under condition
(9), the sequence of breakdown centers occurs in the
focal region of the smallest diameter (x, = 2.4), and the
perturbations are damped over short distances. Accord-
ingly, after the neighboring breakdown centers merge
together, the plasma channel rapidly becomes uniform.
These two scenarios of the development of the process
areillustrated by Figs. 2a and 4a and by the left part of
the channel shownin Fig. 3.

As the laser energy increases, the beam becomes
sufficiently intense for the breakdown centers to origi-
nate at the next inner cylindrical surfaces at which the
beam intensity is maximum, so that the zone of the pri-
mary breakdown successively extends to the rings of
larger radii (x,,=5.52, 8.65, ...). Asthe diameter of the
primary perturbation zone increases, the distance over
which the primary perturbation can affect the channel
structure becomes longer (in proportion to a./a).
However, for ashort laser pulse (T = 0.1 ns), the plasma
produced by the breakdown does not have enough time
2001
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to expand to the larger rings of the beam structure. As
the pulse comesto an end, the interaction of the heating
radiation with the perturbations that it itself generates
does not influence the discharge structure, so that the
plasma channel forms as a result of the spontaneous
propagation of perturbations. The channel structure
shown in Fig. 4b was obtained by simulating precisely
this mechanism.

The structure of the plasma channel is formed by
this mechanism when the heating pulse is sufficiently
short (t < 0.1 ns). Now, we consider the channel struc-
turesin the case of nanosecond laser pulses (Fig. 5). In
Fig. 5a, which illustrates the experiment on laser pulses
with T =0.8 nsinargon at apressure of 0.2 atm, one can
distinctly seethat pronounced breakdown centers occur
precisely at the points of the central maxima of the
intensity of a Besselian beam. The spatial structure of
the forming plasma channel was resolved by recording
optical inhomogeneities in the scattered laser light and
by using abeam with asmall convergenceangle, y=1°
(I = 7 mm). Although, in this experiment, the pulse
duration was almost one order of magnitude longer, the
distance to the next row of the maximum intensitiesin
the first ring of a Besselian beam was also found to
increase by approximately the same amount (da =
30 pm).

In the channel region that is closer to the axicon (on
the left side of Fig. 5a), the beam intensity is about
threshold intensity and its value actually correspondsto
the pulse energy E = 2.5 J. Let us use this value of the
beam intensity when comparing the breakdown condi-
tions in different experiments. Note that the threshold
intensity for breakdown in argon at a pressure of
0.2 atm islower than that in air at atmospheric pressure
by afactor of 2.6 [2]. For this reason, we adopt the fol-
lowing threshold parameter values for the beam in air:
E=6.5J y=1° and t = 0.8 ns, assuming that, for these
values, the breakdown centers in air at atmospheric
pressure originate in the central focal region of the
beam at the points at which the beam intensity is max-
imum and which are separated by the distance | given
in formula (8).

In order to estimate the conditions for the formation
of astructured plasma channel, we determine the ratios
of the power and energy densities of radiation in the
beams that produce the plasma channels shown in
Fig. 5 to their threshold values. To do this, we use the
above relationships w ~ Ey®/t and € ~ Ey®. We aso
present theradii r; of the breakdown zone, which can be
obtained from the data of Fig. 5 (the subscripts a—f cor-
respond to the frames of thisfigure). Settingw, =€, =1
and taking into account the fact that the threshold inten-
sity for breakdown in argon at a pressure of 0.2 atm is
lower than that at atmospheric pressure by a factor of
5.3, weabtain (W, =W,, & =€, I, =TI.)

Wb = 406, Eb = 406, rb = 0.1 mm,;
W, = 154, €, = 384, ry = 0.08 mm;
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w,=91.2,¢, =456 x 10%, r,=0.31 mm;
W = 1250, 8f=6.3 X 104, re= 1.1 mm.

From the experimental data on w;, the Mathematica-4
software package makes it possible to determine the
number m of the ring at which the relative laser power
issufficient for breakdown and the argument x = kr siny
of the Bessel function:

X, =25.7, m,=8; X, =10.0, my =3;
X, =59.0, m, = 19; X, = 803, m; = 251.

However, the same parameters can also be determined
from the experimental data on the radii r;:

X, =25.8,m, =8 X, = 51.7, my = 16;
X, = 238, m. = 74; X, = 850, m, = 266.

For the same pulse duration, the power density inthe
channels in Figs. 5b and 5c is higher than that in the
channel in Fig. 5a by a factor of 41. As a result, the
channels in Figs. 5b and 5c are more complicated in
structure. Instead of individual breakdown centers,
there are numerous centers, which combine into
groups. The distances between the centers of the groups
are equal to the period of the longitudinal beam struc-
ture, | = 1.1 mm (for the convergence angle y = 2.5°).
Note that both of the methods yield the same number of
the ring of the radial structure of a Besselian beam:
m, = 8.

From Fig. 5c, we can see that the structural groups
of the breakdown centers lie within acylindrical region
with a radius of about 0.1 mm and a length of about
0.5mm. In the middle of the cylindrical region, the
breakdown centers concentrate at the periphery (near
the cylindrical surface), while, near the edges, they con-
centrate in the axial region. This distribution of the
breakdown centers is similar to the distribution of the
beam field at a longitudina maximum in the beam
intensity. We can thus conclude that the breakdown
centers most likely originate at the points where the
longitudinal maxima in the beam intensity occur at the
outermost ring of the radial beam structure at which the
beam intensity is still above the threshold. It should be
noted that, in the experiment at hand, the laser pulse
had a peculiar shape: for T = 0.8, the rise time of the
pulse front was 100 ps.

Theperiod | = 0.28 mm of the longitudinal structure
of the plasma channel shown in Fig. 5d coincides
exactly with the period computed for a beam with the
convergence angle y = 5°. However, the above two
methods give different numbers of the rings of the
radial structure of a Besselian beam: m; = 3 and 16.
Clearly, this discrepancy is associated with the pulse
duration, which is equal to T = 20 ns and exceeds the
duration of the beam in the previous experiment by a
factor of more than 20. Accordingly, for alow specific
radiation power, w; = 15.4, the pulse energy is higher
by afactor of approximately 10; i.e., €, = 384. Presum-



810

ably, for such a power, the primary breakdown centers
actually originate at the first three inner rings of the
radial beam structure (m; = 3). However, a heating
pulse with alength of 6 m maintains plasma production
by breakdown even after the primary breakdown cen-
ters have already originated.

Under these conditions, the breakdown front in the
focal region of a spherical lens moves upward laser
radiation at the velocity v ~ 107 cm/s. The velocity of
the simultaneous thermal expansion of the plasma in
other directionsisfar lower, u ~ 1055 x 10° cm/s. The
plasmais produced by the ionization wave. In the case
of beam focusing by an axicon, the front of the primary
breakdown can also propagate upward laser radiation.
However, unlike the case of spherical focusing, the
intensity of a Besselian beam can also be maximum at
the points on the outside of the breakdown zone
(Fig. 9). At each such point, the beam field has the
potential to maintain plasma production by breakdown.
When passing through the point of maximum beam
intensity, the ionization wave (which reduces the
threshold for breakdown) gives rise to a new break-
down center. We thus arrive at a certain combination of
the radiative (ionizational) mechanism and the break-
down-wave mechanism.

Let v be the propagation velocity of the breakdown
front upward laser radiation, u be the radial velocity of
the ionization wave, or,, be the radial distance between
the neighboring cylindrical surfaces of the radia struc-
ture of a Besselian beam, and 6ry = Or/siny bethe dis-
tance between the same surfaces but along the laser
“ray” (i.e., upward laser radiation, along aline directed
attheangley). Sincetheangleyissmall and or,, < or,,
the front of the spherical ionization wave passes
through the neighboring ring earlier than the break-
down front propagating upward laser radiation. Hence,
the angle at which the breakdown wave propagates
deviates from vy. In addition, the beam intensity
decreases along thelaser ray because of thefinitelength
of the axial structure maximum. As a result, the break-
down wave propagates at an angle 3 > y from point to
point in the structure of a Besselian beam.

The longitudinal and radial components of the total
velocity can be represented as v, = vcosy and v, =
v siny + U. Then, the angle 3 is determined by the rela-
tionship

_vsny+u
vcosy

anp

For example, for v =107 cm/sand u=2 x 10° cm/s, we
have B = 16°, which agrees with the inclination angle
B = 13°-17° measured from the image of the channel in
Fig. 5d.

For along heating pulse, the ionization wave, which
lowers the intensity threshold for breakdown, passes
through the region between the primary breakdown
centers, in which the beam field can be below the

(12)
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threshold level. However, if the breakdown centers
arise before the intensity of the heating pulse becomes
maximum and if the maximum intensity of the beam is
sufficiently high, then the breakdown centers merge
into continuous plasma formations. In Fig. 5d, these
formations are seen as side extensions. | n the experiment
illustrated in Fig. 5d, the pulse duration is T = 20 ns,
so that the beam intensity remains nearly maximum at
least over atimeinterval of t ~ 0.1T = 2 ns. During this
time, the region where theintensity threshold for break-
down is lowered extends (at a velocity of u= 2 x
106 cm/s) for &r ~ 40 um, which satisfies the main con-
dition for the process to occur, or > dr ,,, because, in the
case at hand, we have or,,, = 6 pum.

The channel structure in Fig. 5e quantitatively
(rather than qualitatively) differs from that in Fig. 5d.
Indeed, the method for determining the number of the
ring of the radial structure of the Besselian beam from
the measured radiation intensity gives m, = 19 (x, =
59.0), while the method for determining the same num-
ber from the measured radius of the breakdown zone
yields m, = 74 (x, = 238). Of course, the channel struc-
ture forms by the same mechanisms asin the previous
case, and the larger number of rings on which the
breakdown centers originate is associated with the
higher power and energy densities of radiation. There-
fore, the side extensions of the channel structure are
longer than those in Fig. 5d. The higher specific power
of radiation and the larger convergence angley lead to
the larger inclination angle of the extensions (the
angle 3). However, the large angle y hinders the merg-
ing of the breakdown centers, which are thus observed
to merge together only in the axial region of the chan-
nel structure. Using relationship (12), we can estimate
the velocity ratio u/v . For the channel structure shown
in Fig. 5e, the inclination angle of the extensions is
B =36°, which gives (u/v) = 0.56.

In the context of the mechanism under discussion,
we consider the configuration of an optical discharge
illustrated in Fig. 5f. In the relevant experiment, the
specific power w, = 1250 and the specific energy €, =
6.3 x 10* were both one order of magnitude higher than
those in Fig. 5e, the pulse duration being the same.
Accordingly, the beam intensity isfar above the thresh-
old, so that the breakdown zone includes the ring num-
ber m, = 250 (which corresponds to x; = 803). On the
other hand, measurements of the radius of the break-
down zoneyield m; = 266 and x; = 851. Hence, we may
suppose that the channel structure is formed by basi-
caly the same mechanism. However, such a high
excess of the beam intensity above the threshold has
important consequences.

In Fig. 5f, the breakdown centers resemble large
bright spots and occur at the peripheral rings of the
radial beam structure. Presumably, such factors as high
electron plasma density in the spots and their large
dimensions are, to a great extent, responsible for the
screening of the central regions of the plasma channel
No. 9
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from radiation. For thisreason, it was possible to detect
only fragments of the side extensions of the channel
structure; moreover, these fragments were observed to
terminate radially without reaching the axial region of
the beam. From Fig. 5f, one can see that the beam inten-
sity at the center of the channel is sufficient to ensure
breakdown only along discrete intervals in the axial
focal region of the axicon. The screening may also be
responsible for wide spacing between the structural
groups of the breakdown centers.

L et us estimate the vel ocity ratio u/v. By measuring
the angle 3 from the inclination of the contours of the
extensions, we find B = 48°, which corresponds to the
ratio (u/v) = 1, thereby providing evidence for the det-
onation breakdown mechanism. Hence, we can con-
clude that, when the beam intensity is far above the
threshold intensity, the structure of an optical discharge
degenerates into a sequence of coaxia breakdowns and
the forming breakdown centers evolve according to the
detonation mechanism.

6. CONCLUSION

A conical lens makes it possible to focus laser light
in such away asto prevent the diffractive spreading of
laser pulses. In this case, the radial profile of the laser
field is described by the Bessel function and the longi-
tudinal extension of thefield isindependent of the laser
wavelength. Such Besselian beams can be used to cre-
ate an extended uniform plasma channel. However,
such achannel issubject to instabilitiesresulting in var-
ious structural inhomogeneities.

The presence of structural inhomogeneities is asso-
ciated primarily with thefield structure of the Besselian
beam, which is characterized by radially (m) and axi-
aly (K) ordered sets of the points of the field intensity
maximums. The radia ordering is determined by the
rings whose radii correspond to the zeros of the Bessel
function. The longitudinal structure (z) forms due to
the nonlinear interaction of a Besselian beam with a
gas. If this interaction is only dightly nonlinear, the
beam gives rise to a uniform plasma channel. In a
strongly nonlinear interaction, an optical discharge
develops from breakdown centers that originate at the
longitudinal maxima z, in the beam intensity.

The channel structure depends on the duration of the
heating pulse and the excess of the beam intensity
above the threshold intensity. The pulse is assumed to
be short if its duration is insufficient for the produced
plasma to reduce the threshold intensity for breakdown
at the neighboring structural elements of the beam. A
short pulse gives rise to breakdown centers at every
structural inhomogeneity in the axial direction, in
which case the diameter of the breakdown zone (the
number m of rings) depends on the pulse energy. The
minimum diameter 2a, is the diameter of the central
region of a Besselian beam. In this case, the perturba-
tion wavesdriven by the breakdown centers are damped
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over short distances, so that, during atime interval of
t~5 x 10''sin?y s, the breakdown centers merge
together, giving rise to a uniform plasma channel.
When the diameter of the primary breakdown zone is
large (m> 0), the distance over which perturbations can
affect the channel structure increases in proportion to
a,,/a,, S0 that, as the pulse comes to an end, the plasma
channel formsasaresult of spontaneous propagation of
the perturbations.

If the laser pulseislong, the breakdown front moves
upward laser radiation, as in the case of focusing by a
spherical lens. Simultaneously, the plasmais produced
by a spherical ionization wave. However, unlike the
case of spherical focusing, there may be other maxima
of the intensity of a Besselian beam on the outside of
the breakdown zone. At each of these points, the beam
field hasthe potential to maintain plasma production by
breakdown. When passing through a point of the maxi-
mum beam intensity on the outside of the breakdown
zone, the ionization wave lowers the threshold for
breakdown and gives rise to a new breakdown center.
We can thus conclude that the breakdown front propa-
gates in a jumplike manner, because of the peculiar
combination of the radiative (ionizational) mechanism
and the breakdown-wave mechanism.

Theradial expansion velocity of the plasmaismark-
edly lower than the velocity of the breakdown wave.
However, the spatial scale of the radial structure of a
Besselian beam is smaller than the period of the longi-
tudinal beam structure, (. k= md < ke 1 — Mmd-
As a result, the breakdown front propagates from the
points r, along trajectories whose directions are deter-
mined by the ratio of the expansion velocity of the
spherical ionization wave to the velocity of the break-
down wave. The length of the tragjectories depends on
the intensity and duration of the heating pulse.

For intensities far above the threshold level, the
breakdown centers can originate at rings with large
radii, in which case the breakdown front propagates as
a light detonation wave, producing large plasma
domains. High plasma electron density in the domains
may be responsible for the screening of the central
regions of the Besselian beam from radiation and for
the onset of conical breakdown fronts. The radii a,, of
the conical fronts depend on the beam intensity, and the
distances between the fronts are determined by the
inclination angle of their generatrix.

The configuration of inhomogeneities of the plasma
channel follows the structure of an optical breakdown
for along time. Theinhomogeneities may be smoothed
out only as aresult of interpenetration and intermixing.
The duration t of this smoothing depends on the scale
length &r of the inhomogeneities and can be easily esti-
mated from the propagation velocity u of the perturba-
tionsin the channel: t ~ dr/u. The larger the scale of the
channel structure, the longer the time interval is during
which the inhomogeneities are smoothed out and
damped. Thus, for the velocity u =2 x 10° cm/s, the
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structural
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inhomogeneities with the characteristic

dimensions or < 0.1 mm are smoothed out during the
time interval t < 5 ns, while, for & ~ 1 mm, this time
interval increases at least up tot ~ 50 ns.
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Abstract—The mechanism for the formation of the inverse electron distribution function is proposed and real -
ized experimentally in a nitrogen plasma of a hollow-cathode glow discharge. It is shown theoretically and
experimentally that, for a broad range of the parameters of an N, discharge, it is possible to form a significant
dip in the profile of the electron distribution function in the energy range € = 2—4 eV and, accordingly, to pro-
duce the inverse distribution with df (€)/de > 0. The formation of a dip is associated with both the vibrational
excitation of N, molecules and the characteristic features of a hollow-cathode glow discharge. In such a dis-
charge, the applied voltage drops preferentially across a narrow cathode sheath. In the main discharge region,
the electric field E isweak (E < 0.1 V/cm at a pressure of about p ~ 0.1 torr) and does not heat the discharge
plasma. The gasisionized and the ionization-produced electrons are heated by a beam of fast electrons (with
an energy of about 400 eV) emitted from the cathode. A high-energy electron beam plays an important role in
the formation of adip in the profile of the electron distribution function in the energy range in which the cross
section for the vibrational excitation of nitrogen molecules is maximum. A plasma with an inverted electron
distribution function can be used to create a population inversion in which more impurity molecules and atoms

will exist in electronically excited states. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, numerous technological applica-
tions of low-pressure gas discharges in nitrogen and
nitrogen-containing mixtures have stimulated active
experimental and theoretical investigations of the elec-
tron energy distribution function (EEDF) in order to
gain a better insight into the physics of the plasmo-
chemical processes occurring in various plasmadevices
(see, eg., [1-8]).

First of al, we should note that the shape of the
EEDF ishighly sensitiveto the type of discharge and its
parameters even in experiments with the same gas mix-
tures. Thus, in [1-4], the EEDF in N, and N,-O, mix-
tureswas studied under conditions such that the electric
field was stronger than the breakdown field and was the
only factor responsible for the heating of plasma elec-
trons. In those papers, the EEDF f(g) was found to be
monotonic (df(g)/de < 0), but with different tempera-
tures in different energy ranges. Such a shape of the
EEDF is associated with the fact that, under those con-
ditions, the distribution of the plasma electrons rapidly
becomes Maxwellian under the action of the electric
field.

On the contrary, in [5-8], it was shown that, in a
weak electric field in the post-discharge plasmas of
repetitive discharges in N, and Ar-N, mixtures, an
important role in the formation of the EEDF is played
by superelastic collisions, because, during the period
between successive discharges, the electrons are heated

only by energy transfer from vibrationally and el ectron-
ically excited molecules to the plasma. As aresult, the
EEDF becomes peaked at energies that correlate with
the excitation energies of the vibronic (vibrational—
electronic) levels of molecules.

Our paper isdevoted to an experimental and theoret-
ical investigation of the EEDF in discharges that differ
radically from both those studied in [1-4] and those
studied in [5-8]. Specifically, we are interested in
steady hollow-cathode glow dischargesin nitrogen and
oxygen. In such discharges, which are widely used in
various technological applications, the applied voltage
drops preferentialy across a narrow cathode sheath.
According to our measurements, the electric field E in
the main discharge region was at most 0.1 V/cm (at a
pressure of about p ~ 0.1 torr), which is one order of
magnitude weaker than that in [1-4]. In our experi-
ments, the gas was ionized and the plasma electrons
were heated by a beam of fast electrons (with an energy
of about 400 eV) emitted from the cathode. We show
that, in such discharges in nitrogen, the formation of a
significant dip in the EEDF in the energy range 2—4 eV
and, accordingly, theinversion of the EEDF (df (€)/de > 0)
are attributed to the vibrational excitation of N, mole-
cules. In contrast, in dischargesin oxygen, the EEDF is
monotonic because, on the one hand, it is cut off at low
threshold energies for the excitation of the lowest lying
electronically excited metastabl e states of O, molecules
and, on the other hand, the cross sectionsfor the excita-
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tion of the vibrational levels of oxygen molecules are
small.

2. EXPERIMENTAL SETUP
AND MEASUREMENT RESULTS

The experiments were carried out with a hollow
cylindrical cathode 280 mm in diameter and 400 mmiin
length. A 230-mm-diameter anode was placed near one
end of the cathode. The vacuum chamber was pre-evac-
uated by a forepump to a residual pressure of 5 x
1073 torr. Then, the chamber was filled with the work-
ing gas (nitrogen or oxygen) in the pressure range from
3 x102to 1 x 107! torr. The discharge current and
applied voltage were varied in theranges 0.5-0.9 A and
400600 V, respectively. The plasma density, electric
fields, and EEDF were measured by a pair of single
Langmuir probes [9] made of tungsten wires 100 pmin
diameter, the receiving sections being from 10 to
15 mm in length. The probes were designed so as to
provide measurements along and across the symmetry
axis of the cathode. In order for the measured current—
voltage (I-V) characteristics of the probes to be
immune to probe-surface contamination, the probes
were cleaned after each measurement by heating them
to atemperature of about 800° C with adc source.

The EEDF was determined numerically by differen-
tiating the 1-V characteristics twice with (if necessary)
preinterpolation of the measured data. The measure-
ment accuracy was increased using the modified
method described in [2], which is based on a specialy
devised programmable diagnostic system controlled by
a personal computer. At each step of a measurement
cycle, the controlling computer code specified the
probe current with an accuracy of 0.1 yA and provided
simultaneous measurements of the probe voltage rela-

3
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Fig. 1. Radial profiles of the electron density for different
nitrogen pressures: (1) p = 0.1 torr, I = 0.63 A, and Uy =
470V; (2) p=0.06 torr, I4=0.73 A, and U4 = 580 V; and
(3) p=0.03torr, 14=0.77A, and Uy = 615 V.
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tive to the anode, the anode voltage, and the discharge
current. The change in the probe current at each step
was calculated automatically during the measurements
with the help of a specially developed agorithm for
optimizing the signal-to-noise ratio over the entire
range of measured currents (a complete cycle of mea
surements of one 1-V characteristic included from 1500
to 2000 steps). The measurements were carried out in
the stroboscopic regime at a rate of 100 Hz synchro-
nously with the oscillations of the supply voltage,
thereby making it possible to avoid the influence of
these oscillations on the experimental results. The gat-
ing time of the measured signals was 1 us. The time
delay (7 ms) of the measurement with respect to the
beginning of the half-wave of the supply voltage was
chosen so as to optimize the signal-to-noise ratio. After
performing the measurements over the prescribed
range of probe current variations, the measured datain
the form of a dependence of the probe current on the
probe potential for a given discharge current and given
discharge voltage were stored as a computer file. With
fixed experimental parameters, the |-V characteristic
was measured up to 30 times. Thereafter, the data
stored in the corresponding fileswere averaged over the
measurement cycles.

The plasma potential was assumed to be equal to the
probe potential at which the second derivative of the
probe current with respect to the probe voltage van-
ishes. The plasma density was computed from the elec-
tron saturation current to the probe.

Figure 1 showstheradial profiles of the plasmaden-
sity for different nitrogen pressures. We can see that the
shape of the profilesis highly sensitive to the working
gaspressure. For p= 0.1 torr, the plasmadensity ismin-
imum at the cathode axis and increases gradually in the
radial direction, reaching a maximum value at R =
11 cm. At lower pressures (p = 0.03, 0.06 torr), the sit-
uation is radicaly different: the plasma density n, is
maximum at the axis of the system and decreases
monotonically with radius. This dependenceis peculiar
to hollow-cathode discharges. At a pressure of 0.1 torr,
essentially al of the energy of the fast primary elec-
trons emitted from the cathode is expended on the exci-
tation and ionization of the working gas within a dis-
tance of severa centimeters from the cathode; conse-
guently, the gas at the system axisisionized mainly by
the electrons that diffuse from the region where the
plasma has aready been produced. As a result, the
plasmadensity isthe highest not at the cathode axis but
in the region where the loss of fast electrons is maxi-
mum and, accordingly, the plasma production is most
intense. As the working gas pressure decreases, the
maximum of the plasma density profile shifts toward
smaller radii and, at p = 0.05 torr, it becomes bell-
shaped.

Recall that, in gas discharges, a very important role
is played by the electric field, which heats the plasma
electrons and thus can substantially influence the shape
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 2. Radial profilesof theradial electricfield for different
nitrogen pressures: (1) p =0.1torr, I =0.63 A, and Uy =
470V; (2) p=0.06 torr, |4 =0.73 A, and U4 = 580 V; and
(3) p=0.03torr,14=0.77A,and Uy =615 V.

of the EEDF. Figure 2 displaysthe experimentally mea-
sured radial profilesof theradial electricfield E, for dif-
ferent nitrogen pressures. The radia behavior of E, is
seen to be analogous to that of the plasma density. At
low nitrogen pressures, the radial electric field is posi-
tive and increases monotonically with the radius. For
p = 0.1 torr, the component E, is negative in the axia
region (where the plasma density is the lowest); at
larger radii, it passes through zero and starts increasing
monotonically. The maximum value of E, does not
exceed 0.1 V/cm. The longitudinal electric field E, was
found to be even weaker: the measurements showed
that E,= 1-2 x 102 V/cm for p = 0.1 torr, E,= 0.5-1 x

Fig. 3. EEDFs measured in nitrogen at a pressure of p =
0.03 torr at different radial positions R.
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102 V/cm for p = 0.06 torr, and E, < 102 V/cm for p =
0.03 torr. Below, we will show that such longitudinal
and radial electric fields are too weak to significantly
affect the shape of the EEDF.

The EEDF was measured at different points inside
the vacuum chamber at different pressures of the work-
ing gas. Figures 3 and 4 show typical EEDFs measured
at nitrogen pressures of 0.1 and 0.03 torr. We can see
that the EEDF is strongly non-Maxwellian: it hasapro-
nounced dip in the energy range 2—4 eV. Moreover, a a
lower pressure (Fig. 3), there are two dipsin the EEDF
in this energy range.

We also established that, at low pressures, the EEDF
is essentially independent of the radius, while, at p =
0.1 torr, the EEDF experiences fairly strong variations
in the radial direction. Moreover, at the chamber axis
(i.e., in the region where the reduced electric field E/N
isminimum), the dip in the EEDF isthe smallest. This
radial behavior of the EEDF is not associated with the
presence of an electric field, because the action of the
electric field should result in the formation of an EEDF
that depends on the radius in the opposite manner—the
dip in the EEDF would be smallest at the discharge
periphery, where the field is maximum. The observed
reduction in the dip in the EEDF near the axis of a hol-
low cathode at high pressures (Fig. 4) may be attributed
to the decrease in the number of high-energy electrons
(which serve as the mgjor energy source in the plasma)
and, accordingly, to an increasingly important role of
the processesthat force the EEDF to evolveinto aMax-
wellian function. Aswas mentioned above (Fig. 1), itis
precisely this pressure range in which the plasma den-
sity n, is minimum at the chamber axis.

100

=
fo(€), ev—32

Fig. 4. EEDFs measured in nitrogen at a pressure of p =
0.1 torr at different radial positions R.
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Fig. 5. EEDF measured in oxygen at a pressure of p =
0.06 torr at R= (1) 0O and (2) 9 cm.

The EEDF in an oxygen plasma is illustrated in
Fig. 5, which shows that it is qualitatively different
from the EEDF in N,, although measurements were
carried out in discharges with the same parameters. To
agood accuracy, the EEDF in O, can be described by a
Maxwellian function, but with different temperaturesin
the energy rangese =0-2.5eV and € > 2.5 eV.

The physical reasons for such a large discrepancy
between the EEDFs in N, and O, will be discussed in
the next section.

3. THEORY

We calculated the EEDF by solving the Boltzmann
equation in the two-term approximation [10]:

1 omo¥? 120(nefo) 1FF 0 e 9f g

nNPdl & Tat 3INJ3:0, 9ell

(1
or,m_ 2 ofq _
~5e 2 Qe H o T3 = St St AGe),

where fy(€) is the symmetric part of the EEDF; T isthe
gas temperature (in eV); e=1.602 x 107! erg/eV; M is
the mass of a molecule; N is the gas density; Q; isthe
transport cross section; mis the mass of an electron; n,

Tablel
. Threshold

No. Reaction energy 4, €V

1| Ny+e—>Nyv)+e v=1..8 15

2| Ny+e—= NyA3S) ) +e 6.7

3| Ny+te— Ny@fy +e 8.55

4| Np+e—=Ny(By) +e 115

5| N,te—= N, +e+e 15.6

6| Nyte—N+N+e 9.76
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is the electron density; S,y is the integral of electron—
neutral inelastic callisions; S, is the integral of elec-
tron—electron collisions; and A(€) istheionizationterm,
which includes the source of primary electrons. The
expressions for the terms Sy, S, and A(g) were taken
from [11].

The EEDF f,(¢) was normalized to satisfy the con-
dition

Isﬂzfo(e)ds =1 )
0

The electron processes that were taken into account
when solving the Boltzmann equation for dischargesin
nitrogen and oxygen are listed in Tables 1 and 2. The
superelastic scattering of electrons by vibrationally
excited molecules was neglected, because, for the dis-
charges under investigation, the specific input power
and, accordingly, the vibrational temperature T, were
both much lower than those in the experiments of [4-8].

The cross sectionsfor elastic and inelastic scattering
of electrons by N, and O, molecules were taken from
[12].

The calculations were carried out with the values of
the electric field and electron density that were mea-
sured experimentally at different regions of the dis-
charge chamber. The energy ¢, of the beam of primary
electrons was assumed to be on the order of the poten-
tial drop across the cathode shesath, €, = 400 eV.

Equation (1) was solved using the same methods as
in[10].

Figure 6 showsthe EEDFs obtained theoretically for
ahollow-cathode discharge in nitrogen. The EEDF was
calculated for the parameter range (n., E) correspond-
ing to the intervals of variation of n, and E in the radial
direction in the discharge chamber. For all values of the
discharge parameters, there are two pronounced dipsin
the EEDF in the energy range € = 2—4 eV. The dips are
associated with the sharp peaks in the cross section for
the vibrational excitation of N, moleculesin thisenergy
range. The EEDF calculated without allowance for the
vibrational excitation of N, molecules is monotonic.
Another factor that causes the dipsin the EEDF to van-
ishisan artificial increasein E/N by an order of magni-
tude, up to the values that correspond to the experi-
ments of [1-4] and are large enough for the EEDF to
become Maxwellian.

Figure 7 showsthe EEDFs calculated for an oxygen
plasma. An important property in which oxygen differs
from nitrogen is the presence of the metastable excited

statesof O, molecules, 0,('Ay) and O,(b'=, ), withlow
threshold energies (0.95 and 1.64 eV, respectively). The
EEDF calculated with alowance for the excitation of
these states is cut off at energies of about 1-2 €V; this
effect is especialy pronounced for weak electric fields
(Fig. 7). Asfor the processes of the vibrational excita-
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 6. EEDFsin nitrogen calculated for the parameter val-
ues (1) p = 0.03 torr, ng = 10' cm 3, and E = 0.01 V/cm;
(2) p=0.03torr, ng= 10" cm™, and E = 0.1 V/em; (3) p =
0.1torr, ng = 10'° cm™, and E = 0.01 V/cm; and (4) p =
0.1torr, ng=2 x 10' cm, and E = 0.06 VV/cm.

2 3 45

tion of O, molecules, they have essentially no influence
on the EEDF because the vibrationa excitation cross
section for O, molecules is much smaller than that for
N, molecules: up to the threshold energies for the exci-
tation of electronic levels, the EEDF in an oxygen
plasma can be described with good accuracy by a Max-
wellian function with one or two (depending on the
electric field magnitude) temperatures in different
energy ranges.

4. DISCUSSION OF THE RESULTS

A comparison between the EEDFs measured exper-
imentally in a nitrogen plasmaat low pressures (Fig. 3)
and the related EEDFs calculated theoretically (Fig. 6)
shows that the experimental data agree well with theo-
retical predictions both qualitatively and quantitatively.
In the energy range 2—4 €V, the positions of the mea-
sured and calculated dips in the EEDF coincide within
an accuracy of 10-20%. In the measured EEDF, the dip
that is closer to the right peak coincides with the rele-
vant calculated dip within the limits of experimental
error.

It should be noted that our experimental technique
does not provide correct measurements of the EEDF in
the energy range below 1 eV. Presumably, this is the
reason why, in the range € < 1 eV, the measured EEDF
f(e) decreases to a lesser extent than the calculated
EEDF. However, a comparison between the calculated
and measured extents to which the EEDF decreasesrel-
ative toits value at an energy of 1 eV also shows good
agreement between theory and experiment.

At higher pressures, the agreement between the cal-
culated and measured EEDFs is somewhat worse
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 7. EEDFsin oxygen calculated for p = 0.06 torr, ng =
109 em™3, and E = (1) 0.01 and (2) 0.1 V/cm.

(Fig. 4), because, as was noted above, theradial energy
distribution of the beam of fast electrons emitted by the
cathode is highly nonuniform. In turn, the radial non-
uniformity of the beam may be responsible for the non-
local character of the EEDF, thereby giving rise to the
loss of high-energy electrons at the axis of the dis-
charge chamber. However, our calculations were car-
ried out under the assumption that al of the parameters
governing the EEDF are spatially uniform.

Towithin experimental error, the EEDF measured in
an oxygen plasma (Fig. 5) also agrees well with the
EEDF calculated for the electric field E = 0.01 V/cm
with allowance for the above scattering cross sections
(Fig. 7). Note that, in discharges in oxygen, the electric
field was measured to be weaker than 0.02 V/cm. To a
first approximation, the experimental EEDF can be
described by two Maxwellian functions with different

Table2
: Threshold
No. Reaction energy e, &V
1|0,+e—=0Oy(V)+e v=1.10 1.95
2|0, te— 02(1Ag) +e 0.98
3|0, te—=0Oyb'Zy) +e 1.64
4|0,+e—= Oy(A33) +e 45
5 02+e*>02(*)+e 60
6|0, +e—0O,(**)+e 8.0
7 02+e*>02(***)+e 97
8|0,te—= 0O, +te+e 12.2
9|0,+e—0+0+e 6.0
10 |0, +e— O +0 3.6




818

temperatures. Up to an energy of about 7 eV, the EEDF
calculated theoretically for E = 0.1 V/cm is a one-tem-
perature Maxwellian function; however, in our experi-
ments with discharges in oxygen, such strong electric
fields were not observed.

5. CONCLUSION

Hence, we have investigated the EEDF in hollow-
cathode glow discharges in which the plasmais prefer-
entially heated by fast electrons that are emitted from
the cathode and are accelerated by the space charge
electric field in the cathode sheath. We have revealed
the following features of the EEDF:

(i) Indischargesin nitrogen, thereisasignificant dip
in the EEDF in the energy rangee =24 eV. Thedipis
associated with the vibrational excitation of N, mole-
cules.

(i) In dischargesin oxygen, the monotonic nature of
the EEDF stems from the following two factors: first,
the cross section for the vibrational excitation of oxy-
gen molecules is smaller than that for nitrogen mole-
cules and, second, the threshold energiesfor the excita-
tion of the lowest lying metastable states of oxygen
molecules are low.

The results of theoretical calculations agree well
with the experimental data.

The measured and calculated EEDFs can be used to
model the plasma kinetics and, accordingly, to deter-
mine the densities of all plasma components, thereby
providing a good way to optimize the technologies
based on hollow-cathode glow discharges. In addition,
since the electric fields in such discharges are low, the
EEDF adequately reflects inelastic electron processes
and thus may give both qualitative and quantitative
information about the cross sections for the corre-

BAZHENOV et al.

sponding processes in more complicated plasma-form-
ing media.
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